WorldWideScience

Sample records for transport calculation methodology

  1. Relative Hazard Calculation Methodology

    International Nuclear Information System (INIS)

    DL Strenge; MK White; RD Stenner; WB Andrews

    1999-01-01

    The methodology presented in this document was developed to provide a means of calculating the RH ratios to use in developing useful graphic illustrations. The RH equation, as presented in this methodology, is primarily a collection of key factors relevant to understanding the hazards and risks associated with projected risk management activities. The RH equation has the potential for much broader application than generating risk profiles. For example, it can be used to compare one risk management activity with another, instead of just comparing it to a fixed baseline as was done for the risk profiles. If the appropriate source term data are available, it could be used in its non-ratio form to estimate absolute values of the associated hazards. These estimated values of hazard could then be examined to help understand which risk management activities are addressing the higher hazard conditions at a site. Graphics could be generated from these absolute hazard values to compare high-hazard conditions. If the RH equation is used in this manner, care must be taken to specifically define and qualify the estimated absolute hazard values (e.g., identify which factors were considered and which ones tended to drive the hazard estimation)

  2. A methodology for calculating transport emissions in cities with limited traffic data: Case study of diesel particulates and black carbon emissions in Murmansk.

    Science.gov (United States)

    Kholod, N; Evans, M; Gusev, E; Yu, S; Malyshev, V; Tretyakova, S; Barinov, A

    2016-03-15

    This paper presents a methodology for calculating exhaust emissions from on-road transport in cities with low-quality traffic data and outdated vehicle registries. The methodology consists of data collection approaches and emission calculation methods. For data collection, the paper suggests using video survey and parking lot survey methods developed for the International Vehicular Emissions model. Additional sources of information include data from the largest transportation companies, vehicle inspection stations, and official vehicle registries. The paper suggests using the European Computer Programme to Calculate Emissions from Road Transport (COPERT) 4 model to calculate emissions, especially in countries that implemented European emissions standards. If available, the local emission factors should be used instead of the default COPERT emission factors. The paper also suggests additional steps in the methodology to calculate emissions only from diesel vehicles. We applied this methodology to calculate black carbon emissions from diesel on-road vehicles in Murmansk, Russia. The results from Murmansk show that diesel vehicles emitted 11.7 tons of black carbon in 2014. The main factors determining the level of emissions are the structure of the vehicle fleet and the level of vehicle emission controls. Vehicles without controls emit about 55% of black carbon emissions. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Methodology of shielding calculation for nuclear reactors

    International Nuclear Information System (INIS)

    Maiorino, J.R.; Mendonca, A.G.; Otto, A.C.; Yamaguchi, Mitsuo

    1982-01-01

    A methodology of calculation that coupling a serie of computer codes in a net that make the possibility to calculate the radiation, neutron and gamma transport, is described, for deep penetration problems, typical of nuclear reactor shielding. This net of calculation begining with the generation of constant multigroups, for neutrons and gamma, by the AMPX system, coupled to ENDF/B-IV data library, the transport calculation of these radiations by ANISN, DOT 3.5 and Morse computer codes, up to the calculation of absorbed doses and/or equivalents buy SPACETRAN code. As examples of the calculation method, results from benchmark n 0 6 of Shielding Benchmark Problems - ORNL - RSIC - 25, namely Neutron and Secondary Gamma Ray fluence transmitted through a Slab of Borated Polyethylene, are presented. (Author) [pt

  4. Multilevel transport calculations

    International Nuclear Information System (INIS)

    Sanchez, R.; Mondot, J.

    1986-10-01

    A new model for multigroup transport calculations based on a group-dependent spatial representation has been developed. The multilevel method takes advantage of the orthogonality of the energy and space operators, inherent to the structure of the linear transport equation, to decompose the energy domain into subdomains or levels, i.e., fast, epithermal and thermal, where suitable spatial approximations are used. The aim of the method is to allow for the use of larger mesh spacings at high neutron energies and, therefore, to cut down the computational cost while preserving the overall accuracy. The method can be easily implemented in today's standard transport codes by introducing small modifications in the computation of the multigroup external source. The multilevel model is of special interest for the calculation of media containing high thermal absorbers. A variant of this method, based on a nested, multilevel approximation, has been implemented in the APOLLO-II assembly transport code. Comparisons between the multilevel model and the usual multigroup approximation have been made for a PWR poisoned cell and for a thermal neutron barrier used to feed a molten FBR fuel sample. The results show that significant savings in computational times are obtained with the multilevel approximation. 10 refs

  5. 76 FR 71431 - Civil Penalty Calculation Methodology

    Science.gov (United States)

    2011-11-17

    ... Methodology AGENCY: Federal Motor Carrier Safety Administration (FMCSA), DOT. ACTION: Notice. SUMMARY: FMCSA is currently evaluating its civil penalty methodology. Part of this evaluation includes a forthcoming... FMCSA methodology for calculation of certain civil penalties. To induce compliance with federal...

  6. 10 CFR 766.102 - Calculation methodology.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Calculation methodology. 766.102 Section 766.102 Energy DEPARTMENT OF ENERGY URANIUM ENRICHMENT DECONTAMINATION AND DECOMMISSIONING FUND; PROCEDURES FOR SPECIAL ASSESSMENT OF DOMESTIC UTILITIES Procedures for Special Assessment § 766.102 Calculation methodology. (a...

  7. Advanced computational methodology for full-core neutronics calculations

    Science.gov (United States)

    Hiruta, Hikaru

    The modern computational methodology for reactor physics calculations is based on single-assembly transport calculations with reflective boundary conditions that generate homogenized few-group data, and core-level coarse-mesh diffusion calculations that evaluate a large-scale behavior of the scalar flux. Recently, an alternative approach has been developed. It is based on the low-order equations of the quasidiffusion method in order to account accurately for complicated transport effects in full-core calculations. The low-order quasidiffusion (LOAD) equations can capture transport effects to an arbitrary degree of accuracy. This approach is combined with single-assembly transport calculations that use special albedo boundary conditions which enable one to simulate efficiently effects of an unlike neighboring assembly on assembly's group data. In this dissertation, we develop homogenization methodology based on the LOAD equations and spatially consistent coarse-mesh finite element discretization methods for the 2D low-order quasidiffusion equations for the full-core calculations. The coarse-mesh solution generated by this method preserves a number of spatial polynomial moments of the fine-mesh transport solution over coarse cells. The proposed method reproduces accurately the complicated large-scale behavior of the transport solution within assemblies. To demonstrate accuracy of the developed method, we present numerical results of calculations of test problems that simulate interaction of MOX and uranium assemblies. We also develop a splitting method that can efficiently solve the coarse-mesh discretized LOQD equations. The presented method splits the LOAD problem into two parts: (i) the D-problem that captures a significant part of transport solution in the central parts of assemblies and can be reduced to a diffusion-type equation, and (ii) the Q-problem that accounts for the complicated behavior of the transport solution near assembly boundaries. Independent

  8. Iterative Transport-Diffusion Methodology For LWR Core Analysis

    Science.gov (United States)

    Colameco, David; Ivanov, Boyan D.; Beacon, Daniel; Ivanov, Kostadin N.

    2014-06-01

    This paper presents an update on the development of an advanced methodology for core calculations that uses local heterogeneous solutions for on-the-fly nodal cross-section generation. The Iterative Transport-Diffusion Method is an embedded transport approach that is expected to provide results with near 3D transport accuracy for a fraction of the time required by a full 3D transport method. In this methodology, the infinite environment used for homogenized nodal cross-section generation is replaced with a simulated 3D environment of the diffusion calculation. This update focuses on burnup methodology, axial leakage and 3D modeling.

  9. Comparison of SERPENT and SCALE methodology for LWRs transport calculations and additionally uncertainty analysis for cross-section perturbation with SAMPLER module

    Directory of Open Access Journals (Sweden)

    Labarile Antonella

    2016-01-01

    Full Text Available In nuclear safety research, the quality of the results of simulation codes is widely determined by the reactor design and safe operation, and the description of neutron transport in the reactor core is a feature of particular importance. Moreover, for the long effort that is made, there remain uncertainties in simulation results due to the neutronic data and input specification that need a huge effort to be eliminated. A realistic estimation of these uncertainties is required for finding out the reliability of the results. This explains the increasing demand in recent years for calculations in the nuclear fields with best-estimate codes that proved confidence bounds of simulation results. All this has lead to the Benchmark for Uncertainty Analysis in Modelling (UAM for Design, Operation and Safety Analysis of LWRs of the NEA. The UAM-Benchmark coupling multi-physics and multi-scale analysis using as a basis complete sets of input specifications of boiling water reactors (BWR and pressurized water reactors (PWR. In this study, the results of the transport calculations carried out using the SCALE-6.2 program (TRITON/NEWT and TRITON/KENO modules as well as Monte Carlo SERPENT code, are presented. Additionally, they have been made uncertainties calculation for a PWR 15 × 15 and a BWR 7 × 7 fuel elements, in two different configurations (with and without control rod, and two different states, Hot Full Power (HFP and Hot Zero Power (HZP, using the TSUNAMI module, which uses the Generalized Perturbation Theory (GPT, and SAMPLER, which uses stochastic sampling techniques for cross-sections perturbations. The results obtained and validated are compared with references results and similar studies presented in the exercise I-2 (Lattice Physics of UAM-Benchmark.

  10. Development of a computational methodology for internal dose calculations

    CERN Document Server

    Yoriyaz, H

    2000-01-01

    A new approach for calculating internal dose estimates was developed through the use of a more realistic computational model of the human body and a more precise tool for the radiation transport simulation. The present technique shows the capability to build a patient-specific phantom with tomography data (a voxel-based phantom) for the simulation of radiation transport and energy deposition using Monte Carlo methods such as in the MCNP-4B code. In order to utilize the segmented human anatomy as a computational model for the simulation of radiation transport, an interface program, SCMS, was developed to build the geometric configurations for the phantom through the use of tomographic images. This procedure allows to calculate not only average dose values but also spatial distribution of dose in regions of interest. With the present methodology absorbed fractions for photons and electrons in various organs of the Zubal segmented phantom were calculated and compared to those reported for the mathematical phanto...

  11. Feasibility study on embedded transport core calculations

    International Nuclear Information System (INIS)

    Ivanov, B.; Zikatanov, L.; Ivanov, K.

    2007-01-01

    The main objective of this study is to develop an advanced core calculation methodology based on embedded diffusion and transport calculations. The scheme proposed in this work is based on embedded diffusion or SP 3 pin-by-pin local fuel assembly calculation within the framework of the Nodal Expansion Method (NEM) diffusion core calculation. The SP 3 method has gained popularity in the last 10 years as an advanced method for neutronics calculation. NEM is a multi-group nodal diffusion code developed, maintained and continuously improved at the Pennsylvania State University. The developed calculation scheme is a non-linear iteration process, which involves cross-section homogenization, on-line discontinuity factors generation, and boundary conditions evaluation by the global solution passed to the local calculation. In order to accomplish the local calculation, a new code has been developed based on the Finite Elements Method (FEM), which is capable of performing both diffusion and SP 3 calculations. The new code will be used in the framework of the NEM code in order to perform embedded pin-by-pin diffusion and SP 3 calculations on fuel assembly basis. The development of the diffusion and SP 3 FEM code is presented first following by its application to several problems. Description of the proposed embedded scheme is provided next as well as the obtained preliminary results of the C3 MOX benchmark. The results from the embedded calculations are compared with direct pin-by-pin whole core calculations in terms of accuracy and efficiency followed by conclusions made about the feasibility of the proposed embedded approach. (authors)

  12. A Methodology Proposal to Calculate the Externalities of Liquid Biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Galan, A.; Gonzalez, R.; Varela, M. [Ciemat. Madrid (Spain)

    1999-05-01

    The aim of the survey is to propose a methodology to calculate the externalities associated with the liquid bio fuels cycle. The report defines the externalities from a theoretical point of view and classifies them. The reasons to value the externalities are explained as well as the existing methods. Furthermore, an evaluation of specific environmental and non-environmental externalities is also presented. The report reviews the current situation of the transport sector, considering its environmental effects and impacts. The progress made by the ExternE and ExternE-transport projects related the externalities of transport sector is assessed. Finally, the report analyses the existence of different economic instruments to internalize the external effects of the transport sector as well as other aspects of this internalization. (Author) 58 refs.

  13. Iterative transport-diffusion methodology for LWR core analysis

    International Nuclear Information System (INIS)

    Colameco, D.; Beacon, D.; Ivanov, K.N.; Inanov, B.D.

    2013-01-01

    This paper presents an update on the development of an advanced methodology for Light Water Reactor core calculations that uses local heterogeneous solutions for on-the-fly nodal cross-section generation. The Iterative Transport-Diffusion Method (ITDM) is an embedded transport approach that is expected to provide results with near 3D transport accuracy for a fraction of the time required by a full 3D transport method. In this methodology, the infinite environment used for homogenized nodal cross-section generation is replaced with a simulated 3D environment of the diffusion calculation. It is shown that the ITDM methodology provides very promising results when using partial currents as boundary conditions for loosely coupling a 2D lattice transport code to a 3D core nodal solver. The use of partial currents is a major improvement over the albedo concept: the solutions converged in a smoother manner

  14. METHODOLOGY OF PUBLIC TRANSPORT SERVICE QUALITY

    Directory of Open Access Journals (Sweden)

    Olga Saginova

    2016-01-01

    Full Text Available The paper analysis approaches to establishing a system of indicators for public transport service quality in Moscow using customers’ expectations and current characteristics of transportation service. The topic is relevant due to using a new model of transportation service in Moscow involving private transportation companies, which requires establishing uniform service quality standards. Object of research. Public transport service quality Objectives. Using modern marketing concepts and customer oriented approach to service quality assessment develop a comprehensive methodology of managing public transport service quality. Methods. The paper uses Russian and foreign research publications in service quality assessment as well as results of research project by a team of scientists from Plekhanov Russian University of Economics. Methods of comparative research, netnography and marketing research (focus groups and survey methods were used. Results. After analyzing the public transportation problems in the megapolis, current transportation policy and survey of foreign experience, transportation service standards of EC, USA and CIS, a structure and method of establishing a self-regulated system of improving transportation service quality was developed basing on a marketing approach. Conclusions/relevance. The developed methodology of establishing a self-regulating system of improving the transportation service quality is based on a marketing approach, and the structure of a system of indicators to assess the service quality, basic indicators of expected and perceived quality of transportation service.

  15. Radiation Transport Calculations and Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Fasso, Alberto; /SLAC; Ferrari, A.; /CERN

    2011-06-30

    This article is an introduction to the Monte Carlo method as used in particle transport. After a description at an elementary level of the mathematical basis of the method, the Boltzmann equation and its physical meaning are presented, followed by Monte Carlo integration and random sampling, and by a general description of the main aspects and components of a typical Monte Carlo particle transport code. In particular, the most common biasing techniques are described, as well as the concepts of estimator and detector. After a discussion of the different types of errors, the issue of Quality Assurance is briefly considered.

  16. A Methodology for Calculating Radiation Signatures

    Energy Technology Data Exchange (ETDEWEB)

    Klasky, Marc Louis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wilcox, Trevor [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bathke, Charles G. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); James, Michael R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-05-01

    A rigorous formalism is presented for calculating radiation signatures from both Special Nuclear Material (SNM) as well as radiological sources. The use of MCNP6 in conjunction with CINDER/ORIGEN is described to allow for the determination of both neutron and photon leakages from objects of interest. In addition, a description of the use of MCNP6 to properly model the background neutron and photon sources is also presented. Examinations of the physics issues encountered in the modeling are investigated so as to allow for guidance in the user discerning the relevant physics to incorporate into general radiation signature calculations. Furthermore, examples are provided to assist in delineating the pertinent physics that must be accounted for. Finally, examples of detector modeling utilizing MCNP are provided along with a discussion on the generation of Receiver Operating Curves, which are the suggested means by which to determine detectability radiation signatures emanating from objects.

  17. Neutron transport model for standard calculation experiment

    International Nuclear Information System (INIS)

    Lukhminskij, B.E.; Lyutostanskij, Yu.S.; Lyashchuk, V.I.; Panov, I.V.

    1989-01-01

    The neutron transport calculation algorithms in complex composition media with a predetermined geometry are realized by the multigroups representations within Monte Carlo methods in the MAMONT code. The code grade was evaluated with benchmark experiments comparison. The neutron leakage spectra calculations in the spherical-symmetric geometry were carried out for iron and polyethylene. The MAMONT code utilization for metrological furnishes of the geophysics tasks is proposed. The code is orientated towards neutron transport and secondary nuclides accumulation calculations in blankets and geophysics media. 7 refs.; 2 figs

  18. Methodology for calculating guideline concentrations for safety shot sites

    International Nuclear Information System (INIS)

    1997-06-01

    Residual plutonium (Pu), with trace quantities of depleted uranium (DU) or weapons grade uranium (WU), exists in surficial soils at the Nevada Test Site (NTS), Nellis Air Force Range (NAFR), and the Tonopah Test Range (TTR) as the result of the above-ground testing of nuclear weapons and special experiments involving the detonation of plutonium-bearing devices. The special experiments (referred to as safety shots) involving plutonium-bearing devices were conducted to study the behavior of Pu as it was being explosively compressed; ensure that the accidental detonation of the chemical explosive in a production weapon would not result in criticality; evaluate the ability of personnel to manage large-scale Pu dispersal accidents; and develop criteria for transportation and storage of nuclear weapons. These sites do not pose a health threat to either workers or the general public because they are under active institutional control. The DOE is committed to remediating the safety shot sites so that radiation exposure to the public, both now and in the future, will be maintained within the established limits and be as low as reasonably achievable. Remediation requires calculation of a guideline concentration for the Pu, U, and their decay products that are present in the surface soil. This document presents the methodology for calculating guideline concentrations of weapons grade plutonium, weapons grade uranium, and depleted uranium in surface soils at the safety shot sites. Emphasis is placed on obtaining site-specific data for use in calculating dose to potential residents from the residual soil contamination

  19. Methodology for calculating guideline concentrations for safety shot sites

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    Residual plutonium (Pu), with trace quantities of depleted uranium (DU) or weapons grade uranium (WU), exists in surficial soils at the Nevada Test Site (NTS), Nellis Air Force Range (NAFR), and the Tonopah Test Range (TTR) as the result of the above-ground testing of nuclear weapons and special experiments involving the detonation of plutonium-bearing devices. The special experiments (referred to as safety shots) involving plutonium-bearing devices were conducted to study the behavior of Pu as it was being explosively compressed; ensure that the accidental detonation of the chemical explosive in a production weapon would not result in criticality; evaluate the ability of personnel to manage large-scale Pu dispersal accidents; and develop criteria for transportation and storage of nuclear weapons. These sites do not pose a health threat to either workers or the general public because they are under active institutional control. The DOE is committed to remediating the safety shot sites so that radiation exposure to the public, both now and in the future, will be maintained within the established limits and be as low as reasonably achievable. Remediation requires calculation of a guideline concentration for the Pu, U, and their decay products that are present in the surface soil. This document presents the methodology for calculating guideline concentrations of weapons grade plutonium, weapons grade uranium, and depleted uranium in surface soils at the safety shot sites. Emphasis is placed on obtaining site-specific data for use in calculating dose to potential residents from the residual soil contamination.

  20. Molecular transport calculations with Wannier Functions

    DEFF Research Database (Denmark)

    Thygesen, Kristian Sommer; Jacobsen, Karsten Wedel

    2005-01-01

    We present a scheme for calculating coherent electron transport in atomic-scale contacts. The method combines a formally exact Green's function formalism with a mean-field description of the electronic structure based on the Kohn-Sham scheme of density functional theory. We use an accurate plane......-wave electronic structure method to calculate the eigenstates which are subsequently transformed into a set of localized Wannier functions (WFs). The WFs provide a highly efficient basis set which at the same time is well suited for analysis due to the chemical information contained in the WFs. The method...

  1. Calculations of neoclassical impurity transport in stellarators

    Science.gov (United States)

    Mollén, Albert; Smith, Håkan M.; Langenberg, Andreas; Turkin, Yuriy; Beidler, Craig D.; Helander, Per; Landreman, Matt; Newton, Sarah L.; García-Regaña, José M.; Nunami, Masanori

    2017-10-01

    The new stellarator Wendelstein 7-X has finished the first operational campaign and is restarting operation in the summer 2017. To demonstrate that the stellarator concept is a viable candidate for a fusion reactor and to allow for long pulse lengths of 30 min, i.e. ``quasi-stationary'' operation, it will be important to avoid central impurity accumulation typically governed by the radial neoclassical transport. The SFINCS code has been developed to calculate neoclassical quantities such as the radial collisional transport and the ambipolar radial electric field in 3D magnetic configurations. SFINCS is a cutting-edge numerical tool which combines several important features: the ability to model an arbitrary number of kinetic plasma species, the full linearized Fokker-Planck collision operator for all species, and the ability to calculate and account for the variation of the electrostatic potential on flux surfaces. In the present work we use SFINCS to study neoclassical impurity transport in stellarators. We explore how flux-surface potential variations affect the radial particle transport, and how the radial electric field is modified by non-trace impurities and flux-surface potential variations.

  2. Solar radiation calculation methodology for building exterior surfaces

    Energy Technology Data Exchange (ETDEWEB)

    De la Flor, Francisco Jose Sanchez; Ortiz Cebolla, Rafael; Luis Molina Felix, Jose; Alvarez Dominguez, Servando [E S. Ingenieros. Grupo de Termotecnia, Avda. de los descubrimientos, s/n 41092 Sevilla (Spain)

    2005-11-01

    The present article shows a new methodology of calculation of the direct, diffuse and reflected incident solar radiation, in all type of surfaces, either in open urban environments or inside buildings. This methodology is applicable in problems related to solar access (space heating in buildings, shadowing of open spaces), solar gains (space cooling in buildings), and daylighting. Solar radiation is the most important contribution to the surface and volumetric energy balance during the daytime. Particularly, solar radiation is the main contributor to heat gains in buildings, especially in residential buildings, where internal gains are very low. Utilization of daylight in buildings may result in significant savings in electricity consumption for lighting while creating a higher quality indoor environment. Additional energy savings may also be realized during cooling season, when reduction of internal heat gains due to electric lighting results in a corresponding reduction of cooling energy consumption. The analysis of the existing calculation methods and proposed in the scientific bibliography for the calculation of the solar radiation in problems of solar access in winter, solar gains in summer, and daylighting, takes us to the necessity of outlining a new and complete methodology. This new methodology is applicable to all these problems with a great accuracy and calculation speed. (author)

  3. A meshless approach to radionuclide transport calculations

    International Nuclear Information System (INIS)

    Perko, J.; Sarler, B.

    2005-01-01

    Over the past thirty years numerical modelling has emerged as an interdisciplinary scientific discipline which has a significant impact in engineering and design. In the field of numerical modelling of transport phenomena in porous media, many commercial codes exist, based on different numerical methods. Some of them are widely used for performance assessment and safety analysis of radioactive waste repositories and groundwater modelling. Although they proved to be an accurate and reliable tool, they have certain limitations and drawbacks. Realistic problems often involve complex geometry which is difficult and time consuming to discretize. In recent years, meshless methods have attracted much attention due to their flexibility in solving engineering and scientific problems. In meshless methods the cumbersome polygonization of calculation domain is not necessary. By this the discretization time is reduced. In addition, the simulation is not as discretization density dependent as in traditional methods because of the lack of polygon interfaces. In this work fully meshless Diffuse Approximate Method (DAM) is used for calculation of radionuclide transport. Two cases are considered; First 1D comparison of 226 Ra transport and decay solved by the commercial Finite Volume Method (FVM) and Finite Element Method (FEM) based packages and DAM. This case shows the level of discretization density dependence. And second realistic 2D case of near-field modelling of radionuclide transport from the radioactive waste repository. Comparison is made again between FVM based code and DAM simulation for two radionuclides: Long-lived 14 C and short-lived 3 H. Comparisons indicate great capability of meshless methods to simulate complex transport problems and show that they should be seriously considered in future commercial simulation tools. (author)

  4. Calculation of transportation energy for biomass collection

    Energy Technology Data Exchange (ETDEWEB)

    Kanai, G.; Takekura, K.; Kato, H.; Kobayashi, Y.; Yakushido, K. [National Agricultural Research Center, Tsukuba, Ibaraki (Japan)

    2010-07-01

    This paper reported on a study at a rice straw facility in Japan that produces bioethanol. Simulation modeling and calculations methods were used to examine the characteristics of field-to-facility transportation. Fuel consumption was found to be influenced by the conversion rate from straw to ethanol, the quantity of straw collected, and the ratio of the field area to that around the facility. Standard conditions were assumed based on reported data and actual observations for 15 ML/yr ethanol production, 0.3 kL output of ethanol from 1 t dry straw, 53.6 day/yr working days, 2.7 t truck load capacity, and 0.128 as the ratio of field to the area around the facility. According to calculations, a quantity of 50 kt dry straw requires 2.78 L of fuel to transport 1 t of dry straw, 109.5 trucks, and a 19.1 km collection area radius. The fuel consumption for transportation was found to be proportional to the quantity of straw to the 0.5 power, but inversely proportional to the ratio of field to the 0.5 power. The rate of increase in the number of trucks needed to collect straw increases with the decrease in the ratio of the field to area surface around the facility.

  5. ANL calculational methodologies for determining spent nuclear fuel source term

    International Nuclear Information System (INIS)

    McKnight, R. D.

    2000-01-01

    Over the last decade Argonne National Laboratory has developed reactor depletion methods and models to determine radionuclide inventories of irradiated EBR-II fuels. Predicted masses based on these calculational methodologies have been validated using available data from destructive measurements--first from measurements of lead EBR-II experimental test assemblies and later using data obtained from processing irradiated EBR-II fuel assemblies in the Fuel Conditioning Facility. Details of these generic methodologies are described herein. Validation results demonstrate these methods meet the FCF operations and material control and accountancy requirements

  6. Calculating iron transport in nuclear systems

    International Nuclear Information System (INIS)

    Horowitz, J.S.; Merilo, M.; Munson, D.

    2002-01-01

    The presence of high levels of iron in the final feedwater of nuclear plants is undesirable and can have a significant contribution to plant operations and maintenance (O and M) costs. A number of options are available to reduce the iron concentration, but tend to be expensive. Recently a method was developed to quantitatively determine the contribution of each iron source, such that reduction options can be quantitatively compared. The method is based on industry experience that the majority of iron has been released by flow-accelerated corrosion (FAC). FAC is one of the most predictable forms of corrosion and a well-developed predictive model has been developed and also encoded in the CHECWORKS. A combination of CHECWORKS and supplemental calculations have been used to model the iron transport in a number of US BWRs and PWRs. The iron generated by FAC in all the normally operating piping systems has been calculated using the results of CHECWORKS predictions and a special post processor. The post processor accounts for the differences between the maximum corrosion rate calculated by CHECWORKS and the average corrosion (iron generation) rate for a pipe-fitting or length of pipe. It also calculates the amount of iron generated within the fitting or pipe. Supplemental calculations have been used to determine the iron generation from the major, in-line components - high and low pressure turbines, moisture separators, feedwater heaters and the condenser. All of the iron generation rates for the equipment and piping were appropriately summed and iron concentrations estimated throughout the steam-feedwater system. Predicted iron concentrations have agreed well with plant measurements. The availability of specific iron generation rates allows plant management to make reasoned decisions about the countermeasures to deal with iron generation and transport. The countermeasures that have been examined to reduce the amount of iron transport include installing additional water

  7. Methodology for Calculating Latency of GPS Probe Data

    Energy Technology Data Exchange (ETDEWEB)

    Young, Stanley E [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wang, Zhongxiang [University of Maryland; Hamedi, Masoud [University of Maryland

    2017-10-01

    Crowdsourced GPS probe data, such as travel time on changeable-message signs and incident detection, have been gaining popularity in recent years as a source for real-time traffic information to driver operations and transportation systems management and operations. Efforts have been made to evaluate the quality of such data from different perspectives. Although such crowdsourced data are already in widespread use in many states, particularly the high traffic areas on the Eastern seaboard, concerns about latency - the time between traffic being perturbed as a result of an incident and reflection of the disturbance in the outsourced data feed - have escalated in importance. Latency is critical for the accuracy of real-time operations, emergency response, and traveler information systems. This paper offers a methodology for measuring probe data latency regarding a selected reference source. Although Bluetooth reidentification data are used as the reference source, the methodology can be applied to any other ground truth data source of choice. The core of the methodology is an algorithm for maximum pattern matching that works with three fitness objectives. To test the methodology, sample field reference data were collected on multiple freeway segments for a 2-week period by using portable Bluetooth sensors as ground truth. Equivalent GPS probe data were obtained from a private vendor, and their latency was evaluated. Latency at different times of the day, impact of road segmentation scheme on latency, and sensitivity of the latency to both speed-slowdown and recovery-from-slowdown episodes are also discussed.

  8. A calculation methodology proposed for liquid droplet impingement erosion

    Energy Technology Data Exchange (ETDEWEB)

    Li, Rui, E-mail: rui.l.aa@m.titech.ac.jp [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1-N1-5, Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Mori, Michitsugu [Research and Development Centre, Tokyo Electric Power Company, 4-1, Egasaki-cho, Tsurumi-ku, Kanagawa 230-8510 (Japan); School of Science and Technology, Meiji University, 1-1-1, Higashi-Mita, Tama-ku, Kawasaki-shi, Kanagawa 214-8571 (Japan); Ninokata, Hisashi [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1-N1-5, Ookayama, Meguro-ku, Tokyo 152-8550 (Japan)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer We proposed a two phase flow methodology to liquid droplet impingement erosion. Black-Right-Pointing-Pointer An innovative impact angle function was implemented into erosion rate calculation. Black-Right-Pointing-Pointer A comparison with an accident erosion data was made to validate our methodology. - Abstract: Bent pipe wall thinning has been often found at the elbow of the drain line and the high-pressure secondary feed-water bent pipe in nuclear reactors. Liquid droplet impingement (LDI) erosion could be regarded as one of the major causes and is a significant issue of the thermal hydraulics and structural integrity in aging and life extension for nuclear power plant safety. In this paper a computational methodology is established for simulation of LDI erosion using computational fluid dynamics (CFD) simulation and theoretical calculation. Two-phase flow numerical simulations are conducted for standard elbow geometry, typically with the pipe diameter of 170 mm. This computational fluid model is built up by incompressible Reynolds Averaged Navier-Stoke equations using standard k-{epsilon} turbulence model and the SIMPLE algorithm, and the numerical droplet model adopts the Lagrangian approach. The turbulence damping in vapor-droplets flow is theoretically analyzed by a damping function on the energy spectrum basis of single phase flow. Locally, a droplet impact angle function is employed to determine the overall erosion rate. Finally, the overall and local investigations are combined to purpose a general methodology of LDI erosion prediction procedure, which has been complemented into CFD code. Based on our more physical computational results, comparison with an available accident data was made to prove that our methodology could be an appropriate way to simulate and predict the bent pipe wall thinning phenomena.

  9. Alternative methodology for irradiation reactor experimental shielding calculation

    International Nuclear Information System (INIS)

    Vellozo, Sergio de Oliveira; Vital, Helio de Carvalho

    1996-01-01

    Due to a change in the project of the Experimental Irradiation Reactor, its shielding design had to be recalculated according to an alternative simplified analytical approach, since the standard transport calculations were temporarily unavailable. In the calculation of the new width for the shielding made up of steel and high-density concrete layers, the following radiation components were considered: fast neutrons and primary gammas (produced by fission and beta decay), from the core; and secondary gammas, produced by thermal neutron capture in the shielding. (author)

  10. Considerations on methodological challenges for water footprint calculations.

    Science.gov (United States)

    Thaler, S; Zessner, M; De Lis, F Bertran; Kreuzinger, N; Fehringer, R

    2012-01-01

    We have investigated how different approaches for water footprint (WF) calculations lead to different results, taking sugar beet production and sugar refining as examples. To a large extent, results obtained from any WF calculation are reflective of the method used and the assumptions made. Real irrigation data for 59 European sugar beet growing areas showed inadequate estimation of irrigation water when a widely used simple approach was used. The method resulted in an overestimation of blue water and an underestimation of green water usage. Dependent on the chosen (available) water quality standard, the final grey WF can differ up to a factor of 10 and more. We conclude that further development and standardisation of the WF is needed to reach comparable and reliable results. A special focus should be on standardisation of the grey WF methodology based on receiving water quality standards.

  11. Calculation of Selected Emissions from Transport Services in Road Public Transport

    Directory of Open Access Journals (Sweden)

    Konečný Vladimír

    2017-01-01

    Full Text Available The article deals with road public transport and its impact on the environment. According to the methodology given in EN 16258, CO2 emission value has been calculated. The input data for the calculation and the results are shown in the tables. The declaration is created according to STN CEN / TR 14310, which contains recommendations for compiling environmental reports. Finally, the comparison of the environmental impact of a bus and a passenger car, when converted to one passenger, bus has a lower CO2 emission than a passenger car in that section.

  12. Implementation and training methodology of subcritical reactors neutronic calculations triggered by external neutron source and applications

    International Nuclear Information System (INIS)

    Carluccio, Thiago

    2011-01-01

    This works had as goal to investigate calculational methodologies on subcritical source driven reactor, such as Accelerator Driven Subcritical Reactor (ADSR) and Fusion Driven Subcritical Reactor (FDSR). Intense R and D has been done about these subcritical concepts, mainly due to Minor Actinides (MA) and Long Lived Fission Products (LLFP) transmutation possibilities. In this work, particular emphasis has been given to: (1) complement and improve calculation methodology with neutronic transmutation and decay capabilities and implement it computationally, (2) utilization of this methodology in the Coordinated Research Project (CRP) of the International Atomic Energy Agency Analytical and Experimental Benchmark Analysis of ADS and in the Collaborative Work on Use of Low Enriched Uranium in ADS, especially in the reproduction of the experimental results of the Yalina Booster subcritical assembly and study of a subcritical core of IPEN / MB-01 reactor, (3) to compare different nuclear data libraries calculation of integral parameters, such as k eff and k src , and differential distributions, such as spectrum and flux, and nuclides inventories and (4) apply the develop methodology in a study that may help future choices about dedicated transmutation system. The following tools have been used in this work: MCNP (Monte Carlo N particle transport code), MCB (enhanced version of MCNP that allows burnup calculation) and NJOY to process nuclear data from evaluated nuclear data files. (author)

  13. A Methodology Proposal to Calculate the Externalisation of Liquid Bio fuels

    Energy Technology Data Exchange (ETDEWEB)

    Galan, A.; Gonzalez, R.; Varela, M.

    1999-07-01

    The aim of the survey is to propose a methodology to calculate the externalisation associated with the liquid bio fuels cycle. The report defines the externalisation from a theoretical point of view and classifies them. The reasons to value the externalisation are explained as well as the existing methods. Furthermore, an evaluation of specific environmental and non-environmental externalisation is also presented. The report also reviews the current situation of the transport sector, considering its environmental effects and impacts. The progress made by the ExtemE and ExternE-Transport projects related the externalisation of transport sector is assessed. Finally, the report analyses the existence of different economic instruments to internalize the external effects of the transport sector as well as other aspects of this internalization. (Author) 58 refs.

  14. A Methodology Proposal to Calculate the Externalisation of Liquid Bio fuels

    International Nuclear Information System (INIS)

    Galan, A.; Gonzalez, R.; Varela, M.

    1999-01-01

    The aim of the survey is to propose a methodology to calculate the externalisation associated with the liquid bio fuels cycle. The report defines the externalisation from a theoretical point of view and classifies them. The reasons to value the externalisation are explained as well as the existing methods. Furthermore, an evaluation of specific environmental and non-environmental externalisation is also presented. The report also reviews the current situation of the transport sector, considering its environmental effects and impacts. The progress made by the ExtemE and ExternE-Transport projects related the externalisation of transport sector is assessed. Finally, the report analyses the existence of different economic instruments to internalize the external effects of the transport sector as well as other aspects of this internalization. (Author) 58 refs

  15. CALCULATION OF POLLUTION DYNAMICS NEAR RAILWAY TERRITORY DURING COAL TRANSPORTATION

    Directory of Open Access Journals (Sweden)

    M. M. Biliaiev

    2017-02-01

    Full Text Available Purpose. The article is aimed to develop 3D numerical model for the prediction of atmospheric pollution during transportation of bulk cargo in the railway car. Methodology.To solve this problem, it was developed three-dimensional numerical model, based on the use of the transport equation of dust pollution in the air by the wind and atmospheric turbulent diffusion. For the numerical integration of the simulating equation of the dust transport the implicit difference scheme was used. When constructing a difference scheme, it was carried out prior splitting of the original transport equation into the sequence of solutions of three equations. The first of them takes into account the transport of dust in paths, the second equation – dust transport under the influence of atmospheric turbulent diffusion, and the third equation –change of the dust concentration in the air due to its emissions from the cars.Unknown value of the pollutant concentration at every step of splitting is determined by the explicit scheme – the method of running account, which provides a simple numerical implementation of splitting equations. The developed numerical model is the basis for specialized computer program. On the basis of the constructed numerical model we carried out a computational experiment to assess the level of air pollution at the railway station during the motion of train with coal. Findings. Authors developed 3D numerical model, which belongs to the class of «screening models». This model takes into account the main physical factors affecting the process of dispersion of dust pollution in the atmosphere during coal transportation. The proposed numerical model requires low cost of computer time in the practical implementation on small and medium-power computers. This model can be used for rapid calculations of the dynamics of air pollution when transporting coal by rail. Calculations to determine the pollutant concentration and formation of the

  16. Analysis of Freight Transport Strategies and Methodologies

    Science.gov (United States)

    2017-12-01

    Transportation agencies are often blind to freight flows at the last mile level of truck movements. New strategies, data sources, and analytics have the potential to provide an empirical understanding of last mile truck movements and their impa...

  17. Relative Hazard and Risk Measure Calculation Methodology Rev 1

    International Nuclear Information System (INIS)

    Stenner, Robert D.; White, Michael K.; Strenge, Dennis L.; Aaberg, Rosanne L.; Andrews, William B.

    2000-01-01

    Documentation of the methodology used to calculate relative hazard and risk measure results for the DOE complex wide risk profiles. This methodology is used on major site risk profiles. In February 1997, the Center for Risk Excellence (CRE) was created and charged as a technical, field-based partner to the Office of Science and Risk Policy (EM-52). One of the initial charges to the CRE is to assist the sites in the development of ''site risk profiles.'' These profiles are to be relatively short summaries (periodically updated) that present a broad perspective on the major risk related challenges that face the respective site. The risk profiles are intended to serve as a high-level communication tool for interested internal and external parties to enhance the understanding of these risk-related challenges. The risk profiles for each site have been designed to qualitatively present the following information: (1) a brief overview of the site, (2) a brief discussion on the historical mission of the site, (3) a quote from the site manager indicating the site's commitment to risk management, (4) a listing of the site's top risk-related challenges, (5) a brief discussion and detailed table presenting the site's current risk picture, (6) a brief discussion and detailed table presenting the site's future risk reduction picture, and (7) graphic illustrations of the projected management of the relative hazards at the site. The graphic illustrations were included to provide the reader of the risk profiles with a high-level mental picture to associate with all the qualitative information presented in the risk profile. Inclusion of these graphic illustrations presented the CRE with the challenge of how to fold this high-level qualitative risk information into a system to produce a numeric result that would depict the relative change in hazard, associated with each major risk management action, so it could be presented graphically. This report presents the methodology developed

  18. Uncertainty calculation in transport models and forecasts

    DEFF Research Database (Denmark)

    Manzo, Stefano; Prato, Carlo Giacomo

    . Forthcoming: European Journal of Transport and Infrastructure Research, 15-3, 64-72. 4 The last paper4 examined uncertainty in the spatial composition of residence and workplace locations in the Danish National Transport Model. Despite the evidence that spatial structure influences travel behaviour...... to increase the quality of the decision process and to develop robust or adaptive plans. In fact, project evaluation processes that do not take into account model uncertainty produce not fully informative and potentially misleading results so increasing the risk inherent to the decision to be taken...

  19. LDRD Final Review: Radiation Transport Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Goorley, John Timothy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Morgan, George Lake [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lestone, John Paul [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-06-22

    Both high-fidelity & toy simulations are being used to understand measured signals and improve the Area 11 NDSE diagnostic. We continue to gain more and more confidence in the ability for MCNP to simulate neutron and photon transport from source to radiation detector.

  20. Acceleration methods for assembly-level transport calculations

    International Nuclear Information System (INIS)

    Adams, Marvin L.; Ramone, Gilles

    1995-01-01

    A family acceleration methods for the iterations that arise in assembly-level transport calculations is presented. A single iteration in these schemes consists of a transport sweep followed by a low-order calculation which is itself a simplified transport problem. It is shown that a previously-proposed method fitting this description is unstable in two and three dimensions. It is presented a family of methods and shown that some members are unconditionally stable. (author). 8 refs, 4 figs, 4 tabs

  1. Methodology for obtaining a solution for the three-dimensional Boltzmann transport equation and an expression for the calculation of the total doses considering Compton scattering simulated by Klein-Nishina

    International Nuclear Information System (INIS)

    Rodriguez, Barbara A.; Borges, Volnei; Vilhena, Marco Tullio

    2005-01-01

    In this work we would like to obtain a formulation of an analytic method for the solution of the three dimensional transport equation considering Compton scattering and an expression for total doses due to gamma radiation, where the deposited energy by the free electron will be considered. For that, we will work with two equations: the first one for the photon transport, considering the Klein-Nishina kernel and energy multigroup model, and the second one considering the free electron with the screened Rutherford scattering. (author)

  2. Next generation iterative transport-diffusion methodology (ITDM), for LWR core analysis

    Science.gov (United States)

    Colameco, David V.

    The work in this dissertation shows that the neutronic modeling of a Pressurized Water Reactor (PWR) could be greatly improved through the use of an iterative transport-diffusion method (one-step procedure) compared to the current once through transport to diffusion methodology (two-step procedure). The current methodology is efficient; however the infinite environment approximation of the transport lattice calculation introduces errors in the diffusion core calculation due to the lack of the effect of the core environment. This iterative transportdiffusion method replaces the infinite environment with a simulated 3D environment of the diffusion calculation. This dissertation further develops previous work of ITDM in 2D, into a 3D simulated environment with contributions being made in axial leakage treatment. Burnup steps are simulated over a cycle, and in the future simple thermal modeling can be added, for full core fuel cycle analysis. (Abstract shortened by UMI.).

  3. Methodology for evaluating transportation-induced regional development

    OpenAIRE

    Ahn, Seung B.

    1996-01-01

    There has long been a recognition that efficient transport plays a key role in supporting a dynamic economy and a high quality of life. However, traffic increases along with population and income, and traffic congestion and accidents are negative results of this increase, as is environmental damage. There has been a need for a methodology to evaluate user, nonuser benefits and the environmental impacts of transportation investments and policies through rational, objective scien...

  4. Self-Consistent Scattering and Transport Calculations

    Science.gov (United States)

    Hansen, S. B.; Grabowski, P. E.

    2015-11-01

    An average-atom model with ion correlations provides a compact and complete description of atomic-scale physics in dense, finite-temperature plasmas. The self-consistent ionic and electronic distributions from the model enable calculation of x-ray scattering signals and conductivities for material across a wide range of temperatures and densities. We propose a definition for the bound electronic states that ensures smooth behavior of these measurable properties under pressure ionization and compare the predictions of this model with those of less consistent models for Be, C, Al, and Fe. SNL is a multi-program laboratory managed and operated by Sandia Corp., a wholly owned subsidiary of Lockheed Martin Corp, for the U.S. DoE NNSA under contract DE-AC04-94AL85000. This work was supported by DoE OFES Early Career grant FWP-14-017426.

  5. ARTEMIS: a 3D transport code for shielding calculations

    Energy Technology Data Exchange (ETDEWEB)

    Varin, E.; Samba, G. [Commissariat a l' Energie Atomique, Bruyeres-Le-Chatels (France); Roy, R. [Ecole Polytechnique de Montreal, Montreal, Quebec (Canada)

    2002-07-01

    In radiation transport problems, as shielding applications, the solution of the Boltzmann transport equation is usually obtained by the discrete ordinates deterministic method. An alternative methodology has been developed in three dimensions into the code ARTEMIS. A Spherical Harmonics expansion of the angular flux has been chosen to guaranty solutions free of ray-effects. A least squares approach is applied over the linear transport equation; this approach leads to well-defined symmetric positive definite systems which allows the use of finite element spatial discretization. This paper presents the basic derivation of the discrete equations and provides examples on the use of this technique to solve different transport problems. (author)

  6. Nonlinear acceleration of Sn transport calculations

    International Nuclear Information System (INIS)

    Fichtl, Erin D.; Warsa, James S.; Calef, Matthew T.

    2011-01-01

    The use of nonlinear iterative methods, Jacobian-Free Newton-Krylov (JFNK) in particular, for solving eigenvalue problems in transport applications has recently become an active subject of research. While JFNK has been shown to be effective for k-eigenvalue problems, there are a number of input parameters that impact computational efficiency, making it difficult to implement efficiently in a production code using a single set of default parameters. We show that different selections for the forcing parameter in particular can lead to large variations in the amount of computational work for a given problem. In contrast, we employ a nonlinear subspace method that sits outside and effectively accelerates nonlinear iterations of a given form and requires only a single input parameter, the subspace size. It is shown to consistently and significantly reduce the amount of computational work when applied to fixed-point iteration, and this combination of methods is shown to be more efficient than JFNK for our application. (author)

  7. ExternE transport methodology for external cost evaluation of air pollution

    DEFF Research Database (Denmark)

    Jensen, S. S.; Berkowicz, R.; Brandt, J.

    The report describes how the human exposure estimates based on NERI's human exposure modelling system (AirGIS) can improve the Danish data used for exposure factors in the ExternE Transport methodology. Initially, a brief description of the ExternE Tranport methodology is given and it is summarised...... how the methodology has been applied so far in a previous Danish study. Finally, results of a case study are reported. Exposure factors have been calculated for various urban categories in the Greater Copenhagen Area...

  8. The Methodology of Selecting the Transport Mode for Companies on the Slovak Transport Market

    Science.gov (United States)

    Černá, Lenka; Zitrický, Vladislav; Daniš, Jozef

    2017-03-01

    Transport volume in the Slovak Republic is growing continuously every year. This rising trend is influenced by the development of car industry and its suppliers. Slovak republic has also a geographic strategy position in middle Europe from the side of transport corridors (east-west and north-south). The development of transport volume in freight transport depends on the transport and business processes between the European Union and China and it is an opportunity for Slovak republic to obtain transit transport flows. In the Slovak Republic, road transport has a dominant position in the transport market. The volume of road transport has gradually increased over the past years. The increase of road transport is reflected on the highways and speed roads in regions which have higher economic potential. The increase of rail transport as seen on the main rail corridors is not as significant as in road transport. Trade globalization also has an influence on the increase of transport volume in intermodal transport. Predicted increase in transport volume for this transport mode is from 2,3 mil ton per year at present to 8 mil ton in the year 2020. Selection of transport mode and carrier is an important aspect for logistic management, because companies (customers) want to reduce the number of carriers which they trade and they create the system of several key carriers. Bigger transport volume and more qualitative transport service give a possibility to reduce transport costs. This trend is positive for carriers too, because the carriers can focus only on the selected customers and provide more qualitative services. The paper is focused on the selection of transport mode based on the proposed methodology. The aims of the paper are, definition of criteria which directly influence the selection of transport modes, determination of criteria based on the subjectively methods, creation of process for the selection of transport modes and practical application of proposed

  9. Calculation methodology of fast fission factor in a thermal reactor

    Directory of Open Access Journals (Sweden)

    Grishko Denis V.

    2014-01-01

    Full Text Available This article describes the coefficient of the fast fission, which is part of the formula of «four factors». Considered, to exist at the moment, two methods for calculation of the coefficient of the fast fission in uranium-water tight lattices. Also presents the results of calculations and comparative analysis of the data obtained by two techniques.

  10. Urban planning and industry in Spain: A novel methodology for calculating industrial carbon footprints

    International Nuclear Information System (INIS)

    Zubelzu, Sergio; Álvarez, Roberto

    2015-01-01

    In this paper we present a methodology for calculating the carbon footprint of the industrial sector during the urban planning stage in order to clearly develop and implement preventive measures. The methodology created focuses on industrial urban planning procedures and takes into account urban infrastructure in the characterization of GHG emissions. It allows for the implementation of preventive measures based on sustainability design criteria. The methodology was derived for specific industrial activity categories and was tested on a group of municipalities in a province south of Madrid, Spain. The results indicate that the average carbon footprint of industrial activities varies between 137.36 kgCO 2eq /m 2 e and 607.25 kgCO 2eq /m 2 e depending on the activity. Gas and electricity are the most important emissions sources for the most polluting industrial activities (chemical and nonmetal mineral products), while transportation is the most important source for every other activity. Municipalities can have a decisive influence on the industrial carbon footprint because, except for waste management and two industrial activities related to electricity, the majority of reductions can be achieved through urban planning decision variables. -- Highlights: •Model to calculate industrial carbon footprint in urban planning stage is proposed. •Specific industrial activities planned have a strong effect on carbon footprint. •Gas and electricity are the most relevant sources for the most pollutant industries. •Transport is relevant source for the less pollutant industries. •Municipalities can decisively influence on industrial carbon footprint

  11. Generalized diffusion theory for calculating the neutron transport scalar flux

    International Nuclear Information System (INIS)

    Alcouffe, R.E.

    1975-01-01

    A generalization of the neutron diffusion equation is introduced, the solution of which is an accurate approximation to the transport scalar flux. In this generalization the auxiliary transport calculations of the system of interest are utilized to compute an accurate, pointwise diffusion coefficient. A procedure is specified to generate and improve this auxiliary information in a systematic way, leading to improvement in the calculated diffusion scalar flux. This improvement is shown to be contingent upon satisfying the condition of positive calculated-diffusion coefficients, and an algorithm that ensures this positivity is presented. The generalized diffusion theory is also shown to be compatible with conventional diffusion theory in the sense that the same methods and codes can be used to calculate a solution for both. The accuracy of the method compared to reference S/sub N/ transport calculations is demonstrated for a wide variety of examples. (U.S.)

  12. Optimal calculational schemes for solving multigroup photon transport problem

    International Nuclear Information System (INIS)

    Dubinin, A.A.; Kurachenko, Yu.A.

    1987-01-01

    A scheme of complex algorithm for solving multigroup equation of radiation transport is suggested. The algorithm is based on using the method of successive collisions, the method of forward scattering and the spherical harmonics method, and is realized in the FORAP program (FORTRAN, BESM-6 computer). As an example the results of calculating reactor photon transport in water are presented. The considered algorithm being modified may be used for solving neutron transport problems

  13. Evaluation and reffinement of the neutronic calculation methodology

    International Nuclear Information System (INIS)

    Conti Filho, P.

    1984-01-01

    A computational code that has the homogenized cross section given by the LEOPARD code as input was developed. The code gives polinomial coefficients that represent the homogenized cross section as a function of the local burnup and the boron concentration for the assembly, for each step in the reactor Burnup. Lately, were developed an interface between the LEOPARD code Polinomiun Generator program and CITATION code to became possible to CITATION code to set the homogenized microscopic cross section as function of the local caracteristics of the assembly on the way to make the calculation of the reactor Burnup. For a choosen reactor (1900MWth) have been done the inicial calculation (super-cells calculation and others Input) and after that were done the calculation with and without the polinomia. The analyses of the results of the CITATION code were done and the principal results were presented here. (Author) [pt

  14. METHODOLOGY FOR REDUCTION OF GHG EMISSIONS FROM MUNICIPAL SOLID WASTE COLLECTION AND TRANSPORT

    Directory of Open Access Journals (Sweden)

    Goran Boskovic

    2013-12-01

    Full Text Available Collection and transport of municipal solid waste (MSW, as a part of solid waste management, have a great environmental impact due to exhaust emissions from fuel combustion. Distance traveled appears as one of the most influencing parameter in total fuel consumed. This paper presents a general methodology for route optimization using Geographic Information System (GIS. The necessary databases were created and established methodology was applied to waste collection and transport system in the city of Kragujevac. Using GIS software one typical route was optimized. Furthermore, fuel consumption and associated exhaust emissions vary in different waste collection and transport stages. Waste collection and transport circuit was divided into four different stages. The estimation of Greenhouse Gas (GHG emissions for optimized route was made and compared to estimated emissions of current route. Calculations, which also include vehicle speed as very important parameter, indicated great savings in GHG emissions.

  15. Neutron transport calculations of some fast critical assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Val Penalosa, J. A.

    1976-07-01

    To analyse the influence of the input variables of the transport codes upon the neutronic results (eigenvalues, generation times, . . . ) four Benchmark calculations have been performed. Sensitivity analysis have been applied to express these dependences in a useful way, and also to get an unavoidable experience to carry out calculations achieving the required accuracy and doing them in practical computing times. (Author) 29 refs.

  16. Sn transport calculations on vector and parallel processors

    International Nuclear Information System (INIS)

    Rhoades, W.A.; Childs, R.L.

    1987-01-01

    The transport of radiation from the source to the location of people or equipment gives rise to some of the most challenging of calculations. A problem may involve as many as a billion unknowns, each evaluated several times to resolve interdependence. Such calculations run many hours on a Cray computer, and a typical study involves many such calculations. This paper will discuss the steps taken to vectorize the DOT code, which solves transport problems in two space dimensions (2-D); the extension of this code to 3-D; and the plans for extension to parallel processors

  17. Augmented wave ab initio EFG calculations: some methodological warnings

    International Nuclear Information System (INIS)

    Errico, Leonardo A.; Renteria, Mario; Petrilli, Helena M.

    2007-01-01

    We discuss some accuracy aspects inherent to ab initio electronic structure calculations in the understanding of nuclear quadrupole interactions. We use the projector augmented wave method to study the electric-field gradient (EFG) at both Sn and O sites in the prototype cases SnO and SnO 2 . The term ab initio is used in the standard context of the also called first principles methods in the framework of the Density Functional Theory. As the main contributions of EFG calculations to problems in condensed matter physics are related to structural characterizations on the atomic scale, we discuss the 'state of the art' on theoretical EFG calculations and make a brief critical review on the subject, calling attention to some fundamental theoretical aspects

  18. Augmented wave ab initio EFG calculations: some methodological warnings

    Energy Technology Data Exchange (ETDEWEB)

    Errico, Leonardo A. [Departamento de Fisica-IFLP (CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CC67 (1900) La Plata (Argentina); Renteria, Mario [Departamento de Fisica-IFLP (CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CC67 (1900) La Plata (Argentina); Petrilli, Helena M. [Instituto de Fisica-DFMT, Universidade de Sao Paulo, C.P. 66318, 05315-970 Sao Paulo, SP (Brazil)]. E-mail: hmpetril@macbeth.if.usp.br

    2007-02-01

    We discuss some accuracy aspects inherent to ab initio electronic structure calculations in the understanding of nuclear quadrupole interactions. We use the projector augmented wave method to study the electric-field gradient (EFG) at both Sn and O sites in the prototype cases SnO and SnO{sub 2}. The term ab initio is used in the standard context of the also called first principles methods in the framework of the Density Functional Theory. As the main contributions of EFG calculations to problems in condensed matter physics are related to structural characterizations on the atomic scale, we discuss the 'state of the art' on theoretical EFG calculations and make a brief critical review on the subject, calling attention to some fundamental theoretical aspects.

  19. A methodology for constructing the calculation model of scientific spreadsheets

    NARCIS (Netherlands)

    Vos, de M.; Wielemaker, J.; Schreiber, G.; Wielinga, B.; Top, J.L.

    2015-01-01

    Spreadsheets models are frequently used by scientists to analyze research data. These models are typically described in a paper or a report, which serves as single source of information on the underlying research project. As the calculation workflow in these models is not made explicit, readers are

  20. Methodology to calculate wall thickness in metallic pipes

    International Nuclear Information System (INIS)

    Ramirez, G.F.; Feliciano, H.J.

    1992-01-01

    The principal objective in the developing of the activities of industrial type is to carry out a efficient and productive task: that implies necessarily to know the best working conditions of the equipment and installations to be concerned. The applications of the radioisotope techniques have a long time as useful tools in several fields of human work. For example, in the Petroleos Mexicanos petrochemical complexes, by safety reasons and for to avoid until maximum the losses, it must be know with a high possible precision the operation regimes of the lines of tubes that they conduce the hydrocarbons, with the purpose to know when they should be replaced the defective or wasted pieces. In the Mexican Petroleum Institute is carrying out a work that it has by objective to develop a methodology bases in the use of radioisotopes that permits to determine the average thickness of the metallic tubes wall, that they have thermic insulator, with a precision of ±0.127 mm (±5 thousandth inch). The method is based in the radiation use emitted by Cs-137 sources. In this work it is described the methodology development so as the principal results obtained. (Author)

  1. Preliminary integrated calculation of radionuclide cation and anion transport at Yucca Mountain using a geochemical model

    International Nuclear Information System (INIS)

    Birdsell, K.H.; Campbell, K.; Eggert, K.G.; Travis, B.J.

    1989-01-01

    This paper presents preliminary transport calculations for radionuclide movement at Yucca Mountain using preliminary data for mineral distributions, retardation parameter distributions, and hypothetical recharge scenarios. These calculations are not performance assessments, but are used to study the effectiveness of the geochemical barriers at the site at mechanistic level. The preliminary calculations presented have many shortcomings and should be viewed only as a demonstration of the modeling methodology. The simulations were run with TRACRN, a finite-difference porous flow and radionuclide transport code developed for the Yucca Mountain Project. Approximately 30,000 finite-difference nodes are used to represent the unsaturated and saturated zones underlying the repository in three dimensions. Sorption ratios for the radionuclides modeled are assumed to be functions of mineralogic assemblages of the underlying rock. These transport calculations present a representative radionuclide cation, 135 Cs and anion, 99 Tc. The effects on transport of many of the processes thought to be active at Yucca Mountain may be examined using this approach. The model provides a method for examining the integration of flow scenarios, transport, and retardation processes as currently understood for the site. It will also form the basis for estimates of the sensitivity of transport calculations to retardation processes. 11 refs., 17 figs., 1 tab

  2. SCALE6 Hybrid Deterministic-Stochastic Shielding Methodology for PWR Containment Calculations

    International Nuclear Information System (INIS)

    Matijevic, Mario; Pevec, Dubravko; Trontl, Kresimir

    2014-01-01

    The capabilities and limitations of SCALE6/MAVRIC hybrid deterministic-stochastic shielding methodology (CADIS and FW-CADIS) are demonstrated when applied to a realistic deep penetration Monte Carlo (MC) shielding problem of full-scale PWR containment model. The ultimate goal of such automatic variance reduction (VR) techniques is to achieve acceptable precision for the MC simulation in reasonable time by preparation of phase-space VR parameters via deterministic transport theory methods (discrete ordinates SN) by generating space-energy mesh-based adjoint function distribution. The hybrid methodology generates VR parameters that work in tandem (biased source distribution and importance map) in automated fashion which is paramount step for MC simulation of complex models with fairly uniform mesh tally uncertainties. The aim in this paper was determination of neutron-gamma dose rate distribution (radiation field) over large portions of PWR containment phase-space with uniform MC uncertainties. The sources of ionizing radiation included fission neutrons and gammas (reactor core) and gammas from activated two-loop coolant. Special attention was given to focused adjoint source definition which gave improved MC statistics in selected materials and/or regions of complex model. We investigated benefits and differences of FW-CADIS over CADIS and manual (i.e. analog) MC simulation of particle transport. Computer memory consumption by deterministic part of hybrid methodology represents main obstacle when using meshes with millions of cells together with high SN/PN parameters, so optimization of control and numerical parameters of deterministic module plays important role for computer memory management. We investigated the possibility of using deterministic module (memory intense) with broad group library v7 2 7n19g opposed to fine group library v7 2 00n47g used with MC module to fully take effect of low energy particle transport and secondary gamma emission. Compared with

  3. An energy dependent spatial approximation for transport deflection calculations

    International Nuclear Information System (INIS)

    Stankovski, Z.; Sanchez, R.; Roy, R.

    1989-01-01

    A model for transport depletion calculations based on an energy-dependent spatial representation of the fluxes has been developed. In the case of thermal absorbers, this model allows for regions in the fast range to be less discretized than in the thermal range. When depletion calculations are done to obtain the variation of the isotopic concentration vs. the burnup, the media where several spatial flux representations are used become heterogeneous. In the fast range, prehomogenization of the physical properties is done prior to each transport step. Even when taking into account this prehomogenization step, the computational cost of transport depleted calculations has been cut down significantly, while preserving the overall accuracy. Numerical results are given for a slab core and for a PWR poisoned assembly

  4. Application of a numerical transport correction in diffusion calculations

    International Nuclear Information System (INIS)

    Tomatis, Daniele; Dall'Osso, Aldo

    2011-01-01

    Full core calculations by ordinary transport methods can demand considerable computational time, hardly acceptable in the industrial work frame. However, the trend of next generation nuclear cores goes toward more heterogeneous systems, where transport phenomena of neutrons become very important. On the other hand, using diffusion solvers is more practical allowing faster calculations, but a specific formulation of the diffusion coefficient is requested to reproduce the scalar flux with reliable physical accuracy. In this paper, the Ronen method is used to evaluate numerically the diffusion coefficient in the slab reactor. The new diffusion solution is driven toward the solution of the integral neutron transport equation by non linear iterations. Better estimates of currents are computed and diffusion coefficients are corrected at node interfaces, still assuming Fick's law. This method enables obtaining closer results to the transport solution by a common solver in multigroup diffusion. (author)

  5. Shielding calculations in support of the Spallation Neutron Source (SNS) proton beam transport system

    International Nuclear Information System (INIS)

    Johnson, Jeffrey O.; Gallmeier, Franz X.; Popova, Irina

    2002-01-01

    Determining the bulk shielding requirements for accelerator environments is generally an easy task compared to analyzing the radiation transport through the complex shield configurations and penetrations typically associated with the detailed Title II design efforts of a facility. Shielding calculations for penetrations in the SNS accelerator environment are presented based on hybrid Monte Carlo and discrete ordinates particle transport methods. This methodology relies on coupling tools that map boundary surface leakage information from the Monte Carlo calculations to boundary sources for one-, two-, and three-dimensional discrete ordinates calculations. The paper will briefly introduce the coupling tools for coupling MCNPX to the one-, two-, and three-dimensional discrete ordinates codes in the DOORS code suite. The paper will briefly present typical applications of these tools in the design of complex shield configurations and penetrations in the SNS proton beam transport system

  6. Development of a database system for the calculation of indicators of environmental pressure caused by transport

    DEFF Research Database (Denmark)

    Giannouli, Myrsini; Samaras, Zissis; Keller, Mario

    2006-01-01

    The scope of this paper is to summarise a methodology developed for TRENDS (TRansport and ENvironment Database System-TRENDS). The main objective of TRENDS was the calculation of environmental pressure indicators caused by transport. The environmental pressures considered are associated with air...... emissions from the four main transport modes, i.e. road, rail, ships and air. In order to determine these indicators a system for calculating a range of environmental pressures due to transport was developed within a PC-based MS Access environment. Emphasis is given oil the latest features incorporated...... of the results produced by TRENDS was conducted by means of comparison with data found ill the literature. Finally, vehicle emissions produced by the model for the EU15 member states were spatially disaggregated for the base year, 1995 and GIs maps were generated. Examples of these maps are displayed...

  7. Graphical User Interface for Simplified Neutron Transport Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Randolph; Carter, Leland L

    2011-07-18

    A number of codes perform simple photon physics calculations. The nuclear industry is lacking in similar tools to perform simplified neutron physics shielding calculations. With the increased importance of performing neutron calculations for homeland security applications and defense nuclear nonproliferation tasks, having an efficient method for performing simple neutron transport calculations becomes increasingly important. Codes such as Monte Carlo N-particle (MCNP) can perform the transport calculations; however, the technical details in setting up, running, and interpreting the required simulations are quite complex and typically go beyond the abilities of most users who need a simple answer to a neutron transport calculation. The work documented in this report resulted in the development of the NucWiz program, which can create an MCNP input file for a set of simple geometries, source, and detector configurations. The user selects source, shield, and tally configurations from a set of pre-defined lists, and the software creates a complete MCNP input file that can be optionally run and the results viewed inside NucWiz.

  8. Transport of Nanoparticles in Heterogeneous Systems: Methodology and Applications

    Science.gov (United States)

    Wang, W.; Gu, B.; Kim, K.; Liang, L.

    2007-12-01

    Engineered nanoparticles are making their way into natural environment as a result of a growing nanochemical industry. However, processes that govern the deposition and transport of nanoparticles are yet to be understood and often complicated by technical difficulties in tracing these nanoparticles once they enter into and/or mixed with heterogeneous minerals in the natural environment. In this presentation, we discuss the transport of nanoparticles in heterogeneous systems such as in a mixed colloidal system of silica, ferrihydrite and natural organic matter in the light of new methodologies that may be used for such complicated systems. Transport of heterogeneously charged nanoparticles was investigated in column studies using quartz or iron-oxide-coated quartz as collector surfaces. Monodisperse SiO2 (~40 and ~80 nm) and ferrihydrite (~100 nm) particles and a natural humic acid was used. Results indicate that, even under favorable conditions, ferrihydrite nanoparticles show a conservative transport through oppositely charged quartz media when they coexist with the humic acid or with oppositely charged silica nanoparticles. The ratio of oppositely charged nanoparticles is critical in determining their mobility. Similarly, the transport and detachment of iron oxide nanoparticles from iron oxide- coated quartz were observed when humics were present in the feed solution. Our results imply that transport or co-transport of oppositely charged nanoparticles can occur simultaneously under conditions that are relevant to natural geochemical environment. Further studies are needed to understand detailed mechanisms and processes that govern the deposition and transport of engineered nanoparticles under realistic environmental conditions and in the presence of heterogeneous sediment collectors. New tools such as the used of various labeled nanoparticles (such as fluorescent-labeled nanoparticles) and neutron scattering techniques could be useful in studies of such

  9. LTRACK: Beam-transport calculation including wakefield effects

    International Nuclear Information System (INIS)

    Chan, K.C.D.; Cooper, R.K.

    1988-01-01

    LTRACK is a first-order beam-transport code that includes wakefield effects up to quadrupole modes. This paper will introduce the readers to this computer code by describing the history, the method of calculations, and a brief summary of the input/output information. Future plans for the code will also be described

  10. Density functional theory calculations of charge transport properties ...

    Indian Academy of Sciences (India)

    ZIRAN CHEN

    2017-08-04

    Aug 4, 2017 ... Density functional theory calculations of charge transport properties of 'plate-like' coronene topological structures. ZIRAN CHENa, ZHANRONG HEa, YOUHUI XUa and WENHAO YUb,∗. aDepartment of Architecture and Environment Engineering, Sichuan Vocational and Technical College, Suining,.

