WorldWideScience

Sample records for transplanted bm cells

  1. BM Solar Cells

    KAUST Repository

    Firdaus, Yuliar

    2018-05-02

    Fullerene‐based materials are widely used as electron acceptors in organic bulk‐heterojunction solar cells; yet, they have rarely been used as the only photoactive component due to their low absorbance and limited charge generation efficiency. However, blending the wide‐bandgap p‐type material copper (I) thiocyanate (CuSCN) with [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC70BM) leads to the formation of a unique mesostructured p‐n like heterointerface between CuSCN and PC70BM and solar cells with a power conversion efficiency (PCE) of up to 5.4%. Here, we examine in detail the reasons for the surprisingly good device performance and elucidate the charge photogeneration and recombination mechanisms in CuSCN‐based devices with PC70BM as the exclusive light‐absorbing material. Our studies clearly demonstrate that a substantial fraction of the photocurrent in the CuSCN‐based devices results from improved dissociation of fullerene excitons and efficient charge transfer at the CuSCN:PC70BM interface combined with reduced geminate and nongeminate charge recombination losses. Our results have implications beyond the fullerene‐based devices studied here, as they demonstrate that careful selection of a mesostructured p‐type transparent semiconductor paves the path to a new type of efficient single photoactive material solar cells.

  2. BM Solar Cells

    KAUST Repository

    Firdaus, Yuliar; Seitkhan, Akmaral; Eisner, Flurin; Sit, Wai-Yu; Kan, Zhipeng; Wehbe, Nimer; Balawi, Ahmed H.; Yengel, Emre; Karuthedath, Safakath; Laquai, Fré dé ric; Anthopoulos, Thomas D.

    2018-01-01

    Fullerene‐based materials are widely used as electron acceptors in organic bulk‐heterojunction solar cells; yet, they have rarely been used as the only photoactive component due to their low absorbance and limited charge generation efficiency. However, blending the wide‐bandgap p‐type material copper (I) thiocyanate (CuSCN) with [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC70BM) leads to the formation of a unique mesostructured p‐n like heterointerface between CuSCN and PC70BM and solar cells with a power conversion efficiency (PCE) of up to 5.4%. Here, we examine in detail the reasons for the surprisingly good device performance and elucidate the charge photogeneration and recombination mechanisms in CuSCN‐based devices with PC70BM as the exclusive light‐absorbing material. Our studies clearly demonstrate that a substantial fraction of the photocurrent in the CuSCN‐based devices results from improved dissociation of fullerene excitons and efficient charge transfer at the CuSCN:PC70BM interface combined with reduced geminate and nongeminate charge recombination losses. Our results have implications beyond the fullerene‐based devices studied here, as they demonstrate that careful selection of a mesostructured p‐type transparent semiconductor paves the path to a new type of efficient single photoactive material solar cells.

  3. Immunological Basis for Rapid Progression of Diabetes in Older NOD Mouse Recipients Post BM-HSC Transplantation.

    Directory of Open Access Journals (Sweden)

    Nan Wang

    Full Text Available Type I diabetes (T1D, mediated by autoreactive T cell destruction of insulin-producing islet beta cells, has been treated with bone marrow-derived hematopoietic stem cell (BM-HSC transplantation. Older non-obese diabetic (NOD mice recipients (3m, at disease-onset stage receiving syngeneic BM-HSC progressed more rapidly to end-stage diabetes post-transplantation than younger recipients (4-6w, at disease-initiation stage. FACS analyses showed a higher percentage and absolute number of regulatory T cells (Treg and lower proportion of proliferating T conventional cells (Tcon in pancreatic lymph nodes from the resistant mice among the younger recipients compared to the rapid progressors among the older recipients. Treg distribution in spleen, mesenteric lymph nodes (MLN, blood and thymus between the two groups was similar. However, the percentage of thymic Tcon and the proliferation of Tcon in MLN and blood were lower in the young resistants. These results suggest recipient age and associated disease stage as a variable to consider in BM-HSC transplantation for treating T1D.

  4. In vitro reprogramming of rat bmMSCs into pancreatic endocrine-like cells.

    Science.gov (United States)

    Li, Hong-Tu; Jiang, Fang-Xu; Shi, Ping; Zhang, Tao; Liu, Xiao-Yu; Lin, Xue-Wen; San, Zhong-Yan; Pang, Xi-Ning

    2017-02-01

    Islet transplantation provides curative treatments to patients with type 1 diabetes, but donor shortage restricts the broad use of this therapy. Thus, generation of alternative transplantable cell sources is intensively investigated worldwide. We previously showed that bone marrow-derived mesenchymal stem cells (bmMSCs) can be reprogrammed to pancreatic-like cells through simultaneously forced suppression of Rest/Nrsf (repressor element-1 silencing transcription factor/neuronal restrictive silencing factor) and Shh (sonic hedgehog) and activation of Pdx1 (pancreas and duodenal transcription factor 1). We here aimed to reprogram bmMSCs further along the developmental pathway towards the islet lineages by improving our previous strategy and by overexpression of Ngn3 (neurogenin 3) and NeuroD1 (neurogenic differentiation 1), critical regulators of the development of endocrine pancreas. We showed that compared to the previous protocol, the overexpression of only Pdx1 and Ngn3 reprogrammed bmMSCs into cells with more characteristics of islet endocrine lineages verified with bioinformatic analyses of our RNA-Seq datasets. These analyses indicated 2325 differentially expressed genes including those involved in the pancreas and islet development. We validated with qRT-PCR analysis selective genes identified from the RNA-Seq datasets. Thus, we reprogrammed bmMSCs into islet endocrine-like cells and advanced the endeavor to generate surrogate functional insulin-secreting cells.

  5. Effect of total lymphoid irradiation (TLI) and donor bone marrow (BM) on islet transplantation in baboons

    International Nuclear Information System (INIS)

    Nash, J.R.; Smit, J.A.; Myburgh, M.A.; Bell, P.R.F.

    1981-01-01

    The susceptibility of isolated islet allografts to rejection and the limited success of established immunosuppressive technique in influencing it is well known. However, the recent demonstration of the efficacy of TLI and BM in the induction of transplantation tolerance has been a major advance. In this study, we investigated the efficacy of similar irradiation schedules on the prolongation of islet allograft survival in the same animal model

  6. Stem Cell Transplant

    Science.gov (United States)

    ... Graft-versus-host disease: A potential risk when stem cells come from donors If you receive a transplant ... medications and blood products into your body. Collecting stem cells for transplant If a transplant using your own ...

  7. Pancreatic Islet Cell Transplantation

    Science.gov (United States)

    Warnock, Garth L.; Rajotte, Ray V.

    1992-01-01

    Transplantation of insulin-producing tissue offers a physiologic approach to restoration of glycemic control. Whereas transplantation of vascularized pancreatic grafts has recently achieved encouraging results, pancreatic islet cell transplantation holds the promise of low morbidity and reduced requirements for agressive immunosuppression for recipients. Islet cell transplantation was recently demonstrated to induce euglycemia with insulin independence. Imagesp1656-a PMID:21221366

  8. Bm-TFF2, a toad trefoil factor, promotes cell migration, survival and wound healing

    International Nuclear Information System (INIS)

    Zhang, Yong; Yu, Guoyu; Xiang, Yang; Wu, Jianbo; Jiang, Ping; Lee, Wenhui; Zhang, Yun

    2010-01-01

    Research highlights: → Bm-TFF2 binds to epithelial cells and induces cell migration and wound healing. → Bm-TFF2 suppresses cell apoptosis. → Bm-TFF2 has no effect on cell proliferation. -- Abstract: Toad skin is naked and continually confronted by various injurious factors. Constant skin renewal and repairs occur frequently. However, the mechanisms of the renewal and repair have not clearly elucidated. In our previous work, a trefoil factor (TFF), Bm-TFF2, has been purified from the Bombina maxima skin and characterized as a platelet agonist. The mRNA of TFFs in toad skin was up-regulated greatly during the metamorphosis, indicating a pivotal role of TFFs in amphibian skin. Here, we presented the effects of Bm-TFF2 on the cell migration, apoptosis and proliferation. Bm-TFF2 bound to epithelial cells and showed strong cell motility activity. At the concentrations of 1-100 nM, Bm-TFF2-induced migration of human epithelial AGS and HT-29 cells, and rat intestinal epithelial IEC-6 cell lines. The in vitro wound healing assay also verified the activity of Bm-TFF2. Bm-TFF2 could also inhibit cell apoptosis induced by ceramide and sodium butyrate. The cell migration-promoting activity was abolished by MEK1 inhibitors, U0126 and PD98059, suggesting that ERK1/2 activation is crucial for Bm-TFF2 to stimulate cell migration. Taken together, Bm-TFF2 promoted wound healing by stimulating cell migration via MAPK pathway and preventing cell apoptosis. The potent biological activity of Bm-TFF2 makes it a useful molecular tool for further studies of structure-function relationship of the related human TFFs.

  9. Bm-TFF2, a toad trefoil factor, promotes cell migration, survival and wound healing

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yong [Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223 (China); Graduate School of Chinese Academy of Sciences, Beijing 100049 (China); Yu, Guoyu [Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223 (China); Graduate School of Chinese Academy of Sciences, Beijing 100049 (China); Department of Biochemistry, Kunming Medical College, Kunming, Yunnan 650032 (China); Xiang, Yang [Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223 (China); Graduate School of Chinese Academy of Sciences, Beijing 100049 (China); Wu, Jianbo [Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223 (China); Jiang, Ping [Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223 (China); Graduate School of Chinese Academy of Sciences, Beijing 100049 (China); Lee, Wenhui [Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223 (China); Zhang, Yun, E-mail: zhangy@mail.kiz.ac.cn [Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223 (China)

    2010-07-30

    Research highlights: {yields} Bm-TFF2 binds to epithelial cells and induces cell migration and wound healing. {yields} Bm-TFF2 suppresses cell apoptosis. {yields} Bm-TFF2 has no effect on cell proliferation. -- Abstract: Toad skin is naked and continually confronted by various injurious factors. Constant skin renewal and repairs occur frequently. However, the mechanisms of the renewal and repair have not clearly elucidated. In our previous work, a trefoil factor (TFF), Bm-TFF2, has been purified from the Bombina maxima skin and characterized as a platelet agonist. The mRNA of TFFs in toad skin was up-regulated greatly during the metamorphosis, indicating a pivotal role of TFFs in amphibian skin. Here, we presented the effects of Bm-TFF2 on the cell migration, apoptosis and proliferation. Bm-TFF2 bound to epithelial cells and showed strong cell motility activity. At the concentrations of 1-100 nM, Bm-TFF2-induced migration of human epithelial AGS and HT-29 cells, and rat intestinal epithelial IEC-6 cell lines. The in vitro wound healing assay also verified the activity of Bm-TFF2. Bm-TFF2 could also inhibit cell apoptosis induced by ceramide and sodium butyrate. The cell migration-promoting activity was abolished by MEK1 inhibitors, U0126 and PD98059, suggesting that ERK1/2 activation is crucial for Bm-TFF2 to stimulate cell migration. Taken together, Bm-TFF2 promoted wound healing by stimulating cell migration via MAPK pathway and preventing cell apoptosis. The potent biological activity of Bm-TFF2 makes it a useful molecular tool for further studies of structure-function relationship of the related human TFFs.

  10. Mobilized Peripheral Blood Stem Cells Versus Unstimulated Bone Marrow As a Graft Source for T-Cell-Replete Haploidentical Donor Transplantation Using Post-Transplant Cyclophosphamide.

    Science.gov (United States)

    Bashey, Asad; Zhang, Mei-Jie; McCurdy, Shannon R; St Martin, Andrew; Argall, Trevor; Anasetti, Claudio; Ciurea, Stefan O; Fasan, Omotayo; Gaballa, Sameh; Hamadani, Mehdi; Munshi, Pashna; Al Malki, Monzr M; Nakamura, Ryotaro; O'Donnell, Paul V; Perales, Miguel-Angel; Raj, Kavita; Romee, Rizwan; Rowley, Scott; Rocha, Vanderson; Salit, Rachel B; Solh, Melhem; Soiffer, Robert J; Fuchs, Ephraim Joseph; Eapen, Mary

    2017-09-10

    Purpose T-cell-replete HLA-haploidentical donor hematopoietic transplantation using post-transplant cyclophosphamide was originally described using bone marrow (BM). With increasing use of mobilized peripheral blood (PB), we compared transplant outcomes after PB and BM transplants. Patients and Methods A total of 681 patients with hematologic malignancy who underwent transplantation in the United States between 2009 and 2014 received BM (n = 481) or PB (n = 190) grafts. Cox regression models were built to examine differences in transplant outcomes by graft type, adjusting for patient, disease, and transplant characteristics. Results Hematopoietic recovery was similar after transplantation of BM and PB (28-day neutrophil recovery, 88% v 93%, P = .07; 100-day platelet recovery, 88% v 85%, P = .33). Risks of grade 2 to 4 acute (hazard ratio [HR], 0.45; P transplantation of BM compared with PB. There were no significant differences in overall survival by graft type (HR, 0.99; P = .98), with rates of 54% and 57% at 2 years after transplantation of BM and PB, respectively. There were no differences in nonrelapse mortality risks (HR, 0.92; P = .74) but relapse risks were higher after transplantation of BM (HR, 1.49; P = .009). Additional exploration confirmed that the higher relapse risks after transplantation of BM were limited to patients with leukemia (HR, 1.73; P = .002) and not lymphoma (HR, 0.87; P = .64). Conclusion PB and BM grafts are suitable for haploidentical transplantation with the post-transplant cyclophosphamide approach but with differing patterns of treatment failure. Although, to our knowledge, this is the most comprehensive comparison, these findings must be validated in a randomized prospective comparison with adequate follow-up.

  11. Proteomic analysis of BmN cell lipid rafts reveals roles in Bombyx mori nucleopolyhedrovirus infection.

    Science.gov (United States)

    Hu, Xiaolong; Zhu, Min; Liang, Zi; Kumar, Dhiraj; Chen, Fei; Zhu, Liyuan; Kuang, Sulan; Xue, Renyu; Cao, Guangli; Gong, Chengliang

    2017-04-01

    The mechanism of how Bombyx mori nucleopolyhedrovirus (BmNPV) enters cells is unknown. The primary components of membrane lipid rafts are proteins and cholesterol, and membrane lipid rafts are thought to be an active region for host-viral interactions. However, whether they contribute to the entry of BmNPV into silkworm cells remains unclear. In this study, we explored the membrane protein components of lipid rafts from BmN cells with mass spectrometry (MS). Proteins and cholesterol were investigated after establishing infection with BmNPV in BmN cells. In total, 222 proteins were identified in the lipid rafts, and Gene Ontology (GO) annotation analysis showed that more than 10% of these proteins had binding and catalytic functions. We then identified proteins that potentially interact between lipid rafts and BmNPV virions using the Virus Overlay Protein Blot Assay (VOPBA). A total of 65 proteins were analyzed with MS, and 7 were predicted to be binding proteins involved in BmNPV cellular invasion, including actin, kinesin light chain-like isoform X2, annexin B13, heat-shock protein 90, barrier-to-autointegration factor B-like and serine/arginine-rich splicing factor 1 A-like. When the cholesterol of the lipid rafts from the membrane was depleted by methyl-β-cyclodextrin (MβCD), BmNPV entry into BmN cells was blocked. However, supplying cholesterol into the medium rescued the BmNPV infection ability. These results show that membrane lipid rafts may be the active regions for the entry of BmNPV into cells, and the components of membrane lipid rafts may be candidate targets for improving the resistance of the silkworm to BmNPV.

