WorldWideScience

Sample records for transport aircraft wing

  1. Global Local Structural Optimization of Transportation Aircraft Wings

    NARCIS (Netherlands)

    Ciampa, P.D.; Nagel, B.; Van Tooren, M.J.L.

    2010-01-01

    The study presents a multilevel optimization methodology for the preliminary structural design of transportation aircraft wings. A global level is defined by taking into account the primary wing structural components (i.e., ribs, spars and skin) which are explicitly modeled by shell layered finite

  2. Wing design for light transport aircraft with improved fuel economy

    Energy Technology Data Exchange (ETDEWEB)

    Welte, D.; Birrenbach, R.; Haberland, W.

    An advanced technology wing has been designed for a light utility and commuter service aircraft with the requirements for economy, safety and flexibility. Trade-off studies give optimum area and aspect-ratio of the wing. A new airfoil was developed to fulfill the performance requirements. Wing planform and twist were chosen to give high maximum lift, low drag and good stall characteristics. Preset ailerons were optimized for wheel forces and lateral control. The applied aerodynamic methods, including two- and three-dimensional wind tunnel tests are shown. Various structural configurations of the wing and various flap systems are evaluated. The cantilever tapered wing and a Fowler-flap with a two-lever mechanism were found to be the most economic ones. The wing was constructed and flight-tested with a modified Dornier Do 28 Skyservant as a test bed. The new wing is being applied to a family of light transport aircraft. Finally, aircraft with the new wing are compared performancewise with contemporary aircraft.

  3. Aeroelastic Tailoring of Transport Aircraft Wings: State-of-the-Art and Potential Enabling Technologies

    Science.gov (United States)

    Jutte, Christine; Stanford, Bret K.

    2014-01-01

    This paper provides a brief overview of the state-of-the-art for aeroelastic tailoring of subsonic transport aircraft and offers additional resources on related research efforts. Emphasis is placed on aircraft having straight or aft swept wings. The literature covers computational synthesis tools developed for aeroelastic tailoring and numerous design studies focused on discovering new methods for passive aeroelastic control. Several new structural and material technologies are presented as potential enablers of aeroelastic tailoring, including selectively reinforced materials, functionally graded materials, fiber tow steered composite laminates, and various nonconventional structural designs. In addition, smart materials and structures whose properties or configurations change in response to external stimuli are presented as potential active approaches to aeroelastic tailoring.

  4. Coupled Vortex-Lattice Flight Dynamic Model with Aeroelastic Finite-Element Model of Flexible Wing Transport Aircraft with Variable Camber Continuous Trailing Edge Flap for Drag Reduction

    Science.gov (United States)

    Nguyen, Nhan; Ting, Eric; Nguyen, Daniel; Dao, Tung; Trinh, Khanh

    2013-01-01

    This paper presents a coupled vortex-lattice flight dynamic model with an aeroelastic finite-element model to predict dynamic characteristics of a flexible wing transport aircraft. The aircraft model is based on NASA Generic Transport Model (GTM) with representative mass and stiffness properties to achieve a wing tip deflection about twice that of a conventional transport aircraft (10% versus 5%). This flexible wing transport aircraft is referred to as an Elastically Shaped Aircraft Concept (ESAC) which is equipped with a Variable Camber Continuous Trailing Edge Flap (VCCTEF) system for active wing shaping control for drag reduction. A vortex-lattice aerodynamic model of the ESAC is developed and is coupled with an aeroelastic finite-element model via an automated geometry modeler. This coupled model is used to compute static and dynamic aeroelastic solutions. The deflection information from the finite-element model and the vortex-lattice model is used to compute unsteady contributions to the aerodynamic force and moment coefficients. A coupled aeroelastic-longitudinal flight dynamic model is developed by coupling the finite-element model with the rigid-body flight dynamic model of the GTM.

  5. Study for the optimization of a transport aircraft wing for maximum fuel efficiency. Volume 1: Methodology, criteria, aeroelastic model definition and results

    Science.gov (United States)

    Radovcich, N. A.; Dreim, D.; Okeefe, D. A.; Linner, L.; Pathak, S. K.; Reaser, J. S.; Richardson, D.; Sweers, J.; Conner, F.

    1985-01-01

    Work performed in the design of a transport aircraft wing for maximum fuel efficiency is documented with emphasis on design criteria, design methodology, and three design configurations. The design database includes complete finite element model description, sizing data, geometry data, loads data, and inertial data. A design process which satisfies the economics and practical aspects of a real design is illustrated. The cooperative study relationship between the contractor and NASA during the course of the contract is also discussed.

  6. Fuzzy Model-based Pitch Stabilization and Wing Vibration Suppression of Flexible Wing Aircraft.

    Science.gov (United States)

    Ayoubi, Mohammad A.; Swei, Sean Shan-Min; Nguyen, Nhan T.

    2014-01-01

    This paper presents a fuzzy nonlinear controller to regulate the longitudinal dynamics of an aircraft and suppress the bending and torsional vibrations of its flexible wings. The fuzzy controller utilizes full-state feedback with input constraint. First, the Takagi-Sugeno fuzzy linear model is developed which approximates the coupled aeroelastic aircraft model. Then, based on the fuzzy linear model, a fuzzy controller is developed to utilize a full-state feedback and stabilize the system while it satisfies the control input constraint. Linear matrix inequality (LMI) techniques are employed to solve the fuzzy control problem. Finally, the performance of the proposed controller is demonstrated on the NASA Generic Transport Model (GTM).

  7. Aerodynamic Design of Integrated Propulsion-Airframe Configuration of the Hybrid Wing-Body Aircraft

    Science.gov (United States)

    Liou, May-Fun; Kim, Hyoungjin; Lee, B. J.; Liou, Meng-Sing

    2017-01-01

    Hybrid Wing Body (HWB) aircraft is characterized by a flattened and airfoil-shaped body, which produces a substantial portion of the total lift. The body form is composed of distinct and separate wing structures, though the wings are smoothly blended into the body. This concept has been studied widely and results suggest remarkable performance improvements over the conventional tube and wing transport1,2. HWB incorporates design features from both a futuristic fuselage and flying wing design, which houses most of the crew, payload and equipment inside the main centerbody structure.

  8. DETERMINATION OF COMMERCIAL AIRCRAFT WING GEOMETRY DURING THE FLIGHT

    Directory of Open Access Journals (Sweden)

    V. I. Shevyakov

    2015-01-01

    Full Text Available The article deals with the task of determination of wing shape for sub-sonic commercial aircraft by photogrammetric method. It provides the procedure for measurements taken on ground and in flight. It also provides the outcome of wing twist for commercial aircraft at cruise.

  9. A study on the utilization of advanced composites in commercial aircraft wing structure

    Science.gov (United States)

    Watts, D. J.

    1978-01-01

    A study was conducted to define the technology and data needed to support the introduction of advanced composite materials in the wing structure of future production aircraft. The study accomplished the following: (1) definition of acceptance factors, (2) identification of technology issues, (3) evaluation of six candidate wing structures, (4) evaluation of five program options, (5) definition of a composite wing technology development plan, (6) identification of full-scale tests, (7) estimation of program costs for the total development plan, (8) forecast of future utilization of composites in commercial transport aircraft and (9) identification of critical technologies for timely program planning.

  10. Investigation and design of a C-Wing passenger aircraft

    Directory of Open Access Journals (Sweden)

    Karan BIKKANNAVAR

    2016-06-01

    Full Text Available A novel nonplanar wing concept called C-Wing is studied and implemented on a commercial aircraft to reduce induced drag which has a significant effect on fuel consumption. A preliminary sizing method which employs an optimization algorithm is utilized. The Airbus A320 aircraft is used as a reference aircraft to evaluate design parameters and to investigate the C-Wing design potential beyond current wing tip designs. An increase in aspect ratio due to wing area reduction at 36m span results in a reduction of required fuel mass by 16%. Also take-off mass savings were obtained for the aircraft with C-Wing configuration. The effect of a variations of height to span ratio (h/b of C-Wings on induced drag factor k, is formulated from a vortex lattice method and literature based equations. Finally the DOC costing methods used by the Association of European Airlines (AEA was applied to the existing A320 aircraft and to the C-Wing configuration obtaining a reduction of 6% in Direct Operating Costs (DOC for the novel concept resulted. From overall outcomes, the C-Wing concept suggests interesting aerodynamic efficiency and stability benefits.

  11. Mixed ice accretion on aircraft wings

    Science.gov (United States)

    Janjua, Zaid A.; Turnbull, Barbara; Hibberd, Stephen; Choi, Kwing-So

    2018-02-01

    Ice accretion is a problematic natural phenomenon that affects a wide range of engineering applications including power cables, radio masts, and wind turbines. Accretion on aircraft wings occurs when supercooled water droplets freeze instantaneously on impact to form rime ice or runback as water along the wing to form glaze ice. Most models to date have ignored the accretion of mixed ice, which is a combination of rime and glaze. A parameter we term the "freezing fraction" is defined as the fraction of a supercooled droplet that freezes on impact with the top surface of the accretion ice to explore the concept of mixed ice accretion. Additionally we consider different "packing densities" of rime ice, mimicking the different bulk rime densities observed in nature. Ice accretion is considered in four stages: rime, primary mixed, secondary mixed, and glaze ice. Predictions match with existing models and experimental data in the limiting rime and glaze cases. The mixed ice formulation however provides additional insight into the composition of the overall ice structure, which ultimately influences adhesion and ice thickness, and shows that for similar atmospheric parameter ranges, this simple mixed ice description leads to very different accretion rates. A simple one-dimensional energy balance was solved to show how this freezing fraction parameter increases with decrease in atmospheric temperature, with lower freezing fraction promoting glaze ice accretion.

  12. The design and testing of subscale smart aircraft wing bolts

    International Nuclear Information System (INIS)

    Vugampore, J M V; Bemont, C

    2012-01-01

    Presently costly periodic inspection is vital in guaranteeing the structural integrity of aircraft. This investigation assesses the potential for significantly reducing aircraft maintenance costs without modification of aircraft structures by implementing smart wing bolts, manufactured from TRIP steel, which can be monitored for damage in situ. TRIP steels undergo a transformation from paramagnetic austenite to ferromagnetic martensite during deformation. Subscale smart aircraft wing bolts were manufactured from hot rolled TRIP steel. These wing bolts were used to demonstrate that washers incorporating embedded inductance coils can be utilized to measure the martensitic transformation occurring in the TRIP steel during bolt deformation. Early in situ warning of a critical bolt stress level was thereby facilitated, potentially reducing the costly requirement for periodic wing bolt removal and inspection. The hot rolled TRIP steels that were utilized in these subscale bolts do not however exhibit the mechanical properties required of wing bolt material. Thus warm rolled TRIP steel alloys were also investigated. The mechanical properties of the best warm rolled TRIP steel alloy tested almost matched those of AISI 4340. The warm rolled alloys were also shown to exhibit transformation before yield, allowing for earlier warning when overload occurs. Further work will be required relating to fatigue crack detection, environmental temperature fluctuation and more thorough material characterization. However, present results show that in situ early detection of wing bolt overload is feasible via the use of high alloy warm rolled TRIP steel wing bolts in combination with inductive sensor embedded washers. (paper)

  13. Adaptive wing : Investigations of passive wing technologies for loads reduction in the cleansky smart fixed wing aircraft (SFWA) project

    NARCIS (Netherlands)

    Kruger, W.R.; Dillinger, J; De Breuker, R.; Reyes, M.; Haydn, K.

    2016-01-01

    In the work package “Adaptive Wing” in the Clean-Sky “Smart Fixed Wing Aircraft” (SFWA) project, design processes and solutions for aircraft wings have been created, giving optimal response with respect to loads, comfort and performance by the introduction of passive and active concepts. Central

  14. Dynamics and control of robotic aircraft with articulated wings

    Science.gov (United States)

    Paranjape, Aditya Avinash

    There is a considerable interest in developing robotic aircraft, inspired by birds, for a variety of missions covering reconnaissance and surveillance. Flapping wing aircraft concepts have been put forth in light of the efficiency of flapping flight at small scales. These aircraft are naturally equipped with the ability to rotate their wings about the root, a form of wing articulation. This thesis covers some problems concerning the performance, stability and control of robotic aircraft with articulated wings in gliding flight. Specifically, we are interested in aircraft without a vertical tail, which would then use wing articulation for longitudinal as well as lateral-directional control. Although the dynamics and control of articulated wing aircraft share several common features with conventional fixed wing aircraft, the presence of wing articulation presents several unique benefits as well as limitations from the perspective of performance and control. One of the objective of this thesis is to understand these features using a combination of theoretical and numerical tools. The aircraft concept envisioned in this thesis uses the wing dihedral angles for longitudinal and lateral-directional control. Aircraft with flexible articulated wings are also investigated. We derive a complete nonlinear model of the flight dynamics incorporating dynamic CG location and the changing moment of inertia. We show that symmetric dihedral configuration, along with a conventional horizontal tail, can be used to control flight speed and flight path angle independently of each other. This characteristic is very useful for initiating an efficient perching maneuver. It is shown that wing dihedral angles alone can effectively regulate sideslip during rapid turns and generate a wide range of equilibrium turn rates while maintaining a constant flight speed and regulating sideslip. We compute the turning performance limitations that arise due to the use of wing dihedral for yaw control

  15. Control Power Optimization using Artificial Intelligence for Forward Swept Wing and Hybrid Wing Body Aircraft

    OpenAIRE

    Adegbindin, Moustaine Kolawole Agnide

    2017-01-01

    Many futuristic aircraft such as the Hybrid Wing Body have numerous control surfaces that can result in large hinge moments, high actuation power demands, and large actuator forces/moments. Also, there is no unique relationship between control inputs and the aircraft response. Distinct sets of control surface deflections may result in the same aircraft response, but with large differences in actuation power. An Artificial Neural Network and a Genetic Algorithm were used here for the control a...

  16. Variable Geometry Aircraft Wing Supported by Struts And/Or Trusses

    Science.gov (United States)

    Melton, John E. (Inventor); Dudley, Michael R. (Inventor)

    2016-01-01

    The present invention provides an aircraft having variable airframe geometry for accommodating efficient flight. The aircraft includes an elongated fuselage, an oblique wing pivotally connected with said fuselage, a wing pivoting mechanism connected with said oblique wing and said fuselage, and a brace operably connected between said oblique wing and said fuselage. The present invention also provides an aircraft having an elongated fuselage, an oblique wing pivotally connected with said fuselage, a wing pivoting mechanism connected with said oblique wing and said fuselage, a propulsion system pivotally connected with said oblique wing, and a brace operably connected between said propulsion system and said fuselage.

  17. Multidisciplinary Shape Optimization of a Composite Blended Wing Body Aircraft

    Science.gov (United States)

    Boozer, Charles Maxwell

    A multidisciplinary shape optimization tool coupling aerodynamics, structure, and performance was developed for battery powered aircraft. Utilizing high-fidelity computational fluid dynamics analysis tools and a structural wing weight tool, coupled based on the multidisciplinary feasible optimization architecture; aircraft geometry is modified in the optimization of the aircraft's range or endurance. The developed tool is applied to three geometries: a hybrid blended wing body, delta wing UAS, the ONERA M6 wing, and a modified ONERA M6 wing. First, the optimization problem is presented with the objective function, constraints, and design vector. Next, the tool's architecture and the analysis tools that are utilized are described. Finally, various optimizations are described and their results analyzed for all test subjects. Results show that less computationally expensive inviscid optimizations yield positive performance improvements using planform, airfoil, and three-dimensional degrees of freedom. From the results obtained through a series of optimizations, it is concluded that the newly developed tool is both effective at improving performance and serves as a platform ready to receive additional performance modules, further improving its computational design support potential.

  18. Static Aeroelastic and Longitudinal Trim Model of Flexible Wing Aircraft Using Finite-Element Vortex-Lattice Coupled Solution

    Science.gov (United States)

    Ting, Eric; Nguyen, Nhan; Trinh, Khanh

    2014-01-01

    This paper presents a static aeroelastic model and longitudinal trim model for the analysis of a flexible wing transport aircraft. The static aeroelastic model is built using a structural model based on finite-element modeling and coupled to an aerodynamic model that uses vortex-lattice solution. An automatic geometry generation tool is used to close the loop between the structural and aerodynamic models. The aeroelastic model is extended for the development of a three degree-of-freedom longitudinal trim model for an aircraft with flexible wings. The resulting flexible aircraft longitudinal trim model is used to simultaneously compute the static aeroelastic shape for the aircraft model and the longitudinal state inputs to maintain an aircraft trim state. The framework is applied to an aircraft model based on the NASA Generic Transport Model (GTM) with wing structures allowed to flexibly deformed referred to as the Elastically Shaped Aircraft Concept (ESAC). The ESAC wing mass and stiffness properties are based on a baseline "stiff" values representative of current generation transport aircraft.

  19. Topology Optimization of an Aircraft Wing

    Science.gov (United States)

    2015-06-11

    can combine the advantages of a variable stiffness design with- out the use of actuators. Curved beams, which couple torsion and bending , counteract... torsional deflection, control natural frequency, exploit coupling of bending and tor- sion to control flutter, reduce thickness to chord ratios due to...disregarded any bending or torsional effects caused by displacement of the wing, and was thus not considered. Therefore, the initial design analysis

  20. Modeling Aircraft Wing Loads from Flight Data Using Neural Networks

    Science.gov (United States)

    Allen, Michael J.; Dibley, Ryan P.

    2003-01-01

    Neural networks were used to model wing bending-moment loads, torsion loads, and control surface hinge-moments of the Active Aeroelastic Wing (AAW) aircraft. Accurate loads models are required for the development of control laws designed to increase roll performance through wing twist while not exceeding load limits. Inputs to the model include aircraft rates, accelerations, and control surface positions. Neural networks were chosen to model aircraft loads because they can account for uncharacterized nonlinear effects while retaining the capability to generalize. The accuracy of the neural network models was improved by first developing linear loads models to use as starting points for network training. Neural networks were then trained with flight data for rolls, loaded reversals, wind-up-turns, and individual control surface doublets for load excitation. Generalization was improved by using gain weighting and early stopping. Results are presented for neural network loads models of four wing loads and four control surface hinge moments at Mach 0.90 and an altitude of 15,000 ft. An average model prediction error reduction of 18.6 percent was calculated for the neural network models when compared to the linear models. This paper documents the input data conditioning, input parameter selection, structure, training, and validation of the neural network models.

  1. Flight mechanics of a tailless articulated wing aircraft.

    Science.gov (United States)

    Paranjape, Aditya A; Chung, Soon-Jo; Selig, Michael S

    2011-06-01

    This paper investigates the flight mechanics of a micro aerial vehicle without a vertical tail in an effort to reverse-engineer the agility of avian flight. The key to stability and control of such a tailless aircraft lies in the ability to control the incidence angles and dihedral angles of both wings independently. The dihedral angles can be varied symmetrically on both wings to control aircraft speed independently of the angle of attack and flight path angle, while asymmetric dihedral can be used to control yaw in the absence of a vertical stabilizer. It is shown that wing dihedral angles alone can effectively regulate sideslip during rapid turns and generate a wide range of equilibrium turn rates while maintaining a constant flight speed and regulating sideslip. Numerical continuation and bifurcation analysis are used to compute trim states and assess their stability. This paper lays the foundation for design and stability analysis of a flapping wing aircraft that can switch rapidly from flapping to gliding flight for agile manoeuvring in a constrained environment.

  2. Aeroelastic tailoring of composite aircraft wings

    Science.gov (United States)

    Mihaila-Andres, Mihai; Larco, Ciprian; Rosu, Paul-Virgil; Rotaru, Constantin

    2017-07-01

    The need of a continuously increasing size and performance of aerospace structures has settled the composite materials as the preferred materials in aircraft structures. Apart from the clear capacity to reduce the structural weight and with it the manufacture cost and the fuel consumption while preserving proper airworthiness, the prospect of tailoring a structure using the unique directional stiffness properties of composite materials allows an aerospace engineer to optimize aircraft structures to achieve particular design objectives. This paper presents a brief review of what is known as the aeroelastic tailoring of airframes with the intent of understanding the evolution of this research topic and at the same time providing useful references for further studies.

  3. 78 FR 3356 - Airworthiness Directives; Various Aircraft Equipped With Wing Lift Struts

    Science.gov (United States)

    2013-01-16

    ...) of this AD, inspect the wing lift strut forks for cracks using magnetic particle procedures, such as... Airworthiness Directives; Various Aircraft Equipped With Wing Lift Struts AGENCY: Federal Aviation... existing airworthiness directive (AD) that applies to certain aircraft equipped with wing lift struts. The...

  4. AERODYNAMIC LOAD OF AN AIRCRAFT WITH A HIGHLY ELASTIC WING

    Directory of Open Access Journals (Sweden)

    Pavel Schoř

    2017-09-01

    Full Text Available In this article, a method for calculation of air loads of an aircraft with an elastic wing is presented. The method can predict a redistribution of air loads when the elastic wing deforms. Unlike the traditional Euler or Navier-Stokes CFD to FEM coupling, the method uses 3D panel method as a source of aerodynamic data. This makes the calculation feasible on a typical recent workstation. Due to a short computational time and low hardware demands this method is suitable for both the preliminary design stage and the load evaluation stage. A case study is presented. The study compares a glider wing performing a pull maneuver at both rigid and and elastic state. The study indicates a significant redistribution of air load at the elastic case.

  5. Aeroelastic Flutter of Subsonic Aircraft Wing Section with Control Surface

    Directory of Open Access Journals (Sweden)

    Aeroelastic Flutter of Subsonic Aircraft Wing Section with Control Surface

    2015-12-01

    Full Text Available Aeroelastic flutter in aircraft mechanisms is unavoidable, essentially in the wing and control surface. In this work a three degree-of-freedom aeroelastic wing section with trailing edge flap is modeled numerically and theoretically. FLUENT code based on the steady finite volume is used for the prediction of the steady aerodynamic characteristics (lift, drag, pitching moment, velocity, and pressure distribution as well as the Duhamel formulation is used to model the aerodynamic loads theoretically. The system response (pitch, flap pitch and plunge was determined by integration the governing equations using MATLAB with a standard Runge–Kutta algorithm in conjunction with Henon’s method. The results are compared with previous experimental data. The results show that the aerodynamic loads and wing-flap system response are increased when increasing the flow speed. On the other hand the aeroelastic response led up to limit cycle oscillation when the flow equals or more than flutter speed.

  6. Surface Roughness Measurement on a Wing Aircraft by Speckle Correlation

    Directory of Open Access Journals (Sweden)

    Alberto Barrientos

    2013-09-01

    Full Text Available The study of the damage of aeronautical materials is important because it may change the microscopic surface structure profiles. The modification of geometrical surface properties can cause small instabilities and then a displacement of the boundary layer. One of the irregularities we can often find is surface roughness. Due to an increase of roughness and other effects, there may be extra momentum losses in the boundary layer and a modification in the parasite drag. In this paper we present a speckle method for measuring the surface roughness on an actual unmanned aircraft wing. The results show an inhomogeneous roughness distribution on the wing, as expected according to the anisotropic influence of the winds over the entire wing geometry. A calculation of the uncertainty of the technique is given.

  7. Surface roughness measurement on a wing aircraft by speckle correlation.

    Science.gov (United States)

    Salazar, Félix; Barrientos, Alberto

    2013-09-05

    The study of the damage of aeronautical materials is important because it may change the microscopic surface structure profiles. The modification of geometrical surface properties can cause small instabilities and then a displacement of the boundary layer. One of the irregularities we can often find is surface roughness. Due to an increase of roughness and other effects, there may be extra momentum losses in the boundary layer and a modification in the parasite drag. In this paper we present a speckle method for measuring the surface roughness on an actual unmanned aircraft wing. The results show an inhomogeneous roughness distribution on the wing, as expected according to the anisotropic influence of the winds over the entire wing geometry. A calculation of the uncertainty of the technique is given.

  8. Oblique-Flying-Wing Supersonic Transport Airplane

    Science.gov (United States)

    Van Der Velden, Alexander J. M.

    1992-01-01

    Oblique-flying-wing supersonic airplane proposed as possible alternative to B747B (or equivalent). Tranports passengers and cargo as fast as twice speed of sound at same cost as current subsonic transports. Flies at same holding speeds as present supersonic transports but requires only half takeoff distance.

  9. Optimization of flapping-wing micro aircrafts based on the kinematic parameters using genetic algorithm method

    Directory of Open Access Journals (Sweden)

    Ebrahim BARATI

    2013-03-01

    Full Text Available In this paper the optimization of kinematics, which has great influence in performance of flapping foil propulsion, is investigated. The purpose of optimization is to design a flapping-wing micro aircraft with appropriate kinematics and aerodynamics features, making the micro aircraft suitable for transportation over large distance with minimum energy consumption. On the point of optimal design, the pitch amplitude, wing reduced frequency and phase difference between plunging and pitching are considered as given parameters and consumed energy, generated thrust by wings and lost power are computed using the 2D quasi-steady aerodynamic model and multi-objective genetic algorithm. Based on the thrust optimization, the increase in pitch amplitude reduces the power consumption. In this case the lost power increases and the maximum thrust coefficient is computed of 2.43. Based on the power optimization, the results show that the increase in pitch amplitude leads to power consumption increase. Additionally, the minimum lost power obtained in this case is 23% at pitch amplitude of 25°, wing reduced frequency of 0.42 and phase angle difference between plunging and pitching of 77°. Furthermore, the wing reduced frequency can be estimated using regression with respect to pitch amplitude, because reduced frequency variations with pitch amplitude is approximately a linear function.

  10. Evaluation of Aircraft Wing-Tip Vortex Using PIV

    Science.gov (United States)

    Alsayed, Omer A.; Asrar, Waqar; Omar, Ashraf A.

    2010-06-01

    The formation and development of a wing-tip vortex in a near and extended near filed were studied experimentally. Particle image velocimetry was used in a wind tunnel to measure the tip vortex velocity field and hence investigate the flow structure in a wake of aircraft half-wing model. The purpose of this investigation is to evaluate the main features of the lift generated vortices in order to find ways to alleviate hazardous wake vortex encounters for follower airplanes during start and approach such that the increase in airport capacity can be achieved. First the wake structure at successive downstream planes crosswise to the axis of the wake vortices was investigated by measuring parameters such as core radius, maximum tangential velocities, vorticities and circulation distributions. The effect of different angles of attack setting on vortex parameters was examined at one downstream location. In very early stages the vortex sheet evolution makes the tip vortex to move inward and to the suction side of the wing. While the core radius and circulation distributions hardly vary with the downstream distance, noticeable differences for the same vortex parameters at different angles of attack settings were observed. The center of the wing tip vortices scatter in a circle of radius nearly equal to 1% of the mean wing chord and wandering amplitudes shows no direct dependence on the vortex strength but linearly increase with the downstream distance.

  11. Turboelectric Distributed Propulsion in a Hybrid Wing Body Aircraft

    Science.gov (United States)

    Felder, James L.; Brown, Gerald V.; DaeKim, Hyun; Chu, Julio

    2011-01-01

    The performance of the N3-X, a 300 passenger hybrid wing body (HWB) aircraft with turboelectric distributed propulsion (TeDP), has been analyzed to see if it can meet the 70% fuel burn reduction goal of the NASA Subsonic Fixed Wing project for N+3 generation aircraft. The TeDP system utilizes superconducting electric generators, motors and transmission lines to allow the power producing and thrust producing portions of the system to be widely separated. It also allows a small number of large turboshaft engines to drive any number of propulsors. On the N3-X these new degrees of freedom were used to (1) place two large turboshaft engines driving generators in freestream conditions to maximize thermal efficiency and (2) to embed a broad continuous array of 15 motor driven propulsors on the upper surface of the aircraft near the trailing edge. That location maximizes the amount of the boundary layer ingested and thus maximizes propulsive efficiency. The Boeing B777-200LR flying 7500 nm (13890 km) with a cruise speed of Mach 0.84 and an 118100 lb payload was selected as the reference aircraft and mission for this study. In order to distinguish between improvements due to technology and aircraft configuration changes from those due to the propulsion configuration changes, an intermediate configuration was included in this study. In this configuration a pylon mounted, ultra high bypass (UHB) geared turbofan engine with identical propulsion technology was integrated into the same hybrid wing body airframe. That aircraft achieved a 52% reduction in mission fuel burn relative to the reference aircraft. The N3-X was able to achieve a reduction of 70% and 72% (depending on the cooling system) relative to the reference aircraft. The additional 18% - 20% reduction in the mission fuel burn can therefore be attributed to the additional degrees of freedom in the propulsion system configuration afforded by the TeDP system that eliminates nacelle and pylon drag, maximizes boundary

  12. Engine Conceptual Design Studies for a Hybrid Wing Body Aircraft

    Science.gov (United States)

    Tong, Michael T.; Jones, Scott M.; Haller, William J.; Handschuh, Robert F.

    2009-01-01

    Worldwide concerns of air quality and climate change have made environmental protection one of the most critical issues in aviation today. NASA s current Fundamental Aeronautics Research program is directed at three generations of aircraft in the near, mid and far term, with initial operating capability around 2015, 2020, and 2030, respectively. Each generation has associated goals for fuel burn, NOx, noise, and field-length reductions relative to today s aircrafts. The research for the 2020 generation is directed at enabling a hybrid wing body (HWB) aircraft to meet NASA s aggressive technology goals. This paper presents the conceptual cycle and mechanical designs of the two engine concepts, podded and embedded systems, which were proposed for a HWB cargo freighter. They are expected to offer significant benefits in noise reductions without compromising the fuel burn.

  13. DEVELOPMENT OF EDUCATIONAL SOFTWARE FOR STRESS ANALYSIS OF AN AIRCRAFT WING

    Directory of Open Access Journals (Sweden)

    TAZKERA SADEQ

    2012-06-01

    Full Text Available A stress analysis software based on MATLAB, Graphic user interface (GUI has been developed. The developed software can be used to estimate load on a wing and to compute the stresses at any point along the span of the wing of a given aircraft. The generalized formulation allows performing stress analysis even for a multispar (multicell wing. The software is expected to be a useful tool for effective teaching learning process of courses on aircraft structures and aircraft structural design.

  14. Comprehensive analysis of transport aircraft flight performance

    Science.gov (United States)

    Filippone, Antonio

    2008-04-01

    This paper reviews the state-of-the art in comprehensive performance codes for fixed-wing aircraft. The importance of system analysis in flight performance is discussed. The paper highlights the role of aerodynamics, propulsion, flight mechanics, aeroacoustics, flight operation, numerical optimisation, stochastic methods and numerical analysis. The latter discipline is used to investigate the sensitivities of the sub-systems to uncertainties in critical state parameters or functional parameters. The paper discusses critically the data used for performance analysis, and the areas where progress is required. Comprehensive analysis codes can be used for mission fuel planning, envelope exploration, competition analysis, a wide variety of environmental studies, marketing analysis, aircraft certification and conceptual aircraft design. A comprehensive program that uses the multi-disciplinary approach for transport aircraft is presented. The model includes a geometry deck, a separate engine input deck with the main parameters, a database of engine performance from an independent simulation, and an operational deck. The comprehensive code has modules for deriving the geometry from bitmap files, an aerodynamics model for all flight conditions, a flight mechanics model for flight envelopes and mission analysis, an aircraft noise model and engine emissions. The model is validated at different levels. Validation of the aerodynamic model is done against the scale models DLR-F4 and F6. A general model analysis and flight envelope exploration are shown for the Boeing B-777-300 with GE-90 turbofan engines with intermediate passenger capacity (394 passengers in 2 classes). Validation of the flight model is done by sensitivity analysis on the wetted area (or profile drag), on the specific air range, the brake-release gross weight and the aircraft noise. A variety of results is shown, including specific air range charts, take-off weight-altitude charts, payload-range performance

  15. Comments on prospects of fully adaptive aircraft wings

    Science.gov (United States)

    Inman, Daniel J.; Gern, Frank H.; Robertshaw, Harry H.; Kapania, Rakesh K.; Pettit, Greg; Natarajan, Anand; Sulaeman, Erwin

    2001-06-01

    New generations of highly maneuverable aircraft, such as Uninhabited Combat Air Vehicles (UCAV) or Micro Air Vehicles (MAV) are likely to feature very flexible lifting surfaces. To enhance stealth properties and performance, the replacement of hinged control surfaces by smart wings and morphing airfoils is investigated. This requires a fundamental understanding of the interaction between aerodynamics, structures, and control systems. The goal is to build a model consistent with distributed control and to exercise this model to determine the progress possible in terms of flight control (lift, drag and maneuver performance) with an adaptive wing. Different modeling levels are examined and combined with a variety of distributed control approaches to determine what types of maneuvers and flight regimes may be possible. This paper describes the current progress of the project and highlights some recent findings.

  16. Autonomous search and surveillance with small fixed wing aircraft

    Science.gov (United States)

    McGee, Timothy Garland

    Small unmanned aerial vehicles (UAVs) have the potential to act as low cost tools in a variety of both civilian and military applications including traffic monitoring, border patrol, and search and rescue. While most current operational UAV systems require human operators, advances in autonomy will allow these systems to reach their full potential as sensor platforms. This dissertation specifically focuses on developing advanced control, path planning, search, and image processing techniques that allow small fixed wing aircraft to autonomously collect data. The problems explored were motivated by experience with the development and experimental flight testing of a fleet of small autonomous fixed wing aircraft. These issues, which have not been fully addressed in past work done on ground vehicles or autonomous helicopters, include the influence of wind and turning rate constraints, the non-negligible velocity of ground targets relative to the aircraft velocity, and limitations on sensor size and processing power on small vehicles. Several contributions for the autonomous operation of small fixed wing aircraft are presented. Several sliding surface controllers are designed which extend previous techniques to include variable sliding surface coefficients and the use of spatial vehicle dynamics. These advances eliminate potential singularities in the control laws to follow spatially defined paths and allow smooth transition between controllers. The optimal solution for the problem of path planning through an ordered set of points for an aircraft with a bounded turning rate in the presence of a constant wind is then discussed. Path planning strategies are also explored to guarantee that a searcher will travel within sensing distance of a mobile ground target. This work assumes only a maximum velocity of the target and is designed to succeed for any possible path of the target. Closed-loop approximations of both the path planning and search techniques, using the sliding

  17. Math modeling and computer mechanization for real time simulation of rotary-wing aircraft

    Science.gov (United States)

    Howe, R. M.

    1979-01-01

    Mathematical modeling and computer mechanization for real time simulation of rotary wing aircraft is discussed. Error analysis in the digital simulation of dynamic systems, such as rotary wing aircraft is described. The method for digital simulation of nonlinearities with discontinuities, such as exist in typical flight control systems and rotor blade hinges, is discussed.

  18. Dynamic Model and Analysis of Asymmetric Telescopic Wing for Morphing Aircraft

    Directory of Open Access Journals (Sweden)

    Chen Lili

    2016-01-01

    Full Text Available Morphing aircraft has been the research hot topics of new concept aircrafts in aerospace engineering. Telescopic wing is an important morphing technology for morphing aircraft. This paper describes the dynamic equations and kinematic equations based on theorem of momentum and theorem of moment of momentum, which are available for all morphing aircrafts. Meanwhile,as simplified , dynamic equations for rectangular telescopic wing are presented. In order to avoid the complexity using aileron to generate rolling moment , an new idea that asymmetry of wings can generate roll moment is introduced. Finally, roll performance comparison of asymmetric wing and aileron deflection shows that asymmetric telescopic wing can provide the required roll control moment as aileron, and in some cases, telescopic wing has the superior roll performance.

  19. Evaluation of an Aircraft Concept With Over-Wing, Hydrogen-Fueled Engines for Reduced Noise and Emissions

    Science.gov (United States)

    Guynn, Mark D.; Olson, Erik D.

    2002-01-01

    This report describes the analytical modeling and evaluation of an unconventional commercial transport aircraft concept designed to address aircraft noise and emission issues. A strut-braced wing configuration with overwing, ultra-high bypass ratio, hydrogen fueled turbofan engines is considered. Estimated noise and emission characteristics are compared to a conventional configuration designed for the same mission and significant benefits are identified. The design challenges and technology issues which would have to be addressed to make the concept a viable alternative to current aircraft designs are discussed. This concept is one of the "Quiet Green Transport" aircraft concepts studied as part of NASA's Revolutionary Aerospace Systems Concepts (RASC) Program. The RASC Program seeks to develop revolutionary concepts that address strategic objectives of the NASA Enterprises, such as reducing aircraft noise and emissions, and to identify enabling advanced technology requirements for the concepts.

  20. Assembly and Initial Analysis of a Database of the Characteristics of Fixed-Wing Unmanned Aircraft Systems

    Science.gov (United States)

    2014-11-01

    in Table 3). As is the case for the data for wingspan plotted in Figure 2, the wing areas of solar- and turbo - jet - or turbofan-powered UAVs are seen...power law for manned propeller-driven aircraft (±7% at 90% CFL) Liu’s power law for jet transports (±8% at 90% CFL) Liu’s power law for birds (±16...propeller-driven aircraft is likely the result of the fact that both ICE- and turbo - prop-powered aircraft were included in the data used by Liu in

  1. Constructal Theory and Aeroelastic Design of Flexible Flying Wing Aircraft

    Directory of Open Access Journals (Sweden)

    Pezhman Mardanpour

    2017-07-01

    Full Text Available The aeroelastic behavior of high-aspect-ratio very flexible flying wing is highly affected by the geometric nonlinearities of the aircraft structure. This paper reviews the findings on how these nonlinearities influence the structural and flight dynamics, and it shows that the aeroelastic flight envelope could significantly be extended with proper choices of design parameters such as engine placement. Moreover, in order to investigate the physics behind the effects of design parameters, constructal theory of design is reviewed. The constructal theory advances the philosophy of design as science, it states that the better structural design emerges when stress flow strangulation is avoided. Furthermore, it shows that airplanes, through their evolution, have obeyed theoretical allometric rules that unite their designs.

  2. Open Rotor Noise Shielding by Blended-Wing-Body Aircraft

    Science.gov (United States)

    Guo, Yueping; Czech, Michael J.; Thomas, Russell H.

    2015-01-01

    This paper presents an analysis of open rotor noise shielding by Blended Wing Body (BWB) aircraft by using model scale test data acquired in the Boeing Low Speed Aeroacoustic Facility (LSAF) with a legacy F7/A7 rotor model and a simplified BWB platform. The objective of the analysis is the understanding of the shielding features of the BWB and the method of application of the shielding data for noise studies of BWB aircraft with open rotor propulsion. By studying the directivity patterns of individual tones, it is shown that though the tonal energy distribution and the spectral content of the wind tunnel test model, and thus its total noise, may differ from those of more advanced rotor designs, the individual tones follow directivity patterns that characterize far field radiations of modern open rotors, ensuring the validity of the use of this shielding data. Thus, open rotor tonal noise shielding should be categorized into front rotor tones, aft rotor tones and interaction tones, not only because of the different directivities of the three groups of tones, but also due to the differences in their source locations and coherence features, which make the respective shielding characteristics of the three groups of tones distinctly different from each other. To reveal the parametric trends of the BWB shielding effects, results are presented with variations in frequency, far field emission angle, rotor operational condition, engine installation geometry, and local airframe features. These results prepare the way for the development of parametric models for the shielding effects in prediction tools.

  3. Analysis of Asymmetric Aircraft Aerodynamics Due to an Experimental Wing Glove

    Science.gov (United States)

    Hartshorn, Fletcher

    2011-01-01

    Aerodynamic analysis on a business jet with a wing glove attached to one wing is presented and discussed. If a wing glove is placed over a portion of one wing, there will be asymmetries in the aircraft as well as overall changes in the forces and moments acting on the aircraft. These changes, referred to as deltas, need to be determined and quantified to make sure the wing glove does not have a drastic effect on the aircraft flight characteristics. TRANAIR, a non-linear full potential solver was used to analyze a full aircraft, with and without a glove, at a variety of flight conditions and angles of attack and sideslip. Changes in the aircraft lift, drag and side force, along with roll, pitch and yawing moment are presented. Span lift and moment distributions are also presented for a more detailed look at the effects of the glove on the aircraft. Aerodynamic flow phenomena due to the addition of the glove and its fairing are discussed. Results show that the glove used here does not present a drastic change in forces and moments on the aircraft, but an added torsional moment around the quarter-chord of the wing may be a cause for some structural concerns.

  4. Optimum Wing Shape of Highly Flexible Morphing Aircraft for Improved Flight Performance

    Science.gov (United States)

    Su, Weihua; Swei, Sean Shan-Min; Zhu, Guoming G.

    2016-01-01

    In this paper, optimum wing bending and torsion deformations are explored for a mission adaptive, highly flexible morphing aircraft. The complete highly flexible aircraft is modeled using a strain-based geometrically nonlinear beam formulation, coupled with unsteady aerodynamics and six-degrees-of-freedom rigid-body motions. Since there are no conventional discrete control surfaces for trimming the flexible aircraft, the design space for searching the optimum wing geometries is enlarged. To achieve high performance flight, the wing geometry is best tailored according to the specific flight mission needs. In this study, the steady level flight and the coordinated turn flight are considered, and the optimum wing deformations with the minimum drag at these flight conditions are searched by utilizing a modal-based optimization procedure, subject to the trim and other constraints. The numerical study verifies the feasibility of the modal-based optimization approach, and shows the resulting optimum wing configuration and its sensitivity under different flight profiles.

  5. Real-time monitoring system of composite aircraft wings utilizing Fibre Bragg Grating sensor

    Science.gov (United States)

    Vorathin, E.; Hafizi, Z. M.; Che Ghani, S. A.; Lim, K. S.

    2016-10-01

    Embedment of Fibre Bragg Grating (FBG) sensor in composite aircraft wings leads to the advancement of structural condition monitoring. The monitored aircraft wings have the capability to give real-time response under critical loading circumstances. The main objective of this paper is to develop a real-time FBG monitoring system for composite aircraft wings to view real-time changes when the structure undergoes some static loadings and dynamic impact. The implementation of matched edge filter FBG interrogation system to convert wavelength variations to strain readings shows that the structure is able to response instantly in real-time when undergoing few loadings and dynamic impact. This smart monitoring system is capable of updating the changes instantly in real-time and shows the weight induced on the composite aircraft wings instantly without any error. It also has a good agreement with acoustic emission (AE) sensor in the dynamic test.

  6. On Noise Assessment for Blended Wing Body Aircraft

    Science.gov (United States)

    Guo, Yueping; Burley, Casey L; Thomas, Russell H.

    2014-01-01

    A system noise study is presented for the blended-wing-body (BWB) aircraft configured with advanced technologies that are projected to be available in the 2025 timeframe of the NASA N+2 definition. This system noise assessment shows that the noise levels of the baseline configuration, measured by the cumulative Effective Perceived Noise Level (EPNL), have a large margin of 34 dB to the aircraft noise regulation of Stage 4. This confirms the acoustic benefits of the BWB shielding of engine noise, as well as other projected noise reduction technologies, but the noise margins are less than previously published assessments and are short of meeting the NASA N+2 noise goal. In establishing the relevance of the acoustic assessment framework, the design of the BWB configuration, the technical approach of the noise analysis, the databases and prediction tools used in the assessment are first described and discussed. The predicted noise levels and the component decomposition are then analyzed to identify the ranking order of importance of various noise components, revealing the prominence of airframe noise, which holds up the levels at all three noise certification locations and renders engine noise reduction technologies less effective. When projected airframe component noise reduction is added to the HWB configuration, it is shown that the cumulative noise margin to Stage 4 can reach 41.6 dB, nearly at the NASA goal. These results are compared with a previous NASA assessment with a different study framework. The approaches that yield projections of such low noise levels are discussed including aggressive assumptions on future technologies, assumptions on flight profile management, engine installation, and component noise reduction technologies. It is shown that reliable predictions of component noise also play an important role in the system noise assessment. The comparisons and discussions illustrate the importance of practical feasibilities and constraints in aircraft

  7. Aircraft wing weight build-up methodology with modification for materials and construction techniques

    Science.gov (United States)

    York, P.; Labell, R. W.

    1980-01-01

    An aircraft wing weight estimating method based on a component buildup technique is described. A simplified analytically derived beam model, modified by a regression analysis, is used to estimate the wing box weight, utilizing a data base of 50 actual airplane wing weights. Factors representing materials and methods of construction were derived and incorporated into the basic wing box equations. Weight penalties to the wing box for fuel, engines, landing gear, stores and fold or pivot are also included. Methods for estimating the weight of additional items (secondary structure, control surfaces) have the option of using details available at the design stage (i.e., wing box area, flap area) or default values based on actual aircraft from the data base.

  8. COMPARATIVE ANALYSIS OF TRANSPORT AIRCRAFT, BACKROUND FOR SHORT/ MEDIUM COURIER TRANSPORT AIRCRAFT PROCUREMENT

    Directory of Open Access Journals (Sweden)

    Matei POPA

    2010-03-01

    Full Text Available In accordance with Air Force requirements, the comparative analysis of short/medium transport aircraft comes to sustain procurement decision of short/medium transport aircraft. This paper presents, in short, the principles and the results of the comparative analysis for short/medium military transport aircraft.

  9. Application of robust control to a rotary-wing aircraft

    Science.gov (United States)

    Turkoglu, Ercument

    The thesis is concerned with the application of robust controller synthesis and analysis tools to a rotary-wing aircraft: the Bell 205 teetering-rotor helicopter. The Tioo loop-shaping approach is central to the work and two main issues concerned with its application will be considered. Firstly, the construction of diagonal (structured) and non- diagonal (unstructured) weighting functions will be considered. Secondly, the analysis of the implications of different weighting function structures in the controller implementation. A two stage cross-comparative analysis of a series of 1 Dof (Degree of Freedom) and 2 Dof controllers synthesized with both diagonal and non-diagonal weights using the Hqo loop- shaping technique will be presented for square and non-square multi input multi output, unstable, non-minimum phase and ill-conditioned models of the helicopter. Handling qualities of each control law augmented system will be assessed quantitatively and qualitatively. A quantitative analysis, in view of the specifications in ADS-33E, will be given based on a combination of flight data from in-flight tested controllers and, desk-top simula tions run on a fully augmented 12 Dof nonlinear helicopter model provided by QinetiQ, UK. A qualitative analysis will be given based on the pilot comments compiled (in view of the Cooper-Harper handling qualities rating scale) from the evaluated in-flight control laws.

  10. Distributed Turboelectric Propulsion for Hybrid Wing Body Aircraft

    Science.gov (United States)

    Kim, Hyun Dae; Brown, Gerald V.; Felder, James L.

    2008-01-01

    Meeting future goals for aircraft and air traffic system performance will require new airframes with more highly integrated propulsion. Previous studies have evaluated hybrid wing body (HWB) configurations with various numbers of engines and with increasing degrees of propulsion-airframe integration. A recently published configuration with 12 small engines partially embedded in a HWB aircraft, reviewed herein, serves as the airframe baseline for the new concept aircraft that is the subject of this paper. To achieve high cruise efficiency, a high lift-to-drag ratio HWB was adopted as the baseline airframe along with boundary layer ingestion inlets and distributed thrust nozzles to fill in the wakes generated by the vehicle. The distributed powered-lift propulsion concept for the baseline vehicle used a simple, high-lift-capable internally blown flap or jet flap system with a number of small high bypass ratio turbofan engines in the airframe. In that concept, the engine flow path from the inlet to the nozzle is direct and does not involve complicated internal ducts through the airframe to redistribute the engine flow. In addition, partially embedded engines, distributed along the upper surface of the HWB airframe, provide noise reduction through airframe shielding and promote jet flow mixing with the ambient airflow. To improve performance and to reduce noise and environmental impact even further, a drastic change in the propulsion system is proposed in this paper. The new concept adopts the previous baseline cruise-efficient short take-off and landing (CESTOL) airframe but employs a number of superconducting motors to drive the distributed fans rather than using many small conventional engines. The power to drive these electric fans is generated by two remotely located gas-turbine-driven superconducting generators. This arrangement allows many small partially embedded fans while retaining the superior efficiency of large core engines, which are physically separated

  11. Toward the bi-modal camber morphing of large aircraft wing flaps: the CleanSky experience

    Science.gov (United States)

    Pecora, R.; Amoroso, F.; Magnifico, M.

    2016-04-01

    The Green Regional Aircraft (GRA), one of the six CleanSky platforms, represents the largest European effort toward the greening of next generation air transportation through the implementation of advanced aircraft technologies. In this framework researches were carried out to develop an innovative wing flap enabling airfoil morphing according to two different modes depending on aircraft flight condition and flap setting: - Camber morphing mode. Morphing of the flap camber to enhance high-lift performances during take-off and landing (flap deployed); - Tab-like morphing mode. Upwards and downwards deflection of the flap tip during cruise (flap stowed) for load control at high speed and consequent optimization of aerodynamic efficiency. A true-scale flap segment of a reference aircraft (EASA CS25 category) was selected as investigation domain for the new architecture in order to duly face the challenges posed by real wing installation issues especially with reference to the tapered geometrical layout and 3D aerodynamic loads distributions. The investigation domain covered the flap region spanning 3.6 m from the wing kink and resulted characterized by a taper ratio equal to 0.75 with a root chord of 1.2 m. High TRL solutions for the adaptive structure, actuation and control system were duly analyzed and integrated while assuring overall device compliance with industrial standards and applicable airworthiness requirements.

  12. Numerical study of aerodynamic characteristics of FSW aircraft with different wing positions under supersonic condition

    Directory of Open Access Journals (Sweden)

    Lei Juanmian

    2016-08-01

    Full Text Available This paper investigates the influence of forward-swept wing (FSW positions on the aerodynamic characteristics of aircraft under supersonic condition (Ma = 1.5. The numerical method based on Reynolds-averaged Navier–Stokes (RANS equations, Spalart–Allmaras (S–A turbulence model and implicit algorithm is utilized to simulate the flow field of the aircraft. The aerodynamic parameters and flow field structures of the horizontal tail and the whole aircraft are presented. The results demonstrate that the spanwise flow of FSW flows from the wingtip to the wing root, generating an upper wing surface vortex and a trailing edge vortex nearby the wing root. The vortexes generated by FSW have a strong downwash effect on the tail. The lower the vertical position of FSW, the stronger the downwash effect on tail. Therefore, the effective angle of attack of tail becomes smaller. In addition, the lift coefficient, drag coefficient and lift–drag ratio of tail decrease, and the center of pressure of tail moves backward gradually. For the whole aircraft, the lower the vertical position of FSW, the smaller lift, drag and center of pressure coefficients of aircraft. The closer the FSW moves towards tail, the bigger pitching moment and center of pressure coefficients of the whole aircraft, but the lift and drag characteristics of the horizontal tail and the whole aircraft are basically unchanged. The results have potential application for the design of new concept aircraft.

  13. Turboelectric Distributed Propulsion Engine Cycle Analysis for Hybrid-Wing-Body Aircraft

    Science.gov (United States)

    Felder, James L.; Kim, Hyun Dae; Brown, Gerald V.

    2009-01-01

    Meeting NASA's N+3 goals requires a fundamental shift in approach to aircraft and engine design. Material and design improvements allow higher pressure and higher temperature core engines which improve the thermal efficiency. Propulsive efficiency, the other half of the overall efficiency equation, however, is largely determined by the fan pressure ratio (FPR). Lower FPR increases propulsive efficiency, but also dramatically reduces fan shaft speed through the combination of larger diameter fans and reduced fan tip speed limits. The result is that below an FPR of 1.5 the maximum fan shaft speed makes direct drive turbines problematic. However, it is the low pressure ratio fans that allow the improvement in propulsive efficiency which, along with improvements in thermal efficiency in the core, contributes strongly to meeting the N+3 goals for fuel burn reduction. The lower fan exhaust velocities resulting from lower FPRs are also key to meeting the aircraft noise goals. Adding a gear box to the standard turbofan engine allows acceptable turbine speeds to be maintained. However, development of a 50,000+ hp gearbox required by fans in a large twin engine transport aircraft presents an extreme technical challenge, therefore another approach is needed. This paper presents a propulsion system which transmits power from the turbine to the fan electrically rather than mechanically. Recent and anticipated advances in high temperature superconducting generators, motors, and power lines offer the possibility that such devices can be used to transmit turbine power in aircraft without an excessive weight penalty. Moving to such a power transmission system does more than provide better matching between fan and turbine shaft speeds. The relative ease with which electrical power can be distributed throughout the aircraft opens up numerous other possibilities for new aircraft and propulsion configurations and modes of operation. This paper discusses a number of these new

  14. Unmanned aircraft systems for transportation decision support.

    Science.gov (United States)

    2016-11-30

    Our nation relies on accurate geospatial information to map, measure, and monitor transportation infrastructure and the surrounding landscapes. This project focused on the application of Unmanned Aircraft systems (UAS) as a novel tool for improving e...

  15. Commercial transport aircraft composite structures

    Science.gov (United States)

    Mccarty, J. E.

    1983-01-01

    The role that analysis plays in the development, production, and substantiation of aircraft structures is discussed. The types, elements, and applications of failure that are used and needed; the current application of analysis methods to commercial aircraft advanced composite structures, along with a projection of future needs; and some personal thoughts on analysis development goals and the elements of an approach to analysis development are discussed.

  16. Vibrational behavior of adaptive aircraft wing structures modelled as composite thin-walled beams

    Science.gov (United States)

    Song, O.; Librescu, L.; Rogers, C. A.

    1992-01-01

    The vibrational behavior of cantilevered aircraft wings modeled as thin-walled beams and incorporating piezoelectric effects is studied. Based on the converse piezoelectric effect, the system of piezoelectric actuators conveniently located on the wing yield the control of its associated vertical and lateral bending eigenfrequencies. The possibility revealed by this study enabling one to increase adaptively the eigenfrequencies of thin-walled cantilevered beams could play a significant role in the control of the dynamic response and flutter of wing and rotor blade structures.

  17. Simulating Bird Strike on Aircraft Composite Wing Leading Edge.

    OpenAIRE

    Ericsson, Max

    2012-01-01

    In this master thesis project the possibility to model the response of a wing when subjected to bird strike using finite elements is analyzed. Since this transient event lasts only a few milliseconds the used solution method is explicit time integration. The wing is manufactured using carbon fiber laminate. Carbon fiber laminates have orthotropic material properties with different stiffness in different directions. Accordingly, there are damage mechanisms not considered when using metal that ...

  18. Elastically Shaped Wing Optimization and Aircraft Concept for Improved Cruise Efficiency

    Science.gov (United States)

    Nguyen, Nhan; Trinh, Khanh; Reynolds, Kevin; Kless, James; Aftosmis, Michael; Urnes, James, Sr.; Ippolito, Corey

    2013-01-01

    This paper presents the findings of a study conducted tn 2010 by the NASA Innovation Fund Award project entitled "Elastically Shaped Future Air Vehicle Concept". The study presents three themes in support of meeting national and global aviation challenges of reducing fuel burn for present and future aviation systems. The first theme addresses the drag reduction goal through innovative vehicle configurations via non-planar wing optimization. Two wing candidate concepts have been identified from the wing optimization: a drooped wing shape and an inflected wing shape. The drooped wing shape is a truly biologically inspired wing concept that mimics a seagull wing and could achieve about 5% to 6% drag reduction, which is aerodynamically significant. From a practical perspective, this concept would require new radical changes to the current aircraft development capabilities for new vehicles with futuristic-looking wings such as this concept. The inflected wing concepts could achieve between 3% to 4% drag reduction. While the drag reduction benefit may be less, the inflected-wing concept could have a near-term impact since this concept could be developed within the current aircraft development capabilities. The second theme addresses the drag reduction goal through a new concept of elastic wing shaping control. By aeroelastically tailoring the wing shape with active control to maintain optimal aerodynamics, a significant drag reduction benefit could be realized. A significant reduction in fuel burn for long-range cruise from elastic wing shaping control could be realized. To realize the potential of the elastic wing shaping control concept, the third theme emerges that addresses the drag reduction goal through a new aerodynamic control effector called a variable camber continuous trailing edge flap. Conventional aerodynamic control surfaces are discrete independent surfaces that cause geometric discontinuities at the trailing edge region. These discontinuities promote

  19. REPAIR TECHNOLOGY OF THE COMPOSITE WING OF A LIGHT PLANE DAMAGED DURING AN AIRCRAFT CRASH

    Directory of Open Access Journals (Sweden)

    Andrzej ŚWIĄTONIOWSKI

    2016-09-01

    Full Text Available The increasing use of composite structures in aircraft constructions has made it necessary to develop repair methods that will restore the component’s original design strength without compromising its structural integrity. In this paper, the complex repair technology of the composite wing of a light plane, which was damaged during an aircraft crash, is described. The applied repair scheme should meet all the original design requirements for the plane structure.

  20. REPAIR TECHNOLOGY OF THE COMPOSITE WING OF A LIGHT PLANE DAMAGED DURING AN AIRCRAFT CRASH

    OpenAIRE

    Andrzej ŚWIĄTONIOWSKI; Janusz SZOSTAK; Dorota CHODOROWSKA

    2016-01-01

    The increasing use of composite structures in aircraft constructions has made it necessary to develop repair methods that will restore the component’s original design strength without compromising its structural integrity. In this paper, the complex repair technology of the composite wing of a light plane, which was damaged during an aircraft crash, is described. The applied repair scheme should meet all the original design requirements for the plane structure.

  1. Aeroelastic Tailoring of Transport Wings Including Transonic Flutter Constraints

    Science.gov (United States)

    Stanford, Bret K.; Wieseman, Carol D.; Jutte, Christine V.

    2015-01-01

    Several minimum-mass optimization problems are solved to evaluate the effectiveness of a variety of novel tailoring schemes for subsonic transport wings. Aeroelastic stress and panel buckling constraints are imposed across several trimmed static maneuver loads, in addition to a transonic flutter margin constraint, captured with aerodynamic influence coefficient-based tools. Tailoring with metallic thickness variations, functionally graded materials, balanced or unbalanced composite laminates, curvilinear tow steering, and distributed trailing edge control effectors are all found to provide reductions in structural wing mass with varying degrees of success. The question as to whether this wing mass reduction will offset the increased manufacturing cost is left unresolved for each case.

  2. Nacelle design studies for advanced transport aircraft.

    Science.gov (United States)

    Sussman, M. B.; Gunnarson, D. W.; Edwards, P.

    1972-01-01

    Results are given of several analytical studies of nacelles suitable for advanced subsonic commercial transport aircraft. The impact on the nacelle of reduced aircraft noise and increased cruise Mach number is emphasized and initially developed in terms of the individual nacelle components: inlet, fan cowl, nozzle, etc. This is achieved by relating the noise and cruise speed constraints to which the aircraft system must be designed to specific limitations on the individual nacelle components. Performance assessments are then made (separately for each nacelle component) of competitive design concepts. Overall nacelle designs, synthesized on the basis of the individual component studies, are briefly discussed.

  3. A Fixed-Wing Aircraft Simulation Tool for Improving the efficiency of DoD Acquisition

    Science.gov (United States)

    2015-10-05

    testing. UU UU UU UU 9 Kevin Newmeyer 703-812-4417 1 A Fixed-Wing Aircraft Simulation Tool for Improving the Efficiency of DoD Acquisition... Lynch , E., Polsky, S., “Coupled Flight Simulator and CFD Calculations of Ship Airwake Using Kestrel,” 53rd AIAA Aerospace Sciences Meeting, Kissimmee

  4. A Conceptual Design and Optimization Method for Blended-Wing-Body Aircraft

    NARCIS (Netherlands)

    Vos, R.; Van Dommelen, J.

    2012-01-01

    This paper details a new software tool to aid in the conceptual design of blended-wingbody aircraft. The tool consists of four main modules. In the preliminary sizing model a class I estimate of the maximum take-off weight, wing loading, and thrust-to-weight ratio is calculated. This information is

  5. Active aeroelastic control aspects of an aircraft wing by using synthetic jet actuators : Modeling, simulations, experiments

    NARCIS (Netherlands)

    Donnell, K.O.; Schober, S.; Stolk, M.; Marzocca, P.; De Breuker, R.; Abdalla, M.; Nicolini, E.; Gürdal, Z.

    2007-01-01

    This paper discusses modeling, simulations and experimental aspects of active aeroelastic control on aircraft wings by using Synthetic Jet Actuators (SJAs). SJAs, a particular class of zero-net mass-flux actuators, have shown very promising results in numerous aeronautical applications, such as

  6. Diagnosis of Wing Icing Through Lift and Drag Coefficient Change Detection for Small Unmanned Aircraft

    DEFF Research Database (Denmark)

    Sørensen, Kim Lynge; Blanke, Mogens; Johansen, Tor Arne

    2015-01-01

    This paper address the issue of structural change, caused by ice accretion, on UAVs by utilising a Neyman Pearson (NP) based statistical change detection approach, for the identification of structural changes of fixed wing UAV airfoils. A structural analysis is performed on the nonlinear aircraft...