  11. High beta tokamaks. [MHD equilibrium, stability, and transport calculations

    Energy Technology Data Exchange (ETDEWEB)

    Dory, R.A.; Berger, D.P.; Charlton, L.A.; Hogan, J.T.; Munro, J.K.; Nelson, D.B.; Peng, Y.K.M.; Sigmar, D.J.; Strickler, D.J.

    1978-01-01

    MHD equilibrium, stability, and transport calculations are made to study the accessibility and behavior of ''high beta'' tokamak plasmas in the range ..beta.. approximately 5 to 15 percent. For next generation devices, beta values of at least 8 percent appear to be accessible and stable if there is a conducting surface nearby.

  12. Proposal of risk evaluation methodology for hazardous materials transportation

    International Nuclear Information System (INIS)

    Hartman, Luiz Carlos

    2009-01-01

    The increasing concern with the level of risk associated with the transportation of hazardous materials took some international institutions to pledge efforts in the evaluation of risk in regional level. Following this trend, the objective of this work was to analyze the most recent processes of analysis of risks from road transportation of hazardous materials. In the present work 21 methodologies of analysis of risks, developed by some authors and for diverse localities have been evaluated. Two of them, in special, have been reviewed and discussed: a method recently developed by the Swiss Federal Institute of Technology (Nicolet-Monnier and Gheorghe, 1996) and the strategy delineated by the Center for Chemical Process Safety CCPS (1995), taking into consideration the estimate of the individual and social risk. Also, the models of Harwood et al. (1990) and of Ramos (1997), adapted by Hartman (2003) have been applied to the reality of the roads of the state of Sao Paulo. The extension of these methodologies was explored, in order to find its advantages and disadvantages. As a study case the present work considered the ammonia transportation throughout two routes evaluating the reality of the roads of the state of Sao Paulo, including a significant parcel of evaluation in a densely populated area, getting the results using risk, at least, one of the methodologies mentioned above. The innovation proposed by this work was the research, the development and the introduction of two variables to the model considered by Harwood et al. (1990). These variables that influence in the value of the risk are: the age of the driver of truck and the zone of impact that is function type of product, period of the day where the transport was carried and the volume that has been transported. The aim of the proposed modifications is to let the value of the risk more sensible in relation to the type of the product carried and the age of the truck driver. The main related procedural stages

  13. A transparent and transportable methodology for evaluating Data Linkage software.

    Science.gov (United States)

    Ferrante, Anna; Boyd, James

    2012-02-01

    There has been substantial growth in Data Linkage (DL) activities in recent years. This reflects growth in both the demand for, and the supply of, linked or linkable data. Increased utilisation of DL "services" has brought with it increased need for impartial information about the suitability and performance capabilities of DL software programs and packages. Although evaluations of DL software exist; most have been restricted to the comparison of two or three packages. Evaluations of a large number of packages are rare because of the time and resource burden placed on the evaluators and the need for a suitable "gold standard" evaluation dataset. In this paper we present an evaluation methodology that overcomes a number of these difficulties. Our approach involves the generation and use of representative synthetic data; the execution of a series of linkages using a pre-defined linkage strategy; and the use of standard linkage quality metrics to assess performance. The methodology is both transparent and transportable, producing genuinely comparable results. The methodology was used by the Centre for Data Linkage (CDL) at Curtin University in an evaluation of ten DL software packages. It is also being used to evaluate larger linkage systems (not just packages). The methodology provides a unique opportunity to benchmark the quality of linkages in different operational environments. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Development of a consistent Monte Carlo-deterministic transport methodology based on the method of characteristics and MCNP5

    International Nuclear Information System (INIS)

    Karriem, Z.; Ivanov, K.; Zamonsky, O.

    2011-01-01

    This paper presents work that has been performed to develop an integrated Monte Carlo- Deterministic transport methodology in which the two methods make use of exactly the same general geometry and multigroup nuclear data. The envisioned application of this methodology is in reactor lattice physics methods development and shielding calculations. The methodology will be based on the Method of Long Characteristics (MOC) and the Monte Carlo N-Particle Transport code MCNP5. Important initial developments pertaining to ray tracing and the development of an MOC flux solver for the proposed methodology are described. Results showing the viability of the methodology are presented for two 2-D general geometry transport problems. The essential developments presented is the use of MCNP as geometry construction and ray tracing tool for the MOC, verification of the ray tracing indexing scheme that was developed to represent the MCNP geometry in the MOC and the verification of the prototype 2-D MOC flux solver. (author)

  15. Efficient calculation of dissipative quantum transport properties in semiconductor nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Greck, Peter

    2012-11-26

    We present a novel quantum transport method that follows the non-equilibrium Green's function (NEGF) framework but side steps any self-consistent calculation of lesser self-energies by replacing them by a quasi-equilibrium expression. We termed this method the multi-scattering Buettiker-Probe (MSB) method. It generalizes the so-called Buettiker-Probe model but takes into account all relevant individual scattering mechanisms. It is orders of magnitude more efficient than a fully selfconsistent non-equilibrium Green's function calculation for realistic devices, yet accurately reproduces the results of the latter method as well as experimental data. This method is fairly easy to implement and opens the path towards realistic three-dimensional quantum transport calculations. In this work, we review the fundamentals of the non-equilibrium Green's function formalism for quantum transport calculations. Then, we introduce our novel MSB method after briefly reviewing the original Buettiker-Probe model. Finally, we compare the results of the MSB method to NEGF calculations as well as to experimental data. In particular, we calculate quantum transport properties of quantum cascade lasers in the terahertz (THz) and the mid-infrared (MIR) spectral domain. With a device optimization algorithm based upon the MSB method, we propose a novel THz quantum cascade laser design. It uses a two-well period with alternating barrier heights and complete carrier thermalization for the majority of the carriers within each period. We predict THz laser operation for temperatures up to 250 K implying a new temperature record.

  16. Analysis of offsite dose calculation methodology for a nuclear power reactor

    International Nuclear Information System (INIS)

    Moser, D.M.

    1995-01-01

    This technical study reviews the methodology for calculating offsite dose estimates as described in the offsite dose calculation manual (ODCM) for Pennsylvania Power and Light - Susquehanna Steam Electric Station (SSES). An evaluation of the SSES ODCM dose assessment methodology indicates that it conforms with methodology accepted by the US Nuclear Regulatory Commission (NRC). Using 1993 SSES effluent data, dose estimates are calculated according to SSES ODCM methodology and compared to the dose estimates calculated according to SSES ODCM and the computer model used to produce the reported 1993 dose estimates. The 1993 SSES dose estimates are based on the axioms of Publication 2 of the International Commission of Radiological Protection (ICRP). SSES Dose estimates based on the axioms of ICRP Publication 26 and 30 reveal the total body estimates to be the most affected

  17. Regulatory guides for qualifying the calculation methodology of Furnas by CNEN

    International Nuclear Information System (INIS)

    1987-10-01

    Regulatory guides are presented which will be used for qualifying the calculation methodology of FURNAS by CNEN, in the areas of Neutronics, Thermohydraulics, Accident Analysis and Fuel Rod Performance, as applied to Angra 1 NPP. (Author) [pt

  18. Three dimensions transport calculations for PWR core; Calcul de coeur R.E.P. en transport 3D

    Energy Technology Data Exchange (ETDEWEB)

    Richebois, E

    2000-07-01

    The objective of this work is to define improved 3-D core calculation methods based on the transport theory. These methods can be particularly useful and lead to more precise computations in areas of the core where anisotropy and steep flux gradients occur, especially near interface and boundary conditions and in regions of high heterogeneity (bundle with absorbent rods). In order to apply the transport theory a new method for calculating reflector constants has been developed, since traditional methods were only suited for 2-group diffusion core calculations and could not be extrapolated to transport calculations. In this thesis work, the new method for obtaining reflector constants is derived regardless of the number of energy groups and of the operator used. The core calculations results using the reflector constants thereof obtained have been validated on the EDF's power reactor Saint Laurent B1 with MOX loading. The advantages of a 3-D core transport calculation scheme have been highlighted as opposed to diffusion methods; there are a considerable number of significant effects and potential advantages to be gained in rod worth calculations for instance. These preliminary results obtained with on particular cycle will have to be confirmed by more systematic analysis. Accidents like MSLB (main steam line break) and LOCA (loss of coolant accident) should also be investigated and constitute challenging situations where anisotropy is high and/or flux gradients are steep. This method is now being validated for others EDF's PWRs' reactors, as well as for experimental reactors and other types of commercial reactors. (author)

  19. Design of a transport calculation system for logging sondes simulation

    International Nuclear Information System (INIS)

    Marquez Damian, Jose Ignacio

    2005-01-01

    Analysis of available resources in earth crust is performed by different techniques, one of them is neutron logging. Design of sondes that are used to make such logging is supported by laboratory experiments as well as by numerical calculations.This work presents several calculation schemes, designed to simplify the task of whom has to planify such experiments or optimize parameters of this kind of sondes.These schemes use transport calculation codes, especially DaRT, TORT and MCNP, and cross section processing modules from SCALE system.Additionally a system for DaRT and TORT data postprocessing using OpenDX is presented.It allows scalar flux spatial distribution analysis, as wells as cross section condensation and reaction rates calculation

  20. Increasing the competitiveness of maintenance contract rates by using an alternative methodology for the calculation of average vehicle maintenance costs

    Directory of Open Access Journals (Sweden)

    Stephen Carstens

    2008-11-01

    Full Text Available Companies tend to outsource transport to fleet management companies to increase efficiencies if transport is a non-core activity. The provision of fleet management services on contract introduces a certain amount of financial risk to the fleet management company, specifically fixed rate maintenance contracts. The quoted rate needs to be sufficient and also competitive in the market. Currently the quoted maintenance rates are based on the maintenance specifications of the manufacturer and the risk management approach of the fleet management company. This is usually reflected in a contingency that is included in the quoted maintenance rate. An alternative methodology for calculating the average maintenance cost for a vehicle fleet is proposed based on the actual maintenance expenditures of the vehicles and accepted statistical techniques. The proposed methodology results in accurate estimates (and associated confidence limits of the true average maintenance cost and can beused as a basis for the maintenance quote.

  1. Methodology for assessing the transport security of the territory for the availability of social services

    Directory of Open Access Journals (Sweden)

    El’vina Stepanovna Kuratova

    2014-11-01

    Full Text Available The formation of a rational transport network and the development of vehicles should be marked by the achievement of socio-territorial justice, which is understood as a guarantee of transport accessibility of social services, increase and economy of man’s free time, reduction in the degree of uncertainty of economic activity in the part that depends on transport factors. According to the author, the priorities of the assessment of transport security include the duration of the trip from the settlements to the centers of social services and year-round transportation. Each type of social services has normative values of transport accessibility, corresponding to the needs of a particular region, and they are the basis for strategic planning in the services sector. For instance, the standard time for provision of emergency medical aid is 40 minutes. The level of transport discrimination is defined as the proportion of the population living outside the standard time. The author proposes a formula for determining the weighted average costs of time that a transport user needs for reaching a certain destination (e.g., hospital, school, etc. from any other departure point. Transport security is assessed on the example of the Komi Republic; the calculation includes all its settlements, considers the distance to the regional centers, condition of roads, obstacles to year-round road communications, transport vehicles, including animal-drawn transport, and going on foot, the speed of movement and other factors. The results of the developed differentiation methodology can be used for interbudgetary control and distribution of resources of the Fund of financial support of municipal formations according to the rate of transport increase in the cost of public services through the coefficients of transport security

  2. Development of a simplified statistical methodology for nuclear fuel rod internal pressure calculation

    International Nuclear Information System (INIS)

    Kim, Kyu Tae; Kim, Oh Hwan

    1999-01-01

    A simplified statistical methodology is developed in order to both reduce over-conservatism of deterministic methodologies employed for PWR fuel rod internal pressure (RIP) calculation and simplify the complicated calculation procedure of the widely used statistical methodology which employs the response surface method and Monte Carlo simulation. The simplified statistical methodology employs the system moment method with a deterministic statistical methodology employs the system moment method with a deterministic approach in determining the maximum variance of RIP. The maximum RIP variance is determined with the square sum of each maximum value of a mean RIP value times a RIP sensitivity factor for all input variables considered. This approach makes this simplified statistical methodology much more efficient in the routine reload core design analysis since it eliminates the numerous calculations required for the power history-dependent RIP variance determination. This simplified statistical methodology is shown to be more conservative in generating RIP distribution than the widely used statistical methodology. Comparison of the significances of each input variable to RIP indicates that fission gas release model is the most significant input variable. (author). 11 refs., 6 figs., 2 tabs

  3. Axial SPN and radial MOC coupled whole core transport calculation

    International Nuclear Information System (INIS)

    Cho, Jin-Young; Kim, Kang-Seog; Lee, Chung-Chan; Zee, Sung-Quun; Joo, Han-Gyu

    2007-01-01

    The Simplified P N (SP N ) method is applied to the axial solution of the two-dimensional (2-D) method of characteristics (MOC) solution based whole core transport calculation. A sub-plane scheme and the nodal expansion method (NEM) are employed for the solution of the one-dimensional (1-D) SP N equations involving a radial transverse leakage. The SP N solver replaces the axial diffusion solver of the DeCART direct whole core transport code to provide more accurate, transport theory based axial solutions. In the sub-plane scheme, the radial equivalent homogenization parameters generated by the local MOC for a thick plane are assigned to the multiple finer planes in the subsequent global three-dimensional (3-D) coarse mesh finite difference (CMFD) calculation in which the NEM is employed for the axial solution. The sub-plane scheme induces a much less nodal error while having little impact on the axial leakage representation of the radial MOC calculation. The performance of the sub-plane scheme and SP N nodal transport solver is examined by solving a set of demonstrative problems and the C5G7MOX 3-D extension benchmark problems. It is shown in the demonstrative problems that the nodal error reaching upto 1,400 pcm in a rodded case is reduced to 10 pcm by introducing 10 sub-planes per MOC plane and the transport error is reduced from about 150 pcm to 10 pcm by using SP 3 . Also it is observed, in the C5G7MOX rodded configuration B problem, that the eigenvalues and pin power errors of 180 pcm and 2.2% of the 10 sub-planes diffusion case are reduced to 40 pcm and 1.4%, respectively, for SP 3 with only about a 15% increase in the computing time. It is shown that the SP 5 case gives very similar results to the SP 3 case. (author)

  4. ASOP, Shield Calculation, 1-D, Discrete Ordinates Transport

    International Nuclear Information System (INIS)

    1993-01-01

    1 - Nature of physical problem solved: ASOP is a shield optimization calculational system based on the one-dimensional discrete ordinates transport program ANISN. It has been used to design optimum shields for space applications of SNAP zirconium-hydride-uranium- fueled reactors and uranium-oxide fueled thermionic reactors and to design beam stops for the ORELA facility. 2 - Method of solution: ASOP generates coefficients of linear equations describing the logarithm of the dose and dose-weight derivatives as functions of position from data obtained in an automated sequence of ANISN calculations. With the dose constrained to a design value and all dose-weight derivatives required to be equal, the linear equations may be solved for a new set of shield dimensions. Since changes in the shield dimensions may cause the linear functions to change, the entire procedure is repeated until convergence is obtained. The detailed calculations of the radiation transport through shield configurations for every step in the procedure distinguish ASOP from other shield optimization computer code systems which rely on multiple component sources and attenuation coefficients to describe the transport. 3 - Restrictions on the complexity of the problem: Problem size is limited only by machine size

  5. Uniform Gauss-Weight Quadratures for Discrete Ordinate Transport Calculations

    International Nuclear Information System (INIS)

    Carew, John F.; Hu, Kai; Zamonsky, Gabriel

    2000-01-01

    Recently, a uniform equal-weight quadrature set, UE n , and a uniform Gauss-weight quadrature set, UG n , have been derived. These quadratures have the advantage over the standard level-symmetric LQ n quadrature sets in that the weights are positive for all orders,and the transport solution may be systematically converged by increasing the order of the quadrature set. As the order of the quadrature is increased,the points approach a uniform continuous distribution on the unit sphere,and the quadrature is invariant with respect to spatial rotations. The numerical integrals converge for continuous functions as the order of the quadrature is increased.The numerical characteristics of the UE n quadrature set have been investigated previously. In this paper, numerical calculations are performed to evaluate the application of the UG n quadrature set in typical transport analyses. A series of DORT transport calculations of the >1-MeV neutron flux have been performed for a set of pressure-vessel fluence benchmark problems. These calculations employed the UG n (n = 8, 12, 16, 24, and 32) quadratures and indicate that the UG n solutions have converged to within ∼0.25%. The converged UG n solutions are found to be comparable to the UE n results and are more accurate than the level-symmetric S 16 predictions

  6. Implementation and adaptation of a macro-scale methodology to calculate direct economic losses

    Science.gov (United States)

    Natho, Stephanie; Thieken, Annegret

    2017-04-01

    As one of the 195 member countries of the United Nations, Germany signed the Sendai Framework for Disaster Risk Reduction 2015-2030 (SFDRR). With this, though voluntary and non-binding, Germany agreed to report on achievements to reduce disaster impacts. Among other targets, the SFDRR aims at reducing direct economic losses in relation to the global gross domestic product by 2030 - but how to measure this without a standardized approach? The United Nations Office for Disaster Risk Reduction (UNISDR) has hence proposed a methodology to estimate direct economic losses per event and country on the basis of the number of damaged or destroyed items in different sectors. The method bases on experiences from developing countries. However, its applicability in industrial countries has not been investigated so far. Therefore, this study presents the first implementation of this approach in Germany to test its applicability for the costliest natural hazards and suggests adaptations. The approach proposed by UNISDR considers assets in the sectors agriculture, industry, commerce, housing, and infrastructure by considering roads, medical and educational facilities. The asset values are estimated on the basis of sector and event specific number of affected items, sector specific mean sizes per item, their standardized construction costs per square meter and a loss ratio of 25%. The methodology was tested for the three costliest natural hazard types in Germany, i.e. floods, storms and hail storms, considering 13 case studies on the federal or state scale between 1984 and 2016. Not any complete calculation of all sectors necessary to describe the total direct economic loss was possible due to incomplete documentation. Therefore, the method was tested sector-wise. Three new modules were developed to better adapt this methodology to German conditions covering private transport (cars), forestry and paved roads. Unpaved roads in contrast were integrated into the agricultural and

  7. Accounting for chemical kinetics in field scale transport calculations

    International Nuclear Information System (INIS)

    Bryan, N.D.

    2005-01-01

    The modelling of column experiments has shown that the humic acid mediated transport of metal ions is dominated by the non-exchangeable fraction. Metal ions enter this fraction via the exchangeable fraction, and may transfer back again. However, in both directions these chemical reactions are slow. Whether or not a kinetic description of these processes is required during transport calculations, or an assumption of local equilibrium will suffice, will depend upon the ratio of the reaction half-time to the residence time of species within the groundwater column. If the flow rate is sufficiently slow or the reaction sufficiently fast then the assumption of local equilibrium is acceptable. Alternatively, if the reaction is sufficiently slow (or the flow rate fast), then the reaction may be 'decoupled', i.e. removed from the calculation. These distinctions are important, because calculations involving chemical kinetics are computationally very expensive, and should be avoided wherever possible. In addition, column experiments have shown that the sorption of humic substances and metal-humate complexes may be significant, and that these reactions may also be slow. In this work, a set of rules is presented that dictate when the local equilibrium and decoupled assumptions may be used. In addition, it is shown that in all cases to a first approximation, the behaviour of a kinetically controlled species, and in particular its final distribution against distance at the end of a calculation, depends only upon the ratio of the reaction first order rate to the residence time, and hence, even in the region where the simplifications may not be used, the behaviour is predictable. In this way, it is possible to obtain an estimate of the migration of these species, without the need for a complex transport calculation. (orig.)

  8. Development of a real-time transport performance optimization methodology

    Science.gov (United States)

    Gilyard, Glenn

    1996-01-01

    The practical application of real-time performance optimization is addressed (using a wide-body transport simulation) based on real-time measurements and calculation of incremental drag from forced response maneuvers. Various controller combinations can be envisioned although this study used symmetric outboard aileron and stabilizer. The approach is based on navigation instrumentation and other measurements found on state-of-the-art transports. This information is used to calculate winds and angle of attack. Thrust is estimated from a representative engine model as a function of measured variables. The lift and drag equations are then used to calculate lift and drag coefficients. An expression for drag coefficient, which is a function of parasite drag, induced drag, and aileron drag, is solved from forced excitation response data. Estimates of the parasite drag, curvature of the aileron drag variation, and minimum drag aileron position are produced. Minimum drag is then obtained by repositioning the symmetric aileron. Simulation results are also presented which evaluate the affects of measurement bias and resolution.

  9. Thermodynamics of transport through the ammonium transporter Amt-1 investigated with free energy calculations.

    Science.gov (United States)

    Ullmann, R Thomas; Andrade, Susana L A; Ullmann, G Matthias

    2012-08-16

    Amt-1 from Archaeoglobus fulgidus (AfAmt-1) belongs to the Amt/Rh family of ammonium/ammonia transporting membrane proteins. The transport mode and the precise microscopic permeation mechanism utilized by these proteins are intensely debated. Open questions concern the identity of the transported substrate (ammonia and/or ammonium) and whether the transport is passive or active. To address these questions, we studied the overall thermodynamics of the different transport modes as a function of the environmental conditions. Then, we investigated the thermodynamics of the underlying microscopic transport mechanisms with free energy calculations within a continuum electrostatics model. The formalism developed for this purpose is of general utility in the calculation of binding free energies for ligands with multiple protonation forms or other binding forms. The results of our calculations are compared to the available experimental and theoretical data on Amt/Rh proteins and discussed in light of the current knowledge on the physiological conditions experienced by microorganisms and plants. We found that microscopic models of electroneutral and electrogenic transport modes are in principle thermodynamically viable. However, only the electrogenic variants have a net thermodynamic driving force under the physiological conditions experienced by microorganisms and plants. Thus, the transport mechanism of AfAmt-1 is most likely electrogenic.

  10. Whole core transport calculation for the VHTR hexagonal core

    International Nuclear Information System (INIS)

    Cho, J. Y.; Kim, K. S.; Lee, C. C.; Joo, H. G.

    2007-01-01

    Recently, the DeCART code which performs the whole core calculation by coupling the radial MOC transport kernel with the axial nodal kernel has equipped a kernel to deal with the hexagonal geometry and applied to the VHTR hexagonal core to examine the accuracy and the computational efficiency of the implemented kernel. The implementation includes a modular ray tracing module based on the hexagonal assembly and a multi-group CMFD module to perform an efficient transport calculation. The requirements for the modular ray are: (1) the assembly based path linking and (2) the complete reflection capabilities. The first requirement is met by adjusting the azimuthal angle and the ray spacing for the modular ray to construct a core ray by the path linking. The second requirement is met by expanding the constructed azimuthal angle in the range of [0,30 degree] to the remained range to reflect completely at the core boundaries. The considered reflecting surface angles for the complete reflection are 30n's (n=1,2,1,12). The CMFD module performs the equivalent diffusion calculation to the radial MOC transport calculation based on the homogenized structure units. The structure units include the hexagonal pin cells and gap cells appearing at the assembly boundary. Therefore, the CMFD module is programmed to deal with the unstructured cells such as the gap cells. The CMFD equation consists of the two parts of (1) the conventional FDM and (2) the current corrective parts. Since the second part of the CMFD equation guarantees the reproducibility of the radial MOC transport solutions for the cell averaged reaction rate and the net current at the cell surfaces, how to build the first part of the CMFD equation is not important. Therefore, the first part of the CMFD equation is roughly built by using the normal distance from the gravity center to the surface. The VHTR core uses helium as a coolant which is realized as a void hole in a neutronics calculation. This void hole which

  11. Calculations of Bed-Material Transport, Chetco River, Oregon

    Science.gov (United States)

    Anderson, S.; Wallick, R.; Cannon, C.; O'Connor, J. E.

    2009-12-01

    The Chetco River drains 914 square kilometers of the Klamath Mountains in far southwestern Oregon. The lower 18 kilometers of the river are flanked by large and abundant gravel bars, which have been commercially mined for aggregate during most of the last century. Increasing concern regarding the impact of this mining on aquatic habitats motivated an assessment of historical channel change and sediment transport rates along this lower reach. A key component of this research was estimating bed-material transport through the application of sediment transport equations at multiple locations along the study reach. Flow hydraulics were estimated with a 1-D hydraulic model constructed in HEC-RAS, using a combination of LiDAR and bathymetric surveys to characterize the valley morphology. Once calibrated to USGS rating curves, low flow water surfaces, and several high flow photos, this model allowed us to calculate energy slopes for a given cross section at a variety of flows. These flow-energy slope pairs, along with cross sections and sediment data collected from surface pebble counts, were then applied to a number of different modern bedload transport equations. This process was facilitated by the Bedload Assessment in Gravel-bedded Streams Excel macro, or BAGS, which allows users to quickly apply multiple transport equations using a single set of inputs (Pitlick et al., 2009). A review of the literature, along with tests of internal consistency and comparisons to direct bedload measurements taken in the winter of 2008-09, led us to choose the Parker (1991) and Wilcock-Crowe (2003) equations as the two most applicable to the Chetco River. Sediment transport-flow curves for both equations were calculated for seven cross sections spanning the study area. For each of these cross sections, we estimated annual transport fluxes using derived transport rating curves in conjunction with unit flow data from a USGS gage at the upstream end of study reach, with data extending back

  12. Beam transport calculations for BARC-TIFR 14UD pelletron

    International Nuclear Information System (INIS)

    Prasad, K.G.

    1993-01-01

    The 14UD pelletron tandem accelerator installed at Tata Institute of Fundamental Research (TIFR) as a joint BARC-TIFR project, is supplied by National Electrostatic Corporation (NEC), U.S.A. To optimise the parameters of various elements along the beam path, it is essential to work out the beam optics of the entire system. There are various computer codes in use for such calculations. All these codes, except the detailed ray tracing programs, use matrix formulation. Thus each ion optical element is characterised in terms of a transport matrix, whose elements are assumed to be independent of particle trajectory. We have performed only the first order calculations, meaning thereby that no aberrations are included. Further, all calculations are carried out assuming ideal conditions like axial beam injection, perfectly aligned beam line elements, etc. The main code that has been employed in our calculations is based on the one at the Australian National University, Canberra, suitably modified for use with CYBER 170/730 computer at TIFR. However, codes at NEC and Stony Brook were also used for the checking the results. The results of calculations are given and discussed. (author). 2 figs

  13. Evaluation of the methodology for dose calculation in microdosimetry with electrons sources using the MCNP5 Code

    International Nuclear Information System (INIS)

    Cintra, Felipe Belonsi de

    2010-01-01

    This study made a comparison between some of the major transport codes that employ the Monte Carlo stochastic approach in dosimetric calculations in nuclear medicine. We analyzed in detail the various physical and numerical models used by MCNP5 code in relation with codes like EGS and Penelope. The identification of its potential and limitations for solving microdosimetry problems were highlighted. The condensed history methodology used by MCNP resulted in lower values for energy deposition calculation. This showed a known feature of the condensed stories: its underestimates both the number of collisions along the trajectory of the electron and the number of secondary particles created. The use of transport codes like MCNP and Penelope for micrometer scales received special attention in this work. Class I and class II codes were studied and their main resources were exploited in order to transport electrons, which have particular importance in dosimetry. It is expected that the evaluation of available methodologies mentioned here contribute to a better understanding of the behavior of these codes, especially for this class of problems, common in microdosimetry. (author)

  14. CLEAR (Calculates Logical Evacuation And Response): A generic transportation network model for the calculation of evacuation time estimates

    International Nuclear Information System (INIS)

    Moeller, M.P.; Desrosiers, A.E.; Urbanik, T. II

    1982-03-01

    This paper describes the methodology and application of the computer model CLEAR (Calculates Logical Evacuation And Response) which estimates the time required for a specific population density and distribution to evacuate an area using a specific transportation network. The CLEAR model simulates vehicle departure and movement on a transportation network according to the conditions and consequences of traffic flow. These include handling vehicles at intersecting road segments, calculating the velocity of travel on a road segment as a function of its vehicle density, and accounting for the delay of vehicles in traffic queues. The program also models the distribution of times required by individuals to prepare for an evacuation. In order to test its accuracy, the CLEAR model was used to estimate evacuation times for the emergency planning zone surrounding the Beaver Valley Nuclear Power Plant. The Beaver Valley site was selected because evacuation time estimates had previously been prepared by the licensee, Duquesne Light, as well as by the Federal Emergency Management Agency and the Pennsylvania Emergency Management Agency. A lack of documentation prevented a detailed comparison of the estimates based on the CLEAR model and those obtained by Duquesne Light. However, the CLEAR model results compared favorably with the estimates prepared by the other two agencies. (author)

  15. Ab Initio Calculations of Transport Properties of Vanadium Oxides

    Science.gov (United States)

    Lamsal, Chiranjivi; Ravindra, N. M.

    2018-01-01

    The temperature-dependent transport properties of vanadium oxides have been studied near the Fermi energy using the Kohn-Sham band structure approach combined with Boltzmann transport equations. V2O5 exhibits significant thermoelectric properties, which can be attributed to its layered structure and stability. Highly anisotropic electrical conduction in V2O5 is clearly manifested in the calculations. Due to specific details of the band structure and anisotropic electron-phonon interactions, maxima and crossovers are also seen in the temperature-dependent Seebeck coefficient of V2O5. During the phase transition of VO2, the Seebeck coefficient changes by 18.9 µV/K, which is close to (within 10% of) the observed discontinuity of 17.3 µV/K.

  16. A methodology for calculating photovoltaic field output and effect of solar tracking strategy

    International Nuclear Information System (INIS)

    Hu, Yeguang; Yao, Yingxue

    2016-01-01

    Highlights: • A new methodology for calculating PV field output is proposed. • The reduction of diffuse radiation and albedo due to shading is considered. • The shadow behavior is accurately analyzed at a cell level. • Several simplified measures are taken to reduce the calculation work. • The field outputs with different solar tracking strategies are compared. - Abstract: This paper proposes an effective methodology for calculating the photovoltaic field output. A combination of two methods is first presented for optical performance calculation: point projection method for direction radiation, and Monte Carlo ray-tracing method for both diffuse radiation and albedo radiation. Based on the optical calculation, an accurate output of the photovoltaic field can be obtained through a cell-level simulation of PV system. Several simplified measures are taken to reduce the large amount of calculation work. The proposed methodology has been validated for accurate and fast calculation of field output. With the help of the developed code, this paper deals with the performance comparison between four typical tracking strategies. Through the comparative analysis, the field output is proved to be related to the tracking strategy. For a regular photovoltaic field, the equatorial and elevation-rolling tracking show the superior performance in annual field output to the azimuth-elevation and rolling-elevation tracking. A reasonable explanation for this difference has been presented in this paper.

  17. Repair for scattering expansion truncation errors in transport calculations

    International Nuclear Information System (INIS)

    Emmett, M.B.; Childs, R.L.; Rhoades, W.A.

    1980-01-01

    Legendre expansion of angular scattering distributions is usually limited to P 3 in practical transport calculations. This truncation often results in non-trivial errors, especially alternating negative and positive lateral scattering peaks. The effect is especially prominent in forward-peaked situations such as the within-group component of the Compton Scattering of gammas. Increasing the expansion to P 7 often makes the peaks larger and narrower. Ward demonstrated an accurate repair, but his method requires special cross section sets and codes. The DOT IV code provides fully-compatible, but heuristic, repair of the erroneous scattering. An analytical Klein-Nishina estimator, newly available in the MORSE code, allows a test of this method. In the MORSE calculation, particle scattering histories are calculated in the usual way, with scoring by an estimator routine at each collision site. Results for both the conventional P 3 estimator and the analytical estimator were obtained. In the DOT calculation, the source moments are expanded into the directional representation at each iteration. Optionally a sorting procedure removes all negatives, and removes enough small positive values to restore particle conservation. The effect of this is to replace the alternating positive and negative values with positive values of plausible magnitude. The accuracy of those values is examined herein

  18. Neutron and gamma ray transport calculations in shielding system

    Energy Technology Data Exchange (ETDEWEB)

    Masukawa, Fumihiro; Sakamoto, Hiroki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    In the shields for radiation in nuclear facilities, the penetrating holes of various kinds and irregular shapes are made for the reasons of operation, control and others. These penetrating holes and gaps are filled with air or the substances with relatively small shielding performance, and radiation flows out through them, which is called streaming. As the calculation techniques for the shielding design or analysis related to the streaming problem, there are the calculations by simplified evaluation, transport calculation and Monte Carlo method. In this report, the example of calculation by Monte Carlo method which is represented by MCNP code is discussed. A number of variance reduction techniques which seem effective for the analysis of streaming problem were tried. As to the investigation of the applicability of MCNP code to streaming analysis, the object of analysis which are the concrete walls without hole and with horizontal hole, oblique hole and bent oblique hole, the analysis procedure, the composition of concrete, and the conversion coefficient of dose equivalent, and the results of analysis are reported. As for variance reduction technique, cell importance was adopted. (K.I.)

  19. Neutron and photon transport calculations in fusion system. 2

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Satoshi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    1998-03-01

    On the application of MCNP to the neutron and {gamma}-ray transport calculations for fusion reactor system, the wide range design calculation has been carried out in the engineering design activities for the international thermonuclear fusion experimental reactor (ITER) being developed jointly by Japan, USA, EU and Russia. As the objects of shielding calculation for fusion reactors, there are the assessment of dose equivalent rate for living body shielding and the assessment of the nuclear response for the soundness of in-core structures. In the case that the detailed analysis of complicated three-dimensional shapes is required, the assessment using MCNP has been carried out. Also when the nuclear response of peripheral equipment due to the gap streaming between blanket modules is evaluated with good accuracy, the calculation with MCNP has been carried out. The analyses of the shieldings for blanket modules and NBI port are explained, and the examples of the results of analyses are shown. In the blanket modules, there are penetrating holes and continuous gap. In the case of the NBI port, shielding plug cannot be installed. These facts necessitate the MCNP analysis with high accuracy. (K.I.)

  20. Parallel processing of two-dimensional Sn transport calculations

    International Nuclear Information System (INIS)

    Uematsu, M.

    1997-01-01

    A parallel processing method for the two-dimensional S n transport code DOT3.5 has been developed to achieve a drastic reduction in computation time. In the proposed method, parallelization is achieved with angular domain decomposition and/or space domain decomposition. The calculational speed of parallel processing by angular domain decomposition is largely influenced by frequent communications between processing elements. To assess parallelization efficiency, sample problems with up to 32 x 32 spatial meshes were solved with a Sun workstation using the PVM message-passing library. As a result, parallel calculation using 16 processing elements, for example, was found to be nine times as fast as that with one processing element. As for parallel processing by geometry segmentation, the influence of processing element communications on computation time is small; however, discontinuity at the segment boundary degrades convergence speed. To accelerate the convergence, an alternate sweep of angular flux in conjunction with space domain decomposition and a two-step rescaling method consisting of segmentwise rescaling and ordinary pointwise rescaling have been developed. By applying the developed method, the number of iterations needed to obtain a converged flux solution was reduced by a factor of 2. As a result, parallel calculation using 16 processing elements was found to be 5.98 times as fast as the original DOT3.5 calculation

  1. A Methodology for Measuring Microplastic Transport in Large or Medium Rivers

    Directory of Open Access Journals (Sweden)

    Marcel Liedermann

    2018-04-01

    Full Text Available Plastic waste as a persistent contaminant of our environment is a matter of increasing concern due to the largely unknown long-term effects on biota. Although freshwater systems are known to be the transport paths of plastic debris to the ocean, most research has been focused on marine environments. In recent years, freshwater studies have advanced rapidly, but they rarely address the spatial distribution of plastic debris in the water column. A methodology for measuring microplastic transport at various depths that is applicable to medium and large rivers is needed. We present a new methodology offering the possibility of measuring microplastic transport at different depths of verticals that are distributed within a profile. The net-based device is robust and can be applied at high flow velocities and discharges. Nets with different sizes (41 µm, 250 µm, and 500 µm are exposed in three different depths of the water column. The methodology was tested in the Austrian Danube River, showing a high heterogeneity of microplastic concentrations within one cross section. Due to turbulent mixing, the different densities of the polymers, aggregation, and the growth of biofilms, plastic transport cannot be limited to the surface layer of a river, and must be examined within the whole water column as for suspended sediments. These results imply that multipoint measurements are required for obtaining the spatial distribution of plastic concentration and are therefore a prerequisite for calculating the passing transport. The analysis of filtration efficiency and side-by-side measurements with different mesh sizes showed that 500 µm nets led to optimal results.

  2. Robust volume calculations for Constructive Solid Geometry (CSG) components in Monte Carlo transport calculations

    Energy Technology Data Exchange (ETDEWEB)

    Millman, D. L. [Dept. of Computer Science, Univ. of North Carolina at Chapel Hill (United States); Griesheimer, D. P.; Nease, B. R. [Bechtel Marine Propulsion Corporation, Bertis Atomic Power Laboratory (United States); Snoeyink, J. [Dept. of Computer Science, Univ. of North Carolina at Chapel Hill (United States)

    2012-07-01

    In this paper we consider a new generalized algorithm for the efficient calculation of component object volumes given their equivalent constructive solid geometry (CSG) definition. The new method relies on domain decomposition to recursively subdivide the original component into smaller pieces with volumes that can be computed analytically or stochastically, if needed. Unlike simpler brute-force approaches, the proposed decomposition scheme is guaranteed to be robust and accurate to within a user-defined tolerance. The new algorithm is also fully general and can handle any valid CSG component definition, without the need for additional input from the user. The new technique has been specifically optimized to calculate volumes of component definitions commonly found in models used for Monte Carlo particle transport simulations for criticality safety and reactor analysis applications. However, the algorithm can be easily extended to any application which uses CSG representations for component objects. The paper provides a complete description of the novel volume calculation algorithm, along with a discussion of the conjectured error bounds on volumes calculated within the method. In addition, numerical results comparing the new algorithm with a standard stochastic volume calculation algorithm are presented for a series of problems spanning a range of representative component sizes and complexities. (authors)

  3. Parallel MCNP Monte Carlo transport calculations with MPI

    International Nuclear Information System (INIS)

    Wagner, J.C.; Haghighat, A.

    1996-01-01

    The steady increase in computational performance has made Monte Carlo calculations for large/complex systems possible. However, in order to make these calculations practical, order of magnitude increases in performance are necessary. The Monte Carlo method is inherently parallel (particles are simulated independently) and thus has the potential for near-linear speedup with respect to the number of processors. Further, the ever-increasing accessibility of parallel computers, such as workstation clusters, facilitates the practical use of parallel Monte Carlo. Recognizing the nature of the Monte Carlo method and the trends in available computing, the code developers at Los Alamos National Laboratory implemented the message-passing general-purpose Monte Carlo radiation transport code MCNP (version 4A). The PVM package was chosen by the MCNP code developers because it supports a variety of communication networks, several UNIX platforms, and heterogeneous computer systems. This PVM version of MCNP has been shown to produce speedups that approach the number of processors and thus, is a very useful tool for transport analysis. Due to software incompatibilities on the local IBM SP2, PVM has not been available, and thus it is not possible to take advantage of this useful tool. Hence, it became necessary to implement an alternative message-passing library package into MCNP. Because the message-passing interface (MPI) is supported on the local system, takes advantage of the high-speed communication switches in the SP2, and is considered to be the emerging standard, it was selected

  4. New model for mines and transportation tunnels external dose calculation using Monte Carlo simulation

    International Nuclear Information System (INIS)

    Allam, Kh. A.

    2017-01-01

    In this work, a new methodology is developed based on Monte Carlo simulation for tunnels and mines external dose calculation. Tunnels external dose evaluation model of a cylindrical shape of finite thickness with an entrance and with or without exit. A photon transportation model was applied for exposure dose calculations. A new software based on Monte Carlo solution was designed and programmed using Delphi programming language. The variation of external dose due to radioactive nuclei in a mine tunnel and the corresponding experimental data lies in the range 7.3 19.9%. The variation of specific external dose rate with position in, tunnel building material density and composition were studied. The given new model has more flexible for real external dose in any cylindrical tunnel structure calculations. (authors)

  5. Error reduction techniques for Monte Carlo neutron transport calculations

    International Nuclear Information System (INIS)

    Ju, J.H.W.

    1981-01-01

    Monte Carlo methods have been widely applied to problems in nuclear physics, mathematical reliability, communication theory, and other areas. The work in this thesis is developed mainly with neutron transport applications in mind. For nuclear reactor and many other applications, random walk processes have been used to estimate multi-dimensional integrals and obtain information about the solution of integral equations. When the analysis is statistically based such calculations are often costly, and the development of efficient estimation techniques plays a critical role in these applications. All of the error reduction techniques developed in this work are applied to model problems. It is found that the nearly optimal parameters selected by the analytic method for use with GWAN estimator are nearly identical to parameters selected by the multistage method. Modified path length estimation (based on the path length importance measure) leads to excellent error reduction in all model problems examined. Finally, it should be pointed out that techniques used for neutron transport problems may be transferred easily to other application areas which are based on random walk processes. The transport problems studied in this dissertation provide exceptionally severe tests of the error reduction potential of any sampling procedure. It is therefore expected that the methods of this dissertation will prove useful in many other application areas

  6. Propellant Mass Fraction Calculation Methodology for Launch Vehicles and Application to Ares Vehicles

    Science.gov (United States)

    Holt, James B.; Monk, Timothy S.

    2009-01-01

    Propellant Mass Fraction (pmf) calculation methods vary throughout the aerospace industry. While typically used as a means of comparison between candidate launch vehicle designs, the actual pmf calculation method varies slightly from one entity to another. It is the purpose of this paper to present various methods used to calculate the pmf of launch vehicles. This includes fundamental methods of pmf calculation that consider only the total propellant mass and the dry mass of the vehicle; more involved methods that consider the residuals, reserves and any other unusable propellant remaining in the vehicle; and calculations excluding large mass quantities such as the installed engine mass. Finally, a historical comparison is made between launch vehicles on the basis of the differing calculation methodologies, while the unique mission and design requirements of the Ares V Earth Departure Stage (EDS) are examined in terms of impact to pmf.

  7. Survey of shielding calculation parameters in radiotherapy rooms used in the country and its impact in the existing calculation methodologies

    International Nuclear Information System (INIS)

    Japiassu, Fernando Parois

    2013-01-01

    When designing radiotherapy treatment rooms, the dimensions of barriers are established on the basis of American calculation methodologies specifically; NCRP Report N° 49, NCRP Report N° 51, and more recently, NCRP Report N° 151. Such barrier calculations are based on parameters reflecting predictions of treatments to be performed within the room; which, in tum, reftect a specific reality found in a country. There exists, however, a variety of modern radiotherapy techniques, such as Intensity Modulated Radiation Therapy (IMRT); Total Body Irradiation (TBl) and radiosurgery (SRS); where patierits are treated in a much different way than during more conventional treatrnents, which are not taken into account the traditional shielding calculation methodology. This may lead to a faulty design of treattnent rooms. In order to establish a comparison between the methodology used to calculate shielding design and the reality of treatments performed in Brazil, two radiotherapy facilitie were selected, both of them offering traditional and modern treatment techniqued as described above. Data in relation with reatments perfotmed over a period of six (6)months of operations in both institutions were collected. Based on tlis informaton, a new set of realistic parameters required for shielding design was estãblished, whicb in turn allowed for a nwe caculation of barrier thickness for both facilities. The barrier thickness resultaing from this calculation was then compared with the barrier thickness propose as part of the original shielding design, approved by the regulatory authority. First, concerning the public facility, the thickness of all primary barriers proposed in the shielding design was actually larger than the thickness resulting from calculations based on realistic parameters. Second, concerning the private facility, the new data show that the thickness of three out of the four primary barriers described in the project is larger than the thickness oresulting from

  8. Calculated characteristics of subcritical assembly with anisotropic transport of neutrons

    International Nuclear Information System (INIS)

    Gorin, N.V.; Lipilina, E.N.; Lyutov, V.D.; Saukov, A.I.

    2003-01-01

    There was considered possibility of creating enough sub-critical system that multiply neutron fluence from a primary source by many orders. For assemblies with high neutron tie between parts, it is impossible. That is why there was developed a construction consisting of many units (cascades) having weak feedback with preceding cascades. The feedback attenuation was obtained placing layers of slow neutron absorber and moderators between the cascades of fission material. Anisotropy of fast neutron transport through the layers was used. The system consisted of many identical cascades aligning one by another. Each cascade consists of layers of moderator, fissile material and absorber of slow neutrons. The calculations were carried out using the code MCNP.4a with nuclear data library ENDF/B5. In this construction neutrons spread predominantly in one direction multiplying in each next fissile layer, and they attenuate considerably in the opposite direction. In a calculated construction, multiplication factor of one cascade is about 1.5 and multiplication factor of whole construction composed of n cascades is 1.5 n . Calculated keff value is 0.9 for one cascade and does not exceed 0.98 for a system containing any number of cascades. Therefore the assembly is always sub-critical and therefore it is safe in respect of criticality. There was considered using such a sub-critical assembly to create a powerful neutron fluence for neutron boron-capturing therapy. The system merits and demerits were discussed. (authors)

  9. Biofuel transportation analysis tool : description, methodology, and demonstration scenarios

    Science.gov (United States)

    2014-01-01

    This report describes a Biofuel Transportation Analysis Tool (BTAT), developed by the U.S. Department of Transportation (DOT) Volpe National Transportation Systems Center (Volpe) in support of the Department of Defense (DOD) Office of Naval Research ...

  10. A calculation methodology applied for fuel management in PWR type reactors using first order perturbation theory

    International Nuclear Information System (INIS)

    Rossini, M.R.

    1992-01-01

    An attempt has been made to obtain a strategy coherent with the available instruments and that could be implemented with future developments. A calculation methodology was developed for fuel reload in PWR reactors, which evolves cell calculation with the HAMMER-TECHNION code and neutronics calculation with the CITATION code.The management strategy adopted consists of fuel element position changing at the beginning of each reactor cycle in order to decrease the radial peak factor. The bi-dimensional, two group First Order perturbation theory was used for the mathematical modeling. (L.C.J.A.)

  11. Practical methodologies for the calculation of capacity in electricity markets for wind energy

    International Nuclear Information System (INIS)

    Botero B, Sergio; Giraldo V, Luis Alfonso; Isaza C, Felipe

    2008-01-01

    Determining the real capacity of the generators in a power market is an essential task in order to estimate the actual system reliability, and to estimate the reward for generators due to their capacity in the firm energy market. In the wind power case, which is an intermittent resource, several methodologies have been proposed to estimate the capacity of a wind power emplacement, not only for planning but also for firm energy remuneration purposes. This paper presents some methodologies that have been proposed or implemented around the world in order to calculate the capacity of this energy resource.

  12. A method for transient, three-dimensional neutron transport calculations

    Energy Technology Data Exchange (ETDEWEB)

    Waddell, M.W. Jr. (Oak Ridge Y-12 Plant, TN (United States)); Dodds, H.L. (Tennessee Univ., Knoxville, TN (United States))

    1992-12-28

    This paper describes the development and evaluation of a method for solving the time-dependent, three-dimensional Boltzmann transport model with explicit representation of delayed neutrons. A hybrid stochastic/deterministic technique is utilized with a Monte Carlo code embedded inside of a quasi-static kinetics framework. The time-dependent flux amplitude, which is usually fast varying, is computed deterministically by a conventional point kinetics algorithm. The point kinetics parameters, reactivity and generation time as well as the flux shape, which is usually slowly varying in time, are computed stochastically during the random walk of the Monte Carlo calculation. To verify the accuracy of this new method, several computational benchmark problems from the Argonne National Laboratory benchmark book, ANL-7416, were calculated. The results are shown to be in reasonably good agreement with other independently obtained solutions. The results obtained in this work indicate that the method/code is working properly and that it is economically feasible for many practical applications provided a dedicated high performance workstation is available.

  13. A method for transient, three-dimensional neutron transport calculations

    Energy Technology Data Exchange (ETDEWEB)

    Waddell, M.W. Jr. (Martin Marietta Energy Systems, Inc. (United States)); Dodds, H.L. (Univ. of Tennessee (United States))

    1993-04-01

    This paper describes the development and evaluation of a method for solving the time-dependent, three-dimensional Boltzmann transport model with explicit representation of delayed neutrons. A hybrid stochastic/deterministic technique is utilized with a Monte Carlo code embedded inside of a quasi-static kinetics framework. The time-dependent flux amplitude, which is usually fast varying, is computed deterministically by a conventional point kinetics algorithm. The point kinetics parameters, reactivity and generation time as well as the flux shape, which is usually slowly varying in time, are computed stochastically during the random walk of the Monte Carlo calculation. To verify the accuracy of this new method, several computational benchmark problems from the Argonne National Laboratory benchmark book, ANL-7416, were calculated. The results are shown to be in reasonably good agreement with other independently obtained solutions. The results obtained in this work indicate that the method/code is working properly and that it is economically feasible for many practical applications provided a dedicated high performance workstation is available. (orig.)

  14. Calculation and evaluation methodology of the flawed pipe and the compute program development

    International Nuclear Information System (INIS)

    Liu Chang; Qian Hao; Yao Weida; Liang Xingyun

    2013-01-01

    Background: The crack will grow gradually under alternating load for a pressurized pipe, whereas the load is less than the fatigue strength limit. Purpose: Both calculation and evaluation methodology for a flawed pipe that have been detected during in-service inspection is elaborated here base on the Elastic Plastic Fracture Mechanics (EPFM) criteria. Methods: In the compute, the depth and length interaction of a flaw has been considered and a compute program is developed per Visual C++. Results: The fluctuating load of the Reactor Coolant System transients, the initial flaw shape, the initial flaw orientation are all accounted here. Conclusions: The calculation and evaluation methodology here is an important basis for continue working or not. (authors)

  15. Simplified methodology for control cell constant calculations of the reactor cores for the space kinetics

    International Nuclear Information System (INIS)

    Santos, Rubens Souza dos; Martinez, Aquilino Senra; Alvim, Antonio Carlos Marques

    2002-01-01

    In this work is presented a methodology which focuses the distribution of neutron absorber rods in nuclear reactor power plants, for utilizing in space kinetic calculations, principally in the cluster ejection transients of control rods. A numerical model for macroscopic constant calculations based on the knowledge of the neutron flux without the control rods is proposed, as alternative to the analytical models, based on the hypothesis of the null current on the cell super boundaries. The proposed model in this work has itself showed adequate to deal with problems with strong space dependence, once that the model showed consistence in the global average built in the analytical model. (author)

  16. Development of 3D pseudo pin-by-pin calculation methodology in ANC

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, B.; Mayhue, L.; Huria, H.; Ivanov, B. [Westinghouse Electric Company LLC, 1000 Westinghouse Drive, Cranberry, PA 16066 (United States)

    2012-07-01

    Advanced cores and fuel assembly designs have been developed to improve operational flexibility, economic performance and further enhance safety features of nuclear power plants. The simulation of these new designs, along with strong heterogeneous fuel loading, have brought new challenges to the reactor physics methodologies currently employed in the industrial codes for core analyses. Control rod insertion during normal operation is one operational feature in the AP1000{sup R} plant of Westinghouse next generation Pressurized Water Reactor (PWR) design. This design improves its operational flexibility and efficiency but significantly challenges the conventional reactor physics methods, especially in pin power calculations. The mixture loading of fuel assemblies with significant neutron spectrums causes a strong interaction between different fuel assembly types that is not fully captured with the current core design codes. To overcome the weaknesses of the conventional methods, Westinghouse has developed a state-of-the-art 3D Pin-by-Pin Calculation Methodology (P3C) and successfully implemented in the Westinghouse core design code ANC. The new methodology has been qualified and licensed for pin power prediction. The 3D P3C methodology along with its application and validation will be discussed in the paper. (authors)

  17. Development of 3D pseudo pin-by-pin calculation methodology in ANC

    International Nuclear Information System (INIS)

    Zhang, B.; Mayhue, L.; Huria, H.; Ivanov, B.

    2012-01-01

    Advanced cores and fuel assembly designs have been developed to improve operational flexibility, economic performance and further enhance safety features of nuclear power plants. The simulation of these new designs, along with strong heterogeneous fuel loading, have brought new challenges to the reactor physics methodologies currently employed in the industrial codes for core analyses. Control rod insertion during normal operation is one operational feature in the AP1000 R plant of Westinghouse next generation Pressurized Water Reactor (PWR) design. This design improves its operational flexibility and efficiency but significantly challenges the conventional reactor physics methods, especially in pin power calculations. The mixture loading of fuel assemblies with significant neutron spectrums causes a strong interaction between different fuel assembly types that is not fully captured with the current core design codes. To overcome the weaknesses of the conventional methods, Westinghouse has developed a state-of-the-art 3D Pin-by-Pin Calculation Methodology (P3C) and successfully implemented in the Westinghouse core design code ANC. The new methodology has been qualified and licensed for pin power prediction. The 3D P3C methodology along with its application and validation will be discussed in the paper. (authors)

  18. New methodologies for calculation of flight parameters on reduced scale wings models in wind tunnel =

    Science.gov (United States)

    Ben Mosbah, Abdallah

    In order to improve the qualities of wind tunnel tests, and the tools used to perform aerodynamic tests on aircraft wings in the wind tunnel, new methodologies were developed and tested on rigid and flexible wings models. A flexible wing concept is consists in replacing a portion (lower and/or upper) of the skin with another flexible portion whose shape can be changed using an actuation system installed inside of the wing. The main purpose of this concept is to improve the aerodynamic performance of the aircraft, and especially to reduce the fuel consumption of the airplane. Numerical and experimental analyses were conducted to develop and test the methodologies proposed in this thesis. To control the flow inside the test sections of the Price-Paidoussis wind tunnel of LARCASE, numerical and experimental analyses were performed. Computational fluid dynamics calculations have been made in order to obtain a database used to develop a new hybrid methodology for wind tunnel calibration. This approach allows controlling the flow in the test section of the Price-Paidoussis wind tunnel. For the fast determination of aerodynamic parameters, new hybrid methodologies were proposed. These methodologies were used to control flight parameters by the calculation of the drag, lift and pitching moment coefficients and by the calculation of the pressure distribution around an airfoil. These aerodynamic coefficients were calculated from the known airflow conditions such as angles of attack, the mach and the Reynolds numbers. In order to modify the shape of the wing skin, electric actuators were installed inside the wing to get the desired shape. These deformations provide optimal profiles according to different flight conditions in order to reduce the fuel consumption. A controller based on neural networks was implemented to obtain desired displacement actuators. A metaheuristic algorithm was used in hybridization with neural networks, and support vector machine approaches and their

  19. Considerations of beta and electron transport in internal dose calculations

    International Nuclear Information System (INIS)

    Bolch, W.E.; Poston, J.W. Sr.

    1990-12-01

    Ionizing radiation has broad uses in modern science and medicine. These uses often require the calculation of energy deposition in the irradiated media and, usually, the medium of interest is the human body. Energy deposition from radioactive sources within the human body and the effects of such deposition are considered in the field of internal dosimetry. In July of 1988, a three-year research project was initiated by the Nuclear Engineering Department at Texas A ampersand M University under the sponsorship of the US Department of Energy. The main thrust of the research was to consider, for the first time, the detailed spatial transport of electron and beta particles in the estimation of average organ doses under the Medical Internal Radiation Dose (MIRD) schema. At the present time (December of 1990), research activities are continuing within five areas. Several are new initiatives begun within the second or third year of the current contract period. They include: (1) development of small-scale dosimetry; (2) development of a differential volume phantom; (3) development of a dosimetric bone model; (4) assessment of the new ICRP lung model; and (5) studies into the mechanisms of DNA damage. A progress report is given for each of these tasks within the Comprehensive Report. In each use, preliminary results are very encouraging and plans for further research are detailed within this document. 22 refs., 13 figs., 1 tab

  20. Transport calculations with the BALDUR code. Pt. 1

    International Nuclear Information System (INIS)

    Lackner, K.; Wunderlich, R.

    1979-12-01

    1-d transport calculations with the BALDUR-code are described for predicting the performance of ZEPHYR under D-T operation. Results presented in this report refer to the impurity-free case, and ion and electron heat conduction losses described by CHIsub(i) = neoclassical and CHIsub(e) = 6.25 x 10 17 /nsub(e) (cgs-units). A simple refuelling scenario taking account of the density limit for the ohmic heating phase, the contribution of neutral injection to the refuelling rate and the need for an approximately balanced D-T mixture at the instance of ignition is adopted. The heating scenario assumes a neutral injection beam with 160 keV particle energy in the main component, with a duration of 1.1 sec. Major radius compression by a factor of 1.5 starts 1 sec after the onset of neutral injection and lasts 100 msec. For this standard scenario the performance is studied in different density regimes and for different neutral injection powers. Under the above assumption ignition is predicted for total neutral injection powers < approx. 16 MW (9.6 MW in the main energy component) and average total β-values < 2.8%. Results including impurities, alternative scaling laws, and deviations from the standard scenario will be presented in another report. (orig.) 891 GG/orig. 892 HIS

  1. Considerations of beta and electron transport in internal dose calculations

    Energy Technology Data Exchange (ETDEWEB)

    Bolch, W.E.; Poston, J.W. Sr.

    1990-12-01

    Ionizing radiation has broad uses in modern science and medicine. These uses often require the calculation of energy deposition in the irradiated media and, usually, the medium of interest is the human body. Energy deposition from radioactive sources within the human body and the effects of such deposition are considered in the field of internal dosimetry. In July of 1988, a three-year research project was initiated by the Nuclear Engineering Department at Texas A M University under the sponsorship of the US Department of Energy. The main thrust of the research was to consider, for the first time, the detailed spatial transport of electron and beta particles in the estimation of average organ doses under the Medical Internal Radiation Dose (MIRD) schema. At the present time (December of 1990), research activities are continuing within five areas. Several are new initiatives begun within the second or third year of the current contract period. They include: (1) development of small-scale dosimetry; (2) development of a differential volume phantom; (3) development of a dosimetric bone model; (4) assessment of the new ICRP lung model; and (5) studies into the mechanisms of DNA damage. A progress report is given for each of these tasks within the Comprehensive Report. In each case, preliminary results are very encouraging and plans for further research are detailed within this document.

  2. Electron propagator and surface Green's function calculations in transport molecular junctions

    Science.gov (United States)

    Kletsov, Aleksey

    A new theoretical approach to the calculation of electrical current through a molecular wire, based on ab initio electron propagator methodology, is proposed. The analytical expression for electric current is derived for an arbitrary number of terminal transport orbitals, which is given in terms of Dyson poles, Dyson pole strengths, overlap matrix elements, and expansion coefficients of atomic wavefunctions. The proposed approach is applied to calculations of the current-voltage characteristics of the transport molecular junction with a 1,4-benzene dithiol (BDT) molecule as a bridge. The obtained current-voltage characteristics exhibit negative differential resistance, that can be used in practical electronic devices. From the analysis of the output data, the origin of negative differential resistance in BDT molecular wire is explained. The observation of negative differential resistance in transport molecular devices based on a BDT molecule is predicted for certain Fermi energies. To discover the predicted effect, experimentalists should search for the appropriate Fermi energy by varying metal electrodes, coated by a gold monolayer. In addition, a novel computational method for non-recursive calculations of the surface Green's function matrices, using an infinite number of principal layers, is proposed. This method is employed to calculate the spectral function of the gold and aluminum surfaces. It is shown that the surface spectral function of the metal electrode dependence on applied voltage and this dependence can significantly change the electric current through a molecular wire. The new ab initio methods and computational results presented in this work allow for the prediction of novel devices with unusual properties that can be used in nanotechnology applications.

  3. User's manual for sustainable transportation performance measures calculator

    Science.gov (United States)

    2010-08-01

    Sustainable transportation can be viewed as the provision of safe, effective, and efficient : access and mobility into the future while considering economic, social, and environmental : needs. For the Texas Department of Transportation (TxDOT) to ass...

  4. Harmonizing carbon footprint calculation for freight transport chains

    NARCIS (Netherlands)

    Lewis, A.; Ehrler, V.; Auvinen, H.; Maurer, H.; Davydenko, I.; Burmeister, A.; Seidel, S.; Lischke, A.; Kiel, J.

    2016-01-01

    The European Commission has set as a target a reduction of 60% in transport greenhouse gas emissions by 2050 [EC 11]. This includes freight transport emissions, which present a particular challenge due to the forecast increase in goods transport linked to future economic growth, the current trend of

  5. Goal based mesh adaptivity for fixed source radiation transport calculations

    International Nuclear Information System (INIS)

    Baker, C.M.J.; Buchan, A.G.; Pain, C.C.; Tollit, B.S.; Goffin, M.A.; Merton, S.R.; Warner, P.

    2013-01-01

    Highlights: ► Derives an anisotropic goal based error measure for shielding problems. ► Reduces the error in the detector response by optimizing the finite element mesh. ► Anisotropic adaptivity captures material interfaces using fewer elements than AMR. ► A new residual based on the numerical scheme chosen forms the error measure. ► The error measure also combines the forward and adjoint metrics in a novel way. - Abstract: In this paper, the application of goal based error measures for anisotropic adaptivity applied to shielding problems in which a detector is present is explored. Goal based adaptivity is important when the response of a detector is required to ensure that dose limits are adhered to. To achieve this, a dual (adjoint) problem is solved which solves the neutron transport equation in terms of the response variables, in this case the detector response. The methods presented can be applied to general finite element solvers, however, the derivation of the residuals are dependent on the underlying finite element scheme which is also discussed in this paper. Once error metrics for the forward and adjoint solutions have been formed they are combined using a novel approach. The two metrics are combined by forming the minimum ellipsoid that covers both the error metrics rather than taking the maximum ellipsoid that is contained within the metrics. Another novel approach used within this paper is the construction of the residual. The residual, used to form the goal based error metrics, is calculated from the subgrid scale correction which is inherent in the underlying spatial discretisation employed

  6. Conceptual and methodological approaches to evaluation of investment attractiveness of enterprises engaged in transportations

    Directory of Open Access Journals (Sweden)

    Olha Myshkovych

    2016-12-01

    Full Text Available The aim of the article is to analyze the conceptual and methodological approaches to determining the investment attractiveness of enterprises engaged in transportations. It is indicated that the investment attractiveness of transport enterprises should be determined by calculating of the overall financial situation of enterprises, which will allow potential investors to evaluate profitability and cost efficiency of its activity. An analysis of the strengths and weaknesses of the enterprise engaged in transportation can be accomplished by the evaluation of its innovative capacity. The identification of factors and reserves of the increasing of enterprise innovative development will allow distinguishing of the basic directions for the improvement of organizational and economic mechanism of its activity. With the aim of building the strategy for the strengthening of market position it is also considered important for the potential investor to obtain the information about enterprise place on the national and international markets. Political and legal environment, characterized by political stability of society and the regulatory framework of entrepreneurial and investment activity serve as a certain guarantee of the investment reliability.

  7. A systematic framework for effective uncertainty assessment of severe accident calculations; Hybrid qualitative and quantitative methodology

    International Nuclear Information System (INIS)

    Hoseyni, Seyed Mohsen; Pourgol-Mohammad, Mohammad; Tehranifard, Ali Abbaspour; Yousefpour, Faramarz

    2014-01-01

    This paper describes a systematic framework for characterizing important phenomena and quantifying the degree of contribution of each parameter to the output in severe accident uncertainty assessment. The proposed methodology comprises qualitative as well as quantitative phases. The qualitative part so called Modified PIRT, being a robust process of PIRT for more precise quantification of uncertainties, is a two step process for identifying and ranking based on uncertainty importance in severe accident phenomena. In this process identified severe accident phenomena are ranked according to their effect on the figure of merit and their level of knowledge. Analytical Hierarchical Process (AHP) serves here as a systematic approach for severe accident phenomena ranking. Formal uncertainty importance technique is used to estimate the degree of credibility of the severe accident model(s) used to represent the important phenomena. The methodology uses subjective justification by evaluating available information and data from experiments, and code predictions for this step. The quantitative part utilizes uncertainty importance measures for the quantification of the effect of each input parameter to the output uncertainty. A response surface fitting approach is proposed for estimating associated uncertainties with less calculation cost. The quantitative results are used to plan in reducing epistemic uncertainty in the output variable(s). The application of the proposed methodology is demonstrated for the ACRR MP-2 severe accident test facility. - Highlights: • A two stage framework for severe accident uncertainty analysis is proposed. • Modified PIRT qualitatively identifies and ranks uncertainty sources more precisely. • Uncertainty importance measure quantitatively calculates effect of each uncertainty source. • Methodology is applied successfully on ACRR MP-2 severe accident test facility

  8. An optimized ultra-fine energy group structure for neutron transport calculations

    International Nuclear Information System (INIS)

    Huria, Harish; Ouisloumen, Mohamed

    2008-01-01

    This paper describes an optimized energy group structure that was developed for neutron transport calculations in lattices using the Westinghouse lattice physics code PARAGON. The currently used 70-energy group structure results in significant discrepancies when the predictions are compared with those from the continuous energy Monte Carlo methods. The main source of the differences is the approximations employed in the resonance self-shielding methodology. This, in turn, leads to ambiguous adjustments in the resonance range cross-sections. The main goal of developing this group structure was to bypass the self-shielding methodology altogether thereby reducing the neutronic calculation errors. The proposed optimized energy mesh has 6064 points with 5877 points spanning the resonance range. The group boundaries in the resonance range were selected so that the micro group cross-sections matched reasonably well with those derived from reaction tallies of MCNP for a number of resonance absorbers of interest in reactor lattices. At the same time, however, the fast and thermal energy range boundaries were also adjusted to match the MCNP reaction rates in the relevant ranges. The resulting multi-group library was used to obtain eigenvalues for a wide variety of reactor lattice numerical benchmarks and also the Doppler reactivity defect benchmarks to establish its adequacy. (authors)

  9. Methodology of external exposure calculation for reuse of conditional released materials from decommissioning - 59138

    International Nuclear Information System (INIS)

    Ondra, Frantisek; Vasko, Marek; Necas, Vladimir

    2012-01-01

    The article presents methodology of external exposure calculation for reuse of conditional released materials from decommissioning using VISIPLAN 3D ALARA planning tool. Production of rails has been used as an example application of proposed methodology within the CONRELMAT project. The article presents a methodology for determination of radiological, material, organizational and other conditions for conditionally released materials reuse to ensure that workers and public exposure does not breach the exposure limits during scenario's life cycle (preparation, construction and operation of scenario). The methodology comprises a proposal of following conditions in the view of workers and public exposure: - radionuclide limit concentration of conditionally released materials for specific scenarios and nuclide vectors, - specific deployment of conditionally released materials eventually shielding materials, workers and public during the scenario's life cycle, - organizational measures concerning time of workers or public stay in the vicinity on conditionally released materials for individual performed scenarios and nuclide vectors. The above mentioned steps of proposed methodology have been applied within the CONRELMAT project. Exposure evaluation of workers for rail production is introduced in the article as an example of this application. Exposure calculation using VISIPLAN 3D ALARA planning tool was done within several models. The most exposed profession for scenario was identified. On the basis of this result, an increase of radionuclide concentration in conditional released material was proposed more than two times to 681 Bq/kg without no additional safety or organizational measures being applied. After application of proposed safety and organizational measures (additional shielding, geometry changes and limitation of work duration) it is possible to increase concentration of radionuclide in conditional released material more than ten times to 3092 Bq/kg. Storage

  10. Analysis of Freight Transport Strategies and Methodologies [summary

    Science.gov (United States)

    2017-12-01

    Transportation planners constantly examine traffic flows to see if current roadway layouts are serving traffic needs. For freight hauling, this presents one issue on the open road, but a much different issue as these large vehicles approach their des...