  12. Soaking RNAi in Bombyx mori BmN4-SID1 Cells Arrests Cell Cycle Progression

    Science.gov (United States)

    Mon, Hiroaki; Li, Zhiqing; Kobayashi, Isao; Tomita, Shuichiro; Lee, JaeMan; Sezutsu, Hideki; Tamura, Toshiki; Kusakabe, Takahiro

    2013-01-01

    RNA interference (RNAi) is an evolutionarily conserved mechanism for sequence-specific gene silencing. Previously, the BmN4-SID1 cell expressing Caenorhabditis ele gans SID-1 was established, in which soaking RNAi could induce effective gene silencing. To establish its utility, 6 cell cycle progression related cDNAs, CDK1, MYC, MYB, RNRS, CDT1, and GEMININ, were isolated from the silkworm, Bombyx mori L. (Lepidoptera: Bombycidae), and their expressions were further silenced by soaking RNAi in the BmN4-SID1 cells. The cell cycle progression analysis using flow cytometer demonstrated that the small amount of double stranded RNA was enough to arrest cell cycle progression at the specific cell phases. These data suggest that RNAi in the BmN4-SID1 cells can be used as a powerful tool for loss-of-function analysis of B. mori genes. PMID:24773378

  13. BmCyclin B and BmCyclin B3 are required for cell cycle progression in the silkworm, Bombyx mori.

    Science.gov (United States)

    Pan, Minhui; Hong, Kaili; Chen, Xiangyun; Pan, Chun; Chen, Xuemei; Kuang, Xiuxiu; Lu, Cheng

    2013-04-01

    Cyclin B is an important regulator of the cell cycle G2 to M phase transition. The silkworm genomic database shows that there are two Cyclin B genes in the silkworm (Bombyx mori), BmCyclin B and BmCyclin B3. Using silkworm EST data, the cyclin B3 (EU074796) gene was cloned. Its complete cDNA was 1665 bp with an ORF of 1536 bp derived from seven exons and six introns. The BmCyclin B3 gene encodes 511 amino acids, and the predicted molecular weight is 57.8 kD with an isoelectric point of 9.18. The protein contains one protein damage box and two cyclin boxes. RNA interference-mediated reduction of BmCyclin B and BmCyclin B3 expression induced cell cycle arrest in G2 or M phase in BmN-SWU1 cells, thus inhibiting cell proliferation. These results suggest that BmCyclin B and BmCyclin B3 are necessary for completing the cell cycle in silkworm cells.

  14. HEMATOPOIETIC PROGENITOR CELL CONTENT OF VERTEBRAL BODY MARROW USED FOR COMBINED SOLID ORGAN AND BONE MARROW TRANSPLANTATION

    Science.gov (United States)

    Rybka, Witold B.; Fontes, Paulo A.; Rao, Abdul S.; Winkelstein, Alan; Ricordi, Camillo; Ball, Edward D.; Starzl, Thomas E.

    2010-01-01

    While cadaveric vertebral bodies (VB) have long been proposed as a suitable source of bone marrow (BM) for transplantation (BMT), they have rarely been used for this purpose. We have infused VB BM immediately following whole organ (WO) transplantation to augment donor cell chimerism. We quantified the hematopoietic progenitor cell (HPC) content of VB BM as well as BM obtained from the iliac crests (IC) of normal allogeneic donors (ALLO) and from patients with malignancy undergoing autologous marrow harvest (AUTO). Patients undergoing WOIBM transplantation also had AUTO BM harvested in the event that subsequent lymphohematopoietic reconstitution was required. Twenty-four VB BM, 24 IC BM-ALLO, 31 IC AUTO, and 24 IC WO-AUTO were harvested. VB BM was tested 12 to 72 hr after procurement and infused after completion ofWO grafting. IC BM was tested and then used or cryopreserved immediately. HPC were quantified by clonal assay measuring CFU-GM, BFU-E, and CFU-GEMM, and by flow cytometry for CD34+ progenitor cells. On an average, 9 VB were processed during each harvest, and despite an extended processing time the number of viable nucleated cells obtained was significantly higher than that from IC. Furthermore, by HPC content, VB BM was equivalent to IC BM, which is routinely used for BMT. We conclude that VB BM is a clinically valuable source of BM for allogeneic transplantation. PMID:7701582

  15. BmNHR96 participate BV entry of BmN-SWU1 cells via affecting the cellular cholesterol level.

    Science.gov (United States)

    Dong, Xiao-Long; Liu, Tai-Hang; Wang, Wei; Pan, Cai-Xia; Du, Guo-Yu; Wu, Yun-Fei; Pan, Min-Hui; Lu, Cheng

    2017-01-22

    B.mori nucleopolyhedrovirus (BmNPV), which produces BV and ODV two virion phenotypes in its life cycle, caused the amount of economic loss in sericulture. But the mechanism of its infection was still unclear. In this study we characterized B.mori nuclear hormone receptor 96 (BmNHR96) as a NHR96 family member, which was localized in the nucleus. We also found BmNHR96 over-expression could enhance the entry of BV as well as cellular cholesterol level. Furthermore, we validated that BmNHR96 increased membrane fusion mediated by GP64, which could probably promote BV-infection. In summary, our study suggested that BmNHR96 plays an important role in BV infection and this function probably actualized by affecting cellular cholesterol level, and our results provided insights to the mechanisms of BV-infection of B.mori. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Combined use of bone marrow-derived mesenchymal stromal cells (BM-MSCs) and platelet rich plasma (PRP) stimulates proliferation and differentiation of myoblasts in vitro: new therapeutic perspectives for skeletal muscle repair/regeneration.

    Science.gov (United States)

    Sassoli, Chiara; Vallone, Larissa; Tani, Alessia; Chellini, Flaminia; Nosi, Daniele; Zecchi-Orlandini, Sandra

    2018-02-05

    Satellite cell-mediated skeletal muscle repair/regeneration is compromised in cases of extended damage. Bone marrow mesenchymal stromal cells (BM-MSCs) hold promise for muscle healing but some criticisms hamper their clinical application, including the need to avoid animal serum contamination for expansion and the scarce survival after transplant. In this context, platelet-rich plasma (PRP) could offer advantages. Here, we compare the effects of PRP or standard culture media on C2C12 myoblast, satellite cell and BM-MSC viability, survival, proliferation and myogenic differentiation and evaluate PRP/BM-MSC combination effects in promoting myogenic differentiation. PRP induced an increase of mitochondrial activity and Ki67 expression comparable or even greater than that elicited by standard media and promoted AKT signaling activation in myoblasts and BM-MSCs and Notch-1 pathway activation in BM-MSCs. It stimulated MyoD, myogenin, α-sarcomeric actin and MMP-2 expression in myoblasts and satellite cell activation. Notably, PRP/BM-MSC combination was more effective than PRP alone. We found that BM-MSCs influenced myoblast responses through a paracrine activation of AKT signaling, contributing to shed light on BM-MSC action mechanisms. Our results suggest that PRP represents a good serum substitute for BM-MSC manipulation in vitro and could be beneficial towards transplanted cells in vivo. Moreover, it might influence muscle resident progenitors' fate, thus favoring the endogenous repair/regeneration mechanisms. Finally, within the limitations of an in vitro experimentation, this study provides an experimental background for considering the PRP/BM-MSC combination as a potential therapeutic tool for skeletal muscle damage, combining the beneficial effects of BM-MSCs and PRP on muscle tissue, while potentiating BM-MSC functionality.

  17. Factors controlling the engraftment of transplanted dog bone marrow cells

    International Nuclear Information System (INIS)

    Vriesendorp, H.M.; Klapwyk, W.M.; Heidt, P.J.; Hogeweg, B.; Zurcher, C.; Bekkum, D.W. van

    1982-01-01

    The LD50 of total body irradiation (TBI) for the bone marrow (BM) syndrome and the gastrointestinal (GI) syndrme was determined in dogs as 3.7 Gy, and 8.5 Gy respectively. Five Gy TBI was adequate conditioning for BM cells of littermate donors identical for the major histocompatibility comples (MHC). The maximum tolerated TBI (about 7.5 Gy) caused more side effects than 5.0 Gy TBI and was insufficient for engraftment of realistic numbers of BM cells of MHC mismatched donors. In autologous and MHC matched transplants, the rateof hemopoietic recovery correlated with the number of BM cells given. Approximtely 2 x 10 7 autologous and 1 x 10 8 MHC identical BM cells.kg -1 were needed for radiation protection. Platelet recovery was significantly more rapid in allogeneic combinations in comparison to autologous transplants. Low numbers of autologous cryopreserved bone marrow cells were as effective as fresh bone marrow cells in rescuing animals after lethal TBI. Other factors that influence BM cell engraftment were confirmed (prior sensitization of the recipient, donor selection) or identified (purification of BM cells on density gradient and selective gastrointestinal decontamination of the recipient). Consistent engraftment of gradient separated, MHC identical, BM cells was found after conditioning with two fractions of 6.0 Gy TBI, separated by 72 h. One MHC haplotype mismatched marrow did engraft after two TBI fractions of 6.0 Gy. Engraftment no longer occurred with gradient purified bone marrow cells from this type of donor. Late effects of TBI were early greying in all animals, and secondary uterine inertia in female dogs after 7.5 GY TBI. Fertility in males or females was not changed by radiation. An increase of pancreas fibrosis was noted in dogs receiving fractions of 6.0 Gy TBI. (author)

  18. Stem Cell Transplants (For Teens)

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Stem Cell Transplants KidsHealth / For Teens / Stem Cell Transplants What's ... Take to Recover? Coping Print What Are Stem Cells? As you probably remember from biology class, every ...

  19. Stem Cell Transplants (For Parents)

    Science.gov (United States)

    ... of Transplants Transplantation Recovery Coping Print en español Trasplantes de células madre Stem cells are cells in ... finding a match is called tissue typing (or HLA [human leukocyte antigen] typing). HLA is a protein ...

  20. Granulocyte Colony-stimulating Factor-primed Bone Marrow: An Excellent Stem-cell Source for Transplantation in Acute Myelocytic Leukemia and Chronic Myelocytic Leukemia

    Directory of Open Access Journals (Sweden)

    Yuhang Li

    2015-01-01

    Full Text Available Background: Steady-state bone marrow (SS-BM and granulocyte colony-stimulating growth factor-primed BM/peripheral blood stem-cell (G-BM/G-PBSC are the main stem-cell sources used in allogeneic hematopoietic stem-cell transplantation. Here, we evaluated the treatment effects of SS-BM and G-BM/G-PBSC in human leucocyte antigen (HLA-identical sibling transplantation. Methods: A total of 226 patients (acute myelogenous leukemia-complete remission 1, chronic myelogenous leukemia-chronic phase 1 received SS-BM, G-BM, or G-PBSC from an HLA-identical sibling. Clinical outcomes (graft-versus-host disease [GVHD], overall survival, transplant-related mortality [TRM], and leukemia-free survival [LFS] were analyzed. Results: When compared to SS-BM, G-BM gave faster recovery time to neutrophil or platelet (P 0.05. Conclusions: G-CSF-primed bone marrow shared the advantages of G-PBSC and SS-BM. We conclude that G-BM is an excellent stem-cell source that may be preferable to G-PBSC or SS-BM in patients receiving HLA-identical sibling hematopoietic stem-cell transplantation.

  1. Unexpected severe calcification after transplantation of bone marrow cells in acute myocardial infarction.

    Science.gov (United States)

    Yoon, Young-Sup; Park, Jong-Seon; Tkebuchava, Tengiz; Luedeman, Corinne; Losordo, Douglas W

    2004-06-29

    There has been a rapid increase in the number of clinical trials using unselected bone marrow (BM) cells or the mononuclear fraction of BM cells for treating ischemic heart diseases. Thus far, no significant deleterious effects or complications have been reported in any studies using BM-derived cells for treatment of various cardiac diseases. Seven-week-old female Fisher-344 rats underwent surgery to induce acute myocardial infarction and were randomized into 3 groups of 16 rats, each receiving intramyocardial injection of either 7x10(5) DiI-labeled total BM cells (TBMCs), the same number of DiI-labeled, clonally expanded BM multipotent stem cells, or the same volume of phosphate-buffered saline in the peri-infarct area. Echocardiography 2 weeks after cell transplantation indicated intramyocardial calcification in 4 of 14 surviving rats (28.5%) in the TBMC group. Histological examination with hematoxylin and eosin staining and von Kossa staining confirmed the presence of extensive intramyocardial calcification. Alkaline phosphatase staining revealed strong positivity surrounding the calcified area suggestive of ongoing osteogenic activity. Fluorescent microscopic examination revealed that acellular calcific areas were surrounded by DiI-labeled TBMCs, suggesting the direct involvement of transplanted TBMCs in myocardial calcification. In contrast, in hearts receiving equal volumes of saline or BM multipotent stem cells delivered in the same manner, there was no evidence of calcification. These results demonstrate that direct transplantation of unselected BM cells into the acutely infarcted myocardium may induce significant intramyocardial calcification.

  2. Pre-Transplantation Blockade of TNF-α-Mediated Oxygen Species Accumulation Protects Hematopoietic Stem Cells.

    Science.gov (United States)

    Ishida, Takashi; Suzuki, Sachie; Lai, Chen-Yi; Yamazaki, Satoshi; Kakuta, Shigeru; Iwakura, Yoichiro; Nojima, Masanori; Takeuchi, Yasuo; Higashihara, Masaaki; Nakauchi, Hiromitsu; Otsu, Makoto

    2017-04-01

    Hematopoietic stem cell (HSC) transplantation (HSCT) for malignancy requires toxic pre-conditioning to maximize anti-tumor effects and donor-HSC engraftment. While this induces bone marrow (BM)-localized inflammation, how this BM environmental change affects transplanted HSCs in vivo remains largely unknown. We here report that, depending on interval between irradiation and HSCT, residence within lethally irradiated recipient BM compromises donor-HSC reconstitution ability. Both in vivo and in vitro we demonstrate that, among inflammatory cytokines, TNF-α plays a role in HSC damage: TNF-α stimulation leads to accumulation of reactive oxygen species (ROS) in highly purified hematopoietic stem/progenitor cells (HSCs/HSPCs). Transplantation of flow-cytometry-sorted murine HSCs reveals damaging effects of accumulated ROS on HSCs. Short-term incubation either with an specific inhibitor of tumor necrosis factor receptor 1 signaling or an antioxidant N-acetyl-L-cysteine (NAC) prevents TNF-α-mediated ROS accumulation in HSCs. Importantly, pre-transplantation exposure to NAC successfully demonstrats protective effects in inflammatory BM on graft-HSCs, exhibiting better reconstitution capability than that of nonprotected control grafts. We thus suggest that in vivo protection of graft-HSCs from BM inflammation is a feasible and attractive approach, which may lead to improved hematopoietic reconstitution kinetics in transplantation with myeloablative conditioning that inevitably causes inflammation in recipient BM. Stem Cells 2017;35:989-1002. © 2016 The Authors STEM CELLS published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  3. P143 proteins from heterologous nucleopolyhedroviruses induce apoptosis in BM-N cells derived from the silkworm Bombyx mori.

    Science.gov (United States)

    Hamajima, Rina; Kobayashi, Michihiro; Ikeda, Motoko

    2017-04-02

    We previously demonstrated that ribosomal RNA (rRNA) of Bombyx mori BM-N cells is rapidly degraded upon infection with heterologous nucleopolyhedroviruses (NPVs), including Autographa californica multiple NPV (AcMNPV), Hyphantria cunea MNPV, Spodoptera exigua MNPV and S. litura MNPV, and that this response is triggered by viral P143 proteins. The transient expression of P143 proteins from heterologous NPVs was also shown to induce apoptosis and caspase-3-like protease activation in BM-N cells. In the present study, we conducted a transient expression assay using BM-N cells expressing mutant AcMNPV P143 (Ac-P143) proteins and demonstrated that five amino acid residues cooperatively participate in Ac-P143 protein-triggered apoptosis of BM-N cells. Notably, these five residues were previously shown to be required for triggering rRNA degradation in BM-N cells. As rRNA degradation in BM-N cells does not result from apoptosis, the present results suggest that Ac-P143-triggered rRNA degradation is the upstream signal for apoptosis induction in BM-N cells. We further showed that P143 protein-triggered apoptosis does not occur in S. frugiperda Sf9 or Lymantria dispar Ld652Y cells, indicating that apoptosis induction by heterologous P143 proteins is a BM-N cell-specific response. In addition, the observed induction of apoptosis in BM-N cells was found to be mediated by activation of the initiator caspase Bm-Dronc. Taken together, these results suggest that BM-N cells evolved a unique antiviral system that recognizes heterologous NPV P143 proteins to induce rRNA degradation and caspase-dependent apoptosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Stem Cell Transplantation from Bench to Bedside

    Indian Academy of Sciences (India)

    Table of contents. Stem Cell Transplantation from Bench to Bedside · Slide 2 · Slide 3 · Slide 4 · Principles of an allogeneic stem cell transplant · Principle of an allogeneic stem cell transplant · Principle of an autologous Stem Cell Transplant · Slide 8 · Conditioning · Slide 10 · Slide 11 · Stem Cell Transplantation · Slide 13.