  7. AERODYNAMIC BEHAVIOR AIRCRAFT CAUSED BY RESIDUAL STRAIN WINGS

    Directory of Open Access Journals (Sweden)

    Sergiy Ishchenko

    2011-03-01

    Full Text Available Abstract. The influence of residual strain on the airframe aerodynamic characteristics of aircraft wasconsidered. The possibility of estimation of changes in deformation of airframe using data of leveling wasshown. The method of estimating the change of aerodynamic characteristics caused by the influence ofresidual strain airframe was proposed. Technique can be used in the operation and overhaul of aircraft withlarge operating time.Keywords: aerodynamic characteristics, residual strain construction asymmetric moments, thedistribution of circulation, the scheme of leveling, trigonometric series.

  8. Evaluation of laminar flow control systems for subsonic commercial transport aircraft: Executive summary

    Science.gov (United States)

    Pearce, W. E.

    1982-01-01

    An evaluation was made of laminar flow control (LFC) system concepts for subsonic commercial transport aircraft. Configuration design studies, performance analyses, fabrication development, structural testing, wind tunnel testing, and contamination-avoidance techniques were included. As a result of trade studies, a configuration with LFC on the upper wing surface only, utilizing an electron beam-perforated suction surface, and employing a retractable high-lift shield for contamination avoidance, was selected as the most practical LFC system. The LFC aircraft was then compared with an advanced turbulent aircraft designed for the same mission. This comparison indicated significant fuel savings.

  9. Features wear nodes mechanization wing aircraft operating under dynamic loads

    Directory of Open Access Journals (Sweden)

    А.М. Хімко

    2009-03-01

    Full Text Available  The conducted researches of titanic alloy ВТ-22 at dynamic loading with cycled sliding and dynamic loading in conditions of rolling with slipping. It is established that roller jamming in the carriage increases wear of rod of mechanization of a wing to twenty times. The optimum covering for strengthening wearied sites and restoration of working surfaces of wing’s mechanization rod is defined.

  10. Flight Loads Prediction of High Aspect Ratio Wing Aircraft Using Multibody Dynamics

    Directory of Open Access Journals (Sweden)

    Michele Castellani

    2016-01-01

    Full Text Available A framework based on multibody dynamics has been developed for the static and dynamic aeroelastic analyses of flexible high aspect ratio wing aircraft subject to structural geometric nonlinearities. Multibody dynamics allows kinematic nonlinearities and nonlinear relationships in the forces definition and is an efficient and promising methodology to model high aspect ratio wings, which are known to be prone to structural nonlinear effects because of the high deflections in flight. The multibody dynamics framework developed employs quasi-steady aerodynamics strip theory and discretizes the wing as a series of rigid bodies interconnected by beam elements, representative of the stiffness distribution, which can undergo arbitrarily large displacements and rotations. The method is applied to a flexible high aspect ratio wing commercial aircraft and both trim and gust response analyses are performed in order to calculate flight loads. These results are then compared to those obtained with the standard linear aeroelastic approach provided by the Finite Element Solver Nastran. Nonlinear effects come into play mainly because of the need of taking into account the large deflections of the wing for flight loads computation and of considering the aerodynamic forces as follower forces.

  11. Overview of NASA Electrified Aircraft Propulsion Research for Large Subsonic Transports

    Science.gov (United States)

    Jansen, Ralph H.; Bowman, Cheryl; Jankovsky, Amy; Dyson, Rodger; Felder, James L.

    2017-01-01

    NASA is investing in Electrified Aircraft Propulsion (EAP) research as part of the portfolio to improve the fuel efficiency, emissions, and noise levels in commercial transport aircraft. Turboelectric, partially turboelectric, and hybrid electric propulsion systems are the primary EAP configurations being evaluated for regional jet and larger aircraft. The goal is to show that one or more viable EAP concepts exist for narrow body aircraft and mature tall-pole technologies related to those concepts. A summary of the aircraft system studies, technology development, and facility development is provided. The leading concept for mid-term (2035) introduction of EAP for a single aisle aircraft is a tube and wing, partially turbo electric configuration (STARC-ABL), however other viable configurations exist. Investments are being made to raise the TRL level of light weight, high efficiency motors, generators, and electrical power distribution systems as well as to define the optimal turbine and boundary layer ingestion systems for a mid-term tube and wing configuration. An electric aircraft power system test facility (NEAT) is under construction at NASA Glenn and an electric aircraft control system test facility (HEIST) is under construction at NASA Armstrong. The correct building blocks are in place to have a viable, large plane EAP configuration tested by 2025 leading to entry into service in 2035 if the community chooses to pursue that goal.

  12. Conceptual design of hybrid-electric transport aircraft

    Science.gov (United States)

    Pornet, C.; Isikveren, A. T.

    2015-11-01

    The European Flightpath 2050 and corresponding Strategic Research and Innovation Agenda (SRIA) as well as the NASA Environmentally Responsible Aviation N+ series have elaborated aggressive emissions and external noise reduction targets according to chronological waypoints. In order to deliver ultra-low or even zero in-flight emissions levels, there exists an increasing amount of international research and development emphasis on electrification of the propulsion and power systems of aircraft. Since the late 1990s, a series of experimental and a host of burgeouning commercial activities for fixed-wing aviation have focused on glider, ultra-light and light-sport airplane, and this is proving to serve as a cornerstone for more ambitious transport aircraft design and integration technical approaches. The introduction of hybrid-electric technology has dramatically expanded the design space and the full-potential of these technologies will be drawn through synergetic, tightly-coupled morphological and systems integration emphasizing propulsion - as exemplified by the potential afforded by distributed propulsion solutions. With the aim of expanding upon the current repository of knowledge associated with hybrid-electric propulsion systems a quad-fan arranged narrow-body transport aircraft equipped with two advanced Geared-Turbofans (GTF) and two Electrical Fans (EF) in an under-wing podded installation is presented in this technical article. The assessment and implications of an increasing Degree-of-Hybridization for Useful Power (HP,USE) on the overall sizing, performance as well as flight technique optimization of fuel-battery hybrid-electric aircraft is addressed herein. The integrated performance of the concept was analyzed in terms of potential block fuel burn reduction and change in vehicular efficiency in comparison to a suitably projected conventional aircraft employing GTF-only propulsion targeting year 2035. Results showed that by increasing HP,USE, significant

  13. A novel hovering type of fixed wing aircraft with stealth capability

    Directory of Open Access Journals (Sweden)

    Valeriu DRĂGAN

    2010-12-01

    Full Text Available The tactical need for fixed wing aircraft with hovering capably has long been recognized bythe military for two reasons: increased safety when landing on aircraft carriers and higher velocitiesthat the ones obtainable with rotary wing aircraft.Thus far, the only concept governing the field of vertical flight was to use thrust either from a liftfan-F35, puffer ducts –Harrier or smaller jet engines-D0 31 or Yak-141, i.e. direct lift thrust.In this paper we will look at the prospect of using a combination of the Coanda effect with theVenturi effect to generate lift by so- called “supercirculation”. This novel approach can yield manyadvantages to conventional vertical lifting by providing a more stable platform and requiring lowerpower settings – and thus lower fuel consumption.The aircraft has a fixed, negatively sweped wing that uses circulation control to achieve lift atzero air speed. The fluid used for supercirculation will come from the fan thrust reversers – which, ifcorrectly managed, can give a sufficient flow for lifting the craft and also a negative thrust componentto compensate for the positive thrust of the primary flow (not diverted.

  14. On the Importance of Nonlinear Aeroelasticity and Energy Efficiency in Design of Flying Wing Aircraft

    Directory of Open Access Journals (Sweden)

    Pezhman Mardanpour

    2015-01-01

    Full Text Available Energy efficiency plays important role in aeroelastic design of flying wing aircraft and may be attained by use of lightweight structures as well as solar energy. NATASHA (Nonlinear Aeroelastic Trim And Stability of HALE Aircraft is a newly developed computer program which uses a nonlinear composite beam theory that eliminates the difficulties in aeroelastic simulations of flexible high-aspect-ratio wings which undergoes large deformation, as well as the singularities due to finite rotations. NATASHA has shown that proper engine placement could significantly increase the aeroelastic flight envelope which typically leads to more flexible and lighter aircraft. The areas of minimum kinetic energy for the lower frequency modes are in accordance with the zones with maximum flutter speed and have the potential to save computational effort. Another aspect of energy efficiency for High Altitude, Long Endurance (HALE drones stems from needing to minimize energy consumption because of limitations on the source of energy, that is, solar power. NATASHA is capable of simulating the aeroelastic passive morphing maneuver (i.e., morphing without relying on actuators and at as near zero energy cost as possible of the aircraft so as the solar panels installed on the wing are in maximum exposure to sun during different time of the day.

  15. System Noise Assessment of Blended-Wing-Body Aircraft With Open Rotor Propulsion

    Science.gov (United States)

    Guo, Yueping; Thomas, Russell H.

    2015-01-01

    An aircraft system noise study is presented for the Blended-Wing-Body (BWB) aircraft concept with three open rotor engines mounted on the upper surface of the airframe. It is shown that for such an aircraft, the cumulative Effective Perceived Noise Level (EPNL) is about 24 dB below the current aircraft noise regulations of Stage 4. While this makes the design acoustically viable in meeting the regulatory requirements, even with the consideration of more stringent noise regulations of a possible Stage 5 in the next decade or so, the design will likely meet stiff competitions from aircraft with turbofan engines. It is shown that the noise levels of the BWB design are held up by the inherently high noise levels of the open rotor engines and the limitation on the shielding benefit due to the practical design constraint on the engine location. Furthermore, it is shown that the BWB design has high levels of noise from the main landing gear, due to their exposure to high speed flow at the junction between the center body and outer wing. These are also the reasons why this baseline BWB design does not meet the NASA N+2 noise goal of 42 dB below Stage 4. To identify approaches that may further reduce noise, parametric studies are also presented, including variations in engine location, vertical tail and elevon variations, and airframe surface acoustic liner treatment effect. These have the potential to further reduce noise but they are only at the conceptual stage.

  16. In-flight lift-drag characteristics for a forward-swept wing aircraft and comparisons with contemporary aircraft)

    Science.gov (United States)

    Saltzman, Edwin J.; Hicks, John W.; Luke, Sue (Editor)

    1994-01-01

    Lift (L) and drag (D) characteristics have been obtained in flight for the X-29A airplane (a forward swept-wing demonstrator) for Mach numbers (M) from 0.4 to 1.3. Most of the data were obtained near an altitude of 30,000 ft. A representative Reynolds number for M = 0.9, and a pressure altitude of 30,000 ft, is 18.6 x 10(exp 6) based on the mean aerodynamic chord. The X-29A data (forward-swept wing) are compared with three high-performance fighter aircraft: the F-15C, F-16C, and F/A18. The lifting efficiency of the X-29A, as defined by the Oswald lifting efficiency factor, e, is about average for a cantilevered monoplane for M = 0.6 and angles of attack up to those required for maximum L/D. At M = 0.6 the level of L/D and e, as a function of load factor, for the X-29A was about the same as for the contemporary aircraft. The X-29A and its contemporaries have high transonic wave drag and equivalent parasite area compared with aircraft of the 1940's through 1960's.

  17. Numerical and Experimental Analysis of Aircraft Wing Subjected to Fatigue Loading

    Directory of Open Access Journals (Sweden)

    Hatem Rahim Wasmi

    2016-10-01

    Full Text Available This study deals with the aircraft wing analysis (numerical and experimental which subjected to fatigue loading in order to analyze the aircraft wing numerically by using ANSYS 15.0 software and experimentally by using loading programs which effect on fatigue test specimens at laboratory to estimate life of used metal (aluminum alloy 7075-T651 the wing metal and compare between numerical and experimental work, as well as to formulate an experimental mathematical model which may find safe estimate for metals and most common alloys that are used to build aircraft wing at certain conditions. In experimental work, a (34 specimen of (aluminum alloy 7075-T651 were tested using alternating bending fatigue machine rig. The test results are ; (18 Specimen to establish the (S-N curve and endurance limit and the other specimens used for variable amplitude tests were represented by loading programs which represents actual flight conditions. Also it has been obtained the safe fatigue curves which are described by mathematical formulas. ANSYS results show convergence with experimental results about cumulative fatigue damage (D, a mathematical model is proposed to estimate the life; this model gives good results in case of actual loading programs. Also, Miner and Marsh rules are applied to the specimens and compared with the proposal mathematical model in order to estimate the life of the wing material under actual flight loading conditions, comparing results show that it is possible to depend on present mathematical model than Miner and Marsh theories because the proposal mathematical model shows safe and good results compared with experimental work results.

  18. Structural Analysis Approach to Fault Diagnosis with Application to Fixed-wing Aircraft Motion

    DEFF Research Database (Denmark)

    Izadi-Zamanabadi, Roozbeh

    2002-01-01

    The paper presents a structural analysis based method for fault diagnosis purposes. The method uses the structural model of the system and utilizes the matching idea to extract system's inherent redundant information. The structural model is represented by a bipartite directed graph. FDI Possibil...... Possibilities are examined by further analysis of the obtained information. The method is illustrated by applying on the LTI model of motion of a fixed-wing aircraft....

  19. Structural Analysis Approach to Fault Diagnosis with Application to Fixed-wing Aircraft Motion

    DEFF Research Database (Denmark)

    Izadi-Zamanabadi, Roozbeh

    2001-01-01

    The paper presents a structural analysis based method for fault diagnosis purposes. The method uses the structural model of the system and utilizes the matching idea to extract system's inherent redundant information. The structural model is represented by a bipartite directed graph. FDI Possibil...... Possibilities are examined by further analysis of the obtained information. The method is illustrated by applying on the LTI model of motion of a fixed-wing aircraft....

  20. Requirements of the Expeditionary Strike Group’s Fixed Wing Aircraft

    Science.gov (United States)

    2008-02-19

    prohibits any effort to provide land dominance between the shore and this urban area. In this case the ESG’s fixed wing tactical aircraft would take...infrequently, or remain classified. Nevertheless, it is known that a powerful HEMP [High-Altitude Electromagnetic Pulse] field as it radiates outward can...interfere with radio frequency links and disrupt electronic devices thousands of miles from (its generation)”12 Certain types of HEMP weapons are

  1. Wing Shaping and Gust Load Controls of Flexible Aircraft: An LPV Approach

    Science.gov (United States)

    Hammerton, Jared R.; Su, Weihua; Zhu, Guoming; Swei, Sean Shan-Min

    2018-01-01

    In the proposed paper, the optimum wing shape of a highly flexible aircraft under varying flight conditions will be controlled by a linear parameter-varying approach. The optimum shape determined under multiple objectives, including flight performance, ride quality, and control effort, will be determined as well. This work is an extension of work done previously by the authors, and updates the existing optimization and utilizes the results to generate a robust flight controller.

  2. Competition and Innovation in the U.S. Fixed-Wing Military Aircraft Industry

    Science.gov (United States)

    2003-01-01

    organization since the early twentieth century. Joseph Schumpeter (1934) is credited with the fundamental idea that com- petition helps to create...O’Connor, Lois S. Peters, and Joseph G. Morone, “Managing Discontinuous Innovation ,” Research Technology Management, May–June 1998, pp. 52–58. Scherer, F...P. G. Trimble • Obaid Younossi Competition in the U.S. Fixed-Wing Military Aircraft Industry Innovation and R Prepared for the Office of the Secretary

  3. Control Power Optimization using Artificial Intelligence for Hybrid Wing Body Aircraft

    OpenAIRE

    Chhabra, Rupanshi

    2015-01-01

    Traditional methods of control allocation optimization have shown difficulties in exploiting the full potential of controlling a large array of control surfaces. This research investigates the potential of employing artificial intelligence methods like neurocomputing to the control allocation optimization problem of Hybrid Wing Body (HWB) aircraft concepts for minimizing control power, hinge moments, and actuator forces, while keeping the system weights within acceptable limits. The main obje...

  4. Small Aircraft Transportation System Concept and Technologies

    Science.gov (United States)

    Holmes, Bruce J.; Durham, Michael H.; Tarry, Scott E.

    2005-01-01

    This paper summarizes both the vision and the early public-private collaborative research for the Small Aircraft Transportation System (SATS). The paper outlines an operational definition of SATS, describes how SATS conceptually differs from current air transportation capabilities, introduces four SATS operating capabilities, and explains the relation between the SATS operating capabilities and the potential for expanded air mobility. The SATS technology roadmap encompasses on-demand, widely distributed, point-to-point air mobility, through hired-pilot modes in the nearer-term, and through self-operated user modes in the farther-term. The nearer-term concept is based on aircraft and airspace technologies being developed to make the use of smaller, more widely distributed community reliever and general aviation airports and their runways more useful in more weather conditions, in commercial hired-pilot service modes. The farther-term vision is based on technical concepts that could be developed to simplify or automate many of the operational functions in the aircraft and the airspace for meeting future public transportation needs, in personally operated modes. NASA technology strategies form a roadmap between the nearer-term concept and the farther-term vision. This paper outlines a roadmap for scalable, on-demand, distributed air mobility technologies for vehicle and airspace systems. The audiences for the paper include General Aviation manufacturers, small aircraft transportation service providers, the flight training industry, airport and transportation authorities at the Federal, state and local levels, and organizations involved in planning for future National Airspace System advancements.

  5. Auralization of Hybrid Wing Body Aircraft Flyover Noise from System Noise Predictions

    Science.gov (United States)

    Rizzi, Stephen A.; Aumann, Aric R.; Lopes, Leonvard V.; Burley, Casey L.

    2013-01-01

    System noise assessments of a state-of-the-art reference aircraft (similar to a Boeing 777-200ER with GE90-like turbofan engines) and several hybrid wing body (HWB) aircraft configurations were recently performed using NASA engine and aircraft system analysis tools. The HWB aircraft were sized to an equivalent mission as the reference aircraft and assessments were performed using measurements of airframe shielding from a series of propulsion airframe aeroacoustic experiments. The focus of this work is to auralize flyover noise from the reference aircraft and the best HWB configuration using source noise predictions and shielding data based largely on the earlier assessments. For each aircraft, three flyover conditions are auralized. These correspond to approach, sideline, and cutback operating states, but flown in straight and level flight trajectories. The auralizations are performed using synthesis and simulation tools developed at NASA. Audio and visual presentations are provided to allow the reader to experience the flyover from the perspective of a listener in the simulated environment.

  6. NASA Hybrid Wing Aircraft Aeroacoustic Test Documentation Report

    Science.gov (United States)

    Heath, Stephanie L.; Brooks, Thomas F.; Hutcheson, Florence V.; Doty, Michael J.; Bahr, Christopher J.; Hoad, Danny; Becker, Lawrence; Humphreys, William M.; Burley, Casey L.; Stead, Dan; hide

    2016-01-01

    This report summarizes results of the Hybrid Wing Body (HWB) N2A-EXTE model aeroacoustic test. The N2A-EXTE model was tested in the NASA Langley 14- by 22-Foot Subsonic Tunnel (14x22 Tunnel) from September 12, 2012 until January 28, 2013 and was designated as test T598. This document contains the following main sections: Section 1 - Introduction, Section 2 - Main Personnel, Section 3 - Test Equipment, Section 4 - Data Acquisition Systems, Section 5 - Instrumentation and Calibration, Section 6 - Test Matrix, Section 7 - Data Processing, and Section 8 - Summary. Due to the amount of material to be documented, this HWB test documentation report does not cover analysis of acquired data, which is to be presented separately by the principal investigators. Also, no attempt was made to include preliminary risk reduction tests (such as Broadband Engine Noise Simulator and Compact Jet Engine Simulator characterization tests, shielding measurement technique studies, and speaker calibration method studies), which were performed in support of this HWB test. Separate reports containing these preliminary tests are referenced where applicable.

  7. Jet Noise Shielding Provided by a Hybrid Wing Body Aircraft

    Science.gov (United States)

    Doty, Michael J.; Brooks, Thomas F.; Burley, Casey L.; Bahr, Christopher J.; Pope, Dennis S.

    2014-01-01

    One approach toward achieving NASA's aggressive N+2 noise goal of 42 EPNdB cumulative margin below Stage 4 is through the use of novel vehicle configurations like the Hybrid Wing Body (HWB). Jet noise measurements from an HWB acoustic test in NASA Langley's 14- by 22-Foot Subsonic Tunnel are described. Two dual-stream, heated Compact Jet Engine Simulator (CJES) units are mounted underneath the inverted HWB model on a traversable support to permit measurement of varying levels of shielding provided by the fuselage. Both an axisymmetric and low noise chevron nozzle set are investigated in the context of shielding. The unshielded chevron nozzle set shows 1 to 2 dB of source noise reduction (relative to the unshielded axisymmetric nozzle set) with some penalties at higher frequencies. Shielding of the axisymmetric nozzles shows up to 6.5 dB of reduction at high frequency. The combination of shielding and low noise chevrons shows benefits beyond the expected additive benefits of the two, up to 10 dB, due to the effective migration of the jet source peak noise location upstream for increased shielding effectiveness. Jet noise source maps from phased array results processed with the Deconvolution Approach for the Mapping of Acoustic Sources (DAMAS) algorithm reinforce these observations.

  8. The Development of a Highly Reliable Power Management and Distribution System for Civil Transport Aircraft

    Science.gov (United States)

    Coleman, Anthony S.; Hansen, Irving G.

    1994-01-01

    NASA is pursuing a program in Advanced Subsonic Transport (AST) to develop the technology for a highly reliable Fly-By-Light/Power-By-WIre aircraft. One of the primary objectives of the program is to develop the technology base for confident application of integrated PBW components and systems to transport aircraft to improve operating reliability and efficiency. Technology will be developed so that the present hydraulic and pneumatic systems of the aircraft can be systematically eliminated and replaced by electrical systems. These motor driven actuators would move the aircraft wing surfaces as well as the rudder to provide steering controls for the pilot. Existing aircraft electrical systems are not flight critical and are prone to failure due to Electromagnetic Interference (EMI) (1), ground faults and component failures. In order to successfully implement electromechanical flight control actuation, a Power Management and Distribution (PMAD) System must be designed having a reliability of 1 failure in 10(exp +9) hours, EMI hardening and a fault tolerance architecture to ensure uninterrupted power to all aircraft flight critical systems. The focus of this paper is to analyze, define, and describe technically challenging areas associated with the development of a Power By Wire Aircraft and typical requirements to be established at the box level. The authors will attempt to propose areas of investigation, citing specific military standards and requirements that need to be revised to accommodate the 'More Electric Aircraft Systems'.

  9. Study on flow over finite wing with respect to F-22 raptor, Supermarine Spitfire, F-7 BG aircraft wing and analyze its stability performance and experimental values

    Science.gov (United States)

    Ali, Md. Nesar; Alam, Mahbubul

    2017-06-01

    , and the induced drag increases, reducing overall efficiency. To complement the high aspect ratio wing case, a slender wing model is formulated so that the lift and drag can be estimated for this limiting case as well. We analyze the stability performance of F-22 raptor, Supermarine Spitfire, F-7 BG Aircraft wing by using experimental method and simulation software. The experimental method includes fabrication of F-22 raptor, Supermarine Spitfire, F-7 BG Aircraft wing which making material is Gamahr wood. Testing this model wing in wind tunnel test and after getting expected data we also compared this value with analyzing software data for furthermore experiment.

  10. An assessment of tailoring of lightning protection design requirements for a composite wing structure on a metallic aircraft

    Science.gov (United States)

    Harwood, T. L.

    1991-01-01

    The Navy A-6E aircraft is presently being modified with a new wing which uses graphite/epoxy structures and substructures around a titanium load-bearing structure. The ability of composites to conduct electricity is less than that of aluminum. This is cause for concern when the wing may be required to conduct large lightning currents. The manufacturer attempted to solve lightning protection issues by performing a risk assessment based on a statistical approach which allows relaxation of the wing lightning protection design levels over certain locations of the composite wing. A sensitivity study is presented designed to define the total risk of relaxation of the design levels.

  11. Multi-Objective Flight Control for Drag Minimization and Load Alleviation of High-Aspect Ratio Flexible Wing Aircraft

    Science.gov (United States)

    Nguyen, Nhan; Ting, Eric; Chaparro, Daniel; Drew, Michael; Swei, Sean

    2017-01-01

    As aircraft wings become much more flexible due to the use of light-weight composites material, adverse aerodynamics at off-design performance can result from changes in wing shapes due to aeroelastic deflections. Increased drag, hence increased fuel burn, is a potential consequence. Without means for aeroelastic compensation, the benefit of weight reduction from the use of light-weight material could be offset by less optimal aerodynamic performance at off-design flight conditions. Performance Adaptive Aeroelastic Wing (PAAW) technology can potentially address these technical challenges for future flexible wing transports. PAAW technology leverages multi-disciplinary solutions to maximize the aerodynamic performance payoff of future adaptive wing design, while addressing simultaneously operational constraints that can prevent the optimal aerodynamic performance from being realized. These operational constraints include reduced flutter margins, increased airframe responses to gust and maneuver loads, pilot handling qualities, and ride qualities. All of these constraints while seeking the optimal aerodynamic performance present themselves as a multi-objective flight control problem. The paper presents a multi-objective flight control approach based on a drag-cognizant optimal control method. A concept of virtual control, which was previously introduced, is implemented to address the pair-wise flap motion constraints imposed by the elastomer material. This method is shown to be able to satisfy the constraints. Real-time drag minimization control is considered to be an important consideration for PAAW technology. Drag minimization control has many technical challenges such as sensing and control. An initial outline of a real-time drag minimization control has already been developed and will be further investigated in the future. A simulation study of a multi-objective flight control for a flight path angle command with aeroelastic mode suppression and drag

  12. On Wings of the Minimum Induced Drag: Spanload Implications for Aircraft and Birds

    Science.gov (United States)

    Bowers, Albion H.; Murillo, Oscar J.; Jensen, Robert (Red); Eslinger, Brian; Gelzer, Christian

    2016-01-01

    For nearly a century Ludwig Prandtl's lifting-line theory remains a standard tool for understanding and analyzing aircraft wings. The tool, said Prandtl, initially points to the elliptical spanload as the most efficient wing choice, and it, too, has become the standard in aviation. Having no other model, avian researchers have used the elliptical spanload virtually since its introduction. Yet over the last half-century, research in bird flight has generated increasing data incongruous with the elliptical spanload. In 1933 Prandtl published a little-known paper presenting a superior spanload: any other solution produces greater drag. We argue that this second spanload is the correct model for bird flight data. Based on research we present a unifying theory for superior efficiency and coordinated control in a single solution. Specifically, Prandtl's second spanload offers the only solution to three aspects of bird flight: how birds are able to turn and maneuver without a vertical tail; why birds fly in formation with their wingtips overlapped; and why narrow wingtips do not result in wingtip stall. We performed research using two experimental aircraft designed in accordance with the fundamentals of Prandtl's second paper, but applying recent developments, to validate the various potentials of the new spanload, to wit: as an alternative for avian researchers, to demonstrate the concept of proverse yaw, and to offer a new method of aircraft control and efficiency.

  13. Multidisciplinary Integrated Framework for the Optimal Design of a Jet Aircraft Wing

    Directory of Open Access Journals (Sweden)

    Laura Mainini

    2012-01-01

    Full Text Available The preliminary design of a jet aircraft wing, through the use of an integrated multidisciplinary design environment, is presented in this paper. A framework for parametric studies of wing structures has been developed on the basis of a multilevel distributed analysis architecture with a “hybrid strategy” process that is able to perform deterministic optimizations and tradeoff studies simultaneously. The particular feature of the proposed multilevel optimization architecture is that it can use different set of variables, defined expressly for each level, in a multi-level scheme using “low fidelity” and “high fidelity” models, as well as surrogate models. The prototype of the design environment has been developed using both commercial codes and in-house tools and it can be implemented in a geographically distributed and heterogeneous IT context.

  14. Structural Design Optimization of a Tiltrotor Aircraft Composite Wing to Enhance Whirl Flutter Stability

    DEFF Research Database (Denmark)

    Kim, Taeseong; Kim, Jaehoon; Shin, Sang Joon

    2013-01-01

    In order to enhance the aeroelastic stability of a tiltrotor aircraft, a structural optimization framework is developed by applying a multi-level optimization approach. Each optimization level is designed to achieve a different purpose; therefore, relevant optimization schemes are selected for each...... level. Enhancement of the aeroelastic stability is selected as an objective in the upper-level optimization. This is achieved by seeking the optimal structural properties of a composite wing, including its mass, vertical, chordwise, and torsional stiffness. In the upper-level optimization, the response...... surface method (RSM), is selected. On the other hand, lower-level optimization seeks to determine the local detailed cross-sectional parameters, such as the ply orientation angles and ply thickness, which are relevant to the wing structural properties obtained at the upper-level. To avoid manufacturing...

  15. High-speed Civil Transport Aircraft Emissions

    Science.gov (United States)

    Miake-Lye, Richard C.; Matulaitis, J. A.; Krause, F. H.; Dodds, Willard J.; Albers, Martin; Hourmouziadis, J.; Hasel, K. L.; Lohmann, R. P.; Stander, C.; Gerstle, John H.

    1992-01-01

    Estimates are given for the emissions from a proposed high speed civil transport (HSCT). This advanced technology supersonic aircraft would fly in the lower stratosphere at a speed of roughly Mach 1.6 to 3.2 (470 to 950 m/sec or 920 to 1850 knots). Because it would fly in the stratosphere at an altitude in the range of 15 to 23 km commensurate with its design speed, its exhaust effluents could perturb the chemical balance in the upper atmosphere. The first step in determining the nature and magnitude of any chemical changes in the atmosphere resulting from these proposed aircraft is to identify and quantify the chemically important species they emit. Relevant earlier work is summarized, dating back to the Climatic Impact Assessment Program of the early 1970s and current propulsion research efforts. Estimates are provided of the chemical composition of an HSCT's exhaust, and these emission indices are presented. Other aircraft emissions that are not due to combustion processes are also summarized; these emissions are found to be much smaller than the exhaust emissions. Future advances in propulsion technology, in experimental measurement techniques, and in understanding upper atmospheric chemistry may affect these estimates of the amounts of trace exhaust species or their relative importance.

  16. Ecological Risk Assessment Framework for Low-Altitude Overflights by Fixed-Wing and Rotary-Wing Military Aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Efroymson, R.A.

    2001-01-12

    This is a companion report to the risk assessment framework proposed by Suter et al. (1998): ''A Framework for Assessment of Risks of Military Training and Testing to Natural Resources,'' hereafter referred to as the ''generic framework.'' The generic framework is an ecological risk assessment methodology for use in environmental assessments on Department of Defense (DoD) installations. In the generic framework, the ecological risk assessment framework of the US Environmental Protection Agency (EPA 1998) is modified for use in the context of (1) multiple and diverse stressors and activities at a military installation and (2) risks resulting from causal chains, e.g., effects on habitat that indirectly impact wildlife. Both modifications are important if the EPA framework is to be used on military installations. In order for the generic risk assessment framework to be useful to DoD environmental staff and contractors, the framework must be applied to specific training and testing activities. Three activity-specific ecological risk assessment frameworks have been written (1) to aid environmental staff in conducting risk assessments that involve these activities and (2) to guide staff in the development of analogous frameworks for other DoD activities. The three activities are: (1) low-altitude overflights by fixed-wing and rotary-wing aircraft (this volume), (2) firing at targets on land, and (3) ocean explosions. The activities were selected as priority training and testing activities by the advisory committee for this project.

  17. Modeling and control for a blended wing body aircraft a case study

    CERN Document Server

    Schirrer, Alexander

    2015-01-01

    This book demonstrates the potential of the blended wing body (BWB) concept for significant improvement in both fuel efficiency and noise reduction and addresses the considerable challenges raised for control engineers because of characteristics like open-loop instability, large flexible structure, and slow control surfaces. This text describes state-of-the-art and novel modeling and control design approaches for the BWB aircraft under consideration. The expert contributors demonstrate how exceptional robust control performance can be achieved despite such stringent design constraints as guaranteed handling qualities, reduced vibration, and the minimization of the aircraft’s structural loads during maneuvers and caused by turbulence. As a result, this innovative approach allows the building of even lighter aircraft structures, and thus results in considerable efficiency improvements per passenger kilometer. The treatment of this large, complex, parameter-dependent industrial control problem highlights relev...

  18. Topological structures of vortex flow on a flying wing aircraft, controlled by a nanosecond pulse discharge plasma actuator

    Science.gov (United States)

    Du, Hai; Shi, Zhiwei; Cheng, Keming; Wei, Dechen; Li, Zheng; Zhou, Danjie; He, Haibo; Yao, Junkai; He, Chengjun

    2016-06-01

    Vortex control is a thriving research area, particularly in relation to flying wing or delta wing aircraft. This paper presents the topological structures of vortex flow on a flying wing aircraft controlled by a nanosecond plasma dielectric barrier discharge actuator. Experiments, including oil flow visualization and two-dimensional particle image velocimetry (PIV), were conducted in a wind tunnel with a Reynolds number of 0.5 × 106. Both oil and PIV results show that the vortex can be controlled. Oil topological structures on the aircraft surface coincide with spatial PIV flow structures. Both indicate vortex convergence and enhancement when the plasma discharge is switched on, leading to a reduced region of separated flow.

  19. Noise Scaling and Community Noise Metrics for the Hybrid Wing Body Aircraft

    Science.gov (United States)

    Burley, Casey L.; Brooks, Thomas F.; Hutcheson, Florence V.; Doty, Michael J.; Lopes, Leonard V.; Nickol, Craig L.; Vicroy, Dan D.; Pope, D. Stuart

    2014-01-01

    An aircraft system noise assessment was performed for the hybrid wing body aircraft concept, known as the N2A-EXTE. This assessment is a result of an effort by NASA to explore a realistic HWB design that has the potential to substantially reduce noise and fuel burn. Under contract to NASA, Boeing designed the aircraft using practical aircraft design princip0les with incorporation of noise technologies projected to be available in the 2020 timeframe. NASA tested 5.8% scale-mode of the design in the NASA Langley 14- by 22-Foot Subsonic Tunnel to provide source noise directivity and installation effects for aircraft engine and airframe configurations. Analysis permitted direct scaling of the model-scale jet, airframe, and engine shielding effect measurements to full-scale. Use of these in combination with ANOPP predictions enabled computations of the cumulative (CUM) noise margins relative to FAA Stage 4 limits. The CUM margins were computed for a baseline N2A-EXTE configuration and for configurations with added noise reduction strategies. The strategies include reduced approach speed, over-the-rotor line and soft-vane fan technologies, vertical tail placement and orientation, and modified landing gear designs with fairings. Combining the inherent HWB engine shielding by the airframe with added noise technologies, the cumulative noise was assessed at 38.7 dB below FAA Stage 4 certification level, just 3.3 dB short of the NASA N+2 goal of 42 dB. This new result shows that the NASA N+2 goal is approachable and that significant reduction in overall aircraft noise is possible through configurations with noise reduction technologies and operational changes.

  20. Subsonic Ultra Green Aircraft Research. Phase II - Volume I; Truss Braced Wing Design Exploration

    Science.gov (United States)

    Bradley, Marty K.; Droney, Christopher K.; Allen, Timothy J.

    2015-01-01

    This report summarizes the Truss Braced Wing (TBW) work accomplished by the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team, consisting of Boeing Research and Technology, Boeing Commercial Airplanes, General Electric, Georgia Tech, Virginia Tech, NextGen Aeronautics, and Microcraft. A multi-disciplinary optimization (MDO) environment defined the geometry that was further refined for the updated SUGAR High TBW configuration. Airfoil shapes were tested in the NASA TCT facility, and an aeroelastic model was tested in the NASA TDT facility. Flutter suppression was successfully demonstrated using control laws derived from test system ID data and analysis models. Aeroelastic impacts for the TBW design are manageable and smaller than assumed in Phase I. Flutter analysis of TBW designs need to include pre-load and large displacement non-linear effects to obtain a reasonable match to test data. With the updated performance and sizing, fuel burn and energy use is reduced by 54% compared to the SUGAR Free current technology Baseline (Goal 60%). Use of the unducted fan version of the engine reduces fuel burn and energy by 56% compared to the Baseline. Technology development roadmaps were updated, and an airport compatibility analysis established feasibility of a folding wing aircraft at existing airports.

  1. Scaling of Hybrid Wing-Body-Type Aircraft: Exploration Through High-Fidelity Aerodynamic Shape Optimization

    Science.gov (United States)

    Reist, Thomas A.

    Unconventional aircraft configurations have the potential to reduce aviation's contribution to climate change through substantial reductions in fuel burn. One promising configuration which has received much attention is the hybrid wing-body (HWB). Due to the lack of design experience for unconventional configurations, high-fidelity design and optimization methods will be critical in their development. This thesis presents the application of a gradient-based aerodynamic shape optimization algorithm based on the Reynolds-averaged Navier-Stokes equations to the aerodynamic design of conventional tube-and-wing (CTW) and HWB aircraft. The optimal aerodynamic shapes and performance for a range of aircraft sizes including regional, narrow-body, midsize, and wide-body classes are found so as to characterize the aerodynamic efficiency benefits of the HWB configuration with respect to equivalent CTW designs. Trim-constrained drag minimization is performed at cruise, with a large design space of over 400 design variables. The smaller optimized HWBs, including the regional and narrow-body classes, while more aerodynamically efficient, burn at least as much fuel as to the equivalently optimized CTWs due to their increased weight, while the larger wide-body-class HWB has almost 11% lower cruise fuel burn. To investigate alternative configurations which may yield improved efficiency, exploratory optimizations with significant geometric freedom are then performed, resulting in a set of novel shapes with a more slender lifting fuselage and distinct wings. Based on these exploratory results, new lifting-fuselage configurations (LFCs) are designed. The slenderness of the LFC fuselage decreases with aircraft size, such that, for the largest class, the LFC reverts to a classical HWB shape. This new configuration offers higher aerodynamic efficiency than the HWBs, with the smaller classes seeing the largest benefit from the new configuration. This new lifting-fuselage concept offers 6

  2. Albatross-Like Utilization of Wind Gradient for Unpowered Flight of Fixed-Wing Aircraft

    Directory of Open Access Journals (Sweden)

    Shangqiu Shan

    2017-10-01

    Full Text Available The endurance of an aircraft can be considerably extended by its exploitation of the hidden energy of a wind gradient, as an albatross does. The process is referred to as dynamic soaring and there are two methods for its implementation, namely, sustainable climbing and the Rayleigh cycle. In this study, the criterion for sustainable climbing was determined, and a bio-inspired method for implementing the Rayleigh cycle in a shear wind was developed. The determined sustainable climbing criterion promises to facilitate the development of an unpowered aircraft and the choice of a more appropriate soaring environment, as was demonstrated in this study. The criterion consists of three factors, namely, the environment, aerodynamics, and wing loading. We develop an intuitive explanation of the Raleigh cycle and analyze the energy mechanics of utilizing a wind gradient in unpowered flight. The energy harvest boundary and extreme power point were determined and used to design a simple bio-inspired guidance strategy for implementing the Rayleigh cycle. The proposed strategy, which involves the tuning of a single parameter, can be easily implemented in real-time applications. In the results and discussions, the effects of each factor on climbing performance are examined and the sensitivity of the aircraft factor is discussed using five examples. Experimental MATLAB simulations of the proposed strategy and the comparison of the results with those of Gauss Pseudospectral Optimization Software confirm the feasibility of the proposed strategy.

  3. Aircraft impact risk assessment data base for assessment of fixed wing air carrier impact risk in the vicinity of airports

    International Nuclear Information System (INIS)

    Akstulewicz, F.; Read, J.

    1979-06-01

    The FIXED WING AIRCRAFT accidents occurring to US air carriers during the years 1956 through 1977 are listed, with those resulting in impact within five miles of airports in the contiguous US being considered in detail as to location of impact relative to the airport runways

  4. Cantilever Wings for Modern Aircraft: Some Aspects of Cantilever Wing Construction with Special Reference to Weight and Torsional Stiffness

    Science.gov (United States)

    Stieger, H J

    1929-01-01

    In the foregoing remarks I have made an attempt to touch on some of the structural problems met with in cantilever wings, and dealt rather fully with a certain type of single-spar construction. The experimental test wing was a first attempt to demonstrate the principles of this departure from orthodox methods. The result was a wing both torsionally stiff and of light weight - lighter than a corresponding biplane construction.

  5. Performance of a Supersonic Over-Wing Inlet with Application to a Low-Sonic-Boom Aircraft

    Science.gov (United States)

    Trefny, Charles J.; Hirt, Stefanie M.; Anderson, Bernhard H.; Fink, Lawrence E.; Magee, Todd E.

    2014-01-01

    Development of commercial supersonic aircraft has been hindered by many related factors including fuel-efficiency, economics, and sonic-boom signatures that have prevented over-land flight. Materials, propulsion, and flight control technologies have developed to the point where, if over-land flight were made possible, a commercial supersonic transport could be economically viable. Computational fluid dynamics, and modern optimization techniques enable designers to reduce the boom signature of candidate aircraft configurations to acceptable levels. However, propulsion systems must be carefully integrated with these low-boom configurations in order that the signatures remain acceptable. One technique to minimize the downward propagation of waves is to mount the propulsion systems above the wing, such that the wing provides shielding from shock waves generated by the inlet and nacelle. This topmounted approach introduces a number of issues with inlet design and performance especially with the highly-swept wing configurations common to low-boom designs. A 1.79%-scale aircraft model was built and tested at the NASA Glenn Research Center's 8-by 6-Foot Supersonic Wind Tunnel (8x6 SWT) to validate the configuration's sonic boom signature. In order to evaluate performance of the top-mounted inlets, the starboard flow-through nacelle on the aerodynamic model was replaced by a 2.3%-scale operational inlet model. This integrated configuration was tested at the 8x6 SWT from Mach 0.25 to 1.8 over a wide range of angles-of-attack and yaw. The inlet was also tested in an isolated configuration over a smaller range of angles-of-attack and yaw. A number of boundary-layer bleed configurations were investigated and found to provide a substantial positive impact on pressure recovery and distortion. Installed inlet performance in terms of mass capture, pressure recovery, and distortion over the Mach number range at the design angle-of-attack of 4-degrees is presented herein and compared

  6. Computational Fluid Dynamic Simulation (CFD and Experimental Study on Wing-external Store Aerodynamic Interference of a Subsonic Fighter Aircraft

    Directory of Open Access Journals (Sweden)

    Tholudin Mat Lazim

    2003-01-01

    Full Text Available The main objective of the present work is to study the effect of an external store on a subsonic fighter aircraft. Generally most modern fighter aircrafts are designed with an external store installation. In this study, a subsonic fighter aircraft model has been manufactured using a computer numerical control machine for the purpose of studying the effect of the aerodynamic interference of the external store on the flow around the aircraft wing. A computational fluid dynamic (CFD simulation was also carried out on the same configuration. Both the CFD and the wind tunnel testing were carried out at a Reynolds number 1.86×105 to ensure that the aerodynamic characteristic can certify that the aircraft will not be face any difficulties in its stability and controllability. Both the experiments and the simulation were carried out at the same Reynolds number in order to verify each other. In the CFD simulation, a commercial CFD code was used to simulate the interference and aerodynamic characteristics of the model. Subsequently, the model together with an external store was tested in a low speed wind tunnel with a test section sized 0.45 m×0.45 m. Measured and computed results for the two-dimensional pressure distribution were satisfactorily comparable. There is only a 19% deviation between pressure distribution measured in wind tunnel testing and the result predicted by the CFD. The result shows that the effect of the external storage is only significant on the lower surface of the wing and almost negligible on the upper surface of the wing. Aerodynamic interference due to the external store was most evident on the lower surface of the wing and almost negligible on the upper surface at a low angle of attack. In addition, the area of influence on the wing surface by the store interference increased as the airspeed increased.

  7. A Linear Analysis of a Blended Wing Body (BWB Aircraft Model

    Directory of Open Access Journals (Sweden)

    Claudia Alice STATE

    2011-09-01

    Full Text Available In this article a linear analysis of a Blended Wing Body (BWB aircraft model is performed. The BWB concept is in the attention of both military and civil sectors for the fact that has reduced radar signature (in the absence of a conventional tail and the possibility to carry more people. The trim values are computed, also the eigenvalues and the Jacobian matrix evaluated into the trim point are analyzed. A linear simulation in the MatLab environment is presented in order to express numerically the symbolic computations presented. The initial system is corrected in the way of increasing the consistency and coherence of the modeled type of motion and, also, suggestions are made for future work.

  8. Numerical Modelling and Damage Assessment of Rotary Wing Aircraft Cabin Door Using Continuum Damage Mechanics Model

    Science.gov (United States)

    Boyina, Gangadhara Rao T.; Rayavarapu, Vijaya Kumar; V. V., Subba Rao

    2017-02-01

    The prediction of ultimate strength remains the main challenge in the simulation of the mechanical response of composite structures. This paper examines continuum damage model to predict the strength and size effects for deformation and failure response of polymer composite laminates when subjected to complex state of stress. The paper also considers how the overall results of the exercise can be applied in design applications. The continuum damage model is described and the resulting prediction of size effects are compared against the standard benchmark solutions. The stress analysis for strength prediction of rotary wing aircraft cabin door is carried out. The goal of this study is to extend the proposed continuum damage model such that it can be accurately predict the failure around stress concentration regions. The finite element-based continuum damage mechanics model can be applied to the structures and components of arbitrary configurations where analytical solutions could not be developed.

  9. Application of modern control design methodology to oblique wing research aircraft

    Science.gov (United States)

    Vincent, James H.

    1991-01-01

    A Linear Quadratic Regulator synthesis technique was used to design an explicit model following control system for the Oblique Wing Research Aircraft (OWRA). The forward path model (Maneuver Command Generator) was designed to incorporate the desired flying qualities and response decoupling. The LQR synthesis was based on the use of generalized controls, and it was structured to provide a proportional/integral error regulator with feedforward compensation. An unexpected consequence of this design approach was the ability to decouple the control synthesis into separate longitudinal and lateral directional designs. Longitudinal and lateral directional control laws were generated for each of the nine design flight conditions, and gain scheduling requirements were addressed. A fully coupled 6 degree of freedom open loop model of the OWRA along with the longitudinal and lateral directional control laws was used to assess the closed loop performance of the design. Evaluations were performed for each of the nine design flight conditions.

  10. Morphing Wing Weight Predictors and Their Application in a Template-Based Morphing Aircraft Sizing Environment II. Part 2; Morphing Aircraft Sizing via Multi-level Optimization

    Science.gov (United States)

    Skillen, Michael D.; Crossley, William A.

    2008-01-01

    This report presents an approach for sizing of a morphing aircraft based upon a multi-level design optimization approach. For this effort, a morphing wing is one whose planform can make significant shape changes in flight - increasing wing area by 50% or more from the lowest possible area, changing sweep 30 or more, and/or increasing aspect ratio by as much as 200% from the lowest possible value. The top-level optimization problem seeks to minimize the gross weight of the aircraft by determining a set of "baseline" variables - these are common aircraft sizing variables, along with a set of "morphing limit" variables - these describe the maximum shape change for a particular morphing strategy. The sub-level optimization problems represent each segment in the morphing aircraft's design mission; here, each sub-level optimizer minimizes fuel consumed during each mission segment by changing the wing planform within the bounds set by the baseline and morphing limit variables from the top-level problem.

  11. Simulation Modeling Requirements for Loss-of-Control Accident Prevention of Turboprop Transport Aircraft

    Science.gov (United States)

    Crider, Dennis; Foster, John V.

    2012-01-01

    In-flight loss of control remains the leading contributor to aviation accident fatalities, with stall upsets being the leading causal factor. The February 12, 2009. Colgan Air, Inc., Continental Express flight 3407 accident outside Buffalo, New York, brought this issue to the forefront of public consciousness and resulted in recommendations from the National Transportation Safety Board to conduct training that incorporates stalls that are fully developed and develop simulator standards to support such training. In 2010, Congress responded to this accident with Public Law 11-216 (Section 208), which mandates full stall training for Part 121 flight operations. Efforts are currently in progress to develop recommendations on implementation of stall training for airline pilots. The International Committee on Aviation Training in Extended Envelopes (ICATEE) is currently defining simulator fidelity standards that will be necessary for effective stall training. These recommendations will apply to all civil transport aircraft including straight-wing turboprop aircraft. Government-funded research over the previous decade provides a strong foundation for stall/post-stall simulation for swept-wing, conventional tail jets to respond to this mandate, but turboprops present additional and unique modeling challenges. First among these challenges is the effect of power, which can provide enhanced flow attachment behind the propellers. Furthermore, turboprops tend to operate for longer periods in an environment more susceptible to ice. As a result, there have been a significant number of turboprop accidents as a result of the early (lower angle of attack) stalls in icing. The vulnerability of turboprop configurations to icing has led to studies on ice accumulation and the resulting effects on flight behavior. Piloted simulations of these effects have highlighted the important training needs for recognition and mitigation of icing effects, including the reduction of stall margins

  12. CID Aircraft in practice flight above target impact site with wing cutters

    Science.gov (United States)

    1984-01-01

    In this photograph the B-720 is seen making a practice close approach over the prepared impact site. The wing openers, designed to tear open the wings and spill the fuel, are clearly seen on the ground just at the start of the bed of rocks. In a typical aircraft crash, fuel spilled from ruptured fuel tanks forms a fine mist that can be ignited by a number of sources at the crash site. In 1984 the NASA Dryden Flight Research Facility (after 1994 a full-fledged Center again) and the Federal Aviation Administration (FAA) teamed-up in a unique flight experiment called the Controlled Impact Demonstration (CID), to test crash a Boeing 720 aircraft using standard fuel with an additive designed to supress fire. The additive, FM-9, a high-molecular-weight long-chain polymer, when blended with Jet-A fuel had demonstrated the capability to inhibit ignition and flame propagation of the released fuel in simulated crash tests. This anti-misting kerosene (AMK) cannot be introduced directly into a gas turbine engine due to several possible problems such as clogging of filters. The AMK must be restored to almost Jet-A before being introduced into the engine for burning. This restoration is called 'degradation' and was accomplished on the B-720 using a device called a 'degrader.' Each of the four Pratt & Whitney JT3C-7 engines had a 'degrader' built and installed by General Electric (GE) to break down and return the AMK to near Jet-A quality. In addition to the AMK research the NASA Langley Research Center was involved in a structural loads measurement experiment, which included having instrumented dummies filling the seats in the passenger compartment. Before the final flight on December 1, 1984, more than four years of effort passed trying to set-up final impact conditions considered survivable by the FAA. During those years while 14 flights with crews were flown the following major efforts were underway: NASA Dryden developed the remote piloting techniques necessary for the B-720

  13. A Psychoacoustic Evaluation of Noise Signatures from Advanced Civil Transport Aircraft

    Science.gov (United States)

    Rizzi, Stephen A.; Christian, Andrew

    2016-01-01

    The NASA Environmentally Responsible Aviation project has been successful in developing and demonstrating technologies for integrated aircraft systems that can simultaneously meet aggressive goals for fuel burn, noise and emissions. Some of the resulting systems substantially differ from the familiar tube and wing designs constituting the current civil transport fleet. This study attempts to explore whether or not the effective perceived noise level metric used in the NASA noise goal accurately reflects human subject response across the range of vehicles considered. Further, it seeks to determine, in a quantitative manner, if the sounds associated with the advanced aircraft are more or less preferable to the reference vehicles beyond any differences revealed by the metric. These explorations are made through psychoacoustic tests in a controlled laboratory environment using simulated stimuli developed from auralizations of selected vehicles based on systems noise assessments.

  14. Database on aircraft accidents

    International Nuclear Information System (INIS)

    Nishio, Masahide; Koriyama, Tamio

    2013-11-01

    The Reactor Safety Subcommittee in the Nuclear Safety and Preservation Committee published 'The criteria on assessment of probability of aircraft crash into light water reactor facilities' as the standard method for evaluating probability of aircraft crash into nuclear reactor facilities in July 2002. In response to this issue, Japan Nuclear Energy Safety Organization has been collecting open information on aircraft accidents of commercial airplanes, self-defense force (SDF) airplanes and US force airplanes every year since 2003, sorting out them and developing the database of aircraft accidents for the latest 20 years to evaluate probability of aircraft crash into nuclear reactor facilities. In this report the database was revised by adding aircraft accidents in 2011 to the existing database and deleting aircraft accidents in 1991 from it, resulting in development of the revised 2012 database for the latest 20 years from 1992 to 2011. Furthermore, the flight information on commercial aircrafts was also collected to develop the flight database for the latest 20 years from 1992 to 2011 to evaluate probability of aircraft crash into reactor facilities. The method for developing the database of aircraft accidents to evaluate probability of aircraft crash into reactor facilities is based on the report 'The criteria on assessment of probability of aircraft crash into light water reactor facilities' described above. The 2012 revised database for the latest 20 years from 1992 to 2011 shows the followings. The trend of the 2012 database changes little as compared to the last year's report. (1) The data of commercial aircraft accidents is based on 'Aircraft accident investigation reports of Japan transport safety board' of Ministry of Land, Infrastructure, Transport and Tourism. The number of commercial aircraft accidents is 4 for large fixed-wing aircraft, 58 for small fixed-wing aircraft, 5 for large bladed aircraft and 99 for small bladed aircraft. The relevant accidents

  15. A Mission-Adaptive Variable Camber Flap Control System to Optimize High Lift and Cruise Lift-to-Drag Ratios of Future N+3 Transport Aircraft

    Science.gov (United States)

    Urnes, James, Sr.; Nguyen, Nhan; Ippolito, Corey; Totah, Joseph; Trinh, Khanh; Ting, Eric

    2013-01-01

    Boeing and NASA are conducting a joint study program to design a wing flap system that will provide mission-adaptive lift and drag performance for future transport aircraft having light-weight, flexible wings. This Variable Camber Continuous Trailing Edge Flap (VCCTEF) system offers a lighter-weight lift control system having two performance objectives: (1) an efficient high lift capability for take-off and landing, and (2) reduction in cruise drag through control of the twist shape of the flexible wing. This control system during cruise will command varying flap settings along the span of the wing in order to establish an optimum wing twist for the current gross weight and cruise flight condition, and continue to change the wing twist as the aircraft changes gross weight and cruise conditions for each mission segment. Design weight of the flap control system is being minimized through use of light-weight shape memory alloy (SMA) actuation augmented with electric actuators. The VCCTEF program is developing better lift and drag performance of flexible wing transports with the further benefits of lighter-weight actuation and less drag using the variable camber shape of the flap.

  16. Database on aircraft accidents

    International Nuclear Information System (INIS)

    Nishio, Masahide; Koriyama, Tamio

    2012-09-01

    The Reactor Safety Subcommittee in the Nuclear Safety and Preservation Committee published the report 'The criteria on assessment of probability of aircraft crash into light water reactor facilities' as the standard method for evaluating probability of aircraft crash into nuclear reactor facilities in July 2002. In response to the report, Japan Nuclear Energy Safety Organization has been collecting open information on aircraft accidents of commercial airplanes, self-defense force (SDF) airplanes and US force airplanes every year since 2003, sorting out them and developing the database of aircraft accidents for latest 20 years to evaluate probability of aircraft crash into nuclear reactor facilities. This year, the database was revised by adding aircraft accidents in 2010 to the existing database and deleting aircraft accidents in 1991 from it, resulting in development of the revised 2011 database for latest 20 years from 1991 to 2010. Furthermore, the flight information on commercial aircrafts was also collected to develop the flight database for latest 20 years from 1991 to 2010 to evaluate probability of aircraft crash into reactor facilities. The method for developing the database of aircraft accidents to evaluate probability of aircraft crash into reactor facilities is based on the report 'The criteria on assessment of probability of aircraft crash into light water reactor facilities' described above. The 2011 revised database for latest 20 years from 1991 to 2010 shows the followings. The trend of the 2011 database changes little as compared to the last year's one. (1) The data of commercial aircraft accidents is based on 'Aircraft accident investigation reports of Japan transport safety board' of Ministry of Land, Infrastructure, Transport and Tourism. 4 large fixed-wing aircraft accidents, 58 small fixed-wing aircraft accidents, 5 large bladed aircraft accidents and 114 small bladed aircraft accidents occurred. The relevant accidents for evaluating

  17. NASA Langley Distributed Propulsion VTOL Tilt-Wing Aircraft Testing, Modeling, Simulation, Control, and Flight Test Development

    Science.gov (United States)

    Rothhaar, Paul M.; Murphy, Patrick C.; Bacon, Barton J.; Gregory, Irene M.; Grauer, Jared A.; Busan, Ronald C.; Croom, Mark A.

    2014-01-01

    Control of complex Vertical Take-Off and Landing (VTOL) aircraft traversing from hovering to wing born flight mode and back poses notoriously difficult modeling, simulation, control, and flight-testing challenges. This paper provides an overview of the techniques and advances required to develop the GL-10 tilt-wing, tilt-tail, long endurance, VTOL aircraft control system. The GL-10 prototype's unusual and complex configuration requires application of state-of-the-art techniques and some significant advances in wind tunnel infrastructure automation, efficient Design Of Experiments (DOE) tunnel test techniques, modeling, multi-body equations of motion, multi-body actuator models, simulation, control algorithm design, and flight test avionics, testing, and analysis. The following compendium surveys key disciplines required to develop an effective control system for this challenging vehicle in this on-going effort.

  18. Technologies and Concepts for Reducing the Fuel Burn of Subsonic Transport Aircraft

    Science.gov (United States)

    Nickol, Craig L.

    2012-01-01

    There are many technologies under development that have the potential to enable large fuel burn reductions in the 2025 timeframe for subsonic transport aircraft relative to the current fleet. This paper identifies a potential technology suite and analyzes the fuel burn reduction potential of these technologies when integrated into advanced subsonic transport concepts. Advanced tube-and-wing concepts are developed in the single aisle and large twin aisle class, and a hybrid-wing-body concept is developed for the large twin aisle class. The resulting fuel burn reductions for the advanced tube-and-wing concepts range from a 42% reduction relative to the 777-200 to a 44% reduction relative to the 737-800. In addition, the hybrid-wingbody design resulted in a 47% fuel burn reduction relative to the 777-200. Of course, to achieve these fuel burn reduction levels, a significant amount of technology and concept maturation is required between now and 2025. A methodology for capturing and tracking concept maturity is also developed and presented in this paper.

  19. Shielding of Turbomachinery Broadband Noise from a Hybrid Wing Body Aircraft Configuration

    Science.gov (United States)

    Hutcheson, Florence V.; Brooks, Thomas F.; Burley, Casey L.; Bahr, Christopher J.; Stead, Daniel J.; Pope, D. Stuart

    2014-01-01

    The results of an experimental study on the effects of engine placement and vertical tail configuration on shielding of exhaust broadband noise radiation are presented. This study is part of the high fidelity aeroacoustic test of a 5.8% scale Hybrid Wing Body (HWB) aircraft configuration performed in the 14- by 22-Foot Subsonic Tunnel at NASA Langley Research Center. Broadband Engine Noise Simulators (BENS) were used to determine insertion loss due to shielding by the HWB airframe of the broadband component of turbomachinery noise for different airframe configurations and flight conditions. Acoustics data were obtained from flyover and sideline microphones traversed to predefined streamwise stations. Noise measurements performed for different engine locations clearly show the noise benefit associated with positioning the engine nacelles further upstream on the HWB centerbody. Positioning the engine exhaust 2.5 nozzle diameters upstream (compared to 0.5 nozzle diameters downstream) of the HWB trailing edge was found of particular benefit in this study. Analysis of the shielding performance obtained with and without tunnel flow show that the effectiveness of the fuselage shielding of the exhaust noise, although still significant, is greatly reduced by the presence of the free stream flow compared to static conditions. This loss of shielding is due to the turbulence in the model near-wake/boundary layer flow. A comparison of shielding obtained with alternate vertical tail configurations shows limited differences in level; nevertheless, overall trends regarding the effect of cant angle and vertical location are revealed. Finally, it is shown that the vertical tails provide a clear shielding benefit towards the sideline while causing a slight increase in noise below the aircraft.