  11. New methodology for analytical calculation of resonance integrals in an heterogeneous medium

    International Nuclear Information System (INIS)

    Campos, T.P.R. de; Martinez, A.S.

    1986-01-01

    A new methodology for analytical calculation of Resonance Integral in a typical fuel cell is presented. The expression obtained for the Resonance Integral presents the advantage of being analytical. Its constituent terms are combinations of the well known function J(xi,β) with its partial derivatives in regard to β. This is a general expression for all types of resonance. The parameters used in this method depend on the resonance type and are obtained as a function of the parameter lambda. A simple expression, depending on resonance parameters is proposed for this variable. (Author) [pt

  12. Methodology for calculating the impact of distributed generation on energy losses in a distribution network

    Directory of Open Access Journals (Sweden)

    Perić Jelena

    2013-01-01

    Full Text Available This paper is the result of the Master's final project 'Methodology for calculating the impact of distributed generation on energy losses in distribution network'. The question is whether, for estimation of the impact of the power plant on energy losses in the distribution network, it is necessary to analyze each hour value of small power plant engagement and its effect, or it is sufficient to analyze a small number of states, and the extent to which it is possible to reduce the number of states that will be analyzed in order to review adequately the impact of the power plant on the change of energy losses in the network. To answer this question, an algorithm consisting of two steps is performed, annual production diagrams are obtained and, on the basis of calculated specific discrete values, the impact of the small power plant on energy losses in the distribution network to which it is connected is evaluated.

  13. Computer program for calculating thermodynamic and transport properties of fluids

    Science.gov (United States)

    Hendricks, R. C.; Braon, A. K.; Peller, I. C.

    1975-01-01

    Computer code has been developed to provide thermodynamic and transport properties of liquid argon, carbon dioxide, carbon monoxide, fluorine, helium, methane, neon, nitrogen, oxygen, and parahydrogen. Equation of state and transport coefficients are updated and other fluids added as new material becomes available.

  14. Evaluating health effects of transport interventions methodologic case study.

    Science.gov (United States)

    Ogilvie, David; Mitchell, Richard; Mutrie, Nanette; Petticrew, Mark; Platt, Stephen

    2006-08-01

    There is little evidence about the effects of environmental interventions on population levels of physical activity. Major transport projects may promote or discourage physical activity in the form of walking and cycling, but researching the health effects of such "natural experiments" in transport policy or infrastructure is challenging. Case study of attempts in 2004-2005 to evaluate the effects of two major transport projects in Scotland: an urban congestion charging scheme in Edinburgh, and a new urban motorway (freeway) in Glasgow. These interventions are typical of many major transport projects. They are unique to their context. They cannot easily be separated from the other components of the wider policies within which they occur. When, where, and how they are implemented are political decisions over which researchers have no control. Baseline data collection required for longitudinal studies may need to be planned before the intervention is certain to take place. There is no simple way of defining a population or area exposed to the intervention or of defining control groups. Changes in quantitative measures of health-related behavior may be difficult to detect. Major transport projects have clear potential to influence population health, but it is difficult to define the interventions, categorize exposure, or measure outcomes in ways that are likely to be seen as credible in the field of public health intervention research. A final study design is proposed in which multiple methods and spatial levels of analysis are combined in a longitudinal quasi-experimental study.

  15. Methodology for calculation of carbon emission and energy generation efficiency by fossil coal thermal power plants

    International Nuclear Information System (INIS)

    Licks, Leticia A.; Pires, Marcal

    2008-01-01

    This work intends to evaluate the emissions of carbon dioxide (CO 2 ) emitted by the burning of fossil coal in Brazil. So, a detailed methodology is proposed for calculation of CO 2 emissions from the carbon emission coefficients specific for the Brazilian carbons. Also, the using of secondary fuels (fuel oil and diesel oil) were considered and the power generation for the calculation of emissions and efficiencies of each power plant as well. The obtained results indicate carbon emissions for the year 2002 approximately of the order of 1,794 Gg, with 20% less than the obtained by the official methodology (MCT). Such differences are related to the non consideration of the humidity containment of the coals as well as the using of generic coefficients not adapted to the Brazilian coals. The obtained results indicate the necessity to review the emission inventories and the modernization of the burning systems aiming the increase the efficiency and reduction of the CO 2 and other pollutants, as an alternative for maintaining the sustainable form of using the fossil coal in the country

  16. An Application of the Methodology for Assessment of the Sustainability of Air Transport System

    Science.gov (United States)

    Janic, Milan

    2003-01-01

    An assessment and operationalization of the concept of sustainable air transport system is recognized as an important but complex research, operational and policy task. In the scope of the academic efforts to properly address the problem, this paper aims to assess the sustainability of air transport system. It particular, the paper describes the methodology for assessment of sustainability and its potential application. The methodology consists of the indicator systems, which relate to the air transport system operational, economic, social and environmental dimension of performance. The particular indicator systems are relevant for the particular actors such users (air travellers), air transport operators, aerospace manufacturers, local communities, governmental authorities at different levels (local, national, international), international air transport associations, pressure groups and public. In the scope of application of the methodology, the specific cases are selected to estimate the particular indicators, and thus to assess the system sustainability under given conditions.

  17. Study on the Development of Methodology for Cost Calculations and Financial Planning of Decommissioning Operations

    International Nuclear Information System (INIS)

    2001-12-01

    The following study deals with the development of methodology for cost calculations and financial planning of decommissioning operations. It has been carried out by EDF / FRAMATOME / VUJE / SCK-CEN in the frame of the contract B7-032/2000/291058/MAR/C2 awarded by the European Commission. This study consists of 4 parts. The first task objective is to develop a reliable and transparent methodology for cost assessment and financial planning sufficient precise but without long and in depth investigations and studies. This methodology mainly contains: Calculation methods and algorithms for the elaboration of costs items making up the whole decommissioning cost. Estimated or standard values for the parameters and for the cost factors to be used in the above-mentioned algorithms Financial mechanism to be applied as to establish a financial planning. The second part task is the provision of standard values for the different parameters and costs factors described in the above-mentioned algorithms. This provision of data is based on the own various experience acquired by the members of the working team and on existing international references (databases, publications and reports). As decommissioning operations are spreading over several dozens of years, the scope of this task the description of the financial mechanisms to be applied to the different cost items as to establish a complete financial cost. It takes into account the financial schedule issued in task 1. The scope of this task consists in bringing together in a guideline all the information collected before: algorithms, data and financial mechanisms. (A.L.B.)

  18. Scaling up methodology for CO2 emissions in ICT applications in traffic and transport in Europe

    NARCIS (Netherlands)

    Mans, D.; Jonkers, E.; Giannelos, I.; Palanciuc, D.

    2013-01-01

    The Amitran project aims to define a reference methodology for evaluating the effects of ICT measures in trafäc and transport on energy efficiency and consequently CO2 emissions. This methodology can be used as a reference by future projects and will address different modes for both passenger and

  19. BOXER, Fine-flux cross section condensation, 2D few group diffusion and transport burnup calculations

    International Nuclear Information System (INIS)

    Paratte, J.M.; Grimm, P.

    1998-01-01

    1 - Description of program or function: Neutron transport, calculation of multiplication factor and neutron fluxes in 2-D configurations: cell calculations, 2-D diffusion and transport, and burnup. 2 - Method of solution: Resonance treatment: pointwise calculation of flux in 2 zones in the resonance range, and interpolation in tables out of this range. Cell calculation: integral transport method. 2-D x-y: diffusion or transport (quadruple P1). Burnup: coupling of nuclides through matrices, development of nuclide densities as polynomials of the time. 3 - Restrictions on the complexity of the problem: Cells: cylindrical or slabs. 2-D: only x-y meshes, with homogenised cells

  20. mTransport: Two-point-correlation function calculator

    Science.gov (United States)

    Dias, Mafalda; Frazer, Jonathan; Seery, David

    2017-10-01

    mTransport computes the 2-point-correlation function of the curvature and tensor perturbations in multifield models of inflation in the presence of a curved field space. It is a Mathematica implementation of the transport method which encompasses scenarios with violations of slow-roll conditions and turns of the trajectory in field space. It can be used for an arbitrary mass spectrum, including massive modes, particle production and models with quasi-single-field dynamics.

  1. Transport survey calculations using the spectral collocation method

    International Nuclear Information System (INIS)

    Painter, S.L.; Lyon, J.F.

    1989-01-01

    A novel transport survey code has been developed and is being used to study the sensitivity of stellarator reactor performance to various transport assumptions. Instead of following one of the usual approaches, the steady-state transport equation are solved in integral form using the spectral collocation method. This approach effectively combine the computational efficiency of global models with the general nature of 1-D solutions. A compact torsatron reactor test case was used to study the convergence properties and flexibility of the new method. The heat transport model combined Shaing's model for ripple-induced neoclassical transport, the Chang-Hinton model for axisymmetric neoclassical transport, and neoalcator scaling for anomalous electron heat flux. Alpha particle heating, radiation losses, classical electron-ion heat flow, and external heating were included. For the test problem, the method exhibited some remarkable convergence properties. As the number of basis functions was increased, the maximum, pointwise error in the integrated power balance decayed exponentially until the numerical noise level as reached. Better than 10% accuracy in the globally-averaged quantities was achieved with only 5 basis functions; better than 1% accuracy was achieved with 10 basis functions. The numerical method was also found to be very general. Extreme temperature gradients at the plasma edge which sometimes arise from the neoclassical models and are difficult to resolve with finite-difference methods were easily resolved. 8 refs., 6 figs

  2. Computer codes in nuclear safety, radiation transport and dosimetry; Les codes de calcul en radioprotection, radiophysique et dosimetrie

    Energy Technology Data Exchange (ETDEWEB)

    Bordy, J.M.; Kodeli, I.; Menard, St.; Bouchet, J.L.; Renard, F.; Martin, E.; Blazy, L.; Voros, S.; Bochud, F.; Laedermann, J.P.; Beaugelin, K.; Makovicka, L.; Quiot, A.; Vermeersch, F.; Roche, H.; Perrin, M.C.; Laye, F.; Bardies, M.; Struelens, L.; Vanhavere, F.; Gschwind, R.; Fernandez, F.; Quesne, B.; Fritsch, P.; Lamart, St.; Crovisier, Ph.; Leservot, A.; Antoni, R.; Huet, Ch.; Thiam, Ch.; Donadille, L.; Monfort, M.; Diop, Ch.; Ricard, M

    2006-07-01

    The purpose of this conference was to describe the present state of computer codes dedicated to radiation transport or radiation source assessment or dosimetry. The presentations have been parted into 2 sessions: 1) methodology and 2) uses in industrial or medical or research domains. It appears that 2 different calculation strategies are prevailing, both are based on preliminary Monte-Carlo calculations with data storage. First, quick simulations made from a database of particle histories built though a previous Monte-Carlo simulation and secondly, a neuronal approach involving a learning platform generated through a previous Monte-Carlo simulation. This document gathers the slides of the presentations.

  3. Improvement in decay ratio calculation in LAPUR5 methodology for BWR instability

    International Nuclear Information System (INIS)

    Li Hsuannien; Yang Tzungshiue; Shih Chunkuan; Wang Jongrong; Lin Haotzu

    2009-01-01

    LAPUR5, based on frequency domain approach, is a computer code that analyzes the core stability and calculates decay ratios (DRs) of boiling water nuclear reactors. In current methodology, one set of parameters (three friction multipliers and one density reactivity coefficient multiplier) is chosen for LAPUR5 input files, LAPURX and LAPURW. The calculation stops and DR for this particular set of parameters is obtained when the convergence criteria (pressure, mass flow rate) are first met. However, there are other sets of parameters which could also meet the same convergence criteria without being identified. In order to cover these ranges of parameters, we developed an improved procedure to calculate DR in LAPUR5. First, we define the ranges and increments of those dominant input parameters in the input files for DR loop search. After LAPUR5 program execution, we can obtain all DRs for every set of parameters which satisfy the converge criteria in one single operation. The part for loop search procedure covers those steps in preparing LAPURX and LAPURW input files. As a demonstration, we looked into the reload design of Kuosheng Unit 2 Cycle 22. We found that the global DR has a maximum at exposure of 9070 MWd/t and the regional DR has a maximum at exposure of 5770 MWd/t. It should be noted that the regional DR turns out to be larger than the global ones for exposures less than 5770 MWd/t. Furthermore, we see that either global or regional DR by the loop search method is greater than the corresponding values from our previous approach. It is concluded that the loop search method can reduce human error and save human labor as compared with the previous version of LAPUR5 methodology. Now the maximum DR can be effectively obtained for a given plant operating conditions and a more precise stability boundary, with less uncertainty, can be plotted on plant power/flow map. (author)

  4. Chair Report Consultancy Meeting on Nuclear Security Assessment Methodologies (NUSAM) Transport Case Study Working Group

    Energy Technology Data Exchange (ETDEWEB)

    Shull, Doug [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-08-19

    The purpose of the consultancy assignment was to (i) apply the NUSAM assessment methods to hypothetical transport security table top exercise (TTX) analyses and (ii) document its results to working materials of NUSAM case study on transport. A number of working group observations, using the results of TTX methodologies, are noted in the report.

  5. PWR Containment Shielding Calculations with SCALE6.1 Using Hybrid Deterministic-Stochastic Methodology

    Directory of Open Access Journals (Sweden)

    Mario Matijević

    2016-01-01

    Full Text Available The capabilities of the SCALE6.1/MAVRIC hybrid shielding methodology (CADIS and FW-CADIS were demonstrated when applied to a realistic deep penetration Monte Carlo (MC shielding problem of a full-scale PWR containment model. Automatic preparation of variance reduction (VR parameters is based on deterministic transport theory (SN method providing the space-energy importance function. The aim of this paper was to determine the neutron-gamma dose rate distributions over large portions of PWR containment with uniformly small MC uncertainties. The sources of ionizing radiation included fission neutrons and photons from the reactor and photons from the activated primary coolant. We investigated benefits and differences of FW-CADIS over CADIS methodology for the objective of the uniform MC particle density in the desired tally regions. Memory intense deterministic module was used with broad group library “v7_27n19g” opposed to the fine group library “v7_200n47g” used for final MC simulation. Compared with CADIS and with the analog MC, FW-CADIS drastically improved MC dose rate distributions. Modern shielding problems with large spatial domains require not only extensive computational resources but also understanding of the underlying physics and numerical interdependence between SN-MC modules. The results of the dose rates throughout the containment are presented and discussed for different volumetric adjoint sources.

  6. Study of the methodology for sensitivity calculations of fast reactors integral parameters

    International Nuclear Information System (INIS)

    Renke, C.A.C.

    1981-06-01

    A study of the methodology for sensitivity calculations of integral parameters of fast reactors for the adjustment of multigroup cross sections is presented. A description of several existent methods and theories is given, with special emphasis being regarded to variational perturbation theory, integrant of the sensitivity code VARI-1D used in this work. Two calculational systems are defined and a set of procedures and criteria is structured gathering the necessary conditions for the determination of the sensitivity coefficients. These coefficients are then computed by both the direct method and the variational perturbation theory. A reasonable number of sensitivity coefficients are computed and analyzed for three fast critical assemblies, covering a range of special interest of the spectrum. These coefficients are determined for severa integral parameters, for the capture and fission cross sections of the U-238 and Pu-239, covering all the energy up to 14.5 MeV. The nuclear data used were obtained the CARNAVAL II calculational system of the Instituto de Engenharia Nuclear. An optimization for sensitivity computations in a chainned sequence of procedures is made, yielding the sensitivities in the energy macrogroups as the final stage. (Author) [pt

  7. Modeling and Calculator Tools for State and Local Transportation Resources

    Science.gov (United States)

    Air quality models, calculators, guidance and strategies are offered for estimating and projecting vehicle air pollution, including ozone or smog-forming pollutants, particulate matter and other emissions that pose public health and air quality concerns.

  8. Methodology to quantify the effect of policies and measures in emission reductions from road transport

    OpenAIRE

    Lumbreras Martin, Julio; Guijarro Lomeña, Alberto; López Martínez, José María; Rodríguez Hurtado, María Encarnación

    2008-01-01

    Atmospheric emissions from road transport have increased all around the world since 1990 more rapidly than from other pollution sources. Moreover, they contribute in more than 25% to total emissions, in the majority of European countries. This situation confirms the importance of road transport when complying with emission ceilings (e.g. Kyoto Protocol and National Emissions Ceilings Directive). The developed methodology illustrates the effect on transport emissions of the most influential va...

  9. A design methodology for evolutionary air transportation networks

    Science.gov (United States)

    Yang, Eunsuk

    The air transportation demand at large hubs in the U.S. is anticipated to double in the near future. Current runway construction plans at selected airports can relieve some capacity and delay problems, but many are doubtful that this solution is sufficient to accommodate the anticipated demand growth in the National Airspace System (NAS). With the worsening congestion problem, it is imperative to seek alternative solutions other than costly runway constructions. In this respect, many researchers and organizations have been building models and performing analyses of the NAS. However, the complexity and size of the problem results in an overwhelming task for transportation system modelers. This research seeks to compose an active design algorithm for an evolutionary airline network model so as to include network specific control properties. An airline network designer, referred to as a network architect, can use this tool to assess the possibilities of gaining more capacity by changing the network configuration. Since the Airline Deregulation Act of 1978, the airline service network has evolved into a distinct Hub-and-Spoke (H&S) network. Enplanement demand on the H&S network is the sum of Origin-Destination (O-D) demand and transfer demand. Even though the flight or enplanement demand is a function of O-D demand and passenger routings on the airline network, the distinction between enplanement and O-D demand is not often made. Instead, many demand forecast practices in current days are based on scale-ups from the enplanements, which include the demand to and from transferring network hubs. Based on this research, it was found that the current demand prediction practice can be improved by dissecting enplanements further into smaller pieces of information. As a result, enplanement demand is decomposed into intrinsic and variable parts. The proposed intrinsic demand model is based on the concept of 'true' O-D demand which includes the direction of each round trip

  10. A Solution Methodology and Computer Program to Efficiently Model Thermodynamic and Transport Coefficients of Mixtures

    Science.gov (United States)

    Ferlemann, Paul G.

    2000-01-01

    A solution methodology has been developed to efficiently model multi-specie, chemically frozen, thermally perfect gas mixtures. The method relies on the ability to generate a single (composite) set of thermodynamic and transport coefficients prior to beginning a CFD solution. While not fundamentally a new concept, many applied CFD users are not aware of this capability nor have a mechanism to easily and confidently generate new coefficients. A database of individual specie property coefficients has been created for 48 species. The seven coefficient form of the thermodynamic functions is currently used rather then the ten coefficient form due to the similarity of the calculated properties, low temperature behavior and reduced CPU requirements. Sutherland laminar viscosity and thermal conductivity coefficients were computed in a consistent manner from available reference curves. A computer program has been written to provide CFD users with a convenient method to generate composite specie coefficients for any mixture. Mach 7 forebody/inlet calculations demonstrated nearly equivalent results and significant CPU time savings compared to a multi-specie solution approach. Results from high-speed combustor analysis also illustrate the ability to model inert test gas contaminants without additional computational expense.

  11. New computational methodology for large 3D neutron transport problems

    International Nuclear Information System (INIS)

    Dahmani, M.; Roy, R.; Koclas, J.

    2004-01-01

    We present a new computational methodology, based on 3D characteristics method, dedicated to solve very large 3D problems without spatial homogenization. In order to eliminate the input/output problems occurring when solving these large problems, we set up a new computing scheme that requires more CPU resources than the usual one, based on sweeps over large tracking files. The huge capacity of storage needed in some problems and the related I/O queries needed by the characteristics solver are replaced by on-the-fly recalculation of tracks at each iteration step. Using this technique, large 3D problems are no longer I/O-bound, and distributed CPU resources can be efficiently used. (authors)

  12. Cyclic machine scheduling with tool transportation - additional calculations

    NARCIS (Netherlands)

    Kuijpers, C.M.H.

    2001-01-01

    In the PhD Thesis of Kuijpers a cyclic machine scheduling problem with tool transportation is considered. For the problem with two machines, it is shown that there always exists an optimal schedule with a certain structure. This is done by means of an elaborate case study. For a number of cases some

  13. Transport phenomena and dimensionless numbers: towards a new methodological approach

    Science.gov (United States)

    Bezuglyi, B. A.; Ivanova, N. A.; Sizova, L. V.

    2017-05-01

    This review presents a new methodical approach to the classification of dimensionless numbers as pair relationships of the main forces controlling transport phenomena in fluids at the macroscopic level by using a tabulated form. To memorize the transfer numbers at the molecular level a rule in the form of a mnemonic triangle is suggested. The structure of some traditional dimensional numbers presented as the ratio of more than two forces, or the ratio of a force to a geometric mean of two other ones, is also discussed. A classification of natural convection as the interaction of body forces and surface forces, taking into account that sensitive to the force field the fluid density and the surface tension depends on temperature or composition, is presented.

  14. Density functional theory calculations of charge transport properties ...

    Indian Academy of Sciences (India)

    In this paper, we used density functional theory (DFT) at the M06-2X/6−31+G(d) level to compute the charge transport rates of nine coronene topological structures. The results show that the energy gap of these nine coronene derivatives is in the range 2.90–3.30 eV, falling into the organic semiconductor category. The size ...

  15. Recently developed methods in neutral-particle transport calculations: overview

    International Nuclear Information System (INIS)

    Alcouffe, R.E.

    1982-01-01

    It has become increasingly apparent that successful, general methods for the solution of the neutral particle transport equation involve a close connection between the spatial-discretization method used and the source-acceleration method chosen. The first form of the transport equation, angular discretization which is discrete ordinates is considered as well as spatial discretization based upon a mesh arrangement. Characteristic methods are considered briefly in the context of future, desirable developments. The ideal spatial-discretization method is described as having the following attributes: (1) positive-positive boundary data yields a positive angular flux within the mesh including its boundaries; (2) satisfies the particle balance equation over the mesh, that is, the method is conservative; (3) possesses the diffusion limit independent of spatial mesh size, that is, for a linearly isotropic flux assumption, the transport differencing reduces to a suitable diffusion equation differencing; (4) the method is unconditionally acceleratable, i.e., for each mesh size, the method is unconditionally convergent with a source iteration acceleration. It is doubtful that a single method possesses all these attributes for a general problem. Some commonly used methods are outlined and their computational performance and usefulness are compared; recommendations for future development are detailed, which include practical computational considerations

  16. DEVELOPMENT OF METHODOLOGY FOR THE CALCULATION OF THE PROJECT INNOVATION INDICATOR AND ITS CRITERIA COMPONENTS

    Directory of Open Access Journals (Sweden)

    Mariya Vishnevskaya

    2017-12-01

    Full Text Available Two main components of the problem studied in the article are revealed. At the practical level, the provision of the convenient tools allowing a comprehensive evaluation the proposed innovative project in terms of its possibilities for inclusion in the portfolio or development program, and on the level of science – the need for improvement and complementing the existing methodology of assessment of innovative projects attractiveness in the context of their properties and a specific set of components. The research is scientifically applied since the problem solution involves the science-based development of a set of techniques, allowing the practical use of knowledge gained from large information arrays at the initialization stage. The purpose of the study is the formation of an integrated indicator of the project innovation, with a substantive justification of the calculation method, as a tool for the evaluation and selection of projects to be included in the portfolio of projects and programs. The theoretical and methodological basis of the research is the conceptual provisions and scientific developments of experts on project management issues, published in monographs, periodicals, materials of scientific and practical conferences on the topic of research. The tasks were solved using the general scientific and special methods, mathematical modelling methods based on the system approach. Results. A balanced system of parametric single indicators of innovation is presented – the risks, personnel, quality, innovation, resources, and performers, which allows getting a comprehensive idea of any project already in the initial stages. The choice of a risk tolerance as a key criterion of the “risks” element and the reference characteristics is substantiated, in relation to which it can be argued that the potential project holds promise. A tool for calculating the risk tolerance based on the use of matrices and vector analysis is proposed

  17. Methodology for calculation of doses to man and implementation in Pandora

    Energy Technology Data Exchange (ETDEWEB)

    Avila, Rodolfo [Facilia AB, Bromma (Sweden); Bergstroem, Ulla [Swepro Project Management AB, Solna (Sweden)

    2006-07-15

    This report describes methods and data for calculation of doses to man to be used in safety assessments of repositories for nuclear fuel. The methods are based on the latest recommendations from the ICRP; the EU and the national radiation protection authorities. Equations are given for calculation of doses from ingestion of contaminated water and food, inhalation of contaminated air and external exposure from radionuclides in the ground. With the exception of the exposure from food ingestion, the equations are the same used in previous safety assessments. A general equation is suggested for estimation of the exposure from food ingestion, in which the annual demand of carbon is used instead of the annual ingestion of different food-stuffs, which was earlier applied. The report contains tables with recommended values for physiological characteristics such as water intake, food intake and inhalation rates, based on information summarised in an Appendix. Furthermore, tables are given with recommended age dependent dose conversion factors for ingestion and inhalation for a number of nuclides of interest for safety assessments. The most recently published dose conversion factors for external exposure from contaminated ground are also given. An overview of the implementation of the methodology in Pandora, which is the tool that SKB and Posiva currently use for biosphere modelling, is also provided. The work presented in the report is a result from a joint project commissioned by SKB and Posiva.

  18. Methodology for calculation of doses to man and implementation in Pandora

    International Nuclear Information System (INIS)

    Avila, R.; Bergstroem, U.

    2006-07-01

    This report describes methods and data for calculation of doses to man to be used in safety assessments of repositories for nuclear fuel. The methods are based on the latest recommendations from the ICRP, the EU and the national radiation protection authorities. Equations are given for calculation of doses from ingestion of contaminated water and food, inhalation of contaminated air and external exposure from radionuclides in the ground. With the exception of the exposure from food ingestion, the equations are the same used in previous safety assessments. A general equation is suggested for estimation of the exposure from food ingestion, in which the annual demand of carbon is used instead of the annual ingestion of different foodstuffs, which was earlier applied. The report contains tables with recommended values for physiological characteristics such as water intake, food intake and inhalation rates, based on information summarised in an Appendix. Furthermore, tables are given with recommended age dependent dose conversion factors for ingestion and inhalation for a number of nuclides of interest for safety assessments. The most recently published dose conversion factors for external exposure from contaminated ground are also given. An overview of the implementation of the methodology in Pandora, which is the tool that Posiva and SKB currently use for biosphere modelling, is also provided. The work presented in the report is a result from a joint project commissioned by Svensk Kaernbraenslehantering AB (SKB) and Posiva. The report will be printed also as a SKB report R-06-68. (orig.)

  19. A Hybrid Dynamic System Assessment Methodology for Multi-Modal Transportation-Electrification

    Directory of Open Access Journals (Sweden)

    Thomas J.T. van der Wardt

    2017-05-01

    Full Text Available In recent years, electrified transportation, be it in the form of buses, trains, or cars have become an emerging form of mobility. Electric vehicles (EVs, especially, are set to expand the amount of electric miles driven and energy consumed. Nevertheless, the question remains as to whether EVs will be technically feasible within infrastructure systems. Fundamentally, EVs interact with three interconnected systems: the (physical transportation system, the electric power grid, and their supporting information systems. Coupling of the two physical systems essentially forms a nexus, the transportation-electricity nexus (TEN. This paper presents a hybrid dynamic system assessment methodology for multi-modal transportation-electrification. At its core, it utilizes a mathematical model which consists of a marked Petri-net model superimposed on the continuous time microscopic traffic dynamics and the electrical state evolution. The methodology consists of four steps: (1 establish the TEN structure; (2 establish the TEN behavior; (3 establish the TEN Intelligent Transportation-Energy System (ITES decision-making; and (4 assess the TEN performance. In the presentation of the methodology, the Symmetrica test case is used throughout as an illustrative example. Consequently, values for several measures of performance are provided. This methodology is presented generically and may be used to assess the effects of transportation-electrification in any city or area; opening up possibilities for many future studies.

  20. METHODOLOGY FOR HYDRAULIC CALCULATION OF RIVER REGULATION AND DETERMINATION OF DIKE PARAMETERS

    Directory of Open Access Journals (Sweden)

    E. I. Mikhnevich

    2017-01-01

    Full Text Available Territory protection against flood water inundation and creation of polder systems are carried out with the help of protection dikes. One of the main requirements to the composition of polder systems in flood plains is a location of border dikes beyond meander belt in order to avoid their erosion when meander development occurs. Meander belt width can be determined on the basis of the analysis of multi-year land surveying pertaining top river-bed building and in the case when such data is not available this parameter is calculated in accordance with the Snishchenko formula. While banking-up a river bed a flooded area is decreasing and, consequently, water level in inter-dike space and rate of flood water are significantly increasing. For this reason it is necessary to locate dikes at a such distance from a river bed which will not cause rather high increase in water level and flow velocity in the inter-dike space. Methodology for hydraulic calculation of river regulation has been developed in order to substantiate design parameters for levee systems, creation of favourable hydraulic regime in these systems and provision of sustainability for dikes. Its main elements are calculations of pass-through capacity of the leveed channel and rise of water level in inter-dike space, and distance between dikes and their crest level. Peculiar feature of the proposed calculated formulae is an interaction consideration of channel and inundated flows. Their mass-exchanging process results in slowing-down of the channel flow and acceleration of the inundated flow. This occurrence is taken into account and coefficients of kinematic efficiency are introduced to the elements of water flow rate in the river channel and flood plain, respectively. The adduced dependencies for determination of a dike crest level (consequently their height take into consideration a rise of water level in inter-dike space for two types of polder systems: non-inundable (winter dikes with

  1. THE ONSITE ON-LINE CALCULATORS AND TRAINING FOR SUBSURFACE CONTAMINANT TRANSPORT SITE ASSESSMENT

    Science.gov (United States)

    EPA has developed a suite of on-line calculators called "OnSite" for assessing transport of environmental contaminants in the subsurface. The purpose of these calculators is to provide methods and data for common calculations used in assessing impacts from subsurface contaminatio...

  2. Approximate models for neutral particle transport calculations in ducts

    International Nuclear Information System (INIS)

    Ono, Shizuca

    2000-01-01

    The problem of neutral particle transport in evacuated ducts of arbitrary, but axially uniform, cross-sectional geometry and isotropic reflection at the wall is studied. The model makes use of basis functions to represent the transverse and azimuthal dependences of the particle angular flux in the duct. For the approximation in terms of two basis functions, an improvement in the method is implemented by decomposing the problem into uncollided and collided components. A new quadrature set, more suitable to the problem, is developed and generated by one of the techniques of the constructive theory of orthogonal polynomials. The approximation in terms of three basis functions is developed and implemented to improve the precision of the results. For both models of two and three basis functions, the energy dependence of the problem is introduced through the multigroup formalism. The results of sample problems are compared to literature results and to results of the Monte Carlo code, MCNP. (author)

  3. The Suppression of Energy Discretization Errors in Multigroup Transport Calculations

    International Nuclear Information System (INIS)

    Larsen, Edward

    2013-01-01

    The Objective of this project is to develop, implement, and test new deterministric methods to solve, as efficiently as possible, multigroup neutron transport problems having an extremely large number of groups. Our approach was to (i) use the standard CMFD method to 'coarsen' the space-angle grid, yielding a multigroup diffusion equation, and (ii) use a new multigrid-in-space-and-energy technique to efficiently solve the multigroup diffusion problem. The overall strategy of (i) how to coarsen the spatial an energy grids, and (ii) how to navigate through the various grids, has the goal of minimizing the overall computational effort. This approach yields not only the fine-grid solution, but also coarse-group flux-weighted cross sections that can be used for other related problems.

  4. DANTSYS: a system for deterministic, neutral particle transport calculations

    Energy Technology Data Exchange (ETDEWEB)

    Alcouffe, R.E.; Baker, R.S.

    1996-12-31

    The THREEDANT code is the latest addition to our system of codes, DANTSYS, which perform neutral particle transport computations on a given system of interest. The system of codes is distinguished by geometrical or symmetry considerations. For example, ONEDANT and TWODANT are designed for one and two dimensional geometries respectively. We have TWOHEX for hexagonal geometries, TWODANT/GQ for arbitrary quadrilaterals in XY and RZ geometry, and THREEDANT for three-dimensional geometries. The design of this system of codes is such that they share the same input and edit module and hence the input and output is uniform for all the codes (with the obvious additions needed to specify each type of geometry). The codes in this system are also designed to be general purpose solving both eigenvalue and source driven problems. In this paper we concentrate on the THREEDANT module since there are special considerations that need to be taken into account when designing such a module. The main issues that need to be addressed in a three-dimensional transport solver are those of the computational time needed to solve a problem and the amount of storage needed to accomplish that solution. Of course both these issues are directly related to the number of spatial mesh cells required to obtain a solution to a specified accuracy, but is also related to the spatial discretization method chosen and the requirements of the iteration acceleration scheme employed as will be noted below. Another related consideration is the robustness of the resulting algorithms as implemented; because insistence on complete robustness has a significant impact upon the computation time. We address each of these issues in the following through which we give reasons for the choices we have made in our approach to this code. And this is useful in outlining how the code is evolving to better address the shortcomings that presently exist.

  5. Evaluation of dose equivalent rate distribution in JCO critical accident by radiation transport calculation

    CERN Document Server

    Sakamoto, Y

    2002-01-01

    In the prevention of nuclear disaster, there needs the information on the dose equivalent rate distribution inside and outside the site, and energy spectra. The three dimensional radiation transport calculation code is a useful tool for the site specific detailed analysis with the consideration of facility structures. It is important in the prediction of individual doses in the future countermeasure that the reliability of the evaluation methods of dose equivalent rate distribution and energy spectra by using of Monte Carlo radiation transport calculation code, and the factors which influence the dose equivalent rate distribution outside the site are confirmed. The reliability of radiation transport calculation code and the influence factors of dose equivalent rate distribution were examined through the analyses of critical accident at JCO's uranium processing plant occurred on September 30, 1999. The radiation transport calculations including the burn-up calculations were done by using of the structural info...

  6. Monte Carlo calculations of electron transport on microcomputers

    International Nuclear Information System (INIS)

    Chung, Manho; Jester, W.A.; Levine, S.H.; Foderaro, A.H.

    1990-01-01

    In the work described in this paper, the Monte Carlo program ZEBRA, developed by Berber and Buxton, was converted to run on the Macintosh computer using Microsoft BASIC to reduce the cost of Monte Carlo calculations using microcomputers. Then the Eltran2 program was transferred to an IBM-compatible computer. Turbo BASIC and Microsoft Quick BASIC have been used on the IBM-compatible Tandy 4000SX computer. The paper shows the running speed of the Monte Carlo programs on the different computers, normalized to one for Eltran2 on the Macintosh-SE or Macintosh-Plus computer. Higher values refer to faster running times proportionally. Since Eltran2 is a one-dimensional program, it calculates energy deposited in a semi-infinite multilayer slab. Eltran2 has been modified to a two-dimensional program called Eltran3 to computer more accurately the case with a point source, a small detector, and a short source-to-detector distance. The running time of Eltran3 is about twice as long as that of Eltran2 for a similar case

  7. Methodological aspects of QM/MM calculations: A case study on matrix metalloproteinase-2.

    Science.gov (United States)

    Vasilevskaya, Tatiana; Khrenova, Maria G; Nemukhin, Alexander V; Thiel, Walter

    2016-07-15

    We address methodological issues in quantum mechanics/molecular mechanics (QM/MM) calculations on a zinc-dependent enzyme. We focus on the first stage of peptide bond cleavage by matrix metalloproteinase-2 (MMP-2), that is, the nucleophilic attack of the zinc-coordinating water molecule on the carbonyl carbon atom of the scissile fragment of the substrate. This step is accompanied by significant charge redistribution around the zinc cation, bond cleavage, and bond formation. We vary the size and initial geometry of the model system as well as the computational protocol to demonstrate the influence of these choices on the results obtained. We present QM/MM potential energy profiles for a set of snapshots randomly selected from QM/MM-based molecular dynamics simulations and analyze the differences in the computed profiles in structural terms. Since the substrate in MMP-2 is located on the protein surface, we investigate the influence of the thickness of the water layer around the enzyme on the QM/MM energy profile. Thin water layers (0-2 Å) give unrealistic results because of structural reorganizations in the active-site region at the protein surface. A 12 Å water layer appears to be sufficient to capture the effect of the solvent; the corresponding QM/MM energy profile is very close to that obtained from QM/MM/SMBP calculations using the solvent macromolecular boundary potential (SMBP). We apply the optimized computational protocol to explain the origin of the different catalytic activity of the Glu116Asp mutant: the energy barrier for the first step is higher, which is rationalized on structural grounds. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Discontinuous finite element treatment of duct problems in transport calculations

    International Nuclear Information System (INIS)

    Mirza, A. M.; Qamar, S.

    1998-01-01

    A discontinuous finite element approach is presented to solve the even-parity Boltzmann transport equation for duct problems. Presence of ducts in a system results in the streaming of particles and hence requires the employment of higher order angular approximations to model the angular flux. Conventional schemes based on the use of continuous trial functions require the same order of angular approximations to be used everywhere in the system, resulting in wastage of computational resources. Numerical investigations for the test problems presented in this paper indicate that the discontinuous finite elements eliminate the above problems and leads to computationally efficient and economical methods. They are also found to be more suitable for treating the sharp changes in the angular flux at duct-observer interfaces. The new approach provides a single-pass alternate to extrapolation and interactive schemes which need multiple passes of the solution strategy to acquire convergence. The method has been tested with the help of two case studies, namely straight and dog-leg duct problems. All results have been verified against those obtained from Monte Carlo simulations and K/sup +/ continuous finite element method. (author)

  9. Urban development and transport disadvantage: Methodology to evaluate social transport needs in Latin American cities

    OpenAIRE

    Lizarraga, Carmen; Jaramillo, Ciro; Grindlay, Alejandro L.

    2011-01-01

    This article examines the theoretical framework for accessibility, social exclusion and provision of public transport. The socio-economic and urban characteristics of Latin American cities require the creation of specific indices to determine social needs for public transport. In the article an index of social transport needs is drawn up. It can be used to highlight a problem which is severely affecting wide groups in Latin America who suffer social exclusion aggravated by a deficient provisi...

  10. Criticism of generally accepted fundamentals and methodologies of traffic and transportation theory

    Energy Technology Data Exchange (ETDEWEB)

    Kerner, Boris S. [Physics of Transportation and Traffic, University Duisburg-Essen, 47048 Duisburg (Germany)

    2015-03-10

    It is explained why the set of the fundamental empirical features of traffic breakdown (a transition from free flow to congested traffic) should be the empirical basis for any traffic and transportation theory that can be reliable used for control and optimization in traffic networks. It is shown that generally accepted fundamentals and methodologies of traffic and transportation theory are not consistent with the set of the fundamental empirical features of traffic breakdown at a highway bottleneck. To these fundamentals and methodologies of traffic and transportation theory belong (i) Lighthill-Whitham-Richards (LWR) theory, (ii) the General Motors (GM) model class (for example, Herman, Gazis et al. GM model, Gipps’s model, Payne’s model, Newell’s optimal velocity (OV) model, Wiedemann’s model, Bando et al. OV model, Treiber’s IDM, Krauß’s model), (iii) the understanding of highway capacity as a particular stochastic value, and (iv) principles for traffic and transportation network optimization and control (for example, Wardrop’s user equilibrium (UE) and system optimum (SO) principles). Alternatively to these generally accepted fundamentals and methodologies of traffic and transportation theory, we discuss three-phase traffic theory as the basis for traffic flow modeling as well as briefly consider the network breakdown minimization (BM) principle for the optimization of traffic and transportation networks with road bottlenecks.

  11. Analysing methodological choices in calculations of embodied energy and GHG emissions from buildings

    DEFF Research Database (Denmark)

    Rasmussen, Freja Nygaard; Malmqvist, Tove; Moncaster, Alice

    2018-01-01

    of the multiple interacting methodological parameters. The analysis of methodological parameters is structured by the stepwise methodological choices made in the building EEG assessment practice. Each of six assessment process steps involves one or more methodological choices relevant to the EEG results...... variations in numerical results due to variations in the chosen indicators, data sources and both temporal and physical boundaries. The aim of this paper is to add value to existing EEG research knowledge by systematically explaining and analysing the methodological implications of the quantitative results...

  12. A Strategic Planning Methodology for the Multimodal Transportation Systems: A Case Study from Turkey

    Directory of Open Access Journals (Sweden)

    Umut R. Tuzkaya

    2014-01-01

    Full Text Available Transportation costs have an important effect on companies’ competition capability in various sectors. To realize a positive effect, transportation industry should provide some specific performance criteria related with the economical efficiency and service quality. Also an increase in this performance degree depends on the obtaining optimum results of using the logistical resources in a convenient manner by the specialized logistics service providers. In this study, considering the effects of transportation modes on constituting a methodology that is interested in a strategic subject like constructing a transportation network is emphasized. In the process of selecting the most convenient transportation modes, all the required criteria are determined considering the related literature and the opinions of the experts. Then the analytical network process methodology is used to solve this selection problem. The close relationship between the transportation modes that will be used among the points in the network and the points that will be used for short storages and transshipment activities is considered. And the analytical network process is again used to select the most convenient ones among the alternative port locations. After decision making on these two important points, optimizing the freight flow among the supply chain by choosing the right transportation modes at each stage is aimed. To realize that optimization, the aims of decision makers from different levels or from different functional areas are satisfied by using the multilevel programming technique. Finally, the proposed methodology is applied on a transportation project of a logistic service provider, which gives service in a multimodal, multicommodity, multilevel and multiechelon transportation network.

  13. The framework for calculating the measure of resilience for intermodal transportation systems.

    Science.gov (United States)

    2009-08-14

    A literature review indicates no conforming approval on the measure of resilience (MOR) for intermodal : transportation systems (1, 2, 3). The objective of this report is to develop a framework for calculating the : measure of resilience (MOR) to dis...

  14. Two dimensional neutron transport calculation system for plate-reactors: experimental design and qualification with SILOE

    International Nuclear Information System (INIS)

    Roussos, N.

    1982-01-01

    The main objective of this work is to create a neutronic calculations system for the SILOE-SILOETTE reactors, adaptable to other types of plate reactors. The author presents the methodology and the development of the APOLLO 1D (99 gr.) calculations for the creation of cross sections libraries. After a recall of the Discrete Ordinate Method (DOT), the method accuracy is studied in order to optimize the spatial discretization of the calculations; calculations of DOT 3.5 and of SILOETTE core are conducted and their convergence and costs are examined. DOT calculations of SILOETTE and experimental tests results are then compared [fr

  15. ON THE ACCELERATION OF SHORTEST PATH CALCULATIONS IN TRANSPORTATION NETWORKS

    Energy Technology Data Exchange (ETDEWEB)

    BAKER, ZACHARY K. [Los Alamos National Laboratory; GOKHALE, MAYA B. [Los Alamos National Laboratory

    2007-01-08

    Shortest path algorithms are a key element of many graph problems. They are used in such applications as online direction finding and navigation, as well as modeling of traffic for large scale simulations of major metropolitan areas. As the shortest path algorithms are an execution bottleneck, it is beneficial to move their execution to parallel hardware such as Field-Programmable Gate Arrays (FPGAs). Hardware implementation is accomplished through the use of a small A core replicated on the order of 20 times on an FPGA device. The objective is to maximize the use of on-board random-access memory bandwidth through the use of multi-threaded latency tolerance. Each shortest path core is responsible for one shortest path calculation, and when it is finished it outputs its result and requests the next source from a queue. One of the innovations of this approach is the use of a small bubble sort core to produce the extract-min function. While bubble sort is not usually considered an appropriate algorithm for any non-trivial usage, it is appropriate in this case as it can produce a single minimum out of the list in O(n) cycles, whwere n is the number of elements in the vertext list. The cost of this min operation does not impact the running time of the architecture, because the queue depth for fetching the next set of edges from memory is roughly equivalent to the number of cores in the system. Additionally, this work provides a collection of simulation results that model the behavior of the node queue in hardware. The results show that a hardware queue, implementing a small bubble-type minimum function, need only be on the order of 16 elements to provide both correct and optimal paths. Because the graph database size is measured in the hundreds of megabytes, the Cray SRAM memory is insufficient. In addition to the A* cores, they have developed a memory management system allowing round-robin servicing of the nodes as well as virtual memory managed over the Hypertransport

  16. Computer program for calculation of complex chemical equilibrium compositions and applications. Supplement 1: Transport properties

    Science.gov (United States)

    Gordon, S.; Mcbride, B.; Zeleznik, F. J.

    1984-01-01

    An addition to the computer program of NASA SP-273 is given that permits transport property calculations for the gaseous phase. Approximate mixture formulas are used to obtain viscosity and frozen thermal conductivity. Reaction thermal conductivity is obtained by the same method as in NASA TN D-7056. Transport properties for 154 gaseous species were selected for use with the program.

  17. A retrospective and prospective survey of three-dimensional transport calculations

    International Nuclear Information System (INIS)

    Nakahara, Yasuaki

    1985-01-01

    A retrospective survey is made on the three-dimensional radiation transport calculations. Introduction is given to computer codes based on the distinctive numerical methods such as the Monte Carlo, Direct Integration, Ssub(n) and Finite Element Methods to solve the three-dimensional transport equations. Prospective discussions are made on pros and cons of these methods. (author)

  18. A methodology for assessing social considerations in transport of low and intermediate level radioactive waste

    International Nuclear Information System (INIS)

    Allsop, R.E.; Banister, D.J.; Holden, D.J.; Bird, J.; Downe, H.E.

    1986-05-01

    A methodology is proposed for taking into account non-radiological social aspects of the transport of low and intermediate level radioactive waste when considering the location of disposal facilities and the transport of waste to such facilities from the sites where it arises. As part of a data acquisition programme, an attitudinal survey of a sample of people unconnected with any suggested site or transport route is proposed in order to estimate levels of concern felt by people of different kinds about waste transport. Probabilities of accident occurrence during transport by road and rail are also discussed, and the limited extent of quantified information about consequences of accidents is reviewed. The scope for malicious interference with consignments of waste in transit is considered. (author)

  19. Continuous Energy, Multi-Dimensional Transport Calculations for Problem Dependent Resonance Self-Shielding

    Energy Technology Data Exchange (ETDEWEB)

    T. Downar

    2009-03-31

    The overall objective of the work here has been to eliminate the approximations used in current resonance treatments by developing continuous energy multi-dimensional transport calculations for problem dependent self-shielding calculations. The work here builds on the existing resonance treatment capabilities in the ORNL SCALE code system.

  20. Calculating emissions into the air. General methodological principles; Calcul des emissions dans l'air. Principes methodologiques generaux

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-05-01

    Knowing the quantities of certain substances discharged into the atmosphere is a necessary and fundamental stage in any environmental protection policy to tackle today's problems such as acid rain, the degradation of air quality, global warming and climate change, the depletion of the ozone layer, etc. This quantification, usually known as an 'emission inventory', is built on a set of specific rules which may vary from one inventory to another. This state of affairs presents the enormous disadvantage that the data available are not comparable. At the international level, an attempt at harmonization has been going on for some years between the various international bodies. This work is being pursued in parallel with the improvement of methodologies to estimate discharges from various types of source. To take account of changes in specifications and of improvements in our understanding of phenomena giving rise to atmospheric pollution, the results of inventories of emissions need to be regularly revised, even retrospectively, to maintain a consistent series. CITEPA, which acts as a National Reference Centre, has developed a system of inventories as part of the CORALIE programme with financial help from the French Ministry for Planning and the Environment. (author)

  1. Local transport method for hybrid diffusion-transport calculations in 2-D cylindrical (R, THETA) geometry

    International Nuclear Information System (INIS)

    Zhang, Dingkang; Rahnema, Farzad; Ougouag, Abderrfi M.

    2011-01-01

    A response-based local transport method has been developed in 2-D (r, θ) geometry for coupling to any coarse-mesh (nodal) diffusion method/code. Monte Carlo method is first used to generate a (pre-computed) the response function library for each unique coarse mesh in the transport domain (e.g., the outer reflector region of the Pebble Bed Reactor). The scalar flux and net current at the diffusion/transport interface provided by the diffusion method are used as an incoming surface source to the transport domain. A deterministic iterative sweeping method together with the response function library is utilized to compute the local transport solution within all transport coarse meshes. After the partial angular currents crossing the coarse mesh surfaces are converged, albedo coefficients are computed as boundary conditions for the diffusion methods. The iteration on the albedo boundary condition (for the diffusion method via transport) and the incoming angular flux boundary condition (for the transport via diffusion) is continued until convergence is achieved. The method was tested for in a simplified 2-D (r, θ) pebble bed reactor problem consisting of an inner reflector, an annular fuel region and a controlled outer reflector. The comparisons have shown that the results of the response-function-based transport method agree very well with a direct MCNP whole core solution. The agreement in coarse mesh averaged flux was found to be excellent: relative difference of about 0.18% and a maximum difference of about 0.55%. Note that the MCNP uncertainty was less than 0.1%. (author)

  2. Performing three-dimensional neutral particle transport calculations on tera scale computers

    International Nuclear Information System (INIS)

    Woodward, C.S.; Brown, P.N.; Chang, B.; Dorr, M.R.; Hanebutte, U.R.

    1999-01-01

    A scalable, parallel code system to perform neutral particle transport calculations in three dimensions is presented. To utilize the hyper-cluster architecture of emerging tera scale computers, the parallel code successfully combines the MPI message passing and paradigms. The code's capabilities are demonstrated by a shielding calculation containing over 14 billion unknowns. This calculation was accomplished on the IBM SP ''ASCI-Blue-Pacific computer located at Lawrence Livermore National Laboratory (LLNL)

  3. 42 CFR 413.220 - Methodology for calculating the per-treatment base rate under the ESRD prospective payment system...

    Science.gov (United States)

    2010-10-01

    ... Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES MEDICARE... Disease (ESRD) Services and Organ Procurement Costs § 413.220 Methodology for calculating the per... factor to account for the most recent estimate of increases in the prices of an appropriate market basket...

  4. UW Inventory of Freight Emissions (WIFE3) heavy duty diesel vehicle web calculator methodology.

    Science.gov (United States)

    2013-09-01

    This document serves as an overview and technical documentation for the University of Wisconsin Inventory of : Freight Emissions (WIFE3) calculator. The WIFE3 web calculator rapidly estimates future heavy duty diesel : vehicle (HDDV) roadway emission...

  5. A Quantitative and Systematic Methodology to Investigate Energy Consumption Issues in Multimodal Intercity Transportation Systems

    Directory of Open Access Journals (Sweden)

    Lili Du

    2015-09-01

    Full Text Available Energy issues in transportation systems have garnered increasing attention recently. This study proposes a systematic methodology for policy-makers to minimize energy consumption in multimodal intercity transportation systems considering suppliers’ operational constraints and travelers’ mobility requirements. A bi-level optimization model is developed for this purpose and considers the air, rail, private auto, and transit modes. The upper-level model is a mixed integer nonlinear program aiming to minimize energy consumption subject to transportation suppliers’ operational constraints and traffic demand distribution to paths resulting from the lower-level model. The lower-level model is a linear program seeking to maximize the trip utilities of travelers. The interactions between the multimodal transportation suppliers and intercity traffic demand are considered under the goal of minimizing system energy consumption. The proposed bi-level mixed integer model is relaxed and transformed into a mathematical program with complementarity constraints, and solved using a customized branch-and-bound algorithm. Numerical experiments, conducted using multimodal travel options between Lafayette, Indiana and Washington, D.C. reiterate that shifting traffic demand from private cars to the transit and rail modes significantly reduce energy consumption. Moreover, the proposed methodology provides tools to quantitatively analyze system energy consumption and traffic demand distribution among transportation modes under specific policy instruments. The results illustrate the need to systematically incorporate the interactions among traveler preferences, network structure, and supplier operational schemes to provide policy-makers insights for developing traffic demand shift mechanisms to minimize system energy consumption. Hence, the proposed methodology provide policy-makers the capability to analyze energy consumption in the transportation sector by a

  6. An integrated methodology for characterizing flow and transport processes in fractured rock

    International Nuclear Information System (INIS)

    Wu, Yu-Shu

    2007-01-01

    To investigate the coupled processes involved in fluid and heat flow and chemical transport in the highly heterogeneous, unsaturated-zone (UZ) fractured rock of Yucca Mountain, we present an integrated modeling methodology. This approach integrates a wide variety of moisture, pneumatic, thermal, and geochemical isotopic field data into a comprehensive three-dimensional numerical model for modeling analyses. The results of field applications of the methodology show that moisture data, such as water potential and liquid saturation, are not sufficient to determine in situ percolation flux, whereas temperature and geochemical isotopic data provide better constraints to net infiltration rates and flow patterns. In addition, pneumatic data are found to be extremely valuable in estimating large-scale fracture permeability. The integration of hydrologic, pneumatic, temperature, and geochemical data into modeling analyses is thereby demonstrated to provide a practical modeling approach for characterizing flow and transport processes in complex fractured formations

  7. A Methodology for Physical Interconnection Decisions of Next Generation Transport Networks

    DEFF Research Database (Denmark)

    Gutierrez Lopez, Jose Manuel; Riaz, M. Tahir; Madsen, Ole Brun

    2011-01-01

    The physical interconnection for optical transport networks has critical relevance in the overall network performance and deployment costs. As telecommunication services and technologies evolve, the provisioning of higher capacity and reliability levels is becoming essential for the proper...... of possibilities when designing the physical network interconnection. This paper develops and presents a methodology in order to deal with aspects related to the interconnection problem of optical transport networks. This methodology is presented as independent puzzle pieces, covering diverse topics going from...... development of Next Generation Networks. Currently, there is a lack of specific procedures that describe the basic guidelines to design such networks better than "best possible performance for the lowest investment". Therefore, the research from different points of view will allow a broader space...

  8. Cobenefits of replacing car trips with alternative transportation: a review of evidence and methodological issues.

    Science.gov (United States)

    Xia, Ting; Zhang, Ying; Crabb, Shona; Shah, Pushan

    2013-01-01

    It has been reported that motor vehicle emissions contribute nearly a quarter of world energy-related greenhouse gases and cause nonnegligible air pollution primarily in urban areas. Reducing car use and increasing ecofriendly alternative transport, such as public and active transport, are efficient approaches to mitigate harmful environmental impacts caused by a large amount of vehicle use. Besides the environmental benefits of promoting alternative transport, it can also induce other health and economic benefits. At present, a number of studies have been conducted to evaluate cobenefits from greenhouse gas mitigation policies. However, relatively few have focused specifically on the transport sector. A comprehensive understanding of the multiple benefits of alternative transport could assist with policy making in the areas of transport, health, and environment. However, there is no straightforward method which could estimate cobenefits effect at one time. In this paper, the links between vehicle emissions and air quality, as well as the health and economic benefits from alternative transport use, are considered, and methodological issues relating to the modelling of these cobenefits are discussed.

  9. Cobenefits of Replacing Car Trips with Alternative Transportation: A Review of Evidence and Methodological Issues

    Directory of Open Access Journals (Sweden)

    Ting Xia

    2013-01-01

    Full Text Available It has been reported that motor vehicle emissions contribute nearly a quarter of world energy-related greenhouse gases and cause nonnegligible air pollution primarily in urban areas. Reducing car use and increasing ecofriendly alternative transport, such as public and active transport, are efficient approaches to mitigate harmful environmental impacts caused by a large amount of vehicle use. Besides the environmental benefits of promoting alternative transport, it can also induce other health and economic benefits. At present, a number of studies have been conducted to evaluate cobenefits from greenhouse gas mitigation policies. However, relatively few have focused specifically on the transport sector. A comprehensive understanding of the multiple benefits of alternative transport could assist with policy making in the areas of transport, health, and environment. However, there is no straightforward method which could estimate cobenefits effect at one time. In this paper, the links between vehicle emissions and air quality, as well as the health and economic benefits from alternative transport use, are considered, and methodological issues relating to the modelling of these cobenefits are discussed.

  10. Methodology for optimal design of efficient air transport network in a competitive environment

    OpenAIRE

    Trapote Barreira, César

    2015-01-01

    This thesis aims to dissert about air transport network design taking into consideration the current needs about efficiency in a very competitive industry. The main focus for this work is the airline's point of view and for this reason is going to be common to talk about profitability. A methodology is proposed to analyse current networks and to introduce modifications. First, an analytical approach is proposed with the aim to understand better the interaction of key parameters in network ...

  11. Developments in Sensitivity Methodologies and the Validation of Reactor Physics Calculations

    Directory of Open Access Journals (Sweden)

    Giuseppe Palmiotti

    2012-01-01

    Full Text Available The sensitivity methodologies have been a remarkable story when adopted in the reactor physics field. Sensitivity coefficients can be used for different objectives like uncertainty estimates, design optimization, determination of target accuracy requirements, adjustment of input parameters, and evaluations of the representativity of an experiment with respect to a reference design configuration. A review of the methods used is provided, and several examples illustrate the success of the methodology in reactor physics. A new application as the improvement of nuclear basic parameters using integral experiments is also described.

  12. First-principles calculations of thermal, electrical, and thermoelectric transport properties of semiconductors

    Science.gov (United States)

    Zhou, Jiawei; Liao, Bolin; Chen, Gang

    2016-04-01

    The transport properties of semiconductors are key to the performance of many solid-state devices (transistors, data storage, thermoelectric cooling and power generation devices, etc). An understanding of the transport details can lead to material designs with better performances. In recent years simulation tools based on first-principles calculations have been greatly improved, being able to obtain the fundamental ground-state properties of materials (such as band structure and phonon dispersion) accurately. Accordingly, methods have been developed to calculate the transport properties based on an ab initio approach. In this review we focus on the thermal, electrical, and thermoelectric transport properties of semiconductors, which represent the basic transport characteristics of the two degrees of freedom in solids—electronic and lattice degrees of freedom. Starting from the coupled electron-phonon Boltzmann transport equations, we illustrate different scattering mechanisms that change the transport features and review the first-principles approaches that solve the transport equations. We then present the first-principles results on the thermal and electrical transport properties of semiconductors. The discussions are grouped based on different scattering mechanisms including phonon-phonon scattering, phonon scattering by equilibrium electrons, carrier scattering by equilibrium phonons, carrier scattering by polar optical phonons, scatterings due to impurities, alloying and doping, and the phonon drag effect. We show how the first-principles methods allow one to investigate transport properties with unprecedented detail and also offer new insights into the electron and phonon transport. The current status of the simulation is mentioned when appropriate and some of the future directions are also discussed.

  13. 30 CFR 206.173 - How do I calculate the alternative methodology for dual accounting?

    Science.gov (United States)

    2010-07-01

    ... for dual accounting? 206.173 Section 206.173 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT... the alternative methodology for dual accounting? (a) Electing a dual accounting method. (1) If you are... accounting method only at the beginning of the next election period or with the written approval of MMS and...

  14. Geo-ecology of surface atmosphere of Tomsk and methodology for the ecological risk calculation

    Science.gov (United States)

    Ivanova, E. V.; Anisimov, M. V.; Kuznetsova, U. N.; Taldonova, N. V.; Petrova, A. V.

    2018-01-01

    The present study presents new methodological approach of environmental assessment of surface atmosphere layer based on principles of non equilibrium dynamics. The role of natural and technogenic factors in forming areas of dust and airborne pollution is determined. The results of the study of ecological risk from atmosphere chemical pollution of the town are presented.

  15. Hybrid PN-SN Calculations with SAAF for the Multiscale Transport Capability in Rattlesnake

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yaqi; Schunert, Sebastian; DeHart, Mark; Martineau, Richard

    2016-05-01

    Two interface conditions, the Lagrange multiplier method and the upwinding method, for hybrid \\pn-\\sn calculations is proposed for the self-adjoint angular flux (SAAF) formulation of the transport equation using the continuous finite element method (FEM) for spatial discretization. These interface conditions are implemented in Rattlesnake, the radiation transport application built on MOOSE, for the on-going multiscale transport simulation effort at INL. For smoothing the solution at the interface for the Lagrange multiplier method, a method based on \\sn Lagrange interpolation on the sphere is proposed. Numerical results indicate that the interface conditions give the expected convergence.

  16. Hardware accelerated high performance neutron transport computation based on AGENT methodology

    Science.gov (United States)

    Xiao, Shanjie

    The spatial heterogeneity of the next generation Gen-IV nuclear reactor core designs brings challenges to the neutron transport analysis. The Arbitrary Geometry Neutron Transport (AGENT) AGENT code is a three-dimensional neutron transport analysis code being developed at the Laboratory for Neutronics and Geometry Computation (NEGE) at Purdue University. It can accurately describe the spatial heterogeneity in a hierarchical structure through the R-function solid modeler. The previous version of AGENT coupled the 2D transport MOC solver and the 1D diffusion NEM solver to solve the three dimensional Boltzmann transport equation. In this research, the 2D/1D coupling methodology was expanded to couple two transport solvers, the radial 2D MOC solver and the axial 1D MOC solver, for better accuracy. The expansion was benchmarked with the widely applied C5G7 benchmark models and two fast breeder reactor models, and showed good agreement with the reference Monte Carlo results. In practice, the accurate neutron transport analysis for a full reactor core is still time-consuming and thus limits its application. Therefore, another content of my research is focused on designing a specific hardware based on the reconfigurable computing technique in order to accelerate AGENT computations. It is the first time that the application of this type is used to the reactor physics and neutron transport for reactor design. The most time consuming part of the AGENT algorithm was identified. Moreover, the architecture of the AGENT acceleration system was designed based on the analysis. Through the parallel computation on the specially designed, highly efficient architecture, the acceleration design on FPGA acquires high performance at the much lower working frequency than CPUs. The whole design simulations show that the acceleration design would be able to speedup large scale AGENT computations about 20 times. The high performance AGENT acceleration system will drastically shortening the

  17. Electric power transport costs - methodologies analysis; Custos de transporte de energia eletrica: analise de metodologias

    Energy Technology Data Exchange (ETDEWEB)

    Takahata, Dario

    1997-07-01

    The dissertation presents the aspects related to the restructuring of power systems in terms of international experiences, and the possible implications for the definition of the new power system in Brazil. The experience shows that the reform in various countries has started from the sector deverticalization, together with the transmissions open access scheme. The retrospect of researched countries indicates that the transmissions remuneration is based on a methodology that recovers the operative cost of transmission transactions, along with an additional amount that take into account the cost of the existing transmission system. The following countries have been analyzed: Chile, Norway, England and Argentina. This work also shows the current situation in Brazil, as in terms of tariffs, as regarding the power system organizational structure, as well as a preliminary proposal conceived by SINTREL (National System of Electrical Energy Transmission) to evaluate the transmission transaction cost. This dissertation ended with comments and conclusions, depicting a future program which might be followed, considering the aspects quoted above and the peculiarities of brazilian power system. (author)

  18. A Methodology for Calculating EGS Electricity Generation Potential Based on the Gringarten Model for Heat Extraction From Fractured Rock

    Energy Technology Data Exchange (ETDEWEB)

    Augustine, Chad

    2017-05-01

    Existing methodologies for estimating the electricity generation potential of Enhanced Geothermal Systems (EGS) assume thermal recovery factors of 5% or less, resulting in relatively low volumetric electricity generation potentials for EGS reservoirs. This study proposes and develops a methodology for calculating EGS electricity generation potential based on the Gringarten conceptual model and analytical solution for heat extraction from fractured rock. The electricity generation potential of a cubic kilometer of rock as a function of temperature is calculated assuming limits on the allowed produced water temperature decline and reservoir lifetime based on surface power plant constraints. The resulting estimates of EGS electricity generation potential can be one to nearly two-orders of magnitude larger than those from existing methodologies. The flow per unit fracture surface area from the Gringarten solution is found to be a key term in describing the conceptual reservoir behavior. The methodology can be applied to aid in the design of EGS reservoirs by giving minimum reservoir volume, fracture spacing, number of fractures, and flow requirements for a target reservoir power output. Limitations of the idealized model compared to actual reservoir performance and the implications on reservoir design are discussed.

  19. METHODOLOGICAL NOTES: Energy density calculations for ball-lightning-like luminous silicon balls

    Science.gov (United States)

    Paiva, Gerson S.; Ferreira, Joacy V.; Bastos, Cristiano C.; dos Santos, Marcus V.; Pavão, Antonio C.

    2010-05-01

    The energy density of a luminous silicon ball [Phys. Rev. Lett. 98 048501 (2007)] is calculated for a model with a metal core surrounded by an atmosphere of silicon oxides. Experimental data combined with the molecular orbital calculations of the oxidation enthalpy lead to a mean energy density of 3.9 MJ m-3, which is within the range of estimates from other ball lightning models. This result provides good evidence to support the silicon-based model.

  20. Proposal of a calculation methodology for the preliminary design of a coalescing filter

    International Nuclear Information System (INIS)

    Gonzalez Dobrosky, Cintia

    2015-01-01

    Coalescing filters are described which are equipments for capture and recovery of mist most efficient, inexpensive and have fewer limitations of application. The operation, equations and ideal characteristics of filter media of these models are explained. A methodology for design and scale-up of this type of equipment for liquid recovery in gaseous currents is proposed from experimental tests, in order to guide the interested reader in its making. (author) [es

  1. Calculation of t8/5 by response surface methodology for electric arc welding applications

    Directory of Open Access Journals (Sweden)

    Meseguer-Valdenebro José Luis

    2014-01-01

    Full Text Available One of the greatest difficulties traditionally found in stainless steel constructions has been the execution of welding parts in them. At the present time, the available technology allows us to use arc welding processes for that application without any disadvantage. Response surface methodology is used to optimise a process in which the variables that take part in it are not related to each other by a mathematical law. Therefore, an empiric model must be formulated. With this methodology the optimisation of one selected variable may be done. In this work, the cooling time that takes place from 800 to 500ºC, t8/5, after TIG welding operation, is modelled by the response surface method. The arc power, the welding velocity and the thermal efficiency factor are considered as the variables that have influence on the t8/5 value. Different cooling times,t8/5, for different combinations of values for the variables are previously determined by a numerical method. The input values for the variables have been experimentally established. The results indicate that response surface methodology may be considered as a valid technique for these purposes.