  5. Transplantation of Bone Marrow-Derived Mesenchymal Stem Cells into the Developing Mouse Eye

    International Nuclear Information System (INIS)

    Lee, Eun-Shil; Yu, Song-Hee; Jang, Yu-Jin; Hwang, Dong-Youn; Jeon, Chang-Jin

    2011-01-01

    Mesenchymal stem cells (MSCs) have been studied widely for their potential to differentiate into various lineage cells including neural cells in vitro and in vivo. To investigate the influence of the developing host environment on the integration and morphological and molecular differentiation of MSCs, human bone marrow-derived mesenchymal stem cells (BM-MSCs) were transplanted into the developing mouse retina. Enhanced green fluorescent protein (GFP)-expressing BM-MSCs were transplanted by intraocular injections into mice, ranging in ages from 1 day postnatal (PN) to 10 days PN. The survival dates ranged from 7 days post-transplantation (DPT) to 28DPT, at which time an immunohistochemical analysis was performed on the eyes. The transplanted BM-MSCs survived and showed morphological differentiation into neural cells and some processes within the host retina. Some transplanted cells expressed microtubule associated protein 2 (MAP2ab, marker for mature neural cells) or glial fibrillary acid protein (GFAP, marker for glial cells) at 5PN 7DPT. In addition, some transplanted cells integrated into the developing retina. The morphological and molecular differentiation and integration within the 5PN 7DPT eye was greater than those of other-aged host eye. The present findings suggest that the age of the host environment can strongly influence the differentiation and integration of BM-MSCs

  6. Megakaryocytopoiesis in Stem Cell Transplantation

    National Research Council Canada - National Science Library

    Cohen, IIsaac

    1998-01-01

    Mobilized peripheral blood progenitor cell transplant, used to reconstitute hematopoiesis following high-dose chemotherapy in breast cancer patients, is associated with a requisite period of profound thrombocytopenia...

  7. Cell transplantation for Parkinson's disease

    Institute of Scientific and Technical Information of China (English)

    Jia Liu; Hongyun Huang

    2006-01-01

    OBJECTIVE: The motor symptoms of Parkinson's disease (PD) can be improved by cell transplantation,which has caught general attention from the field of the therapy for PD recently. In this paper, we summarize the cell-based therapy for PD.DATA SOURCES: A search for English literature related to the cellular transplantation of PD from January 1979to July 2006 was conducted in Medline with the key words of "Parkinson's disease, cell transplantation,embryonic stem cells, neural stem cells".STUDY SELECTTON: Data were checked in the first trial, and literatures about PD and cell transplantation were selected. Inclusive criteria: ① PD; ② Cell transplantation. Exclusive criteria: repetitive researches.DATA EXTRACTTON: A total of 100 papers related to cellular transplant and PD were collected and 41literatures were in accordance with the inclusive criteria.DATA SYNTHESIS: PD is a neural degeneration disease that threatens the health of the aged people, and most traditional therapeusis cannot delay its pathological proceeding. Cell transplantation is becoming popular as a new therapeutic tool, and the cells used to transplant mainly included dopamine-secreting cells, fetal ventral mesencephalic cells, embryonic stem cells and neural stem cells up to now. Animal experiment and clinical test demonstrate that cell transplantation can relieve the motor symptoms of Parkinson's disease obviously, but there are some problems need to be solved.CONCLUSTON: Cell transplantation has visible therapeutic efficacy on PD. Following the improvement of technique, and we have enough cause to credit that cell therapy may cure PD in the future.

  8. Pancreatic Islet Cell Transplantation: A new era in transplantation

    OpenAIRE

    Warnock, Garth L.; Rajotte, Ray V.

    1992-01-01

    Transplantation of insulin-producing tissue offers a physiologic approach to restoration of glycemic control. Whereas transplantation of vascularized pancreatic grafts has recently achieved encouraging results, pancreatic islet cell transplantation holds the promise of low morbidity and reduced requirements for agressive immunosuppression for recipients. Islet cell transplantation was recently demonstrated to induce euglycemia with insulin independence.

  9. Excitons dynamics of 1-chloronaphthalene added P3HT:PC{sub 61}BM solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Xing [Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Ministry of Education, Beijing 100044 (China); Institute of Optoelectronics Technology, Beijing Jiaotong University, Beijing 100044 (China); Zhao, Suling, E-mail: slzhao@bjtu.edu.cn [Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Ministry of Education, Beijing 100044 (China); Institute of Optoelectronics Technology, Beijing Jiaotong University, Beijing 100044 (China); Huang, Qingyu; Yang, Qianqian; Gong, Wei; Xu, Zheng [Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Ministry of Education, Beijing 100044 (China); Institute of Optoelectronics Technology, Beijing Jiaotong University, Beijing 100044 (China)

    2014-08-01

    The charge photogeneration and recombination are comprehensively investigated in blend films based on poly(3-hexylthiophene) (P3HT) as an electron donor and [6,6]-phenyl-C 61-butyric acid methyl ester (PC{sub 61}BM) as an electron accepter. Transient absorption spectroscopy (TAS) together with absorption, photoluminescence (PL) are used respectively to measure optical properties of these blend films. In this paper, we demonstrate that solvent additive 1-chloronaphthalene (CN) has a unique influence on improving the performance of P3HT:PC{sub 61}BM heterojunction solar cell. It is observed that the absorption of additive-added blends has a higher intensity and is red-shifted than that of the P3HT:PC{sub 61}BM blend. The PL intensity increases which suggest that the conjugation length increases or the domain size of P3HT increases. Large domains with serious phase separation influence the interface area between P3HT and PC{sub 61}BM. Excitons are generated in both the P3HT phase and the PC{sub 61}BM phase. In all the film blends with or without additive, strongly bound interfacial CT states are formed by a large fraction of the excitons indicating geminate recombination may occur. It is demonstrated that in the blend with CN added the enhanced fraction of CT states comes from the more crystalline P3HT phases and the slower CT states and mobile charges decay indicates reduced recombination losses from early time recombination. - Highlights: • 1-chloronaphthalene(CN) can enhance the efficiency of P3HT:PCBM Solar Cells from charge photogeneration and recombination. • The enhanced fraction of CT states with CN added comes from the more crystalline P3HT phases and the slower CT states. • Mobile charges decay of blend with CN added indicates reduced recombination losses from early time recombination.

  10. Analysis of Triplet Exciton Loss Pathways in PTB7:PC71BM Bulk Heterojunction Solar Cells

    Science.gov (United States)

    Kraus, Hannes; Heiber, Michael C.; Väth, Stefan; Kern, Julia; Deibel, Carsten; Sperlich, Andreas; Dyakonov, Vladimir

    2016-07-01

    A strategy for increasing the conversion efficiency of organic photovoltaics has been to increase the VOC by tuning the energy levels of donor and acceptor components. However, this opens up a new loss pathway from an interfacial charge transfer state to a triplet exciton (TE) state called electron back transfer (EBT), which is detrimental to device performance. To test this hypothesis, we study triplet formation in the high performing PTB7:PC71BM blend system and determine the impact of the morphology-optimizing additive 1,8-diiodoctane (DIO). Using photoluminescence and spin-sensitive optically detected magnetic resonance (ODMR) measurements at low temperature, we find that TEs form on PC71BM via intersystem crossing from singlet excitons and on PTB7 via EBT mechanism. For DIO blends with smaller fullerene domains, an increased density of PTB7 TEs is observed. The EBT process is found to be significant only at very low temperature. At 300 K, no triplets are detected via ODMR, and electrically detected magnetic resonance on optimized solar cells indicates that TEs are only present on the fullerenes. We conclude that in PTB7:PC71BM devices, TE formation via EBT is impacted by fullerene domain size at low temperature, but at room temperature, EBT does not represent a dominant loss pathway.

  11. Transplantation? Peripheral Stem Cell/Bone Marrow/Cord Blood

    Directory of Open Access Journals (Sweden)

    Itır Sirinoglu Demiriz

    2012-01-01

    Full Text Available The introduction of peripheral stem cell (PSC and cord blood (CB as an alternative to bone marrow (BM recently has caused important changes on hematopoietic stem cell transplantation (HSCT practice. According to the CIBMTR data, there has been a significant decrease in the use of bone marrow and increase in the use of PSC and CB as the stem cell source for HSCT performed during 1997–2006 period for patients under the age of 20. On the other hand, the stem cell source in 70% of the HSCT procedures performed for patients over the age of 20 was PSC and the second most preferred stem cell source was bone marrow. CB usage is very limited for the adult population. Primary disease, stage, age, time and urgency of transplantation, HLA match between the patient and the donor, stem cell quantity, and the experience of the transplantation center are some of the associated factors for the selection of the appropriate stem cell source. Unfortunately, there is no prospective randomized study aimed to facilitate the selection of the correct source between CB, PSC, and BM. In this paper, we would like to emphasize the data on stem cell selection in light of the current knowledge for patient populations according to their age and primary disease.

  12. G-CSF-primed BM for allogeneic SCT: revisited.

    Science.gov (United States)

    Pessach, I; Resnick, I; Shimoni, A; Nagler, A

    2015-07-01

    G-SCF-mobilized PBSC (GPB) grafts have a higher cell dose and somewhat more committed progenitor cells than steady-state BM (SBM), resulting in faster engraftment and faster immunological reconstitution. On the other hand, transplant related mortality (TRM), disease-free survival (DFS) and overall survival (OS) are similar both for PB and for BM. In contrast to SBM, G-CSF-primed BM (GBM) grafts stimulate HSC proliferation, increasing cell dose and thus resulting in faster engraftment because of higher cell dose infused, or because of treatment with G-CSF. Furthermore, GBM may induce tolerance and functional modulations in donor hematopoiesis and immunity, further reducing GVHD incidence, which is already lower with SBM compared with GPB grafts. Overall, a growing body of clinical evidence suggests that GBM transplants may share the advantages of GPB transplantations, without the associated increased risk of GVHD, and might be an attractive graft source for allogeneic SCTs.

  13. Interleukin-21 promotes thymopoiesis recovery following hematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Aurélie Tormo

    2017-06-01

    Full Text Available Abstract Background Impaired T cell reconstitution remains a major deterrent in the field of bone marrow (BM transplantation (BMT due to pre-conditioning-induced damages inflicted to the thymi of recipient hosts. Given the previously reported thymo-stimulatory property of interleukin (IL-21, we reasoned that its use post-BMT could have a profound effect on de novo T cell development. Methods To evaluate the effect of IL-21 on de novo T cell development in vivo, BM derived from RAG2p-GFP mice was transplanted into LP/J mice. Lymphocyte reconstitution was first assessed using a hematological analyzer and a flow cytometer on collected blood samples. Detailed flow cytometry analysis was then performed on the BM, thymus, and spleen of transplanted animals. Finally, the effect of human IL-21 on thymopoiesis was validated in humanized mice. Results Using a major histocompatibility complex (MHC-matched allogeneic BMT model, we found that IL-21 administration improves immune reconstitution by triggering the proliferation of BM Lin−Sca1+c-kit+ (LSK subsets. The pharmacological effect of IL-21 also culminates in the recovery of both hematopoietic (thymocytes and non-hematopoietic (stromal cells within the thymi of IL-21-treated recipient animals. Although T cells derived from all transplanted groups proliferate, secrete various cytokines, and express granzyme B similarly in response to T cell receptor (TCR stimulation, full regeneration of peripheral naïve CD4+ and CD8+ T cells and normal TCRvβ distribution could only be detected in IL-21-treated recipient mice. Astonishingly, none of the recipient mice who underwent IL-21 treatment developed graft-versus-host disease (GVHD in the MHC-matched allogeneic setting while the graft-versus-tumor (GVT effect was strongly retained. Inhibition of GVHD onset could also be attributed to the enhanced generation of regulatory B cells (B10 observed in the IL-21, but not PBS, recipient mice. We also tested the

  14. Transplantation of bone marrow derived cells promotes pancreatic islet repair in diabetic mice

    International Nuclear Information System (INIS)

    Gao Xiaodong; Song Lujun; Shen Kuntang; Wang Hongshan; Niu Weixin; Qin Xinyu

    2008-01-01

    The transplantation of bone marrow (BM) derived cells to initiate pancreatic regeneration is an attractive but as-yet unrealized strategy. Presently, BM derived cells from green fluorescent protein transgenic mice were transplanted into diabetic mice. Repair of diabetic islets was evidenced by reduction of hyperglycemia, increase in number of islets, and altered pancreatic histology. Cells in the pancreata of recipient mice co-expressed BrdU and insulin. Double staining revealed β cells were in the process of proliferation. BrdU + insulin - PDX-1 + cells, Ngn3 + cells and insulin + glucagon + cells, which showed stem cells, were also found during β-cell regeneration. The majority of transplanted cells were mobilized to the islet and ductal regions. In recipient pancreas, transplanted cells simultaneously expressed CD34 but did not express insulin, PDX-1, Ngn3, Nkx2.2, Nkx6.1, Pax4, Pax6, and CD45. It is concluded that BM derived cells especially CD34 + cells can promote repair of pancreatic islets. Moreover, both proliferation of β cells and differentiation of pancreatic stem cells contribute to the regeneration of β cells

  15. Transplantation of bone marrow-derived mesenchymal stem cells rescues partially rachitic phenotypes induced by 1,25-Dihydroxyvitamin D deficiency in mice

    OpenAIRE

    Zhang, Zengli; Yin, Shaomeng; Xue, Xian; Ji, Ji; Tong, Jian; Goltzman, David; Miao, Dengshun

    2016-01-01

    To determine whether the transplantation of bone marrow-derived mesenchymal stem cells (BM-MSCs) can improve the 1,25(OH)2D deficiency-induced rachitic phenotype, 2×106 BM-MSCs from wild-type mice or vehicle were transplanted by tail vein injection into mice deficient in 1,25(OH)2D due to targeted deletion of 1α(OH)ase (1α(OH)ase-/-). Our results show that 1α(OH)ase mRNA was expressed in the BM-MSCs derived from wild-type mice, and was detected in long bone, kidney and intestine from BM-MSC-t...

  16. Lack of Connection Between Midgut Cell Autophagy Gene Expression and BmCPV Infection in the Midgut of Bombyx mori.

    Science.gov (United States)

    Yang, Xiaobing; Wu, Suli; Wu, Yongpeng; Liu, Yang; Qian, Yonghua; Jiao, Feng

    2015-01-01

    Autophagy is associated with multiple biological processes and has protective and defensive functions with respect to immunity, inflammation, and resistance to microbial infection. In this experiment, we wished to investigate whether autophagy is a factor in the midgut cell response of Bombyx mori to infection by the B. mori cytoplasmic polyhedrosis virus (BmCPV). Our results indicated that the expression of three autophagy-related genes (BmAtg8, BmAtg5, and BmAtg7) in the midgut did not change greatly after BmCPV infection in B. mori. Basal ATG8/ATG8PE protein expression was detected in different B. mori tissues by using western blot analysis. Immunohistochemistry showed that the ATG8/ATG8PE proteins were located mainly in the cytoplasm. ATG8/ATG8PE protein levels decreased at 12 and 16 h after BmCPV infection. Our results indicate that autophagy responded slightly to BmCPV infection, but could not prevent the invasion and replication of the virus. © The Author 2015. Published by Oxford University Press on behalf of the Entomological Society of America.