  20. Creep-age forming of AA7475 aluminum panels for aircraft lower wing skin application

    Directory of Open Access Journals (Sweden)

    Diego José Inforzato

    2012-08-01

    Full Text Available Creep-age forming (CAF is an interesting process for the airframe industry, as it is able to form or shape panels into smooth, but complex, curvatures. In the CAF process, the ageing cycle of the alloy is used to relax external loads imposed to the part, through creep mechanisms. Those relaxed stresses impose a new curvature to the part. At the end of the process, significant spring back (sometimes about 70% is observed and the success in achieving the desired form depends on how the spring back can be predicted in order to compensate it by tooling changes. Most of the applications relate to simple (non stiffened panels. The present work deals with the CAF of aluminum panels for aircraft wing skin application. CAF was performed using vacuum-bagging autoclave technique in small scale complex shape stiffened panels, machined from an AA7475 alloy plate. An analytical reference model from the literature was employed estimate the spring back effect in such panel geometry. This model that deals with simple plates was adapted to stiffened panels using a geometric simplification, resulting in a semi-empirical model. The results demonstrate that CAF is a promising process to form stiffened panels, and the spring back can be roughly estimated through a simple model and few experiments.

  1. Improved Reliability-Based Optimization with Support Vector Machines and Its Application in Aircraft Wing Design

    Directory of Open Access Journals (Sweden)

    Yu Wang

    2015-01-01

    Full Text Available A new reliability-based design optimization (RBDO method based on support vector machines (SVM and the Most Probable Point (MPP is proposed in this work. SVM is used to create a surrogate model of the limit-state function at the MPP with the gradient information in the reliability analysis. This guarantees that the surrogate model not only passes through the MPP but also is tangent to the limit-state function at the MPP. Then, importance sampling (IS is used to calculate the probability of failure based on the surrogate model. This treatment significantly improves the accuracy of reliability analysis. For RBDO, the Sequential Optimization and Reliability Assessment (SORA is employed as well, which decouples deterministic optimization from the reliability analysis. The improved SVM-based reliability analysis is used to amend the error from linear approximation for limit-state function in SORA. A mathematical example and a simplified aircraft wing design demonstrate that the improved SVM-based reliability analysis is more accurate than FORM and needs less training points than the Monte Carlo simulation and that the proposed optimization strategy is efficient.

  2. Using Fly-By-Wire Technology in Future Models of the UH-60 and Other Rotary Wing Aircraft

    Science.gov (United States)

    Solem, Courtney K.

    2011-01-01

    Several fixed-winged airplanes have successfully used fly-by-wire (FBW) technology for the last 40 years. This technology is now beginning to be incorporated into rotary wing aircraft. By using FBW technology, manufacturers are expecting to improve upon the weight, maintenance time and costs, handling and reliability of the aircraft. Before mass production of this new system begins in new models such as the UH-60MU, testing must be conducted to insure the safety of this technology as well as to reassure others it will be worth the time and money to make such a dramatic change to a perfectly functional machine. The RASCAL JUH-60A has been modified for these purposes. This Black Hawk helicopter has already been equipped with the FBW technology and can be configured as a near perfect representation of the UH-60MU. Because both machines have very similar qualities, the data collected from the RASCAL can be used to make future decisions about the UH-60MU. The U.S. Army AFDD Flight Project Office oversees all the design modifications for every hardware system used in the RASCAL aircraft. This project deals with specific designs and analyses of unique RASCAL aircraft subsystems and their modifications to conduct flight mechanics research.

  3. Applications of advanced transport aircraft in developing countries

    Science.gov (United States)

    Gobetz, F. W.; Assarabowski, R. J.; Leshane, A. A.

    1978-01-01

    Four representative market scenarios were studied to evaluate the relative performance of air-and surface-based transportation systems in meeting the needs of two developing contries, Brazil and Indonesia, which were selected for detailed case studies. The market scenarios were: remote mining, low-density transport, tropical forestry, and large cargo aircraft serving processing centers in resource-rich, remote areas. The long-term potential of various aircraft types, together with fleet requirements and necessary technology advances, is determined for each application.

  4. Natural laminar flow nacelle for transport aircraft

    Science.gov (United States)

    Lamb, Milton; Abeyounis, William K.; Patterson, James C., Jr.; Re, Richard J.

    1986-01-01

    The potential of laminar flow nacelles for reducing installed engine/nacelle drag was studied. The purpose was twofold: to experimentally verify a method for designing laminar flow nacelles and to determine the effect of installation on the extent of laminar flow on the nacelle and on the nacelle pressure distributions. The results of the isolated nacelle tests illustrated that laminar flow could be maintained over the desired length. Installing the nacelles on wing/pylon did not alter the extent of laminar flow occurring on the nacelles. The results illustrated that a significant drag reduction was achieved with this laminar flow design. Further drag reduction could be obtained with proper nacelle location and pylon contouring.

  5. Control Reallocation Strategies for Damage Adaptation in Transport Class Aircraft

    Science.gov (United States)

    Gundy-Burlet, Karen; Krishnakumar, K.; Limes, Greg; Bryant, Don

    2003-01-01

    This paper examines the feasibility, potential benefits and implementation issues associated with retrofitting a neural-adaptive flight control system (NFCS) to existing transport aircraft, including both cable/hydraulic and fly-by-wire configurations. NFCS uses a neural network based direct adaptive control approach for applying alternate sources of control authority in the presence of damage or failures in order to achieve desired flight control performance. Neural networks are used to provide consistent handling qualities across flight conditions, adapt to changes in aircraft dynamics and to make the controller easy to apply when implemented on different aircraft. Full-motion piloted simulation studies were performed on two different transport models: the Boeing 747-400 and the Boeing C-17. Subjects included NASA, Air Force and commercial airline pilots. Results demonstrate the potential for improving handing qualities and significantly increased survivability rates under various simulated failure conditions.

  6. Examination of pulsed eddy current for inspection of second layer aircraft wing lap-joint structures using outlier detection methods

    Energy Technology Data Exchange (ETDEWEB)

    Butt, D.M., E-mail: Dennis.Butt@forces.gc.ca [Royal Military College of Canada, Dept. of Chemistry and Chemical Engineering, Kingston, Ontario (Canada); Underhill, P.R.; Krause, T.W., E-mail: Thomas.Krause@rmc.ca [Royal Military College of Canada, Dept. of Physics, Kingston, Ontario (Canada)

    2016-09-15

    Ageing aircraft are susceptible to fatigue cracks at bolt hole locations in multi-layer aluminum wing lap-joints due to cyclic loading conditions experienced during typical aircraft operation, Current inspection techniques require removal of fasteners to permit inspection of the second layer from within the bolt hole. Inspection from the top layer without fastener removal is desirable in order to minimize aircraft downtime while reducing the risk of collateral damage. The ability to detect second layer cracks without fastener removal has been demonstrated using a pulsed eddy current (PEC) technique. The technique utilizes a breakdown of the measured signal response into its principal components, each of which is multiplied by a representative factor known as a score. The reduced data set of scores, which represent the measured signal, are examined for outliers using cluster analysis methods in order to detect the presence of defects. However, the cluster analysis methodology is limited by the fact that a number of representative signals, obtained from fasteners where defects are not present, are required in order to perform classification of the data. Alternatively, blind outlier detection can be achieved without having to obtain representative defect-free signals, by using a modified smallest half-volume (MSHV) approach. Results obtained using this approach suggest that self-calibrating blind detection of cyclic fatigue cracks in second layer wing structures in the presence of ferrous fasteners is possible without prior knowledge of the sample under test and without the use of costly calibration standards. (author)

  7. Examination of pulsed eddy current for inspection of second layer aircraft wing lap-joint structures using outlier detection methods

    International Nuclear Information System (INIS)

    Butt, D.M.; Underhill, P.R.; Krause, T.W.

    2016-01-01

    Ageing aircraft are susceptible to fatigue cracks at bolt hole locations in multi-layer aluminum wing lap-joints due to cyclic loading conditions experienced during typical aircraft operation, Current inspection techniques require removal of fasteners to permit inspection of the second layer from within the bolt hole. Inspection from the top layer without fastener removal is desirable in order to minimize aircraft downtime while reducing the risk of collateral damage. The ability to detect second layer cracks without fastener removal has been demonstrated using a pulsed eddy current (PEC) technique. The technique utilizes a breakdown of the measured signal response into its principal components, each of which is multiplied by a representative factor known as a score. The reduced data set of scores, which represent the measured signal, are examined for outliers using cluster analysis methods in order to detect the presence of defects. However, the cluster analysis methodology is limited by the fact that a number of representative signals, obtained from fasteners where defects are not present, are required in order to perform classification of the data. Alternatively, blind outlier detection can be achieved without having to obtain representative defect-free signals, by using a modified smallest half-volume (MSHV) approach. Results obtained using this approach suggest that self-calibrating blind detection of cyclic fatigue cracks in second layer wing structures in the presence of ferrous fasteners is possible without prior knowledge of the sample under test and without the use of costly calibration standards. (author)

  8. Structural Health Monitoring of Transport Aircraft with Fuzzy Logic Modeling

    Directory of Open Access Journals (Sweden)

    Ray C. Chang

    2013-01-01

    Full Text Available A structural health monitoring method based on the concept of static aeroelasticity is presented in this paper. This paper focuses on the estimation of these aeroelastic effects on older transport aircraft, in particular the structural components that are most affected, in severe atmospheric turbulence. Because the structural flexibility properties are mostly unknown to aircraft operators, only the trend, not the magnitude, of these effects is estimated. For this purpose, one useful concept in static aeroelastic effects for conventional aircraft structures is that under aeroelastic deformation the aerodynamic center should move aft. This concept is applied in the present paper by using the fuzzy-logic aerodynamic models. A twin-jet transport aircraft in severe atmospheric turbulence involving plunging motion is examined. It is found that the pitching moment derivatives in cruise with moderate to severe turbulence in transonic flight indicate some degree of abnormality in the stabilizer (i.e., the horizontal tail. Therefore, the horizontal tail is the most severely affected structural component of the aircraft probably caused by vibration under the dynamic loads induced by turbulence.

  9. A Tribute to Professor Rene H. Miller - A Pioneer in Aeromechanics and Rotary Wing Flight Transportation

    Science.gov (United States)

    Friedmann, Peretz P.; Johnson, Wayne; Scully, Michael P.

    2011-01-01

    Rene H. Miller (May 19, 1916 January 28, 2003), Emeritus H. N. Slater Professor of Flight Transportation, was one of the most influential pioneers in rotary wing aeromechanics as well as a visionary whose dream was the development of a tilt-rotor based short haul air transportation system. This paper pays a long overdue tribute to his memory and to his extraordinary contributions.

  10. AVION: A detailed report on the preliminary design of a 79-passenger, high-efficiency, commercial transport aircraft

    Science.gov (United States)

    Mayfield, William; Perkins, Brett; Rogan, William; Schuessler, Randall; Stockert, Joe

    1990-01-01

    The Avion is the result of an investigation into the preliminary design for a high-efficiency commercial transport aircraft. The Avion is designed to carry 79 passengers and a crew of five through a range of 1,500 nm at 455 kts (M=0.78 at 32,000 ft). It has a gross take-off weight of 77,000 lb and an empty weight of 42,400 lb. Currently there are no American-built aircraft designed to fit the 60 to 90 passenger, short/medium range marketplace. The Avion gathers the premier engineering achievements of flight technology and integrates them into an aircraft which will challenge the current standards of flight efficiency, reliability, and performance. The Avion will increase flight efficiency through reduction of structural weight and the improvement of aerodynamic characteristics and propulsion systems. Its design departs from conventional aircraft design tradition with the incorporation of a three-lifting-surface (or tri-wing) configuration. Further aerodynamic improvements are obtained through modest main wing forward sweeping, variable incidence canards, aerodynamic coupling between the canard and main wing, leading edge extensions, winglets, an aerodynamic tailcone, and a T-tail empennage. The Avion is propelled by propfans, which are one of the most promising developments for raising propulsive efficiencies at high subsonic Mach numbers. Special attention is placed on overall configuration, fuselage layout, performance estimations, component weight estimations, and planform design. Leading U.S. technology promises highly efficient flight for the 21st century; the Avion will fulfill this promise to passenger transport aviation.

  11. Effect of canard location and size on canard-wing interference and aerodynamic center shift related to maneuvering aircraft at transonic speeds

    Science.gov (United States)

    Gloss, B. B.

    1974-01-01

    A generalized wind-tunnel model, typical of highly maneuverable aircraft, was tested in the Langley 8-foot transonic pressure tunnel at Mach numbers from 0.70 to 1.20 to determine the effects of canard location and size on canard-wing interference effects and aerodynamic center shift at transonic speeds. The canards had exposed areas of 16.0 and 28.0 percent of the wing reference area and were located in the chord plane of the wing or in a position 18.5 percent of the wing mean geometric chord above or below the wing chord plane. Two different wing planforms were tested, one with leading-edge sweep of 60 deg and the other 44 deg; both wings had the same reference area and span. The results indicated that the largest benefits in lift and drag were obtained with the canard above the wing chord plane for both wings tested. The low canard configuration for the 60 deg swept wing proved to be more stable and produced a more linear pitching-moment curve than the high and coplanar canard configurations for the subsonic test Mach numbers.

  12. Optimization of geometrical parameters aerodynamic design aircraft articulated tandem with wings

    Directory of Open Access Journals (Sweden)

    О.В. Кузьменко

    2006-01-01

    Full Text Available  The features of a task of optimization of the plane with unmanned completely wing are considered the existing approaches the block diagram of mathematical model of the plane with unmanned completely wing is given in the decision of similar tasks.

  13. 78 FR 73997 - Airworthiness Directives; Various Aircraft Equipped with Wing Lift Struts

    Science.gov (United States)

    2013-12-10

    ... to promote drilling holes into or otherwise unsealing a sealed strut. This AD retains all the actions... numbers) that were manufactured with rolled threads. Wing lift strut forks manufactured with machine (cut... Requirements for Ultrasonic Inspection of Piper Wing Lift Struts Equipment Requirements 1. A portable...

  14. Close-up of Wing Fit Check of Pylon to Carry the X-38 on B-52 Launch Aircraft

    Science.gov (United States)

    1997-01-01

    Andy Blua and Jeff Doughty of Dryden's Experimental Fabrication Shop, along with B-52 Crew Chief Dan Bains and assistant Mark Thompson, all eye the new X-38 pylon during a fit-check on NASA's B-52 at the Dryden Flight Research Center, Edwards, California. The fit-check was the first time the 1,200-pound steel pylon, which was fabricated at Dryden, was mated to the B-52. The pylon served as an 'adapter' that allowed the X-38 to be attached to the B-52's wing. Earlier flight research vehicles had used the X-15 pylon for attachment to and launch from the B-52. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the Hi

  15. Biomimetic FAA-certifiable, artificial muscle structures for commercial aircraft wings

    International Nuclear Information System (INIS)

    Barrett, Ronald M; Barrett, Cassandra M

    2014-01-01

    This paper is centered on a new form of adaptive material which functions much in the same way as skeletal muscle tissue, is structurally modeled on plant actuator cells and capable of rapidly expanding or shrinking by as much as an order of magnitude in prescribed directions. Rapid changes of plant cell shape and sizes are often initiated via ion-transport driven fluid migration and resulting turgor pressure variation. Certain plant cellular structures like those in Mimosa pudica (sensitive plant), Albizia julibrissin (Mimosa tree), or Dionaea muscipula (Venus Flytrap) all exhibit actuation physiology which employs such turgor pressure manipulation. The paper begins with dynamic micrographs of a sectioned basal articulation joint from A. julibrissin. These figures show large cellular dimensional changes as the structure undergoes foliage articulation. By mimicking such structures in aircraft flight control mechanisms, extremely lightweight pneumatic control surface actuators can be designed. This paper shows several fundamental layouts of such surfaces with actuator elements made exclusively from FAA-certifiable materials, summarizes their structural mechanics and shows actuator power and energy densities that are higher than nearly all classes of conventional adaptive materials available today. A sample flap structure is shown to possess the ability to change its shape and structural stiffness as its cell pressures are manipulated, which in turn changes the surface lift-curve slope when exposed to airflows. Because the structural stiffness can be altered, it is also shown that the commanded section lift-curve slope can be similarly controlled between 1.2 and 6.2 rad −1 . Several aircraft weight reduction principles are also shown to come into play as the need to concentrate loads to pass through point actuators is eliminated. The paper concludes with a summary of interrelated performance and airframe-level improvements including enhanced gust rejection, load

  16. Biomimetic FAA-certifiable, artificial muscle structures for commercial aircraft wings

    Science.gov (United States)

    Barrett, Ronald M.; Barrett, Cassandra M.

    2014-07-01

    This paper is centered on a new form of adaptive material which functions much in the same way as skeletal muscle tissue, is structurally modeled on plant actuator cells and capable of rapidly expanding or shrinking by as much as an order of magnitude in prescribed directions. Rapid changes of plant cell shape and sizes are often initiated via ion-transport driven fluid migration and resulting turgor pressure variation. Certain plant cellular structures like those in Mimosa pudica (sensitive plant), Albizia julibrissin (Mimosa tree), or Dionaea muscipula (Venus Flytrap) all exhibit actuation physiology which employs such turgor pressure manipulation. The paper begins with dynamic micrographs of a sectioned basal articulation joint from A. julibrissin. These figures show large cellular dimensional changes as the structure undergoes foliage articulation. By mimicking such structures in aircraft flight control mechanisms, extremely lightweight pneumatic control surface actuators can be designed. This paper shows several fundamental layouts of such surfaces with actuator elements made exclusively from FAA-certifiable materials, summarizes their structural mechanics and shows actuator power and energy densities that are higher than nearly all classes of conventional adaptive materials available today. A sample flap structure is shown to possess the ability to change its shape and structural stiffness as its cell pressures are manipulated, which in turn changes the surface lift-curve slope when exposed to airflows. Because the structural stiffness can be altered, it is also shown that the commanded section lift-curve slope can be similarly controlled between 1.2 and 6.2 rad-1. Several aircraft weight reduction principles are also shown to come into play as the need to concentrate loads to pass through point actuators is eliminated. The paper concludes with a summary of interrelated performance and airframe-level improvements including enhanced gust rejection, load

  17. Integration effects of pylon geometry on a high-wing transport airplane

    Science.gov (United States)

    Carlson, John R.; Lamb, Milton

    1989-01-01

    An investigation was conducted in the Langley 16-Foot Transonic Tunnel to determine the installation effects of a series of pylons that had differing cross-sectional shapes on the pressure distributions and aerodynamic characteristics of a 1/24-scale high wing transport. The tests were conducted at Mach numbers at 0.70 and 0.80 at angles of attack from -3 degrees to 4 degrees with the pylons tested at various toe angles between 5 degrees inboard and 5 degrees outboard. Results of this study indicate that the installed drag was lowest for the pylons with a compression pylon type design which kept the flow under the wing in the pylon/wing junction comparable to the clean wing velocities.

  18. Vorticity Transport on a Flexible Wing in Stall Flutter

    Science.gov (United States)

    Akkala, James; Buchholz, James; Farnsworth, John; McLaughlin, Thomas

    2014-11-01

    The circulation budget within dynamic stall vortices was investigated on a flexible NACA 0018 wing model of aspect ratio 6 undergoing stall flutter. The wing had an initial angle of attack of 6 degrees, Reynolds number of 1 . 5 ×105 and large-amplitude, primarily torsional, limit cycle oscillations were observed at a reduced frequency of k = πfc / U = 0 . 1 . Phase-locked stereo PIV measurements were obtained at multiple chordwise planes around the 62.5% and 75% spanwise locations to characterize the flow field within thin volumetric regions over the suction surface. Transient surface pressure measurements were used to estimate boundary vorticity flux. Recent analyses on plunging and rotating wings indicates that the magnitude of the pressure-gradient-driven boundary flux of secondary vorticity is a significant fraction of the magnitude of the convective flux from the separated leading-edge shear layer, suggesting that the secondary vorticity plays a significant role in regulating the strength of the primary vortex. This phenomenon is examined in the present case, and the physical mechanisms governing the growth and evolution of the dynamic stall vortices are explored. This work was supported by the Air Force Office of Scientific Research through the Flow Interactions and Control Program monitored by Dr. Douglas Smith, and through the 2014 AFOSR/ASEE Summer Faculty Fellowship Program (JA and JB).

  19. Vibration monitoring for aircraft wing model using fiber Bragg grating array packaged by vacuum-assisted resin transfer molding

    Science.gov (United States)

    Zhang, Wen; Liu, Xiaolong; He, Wei; Dong, Mingli; Zhu, Lianqing

    2017-09-01

    For the improvement of monitoring accuracy, a vibration monitoring for aircraft wing model using a fiber Bragg grating (FBG) array packaged by vacuum-assisted resin transfer molding (VARTM) is proposed. The working principle of the vibration monitoring using FBG array has been explained, which can theoretically support the idea of this paper. VARTM has been explained in detail, which is suitable for not only the single FBG sensor but also the FBG array within a relatively large area. The calibration experiment has been performed using the FBG sensor packaged by VARTM. The strain sensitivity of the VARTM package is 1.35 pm/μɛ and the linearity is 0.9999. The vibration monitoring experiment has been carried out using FBG array packaged by VARTM. The measured rate of strain changes across the aluminum test board used to simulate the aircraft wing is 0.69 μɛ/mm and the linearity is 0.9931. The damping ratio is 0.16, which could be further used for system performance evaluation. Experimental results demonstrate that the vibration monitoring using FBG sensors packaged by VARTM can be efficiently used for the structural health monitoring. Given the validation and great performance, this method is quite promising for in-flight monitoring and holds great reference value in other similar engineering structures.

  20. Design and analysis pertaining to the aerodynamic and stability characteristics of a hybrid wing-body cargo aircraft

    Directory of Open Access Journals (Sweden)

    Ishaan PRAKASH

    2017-09-01

    Full Text Available Recent trends in aircraft design research have resulted in development of many unconventional configurations mostly aimed at improving aerodynamic efficiency. The blended wing body (BWB is one such configuration that holds potential in this regard. In its current form the BWB although promises a better lift to drag (L/D ratio it is still not able to function to its maximum capability due to design modifications such as twist and reflexed airfoils to overcome stability problems in the absence of a tail. This work aims to maximize the impact of a BWB. A design approach of morphing the BWB with a conventional aft fuselage is proposed. Such a configuration intends to impart full freedom to the main wing and the blended forward fuselage to contribute in lift production while the conventional tail makes up for stability. The aft fuselage, meanwhile, also ensures that the aircraft is compatible with current loading and airdrop operations. This paper is the culmination of obtained models results and inferences from the first phase of the project wherein development of aerodynamic design and analysis methodologies and mission specific optimization have been undertaken.

  1. Investigation on aerodynamic characteristics of baseline-II E-2 blended wing-body aircraft with canard via computational simulation

    Science.gov (United States)

    Nasir, Rizal E. M.; Ali, Zurriati; Kuntjoro, Wahyu; Wisnoe, Wirachman

    2012-06-01

    Previous wind tunnel test has proven the improved aerodynamic charasteristics of Baseline-II E-2 Blended Wing-Body (BWB) aircraft studied in Universiti Teknologi Mara. The E-2 is a version of Baseline-II BWB with modified outer wing and larger canard, solely-designed to gain favourable longitudinal static stability during flight. This paper highlights some results from current investigation on the said aircraft via computational fluid dynamics simulation as a mean to validate the wind tunnel test results. The simulation is conducted based on standard one-equation turbulence, Spalart-Allmaras model with polyhedral mesh. The ambience of the flight simulation is made based on similar ambience of wind tunnel test. The simulation shows lift, drag and moment results to be near the values found in wind tunnel test but only within angles of attack where the lift change is linear. Beyond the linear region, clear differences between computational simulation and wind tunnel test results are observed. It is recommended that different type of mathematical model be used to simulate flight conditions beyond linear lift region.

  2. 14 CFR 23.302 - Canard or tandem wing configurations.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Canard or tandem wing configurations. 23.302 Section 23.302 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Structure General § 23.302 Canard or tandem wing...

  3. The Application of Pareto Frontier Methods in the Multidisciplinary Wing Design of a Generic Modern Military Delta Aircraft

    Science.gov (United States)

    2000-06-01

    acdem range o nesearig rate (STR), of the aircraft. These conflicting performance establishments, and covered a wide range of engineering requirements...December 1998 12 Knill, D.L. et al; Response surface models combining linear and Euler aerodynamics for supersonic transport design. Journal of

  4. [Cardiovascular disease and aircraft transportation: specificities and issues].

    Science.gov (United States)

    Touze, Jean-Étienne; Métais, Patrick; Zawieja, Philippe

    2012-02-01

    With the development of air transport and travel to distant destinations, the number of passengers and elderly passengers on board increases each year. In this population, cardiovascular events are a major concern. Among medical incidents occurring in-flight they are second-ranked (10%) behind gastrointestinal disorders (25%). Their occurrence may involve life-threatening events and require resuscitation, difficult to perform during flight or in a precarious health environment. Coronary heart disease and pulmonary thromboembolic disease are the most serious manifestations. They are the leading cause of hospitalization in a foreign country and sudden cardiac death occurring during or subsequent to the flight. Their occurrence is explained on aircraft by hypoxia, hypobaria and decreased humidity caused by cabin pressurization and upon arrival by a different environmental context (extreme climates, tropical diseases). Moreover, the occurrence of a cardiovascular event during flight can represent for the air carrier a major economic and logistic problem when diversion occurred. Furthermore, the liability of the practitioner passenger could be involved according to airlines or to the country in which the aircraft is registered. In this context, cardiovascular events during aircraft transportation can be easily prevented by identifying high risk patients, respect of cardiovascular indications to travel, the implementation of simple preventive measures and optimization of medical equipment in commercial flights. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  5. Analysis of Small Aircraft as a Transportation System

    Science.gov (United States)

    Dollyhigh, Samuel M.; Yackovetsky, Robert E. (Technical Monitor)

    2002-01-01

    An analysis was conducted to examine the market viability of small aircraft as a transportation mode in competition with automobile and scheduled commercial air travel by estimating the pool of users that would potentially switch to on-demand air travel due to cost/time savings. The basis for the analysis model was the Integrated Air Transportation System Evaluation Tool (IATSET) which was developed under contract to NASA by the Logistics Management Institute. IATSET is a macroeconomic model that predicts at a National level the mode choice between automobile, scheduled air, and on-demand air travel based on the value of a travelers time and monetary cost of the trip. A number of modifications are detailed to the original IATSET to better model the changing small aircraft environment. The potential trip market was modeled for the Eclipse 500 operated as a corporate jet and as an air taxi for the business travel market. The Cirrus 20R and a $80K single engine piston aircraft (based on automobile manufacturing technology) are evaluated in the pleasure and personal business travel market.

  6. Modelling Combined Heat Exchange in the Leading Edge of Perspective Aircraft Wing

    Directory of Open Access Journals (Sweden)

    Kandinsky Roman O.

    2015-01-01

    Full Text Available In this paper gas dynamic numerical modelling of leading edge flow is presented and thermal loading parameters are determined. Numerical modelling of combined radiative and conductive heat transfer of the wing edge is carried out, thermal state of structure is given and the results are analyzed.

  7. Interactive aircraft flight control and aeroelastic stabilization. [forward swept wing flight vehicles

    Science.gov (United States)

    Weisshaar, T. A.; Schmidt, D. K.

    1981-01-01

    Several examples are presented in which flutter involving interaction between flight mechanics modes and elastic wind bending occurs for a forward swept wing flight vehicle. These results show the basic mechanism by which the instability occurs and form the basis for attempts to actively control such a vehicle.

  8. Accident Rates in Glass Cockpit Model U.S. Army Rotary-Wing Aircraft

    National Research Council Canada - National Science Library

    Rash, Clarence E

    2001-01-01

    ...). These MFD-based crewstations are known as "glass cockpits". In addition, the U.S. Army fields two aircraft models using a hybrid design which has a mix of dedicated instruments and MFDs. The U.S...

  9. Flight service evaluation of Kevlar-49/epoxy composite panels in wide-bodied commercial transport aircraft

    Science.gov (United States)

    Stone, R. H.

    1977-01-01

    Kevlar-49 fairing panels, installed as flight service components on three L-1011s, were inspected after three years' service, and found to be performing satisfactorily. There are six Kevlar-49 panels on each aircraft, including sandwich and solid laminate wing-body panels, and 150 C service aft engine fairings. The service history to date indicates that Kevlar-49 epoxy composite materials have satisfactory service characteristics for use in aircraft secondary structure.

  10. Advanced technologies applied to reduce the operating costs of small commuter transport aircraft

    Science.gov (United States)

    Masefield, O.; Turi, A.; Reinicke, M.

    1982-01-01

    The application of new aerodynamic, structural, and propulsion technologies to a specified baseline commuter aircraft is studied. The assessment models can be used on a desktop calculator and include a sizing program, operating cost program, and passenger ride qualities model. Evaluation is done with a step-by-step approach and is applied to range, number and type of engines, structure, wing selection, and configuration. A 40 percent direct operating cost saving is anticipated compared to current well established commuter aircraft.

  11. Fixed-wing Aircraft Combat Survivability Analysis for Operation Enduring Freedom and Operation Iraqi Freedom

    Science.gov (United States)

    2011-03-01

    battle damage reports and provides quantifiable mission impacts. The third database used to crosscheck trends from the rotorcraft study is the Combat...bullet hole…” from entries that were more ambiguous. Once separated, the author crosschecked the aircraft from the REMIS report identified to have... reported damage incidents were then validated by crosschecking aircraft maintenance records from this period to eliminate non-hostile fire data points

  12. Conceptual study of advanced VTOL transport aircraft engine

    OpenAIRE

    Saito, Yoshio; Endo, Masanori; Matsuda, Yukio; Sugiyama, Nanahisa; Watanabe, Minoru; Sugahara, Noboru; Yamamoto, Kazuomi; 齊藤 喜夫; 遠藤 征紀; 松田 幸雄; 杉山 七契; 渡辺 実; 菅原 昇; 山本 一臣

    1996-01-01

    A new concept for a quiet engine for high subsonic VTOL transport aircraft is studied and presented. The concept engine, which is called the separated core turbofan engine, is effectively applied. It is composed of three core engines, two cruise fan engines and six lift fan engines. The cruise fan engines are optimized for high subsonic cruise, and the lift fan engines produce about 98 kN (10,000 kgf) of thrust and can realize highly quiet operation. In this study, no technical problems have ...

  13. Advanced composite vertical stabilizer for DC-10 transport aircraft

    Science.gov (United States)

    Stephens, C. O.

    1979-01-01

    Structural design, tooling, fabrication, and test activities are reported for a program to develop an advanced composite vertical stabilizer (CVS) for the DC 10 Commercial Transport Aircraft. Structural design details are described and the status of structural and weight analyses are reported. A structural weight reduction of 21.7% is currently predicted. Test results are discussed for sine wave stiffened shear webs containing representative of the CVS spar webs and for lightning current transfer and tests on a panel representative of the CVS skins.

  14. Environmental Assessment Use of Golden Triangle Regional Airport by 14th Flying Training Wing Aircraft

    Science.gov (United States)

    2004-03-01

    condition, and T -1 and T -3 7 aircraft will not operate during normal nighttime sleep periods . However, those individuals who sleep beh¥een 7:00...a.m. and 10:00 p.m. likely will be affected just as those persons who sleep during nighttime sleep periods . Land Use. Although the noise exposure...current condition, and T-1 and T-37 aircraft will not operate during normal nighttime sleep periods . However, those individuals who sleep between 7

  15. Impact data from a transport aircraft during a controlled impact demonstration

    Science.gov (United States)

    Fasanella, E. L.; Alfaro-Bou, E.; Hayduk, R. J.

    1986-01-01

    On December 1, 1984, the FAA and NASA conducted a remotely piloted air-to-ground crash test of a Boeing 720 transport aircraft instrumented to measure crash loads of the structure and the anthropomorphic dummy passengers. Over 330 time histories of accelerations and loads collected during the Full-Scale Transport Controlled Impact Demonstration (CID) for the 1-sec period after initial impact are presented. Although a symmetric 1 deg. nose-up attitude with a 17 ft/sec sink rate was planned, the plane was yawed and rolled 13 deg. at initial (left-wing) impact. The first fuselage impact occurred near the nose wheel well with the nose pitched down 2.5 deg. Peak normal (vertical) floor accelerations were highest in the cockpit and forward cabin near the nose wheel well and were approximately 14G. The remaining cabin floor received normal acceleration peaks of 7G or less. The peak longitudinal floor accelerations showed a similar distribution, with the highest (7G) in the cockpit and forward cabin, decreasing to 4G or less toward the rear. Peak transverse floor accelerations ranged from about 5G in the cockpit to 1G in the aft fuselage.

  16. Nonlinear dynamics approach of modeling the bifurcation for aircraft wing flutter in transonic speed

    DEFF Research Database (Denmark)

    Matsushita, Hiroshi; Miyata, T.; Christiansen, Lasse Engbo

    2002-01-01

    The procedure of obtaining the two-degrees-of-freedom, finite dimensional. nonlinear mathematical model. which models the nonlinear features of aircraft flutter in transonic speed is reported. The model enables to explain every feature of the transonic flutter data of the wind tunnel tests...

  17. Army Fixed-Wing Ground Attack Aircraft: A Historical Precedent and Contemporary Rationale

    Science.gov (United States)

    2015-06-12

    he worried about his flanks, Patton responded, “The Air Force takes care of my flanks.”64 To support the 3rd Army’s Loire Flank, XIX TAC switched......For this thesis, responsiveness manifests in two ways: forward basing or airspeeds greater than 200 knots . Third, CAS aircraft needed to have enough

  18. A piloted evaluation of an oblique-wing research aircraft motion simulation with decoupling control laws

    Science.gov (United States)

    Kempel, Robert W.; Mcneill, Walter E.; Gilyard, Glenn B.; Maine, Trindel A.

    1988-01-01

    The NASA Ames Research Center developed an oblique-wing research plane from NASA's digital fly-by-wire airplane. Oblique-wing airplanes show large cross-coupling in control and dynamic behavior which is not present on conventional symmetric airplanes and must be compensated for to obtain acceptable handling qualities. The large vertical motion simulator at NASA Ames-Moffett was used in the piloted evaluation of a proposed flight control system designed to provide decoupled handling qualities. Five discrete flight conditions were evaluated ranging from low altitude subsonic Mach numbers to moderate altitude supersonic Mach numbers. The flight control system was effective in generally decoupling the airplane. However, all participating pilots objected to the high levels of lateral acceleration encountered in pitch maneuvers. In addition, the pilots were more critical of left turns (in the direction of the trailing wingtip when skewed) than they were of right turns due to the tendency to be rolled into the left turns and out of the right turns. Asymmetric side force as a function of angle of attack was the primary cause of lateral acceleration in pitch. Along with the lateral acceleration in pitch, variation of rolling and yawing moments as functions of angle of attack caused the tendency to roll into left turns and out of right turns.

  19. Current Procedures for Assessment of Battle-Damage Repair of Fixed-Wing Aircraft

    Science.gov (United States)

    2010-05-01

    internal access. • Ink marker, or “Sharpie” – pencil should NEVER be used on aircraft metals as it promotes corrosion. Sharpie markers, however, do not...vulnerable to overload failure. Camouflage and dark-colored paints do not undergo significant discoloration due to fire or heat exposure and can...assessment & recovery (BDAR)  Component Repair  Aviation Classification Repair Activity Depot (AVCRAD’s)  Depot Level Repair Teams  Back-up

  20. 14 CFR 119.53 - Wet leasing of aircraft and other arrangements for transportation by air.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Wet leasing of aircraft and other arrangements for transportation by air. 119.53 Section 119.53 Aeronautics and Space FEDERAL AVIATION... Chapter § 119.53 Wet leasing of aircraft and other arrangements for transportation by air. (a) Unless...

  1. Subscale Winged Rocket Development and Application to Future Reusable Space Transportation

    Directory of Open Access Journals (Sweden)

    Koichi YONEMOTO

    2018-03-01

    Full Text Available Kyushu Institute of Technology has been studying unmanned suborbital winged rocket called WIRES (WInged REusable Sounding rocket and its research subjects concerning aerodynamics, NGC (Navigation, Guidance and Control, cryogenic composite tanks etc., and conducting flight demonstration of small winged rocket since 2005. WIRES employs the original aerodynamic shape of HIMES (HIghly Maneuverable Experimental Sounding rocket studied by ISAS (Institute of Space and Astronautical Science of JAXA (Japan Aerospace Exploration Agency in 1980s. This paper presents the preliminary design of subscale non-winged and winged rockets called WIRES#013 and WIRES#015, respectively, that are developed in collaboration with JAXA, USC (University of Southern California, UTEP (University of Texas at El Paso and Japanese industries. WIRES#013 is a conventional pre-test rocket propelled by two IPA-LOX (Isopropyl Alcohol and Liquid Oxygen engines under development by USC. It has the total length of 4.6m, and the weight of 1000kg to reach the altitude of about 6km. The flight objective is validation of the telemetry and ground communication system, recovery parachute system, and launch operation of liquid engine. WIRES#015, which has the same length of WIRES#013 and the weight of 1000kg, is a NGC technology demonstrator propelled by a fully expander-cycle LOX-Methane engine designed and developed by JAXA to reach the altitude more than 6km. The flight tests of both WIRES#013 and WIRES#015 will be conducted at the launch facility of FAR (Friends of Amateur Rocketry, Inc., which is located at Mojave Desert of California in United States of America, in May 2018 and March 2019 respectively. After completion of WIRES#015 flight tests, the suborbital demonstrator called WIRES-X will be developed and its first flight test well be performed in 2020. Its application to future fully reusable space transportation systems, such as suborbital space tour vehicles and two

  2. Real-Time Autonomous Obstacle Avoidance for Low-Altitude Fixed-Wing Aircraft

    Science.gov (United States)

    Owlia, Shahboddin

    The GeoSurv II is an Unmanned Aerial Vehicle (UAV) being developed by Carleton University and Sander Geophysics. This thesis is in support of the GeoSurv II project. The objective of the GeoSurv II project is to create a fully autonomous UAV capable of performing geophysical surveys. In order to achieve this level of autonomy, the UAV, which due to the nature of its surveys flies at low altitude, must be able to avoid potential obstacles such as trees, powerlines, telecommunication towers, etc. Developing a method to avoid these obstacles is the objective of this thesis. The literature is rich in methods for trajectory planning and mid-air collision avoidance with other aircraft. In contrast, in this thesis, a method for avoiding static obstacles that are not known a priori is developed. The potential flow theory and panel method are borrowed from fluid mechanics and are employed to generate evasive maneuvers when obstacles are encountered. By means of appropriate modelling of obstacles, the aircraft's constraints are taken into account such that the evasive maneuvers are feasible for the UAV. Moreover, the method is developed with consideration of the limitations of obstacle detection in GeoSurv II. Due to the unavailability of the GeoSurv II aircraft, and the lack of a complete model for GeoSurv II, the method developed is implemented on the non-linear model of the Aerosonde UAV. The Aerosonde model is then subjected to various obstacle scenarios and it is seen that the UAV successfully avoids the obstacles.

  3. Integration effects of pylon geometry and rearward mounted nacelles for a high-wing transport

    Science.gov (United States)

    Carlson, John R.; Lamb, Milton

    1987-01-01

    Results of a wind-tunnel study of the effect of pylon cross-sectional shape and tow angle on airplane drag and an aft-mounted nacelle are presented. The 1/24-scale wide-body high-wing transport model was tested in the Langley 16-Foot Transonic Tunnel at free-stream Mach 0.7-0.8 and angles of attack from -3 to 4 degrees. A compression-type pylon is found to have the lowest drag at both Mach 0.7 and 0.8 and to be capable of suppressing the velocities in the inboard region of the pylon-wing junction, reducing the extent of supersonic flow and the probability of flow separation. It is also shown that the D-shaped aft-mounted nacelle has a low interference drag, as do previously tested circular nacelles in the same position.

  4. Hybrid Axial and Cross-Flow Fan Propulsion for Transonic Blended Wing Body Aircraft, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The challenges of the next century of aviation will require innovative and revolutionary concepts to meet air transportation demands. One NASA vision for future...

  5. Hybrid Axial and Cross-Flow Fan Propulsion for Transonic Blended Wing Body Aircraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The challenges of the next century of aviation will require innovative and revolutionary concepts to meet air transportation demands. One NASA vision for future...

  6. Probability of detection for bolt hole eddy current in extracted from service aircraft wing structures

    Science.gov (United States)

    Underhill, P. R.; Uemura, C.; Krause, T. W.

    2018-04-01

    Fatigue cracks are prone to develop around fasteners found in multi-layer aluminum structures on aging aircraft. Bolt hole eddy current (BHEC) is used for detection of cracks from within bolt holes after fastener removal. In support of qualification towards a target a90/95 (detect 90% of cracks of depth a, 95% of the time) of 0.76 mm (0.030"), a preliminary probability of detection (POD) study was performed to identify those parameters whose variation may keep a bolt hole inspection from attaining its goal. Parameters that were examined included variability in lift-off due to probe type, out-of-round holes, holes with diameters too large to permit surface-contact of the probe and mechanical damage to the holes, including burrs. The study examined the POD for BHEC of corner cracks in unfinished fastener holes extracted from service material. 68 EDM notches were introduced into two specimens of a horizontal stabilizer from a CC-130 Hercules aircraft. The fastener holes were inspected in the unfinished state, simulating potential inspection conditions, by 7 certified inspectors using a manual BHEC setup with an impedance plane display and also with one inspection conducted utilizing a BHEC automated C-Scan apparatus. While the standard detection limit of 1.27 mm (0.050") was achieved, given the a90/95 of 0.97 mm (0.039"), the target 0.76 mm (0.030") was not achieved. The work highlighted a number of areas where there was insufficient information to complete the qualification. Consequently, a number of recommendations were made. These included; development of a specification for minimum probe requirements; criteria for condition of the hole to be inspected, including out-of-roundness and presence of corrosion pits; statement of range of hole sizes; inspection frequency and data display for analysis.

  7. Sensitivity of Mission Energy Consumption to Turboelectric Distributed Propulsion Design Assumptions on the N3-X Hybrid Wing Body Aircraft

    Science.gov (United States)

    Felder, James L.; Tong, Michael T.; Chu, Julio

    2012-01-01

    In a previous study by the authors it was shown that the N3-X, a 300 passenger hybrid wing body (HWB) aircraft with a turboelectric distributed propulsion (TeDP) system, was able to meet the NASA Subsonic Fixed Wing (SFW) project goal for N+3 generation aircraft of at least a 60% reduction in total energy consumption as compared to the best in class current generation aircraft. This previous study combined technology assumptions that represented the highest anticipated values that could be matured to technology readiness level (TRL) 4-6 by 2030. This paper presents the results of a sensitivity analysis of the total mission energy consumption to reductions in each key technology assumption. Of the parameters examined, the mission total energy consumption was most sensitive to changes to total pressure loss in the propulsor inlet. The baseline inlet internal pressure loss is assumed to be an optimistic 0.5%. An inlet pressure loss of 3% increases the total energy consumption 9%. However changes to reduce inlet pressure loss can result in additional distortion to the fan which can reduce fan efficiency or vice versa. It is very important that the inlet and fan be analyzed and optimized as a single unit. The turboshaft hot section is assumed to be made of ceramic matrix composite (CMC) with a 3000 F maximum material temperature. Reducing the maximum material temperature to 2700 F increases the mission energy consumption by only 1.5%. Thus achieving a 3000 F temperature in CMCs is important but not central to achieving the energy consumption objective of the N3-X/TeDP. A key parameter in the efficiency of superconducting motors and generators is the size of the superconducting filaments in the stator. The size of the superconducting filaments in the baseline model is assumed to be 10 microns. A 40 micron filament, which represents current technology, results in a 200% increase in AC losses in the motor and generator stators. This analysis shows that for a system with 40

  8. Nacelle/pylon/wing integration on a transport model with a natural laminar flow nacelle

    Science.gov (United States)

    Lamb, M.; Aabeyounis, W. K.; Patterson, J. C., Jr.

    1985-01-01

    Tests were conducted in the Langley 16-Foot Transonic Tunnel at free-stream Mach numbers from 0.70 to 0.82 and angles of attack from -2.5 deg to 4.0 deg to determine if nacelle/pylon/wing integration affects the achievement of natural laminar flow on a long-duct flow-through nacelle for a high-wing transonic transport configuration. In order to fully assess the integration effect on a nacelle designed to achieve laminar flow, the effects of fixed and free nacelle transitions as well as nacelle longitudinal position and pylon contouring were obtained. The results indicate that the ability to achieve laminar flow on the nacelle is not significantly altered by nacelle/pylon/wing integration. The increment in installed drag between free and fixed transition for the nacelles on symmetrical pylons is essentially the calculated differences between turbulent and laminar flow on the nacelles. The installed drag of the contoured pylon is less than that of the symmetrical pylon. The installed drag for the nacelles in a rearward position is greater than that for the nacelles in a forward position.

  9. Flight service evaluation of Kevlar-49 epoxy composite panels in wide-bodies commercial transport aircraft

    Science.gov (United States)

    Stone, R. H.

    1983-01-01

    Kevlar-49 fairing panels, installed as flight service components on three L-1011s, were inspected after 9 years of service. There are six Kevlar-49 panels on each aircraft: a left hand and right hand set of a wing body sandwich fairing; a solid laminate under wing fillet panel; and a 422 K (300 F) service aft engine fairing. The fairings have accumulated a total of 70,000 hours, with one ship set having over 24,000 hours service. The Kevlar-49 components were found to be performing satisfactorily in service with no major problems, or any condition requiring corrective action. The only defects noted were minor impact damage, a few minor disbonds and a minor degree of fastener hole fraying and elongation. These are for the most part comparable to damage noted on fiberglass fairings. The service history to date indicates that Kevlar-49 epoxy composite materials have satisfactory service characteristics for use in aircraft secondary structure.

  10. Program for establishing long-time flight service performance of composite materials in the center wing structure of C-130 aircraft. Phase 5: flight service and inspection. Final report

    International Nuclear Information System (INIS)

    Kizer, J.A.

    1981-10-01

    Inspections of the C-130 composite-reinforced center wings were conducted over the flight service monitoring period of more than six years. Twelve inspections were conducted on each of the two C-130H airplanes having composite reinforced center wing boxes. Each inspection consisted of visual and ultrasonic inspection of the selective boron-epoxy reinforced center wings which included the inspection of the boron-epoxy laminates and the boron-epoxy reinforcement/aluminum structure adhesive bondlines. During the flight service monitoring period, the two C-130H aircraft accumulated more than 10,000 flight hours and no defects were detected in the inspections over this period. The successful performance of the C-130H aircraft with composite-reinforced center wings allowed the transfer of the responsibilities of inspecting and maintaining these two aircraft to the U. S. Air Force

  11. An Improved Gaussian Mixture Model for Damage Propagation Monitoring of an Aircraft Wing Spar under Changing Structural Boundary Conditions

    Science.gov (United States)

    Qiu, Lei; Yuan, Shenfang; Mei, Hanfei; Fang, Fang

    2016-01-01

    Structural Health Monitoring (SHM) technology is considered to be a key technology to reduce the maintenance cost and meanwhile ensure the operational safety of aircraft structures. It has gradually developed from theoretic and fundamental research to real-world engineering applications in recent decades. The problem of reliable damage monitoring under time-varying conditions is a main issue for the aerospace engineering applications of SHM technology. Among the existing SHM methods, Guided Wave (GW) and piezoelectric sensor-based SHM technique is a promising method due to its high damage sensitivity and long monitoring range. Nevertheless the reliability problem should be addressed. Several methods including environmental parameter compensation, baseline signal dependency reduction and data normalization, have been well studied but limitations remain. This paper proposes a damage propagation monitoring method based on an improved Gaussian Mixture Model (GMM). It can be used on-line without any structural mechanical model and a priori knowledge of damage and time-varying conditions. With this method, a baseline GMM is constructed first based on the GW features obtained under time-varying conditions when the structure under monitoring is in the healthy state. When a new GW feature is obtained during the on-line damage monitoring process, the GMM can be updated by an adaptive migration mechanism including dynamic learning and Gaussian components split-merge. The mixture probability distribution structure of the GMM and the number of Gaussian components can be optimized adaptively. Then an on-line GMM can be obtained. Finally, a best match based Kullback-Leibler (KL) divergence is studied to measure the migration degree between the baseline GMM and the on-line GMM to reveal the weak cumulative changes of the damage propagation mixed in the time-varying influence. A wing spar of an aircraft is used to validate the proposed method. The results indicate that the crack

  12. An Improved Gaussian Mixture Model for Damage Propagation Monitoring of an Aircraft Wing Spar under Changing Structural Boundary Conditions.

    Science.gov (United States)

    Qiu, Lei; Yuan, Shenfang; Mei, Hanfei; Fang, Fang

    2016-02-26

    Structural Health Monitoring (SHM) technology is considered to be a key technology to reduce the maintenance cost and meanwhile ensure the operational safety of aircraft structures. It has gradually developed from theoretic and fundamental research to real-world engineering applications in recent decades. The problem of reliable damage monitoring under time-varying conditions is a main issue for the aerospace engineering applications of SHM technology. Among the existing SHM methods, Guided Wave (GW) and piezoelectric sensor-based SHM technique is a promising method due to its high damage sensitivity and long monitoring range. Nevertheless the reliability problem should be addressed. Several methods including environmental parameter compensation, baseline signal dependency reduction and data normalization, have been well studied but limitations remain. This paper proposes a damage propagation monitoring method based on an improved Gaussian Mixture Model (GMM). It can be used on-line without any structural mechanical model and a priori knowledge of damage and time-varying conditions. With this method, a baseline GMM is constructed first based on the GW features obtained under time-varying conditions when the structure under monitoring is in the healthy state. When a new GW feature is obtained during the on-line damage monitoring process, the GMM can be updated by an adaptive migration mechanism including dynamic learning and Gaussian components split-merge. The mixture probability distribution structure of the GMM and the number of Gaussian components can be optimized adaptively. Then an on-line GMM can be obtained. Finally, a best match based Kullback-Leibler (KL) divergence is studied to measure the migration degree between the baseline GMM and the on-line GMM to reveal the weak cumulative changes of the damage propagation mixed in the time-varying influence. A wing spar of an aircraft is used to validate the proposed method. The results indicate that the crack

  13. Structural development of laminar flow control aircraft chordwise wing joint designs

    Science.gov (United States)

    Fischler, J. E.; Jerstad, N. M.; Gallimore, F. H., Jr.; Pollard, T. J.

    1989-01-01

    For laminar flow to be achieved, any protuberances on the surface must be small enough to avoid transition to turbulent flow. However, the surface must have joints between the structural components to allow assembly or replacement of damaged parts, although large continuous surfaces can be utilized to minimize the number the number of joints. Aircraft structural joints usually have many countersunk bolts or rivets on the outer surface. To maintain no mismatch on outer surfaces, it is desirable to attach the components from the inner surface. It is also desirable for the panels to be interchangeable, without the need for shims at the joint, to avoid surface discontinuities that could cause turbulence. Fabricating components while pressing their outer surfaces against an accurate mold helps to ensure surface smoothness and continuity at joints. These items were considered in evaluating the advantages and disadvantages of the joint design concepts. After evaluating six design concepts, two of the leading candidates were fabricated and tested using many small test panels. One joint concept was also built and tested using large panels. The small and large test panel deflections for the leading candidate designs at load factors up to +1.5 g's were well within the step and waviness requirements for avoiding transition.The small panels were designed and tested for compression and tension at -65 F, at ambient conditions, and at 160 F. The small panel results for the three-rib and the sliding-joint concepts indicated that they were both acceptable. The three-rib concept, with tapered splice plates, was considered to be the most practical. A modified three-rib joint that combined the best attributes of previous candidates was designed, developed, and tested. This improved joint met all of the structural strength, surface smoothness, and waviness criteria for laminar flow control (LFC). The design eliminated all disadvantages of the initial three-rib concept except for

  14. Flying Qualities Metrics and Design Guidelines for Modern Transport Aircraft, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Current and planned transport aircraft designs are making more use of fly-by-wire technology, allowing an unprecedented design space for control laws, including...

  15. A study to define the research and technology requirements for advanced turbo/propfan transport aircraft

    Science.gov (United States)

    Goldsmith, I. M.

    1981-01-01

    The feasibility of the propfan relative to the turbofan is summarized, using the Douglas DC-9 Super 80 (DS-8000) as the actual operational base aircraft. The 155 passenger economy class aircraft (31,775 lb 14,413 kg payload), cruise Mach at 0.80 at 31,000 ft (8,450 m) initial altitude, and an operational capability in 1985 was considered. Three propfan arrangements, wing mounted, conventional horizontal tail aft mounted, and aft fuselage pylon mounted are selected for comparison with the DC-9 Super 80 P&WA JT8D-209 turbofan powered aircraft. The configuration feasibility, aerodynamics, propulsion, structural loads, structural dynamics, sonic fatigue, acoustics, weight maintainability, performance, rough order of magnitude economics, and airline coordination are examined. The effects of alternate cruise Mach number, mission stage lengths, and propfan design characteristics are considered. Recommendations for further study, ground testing, and flight testing are included.

  16. Application of powered lift and mechanical flap concepts for civil short-haul transport aircraft design

    Science.gov (United States)

    Conlon, J. A.; Bowles, J. V.

    1977-01-01

    The objective of this paper is to determine various design and performance parameters, including wing loading and thrust loading requirements, for powered-lift and mechanical flap conceptual aircraft constrained by field length and community noise impact. Mission block fuel and direct operating costs (DOC) were found for optimum designs. As a baseline, the design and performance parameters were determined for the aircraft using engines without noise suppression. The constraint of the 90 EPNL noise contour being less than 2.6 sq km (1.0 sq mi) in area was then imposed. The results indicate that for both aircraft concepts the design gross weight, DOC, and required mission block fuel decreased with field length. At field lengths less than 1100 m (3600 ft) the powered lift aircraft had lower DOC and block fuel than the mechanical flap aircraft but produced higher unsuppressed noise levels. The noise goal could easily be achieved with nacelle wall treatment only and thus resulted in little or no performance or weight penalty for all studied aircraft.

  17. The technology assessment of LTA aircraft systems. [hybrid airships for passenger and cargo transportation

    Science.gov (United States)

    1976-01-01

    The advantages of conventional small and large airships over heavier than air aircraft are reviewed and the need for developing hybrid aircraft for passenger and heavy charge transport is assessed. Performance requirements and estimated operating costs are discussed for rota-ships to be used for short distance transportation near large cities as well as for airlifting civil engineering machinery and supplies for the construction of power stations, dams, tunnels, and roads in remote areas or on isolated islands.

  18. Low-speed wind-tunnel investigation of a large scale advanced arrow-wing supersonic transport configuration with engines mounted above wing for upper-surface blowing

    Science.gov (United States)

    Shivers, J. P.; Mclemore, H. C.; Coe, P. L., Jr.

    1976-01-01

    Tests have been conducted in a full scale tunnel to determine the low speed aerodynamic characteristics of a large scale advanced arrow wing supersonic transport configuration with engines mounted above the wing for upper surface blowing. Tests were made over an angle of attack range of -10 deg to 32 deg, sideslip angles of + or - 5 deg, and a Reynolds number range of 3,530,000 to 7,330,000. Configuration variables included trailing edge flap deflection, engine jet nozzle angle, engine thrust coefficient, engine out operation, and asymmetrical trailing edge boundary layer control for providing roll trim. Downwash measurements at the tail were obtained for different thrust coefficients, tail heights, and at two fuselage stations.

  19. Laser illumination of helicopters : a comparative analysis with fixed-wing aircraft for the period 1980 - 2011.

    Science.gov (United States)

    2013-04-01

    INTRODUCTION. Laser illuminations of aircraft have resulted in pilots reporting distraction, disruption, disorientation, adverse visual effects, and operational problems that put at risk the safety of the aircraft and those onboard. FAA Order 7400.2 ...

  20. Fuel-saving wings. Aircraft constructors learn from birds and reduce kerosene consumption; Spritsparende Schwingen. Flugzeugbauer lernen vom Vogelflug - und reduzieren den Kerosinverbrauch

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, N.

    1996-12-01

    Wings that automatically adapt to the flight situation are to reduce the fuel consumption of future passenger aircraft. With the so-called Fowler flap, the pilot controls the lift of the aircraft during touchdown. Researchers are now working on how to make the rigid flap flexible so that it can be adjusted during the flight. The aerodynamic characteristics can be improved and fuel consumption reduced by changing the camber in the posterior section of the Fowler flap. (orig./AKF) [Deutsch] Tragflaechen, die sich automatisch der Flugsituation anpassen, sollen den Treibstoffverbrauch kuenftiger Verkehrsflugzeuge verringern. Durch die sogenannte Fowlerklappe beeinflusst der Pilot waehrend der Landung den Auftrieb seines Flugzeugs. Inzwischen arbeiten Forscher daran, die starre Klappe zu flexibilisieren. Sie soll auch waehrend des Flugs veraendert werden koennen. Die Zu- oder Entwoelbung des hinteren Teils der Fowlerklappe verbessert die Aerodynamik und traegt so zu einem geringeren Treibstoffverbrauch bei. (orig./AKF)

  1. The development of a closed-loop flight controller with panel method integration for gust alleviation using biomimetic feathers on aircraft wings

    Science.gov (United States)

    Blower, Christopher J.; Lee, Woody; Wickenheiser, Adam M.

    2012-04-01

    This paper presents the development of a biomimetic closed-loop flight controller that integrates gust alleviation and flight control into a single distributed system. Modern flight controllers predominantly rely on and respond to perturbations in the global states, resulting in rotation or displacement of the entire aircraft prior to the response. This bio-inspired gust alleviation system (GAS) employs active deflection of electromechanical feathers that react to changes in the airflow, i.e. the local states. The GAS design is a skeletal wing structure with a network of featherlike panels installed on the wing's surfaces, creating the airfoil profile and replacing the trailing-edge flaps. In this study, a dynamic model of the GAS-integrated wing is simulated to compute gust-induced disturbances. The system implements continuous adjustment to flap orientation to perform corrective responses to inbound gusts. MATLAB simulations, using a closed-loop LQR integrated with a 2D adaptive panel method, allow analysis of the morphing structure's aerodynamic data. Non-linear and linear dynamic models of the GAS are compared to a traditional single control surface baseline wing. The feedback loops synthesized rely on inertial changes in the global states; however, variations in number and location of feather actuation are compared. The bio-inspired system's distributed control effort allows the flight controller to interchange between the single and dual trailing edge flap profiles, thereby offering an improved efficiency to gust response in comparison to the traditional wing configuration. The introduction of aero-braking during continuous gusting flows offers a 25% reduction in x-velocity deviation; other flight parameters can be reduced in magnitude and deviation through control weighting optimization. Consequently, the GAS demonstrates enhancements to maneuverability and stability in turbulent intensive environments.

  2. Computational wing design studies relating to natural laminar flow

    Science.gov (United States)

    Waggoner, Edgar G.

    1986-01-01

    Two research studies are described which directly relate to the application of natural laminar flow (NLF) technology to transonic transport-type wing planforms. Each involved using state-of-the-art computational methods to design three-dimensional wing contours which generate significant runs of favorable pressure gradients. The first study supported the Variable Sweep Transition Flight Experiment and involves design of a full-span glove which extends from the leading edge to the spoiler hinge line on the upper surface of an F-14 outer wing panel. A wing was designed computationally for a corporate transport aircraft in the second study. The resulting wing design generated favorable pressure gradients from the leading edge aft to the mid-chord on both upper and lower surfaces at the cruise design point. Detailed descriptions of the computational design approach are presented along with the various constraints imposed on each of the designs.

  3. Effect of winglets on a first-generation jet transport wing. 5: Stability characteristics of a full-span wing with a generalized fuselage at high subsonic speeds

    Science.gov (United States)

    Jacobs, P. F.

    1978-01-01

    The effects of winglets on the static aerodynamic stability characteristics of a KC-135A jet transport model at high subsonic speeds are presented. The investigation was conducted in the Langley 8 foot transonic pressure tunnel using 0.035-scale wing panels mounted on a generalized research fuselage. Data were taken over a Mach number range from 0.50 to 0.95 at angles of attack ranging from -12 deg to 20 deg and sideslip angles of 0 deg, 5 deg, and -5 deg. The model was tested at two Reynolds number ranges to achieve a wide angle of attack range and to determine the effect of Reynolds number on stability. Results indicate that adding the winglets to the basic wing configuration produces small increases in both lateral and longitudinal aerodynamic stability and that the model stability increases slightly with Reynolds number. The winglets do increase the wing bending moments slightly, but the buffet onset characteristics of the model are not affected by the winglets.