  2. Neutron transport calculation for Activation Evaluation for Decommissioning of PET cyclotron Facility

    Directory of Open Access Journals (Sweden)

    Nobuhara Fumiyoshi

    2017-01-01

    Full Text Available In order to evaluate the state of activation in a cyclotron facility used for the radioisotope production of PET diagnostics, we measured the neutron flux by using gold foils and TLDs. Then, the spatial distribution of neutrons and induced activity inside the cyclotron vault were simulated with the Monte Calro calculation code for neutron transport and DCHAIN-SP for activation calculation. The calculated results are in good agreement with measured values within factor 3. Therefore, the adaption of the advanced evaluation procedure for activation level is proved to be important for the planning of decommissioning of these facilities.

  3. Transport calculation of neutron flux distribution in reflector of PW reactor

    International Nuclear Information System (INIS)

    Remec, I.

    1982-01-01

    Two-dimensional transport calculation of the neutron flux and spectrum in the equatorial plain of PW reactor, using computer program DOT 3, is presented. Results show significant differences between neutron fields in which test samples and reactor vessel are exposed. (author)

  4. CALCULATE OF CLOCK SCHEDULING OF PUBLIC PASSENGER TRANSPORTATION BETWEEN THE AIRPORT AND THE CITY

    Directory of Open Access Journals (Sweden)

    Yu. A. Kapitonov

    2015-01-01

    Full Text Available The article describes a new type of organization for the Russian public passenger transportation between the airport and the central part of the city, used in major European cities, based on the clock schedule. A calculation algorithm for clock schedules for one line is suggested examples of solutions are given.

  5. On calculating phase shifts and performing fits to scattering cross sections or transport properties

    International Nuclear Information System (INIS)

    Hepburn, J.W.; Roy, R.J. Le

    1978-01-01

    Improved methods of calculating quantum mechanical phase shifts and for performing least-squares fits to scattering cross sections or transport properties, are described. Their use in a five-parameter fit to experimental differential cross sections reduces the computer time by a factor of 4-7. (Auth.)

  6. BALTORO a general purpose code for coupling discrete ordinates and Monte-Carlo radiation transport calculations

    International Nuclear Information System (INIS)

    Zazula, J.M.

    1983-01-01

    The general purpose code BALTORO was written for coupling the three-dimensional Monte-Carlo /MC/ with the one-dimensional Discrete Ordinates /DO/ radiation transport calculations. The quantity of a radiation-induced /neutrons or gamma-rays/ nuclear effect or the score from a radiation-yielding nuclear effect can be analysed in this way. (author)

  7. FPGA hardware acceleration for high performance neutron transport computation based on agent methodology - 318

    International Nuclear Information System (INIS)

    Shanjie, Xiao; Tatjana, Jevremovic

    2010-01-01

    The accurate, detailed and 3D neutron transport analysis for Gen-IV reactors is still time-consuming regardless of advanced computational hardware available in developed countries. This paper introduces a new concept in addressing the computational time while persevering the detailed and accurate modeling; a specifically designed FPGA co-processor accelerates robust AGENT methodology for complex reactor geometries. For the first time this approach is applied to accelerate the neutronics analysis. The AGENT methodology solves neutron transport equation using the method of characteristics. The AGENT methodology performance was carefully analyzed before the hardware design based on the FPGA co-processor was adopted. The most time-consuming kernel part is then transplanted into the FPGA co-processor. The FPGA co-processor is designed with data flow-driven non von-Neumann architecture and has much higher efficiency than the conventional computer architecture. Details of the FPGA co-processor design are introduced and the design is benchmarked using two different examples. The advanced chip architecture helps the FPGA co-processor obtaining more than 20 times speed up with its working frequency much lower than the CPU frequency. (authors)

  8. Impact limiters for radioactive materials transport packagings: a methodology for assessment

    International Nuclear Information System (INIS)

    Mourao, Rogerio Pimenta

    2002-01-01

    This work aims at establishing a methodology for design assessment of a cellular material-filled impact limiter to be used as part of a radioactive material transport packaging. This methodology comprises the selection of the cellular material, its structural characterization by mechanical tests, the development of a case study in the nuclear field, preliminary determination of the best cellular material density for the case study, performance of the case and its numerical simulation using the finite element method. Among the several materials used as shock absorbers in packagings, the polyurethane foam was chosen, particularly the foam obtained from the castor oil plant (Ricinus communis), a non-polluting and renewable source. The case study carried out was the 9 m drop test of a package prototype containing radioactive wastes incorporated in a cement matrix, considered one of the most severe tests prescribed by the Brazilian and international transport standards. Prototypes with foam density pre-determined as ideal as well as prototypes using lighter and heavier foams were tested for comparison. The results obtained validate the methodology in that expectations regarding the ideal foam density were confirmed by the drop tests and the numerical simulation. (author)

  9. Adaptive Fup multi-resolution approach to flow and advective transport in highly heterogeneous porous media: Methodology, accuracy and convergence

    Science.gov (United States)

    Gotovac, Hrvoje; Cvetković, Vladimir; Andričević, Roko

    2009-06-01

    In this paper, we present a new Monte-Carlo methodology referred to as Adaptive Fup Monte-Carlo Method (AFMCM) based on compactly supported Fup basis functions and a multi-resolution approach. We consider for illustration 2-D steady, linear and unidirectional flow and advective transport defined on a domain of size 64 IY ∗ 32 IY with isotropic exponential correlation heterogeneity structure and σY2 up to 8. Accuracy and convergence issues are rigorously analyzed for each realization as well as for the ensemble. Log-conductivity is presented by continuous function at high resolution level ( nY = 4-32 points per integral scale) reproducing very accurately prescribed statistics. The flow problem is the most demanding Monte-Carlo step due to satisfying detailed log-conductivity properties. Presented methodology inherently gives continuous and mesh-free velocity fields, which enables the construction of a new efficient and accurate particle tracking algorithm. Results indicate that resolutions nY = 8 and nh = 32 enable very accurate flow solutions in each realization with mass balance error less than 3% and accurate ensemble velocity statistics. Results show that the proposed AFMCM enables tracking of an unlimited number of injected particles and calculates required transport variables as continuous functions with desired relative accuracy (0.1%) in each realization. Furthermore, we show that the resolution nY = 8 yields a quite accurate pdf of the transverse displacement and travel time. All required flow and transport variables require 500 Monte-Carlo realizations in order to stabilize fluctuations of the higher-order moments and the probability density functions.

  10. The implementation of the Quality Costs Methodology in the Public Transport Enterprise in Macedonia

    Directory of Open Access Journals (Sweden)

    Elizabeta Mitreva

    2017-02-01

    Full Text Available The implementation of TQM (Total Quality Management strategy in the public transport enterprises in Macedonia means improving the quality of services through examination of business processes not just in terms of defining, improvement and design of the process, but also improvement of productivity and optimization of the costs of quality. The purpose of this study is to point out the importance of determining the quality of the transport services, its methods, and techniques for measurement of the optimization of business processes in particular. The analysis of the quality costs when providing transport services can help managers to understand the impact of poor quality on the financial results and the bad image it gives to the enterprise. In this study, we proposed and applied the model for better performance and higher efficiency of the transport enterprise, through the optimization of business processes, change in the corporate culture and use of the complete business potentials. The need for this methodology was imposed as a result of the analysis made in the company in terms of whether is it doing an analysis on the costs of quality or not. The benefits from the utilization of this model will not only lead to increasing the business performance of the transport enterprise, but this model will also serve as a driving force for continuous improvements to the satisfaction of all stakeholders.

  11. Methodological advances in imaging intravital axonal transport [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    James N. Sleigh

    2017-03-01

    Full Text Available Axonal transport is the active process whereby neurons transport cargoes such as organelles and proteins anterogradely from the cell body to the axon terminal and retrogradely in the opposite direction. Bi-directional transport in axons is absolutely essential for the functioning and survival of neurons and appears to be negatively impacted by both aging and diseases of the nervous system, such as Alzheimer’s disease and amyotrophic lateral sclerosis. The movement of individual cargoes along axons has been studied in vitro in live neurons and tissue explants for a number of years; however, it is currently unclear as to whether these systems faithfully and consistently replicate the in vivo situation. A number of intravital techniques originally developed for studying diverse biological events have recently been adapted to monitor axonal transport in real-time in a range of live organisms and are providing novel insight into this dynamic process. Here, we highlight these methodological advances in intravital imaging of axonal transport, outlining key strengths and limitations while discussing findings, possible improvements, and outstanding questions.

  12. Microwave emulations and tight-binding calculations of transport in polyacetylene

    Energy Technology Data Exchange (ETDEWEB)

    Stegmann, Thomas, E-mail: stegmann@icf.unam.mx [Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, 62210 Cuernavaca (Mexico); Franco-Villafañe, John A., E-mail: jofravil@fis.unam.mx [Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado Postal J-48, 72570 Puebla (Mexico); Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, 62210 Cuernavaca (Mexico); Ortiz, Yenni P. [Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, 62210 Cuernavaca (Mexico); Kuhl, Ulrich [Université de Nice – Sophia Antipolis, Laboratoire de la Physique de la Matière Condensée, CNRS, Parc Valrose, 06108 Nice (France); Mortessagne, Fabrice, E-mail: fabrice.mortessagne@unice.fr [Université de Nice – Sophia Antipolis, Laboratoire de la Physique de la Matière Condensée, CNRS, Parc Valrose, 06108 Nice (France); Seligman, Thomas H. [Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, 62210 Cuernavaca (Mexico); Centro Internacional de Ciencias, 62210 Cuernavaca (Mexico)

    2017-01-05

    A novel approach to investigate the electron transport of cis- and trans-polyacetylene chains in the single-electron approximation is presented by using microwave emulation measurements and tight-binding calculations. In the emulation we take into account the different electronic couplings due to the double bonds leading to coupled dimer chains. The relative coupling constants are adjusted by DFT calculations. For sufficiently long chains a transport band gap is observed if the double bonds are present, whereas for identical couplings no band gap opens. The band gap can be observed also in relatively short chains, if additional edge atoms are absent, which cause strong resonance peaks within the band gap. The experimental results are in agreement with our tight-binding calculations using the nonequilibrium Green's function method. The tight-binding calculations show that it is crucial to include third nearest neighbor couplings to obtain the gap in the cis-polyacetylene. - Highlights: • Electronic transport in individual polyacetylene chains is studied. • Microwave emulation experiments and tight-binding calculations agree well. • In long chains a band-gap opens due the dimerization of the chain. • In short chains edge atoms cause strong resonance peaks in the center of the band-gap.

  13. Thermodynamic calculations for biochemical transport and reaction processes in metabolic networks.

    Science.gov (United States)

    Jol, Stefan J; Kümmel, Anne; Hatzimanikatis, Vassily; Beard, Daniel A; Heinemann, Matthias

    2010-11-17

    Thermodynamic analysis of metabolic networks has recently generated increasing interest for its ability to add constraints on metabolic network operation, and to combine metabolic fluxes and metabolite measurements in a mechanistic manner. Concepts for the calculation of the change in Gibbs energy of biochemical reactions have long been established. However, a concept for incorporation of cross-membrane transport in these calculations is still missing, although the theory for calculating thermodynamic properties of transport processes is long known. Here, we have developed two equivalent equations to calculate the change in Gibbs energy of combined transport and reaction processes based on two different ways of treating biochemical thermodynamics. We illustrate the need for these equations by showing that in some cases there is a significant difference between the proposed correct calculation and using an approximative method. With the developed equations, thermodynamic analysis of metabolic networks spanning over multiple physical compartments can now be correctly described. Copyright © 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  14. A proposed methodology for the calculation of direct consumption of fossil fuels and electricity for livestock breeding, and its application to Cyprus

    International Nuclear Information System (INIS)

    Kythreotou, Nicoletta; Florides, Georgios; Tassou, Savvas A.

    2012-01-01

    On-farm energy consumption is becoming increasingly important in the context of rising energy costs and concerns over greenhouse gas emissions. For farmers throughout the world, energy inputs represent a major and rapidly increasing cost. In many countries such as Cyprus, however, there is lack of systematic research on energy use in agriculture, which hinders benchmarking end evaluation of approaches and investment decisions for energy improvement. This study established a methodology for the estimation of the direct consumption of fossil fuels and electricity for livestock breeding, excluding transport, for locations where full data sets are not available. This methodology was then used to estimate fossil fuel and electricity consumption for livestock breeding in Cyprus. For 2008, this energy was found to be equivalent to 40.3 GWh that corresponds to 8% of the energy used in agriculture. Differences between the energy consumption per animal in Cyprus and other countries was found to be mainly due to differences in climatic conditions and technologies used in the farms. -- Highlights: ► A methodology to calculate energy consumption in farming applied to Cyprus. ► Annual consumption per animal was estimated to be 565 kWh/cow, 537 kWh/sow and 0.677 kWh/chicken. ► Direct energy consumption in livestock breeding is estimated at 40.3 GWh in 2008.

  15. Optimized shielding calculation to the transport of 131I employed in nuclear medicine

    International Nuclear Information System (INIS)

    Sahyun, A.; Sordi, G.M.; Rodrigues, D.; Sanches, M.P.; Romero F, C.R.

    1996-01-01

    The objective of this paper is to present the basis for shielding calculation used in different situations that could occur during the transport of 131 I utilized in nuclear medicine for diagnostic and therapeutic purposes. The aim of these calculation is to optimize the shielding in order to satisfy the transport of radioactive material. These calculations were proposed for estimated activities around 1,85 GBq (50mCi), 3,7 GBq(100mCi) and 7,4 GBq(200mCi), considering the driver of the cargo company and his assistant as the critical group and the general people considered as effect of collective dose. The population density considered in the models is the one related to Sao Paulo city, because the transport is done by the highway across the city and the radioactive material is distributed from west to north and south, where the airports are located. This area ranges a perimeter of 40 km. For the collective dose calculation, it was considered a population dose of less than 1/100 of the annual limit dose for the public. Our main concern is related to the large volume of radioactive material that is transported per week, specially because 1/3 of this material has activities around 3,7 GBq (100mCi). During the calculations, we have figured out that the activities at the moment of transport are nearly 40% greater than the one related to the calibration date. As for the discrepancy of official alpha value of US$10000/man-Sv and the real value for our country of US$3000/man-Sv,a comparative study was performed. (authors). 3 refs., 2 figs., 2 tabs

  16. Use of the Apollo-II multigroup transport code for criticality calculations

    International Nuclear Information System (INIS)

    Coste, M.; Mathonniere, G.; Sanchez, R.; Stankovski, Z.; Van der Gucht, C.; Zmijarevic, I.

    1992-01-01

    APPOLO-II is a new-generation multigroup transport code for assembly calculation. The code has been designed to be used as a tool for reactor design as well as for the analysis and interpretation of small nuclear facilities. As the first step in a criticality calculation, the collision probability module of the APPOLO-II code can be used to generate cell or assembly homogenized reaction-rate preserving cross sections that account for self-shielding effects as well as for the fine-energy within cell flux spectral variations. These cross section data can then be used either directly within the APPOLO-II code in a direct discrete ordinate multigroup transport calculation of a small nuclear facility or, more generally, be formatted by a post-processing module to be used by the multigroup diffusion code CRONOS-II or by the multigroup Monte Carlo code TRIMARAN

  17. 25 CFR 39.711 - How does a school calculate annual bus transportation miles for residential students?

    Science.gov (United States)

    2010-04-01

    ... driven to transport students from home to school at the start of the school year, add together the miles driven for all buses used to transport students from their homes to the school. If a school transports... 25 Indians 1 2010-04-01 2010-04-01 false How does a school calculate annual bus transportation...

  18. Methodology for kick tolerance calculation and well killing in deepwater drilling

    Directory of Open Access Journals (Sweden)

    Yequan Jin

    2016-11-01

    Full Text Available Kick tolerance is a key parameter to indicate whether shut-in operation can be carried out safely and a proper well killing method should be chosen in well drilling. At present, however, the calculation of kick tolerance in deepwater drilling is not efficient enough. In this paper, a calculation method for volume kick tolerance of deepwater drilling was developed by means of theoretical derivation and example verification. Based on deepwater borehole temperature profile, choke manifold and annulus circulating pressure loss, the calculation model of volume kick tolerance was established under the constraint of the pressure-bearing capacity of the formation at the casing shoe, resistance to internal pressure of casing, blowout preventer (BOP and choke control. Then, its reliability was verified by using the calculation results of a deepwater well in the South China Sea. It is indicated that the well can be shut in safely and the well killing will be safer if the Engineer's Method is used. The result is in agreement with the measures that were adopted on site. Finally, the newly developed calculation model was compared with those which don't take temperature and pressure loss into account, and the effect of choke manifold, annulus pressure loss and temperature inside wellbore on kick tolerance was analyzed. It is shown that the volume kick tolerance will get smaller if the effect of pressure loss and temperature is not taken into account, and the well killing conditions will be more rigorous. In addition, the technical measures to increase kick tolerance were proposed after the influential laws of pit gain and overflow depth on kick tolerance were analyzed.

  19. Regulation of dopamine transporter function by protein-protein interactions: new discoveries and methodological challenges

    DEFF Research Database (Denmark)

    Eriksen, Jacob; Jørgensen, Trine Nygaard; Gether, Ulrik

    2010-01-01

    The dopamine transporter (DAT) plays a key role in regulating dopaminergic signalling in the brain by mediating rapid clearance of dopamine from the synaptic clefts. The psychostimulatory actions of cocaine and amphetamine are primarily the result of a direct interaction of these compounds with DAT...... cells have also recently become available such as fluorescently tagged cocaine analogues and fluorescent substrates. Here we review the current knowledge about the role of protein-protein interactions in DAT regulation as well as we describe the most recent methodological developments that have been...

  20. Hydrogen transport in a toroidal plasma using multigroup discrete-ordinates methodology

    International Nuclear Information System (INIS)

    Wienke, B.R.; Miller, W.F. Jr.; Seed, T.J.

    1979-01-01

    Neutral hydrogen transport in a fully ionized two-dimensional tokamak plasma was examined using discrete ordinates and contrasted with earlier analyses. In particular, curvature effects induced by toroidal geometries and ray effects caused by possible source localization were investigated. From an overview of the multigroup discrete-ordinates approximation, methodology in two-dimensional cylindrical geometry is detailed, mesh and plasma zoning procedures are sketched, and the piecewise polynomial solution algorithm on a triangular domain is obtained. Toroidal effects and comparisons as related to reaction rates and perticle spectra are examined for various model and source configurations

  1. Development and Implementation of Photonuclear Cross-Section Data for Mutually Coupled Neutron-Photon Transport Calculations in the Monte Carlo N-Particle (MCNP) Radiation Transport Code

    International Nuclear Information System (INIS)

    White, Morgan C.

    2000-01-01

    The fundamental motivation for the research presented in this dissertation was the need to development a more accurate prediction method for characterization of mixed radiation fields around medical electron accelerators (MEAs). Specifically, a model is developed for simulation of neutron and other particle production from photonuclear reactions and incorporated in the Monte Carlo N-Particle (MCNP) radiation transport code. This extension of the capability within the MCNP code provides for the more accurate assessment of the mixed radiation fields. The Nuclear Theory and Applications group of the Los Alamos National Laboratory has recently provided first-of-a-kind evaluated photonuclear data for a select group of isotopes. These data provide the reaction probabilities as functions of incident photon energy with angular and energy distribution information for all reaction products. The availability of these data is the cornerstone of the new methodology for state-of-the-art mutually coupled photon-neutron transport simulations. The dissertation includes details of the model development and implementation necessary to use the new photonuclear data within MCNP simulations. A new data format has been developed to include tabular photonuclear data. Data are processed from the Evaluated Nuclear Data Format (ENDF) to the new class ''u'' A Compact ENDF (ACE) format using a standalone processing code. MCNP modifications have been completed to enable Monte Carlo sampling of photonuclear reactions. Note that both neutron and gamma production are included in the present model. The new capability has been subjected to extensive verification and validation (V and V) testing. Verification testing has established the expected basic functionality. Two validation projects were undertaken. First, comparisons were made to benchmark data from literature. These calculations demonstrate the accuracy of the new data and transport routines to better than 25 percent. Second, the ability to

  2. Development and Implementation of Photonuclear Cross-Section Data for Mutually Coupled Neutron-Photon Transport Calculations in the Monte Carlo N-Particle (MCNP) Radiation Transport Code

    Energy Technology Data Exchange (ETDEWEB)

    White, Morgan C. [Univ. of Florida, Gainesville, FL (United States)

    2000-07-01

    The fundamental motivation for the research presented in this dissertation was the need to development a more accurate prediction method for characterization of mixed radiation fields around medical electron accelerators (MEAs). Specifically, a model is developed for simulation of neutron and other particle production from photonuclear reactions and incorporated in the Monte Carlo N-Particle (MCNP) radiation transport code. This extension of the capability within the MCNP code provides for the more accurate assessment of the mixed radiation fields. The Nuclear Theory and Applications group of the Los Alamos National Laboratory has recently provided first-of-a-kind evaluated photonuclear data for a select group of isotopes. These data provide the reaction probabilities as functions of incident photon energy with angular and energy distribution information for all reaction products. The availability of these data is the cornerstone of the new methodology for state-of-the-art mutually coupled photon-neutron transport simulations. The dissertation includes details of the model development and implementation necessary to use the new photonuclear data within MCNP simulations. A new data format has been developed to include tabular photonuclear data. Data are processed from the Evaluated Nuclear Data Format (ENDF) to the new class ''u'' A Compact ENDF (ACE) format using a standalone processing code. MCNP modifications have been completed to enable Monte Carlo sampling of photonuclear reactions. Note that both neutron and gamma production are included in the present model. The new capability has been subjected to extensive verification and validation (V&V) testing. Verification testing has established the expected basic functionality. Two validation projects were undertaken. First, comparisons were made to benchmark data from literature. These calculations demonstrate the accuracy of the new data and transport routines to better than 25 percent. Second

  3. High performance shape annealing matrix (HPSAM) methodology for core protection calculators

    International Nuclear Information System (INIS)

    Cha, K. H.; Kim, Y. H.; Lee, K. H.

    1999-01-01

    In CPC(Core Protection Calculator) of CE-type nuclear power plants, the core axial power distribution is calculated to evaluate the safety-related parameters. The accuracy of the CPC axial power distribution highly depends on the quality of the so called shape annealing matrix(SAM). Currently, SAM is determined by using data measured during startup test and used throughout the entire cycle. An issue concerned with SAM is that it is fairly sensitive to measurements and thus the fidelity of SAM is not guaranteed for all cycles. In this paper, a novel method to determine a high-performance SAM (HPSAM) is proposed, where both measured and simulated data are used in determining SAM

  4. Involving Freight Transport Actors in Production of Knowledge - Experience with Future Workshop Methodology

    DEFF Research Database (Denmark)

    Jespersen, Per Homann; Drewes, Lise

    2005-01-01

    . The validation of the research is taken ex post when the results are presented in reports for discussions in public. The effect of the research on practice is seldom evaluated. The research presented in this paper has a quite different aim. Taking our inspiration from modern action research, we have......The freight transport sector plays a major role in the process of globalisation and accounts for a large and increasing share of the economy and workforce. This growth in turn results in a range of societal problems – externally as environmental and health problems, internally as a number...... of congestion problems. In spite of this, freight transport has been somewhat neglected in qualitative oriented social sciences such as sociology and socio-economy, and thus a lack of analytical understanding as well as problem solving competences prevail. This chapter presents a methodology where...

  5. Methodology to Calculate the ACE and HPQ Metrics Used in the Wave Energy Prize

    Energy Technology Data Exchange (ETDEWEB)

    Driscoll, Frederick R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Weber, Jochem W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jenne, Dale S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Thresher, Robert W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Fingersh, Lee J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bull, Dianna [Sandia National Laboratories; Dallman, Ann [Sandia National Laboratories; Gunawan, Budi [Sandia National Laboratories; Ruehl, Kelley [Sandia National Laboratories; Newborn, David [Naval Surface Warfare Center, Carderock Division; Quintero, Miguel [Naval Surface Warfare Center, Carderock Division; LaBonte, Alison [U.S. Department of Energy; Karwat, Darshan [U.S. Department of Energy; Beatty, Scott [Cascadia Coast Research Ltd.

    2018-03-08

    The U.S. Department of Energy's Wave Energy Prize Competition encouraged the development of innovative deep-water wave energy conversion technologies that at least doubled device performance above the 2014 state of the art. Because levelized cost of energy (LCOE) metrics are challenging to apply equitably to new technologies where significant uncertainty exists in design and operation, the prize technical team developed a reduced metric as proxy for LCOE, which provides an equitable comparison of low technology readiness level wave energy converter (WEC) concepts. The metric is called 'ACE' which is short for the ratio of the average climate capture width to the characteristic capital expenditure. The methodology and application of the ACE metric used to evaluate the performance of the technologies that competed in the Wave Energy Prize are explained in this report.

  6. The effect of gamma-ray transport on afterheat calculations for accident analysis

    Energy Technology Data Exchange (ETDEWEB)

    Reyes, S.; Latkowski, J.F.; Sanz, J.

    2000-05-01

    Radioactive afterheat is an important source term for the release of radionuclides in fusion systems under accident conditions. Heat transfer calculations are used to determine time-temperature histories in regions of interest, but the true source term needs to be the effective afterheat, which considers the transport of penetrating gamma rays. Without consideration of photon transport, accident temperatures may be overestimated in others. The importance of this effect is demonstrated for a simple, one-dimensional problem. The significance of this effect depends strongly on the accident scenario being analyzed.

  7. The effect of gamma-ray transport on afterheat calculations for accident analysis

    International Nuclear Information System (INIS)

    Reyes, S.; Latkowski, J.F.; Sanz, J.

    2000-01-01

    Radioactive afterheat is an important source term for the release of radionuclides in fusion systems under accident conditions. Heat transfer calculations are used to determine time-temperature histories in regions of interest, but the true source term needs to be the effective afterheat, which considers the transport of penetrating gamma rays. Without consideration of photon transport, accident temperatures may be overestimated in others. The importance of this effect is demonstrated for a simple, one-dimensional problem. The significance of this effect depends strongly on the accident scenario being analyzed

  8. Application of the API/NPRA SVA methodology to transportation security issues.

    Science.gov (United States)

    Moore, David A

    2006-03-17

    Security vulnerability analysis (SVA) is becoming more prevalent as the issue of chemical process security is of greater concern. The American Petroleum Institute (API) and the National Petrochemical and Refiner's Association (NPRA) have developed a guideline for conducting SVAs of petroleum and petrochemical facilities in May 2003. In 2004, the same organizations enhanced the guidelines by adding the ability to evaluate transportation security risks (pipeline, truck, and rail). The importance of including transportation and value chain security in addition to fixed facility security in a SVA is that these issues may be critically important to understanding the total risk of the operation. Most of the SVAs done using the API/NPRA SVA and other SVA methods were centered on the fixed facility and the operations within the plant fence. Transportation interfaces alone are normally studied as a part of the facility SVA, and the entire transportation route impacts and value chain disruption are not commonly considered. Particularly from a national, regional, or local infrastructure analysis standpoint, understanding the interdependencies is critical to the risk assessment. Transportation risks may include weaponization of the asset by direct attack en route, sabotage, or a Trojan Horse style attack into a facility. The risks differ in the level of access control and the degree of public exposures, as well as the dynamic nature of the assets. The public exposures along the transportation route need to be carefully considered. Risks may be mitigated by one of many strategies including internment, staging, prioritization, conscription, or prohibition, as well as by administrative security measures and technology for monitoring and isolating the assets. This paper illustrates how these risks can be analyzed by the API/NPRA SVA methodology. Examples are given of a pipeline operation, and other examples are found in the guidelines.

  9. Methodology for Determination of the Upper Safety Limit for Criticality Calculations for Criticality Safety Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R.H.; Keener, H.J.; DeClue, J.F.; Krass, A.W.

    2001-04-01

    This report considers the methods for determination of an upper safety limit, and incorporating uncertainty and margin into the safety limit, provides comparisons, and recommends a preferred method for determining the Upper Safety Limit (USL). A USL is developed for CSAS25 from SCALE4.4a. The USL is applicable for the CSAS25 control module from the SCALE 4.4a computer code system for use in evaluating nuclear criticality safety of enriched uranium systems. The benchmark calculation results used for this report are documented in Y/DD-896. The statistical evaluation is documented in CCG-380. The 27-group ENDF/B-IV, 44-group ENDF/B-V, and 238-group ENDF/B-V cross-section libraries were used. Numerical methods for applying margins are described, but the determination of appropriate correlating parameters and values for additional margin, applicable to a particular analysis, must be determined as part of a process analysis. As such, this document does not specify final upper subcritical limits as has been done in the past. No correlation between calculation results and neutron energy causing fission was found for the critical experiment results. Analysts using these results are responsible for exercising sound engineering judgment using strong technical arguments to develop ''a margin in k{sub eff} or other correlating parameter that is sufficiently large to ensure that conditions (calculated by this method to be subcritical by this margin) will actually be subcritical.'' Documentation of area of applicability and determination and justification of the appropriate margin in the analyst's evaluation, in conjunction with this report, will constitute the complete Validation Report in accordance with ANSI/ANS-8.1-1998, Section 4.3.6(4).

  10. Critical analysis of prostate-specific antigen doubling time calculation methodology.

    Science.gov (United States)

    Svatek, Robert S; Shulman, Michael; Choudhary, Pankaj K; Benaim, Elie

    2006-03-01

    Prostate-specific antigen (PSA) doubling time (PSADT) has emerged as an important surrogate marker of disease progression and survival in men with prostate carcinoma. The literature is replete with different methods for calculating PSADT. The objective of the current study was to identify the method that best described PSA growth over time and predicted disease-specific survival in men with androgen-independent prostate carcinoma. PSADT was calculated for 122 patients with androgen-independent prostate carcinoma using 2 commonly used methods: best-line fit (BLF) and first and last observations (FLO). Then, PSADT was calculated by using both a random coefficient linear (RCL) model and a random coefficient quadratic (RCQ) model. Statistical analysis was used to compare the ability of the methods to fit the patients' PSA profiles and to predict disease-specific survival. The RCQ model provided the best fit of the patients' PSA profiles, as determined according to the significance of the added parameters for the RCQ equation (P method, the RCL model, and the RCQ model were highly significant predictors (P method were not found to be significant predictors (P = 0.66). PSADT estimates from the RCQ and RCL models provided an improved correlation of disease-specific survival (both R(2) = 0.55) compared to the FLO (R(2) = 0.11) and BFL (R(2) = 0.003) methods. Random coefficient methods provided a more reliable fit of PSA profiles than other models and were superior to other available models for predicting disease-specific survival in patients with androgen-independent prostate carcinoma. The authors concluded that consideration should be given to applying the RCL or RCQ models in future assessments of PSADT as a predictive parameter.

  11. Calculation of the electrostatic potential of lipid bilayers from molecular dynamics simulations: methodological issues

    DEFF Research Database (Denmark)

    Gurtovenko, Andrey A; Vattulainen, Ilpo

    2009-01-01

    of the electrostatic potential from atomic-scale molecular dynamics simulations of lipid bilayers. We discuss two slightly different forms of Poisson equation that are normally used to calculate the membrane potential: (i) a classical form when the potential and the electric field are chosen to be zero on one......, for asymmetric lipid bilayers, the second approach is no longer appropriate due to a nonzero net dipole moment across a simulation box with a single asymmetric bilayer. We demonstrate that in this case the electrostatic potential can adequately be described by the classical form of Poisson equation, provided...

  12. A source term and risk calculations using level 2+PSA methodology

    International Nuclear Information System (INIS)

    Park, S. I.; Jea, M. S.; Jeon, K. D.

    2002-01-01

    The scope of Level 2+ PSA includes the assessment of dose risk which is associated with the exposures of the radioactive nuclides escaping from nuclear power plants during severe accidents. The establishment of data base for the exposure dose in Korea nuclear power plants may contribute to preparing the accident management programs and periodic safety reviews. In this study the ORIGEN, MELCOR and MACCS code were employed to produce a integrated framework to assess the radiation source term risk. The framework was applied to a reference plant. Using IPE results, the dose rate for the reference plant was calculated quantitatively

  13. Spectral nodal methodology for multigroup slab-geometry discrete ordinates neutron transport problems with linearly anisotropic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Oliva, Amaury M.; Filho, Hermes A.; Silva, Davi M.; Garcia, Carlos R., E-mail: aoliva@iprj.uerj.br, E-mail: halves@iprj.uerj.br, E-mail: davijmsilva@yahoo.com.br, E-mail: cgh@instec.cu [Universidade do Estado do Rio de Janeiro (UERJ), Nova Friburgo, RJ (Brazil). Instituto Politecnico. Departamento de Modelagem Computacional; Instituto Superior de Tecnologias y Ciencias Aplicadas (InSTEC), La Habana (Cuba)

    2017-07-01

    In this paper, we propose a numerical methodology for the development of a method of the spectral nodal class that will generate numerical solutions free from spatial truncation errors. This method, denominated Spectral Deterministic Method (SDM), is tested as an initial study of the solutions (spectral analysis) of neutron transport equations in the discrete ordinates (S{sub N}) formulation, in one-dimensional slab geometry, multigroup approximation, with linearly anisotropic scattering, considering homogeneous and heterogeneous domains with fixed source. The unknowns in the methodology are the cell-edge, and cell average angular fluxes, the numerical values calculated for these quantities coincide with the analytic solution of the equations. These numerical results are shown and compared with the traditional ne- mesh method Diamond Difference (DD) and the coarse-mesh method spectral Green's function (SGF) to illustrate the method's accuracy and stability. The solution algorithms problems are implemented in a computer simulator made in C++ language, the same that was used to generate the results of the reference work. (author)

  14. Methodology for calculating the volume of condensate droplets on topographically modified, microgrooved surfaces.

    Science.gov (United States)

    Sommers, A D

    2011-05-03

    Liquid droplets on micropatterned surfaces consisting of parallel grooves tens of micrometers in width and depth are considered, and a method for calculating the droplet volume on these surfaces is presented. This model, which utilizes the elongated and parallel-sided nature of droplets condensed on these microgrooved surfaces, requires inputs from two droplet images at ϕ = 0° and ϕ = 90°--namely, the droplet major axis, minor axis, height, and two contact angles. In this method, a circular cross-sectional area is extruded the length of the droplet where the chord of the extruded circle is fixed by the width of the droplet. The maximum apparent contact angle is assumed to occur along the side of the droplet because of the surface energy barrier to wetting imposed by the grooves--a behavior that was observed experimentally. When applied to water droplets condensed onto a microgrooved aluminum surface, this method was shown to calculate the actual droplet volume to within 10% for 88% of the droplets analyzed. This method is useful for estimating the volume of retained droplets on topographically modified, anisotropic surfaces where both heat and mass transfer occur and the surface microchannels are aligned parallel to gravity to assist in condensate drainage.

  15. A methodology for calculating the levelized cost of electricity in nuclear power systems with fuel recycling

    International Nuclear Information System (INIS)

    De Roo, Guillaume; Parsons, John E.

    2011-01-01

    In this paper we show how the traditional definition of the levelized cost of electricity (LCOE) can be extended to alternative nuclear fuel cycles in which elements of the fuel are recycled. In particular, we define the LCOE for a cycle with full actinide recycling in fast reactors in which elements of the fuel are reused an indefinite number of times. To our knowledge, ours is the first LCOE formula for this cycle. Others have approached the task of evaluating this cycle using an 'equilibrium cost' concept that is different from a levelized cost. We also show how the LCOE implies a unique price for the recycled elements. This price reflects the ultimate cost of waste disposal postponed through the recycling, as well as other costs in the cycle. We demonstrate the methodology by estimating the LCOE for three classic nuclear fuel cycles: (i) the traditional Once-Through Cycle, (ii) a Twice-Through Cycle, and (iii) a Fast Reactor Recycle. Given our chosen input parameters, we show that the 'equilibrium cost' is typically larger than the levelized cost, and we explain why.

  16. Exorcising Ghost Transmission from Electron Transport Calculations: Refighting Old Battles in New Contexts

    Science.gov (United States)

    Reuter, Matthew; Harrison, Robert

    2014-03-01

    First-principles calculations of electron transport aim to understand the dynamics of electrons as they traverse quantum mechanical systems. For instance, how does electric current travel through a molecule? Despite their successes over the years, these calculations are known to be haunted by several numerical artifacts. Ghost transmission is among the most serious of these unphysical results, causing transmission coefficients to show an extreme dependence on the basis set and to be many orders of magnitude too large. In this talk, we discuss electron transport formalisms, uncover the cause of ghost transmission, develop exorcism strategies, and present several numerical examples. In the end, ghost transmission is a ramification of poorly chosen spatial partitions. Instead of choosing partitions with the basis set (in a manner reminiscent of Mulliken or Löwdin population analyses), the relevant projection operators must be selected without referencing the basis set.

  17. Indices of soil contamination by heavy metals - methodology of calculation for pollution assessment (minireview).

    Science.gov (United States)

    Weissmannová, Helena Doležalová; Pavlovský, Jiří

    2017-11-07

    This article provides the assessment of heavy metal soil pollution with using the calculation of various pollution indices and contains also summarization of the sources of heavy metal soil pollution. Twenty described indices of the assessment of soil pollution consist of two groups: single indices and total complex indices of pollution or contamination with relevant classes of pollution. This minireview provides also the classification of pollution indices in terms of the complex assessment of soil quality. In addition, based on the comparison of metal concentrations in soil-selected sites of the world and used indices of pollution or contamination in soils, the concentration of heavy metal in contaminated soils varied widely, and pollution indices confirmed the significant contribution of soil pollution from anthropogenic activities mainly in urban and industrial areas.

  18. Krylov subspace method for evaluating the self-energy matrices in electron transport calculations

    DEFF Research Database (Denmark)

    Sørensen, Hans Henrik Brandenborg; Hansen, Per Christian; Petersen, D. E.

    2008-01-01

    We present a Krylov subspace method for evaluating the self-energy matrices used in the Green's function formulation of electron transport in nanoscale devices. A procedure based on the Arnoldi method is employed to obtain solutions of the quadratic eigenvalue problem associated with the infinite...... calculations. Numerical tests within a density functional theory framework are provided to validate the accuracy and robustness of the proposed method, which in most cases is an order of magnitude faster than conventional methods....

  19. Simplified calculation method for radiation dose under normal condition of transport

    International Nuclear Information System (INIS)

    Watabe, N.; Ozaki, S.; Sato, K.; Sugahara, A.

    1993-01-01

    In order to estimate radiation dose during transportation of radioactive materials, the following computer codes are available: RADTRAN, INTERTRAN, J-TRAN. Because these codes consist of functions for estimating doses not only under normal conditions but also in the case of accidents, when nuclei may leak and spread into the environment by air diffusion, the user needs to have special knowledge and experience. In this presentation, we describe how, with a view to preparing a method by which a person in charge of transportation can calculate doses in normal conditions, the main parameters upon which the value of doses depends were extracted and the dose for a unit of transportation was estimated. (J.P.N.)

  20. Standardization of the methodology used for fuel pressure drop evaluation to improve hydraulic calculation of heterogeneous cores

    International Nuclear Information System (INIS)

    Le Borgne, E.; Mattei, A.; Rome, M.; Rodriguez, J.M.

    2004-01-01

    The determination of hydraulic characteristics for fuel subassembly components is dependent on the hypotheses and the methodology considered. The results of hydraulic compatibility calculations using input data from different sources may thus be difficult to analyse, and their reliability will consequently be reduced. Electricite de France (EDF) and Commissariat a l'Energie Atomique (CEA) have initiated a common program aiming at controlling the consequences of such a situation, increasing the reliability of the values used in the hydraulic compatibility calculations, and proposing a standardization of the operating procedures. In a first step, this program is based on the measurements performed in the CEA HERMES P facility. Extension of this program is expected to the equivalent experimental facilities for which sufficient information will be made available. (author)

  1. Ab initio calculation of transport properties between PbSe quantum dots facets with iodide ligands

    Science.gov (United States)

    Wang, B.; Patterson, R.; Chen, W.; Zhang, Z.; Yang, J.; Huang, S.; Shrestha, S.; Conibeer, G.

    2018-01-01

    The transport properties between Lead Selenide (PbSe) quantum dots decorated with iodide ligands has been studied using density functional theory (DFT). Quantum conductance at each selected energy levels has been calculated along with total density of states and projected density of states. The DFT calculation is carried on using a grid-based planar augmented wave (GPAW) code incorporated with the linear combination of atomic orbital (LCAO) mode and Perdew Burke Ernzerhof (PBE) exchange-correlation functional. Three iodide ligand attached low index facets including (001), (011), (111) are investigated in this work. P-orbital of iodide ligand majorly contributes to density of state (DOS) at near top valence band resulting a significant quantum conductance, whereas DOS of Pb p-orbital shows minor influence. Various values of quantum conductance observed along different planes are possibly reasoned from a combined effect electrical field over topmost surface and total distance between adjacent facets. Ligands attached to (001) and (011) planes possess similar bond length whereas it is significantly shortened in (111) plane, whereas transport between (011) has an overall low value due to newly formed electric field. On the other hand, (111) plane with a net surface dipole perpendicular to surface layers leading to stronger electron coupling suggests an apparent increase of transport probability. Apart from previously mentioned, the maximum transport energy levels located several eVs (1 2 eVs) from the edge of valence band top.

  2. Methodologies for Removing/Desorbing and Transporting Particles from Surfaces to Instrumentation

    Science.gov (United States)

    Miller, Carla J.; Cespedes, Ernesto R.

    2012-12-01

    Explosive trace detection (ETD) continues to be a key technology supporting the fight against terrorist bombing threats. Very selective and sensitive ETD instruments have been developed to detect explosive threats concealed on personnel, in vehicles, in luggage, and in cargo containers, as well as for forensic analysis (e.g. post blast inspection, bomb-maker identification, etc.) in a broad range of homeland security, law enforcement, and military applications. A number of recent studies have highlighted the fact that significant improvements in ETD systems' capabilities will be achieved, not by increasing the selectivity/sensitivity of the sensors, but by improved techniques for particle/vapor sampling, pre-concentration, and transport to the sensors. This review article represents a compilation of studies focused on characterizing the adhesive properties of explosive particles, the methodologies for removing/desorbing these particles from a range of surfaces, and approaches for transporting them to the instrument. The objectives of this review are to summarize fundamental work in explosive particle characterization, to describe experimental work performed in harvesting and transport of these particles, and to highlight those approaches that indicate high potential for improving ETD capabilities.

  3. H2POWER: Development of a methodology to calculate life cycle cost of small and medium-scale hydrogen systems

    International Nuclear Information System (INIS)

    Verduzco, Laura E.; Duffey, Michael R.; Deason, Jonathan P.

    2007-01-01

    At this time, hydrogen-based power plants and large hydrogen production facilities are capital intensive and unable to compete financially against hydrocarbon-based energy production facilities. An option to overcome this problem and foster the introduction of hydrogen technology is to introduce small and medium-scale applications such as residential and community hydrogen refueling units. Such units could potentially be used to generate both electricity and heat for the home, as well as hydrogen fuel for the automobile. Cost modeling for the integration of these three forms of energy presents several methodological challenges. This is particularly true since the technology is still in the development phase and both the financial and the environmental cost must be calculated using mainly secondary sources. In order to address these issues and aid in the design of small and medium-scale hydrogen systems, this study presents a computer model to calculate financial and environmental costs of this technology using different hydrogen pathways. The model can design and compare hydrogen refueling units against hydrocarbon-based technologies, including the 'gap' between financial and economic costs. Using the methodology, various penalties and incentives that can foster the introduction of hydrogen-based technologies can be added to the analysis to study their impact on financial cost

  4. Development and Validation of a Methodology to Reduce Mortality Using the Veterans Affairs Surgical Quality Improvement Program Risk Calculator.

    Science.gov (United States)

    Keller, Deborah S; Kroll, Donald; Papaconstantinou, Harry T; Ellis, C Neal

    2017-04-01

    To identify patients with a high risk of 30-day mortality after elective surgery, who may benefit from referral for tertiary care, an institution-specific process using the Veterans Affairs Surgical Quality Improvement Program (VASQIP) Risk Calculator was developed. The goal was to develop and validate the methodology. Our hypothesis was that the process could optimize referrals and reduce mortality. A VASQIP risk score was calculated for all patients undergoing elective noncardiac surgery at a single Veterans Affairs (VA) facility. After statistical analysis, a VASQIP risk score of 3.3% predicted mortality was selected as the institutional threshold for referral to a tertiary care center. The model predicted that 16% of patients would require referral, and 30-day mortality would be reduced by 73% at the referring institution. The main outcomes measures were the actual vs predicted referrals and mortality rates at the referring and receiving facilities. The validation included 565 patients; 90 (16%) had VASQIP risk scores greater than 3.3% and were identified for referral; 60 consented. In these patients, there were 16 (27%) predicted mortalities, but only 4 actual deaths (p = 0.007) at the receiving institution. When referral was not indicated, the model predicted 4 mortalities (1%), but no actual deaths (p = 0.1241). These data validate this methodology to identify patients for referral to a higher level of care, reducing mortality at the referring institutions and significantly improving patient outcomes. This methodology can help guide decisions on referrals and optimize patient care. Further application and studies are warranted. Copyright © 2017 American College of Surgeons. All rights reserved.

  5. PROSPECTS FOR TRANSPORT ENERGY CONSUMPTION: METHODOLOGICAL APPROACHES AND RESULTS OF FORECASTING

    Directory of Open Access Journals (Sweden)

    Eder L.V.

    2016-03-01

    specific energy consumption for both developed and developing countries for which there is a limited number of historical data. In order to improve the quality of forecasting specific number of vehicles, the authors of this article proposed to introduce additional parameters into the model, which would take into account differences in the countries of climatic, socio-economic, institutional conditions. As a result, it was identified five of the most significant factors affecting theratio of vehicles to population on basis of econometric analysis. The proposed methodological approach to determining the specific energy consumption of vehicle road transport and proposals for improving the methods of forecasting the number of vehicles it possible to predict energy demand of the transport sector in the long term.

  6. Prospects for transport energy consumption: methodological approaches and results of forecasting companies.

    Directory of Open Access Journals (Sweden)

    Nemov V. Yu.

    2016-03-01

    specific energy consumption for both developed and developing countries for which there is a limited number of historical data. In order to improve the quality of forecasting specific number of vehicles, the authors of this article proposed to introduce additional parameters into the model, which would take into account differences in the countries of climatic, socio-economic, institutional conditions. As a result, it was identified five of the most significant factors affecting theratio of vehicles to population on basis of econometric analysis. The proposed methodological approach to determining the specific energy consumption of vehicle road transport and proposals for improving the methods of forecasting the number of vehicles it possible to predict energy demand of the transport sector in the long term.

  7. Calculation of the coherent transport properties of a symmetric spin nanocontact

    International Nuclear Information System (INIS)

    Bourahla, B.; Khater, A.; Tigrine, R.

    2009-01-01

    A theoretical study is presented for the coherent transport properties of a magnetic nanocontact. In particular, we study a symmetric nanocontact between two identical waveguides composed of semi-infinite spin ordered ferromagnetic chains. The coherent transmission and reflection scattering cross sections via the nanocontact, for spin waves incident from the bulk waveguide, are calculated with the use of the matching method. The inter-atomic magnetic exchange on the nanocontact is allowed to vary to investigate the consequences of magnetic softening and hardening for the calculated spectra. Transmission spectra underline the filtering properties of the nanocontact. The localized spin density of states in the nanocontact domain is also calculated, and analyzed. The results yield an understanding of the relationship between coherent conductance and the structural configuration of the nanocontact.

  8. Application of an efficient materials perturbation technique to Monte Carlo photon transport calculations in borehole logging

    International Nuclear Information System (INIS)

    Picton, D.J.; Harris, R.G.; Randle, K.; Weaver, D.R.

    1995-01-01

    This paper describes a simple, accurate and efficient technique for the calculation of materials perturbation effects in Monte Carlo photon transport calculations. It is particularly suited to the application for which it was developed, namely the modelling of a dual detector density tool as used in borehole logging. However, the method would be appropriate to any photon transport calculation in the energy range 0.1 to 2 MeV, in which the predominant processes are Compton scattering and photoelectric absorption. The method enables a single set of particle histories to provide results for an array of configurations in which material densities or compositions vary. It can calculate the effects of small perturbations very accurately, but is by no means restricted to such cases. For the borehole logging application described here the method has been found to be efficient for a moderate range of variation in the bulk density (of the order of ±30% from a reference value) or even larger changes to a limited portion of the system (e.g. a low density mudcake of the order of a few tens of mm in thickness). The effective speed enhancement over an equivalent set of individual calculations is in the region of an order of magnitude or more. Examples of calculations on a dual detector density tool are given. It is demonstrated that the method predicts, to a high degree of accuracy, the variation of detector count rates with formation density, and that good results are also obtained for the effects of mudcake layers. An interesting feature of the results is that relative count rates (the ratios of count rates obtained with different configurations) can usually be determined more accurately than the absolute values of the count rates. (orig.)

  9. GUIDE TO CALCULATING TRANSPORT EFFICIENCY OF AEROSOLS IN OCCUPATIONAL AIR SAMPLING SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Hogue, M.; Hadlock, D.; Thompson, M.; Farfan, E.

    2013-11-12

    This report will present hand calculations for transport efficiency based on aspiration efficiency and particle deposition losses. Because the hand calculations become long and tedious, especially for lognormal distributions of aerosols, an R script (R 2011) will be provided for each element examined. Calculations are provided for the most common elements in a remote air sampling system, including a thin-walled probe in ambient air, straight tubing, bends and a sample housing. One popular alternative approach would be to put such calculations in a spreadsheet, a thorough version of which is shared by Paul Baron via the Aerocalc spreadsheet (Baron 2012). To provide greater transparency and to avoid common spreadsheet vulnerabilities to errors (Burns 2012), this report uses R. The particle size is based on the concept of activity median aerodynamic diameter (AMAD). The AMAD is a particle size in an aerosol where fifty percent of the activity in the aerosol is associated with particles of aerodynamic diameter greater than the AMAD. This concept allows for the simplification of transport efficiency calculations where all particles are treated as spheres with the density of water (1g cm-3). In reality, particle densities depend on the actual material involved. Particle geometries can be very complicated. Dynamic shape factors are provided by Hinds (Hinds 1999). Some example factors are: 1.00 for a sphere, 1.08 for a cube, 1.68 for a long cylinder (10 times as long as it is wide), 1.05 to 1.11 for bituminous coal, 1.57 for sand and 1.88 for talc. Revision 1 is made to correct an error in the original version of this report. The particle distributions are based on activity weighting of particles rather than based on the number of particles of each size. Therefore, the mass correction made in the original version is removed from the text and the calculations. Results affected by the change are updated.

  10. Development of a transportable neutron activation analysis system to quantify manganese in bone in vivo: feasibility and methodology.

    Science.gov (United States)

    Liu, Yingzi; Koltick, David; Byrne, Patrick; Wang, Haoyu; Zheng, Wei; Nie, Linda H

    2013-12-01

    This study was conducted to investigate the methodology and feasibility of developing a transportable neutron activation analysis (NAA) system to quantify manganese (Mn) in bone using a portable deuterium-deuterium (DD) neutron generator as the neutron source. Since a DD neutron generator was not available in our laboratory, a deuterium-tritium (DT) neutron generator was used to obtain experimental data and validate the results from Monte Carlo (MC) simulations. After validation, MC simulations using a DD generator as the neutron source were then conducted. Different types of moderators and reflectors were simulated, and the optimal thicknesses for the moderator and reflector were determined. To estimate the detection limit (DL) of the system, and to observe the interference of the magnesium (Mg) γ line at 844 keV to the Mn γ line at 847 keV, three hand phantoms with Mn concentrations of 30 parts per million (ppm), 150 ppm, and 500 ppm were made and irradiated by the DT generator system. The Mn signals in these phantoms were then measured using a 50% high-efficiency high-purity germanium (HPGe) detector. The DL was calculated to be about 4.4 ppm for the chosen irradiation, decay, and measurement time. This was calculated to be equivalent to a DL of about 3.3 ppm for the DD generator system. To achieve this DL with one 50% high-efficiency HPGe detector, the dose to the hand was simulated to be about 37 mSv, with the total body equivalent dose being about 23µSv. In conclusion, it is feasible to develop a transportable NAA system to quantify Mn in bone in vivo with an acceptable radiation exposure to the subject.

  11. Environmental impact assessment methodological framework for liquefied natural gas terminal and transport network planning

    International Nuclear Information System (INIS)

    Papadopoulou, Maria P.; Antoniou, Constantinos

    2014-01-01

    The recent discovery of significant offshore natural gas reserves in the Aphrodite field, south of the island of Cyprus in the Mediterranean Sea, changes the energy landscape in the greater Mediterranean-Middle East-Caucasian Region. In this paper, different alternative locations for the construction and operation of a liquefied natural gas (LNG) terminal station in Cyprus were evaluated, explicitly considering also their connection to the power generation station of Mari and the country's gateway. The problem of determining the optimal location for an LNG terminal in Cyprus has been approached using multiple methodological components, which consider environmental and transportation issues, both technocratic in nature, as well as more subjective and based on expert opinion. The first step was a REGIME multi-criteria decision analysis used to prioritize alternative LNG terminal locations. Then, multiple modes (railroad and pipeline) of transportation connections were evaluated and geometric alignments were proposed, considering a multitude of restrictions. Finally an environmental impact assessment based on a structured questionnaire and an expert panel was conducted to validate and assess the impact of the alternative options (combination of location and transportation mode and route). During the evaluation process parameters such as safety, existing infrastructure, and access were also considered. - Highlights: • Determined the optimal location for an LNG terminal in Cyprus. • REGIME multi-criteria analysis used to prioritize alternative LNG terminal locations. • Multiple modes of transportation connections were evaluated and geometric alignments were proposed. • Environmental impact assessment and validation was undertaken based on a structured questionnaire and an expert panel. • Parameters such as safety, existing infrastructure, and access were also considered

  12. Analysis and evaluation of critical experiments for validation of neutron transport calculations

    International Nuclear Information System (INIS)

    Bazzana, S.; Blaumann, H; Marquez Damian, J.I

    2009-01-01

    The calculation schemes, computational codes and nuclear data used in neutronic design require validation to obtain reliable results. In the nuclear criticality safety field this reliability also translates into a higher level of safety in procedures involving fissile material. The International Criticality Safety Benchmark Evaluation Project is an OECD/NEA activity led by the United States, in which participants from over 20 countries evaluate and publish criticality safety benchmarks. The product of this project is a set of benchmark experiment evaluations that are published annually in the International Handbook of Evaluated Criticality Safety Benchmark Experiments. With the recent participation of Argentina, this information is now available for use by the neutron calculation and criticality safety groups in Argentina. This work presents the methodology used for the evaluation of experimental data, some results obtained by the application of these methods, and some examples of the data available in the Handbook. [es

  13. Methodology for in situ gas sampling, transport and laboratory analysis of gases from stranded cetaceans.

    Science.gov (United States)

    Bernaldo de Quirós, Yara; González-Díaz, Oscar; Saavedra, Pedro; Arbelo, Manuel; Sierra, Eva; Sacchini, Simona; Jepson, Paul D; Mazzariol, Sandro; Di Guardo, Giovanni; Fernández, Antonio

    2011-01-01

    Gas-bubble lesions were described in cetaceans stranded in spatio-temporal concordance with naval exercises using high-powered sonars. A behaviourally induced decompression sickness-like disease was proposed as a plausible causal mechanism, although these findings remain scientifically controversial. Investigations into the constituents of the gas bubbles in suspected gas embolism cases are highly desirable. We have found that vacuum tubes, insulin syringes and an aspirometer are reliable tools for in situ gas sampling, storage and transportation without appreciable loss of gas and without compromising the accuracy of the analysis. Gas analysis is conducted by gas chromatography in the laboratory. This methodology was successfully applied to a mass stranding of sperm whales, to a beaked whale stranded in spatial and temporal association with military exercises and to a cetacean chronic gas embolism case. Results from the freshest animals confirmed that bubbles were relatively free of gases associated with putrefaction and consisted predominantly of nitrogen.

  14. Time-dependent Flow and Transport Calculations for Project Opalinus Clay (Entsorgungsnachweis)

    International Nuclear Information System (INIS)

    Kosakowski, G.

    2004-07-01

    This report describes two specific assessment cases used in the safety assessment for a proposed deep geological repository for spent fuel, high level waste and long-lived intermediate-level waste, sited in the Opalinus Clay of the Zuercher Weinland in northern Switzerland (Project Entsorgungsnachweis, NAG RA, 2002d). In this study the influence of time dependent flow processes on the radionuclide transport in the geosphere is investigated. In the Opalinus Clay diffusion dominates the transport of radionuclides, but processes exist that can locally increase the importance of the advective transport for some time. Two important cases were investigated: (1) glaciation-induced flow due to an additional overburden in the form of an ice shield of up to 400 m thickness and (2) fluid flow driven by tunnel convergence. For the calculations the code FRAC3DVS (Therrien and Sudicky, 1996) was used. FRAC3DVS solves the three-dimensional flow and transport equation in porous and fractured media. For the case of glaciation-induced flow (1) a two-dimensional reference model without glaciations was calculated. During the glaciations the geosphere release-rates are up to a factor of about 1.7 higher compared to the reference model. The influence of glaciations on the transport of cations or neutral species is less than for anions, since the importance of the advective transport for anions is higher due to the lower accessible porosity for anions. The increase in the release rates during glaciations is lower for sorbing compared to non-sorbing radionuclides. The influence of the tunnel convergence (2) on the transport of radionuclides in the geosphere is very small. Due to the higher source term the geosphere release rates are slightly higher if tunnel convergence is considered. In addition to the two assessment cases this report investigates the applicability of the one-dimensional approximation for modelling transport through the Opalinus Clay. For the reference case of the safety

  15. Considerations of beta and electron transport in internal dose calculations. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Bolch, W.E.

    1994-11-01

    The goal of this particular task is to consider, for the first time, the explicit transport of beta particles and photon-generated electrons in the series of six phantoms developed by Cristy and Eckerman (1987) at the Oak Ridge National Laboratory. In their report, ORNL/TM-8381, specific absorbed fractions of energy are reported for phantoms representing the newborn (3.4 kg), the one-year-old (9.8 kg), the five-year-old (19 kg), the ten-year-old (32 kg), the fifteen-year-old/adult female (55-58 kg), and the adult male (70 kg). Radiation transport calculations were performed with the Monte Carlo code ALGAMP which allows photon transport only. In subsequent calculations of radionuclide S values as is done in the MIRDOSE2 computer program, electron absorbed fractions are thus considered to be either unity or zero depending upon whether the source region does or does not equal the target region, respectively.

  16. Critical comparison of electrode models in density functional theory based quantum transport calculations.

    Science.gov (United States)

    Jacob, D; Palacios, J J

    2011-01-28

    We study the performance of two different electrode models in quantum transport calculations based on density functional theory: parametrized Bethe lattices and quasi-one-dimensional wires or nanowires. A detailed account of implementation details in both the cases is given. From the systematic study of nanocontacts made of representative metallic elements, we can conclude that the parametrized electrode models represent an excellent compromise between computational cost and electronic structure definition as long as the aim is to compare with experiments where the precise atomic structure of the electrodes is not relevant or defined with precision. The results obtained using parametrized Bethe lattices are essentially similar to the ones obtained with quasi-one-dimensional electrodes for large enough cross-sections of these, adding a natural smearing to the transmission curves that mimics the true nature of polycrystalline electrodes. The latter are more demanding from the computational point of view, but present the advantage of expanding the range of applicability of transport calculations to situations where the electrodes have a well-defined atomic structure, as is the case for carbon nanotubes, graphene nanoribbons, or semiconducting nanowires. All the analysis is done with the help of codes developed by the authors which can be found in the quantum transport toolbox ALACANT and are publicly available.

  17. Comparative assessment of different approaches for the use of CAD geometry in Monte Carlo transport calculations

    International Nuclear Information System (INIS)

    Weinhorst, Bastian; Fischer, Ulrich; Lu, Lei; Qiu, Yuefeng; Wilson, Paul

    2015-01-01

    Highlights: • Comparison of different approaches for the use of CAD geometry for Monte Carlo transport calculations. • Comparison with regard to user-friendliness and computation performance. • Three approaches, namely conversion with McCad, unstructured mesh feature of MCN6 and DAGMC. • Installation most complex for DAGMC, model preparation worst for McCad, computation performance worst for MCNP6. • Installation easiest for McCad, model preparation best for MCNP6, computation speed fastest for McCad. - Abstract: Computer aided design (CAD) is an important industrial way to produce high quality designs. Therefore, CAD geometries are in general used for engineering and the design of complex facilities like the ITER tokamak. Although Monte Carlo codes like MCNP are well suited to handle the complex 3D geometry of ITER for transport calculations, they rely on their own geometry description and are in general not able to directly use the CAD geometry. In this paper, three different approaches for the use of CAD geometries with MCNP calculations are investigated and assessed with regard to calculation performance and user-friendliness. The first method is the conversion of the CAD geometry into MCNP geometry employing the conversion software McCad developed by KIT. The second approach utilizes the MCNP6 mesh geometry feature for the particle tracking and relies on the conversion of the CAD geometry into a mesh model. The third method employs DAGMC, developed by the University of Wisconsin-Madison, for the direct particle tracking on the CAD geometry using a patched version of MCNP. The obtained results show that each method has its advantages depending on the complexity and size of the model, the calculation problem considered, and the expertise of the user.

  18. Assessment of assembly homogenized two-steps core dynamic calculations using direct whole core transport solutions

    International Nuclear Information System (INIS)

    Hursin, Mathieu; Downar, Thomas J.; Yoon, Joo Il; Joo, Han Gyu

    2016-01-01

    Highlights: • Reactivity initiated accident analysis with direct whole core transient transport code. • Comparison with usual “two steps” procedure. • Effect of effective delayed neutron fraction definition on energy deposition in the fuel. • Effect of homogenized few-group cross sections generation at the assembly level on energy deposition in the fuel. • Effect of effective fuel temperature definition on energy deposition in the fuel. - Abstract: The impact of the approximations in the “two-steps” procedure used in the current generation of nodal simulators for core transient calculations is assessed by using a higher order solution obtained from a direct, whole core, transient transport calculation. A control rod ejection accident in an idealized minicore is analyzed with PARCS, which uses the two-steps procedure and DeCART which provides the higher order solution. DeCART is used as lattice code to provide the homogenized cross sections and kinetics parameters to PARCS. The approximations made by using (1) the homogenized few-group cross sections and kinetic parameters generated at the assembly level, (2) an effective delayed neutrons fraction, (3) an effective fuel temperature and (4) the few-group formulation are investigated in terms of global and local core power behavior. The results presented in the paper show that the current two-steps procedure produces sufficiently accurate transient results with respect to the direct whole core calculation solution, provided that its parameters are carefully generated using the prescriptions described in the present article.

  19. Equilibrium Limit of Boundary Scattering in Carbon Nanostructures: Molecular Dynamics Calculations of Thermal Transport

    Science.gov (United States)

    Haskins, Justin; Kinaci, Alper; Sevik, Cem; Cagin, Tahir

    2012-01-01

    It is widely known that graphene and many of its derivative nanostructures have exceedingly high reported thermal conductivities (up to 4000 W/mK at 300 K). Such attractive thermal properties beg the use of these structures in practical devices; however, to implement these materials while preserving transport quality, the influence of structure on thermal conductivity should be thoroughly understood. For graphene nanostructures, having average phonon mean free paths on the order of one micron, a primary concern is how size influences the potential for heat conduction. To investigate this, we employ a novel technique to evaluate the lattice thermal conductivity from the Green-Kubo relations and equilibrium molecular dynamics in systems where phonon-boundary scattering dominates heat flow. Specifically, the thermal conductivities of graphene nanoribbons and carbon nanotubes are calculated in sizes up to 3 microns, and the relative influence of boundary scattering on thermal transport is determined to be dominant at sizes less than 1 micron, after which the thermal transport largely depends on the quality of the nanostructure interface. The method is also extended to carbon nanostructures (fullerenes) where phonon confinement, as opposed to boundary scattering, dominates, and general trends related to the influence of curvature on thermal transport in these materials are discussed.

  20. Design and methodology for calculating the environmental pressure index as a tool for environmental land planning: the case of Cundinamarca

    International Nuclear Information System (INIS)

    Camacho O, Juana; Burgos S, Javier Dario

    2006-01-01

    The aim of this work is to provide a practical tool to carry out environmental planning and management processes regarding the use of space, in a complex way including not only biophysical but socioeconomic criteria. In the context of river basin management the Environmental Social Pressure Index was created. This paper presents an Environmental Planning and Management definition, based on the Ecological Supporting Structure, as well as one of sustainability, worked out of several authors. This work offers the methodological sequence to design and calculate a customized Environmental Social Pressure Index according to the specific features of any given territory, using the conceptual framework developed earlier and the multivariate analysis and power laws tools. Finally we present an exercise to illustrate this process, developed for Cundinamarca for 1995

  1. Electronic transport properties of fullerene functionalized carbon nanotubes: Ab initio and tight-binding calculations

    DEFF Research Database (Denmark)

    Fürst, Joachim Alexander; Hashemi, J.; Markussen, Troels

    2009-01-01

    techniques and tight-binding calculations to illustrate these materials' transmission properties and give physical arguments to interpret the numerical results. Specifically, above the Fermi energy we find a strong reduction in electron transmission due to localized states in certain regions of the structure......Fullerene functionalized carbon nanotubes-NanoBuds-form a novel class of hybrid carbon materials, which possesses many advantageous properties as compared to the pristine components. Here, we report a theoretical study of the electronic transport properties of these compounds. We use both ab initio...

  2. A calculation program for harvesting and transportation costs of energy wood; Energiapuun korjuun ja kuljetuksen kustannuslaskentaohjelmisto

    Energy Technology Data Exchange (ETDEWEB)

    Kuitto, P.J.

    1996-12-31

    VTT Energy is compiling a large and versatile calculation program for harvesting and transportation costs of energy wood. The work has been designed and will be carried out in cooperation with Metsaeteho and Finntech Ltd. The program has been realised in Windows surroundings using SQLWindows graphical database application development system, using the SQLBase relational database management system. The objective of the research is to intensify and create new possibilities for comparison of the utilization costs and the profitability of integrated energy wood production chains with each other inside the chains

  3. An analytical transport theory method for calculating flux distribution in slab cells

    International Nuclear Information System (INIS)

    AbdelKrim, M.S.