  17. Stem Cell Transplant Patients and Fungal Infections

    Science.gov (United States)

    ... Foodborne, Waterborne, and Environmental Diseases Mycotic Diseases Branch Stem Cell Transplant Patients and Fungal Infections Recommend on Facebook ... Mold . Top of Page Preventing fungal infections in stem cell transplant patients Fungi are difficult to avoid because ...

  18. Insight Into the Role of PC71BM on Enhancing the Photovoltaic Performance of Ternary Organic Solar Cells.

    Science.gov (United States)

    Wang, Bei; Fu, Yingying; Yan, Chi; Zhang, Rui; Yang, Qingqing; Han, Yanchun; Xie, Zhiyuan

    2018-01-01

    The development of non-fullerene acceptor molecules have remarkably boosted power conversion efficiency (PCE) of polymer solar cells (PSCs) due to the improved spectral coverage and reduced energy loss. An introduction of fullerene molecules into the non-fullerene acceptor-based blend may further improve the photovoltaic performance of the resultant ternary PSCs. However, the underlying mechanism is still debatable. Herein, the ternary PSCs based on PBDB-T:ITIC:PC 71 BM blend were fabricated and its PCE was increased to 10.2% compared to 9.2% for the binary PBDB-T:ITIC devices and 8.1% for the PBDB-T:PC 71 BM PSCs. Systematic investigation was carried out to disclose the effect of PC 71 BM on the blend morphology and charge transport behavior. It is found that the PC 71 BM tends to intermix with the PBDB-T donor compared to the ITIC counterpart. A small amount of PC 71 BM in the ternary blend is helpful for ITIC to aggregate and form efficient electron-transport pathways. Accordingly, the electron mobility is increased and the density of electron traps is decreased in the ternary blend in comparison with the PBDB-T:ITIC blend. Finally, the suppressed bimolecular recombination and enhanced charge collection lead to high PCE for the ternary solar cells.

  19. Granulocyte-colony stimulating factor (G-CSF)-primed, delayed marrow harvests as a source of hematopoietic stem and progenitor cells for allogeneic transplantation.

    Science.gov (United States)

    Phillips, G L; Davey, D D; Hale, G A; Marshall, K W; Munn, R K; Nath, R; Reece, D E; Van Zant, G

    1999-10-01

    We evaluated the ability of G-CSF to increase the number of hematopoietic stem cells obtained by "delayed" BM harvest for allogeneic transplantation. Five normal donors received G-CSF @ 10 mcg/kg/day x 5 followed by repeat PB and BM assays at day 6 and 16, and BM harvest at day 16. Stem cells were not increased in the BM at day 16. Five patients underwent BMT and engrafted at +10 to +19 days. While the tested strategy offers no intrinsic advantages, its potential cannot be evaluated fully without alternative timing and/or additional, "early acting" growth factors.

  20. Allogeneic cell transplant expands bone marrow distribution by colonizing previously abandoned areas: an FDG PET/CT analysis.

    Science.gov (United States)

    Fiz, Francesco; Marini, Cecilia; Campi, Cristina; Massone, Anna Maria; Podestà, Marina; Bottoni, Gianluca; Piva, Roberta; Bongioanni, Francesca; Bacigalupo, Andrea; Piana, Michele; Sambuceti, Gianmario; Frassoni, Francesco

    2015-06-25

    Mechanisms of hematopoietic reconstitution after bone marrow (BM) transplantation remain largely unknown. We applied a computational quantification software application to hybrid 18F-fluorodeoxyglucose positron emission tomography (PET)/computed tomography (CT) images to assess activity and distribution of the hematopoietic system throughout the whole skeleton of recently transplanted patients. Thirty-four patients underwent PET/CT 30 days after either adult stem cell transplantation (allogeneic cell transplantation [ACT]; n = 18) or cord blood transplantation (CBT; n = 16). Our software automatically recognized compact bone volume and trabecular bone volume (IBV) in CT slices. Within IBV, coregistered PET data were extracted to identify the active BM (ABM) from the inactive tissue. Patients were compared with 34 matched controls chosen among a published normalcy database. Whole body ABM increased in ACT and CBT when compared with controls (12.4 ± 3 and 12.8 ± 6.8 vs 8.1 ± 2.6 mL/kg of ideal body weight [IBW], P bones, ABM increased three- and sixfold in CBT and ACT, respectively, compared with controls (0.9 ± 0.9 and 1.7 ± 2.5 vs 0.3 ± 0.3 mL/kg IBW, P transplanted BM into previously abandoned BM sites. © 2015 by The American Society of Hematology.

  1. Sub-ns triplet state formation by non-geminate recombination in PSBTBT:PC 70 BM and PCPDTBT:PC 60 BM organic solar cells

    KAUST Repository

    Etzold, Fabian

    2015-03-02

    The solid-state morphology and photo-generated charge carrier dynamics in low-bandgap polymer:fullerene bulk heterojunction photovoltaic blends using the donor–acceptor type copolymers PCPDTBT or its silicon-substituted analogue PSBTBT as donors are compared by two-dimensional (2D) solid-state nuclear magnetic resonance (NMR) and femto-to microsecond broadband Vis-NIR transient absorption (TA) pump–probe spectroscopy. The 2D solid-state NMR experiments demonstrate that the film morphology of PCPDTBT:PC60BM blends processed with additives such as octanedithiol (ODT) are similar to those of PSBTBT:PC60BM blends in terms of crystallinity, phase segregation, and interfacial contacts. The TA experiments and analysis of the TA data by multivariate curve resolution (MCR) reveal that after exciton dissociation and free charge formation, fast sub-nanosecond non-geminate recombination occurs which leads to a substantial population of the polymer\\'s triplet state. The extent to which triplet states are formed depends on the initial concentration of free charges, which itself is controlled by the microstructure of the blend, especially in case of PCPDTBT:PC60BM. Interestingly, PSBTBT:PC70BM blends show a higher charge generation efficiency, but less triplet state formation at similar free charge carrier concentrations. This indicates that the solid-state morphology and interfacial structures of PSBTBT:PC70BM blends reduces non-geminate recombination, leading to superior device performance compared to optimized PCPDTBT:PC60BM blends.

  2. Sub-ns triplet state formation by non-geminate recombination in PSBTBT:PC 70 BM and PCPDTBT:PC 60 BM organic solar cells

    KAUST Repository

    Etzold, Fabian; Howard, Ian A.; Forler, Nina; Melnyk, Anton; Andrienko, Denis; Hansen, Michael Ryan; Laquai, Fré dé ric

    2015-01-01

    The solid-state morphology and photo-generated charge carrier dynamics in low-bandgap polymer:fullerene bulk heterojunction photovoltaic blends using the donor–acceptor type copolymers PCPDTBT or its silicon-substituted analogue PSBTBT as donors are compared by two-dimensional (2D) solid-state nuclear magnetic resonance (NMR) and femto-to microsecond broadband Vis-NIR transient absorption (TA) pump–probe spectroscopy. The 2D solid-state NMR experiments demonstrate that the film morphology of PCPDTBT:PC60BM blends processed with additives such as octanedithiol (ODT) are similar to those of PSBTBT:PC60BM blends in terms of crystallinity, phase segregation, and interfacial contacts. The TA experiments and analysis of the TA data by multivariate curve resolution (MCR) reveal that after exciton dissociation and free charge formation, fast sub-nanosecond non-geminate recombination occurs which leads to a substantial population of the polymer's triplet state. The extent to which triplet states are formed depends on the initial concentration of free charges, which itself is controlled by the microstructure of the blend, especially in case of PCPDTBT:PC60BM. Interestingly, PSBTBT:PC70BM blends show a higher charge generation efficiency, but less triplet state formation at similar free charge carrier concentrations. This indicates that the solid-state morphology and interfacial structures of PSBTBT:PC70BM blends reduces non-geminate recombination, leading to superior device performance compared to optimized PCPDTBT:PC60BM blends.

  3. Brugia malayi Antigen (BmA Inhibits HIV-1 Trans-Infection but Neither BmA nor ES-62 Alter HIV-1 Infectivity of DC Induced CD4+ Th-Cells.

    Directory of Open Access Journals (Sweden)

    Emily E I M Mouser

    Full Text Available One of the hallmarks of HIV-1 disease is the association of heightened CD4+ T-cell activation with HIV-1 replication. Parasitic helminths including filarial nematodes have evolved numerous and complex mechanisms to skew, dampen and evade human immune responses suggesting that HIV-1 infection may be modulated in co-infected individuals. Here we studied the effects of two filarial nematode products, adult worm antigen from Brugia malayi (BmA and excretory-secretory product 62 (ES-62 from Acanthocheilonema viteae on HIV-1 infection in vitro. Neither BmA nor ES-62 influenced HIV-1 replication in CD4+ enriched T-cells, with either a CCR5- or CXCR4-using virus. BmA, but not ES-62, had the capacity to bind the C-type lectin dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN thereby inhibiting HIV-1 trans-infection of CD4+ enriched T-cells. As for their effect on DCs, neither BmA nor ES-62 could enhance or inhibit DC maturation as determined by CD83, CD86 and HLA-DR expression, or the production of IL-6, IL-10, IL-12 and TNF-α. As expected, due to the unaltered DC phenotype, no differences were found in CD4+ T helper (Th cell phenotypes induced by DCs treated with either BmA or ES-62. Moreover, the HIV-1 susceptibility of the Th-cell populations induced by BmA or ES-62 exposed DCs was unaffected for both CCR5- and CXCR4-using HIV-1 viruses. In conclusion, although BmA has the potential capacity to interfere with HIV-1 transmission or initial viral dissemination through preventing the virus from interacting with DCs, no differences in the Th-cell polarizing capacity of DCs exposed to BmA or ES-62 were observed. Neither antigenic source demonstrated beneficial or detrimental effects on the HIV-1 susceptibility of CD4+ Th-cells induced by exposed DCs.

  4. Improved survival after transplantation of more donor plasmacytoid dendritic or naïve T cells from unrelated-donor marrow grafts: results from BMTCTN 0201.

    Science.gov (United States)

    Waller, Edmund K; Logan, Brent R; Harris, Wayne A C; Devine, Steven M; Porter, David L; Mineishi, Shin; McCarty, John M; Gonzalez, Corina E; Spitzer, Thomas R; Krijanovski, Oleg I; Linenberger, Michael L; Woolfrey, Ann; Howard, Alan; Wu, Juan; Confer, Dennis L; Anasetti, Claudio

    2014-08-01

    To characterize relationships between specific immune cell subsets in bone marrow (BM) or granulocyte colony-stimulating factor-mobilized peripheral blood (PB) stem cells collected from unrelated donors and clinical outcomes of patients undergoing transplantation in BMTCTN 0201. Fresh aliquots of 161 BM and 147 PB stem-cell allografts from North American donors randomly assigned to donate BM or PB stem cells and numbers of transplanted cells were correlated with overall survival (OS), relapse, and graft-versus-host disease (GvHD). Patients with evaluable grafts were similar to all BMTCTN 0201 patients. The numbers of plasmacytoid dendritic cells (pDCs) and naïve T cells (Tns) in BM allografts were independently associated with OS in multivariable analyses including recipient and donor characteristics, such as human leukocyte antigen mismatch, age, and use of antithymocyte globulin. BM recipients of > median number of pDCs, naïve CD8(+) T cells (CD8Tns), or naïve CD4(+) T cells (CD4Tns) had better 3-year OS (pDCs, 56% v 35%; P = .025; CD8Tns, 56% v 37%; P = .012; CD4Tns, 55% v 37%; P = .009). Transplantation of more BM Tns was associated with less grade 3 to 4 acute GvHD but similar rates of relapse. Transplantation of more BM pDCs was associated with fewer deaths resulting from GvHD or from graft rejection. Analysis of PB grafts did not identify a donor cell subset significantly associated with OS, relapse, or GvHD. Donor immune cells in BM but not PB stem-cell grafts were associated with survival after unrelated-donor allogeneic hematopoietic stem-cell transplantation. The biologic activity of donor immune cells in allogeneic transplantation varied between graft sources. Donor grafts with more BM-derived Tns and pDCs favorably regulated post-transplantation immunity in allogeneic hematopoietic stem-cell transplantation. © 2014 by American Society of Clinical Oncology.

  5. Regulatory Myeloid Cells in Transplantation

    Science.gov (United States)

    Rosborough, Brian R.; Raïch-Regué, Dàlia; Turnquist, Heth R.; Thomson, Angus W.

    2013-01-01

    Regulatory myeloid cells (RMC) are emerging as novel targets for immunosuppressive (IS) agents and hold considerable promise as cellular therapeutic agents. Herein, we discuss the ability of regulatory macrophages (Mreg), regulatory dendritic cells (DCreg) and myeloid-derived suppressor cells (MDSC) to regulate alloimmunity, their potential as cellular therapeutic agents and the IS agents that target their function. We consider protocols for the generation of RMC and the selection of donor- or recipient-derived cells for adoptive cell therapy. Additionally, the issues of cell trafficking and antigen (Ag) specificity following RMC transfer are discussed. Improved understanding of the immunobiology of these cells has increased the possibility of moving RMC into the clinic to reduce the burden of current IS agents and promote Ag-specific tolerance. In the second half of this review, we discuss the influence of established and experimental IS agents on myeloid cell populations. IS agents believed historically to act primarily on T cell activation and proliferation are emerging as important regulators of RMC function. Better insights into the influence of IS agents on RMC will enhance our ability to develop cell therapy protocols to promote the function of these cells. Moreover, novel IS agents may be designed to target RMC in situ to promote Ag-specific immune regulation in transplantation and usher in a new era of immune modulation exploiting cells of myeloid origin. PMID:24092382

  6. Vascular and perivascular niches, but not the osteoblastic niche, are numerically restored following allogeneic hematopoietic stem cell transplantation in patients with aplastic anemia.

    Science.gov (United States)

    Wu, Liangliang; Mo, Wenjian; Zhang, Yuping; Zhou, Ming; Li, Yumiao; Zhou, Ruiqing; Xu, Shiling; Pan, Shiyi; Deng, Hui; Mao, Ping; Wang, Shunqing

    2017-07-01

    Bone marrow (BM) niches, including the osteoblastic, vascular, and perivascular niches, are numerically impaired in patients with aplastic anemia (AA). It remains unclear whether these niches are numerically restored in AA patients after allogenic hematopoietic stem cell transplantation (allo-HSCT). To investigate changes in BM niches, we monitored 52 patients with AA who had undergone allo-HSCT and performed immunohistochemical studies of BM niches using antibodies against CD34, CD146, and osteopontin. After allo-HSCT, patients with AA exhibited a remarkable increase in the number of cellular elements in the BM niches, including the vascular and perivascular cells. However, no significant differences in endosteal cells were detected. We explored the cause of this restoration by analyzing the origin of BM mesenchymal stem cells (BM-MSCs) and the expression of cytokines in BM plasma. STR-PCR revealed that the BM-MSCs were derived from the host, not the donor. In addition, significantly elevated levels of vascular endothelial growth factor (VEGF) were found after allo-HSCT. Our data indicates that vascular and perivascular niches are numerically restored, but the endosteal niche remains numerically impaired in patients with AA after allo-HSCT, and that levels of VEGF, but not donor-derived BM-MSCs, may correlate with the restoration of BM niches.