  4. An analysis on 45° sweep tail angle for blended wing body aircraft to the aerodynamics coefficients by wind tunnel experiment

    Science.gov (United States)

    Latif, M. Z. A. Abd; Ahmad, M. A.; Nasir, R. E. Mohd; Wisnoe, W.; Saad, M. R.

    2017-12-01

    This paper presents the analysis of a model from UiTM Blended Wing Body (BWB) UAV, Baseline V that has been tested at UPNM high speed wind tunnel. Baseline V has a unique design due to different NACA sections used for its fuselage, body, wing root, midwing, wingtip, tail root, tail tip and the tail is swept 45° backward. The purpose of this experiment is to study the aerodynamic characteristics when the tail sweeps 45° backward. The experiments are conducted several times using 71.5% scaled down model at about 49.58 m/s airspeed or 25 Hz. The tail angle deflection is fixed and set at zero angle. All the data obtained is analyzed and presented in terms of coefficient of lift, coefficient of drag and also lift-to-drag ratio, and is plotted against various angles of attack. The angles of attack used for this experiments are between ‑10° to +30°. The blockage correction such as solid blockage, wake blockage and streamline curvature blockage are calculated in order to obtain true performance of the aircraft. From the observation, Baseline V shows that the aircraft tends to stall at around +15°. The maximum L/D ratio achieved for Baseline V is 20.8, however it decreases slightly to 20.7 after blockage corrections.

  5. Aeroelastic Wing Shaping Using Distributed Propulsion

    Science.gov (United States)

    Nguyen, Nhan T. (Inventor); Reynolds, Kevin Wayne (Inventor); Ting, Eric B. (Inventor)

    2017-01-01

    An aircraft has wings configured to twist during flight. Inboard and outboard propulsion devices, such as turbofans or other propulsors, are connected to each wing, and are spaced along the wing span. A flight controller independently controls thrust of the inboard and outboard propulsion devices to significantly change flight dynamics, including changing thrust of outboard propulsion devices to twist the wing, and to differentially apply thrust on each wing to change yaw and other aspects of the aircraft during various stages of a flight mission. One or more generators can be positioned upon the wing to provide power for propulsion devices on the same wing, and on an opposite wing.

  6. 49 CFR Appendix to Part 800 - Request to the Secretary of the Department of Transportation To Investigate Certain Aircraft...

    Science.gov (United States)

    2010-10-01

    ... Transportation To Investigate Certain Aircraft Accidents Appendix to Part 800 Transportation Other Regulations... the Department of Transportation To Investigate Certain Aircraft Accidents (a) Acting pursuant to the... Safety Board Act of 1974, and as set forth below to investigate the facts, conditions, and circumstances...

  7. 14 CFR 23.201 - Wings level stall.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Wings level stall. 23.201 Section 23.201 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS.... Starting from a speed at least 10 knots above the stall speed, the elevator control must be pulled back so...

  8. Study of quiet turbofan STOL aircraft for short-haul transportation. Volume 4: Markets

    Science.gov (United States)

    1973-01-01

    A marketing study to determine the acceptance and utilization of a STOL aircraft short-haul air transportation system was conducted. The relationship between STOL characteristics and the economic and social viability of STOL as a short-haul reliever system was examined. A study flow chart was prepared to show the city pair and traffic split analysis. The national demand for STOL aircraft, as well as the foreign and military markets, were analyzed.

  9. Aircraft Emission Scenarios Projected in Year 2015 for the NASA Technology Concept Aircraft (TCA) High Speed Civil Transport

    Science.gov (United States)

    Baughcum, Steven L.; Henderson, Stephen C.

    1998-01-01

    This report describes the development of a three-dimensional database of aircraft fuel burn and emissions (fuel burned, NOx, CO, and hydrocarbons) from projected fleets of high speed civil transports (HSCTs) on a universal airline network. Inventories for 500 and 1000 HSCT fleets, as well as the concurrent subsonic fleets, were calculated. The HSCT scenarios are calculated using the NASA technology concept airplane (TCA) and update an earlier report. These emissions inventories are available for use by atmospheric scientists conducting the Atmospheric Effects of Stratospheric Aircraft (AESA) modeling studies. Fuel burned and emissions of nitrogen oxides (NOx as NO2), carbon monoxide, and hydrocarbons have been calculated on a 1 degree latitude x 1 degree longitude x 1 kilometer pressure altitude grid and delivered to NASA as electronic files.

  10. Flight service evaluation of Kevlar-49 epoxy composite panels in wide-bodied commercial transport aircraft

    Science.gov (United States)

    Stone, R. H.

    1984-01-01

    Kevlar-49 fairing panels, installed as flight service components on three L-1011s, were inspected after 10 years of service. There are six Kevlar-49 panels on each aircraft: a left-hand and right-hand set of a wing-body sandwich fairing; a solid laminate under-wing fillet panel; and a 422 K (300 F) service aft engine fairing. The three L-1011s include one each in service with Eastern, Air Canada, and TWA. The fairings have accumulated a total of 79,568 hours, with one ship set having nearly 28,000 hours service. The inspections were conducted at the airlines' major maintenance bases with the participation of Lockheed Engineering. The Kevlar-49 components were found to be performing satisfactorily in service with no major problems, or any condition requiring corrective action. The only defects noted were minor impact damage, a few minor disbonds and a minor degree of fastener hole fraying and elongation. These are for the most part comparable to damage noted on fiberglass fairings. The service history obtained in this program indicates that Kevlar-49 epoxy composite materials have satisfactory service characteristics for use in aircraft secondary structure.

  11. Fuel containment and damage tolerance for large composite primary aircraft structures. Phase 1: Testing

    Science.gov (United States)

    Sandifer, J. P.

    1983-01-01

    Technical problems associated with fuel containment and damage tolerance of composite material wings for transport aircraft were identified. The major tasks are the following: (1) the preliminary design of damage tolerant wing surface using composite materials; (2) the evaluation of fuel sealing and lightning protection methods for a composite material wing; and (3) an experimental investigation of the damage tolerant characteristics of toughened resin graphite/epoxy materials. The test results, the test techniques, and the test data are presented.

  12. Analytical modeling of transport aircraft crash scenarios to obtain floor pulses

    Science.gov (United States)

    Wittlin, G.; Lackey, D.

    1983-01-01

    The KRAS program was used to analyze transport aircraft candidate crash scenarios. Aircraft floor pulses and seat/occupant responses are presented. Results show that: (1) longitudinal only pulses can be represented by equivalent step inputs and/or static requirements; (2) the L1649 crash test floor longitudinal pulse for the aft direction (forward inertia) is less than 9g static or an equivalent 5g pulse; aft inertia accelerations are extremely small ((ch76) 3g) for representative crash scenarios; (3) a viable procedure to relate crash scenario floor pulses to standard laboratory dynamic and static test data using state of the art analysis and test procedures was demonstrated; and (4) floor pulse magnitudes are expected to be lower for wide body aircraft than for smaller narrow body aircraft.

  13. Pressure-Distribution Measurements of a Model of a Davis Wing Section with Fowler Flap Submitted by Consolidated Aircraft Corporation

    Science.gov (United States)

    Abbott, Ira H

    1942-01-01

    Wing pressure distribution diagrams for several angles of attack and flap deflections of 0 degrees, 20 degrees, and 40 degrees are presented. The normal force coefficients agree with lift coefficients obtained in previous test of the same model, except for the maximum lifts with flap deflection. Pressure distribution measurements were made at Reynolds Number of about 6,000,000.

  14. Integration of Propulsion-Airframe-Aeroacoustic Technologies and Design Concepts for a Quiet Blended-Wing-Body Transport

    Science.gov (United States)

    Hill, G. A.; Brown, S. A.; Geiselhart, K. A.

    2004-01-01

    This paper summarizes the results of studies undertaken to investigate revolutionary propulsion-airframe configurations that have the potential to achieve significant noise reductions over present-day commercial transport aircraft. Using a 300 passenger Blended-Wing-Body (BWB) as a baseline, several alternative low-noise propulsion-airframe-aeroacoustic (PAA) technologies and design concepts were investigated both for their potential to reduce the overall BWB noise levels, and for their impact on the weight, performance, and cost of the vehicle. Two evaluation frameworks were implemented for the assessments. The first was a Multi-Attribute Decision Making (MADM) process that used a Pugh Evaluation Matrix coupled with the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). This process provided a qualitative evaluation of the PAA technologies and design concepts and ranked them based on how well they satisfied chosen design requirements. From the results of the evaluation, it was observed that almost all of the PAA concepts gave the BWB a noise benefit, but degraded its performance. The second evaluation framework involved both deterministic and probabilistic systems analyses that were performed on a down-selected number of BWB propulsion configurations incorporating the PAA technologies and design concepts. These configurations included embedded engines with Boundary Layer Ingesting Inlets, Distributed Exhaust Nozzles installed on podded engines, a High Aspect Ratio Rectangular Nozzle, Distributed Propulsion, and a fixed and retractable aft airframe extension. The systems analyses focused on the BWB performance impacts of each concept using the mission range as a measure of merit. Noise effects were also investigated when enough information was available for a tractable analysis. Some tentative conclusions were drawn from the results. One was that the Boundary Layer Ingesting Inlets provided improvements to the BWB's mission range, by

  15. A MATHEMATICAL MODEL OF THE MILITARY TRANSPORT AIRCRAFT MOVEMENT AT CARGO ITEM DROP

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available The controllability of military transport aircraft deteriorates at heavy single piece landing. To solve this problem and a specific methodology for pilotage of the pre-emption, and automation tools are being developed. Preliminary study ofpilotage technique and authomatic control algorythm demand a reliable mathematical model of aircraft dynamics at cargo item drop. Such model should take into account significant change in the position of the aircraft center of mass and aircraft inertia tensor. Simplified models were based on modeling the movement of the center of mass and rotation around the cen- ter of mass of the aircraft. Such models do not take into account the inertial forces and moments of moving a cargo item. This circumstance does not allow to obtain reliable results in the simulation. The article presents the description of the complete mathematical model of the movement of military transport aircraft in landing of a cargo item. Examines the com- plex material system of solids and a detailed description of the properties of its components. The equations of motion of the aircraft as a system carrier (aircraft without a cargo item and wear (of moving a cargo item bodies to reflect the changes in the inertia tensor. The functioning of the power plant, steering actuators, flight control system, an exhaust chute, the sen- sors of the primary information are taken into account. The equations of motion for systems of bodies projected on the air- craft reference plane are being recorded. This approach takes into account changes of the inertia tensor and the position of the main central axes of inertia in the process of landing of a cargo item. It allows us to simulate the condition of the air- craft at all speeds of the pitch, normal overload, and masses of single piece and placement, as evidenced by the high con- vergence of modeling results with data from flight tests.

  16. Prediction of a tail downwash, ground effect and minimum unstick speed of jet transport aircraft

    NARCIS (Netherlands)

    Slingerland, R.

    2005-01-01

    A design tool has been developed to estimate the horizontal tail size of a jet transport aircraft during the preliminary design phase with regard to the minimum unstick requirement. The ground effect has been modelled analytically using lifting line theory. The minimum unstick manoeuvre has been

  17. Noise levels in a neonatal transport incubator in medically configured aircraft.

    Science.gov (United States)

    Sittig, Steven E; Nesbitt, Jeffrey C; Krageschmidt, Dale A; Sobczak, Steven C; Johnson, Robert V

    2011-01-01

    The purpose of this study was to evaluate exposure of neonates to noise during air medical transport as few commercially available hearing protective devices exist for premature newborns during air medical transport. Sound pressure levels in an infant incubator during actual flight conditions in four common medically configured aircraft were measured. Three noise dosimeters measured time-weighted average noise exposure during flight in each aircraft. One dosimeter was placed in the infant incubator, and the remaining dosimeters recorded noise levels in various parts of the aircraft cabin. The incubator provided a 6-dBA decrease in noise exposure from that in the crew cabin. The average noise level in the incubator in all aircraft was close to 80 dB, much higher than the proposed limits of 45 dB for neonatal intensive care unit noise exposure or 60 dB during transport. Exposure of neonates to elevated noise levels during transport may be harmful, and steps should be taken to protect the hearing of this patient population. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  18. A fuselage/tank structure study for actively cooled hypersonic cruise vehicles, summary. [aircraft design of aircraft fuel systems

    Science.gov (United States)

    Pirrello, C. J.; Baker, A. H.; Stone, J. E.

    1976-01-01

    A detailed analytical study was made to investigate the effects of fuselage cross section (circular and elliptical) and the structural arrangement (integral and nonintegral tanks) on aircraft performance. The vehicle was a 200 passenger, liquid hydrogen fueled Mach 6 transport designed to meet a range goal of 9.26 Mn (5000 NM). A variety of trade studies were conducted in the area of configuration arrangement, structural design, and active cooling design in order to maximize the performance of each of three point design aircraft: (1) circular wing-body with nonintegral tanks, (2) circular wing-body with integral tanks and (3) elliptical blended wing-body with integral tanks. Aircraft range and weight were used as the basis for comparison. The resulting design and performance characteristics show that the blended body integral tank aircraft weights the least and has the greatest range capability, however, producibility and maintainability factors favor nonintegral tank concepts.

  19. An Experimental Study into Pylon, Wing, and Flap Installation Effects on Jet Noise Generated by Commercial Aircraft

    Science.gov (United States)

    Perrino, Michael

    A pylon bottom bifurcation and a wing with variable flaps were designed and built to attach to a scaled model of a coaxial exhaust nozzle system. The presence of the pylon bifurcation, wing, and flaps modify the characteristics of the exhaust flow forc- ing asymmetric flow and acoustics. A parametric study was carried out for assessing and relating the flow field characteristics to the near-field pressure and far-field acous- tic spectra. The flow field was investigated experimentally using both stream-wise and cross-stream PIV techniques where the near-field pressure and far-field acoustic spectra were measured using microphone arrays. Contour mapping of the flow field characteristics (e.g. mean velocity and turbulence kinetic energy levels) and near-field acoustics with and without installation effects were used to explain the changes in the far-field acoustics.

  20. Multidisciplinary Optimization of a Transport Aircraft Wing using Particle Swarm Optimization

    Science.gov (United States)

    Sobieszczanski-Sobieski, Jaroslaw; Venter, Gerhard

    2002-01-01

    The purpose of this paper is to demonstrate the application of particle swarm optimization to a realistic multidisciplinary optimization test problem. The paper's new contributions to multidisciplinary optimization is the application of a new algorithm for dealing with the unique challenges associated with multidisciplinary optimization problems, and recommendations as to the utility of the algorithm in future multidisciplinary optimization applications. The selected example is a bi-level optimization problem that demonstrates severe numerical noise and has a combination of continuous and truly discrete design variables. The use of traditional gradient-based optimization algorithms is thus not practical. The numerical results presented indicate that the particle swarm optimization algorithm is able to reliably find the optimum design for the problem presented here. The algorithm is capable of dealing with the unique challenges posed by multidisciplinary optimization as well as the numerical noise and truly discrete variables present in the current example problem.

  1. Human respiratory considerations for civil transport aircraft oxygen system.

    Science.gov (United States)

    1978-01-01

    This report is intended to acquaint personnel involved in the design, inspection, and maintenance of civil transport oxygen systems with the human respiratory requirements and oxygen system design considerations necessary to effect an interface and p...

  2. Large Scale Applications Using FBG Sensors: Determination of In-Flight Loads and Shape of a Composite Aircraft Wing

    Directory of Open Access Journals (Sweden)

    Matthew J. Nicolas

    2016-06-01

    Full Text Available Technological advances have enabled the development of a number of optical fiber sensing methods over the last few years. The most prevalent optical technique involves the use of fiber Bragg grating (FBG sensors. These small, lightweight sensors have many attributes that enable their use for a number of measurement applications. Although much literature is available regarding the use of FBGs for laboratory level testing, few publications in the public domain exist of their use at the operational level. Therefore, this paper gives an overview of the implementation of FBG sensors for large scale structures and applications. For demonstration, a case study is presented in which FBGs were used to determine the deflected wing shape and the out-of-plane loads of a 5.5-m carbon-composite wing of an ultralight aerial vehicle. The in-plane strains from the 780 FBG sensors were used to obtain the out-of-plane loads as well as the wing shape at various load levels. The calculated out-of-plane displacements and loads were within 4.2% of the measured data. This study demonstrates a practical method in which direct measurements are used to obtain critical parameters from the high distribution of FBG sensors. This procedure can be used to obtain information for structural health monitoring applications to quantify healthy vs. unhealthy structures.

  3. Crash response data system for the controlled impact demonstration (CID) of a full scale transport aircraft

    Science.gov (United States)

    Calloway, Raymond S.; Knight, Vernie H., Jr.

    NASA Langley's Crash Response Data System (CRDS) which is designed to acquire aircraft structural and anthropomorphic dummy responses during the full-scale transport CID test is described. Included in the discussion are the system design approach, details on key instrumentation subsystems and operations, overall instrumentation crash performance, and data recovery results. Two autonomous high-environment digital flight instrumentation systems, DAS 1 and DAS 2, were employed to obtain research data from various strain gage, accelerometer, and tensiometric sensors installed in the B-720 test aircraft. The CRDS successfully acquired 343 out of 352 measurements of dynamic crash data.

  4. The dynamics of the HSCT environment. [air pollution from High Speed Civil Transport Aircraft

    Science.gov (United States)

    Douglass, Anne R.; Rood, Richard B.

    1991-01-01

    Assessments of the impact of aircraft engine exhausts on stratospheric ozone levels are currently limited to 2D zonally-averaged models which, while completely representing chemistry, involve high parameterization of transport processes. Prospective 3D models under development by NASA-Goddard will use winds from a data-assimilation procedure; the upper troposphere/lower stratosphere behavior of one such model has been verified by direct comparison of model simulations with satellite, balloon, and sonde measurements. Attention is presently given to the stratosphere/troposphere exchange and nonzonal distribution of aircraft engine exhaust.

  5. Development of pressure containment and damage tolerance technology for composite fuselage structures in large transport aircraft

    Science.gov (United States)

    Smith, P. J.; Thomson, L. W.; Wilson, R. D.

    1986-01-01

    NASA sponsored composites research and development programs were set in place to develop the critical engineering technologies in large transport aircraft structures. This NASA-Boeing program focused on the critical issues of damage tolerance and pressure containment generic to the fuselage structure of large pressurized aircraft. Skin-stringer and honeycomb sandwich composite fuselage shell designs were evaluated to resolve these issues. Analyses were developed to model the structural response of the fuselage shell designs, and a development test program evaluated the selected design configurations to appropriate load conditions.

  6. Compound aircraft transport study: Wingtip-docking compared to formation flight

    Science.gov (United States)

    Magill, Samantha A.

    Compound Aircraft Transport (CAT) flight involves two or more aircraft using the resources of each other; a symbiotic relationship exists consisting of a host, the mothership aircraft and a parasite, the hitchhiker aircraft. Wingtip-docked flight is just as its name implies; the two aircraft are connected wingtip-to-wingtip. Formation flight describes multiple aircraft or flying objects that maintain a pattern or shape in the air. There are large aerodynamic advantages in CAT flight. The aforementioned wingtip-docked flight increases total span of the aircraft, system, and formation flight utilizes the upwash from the trailing wingtip vortex of the lead aircraft (mothership) to reduce the energy necessary to achieve and/or maintain a specific flight, goal for the hitchhiker and the system. The Stability Wind Tunnel (6 x 6 x 24 foot test section) at Virginia Tech, computational aerodynamic analysis with the vortex lattice method (VLM), and a desktop aircraft model were used to answer questions of the best location for a hitchhiker aircraft and analyze stability of the CAT system. Three CAT flight configurations were highlighted: wingtip-docked, close formation, and towed formation. The wingtip-docked configuration had a 20--40% performance benefit for the hitchhiker compared to solo flight. The close formation configuration had performance benefits for the hitchhiker approximately 10 times that of solo flight, and the towed formation was approximately 8 times better than solo flight. The VLM analysis completed and reenforced the experimental wind tunnel data. A modified VLM program (VLM CAT) incorporated multiple aircraft in various locations as well as additional calculations for induced drag. VLM CAT results clearly followed the trends seen in the wind tunnel data, but since VLM did not model the fuselage, has assumptions like a flat wake, and is an inviscid computation it did not predict the large benefits or excursions as seen in the wind tunnel data. Increases

  7. Special Operations Forces Aviation on a Shoestring Budget: An Effectiveness Analysis of Light and Medium Fixed Wing Aircraft

    Science.gov (United States)

    2012-12-01

    irp/agency/dod/socom/factbook-2012.pdf. Originally published in John M. Collins, Green Berets, SEALs & Spetsnaz : U.S. and Soviet Special Military...SEALs & Spetsnaz : U.S. and Soviet Special Military Operations. Washington, DC: Pergamon Bassey’s, 1987 Conklin and de Decker. “Aircraft Cost Summary

  8. Low-speed wind tunnel investigation of a semispan STOL jet transport wing body with an upper surface blown jet flap

    Science.gov (United States)

    Phelps, A. E., III; Letko, W.; Henderson, R. L.

    1973-01-01

    An investigation of the static longitudinal aerodynamic characteristics of a semispan STOL jet transport wing-body with an upper-surface blown jet flap for lift augmentation was conducted in a low-speed wind tunnel having a 12-ft octagonal test section. The semispan swept wing had an aspect ratio of 3.92 (7.84 for the full span) and had two simulated turbofan engines mounted ahead of and above the wing in a siamese pod equipped with an exhaust deflector. The purpose of the deflector was to spread the engine exhaust into a jet sheet attached to the upper surface of the wing so that it would turn downward over the flap and provide lift augmentation. The wing also had optional boundary-layer control provided by air blowing through a thin slot over a full-span plain trailing-edge flap.

  9. The simulation of the transport of aircraft emissions by a three-dimensional global model

    Directory of Open Access Journals (Sweden)

    G. J. M. Velders

    1994-04-01

    Full Text Available A three-dimensional off-line tracer transport model coupled to the ECMWF analyses has been used to study the transport of trace gases in the atmosphere. The model gives a reasonable description of their general transport in the atmosphere. The simulation of the transport of aircraft emissions (as NOx has been studied as well as the transport of passive tracers injected at different altitudes in the North Atlantic flight corridor. A large zonal variation in the NOx concentrations as well as large seasonal and yearly variations was found. The altitude of the flight corridor influences the amount of tracers transported into the troposphere and stratosphere to a great extent.

  10. 49 CFR 175.310 - Transportation of flammable liquid fuel; aircraft only means of transportation.

    Science.gov (United States)

    2010-10-01

    ... MATERIALS REGULATIONS CARRIAGE BY AIRCRAFT Specific Regulations Applicable According to Classification of... performance level; (iii) UN 1A1 steel drums, at the Packing Group I or II performance level, of not more than...

  11. Aging Evaluation Programs for Jet Transport Aircraft Structural Integrity

    Directory of Open Access Journals (Sweden)

    Borivoj Galović

    2012-10-01

    Full Text Available The paper deals with criteria and procedures in evaluationof timely preventive maintenance recommendations that willsupport continued safe operation of aging jet transports untiltheir retirement from service. The active service life of commercialaircraft has increased in recent years as a result of low fuelcost, and increasing costs and delivery times for fleet replacements.Air transport industry consensus is that older jet transportswill continue in service despite anticipated substantial increasesin required maintenance. Design concepts, supportedby testing, have worked well due to the system that is used to ensureflying safety. Continuing structural integrity by inspectionand overhaul recommendation above the level contained inmaintenance and service bulletins is additional requirement, insuch cases. Airplane structural safety depends on the performanceof all participants in the system and the responsibility forsafety cannot be delegated to a single participant. This systemhas three major participants: the manufacturers who design,build and support airplanes in service, the airlines who operate,inspect and mantain airplanes and the airworthiness authoritieswho establish rules and regulations, approve the design andpromote airline maintenance performance.

  12. Development and design of flexible Fowler flaps for an adaptive wing

    Science.gov (United States)

    Monner, Hans P.; Hanselka, Holger; Breitbach, Elmar J.

    1998-06-01

    Civil transport airplanes fly with fixed geometry wings optimized only for one design point described by altitude, Mach number and airplane weight. These parameters vary continuously during flight, to which means the wing geometry seldom is optimal. According to aerodynamic investigations a chordwide variation of the wing camber leads to improvements in operational flexibility, buffet boundaries and performance resulting in reduction of fuel consumption. A spanwise differential camber variation allows to gain control over spanwise lift distributions reducing wing root bending moments. This paper describes the design of flexible Fowler flaps for an adaptive wing to be used in civil transport aircraft that allows both a chordwise as well as spanwise differential camber variation during flight. Since both lower and upper skins are flexed by active ribs, the camber variation is achieved with a smooth contour and without any additional gaps.

  13. Investigation of Electromagnetic Field Threat to Fuel Tank Wiring of a Transport Aircraft

    Science.gov (United States)

    Ely, Jay J.; Nguyen, Truong X.; Dudley, Kenneth L.; Scearce, Stephen A.; Beck, Fred B.; Deshpande, Manohar D.; Cockrell, C. R.

    2000-01-01

    National Transportation Safety Board investigators have questioned whether an electrical discharge in the Fuel Quantity Indication System (FQIS) may have initiated the TWA-800 center wing tank explosion. Because the FQIS was designed to be incapable of producing such a discharge on its own, attention has been directed to mechanisms of outside electromagnetic influence. To support the investigation, the NASA Langley Research Center was tasked to study the potential for radiated electromagnetic fields from external radio frequency (RF) transmitters and passenger carried portable electronic devices (PEDs) to excite the FQIS enough to cause arcing, sparking or excessive heating within the fuel tank.

  14. The research on the drag reduction of a transport aircraft with upswept afterbody using long fins

    Science.gov (United States)

    2016-03-30

    Undergraduate Student Paper Postgraduate Student Paper The research on the drag reduction of a transport aircraft with upswept afterbody using...the drag are evaluated. Two symmetric vortices emerge under the fuselage afterbody, which are the major causal factor of the additional pressure... drag . A pair of fins installed under the fuselage extruding the core of the vortices effectively damp the vortex. Parametric study shows that the length

  15. Optimization and design of an aircraft's morphing wing-tip demonstrator for drag reduction at low speeds, Part II - Experimental validation using Infra-Red transition measurement from Wind Tunnel tests

    OpenAIRE

    Andreea Koreanschi; Oliviu Sugar Gabor; Joran Acotto; Guillaume Brianchon; Gregoire Portier; Ruxandra Mihaela Botez; Mahmoud Mamou; Youssef Mebarki

    2017-01-01

    In the present paper, an ‘in-house’ genetic algorithm was numerically and experimentally validated. The genetic algorithm was applied to an optimization problem for improving the aerodynamic performances of an aircraft wing tip through upper surface morphing. The optimization was performed for 16 flight cases expressed in terms of various combinations of speeds, angles of attack and aileron deflections. The displacements resulted from the optimization were used during the wind tunnel tests of...

  16. Aeromagnetic Surveying with a Rotary-Wing Unmanned Aircraft System: A Case Study from a Zinc Deposit in Nash Creek, New Brunswick, Canada

    Science.gov (United States)

    Cunningham, Michael; Samson, Claire; Wood, Alan; Cook, Ian

    2017-12-01

    Unmanned aircraft systems (UASs) have been under rapid development for applications in the mineral exploration industry, mainly for aeromagnetic surveying. They provide improved detection of smaller, deeper and weaker magnetic targets. A traditional system flying an altitude of 100 m above ground level (AGL) can detect a spherical ore body with a radius of 16 m and a magnetic susceptibility of 10-4 buried at a depth of 40 m. A UAS flying at an altitude of 50 or 2 m AGL would require the radius to be 11 or 5 m, respectively. A demonstration survey was performed using the SkyLance rotary-wing UAS instrumented with a cesium vapour magnetometer in Nash Creek, New Brunswick, Canada. The UAS flew over a zinc deposit featuring three magnetic anomalies. It acquired repeatable data that compared well with upward continuation maps of ground magnetic data. Dykes or faults that are dipping eastward at 25° and are approximately 1.5 m wide fit the observed response of the three anomalies captured on the UAS magnetic data.

  17. Low-speed wind-tunnel investigation of a large-scale advanced arrow wing supersonic transport configuration with engines mounted above the wing for upper-surface blowing

    Science.gov (United States)

    Shivers, J. P.; Mclemore, H. C.; Coe, P. L., Jr.

    1975-01-01

    The Langley full scale tunnel was used to investigate the low speed stability and control of an advanced arrow wing supersonic transport with engines mounted above the wing for upper-surface blowing. Tests were made over an angle of attack range of -10 to 32 deg, slideslip angles of + or -5 deg and a Reynolds number ranging from 3.53 million to 7.33 million (referenced to mean aerodynamic chord of the wing). Configuration variables included trailing-edge flap deflection, engine jet nozzle angle, engine thrust coefficient, engine out operation, and asymmetrical trailing-edge BLC for providing roll trim. Downwash measurements at the tail were obtained for different thrust coefficients, tail heights, and at two fuselage stations.

  18. Conceptual design studies of 1985 commercial VTOL transports that utilized rotors, Volume 1

    Science.gov (United States)

    Magee, J. P.; Clark, R. D.; Alexander, H. R.

    1974-01-01

    Results of conceptual design studies of commercial rotary wing transport aircraft for the 1985 time period are presented. Two aircraft configurations, a tandem helicopter and a tilt rotor, were designed for a 200 nautical mile short haul mission with an upper limit of 100 passengers. In addition to the baseline aircraft two further designs of each configuration are included to assess the impact of external noise design criteria on the aircraft size, weight, and cost.

  19. Unmanned Aerial Aircraft Systems for transportation engineering: Current practice and future challenges

    Directory of Open Access Journals (Sweden)

    Emmanouil N. Barmpounakis

    2016-10-01

    Full Text Available Acquiring and processing video streams from static cameras has been proposed as one of the most efficient tools for visualizing and gathering traffic information. With the latest advances in technology and visual media, combined with the increased needs in dealing with congestion more effectively and directly, the use of Unmanned Aerial Aircraft Systems (UAS has emerged in the field of traffic engineering. In this paper, we review studies and applications that incorporate UAS in transportation research and practice with the aim to set the grounds from the proper understanding and implementation of UAS related surveillance systems in transportation and traffic engineering. The studies reviewed are categorized in different transportation engineering areas. Additional significant applications from other research fields are also referenced to identify other promising applications. Finally, issues and emerging challenges in both a conceptual and methodological level are revealed and discussed.

  20. X-38 vehicle #131R arrives at NASA Dryden via NASA'S Super Guppy transport aircraft

    Science.gov (United States)

    2000-01-01

    NASA's Super Guppy transport aircraft landed at Edwards Air Force Base, Calif. on July 11, 2000, to deliver the latest version of the X-38 drop vehicle to Dryden. The X-38s are intended as prototypes for a possible 'crew lifeboat' for the International Space Station. The X-38 vehicle 131R will demonstrate a huge 7,500 square-foot parafoil that will that will enable the potential crew return vehicle to land on the length of a football field after returning from space. The crew return vehicle is intended to serve as a possible emergency transport to carry a crew to safety in the event of problems with the International Space Station. The Super Guppy evolved from the 1960s-vintage Pregnant Guppy, used for transporting outsized sections of the Apollo moon rocket. The Super Guppy was modified from 1950s-vintage Boeing C-97. NASA acquired its Super Guppy from the European Space Agency in 1997.

  1. Manual Throttles-Only Control Effectivity for Emergency Flight Control of Transport Aircraft

    Science.gov (United States)

    Stevens, Richard; Burcham, Frank W., Jr.

    2009-01-01

    If normal aircraft flight controls are lost, emergency flight control may be attempted using only the thrust of engines. Collective thrust is used to control flightpath, and differential thrust is used to control bank angle. One issue is whether a total loss of hydraulics (TLOH) leaves an airplane in a recoverable condition. Recoverability is a function of airspeed, altitude, flight phase, and configuration. If the airplane can be recovered, flight test and simulation results on several transport-class airplanes have shown that throttles-only control (TOC) is usually adequate to maintain up-and-away flight, but executing a safe landing is very difficult. There are favorable aircraft configurations, and also techniques that will improve recoverability and control and increase the chances of a survivable landing. The DHS and NASA have recently conducted a flight and simulator study to determine the effectivity of manual throttles-only control as a way to recover and safely land a range of transport airplanes. This paper discusses TLOH recoverability as a function of conditions, and TOC landability results for a range of transport airplanes, and some key techniques for flying with throttles and making a survivable landing. Airplanes evaluated include the B-747, B-767, B-777, B-757, A320, and B-737 airplanes.

  2. System data communication structures for active-control transport aircraft, volume 2

    Science.gov (United States)

    Hopkins, A. L.; Martin, J. H.; Brock, L. D.; Jansson, D. G.; Serben, S.; Smith, T. B.; Hanley, L. D.

    1981-01-01

    The application of communication structures to advanced transport aircraft are addressed. First, a set of avionic functional requirements is established, and a baseline set of avionics equipment is defined that will meet the requirements. Three alternative configurations for this equipment are then identified that represent the evolution toward more dispersed systems. Candidate communication structures are proposed for each system configuration, and these are compared using trade off analyses; these analyses emphasize reliability but also address complexity. Multiplex buses are recognized as the likely near term choice with mesh networks being desirable for advanced, highly dispersed systems.

  3. Unmanned Aircraft Systems: The Road to Effective Integration

    National Research Council Canada - National Science Library

    Petrock, Christopher T; Huizenga, Thomas D

    2006-01-01

    ...) sharing airspace with manned assets. There have been at least two recent collisions between unmanned and rotary-wing aircraft at lower altitudes in Iraq, as well as numerous near misses with fixed-wing aircraft at higher altitudes...

  4. 14 CFR 61.63 - Additional aircraft ratings (other than for ratings at the airline transport pilot certification...

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Additional aircraft ratings (other than for ratings at the airline transport pilot certification level). 61.63 Section 61.63 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTOR...

  5. 14 CFR Appendix J to Part 141 - Aircraft Type Rating Course, For Other Than an Airline Transport Pilot Certificate

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Aircraft Type Rating Course, For Other Than an Airline Transport Pilot Certificate J Appendix J to Part 141 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SCHOOLS AND OTHER CERTIFICATED AGENCIES PILOT SCHOOLS Pt. 141, App. J Appendix J to Part...

  6. Concept of Operations for Integrating Commercial Supersonic Transport Aircraft into the National Airspace System

    Science.gov (United States)

    Underwood, Matthew C.

    2017-01-01

    Several businesses and government agencies, including the National Aeronautics and Space Administration are currently working on solving key technological barriers that must be overcome in order to realize the vision of low-boom supersonic flights conducted over land. However, once these challenges are met, the manner in which this class of aircraft is integrated in the National Airspace System may become a potential constraint due to the significant environmental, efficiency, and economic repercussions that their integration may cause. This document was developed to create a path for research and development that exposes the benefits and barriers of seamlessly integrating a class of CSTs into the NAS, while also serving as a Concept of Operations (ConOps) which posits a mid- to far-term solution (2025-2035) concept for best integrating CST into the NAS. Background research regarding historic supersonic operations in the National Airspace System, assumptions about design aspects and equipage of commercial supersonic transport (CST) aircraft, assumptions concerning the operational environment are described in this document. Results of a simulation experiment to investigate the interactions between CST aircraft and modern-day air traffic are disseminated and are used to generate scenarios for CST operations. Finally, technology needs to realize these operational scenarios are discussed.

  7. Simulation of transport and chemical transformation of aircraft exhaust at the tropopause region: Box model studies

    Energy Technology Data Exchange (ETDEWEB)

    Petry, H.; Lippert, E.; Hendricks, J.; Ebel, A. [Koeln Univ. (Germany). Inst. fuer Geophysik und Meteorologie

    1997-12-01

    Within the framework of the STRATFLUT project (Simulation of the transport and the chemical transformation of aircraft exhaust at the tropopause region) a chemistry mechanism for applications in the tropopause region was developed and continuously improved (CHEST/CHEST2). This mechanism has been applied in various sensitivity studies and to the evaluation of effective aircraft emission indices. In particular, an increase of ozone production due to airtraffic induced NO{sub x} emissions is found. This increase depends in a non-linear manner on the atmospheric background conditions into which the exhaust is released, on the altitude of release (absolute and relative to the tropopause), on the emission amount, on the daytime of release, on season and on aerosol loading. The effect of NO{sub x} released during one day by a fleet of 10 aircrafts into a box on ozone was found to vary between 0.05 ppbv and 2.3 ppbv (relative changes between approximately 0.02% and 6.57%) depending on the specific assumptions for the respective experiment. (orig.) 144 figs., 42 tabs., 497 refs.

  8. NASA N+3 Subsonic Fixed Wing Silent Efficient Low-Emissions Commercial Transport (SELECT) Vehicle Study. Revision A

    Science.gov (United States)

    Bruner, Sam; Baber, Scott; Harris,Chris; Caldwell, Nicholas; Keding, Peter; Rahrig, Kyle; Pho, Luck; Wlezian, Richard

    2010-01-01

    A conceptual commercial passenger transport study was performed to define a single vehicle for entry into service in the 2030 to 2035 timeframe, meeting customer demands as well as NASA goals for improved fuel economy, NOx emissions, noise, and operability into smaller airports. A study of future market and operational scenarios was used to guide the design of an advanced tube-and-wing configuration that utilized advanced material and structural concepts, an advanced three-shaft high-bypass turbofan engine, natural laminar flow technology, and a suite of other advanced technologies. This configuration was found to meet the goals for NOx emissions, noise, and field length. A 64 percent improvement in fuel economy compared to a current state-of-the-art airliner was achieved, which fell slightly short of the desired 70 percent goal. Technology maturation plans for the technologies used in the design were developed to help guide future research and development activities.

  9. The Small Aircraft Transportation System (SATS), Higher Volume Operations (HVO) Concept and Research

    Science.gov (United States)

    Baxley, B.; Williams, D.; Consiglio, M.; Adams, C.; Abbott, T.

    2005-01-01

    The ability to conduct concurrent, multiple aircraft operations in poor weather at virtually any airport offers an important opportunity for a significant increase in the rate of flight operations, a major improvement in passenger convenience, and the potential to foster growth of operations at small airports. The Small Aircraft Transportation System, (SATS) Higher Volume Operations (HVO) concept is designed to increase capacity at the 3400 non-radar, non-towered airports in the United States where operations are currently restricted to one-in/one-out procedural separation during low visibility or ceilings. The concept s key feature is that pilots maintain their own separation from other aircraft using air-to-air datalink and on-board software within the Self-Controlled Area (SCA), an area of flight operations established during poor visibility and low ceilings around an airport without Air Traffic Control (ATC) services. While pilots self-separate within the SCA, an Airport Management Module (AMM) located at the airport assigns arriving pilots their sequence based on aircraft performance, position, winds, missed approach requirements, and ATC intent. The HVO design uses distributed decision-making, safe procedures, attempts to minimize pilot and controller workload, and integrates with today's ATC environment. The HVO procedures have pilots make their own flight path decisions when flying in Instrument Metrological Conditions (IMC) while meeting these requirements. This paper summarizes the HVO concept and procedures, presents a summary of the research conducted and results, and outlines areas where future HVO research is required. More information about SATS HVO can be found at http://ntrs.nasa.gov.

  10. Optimization and design of an aircraft's morphing wing-tip demonstrator for drag reduction at low speeds, Part II - Experimental validation using Infra-Red transition measurement from Wind Tunnel tests

    Directory of Open Access Journals (Sweden)

    Andreea Koreanschi

    2017-02-01

    Full Text Available In the present paper, an ‘in-house’ genetic algorithm was numerically and experimentally validated. The genetic algorithm was applied to an optimization problem for improving the aerodynamic performances of an aircraft wing tip through upper surface morphing. The optimization was performed for 16 flight cases expressed in terms of various combinations of speeds, angles of attack and aileron deflections. The displacements resulted from the optimization were used during the wind tunnel tests of the wing tip demonstrator for the actuators control to change the upper surface shape of the wing. The results of the optimization of the flow behavior for the airfoil morphing upper-surface problem were validated with wind tunnel experimental transition results obtained with infra-red Thermography on the wing-tip demonstrator. The validation proved that the 2D numerical optimization using the ‘in-house’ genetic algorithm was an appropriate tool in improving various aspects of a wing’s aerodynamic performances.

  11. Design, analysis, and control of large transport aircraft utilizing engine thrust as a backup system for the primary flight controls

    Science.gov (United States)

    Gerren, Donna S.

    1993-01-01

    A review of accidents that involved the loss of hydraulic flight control systems serves as an introduction to this project. In each of the accidents--involving transport aircraft such as the DC-10, the C-5A, the L-1011, and the Boeing 747--the flight crew attempted to control the aircraft by means of thrust control. Although these incidents had tragic endings, in the absence of control power due to primary control system failure, control power generated by selective application of engine thrust has proven to be a viable alternative. NASA Dryden has demonstrated the feasibility of controlling an aircraft during level flight, approach, and landing conditions using an augmented throttles-only control system. This system has been successfully flown in the flight test simulator for the B-720 passenger transport and the F-15 air superiority fighter and in actual flight tests for the F-15 aircraft. The Douglas Aircraft Company is developing a similar system for the MD-11 aircraft. The project's ultimate goal is to provide data for the development of thrust control systems for mega-transports (600+ passengers).

  12. USE OF REMOTELY PILOTED AIRCRAFT SYSTEMS TO EVALUATE THE EFFECTS OF TRANSPORT COLLISION

    Directory of Open Access Journals (Sweden)

    Honorata ROMAŃSKA

    2017-03-01

    Full Text Available The evaluation of the effects of transport collision often takes the form of ground reconnaissance. Undoubtedly, remotely piloted aircraft systems (RPAS can support and help the police, firefighters, security agents and paramedics in the event of a transport collision. Although there is a scarce amount of literature concerning the use of RPAS in crisis management, it is important to pay more attention to the benefits of this technology. The article describes the danger of collisions, as well as discusses the possibility of using RPAS, their functionality and potential utility. Sensors installed on RPAS can rapidly identify the place of the accident, the number of casualties, the type of damaged vehicles or the type of contamination.

  13. Flow visualization of the wake of a transport aircraft model with lateral-control oscillations

    Science.gov (United States)

    Jordan, F. L., Jr.

    1983-01-01

    An exploratory flow visualization study conducted in the Langley Vortex Research Facility to investigate the effectiveness of lateral control surface oscillations as a potential method for wake vortex attenuation on a 0.03 scale model of a wide body jet transport aircraft is described. Effects of both asymmetric surface oscillation (control surfaces move as with normal lateral control inputs) and symmetric surface oscillation (control surfaces move in phase) are presented. The asymmetric case simulated a flight maneuver which was previously investigated on the transport aircraft during NASA/FAA flight tests and which resulted in substantial wake vortex attenuation. Effects on the model wake vortex systems were observed by propelling the model through a two dimensional smoke screen perpendicular to the model flight path. Results are presented as photographic time histories of the wake characteristics recorded with high speed still cameras. Effects of oscillation on the wake roll up are described in some detail, and the amount of vortex attenuation observed is discussed in comparative terms. Findings were consistent with flight test results in that only a small amount of rotation was observed in the wake for the asymmetric case. A possible aerodynamic mechanism contributing to this attenuation is suggested.

  14. Real-Time Adaptive Least-Squares Drag Minimization for Performance Adaptive Aeroelastic Wing

    Science.gov (United States)

    Ferrier, Yvonne L.; Nguyen, Nhan T.; Ting, Eric

    2016-01-01

    This paper contains a simulation study of a real-time adaptive least-squares drag minimization algorithm for an aeroelastic model of a flexible wing aircraft. The aircraft model is based on the NASA Generic Transport Model (GTM). The wing structures incorporate a novel aerodynamic control surface known as the Variable Camber Continuous Trailing Edge Flap (VCCTEF). The drag minimization algorithm uses the Newton-Raphson method to find the optimal VCCTEF deflections for minimum drag in the context of an altitude-hold flight control mode at cruise conditions. The aerodynamic coefficient parameters used in this optimization method are identified in real-time using Recursive Least Squares (RLS). The results demonstrate the potential of the VCCTEF to improve aerodynamic efficiency for drag minimization for transport aircraft.

  15. Aerodynamics/ACEE: Aircraft energy efficiency

    Science.gov (United States)

    1981-01-01

    An overview is presented of a 10 year program managed by NASA which seeks to make possible the most efficient use of energy for aircraft propulsion and lift as well as provide a technology that can be used by U.S. manufacturers of air transports and engines. Supercritical wings, winglets, vortex drag reduction, high lift, active control, laminar flow control, and aerodynamics by computer are among the topics discussed. Wind tunnel models in flight verification of advanced technology, and the design, construction and testing of various aircraft structures are also described.

  16. Longitudinal aerodynamic characteristics of a wing-winglet model designed at M = 0.8, C sub L = 0.4 using linear aerodynamic theory

    Science.gov (United States)

    Kuhlman, J. M.

    1983-01-01

    Wind tunnel test results have been presented herein for a subsonic transport type wing fitted with winglets. Wind planform was chosen to be representative of wings used on current jet transport aircraft, while wing and winglet camber surfaces were designed using two different linear aerodynamic design methods. The purpose of the wind tunnel investigation was to determine the effectiveness of these linear aerodynamic design computer codes in designing a non-planar transport configuration which would cruise efficiently. The design lift coefficient was chosen to be 0.4, at a design Mach number of 0.8. Force and limited pressure data were obtained for the basic wing, and for the wing fitted with the two different winglet designs, at Mach numbers of 0.60, 0.70, 0.75 and 0.80 over an angle of attack range of -2 to +6 degrees, at zero sideslip. The data have been presented without analysis to expedite publication.

  17. Active Twist Control for a Compliant Wing Structure, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Blended wing body (BWB) aircraft provide an aerodynamically superior solution over traditional tube-and-wing designs for a number of mission profiles. These...

  18. Flight service evaluation of kevlar-49 epoxy composite panels in wide-bodied commercial transport aircraft: Flight service report

    Science.gov (United States)

    Stone, R. H.

    1981-01-01

    Kevlar-49 fairing panels, installed as flight service components on three L-1011s, were inspected after 7 years service. There are six Kevlar-49 panels on each aircraft: a left hand and right hand set of a wing-body sandwich fairing; a slid laminate under-wing fillet panel; and a 422 K service aft engine fairing. The three L-1011s include one each in service with Eastern, Air Canada, and TWA. The fairings have accumulated a total of 52,500 hours, with one ship set having 17.700 hours service. The inspections were conducted at the airlines' major maintenance bases with the participation of Lockheed Engineering. The Kevlar-49 components were found to be performing satisfactorily in service with no major problems or any condition requiring corrective action. The only defects noted were minor impact damage and a minor degree of fastener hole fraying and elongation. These are for the most part comparable to damage noted on fiberglass fairings. The service history to date indicates that Kevlar-49 epoxy composite materials have satisfactory service characteristics for use in aircraft secondary structure.

  19. Integration of Multiple Non-Normal Checklist Procedures into a Single Checklist Procedure for Transport Aircraft: A Preliminary Investigation

    Science.gov (United States)

    Foernsler, Lynda J.

    1996-01-01

    Checklists are used by the flight crew to properly configure an aircraft for safe flight and to ensure a high level of safety throughout the duration of the flight. In addition, the checklist provides a sequential framework to meet cockpit operational requirements, and it fosters cross-checking of the flight deck configuration among crew members. This study examined the feasibility of integrating multiple checklists for non-normal procedures into a single procedure for a typical transport aircraft. For the purposes of this report, a typical transport aircraft is one that represents a midpoint between early generation aircraft (B-727/737-200 and DC-10) and modern glass cockpit aircraft (B747-400/777 and MD-11). In this report, potential conflicts among non-normal checklist items during multiple failure situations for a transport aircraft are identified and analyzed. The non-normal checklist procedure that would take precedence for each of the identified multiple failure flight conditions is also identified. The rationale behind this research is that potential conflicts among checklist items might exist when integrating multiple checklists for non-normal procedures into a single checklist. As a rule, multiple failures occurring in today's highly automated and redundant system transport aircraft are extremely improbable. In addition, as shown in this analysis, conflicts among checklist items in a multiple failure flight condition are exceedingly unlikely. The possibility of a multiple failure flight condition occurring with a conflict among checklist items is so remote that integration of the non-normal checklists into a single checklist appears to be a plausible option.

  20. THE FUTURE OF PASSENGER AIR TRANSPORT – VERY LARGE AIRCRAFT AND OUT KEY HUMAN FACTORS AFFECTING THE OPERATION AND SAFETY OF PASSENGER AIR TRANSPORT

    Directory of Open Access Journals (Sweden)

    Petra Skolilova

    2017-12-01

    Full Text Available The article outlines some human factors affecting the operation and safety of passenger air transport given the massive increase in the use of the VLA. Decrease of the impact of the CO2 world emissions is one of the key goals for the new aircraft design. The main wave is going to reduce the burned fuel. Therefore, the eco-efficiency engines combined with reasonable economic operation of the aircraft are very important from an aviation perspective. The prediction for the year 2030 says that about 90% of people, which will use long-haul flights to fly between big cities. So, the A380 was designed exactly for this time period, with a focus on the right capacity, right operating cost and right fuel burn per seat. There is no aircraft today with better fuel burn combined with eco-efficiency per seat, than the A380. The very large aircrafts (VLAs are the future of the commercial passenger aviation. Operating cost versus safety or CO2 emissions versus increasing automation inside the new generation aircraft. Almost 80% of the world aircraft accidents are caused by human error based on wrong action, reaction or final decision of pilots, the catastrophic failures of aircraft systems, or air traffic control errors are not so frequent. So, we are at the beginning of a new age in passenger aviation and the role of the human factor is more important than ever.

  1. Results of design studies and wind tunnel tests of high-aspect-ratio supercritical wings for an energy efficient transport

    Science.gov (United States)

    Steckel, D. K.; Dahlin, J. A.; Henne, P. A.

    1980-01-01

    These basic characteristics of critical wings included wing area, aspect ratio, average thickness, and sweep as well as practical constraints on the planform and thickness near the wing root to allow for the landing gear. Within these constraints, a large matrix of wing designs was studied with spanwise variations in the types of airfoils and distribution of lift as well as some small planform changes. The criteria by which the five candidate wings were chosen for testing were the cruise and buffet characteristics in the transonic regime and the compatibility of the design with low speed (high-lift) requirements. Five wing-wide-body configurations were tested in the NASA Ames 11-foot transonic wind tunnel. Nacelles and pylons, flap support fairings, tail surfaces, and an outboard aileron were also tested on selected configurations.

  2. Dynamics Modeling and L1 Adaptive Control of a Transport Aircraft for Heavyweight Airdrop

    Directory of Open Access Journals (Sweden)

    Ri Liu

    2015-01-01

    Full Text Available The longitudinal nonlinear aircraft model with cargo extraction is derived using theoretical mechanics and flight mechanics. Furthermore, the nonlinear model is approximated by a semilinear time-varying system with the cargo disturbances viewed as unknown nonlinearities, both matched and unmatched types. On this basis, a novel autopilot inner-loop based on the LQR and L1 adaptive theory is developed to reject the unknown nonlinear disturbances caused by the cargo and also to accommodate uncertainties. Analysis shows that the controller can guarantee robustness in the presence of fast adaptation, without exciting control signal oscillations and gain scheduling. The overall control system is completed with the outer-loop altitude-hold control based on a PID controller. Simulations are conducted under the condition that one transport aircraft performs maximum load airdrop mission at the height of 82 ft, using single row single platform mode. The results show the good performance of the control scheme, which can meet the airdrop mission performance indexes well, even in the presence of ±20% aerodynamic uncertainties.

  3. Projection-Based Adaptive Backstepping Control of a Transport Aircraft for Heavyweight Airdrop

    Directory of Open Access Journals (Sweden)

    Ri Liu

    2015-01-01

    Full Text Available An autopilot inner loop that combines backstepping control with adaptive function approximation is developed for airdrop operations. The complex nonlinear uncertainty of the aircraft-cargo model is factorized into a known matrix and an uncertainty function, and a projection-based adaptive approach is proposed to estimate this function. Using projection in the adaptation law bounds the estimated function and guarantees the robustness of the controller against time-varying external disturbances and uncertainties. The convergence properties and robustness of the control method are proved via Lyapunov theory. Simulations are conducted under the condition that one transport aircraft performs a maximum load airdrop task at a height of 82 ft, using single row single platform mode. The results show good performance and robust operation of the controller, and the airdrop mission performance indexes are satisfied, even in the presence of ±15% uncertainty in the aerodynamic coefficients, ±0.01 rad/s pitch rate disturbance, and 20% actuators faults.

  4. Robust active noise control in the loadmaster area of a military transport aircraft.

    Science.gov (United States)

    Kochan, Kay; Sachau, Delf; Breitbach, Harald

    2011-05-01

    The active noise control (ANC) method is based on the superposition of a disturbance noise field with a second anti-noise field using loudspeakers and error microphones. This method can be used to reduce the noise level inside the cabin of a propeller aircraft. However, during the design process of the ANC system, extensive measurements of transfer functions are necessary to optimize the loudspeaker and microphone positions. Sometimes, the transducer positions have to be tailored according to the optimization results to achieve a sufficient noise reduction. The purpose of this paper is to introduce a controller design method for such narrow band ANC systems. The method can be seen as an extension of common transducer placement optimization procedures. In the presented method, individual weighting parameters for the loudspeakers and microphones are used. With this procedure, the tailoring of the transducer positions is replaced by adjustment of controller parameters. Moreover, the ANC system will be robust because of the fact that the uncertainties are considered during the optimization of the controller parameters. The paper describes the necessary theoretic background for the method and demonstrates the efficiency in an acoustical mock-up of a military transport aircraft.

  5. An exact model for airline flight network optimization based on transport momentum and aircraft load factor

    Directory of Open Access Journals (Sweden)

    Daniel Jorge Caetano

    2017-12-01

    Full Text Available The problem of airline flight network optimization can be split into subproblems such as Schedule Generation (SG and Fleet Assignment (FA, solved in consecutive steps or in an integrated way, usually based on monetary costs and revenue forecasts. A linear pro­gramming model to solve SG and FA in an integrated way is presented, but with an al­ternative approach based on transport momentum and aircraft load factor. This alterna­tive approach relies on demand forecast and allows obtaining solutions considering min­imum average load factors. Results of the proposed model applications to instances of a regional Brazilian airline are presented. The comparison of the schedules generated by the proposed approach against those obtained by applying a model based on mone­tary costs and revenue forecasts demonstrates the validity of this alternative approach for airlines network planning.

  6. Assessment of the risk of transporting plutonium dioxide by cargo aircraft

    Energy Technology Data Exchange (ETDEWEB)

    McSweeney, T.I.; Johnson, J.F.

    1977-06-01

    To enable easy comparison, all the plutonium shipping evaluations have used the same bases. In each, the results have been related to a future time--the early 1980s--when plutonium shipments are expected to be more frequent. The characteristics of the nuclear economy used in this analysis are: A total of 18 metric tons (MT) of plutonium is shipped annually, via the mode being evaluated. 100 kg of plutonium are transported per shipment. For air shipment, a truck and air segment are considered. The average shipping distance per shipment is 1,422 miles with 14 percent of the distance being by truck. Shipping systems and regulations are the same as in 1974. PuO/sub 2/ is shipped in 6M containers. The use of other shipping conditions could result in different risks than reported here. For the purposes of this study, plutonium dioxide was assumed to be carried exclusively in the 15-gal version of the 6M container. Unless otherwise noted, all references to 6M containers in the report refer to this particular size. Based on the shipping assumptions, the likelihood that an aircraft carrying a shipment will be involved in an accident is estimated to be about once in 450 years. For the projected shipping rate in the early 1980s, the likelihood of a release of plutonium as a result of shipment by air is one in 900 years for dioxide powder in the 6M container. The comparison of the truck and air transport modes for the same material showed truck transport to have less risk. At the same time, the air transport of plutonium dioxide was demonstrated to have a lower risk than other commonly accepted societal risks. The major contributor to the overall risk spectra for air transport was a cargo airplane, carrying plutonium dioxide, crashing at high speed into hard rock.

  7. Transonic pressure measurements and comparison of theory to experiment for an arrow-wing configuration. Volume 1: Experimental data report, base configuration and effects of wing twist and leading-edge configuration. [wind tunnel tests, aircraft models

    Science.gov (United States)

    Manro, M. E.; Manning, K. J. R.; Hallstaff, T. H.; Rogers, J. T.

    1975-01-01

    A wind tunnel test of an arrow-wing-body configuration consisting of flat and twisted wings, as well as a variety of leading- and trailing-edge control surface deflections, was conducted at Mach numbers from 0.4 to 1.1 to provide an experimental pressure data base for comparison with theoretical methods. Theory-to-experiment comparisons of detailed pressure distributions were made using current state-of-the-art attached and separated flow methods. The purpose of these comparisons was to delineate conditions under which these theories are valid for both flat and twisted wings and to explore the use of empirical methods to correct the theoretical methods where theory is deficient.

  8. Optimal Topology of Aircraft Rib and Spar Structures under Aeroelastic Loads

    Science.gov (United States)

    Stanford, Bret K.; Dunning, Peter D.

    2014-01-01

    Several topology optimization problems are conducted within the ribs and spars of a wing box. It is desired to locate the best position of lightening holes, truss/cross-bracing, etc. A variety of aeroelastic metrics are isolated for each of these problems: elastic wing compliance under trim loads and taxi loads, stress distribution, and crushing loads. Aileron effectiveness under a constant roll rate is considered, as are dynamic metrics: natural vibration frequency and flutter. This approach helps uncover the relationship between topology and aeroelasticity in subsonic transport wings, and can therefore aid in understanding the complex aircraft design process which must eventually consider all these metrics and load cases simultaneously.

  9. Some experiences in aircraft aeroelastic design using Preliminary Aeroelastic Design of Structures (PAD)

    Science.gov (United States)

    Radovcich, N. A.

    1984-01-01

    The design experience associated with a benchmark aeroelastic design of an out of production transport aircraft is discussed. Current work being performed on a high aspect ratio wing design is reported. The Preliminary Aeroelastic Design of Structures (PADS) system is briefly summarized and some operational aspects of generating the design in an automated aeroelastic design environment are discussed.

  10. THE AIRCRAFT ACCIDENT RATE IN CIVIL AVIATION DURING AIR TRANSPORT OPERATIONS AT THE AIRPORT

    Directory of Open Access Journals (Sweden)

    О. Запорожець

    2012-04-01

    Full Text Available The aircraft accident dates in civil aviation Ukraine and in republics of participants Agreement werecollected. The aircraft accident rate per 1 million flights was defined for civil aviation Ukraine and republicsof participants Agreement. Dynamics of aircraft accident rate was represented for civil aviation Ukraine.This dynamics was done for civil aviation of republics of participants Agreement and worldwide.

  11. Design and wind tunnel tests of winglets on a DC-10 wing

    Science.gov (United States)

    Gilkey, R. D.

    1979-01-01

    Results are presented of a wind tunnel test utilizing a 4.7 percent scale semi-span model in the Langley Research Center 8-foot transonic pressure wind tunnel to establish the cruise drag improvement potential of winglets as applied to the DC-10 wide body transport aircraft. Winglets were investigated on both the DC-10 Series 10 (domestic) and 30/40 (intercontinental) configurations and compared with the Series 30/40 configuration. The results of the investigation confirm that for the DC-10 winglets provide approximately twice the cruise drag reduction of wing-tip extensions for about the same increase in bending moment at the wing fuselage juncture. Furthermore, the winglet configurations achieved drag improvements which were in close agreement to analytical estimates. It was observed that relatively small changes in wing-winglet tailoring effected large improvements in drag and visual flow characteristics. All final winglet configurations exhibited visual flow characteristics on the wing and winglets

  12. Initial Low-Reynolds Number Iced Aerodynamic Performance for CRM Wing

    Science.gov (United States)

    Woodard, Brian; Diebold, Jeff; Broeren, Andy; Potapczuk, Mark; Lee, Sam; Bragg, Michael

    2015-01-01

    NASA, FAA, ONERA, and other partner organizations have embarked on a significant, collaborative research effort to address the technical challenges associated with icing on large scale, three-dimensional swept wings. These are extremely complex phenomena important to the design, certification and safe operation of small and large transport aircraft. There is increasing demand to balance trade-offs in aircraft efficiency, cost and noise that tend to compete directly with allowable performance degradations over an increasing range of icing conditions. Computational fluid dynamics codes have reached a level of maturity that they are being proposed by manufacturers for use in certification of aircraft for flight in icing. However, sufficient high-quality data to evaluate their performance on iced swept wings are not currently available in the public domain and significant knowledge gaps remain.