    2000-01-01

    A transport theory method for calculating flux distributions in slab fuel cell is described. Two coupled integral equations for flux in fuel and moderator are obtained; assuming partial reflection at moderator external boundaries. Galerkin technique is used to solve these equations. N umerical results for average fluxes in fuel and moderator also the disadvantage factor are given. Comparison with exact numerical methods, that is for total reflection moderator outer boundaries, show that Galerkin technique gives accurate results for the disadvantage factor and average fluxes

  4. An approximate framework for quantum transport calculation with model order reduction

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Quan, E-mail: quanchen@eee.hku.hk [Department of Electrical and Electronic Engineering, The University of Hong Kong (Hong Kong); Li, Jun [Department of Chemistry, The University of Hong Kong (Hong Kong); Yam, Chiyung [Beijing Computational Science Research Center (China); Zhang, Yu [Department of Chemistry, The University of Hong Kong (Hong Kong); Wong, Ngai [Department of Electrical and Electronic Engineering, The University of Hong Kong (Hong Kong); Chen, Guanhua [Department of Chemistry, The University of Hong Kong (Hong Kong)

    2015-04-01

    A new approximate computational framework is proposed for computing the non-equilibrium charge density in the context of the non-equilibrium Green's function (NEGF) method for quantum mechanical transport problems. The framework consists of a new formulation, called the X-formulation, for single-energy density calculation based on the solution of sparse linear systems, and a projection-based nonlinear model order reduction (MOR) approach to address the large number of energy points required for large applied biases. The advantages of the new methods are confirmed by numerical experiments.

  5. An analytical transport theory method for calculating flux distribution in slab cells

    International Nuclear Information System (INIS)

    Abdel Krim, M.S.

    2001-01-01

    A transport theory method for calculating flux distributions in slab fuel cell is described. Two coupled integral equations for flux in fuel and moderator are obtained; assuming partial reflection at moderator external boundaries. Galerkin technique is used to solve these equations. Numerical results for average fluxes in fuel and moderator and the disadvantage factor are given. Comparison with exact numerical methods, that is for total reflection moderator outer boundaries, show that the Galerkin technique gives accurate results for the disadvantage factor and average fluxes. (orig.)

  6. Assessment model validity document. NAMMU: A program for calculating groundwater flow and transport through porous media

    International Nuclear Information System (INIS)

    Cliffe, K.A.; Morris, S.T.; Porter, J.D.

    1998-05-01

    NAMMU is a computer program for modelling groundwater flow and transport through porous media. This document provides an overview of the use of the program for geosphere modelling in performance assessment calculations and gives a detailed description of the program itself. The aim of the document is to give an indication of the grounds for having confidence in NAMMU as a performance assessment tool. In order to achieve this the following topics are discussed. The basic premises of the assessment approach and the purpose of and nature of the calculations that can be undertaken using NAMMU are outlined. The concepts of the validation of models and the considerations that can lead to increased confidence in models are described. The physical processes that can be modelled using NAMMU and the mathematical models and numerical techniques that are used to represent them are discussed in some detail. Finally, the grounds that would lead one to have confidence that NAMMU is fit for purpose are summarised

  7. Calculation of health risks from spent-nuclear-fuel transportation accidents

    International Nuclear Information System (INIS)

    Chen, S.Y.; Yuan, Y.C.

    1988-01-01

    Models developed to analyze potential radiological health risks from various accident scenarios during transportation of spent nuclear fuels are described. The models are designed both for detailed route-specific risk analyses and for use in conducting overall risk analyses for route selection and related decision-making activities. The radiological risks calculated include individual dose commitments, collective dose commitments, and long-term (100-year) environmental dose commitments to a population following release of radioactivity. To facilitate route-specific analysis, a state-levle database was developed and incorporated into the model. Route-specific analysis is demonstrated by the calculation of radiological risks resulting from various accident scenarios, as postulated by the recent US Nuclear Regulatory Commission Modal Study, for four representative states selected from various regions of the US

  8. Computerization of effluent management and external dose calculation using the 'ODCM' methodology applied to Almaraz-NPP

    International Nuclear Information System (INIS)

    Garcia Gutierrez, M.E.; Sustacha Duo, D.

    1993-01-01

    The ODCM (Offsite Dose Calculation Manual), the official operational document for all nuclear power plants develops the details for the technical specifications for discharges and governs their practical application. The use of ODCM methodology for managing and controlling data associated with radioactive discharges, as well as the subsequent processing of this data to assess the radiological impact, requires and generates a large volume of data, which demands the frequent application of laborious and complex calculation processes, making computerization necessary. The computer application created for Almaraz NPP has the capacity to store and manage data on all discharges, evaluate their effects, presents reports and copies the information to be sent periodically to the CSN (Spanish Nuclear Regulatory Commission) on a magnetic tape. The radiological impact of an actual or possible discharge can be evaluated at anytime and, furthermore, general or particular reports and graphs on the discharges and doses over time can be readily obtained. The application is run on a personal computer under a relational database management system. This interactive application is based on menus and windows. (author)

  9. ``Phantom'' Modes in Ab Initio Tunneling Calculations: Implications for Theoretical Materials Optimization, Tunneling, and Transport

    Science.gov (United States)

    Barabash, Sergey V.; Pramanik, Dipankar

    2015-03-01

    Development of low-leakage dielectrics for semiconductor industry, together with many other areas of academic and industrial research, increasingly rely upon ab initio tunneling and transport calculations. Complex band structure (CBS) is a powerful formalism to establish the nature of tunneling modes, providing both a deeper understanding and a guided optimization of materials, with practical applications ranging from screening candidate dielectrics for lowest ``ultimate leakage'' to identifying charge-neutrality levels and Fermi level pinning. We demonstrate that CBS is prone to a particular type of spurious ``phantom'' solution, previously deemed true but irrelevant because of a very fast decay. We demonstrate that (i) in complex materials, phantom modes may exhibit very slow decay (appearing as leading tunneling terms implying qualitative and huge quantitative errors), (ii) the phantom modes are spurious, (iii) unlike the pseudopotential ``ghost'' states, phantoms are an apparently unavoidable artifact of large numerical basis sets, (iv) a presumed increase in computational accuracy increases the number of phantoms, effectively corrupting the CBS results despite the higher accuracy achieved in resolving the true CBS modes and the real band structure, and (v) the phantom modes cannot be easily separated from the true CBS modes. We discuss implications for direct transport calculations. The strategy for dealing with the phantom states is discussed in the context of optimizing high-quality high- κ dielectric materials for decreased tunneling leakage.

  10. Generalized Coarse-Mesh Rebalance Method for Acceleration of Neutron Transport Calculations

    International Nuclear Information System (INIS)

    Yamamoto, Akio

    2005-01-01

    This paper proposes a new acceleration method for neutron transport calculations: the generalized coarse-mesh rebalance (GCMR) method. The GCMR method is a unified scheme of the traditional coarse-mesh rebalance (CMR) and the coarse-mesh finite difference (CMFD) acceleration methods. Namely, by using an appropriate acceleration factor, formulation of the GCMR method becomes identical to that of the CMR or CMFD method. This also indicates that the convergence property of the GCMR method can be controlled by the acceleration factor since the convergence properties of the CMR and CMFD methods are generally different. In order to evaluate the convergence property of the GCMR method, a linearized Fourier analysis was carried out for a one-group homogeneous medium, and the results clarified the relationship between the acceleration factor and the spectral radius. It was also shown that the spectral radius of the GCMR method is smaller than those of the CMR and CMFD methods. Furthermore, the Fourier analysis showed that when an appropriate acceleration factor was used, the spectral radius of the GCMR method did not exceed unity in this study, which was in contrast to the results of the CMR or the CMFD method. Application of the GCMR method to practical calculations will be easy when the CMFD acceleration is already adopted in a transport code. By multiplying a suitable acceleration factor to a coefficient (D FD ) of a finite difference formulation, one can improve the numerical instability of the CMFD acceleration method

  11. A simplified spherical harmonic method for coupled electron-photon transport calculations

    Energy Technology Data Exchange (ETDEWEB)

    Josef, J.A.

    1997-12-01

    In this thesis the author has developed a simplified spherical harmonic method (SP{sub N} method) and associated efficient solution techniques for 2-D multigroup electron-photon transport calculations. The SP{sub N} method has never before been applied to charged-particle transport. He has performed a first time Fourier analysis of the source iteration scheme and the P{sub 1} diffusion synthetic acceleration (DSA) scheme applied to the 2-D SP{sub N} equations. The theoretical analyses indicate that the source iteration and P{sub 1} DSA schemes are as effective for the 2-D SP{sub N} equations as for the 1-D S{sub N} equations. In addition, he has applied an angular multigrid acceleration scheme, and computationally demonstrated that it performs as well as for the 2-D SP{sub N} equations as for the 1-D S{sub N} equations. It has previously been shown for 1-D S{sub N} calculations that this scheme is much more effective than the DSA scheme when scattering is highly forward-peaked. The author has investigated the applicability of the SP{sub N} approximation to two different physical classes of problems: satellite electronics shielding from geomagnetically trapped electrons, and electron beam problems.

  12. OECD/NEA benchmark for time-dependent neutron transport calculations without spatial homogenization

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Jason, E-mail: jason.hou@ncsu.edu [Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Ivanov, Kostadin N. [Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Boyarinov, Victor F.; Fomichenko, Peter A. [National Research Centre “Kurchatov Institute”, Kurchatov Sq. 1, Moscow (Russian Federation)

    2017-06-15

    Highlights: • A time-dependent homogenization-free neutron transport benchmark was created. • The first phase, known as the kinetics phase, was described in this work. • Preliminary results for selected 2-D transient exercises were presented. - Abstract: A Nuclear Energy Agency (NEA), Organization for Economic Co-operation and Development (OECD) benchmark for the time-dependent neutron transport calculations without spatial homogenization has been established in order to facilitate the development and assessment of numerical methods for solving the space-time neutron kinetics equations. The benchmark has been named the OECD/NEA C5G7-TD benchmark, and later extended with three consecutive phases each corresponding to one modelling stage of the multi-physics transient analysis of the nuclear reactor core. This paper provides a detailed introduction of the benchmark specification of Phase I, known as the “kinetics phase”, including the geometry description, supporting neutron transport data, transient scenarios in both two-dimensional (2-D) and three-dimensional (3-D) configurations, as well as the expected output parameters from the participants. Also presented are the preliminary results for the initial state 2-D core and selected transient exercises that have been obtained using the Monte Carlo method and the Surface Harmonic Method (SHM), respectively.

  13. A method for local transport analysis in tokamaks with error calculation

    International Nuclear Information System (INIS)

    Hogeweij, G.M.D.; Hordosy, G.; Lopes Cardozo, N.J.

    1989-01-01

    Global transport studies have revealed that heat transport in a tokamak is anomalous, but cannot provide information about the nature of the anomaly. Therefore, local transport analysis is essential for the study of anomalous transport. However, the determination of local transport coefficients is not a trivial affair. Generally speaking one can either directly measure the heat diffusivity, χ, by means of heat pulse propagation analysis, or deduce the profile of χ from measurements of the profiles of the temperature, T, and the power deposition. Here we are concerned only with the latter method, the local power balance analysis. For the sake of clarity heat diffusion only is considered: ρ=-gradT/q (1) where ρ=κ -1 =(nχ) -1 is the heat resistivity and q is the heat flux per unit area. It is assumed that the profiles T(r) and q(r) are given with some experimental error. In practice T(r) is measured directly, e.g. from ECE spectroscopy, while q(r) is deduced from the power deposition and loss profiles. The latter cannot be measured directly and is partly determined on the basis of models. This complication will not be considered here. Since in eq. (1) the gradient of T appears, noise on T can severely affect the solution ρ. This means that in general some form of smoothing must be applied. A criterion is needed to select the optimal smoothing. Too much smoothing will wipe out the details, whereas with too little smoothing the noise will distort the reconstructed profile of ρ. Here a new method to solve eq. (1) is presented which expresses ρ(r) as a cosine-series. The coefficients of this series are given as linear combinations of the Fourier coefficients of the measured T- and q-profiles. This formulation allows 1) the stable and accurate calculation of the ρ-profile, and 2) the analytical calculation of the error in this profile. (author) 5 refs., 3 figs

  14. A GPU-based Monte Carlo dose calculation code for photon transport in a voxel phantom

    Energy Technology Data Exchange (ETDEWEB)

    Bellezzo, M.; Do Nascimento, E.; Yoriyaz, H., E-mail: mbellezzo@gmail.br [Instituto de Pesquisas Energeticas e Nucleares / CNEN, Av. Lineu Prestes 2242, Cidade Universitaria, 05508-000 Sao Paulo (Brazil)

    2014-08-15

    As the most accurate method to estimate absorbed dose in radiotherapy, Monte Carlo method has been widely used in radiotherapy treatment planning. Nevertheless, its efficiency can be improved for clinical routine applications. In this paper, we present the CUBMC code, a GPU-based Mc photon transport algorithm for dose calculation under the Compute Unified Device Architecture platform. The simulation of physical events is based on the algorithm used in Penelope, and the cross section table used is the one generated by the Material routine, als present in Penelope code. Photons are transported in voxel-based geometries with different compositions. To demonstrate the capabilities of the algorithm developed in the present work four 128 x 128 x 128 voxel phantoms have been considered. One of them is composed by a homogeneous water-based media, the second is composed by bone, the third is composed by lung and the fourth is composed by a heterogeneous bone and vacuum geometry. Simulations were done considering a 6 MeV monoenergetic photon point source. There are two distinct approaches that were used for transport simulation. The first of them forces the photon to stop at every voxel frontier, the second one is the Woodcock method, where the photon stop in the frontier will be considered depending on the material changing across the photon travel line. Dose calculations using these methods are compared for validation with Penelope and MCNP5 codes. Speed-up factors are compared using a NVidia GTX 560-Ti GPU card against a 2.27 GHz Intel Xeon CPU processor. (Author)

  15. A GPU-based Monte Carlo dose calculation code for photon transport in a voxel phantom

    International Nuclear Information System (INIS)

    Bellezzo, M.; Do Nascimento, E.; Yoriyaz, H.

    2014-08-01

    As the most accurate method to estimate absorbed dose in radiotherapy, Monte Carlo method has been widely used in radiotherapy treatment planning. Nevertheless, its efficiency can be improved for clinical routine applications. In this paper, we present the CUBMC code, a GPU-based Mc photon transport algorithm for dose calculation under the Compute Unified Device Architecture platform. The simulation of physical events is based on the algorithm used in Penelope, and the cross section table used is the one generated by the Material routine, als present in Penelope code. Photons are transported in voxel-based geometries with different compositions. To demonstrate the capabilities of the algorithm developed in the present work four 128 x 128 x 128 voxel phantoms have been considered. One of them is composed by a homogeneous water-based media, the second is composed by bone, the third is composed by lung and the fourth is composed by a heterogeneous bone and vacuum geometry. Simulations were done considering a 6 MeV monoenergetic photon point source. There are two distinct approaches that were used for transport simulation. The first of them forces the photon to stop at every voxel frontier, the second one is the Woodcock method, where the photon stop in the frontier will be considered depending on the material changing across the photon travel line. Dose calculations using these methods are compared for validation with Penelope and MCNP5 codes. Speed-up factors are compared using a NVidia GTX 560-Ti GPU card against a 2.27 GHz Intel Xeon CPU processor. (Author)

  16. Cost-effectiveness of greenhouse gas mitigation in transport: A review of methodological approaches and their impact

    International Nuclear Information System (INIS)

    Kok, Robert; Annema, Jan Anne; Wee, Bert van

    2011-01-01

    A review is given of methodological practices for ex ante cost-effectiveness analysis (CEA) of transport greenhouse gas (GHG) mitigation measures, e.g. fuel economy and CO 2 standards for road vehicles in the US and EU. Besides the fundamental differences between different types of policies and abatement options which inherently result in different CEA outcomes, differences in methodological choices and assumptions are another important source of variation in CEA outcomes. Fourteen methodological issues clustered into six groups are identified on which thirty-three selected studies are systematically reviewed. The potential variation between lower and upper cost-effectiveness estimates for GHG mitigation measures in transport, resulting from different methodological choices and assumptions, lies in the order of $400 per tonne CO 2 -eq. The practise of using CEA for policy-making could improve considerably by clearly indicating the specific purpose of the CEA and its strengths and limitations for policy decisions. Another improvement is related to the dominant approach in transport GHG mitigation studies: the bottom-up financial technical approach which assesses isolated effects, implying considerable limitations for policy-making. A shift to welfare-economic approaches using a hybrid model has the potential to establish an improved assessment of transport GHG mitigation measures based on realistic market responses and behavioural change. - Highlights: ► We identify fourteen important methodological issues clustered into six groups. ► We systematically review thirty-three selected transport GHG mitigation studies. ► Methodological choices can lead to a difference by up to $400 per tonne CO 2 -eq. ► The dominant bottom-up approach has limitations for policy-making. ► Welfare-economic approaches could improve cost-effectiveness analysis.

  17. The nodal discrete-ordinate transport calculation of anisotropy scattering problem in three-dimensional cartesian geometry

    International Nuclear Information System (INIS)

    Wu Hongchun; Xie Zhongsheng; Zhu Xuehua

    1994-01-01

    The nodal discrete-ordinate transport calculating model of anisotropy scattering problem in three-dimensional cartesian geometry is given. The computing code NOTRAN/3D has been encoded and the satisfied conclusion is gained

  18. Criticality coefficient calculation for a small PWR using Monte Carlo Transport Code

    Energy Technology Data Exchange (ETDEWEB)

    Trombetta, Debora M.; Su, Jian, E-mail: dtrombetta@nuclear.ufrj.br, E-mail: sujian@nuclear.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil); Chirayath, Sunil S., E-mail: sunilsc@tamu.edu [Department of Nuclear Engineering and Nuclear Security Science and Policy Institute, Texas A and M University, TX (United States)

    2015-07-01

    Computational models of reactors are increasingly used to predict nuclear reactor physics parameters responsible for reactivity changes which could lead to accidents and losses. In this work, preliminary results for criticality coefficient calculation using the Monte Carlo transport code MCNPX were presented for a small PWR. The computational modeling developed consists of the core with fuel elements, radial reflectors, and control rods inside a pressure vessel. Three different geometries were simulated, a single fuel pin, a fuel assembly and the core, with the aim to compare the criticality coefficients among themselves.The criticality coefficients calculated were: Doppler Temperature Coefficient, Coolant Temperature Coefficient, Coolant Void Coefficient, Power Coefficient, and Control Rod Worth. The coefficient values calculated by the MCNP code were compared with literature results, showing good agreement with reference data, which validate the computational model developed and allow it to be used to perform more complex studies. Criticality Coefficient values for the three simulations done had little discrepancy for almost all coefficients investigated, the only exception was the Power Coefficient. Preliminary results presented show that simple modelling as a fuel assembly can describe changes at almost all the criticality coefficients, avoiding the need of a complex core simulation. (author)

  19. Characterizing urban traffic exposures using transportation planning tools: an illustrated methodology for health researchers.

    Science.gov (United States)

    Rioux, Christine L; Gute, David M; Brugge, Doug; Peterson, Scott; Parmenter, Barbara

    2010-03-01

    Exposure to elevated levels of vehicular traffic has been associated with adverse cardiovascular and respiratory health effects in a range of populations, including children, the elderly, and individuals with pre-existing heart conditions, diabetes, obesity, and genetic susceptibilities. As these relationships become clearer, public health officials will need to have access to methods to identify areas of concern in terms of elevated traffic levels and susceptible populations. This paper briefly reviews current approaches for characterizing traffic exposure and then presents a detailed method that can be employed by public health officials and other researchers in performing screening assessments to define areas of potential concern within a particular locale and, with appropriate caveats, in epidemiologic studies examining traffic-related health impacts at the intra-urban scale. The method is based on two exposure parameters extensively used in numerous epidemiologic studies of traffic and health-proximity to high traffic roadways and overall traffic density. The method is demonstrated with publically available information on susceptible populations, traffic volumes, and Traffic Analysis Zones, a transportation planning tool long used by Metropolitan Planning Agencies and planners across the USA but presented here as a new application which can be used to spatially assess possible traffic-related impacts on susceptible populations. Recommendations are provided for the appropriate use of this methodology, along with its limitations.

  20. Risk methodology for geologic disposal of radioactive waste: asymptotic properties of the environmental transport model

    International Nuclear Information System (INIS)

    Helton, J.C.; Brown, J.B.; Iman, R.L.

    1981-02-01

    The Environmental Transport Model is a compartmental model developed to represent the surface movement of radionuclides. The purpose of the present study is to investigate the asymptotic behavior of the model and to acquire insight with respect to such behavior and the variables which influence it. For four variations of a hypothetical river receiving a radionuclide discharge, the following properties are considered: predicted asymptotic values for environmental radionuclide concentrations and time required for environmental radionuclide concentrations to reach 90% of their predicted asymptotic values. Independent variables of two types are used to define each variation of the river: variables which define physical properties of the river system (e.g., soil depth, river discharge and sediment resuspension) and variables which summarize radionuclide properties (i.e., distribution coefficients). Sensitivity analysis techniques based on stepwise regression are used to determine the dominant variables influencing the behavior of the model. This work constitutes part of a project at Sandia National Laboratories funded by the Nuclear Regulatory Commission to develop a methodology to assess the risk associated with geologic disposal of radioactive waste

  1. Description of a neutron field perturbed by a probe using coupled Monte Carlo and discrete ordinates radiation transport calculations

    International Nuclear Information System (INIS)

    Zazula, J.M.

    1984-01-01

    This work concerns calculation of a neutron response, caused by a neutron field perturbed by materials surrounding the source or the detector. Solution of a problem is obtained using coupling of the Monte Carlo radiation transport computation for the perturbed region and the discrete ordinates transport computation for the unperturbed system. (author). 62 refs

  2. Calculation of electrical transport properties and electron entanglement in inhomogeneous quantum wires

    Directory of Open Access Journals (Sweden)

    A A Shokri

    2013-10-01

    Full Text Available In this paper, we have investigated the spin-dependent transport properties and electron entanglement in a mesoscopic system, which consists of two semi-infinite leads (as source and drain separated by a typical quantum wire with a given potential. The properties studied include current-voltage characteristic, electrical conductivity, Fano factor and shot noise, and concurrence. The calculations are based on the transfer matrix method within the effective mass approximation. Using the Landauer formalism and transmission coefficient, the dependence of the considered quantities on type of potential well, length and width of potential well, energy of transmitted electron, temperature and the voltage have been theoretically studied. Also, the effect of the above-mentioned factors has been investigated in the nanostructure. The application of the present results may be useful in designing spintronice devices.

  3. A simplified spherical harmonic method for coupled electron-photon transport calculations

    International Nuclear Information System (INIS)

    Josef, J.A.

    1996-12-01

    In this thesis we have developed a simplified spherical harmonic method (SP N method) and associated efficient solution techniques for 2-D multigroup electron-photon transport calculations. The SP N method has never before been applied to charged-particle transport. We have performed a first time Fourier analysis of the source iteration scheme and the P 1 diffusion synthetic acceleration (DSA) scheme applied to the 2-D SP N equations. Our theoretical analyses indicate that the source iteration and P 1 DSA schemes are as effective for the 2-D SP N equations as for the 1-D S N equations. Previous analyses have indicated that the P 1 DSA scheme is unstable (with sufficiently forward-peaked scattering and sufficiently small absorption) for the 2-D S N equations, yet is very effective for the 1-D S N equations. In addition, we have applied an angular multigrid acceleration scheme, and computationally demonstrated that it performs as well for the 2-D SP N equations as for the 1-D S N equations. It has previously been shown for 1-D S N calculations that this scheme is much more effective than the DSA scheme when scattering is highly forward-peaked. We have investigated the applicability of the SP N approximation to two different physical classes of problems: satellite electronics shielding from geomagnetically trapped electrons, and electron beam problems. In the space shielding study, the SP N method produced solutions that are accurate within 10% of the benchmark Monte Carlo solutions, and often orders of magnitude faster than Monte Carlo. We have successfully modeled quasi-void problems and have obtained excellent agreement with Monte Carlo. We have observed that the SP N method appears to be too diffusive an approximation for beam problems. This result, however, is in agreement with theoretical expectations

  4. A flow-based methodology for the calculation of TSO to TSO compensations for cross-border flows

    International Nuclear Information System (INIS)

    Glavitsch, H.; Andersson, G.; Lekane, Th.; Marien, A.; Mees, E.; Naef, U.

    2004-01-01

    In the context of the development of the European internal electricity market, several methods for the tarification of cross-border flows have been proposed. This paper presents a flow-based method for the calculation of TSO to TSO compensations for cross-border flows. The basic principle of this approach is the allocation of the costs of cross-border flows to the TSOs who are responsible for these flows. This method is cost reflective, non-transaction based and compatible with domestic tariffs. It can be applied when limited data are available. Each internal transmission network is then modelled as an aggregated node, called 'supernode', and the European network is synthesized by a graph of supernodes and arcs, each arc representing all cross-border lines between two adjacent countries. When detailed data are available, the proposed methodology is also applicable to all the nodes and lines of the transmission network. Costs associated with flows transiting through supernodes or network elements are forwarded through the network in a way reflecting how the flows make use of the network. The costs can be charged either towards loads and exports or towards generations and imports. Combination of the two charging directions can also be considered. (author)

  5. METHODOLOGY & CALCULATIONS FOR THE ASSIGNMENT OF WASTE GROUPS FOR THE LARGE UNDERGROUND WASTE STORAGE TANKS AT THE HANFORD SITE

    Energy Technology Data Exchange (ETDEWEB)

    BARKER, S.A.

    2006-07-27

    Waste stored within tank farm double-shell tanks (DST) and single-shell tanks (SST) generates flammable gas (principally hydrogen) to varying degrees depending on the type, amount, geometry, and condition of the waste. The waste generates hydrogen through the radiolysis of water and organic compounds, thermolytic decomposition of organic compounds, and corrosion of a tank's carbon steel walls. Radiolysis and thermolytic decomposition also generates ammonia. Nonflammable gases, which act as dilutents (such as nitrous oxide), are also produced. Additional flammable gases (e.g., methane) are generated by chemical reactions between various degradation products of organic chemicals present in the tanks. Volatile and semi-volatile organic chemicals in tanks also produce organic vapors. The generated gases in tank waste are either released continuously to the tank headspace or are retained in the waste matrix. Retained gas may be released in a spontaneous or induced gas release event (GRE) that can significantly increase the flammable gas concentration in the tank headspace as described in RPP-7771. The document categorizes each of the large waste storage tanks into one of several categories based on each tank's waste characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement event. Revision 5 is the annual update of the methodology and calculations of the flammable gas Waste Groups for DSTs and SSTs.

  6. SR97. Data and data uncertainties. Compilation of data and data uncertainties for radionuclide transport calculations

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Johan [Golder Grundteknik KB (Sweden)

    1999-10-01

    This report concerns integration of data and data uncertainties in the radionuclide transport calculations within the SR 97 project. More specifically the present report: establishes a framework for handling data uncertainty within SR 97, explores uncertainties in the different underlying analyses and information such as inventory, canister life time, solubilities, K{sub d}-values, or different flow related migration parameters, which provide input to the radionuclide release and transport models used, suggests and motivates 'reasonable' input values, and 'pessimistic' input values representing conditions at Aaberg (Aespoe), Beberg (Finnsjoen) and Ceberg (Gideaa) when applicable, for the different models used, suggests 'probabilistic' parameter distributions when underlying data support any distribution. The intention of presenting 'reasonable' estimates is one of illustration - to obtain a view on how the repository system would operate without making overly optimistic or pessimistic assumptions. A pessimistic input datum implies a selection of a parameter value (and conceptual model) within the uncertainty range, which maximises the consequence.

  7. Groundwater Flow and Transport Calculations Supporting the Immobilized Low-Activity Waste Disposal Facility Performance Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Bergeron, Marcel P.; Wurstner, Signe K.

    2000-12-04

    This report summarizes the Hanford Site-Wide Groundwater Model and its application to the Immobilized Low-Activity Waste (ILAW) Disposal Facility Performance Assessment (PA). The site-wide model and supporting local-scale models are used to evaluate impacts from the transport of contaminants at a hypothetical well 100 m downgradient of the disposal facilities and to evaluate regional flow conditions and transport from the ILAW disposal facilities to the Columbia River. These models were used to well-intercept factors (WIFs) or dilution factors from a given areal flux of a hypothetical contaminant released to the unconfined aquifer from the ILAW disposal facilities for two waste-disposal options: 1) a remote-handled trench concept and 2) a concrete-vault concept. The WIF is defined as the ratio of the concentration at a well location in the aquifer to the concentration of infiltrating water entering the aquifer. These WIFs are being used in conjunction with calculations of released contaminant fluxes through the vadose zone to estimate potential impacts from radiological and hazardous chemical contaminants within the ILAW disposal facility at compliance points.

  8. Transport Calculations for the reference configuration under neutral bean injection in TJ-II

    International Nuclear Information System (INIS)

    Guasp, J.; Castejon, F.; Liniers, M.

    1999-01-01

    Transport calculations for the Reference Configuration under Neutral Beam Injection in TJ-II are discussed. For all these analysis the Transport Code PROCTR has been used but, in reason of the complex geometry of TJ-II, some modifications to the code have been needed, not only for the absorption, losses and deposition radial profile evaluations, but also for the treatment of the transition between ECRH and NBI or the fit of Transport Coefficients to the different Scaling Laws. The attained centralβ values for high density ( central value around 11 x 10''13 cm''3), in steady, range between a minimum of 1.9% for the GRB law up to 3.6% or 4.2% for those laws that show an explicit dependence with the rotational transform (ISS and LGS), with an intermediate value of 2.8% for the LHD case. Global energy confinement times range between 3.9 and 8.8 ms for the two extreme cases and 5.6 ms for LHD. As well ions as electrons are clearly in the plateau regime, in contrast to the ECRH phase where the electrons are well inside the 1/ν regime, dominated by helical ripple effects. The effect of impurities is to decrease slightly the absorption and the attainable β levels, but only for Zeff values higher than 4 this degradation becomes important. For the stationary state the density remains always below the semiempirical limit, independently of the Zeff value. Even along the first stages of injection, where absorption can be rather low, the limit is not reached, at least for Zeff < 4, so that radioactive collapse along this critical phase should not to be expected. (Author) 14 refs

  9. How can activity-based costing methodology be performed as a powerful tool to calculate costs and secure appropriate patient care?

    Science.gov (United States)

    Lin, Blossom Yen-Ju; Chao, Te-Hsin; Yao, Yuh; Tu, Shu-Min; Wu, Chun-Ching; Chern, Jin-Yuan; Chao, Shiu-Hsiung; Shaw, Keh-Yuong

    2007-04-01

    Previous studies have shown the advantages of using activity-based costing (ABC) methodology in the health care industry. The potential values of ABC methodology in health care are derived from the more accurate cost calculation compared to the traditional step-down costing, and the potentials to evaluate quality or effectiveness of health care based on health care activities. This project used ABC methodology to profile the cost structure of inpatients with surgical procedures at the Department of Colorectal Surgery in a public teaching hospital, and to identify the missing or inappropriate clinical procedures. We found that ABC methodology was able to accurately calculate costs and to identify several missing pre- and post-surgical nursing education activities in the course of treatment.

  10. First-principles calculation of electronic transport in low-dimensional disordered superconductors

    Science.gov (United States)

    Conduit, G. J.; Meir, Y.

    2011-08-01

    We present a novel formulation to calculate transport through disordered superconductors connected between two metallic leads. An exact analytical expression for the current is derived and applied to a superconducting sample described by the negative-U Hubbard model. A Monte Carlo algorithm that includes thermal phase and amplitude fluctuations of the superconducting order parameter is employed, and a new efficient algorithm is described. This improved routine allows access to relatively large systems, which we demonstrate by applying it to several cases, including superconductor-normal interfaces and Josephson junctions. Moreover, we can link the phenomenological parameters describing these effects to the underlying microscopic variables. The effects of decoherence and dephasing are shown to be included in the formulation, which allows the unambiguous characterization of the Kosterlitz-Thouless transition in two-dimensional systems and the calculation of the finite resistance due to vortex excitations in quasi-one-dimensional systems. Effects of magnetic fields can be easily included in the formalism, and are demonstrated for the Little-Parks effect in superconducting cylinders. Furthermore, the formalism enables us to map the local super and normal currents, and the accompanying electrical potentials, which we use to pinpoint and visualize the emergence of resistance across the superconductor-insulator transition.

  11. Evaluated Nuclear Data Library for Transport Calculations at Energies up to 150 MeV

    International Nuclear Information System (INIS)

    Korovin, Yu.A.; Konobeyev, A.Yu.; Pilnov, G.B.; Stankovskiy, A.Yu.

    2005-01-01

    A new evaluated nuclear data library has been created. The library consists of two sub-libraries for neutron and proton incident particles. The first version of neutron sub-library has been completed and described in the present paper. The library contains nuclear data for transport, heating, and shielding applications for 242 nuclides ranging in atomic number from 8 to 82 in the energy region of primary neutrons from 10-5 eV to 150 MeV. Data below 20 MeV are taken mainly from ENDF/B-VI (Revision 8) and for some nuclides, from the JENDL-3.3 and JEFF-3.0 libraries. The evaluation of emitted particle energy and angular distributions at the energies above 20 MeV was performed with the help of the ALICE/ASH code and the analysis of available experimental data. The total cross sections, elastic cross sections, and elastic scattering angular distributions were calculated with the help of the coupled channel model. The results of the calculation were adjusted to the data from ENDF/B-VI, JENDL-3.3m or JEFF-3.0 at the neutron energy equal to 20 MeV. The library is written in ENDF/B-VI format using the MF=3/MT=5 and MF=6/MT=5 representations

  12. A simplified model for calculating atmospheric radionuclide transport and early health effects from nuclear reactor accidents

    International Nuclear Information System (INIS)

    Madni, I.K.; Cazzoli, E.G.; Khatib-Rahbar, M.

    1995-01-01

    During certain hypothetical severe accidents in a nuclear power plant, radionuclides could be released to the environment as a plume. Prediction of the atmospheric dispersion and transport of these radionuclides is important for assessment of the risk to the public from such accidents. A simplified PC-based model was developed that predicts time-integrated air concentration of each radionuclide at any location from release as a function of time integrated source strength using the Gaussian plume model. The solution procedure involves direct analytic integration of air concentration equations over time and position, using simplified meteorology. The formulation allows for dry and wet deposition, radioactive decay and daughter buildup, reactor building wake effects, the inversion lid effect, plume rise due to buoyancy or momentum, release duration, and grass height. Based on air and ground concentrations of the radionuclides, the early dose to an individual is calculated via cloudshine, groundshine, and inhalation. The model also calculates early health effects based on the doses. This paper presents aspects of the model that would be of interest to the prediction of environmental flows and their public consequences

  13. 3D Monte-Carlo transport calculations of whole slab reactor cores: validation of deterministic neutronic calculation routes

    International Nuclear Information System (INIS)

    Palau, J.M.

    2005-01-01

    This paper presents how Monte-Carlo calculations (French TRIPOLI4 poly-kinetic code with an appropriate pre-processing and post-processing software called OVNI) are used in the case of 3-dimensional heterogeneous benchmarks (slab reactor cores) to reduce model biases and enable a thorough and detailed analysis of the performances of deterministic methods and their associated data libraries with respect to key neutron parameters (reactivity, local power). Outstanding examples of application of these tools are presented regarding the new numerical methods implemented in the French lattice code APOLLO2 (advanced self-shielding models, new IDT characteristics method implemented within the discrete-ordinates flux solver model) and the JEFF3.1 nuclear data library (checked against JEF2.2 previous file). In particular we have pointed out, by performing multigroup/point-wise TRIPOLI4 (assembly and core) calculations, the efficiency (in terms of accuracy and computation time) of the new IDT method developed in APOLLO2. In addition, by performing 3-dimensional TRIPOLI4 calculations of the whole slab core (few millions of elementary volumes), the high quality of the new JEFF3.1 nuclear data files and revised evaluations (U 235 , U 238 , Hf) for reactivity prediction of slab cores critical experiments has been stressed. As a feedback of the whole validation process, improvements in terms of nuclear data (mainly Hf capture cross-sections) and numerical methods (advanced quadrature formulas accounting validation results, validation of new self-shielding models, parallelization) are suggested to improve even more the APOLLO2-CRONOS2 standard calculation route. (author)

  14. Development of methodology for disability-adjusted life years (DALYs calculation based on real-life data.

    Directory of Open Access Journals (Sweden)

    Ellen A Struijk

    Full Text Available BACKGROUND: Disability-Adjusted Life Years (DALYs have the advantage that effects on total health instead of on a specific disease incidence or mortality can be estimated. Our aim was to address several methodological points related to the computation of DALYs at an individual level in a follow-up study. METHODS: DALYs were computed for 33,507 men and women aged 20-70 years when participating in the EPIC-NL study in 1993-7. DALYs are the sum of the Years Lost due to Disability (YLD and the Years of Life Lost (YLL due to premature mortality. Premature mortality was defined as death before the estimated date of individual Life Expectancy (LE. Different methods to compute LE were compared as well as the effect of different follow-up periods using a two-part model estimating the effect of smoking status on health as an example. RESULTS: During a mean follow-up of 12.4 years, there were 69,245 DALYs due to years lived with a disease or premature death. Current-smokers had lost 1.28 healthy years of their life (1.28 DALYs 95%CI 1.10; 1.46 compared to never-smokers. The outcome varied depending on the method used for estimating LE, completeness of disease and mortality ascertainment and notably the percentage of extinction (duration of follow-up of the cohort. CONCLUSION: We conclude that the use of DALYs in a cohort study is an appropriate way to assess total disease burden in relation to a determinant. The outcome is sensitive to the LE calculation method and the follow-up duration of the cohort.

  15. Scoping calculations for groundwater transport of tritium from the Gnome Site, New Mexico

    International Nuclear Information System (INIS)

    Pohlmann, K.; Andricevic, R.

    1994-08-01

    Analytic solutions are employed to investigate potential groundwater transport of tritium from a radioactive tracer site near the Project Gnome site in southeastern New Mexico. The tracer test was conducted in 1963 and introduced significant quantities of radionuclides to the transmissive and laterally continuous Culebra dolomite. Groundwater in the Culebra near Gnome travels toward a regional discharge point at the Pecos River, a distance of about 10 to 15 km, depending on flow path. Groundwater transport of radionuclides from the Gnome site is therefore of interest due to the proximity of the accessible environment and the 31-year time period during which migration is likely to have occurred. The analytical stochastic solutions used incorporate the heterogeneity observed in the Culebra by treating transmissivity as a spatially correlated random field. The results indicate that significant spreading of tritium will occur in the Culebra dolomite as a result of the combination of relatively high transmissivity, high spatial variability, and high spatial correlation of transmissivity. Longitudinal spreading may cause a very small fraction of tritium mass to arrive at the Pecos River within the 31 years since the tracer test. However, dilution and transverse dispersion will act to distribute this mass over a very large volume, thereby reducing groundwater concentrations. Despite the high degree of spreading, the calculations indicate that most of the tritium remains near the source. At present, the center of mass is estimated to have moved approximately 260 m downgradient of the test location and about 95 percent of the mass is estimated to have remained within about 1 km downgradient

  16. First-Principles Calculations of Electronic, Optical, and Transport Properties of Materials for Energy Applications

    Science.gov (United States)

    Shi, Guangsha

    Solar electricity is a reliable and environmentally friendly method of sustainable energy production and a realistic alternative to conventional fossil fuels. Moreover, thermoelectric energy conversion is a promising technology for solid-state refrigeration and efficient waste-heat recovery. Predicting and optimizing new photovoltaic and thermoelectric materials composed of Earth-abundant elements that exceed the current state of the art, and understanding how nanoscale structuring and ordering improves their energy conversion efficiency pose a challenge for materials scientists. I approach this challenge by developing and applying predictive high-performance computing methods to guide research and development of new materials for energy-conversion applications. Advances in computer-simulation algorithms and high-performance computing resources promise to speed up the development of new compounds with desirable properties and significantly shorten the time delay between the discovery of new materials and their commercial deployment. I present my calculated results on the extraordinary properties of nanostructured semiconductor materials, including strong visible-light absorbance in nanoporous silicon and few-layer SnSe and GeSe. These findings highlight the capability of nanoscale structuring and ordering to improve the performance of Earth-abundant materials compared to their bulk counterparts for solar-cell applications. I also successfully identified the dominant mechanisms contributing to free-carrier absorption in n-type silicon. My findings help evaluate the impact of the energy loss from this absorption mechanism in doped silicon and are thus important for the design of silicon solar cells. In addition, I calculated the thermoelectric transport properties of p-type SnSe, a bulk material with a record thermoelectric figure of merit. I predicted the optimal temperatures and free-carrier concentrations for thermoelectric energy conversion, as well the

  17. Pollutant transport over complex terrain: Flux and budget calculations for the pollumet field campaign

    Science.gov (United States)

    Lehning, Michael; Richner, Hans; Kok, Gregory L.

    Especially over complex terrain, transport processes dominate the local pollutant concentrations observed. The data gathered during the POLLUMET measuring campaign in 1993 allow a quantitative analysis of the pollutant fluxes and the pollutant budgets. The data include airborne measurements by NCAR's King Air, radio soundings, radar wind profiles, and data from meteorological ground stations. The regions of interest were the rather densely populated Swiss Plateau, which is embedded between the Alps and the Jura Mountains, and a box south of the Alps covering the south Ticino region and parts of northern Italy. An interpolation scheme was developed to reconstruct the wind field from all available measurements. From the wind field and the reconstruction of the concentration field the fluxes into and out of a box with fixed boundaries are calculated. The pollutant budgets are obtained from the sum of the fluxes and considering a mean vertical velocity. To assess the uncertainties introduced through the interpolation of the measurements, an extensive sensitivity analysis is included. The Swiss Plateau exports ozone and nitrogen oxides. The export rates can be interpreted as an ozone accumulation or fraction of 'homemade pollution' between 3 and 10% and require a net production rate of 1-2 ppb h -1. Accumulation of nitrogen oxides amounts to 20-60%. The box south of the Alps imports polluted air from northern Italy. Thus, oxidized nitrogen is not exported but a net production of ozone still occurs at a rate of 1-2 ppb h -1. The interpolated flow and concentration fields are decomposed into the mean over a box-boundary and the deviation from that mean. This allows isolation of the contribution of local circulations and large-scale turbulence to the total flux. It is shown how the local thermotopographic circulations increasingly dominate the transport as typical Alpine topography is approached. Even over the Swiss Plateau, approximately 20 km away from Alpine topography

  18. Analytical calculations of neutron slowing down and transport in the constant-cross-section problem

    International Nuclear Information System (INIS)

    Cacuci, D.G.

    1978-01-01

    Some aspects of the problem of neutron slowing down and transport in an infinite medium consisting of a single nuclide that scatters elastically and isotropically and has energy-independent cross sections were investigated. The method of singular eigenfunctions was applied to the Boltzmann equation governing the Laplace transform (with respect to the lethargy variable) of the neutron flux. A new sufficient condition for the convergence of the coefficients of the expansion of the scattering kernel in Legendre polynomials was rigorously derived for this energy-dependent problem. Formulas were obtained for the lethargy-dependent spatial moments of the scalar flux that are valid for medium to large lethargies. In deriving these formulas, use was made of the well-known connection between the spatial moments of the Laplace-transformed scalar flux and the moments of the flux in the ''eigenvalue space.'' The calculations were greatly aided by the construction of a closed general expression for these ''eigenvalue space'' moments. Extensive use was also made of the methods of combinatorial analysis and of computer evaluation, via FORMAC, of complicated sequences of manipulations. For the case of no absorption it was possible to obtain for materials of any atomic weight explicit corrections to the age-theory formulas for the spatial moments M/sub 2n/(u) of the scalar flux that are valid through terms of the order of u -5 . The evaluation of the coefficients of the powers of n, as explicit functions of the nuclear mass, is one of the end products of this investigation. In addition, an exact expression for the second spatial moment, M 2 (u), valid for arbitrary (constant) absorption, was derived. It is now possible to calculate analytically and rigorously the ''age'' for the constant-cross-section problem for arbitrary (constant) absorption and nuclear mass. 5 figures, 1 table

  19. Analytical calculations of neutron slowing down and transport in the constant-cross-section problem

    International Nuclear Information System (INIS)

    Cacuci, D.G.

    1978-04-01

    Aspects of the problem of neutron slowing down and transport in an infinite medium consisting of a single nuclide that scatters elastically and isotropically and has energy-independent cross sections were investigated. The method of singular eigenfunctions was applied to the Boltzmann Equation governing the Laplace transform (with respect to the lethargy variable) of the neutron flux. A new sufficient condition for the convergence of the coefficients of the expansion of the scattering kernel in Legendre polynomials was rigorously derived for this energy-dependent problem. Formulas were obtained for the lethargy-dependent spatial moments of the scalar flux that are valid for medium to large lethargies. Use was made of the well-known connection between the spatial moments of the Laplace-transformed scalar flux and the moments of the flux in the ''eigenvalue space.'' The calculations were aided by the construction of a closed general expression for these ''eigenvalue space'' moments. Extensive use was also made of the methods of combinatorial analysis and of computer evaluation of complicated sequences of manipulations. For the case of no absorption it was possible to obtain for materials of any atomic weight explicit corrections to the age-theory formulas for the spatial moments M/sub 2n/(u) of the scalar flux that are valid through terms of the order of u -5 . The evaluation of the coefficients of the powers of n, as explicit functions of the nuclear mass, represent one of the end products of this investigation. In addition, an exact expression for the second spatial moment, M 2 (u), valid for arbitrary (constant) absorption, was derived. It is now possible to calculate analytically and rigorously the ''age'' for the constant-cross-section problem for arbitrary (constant) absorption and nuclear mass. 5 figures, 1 table

  20. Analytical calculations of neutron slowing down and transport in the constant-cross-section problem

    Energy Technology Data Exchange (ETDEWEB)

    Cacuci, D.G.

    1978-04-01

    Aspects of the problem of neutron slowing down and transport in an infinite medium consisting of a single nuclide that scatters elastically and isotropically and has energy-independent cross sections were investigated. The method of singular eigenfunctions was applied to the Boltzmann Equation governing the Laplace transform (with respect to the lethargy variable) of the neutron flux. A new sufficient condition for the convergence of the coefficients of the expansion of the scattering kernel in Legendre polynomials was rigorously derived for this energy-dependent problem. Formulas were obtained for the lethargy-dependent spatial moments of the scalar flux that are valid for medium to large lethargies. Use was made of the well-known connection between the spatial moments of the Laplace-transformed scalar flux and the moments of the flux in the ''eigenvalue space.'' The calculations were aided by the construction of a closed general expression for these ''eigenvalue space'' moments. Extensive use was also made of the methods of combinatorial analysis and of computer evaluation of complicated sequences of manipulations. For the case of no absorption it was possible to obtain for materials of any atomic weight explicit corrections to the age-theory formulas for the spatial moments M/sub 2n/(u) of the scalar flux that are valid through terms of the order of u/sup -5/. The evaluation of the coefficients of the powers of n, as explicit functions of the nuclear mass, represent one of the end products of this investigation. In addition, an exact expression for the second spatial moment, M/sub 2/(u), valid for arbitrary (constant) absorption, was derived. It is now possible to calculate analytically and rigorously the ''age'' for the constant-cross-section problem for arbitrary (constant) absorption and nuclear mass. 5 figures, 1 table.

  1. Calculation of channels for forming and transport of medical proton beams at the JINR phasotron

    International Nuclear Information System (INIS)

    Kuz'min, E.S.; Mirokhin, I.V.; Molokanov, A.G.; Obukhov, Yu.L.; Savchenko, O.V.

    1984-01-01

    Results of numerical simulation of shaping and transporting processes of therapeutic proton beams with a modified Bragg curve at the JINR phasotron are presented. The mean energy of proton beams are about 100, 130 and 200 MeV. To provide the flat-topped depth-dose distributions with a steep back slope, the method of shaping with a necessary energy spectrum from a nonmonoenergetic beam is used. It is shown by the calculations that it is possible to choose such modes of the channel operation at which clinical-physical requirements to the parameters of medical proton beams are satisfied. Extensions of flat-tops of dose peaks are 1.3 g/cm 2 , 1.7 g/cm 2 and 3.5 g/cm 2 for the 100 MeV, 130 MeV and 200 MeV beam energies, respectively. Dose rate in the peaks of modified distributions are not less than 100 rad per minute

  2. Bedrock Kd data and uncertainty assessment for application in SR-Site geosphere transport calculations

    International Nuclear Information System (INIS)

    Crawford, James

    2010-12-01

    The safety assessment SR-Site is undertaken to assess the safety of a potential geologic repository for spent nuclear fuel at the Forsmark and Laxemar sites. The present report is one of several reports that form the data input to SR-Site and contains a compilation of recommended K d data (i.e. linear partitioning coefficients) for safety assessment modelling of geosphere radionuclide transport. The data are derived for rock types and groundwater compositions distinctive of the site investigation areas at Forsmark and Laxemar. Data have been derived for all elements and redox states considered of importance for far-field dose estimates as described in /SKB 2010d/. The K d data are given in the form of lognormal distributions characterised by a mean (μ) and standard deviation (σ). Upper and lower limits for the uncertainty range of the recommended data are defined by the 2.5% and 97.5% percentiles of the empirical data sets. The best estimate K d value for use in deterministic calculations is given as the median of the K d distribution

  3. Electronic structure calculations of atomic transport properties in uranium dioxide: influence of strong correlations

    International Nuclear Information System (INIS)

    Dorado, B.

    2010-09-01

    Uranium dioxide UO 2 is the standard nuclear fuel used in pressurized water reactors. During in-reactor operation, the fission of uranium atoms yields a wide variety of fission products (FP) which create numerous point defects while slowing down in the material. Point defects and FP govern in turn the evolution of the fuel physical properties under irradiation. In this study, we use electronic structure calculations in order to better understand the fuel behavior under irradiation. In particular, we investigate point defect behavior, as well as the stability of three volatile FP: iodine, krypton and xenon. In order to take into account the strong correlations of uranium 5f electrons in UO 2 , we use the DFT+U approximation, based on the density functional theory. This approximation, however, creates numerous metastable states which trap the system and induce discrepancies in the results reported in the literature. To solve this issue and to ensure the ground state is systematically approached as much as possible, we use a method based on electronic occupancy control of the correlated orbitals. We show that the DFT+U approximation, when used with electronic occupancy control, can describe accurately point defect and fission product behavior in UO 2 and provide quantitative information regarding point defect transport properties in the oxide fuel. (author)

  4. Selection of distribution coefficients for contaminant fate and transport calculations: Strontium as a case study

    International Nuclear Information System (INIS)

    Kaplan, D.I.; Krupka, K.M.; Serne, R.J.

    1997-01-01

    As part of an ongoing project funded by a cooperative effort involving the Office of Radiation and Indoor Air (ORIA) of the U.S. Environmental Protection Agency (EPA), the Office of Environmental Restoration (EM-40) of the Department of Energy (DOE), and the Nuclear Regulatory Agency (NRC), distribution coefficient (K d ) values are being compiled from the literature to develop provisional tables for cadmium, cesium, chromium, lead, plutonium, strontium, thorium, and uranium. The tables are organized according to important aqueous- and solid-phase parameters affecting the sorption of these contaminants. These parameters, which vary with contaminant, include pH and redox conditions; cation exchange capacity (CEC); presence of iron-oxide, aluminum-oxide, clay, and mica minerals; organic matter content; and solution concentrations of contaminants, competing ions, and complexing ligands. Sorption information compiled for strontium is used to illustrate our approach. The strontium data show how selected geochemical parameters (i.e., CEC, pH, and clay content) affect Strontium K d values and the selection of open-quote default close-quote K d values needed for modeling contaminant transport and risks at sites for which site specific data are lacking. Results of our evaluation may be used by site management and technical staff to assess contaminant fate, migration, and risk calculations in support of site remediation and waste management decisions

  5. The algorithm of numerical calculation of constraints reactions in a dynamic system of transport machine

    Science.gov (United States)

    Akhtulov, A. L.

    2018-01-01

    The questions of construction and practical application of the automation system for the design of components and aggregates for the construction of transport vehicles are considered, taking into account their dynamic characteristics. Based on the results of the studies, a unified method for determining the reactions of bonds of a complex spatial structure is proposed. The technique, based on the method of substructures, allows us to determine the values of the transfer functions taking into account the reactions of the bonds. After the carried out researches it is necessary to note, that such approach gives the most satisfactory results and can be used for calculations of complex mechanical systems of machines and units of different purposes. The directions of increasing the degree of validity of technical decisions are shown, especially in the early stages of design, when the cost of errors is high, with careful thorough working out of all the elements of the design, which is really feasible only on the basis of automation of design and technological work.

  6. Statistical evaluation of population data for calculation of radioactive material transport accident risks

    International Nuclear Information System (INIS)

    Mills, G.S.; Neuhauser, K.S.

    1999-01-01

    Calculation of accident dose-risk estimates with the RADTRAN code requires input data describing the population likely to be affected by the plume of radioactive material (RAM) released in a hypothetical transportation accident. In the existing model, population densities within 1/2 mile (0.8 km) of the route centerline are tabulated in three ranges (Rural, Suburban, and Urban). These population densities may be of questionable validity since the plume in the RADTRAN analysis is assumed to extend out to 120 km from the hypothetical accident site. The authors present a GIS-based population model which accounts for the actual distribution of population under a potential plume, and compare accident-risk estimates based on the resulting population densities with those based on the existing model. Results for individual points along a route differ greatly, but the cumulative accident risks for a sample route of a few hundred kilometers are found to be comparable, if not identical. The authors conclude, therefore, that for estimation of aggregate accident risks over typical routes of several hundred kilometers, the existing, simpler RADTRAN model is sufficiently detailed and accurate

  7. Comparison of the ESTRO formalism for monitor unit calculation with a Clarkson based algorithm of a treatment planning system and a traditional ''full-scatter'' methodology

    International Nuclear Information System (INIS)

    Pirotta, M.; Aquilina, D.; Bhikha, T.; Georg, D.

    2005-01-01

    The ESTRO formalism for monitor unit (MU) calculations was evaluated and implemented to replace a previous methodology based on dosimetric data measured in a full-scatter phantom. This traditional method relies on data normalised at the depth of dose maximum (z m ), as well as on the utilisation of the BJR 25 table for the conversion of rectangular fields into equivalent square fields. The treatment planning system (TPS) was subsequently updated to reflect the new beam data normalised at a depth z R of 10 cm. Comparisons were then carried out between the ESTRO formalism, the Clarkson-based dose calculation algorithm on the TPS (with beam data normalised at z m and z R ), and the traditional ''full-scatter'' methodology. All methodologies, except for the ''full-scatter'' methodology, separated head-scatter from phantom-scatter effects and none of the methodologies; except for the ESTRO formalism, utilised wedge depth dose information for calculations. The accuracy of MU calculations was verified against measurements in a homogeneous phantom for square and rectangular open and wedged fields, as well as blocked open and wedged fields, at 5, 10, and 20 cm depths, under fixed SSD and isocentric geometries for 6 and 10 MV. Overall, the ESTRO Formalism showed the most accurate performance, with the root mean square (RMS) error with respect to measurements remaining below 1% even for the most complex beam set-ups investigated. The RMS error for the TPS deteriorated with the introduction of a wedge, with a worse RMS error for the beam data normalised at z m (4% at 6 MV and 1.6% at 10 MV) than at z R (1.9% at 6 MV and 1.1% at 10 MV). The further addition of blocking had only a marginal impact on the accuracy of this methodology. The ''full-scatter'' methodology showed a loss in accuracy for calculations involving either wedges or blocking, and performed worst for blocked wedged fields (RMS errors of 7.1% at 6 MV and 5% at 10 MV). The origins of these discrepancies were

  8. Towards quantitative accuracy in first-principles transport calculations: The GW method applied to alkane/gold junctions

    DEFF Research Database (Denmark)

    Strange, Mikkel; Thygesen, Kristian Sommer

    2011-01-01

    The calculation of the electronic conductance of nanoscale junctions from first principles is a long-standing problem in the field of charge transport. Here we demonstrate excellent agreement with experiments for the transport properties of the gold/alkanediamine benchmark system when electron......-electron interactions are described by th=e many-body GW approximation. The conductance follows an exponential length dependence: Gn = Gc exp(-βn). The main difference from standard density functional theory (DFT) calculations is a significant reduction of the contact conductance, Gc, due to an improved alignment...

  9. Comparison of Space Radiation Calculations from Deterministic and Monte Carlo Transport Codes

    Science.gov (United States)

    Adams, J. H.; Lin, Z. W.; Nasser, A. F.; Randeniya, S.; Tripathi, r. K.; Watts, J. W.; Yepes, P.

    2010-01-01

    The presentation outline includes motivation, radiation transport codes being considered, space radiation cases being considered, results for slab geometry, results from spherical geometry, and summary. ///////// main physics in radiation transport codes hzetrn uprop fluka geant4, slab geometry, spe, gcr,

  10. Nuclear data for fusion: Validation of typical pre-processing methods for radiation transport calculations

    International Nuclear Information System (INIS)

    Hutton, T.; Sublet, J.C.; Morgan, L.; Leadbeater, T.W.

    2015-01-01

    Highlights: • We quantify the effect of processing nuclear data from ENDF to ACE format. • We consider the differences between fission and fusion angular distributions. • C-nat(n,el) at 2.0 MeV has a 0.6% deviation between original and processed data. • Fe-56(n,el) at 14.1 MeV has a 11.0% deviation between original and processed data. • Processed data do not accurately depict ENDF distributions for fusion energies. - Abstract: Nuclear data form the basis of the radiation transport codes used to design and simulate the behaviour of nuclear facilities, such as the ITER and DEMO fusion reactors. Typically these data and codes are biased towards fission and high-energy physics applications yet are still applied to fusion problems. With increasing interest in fusion applications, the lack of fusion specific codes and relevant data libraries is becoming increasingly apparent. Industry standard radiation transport codes require pre-processing of the evaluated data libraries prior to use in simulation. Historically these methods focus on speed of simulation at the cost of accurate data representation. For legacy applications this has not been a major concern, but current fusion needs differ significantly. Pre-processing reconstructs the differential and double differential interaction cross sections with a coarse binned structure, or more recently as a tabulated cumulative distribution function. This work looks at the validity of applying these processing methods to data used in fusion specific calculations in comparison to fission. The relative effects of applying this pre-processing mechanism, to both fission and fusion relevant reaction channels are demonstrated, and as such the poor representation of these distributions for the fusion energy regime. For the nat C(n,el) reaction at 2.0 MeV, the binned differential cross section deviates from the original data by 0.6% on average. For the 56 Fe(n,el) reaction at 14.1 MeV, the deviation increases to 11.0%. We

  11. Search for methods and materials for practical use of residential radiation doses calculated via a standardized local methodology

    International Nuclear Information System (INIS)

    Cho, D.; Rhee, I.; Lee, G.-B.

    2003-01-01

    The aim of this work is on determination of standard parameters for computing residential doses per year near the nuclear power plants with consideration of local circumstances in Korea that may not be similar to those in the foreign developed power plants. All the data presented here was originated from four Korean nuclear power plants that are located along the seashore in the south provinces of Korea. We have selected critical nuclei, pathways and human organs related to the human exposure via simulated estimation with K-DOSE 60 based on the updated ICRP-60 with laborious addition of experimental input from key other Korean nuclear research organizations. From those results, we found that 1) the critical nuclides were found to be 3 H, 133 Xe, 60 Co for Kori plant and 14 C, 41 Ar for Wolsung plant. The most critical pathway was 'vegetable intake' for adults and 'milk intake' for infants. However, there was no preference in the effective organs, and 2) sensitivity analyses showed that the chemical composition in a nuclide much more influenced upon the radiation dose than any other input parameters such as food intake, radiation discharge, and transfer/concentration coefficients by more than 102 factor. The effect of transfer/concentration coefficients on the radiation dose was negligible. All input parameters showed highly estimated correlation with the radiation dose, approximated to 1.0, except for food intake in Wolsung power plant (partial correlation coefficient (PCC)=0.877). Consequently, we suggest that a prediction model or scenarios for food intake reflecting the current living trend and formal publications including details of chemical components in the critical nuclei from each plant are needed. Also, standardized domestic values of the parameters used in the calculation must replace the values of the existed or default-set imported factors via properly designed experiments and/or modelling such as transport of liquid discharge in waters nearby the

  12. QmeQ 1.0: An open-source Python package for calculations of transport through quantum dot devices

    DEFF Research Database (Denmark)

    Kiršanskas, Gediminas; Pedersen, Jonas Nyvold; Karlström, Olov

    2017-01-01

    QmeQ is an open-source Python package for numerical modeling of transport through quantum dot devices with strong electron–electron interactions using various approximate master equation approaches. The package provides a framework for calculating stationary particle or energy currents driven...

  13. Improvements in practical applicability of NSHEX: nodal transport calculation code for three-dimensional hexagonal-Z geometry

    Energy Technology Data Exchange (ETDEWEB)

    Sugino, Kazuteru [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1998-07-01

    As a tool to perform a fast reactor core calculations with high accuracy, NSHEX the nodal transport calculation code for three-dimensional hexagonal-Z geometry is under development. To improve the practical applicability of NSHEX, for instance, in its application to safety analysis and commercial reactor core design studies, we investigated the basic theory used in it, improved the program performance, and evaluated its applicability to the analysis of commercial reactor cores. The current studies show the following: (1) An improvement in the treatment of radial leakage in the radial nodal coupling equation bettered calculational convergence for safety analysis calculation, so the applicability of NSHEX to safety analysis was improved. (2) As a result of comparison of results from NSHEX and the standard core calculation code, it was confirmed that there was consistency between them. (3) According to the evaluation of the effect due to the difference of calculational condition, it was found that the calculation under appropriate nodal expansion orders and Sn orders correspond to the one under most detailed condition. However further investigation is required to reduce the uncertainty in calculational results due to the treatment of high order flux moments. (4) A whole core version of NSHEX enabling calculation for any FBR core geometry has been developed, this improved general applicability of NSHEX. (5) An investigation of the applicability of the rebalance method to acceleration clarified that this improved calculational convergence and it was effective. (J.P.N.)

  14. Multigroup multi-layer models of neutron reflection and transmission for reactor transport calculations with anisotropic scattering

    International Nuclear Information System (INIS)

    Abreu, Marcos Pimenta de

    2006-01-01

    In this article, we extend the one-speed multi-layer models to neutron reflection and transmission developed in our earlier work (de Abreu, M.P., 2005. Multi-layer models to neutron reflection and transmission for whole-core transport calculations, Annals of Nuclear Energy 32, 215) to multigroup transport theory. We begin by considering a two-layer boundary region, and we develop for such a region discrete ordinates models to the diffuse reflection and transmission of neutrons for multigroup nuclear reactor core problems with anisotropic scattering. We perform numerical experiments to show that our models to neutron reflection and transmission can be used to replace efficiently and accurately two nonactive boundary layers in whole-core transport calculations. We conclude this article with an inductive extension of our two-layer results to a boundary region with an arbitrary number of layers

  15. Validation the methodology calculate critical position of control rods to the critical facility IPEN/MB-01

    International Nuclear Information System (INIS)

    Lopez Aldama, D.; Rodriguez Gual, R.

    1998-01-01

    Presently work intends to validate the models and programs used in the Nuclear Technology Center for calculating the critical position of control rods by means of the analysis of the measurements performed at the critical facility IPEN/MB-01. The lattice calculations were carried out with the WIMS/D4 code and for the global calculations the diffusion code SNAP-3D was used

  16. Development of a Quantitative Methodology to Assess the Impacts of Urban Transport Interventions and Related Noise on Well-Being

    Directory of Open Access Journals (Sweden)

    Matthias Braubach

    2015-05-01

    Full Text Available Well-being impact assessments of urban interventions are a difficult challenge, as there is no agreed methodology and scarce evidence on the relationship between environmental conditions and well-being. The European Union (EU project “Urban Reduction of Greenhouse Gas Emissions in China and Europe” (URGENCHE explored a methodological approach to assess traffic noise-related well-being impacts of transport interventions in three European cities (Basel, Rotterdam and Thessaloniki linking modeled traffic noise reduction effects with survey data indicating noise-well-being associations. Local noise models showed a reduction of high traffic noise levels in all cities as a result of different urban interventions. Survey data indicated that perception of high noise levels was associated with lower probability of well-being. Connecting the local noise exposure profiles with the noise-well-being associations suggests that the urban transport interventions may have a marginal but positive effect on population well-being. This paper also provides insight into the methodological challenges of well-being assessments and highlights the range of limitations arising from the current lack of reliable evidence on environmental conditions and well-being. Due to these limitations, the results should be interpreted with caution.

  17. Development of a quantitative methodology to assess the impacts of urban transport interventions and related noise on well-being.

    Science.gov (United States)

    Braubach, Matthias; Tobollik, Myriam; Mudu, Pierpaolo; Hiscock, Rosemary; Chapizanis, Dimitris; Sarigiannis, Denis A; Keuken, Menno; Perez, Laura; Martuzzi, Marco

    2015-05-26

    Well-being impact assessments of urban interventions are a difficult challenge, as there is no agreed methodology and scarce evidence on the relationship between environmental conditions and well-being. The European Union (EU) project "Urban Reduction of Greenhouse Gas Emissions in China and Europe" (URGENCHE) explored a methodological approach to assess traffic noise-related well-being impacts of transport interventions in three European cities (Basel, Rotterdam and Thessaloniki) linking modeled traffic noise reduction effects with survey data indicating noise-well-being associations. Local noise models showed a reduction of high traffic noise levels in all cities as a result of different urban interventions. Survey data indicated that perception of high noise levels was associated with lower probability of well-being. Connecting the local noise exposure profiles with the noise-well-being associations suggests that the urban transport interventions may have a marginal but positive effect on population well-being. This paper also provides insight into the methodological challenges of well-being assessments and highlights the range of limitations arising from the current lack of reliable evidence on environmental conditions and well-being. Due to these limitations, the results should be interpreted with caution.

  18. I-44 and I-55 Corridors Major Transportation Investment Analysis: Option Scoping and Evaluation Methodology Report

    Science.gov (United States)

    1995-08-28

    The 1-44/1-55 Major Transportation Investment Analysis (MTIA) has advanced to the analysis stage having completed the first round of scoping meetings with Advisory Committees and the public. This report summarizes the results of scoping activities to...

  19. Fostering child-centred approaches to transport research, planning and policy development: a pilot methodology

    CSIR Research Space (South Africa)

    Mashiri, M

    2007-01-01

    Full Text Available countries, this is a surprising oversight. Much of our knowledge of children and transport is gleaned from observation and anecdotal evidence. There has been little systematic study of the issues. Children are not seriously considered stakeholders...

  20. Evaluating department of transportation's research program : a methodology and case study.

    Science.gov (United States)

    2012-06-01

    An effective research program within a transportation organization can be a valuable asset to accomplish the goals of the overall : mission. Determining whether a research program is pursuing relevant research projects and obtaining results for the s...

  1. A Methodology for Calculating Prestige Ranks of Academic Journals in Communication: A More Inclusive Alternative to Citation Metrics

    Science.gov (United States)

    Stephen, Timothy D.

    2011-01-01

    The problem of how to rank academic journals in the communication field (human interaction, mass communication, speech, and rhetoric) is one of practical importance to scholars, university administrators, and librarians, yet there is no methodology that covers the field's journals comprehensively and objectively. This article reports a new ranking…

  2. Indirect calculation of monoclonal antibodies in nanoparticles using the radiolabeling process with technetium 99 metastable as primary factor: Alternative methodology for the entrapment efficiency.