  7. T cell depleted haploidentical transplantation: positive selection

    Directory of Open Access Journals (Sweden)

    Franco Aversa

    2011-06-01

    Full Text Available Interest in mismatched transplantation arises from the fact that a suitable one-haplotype mismatched donor is immediately available for virtually all patients, particularly for those who urgently need an allogenic transplant. Work on one haplotype-mismatched transplants has been proceeding for over 20 years all over the world and novel transplant techniques have been developed. Some centres have focused on the conditioning regimens and post transplant immune suppression; others have concentrated on manipulating the graft which may be a megadose of extensively T celldepleted or unmanipulated progenitor cells. Excellent engraftment rates are associated with a very low incidence of acute and chronic GVHD and regimen-related mortality even in patients who are over 50 years old. Overall, event-free survival and transplant-related mortality compare favourably with reports on transplants from sources of stem cells other than the matched sibling.

  8. Epiretinal transplantation of human bone marrow mesenchymal stem cells rescues retinal and vision function in a rat model of retinal degeneration.

    Science.gov (United States)

    Tzameret, Adi; Sher, Ifat; Belkin, Michael; Treves, Avraham J; Meir, Amilia; Nagler, Arnon; Levkovitch-Verbin, Hani; Rotenstreich, Ygal; Solomon, Arieh S

    2015-09-01

    Vision incapacitation and blindness associated with incurable retinal degeneration affect millions of people worldwide. In this study, 0.25×10(6) human bone marrow stem cells (hBM-MSCs) were transplanted epiretinally in the right eye of Royal College Surgeons (RCS) rats at the age of 28 days. Epiretinally transplanted cells were identified as a thin layer of cells along vitreous cavity, in close proximity to the retina or attached to the lens capsule, up to 6 weeks following transplantation. Epiretinal transplantation delayed photoreceptor degeneration and rescued retinal function up to 20 weeks following cell transplantation. Visual functions remained close to normal levels in epiretinal transplantation rats. No inflammation or any other adverse effects were observed in transplanted eyes. Our findings suggest that transplantation of hBM-MSCs as a thin epiretinal layer is effective for treatment of retinal degeneration in RCS rats, and that transplanting the cells in close proximity to the retina enhances hBM-MSC therapeutic effect compared with intravitreal injection. Copyright © 2015. Published by Elsevier B.V.

  9. Treatment of AVN Using Autologous BM Stem Cells and Activated Platelet-Derived Growth Factor Concentrates.

    Science.gov (United States)

    Nandeesh, Nagaraj H; Janardhan, Kiranmayee; Subramanian, Vignesh; Ashtekar, Abhishek Bhushan; Srikruthi, Nandagiri; Koka, Prasad S; Deb, Kaushik

    Avascular Necrosis (AVN) of hip is a devastating condition seen in younger individuals. It is the ischemic death of the constituents of the bone cartilage of the hip. The femoral head (FH) is the most common site for AVN. It results from interruption of the normal blood flow to the FH that fits into the hip socket. Earlier studies using autologous bone marrow stem cell concentrate injections have shown encouraging results with average success rates. The current study was designed to improve significantly the cartilage regeneration and clinical outcome. Total of 48 patients underwent autologous bone marrow stem cell and activated platelet-rich plasma derived growth factor concentrate (PRP-GFC) therapy for early and advanced stages AVN of femoral head in a single multi-specialty center. The total treatment was divided into three phases. In the phase I, all the clinical diagnostic measurements such as magnetic resonance imaging (MRI), computed tomography (CT) etc. with respect to the AVN patients and bone marrow aspiration from posterior iliac spine from the patients were carried out. In the phase II, isolation of stem cells and preparation from the patients were performed. Subsequently, in phase III, the stem cells and PRP- GFCs were transplanted in the enrolled patients. Ninety three percent of the enrolled AVN patients showed marked enhancement in the hip bone joint space (more than 3mm) after combined stem cells and PRP-GFC treatment as evidenced by comparison of the pre- and post-treatment MRI data thus indicative of regeneration of cartilage. The treated patients showed significant improvement in their motor function, cartilage regrowth (3 to 10mm), and high satisfaction in the two-year follow-up. Combination of stem cell and PRP-GFC therapy has shown promising cartilage regeneration in 45 out of 48 patients of AVN. This study clearly demonstrates the safety and efficacy of this treatment. Larger numbers of patients need to be evaluated to better understand the

  10. Cerebral toxoplasmosis after haematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Agnieszka Zaucha-Prażmo

    2017-05-01

    Full Text Available Toxoplasmosis is an opportunistic infection caused by the parasite Toxoplasma gondii. The infection is severe and difficult to diagnose in patients receiving allogeneic haematopoietic stem cell transplantation (HSCT. It frequently involves the central nervous system. The case is presented of cerebral toxoplasmosis in a 17-year-old youth with Fanconi anaemia treated with haematopoietic stem cell transplantation (HSCT

  11. Stem Cell Transplants in Cancer Treatment

    Science.gov (United States)

    Stem cell transplants are procedures that restore blood-forming stem cells in cancer patients who have had theirs destroyed by very high doses of chemotherapy or radiation therapy. Learn about the types of transplants and side effects that may occur.

  12. Visualizing nanoscale phase morphology for understanding photovoltaic performance of PTB7: PC71BM solar cell

    Science.gov (United States)

    Supasai, Thidarat; Amornkitbamrung, Vittaya; Thanachayanont, Chanchana; Tang, I.-Ming; Sutthibutpong, Thana; Rujisamphan, Nopporn

    2017-11-01

    Visualizing and controlling the phase separation of the donor and acceptor domains in organic bulk-hetero-junction (BHJ) solar devices made with poly([4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethyl-hexyl)carbon-yl]thieno[3,4-bthiophenediyl]) (PTB7) and [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) are needed to achieve high power conversion efficiency (PCE). Traditional bright-field (BF) imaging, especially of polymeric materials, produces images of poor contrast when done at the nanoscale level. Clear nanoscale morphologies of the PTB7:PC71BM blends prepared with different 1,8-diiodooctane (DIO) concentrations were seen when using the energy-filtered transmission electron microscopy (EFTEM). The electron energy loss (EELS) spectra of the pure PTB7 and PC71BM samples are centered at 22.7 eV and 24.5 eV, respectively. Using the electrons whose energy losses are in the range of 16-30 eV, detail information of the phase morphology at the nanoscale was obtained. Correlations between the improvement in the photovoltaic performances and the increased electron mobility were seen. These correlations are discussed in terms of the changes (at the nanoscale level) in blending phase morphology when different DIO concentrations are added.

  13. PARASITIC INFECTIONS IN HEMATOPOIETIC STEM CELL TRANSPLANTATION

    Directory of Open Access Journals (Sweden)

    Isidro Jarque

    2016-07-01

    Full Text Available Parasitic infections are rarely documented in hematopoietic stem cell transplant recipients. However, they may be responsible for fatal complications that are only diagnosed at autopsy. Increased awareness of the possibility of parasitic diseases both in autologous and allogeneic stem cell transplant patients is relevant not only for implementing preventive measures but also for performing an early diagnosis and starting appropriate therapy for these unrecognized but fatal infectious complications in hematopoietic transplant recipients. In this review, we will focus on parasitic diseases occurring in this population especially those with major clinical relevance including toxoplasmosis, American trypanosomiasis, leishmaniasis, malaria, and strongyloidiasis, among others, highlighting the diagnosis and management in hematopoietic transplant recipients.

  14. Blood-Forming Stem Cell Transplants

    Science.gov (United States)

    ... to Ask about Your Treatment Research Blood-Forming Stem Cell Transplants On This Page What are bone marrow ... Considering becoming a bone marrow or a blood stem cell donor? View this video on YouTube. Follow a ...

  15. The toxicity of NaF on BmN cells and a comparative proteomics approach to identify protein expression changes in cells under NaF-stress

    International Nuclear Information System (INIS)

    Chen, Liang; Chen, Huiqing; Yao, Chun; Chang, Cheng; Xia, Hengchuan; Zhang, Chunxia; Zhou, Yang; Yao, Qin; Chen, Keping

    2015-01-01

    Highlights: • On the cellular level, we identified IC 50 of NaF on BmN cell by flow cytometry. • High concentration of NaF gives effect on BmN cell morphology. • Five significantly differential proteins were identified by two-dimensional electrophoresis and mass spectrometry. • ALDH2 and WPH were up-regulated, while CRT and SCF were down-regulated, providing new information for metabolic pathway of fluoride. - Abstract: Fluorides negatively affect the development of organisms and are a threat to human health and environmental safety. In this study, Bombyx mori N cell line (BmN) were used to explore effects of NaF on insect cells. We found that 8 h (hrs) culture with high concentration of NaF (≥1 mM) induced significantly morphological changes. Dose-response curves of 72 h continuously cultured BmN treated with NaF showed that the half inhibitory concentration (IC 50 ) value was 56.60 μM. Treatment of BmN with 100 and 300 μM of NaF induced apoptosis and necrosis. 2-D electrophoresis of whole cell extracted from BmN showed that treatment with 300 μM NaF up-regulated 32 proteins and down-regulated 11 proteins when compared with controls. We identified 5 different proteins by MALDI-TOF MS, and 4 of them were identified for the first time, including 2 up-regulated proteins (mitochondrial aldehyde dehydrogenase ALDH2 and prohibitin protein WPH) and 2 down-regulated proteins (calreticulin precursor CRT and DNA supercoiling factor SCF). These observations were further confirmed by fluorescence quantitative PCR. Together, our data suggest that these target proteins could be regarded as targets influenced by NaF and also provide clues for studies on the response metabolism pathway under NaF stress

  16. The toxicity of NaF on BmN cells and a comparative proteomics approach to identify protein expression changes in cells under NaF-stress

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Liang; Chen, Huiqing [Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013 (China); Yao, Chun [Department of Stomatology, Zhenjiang First People’s Hospital, Zhenjiang, Jiangsu 212013 (China); Chang, Cheng; Xia, Hengchuan; Zhang, Chunxia; Zhou, Yang; Yao, Qin [Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013 (China); Chen, Keping, E-mail: kpchen@ujs.edu.cn [Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013 (China)

    2015-04-09

    Highlights: • On the cellular level, we identified IC{sub 50} of NaF on BmN cell by flow cytometry. • High concentration of NaF gives effect on BmN cell morphology. • Five significantly differential proteins were identified by two-dimensional electrophoresis and mass spectrometry. • ALDH2 and WPH were up-regulated, while CRT and SCF were down-regulated, providing new information for metabolic pathway of fluoride. - Abstract: Fluorides negatively affect the development of organisms and are a threat to human health and environmental safety. In this study, Bombyx mori N cell line (BmN) were used to explore effects of NaF on insect cells. We found that 8 h (hrs) culture with high concentration of NaF (≥1 mM) induced significantly morphological changes. Dose-response curves of 72 h continuously cultured BmN treated with NaF showed that the half inhibitory concentration (IC{sub 50}) value was 56.60 μM. Treatment of BmN with 100 and 300 μM of NaF induced apoptosis and necrosis. 2-D electrophoresis of whole cell extracted from BmN showed that treatment with 300 μM NaF up-regulated 32 proteins and down-regulated 11 proteins when compared with controls. We identified 5 different proteins by MALDI-TOF MS, and 4 of them were identified for the first time, including 2 up-regulated proteins (mitochondrial aldehyde dehydrogenase ALDH2 and prohibitin protein WPH) and 2 down-regulated proteins (calreticulin precursor CRT and DNA supercoiling factor SCF). These observations were further confirmed by fluorescence quantitative PCR. Together, our data suggest that these target proteins could be regarded as targets influenced by NaF and also provide clues for studies on the response metabolism pathway under NaF stress.

  17. Imaging in haematopoietic stem cell transplantation

    International Nuclear Information System (INIS)

    Evans, A.; Steward, C.G.; Lyburn, I.D.; Grier, D.J.

    2003-01-01

    Haematopoietic stem cell transplantation (SCT) is used to treat a wide range of malignant and non-malignant haematological conditions, solid malignancies, and metabolic and autoimmune diseases. Although imaging has a limited role before SCT, it is important after transplantation when it may support the clinical diagnosis of a variety of complications. It may also be used to monitor the effect of therapy and to detect recurrence of the underlying disease if the transplant is unsuccessful. We present a pictorial review of the imaging of patients who have undergone SCT, based upon 15 years experience in a large unit performing both adult and paediatric transplants

  18. Imaging in haematopoietic stem cell transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Evans, A.; Steward, C.G.; Lyburn, I.D.; Grier, D.J

    2003-03-01

    Haematopoietic stem cell transplantation (SCT) is used to treat a wide range of malignant and non-malignant haematological conditions, solid malignancies, and metabolic and autoimmune diseases. Although imaging has a limited role before SCT, it is important after transplantation when it may support the clinical diagnosis of a variety of complications. It may also be used to monitor the effect of therapy and to detect recurrence of the underlying disease if the transplant is unsuccessful. We present a pictorial review of the imaging of patients who have undergone SCT, based upon 15 years experience in a large unit performing both adult and paediatric transplants.

  19. Beta-Cell Replacement: Pancreas and Islet Cell Transplantation.

    Science.gov (United States)

    Niclauss, Nadja; Meier, Raphael; Bédat, Benoît; Berishvili, Ekaterine; Berney, Thierry

    2016-01-01

    Pancreas and islet transplantation are 2 types of beta-cell replacement therapies for type 1 diabetes mellitus. Since 1966, when pancreas transplantation was first performed, it has evolved to become a highly efficient procedure with high success rates, thanks to advances in surgical technique and immunosuppression. Pancreas transplantation is mostly performed as simultaneous pancreas-kidney transplantation in patients with end-stage nephropathy secondary to diabetes. In spite of its efficiency, pancreas transplantation is still a major surgical procedure burdened by high morbidity, which called for the development of less invasive and hazardous ways of replacing beta-cell function in the past. Islet transplantation was developed in the 1970s as a minimally invasive procedure with initially poor outcomes. However, since the report of the 'Edmonton protocol' in 2000, the functional results of islet transplantation have substantially and constantly improved and are about to match those of whole pancreas transplantation. Islet transplantation is primarily performed alone in nonuremic patients with severe hypoglycemia. Both pancreas transplantation and islet transplantation are able to abolish hypoglycemia and to prevent or slow down the development of secondary complications of diabetes. Pancreas transplantation and islet transplantation should be seen as two complementary, rather than competing, therapeutic approaches for beta-cell replacement that are able to optimize organ donor use and patient care. © 2016 S. Karger AG, Basel.

  20. Hematopoietic Stem Cell Transplantation and History

    Directory of Open Access Journals (Sweden)

    Atila Tanyeli

    2014-02-01

    Full Text Available Attemps to employ marrow stem cell for therapeutic purpose began in 1940’s. Marrow transplantation might be of use not only in irradiation protection, but also with therapeutic aim to marrow aplasia, leukemia and other diseases. The use and defining tissue antigens in humans were crucial to the improving of transplantation. The administration of methotrexate for GVHD improved the long term survival. Conditioning regimens for myeloablation designed according to diseases. Cord blood and peripheral blood stem cells were used for transplantion after 1980’s. Cord blood and bone marrow stem cell banks established to find HLA matched donor.

  1. Hematopoietic Stem Cell Transplantation in Thalassemia and Sickle Cell Anemia

    Science.gov (United States)

    Lucarelli, Guido; Isgrò, Antonella; Sodani, Pietro; Gaziev, Javid

    2012-01-01

    The globally widespread single-gene disorders β-thalassemia and sickle cell anemia (SCA) can only be cured by allogeneic hematopoietic stem cell transplantation (HSCT). HSCT treatment of thalassemia has substantially improved over the last two decades, with advancements in preventive strategies, control of transplant-related complications, and preparative regimens. A risk class–based transplantation approach results in disease-free survival probabilities of 90%, 84%, and 78% for class 1, 2, and 3 thalassemia patients, respectively. Because of disease advancement, adult thalassemia patients have a higher risk for transplant-related toxicity and a 65% cure rate. Patients without matched donors could benefit from haploidentical mother-to-child transplantation. There is a high cure rate for children with SCA who receive HSCT following myeloablative conditioning protocols. Novel non-myeloablative transplantation protocols could make HSCT available to adult SCA patients who were previously excluded from allogeneic stem cell transplantation. PMID:22553502

  2. [Hepatic cell transplantation. Technical and methodological aspects].