  13. NASA,FAA,ONERA Swept-Wing Icing and Aerodynamics: Summary of Research and Current Status

    Science.gov (United States)

    Broeren, Andy

    2015-01-01

    NASA, FAA, ONERA, and other partner organizations have embarked on a significant, collaborative research effort to address the technical challenges associated with icing on large scale, three-dimensional swept wings. These are extremely complex phenomena important to the design, certification and safe operation of small and large transport aircraft. There is increasing demand to balance trade-offs in aircraft efficiency, cost and noise that tend to compete directly with allowable performance degradations over an increasing range of icing conditions. Computational fluid dynamics codes have reached a level of maturity that they are being proposed by manufacturers for use in certification of aircraft for flight in icing. However, sufficient high-quality data to evaluate their performance on iced swept wings are not currently available in the public domain and significant knowledge gaps remain.

  14. Static Aeroelastic Scaling and Analysis of a Sub-Scale Flexible Wing Wind Tunnel Model

    Science.gov (United States)

    Ting, Eric; Lebofsky, Sonia; Nguyen, Nhan; Trinh, Khanh

    2014-01-01

    This paper presents an approach to the development of a scaled wind tunnel model for static aeroelastic similarity with a full-scale wing model. The full-scale aircraft model is based on the NASA Generic Transport Model (GTM) with flexible wing structures referred to as the Elastically Shaped Aircraft Concept (ESAC). The baseline stiffness of the ESAC wing represents a conventionally stiff wing model. Static aeroelastic scaling is conducted on the stiff wing configuration to develop the wind tunnel model, but additional tailoring is also conducted such that the wind tunnel model achieves a 10% wing tip deflection at the wind tunnel test condition. An aeroelastic scaling procedure and analysis is conducted, and a sub-scale flexible wind tunnel model based on the full-scale's undeformed jig-shape is developed. Optimization of the flexible wind tunnel model's undeflected twist along the span, or pre-twist or wash-out, is then conducted for the design test condition. The resulting wind tunnel model is an aeroelastic model designed for the wind tunnel test condition.

  15. Intergration effects of D-shaped, underwing, aft-mounted, separate-flow, flow-through nacelles on a high-wing transport

    Science.gov (United States)

    Lamb, Milton; Carlson, John R.; Pendergraft, Odis C., Jr.

    1987-01-01

    An experimental investigation was conducted in the Langley 16-Foot Transonic Tunnel at freestream Mach numbers from 0.70 to 0.82 and angles of attack from -3.0 to 4.0 deg to determine the integration effects of D-shaped, underwing, aft-mounted, separate-flow, flow-through nacelles on a high-wing transonic transport configuration. The results showed that the aft-mounted nacelle/pylon produced an increase in lift over that of the wing-body configuration by pressurizing much of the wing lower surface in front of the pylon. For the D-shaped nacelle, a substantial region of supersonic flow over the wing, aft of the lip of the nacelle, cancelled the reduction in drag caused by the increase in pressures ahead of the lip, to increase interference and form drag compared with a similar circular-shaped nacelle. The installed drag of the D=shaped nacelle was essentially the same as that of an aft-mounted circular nacelle from a previous investigation.

  16. A fuel conservation study for transport aircraft utilizing advanced technology and hydrogen fuel

    Science.gov (United States)

    Berry, W.; Calleson, R.; Espil, J.; Quartero, C.; Swanson, E.

    1972-01-01

    The conservation of fossil fuels in commercial aviation was investigated. Four categories of aircraft were selected for investigation: (1) conventional, medium range, low take-off gross weight; (2) conventional, long range, high take-off gross weights; (3) large take-off gross weight aircraft that might find future applications using both conventional and advanced technology; and (4) advanced technology aircraft of the future powered with liquid hydrogen fuel. It is concluded that the hydrogen fueled aircraft can perform at reduced size and gross weight the same payload/range mission as conventionally fueled aircraft.

  17. Effect of winglets on a first-generation jet transport wing. 4: Stability characteristics for a full-span model at Mach 0.30

    Science.gov (United States)

    Meyer, R. R., Jr.

    1978-01-01

    The static longitudinal and lateral directional characteristics of a 0.035 scale model of a first generation jet transport were obtained with and without upper winglets. The data were obtained for take off and landing configurations at a free stream Mach number of 0.30. The results generally indicated that upper winglets had favorable effects on the stability characteristics of the aircraft.

  18. Validation of morphing wing methodologies on an unmanned aerial system and a wind tunnel technology demonstrator

    Science.gov (United States)

    Gabor, Oliviu Sugar

    To increase the aerodynamic efficiency of aircraft, in order to reduce the fuel consumption, a novel morphing wing concept has been developed. It consists in replacing a part of the wing upper and lower surfaces with a flexible skin whose shape can be modified using an actuation system placed inside the wing structure. Numerical studies in two and three dimensions were performed in order to determine the gains the morphing system achieves for the case of an Unmanned Aerial System and for a morphing technology demonstrator based on the wing tip of a transport aircraft. To obtain the optimal wing skin shapes in function of the flight condition, different global optimization algorithms were implemented, such as the Genetic Algorithm and the Artificial Bee Colony Algorithm. To reduce calculation times, a hybrid method was created by coupling the population-based algorithm with a fast, gradient-based local search method. Validations were performed with commercial state-of-the-art optimization tools and demonstrated the efficiency of the proposed methods. For accurately determining the aerodynamic characteristics of the morphing wing, two new methods were developed, a nonlinear lifting line method and a nonlinear vortex lattice method. Both use strip analysis of the span-wise wing section to account for the airfoil shape modifications induced by the flexible skin, and can provide accurate results for the wing drag coefficient. The methods do not require the generation of a complex mesh around the wing and are suitable for coupling with optimization algorithms due to the computational time several orders of magnitude smaller than traditional three-dimensional Computational Fluid Dynamics methods. Two-dimensional and three-dimensional optimizations of the Unmanned Aerial System wing equipped with the morphing skin were performed, with the objective of improving its performances for an extended range of flight conditions. The chordwise positions of the internal actuators

  19. Integration effects of underwing forward- and rearward-mounted separate-flow, flow-through nacelles on a high-wing transport

    Science.gov (United States)

    Lamb, M.; Abeyounis, W. K.

    1986-01-01

    An experimental investigation was conducted in the Langley 16-Foot Transonic Tunnel at free-stream Mach numbers from 0.70 to 0.82 and angles of attack from -2.5 to 4.0 degrees to determine the integration effects of pylon-mounted underwing forward and rearward separate-flow, flow-through nacelles on a high-wing transonic transport configuration. The results showed that the installed drag of the nacelle/pylon in the rearward location was slightly less than that of the nacelle/pylon in the forward location. This reduction was due to the reduction in calculated skin friction of the nacelle/pylon configuration. In all cases the combined value of form, wave, and interference drag was excessively high. However, the configuration with the nacelle/pylon in a rearward location produced an increase in lift over that of the basic wing-body configuration.

  20. Safety Verification of the Small Aircraft Transportation System Concept of Operations

    Science.gov (United States)

    Carreno, Victor; Munoz, Cesar

    2005-01-01

    A critical factor in the adoption of any new aeronautical technology or concept of operation is safety. Traditionally, safety is accomplished through a rigorous process that involves human factors, low and high fidelity simulations, and flight experiments. As this process is usually performed on final products or functional prototypes, concept modifications resulting from this process are very expensive to implement. This paper describe an approach to system safety that can take place at early stages of a concept design. It is based on a set of mathematical techniques and tools known as formal methods. In contrast to testing and simulation, formal methods provide the capability of exhaustive state exploration analysis. We present the safety analysis and verification performed for the Small Aircraft Transportation System (SATS) Concept of Operations (ConOps). The concept of operations is modeled using discrete and hybrid mathematical models. These models are then analyzed using formal methods. The objective of the analysis is to show, in a mathematical framework, that the concept of operation complies with a set of safety requirements. It is also shown that the ConOps has some desirable characteristic such as liveness and absence of dead-lock. The analysis and verification is performed in the Prototype Verification System (PVS), which is a computer based specification language and a theorem proving assistant.

  1. Economic effects of propulsion system technology on existing and future transport aircraft

    Science.gov (United States)

    Sallee, G. P.

    1974-01-01

    The results of an airline study of the economic effects of propulsion system technology on current and future transport aircraft are presented. This report represents the results of a detailed study of propulsion system operating economics. The study has four major parts: (1) a detailed analysis of current propulsion system maintenance with respect to the material and labor costs encountered versus years in service and the design characteristics of the major elements of the propulsion system of the B707, b727, and B747. (2) an analysis of the economic impact of a future representative 1979 propulsion system is presented with emphasis on depreciation of investment, fuel costs and maintenance costs developed on the basis of the analysis of the historical trends observed. (3) recommendations concerning improved methods of forecasting the maintenance cost of future propulsion systems are presented. A detailed method based on the summation of the projected labor and material repair costs for each major engine module and its installation along with a shorter form suitable for quick, less detailed analysis are presented, and (4) recommendations concerning areas where additional technology is needed to improve the economics of future commercial propulsion systems are presented along with the suggested economic benefits available from such advanced technology efforts.

  2. Conceptual study of advanced VTOL transport aircraft engine; Kosoku VTOL kiyo engine no gainen kento

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Y.; Endo, M.; Matsuda, Y.; Sugiyama, N.; Watanabe, M.; Sugahara, N.; Yamamoto, K. [National Aerospace Laboratory, Tokyo (Japan)

    1996-04-01

    This report proposes the concept of an ultra-low noise engine for advanced high subsonic VTOL transport aircraft, and discusses its technological feasibility. As one of the applications of the previously reported `separated core turbofan engine,` the conceptual engine is composed of 3 core engines, 2 cruise fan engines for high subsonic cruising and 6 lift fan engines producing thrust of 98kN (10000kgf)/engine. The core turbojet engine bleeds a large amount of air at the outlet of a compressor to supply driving high-pressure air for fans to other engines. The lift fan engine is composed of a lift fan, driving combustor, turbine and speed reduction gear, and is featured by not only high operation stability and thin fan engine like a separated core engine but also ultra-low noise operation. The cruise fan engine adopts the same configuration as the lift fan engine. Since this engine configuration has no technological problems difficult to be overcome, its high technological feasibility is expected. 6 refs., 7 figs., 5 tabs.

  3. Experimental Model of Contaminant Transport by a Moving Wake Inside an Aircraft Cabin

    Science.gov (United States)

    Poussou, Stephane; Sojka, Paul; Plesniak, Michael

    2008-11-01

    The air cabin environment in jetliners is designed to provide comfortable and healthy conditions for passengers. The air ventilation system produces a recirculating pattern designed to minimize secondary flow between seat rows. However, disturbances are frequently introduced by individuals walking along the aisle and may significantly modify air distribution and quality. Spreading of infectious aerosols or biochemical agents presents potential health hazards. A fundamental study has been undertaken to understand the unsteady transport phenomena, to validate numerical simulations and to improve air monitoring systems. A finite moving body is modeled experimentally in a 10:1 scale simplified aircraft cabin equipped with ventilation, at a Reynolds number (based on body height) of the order of 10,000. Measurements of the ventilation and wake velocity fields are obtained using PIV and PLIF. Results indicate that the evolution of the typical downwash behind the body is profoundly perturbed by the ventilation flow. Furthermore, the interaction between wake and ventilation flow significantly alters scalar contaminant migration.

  4. Energy-based Aeroelastic Analysis and Optimisation of Morphing Wings

    NARCIS (Netherlands)

    De Breuker, R.

    2011-01-01

    Morphing aircraft can change their shape radically when confronted with a variety of conflicting flight conditions throughout their mission. For instance the F-14 Tomcat fighter aircraft, known from the movie Top Gun, was able to sweep its wings from a straight wing configuration to a highly swept

  5. Eclipse program C-141A aircraft

    Science.gov (United States)

    1997-01-01

    This photograph shows the Air Force C-141A that was used in the Eclipse project as a tow vehicle. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator-01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wind loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios.

  6. Comparison of analytical and wind-tunnel results for flutter and gust response of a transport wing with active controls

    Science.gov (United States)

    Abel, I.; Perry, B., III; Newsom, J. R.

    1982-01-01

    Two flutter suppression control laws wre designed and tested on a low speed aeroelastic model of a DC-10 derivative wing. Both control laws demontrated increases in flutter speed in excess of 25 percent above the passive wing flutter speed. In addition, one of the control laws was effective in reducing loads due to turbulence generated in the wind tunnel. The effect of variations in gain and phase on the closed-loop performance was measured and is compared with predictions. In general, both flutter and gust response predictions agree reasonably well with experimental data.

  7. Incorporating data link messaging into a multi-function display to support the Small Aircraft Transportation System (SATS) and the self-separation of general aviation aircraft.

    Science.gov (United States)

    Adams, Catherine A; Murdoch, Jennifer L; Consiglio, Maria C; Williams, Daniel M

    2007-07-01

    One objective of the Small Aircraft Transportation System (SATS) Project is to increase the capacity and utilization of small non-towered, non-radar equipped airports by transferring traffic management activities to an automated system and separation responsibilities to general aviation (GA) pilots. This paper describes the development of a research multi-function display (MFD) to support the interaction between pilots and an automated Airport Management Module (AMM). Preliminary results of simulation and flight tests indicate that adding the responsibility of monitoring other traffic for self-separation does not increase pilots' subjective workload levels. Pilots preferred using the enhanced MFD to execute flight procedures, reporting improved situation awareness (SA) over conventional instrument flight rules (IFR) procedures.

  8. Experimental investigation of airborne contaminant transport by a human wake moving in a ventilated aircraft cabin

    Science.gov (United States)

    Poussou, Stephane B.

    The air ventilation system in jetliners provides a comfortable and healthy environment for passengers. Unfortunately, the increase in global air traffic has amplified the risks presented by infectious aerosols or noxious material released during flight. Inside the cabin, air typically flows continuously from overhead outlets into sidewall exhausts in a circular pattern that minimizes secondary flow between adjacent seat rows. However, disturbances frequently introduced by individuals walking along an aisle may alter air distribution, and contribute to spreading of contaminants. Numerical simulation of these convoluted transient flow phenomena is difficult and complex, and experimental assessment of contaminant distribution in real cabins often impractical. A fundamental experimental study was undertaken to examine the transport phenomena, to validate computations and to improve air monitoring systems. A finite moving body was modeled in a 10:1 scale simplified aircraft cabin equipped with ventilation, at a Reynolds number (based on body diameter) of the order of 10,000. An experimental facility was designed and constructed to permit measurements of the ventilation and wake velocity fields using particle image velocimetry (PIV). Contaminant migration was imaged using the planar laser induced fluorescence (PLIF) technique. The effect of ventilation was estimated by comparison with a companion baseline study. Results indicate that the evolution of a downwash predominant behind finite bodies of small aspect ratio is profoundly perturbed by the ventilation flow. The reorganization of vortical structures in the near-wake leads to a shorter longitudinal recirculation region. Furthermore, mixing in the wake is modified and contaminant is observed to convect to higher vertical locations corresponding to seated passenger breathing level.

  9. A piloted simulation investigation of several command concepts for transport aircraft in the approach and landing

    OpenAIRE

    Field, Edmund

    1994-01-01

    With the introduction of modern fly-by-wire aircraft, the response of an aircraft to a pilot’s input can be augmented to something other than that for a conventional aircraft, with the resultant benefits and problems. The issue of what commanded response a pilot desires has received considerable attention, however no clear conclusions have yet emerged. The requirements for up and away flight and for the flare and landing seem to be different. Away from the ground rate command systems such...

  10. 78 FR 49221 - Airworthiness Directives; Piper Aircraft, Inc. Airplanes

    Science.gov (United States)

    2013-08-13

    ... this AD, inspect the wing lift strut forks for cracks using magnetic particle procedures, such as those... Aircraft, Inc. Model J-2 airplanes equipped with wing lift struts. AD 99-26-19 currently requires repetitively inspecting the wing lift struts for dents and corrosion; repetitively inspecting the wing lift...

  11. Aerodynamic Shape Optimization Design of Wing-Body Configuration Using a Hybrid FFD-RBF Parameterization Approach

    Science.gov (United States)

    Liu, Yuefeng; Duan, Zhuoyi; Chen, Song

    2017-10-01

    Aerodynamic shape optimization design aiming at improving the efficiency of an aircraft has always been a challenging task, especially when the configuration is complex. In this paper, a hybrid FFD-RBF surface parameterization approach has been proposed for designing a civil transport wing-body configuration. This approach is simple and efficient, with the FFD technique used for parameterizing the wing shape and the RBF interpolation approach used for handling the wing body junction part updating. Furthermore, combined with Cuckoo Search algorithm and Kriging surrogate model with expected improvement adaptive sampling criterion, an aerodynamic shape optimization design system has been established. Finally, the aerodynamic shape optimization design on DLR F4 wing-body configuration has been carried out as a study case, and the result has shown that the approach proposed in this paper is of good effectiveness.

  12. The use of parametric cost estimating relationships for transport aircraft systems in establishing initial Design to Cost Targets

    Science.gov (United States)

    Beltramo, M. N.; Anderson, J. L.

    1977-01-01

    This paper provides a brief overview of Design to Cost (DTC). Problems inherent in attempting to estimate costs are discussed, along with techniques and types of models that have been developed to estimate aircraft costs. A set of cost estimating relationships that estimate the total production cost of commercial and military transport aircraft at the systems level is presented and the manner in which these equations might be used effectively in developing initial DTC targets is indicated. The principal point made in this paper is that, by using a disagregated set of equations to estimate transport aircraft costs at the systems level, reasonably accurate preliminary cost estimates may be achieved. These estimates may serve directly as initial DTC targets, or adjustments may be made to the estimates obtained for some of the systems to estimate the production cost impact of alternative designs or manufacturing technologies. The relative ease by which estimates may be made with this model, the flexibility it provides by being disaggregated, and the accuracy of the estimates it provides make it a unique and useful tool in establishing initial DTC targets.

  13. Characteristics in the atmosphere of long-range transport aircraft cabins.

    Science.gov (United States)

    Vieillefond, H; Fourn, P; Auffret, R

    1977-06-01

    In the long run, the fatigue in aircrews performing frequent, long-range flights is linked to factors connected to the aircraft, such as noise, temperature, cabin pressure, atmosphere quality, and flight characteristics. These are the factors inherent to the aircraft which we have investigated during six long-range flights without time zone changes in DC-8 and DC-10 aircraft of the U.T.A. Cie. The results show that none of the pollutants researched reach doses considered hazardous by FAR 25 or by French legislation. This fact is due to the effective ventilation in the cabins. In flight, thermal comfort is limited by a too-low hygrometry RH = 12%. Even in a modern aircraft, the noise level remains high, but acoustical energy is spread over the less detrimental frequencies.

  14. Integrated multi-disciplinary design of a sailplane wing

    OpenAIRE

    Strauch, Gregory J.

    1985-01-01

    The objective of this research is to investigate the techniques and payoffs of integrated aircraft design. Lifting line theory and beam theory are used for the analysis of the aerodynamics and the structures of a composite sailplane wing. The wing is described by 33 - 34 design variables which involve the planform geometry, the twist distribution, and thicknesses of the spar caps, spar webs, and the skin at various stations along the wing. The wing design must satisfy 30 â ...

  15. Meeting Air Transportation Demand in 2025 by Using Larger Aircraft and Alternative Routing to Complement NextGen Operational Improvements

    Science.gov (United States)

    Smith, Jeremy C.; Guerreiro, Nelson M.; Viken, Jeffrey K.; Dollyhigh, Samuel M.; Fenbert, James W.

    2010-01-01

    A study was performed that investigates the use of larger aircraft and alternative routing to complement the capacity benefits expected from the Next Generation Air Transportation System (NextGen) in 2025. National Airspace System (NAS) delays for the 2025 demand projected by the Transportation Systems Analysis Models (TSAM) were assessed using NASA s Airspace Concept Evaluation System (ACES). The shift in demand from commercial airline to automobile and from one airline route to another was investigated by adding the route delays determined from the ACES simulation to the travel times used in the TSAM and re-generating new flight scenarios. The ACES simulation results from this study determined that NextGen Operational Improvements alone do not provide sufficient airport capacity to meet the projected demand for passenger air travel in 2025 without significant system delays. Using larger aircraft with more seats on high-demand routes and introducing new direct routes, where demand warrants, significantly reduces delays, complementing NextGen improvements. Another significant finding of this study is that the adaptive behavior of passengers to avoid congested airline-routes is an important factor when projecting demand for transportation systems. Passengers will choose an alternative mode of transportation or alternative airline routes to avoid congested routes, thereby reducing delays to acceptable levels for the 2025 scenario; the penalty being that alternative routes and the option to drive increases overall trip time by 0.4% and may be less convenient than the first-choice route.

  16. Simulation of transport and chemical transformation of aircraft exhaust at the tropopause region: Three-dimensional episodic mesoscale studies

    Energy Technology Data Exchange (ETDEWEB)

    Petry, H.; Lippert, E.; Hendricks, J.; Ebel, A. [Koeln Univ. (Germany). Inst. fuer Geophysik und Meteorologie

    1997-12-01

    A mesoscale chemistry transport model was developed and applied to investigate the impact of aircraft emissions on the atmospheric trace gas composition in the tropopause region. Several real episodes representing different seasons were simulated. The model results were compared with measurements and showed reasonable agreement. The emission induced ozone production is a function of the synoptic situation, the season, the time and location of release, the cruise altitude and its distance to the tropopause and the aerosol loading of the environment. The simulations also show that a considerable part of the emitted NO{sub x} is rapidly converted into the reservoir species HNO{sub 3}. A further finding is that heterogeneous reactions taking place on/in sulfuric acid aerosols cause a strong enhancement of the aircraft induced ozone and HNO{sub 3} production. (orig.) 144 figs., 42 tabs., 497 refs.

  17. Status of Advanced Stitched Unitized Composite Aircraft Structures

    Science.gov (United States)

    Jegley, Dawn C.; Velicki, Alex

    2013-01-01

    NASA has created the Environmentally Responsible Aviation (ERA) Project to explore and document the feasibility, benefits and technical risk of advanced vehicle configurations and enabling technologies that will reduce the impact of aviation on the environment. A critical aspect of this pursuit is the development of a lighter, more robust airframe that will enable the introduction of unconventional aircraft configurations that have higher lift-to-drag ratios, reduced drag, and lower community noise levels. The primary structural concept being developed under the ERA project in the Airframe Technology element is the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept. This paper describes how researchers at NASA and The Boeing Company are working together to develop fundamental PRSEUS technologies that could someday be implemented on a transport size aircraft with high aspect ratio wings or unconventional shapes such as a hybrid wing body airplane design.

  18. The Aluminum Falcon: a Low Cost Modern Commercial Transport

    Science.gov (United States)

    Bryant, Mark; Hernandez, Estela; King, Gregory; Lor, Alex Choua; Musser, Jana; Trigs, Deanne; Yee, Susan

    1994-01-01

    The American Institute of Aeronautics and Astronautics (AIAA) released a Request For Proposal (RFP) in the form of an undergraduate design competition for a 153 passenger jet transport with a range of 3,000 nautical miles. The primary requirement for this aircraft was low cost, both in acquisition and operation, with a technology availability date of the year 2000. This report presents the Non-Solo Design Group's response to the RFP, the Aluminum Falcon (AF-1). Non-Solo's approach to development was to take the best elements of seven individual preliminary designs, then combine and refine them. The resulting aircraft meets or exceeds all requirements of both the RFP and the Federal Aviation Administration (FAA). Highlights include a revolutionary wing planform, known as an M-wing, which offers many advantages over a conventional aft swept wing. For example, the M-wing lessens the travel in the aircraft center of gravity caused by fuel being stored in the wing. It also reduces the amount of torque imposed on the center wing box because more of the lifting load acts near the fuselage joint, rather than behind it. In essence, the M-wing offers the best of both worlds: using a forward swept wing root places the aerodynamic center of the wing further forward and allows the landing gear to be placed without the use of a yahudi. At the same time, with the outboard section swept backward the tip retains an amount of aeroelastic dampening that is lost on a completely forward swept wing. The result is a wing which has many advantages of a straight, unswept wings without the severe compressibility effects at high Mach numbers. Other highlights include judicious use of composites, giving recognition to the importance of weight and its effect on aircraft cost and performance, and an advanced passenger entertainment system which can be used as a source of revenue for the airlines. This aircraft meets the low-cost doctrine with an acquisition cost of $29 million and a direct

  19. Evaluation on the structural soundness of the transport package for low-level radioactive waste for subsurface disposal against aircraft impact by finite element method

    International Nuclear Information System (INIS)

    Itoh, Chihiro

    2009-01-01

    The structural analysis of aircraft crush on the transport package for low-level radioactive waste was performed using the impact force which was already used for the evaluation of the high-level waste transport package by LSDYNA code. The transport package was deformed, and stresses due to the crush exceeded elastic range. However, plastic strains yieled in the package were far than the elongation of the materials and the body of the package did not contact the disposal packages due to the deformation of the package. Therefore, it was confirmed that the package keeps its integrity against aircraft crush. (author)

  20. TCV software test and validation tools and technique. [Terminal Configured Vehicle program for commercial transport aircraft operation

    Science.gov (United States)

    Straeter, T. A.; Williams, J. R.

    1976-01-01

    The paper describes techniques for testing and validating software for the TCV (Terminal Configured Vehicle) program which is intended to solve problems associated with operating a commercial transport aircraft in the terminal area. The TCV research test bed is a Boeing 737 specially configured with digital computer systems to carry out automatic navigation, guidance, flight controls, and electronic displays research. The techniques developed for time and cost reduction include automatic documentation aids, an automatic software configuration, and an all software generation and validation system.

  1. The use of small unmanned aircraft by the Washington State Department of Transportation

    Science.gov (United States)

    2008-06-01

    Small, unmanned aerial vehicles (UAVs) are increasingly affordable, easy to transport and launch, : and can be equipped with cameras that provide information usable for transportation agencies. The : Washington State Department of Transportation cond...

  2. Theoretical and Experimental studies of aerodynamic interference effects. [aerodynamic forces on winglets and on wing nacelle configurations for the YC-14 and KC-135 aircraft

    Science.gov (United States)

    Rettie, I. H.

    1980-01-01

    Theoretical studies of aerodynamic forces on winglets shed considerable light on the mechanism by which these devices can reduce drag at constant total lift and on the necessity for proper alignment and cambering to achieve optimum favorable interference. Results of engineering studies, wind tunnel tests and performance predictions are reviewed for installations proposed for the AMST YC-14 and the KC-135 airplanes. The other major area of aerodynamic interference discussed is that of engine nacelle installations. Slipper and overwing nacelles have received much attention because of their potential for noise reduction, propulsive lift and improved ground clearance. A major challenge is the integration of such nacelles with the supercritical flow on the upper surface of a swept wing in cruise at high subsonic speeds.

  3. Aircraft integrated design and analysis: A classroom experience

    Science.gov (United States)

    Weisshaar, Terrence A.

    1989-01-01

    AAE 451 is the capstone course required of all senior undergraduates in the School of Aeronautics and Astronautics at Purdue University. During the past year the first steps of a long evolutionary process were taken to change the content and expectations of this course. These changes are the result of the availability of advanced computational capabilities and sophisticated electronic media availability at Purdue. This presentation will describe both the long range objectives and this year's experience using the High Speed Commercial Transport design, the AIAA Long Duration Aircraft design and RPV design proposal as project objectives. The central goal of these efforts is to provide a user-friendly, computer-software-based environment to supplement traditional design course methodology. The Purdue University Computer Center (PUCC), the Engineering Computer Network (ECN) and stand-alone PC's are being used for this development. This year's accomplishments center primarily on aerodynamics software obtained from NASA/Langley and its integration into the classroom. Word processor capability for oral and written work and computer graphics were also blended into the course. A total of ten HSCT designs were generated, ranging from twin-fuselage aircraft, forward swept wing aircraft to the more traditional delta and double-delta wing aircraft. Four Long Duration Aircraft designs were submitted, together with one RPV design tailored for photographic surveillance.

  4. Transport jet aircraft noise abatement in foreign countries: Growth, structure, impact. Volume 1: Europe, July 1980

    Science.gov (United States)

    Spencer, F. A.

    1980-01-01

    The development and implementation of aircraft noise control regulations in various European states are described. The countries include the United Kingdom, France, Switzerland, Federal Republic of Germany, Sweden, Denmark, and the Netherlands. Topics discussed include noise monitoring, airport curfews, land use planning, and the government structure for noise regulation.

  5. Dryden F-8 Research Aircraft Fleet 1973 in flight, DFBW and SCW

    Science.gov (United States)

    1973-01-01

    F-8 Digital Fly-By-Wire (left) and F-8 Supercritical Wing in flight. These two aircraft fundamentally changed the nature of aircraft design. The F-8 DFBW pioneered digital flight controls and led to such computer-controlled airacrft as the F-117A, X-29, and X-31. Airliners such as the Boeing 777 and Airbus A320 also use digital fly-by-wire systems. The other aircraft is a highly modified F-8A fitted with a supercritical wing. Dr. Richard T. Whitcomb of Langley Research Center originated the supercritical wing concept in the late 1960s. (Dr. Whitcomb also developed the concept of the 'area rule' in the early 1950s. It singificantly reduced transonic drag.) The F-8 Digital Fly-By-Wire (DFBW) flight research project validated the principal concepts of all-electric flight control systems now used on nearly all modern high-performance aircraft and on military and civilian transports. The first flight of the 13-year project was on May 25, 1972, with research pilot Gary E. Krier at the controls of a modified F-8C Crusader that served as the testbed for the fly-by-wire technologies. The project was a joint effort between the NASA Flight Research Center, Edwards, California, (now the Dryden Flight Research Center) and Langley Research Center. It included a total of 211 flights. The last flight was December 16, 1985, with Dryden research pilot Ed Schneider at the controls. The F-8 DFBW system was the forerunner of current fly-by-wire systems used in the space shuttles and on today's military and civil aircraft to make them safer, more maneuverable, and more efficient. Electronic fly-by-wire systems replaced older hydraulic control systems, freeing designers to design aircraft with reduced in-flight stability. Fly-by-wire systems are safer because of their redundancies. They are more maneuverable because computers can command more frequent adjustments than a human pilot can. For airliners, computerized control ensures a smoother ride than a human pilot alone can provide

  6. Experimental investigation of elastic mode control on a model of a transport aircraft

    Science.gov (United States)

    Abramovitz, M.; Heimbaugh, R. M.; Nomura, J. K.; Pearson, R. M.; Shirley, W. A.; Stringham, R. H.; Tescher, E. L.; Zoock, I. E.

    1981-01-01

    A 4.5 percent DC-10 derivative flexible model with active controls is fabricated, developed, and tested to investigate the ability to suppress flutter and reduce gust loads with active controlled surfaces. The model is analyzed and tested in both semispan and complete model configuration. Analytical methods are refined and control laws are developed and successfully tested on both versions of the model. A 15 to 25 percent increase in flutter speed due to the active system is demonstrated. The capability of an active control system to significantly reduce wing bending moments due to turbulence is demonstrated. Good correlation is obtained between test and analytical prediction.

  7. Unmanned Aerial Aircraft Systems for transportation engineering: Current practice and future challenges

    OpenAIRE

    Barmpounakis, Emmanouil N.; Vlahogianni, Eleni I.; Golias, John C.

    2016-01-01

    Acquiring and processing video streams from static cameras has been proposed as one of the most efficient tools for visualizing and gathering traffic information. With the latest advances in technology and visual media, combined with the increased needs in dealing with congestion more effectively and directly, the use of Unmanned Aerial Aircraft Systems (UAS) has emerged in the field of traffic engineering. In this paper, we review studies and applications that incorporate UAS in transportati...

  8. Simulator Evaluation of Simplified Propulsion-Only Emergency Flight Control Systems on Transport Aircraft

    Science.gov (United States)

    Burcham, Frank W., Jr.; Kaneshige, John; Bull, John; Maine, Trindel A.

    1999-01-01

    With the advent of digital engine control systems, considering the use of engine thrust for emergency flight control has become feasible. Many incidents have occurred in which engine thrust supplemented or replaced normal aircraft flight controls. In most of these cases, a crash has resulted, and more than 1100 lives have been lost. The NASA Dryden Flight Research Center has developed a propulsion-controlled aircraft (PCA) system in which computer-controlled engine thrust provides emergency flight control capability. Using this PCA system, an F-15 and an MD-11 airplane have been landed without using any flight controls. In simulations, C-17, B-757, and B-747 PCA systems have also been evaluated successfully. These tests used full-authority digital electronic control systems on the engines. Developing simpler PCA systems that can operate without full-authority engine control, thus allowing PCA technology to be installed on less capable airplanes or at lower cost, is also a desire. Studies have examined simplified ?PCA Ultralite? concepts in which thrust control is provided using an autothrottle system supplemented by manual differential throttle control. Some of these concepts have worked well. The PCA Ultralite study results are presented for simulation tests of MD-11, B-757, C-17, and B-747 aircraft.

  9. Conceptual study of an advanced VTOL transport aircraft; Kosoku VTOL ki no gainen kento

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Y.; Endo, M.; Matsuda, Y.; Sugiyama, N.; Watanabe, M.; Sugahara, N.; Yamamoto, K. [National Aerospace Laboratory, Tokyo (Japan)

    1996-05-01

    The concept of the advanced 100-passenger class VTOL aircraft equipped with new lift fan engines was clarified as domestic passenger aircraft for the 21st century. Under the assumption of a total weight of 40 tons, a seat fuselage diameter of 3.3m as small as possible and a short seat pitch, the airframe shape satisfying a target performance was obtained without any problems about aerodynamic stability, operability and control capability, and noise lower than that of small helicopters was also estimated. In the case of 10 tons in airframe payload and 8 tons in fuel, even if light-weight composite materials were used for most of parts including fuselage structure, a total weight summed to 42.3 tons exceeding a target by 2.3 tons. As this VTOL aircraft was limited to domestic flight use only, the total weight could be reduced without any change in airframe shape and number of passengers by reducing the payload (baggage weight can be probably reduced by 2 tons/100 passengers in the future domestic flight) and fuel (cruising range around 2500km can be secured even if fuel is reduced by 0.3 tons). In conclusion, this concept was thus technologically reasonable. 6 refs., 15 figs., 6 tabs.

  10. Assimilating aircraft-based measurements to improve forecast accuracy of volcanic ash transport

    NARCIS (Netherlands)

    Fu, G.; Lin, H.X.; Heemink, A.W.; Segers, A.J.; Lu, S.; Palsson, T.

    2015-01-01

    The 2010 Eyjafjallajökull volcano eruption had serious consequences to civil aviation. This has initiated a lot of research on volcanic ash transport forecast in recent years. For forecasting the volcanic ash transport after eruption onset, a volcanic ash transport and diffusion model (VATDM) needs

  11. The Impact of Rising Temperatures on Aircraft Takeoff Performance

    Science.gov (United States)

    Coffel, E.; Horton, R. M.; Thompson, T. R.

    2017-12-01

    Steadily rising mean and extreme temperatures as a result of climate change will likely impact the air transportation system over the coming decades. As air temperatures rise at constant pressure, air density declines, resulting in less lift generation by an aircraft wing at a given airspeed and potentially imposing a weight restriction on departing aircraft. This study presents a general model to project future weight restrictions across a fleet of aircraft with different takeoff weights operating at a variety of airports. We construct performance models for five common commercial aircraft and 19 major airports around the world and use projections of daily temperatures from the CMIP5 model suite under the RCP 4.5 and RCP 8.5 emissions scenarios to calculate required hourly weight restriction. We find that on average, 10-30% of annual flights departing at the time of daily maximum temperature may require some weight restriction below their maximum takeoff weights, with mean restrictions ranging from 0.5 to 4% of total aircraft payload and fuel capacity by mid- to late century. Both mid-sized and large aircraft are affected, and airports with short runways and high tempera- tures, or those at high elevations, will see the largest impacts. Our results suggest that weight restriction may impose a non-trivial cost on airlines and impact aviation operations around the world and that adaptation may be required in aircraft design, airline schedules, and/or runway lengths.

  12. Critical joints in large composite primary aircraft structures. Volume 1: Technical summary

    Science.gov (United States)

    Bunin, Bruce L.

    1985-01-01

    A program was conducted at Douglas Aircraft Company to develop the technology for critical joints in composite wing structure that meets all the design requirements of a 1990 commercial transport aircraft. In fulfilling this objective, analytical procedures for joint design and analysis were developed during Phase 1 of the program. Tests were conducted at the element level to supply the empirical data required for methods development. Large composite multirow joints were tested to verify the selected design concepts and for correlation with analysis predictions. The Phase 2 program included additional tests to provide joint design and analysis data, and culminated with several technology demonstration tests of a major joint area representative of a commercial transport wing. The technology demonstration program of Phase 2 is discussed. The analysis methodology development, structural test program, and correlation between test results and analytical strength predictions are reviewed.

  13. Analysis of aircraft and satellite measurements from the Intercontinental Chemical Transport Experiment (INTEX-B to quantify long-range transport of East Asian sulfur to Canada

    Directory of Open Access Journals (Sweden)

    A. van Donkelaar

    2008-06-01

    Full Text Available We interpret a suite of satellite, aircraft, and ground-based measurements over the North Pacific Ocean and western North America during April–May 2006 as part of the Intercontinental Chemical Transport Experiment Phase B (INTEX-B campaign to understand the implications of long-range transport of East Asian emissions to North America. The Canadian component of INTEX-B included 33 vertical profiles from a Cessna 207 aircraft equipped with an aerosol mass spectrometer. Long-range transport of organic aerosols was insignificant, contrary to expectations. Measured sulfate plumes in the free troposphere over British Columbia exceeded 2 μg/m3. We update the global anthropogenic emission inventory in a chemical transport model (GEOS-Chem and use it to interpret the observations. Aerosol Optical Depth (AOD retrieved from two satellite instruments (MISR and MODIS for 2000–2006 are analyzed with GEOS-Chem to estimate an annual growth in Chinese sulfur emissions of 6.2% and 9.6%, respectively. Analysis of aircraft sulfate measurements from the NASA DC-8 over the central Pacific, the NSF C-130 over the east Pacific and the Cessna over British Columbia indicates most Asian sulfate over the ocean is in the lower free troposphere (800–600 hPa, with a decrease in pressure toward land due to orographic effects. We calculate that 56% of the measured sulfate between 500–900 hPa over British Columbia is due to East Asian sources. We find evidence of a 72–85% increase in the relative contribution of East Asian sulfate to the total burden in spring off the northwest coast of the United States since 1985. Campaign-average simulations indicate anthropogenic East Asian sulfur emissions increase mean springtime sulfate in Western Canada at the surface by 0.31 μg/m3 (~30% and account for 50% of the overall regional sulfate burden between 1 and 5 km. Mean measured daily surface sulfate concentrations taken in the Vancouver area increase by

  14. DAST in Flight just after Structural Failure of Right Wing

    Science.gov (United States)

    1980-01-01

    Two BQM-34 Firebee II drones were modified with supercritical airfoils, called the Aeroelastic Research Wing (ARW), for the Drones for Aerodynamic and Structural Testing (DAST) program, which ran from 1977 to 1983. This photo, taken 12 June 1980, shows the DAST-1 (Serial #72-1557) immediately after it lost its right wing after suffering severe wing flutter. The vehicle crashed near Cuddeback Dry Lake. The Firebee II was selected for the DAST program because its standard wing could be removed and replaced by a supercritical wing. The project's digital flutter suppression system was intended to allow lighter wing structures, which would translate into better fuel economy for airliners. Because the DAST vehicles were flown intentionally at speeds and altitudes that would cause flutter, the program anticipated that crashes might occur. These are the image contact sheets for each image resolution of the NASA Dryden Drones for Aerodynamic and Structural Testing (DAST) Photo Gallery. From 1977 to 1983, the Dryden Flight Research Center, Edwards, California, (under two different names) conducted the DAST Program as a high-risk flight experiment using a ground-controlled, pilotless aircraft. Described by NASA engineers as a 'wind tunnel in the sky,' the DAST was a specially modified Teledyne-Ryan BQM-34E/F Firebee II supersonic target drone that was flown to validate theoretical predictions under actual flight conditions in a joint project with the Langley Research Center, Hampton, Virginia. The DAST Program merged advances in electronic remote control systems with advances in airplane design. Drones (remotely controlled, missile-like vehicles initially developed to serve as gunnery targets) had been deployed successfully during the Vietnamese conflict as reconnaissance aircraft. After the war, the energy crisis of the 1970s led NASA to seek new ways to cut fuel use and improve airplane efficiency. The DAST Program's drones provided an economical, fuel-conscious method for

  15. Measurements of the response of transport aircraft ceiling panels to fuel pool fires

    Science.gov (United States)

    Bankston, C. P.; Back, L. H.

    1985-01-01

    Tests were performed to characterize the responses of various aircraft ceiling panel configurations to a simulated post-crash fire. Attention was given to one currently used and four new ceiling configurations exposed to a fuel pool fire in a circulated air enclosure. The tests were controlled to accurately represent conditions in a real fire. The panels were constructed of fiberglass-epoxy, graphite-phenolic resin, fiberglass-phenolic resin, Kevlar-epoxy, and Kevlar-phenolic resin materials. The phenolic resin-backed sheets performed the best under the circumstances, except when combined with Kevlar, which became porous when charred.

  16. New Dynamic Approach of a Safety Barrier Wall for a Civil Transport Aircraft

    OpenAIRE

    Merz, Ludger

    2010-01-01

    One of the challenges for Airbus preparing a new freighter development process was the design of a solid freighter barrier, which separates the courier area from the cargo compartment. The major task of such a barrier is to protect the passengers against all risks caused due to cargo impact by a justifiable design. These risks may result from all kind of survivable incident and accident scenarios. Real aircraft crashes were analyzed to get away from a static book-case and come to a more reali...

  17. Aircraft Emission Inventories Projected in Year 2015 for a High Speed Civil Transport (HSCT) Universal Airline Network. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Baughcum, S.L.; Henderson, S.C.

    1995-07-01

    This report describes the development of a three-dimensional database of aircraft fuel burn and emissions (fuel burned, NOx, CO, and hydrocarbons) from projected fleets of high speed civil transports (HSCT`s) on a universal airline network. Inventories for 500 and 1000 HSCT fleets, as well as the concurrent subsonic fleets, were calculated. The objective of this work was to evaluate the changes in geographical distribution of the HSCT emissions as the fleet size grew from 500 to 1000 HSCT`s. For this work, a new expanded HSCT network was used and flights projected using a market penetration analysis rather than assuming equal penetration as was done in the earlier studies. Emission inventories on this network were calculated for both Mach 2.0 and Mach 2.4 HSCT fleets with NOx cruise emission indices of approximately 5 and 15 grams NOx/kg fuel. These emissions inventories are available for use by atmospheric scientists conducting the Atmospheric Effects of Stratospheric Aircraft (AESA) modeling studies. Fuel burned and emissions of nitrogen oxides (NOx as NO2), carbon monoxide, and hydrocarbons have been calculated on a 1 degree latitude x 1 degree longitude x 1 kilometer attitude grid and delivered to NASA as electronic files.

  18. An Assessment of Reduced Crew and Single Pilot Operations in Commercial Transport Aircraft Operations

    Science.gov (United States)

    Bailey, Randall E.; Kramer, Lynda J.; Kennedy, Kellie D.; Stephens, Chad L.; Etherington, Timothy J.

    2017-01-01

    Future reduced crew operations or even single pilot operations for commercial airline and on-demand mobility applications are an active area of research. These changes would reduce the human element and thus, threaten the precept that "a well-trained and well-qualified pilot is the critical center point of aircraft systems safety and an integral safety component of the entire commercial aviation system." NASA recently completed a pilot-in-the-loop high fidelity motion simulation study in partnership with the Federal Aviation Administration (FAA) attempting to quantify the pilot's contribution to flight safety during normal flight and in response to aircraft system failures. Crew complement was used as the experiment independent variable in a between-subjects design. These data show significant increases in workload for single pilot operations, compared to two-crew, with subjective assessments of safety and performance being significantly degraded as well. Nonetheless, in all cases, the pilots were able to overcome the failure mode effects in all crew configurations. These data reflect current-day flight deck equipage and help identify the technologies that may improve two-crew operations and/or possibly enable future reduced crew and/or single pilot operations.

  19. Dynamics modeling and control of a transport aircraft for ultra-low altitude airdrop

    Directory of Open Access Journals (Sweden)

    Liu Ri

    2015-04-01

    Full Text Available The nonlinear aircraft model with heavy cargo moving inside is derived by using the separation body method, which can describe the influence of the moving cargo on the aircraft attitude and altitude accurately. Furthermore, the nonlinear system is decoupled and linearized through the input–output feedback linearization method. On this basis, an iterative quasi-sliding mode (SM flight controller for speed and pitch angle control is proposed. At the first-level SM, a global dynamic switching function is introduced thus eliminating the reaching phase of the sliding motion. At the second-level SM, a nonlinear function with the property of “smaller errors correspond to bigger gains and bigger errors correspond to saturated gains” is designed to form an integral sliding manifold, and the overcompensation of the integral term to big errors is weakened. Lyapunov-based analysis shows that the controller with strong robustness can reject both constant and time-varying model uncertainties. The performance of the proposed control strategy is verified in a maximum load airdrop mission.

  20. Transition to Glass: Pilot Training for High-Technology Transport Aircraft

    Science.gov (United States)

    Wiener, Earl L.; Chute, Rebecca D.; Moses, John H.

    1999-01-01

    This report examines the activities of a major commercial air carrier between 1993 and late 1996 as it acquired an advanced fleet of high-technology aircraft (Boeing 757). Previously, the airline's fleet consisted of traditional (non-glass) aircraft, and this report examines the transition from a traditional fleet to a glass one. A total of 150 pilots who were entering the B-757 transition training volunteered for the study, which consisted of three query phases: (1) first day of transition training, (2) 3 to 4 months after transition training, and (3) 12 to 14 months after initial operating experience. Of these initial 150 pilots, 99 completed all three phases of the study, with each phase consisting of probes on attitudes and experiences associated with their training and eventual transition to flying the line. In addition to the three questionnaires, 20 in-depth interviews were conducted. Although the primary focus of this study was on the flight training program, additional factors such as technical support, documentation, and training aids were investigated as well. The findings generally indicate that the pilot volunteers were highly motivated and very enthusiastic about their training program. In addition, the group had low levels of apprehension toward automation and expressed a high degree of satisfaction toward their training. However, there were some concerns expressed regarding the deficiencies in some of the training aids and lack of a free-play flight management system training device.

  1. A reappraisal of transport aircraft needs 1985 - 2000: Perceptions of airline management in a changing economic, regulatory, and technological environment

    Science.gov (United States)

    Spencer, F. A.

    1982-01-01

    Views of the executives of 24 major, national, regional, and commuter airlines concerning the effect of recent regulatory, economic, and technological changes on the roles they see for their airlines, and consequent changes in their plans for acquiring aircraft for the 1985 to 2000 period were surveyed. Differing perceptions on the economic justification for new-technology jets in the context of the carriers' present and projected financial conditions are outlined. After examining the cases for new or intermediate size jets, the study discusses turboprop powered transports, including the carriers' potential interest in an advanced technology, high-speed turboprop or prop-fan. Finally, the implications of foreign competition are examined in terms of each carrier's evaluation of the quality and financial offerings, as well as possible 'Buy American' policy predisposition.

  2. Robustness Analysis of Integrated LPV-FDI Filters and LTI-FTC System for a Transport Aircraft

    Science.gov (United States)

    Khong, Thuan H.; Shin, Jong-Yeob

    2007-01-01

    This paper proposes an analysis framework for robustness analysis of a nonlinear dynamics system that can be represented by a polynomial linear parameter varying (PLPV) system with constant bounded uncertainty. The proposed analysis framework contains three key tools: 1) a function substitution method which can convert a nonlinear system in polynomial form into a PLPV system, 2) a matrix-based linear fractional transformation (LFT) modeling approach, which can convert a PLPV system into an LFT system with the delta block that includes key uncertainty and scheduling parameters, 3) micro-analysis, which is a well known robust analysis tool for linear systems. The proposed analysis framework is applied to evaluating the performance of the LPV-fault detection and isolation (FDI) filters of the closed-loop system of a transport aircraft in the presence of unmodeled actuator dynamics and sensor gain uncertainty. The robustness analysis results are compared with nonlinear time simulations.

  3. Assessment of the environmental impact of the FAA proposed rule making affecting the conditions of transport of radioactive materials on aircraft

    International Nuclear Information System (INIS)

    Hall, R.J.; Hendrickson, P.L.; King, J.C.; McSweeney, T.I.; Shipler, D.B.; Brown, C.L.; Davis, D.K.; Watson, E.C.

    1975-01-01

    Amendments to Federal Aviation Administration (FAA) regulations relating to the transporting of radioactive materials on commercial aircraft are presented. Potential effects of the proposed changes are examined in the environmental impact statement, which is presented in the 10 sections and 5 appendices of this document. (JGB)

  4. Development of a Minimum Performance Standard for Hand-Held Fire Extinguishers as a Replacement for Halon 1211 on Civilian Transport Category Aircraft

    National Research Council Canada - National Science Library

    Webster, Harry

    2002-01-01

    ... 25.851 as a requirement on transport category aircraft with 31 or more seats. Halon 1211 has been linked to the destruction of the ozone layer and production of new Halon 1211 has been halted per the Montreal Protocol in 1993...

  5. Development of a minimum performance standard for hand-held fire extinguishers as a replacement for Halon 1211 on civilian transport category aircraft

    Science.gov (United States)

    2002-08-01

    One or more Halon 1211 hand-held fire extinguishers are specified in Federal Aviation Regulation (FAR) Part 25.851 as a requirement on transport category aircraft with 31 or more seats. Halon 1211 has been linked to the destruction of the ozone layer...

  6. Development of Filter-Blower Unit for use in the Advanced Nuclear Biological Chemical Protection System (ANBCPS) Helicopter/Transport-aircraft version

    NARCIS (Netherlands)

    Sabel, R.; Reffeltrath, P.A.; Jonkman, A.; Post, T.

    2006-01-01

    As a participant in the three-nation partnership for development of the ANBCP-S for use in Helicopters, Transport Aircraft and Fast Jet, the Royal Netherlands Airforce (RNLAF) picked up the challenge to design a Filter- Blower-Unit (FBU). Major Command (MajCom) of the RNLAF set priority to develop a

  7. Closed-type wing for drones: positive and negative characteristics

    Directory of Open Access Journals (Sweden)

    Leonid I. Gretchihin

    2014-02-01

    Full Text Available The paper presents the aerodynamics of a wing of a closed oval ellipsoidal shape, designed with the use of the molecular-kinetic theory. The positive and negative characteristics of aircraft - drones with an oval wing are described. The theoretical calculations have been experimentally checked.

  8. Aircraft Carriers

    DEFF Research Database (Denmark)

    Nødskov, Kim; Kværnø, Ole

    as their purchases of aircraft carrier systems, makes it more than likely that the country is preparing such an acquisition. China has territorial disputes in the South China Sea over the Spratly Islands and is also worried about the security of its sea lines of communications, by which China transports the majority...... of its foreign trade, as well as its oil imports, upon which the country is totally dependent. China therefore has good reasons for acquiring an aircraft carrier to enable it to protect its national interests. An aircraft carrier would also be a prominent symbol of China’s future status as a great power......, then the country will also acquire the capability to project military power into the region beyond Taiwan, which it does not possess today. In this way, China will have the military capability to permit a change of strategy from the mainly defensive, mainland, Taiwan-based strategy to a more assertive strategy...

  9. Development and Testing of an Unconventional Morphing Wing Concept with Variable Chord and Camber

    NARCIS (Netherlands)

    Keidel, D.H.K.; Sodja, J.; Werter, N.P.M.; De Breuker, R.; Ermanni, P.; Monajjemi, M.; Liang, W.

    2015-01-01

    Driven by the need to improve the performance and energy-efficiency of aircraft, current research in the field of morphing wings is growing in significance. The most recently developed concepts typically adjust only one characteristic of the wing. Within this paper a new concept for morphing wings

  10. The leading-edge vortex of swift wing-shaped delta wings.

    Science.gov (United States)

    Muir, Rowan Eveline; Arredondo-Galeana, Abel; Viola, Ignazio Maria

    2017-08-01

    Recent investigations on the aerodynamics of natural fliers have illuminated the significance of the leading-edge vortex (LEV) for lift generation in a variety of flight conditions. A well-documented example of an LEV is that generated by aircraft with highly swept, delta-shaped wings. While the wing aerodynamics of a manoeuvring aircraft, a bird gliding and a bird in flapping flight vary significantly, it is believed that this existing knowledge can serve to add understanding to the complex aerodynamics of natural fliers. In this investigation, a model non-slender delta-shaped wing with a sharp leading edge is tested at low Reynolds number, along with a delta wing of the same design, but with a modified trailing edge inspired by the wing of a common swift Apus apus . The effect of the tapering swift wing on LEV development and stability is compared with the flow structure over the unmodified delta wing model through particle image velocimetry. For the first time, a leading-edge vortex system consisting of a dual or triple LEV is recorded on a swift wing-shaped delta wing, where such a system is found across all tested conditions. It is shown that the spanwise location of LEV breakdown is governed by the local chord rather than Reynolds number or angle of attack. These findings suggest that the trailing-edge geometry of the swift wing alone does not prevent the common swift from generating an LEV system comparable with that of a delta-shaped wing.

  11. High-lift flow-physics flight experiments on a subsonic civil transport aircraft (B737-100)

    Science.gov (United States)

    Vandam, Cornelis P.

    1994-01-01

    As part of the subsonic transport high-lift program, flight experiments are being conducted using NASA Langley's B737-100 to measure the flow characteristics of the multi-element high-lift system at full-scale high-Reynolds-number conditions. The instrumentation consists of hot-film anemometers to measure boundary-layer states, an infra-red camera to detect transition from laminar to turbulent flow, Preston tubes to measure wall shear stress, boundary-layer rakes to measure off-surface velocity profiles, and pressure orifices to measure surface pressure distributions. The initial phase of this research project was recently concluded with two flights on July 14. This phase consisted of a total of twenty flights over a period of about ten weeks. In the coming months the data obtained in this initial set of flight experiments will be analyzed and the results will be used to finalize the instrumentation layout for the next set of flight experiments scheduled for Winter and Spring of 1995. The main goal of these upcoming flights will be: (1) to measure more detailed surface pressure distributions across the wing for a range of flight conditions and flap settings; (2) to visualize the surface flows across the multi-element wing at high-lift conditions using fluorescent mini tufts; and (3) to measure in more detail the changes in boundary-layer state on the various flap elements as a result of changes in flight condition and flap deflection. These flight measured results are being correlated with experimental data measured in ground-based facilities as well as with computational data calculated with methods based on the Navier-Stokes equations or a reduced set of these equations. Also these results provide insight into the extent of laminar flow that exists on actual multi-element lifting surfaces at full-scale high-life conditions. Preliminary results indicate that depending on the deflection angle, the slat and flap elements have significant regions of laminar flow over

  12. Dynamics and Adaptive Control for Stability Recovery of Damaged Aircraft

    Science.gov (United States)

    Nguyen, Nhan; Krishnakumar, Kalmanje; Kaneshige, John; Nespeca, Pascal

    2006-01-01

    This paper presents a recent study of a damaged generic transport model as part of a NASA research project to investigate adaptive control methods for stability recovery of damaged aircraft operating in off-nominal flight conditions under damage and or failures. Aerodynamic modeling of damage effects is performed using an aerodynamic code to assess changes in the stability and control derivatives of a generic transport aircraft. Certain types of damage such as damage to one of the wings or horizontal stabilizers can cause the aircraft to become asymmetric, thus resulting in a coupling between the longitudinal and lateral motions. Flight dynamics for a general asymmetric aircraft is derived to account for changes in the center of gravity that can compromise the stability of the damaged aircraft. An iterative trim analysis for the translational motion is developed to refine the trim procedure by accounting for the effects of the control surface deflection. A hybrid direct-indirect neural network, adaptive flight control is proposed as an adaptive law for stabilizing the rotational motion of the damaged aircraft. The indirect adaptation is designed to estimate the plant dynamics of the damaged aircraft in conjunction with the direct adaptation that computes the control augmentation. Two approaches are presented 1) an adaptive law derived from the Lyapunov stability theory to ensure that the signals are bounded, and 2) a recursive least-square method for parameter identification. A hardware-in-the-loop simulation is conducted and demonstrates the effectiveness of the direct neural network adaptive flight control in the stability recovery of the damaged aircraft. A preliminary simulation of the hybrid adaptive flight control has been performed and initial data have shown the effectiveness of the proposed hybrid approach. Future work will include further investigations and high-fidelity simulations of the proposed hybrid adaptive Bight control approach.

  13. California's Methane Budget derived from CalNex P-3 Aircraft Observations and the WRF-STILT Lagrangian Transport Model

    Science.gov (United States)

    Santoni, G. W.; Xiang, B.; Kort, E. A.; Daube, B.; Andrews, A. E.; Sweeney, C.; Wecht, K.; Peischl, J.; Ryerson, T. B.; Angevine, W. M.; Trainer, M.; Nehrkorn, T.; Eluszkiewicz, J.; Wofsy, S. C.

    2012-12-01

    We present constraints on California emission inventories of methane (CH4) using atmospheric observations from nine NOAA P-3 flights during the California Nexus (CalNex) campaign in May and June of 2010. Measurements were made using a quantum cascade laser spectrometer (QCLS) and a cavity ring-down spectrometer (CRDS) and calibrated to NOAA standards in-flight. Five flights sampled above the northern and southern central valley and an additional four flights probed the south coast air basin, quantifying emissions from the Los Angeles basin. The data show large (>100 ppb) CH4 enhancements associated with point and area sources such as cattle and manure management, landfills, wastewater treatment, gas production and distribution infrastructure, and rice agriculture. We compare aircraft observations to modeled CH4 distributions by accounting for a) transport using the Stochastic Time-Inverted Lagrangian Transport (STILT) model driven by Weather Research and Forecasting (WRF) meteorology, b) emissions from inventories such as EDGAR and ones constructed from California-specific state and county databases, each gridded to 0.1° x 0.1° resolution, and c) spatially and temporally evolving boundary conditions such as GEOS-Chem and a NOAA aircraft profile measurement derived curtain imposed at the edge of the WRF domain. After accounting for errors associated with transport, planetary boundary layer height, lateral boundary conditions, seasonality of emissions, and the spatial resolution of surface emission prior estimates, we find that the California Air Resources Board (CARB) CH4 budget is a factor of 1.64 too low. Using a Bayesian inversion to the flight data, we estimate California's CH4 budget to be 2.5 TgCH4/yr, with emissions from cattle and manure management, landfills, rice, and natural gas infrastructure, representing roughly 82%, 26%, 9% and 32% (sum = 149% with other sources accounting for the additional 15%) of the current CARB CH4 budget estimate of 1.52 TgCH4

  14. Critical joints in large composite aircraft structure

    Science.gov (United States)

    Nelson, W. D.; Bunin, B. L.; Hart-Smith, L. J.

    1983-01-01

    A program was conducted at Douglas Aircraft Company to develop the technology for critical structural joints of composite wing structure that meets design requirements for a 1990 commercial transport aircraft. The prime objective of the program was to demonstrate the ability to reliably predict the strength of large bolted composite joints. Ancillary testing of 180 specimens generated data on strength and load-deflection characteristics which provided input to the joint analysis. Load-sharing between fasteners in multirow bolted joints was computed by the nonlinear analysis program A4EJ. This program was used to predict strengths of 20 additional large subcomponents representing strips from a wing root chordwise splice. In most cases, the predictions were accurate to within a few percent of the test results. In some cases, the observed mode of failure was different than anticipated. The highlight of the subcomponent testing was the consistent ability to achieve gross-section failure strains close to 0.005. That represents a considerable improvement over the state of the art.