    Science.gov (United States)

    Helal-Neto, Edward; Cabezas, Santiago Sánchez; Sancenón, Félix; Martínez-Máñez, Ramón; Santos-Oliveira, Ralph

    2018-05-10

    The use of monoclonal antibodies (Mab) in the current medicine is increasing. Antibody-drug conjugates (ADCs) represents an increasingly and important modality for treating several types of cancer. In this area, the use of Mab associated with nanoparticles is a valuable strategy. However, the methodology used to calculate the Mab entrapment, efficiency and content is extremely expensive. In this study we developed and tested a novel very simple one-step methodology to calculate monoclonal antibody entrapment in mesoporous silica (with magnetic core) nanoparticles using the radiolabeling process as primary methodology. The magnetic core mesoporous silica were successfully developed and characterised. The PXRD analysis at high angles confirmed the presence of magnetic cores in the structures and transmission electron microscopy allowed to determine structures size (58.9 ± 8.1 nm). From the isotherm curve, a specific surface area of 872 m 2 /g was estimated along with a pore volume of 0.85 cm 3 /g and an average pore diameter of 3.15 nm. The radiolabeling process to proceed the indirect determination were well-done. Trastuzumab were successfully labeled (>97%) with Tc-99m generating a clear suspension. Besides, almost all the Tc-99m used (labeling the trastuzumab) remained trapped in the surface of the mesoporous silica for a period as long as 8 h. The indirect methodology demonstrated a high entrapment in magnetic core mesoporous silica surface of Tc-99m-traztuzumab. The results confirmed the potential use from the indirect entrapment efficiency methodology using the radiolabeling process, as a one-step, easy and cheap methodology. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. An Air Traffic Emission Inventory for Denmark in 1997 using the Detailed CORINAIR Calculation Methodology - and Suggestions for Improvements

    DEFF Research Database (Denmark)

    Winther, M.

    1999-01-01

    The Conference was arranged by the Technical University Graz. Institute for Internal Combustion Engines and Thermodynamics and INRETS (Institut National de Recherche sur les Transports et leur Sécurité, France) in co-operation with the European Commission DG VII.......The Conference was arranged by the Technical University Graz. Institute for Internal Combustion Engines and Thermodynamics and INRETS (Institut National de Recherche sur les Transports et leur Sécurité, France) in co-operation with the European Commission DG VII....

  4. Methodology for Calculating Cost-per-Mile for Current and Future Vehicle Powertrain Technologies, with Projections to 2024: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, M.; Timbario, T. A.; Timbario, T. J.; Laffen, M.

    2011-01-01

    Currently, several cost-per-mile calculators exist that can provide estimates of acquisition and operating costs for consumers and fleets. However, these calculators are limited in their ability to determine the difference in cost per mile for consumer versus fleet ownership, to calculate the costs beyond one ownership period, to show the sensitivity of the cost per mile to the annual vehicle miles traveled (VMT), and to estimate future increases in operating and ownership costs. Oftentimes, these tools apply a constant percentage increase over the time period of vehicle operation, or in some cases, no increase in direct costs at all over time. A more accurate cost-per-mile calculator has been developed that allows the user to analyze these costs for both consumers and fleets. The calculator was developed to allow simultaneous comparisons of conventional light-duty internal combustion engine (ICE) vehicles, mild and full hybrid electric vehicles (HEVs), and fuel cell vehicles (FCVs). This paper is a summary of the development by the authors of a more accurate cost-per-mile calculator that allows the user to analyze vehicle acquisition and operating costs for both consumer and fleets. Cost-per-mile results are reported for consumer-operated vehicles travelling 15,000 miles per year and for fleets travelling 25,000 miles per year.

  5. Aero-Mechanical Design Methodology for Subsonic Civil Transport High-Lift Systems

    Science.gov (United States)

    vanDam, C. P.; Shaw, S. G.; VanderKam, J. C.; Brodeur, R. R.; Rudolph, P. K. C.; Kinney, D.

    2000-01-01

    In today's highly competitive and economically driven commercial aviation market, the trend is to make aircraft systems simpler and to shorten their design cycle which reduces recurring, non-recurring and operating costs. One such system is the high-lift system. A methodology has been developed which merges aerodynamic data with kinematic analysis of the trailing-edge flap mechanism with minimum mechanism definition required. This methodology provides quick and accurate aerodynamic performance prediction for a given flap deployment mechanism early on in the high-lift system preliminary design stage. Sample analysis results for four different deployment mechanisms are presented as well as descriptions of the aerodynamic and mechanism data required for evaluation. Extensions to interactive design capabilities are also discussed.

  6. Discrete nodal integral transport-theory method for multidimensional reactor physics and shielding calculations

    International Nuclear Information System (INIS)

    Lawrence, R.D.; Dorning, J.J.

    1980-01-01

    A coarse-mesh discrete nodal integral transport theory method has been developed for the efficient numerical solution of multidimensional transport problems of interest in reactor physics and shielding applications. The method, which is the discrete transport theory analogue and logical extension of the nodal Green's function method previously developed for multidimensional neutron diffusion problems, utilizes the same transverse integration procedure to reduce the multidimensional equations to coupled one-dimensional equations. This is followed by the conversion of the differential equations to local, one-dimensional, in-node integral equations by integrating back along neutron flight paths. One-dimensional and two-dimensional transport theory test problems have been systematically studied to verify the superior computational efficiency of the new method

  7. Framework of calculating the measures of resilience (MOR) for intermodal transportation systems.

    Science.gov (United States)

    2010-07-01

    Recent catastrophic events, such as Hurricane Katrina, have accentuated the value of measures of resilience (MOR) for the response and : restoration of transportation systems following a disaster and have therefore become a topic of great concern for...

  8. Infrastructure expenditures and costs. Practical guidelines to calculate total infrastructure costs for five modes of transport. Final report

    International Nuclear Information System (INIS)

    2005-11-01

    Transport infrastructures in general, and the Trans European Transport Network (TEN-T) in particular, play an important role in achieving the medium and long-term objectives of the European Union. In view of this, the Commission has recently adopted a revision of the guidelines for the TEN-T. The main consequences of this revision are the need for a better understanding of the investments made by the member states in the TEN-T and the need for ensuring optimal consistency in the reporting by the Members States of such investments. With Regulation number 1108/70 the Council of the European Communities introduced an accounting system for expenditure on infrastructure in respect of transport by rail, road and inland waterways. The purpose of this regulation is to introduce a standard and permanent accounting system for infrastructure expenditures. However maritime and aviation infrastructure were not included. Further, the need for an effective and easy to apply classification for infrastructure investments concerning all five transport modes was still pending. Therefore, DG TREN has commissioned ECORYS Transport and CE Delft to study the expenditures and costs of infrastructure, to propose an adequate classification of expenditures, and to propose a method for translating data on expenditures into data on costs. The objectives of the present study are threefold: To set out a classification of infrastructure expenditures, in order to increase knowledge of expenditures related to transport infrastructures. This classification should support a better understanding of fixed and variable infrastructure costs; To detail the various components of such expenditures for five modes of transportation, which would enable the monitoring of infrastructure expenditures and costs; and to set up a methodology to move from annual series of expenditures to costs, including fixed and variable elements.

  9. Lead emissions from road transport in Europe. A revision of current estimates using various estimation methodologies

    NARCIS (Netherlands)

    Denier van der Gon, H.A.C.; Appelman, W.

    2009-01-01

    Large-scale use of leaded gasoline was an important source of the neurotoxin lead in the European environment. After a sequence of regulations on the allowed gasoline lead content and, eventually, a ban on the use of lead additives in gasoline, road transport was no longer considered a source of

  10. Modeling transport pricing with multiple stakeholders. Working paper : Methodology and a case study

    NARCIS (Netherlands)

    Smits, E.

    2012-01-01

    Pricing measures (e.g., a kilometre charge or cordon toll) are used to improve the external effects of transportation (e.g., congestion or emissions). This working paper presents a planning model for pricing while taking the preferences and interactions of multiple stakeholders (e.g., governments or

  11. Improving Emergency Department radiology transportation time: a successful implementation of lean methodology.

    Science.gov (United States)

    Hitti, Eveline A; El-Eid, Ghada R; Tamim, Hani; Saleh, Rana; Saliba, Miriam; Naffaa, Lena

    2017-09-05

    Emergency Department overcrowding has become a global problem and a growing safety and quality concern. Radiology and laboratory turnaround time, ED boarding and increased ED visits are some of the factors that contribute to ED overcrowding. Lean methods have been used in the ED to address multiple flow challenges from improving door-to-doctor time to reducing length of stay. The objective of this study is to determine the effectiveness of using Lean management methods on improving Emergency Department transportation times for plain radiography. We performed a before and after study at an academic urban Emergency Department with 49,000 annual visits after implementing a Lean driven intervention. The primary outcome was mean radiology transportation turnaround time (TAT). Secondary outcomes included overall study turnaround time from order processing to preliminary report time as well as ED length of stay. All ED patients undergoing plain radiography 6 months pre-intervention were compared to all ED patients undergoing plain radiography 6 months post-intervention after a 1 month washout period. Post intervention there was a statistically significant decrease in the mean transportation TAT (mean ± SD: 9.87 min ± 15.05 versus 22.89 min ± 22.05, respectively, p-value transportation TAT ≤ 10 min, as compared to 32.3% in the pre-intervention period, p-value transportation time to plain radiography in the Emergency Department as well as improving process reliability.

  12. A new methodology for determination of macroscopic transport parameters in drying porous media

    Science.gov (United States)

    Attari Moghaddam, A.; Kharaghani, A.; Tsotsas, E.; Prat, M.

    2015-12-01

    Two main approaches have been used to model the drying process: The first approach considers the partially saturated porous medium as a continuum and partial differential equations are used to describe the mass, momentum and energy balances of the fluid phases. The continuum-scale models (CM) obtained by this approach involve constitutive laws which require effective material properties, such as the diffusivity, permeability, and thermal conductivity which are often determined by experiments. The second approach considers the material at the pore scale, where the void space is represented by a network of pores (PN). Micro- or nanofluidics models used in each pore give rise to a large system of ordinary differential equations with degrees of freedom at each node of the pore network. In this work, the moisture transport coefficient (D), the pseudo desorption isotherm inside the network and at the evaporative surface are estimated from the post-processing of the three-dimensional pore network drying simulations for fifteen realizations of the pore space geometry from a given probability distribution. A slice sampling method is used in order to extract these parameters from PN simulations. The moisture transport coefficient obtained in this way is shown in Fig. 1a. The minimum of average D values demonstrates the transition between liquid dominated moisture transport region and vapor dominated moisture transport region; a similar behavior has been observed in previous experimental findings. A function is fitted to the average D values and then is fed into the non-linear moisture diffusion equation. The saturation profiles obtained from PN and CM simulations are shown in Fig. 1b. Figure 1: (a) extracted moisture transport coefficient during drying for fifteen realizations of the pore network, (b) average moisture profiles during drying obtained from PN and CM simulations.

  13. First-principle calculations of the Berry curvature of Bloch states for charge and spin transport of electrons.

    Science.gov (United States)

    Gradhand, M; Fedorov, D V; Pientka, F; Zahn, P; Mertig, I; Györffy, B L

    2012-05-30

    Recent progress in wave packet dynamics based on the insight of Berry pertaining to adiabatic evolution of quantum systems has led to the need for a new property of a Bloch state, the Berry curvature, to be calculated from first principles. We report here on the response to this challenge by the ab initio community during the past decade. First we give a tutorial introduction of the conceptual developments we mentioned above. Then we describe four methodologies which have been developed for first-principle calculations of the Berry curvature. Finally, to illustrate the significance of the new developments, we report some results of calculations of interesting physical properties such as the anomalous and spin Hall conductivity as well as the anomalous Nernst conductivity and discuss the influence of the Berry curvature on the de Haas-van Alphen oscillation.

  14. Calculation of coal resources using ARC/INFO and Earth Vision; methodology for the National Coal Resource Assessment

    Science.gov (United States)

    Roberts, L.N.; Biewick, L.R.

    1999-01-01

    This report documents a comparison of two methods of resource calculation that are being used in the National Coal Resource Assessment project of the U.S. Geological Survey (USGS). Tewalt (1998) discusses the history of using computer software packages such as GARNET (Graphic Analysis of Resources using Numerical Evaluation Techniques), GRASS (Geographic Resource Analysis Support System), and the vector-based geographic information system (GIS) ARC/INFO (ESRI, 1998) to calculate coal resources within the USGS. The study discussed here, compares resource calculations using ARC/INFO* (ESRI, 1998) and EarthVision (EV)* (Dynamic Graphics, Inc. 1997) for the coal-bearing John Henry Member of the Straight Cliffs Formation of Late Cretaceous age in the Kaiparowits Plateau of southern Utah. Coal resource estimates in the Kaiparowits Plateau using ARC/INFO are reported in Hettinger, and others, 1996.

  15. "Multiscale Capabilities for Exploring Transport Phenomena in Batteries": Ab Initio Calculations on Defective LiFePO4

    Energy Technology Data Exchange (ETDEWEB)

    Kanai, Yosuke [Univ. of North Carolina, Chapel Hill, NC (United States); Tang, M [Univ. of North Carolina, Chapel Hill, NC (United States); Wood, B C [Univ. of North Carolina, Chapel Hill, NC (United States)

    2013-10-25

    We have began the project “Multiscale Capability for Exploring Transport Phenomena in Battery”, which is sponsored by Laboratory Directed Research and Development Program at Lawrence Livermore National Laboratory in February 2012 as the subcontract was approved. We have been performing first-principles quantum-mechanical calculations to first establish the general modeling framework. It was found that it is essential to employ advanced Density Functional Theory (DFT) calculations with Hubbard U correction, in order to describe the battery material, in particular, LiFePO4 (Figure 1). The presence of localized d-electrons at Fe ion sites requires the better treatment of non-local correlation beyond that of standard DFT. As our aim was to first identify and investigate key transport/reaction mechanisms affecting the performance of Lithium-ion based batteries, we have began out work by characterizing the standard structures and how the defects influence the important electronic structure.

  16. Calculations of Heat and Vapour Transport in Clothing: Transient Effects in Hygroscopic Materials

    Science.gov (United States)

    1980-10-01

    prises en considfration, ,eme si lea propriftfs hygroscopiques sont consid&rfes tris Alimentaires . Les calculs ont 6tg comparls A ceux des exp~riences de...calculated heat flows for wool drop off very slowly as the absorbed water evaporates. The calculation for polyester gives a steady additional heat loss for... additional explanatoriy 4 DESiCqlP1 lyE NOTES EntertIhi i:;iiiloiy ofl document. e~g notes. lechnisil ieport, technical note oi technic~ial lettei. It

  17. Program analysis methodology Office of Transportation Technologies: Quality Metrics final report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2002-03-01

    "Quality Metrics" is the analytical process for measuring and estimating future energy, environmental and economic benefits of US DOE Office of Energy Efficiency and Renewable Energy (EE/RE) programs. This report focuses on the projected benefits of the programs currently supported by the Office of Transportation Technologies (OTT) within EE/RE. For analytical purposes, these various benefits are subdivided in terms of Planning Units which are related to the OTT program structure.

  18. Hybrid variational principles and synthesis method for finite element neutron transport calculations

    International Nuclear Information System (INIS)

    Ackroyd, R.T.; Nanneh, M.M.

    1990-01-01

    A family of hybrid variational principles is derived using a generalised least squares method. Neutron conservation is automatically satisfied for the hybrid principles employing two trial functions. No interfaces or reflection conditions need to be imposed on the independent even-parity trial function. For some hybrid principles a single trial function can be employed by relating one parity trial function to the other, using one of the parity transport equation in relaxed form. For other hybrid principles the trial functions can be employed sequentially. Synthesis of transport solutions, starting with the diffusion theory approximation, has been used as a way of reducing the scale of the computation that arises with established finite element methods for neutron transport. (author)

  19. The use of symbolic computation in radiative, energy, and neutron transport calculations

    Science.gov (United States)

    Frankel, J. I.

    This investigation uses symbolic computation in developing analytical methods and general computational strategies for solving both linear and nonlinear, regular and singular, integral and integro-differential equations which appear in radiative and combined mode energy transport. This technical report summarizes the research conducted during the first nine months of the present investigation. The use of Chebyshev polynomials augmented with symbolic computation has clearly been demonstrated in problems involving radiative (or neutron) transport, and mixed-mode energy transport. Theoretical issues related to convergence, errors, and accuracy have also been pursued. Three manuscripts have resulted from the funded research. These manuscripts have been submitted to archival journals. At the present time, an investigation involving a conductive and radiative medium is underway. The mathematical formulation leads to a system of nonlinear, weakly-singular integral equations involving the unknown temperature and various Legendre moments of the radiative intensity in a participating medium. Some preliminary results are presented illustrating the direction of the proposed research.

  20. Hepatic transporter drug-drug interactions: an evaluation of approaches and methodologies.

    Science.gov (United States)

    Williamson, Beth; Riley, Robert J

    2017-12-01

    Drug-drug interactions (DDIs) continue to account for 5% of hospital admissions and therefore remain a major regulatory concern. Effective, quantitative prediction of DDIs will reduce unexpected clinical findings and encourage projects to frontload DDI investigations rather than concentrating on risk management ('manage the baggage') later in drug development. A key challenge in DDI prediction is the discrepancies between reported models. Areas covered: The current synopsis focuses on four recent influential publications on hepatic drug transporter DDIs using static models that tackle interactions with individual transporters and in combination with other drug transporters and metabolising enzymes. These models vary in their assumptions (including input parameters), transparency, reproducibility and complexity. In this review, these facets are compared and contrasted with recommendations made as to their application. Expert opinion: Over the past decade, static models have evolved from simple [I]/k i models to incorporate victim and perpetrator disposition mechanisms including the absorption rate constant, the fraction of the drug metabolised/eliminated and/or clearance concepts. Nonetheless, models that comprise additional parameters and complexity do not necessarily out-perform simpler models with fewer inputs. Further, consideration of the property space to exploit some drug target classes has also highlighted the fine balance required between frontloading and back-loading studies to design out or 'manage the baggage'.

  1. Development of Waste Acceptance Criteria at 221-U Building: Initial Flow and Transport Scoping Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Freedman, Vicky L.; Zhang, Z. F.; Keller, Jason M.; Chen, Yousu

    2007-05-30

    This report documents numerical flow and transport simulations performed that establish initial waste acceptance criteria for the potential waste streams that may be safely sequestered in the 221-U Building and similar canyon structures. Specifically, simulations were executed to identify the maximum loading of contaminant mass (without respect to volume) that can be emplaced within the 221-U Building with no more than 1 pCi/m2 of contaminant migrating outside the structure within a 1,000 year time period. The initial scoping simulations were executed in one dimension to assess important processes, and then two dimensions to establish waste acceptance criteria. Two monolithic conditions were assessed: (1) a grouted canyon monolith; and (2) a canyon monolith filled with sand, both assuming no cracks or fissures were present to cause preferential transport. A three-staged approach was taken to account for different processes that may impact the amount of contaminant that can be safely sequestered in canyon structure. In the first stage, flow and transport simulations established waste acceptance criteria based on a linear (Kd) isotherm approach. In the second stage, impacts on thermal loading were examined and the differences in waste acceptance criteria quantified. In the third stage of modeling, precipitation/dissolution reactions were considered on the release and transport of the contaminants, and the subsequent impact on the maximum contaminant loading. The reactive transport modeling is considered a demonstration of the reactive transport capability, and shows the importance of its use for future performance predictions once site-specific data have been obtained.

  2. Integral transport multiregion geometrical shadowing factor for the approximate collision probability matrix calculation of infinite closely packed lattices

    International Nuclear Information System (INIS)

    Jowzani-Moghaddam, A.

    1981-01-01

    An integral transport method of calculating the geometrical shadowing factor in multiregion annular cells for infinite closely packed lattices in cylindrical geometry is developed. This analytical method has been programmed in the TPGS code. This method is based upon a consideration of the properties of the integral transport method for a nonuniform body, which together with Bonalumi's approximations allows the determination of the approximate multiregion collision probability matrix for infinite closely packed lattices with sufficient accuracy. The multiregion geometrical shadowing factors have been calculated for variations in fuel pin annular segment rings in a geometry of annular cells. These shadowing factors can then be used in the calculation of neutron transport from one annulus to another in an infinite lattice. The result of this new geometrical shadowing and collision probability matrix are compared with the Dancoff-Ginsburg correction and the probability matrix using constant shadowing on Yankee fuel elements in an infinite lattice. In these cases the Dancoff-Ginsburg correction factor and collision probability matrix using constant shadowing are in difference by at most 6.2% and 6%, respectively

  3. A novel method to calculate the extent and amount of drug transported into CSF after intranasal administration.

    Science.gov (United States)

    Shi, Zhenqi; Zhang, Qizhi; Jiang, Xinguo

    2005-01-31

    The aim of this paper is to establish a novel method to calculate the extent and amount of drug transported to brain after administration. The cerebrospinal fluid (CSF) was chosen as the target region. The intranasal administration of meptazinol hydrochloride (MEP) was chosen as the model administration and intravenous administration was selected as reference. According to formula transform, the extent was measured by the equation of X(A)CSF, infinity/X0 = Cl(CSF) AUC(0-->infinity)CSF/X0 and the drug amount was calculated by multiplying the dose with the extent. The drug clearance in CSF (Cl(CSF)) was calculated by a method, in which a certain volume of MEP solution was injected directly into rat cistern magna and then clearance was assessed as the reciprocal of the zeroth moment of a CSF level-time curve normalized for dose. In order to testify the accurateness of the method, 14C-sucrose was chosen as reference because of its impermeable characteristic across blood-brain barrier (BBB). It was found out that the MEP concentrations in plasma and CSF after intranasal administration did not show significant difference with those after intravenous administration. However, the extent and amount of MEP transported to CSF was significantly lower compared with those to plasma after these two administrations. In conclusion, the method can be applied to measure the extent and amount of drug transported to CSF, which would be useful to evaluate brain-targeting drug delivery.

  4. Inelastic transport theory from first principles: Methodology and application to nanoscale devices

    DEFF Research Database (Denmark)

    Frederiksen, Thomas; Paulsson, Magnus; Brandbyge, Mads

    2007-01-01

    the density-functional codes SIESTA and TRANSIESTA that use atomic basis sets. The inelastic conductance characteristics are calculated using the nonequilibrium Green’s function formalism, and the electron-phonon interaction is addressed with perturbation theory up to the level of the self-consistent Born...

  5. LASER-R a computer code for reactor cell and burnup calculations in neutron transport theory

    International Nuclear Information System (INIS)

    Cristian, I.; Cirstoiu, B.; Dumitrache, I.; Cepraga, D.

    1976-04-01

    The LASER-R code is an IBM 370/135 version of the Westinghouse code, LASER, based on the THERMOS and MUFT codes developped by Poncelet. It can be used to perform thermal reactor cell calculations and burnup calculations. The cell exhibits 3-4 concentric areas: fuel, cladding, moderator and scattering ring. Besides directions for use, a short description of the physical model, numerical methods and output is presented

  6. Multigroup transport calculations of critical and fuel assemblies with taking into account the scattering anisotropy

    International Nuclear Information System (INIS)

    Rubin, I.E.; Dneprovskaya, N.M.

    2005-01-01

    A technique for calculation of reactor lattices by means of the transmission probabilities with taking into account the scattering anisotropy is generalized for the multigroup case. The errors of the calculated multiplication coefficients and energy release distributions do noe exceed practically the errors, of these values, obtained by the Monte Carlo method. The proposed method is most effective when determining the small difference effects [ru

  7. Computational complexity in multidimensional neutron transport theory calculations. Progress report, September 1976--November 30, 1977

    International Nuclear Information System (INIS)

    Bareiss, E.H.

    1977-08-01

    The objectives of this research are to develop mathematically and computationally founded criteria for the design of highly efficient and reliable multidimensional neutron transport codes to solve a variety of neutron migration and radiation problems, and to analyze existing and new methods for performance

  8. Application of artificial intelligence techniques to the acceleration of Monte Carlo transport calculations

    International Nuclear Information System (INIS)

    Maconald, J.L.; Cashwell, E.D.

    1978-09-01

    The techniques of learning theory and pattern recognition are used to learn splitting surface locations for the Monte Carlo neutron transport code MCN. A study is performed to determine default values for several pattern recognition and learning parameters. The modified MCN code is used to reduce computer cost for several nontrivial example problems

  9. The use of symbolic computation in radiative, energy, and neutron transport calculations. Final report

    International Nuclear Information System (INIS)

    Frankel, J.I.

    1997-01-01

    This investigation used sysmbolic manipulation in developing analytical methods and general computational strategies for solving both linear and nonlinear, regular and singular integral and integro-differential equations which appear in radiative and mixed-mode energy transport. Contained in this report are seven papers which present the technical results as individual modules

  10. Procedures for estimating the radiation dose in the vicinity of uranium mines and mills by direct calculation methodology

    International Nuclear Information System (INIS)

    Coelho, C.P.

    1983-01-01

    A methodology for estimating the radiation doses to the members of the general public, in the vicinity of uranium mines and mills is presented. The data collected in the surveys performed to characterize the neighborhood of the site, and used in this work to estimate the radiation dose, are required by the Regulatory Body, for the purpose of Licensing. Initially, a description is shown of the main processing steps to obtain the uranium concentrate and the critical instalation radionuclides are identified. Following, some studies required to characterize the facility neighborhood are presented, specially those related to geography, demography, metheorology, hydrology and environmental protection. Also, the basic programs for monitoring the facility neighborhood in the pre-operational and operational phases are included. It is then proposed a procedure to estimate inhalation, ingestion and external doses. As an example, the proposed procedure is applied to a hypotetical site. Finally, some aspects related to the applicability of this work are discussed. (Author) [pt

  11. The dynamics of structures - Necessity and methodology for amendment by comparing the calculated model with experimental model

    International Nuclear Information System (INIS)

    Caneparo, B.; Zirilli, S.

    1987-01-01

    In this work relating to support structures for seismic tests, the authors present a mixed procedure necessitating the experimental measurement of natural frequencies, dampings, and the response to impulse stresses (in the case of a seismic stress, the subject of this study, a single impulse is sufficient) in the zone in question. Experimental measurements are used to adjust the finite elements model; it may then be used for later studies. In the presence of interaction with structures not included in the model, such as, for example, the means used for the actual test, it is impossible to adjust it according to the methods proposed and it is up to the experienced author to introduce the modifications judged opportune to take into account everything which is not a part of the model. The authors have, however, carried out a programme based on the local modification of Young's module, which uses only natural frequencies, useful in the adjustment process. Once the zone of poor modelling has been found, this programme enables optimizing the value of E as a function of the experimental data, whilst also furnishing an estimate of residual differences. Dynamic tests have shown that the model thus obtained can be refined by the forced impulse to an impulse stress. In addition to setting out the theories and formulae used, we then give account of verification of the methodology using a plate, and of its application to a support structure in the form of a frame for seismic tests. The appendices include both experimental measurements and tests. The authors carried out the modal analysis with even greater care than necessary in view of the methodology verification phase

  12. User's guide to PHREEQC, a computer program for speciation, reaction-path, advective-transport, and inverse geochemical calculations

    Science.gov (United States)

    Parkhurst, D.L.

    1995-01-01

    PHREEQC is a computer program written in the C pwgranuning language that is designed to perform a wide variety of aqueous geochemical calculations. PHREEQC is based on an ion-association aqueous model and has capabilities for (1) speciation and saturation-index calculations, (2) reaction-path and advective-transport calculations involving specified irreversible reactions, mixing of solutions, mineral and gas equilibria surface-complex-ation reactions, and ion-exchange reactions, and (3) inverse modeling, which finds sets of mineral and gas mole transfers that account for composition differences between waters, within specified compositional uncertainties. PHREEQC is derived from the Fortran program PHREEQE, but it has been completely rewritten in C with the addition many new capabilities. New features include the capabilities to use redox couples to distribute redox elements among their valence states in speciation calculations; to model ion-exchange and surface-compiexation reactions; to model reactions with a fixed-pressure, multicomponent gas phase (that is, a gas bubble); to calculate the mass of water in the aqueous phase during reaction and transport calculations; to keep track of the moles of minerals present in the solid phases and determine antomaticaHy the thermodynamically stable phase assemblage; to simulate advective transport in combination with PHREEQC's reaction-modeling capability; and to make inverse modeling calculations that allow for uncertainties in the analytical data. The user interface is improved through the use of a simplified approach to redox reactions, which includes explicit mole-balance equations for hydrogen and oxygen; the use of a revised input that is modular and completely free format; and the use of mineral names and standard chemical symbolism rather than index numbers. The use of (2 eliminates nearly all limitations on army sizes, including numbers of elements, aqueous species, solutions, phases, and lengths of character

  13. Electronic and thermoelectric properties of InN studied using ab initio density functional theory and Boltzmann transport calculations

    Energy Technology Data Exchange (ETDEWEB)

    Borges, P. D., E-mail: pdborges@gmail.com, E-mail: lscolfaro@txstate.edu; Scolfaro, L., E-mail: pdborges@gmail.com, E-mail: lscolfaro@txstate.edu [Department of Physics, Texas State University, San Marcos, Texas 78666 (United States)

    2014-12-14

    The thermoelectric properties of indium nitride in the most stable wurtzite phase (w-InN) as a function of electron and hole concentrations and temperature were studied by solving the semiclassical Boltzmann transport equations in conjunction with ab initio electronic structure calculations, within Density Functional Theory. Based on maximally localized Wannier function basis set and the ab initio band energies, results for the Seebeck coefficient are presented and compared with available experimental data for n-type as well as p-type systems. Also, theoretical results for electric conductivity and power factor are presented. Most cases showed good agreement between the calculated properties and experimental data for w-InN unintentionally and p-type doped with magnesium. Our predictions for temperature and concentration dependences of electrical conductivity and power factor revealed a promising use of InN for intermediate and high temperature thermoelectric applications. The rigid band approach and constant scattering time approximation were utilized in the calculations.

  14. Calculations of reactivity based in the solution of the Neutron transport equation in X Y geometry and Lineal perturbation theory

    International Nuclear Information System (INIS)

    Valle G, E. del; Mugica R, C.A.

    2005-01-01

    In our country, in last congresses, Gomez et al carried out reactivity calculations based on the solution of the diffusion equation for an energy group using nodal methods in one dimension and the TPL approach (Lineal Perturbation Theory). Later on, Mugica extended the application to the case of multigroup so much so much in one as in two dimensions (X Y geometry) with excellent results. Presently work is carried out similar calculations but this time based on the solution of the neutron transport equation in X Y geometry using nodal methods and again the TPL approximation. The idea is to provide a calculation method that allows to obtain in quick form the reactivity solving the direct problem as well as the enclosed problem of the not perturbed problem. A test problem for the one that results are provided for the effective multiplication factor is described and its are offered some conclusions. (Author)

  15. Soil heterogeneity effects on water and solute transport. Methodological comparison in different climates

    Energy Technology Data Exchange (ETDEWEB)

    Yasuda, Hiroshi

    1996-11-01

    Spatial heterogeneity of soils is important to consider for soil water and solute transport. The results of the present work indicated that spatial heterogeneity affects all investigated soils and for widely varying climates. Both soil water content and temperature patterns for a bare and vegetated transect in a typical sand dune area in China indicated preferential transport of soil water after rainfall. Infiltrating soil water appeared to follow paths that had high water content before the rainfall. The effect of rainfall was therefore not a larger uniformity of soil water, but rather increasing variability. Preferential flow was observed by tracer and dye in Tunisia. The experimental data indicated a high degree of bypass or preferential flow within small plots and non-sigmoid breakthrough curves suggesting tailing phenomena and immobile fractions of soil water. The groundwater tracer concentration increased up to twice the concentration of the water in the unsaturated zone withdrawn from different depths. This consequently shows that bypass directly to the groundwater occurred also for unsaturated conditions. Soil layering appeared to be a significant cause for preferential flow for both sand and clay soils. The results also showed great variability for hydraulic properties in terms of van Genuchten parameters for a small plot in a temperate climate. The present work supports the dual-porosity hypothesis. But findings also indicate that the observation scale is important to consider when averaging the process in time and space. 95 refs, 7 figs, 1 tab

  16. A parametric transfer function methodology for analyzing reactive transport in nonuniform flow.

    Science.gov (United States)

    Luo, Jian; Cirpka, Olaf A; Fienen, Michael N; Wu, Wei-min; Mehlhorn, Tonia L; Carley, Jack; Jardine, Philip M; Criddle, Craig S; Kitanidis, Peter K

    2006-02-01

    We analyze reactive transport during in-situ bioremediation in a nonuniform flow field, involving multiple extraction and injection wells, by the method of transfer functions. Gamma distributions are used as parametric models of the transfer functions. Apparent parameters of classical transport models may be estimated from those of the gamma distributions by matching temporal moments. We demonstrate the method by application to measured data taken at a field experiment on bioremediation conducted in a multiple-well system in Oak Ridge, TN. Breakthrough curves (BTCs) of a conservative tracer (bromide) and a reactive compound (ethanol) are measured at multi-level sampling (MLS) wells and in extraction wells. The BTCs of both compounds are jointly analyzed to estimate the first-order degradation rate of ethanol. To quantify the tracer loss, we compare the approaches of using a scaling factor and a first-order decay term. Results show that by including a scaling factor both gamma distributions and inverse-Gaussian distributions (transfer functions according to the advection-dispersion equation) are suitable to approximate the transfer functions and estimate the reactive rate coefficients for both MLS and extraction wells. However, using a first-order decay term for tracer loss fails to describe the BTCs at the extraction well, which is affected by the nonuniform distribution of travel paths.

  17. Vectorization of nuclear codes for atmospheric transport and exposure calculation of radioactive materials

    International Nuclear Information System (INIS)

    Asai, Kiyoshi; Shinozawa, Naohisa; Ishikawa, Hirohiko; Chino, Masamichi; Hayashi, Takashi

    1983-02-01

    Three computer codes MATHEW, ADPIC of LLNL and GAMPUL of JAERI for prediction of wind field, concentration and external exposure rate of airborne radioactive materials are vectorized and the results are presented. Using the continuous equation of incompressible flow as a constraint, the MATHEW calculates the three dimensional wind field by a variational method. Using the particle-in -cell method, the ADPIC calculates the advection and diffusion of radioactive materials in three dimensional wind field and terrain, and gives the concentration of the materials in each cell of the domain. The GAMPUL calculates the external exposure rate assuming Gaussian plume type distribution of concentration. The vectorized code MATHEW attained 7.8 times speedup by a vector processor FACOM230-75 APU. The ADPIC and GAMPUL are estimated to attain 1.5 and 4 times speedup respectively on CRAY-1 type vector processor. (author)

  18. Transport calculations of gamma ray flux density and dose rate about implantable californium-252 sources.

    Science.gov (United States)

    Shapiro, A; Lin, B I; Windham, J P; Kereiakes, J G

    1976-07-01

    Gamma flux density and dose rate distributions have been calculated about implantable californium-252 sources for an infinite tissue medium. Point source flux densities as a function of energy and position were obtained from a discrete-ordinates calculation, and the flux densities were multiplied by their corresponding kerma factors and added to obtain point source dose rates. The point dose rates were integrated over the line source to obtain line source dose rates. Container attenuation was accounted for by evaluating the point dose rate as a function of platinum thickness. Both primary and secondary flux densities and dose rates are presented. The agreement with an independent Monte Carlo calculation was excellent. The data presented should be useful for the design of new source configurations.

  19. Data sets for hydrogen reflection and their use in neutral transport calculations

    International Nuclear Information System (INIS)

    Eckstein, W.; Heifetz, D.B.

    1986-08-01

    A realistic characterization of the interaction of ions and neutral particles with device walls is important for any edge plasma calculation. Present reflection models vary in detail and computational efficiency. This paper presents a data set for the distribution of the reflection coefficient, R N , over reflected energy, polar, and azimuthal angles, as functions of incident polar angle and energy. These results have been computed using a vectorized version of the TRIM Monte Carlo code. The data are stored using an algorithm for reducing the data into three one-dimensional distributions, resulting in a realistic reflection model which can be used very efficiently in plasma edge calculations. (orig.)

  20. Use of coupled geochemical and transport calculations for nuclear waste problems

    International Nuclear Information System (INIS)

    Neretnieks, I.; Nyman, C.

    1993-01-01

    The dissolution and migration of radionuclides from a final repository for radioactive waste is complex chemically. The dissolution and release rates depend on the chemistry and on advective and diffusive transport. The presence of the waste may influence the chemistry by e.g. radiolysis which may change the solubility of several important nuclides as well as of the uranium of the waste matrix itself, if it is spent fuel. Redox and other fronts may evolve in the backfill and rock around the waste. Similar processes have been observed in natural systems. The evolution of a redox front in a uranium mine over long times and distances is used as an example to test the capability and illustrate the use of some coupled transport and chemical codes

  1. Monte Carlo method for neutron transport calculations in graphics processing units (GPUs)

    International Nuclear Information System (INIS)

    Pellegrino, Esteban

    2011-01-01

    Monte Carlo simulation is well suited for solving the Boltzmann neutron transport equation in an inhomogeneous media for complicated geometries. However, routine applications require the computation time to be reduced to hours and even minutes in a desktop PC. The interest in adopting Graphics Processing Units (GPUs) for Monte Carlo acceleration is rapidly growing. This is due to the massive parallelism provided by the latest GPU technologies which is the most promising solution to the challenge of performing full-size reactor core analysis on a routine basis. In this study, Monte Carlo codes for a fixed-source neutron transport problem were developed for GPU environments in order to evaluate issues associated with computational speedup using GPUs. Results obtained in this work suggest that a speedup of several orders of magnitude is possible using the state-of-the-art GPU technologies. (author) [es

  2. An Inverse Model for Calculation of Global Volume Transport from Wind and Hydrographic Data

    Science.gov (United States)

    2007-01-01

    differentiation of (22) with respect to x gives the volume transport vorticity equation, j2C ¼ b Ah ðV−Vden−VbÞ− 1Ahq0 Asy Ax − Asx Ay þ AQ2 Ax − AQ1 Ay...q0 : ð31Þ Similarly, (30) becomes bðV−Vden−VbÞ ¼ 1q0 Asy Ax − Asx Ay ; ð32Þ which is the Sverdrup relation. In (31), (Uden, Vden) depend on

  3. Calculations in two-group neutron transport theory with isotropic-and linearly anisotropic scattering

    International Nuclear Information System (INIS)

    Pessine, E.J.

    1978-01-01

    Typical half-space problems in two-group neutron transport theory are solved numerically using the singular-eigenfunction-expansion technique, considering isotropic-and linearly anisotropic scattering. Numerical results are reported for the Albedo, Milne and Constant-Source problems in a half-space pure light-water medium using isotropic scattering data set of Metacalf and Zweifel and considering various degrees of anisotropy [pt

  4. Determination of uncertainties in the calculation of dose rates at transport and storage casks; Unsicherheiten bei der Berechnung von Dosisleistungen an Transport- und Lagerbehaeltern

    Energy Technology Data Exchange (ETDEWEB)

    Schloemer, Luc Laurent Alexander

    2014-12-17

    The compliance with the dose rate limits for transport and storage casks (TLB) for spent nuclear fuel from pressurised water reactors can be proved by calculation. This includes the determination of the radioactive sources and the shielding-capability of the cask. In this thesis the entire computational chain, which extends from the determination of the source terms to the final Monte-Carlo-transport-calculation is analysed and the arising uncertainties are quantified not only by benchmarks but also by variational calculi. The background of these analyses is that the comparison with measured dose rates at different TLBs shows an overestimation by the values calculated. Regarding the studies performed, the overestimation can be mainly explained by the detector characteristics for the measurement of the neutron dose rate and additionally in case of the gamma dose rates by the energy group structure, which the calculation is based on. It turns out that the consideration of the uncertainties occurring along the computational chain can lead to even greater overestimation. Concerning the dose rate calculation at cask loadings with spent uranium fuel assemblies an uncertainty of (({sup +21}{sub -28}) ±2) % (rel.) for the total gamma dose rate and of ({sup +28±23}{sub -55±4}) % (rel.) for the total neutron dose rate are estimated. For mixed-loadings with spent uranium and MOX fuel assemblies an uncertainty of ({sup +24±3}{sub -27±2}) % (rel.) for the total gamma dose rate and of ({sup +28±23}{sub -55±4}) % (rel.) for the total neutron dose rate are quantified. The results show that the computational chain has not to be modified, because the calculations performed lead to conservative dose rate predictions, even if high uncertainties at neutron dose rate measurements arise. Thus at first the uncertainties of the neutron dose rate measurement have to be decreased to enable a reduction of the overestimation of the calculated dose rate afterwards. In the present thesis

  5. ALBEMO, a program for the calculation of the radiation transport in void volumes with reflecting walls

    International Nuclear Information System (INIS)

    Mueller, K.; Vossebrecker, H.

    The Monte Carlo Program ALBEMO calculates the distribution of neutrons and gamma rays in void volumes which are bounded by reflecting walls with x, y, z coordinates. The program is based on the albedo method. The effect of significant simplifying assumptions is investigated. Comparisons with experiments show satisfying agreement

  6. Thermodynamic calculations for biochemical transport and reaction processes in metabolic networks

    NARCIS (Netherlands)

    Jol, Stefan J; Kümmel, Anne; Hatzimanikatis, Vassily; Beard, Daniel A; Heinemann, Matthias

    2010-01-01

    Thermodynamic analysis of metabolic networks has recently generated increasing interest for its ability to add constraints on metabolic network operation, and to combine metabolic fluxes and metabolite measurements in a mechanistic manner. Concepts for the calculation of the change in Gibbs energy

  7. Tuning the Transport Properties of Layered Materials for Thermoelectric Applications using First-Principles Calculations

    KAUST Repository

    Saeed, Yasir

    2014-05-11

    Thermoelectric materials can convert waste heat into electric power and thus provide a way to reduce the dependence on fossil fuels. Our aim is to model the underlying materials properties and, in particular, the transport as controlled by electrons and lattice vibrations. The goal is to develop an understanding of the thermoelectric properties of selected materials at a fundamental level. The structural, electronic, optical, and phononic properties are studied in order to tune the transport, focusing on KxRhO2, NaxRhO2, PtSb2 and Bi2Se3. The investigations are based on density functional theory as implemented in the all electron linearized augmented plane wave plus local orbitals WIEN2k and pseudo potential Quantum-ESPRESSO codes. The thermoelectric properties are derived from Boltzmann transport theory under the constant relaxation time approximation, using the BoltzTraP code. We will discuss first the changes in the electronic band structure under variation of the cation concentration in layered KxRhO2 in the 2H phase and NaxRhO2 in the 3R phase. We will also study the hydrated phase. The deformations of the RhO6 octahedra turn out to govern the thermoelectric properties, where the high Seebeck coefficient results from ”pudding mold" bands. We investigate the thermoelectric properties of electron and hole doped PtSb2, which is not a layered material but shares “pudding mold" bands. PtSb2 has a high Seebeck coefficient at room temperature, which increases significantly under As alloying by bandgap opening and reduction of the lattice thermal conductivity. Bi2Se3 (bulk and thin film) has a larger bandgap then the well-known thermoelectric material Bi2Te3, which is important at high temperature. The structural stability, electronic structure, and transport properties of one to six quintuple layers of Bi2Se3 will be discussed. We also address the effect of strain on a single quintuple layer by phonon band structures. We will analyze the electronic and transport

  8. Radiation Transport Calculation of the UGXR Collimators for the Jules Horowitz Reactor (JHR)

    Science.gov (United States)

    Chento, Yelko; Hueso, César; Zamora, Imanol; Fabbri, Marco; Fuente, Cristina De La; Larringan, Asier

    2017-09-01

    Jules Horowitz Reactor (JHR), a major infrastructure of European interest in the fission domain, will be built and operated in the framework of an international cooperation, including the development and qualification of materials and nuclear fuel used in nuclear industry. For this purpose UGXR Collimators, two multi slit gamma and X-ray collimation mechatronic systems, will be installed at the JHR pool and at the Irradiated Components Storage pool. Expected amounts of radiation produced by the spent fuel and X-ray accelerator implies diverse aspects need to be verified to ensure adequate radiological zoning and personnel radiation protection. A computational methodology was devised to validate the Collimators design by means of coupling different engineering codes. In summary, several assessments were performed by means of MCNP5v1.60 to fulfil all the radiological requirements in Nominal scenario (TEDE < 25µSv/h) and in Maintenance scenario (TEDE < 2mSv/h) among others, detailing the methodology, hypotheses and assumptions employed.

  9. Radiation Transport Calculation of the UGXR Collimators for the Jules Horowitz Reactor (JHR

    Directory of Open Access Journals (Sweden)

    Chento Yelko

    2017-01-01

    Full Text Available Jules Horowitz Reactor (JHR, a major infrastructure of European interest in the fission domain, will be built and operated in the framework of an international cooperation, including the development and qualification of materials and nuclear fuel used in nuclear industry. For this purpose UGXR Collimators, two multi slit gamma and X-ray collimation mechatronic systems, will be installed at the JHR pool and at the Irradiated Components Storage pool. Expected amounts of radiation produced by the spent fuel and X-ray accelerator implies diverse aspects need to be verified to ensure adequate radiological zoning and personnel radiation protection. A computational methodology was devised to validate the Collimators design by means of coupling different engineering codes. In summary, several assessments were performed by means of MCNP5v1.60 to fulfil all the radiological requirements in Nominal scenario (TEDE < 25µSv/h and in Maintenance scenario (TEDE < 2mSv/h among others, detailing the methodology, hypotheses and assumptions employed.

  10. Verification & Validation of High-Order Short-Characteristics-Based Deterministic Transport Methodology on Unstructured Grids

    International Nuclear Information System (INIS)

    Azmy, Yousry; Wang, Yaqi

    2013-01-01

    The research team has developed a practical, high-order, discrete-ordinates, short characteristics neutron transport code for three-dimensional configurations represented on unstructured tetrahedral grids that can be used for realistic reactor physics applications at both the assembly and core levels. This project will perform a comprehensive verification and validation of this new computational tool against both a continuous-energy Monte Carlo simulation (e.g. MCNP) and experimentally measured data, an essential prerequisite for its deployment in reactor core modeling. Verification is divided into three phases. The team will first conduct spatial mesh and expansion order refinement studies to monitor convergence of the numerical solution to reference solutions. This is quantified by convergence rates that are based on integral error norms computed from the cell-by-cell difference between the code's numerical solution and its reference counterpart. The latter is either analytic or very fine- mesh numerical solutions from independent computational tools. For the second phase, the team will create a suite of code-independent benchmark configurations to enable testing the theoretical order of accuracy of any particular discretization of the discrete ordinates approximation of the transport equation. For each tested case (i.e. mesh and spatial approximation order), researchers will execute the code and compare the resulting numerical solution to the exact solution on a per cell basis to determine the distribution of the numerical error. The final activity comprises a comparison to continuous-energy Monte Carlo solutions for zero-power critical configuration measurements at Idaho National Laboratory's Advanced Test Reactor (ATR). Results of this comparison will allow the investigators to distinguish between modeling errors and the above-listed discretization errors introduced by the deterministic method, and to separate the sources of uncertainty.

  11. Verification & Validation of High-Order Short-Characteristics-Based Deterministic Transport Methodology on Unstructured Grids

    Energy Technology Data Exchange (ETDEWEB)

    Azmy, Yousry [North Carolina State Univ., Raleigh, NC (United States); Wang, Yaqi [North Carolina State Univ., Raleigh, NC (United States)

    2013-12-20

    The research team has developed a practical, high-order, discrete-ordinates, short characteristics neutron transport code for three-dimensional configurations represented on unstructured tetrahedral grids that can be used for realistic reactor physics applications at both the assembly and core levels. This project will perform a comprehensive verification and validation of this new computational tool against both a continuous-energy Monte Carlo simulation (e.g. MCNP) and experimentally measured data, an essential prerequisite for its deployment in reactor core modeling. Verification is divided into three phases. The team will first conduct spatial mesh and expansion order refinement studies to monitor convergence of the numerical solution to reference solutions. This is quantified by convergence rates that are based on integral error norms computed from the cell-by-cell difference between the code’s numerical solution and its reference counterpart. The latter is either analytic or very fine- mesh numerical solutions from independent computational tools. For the second phase, the team will create a suite of code-independent benchmark configurations to enable testing the theoretical order of accuracy of any particular discretization of the discrete ordinates approximation of the transport equation. For each tested case (i.e. mesh and spatial approximation order), researchers will execute the code and compare the resulting numerical solution to the exact solution on a per cell basis to determine the distribution of the numerical error. The final activity comprises a comparison to continuous-energy Monte Carlo solutions for zero-power critical configuration measurements at Idaho National Laboratory’s Advanced Test Reactor (ATR). Results of this comparison will allow the investigators to distinguish between modeling errors and the above-listed discretization errors introduced by the deterministic method, and to separate the sources of uncertainty.

  12. QmeQ 1.0: An open-source Python package for calculations of transport through quantum dot devices

    Science.gov (United States)

    Kiršanskas, Gediminas; Pedersen, Jonas Nyvold; Karlström, Olov; Leijnse, Martin; Wacker, Andreas

    2017-12-01

    QmeQ is an open-source Python package for numerical modeling of transport through quantum dot devices with strong electron-electron interactions using various approximate master equation approaches. The package provides a framework for calculating stationary particle or energy currents driven by differences in chemical potentials or temperatures between the leads which are tunnel coupled to the quantum dots. The electronic structures of the quantum dots are described by their single-particle states and the Coulomb matrix elements between the states. When transport is treated perturbatively to lowest order in the tunneling couplings, the possible approaches are Pauli (classical), first-order Redfield, and first-order von Neumann master equations, and a particular form of the Lindblad equation. When all processes involving two-particle excitations in the leads are of interest, the second-order von Neumann approach can be applied. All these approaches are implemented in QmeQ. We here give an overview of the basic structure of the package, give examples of transport calculations, and outline the range of applicability of the different approximate approaches.

  13. DOS-HEATING6: A general conduction code with nuclear heat generation derived from DOT-IV transport calculations

    Energy Technology Data Exchange (ETDEWEB)

    Williams, M.L.; Yuecel, A.; Nadkarny, S.

    1988-05-01

    The HEATING6 heat conduction code is modified to (a) read the multigroup particle fluxes from a two-dimensional DOT-IV neutron- photon transport calculation, (b) interpolate the fluxes from the DOT-IV variable (optional) mesh to the HEATING6 control volume mesh, and (c) fold the interpolated fluxes with kerma factors to obtain a nuclear heating source for the heat conduction equation. The modified HEATING6 is placed as a module in the ORNL discrete ordinates system (DOS), and has been renamed DOS-HEATING6. DOS-HEATING6 provides the capability for determining temperature distributions due to nuclear heating in complex, multi-dimensional systems. All of the original capabilities of HEATING6 are retained for the nuclear heating calculation; e.g., generalized boundary conditions (convective, radiative, finned, fixed temperature or heat flux), temperature and space dependent thermal properties, steady-state or transient analysis, general geometry description, etc. The numerical techniques used in the code are reviewed and the user input instructions and JCL to perform DOS-HEATING6 calculations are presented. Finally a sample problem involving coupled DOT-IV and DOS-HEATING6 calculations of a complex space-reactor configurations described, and the input and output of the calculations are listed. 10 refs., 11 figs., 6 tabs.

  14. Calculation Of Aerosol Transport Efficiency For The Airborne Radioiodine Monitoring System - ''RIS125''

    International Nuclear Information System (INIS)

    Kravchik, T.; Levinson, L.; Mazor, Y.; Dolev, E.; German, U.

    1999-01-01

    Radioactive iodine is a typical fission product in nuclear power reactors. Of the many iodine isotopes that can be generated in nuclear reactors only four are considered as radiobiological significant. These are: 125 1 (T 1/2 =60 days), '1 31 I (T 1/2 =8d), 133 I (T 1/2 =21h) and I35 I (T 1/2 7h). The chemical forms that have been identified in heavy water reactors are I 2 (elemental), organic iodides (CH 3 I), Inorganic iodides (HOI, HI) and LiI. Radioiodine is, generally, released as a gas but can be adsorbed on air particulates to form radioiodine contained aerosols. Therefore. its monitoring has to include both gas and aerosol sampling. A new monitoring system, RIS (Radioactive iodine Sampler), has been developed at the NRCN to monitor radioactive iodine (gas and aerosol) on-line in workplaces. This system samples radioiodine at a 60 L/min rate through a transport line connected to a filter holder. The filter consists of a cartridge containing activated charcoal with TEDA for iodine gas adsorption with a membrane for aerosols' retention in from of it. The radioiodine filter cartridge (F and J product code: TE2C) has a diameter of 2 1/4 inch and height of 1 inch . The gas adsorbent is coconut shell carbon type activated charcoal with 5% (by weight) TEDA impregnation and has 30x50 mesh size. This paper presents the aerosols' sampling characteristics of the RIS system including their transport in the sampling line and filter holder. The adsorption of iodine gas on the transport system components is negligible

  15. Some efficient Lagrangian mesh finite elements encoded in ZEPHYR for two dimensional transport calculations

    International Nuclear Information System (INIS)

    Mordant, Maurice.

    1981-04-01

    To solve a multigroup stationary neutron transport equation in two-dimensional geometries (X-Y), (R-O) or (R-Z) generally on uses discrete ordinates and rectangular meshes. The way to do it is then well known, well documented and somewhat obvious. If one needs to treat awkward geometries or distorted meshes, things are not so easy and the way to do it is no longer straightforward. We have studied this problem at Limeil Nuclear Center and as an alternative to Monte Carlo methods and code we have implemented in ZEPHYR code at least two efficient finite element solutions for Lagrangian meshes involving any kind of triangles and quadrilaterals

  16. Comparison of Monte Carlo method and deterministic method for neutron transport calculation

    International Nuclear Information System (INIS)

    Mori, Takamasa; Nakagawa, Masayuki

    1987-01-01

    The report outlines major features of the Monte Carlo method by citing various applications of the method and techniques used for Monte Carlo codes. Major areas of its application include analysis of measurements on fast critical assemblies, nuclear fusion reactor neutronics analysis, criticality safety analysis, evaluation by VIM code, and calculation for shielding. Major techniques used for Monte Carlo codes include the random walk method, geometric expression method (combinatorial geometry, 1, 2, 4-th degree surface and lattice geometry), nuclear data expression, evaluation method (track length, collision, analog (absorption), surface crossing, point), and dispersion reduction (Russian roulette, splitting, exponential transform, importance sampling, corrected sampling). Major features of the Monte Carlo method are as follows: 1) neutron source distribution and systems of complex geometry can be simulated accurately, 2) physical quantities such as neutron flux in a place, on a surface or at a point can be evaluated, and 3) calculation requires less time. (Nogami, K.)

  17. Ab-initio calculations of electronic, transport, and structural properties of boron phosphide

    Energy Technology Data Exchange (ETDEWEB)

    Ejembi, J. I.; Nwigboji, I. H.; Franklin, L.; Malozovsky, Y.; Zhao, G. L.; Bagayoko, D., E-mail: diola-bagayoko@subr.edu [Department of Physics, Southern University and A and M College, Baton Rouge, Louisiana 70813 (United States)

    2014-09-14

    We present results from ab-initio, self-consistent density functional theory calculations of electronic and related properties of zinc blende boron phosphide (zb-BP). We employed a local density approximation potential and implemented the linear combination of atomic orbitals formalism. This technique follows the Bagayoko, Zhao, and Williams method, as enhanced by the work of Ekuma and Franklin. The results include electronic energy bands, densities of states, and effective masses. The calculated band gap of 2.02 eV, for the room temperature lattice constant of a=4.5383 Å, is in excellent agreement with the experimental value of 2.02±0.05 eV. Our result for the bulk modulus, 155.7 GPa, agrees with experiment (152–155 GPa). Our predictions for the equilibrium lattice constant and the corresponding band gap, for very low temperatures, are 4.5269 Å and 2.01 eV, respectively.

  18. Electron transport in a Pt-CO-Pt nanocontact: Density functional theory calculations

    DEFF Research Database (Denmark)

    Strange, Mikkel; Thygesen, Kristian Sommer; Jacobsen, Karsten Wedel

    2006-01-01

    We have performed first-principles calculations for the mechanic and electric properties of pure Pt nanocontacts and a Pt contact with a single CO molecule adsorbed. For the pure Pt contacts we see a clear difference between point contacts and short chains in good agreement with experiments. We i...... of the transmission function for the Pt-CO-Pt contact, and show that the conductance is largely determined by the local d band at the Pt apex atoms....

  19. Two-dimensional discrete ordinates photon transport calculations for brachytherapy dosimetry applications

    International Nuclear Information System (INIS)

    Daskalov, G.M.; Baker, R.S.; Little, R.C.; Rogers, D.W.O.; Williamson, J.F.

    2000-01-01

    The DANTSYS discrete ordinates computer code system is applied to quantitative estimation of water kerma rate distributions in the vicinity of discrete photon sources with energies in the 20- to 800-keV range in two-dimensional cylindrical r-z geometry. Unencapsulated sources immersed in cylindrical water phantoms of 40-cm diameter and 40-cm height are modeled in either homogeneous phantoms or shielded by Ti, Fe, and Pb filters with thicknesses of 1 and 2 mean free paths. The obtained dose results are compared with corresponding photon Monte Carlo simulations. A 210-group photon cross-section library for applications in this energy range is developed and applied, together with a general-purpose 42-group library developed at Los Alamos National Laboratory, for DANTSYS calculations. The accuracy of DANTSYS with the 42-group library relative to Monte Carlo exhibits large pointwise fluctuations from -42 to +84%. The major cause for the observed discrepancies is determined to be the inadequacy of the weighting function used for the 42-group library derivation. DANTSYS simulations with a finer 210-group library show excellent accuracy on and off the source transverse plane relative to Monte Carlo kerma calculations, varying from minus4.9 to 3.7%. The P 3 Legendre polynomial expansion of the angular scattering function is shown to be sufficient for accurate calculations. The results demonstrate that DANTSYS is capable of calculating photon doses in very good agreement with Monte Carlo and that the multigroup cross-section library and efficient techniques for mitigation of ray effects are critical for accurate discrete ordinates implementation

  20. An approach to develop chemical intuition for atomistic electron transport calculations using basis set rotations

    Energy Technology Data Exchange (ETDEWEB)

    Borges, A.; Solomon, G. C. [Department of Chemistry and Nano-Science Center, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen Ø (Denmark)

    2016-05-21

    Single molecule conductance measurements are often interpreted through computational modeling, but the complexity of these calculations makes it difficult to directly link them to simpler concepts and models. Previous work has attempted to make this connection using maximally localized Wannier functions and symmetry adapted basis sets, but their use can be ambiguous and non-trivial. Starting from a Hamiltonian and overlap matrix written in a hydrogen-like basis set, we demonstrate a simple approach to obtain a new basis set that is chemically more intuitive and allows interpretation in terms of simple concepts and models. By diagonalizing the Hamiltonians corresponding to each atom in the molecule, we obtain a basis set that can be partitioned into pseudo-σ and −π and allows partitioning of the Landuaer-Büttiker transmission as well as create simple Hückel models that reproduce the key features of the full calculation. This method provides a link between complex calculations and simple concepts and models to provide intuition or extract parameters for more complex model systems.

  1. Calculating the Contribution Rate of Intelligent Transportation System in Improving Urban Traffic Smooth Based on Advanced DID Model

    Directory of Open Access Journals (Sweden)

    Ming-wei Li

    2015-01-01

    Full Text Available Recent years have witnessed the rapid development of intelligent transportation system around the world, which helps to relieve urban traffic congestion problems. For instance, many mega-cities in China have devoted a large amount of money and resources to the development of intelligent transportation system. This poses an intriguing and important issue: how to measure and quantify the contribution of intelligent transportation system to the urban city, which is still a puzzle. This paper proposes a matching difference-in-difference model to calculate the contribution rate of intelligent transportation system on traffic smoothness. Within the model, the main effect indicators of traffic smoothness are first identified, and then the evaluation index system is built, and finally the ideas of the matching pool are introduced. The proposed model is illustrated in Guangzhou, China (capital city of Guangdong province. The results show that introduction of ITS contributes 9.25% to the improvement of traffic smooth in Guangzhou. Also, the research explains the working mechanism of how ITS improves urban traffic smooth. Eventually, some strategy recommendations are put forward to improve urban traffic smooth.

  2. Response matrix Monte Carlo based on a general geometry local calculation for electron transport

    International Nuclear Information System (INIS)

    Ballinger, C.T.; Rathkopf, J.A.; Martin, W.R.

    1991-01-01

    A Response Matrix Monte Carlo (RMMC) method has been developed for solving electron transport problems. This method was born of the need to have a reliable, computationally efficient transport method for low energy electrons (below a few hundred keV) in all materials. Today, condensed history methods are used which reduce the computation time by modeling the combined effect of many collisions but fail at low energy because of the assumptions required to characterize the electron scattering. Analog Monte Carlo simulations are prohibitively expensive since electrons undergo coulombic scattering with little state change after a collision. The RMMC method attempts to combine the accuracy of an analog Monte Carlo simulation with the speed of the condensed history methods. Like condensed history, the RMMC method uses probability distributions functions (PDFs) to describe the energy and direction of the electron after several collisions. However, unlike the condensed history method the PDFs are based on an analog Monte Carlo simulation over a small region. Condensed history theories require assumptions about the electron scattering to derive the PDFs for direction and energy. Thus the RMMC method samples from PDFs which more accurately represent the electron random walk. Results show good agreement between the RMMC method and analog Monte Carlo. 13 refs., 8 figs

  3. Neutron response of silicon carbide semiconductor detectors from deterministic adjoint transport calculations

    International Nuclear Information System (INIS)

    Rowe, M.; Manalo, K.; Plower, T.; Sjoden, G.

    2009-01-01

    Evaluation of silicon carbide (SiC) semiconductor detectors for use in power monitoring is of significant interest because of their distinct advantages, including small size, small mass, and their inactivity both chemically and neutronically. The main focus of this paper includes evaluating the predicted response of a SiC detector when placed in a 17 x 17 Westinghouse PWR assembly, using the PENTRAN code system for the 3-D deterministic adjoint transport computations. Adjoint transport results indicated maximum adjoint values of 1, 0.507 and 0.308 were obtained for the thermal, epithermal and fast neutron energy groups, respectively. Within a radial distance of 6.08 cm from the SiC detector, local fuel pins contribute 75.33% at this radius within the thermal group response. A total of 35.85% of the response in the epithermal group is accounted for in the same 6.08 cm radius; similarly, 21.58% of the fast group response is accounted for in the same radius. This means that for neutrons, the effective monitoring range of the SiC detectors is on the order of five fuel pins away from the detector; pins outside this range in the fuel lattice are minimally 'seen' by the SiC detector. (authors)

  4. Automation methodologies and large-scale validation for G W : Towards high-throughput G W calculations

    Science.gov (United States)

    van Setten, M. J.; Giantomassi, M.; Gonze, X.; Rignanese, G.-M.; Hautier, G.

    2017-10-01

    The search for new materials based on computational screening relies on methods that accurately predict, in an automatic manner, total energy, atomic-scale geometries, and other fundamental characteristics of materials. Many technologically important material properties directly stem from the electronic structure of a material, but the usual workhorse for total energies, namely density-functional theory, is plagued by fundamental shortcomings and errors from approximate exchange-correlation functionals in its prediction of the electronic structure. At variance, the G W method is currently the state-of-the-art ab initio approach for accurate electronic structure. It is mostly used to perturbatively correct density-functional theory results, but is, however, computationally demanding and also requires expert knowledge to give accurate results. Accordingly, it is not presently used in high-throughput screening: fully automatized algorithms for setting up the calculations and determining convergence are lacking. In this paper, we develop such a method and, as a first application, use it to validate the accuracy of G0W0 using the PBE starting point and the Godby-Needs plasmon-pole model (G0W0GN @PBE) on a set of about 80 solids. The results of the automatic convergence study utilized provide valuable insights. Indeed, we find correlations between computational parameters that can be used to further improve the automatization of G W calculations. Moreover, we find that G0W0GN @PBE shows a correlation between the PBE and the G0W0GN @PBE gaps that is much stronger than that between G W and experimental gaps. However, the G0W0GN @PBE gaps still describe the experimental gaps more accurately than a linear model based on the PBE gaps. With this paper, we hence show that G W can be made automatic and is more accurate than using an empirical correction of the PBE gap, but that, for accurate predictive results for a broad class of materials, an improved starting point or some

  5. RISKIND: A computer program for calculating radiological consequences and health risks from transportation of spent nuclear fuel

    International Nuclear Information System (INIS)

    Yuan, Y.C.; Chen, S.Y.; LePoire, D.J.

    1993-02-01

    This report presents the technical details of RISIUND, a computer code designed to estimate potential radiological consequences and health risks to individuals and the collective population from exposures associated with the transportation of spent nuclear fuel. RISKIND is a user-friendly, semiinteractive program that can be run on an IBM or equivalent personal computer. The program language is FORTRAN-77. Several models are included in RISKIND that have been tailored to calculate the exposure to individuals under various incident-free and accident conditions. The incidentfree models assess exposures from both gamma and neutron radiation and can account for different cask designs. The accident models include accidental release, atmospheric transport, and the environmental pathways of radionuclides from spent fuels; these models also assess health risks to individuals and the collective population. The models are supported by databases that are specific to spent nuclear fuels and include a radionudide inventory and dose conversion factors

  6. RISKIND: A computer program for calculating radiological consequences and health risks from transportation of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Y.C. [Square Y, Orchard Park, NY (United States); Chen, S.Y.; LePoire, D.J. [Argonne National Lab., IL (United States). Environmental Assessment and Information Sciences Div.; Rothman, R. [USDOE Idaho Field Office, Idaho Falls, ID (United States)

    1993-02-01

    This report presents the technical details of RISIUND, a computer code designed to estimate potential radiological consequences and health risks to individuals and the collective population from exposures associated with the transportation of spent nuclear fuel. RISKIND is a user-friendly, semiinteractive program that can be run on an IBM or equivalent personal computer. The program language is FORTRAN-77. Several models are included in RISKIND that have been tailored to calculate the exposure to individuals under various incident-free and accident conditions. The incidentfree models assess exposures from both gamma and neutron radiation and can account for different cask designs. The accident models include accidental release, atmospheric transport, and the environmental pathways of radionuclides from spent fuels; these models also assess health risks to individuals and the collective population. The models are supported by databases that are specific to spent nuclear fuels and include a radionudide inventory and dose conversion factors.