    Science.gov (United States)

    Pareja, Eugenia; Martínez, Amparo; Cortés, Miriam; Bonora, Ana; Moya, Angel; Sanjuán, Fernando; Gómez-Lechón, M José; Mir, José

    2010-03-01

    Hepatic cell transplantation consists of grafting already differentiated cells such as hepatocytes. Human hepatocytes are viable and functionally active. Liver cell transplantation is carried out by means of a 3-step method: isolation of hepatocytes from donor liver rejected for orthotopic transplantation, preparing a cell suspension for infusion and, finally, hepatocytes are implanted into the recipient. There are established protocols for the isolation of human hepatocytes from unused segments of donor livers, based on collagenase digestion of cannulated liver tissue at 37 degrees C. The hepatocytes can be used fresh or cryopreserved. Cryopreservation of isolated human hepatocytes would then be available for planned use. In cell transplant, the important aspects are: infusion route, number of cells, number of infusions and viability of the cells. The cells are infused into the patient through a catheter inserted via portal vein or splenic artery. Liver cell transplantation allows liver tissue to be used that would, otherwise, be discarded, enabling multiple patients to be treated with hepatocytes from a single tissue donor. Copyright 2009 AEC. Published by Elsevier Espana. All rights reserved.

  3. Intraventricular Transplantation of Autologous Bone Marrow Mesenchymal Stem Cells via Ommaya Reservoir in Persistent Vegetative State Patients after Haemorrhagic Stroke: Report of Two Cases & Review of the Literature

    Directory of Open Access Journals (Sweden)

    Fauzi AA

    2016-11-01

    Full Text Available Background: One of the most devastating diseases, stroke, is a leading cause of death and disability worldwide with severe emotional and economic consequences. The purpose of this article is mainly to report the effect of intraventricular transplantation via an Ommaya reservoir using autologous bone marrow mesenchymal stem cells (BM-MSCs in haemorrhagic stroke patients. Case Presentations: Two patients, aged 51 and 52, bearing sequels of haemorrhagic stroke were managed by intraventricular transplantation of BM-MSCs obtained from their own bone marrow. Before the procedure, both patients were bedridden, tracheostomised, on nasogastric (NG tube feeding and in hemiparesis. The cells were transplanted intraventricularly (20 x 106 cells/2.5 ml using an Ommaya reservoir, and then repeated transplantations were done after 1 and 2 months consecutively. The safety and efficacy of the procedures were evaluated 3, 6 and 12 months after treatment. The National Institute of Health Stroke Scale (NIHSS was used to evaluate the patients' neurological status before and after treatment. No adverse events derived from the procedures or transplants were observed in the one-year follow-up period, and the neurological status of both patients improved after treatment. Conclusions: Our report demonstrates that the intraventricular transplantation of BM-MSCs via an Ommaya reservoir is safe and it improves the neurological status of post-haemorrhagic stroke patients. The repeated transplantation procedure is easier and safer to perform via a subcutaneously implanted Ommaya reservoir.

  4. Increased Bone Marrow (BM) Plasma Level of Soluble CD30 and Correlations with BM Plasma Level of Interferon (IFN)-γ, CD4/CD8 T-Cell Ratio and Disease Severity in Aplastic Anemia

    Science.gov (United States)

    Shi, Jun; Ge, Meili; Li, Xingxin; Shao, Yingqi; Yao, Jianfeng; Zheng, Yizhou

    2014-01-01

    Idiopathic aplastic anemia (AA) is an immune-mediated bone marrow failure syndrome. Immune abnormalities such as decreased lymphocyte counts, inverted CD4/CD8 T-cell ratio and increased IFN-γ-producing T cells have been found in AA. CD30, a surface protein belonging to the tumor necrosis factor receptor family and releasing from cell surface as a soluble form (sCD30) after activation, marks a subset of activated T cells secreting IFN-γ when exposed to allogeneic antigens. Our study found elevated BM plasma levels of sCD30 in patients with SAA, which were closely correlated with disease severity, including absolute lymphocyte count (ALC) and absolute netrophil count (ANC). We also noted that sCD30 levels were positively correlated with plasma IFN-γ levels and CD4/CD8 T-cell ratio in patients with SAA. In order to explain these phenomena, we stimulated T cells with alloantigen in vitro and found that CD30+ T cells were the major source of IFN-γ, and induced CD30+ T cells from patients with SAA produced significantly more IFN-γ than that from healthy individuals. In addition, increased proportion of CD8+ T cells in AA showed enhanced allogeneic response by the fact that they expressed more CD30 during allogeneic stimulation. sCD30 levels decreased in patients responded to immunosuppressive therapy. In conclusion, elevated BM plasma levels of sCD30 reflected the enhanced CD30+ T cell-mediated immune response in SAA. CD30 as a molecular marker that transiently expresses on IFN-γ-producing T cells, may participate in mediating bone marrow failure in AA, which also can facilitate our understanding of AA pathogenesis to identify new therapeutic targets. PMID:25383872

  5. The natural scorpion peptide, BmK NT1 activates voltage-gated sodium channels and produces neurotoxicity in primary cultured cerebellar granule cells.

    Science.gov (United States)

    Zou, Xiaohan; He, Yuwei; Qiao, Jinping; Zhang, Chunlei; Cao, Zhengyu

    2016-01-01

    The scorpion Buthus martensii Karsch has been used in Traditional Chinese Medicine to treat neuronal diseases such as neuropathic pain, paralysis and epilepsy for thousands of years. Studies have demonstrated that scorpion venom is the primary active component. Although scorpion venom can effectively attenuate pain in the clinic, it also produces neurotoxic response. In this study, toxicity guided purification led to identify a mammalian toxin termed BmK NT1 comprising of 65 amino acid residues and an amidated C-terminus, a mature peptide encoded by the nucleotide sequence (GenBank No. AF464898). In contract to the recombinant product of the same nucleotide sequence, BmK AGAP, which displayed analgesic and anti-tumor effect, intravenous injection (i.v.) of BmK NT1 produced acute toxicity in mice with an LD50 value of 1.36 mg/kg. In primary cultured cerebellar granule cells, BmK NT1 produced a concentration-dependent cell death with an IC50 value of 0.65 μM (0.41-1.03 μM, 95% Confidence Intervals, 95% CI) which was abolished by TTX, a voltage-gated sodium channel (VGSC) blocker. We also demonstrated that BmK NT1 produced modest sodium influx in cerebellar granule cell cultures with an EC50 value of 2.19 μM (0.76-6.40 μM, 95% CI), an effect similar to VGSC agonist, veratridine. The sodium influx response was abolished by TTX suggesting that BmK NT1-induced sodium influx is solely through activation of VGSC. Considered these data together, we demonstrated that BmK NT1 activated VGSC and produced neurotoxicity in cerebellar granule cell cultures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Genetic modification of cells for transplantation.

    Science.gov (United States)

    Lai, Yi; Drobinskaya, Irina; Kolossov, Eugen; Chen, Chunguang; Linn, Thomas

    2008-01-14

    Progress in gene therapy has produced promising results that translate experimental research into clinical treatment. Gene modification has been extensively employed in cell transplantation. The main barrier is an effective gene delivery system. Several viral vectors were utilized in end-stage differentiated cells. Recently, successful applications were described with adenovirus-associated vectors. As an alternative, embryonic stem cell- and stem cell-like systems were established for generation of tissue-specified gene-modified cells. Owing to the feasibility for genetic manipulations and the self-renewing potency of these cells they can be used in a way enabling large-scale in vitro production. This approach offers the establishment of in vitro cell culture systems that will deliver sufficient amounts of highly purified, immunoautologous cells suitable for application in regenerative medicine. In this review, the current technology of gene delivery systems to cells is recapitulated and the latest developments for cell transplantation are discussed.

  7. In vivo stem cell transplantation using reduced cell numbers.

    Science.gov (United States)

    Tsutsui, Takeo W

    2015-01-01

    Dental pulp stem cell (DPSC) characterization is essential for regeneration of a dentin/pulp like complex in vivo. This is especially important for identifying the potential of DPSCs to function as stem cells. Previously reported DPSC transplantation methods have used with huge numbers of cells, along with hydroxyapatite/tricalcium phosphate (HA/TCP), gelatin and fibrin, and collagen scaffolds. This protocol describe a transplantation protocol that uses fewer cells and a temperature-responsive cell culture dish.

  8. Differentiation of bone marrow cells to functional T lymphocytes following implantation of thymus grafts and thymic stroma in nude and ATxBM mice

    International Nuclear Information System (INIS)

    Splitter, G.A.; McGuire, T.C.; Davis, W.C.

    1977-01-01

    Cardiac allografts were used to compare the immunologic capacity of nude mice and adult, thymectomized, lethally irradiated, bone marrow-reconstituted (AT x BM) mice. Neither nude nor AT x BM mice were able to reject cardiac allografts of any party. However, both rejected grafts of any party following implantation of neonatal thymus or thymus from 3-week-old syngeneic mice. Irradiated syngeneic thymus grafts (800 R) were equally effective in restoring host responsiveness against allografts. In contrast, allogeneic thymus grafts restored the capacity to reject second-party heart grafts only in AT x BM mice. Second-party grafts persisted indefintely when placed on nude mice implanted with an allogeneic, unirradiated thymus graft. Third-party grafts transplanted 17 weeks after reconstitution, however, were rejected. Irradiated nude mice given normal littermate bone marrow and simultaneously grafted with second-party thymus and heart allografts also failed to reject their second-party heart grafts. The difference in ultimate capacity to respond between AT x BM and nude mice suggests that a maturational defect exists in the nude mouse environment which impedes development of precursor T lymphocytes

  9. Fabrication and Optimization of Polymer Solar Cells Based on P3HT:PC70BM System

    Directory of Open Access Journals (Sweden)

    Huangzhong Yu

    2016-01-01

    Full Text Available Efficient bulk heterojunction (BHJ polymer solar cells (PSCs based on P3HT:PC70BM were fabricated by optimizing the processing parameters. The optimized thickness and annealing temperature have been found to be about 200 nm and 130°C. The effect of cathode interfacial layers on device performance is related to the formation of interfacial dipole. Furthermore, the effect of optimum ZnO interfacial thickness (~30 nm on device performance is attributed to good interfacial conductivity and its optical property. The metal electrode deposited in the slow rate has a better influence on device performance. Based on these optimal conditions, the best power conversion efficiency (PCE of 3.91% was obtained under AM 1.5G and 100 mW/cm2 illumination. This detailed investigation provides an important reference for the fabrication and optimization of polymer photovoltaic devices.

  10. Stem cell collection in unmanipulated HLA-haploidentical/mismatched related transplantation with combined granulocyte-colony stimulating factor-mobilised blood and bone marrow for patients with haematologic malignancies: the impact of donor characteristics and procedural settings.

    Science.gov (United States)

    Zhang, C; Chen, X-H; Zhang, X; Gao, L; Gao, L; Kong, P-Y; Peng, X-G; Sun, A-H; Gong, Y; Zeng, D-F; Wang, Q-Y

    2010-06-01

    Unmanipulated haploidentical/mismatched related transplantation with combined granulocyte-colony stimulating factor-mobilised peripheral blood stem cells (G-PBSCs) and granulocyte-colony stimulating factor-mobilised bone marrow (G-BM) has been developed as an alternative transplantation strategy for patients with haematologic malignancies. However, little information is available about the factors predicting the outcome of peripheral blood stem cell (PBSC) collection and bone marrow (BM) harvest in this transplantation. The effects of donor characteristics and procedure factors on CD34(+) cell yield were investigated. A total of 104 related healthy donors received granulocyte-colony stimulating factor (G-CSF) followed by PBSC collection and BM harvest. Male donors had significantly higher yields compared with female donors. In multiple regression analysis for peripheral blood collection, age and flow rate were negatively correlated with cell yield, whereas body mass index, pre-aphaeresis white blood cell (WBC) and circulating immature cell (CIC) counts were positively correlated with cell yields. For BM harvest, age was negatively correlated with cell yields, whereas pre-BM collection CIC counts were positively correlated with cell yield. All donors achieved the final product of >or=6 x10(6) kg(-1) recipient body weight. This transplantation strategy has been shown to be a feasible approach with acceptable outcomes in stem cell collection for patients who received HLA-haploidentical/mismatched transplantation with combined G-PBSCs and G-BM. In donors with multiple high-risk characteristics for poor aphaeresis CD34(+) cell yield, BM was an alternative source.

  11. In Utero Hematopoietic Cell Transplantation for Hemoglobinopathies

    Directory of Open Access Journals (Sweden)

    Tippi C. Mackenzie

    2015-01-01

    Full Text Available In utero hematopoietic cell transplantation (IUHCTx is a promising strategy to circumvent the challenges of postnatal hematopoietic stem cell (HSC transplantation. The goal of IUHCTx is to introduce donor cells into a naïve host prior to immune maturation, thereby inducing donor–specific tolerance. Thus, this technique has the potential of avoiding host myeloablative conditioning with cytotoxic agents. Over the past two decades, several attempts at IUHCTx have been made to cure numerous underlying congenital anomalies with limited success. In this review, we will briefly review the history of IUHCTx and give a perspective on alpha thalassemia major, one target disease for its clinical application.

  12. Regulatory dendritic cells for promotion of liver transplant operational tolerance: Rationale for a clinical trial and accompanying mechanistic studies.

    Science.gov (United States)

    Thomson, Angus W; Humar, Abhinav; Lakkis, Fadi G; Metes, Diana M

    2018-05-01

    Dendritic cells (DC) are rare, bone marrow (BM)-derived innate immune cells that critically maintain self-tolerance in the healthy steady-state. Regulatory DC (DCreg) with capacity to suppress allograft rejection and promote transplant tolerance in pre-clinical models can readily be generated from BM precursors or circulating blood monocytes. These DCreg enhance allograft survival via various mechanisms, including promotion of regulatory T cells. In non-human primates receiving minimal immunosuppressive drug therapy (IS), infusion of DCreg of donor origin, one week before transplant, safely prolongs renal allograft survival and selectively attenuates anti-donor CD8 + memory T cell responses in the early post-transplant period. Based on these observations, and in view of the critical need to reduce patient dependence on non-specific IS agents that predispose to cardiometabolic side effects and renal insufficiency, we will conduct a first-in-human safety and preliminary efficacy study of donor-derived DCreg infusion to achieve early (18 months post-transplant) complete IS withdrawal in low-risk, living donor liver transplant recipients receiving standard-of-care IS (mycophenolate mofetil, tacrolimus and steroids). We will test the hypothesis that, although donor-derived DCreg are short-lived, they will induce robust donor-specific T cell hyporesponsiveness. We will examine immunological mechanisms by sequential analysis of blood and tissue samples, incorporating cutting-edge technologies. Copyright © 2017 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  13. Genetic modification of stem cells for transplantation.

    Science.gov (United States)

    Phillips, M Ian; Tang, Yao Liang

    2008-01-14

    Gene modification of cells prior to their transplantation, especially stem cells, enhances their survival and increases their function in cell therapy. Like the Trojan horse, the gene-modified cell has to gain entrance inside the host's walls and survive and deliver its transgene products. Using cellular, molecular and gene manipulation techniques the transplanted cell can be protected in a hostile environment from immune rejection, inflammation, hypoxia and apoptosis. Genetic engineering to modify cells involves constructing modules of functional gene sequences. They can be simple reporter genes or complex cassettes with gene switches, cell specific promoters and multiple transgenes. We discuss methods to deliver and construct gene cassettes with viral and non-viral delivery, siRNA, and conditional Cre/Lox P. We review the current uses of gene-modified stem cells in cardiovascular disease, diabetes, neurological diseases, (including Parkinson's, Alzheimer's and spinal cord injury repair), bone defects, hemophilia, and cancer.