  15. Flight service evaluation of an advanced composite empennage component on commercial transport aircraft

    Science.gov (United States)

    1976-01-01

    The development and flight evaluation of an advanced composite empennage component is presented. The recommended concept for the covers is graphite-epoxy hats bonded to a graphite-epoxy skin. The hat flare-out has been eliminated, instead the hat is continuous into the joint. The recommended concept for the spars is graphite-epoxy caps and a hybrid of Kevlar-49 and graphite-epoxy in the spar web. The spar cap, spar web stiffeners for attaching the ribs, and intermediate stiffeners are planned to be fabricated as a unit. Access hole in the web will be reinforced with a donut type, zero degree graphite-epoxy wound reinforcement. The miniwich design concept in the upper three ribs originally proposed is changed to a graphite-epoxy stiffened solid laminate design concept. The recommended configuration for the lower seven ribs remains as graphite-epoxy caps with aluminum cruciform diagonals. The indicated weight saving for the current advanced composite vertical fin configuration is 20.2% including a 24 lb growth allowance. The project production cost saving is approximately 1% based on a cumulative average of 250 aircraft and including only material, production labor, and quality assurance costs.

  16. Analysis of events resulting from an accident involving a transport aircraft carrying plutonium oxide

    International Nuclear Information System (INIS)

    Lombard, J.; Hubert, P.; Pages, P.

    1988-03-01

    This study assesses the impact on health of an aircraft accident resulting in the release into the atmosphere of the reprocessing product PuO 2 . The consequences associated with the inhalation of the initial cloud, the passage into suspension of the powder deposited on the ground and the contamination of the food chain were therefore evaluated as a function of the quantity released. It was deduced that the risk of inhalation is by far the greatest. The countermeasures likely to be implemented during emergency action were subjected to analysis. In particular, it appeared that the impact of the first cloud could not really be mitigated but that it was possible to take effective action against the other consequences. Research was undertaken to establish tolerable release quantities which could if necessary be used as acceptance criteria for packaging tests. This indicated that a release in the range 10-100 g would give rise to controllable consequences, at least in a rural environment. The calculations relating to the estimation of the acute toxicity associated with the inhalation of Plutonium and details of the emergency action plan are given in appendix

  17. Fuel-rich, catalytic reaction experimental results. [fuel development for high-speed civil transport aircraft

    Science.gov (United States)

    Rollbuhler, Jim

    1991-01-01

    Future aeropropulsion gas turbine combustion requirements call for operating at very high inlet temperatures, pressures, and large temperature rises. At the same time, the combustion process is to have minimum pollution effects on the environment. Aircraft gas turbine engines utilize liquid hydrocarbon fuels which are difficult to uniformly atomize and mix with combustion air. An approach for minimizing fuel related problems is to transform the liquid fuel into gaseous form prior to the completion of the combustion process. Experimentally obtained results are presented for vaporizing and partially oxidizing a liquid hydrocarbon fuel into burnable gaseous components. The presented experimental data show that 1200 to 1300 K reaction product gas, rich in hydrogen, carbon monoxide, and light-end hydrocarbons, is formed when flowing 0.3 to 0.6 fuel to air mixes through a catalyst reactor. The reaction temperatures are kept low enough that nitrogen oxides and carbon particles (soot) do not form. Results are reported for tests using different catalyst types and configurations, mass flowrates, input temperatures, and fuel to air ratios.

  18. Homebuilt aircraft crashes.

    Science.gov (United States)

    Hasselquist, A; Baker, S P

    1999-06-01

    While the number of general aviation crashes has decreased over the 5 yr prior to 1993, the total number of homebuilt aircraft crashes has increased by nearly 25%. Research was undertaken to analyze these crashes and identify causal factors or unique problems associated with homebuilt aircraft. Some 200 National Transportation Safety Board computer records and two-page descriptive briefs were analyzed for homebuilt aircraft crashes during 1993. Using descriptive epidemiology, variables were looked at in detail and comparisons were made with general aviation crashes during the-same year. Despite accounting for only 3% of all hours flown in general aviation certified aircraft for 1993, homebuilt aircraft accounted for 10% of the crashes and experienced a higher fatal crash rate. Crashes due to mechanical failure and crashes on takeoff and climb were more common in homebuilt aircraft as compared with general aviation. Other significant causal factors for homebuilt aircraft crashes included: minimal flight time in type specific aircraft, improper maintenance and improper design or assembly. Greater emphasis needs to be placed on educating homebuilt aircraft owners in the importance of following Federal Aviation Administration guidelines for certification and air worthiness testing. Understanding the aircraft's specifications and design limitations prior to the initial flight and properly maintaining the aircraft should also help to reverse the trend in the number of these crashes and subsequent lives lost. A system for assuring that all home-built aircraft are certified and more accurate reporting of flight hours are needed for accurate tracking of homebuilt aircraft crash rates.

  19. 49 CFR 173.27 - General requirements for transportation by aircraft.

    Science.gov (United States)

    2010-10-01

    ... liquids. (d) Closures. Stoppers, corks or other such friction-type closures must be held securely, tightly..., 4, or 8, or Division 5.1, 5.2 or 6.1 that are packaged and offered for transport in glass... of the § 172.101 table Maximum authorized net capacity of each inner packaging Glass, earthenware or...

  20. Predicting the impacts of new technology aircraft on international air transportation demand

    Science.gov (United States)

    Ausrotas, R. A.

    1981-01-01

    International air transportation to and from the United States was analyzed. Long term and short term effects and causes of travel are described. The applicability of econometric methods to forecast passenger travel is discussed. A nomograph is developed which shows the interaction of economic growth, airline yields, and quality of service in producing international traffic.

  1. Short revolving wings enable hovering animals to avoid stall and reduce drag

    Science.gov (United States)

    Lentink, David; Kruyt, Jan W.; Heijst, Gertjan F.; Altshuler, Douglas L.

    2014-11-01

    Long and slender wings reduce the drag of airplanes, helicopters, and gliding animals, which operate at low angle of attack (incidence). Remarkably, there is no evidence for such influence of wing aspect ratio on the energetics of hovering animals that operate their wings at much higher incidence. High incidence causes aircraft wings to stall, hovering animals avoid stall by generating an attached vortex along the leading edge of their wings that elevates lift. Hypotheses that explain this capability include the necessity for a short radial distance between the shoulder joint and wing tip, measured in chord lengths, instead of the long tip-to-tip distance that elevates aircraft performance. This stems from how hovering animals revolve their wings around a joint, a condition for which the precise effect of aspect ratio on stall performance is unknown. Here we show that the attachment of the leading edge vortex is determined by wing aspect ratio with respect to the center of rotation-for a suite of aspect ratios that represent both animal and aircraft wings. The vortex remains attached when the local radius is shorter than 4 chord lengths, and separates outboard on more slender wings. Like most other hovering animals, hummingbirds have wing aspect ratios between 3 and 4, much stubbier than helicopters. Our results show this makes their wings robust against flow separation, which reduces drag below values obtained with more slender wings. This revises our understanding of how aspect ratio improves performance at low Reynolds numbers.

  2. Critical joints in large composite primary aircraft structures. Volume 2: Technology demonstration test report

    Science.gov (United States)

    Bunin, Bruce L.

    1985-01-01

    A program was conducted to develop the technology for critical structural joints in composite wing structure that meets all the design requirements of a 1990 commercial transport aircraft. The results of four large composite multirow bolted joint tests are presented. The tests were conducted to demonstrate the technology for critical joints in highly loaded composite structure and to verify the analytical methods that were developed throughout the program. The test consisted of a wing skin-stringer transition specimen representing a stringer runout and skin splice on the wing lower surface at the side of the fuselage attachment. All tests were static tension tests. The composite material was Toray T-300 fiber with Ciba-Geigy 914 resin in 10 mil tape form. The splice members were metallic, using combinations of aluminum and titanium. Discussions are given of the test article, instrumentation, test setup, test procedures, and test results for each of the four specimens. Some of the analytical predictions are also included.

  3. Aeroelastic Modelling and Design of Aeroelastically Tailored and Morphing Wings

    NARCIS (Netherlands)

    Werter, N.P.M.

    2017-01-01

    In order to accommodate the growth in air traffic whilst reducing the impact on the environment, operational efficiency is becoming more and more important in the design of the aircraft of the future. A possible approach to increase the operational efficiency of aircraft wings is the use of

  4. Spatial perturbation of a wing-tip vortex using pulsed span-wise jets

    Science.gov (United States)

    Heyes, A. L.; Smith, D. A. R.

    The separation distance required between transport aircraft to avoid wake vortices remains a limiting factor on airport capacity. The dissipation of the wake can be accelerated by perturbing co-operative instabilities between multiple pairs of vortices. This paper presents the results of a preliminary experimental investigation into the use of pulsed span-wise air jets in the wing tip to perturb a single tip vortex in the very near field. Velocity measurements were made using PIV and hot-wire anemometry. The results demonstrate that the vortex position can be modulated at frequencies up to 50 Hz and, as such, the method shows promise for forcing instability in multiple vortex wakes.

  5. AEROELASTIC FLUTTER ANALYSIS OF SUPERSONIC WING WITH MULTIPLE EXTERNAL STORES

    Directory of Open Access Journals (Sweden)

    Nur Azam

    2014-12-01

    Full Text Available ABSTRACT: Flutter may be considered to be one of the most dangerous aeroelastic failure phenomenon. The flutter characteristic differs for each aircraft type, and depends on the wing geometry as well as its operational region of subsonic, transonic or supersonic speeds. Prior to performing a flight flutter test, extensive numerical simulations and Ground Vibration Test should be conducted where the structural finite element modes and the experimentation results should be matched, otherwise the numerical simulation model must be rejected. In this paper, the analysis of simulation of a supersonic wing equipped with external missiles loaded on the wing is presented. The structural mode shapes at each generated frequency are also visually presented. The analysis is carried out using MSC Nastran FEM software. The wing flutter with the external stores was simulated at different altitudes. The result shows that the flutter velocity is sensitive to the flight altitude. For this reason, the flutter analysis is conducted also for a negative altitude. The negative altitude is obtained by considering the constant equivalent speed-Mach number rule at the flutter speed boundary as a requirement in standard regulation of transport aircraft. ABSTRAK: Salah satu fenomena kegagalan aeroelastik yang paling membahayakan adalah kipasan (flutter. Ciri-ciri kegagalan kipasan (flutter adalah berbeza untuk setiap jenis pesawat bergantung pada geometri sayap dan regim operasi sama ada subsonik, transonik atau supersonik. Sebelum melakukan ujian penerbangan kipasan , simulasi berangka luas dan ujian getaran peringkat bawahan (darat perlu dijalankan di mana struktur mod unsur terhingga dan keputusan eksperimen harus dipadankan, sebaliknya model simulasi berangka boleh ditolak. Dalam kertas kerja ini, simulasi sayap supersonik dilengkapi dengan beban luaran peluru berpandu di sayap telah dianalisis di daerah supersonik tinggi. Bentuk mod struktur pada setiap mod frekuensi

  6. Development of Textile Reinforced Composites for Aircraft Structures

    Science.gov (United States)

    Dexter, H. Benson

    1998-01-01

    NASA has been a leader in development of composite materials for aircraft applications during the past 25 years. In the early 1980's NASA and others conducted research to improve damage tolerance of composite structures through the use of toughened resins but these resins were not cost-effective. The aircraft industry wanted affordable, robust structures that could withstand the rigors of flight service with minimal damage. The cost and damage tolerance barriers of conventional laminated composites led NASA to focus on new concepts in composites which would incorporate the automated manufacturing methods of the textiles industry and which would incorporate through-the-thickness reinforcements. The NASA Advanced Composites Technology (ACT) Program provided the resources to extensively investigate the application of textile processes to next generation aircraft wing and fuselage structures. This paper discusses advanced textile material forms that have been developed, innovative machine concepts and key technology advancements required for future application of textile reinforced composites in commercial transport aircraft. Multiaxial warp knitting, triaxial braiding and through-the-thickness stitching are the three textile processes that have surfaced as the most promising for further development. Textile reinforced composite structural elements that have been developed in the NASA ACT Program are discussed. Included are braided fuselage frames and window-belt reinforcements, woven/stitched lower fuselage side panels, stitched multiaxial warp knit wing skins, and braided wing stiffeners. In addition, low-cost processing concepts such as resin transfer molding (RTM), resin film infusion (RFI), and vacuum-assisted resin transfer molding (VARTM) are discussed. Process modeling concepts to predict resin flow and cure in textile preforms are also discussed.

  7. Risk of transmitting meningococcal infection by transient contact on aircraft and other transport.

    Science.gov (United States)

    Rachael, T; Schubert, K; Hellenbrand, W; Krause, G; Stuart, J M

    2009-08-01

    Contact tracing of persons with meningococcal disease who have travelled on aeroplane or other multi-passenger transport is not consistent between countries. We searched the literature for clusters of meningococcal disease linked by transient contact on the same plane, train, bus or boat. We found reports of two clusters in children on the same school bus and one in passengers on the same plane. Cases within each of these three clusters were due to strains that were genetically indistinguishable. In the aeroplane cluster the only link between the two cases was through a single travel episode. The onset of illness (2 and 5 days after the flight) is consistent with infection from an unidentified carrier around the time of air travel. In contrast to the established risk of transmission from a case of tuberculosis, it is likely that the risk from a case of meningococcal disease to someone who is not identified as a close contact is exceedingly low. This should be considered in making international recommendations for passenger contact tracing after a case of meningococcal disease on a plane or other multi-passenger transport.

  8. Nonlinear Analysis and Preliminary Testing Results of a Hybrid Wing Body Center Section Test Article

    Science.gov (United States)

    Przekop, Adam; Jegley, Dawn C.; Rouse, Marshall; Lovejoy, Andrew E.; Wu, Hsi-Yung T.

    2015-01-01

    A large test article was recently designed, analyzed, fabricated, and successfully tested up to the representative design ultimate loads to demonstrate that stiffened composite panels with through-the-thickness reinforcement are a viable option for the next generation large transport category aircraft, including non-conventional configurations such as the hybrid wing body. This paper focuses on finite element analysis and test data correlation of the hybrid wing body center section test article under mechanical, pressure and combined load conditions. Good agreement between predictive nonlinear finite element analysis and test data is found. Results indicate that a geometrically nonlinear analysis is needed to accurately capture the behavior of the non-circular pressurized and highly-stressed structure when the design approach permits local buckling.

  9. Insect Residue Contamination on Wing Leading Edge Surfaces: A Materials Investigation for Mitigation

    Science.gov (United States)

    Lorenzi, Tyler M.; Wohl, Christopher J.; Penner, Ronald K.; Smith, Joseph G.; Siochi, Emilie J.

    2011-01-01

    Flight tests have shown that residue from insect strikes on aircraft wing leading edge surfaces may induce localized transition of laminar to turbulent flow. The highest density of insect populations have been observed between ground level and 153 m during light winds (2.6 -- 5.1 m/s), high humidity, and temperatures from 21 -- 29 C. At a critical residue height, dependent on the airfoil and Reynolds number, boundary layer transition from laminar to turbulent results in increased drag and fuel consumption. Although this represents a minimal increase in fuel burn for conventional transport aircraft, future aircraft designs will rely on maintaining laminar flow across a larger portion of wing surfaces to reduce fuel burn during cruise. Thus, insect residue adhesion mitigation is most critical during takeoff and initial climb to maintain laminar flow in fuel-efficient aircraft configurations. Several exterior treatments investigated to mitigate insect residue buildup (e.g., paper, scrapers, surfactants, flexible surfaces) have shown potential; however, implementation has proven to be impractical. Current research is focused on evaluation of wing leading edge surface coatings that may reduce insect residue adhesion. Initial work under NASA's Environmentally Responsible Aviation Program focused on evaluation of several commercially available products (commercial off-the-shelf, COTS), polymers, and substituted alkoxy silanes that were applied to aluminum (Al) substrates. Surface energies of these coatings were determined from contact angle data and were correlated to residual insect excrescence on coated aluminum substrates using a custom-built "bug gun." Quantification of insect excrescence surface coverage was evaluated by a series of digital photographic image processing techniques.

  10. Integration of an Advanced Cryogenic Electric Propulsion System (ACEPS) to Aerodynamically Efficient Subsonic Transport Aircraft, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal defines innovative aerodynamic concepts and technology goals aimed at vehicle efficiency for future subsonic aircraft in the 2020 -- 2030 timeframe....

  11. Analysis of Low-Speed Stall Aerodynamics of a Business Jets Wing Using STAR-CCM+

    Science.gov (United States)

    Bui, Trong

    2016-01-01

    Reynolds-Averaged Navier-Stokes (RANS) computational fluid dynamics (CFD) analysis was conducted: to study the low-speed stall aerodynamics of a GIII aircrafts swept wing modified with (1) a laminar-flow wing glove, or (2) a seamless flap. The stall aerodynamics of these two different wing configurations were analyzed and compared with the unmodified baseline wing for low-speed flight. The Star-CCM+ polyhedral unstructured CFD code was first validated for wing stall predictions using the wing-body geometry from the First AIAA CFD High-Lift Prediction Workshop.

  12. Episodes of Cross-Polar Transport in the Arctic Troposphere During July 2008 as Seen from Models, Satellite, and Aircraft Observations

    Science.gov (United States)

    Sodemann, H.; Pommier, M.; Arnold, S. R.; Monks, S. A.; Stebel, K.; Burkhart, J. F.; Hair, J. W.; Diskin, G. S.; Clerbaux, C.; Coheur, P.-F.; hide

    2011-01-01

    During the POLARCAT summer campaign in 2008, two episodes (2 5 July and 7 10 July 2008) occurred where low-pressure systems traveled from Siberia across the Arctic Ocean towards the North Pole. The two cyclones had extensive smoke plumes from Siberian forest fires and anthropogenic sources in East Asia embedded in their associated air masses, creating an excellent opportunity to use satellite and aircraft observations to validate the performance of atmospheric transport models in the Arctic, which is a challenging model domain due to numerical and other complications. Here we compare transport simulations of carbon monoxide (CO) from the Lagrangian transport model FLEXPART and the Eulerian chemical transport model TOMCAT with retrievals of total column CO from the IASI passive infrared sensor onboard the MetOp-A satellite. The main aspect of the comparison is how realistic horizontal and vertical structures are represented in the model simulations. Analysis of CALIPSO lidar curtains and in situ aircraft measurements provide further independent reference points to assess how reliable the model simulations are and what the main limitations are. The horizontal structure of mid-latitude pollution plumes agrees well between the IASI total column CO and the model simulations. However, finer-scale structures are too quickly diffused in the Eulerian model. Applying the IASI averaging kernels to the model data is essential for a meaningful comparison. Using aircraft data as a reference suggests that the satellite data are biased high, while TOMCAT is biased low. FLEXPART fits the aircraft data rather well, but due to added background concentrations the simulation is not independent from observations. The multi-data, multi-model approach allows separating the influences of meteorological fields, model realisation, and grid type on the plume structure. In addition to the very good agreement between simulated and observed total column CO fields, the results also highlight the

  13. Material development for laminar flow control wing panels

    Science.gov (United States)

    Meade, L. E.

    1977-01-01

    The absence of suitable porous materials or techniques for the economic perforation of surface materials has previously restricted the design of laminar flow control (LFC) wing panels to a consideration of mechanically slotted LFC surfaces. A description is presented of a program which has been conducted to exploit recent advances in materials and manufacturing technology for the fabrication of reliable porous or perforated LFC surface panels compatible with the requirements of subsonic transport aircraft. Attention is given to LFC design criteria, surface materials, surface concepts, the use of microporous composites, perforated composites, and perforated metal. The described program was successful in that fabrication processes were developed for producing predictable perforated panels both of composite and of metal.

  14. Aeroelasticity of morphing wings using neural networks

    Science.gov (United States)

    Natarajan, Anand

    In this dissertation, neural networks are designed to effectively model static non-linear aeroelastic problems in adaptive structures and linear dynamic aeroelastic systems with time varying stiffness. The use of adaptive materials in aircraft wings allows for the change of the contour or the configuration of a wing (morphing) in flight. The use of smart materials, to accomplish these deformations, can imply that the stiffness of the wing with a morphing contour changes as the contour changes. For a rapidly oscillating body in a fluid field, continuously adapting structural parameters may render the wing to behave as a time variant system. Even the internal spars/ribs of the aircraft wing which define the wing stiffness can be made adaptive, that is, their stiffness can be made to vary with time. The immediate effect on the structural dynamics of the wing, is that, the wing motion is governed by a differential equation with time varying coefficients. The study of this concept of a time varying torsional stiffness, made possible by the use of active materials and adaptive spars, in the dynamic aeroelastic behavior of an adaptable airfoil is performed here. Another type of aeroelastic problem of an adaptive structure that is investigated here, is the shape control of an adaptive bump situated on the leading edge of an airfoil. Such a bump is useful in achieving flow separation control for lateral directional maneuverability of the aircraft. Since actuators are being used to create this bump on the wing surface, the energy required to do so needs to be minimized. The adverse pressure drag as a result of this bump needs to be controlled so that the loss in lift over the wing is made minimal. The design of such a "spoiler bump" on the surface of the airfoil is an optimization problem of maximizing pressure drag due to flow separation while minimizing the loss in lift and energy required to deform the bump. One neural network is trained using the CFD code FLUENT to

  15. Structural Optimization of Box Wing Aircraft

    Directory of Open Access Journals (Sweden)

    Kalinowski Miłosz J.

    2015-03-01

    Full Text Available Układ zamkniętych skrzydeł to niekonwencjonalne rozwiązanie połączenia powierzchni nośnych, które coraz częściej konstruktorzy starają się stosować w prototypach nowych konstrukcji. Ten artykuł prezentuje przykładowy sposób realizacji optymalizacji strukturalnej struktury nośnej skrzydeł w rozpatrywanym układzie, który może być użyteczny w trakcie projektowania wstępnego samolotu. Na wstępie zaprezentowano metody oraz teorię wykorzystane do stworzenia algorytmu optymalizacji. Struktura analizowana jest przy użyciu belkowego modelu MES. Optymalizacja została przeprowadzona z wykorzystaniem połączenia metod iteracji prostych i gradientowych. Wyniki działania algorytmu przedstawione są na prostym przypadku obliczeniowym.

  16. A Reynolds Number Study of Wing Leading-Edge Effects on a Supersonic Transport Model at Mach 0.3

    Science.gov (United States)

    Williams, M. Susan; Owens, Lewis R., Jr.; Chu, Julio

    1999-01-01

    A representative supersonic transport design was tested in the National Transonic Facility (NTF) in its original configuration with small-radius leading-edge flaps and also with modified large-radius inboard leading-edge flaps. Aerodynamic data were obtained over a range of Reynolds numbers at a Mach number of 0.3 and angles of attack up to 16 deg. Increasing the radius of the inboard leading-edge flap delayed nose-up pitching moment to a higher lift coefficient. Deflecting the large-radius leading-edge flap produced an overall decrease in lift coefficient and delayed nose-up pitching moment to even higher angles of attack as compared with the undeflected large- radius leading-edge flap. At angles of attack corresponding to the maximum untrimmed lift-to-drag ratio, lift and drag coefficients decreased while lift-to-drag ratio increased with increasing Reynolds number. At an angle of attack of 13.5 deg., the pitching-moment coefficient was nearly constant with increasing Reynolds number for both the small-radius leading-edge flap and the deflected large-radius leading-edge flap. However, the pitching moment coefficient increased with increasing Reynolds number for the undeflected large-radius leading-edge flap above a chord Reynolds number of about 35 x 10 (exp 6).

  17. Evaluating a 3-D transport model of atmospheric CO2 using ground-based, aircraft, and space-borne data

    Directory of Open Access Journals (Sweden)

    J.-D. Paris

    2011-03-01

    Full Text Available We evaluate the GEOS-Chem atmospheric transport model (v8-02-01 of CO2 over 2003–2006, driven by GEOS-4 and GEOS-5 meteorology from the NASA Goddard Global Modeling and Assimilation Office, using surface, aircraft and space-borne concentration measurements of CO2. We use an established ensemble Kalman Filter to estimate a posteriori biospheric+biomass burning (BS + BB and oceanic (OC CO2 fluxes from 22 geographical regions, following the TransCom-3 protocol, using boundary layer CO2 data from a subset of GLOBALVIEW surface sites. Global annual net BS + BB + OC CO2 fluxes over 2004–2006 for GEOS-4 (GEOS-5 meteorology are −4.4 ± 0.9 (−4.2 ± 0.9, −3.9 ± 0.9 (−4.5 ± 0.9, and −5.2 ± 0.9 (−4.9 ± 0.9 PgC yr−1, respectively. After taking into account anthropogenic fossil fuel and bio-fuel emissions, the global annual net CO2 emissions for 2004–2006 are estimated to be 4.0 ± 0.9 (4.2 ± 0.9, 4.8 ± 0.9 (4.2 ± 0.9, and 3.8 ± 0.9 (4.1 ± 0.9 PgC yr−1, respectively. The estimated 3-yr total net emission for GEOS-4 (GEOS-5 meteorology is equal to 12.5 (12.4 PgC, agreeing with other recent top-down estimates (12–13 PgC. The regional a posteriori fluxes are broadly consistent in the sign and magnitude of the TransCom-3 study for 1992–1996, but we find larger net sinks over northern and southern continents. We find large departures from our a priori over Europe during summer 2003, over temperate Eurasia during 2004, and over North America during 2005, reflecting an incomplete description of terrestrial carbon dynamics. We find GEOS-4 (GEOS-5 a posteriori CO2 concentrations reproduce the observed surface trend of 1.91–2.43 ppm yr−1 (parts per million per year, depending on latitude, within 0.15 ppm yr−1 (0.2 ppm yr−1 and the seasonal cycle within 0.2 ppm (0.2 ppm at all latitudes. We find the a posteriori model reproduces the aircraft vertical profile measurements of CO2 over North America and Siberia generally within 1

  18. On the use of controls for subsonic transport performance improvement: Overview and future directions

    Science.gov (United States)

    Gilyard, Glenn; Espana, Martin

    1994-01-01

    Increasing competition among airline manufacturers and operators has highlighted the issue of aircraft efficiency. Fewer aircraft orders have led to an all-out efficiency improvement effort among the manufacturers to maintain if not increase their share of the shrinking number of aircraft sales. Aircraft efficiency is important in airline profitability and is key if fuel prices increase from their current low. In a continuing effort to improve aircraft efficiency and develop an optimal performance technology base, NASA Dryden Flight Research Center developed and flight tested an adaptive performance seeking control system to optimize the quasi-steady-state performance of the F-15 aircraft. The demonstrated technology is equally applicable to transport aircraft although with less improvement. NASA Dryden, in transitioning this technology to transport aircraft, is specifically exploring the feasibility of applying adaptive optimal control techniques to performance optimization of redundant control effectors. A simulation evaluation of a preliminary control law optimizes wing-aileron camber for minimum net aircraft drag. Two submodes are evaluated: one to minimize fuel and the other to maximize velocity. This paper covers the status of performance optimization of the current fleet of subsonic transports. Available integrated controls technologies are reviewed to define approaches using active controls. A candidate control law for adaptive performance optimization is presented along with examples of algorithm operation.

  19. Novel Control Effectors for Truss Braced Wing

    Science.gov (United States)

    White, Edward V.; Kapania, Rakesh K.; Joshi, Shiv

    2015-01-01

    At cruise flight conditions very high aspect ratio/low sweep truss braced wings (TBW) may be subject to design requirements that distinguish them from more highly swept cantilevered wings. High aspect ratio, short chord length and relative thinness of the airfoil sections all contribute to relatively low wing torsional stiffness. This may lead to aeroelastic issues such as aileron reversal and low flutter margins. In order to counteract these issues, high aspect ratio/low sweep wings may need to carry additional high speed control effectors to operate when outboard ailerons are in reversal and/or must carry additional structural weight to enhance torsional stiffness. The novel control effector evaluated in this study is a variable sweep raked wing tip with an aileron control surface. Forward sweep of the tip allows the aileron to align closely with the torsional axis of the wing and operate in a conventional fashion. Aft sweep of the tip creates a large moment arm from the aileron to the wing torsional axis greatly enhancing aileron reversal. The novelty comes from using this enhanced and controllable aileron reversal effect to provide roll control authority by acting as a servo tab and providing roll control through intentional twist of the wing. In this case the reduced torsional stiffness of the wing becomes an advantage to be exploited. The study results show that the novel control effector concept does provide roll control as described, but only for a restricted class of TBW aircraft configurations. For the configuration studied (long range, dual aisle, Mach 0.85 cruise) the novel control effector provides significant benefits including up to 12% reduction in fuel burn.

  20. The NASA Dryden 747 Shuttle Carrier Aircraft crew poses in an engine inlet

    Science.gov (United States)

    2000-01-01

    The NASA Dryden 747 Shuttle Carrier Aircraft crew poses in an engine inlet; Standing L to R - aircraft mechanic John Goleno and SCA Team Leader Pete Seidl; Kneeling L to R - aircraft mechanics Todd Weston and Arvid Knutson, and avionics technician Jim Bedard NASA uses two modified Boeing 747 jetliners, originally manufactured for commercial use, as Space Shuttle Carrier Aircraft (SCA). One is a 747-100 model, while the other is designated a 747-100SR (short range). The two aircraft are identical in appearance and in their performance as Shuttle Carrier Aircraft. The 747 series of aircraft are four-engine intercontinental-range swept-wing 'jumbo jets' that entered commercial service in 1969. The SCAs are used to ferry space shuttle orbiters from landing sites back to the launch complex at the Kennedy Space Center, and also to and from other locations too distant for the orbiters to be delivered by ground transportation. The orbiters are placed atop the SCAs by Mate-Demate Devices, large gantry-like structures which hoist the orbiters off the ground for post-flight servicing, and then mate them with the SCAs for ferry flights.

  1. Durability of commercial aircraft and helicopter composite structures

    International Nuclear Information System (INIS)

    Dexter, H.B.

    1982-01-01

    The development of advanced composite technology during the past decade is discussed. Both secondary and primary components fabricated with boron, graphite, and Kevlar composites are evaluated. Included are spoilers, rudders, and fairings on commercial transports, boron/epoxy reinforced wing structure on C-130 military transports, and doors, fairings, tail rotors, vertical fins, and horizontal stabilizers on commercial helicopters. The development of composite structures resulted in advances in design and manufacturing technology for secondary and primary composite structures for commercial transports. Design concepts and inspection and maintenance results for the components in service are reported. The flight, outdoor ground, and controlled laboratory environmental effects on composites were also determined. Effects of moisture absorption, ultraviolet radiation, aircraft fuels and fluids, and sustained tensile stress are included. Critical parameters affecting the long term durability of composite materials are identified

  2. Airfoil optimization for morphing aircraft

    Science.gov (United States)

    Namgoong, Howoong

    Continuous variation of the aircraft wing shape to improve aerodynamic performance over a wide range of flight conditions is one of the objectives of morphing aircraft design efforts. This is being pursued because of the development of new materials and actuation systems that might allow this shape change. The main purpose of this research is to establish appropriate problem formulations and optimization strategies to design an airfoil for morphing aircraft that include the energy required for shape change. A morphing aircraft can deform its wing shape, so the aircraft wing has different optimum shapes as the flight condition changes. The actuation energy needed for moving the airfoil surface is modeled and used as another design objective. Several multi-objective approaches are applied to a low-speed, incompressible flow problem and to a problem involving low-speed and transonic flow. The resulting solutions provide the best tradeoff between low drag, high energy and higher drag, low energy sets of airfoil shapes. From this range of solutions, design decisions can be made about how much energy is needed to achieve a desired aerodynamic performance. Additionally, an approach to model aerodynamic work, which would be more realistic and may allow using pressure on the airfoil to assist a morphing shape change, was formulated and used as part of the energy objective. These results suggest that it may be possible to design a morphing airfoil that exploits the airflow to reduce actuator energy.

  3. Studies on aerodynamic interferences between the components of transport airplane using unstructured Navier-Stokes simulations

    International Nuclear Information System (INIS)

    Wang, G.; Ye, Z.

    2005-01-01

    It is well known that the aerodynamic interference flows widely exist between the components of conventional transport airplane, for example, the wing-fuselage juncture flow, wing-pylon-nacelle flow and tail-fuselage juncture flow. The main characteristic of these aerodynamic interferences is flow separation, which will increase the drag, reduce the lift and cause adverse influence on the stability and controllability of the airplane. Therefore, the modern civil transport designers should do their best to eliminate negative effects of aerodynamic interferences, which demands that the aerodynamic interferences between the aircraft components should be predicted and analyzed accurately. Today's CFD techniques provide us powerful and efficient analysis tools to achieve this objective. In this paper, computational investigations of the interferences between transport aircraft components have been carried out by using a viscous flow solver based on mixed element type unstructured meshes. (author)

  4. Airplane wing deformation and flight flutter detection method by using three-dimensional speckle image correlation technology.

    Science.gov (United States)

    Wu, Jun; Yu, Zhijing; Wang, Tao; Zhuge, Jingchang; Ji, Yue; Xue, Bin

    2017-06-01

    Airplane wing deformation is an important element of aerodynamic characteristics, structure design, and fatigue analysis for aircraft manufacturing, as well as a main test content of certification regarding flutter for airplanes. This paper presents a novel real-time detection method for wing deformation and flight flutter detection by using three-dimensional speckle image correlation technology. Speckle patterns whose positions are determined through the vibration characteristic of the aircraft are coated on the wing; then the speckle patterns are imaged by CCD cameras which are mounted inside the aircraft cabin. In order to reduce the computation, a matching technique based on Geodetic Systems Incorporated coded points combined with the classical epipolar constraint is proposed, and a displacement vector map for the aircraft wing can be obtained through comparing the coordinates of speckle points before and after deformation. Finally, verification experiments containing static and dynamic tests by using an aircraft wing model demonstrate the accuracy and effectiveness of the proposed method.

  5. The Edge supersonic transport

    Science.gov (United States)

    Agosta, Roxana; Bilbija, Dushan; Deutsch, Marc; Gallant, David; Rose, Don; Shreve, Gene; Smario, David; Suffredini, Brian

    1992-01-01

    As intercontinental business and tourism volumes continue their rapid expansion, the need to reduce travel times becomes increasingly acute. The Edge Supersonic Transport Aircraft is designed to meet this demand by the year 2015. With a maximum range of 5750 nm, a payload of 294 passengers and a cruising speed of M = 2.4, The Edge will cut current international flight durations in half, while maintaining competitive first class, business class, and economy class comfort levels. Moreover, this transport will render a minimal impact upon the environment, and will meet all Federal Aviation Administration Part 36, Stage III noise requirements. The cornerstone of The Edge's superior flight performance is its aerodynamically efficient, dual-configuration design incorporating variable-geometry wingtips. This arrangement combines the benefits of a high aspect ratio wing at takeoff and low cruising speeds with the high performance of an arrow-wing in supersonic cruise. And while the structural weight concerns relating to swinging wingtips are substantial, The Edge looks to ever-advancing material technologies to further increase its viability. Heeding well the lessons of the past, The Edge design holds economic feasibility as its primary focus. Therefore, in addition to its inherently superior aerodynamic performance, The Edge uses a lightweight, largely windowless configuration, relying on a synthetic vision system for outside viewing by both pilot and passengers. Additionally, a fly-by-light flight control system is incorporated to address aircraft supersonic cruise instability. The Edge will be produced at an estimated volume of 400 aircraft and will be offered to airlines in 2015 at $167 million per transport (1992 dollars).

  6. Durability and damage tolerance of Large Composite Primary Aircraft Structure (LCPAS)

    Science.gov (United States)

    Mccarty, John E.; Roeseler, William G.

    1984-01-01

    Analysis and testing addressing the key technology areas of durability and damage tolerance were completed for wing surface panels. The wing of a fuel-efficient, 200-passenger commercial transport airplane for 1990 delivery was sized using graphite-epoxy materials. Coupons of various layups used in the wing sizing were tested in tension, compression, and spectrum fatigue with typical fastener penetrations. The compression strength after barely visible impact damage was determined from coupon and structural element tests. One current material system and one toughened system were evaluated by coupon testing. The results of the coupon and element tests were used to design three distinctly different compression panels meeting the strength, stiffness, and damage-tolerance requirements of the upper wing panels. These three concepts were tested with various amounts of damage ranging from barely visible impact to through-penetration. The results of this program provide the key technology data required to assess the durability and damage-tolerance capability or advanced composites for use in commercial aircraft wing panel structure.

  7. Multi-objective optimization of aircraft design for emission and cost reductions

    Directory of Open Access Journals (Sweden)

    Wang Yu

    2014-02-01

    Full Text Available Pollutant gases emitted from the civil jet are doing more and more harm to the environment with the rapid development of the global commercial aviation transport. Low environmental impact has become a new requirement for aircraft design. In this paper, estimation method for emission in aircraft conceptual design stage is improved based on the International Civil Aviation Organization (ICAO aircraft engine emissions databank and the polynomial curve fitting methods. The greenhouse gas emission (CO2 equivalent per seat per kilometer is proposed to measure the emissions. An approximate sensitive analysis and a multi-objective optimization of aircraft design for tradeoff between greenhouse effect and direct operating cost (DOC are performed with five geometry variables of wing configuration and two flight operational parameters. The results indicate that reducing the cruise altitude and Mach number may result in a decrease of the greenhouse effect but an increase of DOC. And the two flight operational parameters have more effects on the emissions than the wing configuration. The Pareto-optimal front shows that a decrease of 29.8% in DOC is attained at the expense of an increase of 10.8% in greenhouse gases.

  8. Logistics Supply of the Distributed Air Wing

    Science.gov (United States)

    2014-09-01

    Event Graph The Consumption Process first instantiates the variables . The model follows a conveyor belt pattern, whereby after processing an event...to any part of the world. A capstone project, conducted by the system engineering curriculum, proposed to distribute the air assets from the aircraft...SUBJECT TERMS distributed air wing, logistics, supply, unmanned air systems , cargo UAS, unmanned systems , discrete event simulation, vehicle routing

  9. CFD Analysis of UAV Flying Wing

    Directory of Open Access Journals (Sweden)

    Vasile PRISACARIU

    2016-09-01

    Full Text Available Numerical methods for solving equations describing the evolution of 3D fluid experienced a significant development closely related to the progress of information systems. Today, especially in the field of fluid mechanics, numerical simulations allow the study of gas-thermodynamic confirmed by experimental techniques in wind tunnel conditions and actual flight tests for modeling complex aircraft. The article shows a case of numerical analysis of the lifting surface on the UAV type flying wing.

  10. Analysis of Low Speed Stall Aerodynamics of a Swept Wing with Laminar Flow Glove

    Science.gov (United States)

    Bui, Trong T.

    2014-01-01

    Reynolds-Averaged Navier-Stokes (RANS) computational fluid dynamics (CFD) analysis was conducted to study the low-speed stall aerodynamics of a GIII aircraft's swept wing modified with a laminar-flow wing glove. The stall aerodynamics of the gloved wing were analyzed and compared with the unmodified wing for the flight speed of 120 knots and altitude of 2300 ft above mean sea level (MSL). The Star-CCM+ polyhedral unstructured CFD code was first validated for wing stall predictions using the wing-body geometry from the First American Institute of Aeronautics and Astronautics (AIAA) CFD High-Lift Prediction Workshop. It was found that the Star-CCM+ CFD code can produce results that are within the scattering of other CFD codes considered at the workshop. In particular, the Star-CCM+ CFD code was able to predict wing stall for the AIAA wing-body geometry to within 1 degree of angle of attack as compared to benchmark wind-tunnel test data. Current results show that the addition of the laminar-flow wing glove causes the gloved wing to stall much earlier than the unmodified wing. Furthermore, the gloved wing has a different stall characteristic than the clean wing, with no sharp lift drop-off at stall for the gloved wing.

  11. Analysis of Low-Speed Stall Aerodynamics of a Swept Wing with Laminar-Flow Glove

    Science.gov (United States)

    Bui, Trong T.

    2014-01-01

    Reynolds-Averaged Navier-Stokes (RANS) computational fluid dynamics (CFD) analysis was conducted to study the low-speed stall aerodynamics of a GIII aircraft's swept wing modified with a laminar-flow wing glove. The stall aerodynamics of the gloved wing were analyzed and compared with the unmodified wing for the flight speed of 120 knots and altitude of 2300 ft above mean sea level (MSL). The Star-CCM+ polyhedral unstructured CFD code was first validated for wing stall predictions using the wing-body geometry from the First American Institute of Aeronautics and Astronautics (AIAA) CFD High-Lift Prediction Workshop. It was found that the Star-CCM+ CFD code can produce results that are within the scattering of other CFD codes considered at the workshop. In particular, the Star-CCM+ CFD code was able to predict wing stall for the AIAA wing-body geometry to within 1 degree of angle of attack as compared to benchmark wind-tunnel test data. Current results show that the addition of the laminar-flow wing glove causes the gloved wing to stall much earlier than the unmodified wing. Furthermore, the gloved wing has a different stall characteristic than the clean wing, with no sharp lift drop-off at stall for the gloved wing.

  12. Prototype-Technology Evaluator and Research Aircraft, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The Area-I team has developed and flight tested the unmanned Prototype-Technology Evaluation and Research Aircraft or PTERA ("ptera" being Greek for wing, or...

  13. Flying Wings. A New Paradigm for Civil Aviation?

    Directory of Open Access Journals (Sweden)

    R. Martinez-Val

    2007-01-01

    Full Text Available Over the last 50 years, commercial aviation has been mainly based what is currently called the conventional layout, characterized by a slender fuselage mated to a high aspect ratio wing, with aft-tail planes and pod-mounted engines under the wing. However, it seems that this primary configuration is approaching an asymptote in its productivity and performance characteristics. One of the most promising configurations for the future is the flying wing in its distinct arrangements: blended-wing-body, C-wing, tail-less aircraft, etc. These layouts might provide significant fuel savings and, hence, a decrease in pollution. This configuration would also reduce noise in take-off and landing. All this explains the great deal of activity carried out by the aircraft industry and by numerous investigators to perform feasibility and conceptual design studies of this aircraft layout to gain better knowledge of its main characteristics: productivity, airport compatibility, passenger acceptance, internal architecture, emergency evacuation, etc. The present paper discusses the main features of flying wings, their advantages over conventional competitors, and some key operational issues, such as evacuation and vortex wake intensity. 

  14. Research of low boom and low drag supersonic aircraft design

    Directory of Open Access Journals (Sweden)

    Feng Xiaoqiang

    2014-06-01

    Full Text Available Sonic boom reduction will be an issue of utmost importance in future supersonic transport, due to strong regulations on acoustic nuisance. The paper describes a new multi-objective optimization method for supersonic aircraft design. The method is developed by coupling Seebass–George–Darden (SGD inverse design method and multi-objective genetic algorithm. Based on the method, different codes are developed. Using a computational architecture, a conceptual supersonic aircraft design environment (CSADE is constructed. The architecture of CSADE includes inner optimization level and out optimization level. The low boom configuration is generated in inner optimization level by matching the target equivalent area distribution and actual equivalent area distribution. And low boom/low drag configuration is generated in outer optimization level by using NSGA-II multi-objective genetic algorithm to optimize the control parameters of SGD method and aircraft shape. Two objective functions, low sonic boom and low wave drag, are considered in CSADE. Physically reasonable Pareto solutions are obtained from the present optimization. Some supersonic aircraft configurations are selected from Pareto front and the optimization results indicate that the swept forward wing configuration has benefits in both sonic boom reduction and wave drag reduction. The results are validated by using computational fluid dynamics (CFD analysis.

  15. Electro-Magnetic Flow Control to Enable Natural Laminar Flow Wings Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This research team has developed a solid-state electromagnetic device that, when embedded along the leading edge of an aircraft wing, can disrupt laminar air flow on...

  16. Electro-Magnetic Flow Control to Enable Natural Laminar Flow Wings

    Data.gov (United States)

    National Aeronautics and Space Administration — This research team has developed a solid-state electromagnetic device that, when embedded along the leading edge of an aircraft wing, can disrupt laminar air flow on...

  17. Human Factors Analysis of Fiscal Year 90 to 97 Rotary Wing and TACAIR Flight Mishaps

    National Research Council Canada - National Science Library

    Denham, Kenneth

    2000-01-01

    .... This study uses the Human Factors Analysis and Classification System (HFACS), a human error oriented accident Investigation and analysis process, to conduct post-hoc analysis of 77 rotary wing and 141 Tactical Aircraft (TACAIR...

  18. Data and Performances of Selected Aircraft and Rotocraft

    DEFF Research Database (Denmark)

    Filippone, Antonino

    2000-01-01

    The study reports a comparative view of over 250 aircraft and rotorcraft. We report over 30 geometric characteristics of wings and rotor blades, aerodynamic coefficients and efficiencies, performances and more. Accuracy levels are provided whereever available......The study reports a comparative view of over 250 aircraft and rotorcraft. We report over 30 geometric characteristics of wings and rotor blades, aerodynamic coefficients and efficiencies, performances and more. Accuracy levels are provided whereever available...

  19. Toward Reduced Aircraft Community Noise Impact Via a Perception-Influenced Design Approach

    Science.gov (United States)

    Rizzi, Stephen A.

    2016-01-01

    This is an exciting time for aircraft design. New configurations, including small multi-rotor uncrewed aerial systems, fixed- and tilt-wing distributed electric propulsion aircraft, high-speed rotorcraft, hybrid-electric commercial transports, and low-boom supersonic transports, are being made possible through a host of propulsion and airframe technology developments. The resulting noise signatures may be radically different, both spectrally and temporally, than those of the current fleet. Noise certification metrics currently used in aircraft design do not necessarily reflect these characteristics and therefore may not correlate well with human response. Further, as operations and missions become less airport-centric, e.g., those associated with on-demand mobility or package delivery, vehicles may operate in closer proximity to the population than ever before. Fortunately, a new set of tools are available for assessing human perception during the design process in order to affect the final design in a positive manner. The tool chain utilizes system noise prediction methods coupled with auralization and psychoacoustic testing, making possible the inclusion of human response to noise, along with performance criteria and certification requirements, into the aircraft design process. Several case studies are considered to illustrate how this approach could be used to influence the design of future aircraft.

  20. Recent Developments in Aircraft Flyover Noise Simulation at NASA Langley Research Center

    Science.gov (United States)

    Rizzi, Stephen A.; Sullivan, Brenda M.; Aumann, Aric R.

    2008-01-01

    The NASA Langley Research Center is involved in the development of a new generation of synthesis and simulation tools for creation of virtual environments used in the study of aircraft community noise. The original emphasis was on simulation of flyover noise associated with subsonic fixed wing aircraft. Recently, the focus has shifted to rotary wing aircraft. Many aspects of the simulation are applicable to both vehicle classes. Other aspects, particularly those associated with synthesis, are more vehicle specific. This paper discusses the capabilities of the current suite of tools, their application to fixed and rotary wing aircraft, and some directions for the future.

  1. Solar thermal aircraft

    Science.gov (United States)

    Bennett, Charles L.

    2007-09-18

    A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  2. Quarter-scale Model of Solar-powered Centurion Ultra-high-altitude Flying Wing in Flight during Firs

    Science.gov (United States)

    1997-01-01

    , Dryden's project manager for solar-powered aircraft, said he was impressed to see how well the aircraft handled the large weight increase from an initial payload of 150 pounds to one of 600 pounds. During 1999, Centurion gave way to the Helios Prototype, the latest and largest example of a slow-flying ultralight flying wing designed for long-duration, high-altitude Earth science or telecommunications relay missions. This was an enlarged version of the Centurion flying wing with a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of the solar-powered Pathfinder flying wing, and longer than the wingspans of either the Boeing 747 jetliner or Lockheed C-5 transport aircraft. In upgrading the Centurion to the Helios Prototype configuration, AeroVironment added a sixth wing section and a fifth landing gear pod, among other improvements. The additional wingspan increased the area available for installation of solar cells and improved its lifting capability. This allows the Helios Prototype to carry a regenerative fuel-cell-based energy storage system that will enable flight at night, while still meeting the performance goals originally established for the Centurion.

  3. Quarter-scale Model of Solar-powered Centurion Ultra-high-altitude Flying Wing on Lakebed

    Science.gov (United States)

    1997-01-01

    -powered aircraft, said he was impressed to see how well the aircraft handled the large weight increase from an initial payload of 150 pounds to one of 600 pounds. During 1999, Centurion gave way to the Helios Prototype, the latest and largest example of a slow-flying ultralight flying wing designed for long-duration, high-altitude Earth science or telecommunications relay missions. This was an enlarged version of the Centurion flying wing with a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of the solar-powered Pathfinder flying wing, and longer than the wingspans of either the Boeing 747 jetliner or Lockheed C-5 transport aircraft. In upgrading the Centurion to the Helios Prototype configuration, AeroVironment added a sixth wing section and a fifth landing gear pod, among other improvements. The additional wingspan increased the area available for installation of solar cells and improved its lifting capability. This allows the Helios Prototype to carry a regenerative fuel-cell-based energy storage system that will enable flight at night, while still meeting the performance goals originally established for the Centurion.

  4. Lay-up Optimisation of Fibre Metal Laminates : Development of a Design Methodology for Wing Structures

    NARCIS (Netherlands)

    ?en, I.

    2015-01-01

    The lower wing skin is one of the primary structures of an aircraft. To further improve the fatigue and damage tolerance (F&DT) performance of the lower wing, fibre metal laminates (FML) are proposed as a new material solution. FML consist of thin metal layers bonded with layers of fibre composites.

  5. Pulsed eddy current inspection of CF-188 inner wing spar

    Science.gov (United States)

    Horan, Peter Francis

    Royal Canadian Air Force (RCAF) CF-188 Hornet aircraft engineering authorities have stated a requirement for a Non-Destructive Evaluation (NDE) technique to detect Stress Corrosion Cracking (SCC) in the inner wing spars without fastener or composite wing skin removal. Current radiographic inspections involve significant aircraft downtime, and Pulsed Eddy Current (PEC) inspection is proposed as a solution. The aluminum inner wing spars of CF-188 Hornet aircraft may undergo stress corrosion cracking (SCC) along the spar between the fasteners that secure carbon-fiber/ epoxy composite skin to the wing. Inspection of the spar through the wing skin is required to avoid wing disassembly. The thickness of the wing skin varies between 8 and 20 mm (0.3 to 0.8 inch) and fasteners may be either titanium or ferrous. PEC generated by a probe centered over a fastener, demonstrates capability of detecting simulated cracks within spars with the wing skin present. Comparison of signals from separate sensors, mounted to either side of the excitation coil, is used to detect differences in induced eddy current fields, which arise in the presence of cracks. To overcome variability in PEC signal response due to variation in 1) skin thickness, 2) fastener material and size, and 3) centering over fasteners, a large calibration data set is acquired. Multi-dimensional scores from a Modified Principal Components Analysis (PCA) of the data are reduced to one dimension (1D) using a Discriminant Analysis method. Under inspection conditions, calibrated PCA scores combined with discriminant analysis permit rapid real time go/no-go PEC detection of cracks in CF-188 inner wing spar. Probe designs using both pickup coils and Giant Magnetoresistive (GMR) sensors were tested on samples with the same ferrous and titanium fasteners found on the CF-188. Flaws were correctly detected at lift-offs of up to 21mm utilizing a variety of insulating skin materials simulating the carbon-fibre reinforced polymer

  6. Interfacility transports.

    Science.gov (United States)

    Blackwell, Thomas H

    2002-02-01

    Financial pressures exerted by managed care organizations toward hospitals to improve efficiencies and to lower total healthcare costs continue to force physicians and administrators to reevaluate operations and practices. This shifting of risk exposure from insurers to providers has resulted in many mergers, acquisitions, and affiliations, so as to form integrated health systems that reduce repetition and duplication of services. Therefore, as these integrated systems develop, along with the emergence of tertiary care, regional referral, and specialty hospitals, the need for patient transfers between such facilities will expand. The decision to move patients between facilities is a multicomponent process comprising health, safety, financial, and legal concerns. Interfacility transportation of patients has been performed over the past 20 to 30 years. Whereas ground transport services were prominent in the 1970s, air medical programs using helicopters and fixed-wing aircraft have recently become widespread. Both hospital-based and private agencies have continued to develop programs for efficiently and expeditiously transporting critically ill or injured patients, many requiring complex life-support devices. The Practice Management Committee of the American College of Emergency Physicians recently updated the 1990 policy statement on interfacility transfers, and two position statements are available from the National Association of EMS Physicians on criteria for air medical transport and medical direction for interfacility transport services. This review provides an overview of transportation systems and services available and assists physicians in understanding the various modes and characteristics of systems available. Personnel configurations and capabilities, physiological limitations, inherent requirements for equipment and patient preparation, and legal issues involved with transferring patients are also outlined.

  7. Design of a hybrid rocket / inflatable wing UAV

    Science.gov (United States)

    Sudduth, Cory

    This paper discusses the design challenges and development of a UAV that transitions from a rocket, which allows the aircraft to reach a target altitude rapidly, and then deploys an inflatable wing from an enclosed shell in midflight to allow for loitering and surveillance. The wing deployment and transition is tested in static and dynamic environments, while the performance and stability of both the aircraft mode and rocket mode are examined analytically. An in-depth discussion of key components, including the design, analysis and testing, is also included. Designing an UAV that transitions from a high velocity rocket, to a slow velocity UAV provides many difficult and unique design challenges. For example, the incorporation of deployable wing technology into a full UAV system results in many design constraints. In this particular design inflatable wings are used to generate lift during aircraft mode, and the stabilizing fins for the main wing also acted as the fins for the vehicle during its rocket phase. This required the balancing of the two different vehicle configurations to ensure that the aircraft would be able to fly stably in both modes, and transition between them without catastrophic failure. Significant research, and testing went into the finding the best method of storing the inflatable wing, as well as finding the required inflation rate to minimize unsteady aerodynamic affects. Design work was also invested in the development of an inflation system, as it had to be highly reliable, and yet very light weight for use in this small UAV. This paper discusses how these design challenges were overcome, the development and testing of individual sub-components and how they are incorporated into the overall vehicle. The analysis that went into this UAV, as well as methods used to optimize the design in order to minimize weight and maximize the aircraft performance and loitering time is also discussed.

  8. Structural analysis at aircraft conceptual design stage

    Science.gov (United States)

    Mansouri, Reza

    In the past 50 years, computers have helped by augmenting human efforts with tremendous pace. The aircraft industry is not an exception. Aircraft industry is more than ever dependent on computing because of a high level of complexity and the increasing need for excellence to survive a highly competitive marketplace. Designers choose computers to perform almost every analysis task. But while doing so, existing effective, accurate and easy to use classical analytical methods are often forgotten, which can be very useful especially in the early phases of the aircraft design where concept generation and evaluation demands physical visibility of design parameters to make decisions [39, 2004]. Structural analysis methods have been used by human beings since the very early civilization. Centuries before computers were invented; the pyramids were designed and constructed by Egyptians around 2000 B.C, the Parthenon was built by the Greeks, around 240 B.C, Dujiangyan was built by the Chinese. Persepolis, Hagia Sophia, Taj Mahal, Eiffel tower are only few more examples of historical buildings, bridges and monuments that were constructed before we had any advancement made in computer aided engineering. Aircraft industry is no exception either. In the first half of the 20th century, engineers used classical method and designed civil transport aircraft such as Ford Tri Motor (1926), Lockheed Vega (1927), Lockheed 9 Orion (1931), Douglas DC-3 (1935), Douglas DC-4/C-54 Skymaster (1938), Boeing 307 (1938) and Boeing 314 Clipper (1939) and managed to become airborne without difficulty. Evidencing, while advanced numerical methods such as the finite element analysis is one of the most effective structural analysis methods; classical structural analysis methods can also be as useful especially during the early phase of a fixed wing aircraft design where major decisions are made and concept generation and evaluation demands physical visibility of design parameters to make decisions

  9. Utilization of Optimization for Design of Morphing Wing Structures for Enhanced Flight

    Science.gov (United States)

    Detrick, Matthew Scott

    Conventional aircraft control surfaces constrain maneuverability. This work is a comprehensive study that looks at both smart material and conventional actuation methods to achieve wing twist to potentially improve flight capability using minimal actuation energy while allowing minimal wing deformation under aerodynamic loading. A continuous wing is used in order to reduce drag while allowing the aircraft to more closely approximate the wing deformation used by birds while loitering. The morphing wing for this work consists of a skin supported by an underlying truss structure whose goal is to achieve a given roll moment using less actuation energy than conventional control surfaces. A structural optimization code has been written in order to achieve minimal wing deformation under aerodynamic loading while allowing wing twist under actuation. The multi-objective cost function for the optimization consists of terms that ensure small deformation under aerodynamic loading, small change in airfoil shape during wing twist, a linear variation of wing twist along the length of the wing, small deviation from the desired wing twist, minimal number of truss members, minimal wing weight, and minimal actuation energy. Hydraulic cylinders and a two member linkage driven by a DC motor are tested separately to provide actuation. Since the goal of the current work is simply to provide a roll moment, only one actuator is implemented along the wing span. Optimization is also used to find the best location within the truss structure for the actuator. The active structure produced by optimization is then compared to simulated and experimental results from other researchers as well as characteristics of conventional aircraft.

  10. Fuel containment, lightning protection and damage tolerance in large composite primary aircraft structures

    Science.gov (United States)

    Griffin, Charles F.; James, Arthur M.

    1985-01-01

    The damage-tolerance characteristics of high strain-to-failure graphite fibers and toughened resins were evaluated. Test results show that conventional fuel tank sealing techniques are applicable to composite structures. Techniques were developed to prevent fuel leaks due to low-energy impact damage. For wing panels subjected to swept stroke lightning strikes, a surface protection of graphite/aluminum wire fabric and a fastener treatment proved effective in eliminating internal sparking and reducing structural damage. The technology features developed were incorporated and demonstrated in a test panel designed to meet the strength, stiffness, and damage tolerance requirements of a large commercial transport aircraft. The panel test results exceeded design requirements for all test conditions. Wing surfaces constructed with composites offer large weight savings if design allowable strains for compression can be increased from current levels.

  11. Quarter-scale Model of Solar-powered Centurion Ultra-high-altitude Flying Wing Landing during First

    Science.gov (United States)

    1997-01-01

    was impressed to see how well the aircraft handled the large weight increase from an initial payload of 150 pounds to one of 600 pounds. During 1999, Centurion gave way to the Helios Prototype, the latest and largest example of a slow-flying ultralight flying wing designed for long-duration, high-altitude Earth science or telecommunications relay missions. This was an enlarged version of the Centurion flying wing with a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of the solar-powered Pathfinder flying wing, and longer than the wingspans of either the Boeing 747 jetliner or Lockheed C-5 transport aircraft. In upgrading the Centurion to the Helios Prototype configuration, AeroVironment added a sixth wing section and a fifth landing gear pod, among other improvements. The additional wingspan increased the area available for installation of solar cells and improved its lifting capability. This allows the Helios Prototype to carry a regenerative fuel-cell-based energy storage system that will enable flight at night, while still meeting the performance goals originally established for the Centurion.

  12. The microburst - Hazard to aircraft

    Science.gov (United States)

    Mccarthy, J.; Serafin, R.

    1984-01-01

    In encounters with microbursts, low altitude aircraft first encounter a strong headwind which increases their wing lift and altitude; this phenomenon is followed in short succession by a decreasing headwind component, a downdraft, and finally a strong tailwind that catastrophically reduces wing lift and precipitates a crash dive. It is noted that the potentially lethal low altitude wind shear of a microburst may lie in apparently harmless, rain-free air beneath a cloud base. Occasionally, such tell-tale signs as localized blowing of ground dust may be sighted in time. Microbursts may, however, occur in the heavy rain of a thunderstorm, where they will be totally obscured from view. Wind shear may be detected by an array of six anemometers and vanes situated in the vicinity of an airport, and by Doppler radar equipment at the airport or aboard aircraft.

  13. Flight Controller Software Protects Lightweight Flexible Aircraft

    Science.gov (United States)

    2015-01-01

    Lightweight flexible aircraft may be the future of aviation, but a major problem is their susceptibility to flutter-uncontrollable vibrations that can destroy wings. Armstrong Flight Research Center awarded SBIR funding to Minneapolis, Minnesota-based MUSYN Inc. to develop software that helps program flight controllers to suppress flutter. The technology is now available for aircraft manufacturers and other industries that use equipment with automated controls.