  7. Calculations of hydrogen transport for the simulation of a Sbo in the NPP-L V using the code CFD GASFLOW; Calculos de transporte de hidrogeno para la simulacion de un SBO en la CNLV usando el codigo CFD GASFLOW

    Energy Technology Data Exchange (ETDEWEB)

    Gomez T, A. M.; Xolocostli M, V. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Lopez M, R.; Filio L, C.; Mugica R, C. A. [Comision Nacional de Seguridad Nuclear y Salvaguardias, Dr. Jose Ma. Barragan No. 779, Col. Narvarte, 03020 Mexico D. F. (Mexico); Royl, P., E-mail: armando.gomez@inin.gob.mx [Karlsruhe Institute of Technology, Consultor, Hermann-von-Helmholtz-Platz, D-76344 Eggenstein -Leopoldshafen, Karlsruhe (Germany)

    2013-10-15

    The scenario of electric power total loss in the nuclear power plant of Laguna Verde (NPP-L V) has been analyzed using the code MELCOR previously, until reaching fault conditions of the primary container. A mitigation measure to avoid the loss of the primary contention is the realization of a venting toward the secondary contention (reactor building), however this measure bears the potential explosions occurrence risk when the hydrogen accumulated in the primary container with the oxygen of the reactor building atmosphere reacting. In this work a scenario has been supposed that considers the mentioned venting when the pressure of 4.5 kg/cm{sup 2} is reached in the primary container. The information for the hydrogen like an entrance fact is obtained of the MELCOR results and the hydrogen transport in both contentions is analyzed with the code CFD GASFLOW that allows predicting the detailed distribution of the hydrogen volumetric concentration and the possible detonation of flammability conditions in the reactor building. The results show that the venting will produce detonation conditions in the venting level (level 33) and flammability in the level of the recharge floor. The methodology here described constitutes the base of a detailed calculation system of this type of phenomena that can use to make safety evaluations in the NPP-L V on scenarios that include gases transport. (Author)

  8. A methodology for the evaluation of the turbine jet engine fragment threat to generic air transportable containers

    International Nuclear Information System (INIS)

    Harding, D.C.; Pierce, J.D.

    1993-06-01

    Uncontained, high-energy gas turbine engine fragments are a potential threat to air-transportable containers carried aboard jet aircraft. The threat to a generic example container is evaluated by probability analyses and penetration testing to demonstrate the methodology to be used in the evaluation of a specific container/aircraft/engine combination. Fragment/container impact probability is the product of the uncontained fragment release rate and the geometric probability that a container is in the path of this fragment. The probability of a high-energy rotor burst fragment from four generic aircraft engines striking one of the containment vessels aboard a transport aircraft is approximately 1.2 x 10 -9 strikes/hour. Finite element penetration analyses and tests can be performed to identify specific fragments which have the potential to penetrate a generic or specific containment vessel. The relatively low probability of engine fragment/container impacts is primarily due to the low release rate of uncontained, hazardous jet engine fragments

  9. Transport of solid commodities via freight pipeline: demand analysis methodology. Volume IV. First year final report

    Energy Technology Data Exchange (ETDEWEB)

    Allen, W.B.; Plaut, T.

    1976-07-01

    In order to determine the feasibility of intercity freight pipelines, it was necessary to determine whether sufficient traffic flows currently exist between various origins and destinations to justify consideration of a mode whose operating characteristics became competitive under conditions of high-traffic volume. An intercity origin/destination freight-flow matrix was developed for a large range of commodities from published sources. A high-freight traffic-density corridor between Chicago and New York and another between St. Louis and New York were studied. These corridors, which represented 18 cities, had single-direction flows of 16 million tons/year. If trans-shipment were allowed at each of the 18 cities, flows of up to 38 million tons/year were found in each direction. These figures did not include mineral or agricultural products. After determining that such pipeline-eligible freight-traffic volumes existed, the next step was to determine the ability of freight pipeline to penetrate such markets. Modal-split models were run on aggregate data from the 1967 Census of Transportation. Modal-split models were also run on disaggregate data specially collected for this study. The freight pipeline service characteristics were then substituted into both the aggregate and disaggregate models (truck vs. pipeline and then rail vs. pipeline) and estimates of pipeline penetration into particular STCC commodity groups were made. Based on these very preliminary results, it appears that freight pipeline has market penetration potential that is consistent with high-volume participation in the intercity freight market.

  10. GRUNCLE, 1. Collision Source Calculation for Program DOT. DOT-3.5, 2-D Neutron Transport, Gamma Transport Program DOT with New Space-Scaling

    International Nuclear Information System (INIS)

    1996-01-01

    A - Nature of problem or function: DOT solves the Boltzmann transport equation in two-dimensional geometries. Principal applications are to neutron and/or photon transport, although the code can be applied to transport problems for any particles not subject to external force fields. Both homogeneous and external-source problems can be solved. Searches on multiplication factor, time absorption, nuclide concentration, and zone thickness are available for reactor problems. Numerous edits and output data sets for subsequent use are available. DOT-3.5 improves the space-scaling algorithm. DOT-3.5/CAB contains group by group UPSCATTER scaling method. DUCT calculates perturbations to the scalar flux caused by the presence of ducts filled with coolant. VIP is a program for cross section sensitivity analysis using two- dimensional discrete ordinates transport calculations. DGRAD calculates the directional flux gradients from DOT-3 diffusion theory flux tapes. In conjunction with VIP and TPERT, it allows the use of diffusion theory fluxes to obtain exact and first-order perturbation reactivity changes. In order to calculate the reactivity associated with changes in reactor compositions using diffusion theory, it is necessary to fold not only the scalar fluxes with the appropriate cross sections, but also the average flux gradients with the diffusion coefficients. Since DOT diffusion theory does not directly calculate these gradients, it was necessary to calculate the needed quantities external to the DOT code. TPERT is a perturbation code to obtain exact and first-order reactivity changes. TPERT is coupled to VIP which generates adjoint forward flux tables using DOT-3 scalar flux tape information. GRTUNCL calculates an analytical first-collision source for subsequent use in DOT. B - Method of solution: The method of discrete ordinates is used. Balance equations are solved for the density of particles moving along discrete directions in each cell of a two-dimensional spatial

  11. Self-consistent GW calculations of electronic transport in thiol- and amine-linked molecular junctions

    DEFF Research Database (Denmark)

    Strange, M.; Rostgaard, Carsten; Hakkinen, H.

    2011-01-01

    of benzenedithiol and benzenediamine is one-fifth that predicted by standard density functional theory (DFT), in very good agreement with experiments. In contrast, the widely studied benzenedithiolate structure is found to have a significantly higher conductance due to the unsaturated sulfur bonds. These findings...... (exchange) on the molecule and dynamical screening at the metal-molecule interface. The main effect of the GW self-energy is to renormalize the level positions; however, its influence on the shape of molecular resonances also affects the conductance. Non-self-consistent G(0)W(0) calculations, starting from...

  12. A FIRST APPROXIMATION CALCULATION OF AIR CUSHION CHASSIS WEIGHT OF TRANSPORT AIRPLANE

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available This article describes a first approximation of a weighted estimate of air cushion chassis. The algorithm for calculating the weight of air cushion chassis allows not only to estimate the mass of the chassis to a first approximation, but also to conduct a preliminary analysis of the influence of various parameters of the aircraft and the chassis on the weight of the aircraft at the stage of before designing. The algorithm can be expanded to include additional design decisions, such as the transformation of the fuselage, increasing the air cushion chassis canopy due to extensions, center of gravity, etc.

  13. Calculations of the beam transport through the low energy side of the Lund Pelletron accelerator

    International Nuclear Information System (INIS)

    Dymnikov, A.; Hellborg, R.; Pallon, J.; Skog, G.; Yang, C.

    1993-01-01

    A new recursive technique has been used to solve the equations of motion of charged particles in electric and magnetic fields taking into account the effect of space charge. Based on this technique a computer code has been written and calculations have been carried out for the beam optics, from the ion-source to the terminal, stripper of the Lund Pelletron tandem accelerator. The code has been found capable of describing the beam-optics of the existing setup and will in future be used together with a library of typical field descriptions to design new beam lines. (orig.)

  14. Inelastic Transport through Molecules: Comparing First-Principles Calculations to Experiments

    DEFF Research Database (Denmark)

    Paulsson, Magnus; Frederiksen, Thomas; Brandbyge, Mads

    2006-01-01

    We present calculations of the elastic and inelastic conductance through three different hydrocarbon molecules connected to gold electrodes. Our method is based on a combination of the nonequilibrium Green's function method with density functional theory. Vibrational effects in these molecular...... junctions were previously investigated experimentally by Kushmerick et al. (Nano Leff. 2004, 4, 639). Our results are in good agreement with the measurements and provide insights into (i) which vibrational modes are responsible for inelastic scattering, (ii) the width of the inelastic electron tunneling...

  15. Coarse-mesh rebalance methods compatible with the spherical harmonic fictitious source in neutron transport calculations

    International Nuclear Information System (INIS)

    Miller, W.F. Jr.

    1975-10-01

    The coarse-mesh rebalance method, based on neutron conservation, is used in discrete ordinates neutron transport codes to accelerate convergence of the within-group scattering source. Though very powerful for this application, the method is ineffective in accelerating the iteration on the discrete-ordinates-to-spherical-harmonics fictitious sources used for ray-effect elimination. This is largely because this source makes a minimum contribution to the neutron balance equation. The traditional rebalance approach is derived in a variational framework and compared with new rebalance approaches tailored to be compatible with the fictitious source. The new approaches are compared numerically to determine their relative advantages. It is concluded that there is little incentive to use the new methods. (3 tables, 5 figures)

  16. Improved cache performance in Monte Carlo transport calculations using energy banding

    Science.gov (United States)

    Siegel, A.; Smith, K.; Felker, K.; Romano, P.; Forget, B.; Beckman, P.

    2014-04-01

    We present an energy banding algorithm for Monte Carlo (MC) neutral particle transport simulations which depend on large cross section lookup tables. In MC codes, read-only cross section data tables are accessed frequently, exhibit poor locality, and are typically too much large to fit in fast memory. Thus, performance is often limited by long latencies to RAM, or by off-node communication latencies when the data footprint is very large and must be decomposed on a distributed memory machine. The proposed energy banding algorithm allows maximal temporal reuse of data in band sizes that can flexibly accommodate different architectural features. The energy banding algorithm is general and has a number of benefits compared to the traditional approach. In the present analysis we explore its potential to achieve improvements in time-to-solution on modern cache-based architectures.

  17. [The cost in calculating transport noise disturbances in public decision making].

    Science.gov (United States)

    Quinet, E

    2001-09-01

    The public decision-making methods in transport are based on cost-benefit analysis, by which the consequences of the decision (standards for vehicles, new infrastructures...) are converted in monetary amounts and compared to the cost of implementation of the decision. But some of these consequences, especially those related to environment, are not directly expressed in monetary terms. The article aims at offsetting this difficulty in the case of noise. The possible methods for getting money values of noise are presented; it is shown that the estimates to which they lead are coherent and consistent. Then a comparison is made between the present procedures and the procedures which could be implemented, and it is shown that large gains of efficiency could be obtained.

  18. Ab-initio calculations of the hydrogen-uranium system: Surface phenomena, absorption, transport and trapping

    International Nuclear Information System (INIS)

    Taylor, Christopher D.; Scott Lillard, R.

    2009-01-01

    Density functional theory was applied to the initial steps of uranium hydriding: surface phenomena, absorption, bulk transport and trapping. H adsorbs exothermically to the (0 0 1) surface, yet H absorption into the bulk is endothermic, with off-center octahedral absorption having the lowest absorption energy of 0.39 eV, relative to molecular H 2 . H absorption in interstitial sites causes a local softening of the bulk modulus. Diffusion of H in unstrained α-U has a barrier of 0.6 eV. The energy of H absorption adjacent to the chemical impurities C, S, Si was lowered by an amount proportional to the size of the impurity atom, and the resulting lattice strain Si > S > C. Thus, impurities may promote hydriding by providing surfaces or prestrained zones for H uptake.

  19. Computational programs for shielding calculation with transport of one dimensional and monoenergetic SN

    International Nuclear Information System (INIS)

    Nunes, Carlos Eduardo A.; Barros, Ricardo C.

    2009-01-01

    This paper describes a computational program for result simulation of neutron transport problems at one velocity with isotropic scattering in Cartesian onedimensional geometry. Describing the physical modelling, the next phase is a mathematical modelling of the physical problem for simulation of the neutron distribution. The mathematical modelling uses the linearized Boltzmann equation which represents a balance among the production and loss of particles. The formulation of the discrete ordinates S N consists of discretization of angular variables at N directions (discrete ordinates), and using a set of angular quadratures for the approximation of integral terms of scattering sources. The S N equations are numerically solved. This work describes three numerical methods: diamond difference, step and characteristic step. The paper also presents numerical results for illustration of the efficiency of the developed program

  20. Implementing displacement damage calculations for electrons and gamma rays in the Particle and Heavy-Ion Transport code System

    Science.gov (United States)

    Iwamoto, Yosuke

    2018-03-01

    In this study, the Monte Carlo displacement damage calculation method in the Particle and Heavy-Ion Transport code System (PHITS) was improved to calculate displacements per atom (DPA) values due to irradiation by electrons (or positrons) and gamma rays. For the damage due to electrons and gamma rays, PHITS simulates electromagnetic cascades using the Electron Gamma Shower version 5 (EGS5) algorithm and calculates DPA values using the recoil energies and the McKinley-Feshbach cross section. A comparison of DPA values calculated by PHITS and the Monte Carlo assisted Classical Method (MCCM) reveals that they were in good agreement for gamma-ray irradiations of silicon and iron at energies that were less than 10 MeV. Above 10 MeV, PHITS can calculate DPA values not only for electrons but also for charged particles produced by photonuclear reactions. In DPA depth distributions under electron and gamma-ray irradiations, build-up effects can be observed near the target's surface. For irradiation of 90-cm-thick carbon by protons with energies of more than 30 GeV, the ratio of the secondary electron DPA values to the total DPA values is more than 10% and increases with an increase in incident energy. In summary, PHITS can calculate DPA values for all particles and materials over a wide energy range between 1 keV and 1 TeV for electrons, gamma rays, and charged particles and between 10-5 eV and 1 TeV for neutrons.

  1. METHODOLOGY AND CALCULATIONS FOR THE ASSIGNMENT OF WASTE GROUPS FOR THE LARGE UNDERGROUND WASTE STORAGE TANKS AT THE HANFORD SITE

    Energy Technology Data Exchange (ETDEWEB)

    WEBER RA

    2009-01-16

    a waste group B (or A) tank identifies the potential for an induced flammable gas release hazard, the hazard only exists for specific operations that can release the retained gas in the tank at a rate and quantity that results in reaching 100% of the lower flammability limit in the tank headspace. The identification and evaluation of tank farm operations that could cause an induced flammable gas release hazard in a waste group B (or A) tank are included in other documents. The third criterion is the buoyancy ratio. This criterion addresses tanks that are not waste group C double-shell tanks and have an energy ratio {ge} 3.0. For these double-shell tanks, the buoyancy ratio considers whether the saturated solids can retain sufficient gas to exceed neutral buoyancy relative to the supernatant layer and therefore have buoyant displacement gas release events. If the buoyancy ratio is {ge} 1.0, that double-shell tank is assigned to waste group A. These tanks are considered to have a potential spontaneous buoyant displacement flammable gas release hazard in addition to a potential induced flammable gas release hazard. This document categorizes each of the large waste storage tanks into one of several categories based on each tank's waste characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement event. Revision 8 is the annual update of the calculations of the flammable gas Waste Groups for DSTs and SSTs.

  2. METHODOLOGY AND CALCULATIONS FOR THE ASSIGNMENT OF WASTE GROUPS FOR THE LARGE UNDERGROUND WASTE STORAGE TANKS AT THE HANFORD SITE

    Energy Technology Data Exchange (ETDEWEB)

    FOWLER KD

    2007-12-27

    This document categorizes each of the large waste storage tanks into one of several categories based on each tank's waste characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement event. Revision 7 is the annual update of the calculations of the flammable gas Waste Groups for DSTs and SSTs. The Hanford Site contains 177 large underground radioactive waste storage tanks (28 double-shell tanks and 149 single-shell tanks). These tanks are categorized into one of three waste groups (A, B, and C) based on their waste and tank characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement gas release event. Assignments of waste groups to the 177 double-shell tanks and single-shell tanks, as reported in this document, are based on a Monte Carlo analysis of three criteria. The first criterion is the headspace flammable gas concentration following release of retained gas. This criterion determines whether the tank contains sufficient retained gas such that the well-mixed headspace flammable gas concentration would reach 100% of the lower flammability limit if the entire tank's retained gas were released. If the volume of retained gas is not sufficient to reach 100% of the lower flammability limit, then flammable conditions cannot be reached and the tank is classified as a waste group C tank independent of the method the gas is released. The second criterion is the energy ratio and considers whether there is sufficient supernatant on top of the saturated solids such that gas-bearing solids have the potential energy required to break up the material and release gas. Tanks that are not waste group C tanks and that have an energy ratio < 3.0 do not have sufficient

  3. First-principles calculation of transport property in nano-devices under an external magnetic field

    International Nuclear Information System (INIS)

    Chen Jingzhe; Zhang Jin; Han Rushan

    2008-01-01

    The mesoscopic quantum interference phenomenon (QIP) can be observed and behaves as the oscillation of conductance in nano-devices when the external magnetic field changes. Excluding the factor of impurities or defects, specific QIP is determined by the sample geometry. We have improved a first-principles method based on the matrix Green's function and the density functional theory to simulate the transport behaviour of such systems under a magnetic field. We have studied two kinds of QIP: universal conductance fluctuation (UCF) and Aharonov–Bohm effect (A–B effect). We find that the amplitude of UCF is much smaller than the previous theoretical prediction. We have discussed the origin of difference and concluded that due to the failure of ergodic hypothesis, the ensemble statistics is not applicable, and the conductance fluctuation is determined by the flux-dependent density of states (DOSs). We have also studied the relation between the UCF and the structure of sample. For a specific structure, an atomic circle, the A–B effect is observed and the origin of the oscillation is also discussed

  4. Communication strategies for angular domain decomposition of transport calculations on message passing multiprocessors

    International Nuclear Information System (INIS)

    Azmy, Y.Y.

    1997-01-01

    The effect of three communication schemes for solving Arbitrarily High Order Transport (AHOT) methods of the Nodal type on parallel performance is examined via direct measurements and performance models. The target architecture in this study is Oak Ridge National Laboratory's 128 node Paragon XP/S 5 computer and the parallelization is based on the Parallel Virtual Machine (PVM) library. However, the conclusions reached can be easily generalized to a large class of message passing platforms and communication software. The three schemes considered here are: (1) PVM's global operations (broadcast and reduce) which utilizes the Paragon's native corresponding operations based on a spanning tree routing; (2) the Bucket algorithm wherein the angular domain decomposition of the mesh sweep is complemented with a spatial domain decomposition of the accumulation process of the scalar flux from the angular flux and the convergence test; (3) a distributed memory version of the Bucket algorithm that pushes the spatial domain decomposition one step farther by actually distributing the fixed source and flux iterates over the memories of the participating processes. Their conclusion is that the Bucket algorithm is the most efficient of the three if all participating processes have sufficient memories to hold the entire problem arrays. Otherwise, the third scheme becomes necessary at an additional cost to speedup and parallel efficiency that is quantifiable via the parallel performance model

  5. Electronic, Magnetic, and Transport Properties of Polyacrylonitrile-Based Carbon Nanofibers of Various Widths: Density-Functional Theory Calculations

    Science.gov (United States)

    Partovi-Azar, P.; Panahian Jand, S.; Kaghazchi, P.

    2018-01-01

    Edge termination of graphene nanoribbons is a key factor in determination of their physical and chemical properties. Here, we focus on nitrogen-terminated zigzag graphene nanoribbons resembling polyacrylonitrile-based carbon nanofibers (CNFs) which are widely studied in energy research. In particular, we investigate magnetic, electronic, and transport properties of these CNFs as functions of their widths using density-functional theory calculations together with the nonequilibrium Green's function method. We report on metallic behavior of all the CNFs considered in this study and demonstrate that the narrow CNFs show finite magnetic moments. The spin-polarized electronic states in these fibers exhibit similar spin configurations on both edges and result in spin-dependent transport channels in the narrow CNFs. We show that the partially filled nitrogen dangling-bond bands are mainly responsible for the ferromagnetic spin ordering in the narrow samples. However, the magnetic moment becomes vanishingly small in the case of wide CNFs where the dangling-bond bands fall below the Fermi level and graphenelike transport properties arising from the π orbitals are recovered. The magnetic properties of the CNFs as well as their stability have also been discussed in the presence of water molecules and the hexagonal boron nitride substrate.

  6. Criticality Calculations of Fresh LEU and MOX Assemblies for Transport and Storage at the Balakovo Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Goluoglu, S.

    2001-01-11

    Transportation of low-enriched uranium (LEU) and mixed-oxide (MOX) assemblies to and within the VVER-1000-type Balakovo Nuclear Power Plant is investigated. Effective multiplication factors for fresh fuel assemblies on the railroad platform, fresh fuel assemblies in the fuel transportation vehicle, and fresh fuel assemblies in the spent fuel storage pool are calculated. If there is no absorber between the units, the configurations with all MOX assemblies result in higher effective multiplication factors than the configurations with all LEU assemblies when the system is dry. When the system is flooded, the configurations with all LEU assemblies result in higher effective multiplication factors. For normal operating conditions, effective multiplication factors for all configurations are below the presumed upper subcritical limit of 0.95. For an accident condition of a fully loaded fuel transportation vehicle that is flooded with low-density water (possibly from a fire suppression system), the presumed upper subcritical limit is exceeded by configurations containing LEU assemblies.

  7. Kelvin Probe Force Microscopy and Calculation of Charge Transport in a Graphene/Silicon Dioxide System at Different Relative Humidity.

    Science.gov (United States)

    Konečný, Martin; Bartošík, Miroslav; Mach, Jindřich; Švarc, Vojtěch; Nezval, David; Piastek, Jakub; Procházka, Pavel; Cahlík, Aleš; Šikola, Tomáš

    2018-04-11

    The article shows how the dynamic mapping of surface potential (SP) measured by Kelvin probe force microscopy (KPFM) in combination with calculation by a diffusion-like equation and the theory based on the Brunauer-Emmett-Teller (BET) model of water condensation and electron hopping can provide the information concerning the resistivity of low conductive surfaces and their water coverage. This is enabled by a study of charge transport between isolated and grounded graphene sheets on a silicon dioxide surface at different relative humidity (RH) with regard to the use of graphene in ambient electronic circuits and especially in sensors. In the experimental part, the chemical vapor-deposited graphene is precisely patterned by the mechanical atomic force microscopy (AFM) lithography and the charge transport is studied through a surface potential evolution measured by KPFM. In the computational part, a quantitative model based on solving the diffusion-like equation for the charge transport is used to fit the experimental data and thus to find the SiO 2 surface resistivity ranging from 10 7 to 10 10 Ω and exponentially decreasing with the RH increase. Such a behavior is explained using the formation of water layers predicted by the BET adsorption theory and electron-hopping theory that for the SiO 2 surface patterned by AFM predicts a high water coverage even at low RHs.

  8. Cost optimal building performance requirements. Calculation methodology for reporting on national energy performance requirements on the basis of cost optimality within the framework of the EPBD

    Energy Technology Data Exchange (ETDEWEB)

    Boermans, T.; Bettgenhaeuser, K.; Hermelink, A.; Schimschar, S. [Ecofys, Utrecht (Netherlands)

    2011-05-15

    On the European level, the principles for the requirements for the energy performance of buildings are set by the Energy Performance of Buildings Directive (EPBD). Dating from December 2002, the EPBD has set a common framework from which the individual Member States in the EU developed or adapted their individual national regulations. The EPBD in 2008 and 2009 underwent a recast procedure, with final political agreement having been reached in November 2009. The new Directive was then formally adopted on May 19, 2010. Among other clarifications and new provisions, the EPBD recast introduces a benchmarking mechanism for national energy performance requirements for the purpose of determining cost-optimal levels to be used by Member States for comparing and setting these requirements. The previous EPBD set out a general framework to assess the energy performance of buildings and required Member States to define maximum values for energy delivered to meet the energy demand associated with the standardised use of the building. However it did not contain requirements or guidance related to the ambition level of such requirements. As a consequence, building regulations in the various Member States have been developed by the use of different approaches (influenced by different building traditions, political processes and individual market conditions) and resulted in different ambition levels where in many cases cost optimality principles could justify higher ambitions. The EPBD recast now requests that Member States shall ensure that minimum energy performance requirements for buildings are set 'with a view to achieving cost-optimal levels'. The cost optimum level shall be calculated in accordance with a comparative methodology. The objective of this report is to contribute to the ongoing discussion in Europe around the details of such a methodology by describing possible details on how to calculate cost optimal levels and pointing towards important factors and

  9. Reaction plane angle dependence of dihadron azimuthal correlations from a multiphase transport model calculation

    International Nuclear Information System (INIS)

    Li, W.; Zhang, S.; Ma, Y. G.; Cai, X. Z.; Chen, J. H.; Ma, G. L.; Zhong, C.; Huang, H. Z.

    2009-01-01

    Dihadron azimuthal angle correlations relative to the reaction plane have been investigated in Au+Au collisions at √(s NN )=200 GeV using a multiphase transport model (AMPT). Such reaction plane azimuthal-angle-dependent correlations can shed light on the path-length effect of energy loss of high-transverse-momentum particles propagating through a hot dense medium. The correlations vary with the trigger particle azimuthal angle with respect to the reaction plane direction, φ s =φ T -Ψ EP , which is consistent with the experimental observation by the STAR Collaboration. The dihadron azimuthal angle correlation functions on the away side of the trigger particle present a distinct evolution from a single-peak to a broad, possibly double-peak structure when the trigger particle direction goes from in-plane to out-of-plane with the reaction plane. The away-side angular correlation functions are asymmetric with respect to the back-to-back direction in some regions of φ s , which could provide insight into the testing v 1 method for reconstructing the reaction plane. In addition, both the root-mean-square width (W rms ) of the away-side correlation distribution and the splitting parameter (D) between the away-side double peaks increase slightly with φ s , and the average transverse momentum of away-side-associated hadrons shows a strong φ s dependence. Our results indicate that a strong parton cascade and resultant energy loss could play an important role in the appearance of a double-peak structure in the dihadron azimuthal angular correlation function on the away side of the trigger particle.

  10. Transport and Storage Cask Safety Assessment - Drop Tests and Numerical Calculations -

    International Nuclear Information System (INIS)

    Voelzke, H.; Wille, F.; Wieser, G.; Quercetti, Th.

    2006-01-01

    BAM (the German Federal Institute for Materials Research and Testing) has been performing cask design testing for more than 30 years with a large number of prototype casks of original dimensions and of 1:2 or 1:3 scales. In 2004 a brand new drop test facility was built at the new BAM test facility at Horstwalde about 80 km to the south of Berlin. In September 2004 first demonstration tests with 2 different cask designs were performed in connection with the PATRAM 2004 conference held in Berlin. The dropped prototype casks had gross masses of 141 and 181 metric tons. Since that time BAM has been performing a lot of more drop tests with new cask designs developed by different international cask manufacturers for getting German Type B(U) transport licenses. Current safety assessments especially for mechanical accident scenarios require a combination of experimental and analytical/numerical proofs commonly, because both methods offer specific options and advantages with respect to more and more detailed structural analyses. That again is a consequence of the permanent cask design optimisation for commercial reasons leading to higher stress levels in general. For that reason BAM also improves its numerical analyses capacities including the operation of different software codes. A general BAM guideline describing basic requirements for numerical safety assessment reports gives a good orientation for both applicants and inspectors. But different details of any cask design and safety assessment have to be taken into account and lead to specific questions, investigations and experiences. This paper gives an overview about the new BAM drop test facility and the ongoing drop testing there and it presents current experiences and results of numerical cask analyses and the specific methods developed and used by BAM. In this context special attention is turned to the correlation between experimental and numerical results and an outlook to future developments is given. (authors)

  11. RISKIND: A computer program for calculating radiological consequences and health risks from transportation of spent nuclear fuel

    International Nuclear Information System (INIS)

    Yuan, Y.C.; Chen, S.Y.; Biwer, B.M.; LePoire, D.J.

    1995-11-01

    This report presents the technical details of RISKIND, a computer code designed to estimate potential radiological consequences and health risks to individuals and the collective population from exposures associated with the transportation of spent nuclear fuel. RISKIND is a user-friendly, interactive program that can be run on an IBM or equivalent personal computer under the Windows trademark environment. Several models are included in RISKIND that have been tailored to calculate the exposure to individuals under various incident-free and accident conditions. The incident-free models assess exposures from both gamma and neutron radiation and can account for different cask designs. The accident models include accidental release, atmospheric transport, and the environmental pathways of radionuclides from spent fuels; these models also assess health risks to individuals and the collective population. The models are supported by databases that are specific to spent nuclear fuels and include a radionuclide inventory and dose conversion factors. In addition, the flexibility of the models allows them to be used for assessing any accidental release involving radioactive materials. The RISKIND code allows for user-specified accident scenarios as well as receptor locations under various exposure conditions, thereby facilitating the estimation of radiological consequences and health risks for individuals. Median (50% probability) and typical worst-case (less than 5% probability of being exceeded) doses and health consequences from potential accidental releases can be calculated by constructing a cumulative dose/probability distribution curve for a complete matrix of site joint-wind-frequency data. These consequence results, together with the estimated probability of the entire spectrum of potential accidents, form a comprehensive, probabilistic risk assessment of a spent nuclear fuel transportation accident

  12. RISKIND: A computer program for calculating radiological consequences and health risks from transportation of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Y.C. [Square Y Consultants, Orchard Park, NY (US); Chen, S.Y.; Biwer, B.M.; LePoire, D.J. [Argonne National Lab., IL (US)

    1995-11-01

    This report presents the technical details of RISKIND, a computer code designed to estimate potential radiological consequences and health risks to individuals and the collective population from exposures associated with the transportation of spent nuclear fuel. RISKIND is a user-friendly, interactive program that can be run on an IBM or equivalent personal computer under the Windows{trademark} environment. Several models are included in RISKIND that have been tailored to calculate the exposure to individuals under various incident-free and accident conditions. The incident-free models assess exposures from both gamma and neutron radiation and can account for different cask designs. The accident models include accidental release, atmospheric transport, and the environmental pathways of radionuclides from spent fuels; these models also assess health risks to individuals and the collective population. The models are supported by databases that are specific to spent nuclear fuels and include a radionuclide inventory and dose conversion factors. In addition, the flexibility of the models allows them to be used for assessing any accidental release involving radioactive materials. The RISKIND code allows for user-specified accident scenarios as well as receptor locations under various exposure conditions, thereby facilitating the estimation of radiological consequences and health risks for individuals. Median (50% probability) and typical worst-case (less than 5% probability of being exceeded) doses and health consequences from potential accidental releases can be calculated by constructing a cumulative dose/probability distribution curve for a complete matrix of site joint-wind-frequency data. These consequence results, together with the estimated probability of the entire spectrum of potential accidents, form a comprehensive, probabilistic risk assessment of a spent nuclear fuel transportation accident.

  13. Methodology for calculating the tourist carrying capacity as a tool for environmental management and its implementation in five northern Colombian Caribbean beaches

    International Nuclear Information System (INIS)

    Botero, Camilo; Yuri, Hurtado; Gonzalez, Jose

    2008-01-01

    This paper presents a new methodology to calculate carrying capacity in tourist beaches, further than merely environmental issues. Moreover, it understands beaches as complex systems towards its sustainable development. Five beaches in the North Caribbean coast of Colombia were chosen and classified in four tourism beach sorts: intensive, conservation, shared and ethnic. The analysis was done with legal framework review, fieldwork and indicators design, within three components: environmental support, urban infrastructure and tourist services. A new model to calculate carrying capacity in tourist beaches was created, and later applied on the study beaches. Current conditions of the five beaches were highlighted, their tourist carrying capacity were calculated and more important actions in each component were recommended. The main conclusion foster to take in consideration natural conditions as a core factor in beach management, but including a holistic approach in making decision process. Also this paper showed the current conditions of Colombian beaches as a warning, giving recommendations in short and medium term. This document is result of the project Determinacion de un sistema de calificacion y certificacion de playas turisticas.

  14. Use of LiDAR for calculating solar irradiance on roofs and façades of buildings at city scale: Methodology, validation, and analysis

    Science.gov (United States)

    Cheng, Liang; Xu, Hao; Li, Shuyi; Chen, Yanming; Zhang, Fangli; Li, Manchun

    2018-04-01

    As the rate of urbanization continues to accelerate, the utilization of solar energy in buildings plays an increasingly important role in sustainable urban development. For this purpose, we propose a LiDAR-based joint approach for calculating the solar irradiance incident on roofs and façades of buildings at city scale, which includes a methodology for calculating solar irradiance, the validation of the proposed method, and analysis of its application. The calculation of surface irradiance on buildings may then inform photovoltaic power generation simulations, architectural design, and urban energy planning. Application analyses of the proposed method in the experiment area found that: (1) Global and direct irradiations vary significantly by hour, day, month and season, both following the same trends; however, diffuse irradiance essentially remains unchanged over time. (2) Roof irradiation, but not façade irradiation, displays distinct time-dependent patterns. (3) Global and direct irradiations on roofs are highly correlated with roof aspect and slope, with high global and direct irradiations observed on roofs of aspect 100-250° and slopes of 0-60°, whereas diffuse irradiation on roofs is only affected by roof slope. (4) The façade of a building receives higher levels of global and direct irradiations if facing southeast, south, and southwest; however, diffuse irradiation remains constant regardless of façade orientation.

  15. Numerical path integration technique for the calculation of transport properties of proteins.

    Science.gov (United States)

    Kang, Eun-Hee; Mansfield, Marc L; Douglas, Jack F

    2004-03-01

    We present a new technique for the computation of both the translational diffusivity and the intrinsic viscosity of macromolecules, and apply it here to proteins. Traditional techniques employ finite element representations of the surface of the macromolecule, taking the surface to be a union of spheres or of polygons, and have computation times that are O(m(3)) where m is the number of finite elements. The new technique, a numerical path integration method, has computation times that are only O(m). We have applied the technique to approximately 1000 different protein structures. The computed translational diffusivities and intrinsic viscosities are, to lowest order, proportional respectively to N(-1/3)(R) and N(0)(R), where N(R) is the number of amino acid residues in the protein. Our calculations also show some correlation with the shape of the molecule, as represented by the ratio m(2)/m(3), where m(2) and m(3) are, respectively, the middle and the smallest of the three principal moments of inertia. Comparisons with a number of experimental results are also performed, with results generally consistent to within experimental error.

  16. A calculation program for harvesting and transportation costs of energy and industrial wood; Energiapuun korjuun ja kuljetuksen kustannuslaskentaohjelmisto

    Energy Technology Data Exchange (ETDEWEB)

    Ranta, T. [VTT Energy, Jyvaeskylae (Finland)

    1997-12-01

    A computer based model has been developed for calculating the production costs of industrial wood and wood fuel. Several calculation situations, which might be useful for decision-making in energy wood supply, are included into this software. The model will be easy to use for practical purposes and flexible so that different new model and changes in the basis of calculations are easy to implement. Model will offer open interfaces for importing and exporting information. Model includes selected wood delivery chains and open interfaces for adding data from different procurement sources. The cost analysis model is built on Windows-based software, SQLWindows, using different sources of data (ODBC). With the model it is possible to manage these SQLBase databases with SQL-queries. The data included in the databases origins from various energy wood sources (local communities or part of them, forestry boards planning areas or even stands ready for cutting). By knowing the planned share of first thinnings, final cuttings and other harvesting operations it is possible to estimate the potential amount of wood fuel from each area. Also databases from energy wood users, forest and transportation machinery and distances are available in the system. Using the information it is possible to find out the fuel demand of power and heating plants in each moment (e.g., amount and quality), costs of various machines (harvesters, forwarders, trucks) as well as distances between energy wood sources and users. (orig.)

  17. Combining active-space coupled-cluster methods with moment energy corrections via the CC(P;Q) methodology, with benchmark calculations for biradical transition states.

    Science.gov (United States)

    Shen, Jun; Piecuch, Piotr

    2012-04-14

    We have recently suggested the CC(P;Q) methodology that can correct energies obtained in the active-space coupled-cluster (CC) or equation-of-motion (EOM) CC calculations, which recover much of the nondynamical and some dynamical electron correlation effects, for the higher-order, mostly dynamical, correlations missing in the active-space CC/EOMCC considerations. It is shown that one can greatly improve the description of biradical transition states, both in terms of the resulting energy barriers and total energies, by combining the CC approach with singles, doubles, and active-space triples, termed CCSDt, with the CC(P;Q)-style correction due to missing triple excitations defining the CC(t;3) approximation.

  18. Automation of the computational programs and codes used in the methodology of neutronic and thermohydraulic calculation for the IEA-R1 nuclear reactor

    International Nuclear Information System (INIS)

    Stefani, Giovanni Laranjo de

    2009-01-01

    This work proceeds the elaboration of a computational program for execution of various neutron and thermalhydraulic calculation methodology programs of the IEA-R1-Sao Paulo, Brazil, making the process more practical and safe, besides transforming de output data of each program an automatic process. This reactor is largely used for production of radioisotopes for medical use, material irradiation, personnel training and also for basic research. For that purposes it is necessary to change his core configuration in order to adapt the reactor for different uses. The work will transform various existent programs into subroutines of a principal program, i.e.,a program which call each of the programs automatically when necessary, and create another programs for manipulation the output data and therefore making practical the process

  19. Analysis of the penumbra enlargement in lung versus the Quality Index of photon beams: A methodology to check the dose calculation algorithm

    International Nuclear Information System (INIS)

    Tsiakalos, Miltiadis F.; Theodorou, Kiki; Kappas, Constantin; Zefkili, Sofia; Rosenwold, Jean-Claude

    2004-01-01

    It is well known that considerable underdosage can occur at the edges of a tumor inside the lung because of the degradation of penumbra due to lack of lateral electronic equilibrium. Although present even at smaller energies, this phenomenon is more pronounced for higher energies. Apart from Monte Carlo calculation, most of the existing Treatment Planning Systems (TPSs) cannot deal at all, or with acceptable accuracy, with this effect. A methodology has been developed for assessing the dose calculation algorithms in the lung region where lateral electronic disequilibrium exists, based on the Quality Index (QI) of the incident beam. A phantom, consisting of layers of polystyrene and lung material, has been irradiated using photon beams of 4, 6, 15, and 20 MV. The cross-plane profiles of each beam for 5x5, 10x10, and 25x10 fields have been measured at the middle of the phantom with the use of films. The penumbra (20%-80%) and fringe (50%-90%) enlargement was measured and the ratio of the widths for the lung to that of polystyrene was defined as the Correction Factor (CF). Monte Carlo calculations in the two phantoms have also been performed for energies of 6, 15, and 20 MV. Five commercial TPS's algorithms were tested for their ability to predict the penumbra and fringe enlargement. A linear relationship has been found between the QI of the beams and the CF of the penumbra and fringe enlargement for all the examined fields. Monte Carlo calculations agree very well (less than 1% difference) with the film measurements. The CF values range between 1.1 for 4 MV (QI 0.620) and 2.28 for 20 MV (QI 0.794). Three of the tested TPS's algorithms could not predict any enlargement at all for all energies and all fields and two of them could predict the penumbra enlargement to some extent. The proposed methodology can help any user or developer to check the accuracy of its algorithm for lung cases, based on a simple phantom geometry and the QI of the incident beam. This check is

  20. Recommendations for computer code selection of a flow and transport code to be used in undisturbed vadose zone calculations for TWRS immobilized wastes environmental analyses

    International Nuclear Information System (INIS)

    VOOGD, J.A.

    1999-01-01

    An analysis of three software proposals is performed to recommend a computer code for immobilized low activity waste flow and transport modeling. The document uses criteria restablished in HNF-1839, ''Computer Code Selection Criteria for Flow and Transport Codes to be Used in Undisturbed Vadose Zone Calculation for TWRS Environmental Analyses'' as the basis for this analysis

  1. Self-consistent vertical transport calculations in AlxGa1-xN/GaN based resonant tunneling diode

    Science.gov (United States)

    Rached, A.; Bhouri, A.; Sakr, S.; Lazzari, J.-L.; Belmabrouk, H.

    2016-03-01

    The formation of two-dimensional electron gases (2DEGs) at AlxGa1-xN/GaN hexagonal double-barriers (DB) resonant tunneling diodes (RTD) is investigated by numerical self-consistent (SC) solutions of the coupled Schrödinger and Poisson equations. Spontaneous and piezoelectric effects across the material interfaces are rigorously taken into account. Conduction band profiles, band edges and corresponding envelope functions are calculated in the AlxGa1-xN/GaN structures and likened to those where no polarization effects are included. The combined effect of the polarization-induced bound charge and conduction band offsets between the hexagonal AlGaN and GaN results in the formation of 2DEGs on one side of the DB and a depletion region on the other side. Using the transfer matrix formalism, the vertical transport (J-V characteristics) in AlGaN/GaN RTDs is calculated with a fully SC calculation in the ballistic regime. Compared to standard calculations where the voltage drop along the structure is supposed to be linear, the SC method leads to strong quantitative changes in the J-V characteristics showing that the applied electric field varies significantly in the active region of the structure. The influences of the aluminum composition and the GaN(AlGaN) thickness layers on the evolution of the current characteristics are also self-consistently investigated and discussed. We show that the electrical characteristics are very sensitive to the potential barrier due to the interplay between the potential symmetry and the barrier height and width. More interestingly, we demonstrate that the figures of merit namely the peak-to-valley ratio (PVR) of GaN/AlGaN RTDs can be optimized by increasing the quantum well width.

  2. Effects of interactive transport and scavenging of smoke on the calculated temperature change resulting from large amounts of smoke

    International Nuclear Information System (INIS)

    MacCracken, M.C.; Walton, J.J.

    1984-12-01

    Several theoretical studies with numerical models have shown that substantial land-surface cooling can occur if very large amounts (approx. 100 x 10 12 = 100 Tg) of highly absorbing sooty-particles are injected high into the troposphere and spread instantaneously around the hemisphere (Turco et al., 1983; Covey et al. 1984; MacCracken, 1983). A preliminary step beyond these initial calculations has been made by interactively coupling the two-layer, three-dimensional Oregon State University general circulation model (GCM) to the three-dimensional GRANTOUR trace species model developed at the Lawrence Livermore National Laboratory. The GCM simulation includes treatment of tropospheric dynamics and thermodynamics and the effect of soot on solar radiation. The GRANTOUR simulation includes treatment of particle transport and scavenging by precipitation, although no satisfactory verification of the scavenging algorithm has yet been possible. We have considered the climatic effects of 150 Tg (i.e., the 100 Mt urban war scenario from Turco et al., 1983) and of 15 Tg of smoke from urban fires over North America and Eurasia. Starting with a perpetual July atmospheric situation, calculation of the climatic effects as 150 Tg of smoke are spread slowly by the winds, rather than instantaneously dispersed as in previous calculations, leads to some regions of greater cooling under the denser parts of the smoke plumes and some regions of less severe cooling where smoke arrival is delayed. As for the previous calculations, mid-latitude decreases of land surface air temperature for the 150 Tg injection are greater than 15 0 C after a few weeks. For a 15 Tg injection, however, cooling of more than several degrees centigrade only occurs in limited regions under the dense smoke plumes present in the first few weeks after the injection. 10 references, 9 figures

  3. Polarization effects in coherent and incoherent photon scattering: survey of measurements and theory relevant to radiation transport calculations

    International Nuclear Information System (INIS)

    Hubbell, J.H.

    1993-01-01

    This report reviews available information on polarization effects arising when photons in the X-ray and gamma-ray energy regime undergo coherent (Rayleigh) scattering and incoherent (Compton) scattering by atomic electrons. In addition to descriptions and discussions of these effects, including estimates of their magnitudes as they apply to radiation transport calculations, an annotated bibliography of 102 selected works covering the period 1905-1991 is provided, with particularly relevant works for the purpose of this report flagged with asterisks (*). A major resource for this report is a 1948 unpublished informal report by L.V. Spencer which has been quoted here almost in its entirety, since, of all the works cited in the annotated bibliography, it appears to be the only one which explicitly and directly addresses the purpose of this report. Hence this valuable material should be re-introduced into the available and current literature. (author). 119 refs., 7 figs

  4. Stability analysis of the Backward Euler time discretization for the pin-resolved transport transient reactor calculation

    International Nuclear Information System (INIS)

    Zhu, Ang; Xu, Yunlin; Downar, Thomas

    2016-01-01

    Three-dimensional, full core transport modeling with pin-resolved detail for reactor dynamic simulation is important for some multi-physics reactor applications. However, it can be computationally intensive due to the difficulty in maintaining accuracy while minimizing the number of time steps. A recently proposed Transient Multi-Level (TML) methodology overcomes this difficulty by use multi-level transient solvers to capture the physical phenomenal in different time domains and thus maximize the numerical accuracy and computational efficiency. One major problem with the TML method is the negative flux/precursor number density generated using large time steps for the MOC solver, which is due to the Backward Euler discretization scheme. In this paper, the stability issue of Backward Euler discretization is first investigated using the Point Kinetics Equations (PKEs), and the predicted maximum allowed time step for SPERT test 60 case is shown to be less than 10 ms. To overcome this difficulty, linear and exponential transformations are investigated using the PKEs. The linear transformation is shown to increase the maximum time step by a factor of 2, and the exponential transformation is shown to increase the maximum time step by a factor of 5, as well as provide unconditionally stability above a specified threshold. The two sets of transformations are then applied to TML scheme in the MPACT code, and the numerical results presented show good agreement for standard, linear transformed, and exponential transformed maximum time step between the PKEs model and the MPACT whole core transport solution for three different cases, including a pin cell case, a 3D SPERT assembly case and a row of assemblies (“striped assembly case”) from the SPERT model. Finally, the successful whole transient execution of the stripe assembly case shows the ability of the exponential transformation method to use 10 ms and 20 ms time steps, which all failed using the standard method.

  5. Development and application of neutron transport methods and uncertainty analyses for reactor core calculations. Technical report; Entwicklung und Einsatz von Neutronentransportmethoden und Unsicherheitsanalysen fuer Reaktorkernberechnungen. Technischer Bericht

    Energy Technology Data Exchange (ETDEWEB)

    Zwermann, W.; Aures, A.; Bernnat, W.; and others

    2013-06-15

    This report documents the status of the research and development goals reached within the reactor safety research project RS1503 ''Development and Application of Neutron Transport Methods and Uncertainty Analyses for Reactor Core Calculations'' as of the 1{sup st} quarter of 2013. The superordinate goal of the project is the development, validation, and application of neutron transport methods and uncertainty analyses for reactor core calculations. These calculation methods will mainly be applied to problems related to the core behaviour of light water reactors and innovative reactor concepts. The contributions of this project towards achieving this goal are the further development, validation, and application of deterministic and stochastic calculation programmes and of methods for uncertainty and sensitivity analyses, as well as the assessment of artificial neutral networks, for providing a complete nuclear calculation chain. This comprises processing nuclear basis data, creating multi-group data for diffusion and transport codes, obtaining reference solutions for stationary states with Monte Carlo codes, performing coupled 3D full core analyses in diffusion approximation and with other deterministic and also Monte Carlo transport codes, and implementing uncertainty and sensitivity analyses with the aim of propagating uncertainties through the whole calculation chain from fuel assembly, spectral and depletion calculations to coupled transient analyses. This calculation chain shall be applicable to light water reactors and also to innovative reactor concepts, and therefore has to be extensively validated with the help of benchmarks and critical experiments.

  6. Shifting renewable energy in transport into the next gear. Developing a methodology for taking into account all electricity, hydrogen and methane from renewable sources in the 10% transport target; Hernieuwbare energie in transport naar een hogere versnelling. Ontwikkeling van een methode dat rekening houdt met alle elektriciteit, waterstof en methaan uit hernieuwbare bronnen in de 10% transportdoelsteling

    Energy Technology Data Exchange (ETDEWEB)

    Kampman, B.; Leguijt, C.; Bennink, D. [CE Delft, Delft (Netherlands); Wentrup, K.; Dreblow, E.; Gruenig, M. [Ecologic Institute, Berlin (Germany); Schmidt, P.; Wurster, R.; Weindorf, W. [Ludwig-Boelkow-Systemtechnik, Muenchen-Ottobrunn (Germany)

    2012-01-15

    The European Union has set a 10% target of renewable energy use in the transport sector for 2020 in the Renewable Energy Directive (RED, 2009/28/EC). This directive also defines the associated calculation methodologies, for biofuels and renewable electricity used in transport. Regarding biofuels, only those biofuels can contribute that are actually used in the transport sector. The contribution of electricity from renewable sources is treated somewhat differently, as it is typically taken from the electricity grid, where the exact source of the energy used is not monitored: Member States should use the average share of renewable electricity production in their calculations. The RED required the European Commission to present, if appropriate, a proposal to consider the whole amount of the electricity from renewable sources used to power electric vehicles, as well as a methodology to include the contribution of hydrogen from renewable sources in the transport sector. At the same time, there is the question how biomethane injected into the natural gas grid should be counted towards the transport target if vehicles are filled from that same grid - a similar route to that of electricity use in transport. DG Energy of the Commission needs to be supported in the decision making process related to these three routes: renewable electricity, hydrogen and biomethane use in transport, where distribution is taking place via national grids. The result is a comprehensive report in which different methodological options are designed and assessed, and conclusions are drawn, both for the short to medium term (until 2020) and the longer term (post-2020). In the short term, where the contribution of these routes is still limited, a relatively simple approach will be sufficient, but more sophisticated monitoring methodologies may be needed in the future, depending on the way these routes develop [Dutch] In de Richtlijn Hernieuwbare Energie (RED, 2009/28/EC) heeft de Europese Unie

  7. A kinematic-based methodology for radiological protection: Runoff analysis to calculate the effective dose for internal exposure caused by ingestion of radioactive isotopes

    Science.gov (United States)

    Sasaki, Syota; Yamada, Tadashi; Yamada, Tomohito J.

    2014-05-01

    We aim to propose a kinematic-based methodology similar with runoff analysis for readily understandable radiological protection. A merit of this methodology is to produce sufficiently accurate effective doses by basic analysis. The great earthquake attacked the north-east area in Japan on March 11, 2011. The system of electrical facilities to control Fukushima Daiichi nuclear power plant was completely destroyed by the following tsunamis. From the damaged reactor containment vessels, an amount of radioactive isotopes had leaked and been diffused in the vicinity of the plant. Radiological internal exposure caused by ingestion of food containing radioactive isotopes has become an issue of great interest to the public, and has caused excessive anxiety because of a deficiency of fundamental knowledge concerning radioactivity. Concentrations of radioactivity in the human body and internal exposure have been studied extensively. Previous radiologic studies, for example, studies by International Commission on Radiological Protection(ICRP), employ a large-scale computational simulation including actual mechanism of metabolism in the human body. While computational simulation is a standard method for calculating exposure doses among radiology specialists, these methods, although exact, are too difficult for non-specialists to grasp the whole image owing to the sophistication. In this study, the human body is treated as a vessel. The number of radioactive atoms in the human body can be described by an equation of continuity, which is the only governing equation. Half-life, the period of time required for the amount of a substance decreases by half, is only parameter to calculate the number of radioactive isotopes in the human body. Half-life depends only on the kinds of nuclides, there are no arbitrary parameters. It is known that the number of radioactive isotopes decrease exponentially by radioactive decay (physical outflow). It is also known that radioactive isotopes

  8. A methodology for optimal MSW management, with an application in the waste transportation of Attica Region, Greece

    International Nuclear Information System (INIS)

    Economopoulou, M.A.; Economopoulou, A.A.; Economopoulos, A.P.

    2013-01-01

    Highlights: • A two-step (strategic and detailed optimal planning) methodology is used for solving complex MSW management problems. • A software package is outlined, which can be used for generating detailed optimal plans. • Sensitivity analysis compares alternative scenarios that address objections and/or wishes of local communities. • A case study shows the application of the above procedure in practice and demonstrates the results and benefits obtained. - Abstract: The paper describes a software system capable of formulating alternative optimal Municipal Solid Wastes (MSWs) management plans, each of which meets a set of constraints that may reflect selected objections and/or wishes of local communities. The objective function to be minimized in each plan is the sum of the annualized capital investment and annual operating cost of all transportation, treatment and final disposal operations involved, taking into consideration the possible income from the sale of products and any other financial incentives or disincentives that may exist. For each plan formulated, the system generates several reports that define the plan, analyze its cost elements and yield an indicative profile of selected types of installations, as well as data files that facilitate the geographic representation of the optimal solution in maps through the use of GIS. A number of these reports compare the technical and economic data from all scenarios considered at the study area, municipality and installation level constituting in effect sensitivity analysis. The generation of alternative plans offers local authorities the opportunity of choice and the results of the sensitivity analysis allow them to choose wisely and with consensus. The paper presents also an application of this software system in the capital Region of Attica in Greece, for the purpose of developing an optimal waste transportation system in line with its approved waste management plan. The formulated plan was able to

  9. Transport and metabolic degradation of hydrogen peroxide in Chara corallina: model calculations and measurements with the pressure probe suggest transport of H(2)O(2) across water channels.

    Science.gov (United States)

    Henzler, T; Steudle, E

    2000-12-01

    A mathematical model is presented that describes permeation of hydrogen peroxide across a cell membrane and the implications of solute decomposition by catalase inside the cell. The model was checked and analysed by means of a numerical calculation that raised predictions for measured osmotic pressure relaxation curves. Predictions were tested with isolated internodal cells of CHARA: corallina, a model system for investigating interactions between water and solute transport in plant cells. Series of biphasic osmotic pressure relaxation curves with different concentrations of H(2)O(2) of up to 350 mol m(-3) are presented. A detailed description of determination of permeability (P(s)) and reflection coefficients (sigma(s)) for H(2)O(2) is given in the presence of the chemical reaction in the cell. Mean values were P(s)=(3.6+/-1.0) 10(-6) m s(-1) and sigma(s)=(0.33+/-0.12) (+/-SD, N=6 cells). Besides transport properties, coefficients for the catalase reaction following a Michaelis-Menten type of kinetics were determined. Mean values of the Michaelis constant (k(M)) and the maximum rate of decompositon (v(max)) were k(M)=(85+/-55) mol m(-3) and v(max)=(49+/-40) nmol (s cell)(-1), respectively. The absolute values of P:(s) and sigma(s) of H(2)O(2) indicated that hydrogen peroxide, a molecule with chemical properties close to that of water, uses water channels (aquaporins) to cross the cell membrane rapidly. When water channels were inhibited with the blocker mercuric chloride (HgCl(2)), the permeabilities of both water and H(2)O(2) were substantially reduced. In fact, for the latter, it was not measurable. It is suggested that some of the water channels in CHARA: (and, perhaps, in other species) serve as 'peroxoporins' rather than as 'aquaporins'.

  10. Renormalized Phonon Microstructures at High Temperatures from First-Principles Calculations: Methodologies and Applications in Studying Strong Anharmonic Vibrations of Solids

    Directory of Open Access Journals (Sweden)

    Tian Lan

    2016-01-01

    Full Text Available While the vibrational thermodynamics of materials with small anharmonicity at low temperatures has been understood well based on the harmonic phonons approximation, at high temperatures, this understanding must accommodate how phonons interact with other phonons or with other excitations. To date the anharmonic lattice dynamics is poorly understood despite its great importance, and most studies still rely on the quasiharmonic approximations. We shall see that the phonon-phonon interactions give rise to interesting coupling problems and essentially modify the equilibrium and nonequilibrium properties of materials, for example, thermal expansion, thermodynamic stability, heat capacity, optical properties, thermal transport, and other nonlinear properties of materials. The review aims to introduce some recent developements of computational methodologies that are able to efficiently model the strong phonon anharmonicity based on quantum perturbation theory of many-body interactions and first-principles molecular dynamics simulations. The effective potential energy surface of renormalized phonons and structures of the phonon-phonon interaction channels can be derived from these interdependent methods, which provide both macroscopic and microscopic perspectives in analyzing the strong anharmonic phenomena while the traditional harmonic models fail dramatically. These models have been successfully performed in the studies on the temperature-dependent broadenings of Raman and neutron scattering spectra, high temperature phase stability, and negative thermal expansion of rutile and cuprite structures, for example.

  11. Influence of Software Tool and Methodological Aspects of Total Metabolic Tumor Volume Calculation on Baseline [18F]FDG PET to Predict Survival in Hodgkin Lymphoma.

    Science.gov (United States)

    Kanoun, Salim; Tal, Ilan; Berriolo-Riedinger, Alina; Rossi, Cédric; Riedinger, Jean-Marc; Vrigneaud, Jean-Marc; Legrand, Louis; Humbert, Olivier; Casasnovas, Olivier; Brunotte, François; Cochet, Alexandre

    2015-01-01

    To investigate the respective influence of software tool and total metabolic tumor volume (TMTV0) calculation method on prognostic stratification of baseline 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography ([18F]FDG-PET) in newly diagnosed Hodgkin lymphoma (HL). 59 patients with newly diagnosed HL were retrospectively included. [18F]FDG-PET was performed before any treatment. Four sets of TMTV0 were calculated with Beth Israel (BI) software: based on an absolute threshold selecting voxel with standardized uptake value (SUV) >2.5 (TMTV02.5), applying a per-lesion threshold of 41% of the SUV max (TMTV041) and using a per-patient adapted threshold based on SUV max of the liver (>125% and >140% of SUV max of the liver background; TMTV0125 and TMTV0140). TMTV041 was also determined with commercial software for comparison of software tools. ROC curves were used to determine the optimal threshold for each TMTV0 to predict treatment failure. Median follow-up was 39 months. There was an excellent correlation between TMTV041 determined with BI and with the commercial software (r = 0.96, pfree survival (PFS) were respectively: 313 ml and 0.70, 432 ml and 0.68, 450 ml and 0.68, 330 ml and 0.68. There was no significant difference between ROC curves. High TMTV0 value was predictive of poor PFS in all methodologies: 4-years PFS was 83% vs 42% (p = 0.006) for TMTV02.5, 83% vs 41% (p = 0.003) for TMTV041, 85% vs 40% (p<0.001) for TMTV0125 and 83% vs 42% (p = 0.004) for TMTV0140. In newly diagnosed HL, baseline metabolic tumor volume values were significantly influenced by the choice of the method used for determination of volume. However, no significant differences were found in term of prognosis.

  12. Production of lightning NOx and its vertical distribution calculated from three-dimensional cloud-scale chemical transport model simulations

    KAUST Repository

    Ott, Lesley E.

    2010-02-18

    A three-dimensional (3-D) cloud-scale chemical transport model that includes a parameterized source of lightning NOx on the basis of observed flash rates has been used to simulate six midlatitude and subtropical thunderstorms observed during four field projects. Production per intracloud (PIC) and cloud-to-ground (PCG) flash is estimated by assuming various values of PIC and PCG for each storm and determining which production scenario yields NOx mixing ratios that compare most favorably with in-cloud aircraft observations. We obtain a mean PCG value of 500 moles NO (7 kg N) per flash. The results of this analysis also suggest that on average, PIC may be nearly equal to PCG, which is contrary to the common assumption that intracloud flashes are significantly less productive of NO than are cloud-to-ground flashes. This study also presents vertical profiles of the mass of lightning NOx after convection based on 3-D cloud-scale model simulations. The results suggest that following convection, a large percentage of lightning NOx remains in the middle and upper troposphere where it originated, while only a small percentage is found near the surface. The results of this work differ from profiles calculated from 2-D cloud-scale model simulations with a simpler lightning parameterization that were peaked near the surface and in the upper troposphere (referred to as a “C-shaped” profile). The new model results (a backward C-shaped profile) suggest that chemical transport models that assume a C-shaped vertical profile of lightning NOx mass may place too much mass near the surface and too little in the middle troposphere.

  13. Calculs Monte Carlo en transport d'energie pour le calcul de la dose en radiotherapie sur plateforme graphique hautement parallele

    Science.gov (United States)

    Hissoiny, Sami

    Dose calculation is a central part of treatment planning. The dose calculation must be 1) accurate so that the medical physicists and the radio-oncologists can make a decision based on results close to reality and 2) fast enough to allow a routine use of dose calculation. The compromise between these two factors in opposition gave way to the creation of several dose calculation algorithms, from the most approximate and fast to the most accurate and slow. The most accurate of these algorithms is the Monte Carlo method, since it is based on basic physical principles. Since 2007, a new computing platform gains popularity in the scientific computing community: the graphics processor unit (GPU). The hardware platform exists since before 2007 and certain scientific computations were already carried out on the GPU. Year 2007, on the other hand, marks the arrival of the CUDA programming language which makes it possible to disregard graphic contexts to program the GPU. The GPU is a massively parallel computing platform and is adapted to data parallel algorithms. This thesis aims at knowing how to maximize the use of a graphics processing unit (GPU) to speed up the execution of a Monte Carlo simulation for radiotherapy dose calculation. To answer this question, the GPUMCD platform was developed. GPUMCD implements the simulation of a coupled photon-electron Monte Carlo simulation and is carried out completely on the GPU. The first objective of this thesis is to evaluate this method for a calculation in external radiotherapy. Simple monoenergetic sources and phantoms in layers are used. A comparison with the EGSnrc platform and DPM is carried out. GPUMCD is within a gamma criteria of 2%-2mm against EGSnrc while being at least 1200x faster than EGSnrc and 250x faster than DPM. The second objective consists in the evaluation of the platform for brachytherapy calculation. Complex sources based on the geometry and the energy spectrum of real sources are used inside a TG-43

  14. Health economic assessment tools (HEAT) for walking and for cycling. Methodology and user guide.:Economic assessment of transport infrastructure and policies. 2014 Update

    OpenAIRE

    Kahlmeier, Sonja; Kelly, Paul; Foster, Charles; Gotschi, Thomas; Cavill, Nick; Dinsdale, Hywell; Woodcock, James; Schweizer, Christian; Rutter, Harry; Lieb, Christoph; Oja, Pekka; Racioppi, Francesca

    2014-01-01

    The promotion of cycling and walking for everyday physical activity not only promotes health but can also have positive effects on the environment.This booklet summarizes the tools and guidance developed to facilitate this shift: the methodology for the economic assessment of transport infrastructure and policies in relation to the health effects of walking and cycling; systematic reviews of the economic and health literature; and guidance on applying the health economic assessment tools and ...

  15. Study for the optimization of a transport aircraft wing for maximum fuel efficiency. Volume 1: Methodology, criteria, aeroelastic model definition and results

    Science.gov (United States)

    Radovcich, N. A.; Dreim, D.; Okeefe, D. A.; Linner, L.; Pathak, S. K.; Reaser, J. S.; Richardson, D.; Sweers, J.; Conner, F.

    1985-01-01

    Work performed in the design of a transport aircraft wing for maximum fuel efficiency is documented with emphasis on design criteria, design methodology, and three design configurations. The design database includes complete finite element model description, sizing data, geometry data, loads data, and inertial data. A design process which satisfies the economics and practical aspects of a real design is illustrated. The cooperative study relationship between the contractor and NASA during the course of the contract is also discussed.

  16. Calculation of Self-consistent Radial Electric Field in Presence of Convective Electron Transport in a Stellarator

    International Nuclear Information System (INIS)

    Kernbichler, W.; Heyn, M.F.; Kasilov, S.V.

    2003-01-01

    Convective transport of supra-thermal electrons can play a significant role in the energy balance of stellarators in case of high power electron cyclotron heating. Here, together with neoclassical thermal particle fluxes also the supra-thermal electron flux should be taken into account in the flux ambipolarity condition, which defines the self-consistent radial electric field. Since neoclassical particle fluxes are non-linear functions of the radial electric field, one needs an iterative procedure to solve the ambipolarity condition, where the supra-thermal electron flux has to be calculated for each iteration. A conventional Monte-Carlo method used earlier for evaluation of supra-thermal electron fluxes is rather slow for performing the iterations in reasonable computer time. In the present report, the Stochastic Mapping Technique (SMT), which is more effective than the conventional Monte Carlo method, is used instead. Here, the problem with a local monoenergetic supra-thermal particle source is considered and the effect of supra-thermal electron fluxes on both, the self-consistent radial electric field and the formation of different roots of the ambipolarity condition are studied

  17. Numerical Calculation of Transport Based on the Drift Kinetic Equation for plasmas in General Toroidal Magnetic Geometry

    International Nuclear Information System (INIS)

    Reynolds, J. M.; Lopez-Bruna, D.

    2009-01-01

    This report is the first of a series dedicated to the numerical calculation of the evolution of fusion plasmas in general toroidal geometry, including TJ-II plasmas. A kinetic treatment has been chosen: the evolution equation of the distribution function of one or several plasma species is solved in guiding center coordinates. The distribution function is written as a Maxwellian one modulated by polynomial series in the kinetic coordinates with no other approximations than those of the guiding center itself and the computation capabilities. The code allows also for the inclusion of the three-dimensional electrostatic potential in a self-consistent manner, but the initial objective has been set to solving only the neoclassical transport. A high order conservative method (Spectral Difference Method) has been chosen in order to discretized the equation for its numerical solution. In this first report, in addition to justifying the work, the evolution equation and its approximations are described, as well as the baseline of the numerical procedures. (Author) 28 refs

  18. Bedrock K{sub d} data and uncertainty assessment for application in SR-Site geosphere transport calculations

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, James (Kemakta Konsult AB, Stockholm (Sweden))

    2010-12-15

    The safety assessment SR-Site is undertaken to assess the safety of a potential geologic repository for spent nuclear fuel at the Forsmark and Laxemar sites. The present report is one of several reports that form the data input to SR-Site and contains a compilation of recommended K{sub d} data (i.e. linear partitioning coefficients) for safety assessment modelling of geosphere radionuclide transport. The data are derived for rock types and groundwater compositions distinctive of the site investigation areas at Forsmark and Laxemar. Data have been derived for all elements and redox states considered of importance for far-field dose estimates as described in /SKB 2010d/. The K{sub d} data are given in the form of lognormal distributions characterised by a mean (mu) and standard deviation (sigma). Upper and lower limits for the uncertainty range of the recommended data are defined by the 2.5% and 97.5% percentiles of the empirical data sets. The best estimate K{sub d} value for use in deterministic calculations is given as the median of the K{sub d} distribution

  19. Radionuclide transport calculations from high-level long-lived radioactive waste disposal in deep clayey geologic formation toward adjacent aquifers

    International Nuclear Information System (INIS)

    Genty, A.; Le Potier, C.