  14. Increased incidence of murine graft-versus-host disease after allogeneic bone marrow transplantation by previous infusion of syngeneic bone marrow cells

    International Nuclear Information System (INIS)

    Waer, M.; Ang, K.K.; van der Schueren, E.; Vandeputte, M.

    1984-01-01

    Different groups of BALB/c mice received supralethal total-body irradiation (TBI; 8.5 Gy, day 0). When 30 x 10(6) allogeneic (C57B1) bone marrow (BM) cells were infused with or without 10 x 10(6) syngeneic (BALB/c) bM cells on day 1, many animals (60%) died from graft-versus-host disease (GVHD). Typing of peripheral blood leukocytes for donor antigens showed that, respectively, 22/22 and 17/21 of the mice in both groups became chimeric. When syngeneic bone marrow was given on day 1 and allogeneic bone marrow on day 2 after TBI, a similar number of animals (21/23) became chimeric, but GVHD occurred more frequently in this group (25/26 mice, P less than 0.01). When the syngeneic bone marrow cells were replaced by spleen cells, or when the transplantation of allogeneic bone marrow was delayed till days 3 or 6 after TBI, almost all mice rejected the allogeneic BM graft and became long-term survivors. BALB/c mice receiving 30 x 10(6) C57B1 BM cells after 17 daily fractions of 0.2 Gy of total lymphoid irradiation (TLI), showed a high incidence of chimerism (15/17) and in none of the latter animals was GVHD observed. Despite the high incidence of GVHD in the mice receiving allogeneic BM after TBI and syngeneic BM transplantation, as compared with mice prepared with TLI which do not develop GVHD, suppressor cells were as easily induced after TBI and syngeneic BM transplantation as after TLI

  15. Autologous Stem Cell Transplant for AL Amyloidosis

    Directory of Open Access Journals (Sweden)

    Vivek Roy

    2012-01-01

    Full Text Available AL amyloidosis is caused by clonal plasma cells that produce immunoglobulin light chains which misfold and get deposited as amyloid fibrils. Therapy directed against the plasma cell clone leads to clinical benefit. Melphalan and corticosteroids have been the mainstay of treatment for a number of years and the recent availability of other effective agents (IMiDs and proteasome inhibitors has increased treatment options. Autologous stem cell transplant (ASCT has been used in the treatment of AL amyloidosis for many years. It is associated with high rates of hematologic response and improvement in organ function. However, transplant carries considerable risks. Careful patient selection is important to minimize transplant related morbidity and mortality and ensure optimal patient outcomes. As newer more affective therapies become available the role and timing of ASCT in the overall treatment strategy of AL amyloidosis will need to be continually reassessed.

  16. Characterization of Bombyx mori nucleopolyhedrovirus Bm17.

    Science.gov (United States)

    Shen, Hongxing; Wang, Rudu; Han, Qinggong; Zhang, Wen; Nin, Bin; Zhou, Yang; Shao, Shihe; Yao, Qin; Chen, Keping; Liu, Xiaoyong

    2013-10-01

    Open reading frame17 (Bm17) of Bombyx mori nucleopolyhedrovirus is a highly conserved gene in lepidopteran nucleopolyhedroviruses, suggesting that it performs an important role in the virus life cycle whose function is unknown. In this report, we describe the characterization of Bm17. Reversed transcriptive-PCR (RT-PCR) and Western blot analysis demonstrated that Bm17 was expressed as a late gen. Immunofluorescence analysis by confocal microscopy showed that BM17 protein was localized on cytoplasm and nucleus of infected cells. These results show that BM17 was a late protein localized in cytoplasm and nucleus. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Haematopoietic stem cell transplantation: activities (2014 report) in a ...

    African Journals Online (AJOL)

    PROMOTING ACCESS TO AFRICAN RESEARCH ... Introduction: Hematopoietic Stem Cell transplantation (HSCT) is the only curative therapy for ... Activities: The stem cell transplant centre at the University of Benin Teaching Hospital Edo ...

  18. Retinal stem cells and potential cell transplantation treatments

    Directory of Open Access Journals (Sweden)

    Tai-Chi Lin

    2014-11-01

    Full Text Available The retina, histologically composed of ten delicate layers, is responsible for light perception and relaying electrochemical signals to the secondary neurons and visual cortex. Retinal disease is one of the leading clinical causes of severe vision loss, including age-related macular degeneration, Stargardt's disease, and retinitis pigmentosa. As a result of the discovery of various somatic stem cells, advances in exploring the identities of embryonic stem cells, and the development of induced pluripotent stem cells, cell transplantation treatment for retinal diseases is currently attracting much attention. The sources of stem cells for retinal regeneration include endogenous retinal stem cells (e.g., neuronal stem cells, Müller cells, and retinal stem cells from the ciliary marginal zone and exogenous stem cells (e.g., bone mesenchymal stem cells, adipose-derived stem cells, embryonic stem cells, and induced pluripotent stem cells. The success of cell transplantation treatment depends mainly on the cell source, the timing of cell harvesting, the protocol of cell induction/transplantation, and the microenvironment of the recipient's retina. This review summarizes the different sources of stem cells for regeneration treatment in retinal diseases and surveys the more recent achievements in animal studies and clinical trials. Future directions and challenges in stem cell transplantation are also discussed.

  19. Hematopoietic stem cell transplantation in multiple sclerosis

    DEFF Research Database (Denmark)

    Rogojan, C; Frederiksen, J L

    2009-01-01

    Intensive immunosuppresion followed by hematopoietic stem cell transplantation (HSCT) has been suggested as potential treatment in severe forms of multiple sclerosis (MS). Since 1995 ca. 400 patients have been treated with HSCT. Stabilization or improvement occurred in almost 70% of cases at least...

  20. Kidney dysfunction after allogeneic stem cell transplantation

    NARCIS (Netherlands)

    Kersting, S.

    2008-01-01

    Allogeneic stem cell transplantation (SCT) is a widely accepted approach for malignant and nonmalignant hematopoietic diseases. Unfortunately complications can occur because of the treatment, leading to treatment-related mortality. We studied kidney dysfunction after allogeneic SCT in 2 cohorts of

  1. Limbal stem cell transplantation: current perspectives

    Directory of Open Access Journals (Sweden)

    Atallah MR

    2016-04-01

    Full Text Available Marwan Raymond Atallah, Sotiria Palioura, Victor L Perez, Guillermo Amescua Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA Abstract: Regeneration of the corneal surface after an epithelial insult involves division, migration, and maturation of a specialized group of stem cells located in the limbus. Several insults, both intrinsic and extrinsic, can precipitate destruction of the delicate microenvironment of these cells, resulting in limbal stem cell deficiency (LSCD. In such cases, reepithelialization fails and conjunctival epithelium extends across the limbus, leading to vascularization, persistent epithelial defects, and chronic inflammation. In partial LSCD, conjunctival epitheliectomy, coupled with amniotic membrane transplantation, could be sufficient to restore a healthy surface. In more severe cases and in total LSCD, stem cell transplantation is currently the best curative option. Before any attempts are considered to perform a limbal stem cell transplantation procedure, the ocular surface must be optimized by controlling causative factors and comorbid conditions. These factors include adequate eyelid function or exposure, control of the ocular surface inflammatory status, and a well-lubricated ocular surface. In cases of unilateral LSCD, stem cells can be obtained from the contralateral eye. Newer techniques aim at expanding cells in vitro or in vivo in order to decrease the need for large limbal resection that may jeopardize the “healthy” eye. Patients with bilateral disease can be treated using allogeneic tissue in combination with systemic immunosuppressive therapy. Another emerging option for this subset of patients is the use of noncorneal cells such as mucosal grafts. Finally, the use of keratoprosthesis is reserved for patients who are not candidates for any of the aforementioned options, wherein the choice of the type of keratoprosthesis depends on

  2. Interfacial and Electrode Modifications in P3HT:PC61BM based Organic Solar Cells: Devices, Processing and Characterization

    Science.gov (United States)

    Das, Sayantan

    The inexorable upsurge in world’s energy demand has steered the search for newer renewable energy sources and photovoltaics seemed to be one of the best alternatives for energy production. Among the various photovoltaic technologies that emerged, organic/polymer photovoltaics based on solution processed bulk-heterojunctions (BHJ) of semiconducting polymers has gained serious attention owing to the use of inexpensive light-weight materials, exhibiting high mechanical flexibility and compatibility with low temperature roll-to-roll manufacturing techniques on flexible substrates. The most widely studied material to date is the blend of regioregular P3HT and PC61BM used as donor and acceptor materials. The object of this study was to investigate and improve the performance/stability of the organic solar cells by use of inexpensive materials. In an attempt to enhance the efficiency of organic solar cells, we have demonstrated the use of hexamethyldisilazane (HMDS) modified indium tin oxide (ITO) electrode in bulk heterojunction solar cell structure The device studies showed a significant enhancement in the short-circuit current as well as in the shunt resistance on use of the hexamethyldisilazane (HMDS) layer. In another approach a p-type CuI hole-transport layer was utilized that could possibly replace the acidic PEDOT:PSS layer in the fabrication of high-efficiency solar cells. The device optimization was done by varying the concentration of CuI in the precursor solution which played an important role in the efficiency of the solar cell devices. Recently a substantial amount of research has been focused on identifying suitable interfacial layers in organic solar cells which has efficient charge transport properties. It was illustrated that a thin layer of silver oxide interfacial layer showed a 28% increase in power conversion efficiency in comparison to that of the control cell. The optoelectronic properties and morphological features of indium-free Zn

  3. Activation of sodium channels by α-scorpion toxin, BmK NT1, produced neurotoxicity in cerebellar granule cells: an association with intracellular Ca2+ overloading.

    Science.gov (United States)

    He, Yuwei; Zou, Xiaohan; Li, Xichun; Chen, Juan; Jin, Liang; Zhang, Fan; Yu, Boyang; Cao, Zhengyu

    2017-02-01

    Voltage-gated sodium channels (VGSCs) are responsible for the action potential generation in excitable cells including neurons and involved in many physiological and pathological processes. Scorpion toxins are invaluable tools to explore the structure and function of ion channels. BmK NT1, a scorpion toxin from Buthus martensii Karsch, stimulates sodium influx in cerebellar granule cells (CGCs). In this study, we characterized the mode of action of BmK NT1 on the VGSCs and explored the cellular response in CGC cultures. BmK NT1 delayed the fast inactivation of VGSCs, increased the Na + currents, and shifted the steady-state activation and inactivation to more hyperpolarized membrane potential, which was similar to the mode of action of α-scorpion toxins. BmK NT1 stimulated neuron death (EC 50  = 0.68 µM) and produced massive intracellular Ca 2+ overloading (EC 50  = 0.98 µM). TTX abrogated these responses, suggesting that both responses were subsequent to the activation of VGSCs. The Ca 2+ response of BmK NT1 was primary through extracellular Ca 2+ influx since reducing the extracellular Ca 2+ concentration suppressed the Ca 2+ response. Further pharmacological evaluation demonstrated that BmK NT1-induced Ca 2+ influx and neurotoxicity were partially blocked either by MK-801, an NMDA receptor blocker, or by KB-R7943, an inhibitor of Na + /Ca 2+ exchangers. Nifedipine, an L-type Ca 2+ channel inhibitor, slightly suppressed both Ca 2+ response and neurotoxicity. A combination of these three inhibitors abrogated both responses. Considered together, these data ambiguously demonstrated that activation of VGSCs by an α-scorpion toxin was sufficient to produce neurotoxicity which was associated with intracellular Ca 2+ overloading through both NMDA receptor- and Na + /Ca 2+ exchanger-mediated Ca 2+ influx.

  4. Establishment of an experimental human lung adenocarcinoma cell line SPC-A-1BM with high bone metastases potency by 99mTc-MDP bone scintigraphy

    International Nuclear Information System (INIS)

    Yang Shunfang; Dong Qianggang; Yao Ming; Shi Meiping; Ye Jianding; Zhao Langxiang; Su Jianzhong; Gu Weiyong; Xie Wenhui; Wang Kankan; Du Yanzhi; Li Yao; Huang Yan

    2009-01-01

    Background: Bone metastasis is one of the most common clinical phenomena of late stage lung cancer. A major impediment to understanding the pathogenesis of bone metastasis has been the lack of an appropriate animal and cell model. This study aims to establish human lung adenocarcinoma cell line with highly bone metastases potency with 99m Tc-MDP bone scintigraphy. Methods: The human lung adenocarcinoma cancer cells SPC-A-1 were injected into the left cardiac ventricle of NIH-Beige-Nude-XID (NIH-BNX) immunodeficient mice. The metastatic lesions of tumor-bearing mice were imaged with 99m Tc-MDP bone scintigraphy on a Siemens multi-single photon emission computed tomography. Pinhole images were acquired on a GZ-B conventional gamma camera with a self-designed pinhole collimator. The mice with bone metastasis were sacrificed under deep anesthesia, and the lesions were resected. Bone metastatic cancer cells in the resected lesions were subjected for culture and then reinoculated into the NIH-BNX mice through left cardiac ventricle. The process was repeated for eight cycles to obtain a novel cell subline SPC-A-1BM. Real-time polymerase chain reaction (PCR) was used to compare the gene expression differences in the parental and SPC-A-1BM cells. Results: The bone metastasis sites were successfully revealed by bone scintigraphy. The established bone metastasis cell line SPC-A-1BM had a high potential to metastasize in bone, including mandible, humerus, thoracic vertebra, lumbar, femur, patella, ilium and cartilage rib. The expression level of vascular endothelial growth factor gene family, Bcl-2 and cell adhesion-related genes ECM1, ESM1, AF1Q, SERPINE2 and FN1 were examined. Gene expression difference was found between parental and bone-seeking metastasis cell SPC-A-1BM, which indicates SPC-A-1BM has metastatic capacity vs. its parental cells. Conclusion: SPC-A-1BM is a bone-seeking metastasis human lung adenocarcinoma cell line. Bone scintigraphy may be used as an

  5. Transplantation Tolerance Induction: Cell Therapies and Their Mechanisms

    OpenAIRE

    Scalea, Joseph R.; Tomita, Yusuke; Lindholm, Christopher R.; Burlingham, William

    2016-01-01

    Cell based therapies have been studied extensively in the context of transplantation tolerance induction. The most successful protocols have relied on transfusion of bone marrow prior to the transplantation of a renal allograft. However, it is not clear that stem cells found in bone marrow are required in order to render a transplant candidate immunologically tolerant. Accordingly, mesenchymal stem cells, regulatory myeloid cells, T regulatory cells, and other cell types, are being tested as ...