  14. Design, Development and Testing of Shape Shifting Wing Model

    Directory of Open Access Journals (Sweden)

    Dean Ninian

    2017-11-01

    Full Text Available The design and development of morphing (shape shifting aircraft wings—an innovative technology that has the potential to increase the aerodynamic efficiency and reduce noise signatures of aircrafts—was carried out. This research was focused on reducing lift-induced drag at the flaps of the aerofoil and to improve the design to achieve the optimum aerodynamic efficiency. Simulation revealed a 10.8% coefficient of lift increase for the initial morphing wing and 15.4% for the optimized morphing wing as compared to conventional wing design. At angles of attack of 0, 5, 10 and 15 degrees, the optimized wing has an increase in lift-to-drag ratio of 18.3%, 10.5%, 10.6% and 4% respectively when compared with the conventional wing. Simulations also showed that there is a significant improvement on pressure distribution over the lower surface of the morphing wing aerofoil. The increase in flow smoothness and reduction in vortex size reduced pressure drag along the trailing edge of the wing as a result an increase in pressure on the lower surface was experienced. A morphing wing reduced the size of the vortices and therefore the noise levels measured were reduced by up to 50%.

  15. MODELLING AND MEASUREMENT OF NOx CONCENTRATION IN PLUME FROM AIRCRAFT ENGINE UNDER OPERATION CONDITIONS AT THE AERODROME AREA

    Directory of Open Access Journals (Sweden)

    Oleksandr Zaporozhets

    2016-06-01

    Full Text Available Purpose: Airport air pollution is growing concern because of the air traffic expansion over the years (at annual rate of 5 %, rising tension of airports and growing cities expansion close each other (for such Ukrainian airports, as Zhulyany, Boryspol, Lviv, Odesa and Zaporizhzhia and accordingly growing public concern with air quality around the airport. Analysis of inventory emission results at major European and Ukrainian airports highlighted, that an aircraft is the dominant source of air pollution in most cases under consideration. For accurate assessment of aircraft emission contribution to total airport pollution and development of successful mitigation strategies, it is necessary to combine the modeling and measurement methods. Methods: Measurement of NOx concentration in the jet/plume from aircraft engine was implemented by chemiluminescence method under real operating conditions (taxi, landing, accelerating on the runway and take-off at International Boryspol airport (IBA. Modeling of NOx concentration was done by complex model PolEmiCa, which takes into account the transport and dilution of air contaminates by exhaust gases jet and the wing trailing vortexes.Results: The results of the measured NOx concentration in plume from aircraft engine for take-off conditions at IBA were used for improvement and validation of the complex model PolEmiCa. The comparison of measured and modeled instantaneous concentration of NOx was sufficiently improved by taking into account the impact of wing trailing vortices on the parameters of the jet (buoyancy height, horizontal and vertical deviation and on concentration distribution in plume. Discussion: Combined approach of modeling and measurement methods provides more accurate representation of aircraft emission contribution to total air pollution in airport area. Modeling side provides scientific grounding for organization of instrumental monitoring of aircraft engine emissions, particularly, scheme

  16. Monitoring of a Full-Scale Wing Fatigue Test

    NARCIS (Netherlands)

    Heida, Jaap; Hwang, Joong Sun

    2014-01-01

    A wing of a decommissioned aircraft of the Royal Netherlands Air Force (RNLAF) was fatigue tested to more than two times the design life. Part of the test was the evaluation of load monitoring and Structural Health Monitoring (SHM) techniques. For load monitoring the data of conventional resistance

  17. Transport jet aircraft noise abatement in foreign countries: Growth, structure, impact. Volume 2: Pacific basin, August 1980

    Science.gov (United States)

    Spencer, F. A.

    1980-01-01

    Noise control measures at the international airports of Hawaii, New Zealand, Australia, Hong Kong, Japan, and Singapore were studied. Factors in noise control, such as government structure are examined. The increasing power of environmental agencies vis-a-vis aviation departments is noted. The following methods of dealing with aircraft noise are examined by type of control: noise at the source control; noise emmission controls, zoning, building codes, subsidies for relocation, insulation, loss in property values, and for TV, radio and telephone interference; and noise-related landing charges.

  18. Shock/shock interactions between bodies and wings

    Directory of Open Access Journals (Sweden)

    Gaoxiang XIANG

    2018-02-01

    Full Text Available This paper examines the Shock/Shock Interactions (SSI between the body and wing of aircraft in supersonic flows. The body is simplified to a flat wedge and the wing is assumed to be a sharp wing. The theoretical spatial dimension reduction method, which transforms the 3D problem into a 2D one, is used to analyze the SSI between the body and wing. The temperature and pressure behind the Mach stem induced by the wing and body are obtained, and the wave configurations in the corner are determined. Numerical validations are conducted by solving the inviscid Euler equations in 3D with a Non-oscillatory and Non-free-parameters Dissipative (NND finite difference scheme. Good agreements between the theoretical and numerical results are obtained. Additionally, the effects of the wedge angle and sweep angle on wave configurations and flow field are considered numerically and theoretically. The influences of wedge angle are significant, whereas the effects of sweep angle on wave configurations are negligible. This paper provides useful information for the design and thermal protection of aircraft in supersonic and hypersonic flows. Keywords: Body and wing, Flow field, Hypersonic flow, Shock/shock interaction, Wave configurations

  19. Design conceptuel d'un avion blended wing body de 200 passagers

    Science.gov (United States)

    Ammar, Sami

    The Blended Wing Body is built based on the flying wing concept and performance improvements compared to conventional aircraft. Contrariwise, most studies have focused on large aircraft and it is not sure whether the gains are the same for smaller aircraft. The main of objective is to perform the conceptual design of a BWB of 200 passengers and compare the performance obtained with a conventional aircraft equivalent in terms of payload and range. The design of the Blended Wing Body was carried out under the CEASIOM environment. This platform design suitable for conventional aircraft design has been modified and additional tools have been integrated in order to achieve the aerodynamic analysis, performance and stability of the aircraft fuselage built. A plane model is obtained in the geometric module AcBuilder CEASIOM from the design variables of a wing. Estimates of mass are made from semi- empirical formulas adapted to the geometry of the BWB and calculations centering and inertia are possible through BWB model developed in CATIA. Low fidelity methods, such as TORNADO and semi- empirical formulas are used to analyze the aerodynamic performance and stability of the aircraft. The aerodynamic results are validated using a high-fidelity analysis using FLUENT CFD software. An optimization process is implemented in order to obtain improved while maintaining a feasible design performance. It is an optimization of the plan form of the aircraft fuselage integrated with a number of passengers and equivalent to that of a A320.Les performance wing aircraft merged optimized maximum range are compared to A320 also optimized. Significant gains were observed. An analysis of the dynamics of longitudinal and lateral flight is carried out on the aircraft optimized BWB finesse and mass. This study identified the stable and unstable modes of the aircraft. Thus, this analysis has highlighted the stability problems associated with the oscillation of incidence and the Dutch roll for the

  20. Advanced composite structural concepts and material technologies for primary aircraft structures

    Science.gov (United States)

    Jackson, Anthony

    1991-01-01

    Structural weight savings using advanced composites have been demonstrated for many years. Most military aircraft today use these materials extensively and Europe has taken the lead in their use in commercial aircraft primary structures. A major inhibiter to the use of advanced composites in the United States is cost. Material costs are high and will remain high relative to aluminum. The key therefore lies in the significant reduction in fabrication and assembly costs. The largest cost in most structures today is assembly. As part of the NASA Advanced Composite Technology Program, Lockheed Aeronautical Systems Company has a contract to explore and develop advanced structural and manufacturing concepts using advanced composites for transport aircraft. Wing and fuselage concepts and related trade studies are discussed. These concepts are intended to lower cost and weight through the use of innovative material forms, processes, structural configurations and minimization of parts. The approach to the trade studies and the downselect to the primary wing and fuselage concepts is detailed. The expectations for the development of these concepts is reviewed.

  1. 75 FR 39795 - Airworthiness Directives; Aircraft Industries a.s. (Type Certificate G60EU Previously Held by...

    Science.gov (United States)

    2010-07-13

    ... failed near the root due to positive load. The right wing detached from the aircraft and the pilots lost... spar of the right wing failed near the root due to positive load. The right wing detached from the... have found it necessary to use different words from those in the MCAI to ensure the AD is clear for U.S...

  2. 75 FR 52250 - Airworthiness Directives; Aircraft Industries a.s. (Type Certificate G24EU Previously Held by...

    Science.gov (United States)

    2010-08-25

    ... wing failed near the root due to positive load. The right wing detached from the aircraft and the...[Iacute]K sailplane, in which the main spar of the right wing failed near the root due to positive load... substance. But we might have found it necessary to use different words from those in the MCAI to ensure the...

  3. Probing stratospheric transport and chemistry with new balloon and aircraft observations of the meridional and vertical N2O isotope distribution

    Directory of Open Access Journals (Sweden)

    J. Kaiser

    2006-01-01

    Full Text Available A comprehensive set of stratospheric balloon and aircraft samples was analyzed for the position-dependent isotopic composition of nitrous oxide (N2O. Results for a total of 220 samples from between 1987 and 2003 are presented, nearly tripling the number of mass-spectrometric N2O isotope measurements in the stratosphere published to date. Cryogenic balloon samples were obtained at polar (Kiruna/Sweden, 68° N, mid-latitude (southern France, 44° N and tropical sites (Hyderabad/India, 18° N. Aircraft samples were collected with a newly-developed whole air sampler on board of the high-altitude aircraft M55 Geophysica during the EUPLEX 2003 campaign. For mixing ratios above 200 nmol mol−1, relative isotope enrichments (δ values and mixing ratios display a compact relationship, which is nearly independent of latitude and season and which can be explained equally well by Rayleigh fractionation or mixing. However, for mixing ratios below 200 nmol mol−1 this compact relationship gives way to meridional, seasonal and interannual variations. A comparison to a previously published mid-latitude balloon profile even shows large zonal variations, justifying the use of three-dimensional (3-D models for further data interpretation. In general, the magnitude of the apparent fractionation constants (i.e., apparent isotope effects increases continuously with altitude and decreases from the equator to the North Pole. Only the latter observation can be understood qualitatively by the interplay between the time-scales of N2O photochemistry and transport in a Rayleigh fractionation framework. Deviations from Rayleigh fractionation behavior also occur where polar vortex air mixes with nearly N2O-free upper stratospheric/mesospheric air (e.g., during the boreal winters of 2003 and possibly 1992. Aircraft observations in the polar vortex at mixing ratios below 200 nmol mol−1 deviate from isotope variations expected for both Rayleigh fractionation and two

  4. Effect of wing planform and canard location and geometry on the longitudinal aerodynamic characteristics of a close-coupled canard wing model at subsonic speeds

    Science.gov (United States)

    Gloss, B. B.

    1975-01-01

    A generalized wind-tunnel model with canard and wing planforms typical of highly maneuverable aircraft was tested in the Langley 7- by 10-foot high-speed tunnel at a Mach number of 0.30 to determine the effect of canard location, canard size, wing sweep, and canard strake on canard-wing interference to high angles of attack. The major results of this investigation may be summarized as follows: the high-canard configuration (excluding the canard strake and canard flap), for both the 60 deg and 44 deg swept leading-edge wings, produced the highest maximum lift coefficient and the most linear pitching-moment curves; substantially larger gains in the canard lift and total lift were obtained by adding a strake to the canard located below the wing chord plane rather than by adding a strake to the canard located above the wing chord plane.

  5. Application of SMP composite in designing a morphing wing

    Science.gov (United States)

    Yu, Kai; Yin, Weilong; Liu, Yanju; Leng, Jinsong

    2008-11-01

    A new concept of a morphing wing based on shape memory polymer (SMP) and its reinforced composite is proposed in this paper. SMP used in this study is a thermoset styrene-based resin in contrast to normal thermoplastic SMP. In our design, the wing winded on the airframe can be deployed during heating, which provides main lift for a morphing aircraft to realize stable flight. Aerodynamic characteristics of the deployed morphing wing are calculated by using CFD software. The static deformation of the wing under the air loads is also analyzed by using the finite element method. The results show that the used SMP material can provide enough strength and stiffness for the application.

  6. Aircraft energy efficiency. Overview

    Science.gov (United States)

    1981-01-01

    Six advanced technology development projects that could cut fuel consumption of future civil air transports by as much as 50 percent are highlighted. These include improved engine components; better engine design; thin short blades for turboprop aircaft; using composite primary structures for weight reduction; the use of supercritical wings, higher aspect ratio, and winglets for improved aerodynamics; active controls; and laminar flow control. The time span of each of the six efforts and NASA's expected expenditures are also discussed.

  7. Flight service evaluation of an advanced composite empennage component on commercial transport aircraft. Phase 1: Engineering development

    Science.gov (United States)

    Ary, A.; Axtell, C.; Fogg, L.; Jackson, A.; James, A. M.; Mosesian, B.; Vanderwier, J.; Vanhamersveld, J.

    1976-01-01

    The empennage component selected for this program is the vertical fin box of the L-1011 aircraft. The box structure extends from the fuselage production joint to the tip rib and includes the front and rear spars. Various design options were evaluated to arrive at a configuration which would offer the highest potential for satisfying program objectives. The preferred configuration selected consists of a hat-stiffened cover with molded integrally stiffened spars, aluminum trussed composite ribs, and composite miniwich web ribs with integrally molded caps. Material screening tests were performed to select an advanced composite material system for the Advanced Composite Vertical Fin (ACFV) that would meet the program requirements from the standpoint of quality, reproducibility, and cost. Preliminary weight and cost analysis were made, targets established, and tracking plans developed. These include FAA certification, ancillary test program, quality control, and structural integrity control plans.

  8. Development of Stitched Composite Structure for Advanced Aircraft

    Science.gov (United States)

    Jegley, Dawn; Przekop, Adam; Rouse, Marshall; Lovejoy, Andrew; Velicki, Alex; Linton, Kim; Wu, Hsi-Yung; Baraja, Jaime; Thrash, Patrick; Hoffman, Krishna

    2015-01-01

    NASA has created the Environmentally Responsible Aviation Project to develop technologies which will reduce the impact of aviation on the environment. A critical aspect of this pursuit is the development of a lighter, more robust airframe that will enable the introduction of unconventional aircraft configurations. NASA and The Boeing Company are working together to develop a structural concept that is lightweight and an advancement beyond state-of-the-art composites. The Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) is an integrally stiffened panel design where elements are stitched together and designed to maintain residual load-carrying capabilities under a variety of damage scenarios. With the PRSEUS concept, through-the-thickness stitches are applied through dry fabric prior to resin infusion, and replace fasteners throughout each integral panel. Through-the-thickness reinforcement at discontinuities, such as along flange edges, has been shown to suppress delamination and turn cracks, which expands the design space and leads to lighter designs. The pultruded rod provides stiffening away from the more vulnerable skin surface and improves bending stiffness. A series of building blocks were evaluated to explore the fundamental assumptions related to the capability and advantages of PRSEUS panels. These building blocks addressed tension, compression, and pressure loading conditions. The emphasis of the development work has been to assess the loading capability, damage arrestment features, repairability, post-buckling behavior, and response of PRSEUS flat panels to out-of plane pressure loading. The results of this building-block program from coupons through an 80%-scale pressure box have demonstrated the viability of a PRSEUS center body for the Hybrid Wing Body (HWB) transport aircraft. This development program shows that the PRSEUS benefits are also applicable to traditional tube-andwing aircraft, those of advanced configurations, and other

  9. Application of 1D Array FBG Configuration for Impact Localization on Composite Wing under Simulated Noise

    Science.gov (United States)

    2016-03-30

    health monitoring (SHM) [5] of aircraft structure can be done so that low velocity impacts, such as due to tool drop, runway debris, bird strike etc...Experimental Set-Up Jabiru UL-D’s, shown in Fig. 2, (Jabiru Aircraft Pty Ltd, Australia ) composite wing was used for the impact localization test under...industry & Energy (MI, Korea) (10047457, Development of aircraft health monitoring integrated measurement system for composite), and by Leading Foreign

  10. Unmanned Cargo Aircraft : From Anywhere to Everywhere

    NARCIS (Netherlands)

    Heerkens, Hans

    2017-01-01

    While unmanned aircraft have been in use for decades, their suitability for transporting cargo is only now slowly being recognised. The first prototypes of unmanned cargo aircraft (UCA) are currently being tested. There are two categories of UCA: short-distance aircraft for delivering packages and

  11. Hybrid Wing Body Model Identification Using Forced-Oscillation Water Tunnel Data

    Science.gov (United States)

    Murphy, Patrick C.; Vicroy, Dan D.; Kramer, Brian; Kerho, Michael

    2014-01-01

    Static and dynamic testing of the NASA 0.7 percent scale Hybrid Wing Body (HWB) configuration was conducted in the Rolling Hills Research Corporation water tunnel to investigate aerodynamic behavior over a large range of angle-of-attack and to develop models that can predict aircraft response in nonlinear unsteady flight regimes. This paper reports primarily on the longitudinal axis results. Flow visualization tests were also performed. These tests provide additional static data and new dynamic data that complement tests conducted at NASA Langley 14- by 22-Foot Subsonic Tunnel. HWB was developed to support the NASA Environmentally Responsible Aviation Project goals of lower noise, emissions, and fuel burn. This study also supports the NASA Aviation Safety Program efforts to model and control advanced transport configurations in loss-of-control conditions.

  12. Fuel containment and damage tolerance in large composite primary aircraft structures. Phase 2: Testing

    Science.gov (United States)

    Sandifer, J. P.; Denny, A.; Wood, M. A.

    1985-01-01

    Technical issues associated with fuel containment and damage tolerance of composite wing structures for transport aircraft were investigated. Material evaluation tests were conducted on two toughened resin composites: Celion/HX1504 and Celion/5245. These consisted of impact, tension, compression, edge delamination, and double cantilever beam tests. Another test series was conducted on graphite/epoxy box beams simulating a wing cover to spar cap joint configuration of a pressurized fuel tank. These tests evaluated the effectiveness of sealing methods with various fastener types and spacings under fatigue loading and with pressurized fuel. Another test series evaluated the ability of the selected coatings, film, and materials to prevent fuel leakage through 32-ply AS4/2220-1 laminates at various impact energy levels. To verify the structural integrity of the technology demonstration article structural details, tests were conducted on blade stiffened panels and sections. Compression tests were performed on undamaged and impacted stiffened AS4/2220-1 panels and smaller element tests to evaluate stiffener pull-off, side load and failsafe properties. Compression tests were also performed on panels subjected to Zone 2 lightning strikes. All of these data were integrated into a demonstration article representing a moderately loaded area of a transport wing. This test combined lightning strike, pressurized fuel, impact, impact repair, fatigue and residual strength.

  13. On the trade-off between electrical power consumption and flight performance in fixed-wing UAV autopilots

    OpenAIRE

    Bertran Albertí, Eduardo; Sanchez Cerda, Alex

    2016-01-01

    This paper sets out a study of the autopilot design for fixed wing Unmanned Aerial Vehicles (UAVs) taking into account the aircraft stability, as well as the power consumption as a function of the selected control strategy. To provide some generality to the outcomes of this study, construction of a reference small-UAV model, based on averaging the main aircraft defining parameters, is proposed. Using such a reference model of small, fixed-wing UAVs, different control strategies are assessed, ...

  14. Power reduction and the radial limit of stall delay in revolving wings of different aspect ratio.

    Science.gov (United States)

    Kruyt, Jan W; van Heijst, GertJan F; Altshuler, Douglas L; Lentink, David

    2015-04-06

    Airplanes and helicopters use high aspect ratio wings to reduce the power required to fly, but must operate at low angle of attack to prevent flow separation and stall. Animals capable of slow sustained flight, such as hummingbirds, have low aspect ratio wings and flap their wings at high angle of attack without stalling. Instead, they generate an attached vortex along the leading edge of the wing that elevates lift. Previous studies have demonstrated that this vortex and high lift can be reproduced by revolving the animal wing at the same angle of attack. How do flapping and revolving animal wings delay stall and reduce power? It has been hypothesized that stall delay derives from having a short radial distance between the shoulder joint and wing tip, measured in chord lengths. This non-dimensional measure of wing length represents the relative magnitude of inertial forces versus rotational accelerations operating in the boundary layer of revolving and flapping wings. Here we show for a suite of aspect ratios, which represent both animal and aircraft wings, that the attachment of the leading edge vortex on a revolving wing is determined by wing aspect ratio, defined with respect to the centre of revolution. At high angle of attack, the vortex remains attached when the local radius is shorter than four chord lengths and separates outboard on higher aspect ratio wings. This radial stall limit explains why revolving high aspect ratio wings (of helicopters) require less power compared with low aspect ratio wings (of hummingbirds) at low angle of attack and vice versa at high angle of attack. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  15. N plus 3 Advanced Concept Studies for Supersonic Commercial Transport Aircraft Entering Service in the 2030-2035 Period

    Science.gov (United States)

    Welge, H. Robert; Bonet, John; Magee, Todd; Tompkins, Daniel; Britt, Terry R.; Nelson, Chet; Miller, Gregory; Stenson, Douglas; Staubach, J. Brent; Bala, Naushir; hide

    2011-01-01

    Boeing, with Pratt & Whitney, General Electric, Rolls-Royce, M4 Engineering, Wyle Laboratories and Georgia Institute of Technology, conducted a study of supersonic commercial aircraft concepts and enabling technologies for the year 2030-2035 timeframe. The work defined the market and environmental/regulatory conditions that could evolve by the 2030/35 time period, from which vehicle performance goals were derived. Relevant vehicle concepts and technologies are identified that are anticipated to meet these performance and environmental goals. A series of multidisciplinary analyses trade studies considering vehicle sizing, mission performance and environmental conformity determined the appropriate concepts. Combinations of enabling technologies and the required technology performance levels needed to meet the desired goals were identified. Several high priority technologies are described in detail, including roadmaps with risk assessments that outline objectives, key technology challenges, detailed tasks and schedules and demonstrations that need to be performed. A representative configuration is provided for reference purposes, along with associated performance estimates based on these key technologies.

  16. Impact of the european emission trading scheme for the air transportation industry on the valuation of aircraft purchase rights

    International Nuclear Information System (INIS)

    Tarradellas-Espuny, J.; Salamero-Salas, A.; Martinez-Costa, C.

    2009-01-01

    The European Commission issued a legislative proposal in December 2006, suggesting a cap on CO 2 emissions for all planes arriving or departing from EU airports, while allowing airlines to buy and sell pollution credits on the EU carbon market (Emission Trading Scheme, or ETS). In 2008 the new scheme got the final approval. Real options appear to be ab appropriate methodology to capture the extra value brought by the new legislation on new airplane purchase rights: The airline will surely have the purchase right to the new plane if the operation of the plane generates unused pollution credits that the airline can sell at a minimum price in the carbon market. This paper tries to determine if the impact of ETS in the valuation of aircraft purchase rights is significant enough in monetary terms to include the new legislation in a complex real-option model already proposed by the authors recently. The research concludes that even the impact of ETS justifies its inclusion in the model, the quality of the available sets of historical data still raises some questions. Particularly, the assumption of market efficiency for the Carbon Pool over the recent years needs to be treated with caution. (Author) 9 refs

  17. Finite Element Analysis of Composite Aircraft Fuselage Frame

    Science.gov (United States)

    Dandekar, Aditya Milind

    Composites have been introduced in aircraft industries, for their stronger, stiffer, and lighter properties than their metal-alloys counterparts. The general purpose of an aircraft is to transport commercial or military payload. Aircraft frames primarily maintains the shape of fuselage and prevent instability of the structure. Fuselage is similar as wing in construction which consist of longitudinal elements (longerons and stringers), transverse elements (frames and bulkheads) and its external skin. The fuselage is subjected to forces such as the wing reactions, landing gear reaction, empennage reaction, inertia forces subjected due to size and weight, internal pressure forces due to high altitude. Frames also ensure fail-safe design against skin crack propagation due to hoops stress. Ideal fuselage frames cross section is often circular ring shape with a frame cap of Z section. They are mainly made up of light alloy commonly used is aluminium alloys such as Al-2024, Al-7010, Al-7050, Al-7175. Aluminium alloys have good strength to density ratios in compression and bending of thin plate. A high strength to weight ratio of composite materials can result in a lighter aircraft structure or better safety factor. This research focuses on analysis of fuselage frame under dynamic load condition with change in material. Composites like carbon fibre reinforced plastics [CFRP] and glass fibre reinforced plastics [GFRP] are compared with traditional aluminium alloy Al-7075. The frame is subjected to impact test by dropping it at a velocity of 30 ft. / secs from a height of 86 inch from its centre of gravity. These parameters are considered in event of failure of landing gear, and an aircraft is subject to belly landing or gear-up landing. The shear flow is calculated due to impact force which acts in radial direction. The frame is analysed under static structural and explicit dynamic load conditions. Geometry is created in ANSYS Design Modeler. Analysis setup is created using

  18. Structural Health Monitoring of a Bonded Composite Patch Repair on a Fatigue-Cracked F-111C Wing

    Science.gov (United States)

    2008-03-01

    wing ready for bonding and b) the silicone - rubber electrical-resistance heating blanket in place over the patch. Figure 5: RAAF technician...under silicone rubber heat blanket; the thermocouple wires and electrical connection to the blanket can also be seen The rig to provide the bonding...wing skin A15-5 of aircraft A8-145 during a routine visual inspection. The wing skin material is aluminium alloy 2025-T851, ~ 4 mm thick in the

  19. Aerodynamic Modeling of Transonic Aircraft Using Vortex Lattice Coupled with Transonic Small Disturbance for Conceptual Design

    Science.gov (United States)

    Chaparro, Daniel; Fujiwara, Gustavo E. C.; Ting, Eric; Nguyen, Nhan

    2016-01-01

    The need to rapidly scan large design spaces during conceptual design calls for computationally inexpensive tools such as the vortex lattice method (VLM). Although some VLM tools, such as Vorview have been extended to model fully-supersonic flow, VLM solutions are typically limited to inviscid, subcritical flow regimes. Many transport aircraft operate at transonic speeds, which limits the applicability of VLM for such applications. This paper presents a novel approach to correct three-dimensional VLM through coupling of two-dimensional transonic small disturbance (TSD) solutions along the span of an aircraft wing in order to accurately predict transonic aerodynamic loading and wave drag for transport aircraft. The approach is extended to predict flow separation and capture the attenuation of aerodynamic forces due to boundary layer viscosity by coupling the TSD solver with an integral boundary layer (IBL) model. The modeling framework is applied to the NASA General Transport Model (GTM) integrated with a novel control surface known as the Variable Camber Continuous Trailing Edge Flap (VCCTEF).

  20. Aerodynamic Optimization of an Over-the-Wing-Nacelle-Mount Configuration

    Directory of Open Access Journals (Sweden)

    Daisuke Sasaki

    2011-01-01

    Full Text Available An over-the-wing-nacelle-mount airplane configuration is known to prevent the noise propagation from jet engines toward ground. However, the configuration is assumed to have low aerodynamic efficiency due to the aerodynamic interference effect between a wing and a nacelle. In this paper, aerodynamic design optimization is conducted to improve aerodynamic efficiency to be equivalent to conventional under-the-wing-nacelle-mount configuration. The nacelle and wing geometry are modified to achieve high lift-to-drag ratio, and the optimal geometry is compared with a conventional configuration. Pylon shape is also modified to reduce aerodynamic interference effect. The final wing-fuselage-nacelle model is compared with the DLR F6 model to discuss the potential of Over-the-Wing-Nacelle-Mount geometry for an environmental-friendly future aircraft.

  1. Aerodynamic Design of the Hybrid Wing Body Propulsion-Airframe Integration

    Science.gov (United States)

    Liou, May-Fun; Kim, Hyoungjin; Lee, ByungJoon; Liou, Meng-Sing

    2017-01-01

    A hybrid wingbody (HWB) concept is being considered by NASA as a potential subsonic transport aircraft that meets aerodynamic, fuel, emission, and noise goals in the time frame of the 2030s. While the concept promises advantages over conventional wing-and-tube aircraft, it poses unknowns and risks, thus requiring in-depth and broad assessments. Specifically, the configuration entails a tight integration of the airframe and propulsion geometries; the aerodynamic impact has to be carefully evaluated. With the propulsion nacelle installed on the (upper) body, the lift and drag are affected by the mutual interference effects between the airframe and nacelle. The static margin for longitudinal stability is also adversely changed. We develop a design approach in which the integrated geometry of airframe (HWB) and propulsion is accounted for simultaneously in a simple algebraic manner, via parameterization of the planform and airfoils at control sections of the wingbody. In this paper, we present the design of a 300-passenger transport that employs distributed electric fans for propulsion. The trim for stability is achieved through the use of the wingtip twist angle. The geometric shape variables are determined through the adjoint optimization method by minimizing the drag while subject to lift, pitch moment, and geometry constraints. The design results clearly show the influence on the aerodynamic characteristics of the installed nacelle and trimming for stability. A drag minimization with the trim constraint yields a reduction of 10 counts in the drag coefficient.

  2. Artificial Bird Feathers: An Adaptive Wing with High Lift Capability.

    Science.gov (United States)

    Hage, W.; Meyer, R.; Bechert, D. W.

    1997-11-01

    In Wind tunnel experiments, the operation of the covering feathers of bird wings has been investigated. At incipient flow separation, local flow reversal lifts the feathers and inhibits the spreading of the separation regime towards the leading edge. This mechanism can be utilized by movable flaps on airfoils. The operation of quasi-steady and of vibrating movable flaps is outlined. These devices are self-actuated, require no energy and do not produce parasitic drag. They are compatible with laminar and turbulent airfoils as well as with various conventional flaps on aircraft wings. Laboratory and flight experiments are shown. Ref: AIAA-Paper 97-1960.

  3. Proportional fuzzy feed-forward architecture control validation by wind tunnel tests of a morphing wing

    Directory of Open Access Journals (Sweden)

    Michel Joël Tchatchueng Kammegne

    2017-04-01

    Full Text Available In aircraft wing design, engineers aim to provide the best possible aerodynamic performance under cruise flight conditions in terms of lift-to-drag ratio. Conventional control surfaces such as flaps, ailerons, variable wing sweep and spoilers are used to trim the aircraft for other flight conditions. The appearance of the morphing wing concept launched a new challenge in the area of overall wing and aircraft performance improvement during different flight segments by locally altering the flow over the aircraft’s wings. This paper describes the development and application of a control system for an actuation mechanism integrated in a new morphing wing structure. The controlled actuation system includes four similar miniature electromechanical actuators disposed in two parallel actuation lines. The experimental model of the morphing wing is based on a full-scale portion of an aircraft wing, which is equipped with an aileron. The upper surface of the wing is a flexible one, being closed to the wing tip; the flexible skin is made of light composite materials. The four actuators are controlled in unison to change the flexible upper surface to improve the flow quality on the upper surface by delaying or advancing the transition point from laminar to turbulent regime. The actuators transform the torque into vertical forces. Their bases are fixed on the wing ribs and their top link arms are attached to supporting plates fixed onto the flexible skin with screws. The actuators push or pull the flexible skin using the necessary torque until the desired vertical displacement of each actuator is achieved. The four vertical displacements of the actuators, correlated with the new shape of the wing, are provided by a database obtained through a preliminary aerodynamic optimization for specific flight conditions. The control system is designed to control the positions of the actuators in real time in order to obtain and to maintain the desired shape of the

  4. B-52 Launch Aircraft in Flight

    Science.gov (United States)

    2001-01-01

    NASA's venerable B-52 mothership is seen here photographed from a KC-135 Tanker aircraft. The X-43 adapter is visible attached to the right wing. The B-52, used for launching experimental aircraft and for other flight research projects, has been a familiar sight in the skies over Edwards for more than 40 years and is also both the oldest B-52 still flying and the aircraft with the lowest flight time of any B-52. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported

  5. Experimental Investigation of a Wing-in-Ground Effect Craft

    Directory of Open Access Journals (Sweden)

    M. Mobassher Tofa

    2014-01-01

    Full Text Available The aerodynamic characteristics of the wing-in-ground effect (WIG craft model that has a noble configuration of a compound wing was experimentally investigated and Universiti Teknologi Malaysia (UTM wind tunnel with and without endplates. Lift and drag forces, pitching moment coefficients, and the centre of pressure were measured with respect to the ground clearance and the wing angle of attack. The ground effect and the existence of the endplates increase the wing lift-to-drag ratio at low ground clearance. The results of this research work show new proposed design of the WIG craft with compound wing and endplates, which can clearly increase the aerodynamic efficiency without compromising the longitudinal stability. The use of WIG craft is representing an ambitious technology that will help in reducing time, effort, and money of the conventional marine transportation in the future.

  6. Experimental investigation of a wing-in-ground effect craft.

    Science.gov (United States)

    Tofa, M Mobassher; Maimun, Adi; Ahmed, Yasser M; Jamei, Saeed; Priyanto, Agoes; Rahimuddin

    2014-01-01

    The aerodynamic characteristics of the wing-in-ground effect (WIG) craft model that has a noble configuration of a compound wing was experimentally investigated and Universiti Teknologi Malaysia (UTM) wind tunnel with and without endplates. Lift and drag forces, pitching moment coefficients, and the centre of pressure were measured with respect to the ground clearance and the wing angle of attack. The ground effect and the existence of the endplates increase the wing lift-to-drag ratio at low ground clearance. The results of this research work show new proposed design of the WIG craft with compound wing and endplates, which can clearly increase the aerodynamic efficiency without compromising the longitudinal stability. The use of WIG craft is representing an ambitious technology that will help in reducing time, effort, and money of the conventional marine transportation in the future.

  7. Experimental Investigation of a Wing-in-Ground Effect Craft

    Science.gov (United States)

    Tofa, M. Mobassher; Ahmed, Yasser M.; Jamei, Saeed; Priyanto, Agoes; Rahimuddin

    2014-01-01

    The aerodynamic characteristics of the wing-in-ground effect (WIG) craft model that has a noble configuration of a compound wing was experimentally investigated and Universiti Teknologi Malaysia (UTM) wind tunnel with and without endplates. Lift and drag forces, pitching moment coefficients, and the centre of pressure were measured with respect to the ground clearance and the wing angle of attack. The ground effect and the existence of the endplates increase the wing lift-to-drag ratio at low ground clearance. The results of this research work show new proposed design of the WIG craft with compound wing and endplates, which can clearly increase the aerodynamic efficiency without compromising the longitudinal stability. The use of WIG craft is representing an ambitious technology that will help in reducing time, effort, and money of the conventional marine transportation in the future. PMID:24701170

  8. Commercial aircraft composite technology

    CERN Document Server

    Breuer, Ulf Paul

    2016-01-01

    This book is based on lectures held at the faculty of mechanical engineering at the Technical University of Kaiserslautern. The focus is on the central theme of societies overall aircraft requirements to specific material requirements and highlights the most important advantages and challenges of carbon fiber reinforced plastics (CFRP) compared to conventional materials. As it is fundamental to decide on the right material at the right place early on the main activities and milestones of the development and certification process and the systematic of defining clear requirements are discussed. The process of material qualification - verifying material requirements is explained in detail. All state-of-the-art composite manufacturing technologies are described, including changes and complemented by examples, and their improvement potential for future applications is discussed. Tangible case studies of high lift and wing structures emphasize the specific advantages and challenges of composite technology. Finally,...

  9. Defense Science Board Task Force on Future Need for VTOL/STOL Aircraft

    National Research Council Canada - National Science Library

    Howard, Jr., William G; Pilling, Donald L

    2007-01-01

    .... But in many cases, rotary wing aircraft have not been well suited to the mission. In fact, helicopter-related losses are among the leading causes of fatalities in operations in Afghanistan and Iraq...

  10. Prototype-Technology Evaluator and Research Aircraft (PTERA) Flight Test Assessment, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The Area-I team has developed and fabricated the unmanned Prototype-Technology Evaluation and Research Aircraft or PTERA ("ptera" being Greek for wing, or...

  11. Maneuvering Environment for Tiltwing Aircraft with Distributed Electric Propulsion, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The tiltwing class of aircraft consists of vehicles with the ability to rotate the wing and propulsion system as a unit a full 90 degrees from the standard fixed...

  12. Active Flow Control with Adaptive Design Techniques for Improved Aircraft Safety, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The increased aircraft safety potential of active flow control using synthetic jets - specifically, using synthetic jets on the leading edge of the wing to delay...

  13. IR Beacon System for Assisted or Automated Landing of Aircraft, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — OKSI proposes to design an optical system to support assisted or automated precision approach of fixed or rotary wing aircraft, or other low altitude airspace...

  14. High Intensity Radiated Field External Environments for Civil Aircraft Operating in the United States of America

    National Research Council Canada - National Science Library

    Heather, Frederick

    2002-01-01

    ... (FAR) Parts 23, 25, 27, and 29. The HIRF survey determined the Rotorcraft Severe, Fixed Wing Severe, Certification, and Normal Environments that civil aircraft may be exposed to while operating in the continental U.S...

  15. High Intensity Radiated Field External Environments for Civil Aircraft Operating in the United States of America

    National Research Council Canada - National Science Library

    Heather, Frederick

    1998-01-01

    ...) Parts 23, 25, 27, and 29. The HIRF survey determined the Rotorcraft Severe, Fixed Wing Severe, Certification, and Normal Environments that civil aircraft may be exposed to while operating in the continental U.S...

  16. Preliminary development of a wing in ground effect vehicle

    Science.gov (United States)

    Abidin, Razali; Ahamat, Mohamad Asmidzam; Ahmad, Tarmizi; Saad, Mohd Rasdan; Hafizi, Ezzat

    2018-02-01

    Wing in ground vehicle is one of the mode of transportation that allows high speed movement over water by travelling few meters above the water level. Through this manouver strategy, a cushion of compressed air exists between the wing in ground vehicle wings and water. This significantly increase the lift force, thus reducing the necessity in having a long wing span. Our project deals with the development of wing in ground vehicle with the capability of transporting four people. The total weight of this wing in ground vehicle was estimated at 5.4 kN to enable the prediction on required wing area, minimum takeoff velocity, drag force and engine power requirement. The required takeoff velocity is decreases as the lift coefficient increases, and our current mathematical model shows the takeoff velocity at 50 m/s avoid the significant increase in lift coefficient for the wing area of 5 m2. At the velocity of 50 m/s, the drag force created by this wing in ground vehicle is well below 1 kN, which required a 100-120 kW of engine power if the propeller has the efficiency of 0.7. Assessment on the stresses and deflection of the hull structural indicate the capability of plywood to withstand the expected load. However, excessive deflection was expected in the rear section which requires a minor structural modification. In the near future, we expect that the wind tunnel tests of this wing in ground vehicle model would enable more definite prediction on the important parameters related to its performance.

  17. CID-720 aircraft Langley Research Center preflight hardware tests: Development, flight acceptance and qualification

    Science.gov (United States)

    Pride, J. D.

    1986-01-01

    The testing conducted on LaRC-developed hardware for the controlled impact demonstration transport aircraft is discussed. To properly develop flight qualified crash systems, two environments were considered: the aircraft flight environment with the focus on vibration and temperature effects, and the crash environment with the long pulse shock effects. Also with the large quantity of fuel in the wing tanks the possibility of fire was considered to be a threat to data retrieval and thus fire tests were included in the development test process. The aircraft test successfully demonstrated the performance of the LaRC developed heat shields. Good telemetered data (S-band) was received during the impact and slide-out phase, and even after the aircraft came to rest. The two onboard DAS tape recorders were protected from the intense fire and high quality tape data was recovered. The complete photographic system performed as planned throughout the 40.0 sec of film supply. The four photo power distribution pallets remained in good condition and all ten onboard 16 mm high speed (400 frames/sec) cameras produced good film data.

  18. Development and characterization of fatigue resistant aramid reinforced aluminium laminates (ARALL) for fatigue critical aircraft components

    International Nuclear Information System (INIS)

    Qaiser, M. H.; Umar, S.; Nauman, S.

    2013-01-01

    The structural weight of an aircraft has always been a controlling parameter that governs its fuel efficiency and transport capacity. In pursuit of achieving light-weight aircraft structures, high design stress levels have to be adopted and materials with high specific strength such as Aluminum etc. are to be deployed. However, an extensive spectrum of fatigue load exists at the aircraft wings and other aerodynamic components that may cause initiation and propagation of fatigue cracks and concludes in a catastrophic rupture. Fatigue is therefore the limiting design parameter in such cases and materials with high fatigue resistance are then required. A major improvement in the fatigue behavior was observed by laminating Kevlar fibers with Aluminum using epoxy. ARALL (Aramid Reinforced Aluminum Laminates) is a fatigue resistant hybrid composite that consists of layers of thin high strength aluminum alloy sheets surface bonded with aramid fibers. The intact aramid fibers tie up the fatigue cracks, thus reducing the stress intensity factor at the crack tip as a result of which the fatigue properties of can be enhanced with orders of magnitude as compared to monolithic high strength Aluminum alloy sheets. Significant amount of weight savings can be achieved in fatigue critical components in comparison with the traditional materials used in aircraft. (author)

  19. Structure design of an innovative adaptive variable camber wing

    Directory of Open Access Journals (Sweden)

    Zhao An-Min

    2018-01-01

    Full Text Available In this paper, an innovative double rib sheet structure is proposed, which can replace the traditional rigid hinge joint with the surface contact. On the one hand, the variable camber wing structural design not only can improve the capacity to sustain more load but also will not increase the overall weight of the wing. On the other hand, it is a simple mechanical structure design to achieve the total wing camber change. Then the numerical simulation results show that the maximum stress at the connect of the wing rib is 88.2MPa, and the double ribs sheet engineering design meet the structural strength requirements. In addition, to make a fair comparison, the parameters of variable camber are fully referenced to the Talon Unmanned Aerial Vehicle (UAV. The results reveal that the total variable camber wing can further enhance aircraft flight efficiency by 29.4%. The design of the whole variable camber wing structure proposed in this paper has high engineering value and feasibility.

  20. 76 FR 71081 - Public Aircraft Oversight Safety Forum

    Science.gov (United States)

    2011-11-16

    ... NATIONAL TRANSPORTATION SAFETY BOARD Public Aircraft Oversight Safety Forum The National Transportation Safety Board (NTSB) will convene a Public Aircraft Oversight Safety Forum which will begin at 9 a... ``Public Aircraft Oversight Forum: Ensuring Safety for Critical Missions'', are to (1) raise awareness of...

  1. 14 CFR 291.22 - Aircraft accident liability insurance requirement.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Aircraft accident liability insurance... for All-Cargo Air Transportation § 291.22 Aircraft accident liability insurance requirement. No air carrier shall operate all-cargo aircraft or provide all-cargo air transportation unless such carrier has...

  2. WINGS Data Release

    DEFF Research Database (Denmark)

    Moretti, A.; Poggianti, B. M.; Fasano, G.

    2014-01-01

    Context. To effectively investigate galaxy formation and evolution, it is of paramount importance to exploit homogeneous data for large samples of galaxies in different environments. Aims. The WIde-field Nearby Galaxy-cluster Survey (WINGS) project aim is to evaluate physical properties of galaxies...... in a complete sample of low redshift clusters to be used as reference sample for evolutionary studies. The WINGS survey is still ongoing and the original dataset will be enlarged with new observations. This paper presents the entire collection of WINGS measurements obtained so far. Methods. We decided to make......, and on the cluster redshift, reaching on average 90% at V ≲ 21.7. Near-infrared photometric catalogs for 26 (in K) and 19 (in J) clusters are part of the database and the number of sources is 962 344 in K and 628 813 in J. Here again the completeness depends on the data quality, but it is on average higher than 90...

  3. A wing design methodology for low-boom low-drag supersonic business jet

    Science.gov (United States)

    Le, Daniel B.

    2009-12-01

    The arguably most critical hindrance to the successful development of a commercial supersonic aircraft is the impact of the sonic boom signature. The sonic boom signature of a supersonic aircraft is predicted using sonic boom theory, which formulates a relationship between the complex three-dimensional geometry of the aircraft to the pressure distribution and decomposes the geometry in terms of simple geometrical components. The supersonic aircraft design process is typically based on boom minimization theory. This theory provides a theoretical equivalent area distribution which should be matched by the conceptual design in order to achieve the pre-determined sonic boom signature. The difference between the target equivalent area distribution and the actual equivalent area distribution is referred to here as the gap distribution. The primary intent of this dissertation is to provide the designer with a systematic and structured approach to designing the aircraft wings with limited changes to the baseline concept while achieving critical design goals. The design process can be easily overwhelmed and may be difficult to evaluate their effectiveness. The wing design is decoupled into two separate processes, one focused on the planform design and the other on the camber design. Moreover, this design methodology supplements the designer by allowing trade studies to be conducted between important design parameters and objectives. The wing planform design methodology incorporates a continuous gradient-based optimization scheme to supplement the design process. This is not meant to substitute the vast amount of knowledge and design decisions that are needed for a successful design. Instead, the numerical optimization helps the designer to refine creative concepts. Last, this dissertation integrates a risk mitigation scheme throughout the wing design process. The design methodology implements minimal design changes to the wing geometry white achieving the target design goal

  4. Amphibious Aircraft

    Data.gov (United States)

    National Aeronautics and Space Administration — A brief self composed research article on Amphibious Aircrafts discussing their use, origin and modern day applications along with their advantages and disadvantages...

  5. A Neural Network Controller New Methodology for the ATR-42 Morphing Wing Actuation

    OpenAIRE

    Abdallah Ben MOSBAH; Ruxandra Mihaela BOTEZ; Thien My DAO; Mohamed Sadok GUEZGUEZ; Mahdi ZAAG

    2016-01-01

    A morphing wing model is used to improve aircraft performance. To obtain the desired airfoils, electrical actuators are used, which are installed inside of the wing to morph its upper surface in order to obtain its desired shape. In order to achieve this objective, a robust position controller is needed. In this research, a design and test validation of a controller based on neural networks is presented. This controller was composed by a position controller and a current controller to manage ...

  6. Spanwise drag variation on low Re wings -- revisited

    Science.gov (United States)

    Yang, Shanling; Spedding, Geoffrey

    2011-11-01

    Aerodynamic performance measurement and prediction of airfoils and wings at chord Reynolds numbers below 105 is both difficult and increasingly important in application to small-scale aircraft. Not only are the aerodynamics strongly affected by the dynamics of the unstable laminar boundary layer but the flow is decreasingly likely to be two-dimensional as Re decreases. The spanwise variation of the flow along a two-dimensional geometry is often held to be responsible for the large variations in measured profile drag coefficient. Here we measure local two-dimensional drag coefficients along a finite wing using non-intrusive PIV methods. Variations in Cd (y) can be related to local flow variations on the wing itself. Integrated values can be compared with force balance data, and the proper description of drag components at low Re will be discussed.

  7. Wing Infrastructure and Development Outlook (WINDO) Final Environmental Assessment

    Science.gov (United States)

    2006-06-01

    divert airfield for military aircraft training in the NTTR and support the flying operations of the 57th Wing, other Air Force units, Navy, Marine ...includes desert iguana (Dipsosaurus dorsalis), zebra-tailed lizard (Callosaurus draconoides), side-blotched lizard, horned lizards (Phrynosoma spp...be stored or used in work areas. Marine mammal —any mammal that is morphologically adapted to the marine environment, or primarily inhabits the

  8. Ubiquitous Supercritical Wing Design Cuts Billions in Fuel Costs

    Science.gov (United States)

    2015-01-01

    A Langley Research Center engineer’s work in the 1960s and ’70s to develop a wing with better performance near the speed of sound resulted in a significant increase in subsonic efficiency. The design was shared with industry. Today, Renton, Washington-based Boeing Commercial Airplanes, as well as most other plane manufacturers, apply it to all their aircraft, saving the airline industry billions of dollars in fuel every year.

  9. A novel substructure-based topology optimization method for the design of wing structure

    Directory of Open Access Journals (Sweden)

    Zhao Yu-bo

    2017-01-01

    Full Text Available The purpose of this paper is to demonstrate a substructure-based method dealing with the optimal material layout of the aircraft wing structure system. In this method, the topology optimization design domain of the aircraft wing is divided into multiple subordinate topological units which are called substructure. The material layout of each subordinate topology design unit is found for maximizing the total stiffness under a prescribed material usage constraint by using the Solid Isotropic Microstructures with Penalization (SIMP method. Firstly, the proposed method is implemented to find the optimal material layouts of a high aspect-ratio I-beam. Different division ways and material constraints of the substructure have proven important influence on the total stiffness. The design formulation is applied to the optimization of an aircraft wing. Compared with the traditional one, the proposed method can find a reasonable and clearer material layout of the wing, especially material piled up near the fixed end is pushed toward the tip or the middle of the wing. The optimized design indicates the proposed method can enhance the guidance of topology optimization in finding reasonable stiffener layouts of wing structure.

  10. Design of a new VTOL UAV by combining cycloidal blades and FanWing propellers

    Science.gov (United States)

    Li, Daizong

    Though the propelling principles of Cycloidal Blades and FanWing propellers are totally different, their structures are similar. Therefore, it is possible to develop an aircraft which combines both types of the propulsion modes of Cyclogyro and FanWing aircrafts. For this kind of aircraft, Cycloidal Blades Mode provides capabilities of Vertical Take-Off and Landing, Instantly Alterable Vector Thrusting, and Low Noise. The FanWing Mode provides capabilities of High Efficiency, Energy-Saving, and Cannot-Stall Low-Speed Cruising. Besides, because both of these propellers are observably better than conventional screw propeller in terms of efficiency, so this type of VTOL UAV could fly with Long Endurance. Furthermore, the usage of flying-wing takes advantage of high structure utilization and high aerodynamic efficiency, eliminates the interference of fuselage and tail, and overcomes flying wing's shortcomings of pitching direction instability and difficulty of control. A new magnetic suspension track-type cycloidal propulsion system is also presented in the paper to solve problems of heavy structure, high mechanical resistance, and low reliability in the traditional cycloidal propellers. The further purpose of this design is to trying to make long-endurance VTOL aircraft and Practical Flying Cars possible in reality, and to bring a new era to the aviation industry.

  11. NASA Fixed Wing Project Propulsion Research and Technology Development Activities to Reduce Thrust Specific Energy Consumption

    Science.gov (United States)

    Hathaway, Michael D.; DelRasario, Ruben; Madavan, Nateri K.

    2013-01-01

    This paper presents an overview of the propulsion research and technology portfolio of NASA Fundamental Aeronautics Program Fixed Wing Project. The research is aimed at significantly reducing the thrust specific fuel/energy consumption of notional advanced fixed wing aircraft (by 60 % relative to a baseline Boeing 737-800 aircraft with CFM56-7B engines) in the 2030-2035 time frame. The research investments described herein are aimed at improving propulsive efficiency through higher bypass ratio fans, improving thermal efficiency through compact high overall pressure ratio gas generators, and exploring the potential benefits of boundary layer ingestion propulsion and hybrid gas-electric propulsion concepts.

  12. WHEN COMPASSION GROWS WINGS

    African Journals Online (AJOL)

    Nicky

    antiretroviral roll-out in full swing, the. WHEN COMPASSION GROWS WINGS. The free time and expertise given by its deeply committed core of professional volunteers. (including pilots) is the lifeblood of the operation. Red Cross Air Mercy Service volunteer, German national Dr Florian Funk, at the AMS Durban base.

  13. Twisted Winged Endoparasitoids

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 9; Issue 10. Twisted Winged Endoparasitoids - An Enigma for Entomologists. Alpana Mazumdar. General Article Volume 9 Issue 10 October 2004 pp 19-24. Fulltext. Click here to view fulltext PDF. Permanent link:

  14. The influence of flight style on the aerodynamic properties of avian wings as fixed lifting surfaces

    Directory of Open Access Journals (Sweden)

    John J. Lees

    2016-10-01

    Full Text Available The diversity of wing morphologies in birds reflects their variety of flight styles and the associated aerodynamic and inertial requirements. Although the aerodynamics underlying wing morphology can be informed by aeronautical research, important differences exist between planes and birds. In particular, birds operate at lower, transitional Reynolds numbers than do most aircraft. To date, few quantitative studies have investigated the aerodynamic performance of avian wings as fixed lifting surfaces and none have focused upon the differences between wings from different flight style groups. Dried wings from 10 bird species representing three distinct flight style groups were mounted on a force/torque sensor within a wind tunnel in order to test the hypothesis that wing morphologies associated with different flight styles exhibit different aerodynamic properties. Morphological differences manifested primarily as differences in drag rather than lift. Maximum lift coefficients did not differ between groups, whereas minimum drag coefficients were lowest in undulating flyers (Corvids. The lift to drag ratios were lower than in conventional aerofoils and data from free-flying soaring species; particularly in high frequency, flapping flyers (Anseriformes, which do not rely heavily on glide performance. The results illustrate important aerodynamic differences between the wings of different flight style groups that cannot be explained solely by simple wing-shape measures. Taken at face value, the results also suggest that wing-shape is linked principally to changes in aerodynamic drag, but, of course, it is aerodynamics during flapping and not gliding that is likely to be the primary driver.

  15. The influence of flight style on the aerodynamic properties of avian wings as fixed lifting surfaces.

    Science.gov (United States)

    Lees, John J; Dimitriadis, Grigorios; Nudds, Robert L

    2016-01-01

    The diversity of wing morphologies in birds reflects their variety of flight styles and the associated aerodynamic and inertial requirements. Although the aerodynamics underlying wing morphology can be informed by aeronautical research, important differences exist between planes and birds. In particular, birds operate at lower, transitional Reynolds numbers than do most aircraft. To date, few quantitative studies have investigated the aerodynamic performance of avian wings as fixed lifting surfaces and none have focused upon the differences between wings from different flight style groups. Dried wings from 10 bird species representing three distinct flight style groups were mounted on a force/torque sensor within a wind tunnel in order to test the hypothesis that wing morphologies associated with different flight styles exhibit different aerodynamic properties. Morphological differences manifested primarily as differences in drag rather than lift. Maximum lift coefficients did not differ between groups, whereas minimum drag coefficients were lowest in undulating flyers (Corvids). The lift to drag ratios were lower than in conventional aerofoils and data from free-flying soaring species; particularly in high frequency, flapping flyers (Anseriformes), which do not rely heavily on glide performance. The results illustrate important aerodynamic differences between the wings of different flight style groups that cannot be explained solely by simple wing-shape measures. Taken at face value, the results also suggest that wing-shape is linked principally to changes in aerodynamic drag, but, of course, it is aerodynamics during flapping and not gliding that is likely to be the primary driver.

  16. Design and mechanical analysis of a 3D-printed biodegradable biomimetic micro air vehicle wing

    Science.gov (United States)

    Salami, E.; Ganesan, P. B.; Ward, T. A.; Viyapuri, R.; Romli, F. I.

    2016-10-01

    The biomimetic micro air vehicles (BMAV) are unmanned, micro-scaled aircraft that are bio-inspired from flying organisms to achieve the lift and thrust by flapping their wings. There are still many technological challenges involved with designing the BMAV. One of these is designing the ultra-lightweight materials and structures for the wings that have enough mechanical strength to withstand continuous flapping at high frequencies. Insects achieve this by having chitin-based, wing frame structures that encompass a thin, film membrane. The main objectives of this study are to design a biodegradable BMAV wing (inspired from the dragonfly) and analyze its mechanical properties. The dragonfly-like wing frame structure was bio-mimicked and fabricated using a 3D printer. A chitosan nanocomposite film membrane was applied to the BMAV wing frames through casting method. Its mechanical performance was analyzed using universal testing machine (UTM). This analysis indicates that the tensile strength and Young's modulus of the wing with a membrane is nearly double that of the wing without a membrane, which allow higher wing beat frequencies and deflections that in turn enable a greater lifting performance.

  17. A Conceptual Wing Flutter Analysis Tool for Systems Analysis and Parametric Design Study

    Science.gov (United States)

    Mukhopadhyay, Vivek

    2003-01-01

    An interactive computer program was developed for wing flutter analysis in the conceptual design stage. The objective was to estimate flutt er instability boundaries of a typical wing, when detailed structural and aerodynamic data are not available. Effects of change in key flu tter parameters can also be estimated in order to guide the conceptual design. This userfriendly software was developed using MathCad and M atlab codes. The analysis method was based on non-dimensional paramet ric plots of two primary flutter parameters, namely Regier number and Flutter number, with normalization factors based on wing torsion stiffness, sweep, mass ratio, taper ratio, aspect ratio, center of gravit y location and pitch-inertia radius of gyration. These parametric plo ts were compiled in a Chance-Vought Corporation report from database of past experiments and wind tunnel test results. An example was prese nted for conceptual flutter analysis of outer-wing of a Blended-Wing- Body aircraft.

  18. Comparative Analysis of Uninhibited and Constrained Avian Wing Aerodynamics

    Science.gov (United States)

    Cox, Jordan A.

    The flight of birds has intrigued and motivated man for many years. Bird flight served as the primary inspiration of flying machines developed by Leonardo Da Vinci, Otto Lilienthal, and even the Wright brothers. Avian flight has once again drawn the attention of the scientific community as unmanned aerial vehicles (UAV) are not only becoming more popular, but smaller. Birds are once again influencing the designs of aircraft. Small UAVs operating within flight conditions and low Reynolds numbers common to birds are not yet capable of the high levels of control and agility that birds display with ease. Many researchers believe the potential to improve small UAV performance can be obtained by applying features common to birds such as feathers and flapping flight to small UAVs. Although the effects of feathers on a wing have received some attention, the effects of localized transient feather motion and surface geometry on the flight performance of a wing have been largely overlooked. In this research, the effects of freely moving feathers on a preserved red tailed hawk wing were studied. A series of experiments were conducted to measure the aerodynamic forces on a hawk wing with varying levels of feather movement permitted. Angle of attack and air speed were varied within the natural flight envelope of the hawk. Subsequent identical tests were performed with the feather motion constrained through the use of externally-applied surface treatments. Additional tests involved the study of an absolutely fixed geometry mold-and-cast wing model of the original bird wing. Final tests were also performed after applying surface coatings to the cast wing. High speed videos taken during tests revealed the extent of the feather movement between wing models. Images of the microscopic surface structure of each wing model were analyzed to establish variations in surface geometry between models. Recorded aerodynamic forces were then compared to the known feather motion and surface

  19. Letting Thoughts Take Wing

    Science.gov (United States)

    Jorgensen, Chuck; Wheeler, Kevin

    2002-01-01

    Scientists are conducting research into electroencephalograms (EEGs) of brainwave activity, and electromyography (EMG) of muscle activity, in order to develop systems which can control an aircraft with only a pilot's thoughts. This article describes some EEG and EMG signals, and how they might be analyzed and interpreted to operate an aircraft. The development of a system to detect and interpret fine muscle movements is also profiled in the article.

  20. Morphing Wing-Tip Open Loop Controller and its Validation During Wind Tunnel Tests at the IAR-NRC

    Directory of Open Access Journals (Sweden)

    Mohamed Sadok GUEZGUEZ

    2016-09-01

    Full Text Available In this project, a wing tip of a real aircraft was designed and manufactured. This wing tip was composed of a wing and an aileron. The wing was equipped with a composite skin on its upper surface. This skin changed its shape (morphed by use of 4 electrical in-house developed actuators and 32 pressure sensors. These pressure sensors measure the pressures, and further the loads on the wing upper surface. Thus, the upper surface of the wing was morphed using these actuators with the aim to improve the aerodynamic performances of the wing-tip. Two types of ailerons were designed and manufactured: one aileron is rigid (non-morphed and one morphing aileron. This morphing aileron can change its shape also for the aerodynamic performances improvement. The morphing wing-tip internal structure is designed and manufactured, and is presented firstly in the paper. Then, the modern communication and control hardware are presented for the entire morphing wing tip equipped with actuators and sensors having the aim to morph the wing. The calibration procedure of the wing tip is further presented, followed by the open loop controller results obtained during wind tunnel tests. Various methodologies of open loop control are presented in this paper, and results obtained were obtained and validated experimentally through wind tunnel tests.

  1. Estimates of the initial vortex separation distance, bo, of commercial aircraft from pulsed lidar data

    Science.gov (United States)

    2013-01-07

    An aircraft in flight generates multiple wake vortices, the largest of which are a result of : the lift on the wings. These vortices rapidly roll up into a counter-rotating vortex pair : behind the aircraft. The initial separation between the centroi...

  2. Adaptive Wing/Aerofoil Design Optimisation Using MOEA Coupled to Uncertainty Design Method

    OpenAIRE

    Lee, D.S.; Periaux, J.; Gonzalez, L.F.; Onate, E.; Qin, N.

    2011-01-01

    The use of adaptive wing/aerofoil designs is being considered as promising techniques in aeronautic/aerospace since they can reduce aircraft emissions, improve aerodynamic performance of manned or unmanned aircraft. The paper investigates the robust design and optimisation for one type of adaptive techniques; Active Flow Control (AFC) bump at transonic flow conditions on a Natural Laminar Flow (NLF) aerofoil designed to increase aerodynamic efficiency (especially high lift to drag ratio). The...