    2007-01-01

    In the context of high-level nuclear waste repository safety calculations, the modeling of radionuclide migration is of first importance. Three dimensional radionuclide transport calculations in geological repository need to describe objects of the meter scale embedded in geologic layer formations of kilometer extension. A complete and refined spatial description would end up with at least meshes of hundreds of millions to billions elements. The resolution of this kind of problem is today not reachable with classical computers due to resources limitations. Although parallelized computation appears as potential tool to handle multi-scale calculations, to our knowledge no attempt have been yet performed. One emerging solution for repository safety calculations on very large cells meshes consists in using a domain decomposition approach linked to massive parallelized computer calculation. In this approach, the repository domain is divided in small elementary domains and transport calculation are performed independently on different processor for each elementary domain. Before to develop this possible solution, we performed some preliminary test in order to access the order of magnitude of cells needed to perform converged calculation on one elementary disposal domain and to check if Finite Volume (FV) based on Multi Point Flux Approximation (MPFA) spatial scheme or more classical Mixed Hybrid Finite Element (MHFE) spatial scheme were adapted for those calculations in highly heterogeneous porous media. Our preliminary results point out that MHFE and VF schemes applied on non-parallelepiped hexahedral cells for flow and transport calculations in highly heterogeneous media gave satisfactory results. Nevertheless further investigations and additional calculations are needed in order to exhibit the mesh discretization level needed to perform converged calculations. (authors)

  20. Proposal of methodology for calculating the degree of impact caused by perturbations recorded in a power transmission system; Proposicao de metodologia para calcular o grau de impacto causado pelas perturbacoes registradas em um sistema eletrico de transmissao

    Energy Technology Data Exchange (ETDEWEB)

    Vianna, E.A.L. [Centrais Eletricas do Norte (ELETRONORTE), Porto Velho, RO (Brazil)], E-mail: elainelimavianna@yahoo.com.br; Lambert-Torres, G.; Silva, L.E.B. da [Universidade Federal de Itajuba (UNIFEI), MG (Brazil)], Emails: germanoltorres@gmail.com, leborges@unifei.edu.br; Rissino, S.; Silva, M.F. da [Universidade Federal de Rondonia (UFRO), Porto Velho, RO (Brazil)], Emails: srissino@gmail.com, felipe@unir.br

    2009-07-01

    Disturbances recorded in a electric power system compromise the quality and continuity energy supply and are measured by means of performance indicators. This article defines the attributes that contribute to increased the severity of disturbances recorded in an Electrical Power Transmission and proposes a methodology for calculating the degree of impact caused each of them. The proposed methodology allows quantification of the impact caused by a disturbance, and its comparison with other disturbance, in one system or distinct systems.

  1. Metodología de cálculo de la eficiencia térmica de generadores de vapor Methodology to calculate thermal efficiency of steam boilers

    Directory of Open Access Journals (Sweden)

    Marcos A. Golato

    2008-07-01

    based on the resolution of matter and energy balances for each of the system components. This methodology can be applied to steam generators using bagasse, natural gas or both (as a blend as fuels. Examples of thermal efficiency calculations, using data from several experimental tests on steam generators where each type of fuel processing occurs, are presented. The resolution of matter and energy balances in a boiler fired by bagasse gave a thermal efficiency of 53.2% and a rate of 1.38 kg of steam/ kg of bagasse. For a boiler fired by natural gas, a thermal efficiency of 76.7% and an index of 9.8 kg of steam/ Nm³ of natural gas, were obtained. For a boiler fired simultaneously by bagasse and natural gas, a yield of 68.3% and an index of 1.87 kg of steam/ kg of equivalent bagasse were recorded. To validate this methodology, these values were contrasted with the efficiency values obtained in accordance with the American Society of Mechanical Engineers (ASME code.

  2. Section Transport Data calculated from Hull-Mounted Acoustic Doppler Current Profiler Velocities collected aboard the R/V GARUPPA during SUMMER 2010 SADCP Survey

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Volume transports were calculated through Virigin Passage and into and out of Vieques Sound (US Caribbean) between July 30,2010 and August 1, 2010 using a 300 kHz RD...

  3. MIRD methodology

    International Nuclear Information System (INIS)

    Rojo, Ana M.; Gomez Parada, Ines

    2004-01-01

    The MIRD (Medical Internal Radiation Dose) system was established by the Society of Nuclear Medicine of USA in 1960 to assist the medical community in the estimation of the dose in organs and tissues due to the incorporation of radioactive materials. Since then, 'MIRD Dose Estimate Report' (from the 1 to 12) and 'Pamphlets', of great utility for the dose calculations, were published. The MIRD system was planned essentially for the calculation of doses received by the patients during nuclear medicine diagnostic procedures. The MIRD methodology for the absorbed doses calculations in different tissues is explained

  4. Calculating the Contribution Rate of Intelligent Transportation System in Improving Urban Traffic Smooth Based on Advanced DID Model

    OpenAIRE

    Li, Ming-wei; Yun, Jun; Liu, Na

    2015-01-01

    Recent years have witnessed the rapid development of intelligent transportation system around the world, which helps to relieve urban traffic congestion problems. For instance, many mega-cities in China have devoted a large amount of money and resources to the development of intelligent transportation system. This poses an intriguing and important issue: how to measure and quantify the contribution of intelligent transportation system to the urban city, which is still a puzzle. This paper pro...

  5. Transportation radiological risk assessment for the programmatic environmental impact statement: An overview of methodologies, assumptions, and input parameters

    International Nuclear Information System (INIS)

    Monette, F.; Biwer, B.; LePoire, D.; Chen, S.Y.

    1994-01-01

    The U.S. Department of Energy is considering a broad range of alternatives for the future configuration of radioactive waste management at its network of facilities. Because the transportation of radioactive waste is an integral component of the management alternatives being considered, the estimated human health risks associated with both routine and accident transportation conditions must be assessed to allow a complete appraisal of the alternatives. This paper provides an overview of the technical approach being used to assess the radiological risks from the transportation of radioactive wastes. The approach presented employs the RADTRAN 4 computer code to estimate the collective population risk during routine and accident transportation conditions. Supplemental analyses are conducted using the RISKIND computer code to address areas of specific concern to individuals or population subgroups. RISKIND is used for estimating routine doses to maximally exposed individuals and for assessing the consequences of the most severe credible transportation accidents. The transportation risk assessment is designed to ensure -- through uniform and judicious selection of models, data, and assumptions -- that relative comparisons of risk among the various alternatives are meaningful. This is accomplished by uniformly applying common input parameters and assumptions to each waste type for all alternatives. The approach presented can be applied to all radioactive waste types and provides a consistent and comprehensive evaluation of transportation-related risk

  6. First-Principles Calculation of Spin Transport in Magnetic Nanowire Using Green's Function Method with Localized Basis Set

    National Research Council Canada - National Science Library

    Kobayashi, Nobuhiko; Ozaki, Taisuke; Hirose, Kenji

    2006-01-01

    .... The electronic states are calculated using a numerical pseudo atomic orbital basis set in the frame work of the density functional theory, and the conductance is calculated using the Green's function method...

  7. Modelization of physical phenomena in research reactors with the help of new developments in transport methods, and methodology validation with experimental data

    International Nuclear Information System (INIS)

    Rauck, St.

    2000-10-01

    The aim of this work is to develop a scheme for experimental reactors, based on transport equations. This type of reactors is characterized by a small core, a complex, very heterogeneous geometry and a large leakage. The possible insertion of neutron beams in the reflector and the presence of absorbers in the core increase the difficulty of the 3D-geometrical description and the physical modeling of the component parameters of the reactor. The Orphee reactor has been chosen for our study. Physical models (homogenization, collapsing cross section in few groups, albedo multigroup condition) have been developed in the APOLLO2 and CRONOS2 codes to calculate flux and power maps in a 3D-geometry, with different burnup and through transport equations. Comparisons with experimental measurements have shown the interest of taking into account anisotropy, steep flux gradients by using Sn methods, and on the other hand using a 12-group cross section library. The modeling of neutron beams has been done outside the core modeling through Monte Carlo calculations and with the total geometry, including a large thickness of heavy water. Thanks to this calculations, one can evaluate the neutron beams anti-reactivity and determinate the core cycle. We assure these methods more accurate than usual transport-diffusion calculations will be used for the conception of new research reactors. (author)

  8. Development of a methodology for the assessment of sea level rise impacts on Florida's transportation modes and infrastructure : [summary].

    Science.gov (United States)

    2012-01-01

    In Florida, low elevations can make transportation infrastructure in coastal and low-lying areas potentially vulnerable to sea level rise (SLR). Becuase global SLR forecasts lack precision at local or regional scales, SLR forecasts or scenarios for p...

  9. Pilot Testing of a Sampling Methodology for Assessing Seed Attachment Propensity and Transport Rate in a Soil Matrix Carried on Boot Soles and Bike Tires.

    Science.gov (United States)

    Hardiman, Nigel; Dietz, Kristina Charlotte; Bride, Ian; Passfield, Louis

    2017-01-01

    Land managers of natural areas are under pressure to balance demands for increased recreation access with protection of the natural resource. Unintended dispersal of seeds by visitors to natural areas has high potential for weedy plant invasions, with initial seed attachment an important step in the dispersal process. Although walking and mountain biking are popular nature-based recreation activities, there are few studies quantifying propensity for seed attachment and transport rate on boot soles and none for bike tires. Attachment and transport rate can potentially be affected by a wide range of factors for which field testing can be time-consuming and expensive. We pilot tested a sampling methodology for measuring seed attachment and transport rate in a soil matrix carried on boot soles and bike tires traversing a known quantity and density of a seed analog (beads) over different distances and soil conditions. We found % attachment rate on boot soles was much lower overall than previously reported, but that boot soles had a higher propensity for seed attachment than bike tires in almost all conditions. We believe our methodology offers a cost-effective option for researchers seeking to manipulate and test effects of different influencing factors on these two dispersal vectors.

  10. Soft systems methodology as a potential approach to understanding non-motorised transport users in South Africa

    CSIR Research Space (South Africa)

    Van Rooyen, CE

    2016-07-01

    Full Text Available of this paper is to show the potential of using systems thinking and more particularly Soft Systems Methodology (SSM) as a practical and beneficial instrument that will guide BEPDPs with the ongoing learning process of understanding NMT users and their specific...

  11. Development of a quantitative methodology to assess the impacts of urban transport interventions and related noise on well-being

    NARCIS (Netherlands)

    Braubach, M.; Tobollik, M.; Mudu, P.; Hiscock, R.; Chapizanis, D.; Sarigiannis, D.A.; Keuken, M.; Perez, L.; Martuzzi, M.

    2015-01-01

    Well-being impact assessments of urban interventions are a difficult challenge, as there is no agreed methodology and scarce evidence on the relationship between environmental conditions and well-being. The European Union (EU) project “Urban Reduction of Greenhouse Gas Emissions in China and Europe”

  12. Electron scattering in graphene by defects in underlying h-BN layer: First-principles transport calculations

    Science.gov (United States)

    Kaneko, Tomoaki; Ohno, Takahisa

    2018-03-01

    We investigate the electronic structure and the transport properties of graphene adsorbed onto h-BN with carbon impurities or atomic vacancies using density functional theory and the non-equilibrium Green's function method. We find that the transport properties are degraded due to carrier doping and scattering off of localized defect states in h-BN. When graphene is doped by introducing defects in h-BN, the transmission spectra become asymmetric owing to the reduction of the electronic density of states, which contributes significantly to the degradation of graphene transport properties as compared with the effect of defect levels.

  13. Parameters calculation of shielding experiment

    International Nuclear Information System (INIS)

    Gavazza, S.

    1986-02-01

    The radiation transport methodology comparing the calculated reactions and dose rates for neutrons and gama-rays, with experimental measurements obtained on iron shield, irradiated in the YAYOI reactor is evaluated. The ENDF/B-IV and VITAMIN-C libraries and the AMPX-II modular system, for cross sections generation collapsed by the ANISN code were used. The transport calculations were made using the DOT 3.5 code, adjusting the boundary iron shield source spectrum to the reactions and dose rates, measured at the beginning of shield. The neutron and gamma ray distributions calculated on the iron shield presented reasonable agreement with experimental measurements. An experimental arrangement using the IEA-R1 reactor to determine a shielding benchmark is proposed. (Author) [pt

  14. User's guide to PHREEQC (Version 2) : a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations

    Science.gov (United States)

    Parkhurst, David L.; Appelo, C.A.J.

    1999-01-01

    PHREEQC version 2 is a computer program written in the C programming language that is designed to perform a wide variety of low-temperature aqueous geochemical calculations. PHREEQC is based on an ion-association aqueous model and has capabilities for (1) speciation and saturation-index calculations; (2) batch-reaction and one-dimensional (1D) transport calculations involving reversible reactions, which include aqueous, mineral, gas, solid-solution, surface-complexation, and ion-exchange equilibria, and irreversible reactions, which include specified mole transfers of reactants, kinetically controlled reactions, mixing of solutions, and temperature changes; and (3) inverse modeling, which finds sets of mineral and gas mole transfers that account for differences in composition between waters, within specified compositional uncertainty limits.New features in PHREEQC version 2 relative to version 1 include capabilities to simulate dispersion (or diffusion) and stagnant zones in 1D-transport calculations, to model kinetic reactions with user-defined rate expressions, to model the formation or dissolution of ideal, multicomponent or nonideal, binary solid solutions, to model fixed-volume gas phases in addition to fixed-pressure gas phases, to allow the number of surface or exchange sites to vary with the dissolution or precipitation of minerals or kinetic reactants, to include isotope mole balances in inverse modeling calculations, to automatically use multiple sets of convergence parameters, to print user-defined quantities to the primary output file and (or) to a file suitable for importation into a spreadsheet, and to define solution compositions in a format more compatible with spreadsheet programs. This report presents the equations that are the basis for chemical equilibrium, kinetic, transport, and inverse-modeling calculations in PHREEQC; describes the input for the program; and presents examples that demonstrate most of the program's capabilities.

  15. Nuclear techniques in the study of pollutant transport in the environment. Interaction of solutes with geological media (methodological aspects)

    International Nuclear Information System (INIS)

    1993-07-01

    This volume includes a summary of the 5-year co-ordinated research programme to use nuclear techniques for the study of the transport of pollutants (both radioactive and non-radioactive) in the environment as well as twelve individual reports of the different activities performed under the programme. These have been indexed separately. Refs, figs and tabs

  16. Social Enterprise and the Measurement of Social Value: Methodological Issues with the Calculation and Application of the Social Return on Investment

    Science.gov (United States)

    Ryan, Patrick W.; Lyne, Isaac

    2008-01-01

    This article considers the methodological challenge of quantifying the social value generated through social enterprise activity. It argues that in the context of increasing enthusiasm for social enterprise as a mechanism for delivering social services and for tackling social exclusion, it is increasingly necessary to be able to value social…

  17. Transportation

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    Here is the decree of the thirtieth of July 1998 relative to road transportation, to trade and brokerage of wastes. It requires to firms which carry out a road transportation as well as to traders and to brokers of wastes to declare their operations to the prefect. The declaration has to be renewed every five years. (O.M.)

  18. Simplified methodology for control cell constant calculations of the reactor cores for the space kinetics; Metodologia simplificada para calculos das constantes das celulas de controles dos nucleos de reatores para a cinetica espacial

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Rubens Souza dos [Instituto de Engenharia Nuclear (IEN), Rio de Janeiro, RJ (Brazil); Martinez, Aquilino Senra; Alvim, Antonio Carlos Marques [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Nuclear

    2002-07-01

    In this work is presented a methodology which focuses the distribution of neutron absorber rods in nuclear reactor power plants, for utilizing in space kinetic calculations, principally in the cluster ejection transients of control rods. A numerical model for macroscopic constant calculations based on the knowledge of the neutron flux without the control rods is proposed, as alternative to the analytical models, based on the hypothesis of the null current on the cell super boundaries. The proposed model in this work has itself showed adequate to deal with problems with strong space dependence, once that the model showed consistence in the global average built in the analytical model. (author)

  19. Off-line algorithm for calculation of vertical tracer transport in the troposphere due to deep convection

    NARCIS (Netherlands)

    Belikov, D.A.; Maksyutov, S.; Krol, M.C.; Fraser, A.; Rigby, M.; Bian, H.; Agusti-Panareda, A.; Bergmann, D.; Bousquet, P.; Cameron-Smith, P.; Chipperfield, M.P.; Fortems-Cheiney, A.; Gloor, E.; Haynes, K.; Hess, P.; Houweling, S.; Kawa, S.R.; Law, R.M.; Loh, Z.; Meng, L.; Palmer, P.I.; Patra, P.K.; Prinn, R.G.; Saito, R.; Wilson, C.

    2013-01-01

    A modified cumulus convection parametrisation scheme is presented. This scheme computes the mass of air transported upward in a cumulus cell using conservation of moisture and a detailed distribution of convective precipitation provided by a reanalysis dataset. The representation of vertical

  20. Off-line algorithm for calculation of vertical tracer transport in the troposphere due to deep convection

    Science.gov (United States)

    Belikov, D. A.; Maksyutov, S.; Krol, M.; Fraser, A.; Rigby, M.; Bian, H.; Agusti-Panareda, A.; Bergmann, D.; Bousquet, P.; Cameron-Smith, P.; Chipperfield, M. P.; Fortems-Cheiney, A.; Gloor, E.; Haynes, K.; Hess, P.; Houweling, S.; Kawa, S. R.; Law, R. M.; Loh, Z.; Meng, L.; Palmer, P. I.; Patra, P. K.; Prinn, R. G.; Saito, R.; Wilson, C.

    2013-02-01

    A modified cumulus convection parametrisation scheme is presented. This scheme computes the mass of air transported upward in a cumulus cell using conservation of moisture and a detailed distribution of convective precipitation provided by a reanalysis dataset. The representation of vertical transport within the scheme includes entrainment and detrainment processes in convective updrafts and downdrafts. Output from the proposed parametrisation scheme is employed in the National Institute for Environmental Studies (NIES) global chemical transport model driven by JRA-25/JCDAS reanalysis. The simulated convective precipitation rate and mass fluxes are compared with observations and reanalysis data. A simulation of the short-lived tracer 222Rn is used to further evaluate the performance of the cumulus convection scheme. Simulated distributions of 222Rn are evaluated against observations at the surface and in the free troposphere, and compared with output from models that participated in the TransCom-CH4 Transport Model Intercomparison. From this comparison, we demonstrate that the proposed convective scheme in general is consistent with observed and modeled results.

  1. Off-line algorithm for calculation of vertical tracer transport in the troposphere due to deep convection

    Directory of Open Access Journals (Sweden)

    D. A. Belikov

    2013-02-01

    Full Text Available A modified cumulus convection parametrisation scheme is presented. This scheme computes the mass of air transported upward in a cumulus cell using conservation of moisture and a detailed distribution of convective precipitation provided by a reanalysis dataset. The representation of vertical transport within the scheme includes entrainment and detrainment processes in convective updrafts and downdrafts. Output from the proposed parametrisation scheme is employed in the National Institute for Environmental Studies (NIES global chemical transport model driven by JRA-25/JCDAS reanalysis. The simulated convective precipitation rate and mass fluxes are compared with observations and reanalysis data. A simulation of the short-lived tracer 222Rn is used to further evaluate the performance of the cumulus convection scheme. Simulated distributions of 222Rn are evaluated against observations at the surface and in the free troposphere, and compared with output from models that participated in the TransCom-CH4 Transport Model Intercomparison. From this comparison, we demonstrate that the proposed convective scheme in general is consistent with observed and modeled results.

  2. Dissolution-precipitation processes in tank experiments for testing numerical models for reactive transport calculations: Experiments and modelling

    Science.gov (United States)

    Poonoosamy, Jenna; Kosakowski, Georg; Van Loon, Luc R.; Mäder, Urs

    2015-06-01

    In the context of testing reactive transport codes and their underlying conceptual models, a simple 2D reactive transport experiment was developed. The aim was to use simple chemistry and design a reproducible and fast to conduct experiment, which is flexible enough to include several process couplings: advective-diffusive transport of solutes, effect of liquid phase density on advective transport, and kinetically controlled dissolution/precipitation reactions causing porosity changes. A small tank was filled with a reactive layer of strontium sulfate (SrSO4) of two different grain sizes, sandwiched between two layers of essentially non-reacting quartz sand (SiO2). A highly concentrated solution of barium chloride was injected to create an asymmetric flow field. Once the barium chloride reached the reactive layer, it forced the transformation of strontium sulfate into barium sulfate (BaSO4). Due to the higher molar volume of barium sulfate, its precipitation caused a decrease of porosity and lowered the permeability. Changes in the flow field were observed with help of dye tracer tests. The experiments were modelled using the reactive transport code OpenGeosys-GEM. Tests with non-reactive tracers performed prior to barium chloride injection, as well as the density-driven flow (due to the high concentration of barium chloride solution), could be well reproduced by the numerical model. To reproduce the mineral bulk transformation with time, two populations of strontium sulfate grains with different kinetic rates of dissolution were applied. However, a default porosity permeability relationship was unable to account for measured pressure changes. Post mortem analysis of the strontium sulfate reactive medium provided useful information on the chemical and structural changes occurring at the pore scale at the interface that were considered in our model to reproduce the pressure evolution with time.

  3. Design of integrated autopilot/autothrottle for NASA TSRV airplane using integral LQG methodology. [transport systems research vehicle

    Science.gov (United States)

    Kaminer, Isaac; Benson, Russell A.

    1989-01-01

    An integrated autopilot/autothrottle control system has been developed for the NASA transport system research vehicle using a two-degree-of-freedom approach. Based on this approach, the feedback regulator was designed using an integral linear quadratic regulator design technique, which offers a systematic approach to satisfy desired feedback performance requirements and guarantees stability margins in both control and sensor loops. The resulting feedback controller was discretized and implemented using a delta coordinate concept, which allows for transient free controller switching by initializing all controller states to zero and provides a simple solution for dealing with throttle limiting cases.

  4. Modeling of radionuclide transport through rock formations and the resulting radiation exposure of reference persons. Calculations using Asse II parameters; Modellierung des Transports von Radionukliden durch Gesteinsschichten und der resultierenden Strahlenexposition von Referenzpersonen. Berechnungen mit Parametern der Asse II

    Energy Technology Data Exchange (ETDEWEB)

    Kueppers, Christian; Ustohalova, Veronika; Steinhoff, Mathias

    2012-05-21

    The long-term release of radioactivity into the ground water path cannot be excluded for the radioactive waste repository Asse II. The possible radiological consequences were analyzed using a radio-ecological scenario developed by GRS. A second scenario was developed considering the solubility of radionuclides in salt saturated solutions and retarding/retention effects during the radionuclide transport through the cap rock layers. The modeling of possible radiation exposure was based on the lifestyle habits of reference persons. In Germany the calculation procedure for the prediction of radionuclide release from final repositories is not defined by national standards, the used procedures are based on analogue methods from other radiation protection calculations.

  5. Analyses and hydrogen-isotope-transport calculations of current and future designs of the LLL rotating-target neutron source

    International Nuclear Information System (INIS)

    Steward, S.A.; Nickerson, R.; Booth, R.

    1975-01-01

    Analyses of the present titanium-tritide RTNS targets are presented. These results include the hydrogen-isotope content of new and used targets, metallography, scanning electron microscopy, and hydrogen-isotope-diffusion calculations using a heat-flow finite-difference computer code. These latter calculations indicate that a combination of long target life and high neutron output is optimized when the rate of hydrogen isotope evolution from the target balances the deposition rate from the beam. Auger spectra show that carbon and oxygen species are present in the bulk and on the surface

  6. A compartment model for solute transport in the near field of a repository for radioactive waste (calculations for Pu-239)

    International Nuclear Information System (INIS)

    Romero, L.; Moreno, L.; Neretnieks, I.

    1991-10-01

    Radionuclides released from a damaged canister for spent fuel will leak through a damage in the canister wall and spread into the surrounding backfill. They will further migrate into water bearing fractures in the rock, through the backfill into the damaged zone around the drift and into the drift itself. Some substances may also diffuse through the rock to adjacent fracture zones. The nuclides will sorb on the materials along the transport paths. This very complex and variable transport geometry has been modelled using a compartment model which is based on simplifying a full three dimensional integrated finite difference model. The simplifications are supplemented by introducing analytical and semianalytical solutions at sensitive locations such as entrances and exits from holes and fractures and in the flowing water. (au)

  7. The SPACE 1.0 model: a Landlab component for 2-D calculation of sediment transport, bedrock erosion, and landscape evolution

    Science.gov (United States)

    Shobe, Charles M.; Tucker, Gregory E.; Barnhart, Katherine R.

    2017-12-01

    Models of landscape evolution by river erosion are often either transport-limited (sediment is always available but may or may not be transportable) or detachment-limited (sediment must be detached from the bed but is then always transportable). While several models incorporate elements of, or transition between, transport-limited and detachment-limited behavior, most require that either sediment or bedrock, but not both, are eroded at any given time. Modeling landscape evolution over large spatial and temporal scales requires a model that can (1) transition freely between transport-limited and detachment-limited behavior, (2) simultaneously treat sediment transport and bedrock erosion, and (3) run in 2-D over large grids and be coupled with other surface process models. We present SPACE (stream power with alluvium conservation and entrainment) 1.0, a new model for simultaneous evolution of an alluvium layer and a bedrock bed based on conservation of sediment mass both on the bed and in the water column. The model treats sediment transport and bedrock erosion simultaneously, embracing the reality that many rivers (even those commonly defined as bedrock rivers) flow over a partially alluviated bed. SPACE improves on previous models of bedrock-alluvial rivers by explicitly calculating sediment erosion and deposition rather than relying on a flux-divergence (Exner) approach. The SPACE model is a component of the Landlab modeling toolkit, a Python-language library used to create models of Earth surface processes. Landlab allows efficient coupling between the SPACE model and components simulating basin hydrology, hillslope evolution, weathering, lithospheric flexure, and other surface processes. Here, we first derive the governing equations of the SPACE model from existing sediment transport and bedrock erosion formulations and explore the behavior of local analytical solutions for sediment flux and alluvium thickness. We derive steady-state analytical solutions for

  8. Transportation

    National Research Council Canada - National Science Library

    Allshouse, Michael; Armstrong, Frederick Henry; Burns, Stephen; Courts, Michael; Denn, Douglas; Fortunato, Paul; Gettings, Daniel; Hansen, David; Hoffman, Douglas; Jones, Robert

    2007-01-01

    .... The ability of the global transportation industry to rapidly move passengers and products from one corner of the globe to another continues to amaze even those wise to the dynamics of such operations...

  9. Implementation of the optimization for the methodology of the neutronic calculation and thermo-hydraulic in IEA-R1 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Stefani, Giovanni Laranjo de; Conti, Thadeu das Neves; Fedorenko, Giuliana G.; Castro, Vinicius A.; Maio, Mireia F., E-mail: gstefani@ipen.b, E-mail: tnconti@ipen.b, E-mail: g.fedorenko@ipen.b, E-mail: vcastro@ipen.b, E-mail: mfmaio@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Santos, Thiago Augusto dos, E-mail: tsantos@ipen.b [Universidade de Sao Paulo (IFUSP), Sao Paulo, SP (Brazil). Inst. de Fisica

    2011-07-01

    This work objective was to create a manager program that would automate the programs and computer codes in use for neutronic calculation and thermo-hydraulic in IEA-R1 reactor thus making the process for calculation of safety parameters and for configuration change up to 98% faster than that used in the reactor today. This process was tested in combination with the reactor operators and is being implemented by the quality department. The main codes and programs involved in the calculations of configuration change are Leopard, Hammier-Technion, Twodb, Citation and Cobra. Calculations of delayed neutron and criticality coefficients given in the process of safety parameters calculation are given by the Hammer-Technion and Citation in a process that involves about eleven repetitions so that it meets all the necessary conditions (such different temperatures of the moderator and fuel). The results are entirely consistent with the expected and absolutely the same as those given by manual process. Thus the work shows its reliability as well the advantage of saving time, once a process that could take up to four hours was turned in one that takes around five minutes when done in a home computer. Much of this advantage is due to the fact that were created subprograms to treat the output of each program used and transform them into the input of the other programs, removing from it the intermediate essential data for this to occur, thus avoiding also a possible human error by handling the various data supplied. (author)

  10. Particle reduction strategies - PAREST. Evaluation of emission reduction scenarios using chemical transport calculations. Traffic model TREMOD and traffic model TREMOVE. Sub-report

    International Nuclear Information System (INIS)

    Stern, Rainer

    2013-01-01

    The calculation of transport emissions in PAREST project is made with traffic model TREMOD 4.17 (Transport Emission Model) used by the Federal Environment Agency based on the emission factors of HBEFA 2.1 (Handbook on Emission Factors for Road Traffic). For the PAREST reference scenario 2010-2020 (CLE scenario, ''current legislation'') TREMOD 4.17 was changed (TREMOD 4.17M) in such way that measures ''Introduction of Euro 5 and 6 limit levels for passenger cars and light commercial vehicles'', ''Introduction of a limit value stage Euro VI for heavy commercial vehicles'' and ''Existing truck tolls including promoting the purchase of low-emission heavy duty vehicles'' are integrated in the reference scenario and are no longer treated as an additional measure (Joerss et al., 2010). As an alternative to TREMOD 4.17M emission data sets were created for the project, in which the traffic emissions were calculated with the TREMOVE, version 2.7 (Kugler et al., 2010). TREMOVE is the traffic model used by the European Commission for the development of traffic scenarios. This report documents the differences between the immission distributions of PM10 and NO 2 , resulting from the application of the European transport model. Considered are the reference 2005, which describes the current state for the year 2005 and the 2020 reference that describes the emission state in 2020 to be achieved. [de

  11. Performance of a fine-grained parallel model for multi-group nodal-transport calculations in three-dimensional pin-by-pin reactor geometry

    International Nuclear Information System (INIS)

    Masahiro, Tatsumi; Akio, Yamamoto

    2003-01-01

    A production code SCOPE2 was developed based on the fine-grained parallel algorithm by the red/black iterative method targeting parallel computing environments such as a PC-cluster. It can perform a depletion calculation in a few hours using a PC-cluster with the model based on a 9-group nodal-SP3 transport method in 3-dimensional pin-by-pin geometry for in-core fuel management of commercial PWRs. The present algorithm guarantees the identical convergence process as that in serial execution, which is very important from the viewpoint of quality management. The fine-mesh geometry is constructed by hierarchical decomposition with introduction of intermediate management layer as a block that is a quarter piece of a fuel assembly in radial direction. A combination of a mesh division scheme forcing even meshes on each edge and a latency-hidden communication algorithm provided simplicity and efficiency to message passing to enhance parallel performance. Inter-processor communication and parallel I/O access were realized using the MPI functions. Parallel performance was measured for depletion calculations by the 9-group nodal-SP3 transport method in 3-dimensional pin-by-pin geometry with 340 x 340 x 26 meshes for full core geometry and 170 x 170 x 26 for quarter core geometry. A PC cluster that consists of 24 Pentium-4 processors connected by the Fast Ethernet was used for the performance measurement. Calculations in full core geometry gave better speedups compared to those in quarter core geometry because of larger granularity. Fine-mesh sweep and feedback calculation parts gave almost perfect scalability since granularity is large enough, while 1-group coarse-mesh diffusion acceleration gave only around 80%. The speedup and parallel efficiency for total computation time were 22.6 and 94%, respectively, for the calculation in full core geometry with 24 processors. (authors)

  12. Numerical modeling of the groundwater contaminant transport for the Lake Karachai Area: The methodological approach and the basic two- dimensional regional model

    International Nuclear Information System (INIS)

    Petrov, A.V.; Samsonova, L.M.; Vasil'kova, N.A.; Zinin, A.I.; Zinina, G.A.

    1994-06-01

    Methodological aspects of the numerical modeling of the groundwater contaminant transport for the Lake Karachay area are discussed. Main features of conditions of the task are the high grade of non-uniformity of the aquifer in the fractured rock massif and the high density of the waste solutions, and also the high volume of the input data: both on the part of parameters of the aquifer (number of pump tests) and on the part of observations of functions of processes (long-time observations by the monitoring well grid). The modeling process for constructing the two dimensional regional model is described, and this model is presented as the basic model for subsequent full three-dimensional modeling in sub-areas of interest. Original powerful mathematical apparatus and computer codes for finite-difference numerical modeling are used

  13. Methodology report on the calculation of emissions to air from the sectors Energy, Industry and Waste (Update 2016), as used by the Dutch Pollutant Release and Transfer Register

    NARCIS (Netherlands)

    Peek CJ; Montfoort JA; Droge R; Guis B; Baas C; van Huet B; van Hunnik OR; van den Berghe ACWM; DMO; MIL

    2017-01-01

    In this technical report RIVM describes the updated methods that The Netherlands Pollutant Release and Transfer Register uses to calculate the emissions of contaminated substances into the air from the Industry, Energy Generating and Waste Processing sectors. Due to international treaties, such

  14. Renewable Energy Monitoring Protocol. Update 2010. Methodology for the calculation and recording of the amounts of energy produced from renewable sources in the Netherlands

    Energy Technology Data Exchange (ETDEWEB)

    Te Buck, S.; Van Keulen, B.; Bosselaar, L.; Gerlagh, T.; Skelton, T.

    2010-07-15

    This is the fifth, updated edition of the Dutch Renewable Energy Monitoring Protocol. The protocol, compiled on behalf of the Ministry of Economic Affairs, can be considered as a policy document that provides a uniform calculation method for determining the amount of energy produced in the Netherlands in a renewable manner. Because all governments and organisations use the calculation methods described in this protocol, this makes it possible to monitor developments in this field well and consistently. The introduction of this protocol outlines the history and describes its set-up, validity and relationship with other similar documents and agreements. The Dutch Renewable Energy Monitoring Protocol is compiled by NL Agency, and all relevant parties were given the chance to provide input. This has been incorporated as far as is possible. Statistics Netherlands (CBS) uses this protocol to calculate the amount of renewable energy produced in the Netherlands. These data are then used by the Ministry of Economic Affairs to gauge the realisation of policy objectives. In June 2009 the European Directive for energy from renewable sources was published with renewable energy targets for the Netherlands. This directive used a different calculation method - the gross energy end-use method - whilst the Dutch definition is based on the so-called substitution method. NL Agency was asked to add the calculation according to the gross end use method, although this is not clearly defined on a number of points. In describing the method, the unanswered questions become clear, as do, for example, the points the Netherlands should bring up in international discussions.

  15. Computational Model of D-Region Ion Production Caused by Energetic Electron Precipitations Based on General Monte Carlo Transport Calculations

    Science.gov (United States)

    Kouznetsov, A.; Cully, C. M.

    2017-12-01

    During enhanced magnetic activities, large ejections of energetic electrons from radiation belts are deposited in the upper polar atmosphere where they play important roles in its physical and chemical processes, including VLF signals subionospheric propagation. Electron deposition can affect D-Region ionization, which are estimated based on ionization rates derived from energy depositions. We present a model of D-region ion production caused by an arbitrary (in energy and pitch angle) distribution of fast (10 keV - 1 MeV) electrons. The model relies on a set of pre-calculated results obtained using a general Monte Carlo approach with the latest version of the MCNP6 (Monte Carlo N-Particle) code for the explicit electron tracking in magnetic fields. By expressing those results using the ionization yield functions, the pre-calculated results are extended to cover arbitrary magnetic field inclinations and atmospheric density profiles, allowing ionization rate altitude profile computations in the range of 20 and 200 km at any geographic point of interest and date/time by adopting results from an external atmospheric density model (e.g. NRLMSISE-00). The pre-calculated MCNP6 results are stored in a CDF (Common Data Format) file, and IDL routines library is written to provide an end-user interface to the model.

  16. Methodological guidelines

    International Nuclear Information System (INIS)

    Halsnaes, K.; Callaway, J.M.; Meyer, H.J.

    1999-01-01

    The guideline document establishes a general overview of the main components of climate change mitigation assessment. This includes an outline of key economic concepts, scenario structure, common assumptions, modelling tools and country study assumptions. The guidelines are supported by Handbook Reports that contain more detailed specifications of calculation standards, input assumptions and available tools. The major objectives of the project have been provided a methodology, an implementing framework and a reporting system which countries can follow in meeting their future reporting obligations under the FCCC and for GEF enabling activities. The project builds upon the methodology development and application in the UNEP National Abatement Coasting Studies (UNEP, 1994a). The various elements provide countries with a road map for conducting climate change mitigation studies and submitting national reports as required by the FCCC. (au) 121 refs

  17. Methodological guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Halsnaes, K.; Callaway, J.M.; Meyer, H.J.

    1999-04-01

    The guideline document establishes a general overview of the main components of climate change mitigation assessment. This includes an outline of key economic concepts, scenario structure, common assumptions, modelling tools and country study assumptions. The guidelines are supported by Handbook Reports that contain more detailed specifications of calculation standards, input assumptions and available tools. The major objectives of the project have been provided a methodology, an implementing framework and a reporting system which countries can follow in meeting their future reporting obligations under the FCCC and for GEF enabling activities. The project builds upon the methodology development and application in the UNEP National Abatement Coasting Studies (UNEP, 1994a). The various elements provide countries with a road map for conducting climate change mitigation studies and submitting national reports as required by the FCCC. (au) 121 refs.

  18. Nonequilibrium generalised Langevin equation for the calculation of heat transport properties in model 1D atomic chains coupled to two 3D thermal baths.

    Science.gov (United States)

    Ness, H; Stella, L; Lorenz, C D; Kantorovich, L

    2017-04-28

    We use a generalised Langevin equation scheme to study the thermal transport of low dimensional systems. In this approach, the central classical region is connected to two realistic thermal baths kept at two different temperatures [H. Ness et al., Phys. Rev. B 93, 174303 (2016)]. We consider model Al systems, i.e., one-dimensional atomic chains connected to three-dimensional baths. The thermal transport properties are studied as a function of the chain length N and the temperature difference ΔT between the baths. We calculate the transport properties both in the linear response regime and in the non-linear regime. Two different laws are obtained for the linear conductance versus the length of the chains. For large temperatures (T≳500 K) and temperature differences (ΔT≳500 K), the chains, with N>18 atoms, present a diffusive transport regime with the presence of a temperature gradient across the system. For lower temperatures (T≲500 K) and temperature differences (ΔT≲400 K), a regime similar to the ballistic regime is observed. Such a ballistic-like regime is also obtained for shorter chains (N≤15). Our detailed analysis suggests that the behaviour at higher temperatures and temperature differences is mainly due to anharmonic effects within the long chains.

  19. A methodology for optimal MSW management, with an application in the waste transportation of Attica Region, Greece.

    Science.gov (United States)

    Economopoulou, M A; Economopoulou, A A; Economopoulos, A P

    2013-11-01

    The paper describes a software system capable of formulating alternative optimal Municipal Solid Wastes (MSWs) management plans, each of which meets a set of constraints that may reflect selected objections and/or wishes of local communities. The objective function to be minimized in each plan is the sum of the annualized capital investment and annual operating cost of all transportation, treatment and final disposal operations involved, taking into consideration the possible income from the sale of products and any other financial incentives or disincentives that may exist. For each plan formulated, the system generates several reports that define the plan, analyze its cost elements and yield an indicative profile of selected types of installations, as well as data files that facilitate the geographic representation of the optimal solution in maps through the use of GIS. A number of these reports compare the technical and economic data from all scenarios considered at the study area, municipality and installation level constituting in effect sensitivity analysis. The generation of alternative plans offers local authorities the opportunity of choice and the results of the sensitivity analysis allow them to choose wisely and with consensus. The paper presents also an application of this software system in the capital Region of Attica in Greece, for the purpose of developing an optimal waste transportation system in line with its approved waste management plan. The formulated plan was able to: (a) serve 113 Municipalities and Communities that generate nearly 2 milliont/y of comingled MSW with distinctly different waste collection patterns, (b) take into consideration several existing waste transfer stations (WTS) and optimize their use within the overall plan, (c) select the most appropriate sites among the potentially suitable (new and in use) ones, (d) generate the optimal profile of each WTS proposed, and (e) perform sensitivity analysis so as to define the impact

  20. Ab initio calculations on structural and electronic transport properties of six-atom GaN clusters

    Science.gov (United States)

    Song, Jinfeng; Long, Xiaojiang; Hao, Yanjun; Zhu, Jun; Guo, Yundong

    2017-11-01

    The structural and electronic transport properties of GaxNy (x + y = 6) clusters are investigated in the framework of density functional theory (DFT). To get their most stable structures, a strategy of particle swarm optimization (PSO) algorithm is adopted. It is found that the most stable cluster’s binding energy and HOMO-LUMO gap energy decrease with Ga atom’s number in cluster increasing. The electronic transport properties of the clusters connected with two Al(100) electrodes are obtained by a method of combining nonequilibrium Green’s function (NEGF) with DFT. Equilibrium conductance of all six-atom GaN cluster is low (less than 0.65 G0), and Ga2N4 has the highest one (0.635 G0). Significant negative differential resistance (NDR) phenomenon is observed in configurations with cluster Ga2N4, Ga3N3 and Ga5N1, and these three clusters have almost the same current value in voltage region from 0.8 V to 1.3 V.

  1. Effect of defects on the small polaron formation and transport properties of hematite from first-principles calculations.

    Science.gov (United States)

    Smart, Tyler J; Ping, Yuan

    2017-10-04

    Hematite (α-Fe 2 O 3 ) is a promising candidate as a photoanode material for solar-to-fuel conversion due to its favorable band gap for visible light absorption, its stability in an aqueous environment and its relatively low cost in comparison to other prospective materials. However, the small polaron transport nature in α-Fe 2 O 3 results in low carrier mobility and conductivity, significantly lowering its efficiency from the theoretical limit. Experimentally, it has been found that the incorporation of oxygen vacancies and other dopants, such as Sn, into the material appreciably enhances its photo-to-current efficiency. Yet no quantitative explanation has been provided to understand the role of oxygen vacancy or Sn-doping in hematite. We employed density functional theory to probe the small polaron formation in oxygen deficient hematite, N-doped as well as Sn-doped hematite. We computed the charged defect formation energies, the small polaron formation energy and hopping activation energies to understand the effect of defects on carrier concentration and mobility. This work provides us with a fundamental understanding regarding the role of defects on small polaron formation and transport properties in hematite, offering key insights into the design of new dopants to further improve the efficiency of transition metal oxides for solar-to-fuel conversion.

  2. Transport of solid commodities via freight pipeline: cost estimating methodology. Volume III, parts A and B. First year final report

    Energy Technology Data Exchange (ETDEWEB)

    Warner, J.A.; Morlok, E.K.; Gimm, K.K.; Zandi, I.

    1976-07-01

    In order to examine the feasibility of an intercity freight pipeline, it was necessary to develop cost equations for various competing transportation modes. This volume presents cost-estimating equations for rail carload, trailer-on-flatcar, truck, and freight pipeline. Section A presents mathematical equations that approximate the fully allocated and variable costs contained in the ICC cost tables for rail carload, trailer-on-flatcar (TOFC) and truck common-carrier intercity freight movements. These equations were developed to enable the user to approximate the ICC costs quickly and easily. They should find use in initial studies of costs where exact values are not needed, such as in consideration of rate changes, studies of profitability, and in general inter-modal comparisons. Section B discusses the development of a set of engineering cost equations for pneumo-capsule pipelines. The development was based on an analysis of system components and can readily be extended to other types of pipeline. The model was developed for the purpose of a feasibility study. It employs a limited number of generalized parameters and its use is recommended when sufficient detailed and specific engineering information is lacking. These models were used in the comparison of modes presented in Volume I and hence no conclusions regarding relative costs or service of the modes are presented here. The primary conclusion is that the estimates of costs resulting from these models is subject to considerable uncertainty.

  3. Calculation of relative tube/tube support plate displacements in steam generators under accident condition loads using non-linear dynamic analysis methodologies

    International Nuclear Information System (INIS)

    Smith, R.E.; Waisman, R.; Hu, M.H.; Frick, T.M.

    1995-01-01

    A non-linear analysis has been performed to determine relative motions between tubes and tube support plates (TSP) during a steam line break (SLB) event for steam generators. The SLB event results in blowdown of steam and water out of the steam generator. The fluid blowdown generates pressure drops across the TSPS, resulting in out-of-plane motion. The SLB induced pressure loads are calculated with a computer program that uses a drift-flux modeling of the two-phase flow. In order to determine the relative tube/TSP motions, a nonlinear dynamic time-history analysis is performed using a structural model that considers all of the significant component members relative to the tube support system. The dynamic response of the structure to the pressure loads is calculated using a special purpose computer program. This program links the various substructures at common degrees of freedom into a combined mass and stiffness matrix. The program accounts for structural non-linearities, including potential tube and TSP interaction at any given tube position. The program also accounts for structural damping as part of the dynamic response. Incorporating all of the above effects, the equations of motion are solved to give TSP displacements at the reduced set of DOF. Using the displacement results from the dynamic analysis, plate stresses are then calculated using the detailed component models. Displacements form the dynamic analysis are imposed as boundary conditions at the DOF locations, and the finite element program then solves for the overall distorted geometry. Calculations are also performed to assure that assumptions regarding elastic response of the various structural members and support points are valid

  4. Investigation on the neutron beam characteristics for boron neutron capture therapy with 3D and 2D transport calculations

    International Nuclear Information System (INIS)

    Kodeli, I.; Diop, C.M.; Nimal, J.C.

    1994-01-01

    In the framework of future Boron Neutron Capture Therapy (BNCT) experiments, where cells and animals irradiations are planned at the research reactor of Strasbourg University, the feasibility to obtain a suitable epithermal neutron beam is investigated. The neutron fluence and spectra calculations in the reactor are performed using the 3D Monte Carlo code TRIPOLI-3 and the 2D SN code TWODANT. The preliminary analysis of Al 2 O 3 and Al-Al 2 O 3 filters configurations are carried out in an attempt to optimize the flux characteristics in the beam tube facility. 7 figs., 7 refs

  5. Parallel computing for homogeneous diffusion and transport equations in neutronics; Calcul parallele pour les equations de diffusion et de transport homogenes en neutronique

    Energy Technology Data Exchange (ETDEWEB)

    Pinchedez, K

    1999-06-01

    Parallel computing meets the ever-increasing requirements for neutronic computer code speed and accuracy. In this work, two different approaches have been considered. We first parallelized the sequential algorithm used by the neutronics code CRONOS developed at the French Atomic Energy Commission. The algorithm computes the dominant eigenvalue associated with PN simplified transport equations by a mixed finite element method. Several parallel algorithms have been developed on distributed memory machines. The performances of the parallel algorithms have been studied experimentally by implementation on a T3D Cray and theoretically by complexity models. A comparison of various parallel algorithms has confirmed the chosen implementations. We next applied a domain sub-division technique to the two-group diffusion Eigen problem. In the modal synthesis-based method, the global spectrum is determined from the partial spectra associated with sub-domains. Then the Eigen problem is expanded on a family composed, on the one hand, from eigenfunctions associated with the sub-domains and, on the other hand, from functions corresponding to the contribution from the interface between the sub-domains. For a 2-D homogeneous core, this modal method has been validated and its accuracy has been measured. (author)

  6. Extension and validation of ARTM (atmospheric radionuclide transportation model) for the application as dispersion calculation model in AVV (general administrative provision) and SBG (incident calculation bases); Erweiterung und Validierung von ARTM fuer den Einsatz als Ausbreitungsmodell in AVV und SBG

    Energy Technology Data Exchange (ETDEWEB)

    Martens, Reinhard; Bruecher, Wenzel; Richter, Cornelia; Sentuc, Florence; Sogalla, Martin; Thielen, Harald

    2012-02-15

    In the medium-term time scale the Gaussian plume model used so far for atmospheric dispersion calculations in the General Administrative Provision (AVV) relating to Section 47 of the Radiation Protection Ordinance (StrISchV) as well as in the Incident Calculation Bases (SGB) relating to Section 49 StrISchV is to be replaced by a Lagrangian particle model. Meanwhile the Atmospheric Radionuclide Transportation Model (ARTM) is available, which allows the simulation of the atmospheric dispersion of operational releases from nuclear installations. ARTM is based on the program package AUSTAL2000 which is designed for the simulation of atmospheric dispersion of nonradioactive operational releases from industrial plants and was adapted to the application of airborne radioactive releases. In the context of the research project 3608S05005 possibilities for an upgrade of ARTM were investigated and implemented as far as possible to the program system. The work program comprises the validation and evaluation of ARTM, the implementation of technical-scientific extensions of the model system and the continuation of experience exchange between developers and users. In particular, the suitability of the model approach for simulations of radiological consequences according to the German SBG and the representation of the influence of buildings typical for nuclear power stations have been validated and further evaluated. Moreover, post-processing modules for calculation of dose-relevant decay products and for dose calculations have been developed and implemented. In order to continue the experience feedback and exchange, a web page has been established and maintained. Questions by users and other feedback have been dealt with and a common workshop has been held. The continued development and validation of ARTM has strengthened the basis for applications of this model system in line with the German regulations AVV and SBG. Further activity in this field can contribute to maintain and

  7. Electronic Structure, Optical and Transport Properties of Double Perovskite La2NbMnO6: A Theoretical Understanding from DFT Calculations

    Science.gov (United States)

    Parrey, Khursheed Ahmad; Khandy, Shakeel Ahmad; Islam, Ishtihadah; Laref, Amel; Gupta, Dinesh C.; Niazi, Asad; Aziz, Anver; Ansari, S. G.; Khenata, R.; Rubab, Seemin

    2018-03-01

    Double perovskite La2NbMnO6 was systematically studied using the first-principles calculations. The structural, electronic, optical and transport properties of this compound were calculated. Spin resolved band structure predicted this material as a half-metal with an energy gap of 3.75 eV in spin down state. The optical coefficients including optical conductivity, reflectivity and electron energy loss are calculated for photon energy up to 30.00 eV to understand the optical response of this perovskite. The strong absorption of all the ultraviolet and infrared frequencies of the spectrum by this material may suggest the potential application of this material for the optoelectronic devices in ultraviolet and infra-red region. Also, the thermoelectric properties with a speculation from the half-metallic electronic structure are reported. Subsequently, the Seebeck coefficient, electrical and thermal conductivity coefficients are calculated to predict the thermoelectric figure of merit (zT), the maximum of which is found out to be 0.14 at 800 K.

  8. Benchmark experiment to verify radiation transport calculations for dosimetry in radiation therapy; Benchmark-Experiment zur Verifikation von Strahlungstransportrechnungen fuer die Dosimetrie in der Strahlentherapie

    Energy Technology Data Exchange (ETDEWEB)

    Renner, Franziska [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany)

    2016-11-01

    Monte Carlo simulations are regarded as the most accurate method of solving complex problems in the field of dosimetry and radiation transport. In (external) radiation therapy they are increasingly used for the calculation of dose distributions during treatment planning. In comparison to other algorithms for the calculation of dose distributions, Monte Carlo methods have the capability of improving the accuracy of dose calculations - especially under complex circumstances (e.g. consideration of inhomogeneities). However, there is a lack of knowledge of how accurate the results of Monte Carlo calculations are on an absolute basis. A practical verification of the calculations can be performed by direct comparison with the results of a benchmark experiment. This work presents such a benchmark experiment and compares its results (with detailed consideration of measurement uncertainty) with the results of Monte Carlo calculations using the well-established Monte Carlo code EGSnrc. The experiment was designed to have parallels to external beam radiation therapy with respect to the type and energy of the radiation, the materials used and the kind of dose measurement. Because the properties of the beam have to be well known in order to compare the results of the experiment and the simulation on an absolute basis, the benchmark experiment was performed using the research electron accelerator of the Physikalisch-Technische Bundesanstalt (PTB), whose beam was accurately characterized in advance. The benchmark experiment and the corresponding Monte Carlo simulations were carried out for two different types of ionization chambers and the results were compared. Considering the uncertainty, which is about 0.7 % for the experimental values and about 1.0 % for the Monte Carlo simulation, the results of the simulation and the experiment coincide.

  9. Methodology of assessment of the clinical and dosimetric impact of a change of dose calculation algorithm in radiotherapy; Methodologie d'evaluation de l'impact dosimetrique et clinique du changement d'algorithme de calcul de dose en radiotherapie

    Energy Technology Data Exchange (ETDEWEB)

    Chaikh, A.; Giraud, J.Y.; Balosso, J. [Centre hospitalier universitaire de Grenoble, Grenoble (France)

    2011-10-15

    The authors report the use of five dose calculation algorithms and the comparison of six treatment plans with identical configurations regarding patient, energy, and ballistics. Thirteen tumour locations have been compared (five in lungs, one in oesophagus, one in breast, three in ENT, two in brain, and one in prostate). The methodology is based on a dosimetric criterion (analysis related to the treatment dose, and to dose distribution) and on a statistic criterion. Short communication

  10. A multi-methodological approach to study the temporal and spatial distribution of air quality related to road transport emissions in Madrid, Spain

    Science.gov (United States)

    Perez, Pedro; Miranda, Regina

    2013-04-01

    emission inventory, together with the mobile source's parameters and the disaggregated transport activity data. The paper will also identify emission and concentration differences and gradients of certain magnitude/factor (e.g. comparison between estimated ATPs hourly concentrations in Madrid City Center and in the peripheries). Furthermore, because of the higher contribution of road mobile sources to GHGs and ATPs emissions in Madrid, small gradients between urban highways and residential areas will be expected. Second, the paper objectives are to develop valid methods and approaches to measure air quality and to develop valid road transport emission inventories to assess correlations between external costs, epidemiology and emissions in order to reveal how traffic pollution affects people exposure to key contaminants and disease development, and identify susceptible emission scenarios and health impacts. We have conducted general emission inventory studies providing preliminary evidence of regional road transport air pollution impacts on external cost growth and disease development. Third, we also aim to demonstrate short and long-term impacts of road transport emissions on external costs development using innovative multi-methodological methods interfaced with environmental chemistry and meteorology following meteorological and chemical fields with contrasting high/low traffic emissions in several linked components involving: air pollutant assessment using local measurements, height of the boundary layer, meteorological environment interactions on external costs and epidemiology, mapping of Madrid (identifying gradients of emissions), integrative causal modeling using statistical models, and trend and scenario analyses on external costs and impacts on human health. Meteorological and chemical fields will be obtained from local records collected by surface meteorological and air quality stations. These two sets of fields define the horizontal and vertical profiles of

  11. Scheme for ab initio calculation of the Green function in large disordered systems with application to transport properties

    Science.gov (United States)

    Tanaka, Hiroshi

    1998-01-01

    A real-space scheme is developed to calculate matrix elements of the Green function from first principles for large disordered systems. The scheme is an extension of the particle source method, combined with the tight-binding linear muffin-tin orbitals and has the following advantages: (i) It is possible to evaluate both the diagonal and off-diagonal parts of the Green function and also their products with other quantum operators, (ii) it allows for an explicit control of the numerical accuracy and clear-cut physical interpretations of the results on the basis of the definition of the Green function, and (iii) the scheme is suitable for both vector and parallel processing and requires CPU time and memory size proportional only to the system size. The method is applied to the densities of states of bcc and amorphous Fe. The dc conductivity is also evaluated for the latter from the Kubo-Greenwood formula.

  12. Numerical simulations of forest fire propagation and smoke transport as an external hazard assessment methodology development for a nuclear power plant

    International Nuclear Information System (INIS)

    Okano, Yasushi; Yamano, Hidemasa

    2016-01-01

    A new method has been developed to assess potential challenges by forest fire smoke on a cooling function of a decay heat removal system (DHRS) of a sodium-cooled fast reactor. Combinational numerical simulations of a forest fire propagation and a smoke transport were performed to evaluate a cumulative amount of smoke captured on air filters of the DHRS. The forest fire propagation simulations were performed using FARSITE code to evaluate a temporal increase of a forest fire spread area, a frontal fireline location, reaction intensity, and fireline intensity. Peripheral boundary of the forest fire spread area is shaped like an ellipse on the terrain, and the active forest fire area from which smoke is produced as a forest fire product is increased with forest fire spread. The smoke transport simulations were performed using ALOFT-FT code where a spatial distribution of smoke density, especially of particle matter (PM), is evaluated. The snapshot (i.e. at a certain time step) outputs by FARSITE on the reaction intensity and the fireline intensity were utilized as the input data for ALOFT-FT, while it was conservatively assumed that the smoke generated from the active forest fire area along the periphery boundary rises up from the frontal fireline location nearest to a nuclear power plant (NPP) and that prevailing wind transports all smoke to an NPP in the leeward side. The evaluated time-dependent changes of spatial PM density were utilized to calculate a cumulative amount of PM captured on the air filters of the DHRS. Sensitivity analysis was performed on prevailing wind speed to which both the fireline intensity and the smoke transport behavior are sensitive. The total amount of PM on the air filters was conservatively estimated around several hundred grams per m 2 which is well below the utilization limit. (author)

  13. Description of input and examples for PHREEQC version 3: a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations

    Science.gov (United States)

    Parkhurst, David L.; Appelo, C.A.J.

    2013-01-01

    PHREEQC version 3 is a computer program written in the C and C++ programming languages that is designed to perform a wide variety of aqueous geochemical calculations. PHREEQC implements several types of aqueous models: two ion-association aqueous models (the Lawrence Livermore National Laboratory model and WATEQ4F), a Pitzer specific-ion-interaction aqueous model, and the SIT (Specific ion Interaction Theory) aqueous model. Using any of these aqueous models, PHREEQC has capabilities for (1) speciation and saturation-index calculations; (2) batch-reaction and one-dimensional (1D) transport calculations with reversible and irreversible reactions, which include aqueous, mineral, gas, solid-solution, surface-complexation, and ion-exchange equilibria, and specified mole transfers of reactants, kinetically controlled reactions, mixing of solutions, and pressure and temperature changes; and (3) inverse modeling, which finds sets of mineral and gas mole transfers that account for differences in composition between waters within specified compositional uncertainty limits. Many new modeling features were added to PHREEQC version 3 relative to version 2. The Pitzer aqueous model (pitzer.dat database, with keyword PITZER) can be used for high-salinity waters that are beyond the range of application for the Debye-Hückel theory. The Peng-Robinson equation of state has been implemented for calculating the solubility of gases at high pressure. Specific volumes of aqueous species are calculated as a function of the dielectric properties of water and the ionic strength of the solution, which allows calculation of pressure effects on chemical reactions and the density of a solution. The specific conductance and the density of a solution are calculated and printed in the output file. In addition to Runge-Kutta integration, a stiff ordinary differential equation solver (CVODE) has been included for kinetic calculations with multiple rates that occur at widely different time scales

  14. Explicit formulation of a nodal transport method for discrete ordinates calculations in two-dimensional fixed-source problems

    Energy Technology Data Exchange (ETDEWEB)

    Tres, Anderson [Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Matematica Aplicada; Becker Picoloto, Camila [Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica; Prolo Filho, Joao Francisco [Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil). Inst de Matematica, Estatistica e Fisica; Dias da Cunha, Rudnei; Basso Barichello, Liliane [Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil). Inst de Matematica

    2014-04-15

    In this work a study of two-dimensional fixed-source neutron transport problems, in Cartesian geometry, is reported. The approach reduces the complexity of the multidimensional problem using a combination of nodal schemes and the Analytical Discrete Ordinates Method (ADO). The unknown leakage terms on the boundaries that appear from the use of the derivation of the nodal scheme are incorporated to the problem source term, such as to couple the one-dimensional integrated solutions, made explicit in terms of the x and y spatial variables. The formulation leads to a considerable reduction of the order of the associated eigenvalue problems when combined with the usual symmetric quadratures, thereby providing solutions that have a higher degree of computational efficiency. Reflective-type boundary conditions are introduced to represent the domain on a simpler form than that previously considered in connection with the ADO method. Numerical results obtained with the technique are provided and compared to those present in the literature. (orig.)

  15. Development of a methodology to study the effect of magnetic field on dose distributions in an MR-linac, using PRESAGE® and Monte Carlo calculations

    Science.gov (United States)

    Costa, F.; Doran, S.; Nill, S.; Duane, S.; Shipley, D.; Billas, I.; Adamovics, J.; Oelfke, U.

    2017-05-01

    At the Royal Marsden Hospital (RMH) and the Institute of Cancer Research (ICR) a new MR-linac is being installed and commissioned. Modifications to absorbed dose patterns will occur, because the paths of secondary electrons are deflected by Lorentz forces. In this paper, we describe a methodology to measure the effects of magnetic field on dose distributions, using the PRESAGE® 3D dosimeter and Monte Carlo (MC) simulations. A poly(methyl methacrylate) (PMMA) phantom has been developed to be positioned between the poles of an electromagnet and accommodate cylindrical samples of PRESAGE®. This phantom will be used to study the influence of different magnetic field strengths on radiation deposition from a Cobalt-60 (60Co) beam. Both the orientation of the samples with respect to the magnetic field and radiation beam, and the size of the air gap can be changed. Preliminary MC simulations with two PRESAGE® cylinders separated by an air gap, gave a good insight about the dosimetric effects that can be obtained with our newly-developed phantom.

  16. Improvement of gamma-ray Sn transport calculations including coherent and incoherent scatterings and secondary sources of bremsstrahlung and fluorescence: Determination of gamma-ray buildup factors

    International Nuclear Information System (INIS)

    Kitsos, S.; Diop, C.M.; Assad, A.; Nimal, J.C.; Ridoux, P.

    1996-01-01

    Improvements of gamma-ray transport calculations in S n codes aim at taking into account the bound-electron effect of Compton scattering (incoherent), coherent scattering (Rayleigh), and secondary sources of bremsstrahlung and fluorescence. A computation scheme was developed to take into account these phenomena by modifying the angular and energy transfer matrices, and no modification in the transport code has been made. The incoherent and coherent scatterings as well as the fluorescence sources can be strictly treated by the transfer matrix change. For bremsstrahlung sources, this is possible if one can neglect the charged particles path as they pass through the matter (electrons and positrons) and is applicable for the energy range of interest for us (below 10 MeV). These improvements have been reported on the kernel attenuation codes by the calculation of new buildup factors. The gamma-ray buildup factors have been carried out for 25 natural elements up to 30 mean free paths in the energy range between 15 keV and 10 MeV

  17. Calculation of absorbed fractions to human skeletal tissues due to alpha particles using the Monte Carlo and 3-d chord-based transport techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, J.G. [Institute of Radiation Protection and Dosimetry, Av. Salvador Allende s/n, Recreio, Rio de Janeiro, CEP 22780-160 (Brazil); Watchman, C.J. [Department of Radiation Oncology, University of Arizona, Tucson, AZ, 85721 (United States); Bolch, W.E. [Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, FL, 32611 (United States); Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611 (United States)

    2007-07-01

    Absorbed fraction (AF) calculations to the human skeletal tissues due to alpha particles are of interest to the internal dosimetry of occupationally exposed workers and members of the public. The transport of alpha particles through the skeletal tissue is complicated by the detailed and complex microscopic histology of the skeleton. In this study, both Monte Carlo and chord-based techniques were applied to the transport of alpha particles through 3-D micro-CT images of the skeletal microstructure of trabecular spongiosa. The Monte Carlo program used was 'Visual Monte Carlo-VMC'. VMC simulates the emission of the alpha particles and their subsequent energy deposition track. The second method applied to alpha transport is the chord-based technique, which randomly generates chord lengths across bone trabeculae and the marrow cavities via alternate and uniform sampling of their cumulative density functions. This paper compares the AF of energy to two radiosensitive skeletal tissues, active marrow and shallow active marrow, obtained with these two techniques. (authors)

  18. Calculation of neutron shielding using an unidimensional model of transportation in formulation of discrete ordinates with scattering linearly anisotropic and a speed

    International Nuclear Information System (INIS)

    Libotte, Rafael Barbosa; Alves Filho, Hermes; Oliva, Amaury Muñoz

    2017-01-01

    The physical phenomenon of transport of neutral particles in a host environment is of interest in various scientific applications, e.g., nuclear reactors, shielding calculations, radiological protection, nuclear medicine, agronomy, materials science, oil prospecting, etc. In all these areas there is a need for an accurate description of the transport of the particles in the host medium. In this class of applications are the neutron shielding problems, also referred to as 'fixed-source' problems, where the interaction of the particles with the medium does not produce new neutrons, i.e., non-multiplicative medium. In this context, the development of tools that model these problems is relevant and of a beneficial return to society. In this work, we propose the development of deterministic mathematical and computational modeling of neutron transport using the linearized equation of Boltzmann applied to neutron shielding problems. Here we present also the development of a spectro-nodal method (coarse mesh) considering the scattering phenomenon as being linearly anisotropic. We show the results using a computational application, developed in Java language, version 1.8.0 9 1

  19. Improvement of personalized Monte Carlo-aided direct internal contamination monitoring: optimization of calculation times and measurement methodology for the establishment of activity distribution

    International Nuclear Information System (INIS)

    Farah, Jad

    2011-01-01

    To optimize the monitoring of female workers using in vivo spectrometry measurements, it is necessary to correct the typical calibration coefficients obtained with the Livermore male physical phantom. To do so, numerical calibrations based on the use of Monte Carlo simulations combined with anthropomorphic 3D phantoms were used. Such computational calibrations require on the one hand the development of representative female phantoms of different size and morphologies and on the other hand rapid and reliable Monte Carlo calculations. A library of female torso models was hence developed by fitting the weight of internal organs and breasts according to the body height and to relevant plastic surgery recommendations. This library was next used to realize a numerical calibration of the AREVA NC La Hague in vivo counting installation. Moreover, the morphology-induced counting efficiency variations with energy were put into equation and recommendations were given to correct the typical calibration coefficients for any monitored female worker as a function of body height and breast size. Meanwhile, variance reduction techniques and geometry simplification operations were considered to accelerate simulations. Furthermore, to determine the activity mapping in the case of complex contaminations, a method that combines Monte Carlo simulations with in vivo measurements was developed. This method consists of realizing several spectrometry measurements with different detector positioning. Next, the contribution of each contaminated organ to the count is assessed from Monte Carlo calculations. The in vivo measurements realized at LEDI, CIEMAT and KIT have demonstrated the effectiveness of the method and highlighted the valuable contribution of Monte Carlo simulations for a more detailed analysis of spectrometry measurements. Thus, a more precise estimate of the activity distribution is given in the case of an internal contamination. (author)

  20. OECD/NEA burnup credit criticality benchmarks phase IIIB. Burnup calculations of BWR fuel assemblies for storage and transport

    Energy Technology Data Exchange (ETDEWEB)

    Okuno, Hiroshi; Naito, Yoshitaka; Suyama, Kenya [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-02-01

    The report describes the final results of the Phase IIIB Benchmark conducted by the Expert Group on Burnup Credit Criticality Safety under the auspices of the Nuclear Energy Agency (NEA) of the Organization for Economic Cooperation and Development (OECD). The Benchmark was intended to compare the predictability of current computer code and data library combinations for the atomic number densities of an irradiated PWR fuel assembly model. The fuel assembly was irradiated under specific power of 25.6 MW/tHM up to 40 GWd/tHM and cooled for five years. The void fraction was assumed to be uniform throughout the channel box and constant, at 0, 40 and 70%, during burnup. In total, 16 results were submitted from 13 institutes of 7 countries. The calculated atomic number densities of 12 actinides and 20 fission product nuclides were found to be for the most part within a range of {+-}10% relative to the average, although some results, esp. {sup 155}Eu and gadolinium isotopes, exceeded the band, which will require further investigation. Pin-wise burnup results agreed well among the participants. The results in the infinite neutron multiplication factor k{sub {infinity}} also accorded well with each other for void fractions of 0 and 40%; however some results deviated from the averaged value noticeably for the void fraction of 70%. (author)