  3. Design of Prototype-Technology Evaluator and Research Aircraft (PTERA) Configuration for Loss of Control Flight Research, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The Area-I team has developed and fabricated the unmanned Prototype-Technology Evaluation and Research Aircraft or PTERA ("ptera" being Greek for wing, or...

  4. Design optimization of deployable wings

    Science.gov (United States)

    Gaddam, Pradeep

    Morphing technology is an important aspect of UAV design, particularly in regards to deployable systems. The design of such system has an important impact on the vehicle's performance. The primary focus of the present research work was to determine the most optimum deployable wing design from 3 competing designs and develop one of the deployable wing designs to test in the research facility. A Matlab code was developed to optimize 3 deployable wing concepts inflatable, inflatable telescopic and rigid-folding wings based on a sequential optimization strategy. The constraints that were part of the code include the packaging constraints during its stowed state, fixed length of the deployed section and the minimum L/D constraint. This code resulted in determining the optimum weight of all the 3 designs, the most optimum weight design is the inflatable wing design. This is a result of the flexible skin material and also due to no rigid parts in the deployed wing section. Another goal of the research involved developing an inflatable telescopic wing. The prototype was tested in a wind tunnel, while the actual wing was tested in the altitude chamber to determine the deployment speed, input pressure, analyze and predict the deployment sequence and behavior of the wing at such high wind speeds and altitudes ranging from 60,000 ft to 90,000 ft. Results from these tests allowed us to conclude the deployment sequence of the telescopic wing followed from the root to the tip section. The results were used to analyze the deployment time of the wing. As expected the deployment time decreased with an increase in input pressure. The results also show us that as the altitude increases, the deployment speed of the wing also increased. This was demonstrated when the wing was tested at a maximum altitude pressure of 90,000ft, well above the design altitude of 60,000ft.

  5. Low Aspect-Ratio Wings for Wing-Ships

    DEFF Research Database (Denmark)

    Filippone, Antonino; Selig, M.

    1998-01-01

    Flying on ground poses technical and aerodynamical challenges. The requirements for compactness, efficiency, manouverability, off-design operation,open new areas of investigations in the fieldof aerodynamic analysis and design. A review ofthe characteristics of low-aspect ratio wings, in- and out...... of ground, is presented. It is shownthat the performance of such wings is generally inferior to that of slender wings, although in ground placement can yield substantial improvements in the aerodynamic efficiency....

  6. 14 CFR 63.33 - Aircraft ratings.

    Science.gov (United States)

    2010-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN CERTIFICATION: FLIGHT CREWMEMBERS OTHER THAN PILOTS Flight Engineers § 63.33 Aircraft ratings. (a) The aircraft class ratings to be placed on flight engineer certificates are— (1) Reciprocating engine powered; (2...

  7. Prediction of Wing Downwash Using CFD

    Directory of Open Access Journals (Sweden)

    Mohammed MAHDI

    2015-06-01

    Full Text Available Wing downwash study and estimation of downwash effect on the tail plane is an important task during the aircraft design process, although a lot of papers and works has been done, but the experimental work is the most important, the progress in CFD simulation has reached to the point it is able to reduce the number of runs in the wind tunnel. In this work CFD has been utilized to calculate the downwash angle and downwash gradient with respect to the angle of attack over a high aspect ratio of a typical UAV. The results of the simulation shall be used in the estimation and calculation of the longitudinal static stability analysis of the UAV.

  8. Methodology for design of active controls for V/STOL aircraft

    Science.gov (United States)

    Meyer, G.; Cicolani, L.

    1976-01-01

    An effort to develop techniques for the design of integrated, fully automatic flight control systems for powered lift STOL and VTOL aircraft is described. The structure is discussed of the control system which has been developed to deal with the strong nonlinearities inherent in this class of aircraft, to admit automatic coupling with the advanced ATC requiring accurate execution of complex trajectories, and to admit a variety of active control tasks. The specific case considered is the Augmentor Wing Research Aircraft.

  9. Special Issue: Adaptive/Smart Structures and Multifunctional Materials with Application to Morphing Aircraft

    Directory of Open Access Journals (Sweden)

    Rafic Ajaj

    2014-12-01

    Full Text Available Recent advances in smart structures and multifunctional materials have facilitated many novel aerospace technologies such as morphing aircraft. A morphing aircraft, bio-inspired by natural fliers, has gained a lot of interest as a potential technology to meet the ambitious goals of the Advisory Council for Aeronautics Research in Europe (ACARE Vision 2020 and the FlightPath 2050 documents. A morphing aircraft continuously adjusts its wing geometry to enhance flight performance, control authority, and multi-mission capability.[...

  10. Virtual sensor for failure detection, identification and recovery in the transition phase of a morphing aircraft.

    Science.gov (United States)

    Heredia, Guillermo; Ollero, Aníbal

    2010-01-01

    The Helicopter Adaptive Aircraft (HADA) is a morphing aircraft which is able to take-off as a helicopter and, when in forward flight, unfold the wings that are hidden under the fuselage, and transfer the power from the main rotor to a propeller, thus morphing from a helicopter to an airplane. In this process, the reliable folding and unfolding of the wings is critical, since a failure may determine the ability to perform a mission, and may even be catastrophic. This paper proposes a virtual sensor based Fault Detection, Identification and Recovery (FDIR) system to increase the reliability of the HADA aircraft. The virtual sensor is able to capture the nonlinear interaction between the folding/unfolding wings aerodynamics and the HADA airframe using the navigation sensor measurements. The proposed FDIR system has been validated using a simulation model of the HADA aircraft, which includes real phenomena as sensor noise and sampling characteristics and turbulence and wind perturbations.

  11. FY 1995 annual report on research and development of propulsion systems for supersonic transport aircraft. Research and development of propulsion systems for supersonic transport aircraft; 1995 nendo choonsoku yusokiyo suishin system no kenkyu kaihatsu seika hokokusho. Choonsoku yusokiyo suishin system no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The research and development project is implemented, following the previous year, for high-performance turbojet engine elements, and control/measurement and total systems for R and D of propulsion systems for supersonic transport aircraft. For cooling the high-temperature turbine, a cooling system using a heat pipe is tested to realize turbine inlet temperature of 1700 degrees C. For R and D of materials for high-pressure turbines, a double-wall, hollow turbine nozzle is manufactured and tested for its elution. For R and D of electronic control systems, the engine model is equipped with actuator dynamics, and the anti-windup method is incorporated in the multivariable control logic. The bright prospects are obtained for their eventual commercialization by simulation. For R and D of new heat-shielding coatings, CMSX-4 and MA956 are tested. They show good results, when sprayed under an elevated pressure. For R and D of combined cycles, the researches are conducted to predict their characteristics. (NEDO)

  12. Aerodynamics power consumption for mechanical flapping wings undergoing flapping and pitching motion

    Science.gov (United States)

    Razak, N. A.; Dimitriadis, G.; Razaami, A. F.

    2017-07-01

    Lately, due to the growing interest in Micro Aerial Vehicles (MAV), interest in flapping flight has been rekindled. The reason lies in the improved performance of flapping wing flight at low Reynolds number regime. Many studies involving flapping wing flight focused on the generation of unsteady aerodynamic forces such as lift and thrust. There is one aspect of flapping wing flight that received less attention. The aspect is aerodynamic power consumption. Since most mechanical flapping wing aircraft ever designed are battery powered, power consumption is fundamental in improving flight endurance. This paper reports the results of experiments carried out on mechanical wings under going active root flapping and pitching in the wind tunnel. The objective of the work is to investigate the effect of the pitch angle oscillations and wing profile on the power consumption of flapping wings via generation of unsteady aerodynamic forces. The experiments were repeated for different airspeeds, flapping and pitching kinematics, geometric angle of attack and wing sections with symmetric and cambered airfoils. A specially designed mechanical flapper modelled on large migrating birds was used. It will be shown that, under pitch leading conditions, less power is required to overcome the unsteady aerodnamics forces. The study finds less power requirement for downstroke compared to upstroke motion. Overall results demonstrate power consumption depends directly on the unsteady lift force.

  13. Passively morphing ornithopter wings constructed using a novel compliant spine: design and testing

    International Nuclear Information System (INIS)

    Wissa, A A; Hubbard Jr, J E; Tummala, Y; Frecker, M I

    2012-01-01

    Ornithopters or flapping wing uncrewed aerial vehicles (UAVs) have potential applications in civil and military sectors. Amongst the UAVs, ornithopters have a unique ability to fly in low Reynolds number flight regimes and also have the agility and maneuverability of rotary wing aircraft. In nature, birds achieve such performance by exploiting various wing kinematics known as gaits. The objective of this work is to improve the steady level flight performance of an ornithopter by implementing a continuous vortex gait using a novel passive compliant spine inserted in the ornithopter’s wings. This paper presents an optimal compliant spine concept for ornithopter applications. A quasi-static design optimization procedure was formulated to design the compliant spine. Finite element analysis was performed on a first generation spine and the spine was fabricated. This prototype was then tested by inserting it into an ornithopter’s wing leading edge spar. The effect of inserting the compliant spine into the wings on the electric power required, the aerodynamic loads and the wing kinematics was studied. The ornithopter with the compliant spines inserted in its wings consumed 45% less power and produced an additional 16% of its weight in mean lift compared to the same ornithopter without the compliant spine. The results indicate that this passive morphing approach is promising for improved steady level flight performance. (paper)

  14. Applications of Response Surface-Based Methods to Noise Analysis in the Conceptual Design of Revolutionary Aircraft

    Science.gov (United States)

    Hill, Geoffrey A.; Olson, Erik D.

    2004-01-01

    Due to the growing problem of noise in today's air transportation system, there have arisen needs to incorporate noise considerations in the conceptual design of revolutionary aircraft. Through the use of response surfaces, complex noise models may be converted into polynomial equations for rapid and simplified evaluation. This conversion allows many of the commonly used response surface-based trade space exploration methods to be applied to noise analysis. This methodology is demonstrated using a noise model of a notional 300 passenger Blended-Wing-Body (BWB) transport. Response surfaces are created relating source noise levels of the BWB vehicle to its corresponding FAR-36 certification noise levels and the resulting trade space is explored. Methods demonstrated include: single point analysis, parametric study, an optimization technique for inverse analysis, sensitivity studies, and probabilistic analysis. Extended applications of response surface-based methods in noise analysis are also discussed.

  15. Study on bird's & insect's wing aerodynamics and comparison of its analytical value with standard airfoil

    Science.gov (United States)

    Ali, Md. Nesar; Alam, Mahbubul; Hossain, Md. Abed; Ahmed, Md. Imteaz

    2017-06-01

    Flight is the main mode of locomotion used by most of the world's bird & insect species. This article discusses the mechanics of bird flight, with emphasis on the varied forms of bird's & insect's wings. The fundamentals of bird flight are similar to those of aircraft. Flying animals flap their wings to generate lift and thrust as well as to perform remarkable maneuvers with rapid accelerations and decelerations. Insects and birds provide illuminating examples of unsteady aerodynamics. Lift force is produced by the action of air flow on the wing, which is an airfoil. The airfoil is shaped such that the air provides a net upward force on the wing, while the movement of air is directed downward. Additional net lift may come from airflow around the bird's & insect's body in some species, especially during intermittent flight while the wings are folded or semi-folded. Bird's & insect's flight in nature are sub-divided into two stages. They are Unpowered Flight: Gliding and Soaring & Powered Flight: Flapping. When gliding, birds and insects obtain both a vertical and a forward force from their wings. When a bird & insect flaps, as opposed to gliding, its wings continue to develop lift as before, but the lift is rotated forward to provide thrust, which counteracts drag and increases its speed, which has the effect of also increasing lift to counteract its weight, allowing it to maintain height or to climb. Flapping flight is more complicated than flight with fixed wings because of the structural movement and the resulting unsteady fluid dynamics. Flapping involves two stages: the down-stroke, which provides the majority of the thrust, and the up-stroke, which can also (depending on the bird's & insect's wings) provide some thrust. Most kinds of bird & insect wing can be grouped into four types, with some falling between two of these types. These types of wings are elliptical wings, high speed wings, high aspect ratio wings and soaring wings with slots. Hovering is used

  16. Experimental characterization and multidisciplinary conceptual design optimization of a bendable load stiffened unmanned air vehicle wing

    Science.gov (United States)

    Jagdale, Vijay Narayan

    Demand for deployable MAVs and UAVs with wings designed to reduce aircraft storage volume led to the development of a bendable wing concept at the University of Florida (UF). The wing shows an ability to load stiffen in the flight load direction, still remaining compliant in the opposite direction, enabling UAV storage inside smaller packing volumes. From the design prospective, when the wing shape parameters are treated as design variables, the performance requirements : high aerodynamic efficiency, structural stability under aggressive flight loads and desired compliant nature to prevent breaking while stored, in general conflict with each other. Creep deformation induced by long term storage and its effect on the wing flight characteristics are additional considerations. Experimental characterization of candidate bendable UAV wings is performed in order to demonstrate and understand aerodynamic and structural behavior of the bendable load stiffened wing under flight loads and while the wings are stored inside a canister for long duration, in the process identifying some important wing shape parameters. A multidisciplinary, multiobjective design optimization approach is utilized for conceptual design of a 24 inch span and 7 inch root chord bendable wing. Aerodynamic performance of the wing is studied using an extended vortex lattice method based Athena Vortex Lattice (AVL) program. An arc length method based nonlinear FEA routine in ABAQUS is used to evaluate the structural performance of the wing and to determine maximum flying velocity that the wing can withstand without buckling or failing under aggressive flight loads. An analytical approach is used to study the stresses developed in the composite wing during storage and Tsai-Wu criterion is used to check failure of the composite wing due to the rolling stresses to determine minimum safe storage diameter. Multidisciplinary wing shape and layup optimization is performed using an elitist non-dominated sorting

  17. 49 CFR 173.172 - Aircraft hydraulic power unit fuel tank.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Aircraft hydraulic power unit fuel tank. 173.172 Section 173.172 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS... Class 1 and Class 7 § 173.172 Aircraft hydraulic power unit fuel tank. Aircraft hydraulic power unit...

  18. Wings: A New Paradigm in Human-Centered Design

    Science.gov (United States)

    Schutte, Paul C.

    1997-01-01

    Many aircraft accidents/incidents investigations cite crew error as a causal factor (Boeing Commercial Airplane Group 1996). Human factors experts suggest that crew error has many underlying causes and should be the start of an accident investigation and not the end. One of those causes, the flight deck design, is correctable. If a flight deck design does not accommodate the human's unique abilities and deficits, crew error may simply be the manifestation of this mismatch. Pilots repeatedly report that they are "behind the aircraft" , i.e., they do not know what the automated aircraft is doing or how the aircraft is doing it until after the fact. Billings (1991) promotes the concept of "human-centered automation"; calling on designers to allocate appropriate control and information to the human. However, there is much ambiguity regarding what it mean's to be human-centered. What often are labeled as "human-centered designs" are actually designs where a human factors expert has been involved in the design process or designs where tests have shown that humans can operate them. While such designs may be excellent, they do not represent designs that are systematically produced according to some set of prescribed methods and procedures. This paper describes a design concept, called Wings, that offers a clearer definition for human-centered design. This new design concept is radically different from current design processes in that the design begins with the human and uses the human body as a metaphor for designing the aircraft. This is not because the human is the most important part of the aircraft (certainly the aircraft would be useless without lift and thrust), but because he is the least understood, the least programmable, and one of the more critical elements. The Wings design concept has three properties: a reversal in the design process, from aerodynamics-, structures-, and propulsion-centered to truly human-centered; a design metaphor that guides function

  19. Critical Joints in Large Composite Primary Aircraft Structures. Volume 3: Ancillary Test Results

    Science.gov (United States)

    Bunin, Bruce L.; Sagui, R. L.

    1985-01-01

    A program was conducted to develop the technology for critical structural joints for composite wing structure that meets all the design requirements of a 1990 commercial transport aircraft. The results of a comprehensive ancillary test program are summarized, consisting of single-bolt composite joint specimens tested in a variety of configurations. These tests were conducted to characterize the strength and load deflection properties that are required for multirow joint analysis. The composite material was Toray 300 fiber and Ciba-Geigy 914 resin, in the form of 0.005 and 0.01 inch thick unidirectional tape. Tests were conducted in single and double shear for loaded and unloaded hole configurations under both tensile and compressive loading. Two different layup patterns were examined. All tests were conducted at room temperature. In addition, the results of NASA Standard Toughness Test (NASA RP 1092) are reported, which were conducted for several material systems.

  20. Performance study of winglets on tapered wing with curved trailing edge

    Science.gov (United States)

    Ara, Ismat; Ali, Mohammad; Islam, Md. Quamrul; Haque, M. Nazmul

    2017-06-01

    Induced drag is the result of wingtip vortex produced from generating lift by finite wing. It is one of the main drags that an aircraft wing encounters during flight. It hampers aircraft performance by increasing fuel consumption and reducing endurance, range and speed. Winglets are used to reduce the induced drag. They weakens wingtip vortex and thus reduces induced drag. This paper represents the experimental investigation to reduce induced drag using winglet at the wingtip. A model of tapered wing with curved trailing edge (without winglet) as well as two similar wings with blended winglet and double blended winglet are prepared using NACA 4412 aerofoil in equal span and surface area. All the models are tested in a closed circuit subsonic wind tunnel at air speed of 108 km/h (0.09 Mach). Reynolds number of the flow is 2.28 × 105 on the basis of average chord length of the wings. The point surface static pressures at different angles of attack from -4° to 24° are measured for each of the wing and winglet combinations through different pressure tapings by using a multi-tube water manometer. From the static pressure distribution, lift coefficient, drag coefficient and lift to drag ratio of all models are calculated. From the analysis of calculated values, it is found that both winglets are able to minimize induced drag; however, the tapered curved trailing edge span with blended winglet provides better aerodynamic performance.

  1. Development of Variable Camber Continuous Trailing Edge Flap for Performance Adaptive Aeroelastic Wing

    Science.gov (United States)

    Nguyen, Nhan; Kaul, Upender; Lebofsky, Sonia; Ting, Eric; Chaparro, Daniel; Urnes, James

    2015-01-01

    This paper summarizes the recent development of an adaptive aeroelastic wing shaping control technology called variable camber continuous trailing edge flap (VCCTEF). As wing flexibility increases, aeroelastic interactions with aerodynamic forces and moments become an increasingly important consideration in aircraft design and aerodynamic performance. Furthermore, aeroelastic interactions with flight dynamics can result in issues with vehicle stability and control. The initial VCCTEF concept was developed in 2010 by NASA under a NASA Innovation Fund study entitled "Elastically Shaped Future Air Vehicle Concept," which showed that highly flexible wing aerodynamic surfaces can be elastically shaped in-flight by active control of wing twist and bending deflection in order to optimize the spanwise lift distribution for drag reduction. A collaboration between NASA and Boeing Research & Technology was subsequently funded by NASA from 2012 to 2014 to further develop the VCCTEF concept. This paper summarizes some of the key research areas conducted by NASA during the collaboration with Boeing Research and Technology. These research areas include VCCTEF design concepts, aerodynamic analysis of VCCTEF camber shapes, aerodynamic optimization of lift distribution for drag minimization, wind tunnel test results for cruise and high-lift configurations, flutter analysis and suppression control of flexible wing aircraft, and multi-objective flight control for adaptive aeroelastic wing shaping control.

  2. Analysis and design of lattice materials for large cord and curvature variations in skin panels of morphing wings

    International Nuclear Information System (INIS)

    Vigliotti, Andrea; Pasini, Damiano

    2015-01-01

    In the past few decades, several concepts for morphing wings have been proposed with the aim of improving the structural and aerodynamic performance of conventional aircraft wings. One of the most interesting challenges in the design of a morphing wing is represented by the skin, which needs to meet specific deformation requirements. In particular when morphing involves changes of cord or curvature, the skin is required to undergo large recoverable deformation in the actuation direction, while maintaining the desired shape and strength in the others. One promising material concept that can meet these specifications is represented by lattice materials. This paper examines the use of alternative planar lattices in the embodiment of a skin panel for cord and camber morphing of an aircraft wing. We use a structural homogenization scheme capable of capturing large geometric nonlinearity, to examine the structural performance of lattice skin concepts, as well as to tune their mechanical properties in desired directions. (technical note)

  3. Iced Aircraft Flight Data for Flight Simulator Validation

    Science.gov (United States)

    Ratvasky, Thomas P.; Blankenship, Kurt; Rieke, William; Brinker, David J.

    2003-01-01

    NASA is developing and validating technology to incorporate aircraft icing effects into a flight training device concept demonstrator. Flight simulation models of a DHC-6 Twin Otter were developed from wind tunnel data using a subscale, complete aircraft model with and without simulated ice, and from previously acquired flight data. The validation of the simulation models required additional aircraft response time histories of the airplane configured with simulated ice similar to the subscale model testing. Therefore, a flight test was conducted using the NASA Twin Otter Icing Research Aircraft. Over 500 maneuvers of various types were conducted in this flight test. The validation data consisted of aircraft state parameters, pilot inputs, propulsion, weight, center of gravity, and moments of inertia with the airplane configured with different amounts of simulated ice. Emphasis was made to acquire data at wing stall and tailplane stall since these events are of primary interest to model accurately in the flight training device. Analyses of several datasets are described regarding wing and tailplane stall. Key findings from these analyses are that the simulated wing ice shapes significantly reduced the C , max, while the simulated tail ice caused elevator control force anomalies and tailplane stall when flaps were deflected 30 deg or greater. This effectively reduced the safe operating margins between iced wing and iced tail stall as flap deflection and thrust were increased. This flight test demonstrated that the critical aspects to be modeled in the icing effects flight training device include: iced wing and tail stall speeds, flap and thrust effects, control forces, and control effectiveness.

  4. Cabin-fuselage-wing structural design concept with engine installation

    Science.gov (United States)

    Ariotti, Scott; Garner, M.; Cepeda, A.; Vieira, J.; Bolton, D.

    1993-01-01

    The purpose of this project is to provide a fuselage structural assembly and wing structural design that will be able to withstand the given operational parameters and loads provided by Federal Aviation Regulation Part 23 (FAR 23) and the Statement of Work (SOW). The goal is to provide a durable lightweight structure that will transfer the applied loads through the most efficient load path. Areas of producibility and maintainability of the structure will also be addressed. All of the structural members will also meet or exceed the desired loading criteria, along with providing adequate stiffness, reliability, and fatigue life as stated in the SOW. Considerations need to be made for control system routing and cabin heating/ventilation. The goal of the wing structure and carry through structure is also to provide a simple, lightweight structure that will transfer the aerodynamic forces produced by the wing, tailboom, and landing gear. These forces will be channeled through various internal structures sized for the pre-determined loading criteria. Other considerations were to include space for flaps, ailerons, fuel tanks, and electrical and control system routing. The difficulties encountered in the fuselage design include expanding the fuselage cabin to accept a third occupant in a staggered configuration and providing ample volume for their safety. By adding a third person the CG of aircraft will move forward so the engine needs to be moved aft to compensate for the difference in the moment. This required the provisions of a ring frame structure for the new position of the engine mount. The difficulties encountered in the wing structural design include resizing the wing for the increased capacity and weight, and compensating for a large torsion produced by the tail boom by placing a great number of stiffeners inside the boom, which will result in the relocation of the fuel tank. Finally, an adequate carry through structure for the wing and fuselage interface will be

  5. Innovations in Aircraft Design

    Science.gov (United States)

    1997-01-01

    The Boeing 777 carries with it basic and applied research, technology, and aerodynamic knowledge honed at several NASA field centers. Several Langley Research Center innovations instrumental to the development of the aircraft include knowledge of how to reduce engine and other noise for passengers and terminal residents, increased use of lightweight aerospace composite structures for increased fuel efficiency and range, and wind tunnel tests confirming the structural integrity of 777 wing-airframe integration. Test results from Marshall Space Flight Center aimed at improving the performance of the Space Shuttle engines led to improvements in the airplane's new, more efficient jet engines. Finally, fostered by Ames Research Center, the Boeing 777 blankets that protect areas of the plane from high temperatures and fire have a lineage to Advanced Flexible Reusable Surface Insulation used on certain areas of the Space Shuttle. According to Boeing Company estimates, the 777 has captured three-quarters of new orders for airplanes in its class since the program was launched.

  6. A nonlinear computational aeroelasticity model for aircraft wings

    Science.gov (United States)

    Feng, Zhengkun

    Cette these presente le developpement d'un code d'aeroelasticite nonlineaire base sur un solveur CFD robuste afin de l'appliquer aux ailes flexibles en ecoulement transsonique. Le modele mathematique complet est base sur les equations du mouvement des structures et les equations d'Euler pour les ecoulements transsoniques non-visqueux. La strategie de traiter tel systeme complexe par un couplage etage presente des avantages pour le developpement d'un code modulaire et facile a faire evoluer. La non-correspondance entre les deux grilles de calcul a l'interface fluide-structure, due aux differences des tailles et des types des elements utilises par la resolution de l'ecoulement et de la structure, est resolue par l'ajout d'un module specifique. Les transferts des informations entre ces deux grilles satisfont la loi de la conservation de l'energie. Le modele nonlineaire de la dynamique du fluide base sur la description Euler-Lagrange est discretise dans le maillage mobile. Le modele pour le calcul des structures est suppose lineaire dans lequel la methode de superposition modale est appliquee pour reduire le temps de calcul et la dimension de la memoire. Un autre modele pour la structure base directement sur la methode des elements finis est aussi developpe. Il est egalement couple dans le code pour prouver son extension future aux applications plus generales. La nonlinearite est une autre source de complexite du systeme bien que celle-ci est prevue uniquement dans le modele aerodynamique. L'algorithme GMRES nonlineaire avec le preconditioneur ILUT est implemente dans le solveur CFD ou un capteur de choc pour les ecoulements transsoniques et la technique de stabilisation numerique SUPG pour des ecoulements domines par la convection sont appliques. Un schema du second ordre est utilise pour la discretisation temporelle. Les composants de ce code sont valides par des tests numeriques. Le modele complet est applique et valide sur l'aile aeroelastique AGARD 445.6 dans le cas du nombre de Mach 0.96 qui est une valeur critique en flottement. Les simulations de flottement donnent des resultats numeriques satisfaisants en comparaison avec ceux experimentaux.

  7. Passive Gust Alleviation for a Flying Wing Aircraft

    Science.gov (United States)

    2013-01-10

    stress analysis by using the NASTRAN finite element method. The results show that the failure indices are below one and the strains below 3600 µε under...Additional Gust Analysis and BDF Code in NASTRAN ............................. 76 F.1 Gust for sweepback shaft parallel to front spar...76 F.2 BDF Code used in NASTRAN ............................................................................. 77

  8. Rotary Wing Aircraft Water Impact Test and Analyses Correlation

    National Research Council Canada - National Science Library

    Wittlin, Gil

    2000-01-01

    ... with a decreasing dependence on expensive scale model ditching tests. This paper describes an effort that focuses on the application of a crash modeling and simulation approach utilizing both a nonlinear finite-element code (MSC/DYTRAN(registered...

  9. Hydrogen aircraft technology

    Science.gov (United States)

    Brewer, G. D.

    1991-01-01

    A comprehensive evaluation is conducted of the technology development status, economics, commercial feasibility, and infrastructural requirements of LH2-fueled aircraft, with additional consideration of hydrogen production, liquefaction, and cryostorage methods. Attention is given to the effects of LH2 fuel cryotank accommodation on the configurations of prospective commercial transports and military airlifters, SSTs, and HSTs, as well as to the use of the plentiful heatsink capacity of LH2 for innovative propulsion cycles' performance maximization. State-of-the-art materials and structural design principles for integral cryotank implementation are noted, as are airport requirements and safety and environmental considerations.

  10. Butterflies regulate wing temperatures using radiative cooling

    Science.gov (United States)

    Tsai, Cheng-Chia; Shi, Norman Nan; Ren, Crystal; Pelaez, Julianne; Bernard, Gary D.; Yu, Nanfang; Pierce, Naomi

    2017-09-01

    Butterfly wings are live organs embedded with multiple sensory neurons and, in some species, with pheromoneproducing cells. The proper function of butterfly wings demands a suitable temperature range, but the wings can overheat quickly in the sun due to their small thermal capacity. We developed an infrared technique to map butterfly wing temperatures and discovered that despite the wings' diverse visible colors, regions of wings that contain live cells are the coolest, resulting from the thickness of the wings and scale nanostructures. We also demonstrated that butterflies use behavioral traits to prevent overheating of their wings.

  11. Stiffness of desiccating insect wings

    Energy Technology Data Exchange (ETDEWEB)

    Mengesha, T E; Vallance, R R [Department of Mechanical Engineering, The George Washington University, 738 Phillips Hall, 801 22nd St NW, Washington, DC 20052 (United States); Mittal, R, E-mail: vallance@gwu.edu [Department of Mechanical Engineering, Johns Hopkins University, 126 Latrobe Hall, 3400 N Charles Street, Baltimore, MD 21218 (United States)

    2011-03-15

    The stiffness of insect wings is typically determined through experimental measurements. Such experiments are performed on wings removed from insects. However, the wings are subject to desiccation which typically leads to an increase in their stiffness. Although this effect of desiccation is well known, a comprehensive study of the rate of change in stiffness of desiccating insect wings would be a significant aid in planning experiments as well as interpreting data from such experiments. This communication presents a comprehensive experimental analysis of the change in mass and stiffness of gradually desiccating forewings of Painted Lady butterflies (Vanessa cardui). Mass and stiffness of the forewings of five butterflies were simultaneously measured every 10 min over a 24 h period. The averaged results show that wing mass declined exponentially by 21.1% over this time period with a time constant of 9.8 h, while wing stiffness increased linearly by 46.2% at a rate of 23.4 {mu}N mm{sup -1} h{sup -1}. For the forewings of a single butterfly, the experiment was performed over a period of 1 week, and the results show that wing mass declined exponentially by 52.2% with a time constant of 30.2 h until it reached a steady-state level of 2.00 mg, while wing stiffness increased exponentially by 90.7% until it reached a steady-state level of 1.70 mN mm{sup -1}. (communication)

  12. Computational Fluid Dynamic Simulation (CFD and Experimental Study on Wing-external Store Aerodynamic Interference

    Directory of Open Access Journals (Sweden)

    Tholudin Mat Lazim

    2004-01-01

    Full Text Available The main objective of the present work is to study the effect of an external store to a subsonic fighter aircraft. Generally most modern fighter aircraft is designed with an external store installation. In this project a subsonic fighter aircraft model has been manufactured using a computer numerical control machine for the purpose of studying the effect of the external store aerodynamic interference on the flow around the aircraft wing. A computational fluid dynamic (CFD and wind tunnel testing experiments have been carried out to ensure the aerodynamic characteristic of the model then certified the aircraft will not facing any difficulties in stability and controllability. In the CFD experiment, commercial CFD code is used to simulate the interference and aerodynamic characteristics of the model. Subsequently, the model together with an external store was tested in a low speed wind tunnel with test section sized 0.45 m×0.45 m. Result in the two-dimensional pressure distribution obtained by both experiments are comparable. There is only 12% deviation in pressure distribution found in wind tunnel testing compared to the result predicted by the CFD. The result shows that the effect of the external storage is only significant at the lower surface of the wing and almost negligible at the upper surface of the wing. Aerodynamic interference is due to the external storage were mostly evidence on a lower surface of the wing and almost negligible on the upper surface at low angle of attack. In addition, the area of influence on the wing surface by store interference increased as the airspeed increase. 

  13. AERODYNAMICS OF WING TIP SAILS

    Directory of Open Access Journals (Sweden)

    MUSHTAK AL-ATABI

    2006-06-01

    Full Text Available Observers have always been fascinated by soaring birds. An interesting feature of these birds is the existence of few feathers extending from the tip of the wing. In this paper, small lifting surfaces were fitted to the tip of a NACA0012 wing in a fashion similar to that of wing tip feathers. Experimental measurements of induced drag, longitudinal static stability and trailing vortex structure were obtained.The tests showed that adding wing tip surfaces (sails decreased the induced drag factor and increased the longitudinal static stability. Results identified two discrete appositely rotated tip vortices and showed the ability of wing tip surfaces to break them down and to diffuse them.

  14. Robust Backstepping Control of Wing Rock Using Disturbance Observer

    Directory of Open Access Journals (Sweden)

    Dawei Wu

    2017-02-01

    Full Text Available Wing rock is a highly nonlinear phenomenon when the aircraft suffers undesired roll-dominated oscillatory at high angle of attack (AOA. Considering the strong nonlinear and unsteady aerodynamic characteristics, an uncertain multi-input and multi-output (MIMO nonlinear wing rock model is studied, and system uncertainties, unsteady aerodynamic disturbances and externaldisturbancesareconsideredinthedesignofwingrockcontrollaw. Tohandletheproblemof multipledisturbances,arobustcontrolschemeisproposedbasedontheextendedstateobserver(ESO and the radial basis function neural network (RBFNN technique. Considering that the effectiveness of actuators are greatly decreased at high AOA, the input saturation problem is also handled by constructing a corresponding auxiliary system. Based on the improved ESO and the auxiliary system, a robust backstepping control law is proposed for the wing rock control. In addition, the dynamic surface control (DSC technique is introduced to avoid the tedious computations of time derivatives for the virtual control laws in the backstepping method. The stability of the closed-loop system is guaranteed via rigorously Lyapunov analysis. Finally, simulation results are presented to illustrate the effectiveness of the ESO and the proposed wing rock control approach.

  15. Numerical simulation of aerodynamic characteristics of multi-element wing with variable flap

    Science.gov (United States)

    Lv, Hongyan; Zhang, Xinpeng; Kuang, Jianghong

    2017-10-01

    Based on the Reynolds averaged Navier-Stokes equation, the mesh generation technique and the geometric modeling method, the influence of the Spalart-Allmaras turbulence model on the aerodynamic characteristics is investigated. In order to study the typical configuration of aircraft, a similar DLR-F11 wing is selected. Firstly, the 3D model of wing is established, and the 3D model of plane flight, take-off and landing is established. The mesh structure of the flow field is constructed and the mesh is generated by mesh generation software. Secondly, by comparing the numerical simulation with the experimental data, the prediction of the aerodynamic characteristics of the multi section airfoil in takeoff and landing stage is validated. Finally, the two flap deflection angles of take-off and landing are calculated, which provide useful guidance for the aerodynamic characteristics of the wing and the flap angle design of the wing.

  16. POD Analysis of Flow Behind a Four-wing Vortex Generator

    Science.gov (United States)

    Hosseinali, Mahdi; Wilkins, Stephen; Hall, Joseph

    2015-11-01

    Wing-tip vortices that persist long after the passage of large aircraft are of major concern to aircraft controllers and are responsible for considerable delays between aircraft take-off times. Understanding these vortices is extremely important, with the ultimate goal to reduce or eliminate delays altogether. Simple theoretical models of vortices can be studied experimentally using a four-wing vortex generator. The cross-stream planes are measured with a two-component Particle Image Velocimetry (PIV) system, and the resulting vector fields were analyzed with a Proper Orthogonal Decomposition (POD) via the method of snapshots. POD analysis will be employed both before and after removing vortex core meandering to investigate the meandering effect on POD modes for a better understanding of it.

  17. Transportation

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    Here is the decree of the thirtieth of July 1998 relative to road transportation, to trade and brokerage of wastes. It requires to firms which carry out a road transportation as well as to traders and to brokers of wastes to declare their operations to the prefect. The declaration has to be renewed every five years. (O.M.)

  18. Aircraft Steels

    Science.gov (United States)

    2009-02-19

    70 mm (0.4 x 0.4 x 2.8 in.) in L orientation with a Charpy notch at the mid-length for SCC test under four-point bending (ASTM F 1624- 95) TESTS ...MAXIMUM STRESS INTENSITY, Kmax, IN HIGH STRENGTH STEELS For the fatigue test in 3.5% NaCl solution, the FCG per cycle, da/dN, is converted to the...NAWCADPAX/TR-2009/12 AIRCRAFT STEELS by E. U. Lee R. Taylor C. Lei H. C. Sanders 19 February 2009

  19. CID Aircraft slap-down

    Science.gov (United States)

    1984-01-01

    In this photograph the B-720 is seen during the moments of initial impact. The left wing is digging into the lakebed while the aircraft continues sliding towards wing openers. In 1984 NASA Dryden Flight Research Facility and the Federal Aviation Administration (FAA) teamed-up in a unique flight experiment called the Controlled Impact Demonstration (CID). The test involved crashing a Boeing 720 aircraft with four JT3C-7 engines burning a mixture of standard fuel with an additive, Anti-misting Kerosene (AMK), designed to supress fire. In a typical aircraft crash, fuel spilled from ruptured fuel tanks forms a fine mist that can be ignited by a number of sources at the crash site. In 1984 the NASA Dryden Flight Research Facility (after 1994 a full-fledged Center again) and the Federal Aviation Administration (FAA) teamed-up in a unique flight experiment called the Controlled Impact Demonstration (CID), to test crash a Boeing 720 aircraft using standard fuel with an additive designed to supress fire. The additive, FM-9, a high-molecular-weight long-chain polymer, when blended with Jet-A fuel had demonstrated the capability to inhibit ignition and flame propagation of the released fuel in simulated crash tests. This anti-misting kerosene (AMK) cannot be introduced directly into a gas turbine engine due to several possible problems such as clogging of filters. The AMK must be restored to almost Jet-A before being introduced into the engine for burning. This restoration is called 'degradation' and was accomplished on the B-720 using a device called a 'degrader.' Each of the four Pratt & Whitney JT3C-7 engines had a 'degrader' built and installed by General Electric (GE) to break down and return the AMK to near Jet-A quality. In addition to the AMK research the NASA Langley Research Center was involved in a structural loads measurement experiment, which included having instrumented dummies filling the seats in the passenger compartment. Before the final flight on December 1

  20. Gust Load Alleviation with Robust Control for a Flexible Wing

    Directory of Open Access Journals (Sweden)

    Xiang Liu

    2016-01-01

    Full Text Available Traditional methods for gust alleviation of aircraft are mostly proposed based on a specific flight condition. In this paper, robust control laws are designed for a large flexible wing with uncertainty in Mach number and dynamic pressure. To accurately describe the aeroelastic model over a large flight envelope, a nonlinear parameter-varying model is developed which is a function of both Mach number and dynamic pressure. Then a linear fractional transformation is established accordingly and a modified model order reduction technique is applied to reduce the size of the uncertainty block. The developed model, in which the statistic nature of the gust is considered by using the Dryden power spectral density function, enables the use of μ-synthesis procedures for controller design. The simulations show that the μ controller can always effectively reduce the wing root shear force and bending moment at a given range of Mach number and dynamic pressure.

  1. Aircraft conceptual design - an adaptable parametric sizing methodology

    Science.gov (United States)

    Coleman, Gary John, Jr.

    Aerospace is a maturing industry with successful and refined baselines which work well for traditional baseline missions, markets and technologies. However, when new markets (space tourism) or new constrains (environmental) or new technologies (composite, natural laminar flow) emerge, the conventional solution is not necessarily best for the new situation. Which begs the question "how does a design team quickly screen and compare novel solutions to conventional solutions for new aerospace challenges?" The answer is rapid and flexible conceptual design Parametric Sizing. In the product design life-cycle, parametric sizing is the first step in screening the total vehicle in terms of mission, configuration and technology to quickly assess first order design and mission sensitivities. During this phase, various missions and technologies are assessed. During this phase, the designer is identifying design solutions of concepts and configurations to meet combinations of mission and technology. This research undertaking contributes the state-of-the-art in aircraft parametric sizing through (1) development of a dedicated conceptual design process and disciplinary methods library, (2) development of a novel and robust parametric sizing process based on 'best-practice' approaches found in the process and disciplinary methods library, and (3) application of the parametric sizing process to a variety of design missions (transonic, supersonic and hypersonic transports), different configurations (tail-aft, blended wing body, strut-braced wing, hypersonic blended bodies, etc.), and different technologies (composite, natural laminar flow, thrust vectored control, etc.), in order to demonstrate the robustness of the methodology and unearth first-order design sensitivities to current and future aerospace design problems. This research undertaking demonstrates the importance of this early design step in selecting the correct combination of mission, technologies and configuration to

  2. Nano-mechanical properties and structural of a 3D-printed biodegradable biomimetic micro air vehicle wing

    Science.gov (United States)

    Salami, E.; Montazer, E.; Ward, T. A.; Ganesan, P. B.

    2017-06-01

    The biomimetic micro air vehicles (BMAV) are unmanned, micro-scaled aircraft that are bio-inspired from flying organisms to achieve the lift and thrust by flapping their wings. The main objectives of this study are to design a BMAV wing (inspired from the dragonfly) and analyse its nano-mechanical properties. In order to gain insights into the flight mechanics of dragonfly, reverse engineering methods were used to establish three-dimensional geometrical models of the dragonfly wings, so we can make a comparative analysis. Then mechanical test of the real dragonfly wings was performed to provide experimental parameter values for mechanical models in terms of nano-hardness and elastic modulus. The mechanical properties of wings were measured by nanoindentre. Finally, a simplified model was designed and the dragonfly-like wing frame structure was bio-mimicked and fabricated using a 3D printer. Then mechanical test of the BMAV wings was performed to analyse and compare the wings under a variety of simplified load regimes that are concentrated force, uniform line-load and a torque. This work opened up the possibility towards developing an engineering basis for the biomimetic design of BMAV wings.

  3. Flight Testing of Novel Compliant Spines for Passive Wing Morphing on Ornithopters

    Science.gov (United States)

    Wissa, Aimy; Guerreiro, Nelson; Grauer, Jared; Altenbuchner, Cornelia; Hubbard, James E., Jr.; Tummala, Yashwanth; Frecker, Mary; Roberts, Richard

    2013-01-01

    Unmanned Aerial Vehicles (UAVs) are proliferating in both the civil and military markets. Flapping wing UAVs, or ornithopters, have the potential to combine the agility and maneuverability of rotary wing aircraft with excellent performance in low Reynolds number flight regimes. The purpose of this paper is to present new free flight experimental results for an ornithopter equipped with one degree of freedom (1DOF) compliant spines that were designed and optimized in terms of mass, maximum von-Mises stress, and desired wing bending deflections. The spines were inserted in an experimental ornithopter wing spar in order to achieve a set of desired kinematics during the up and down strokes of a flapping cycle. The ornithopter was flown at Wright Patterson Air Force Base in the Air Force Research Laboratory Small Unmanned Air Systems (SUAS) indoor flight facility. Vicon motion tracking cameras were used to track the motion of the vehicle for five different wing configurations. The effect of the presence of the compliant spine on wing kinematics and leading edge spar deflection during flight is presented. Results show that the ornithopter with the compliant spine inserted in its wing reduced the body acceleration during the upstroke which translates into overall lift gains.

  4. The Low-Noise Potential of Distributed Propulsion on a Catamaran Aircraft

    Science.gov (United States)

    Posey, Joe W.; Tinetti, A. F.; Dunn, M. H.

    2006-01-01

    The noise shielding potential of an inboard-wing catamaran aircraft when coupled with distributed propulsion is examined. Here, only low-frequency jet noise from mid-wing-mounted engines is considered. Because low frequencies are the most difficult to shield, these calculations put a lower bound on the potential shielding benefit. In this proof-of-concept study, simple physical models are used to describe the 3-D scattering of jet noise by conceptualized catamaran aircraft. The Fast Scattering Code is used to predict noise levels on and about the aircraft. Shielding results are presented for several catamaran type geometries and simple noise source configurations representative of distributed propulsion radiation. Computational analyses are presented that demonstrate the shielding benefits of distributed propulsion and of increasing the width of the inboard wing. Also, sample calculations using the FSC are presented that demonstrate additional noise reduction on the aircraft fuselage by the use of acoustic liners on the inboard wing trailing edge. A full conceptual aircraft design would have to be analyzed over a complete mission to more accurately quantify community noise levels and aircraft performance, but the present shielding calculations show that a large acoustic benefit could be achieved by combining distributed propulsion and liner technology with a twin-fuselage planform.

  5. Transportation

    National Research Council Canada - National Science Library

    Allshouse, Michael; Armstrong, Frederick Henry; Burns, Stephen; Courts, Michael; Denn, Douglas; Fortunato, Paul; Gettings, Daniel; Hansen, David; Hoffman, Douglas; Jones, Robert

    2007-01-01

    .... The ability of the global transportation industry to rapidly move passengers and products from one corner of the globe to another continues to amaze even those wise to the dynamics of such operations...

  6. Structural Analysis of a Dragonfly Wing

    NARCIS (Netherlands)

    Jongerius, S.R.; Lentink, D.

    2010-01-01

    Dragonfly wings are highly corrugated, which increases the stiffness and strength of the wing significantly, and results in a lightweight structure with good aerodynamic performance. How insect wings carry aerodynamic and inertial loads, and how the resonant frequency of the flapping wings is tuned

  7. Effect of outer wing separation on lift and thrust generation in a flapping wing system

    International Nuclear Information System (INIS)

    Mahardika, Nanang; Viet, Nguyen Quoc; Park, Hoon Cheol

    2011-01-01

    We explore the implementation of wing feather separation and lead-lagging motion to a flapping wing. A biomimetic flapping wing system with separated outer wings is designed and demonstrated. The artificial wing feather separation is implemented in the biomimetic wing by dividing the wing into inner and outer wings. The features of flapping, lead-lagging, and outer wing separation of the flapping wing system are captured by a high-speed camera for evaluation. The performance of the flapping wing system with separated outer wings is compared to that of a flapping wing system with closed outer wings in terms of forward force and downward force production. For a low flapping frequency ranging from 2.47 to 3.90 Hz, the proposed biomimetic flapping wing system shows a higher thrust and lift generation capability as demonstrated by a series of experiments. For 1.6 V application (lower frequency operation), the flapping wing system with separated wings could generate about 56% higher forward force and about 61% less downward force compared to that with closed wings, which is enough to demonstrate larger thrust and lift production capability of the separated outer wings. The experiments show that the outer parts of the separated wings are able to deform, resulting in a smaller amount of drag production during the upstroke, while still producing relatively greater lift and thrust during the downstroke.

  8. Aerodynamics and Ecomorphology of Flexible Feathers and Morphing Bird Wings

    Science.gov (United States)

    Klaassen van Oorschot, Brett

    findings lay the foundation for future biomimetic applications of passive morphing-wing aircraft. I aim to submit this chapter for publication at Bioinspiration & Biomimetics in the summer of 2017. The following dissertation represents my systematic discovery of avian aerodynamics and follows my progression as a scientist. Combined, the following chapters provide novel insight into the complex nature of morphing avian wings.

  9. Hydrogen aircraft and airport safety

    International Nuclear Information System (INIS)

    Schmidtchen, U.; Behrend, E.; Pohl, H.-W.; Rostek, N.

    1997-01-01

    First flight tests with a hydrogen demonstrator aircraft, currently under investigation in the scope of the German-Russia Cryoplane project, are scheduled for 1999. Regular service with regional aircraft may begin around 2005, followed by larger Airbus-type airliners around 2010-2015. The fuel storage aboard such airliners will be of the order of 15 t or roughly 200 m 3 LH 2 . This paper investigates a number of safety problems associated with the handling and air transport of so much hydrogen. The same is done for the infrastructure on the airport. Major risks are identified, and appropriate measures in design and operation are recommended. It is found that hydrogen aircraft are no more dangerous than conventional ones - safer in some respects. (author)

  10. Small Autonomous Aircraft Servo Health Monitoring

    Science.gov (United States)

    Quintero, Steven

    2008-01-01

    Small air vehicles offer challenging power, weight, and volume constraints when considering implementation of system health monitoring technologies. In order to develop a testbed for monitoring the health and integrity of control surface servos and linkages, the Autonomous Aircraft Servo Health Monitoring system has been designed for small Uninhabited Aerial Vehicle (UAV) platforms to detect problematic behavior from servos and the air craft structures they control, This system will serve to verify the structural integrity of an aircraft's servos and linkages and thereby, through early detection of a problematic situation, minimize the chances of an aircraft accident. Embry-Riddle Aeronautical University's rotary-winged UAV has an Airborne Power management unit that is responsible for regulating, distributing, and monitoring the power supplied to the UAV's avionics. The current sensing technology utilized by the Airborne Power Management system is also the basis for the Servo Health system. The Servo Health system measures the current draw of the servos while the servos are in Motion in order to quantify the servo health. During a preflight check, deviations from a known baseline behavior can be logged and their causes found upon closer inspection of the aircraft. The erratic behavior nay include binding as a result of dirt buildup or backlash caused by looseness in the mechanical linkages. Moreover, the Servo Health system will allow elusive problems to be identified and preventative measures taken to avoid unnecessary hazardous conditions in small autonomous aircraft.

  11. Flapping Wing Micro Air Vehicle Wing Manufacture and Force Testing

    Science.gov (United States)

    2011-03-03

    manufacturing techniques have been developed by various universities for research on Flapping Wing Micro Air Vehicles. Minimal attention though is given...collected at 2kHz (www.polytec.com/psv3d). A 0.25V band-limited white noise input signal is input to a Bogen HTA -125 High Performance Amplifier, which...manufacturing techniques have been developed by various universities for research on Flapping Wing Micro Air Vehicles. Minimal attention though is given

  12. Measurements in Vortex Wakes Shed by Conventional and Modified Subsonic Aircraft

    Science.gov (United States)

    Rossow, Vernon J.

    1996-01-01

    A theoretical and experimental program is underway at NASA Ames Research Center to first obtain a better understanding of the hazard posed by the vortex wakes of subsonic transports, and then to develop methods on how to modify the wake-generating aircraft in order to make the vortices less hazardous. This paper summarizes results obtained in the 80- by 120-Foot Wind Tunnel at NASA Ames Research Center on the characteristics of the vortex wakes that trail from 0.03 scale models of a B-747 and of a DC-10. Measurements are first described that were taken in the wakes with a hot-film anemometer probe, and with wings that range in size from 0.2 to 1.0 times the span of the wake generating models at downstream distances of 81 ft and 162 ft. behind the wake-generating model; i.e., at scale distances of 0.5 and 1.0 mile. The data are then used to evaluate the accuracy of a vortex-lattice method for prediction of the loads induced on following wings by vortex wakes.

  13. Transpacific transport of ozone pollution and the effect of recent Asian emission increases on air quality in North America: an integrated analysis using satellite, aircraft, ozonesonde, and surface observations

    Directory of Open Access Journals (Sweden)

    L. Zhang

    2008-10-01

    Full Text Available We use an ensemble of aircraft, satellite, sonde, and surface observations for April–May 2006 (NASA/INTEX-B aircraft campaign to better understand the mechanisms for transpacific ozone pollution and its implications for North American air quality. The observations are interpreted with a global 3-D chemical transport model (GEOS-Chem. OMI NO2 satellite observations constrain Asian anthropogenic NOx emissions and indicate a factor of 2 increase from 2000 to 2006 in China. Satellite observations of CO from AIRS and TES indicate two major events of Asian transpacific pollution during INTEX-B. Correlation between TES CO and ozone observations shows evidence for transpacific ozone pollution. The semi-permanent Pacific High and Aleutian Low cause splitting of transpacific pollution plumes over the Northeast Pacific. The northern branch circulates around the Aleutian Low and has little impact on North America. The southern branch circulates around the Pacific High and some of that air impacts western North America. Both aircraft measurements and model results show sustained ozone production driven by peroxyacetylnitrate (PAN decomposition in the southern branch, roughly doubling the transpacific influence from ozone produced in the Asian boundary layer. Model simulation of ozone observations at Mt. Bachelor Observatory in Oregon (2.7 km altitude indicates a mean Asian ozone pollution contribution of 9±3 ppbv to the mean observed concentration of 54 ppbv, reflecting mostly an enhancement in background ozone rather than episodic Asian plumes. Asian pollution enhanced surface ozone concentrations by 5–7 ppbv over western North America in spring 2006. The 2000–2006 rise in Asian anthropogenic emissions increased this influence by 1–2 ppbv.

  14. Lightning protection design and testing of an all composite wet wing for the Egrett

    Science.gov (United States)

    Burrows, B. J. C.; Haigh, S. J.; Chessum, C.; Dunkley, V. P.

    1991-01-01

    The Egrett aircraft has an all composite wing comprising CFC(carbon fiber composite)/Nomex sandwich skins, full length CFC main spar caps, and GFRP (glass fiber reinforced plastics) main and auxiliary spar webs. It also has short inboard CFC auxiliary spar caps. It has fine aluminum wires woven into the surface for protection. It has an integral fuel tank using the CFC/Nomex skins as the upper and lower tank walls, and lies between the forward auxiliary spar and the forward of the two main spar webs. The fuel tank is not bagged, i.e., it is in effect a wet wing tank. It has conventional capacitive type fuel gauging. The aircraft was cleared to IFR standards and so required full lightning protection and demonstration that it would survive the lightning environment. The lightning protection was designed for the wing (and also for the remainder of the aircraft). An inner wing test samples (which included a part of the fuel tank) were tested as part of the proving program. The protection design and the testing process are described. The intrinsic structural features are indicated that improve lightning protection design and which therefore minimize the weight and cost of any added lightning protection components.

  15. Dryden B-52 Launch Aircraft in Flight over Dryden

    Science.gov (United States)

    1996-01-01

    parachute recovery systems used to recover the space shuttle solid rocket booster casings. It also supported eight orbiter (space shuttle) drag chute tests in 1990. In addition, the B-52 served as the air launch platform for the first six Pegasus space boosters. During its many years of service, the B-52 has undergone several modifications. The first major modification was made by North American Aviation (now part of Boeing) in support of the X-15 program. This involved creating a launch-panel-operator station for monitoring the status of the test vehicle being carried, cutting a large notch in the right inboard wing flap to accommodate the vertical tail of the X-15 aircraft, and installing a wing pylon that enables the B-52 to carry research vehicles and test articles to be air-launched/dropped. Located on the right wing, between the inboard engine pylon and the fuselage, this wing pylon was subjected to extensive testing prior to its use. For each test vehicle the B-52 carried, minor changes were made to the launch-panel operator's station. Built originally by the Boeing Company, the NASA B-52 is powered by eight Pratt & Whitney J57-19 turbojet engines, each of which produce 12,000 pounds of thrust. The aircraft's normal launch speed has been Mach 0.8 (about 530 miles per hour) and its normal drop altitude has been 40,000 to 45,000 feet. It is 156 feet long and has a wing span of 185 feet. The heaviest load it has carried was the No. 2 X-15 aircraft at 53,100 pounds. Project manager for the aircraft is Roy Bryant.

  16. Generation of Fullspan Leading-Edge 3D Ice Shapes for Swept-Wing Aerodynamic Testing

    Science.gov (United States)

    Camello, Stephanie C.; Lee, Sam; Lum, Christopher; Bragg, Michael B.

    2016-01-01

    The deleterious effect of ice accretion on aircraft is often assessed through dry-air flight and wind tunnel testing with artificial ice shapes. This paper describes a method to create fullspan swept-wing artificial ice shapes from partial span ice segments acquired in the NASA Glenn Icing Reserch Tunnel for aerodynamic wind-tunnel testing. Full-scale ice accretion segments were laser scanned from the Inboard, Midspan, and Outboard wing station models of the 65% scale Common Research Model (CRM65) aircraft configuration. These were interpolated and extrapolated using a weighted averaging method to generate fullspan ice shapes from the root to the tip of the CRM65 wing. The results showed that this interpolation method was able to preserve many of the highly three dimensional features typically found on swept-wing ice accretions. The interpolated fullspan ice shapes were then scaled to fit the leading edge of a 8.9% scale version of the CRM65 wing for aerodynamic wind-tunnel testing. Reduced fidelity versions of the fullspan ice shapes were also created where most of the local three-dimensional features were removed. The fullspan artificial ice shapes and the reduced fidelity versions were manufactured using stereolithography.

  17. Cerebral Oxygenation and Acceleration in Pediatric and Neonatal Interfacility Transport.

    Science.gov (United States)

    Valente, Michael E; Sherif, Judy A; Azen, Colleen G; Pham, Phung K; Lowe, Calvin G

    2016-01-01

    The purpose of this study is to measure peak acceleration forces during interfacility transport; examine whether drops in cerebral oxygenation occurred; and test the associations between cerebral oxygenation, acceleration, and patient positioning. A cerebral oximeter (INVOS-5100C; Somanetics, Minneapolis, MN) monitored regional saturation of oxygen (rSO2 [cerebral oxygenation]) in pediatric and neonatal patients (N = 24) transported between facilities by ground ambulance, helicopter, or fixed wing aircraft. An accelerometer (GP1; SENSR, Georgetown, TX) bolted to the isolette or gurney recorded z-axis (aligned with the spine) accelerations. The z-axis peak accelerations (absolute values of g) by transport type were as follows: ground ambulance takeoff mean = 0.16 and landing mean = 0.08, helicopter takeoff mean = 0.16 and landing mean = 0.05, fixed wing aircraft takeoff mean = 0.14 and landing mean = 0.20. During takeoff, 2 of 7 patients in the head-to-front of vehicle position experienced rSO2 drop. During landing, 4 of 13 patients in the head-to-back of vehicle position experienced rSO2 drop. There were no significant associations of rSO2 drop during takeoff and landing with patient positioning or with z-axis peak acceleration. Acceleration forces of pediatric and neonatal interfacility transport are small and comparable in magnitude. The relationship between rSO2 drop and patient positioning was not significant in this pilot study. Copyright © 2016 Air Medical Journal Associates. Published by Elsevier Inc. All rights reserved.

  18. The effect of canard leading edge sweep and dihedral angle on the longitudinal and lateral aerodynamic characteristic of a close-coupled canard-wing configuration

    Science.gov (United States)

    Gloss, B. B.

    1974-01-01

    A generalized wind-tunnel model, with canard and wing planforms typical of highly maneuverable aircraft, was tested in the Langley high-speed 7- by 10-foot tunnel at a Mach number of 0.30. The test was conducted in order to determine the effects of canard sweep and canard dihedral on canard-wing interference at high angles of attack. In general, the effect of canard sweep on lift is small up to an angle of attack of 16 deg. However, for angles of attack greater than 16 deg, an increase in the canard sweep results in an increase in lift developed by the canard when the canard is above or in the wing chord plane. This increased lift results in a lift increase for the total configuration for the canard above the wing chord plane. For the canard in the wing chord plane, the increased canard lift is partially lost by increased interference on the wing.

  19. Air transport system

    CERN Document Server

    Schmitt, Dieter

    2016-01-01

    The book addresses all major aspects to be considered for the design and operation of aircrafts within the entire transportation chain. It provides the basic information about the legal environment, which defines the basic requirements for aircraft design and aircraft operation. The interactions between  airport, air traffic management and the airlines are described. The market forecast methods and the aircraft development process are explained to understand the very complex and risky business of an aircraft manufacturer. The principles of flight physics as basis for aircraft design are presented and linked to the operational and legal aspects of air transport including all environmental impacts. The book is written for graduate students as well as for engineers and experts, who are working in aerospace industry, at airports or in the domain of transport and logistics.

  20. Slot Nozzle Effects for Reduced Sonic Boom on a Generic Supersonic Wing Section

    Science.gov (United States)

    Caster, Raymond S.

    2010-01-01

    NASA has conducted research programs to reduce or eliminate the operational restrictions of supersonic aircraft over populated areas. Restrictions are due to the disturbance from the sonic boom, caused by the coalescence of shock waves formed off the aircraft. Results from two-dimensional computational fluid dynamic (CFD) analyses (performed on a baseline Mach 2.0 nozzle in a simulated Mach 2.2 flow) indicate that over-expanded and under-expanded operation of the nozzle has an effect on the N-wave boom signature. Analyses demonstrate the feasibility of reducing the magnitude of the sonic boom N-wave by controlling the nozzle plume interaction with the nozzle boat tail shock structure. This work was extended to study the impact of integrating a high aspect ratio exhaust nozzle or long slot nozzle on the trailing edge of a supersonic wing. The nozzle is operated in a highly under-expanded condition, creating a large exhaust plume and a shock at the trailing edge of the wing. This shock interacts with and suppresses the expansion wave caused by the wing, a major contributor to the sonic boom signature. The goal was to reduce the near field pressures caused by the expansion using a slot nozzle located at the wing trailing edge. Results from CFD analysis on a simulated wing cross-section and a slot nozzle indicate potential reductions in sonic boom signature compared to a baseline wing with no propulsion or trailing edge exhaust. Future studies could investigate if this effect could be useful on a supersonic aircraft for main propulsion, auxiliary propulsion, or flow control.