  6. Modified processing conditions for optimized organic solar cells with inkjet printed P3HT:PC61BM active layers

    International Nuclear Information System (INIS)

    Lange, Alexander; Hollaender, Andreas; Wegener, Michael

    2013-01-01

    Highlights: ► Inkjet printing was used to deposit P3HT:PC 61 BM solar cell active layers. ► The fill factor was dependent on the drying conditions used after printing. ► Fast drying at 100 °C and post-annealing resulted in good device performance. ► Devices with active layers which were slowly dried had high efficiencies without post-annealing. -- Abstract: Inkjet printing can be used to deposit the functional layers of organic solar cells and it offers advantages over spin coating such as the possibility to print films with user-defined patterns. In this study, inkjet printing was utilized to deposit polymer:fullerene solar cell active layers and different drying and annealing conditions were examined in order to optimize device performance. Low fill factors of approximately 30% were found for devices with printed active layers that were dried at 100 °C and a considerable shift in the fill factor of up to 60% was seen after post-annealing at 150 °C. Changes in the fill factor corresponded to an increase in device efficiency from ∼1.3% to ∼2.4% after post-annealing. An alternative active layer drying procedure was used based on solvent annealing which resulted in high fill factors of 60% and efficiencies of ∼2.4% without post-annealing. Blend films were examined with atomic force microscopy, ultra-violet visible spectroscopy and X-ray photoelectron spectroscopy. It was determined that solvent annealed, inkjet printed active layers are considerably rougher and show enhanced organization with respect to films that were dried at 100 °C. Two preparation routes are provided for devices with printed active layers with acceptable efficiencies based on quick drying and post-annealing or slow drying (solvent annealing)

  7. Transplanted Umbilical Cord Mesenchymal Stem Cells Modify the In Vivo Microenvironment Enhancing Angiogenesis and Leading to Bone Regeneration

    Science.gov (United States)

    Todeschi, Maria Rosa; El Backly, Rania; Capelli, Chiara; Daga, Antonio; Patrone, Eugenio; Introna, Martino; Cancedda, Ranieri

    2015-01-01

    Umbilical cord mesenchymal stem cells (UC-MSCs) show properties similar to bone marrow mesenchymal stem cells (BM-MSCs), although controversial data exist regarding their osteogenic potential. We prepared clinical-grade UC-MSCs from Wharton's Jelly and we investigated if UC-MSCs could be used as substitutes for BM-MSCs in muscoloskeletal regeneration as a more readily available and functional source of MSCs. UC-MSCs were loaded onto scaffolds and implanted subcutaneously (ectopically) and in critical-sized calvarial defects (orthotopically) in mice. For live cell-tracking experiments, UC-MSCs were first transduced with the luciferase gene. Angiogenic properties of UC-MSCs were tested using the mouse metatarsal angiogenesis assay. Cell secretomes were screened for the presence of various cytokines using an array assay. Analysis of implanted scaffolds showed that UC-MSCs, contrary to BM-MSCs, remained detectable in the implants for 3 weeks at most and did not induce bone formation in an ectopic location. Instead, they induced a significant increase of blood vessel ingrowth. In agreement with these observations, UC-MSC-conditioned medium presented a distinct and stronger proinflammatory/chemotactic cytokine profile than BM-MSCs and a significantly enhanced angiogenic activity. When UC-MSCs were orthotopically transplanted in a calvarial defect, they promoted increased bone formation as well as BM-MSCs. However, at variance with BM-MSCs, the new bone was deposited through the activity of stimulated host cells, highlighting the importance of the microenvironment on determining cell commitment and response. Therefore, we propose, as therapy for bone lesions, the use of allogeneic UC-MSCs by not depositing bone matrix directly, but acting through the activation of endogenous repair mechanisms. PMID:25685989

  8. Melatonin improves spermatogonial stem cells transplantation efficiency in azoospermic mice

    Directory of Open Access Journals (Sweden)

    Mohammadreza Gholami

    2014-02-01

    Conclusion: Administration of melatonin (20 mg/kg simultaneously with transplantation of spermatogonial stem cells in azoospermia mouse testis increases the efficiency of transplantation and improves structural properties of the testes tissue.

  9. Transplantation tolerance in primates following total lymphoid irradiation and allogeneic bone marrow injection. II. Renal allographs

    International Nuclear Information System (INIS)

    Myburgh, J.A.; Smit, J.A.; Hill, R.R.H.; Browde, S.

    1980-01-01

    A modified regimen of fractionated total lymphoid irradiation and allogeneic bone marrow (BM) injection in chacma baboons produced transplantation tolerance for allografted kidneys from the BM donors, and substantial chimerism without evidence of graft-versus-host disease. Increasing the dose of nucleated BM cells injected 4-fold over that used in liver transplantation resulted consistently in normal graft function in the early weeks after transplantation. Bone marrow injection and challenge with renal allografts could be delayed for at least 3 weeks after completion of irradiation. If it can be shown that this period can be extended even further, the protocols will be relevant to the circumstances of clinical cadaveric renal transplantation

  10. Pre- and postmortem imaging of transplanted cells

    Directory of Open Access Journals (Sweden)

    Andrzejewska A

    2015-09-01

    Full Text Available Anna Andrzejewska,1 Adam Nowakowski,1 Miroslaw Janowski,1–4 Jeff WM Bulte,3–7 Assaf A Gilad,3,4 Piotr Walczak,3,4,8 Barbara Lukomska11NeuroRepair Department, 2Department of Neurosurgery, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland; 3Russell H Morgan Department of Radiology and Radiological Science, Division of MR Research, 4Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, 5Department of Biomedical Engineering, 6Department of Chemical & Biomolecular Engineering, 7Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; 8Department of Radiology, Faculty of Medical Sciences, University of Warmia and Mazury, Olsztyn, PolandAbstract: Therapeutic interventions based on the transplantation of stem and progenitor cells have garnered increasing interest. This interest is fueled by successful preclinical studies for indications in many diseases, including the cardiovascular, central nervous, and musculoskeletal system. Further progress in this field is contingent upon access to techniques that facilitate an unambiguous identification and characterization of grafted cells. Such methods are invaluable for optimization of cell delivery, improvement of cell survival, and assessment of the functional integration of grafted cells. Following is a focused overview of the currently available cell detection and tracking methodologies that covers the entire spectrum from pre- to postmortem cell identification.Keywords: stem cells, transplantation, SPECT, MRI, bioluminescence, cell labeling

  11. MiRNAs and piRNAs from bone marrow mesenchymal stem cell extracellular vesicles induce cell survival and inhibit cell differentiation of cord blood hematopoietic stem cells: a new insight in transplantation.

    Science.gov (United States)

    De Luca, Luciana; Trino, Stefania; Laurenzana, Ilaria; Simeon, Vittorio; Calice, Giovanni; Raimondo, Stefania; Podestà, Marina; Santodirocco, Michele; Di Mauro, Lazzaro; La Rocca, Francesco; Caivano, Antonella; Morano, Annalisa; Frassoni, Francesco; Cilloni, Daniela; Del Vecchio, Luigi; Musto, Pellegrino

    2016-02-09

    Hematopoietic stem cells (HSC), including umbilical cord blood CD34+ stem cells (UCB-CD34+), are used for the treatment of several diseases. Although different studies suggest that bone marrow mesenchymal stem cells (BM-MSC) support hematopoiesis, the exact mechanism remains unclear. Recently, extracellular vesicles (EVs) have been described as a novel avenue of cell communication, which may mediate BM-MSC effect on HSC. In this work, we studied the interaction between UCB-CD34+ cells and BM-MSC derived EVs. First, by sequencing EV derived miRNAs and piRNAs we found that EVs contain RNAs able to influence UCB-CD34+ cell fate. Accordingly, a gene expression profile of UCB-CD34+ cells treated with EVs, identified about 100 down-regulated genes among those targeted by EV-derived miRNAs and piRNAs (e.g. miR-27b/MPL, miR-21/ANXA1, miR-181/EGR2), indicating that EV content was able to modify gene expression profile of receiving cells. Moreover, we demonstrated that UCB-CD34+ cells, exposed to EVs, significantly changed different biological functions, becoming more viable and less differentiated. UCB-CD34+ gene expression profile also identified 103 up-regulated genes, most of them codifying for chemokines, cytokines and their receptors, involved in chemotaxis of different BM cells, an essential function of hematopoietic reconstitution. Finally, the exposure of UCB-CD34+ cells to EVs caused an increased expression CXCR4, paralleled by an in vivo augmented migration from peripheral blood to BM niche in NSG mice. This study demonstrates the existence of a powerful cross talk between BM-MSC and UCB-CD34+ cells, mediated by EVs, providing new insight in the biology of cord blood transplantation.

  12. Concise Review: Bone Marrow Mononuclear Cells for the Treatment of Ischemic Syndromes: Medicinal Product or Cell Transplantation?

    Science.gov (United States)

    Rico, Laura; Herrera, Concha

    2012-01-01

    In November of 2011, the Committee for Advanced Therapies (CAT) of the European Medicines Agency (EMA) published two scientific recommendations regarding the classification of autologous bone marrow-derived mononuclear cells (BM-MNCs) and autologous bone marrow-derived CD133+ cells as advanced therapy medicinal products (ATMPs), specifically tissue-engineered products, when intended for regeneration in ischemic heart tissue on the basis that they are not used for the same essential function (hematological restoration) that they fulfill in the donor. In vitro and in vivo evidence demonstrates that bone marrow cells are physiologically involved in adult neovascularization and tissue repair, making their therapeutic use for these purposes a simple exploitation of their own essential functions. Therefore, from a scientific/legal point of view, nonsubstantially manipulated BM-MNCs and CD133+ cells are not an ATMP, because they have a physiological role in the processes of postnatal neovascularization and, when used therapeutically for vascular restoration in ischemic tissues, they are carrying out one of their essential physiological functions (the legal definition recognizes that cells can have several essential functions). The consequences of classifying BM-MNCs and CD133+ cells as medicinal products instead of cellular transplantation, like bone marrow transplantation, in terms of costs and time for these products to be introduced into clinical practice, make this an issue of crucial importance. Therefore, the recommendations of EMA/CAT could be reviewed in collaboration with scientific societies, in light of organizational and economic consequences as well as scientific knowledge recently acquired about the mechanisms of postnatal neovascularization and the function of bone marrow in the regeneration of remote tissues. PMID:23197819

  13. Alterations in Mesenteric Lymph Node T Cell Phenotype and Cytokine Secretion are Associated with Changes in Thymocyte Phenotype after LP-BM5 Retrovirus Infection

    Directory of Open Access Journals (Sweden)

    Maria C. Lopez

    2005-01-01

    Full Text Available In this study, mouse MLN cells and thymocytes from advanced stages of LP-BM5 retrovirus infection were studied. A decrease in the percentage of IL-7+ cells and an increase in the percentage of IL-16+ cells in the MLN indicated that secretion of these cytokines was also altered after LP-BM5 infection. The percentage of MLN T cells expressing IL-7 receptors was significantly reduced, while the percentage of MLN T cells expressing TNFR-p75 and of B cells expressing TNFR-p55 increased. Simultaneous analysis of surface markers and cytokine secretion was done in an attempt to understand whether the deregulation of IFN-Υ secretion could be ascribed to a defined cell phenotype, concluding that all T cell subsets studied increased IFN-Υ secretion after retrovirus infection. Finally, thymocyte phenotype was further analyzed trying to correlate changes in thymocyte phenotype with MLN cell phenotype. The results indicated that the increase in single positive either CD4+CD8- or CD4- CD8+ cells was due to accumulation of both immature (CD3- and mature (CD3+ single positive thymocytes. Moreover, single positive mature thymocytes presented a phenotype similar to the phenotype previously seen on MLN T cells. In summary, we can conclude that LP-BM5 uses the immune system to reach the thymus where it interferes with the generation of functionally mature T cells, favoring the development of T cells with an abnormal phenotype. These new T cells are activated to secrete several cytokines that in turn will favor retrovirus replication and inhibit any attempt of the immune system to control infection.

  14. Pristimerin Inhibits Prostate Cancer Bone Metastasis by Targeting PC-3 Stem Cell Characteristics and VEGF-Induced Vasculogenesis of BM-EPCs

    Directory of Open Access Journals (Sweden)

    Shuai Huang

    2015-08-01

    Full Text Available Background/Aims: Prostate cancer (PCa is one of the most common malignant cancers and a major leading cause of cancer deaths in men. Cancer stem-like cells are shown to be highly tumorigenic, pro-angiogenic and can significantly contribute to tumor new vessel formation and bone marrow derived-EPCs (BM-EPCs are shown to recruit to the angiogenic switch in tumor growth and metastatic progression, suggesting the importance of targeting cancer stem cells (CSCs and EPCs for novel tumor therapies. Pristimerin, an active component isolated from Celastraceae and Hippocrateaceae, has shown anti-tumor effects in some cell lines in previous studies. However, the effect and mechanism of Pristimerin on CSCs and EPCs in PCa bone metastasis are not well studied. Methods: The effect of Pristimerin on PC-3 stem cell characteristics and metastasis were detected by spheroid formation, CD133 and CD44 protein expression, matrix-gel invasive assay and colony-formation assay in vitro, VEGF and pro-inflammatory cytokines expression by ELISA assay, and tumor tumorigenicity by X-ray and MR in NOD-SCID mice model in vivo. In addition, we also detected the effect of Pristimerin on VEGF-induced vasculogenesis and protein expression of BM-EPCs. Results: Pristimerin could significantly inhibit spheroid formation and protein expression of CD133 and CD44, reduce VEGF and pro-inflammation cytokines expression of PC-3 cell, and prevent the xenografted PC-3 tumor growth in the bone of nude mice. The present data also showed that Pristimerin significantly inhibited VEGF-induced vasculogenesis of BM-EPCs by suppressing the EPCs functions including proliferation, adhesion, migration, tube formation and inactivation the phosphorylation of VEGFR-2, Akt and eNOS. Conclusion: These data provide evidence that Pristimerin has strong potential for development as a novel agent against prostate bone metastasis by suppressing PC-3 stem cell characteristics and VEGF-induced vasculogenesis of BM-EPCs.

  15. Improved performance of polymer solar cells using PBDTT-F-TT:PC{sub 71}BM blend film as active layer

    Energy Technology Data Exchange (ETDEWEB)

    Zang, Yue; Gao, Xiumin, E-mail: oemt@hdu.edu.cn; Lu, Xinmiao; Xin, Qing; Lin, Jun; Zhao, Jufeng

    2016-07-15

    Highlights: • The PCE of PBDTT-F-TT-based PSCs was improved to 9.34% by morphology control and device engineering. • Effect of DIO additive on the BHJ morphology and charge transport was investigated. • Effect of device architecture on the performance was studied in depth by optical modeling. • A low-temperature processed interfacial layer was introduced for plastic substrates. - Abstract: A detailed study of high-efficiency polymer solar cells (PSCs) based on a low bandgap polymer PBDTT-F-TT and PC{sub 71}BM as the bulk heterojunction (BHJ) layer is carried out. By using 1,8-diiodooctane (DIO) as solvent additive to control the morphology of active layer and comparing different device architecture to optimize the optical field distribution, the power conversion efficiency (PCE) of the resulted devices can be reached as high as 9.34%. Comprehensive characterization and optical modeling of the resulting devices is performed to understand the effect of DIO and device geometry on photovoltaic performance. It was found that the addition of DIO can significantly improve the nanoscale morphology and increased electron mobility in the BHJ layer. The inverted device architecture was chosen because the results from optical modeling shows that it offers better optical field distribution and exciton generation profile. Based on these results, a low-temperature processed ZnO was finally introduced as an electron transport layer to facility the fabrication on flexible substrates and showed comparable performance with the device based on conventional ZnO interlayer prepared by sol-gel process.

  16. The implication of follicular lymphoma patients receiving allogeneic stem cell transplantation from donors carrying t(14;18)-positive cells.

    Science.gov (United States)

    McGregor, D K; Keever-Taylor, C A; Bredeson, C; Schur, B; Vesole, D H; Logan, B; Chang, C-C

    2005-06-01

    We performed real-time quantitative polymerase chain reaction (RQ-PCR) in peripheral blood (PB) and/or bone marrow (BM) samples collected pre- and post transplant from 23 recipient-donor pairs receiving allogeneic stem cell transplantation (allo-SCT) for follicular lymphoma (FL). Of 23 donors, 11 had a PB and/or BM sample positive for t(14;18) (BCL2/IGH fusion) at low levels (donors with (n=11) and those without (n=12) detectable t(14:18) cells were similar in age, sex, and disease status pretransplant. No differences in the incidence of graft-versus-host-disease (GVHD), delayed engraftment, relapse rate, disease-free survival and overall survival were identified between the groups. Two recipients without detectable t(14;18) cells pre-transplant showed detectable t(14;18) cells at 2 and 11 years after receiving grafts from donors with t(14:18) cells. Neither patient developed FL 1.5 and 2 years after the emergence of t(14;18) cells. Although the sample size is relatively small, our findings suggest that individuals carrying t(14;18) cells may not be excluded as donors given the lack of an association of t(14;18) detected in donors with adverse clinical outcome. It may be necessary to screen for the donor's t(14;18) status before using t(14;18) for monitoring minimal residual disease by RQ-PCR to exclude the possibility of confounding donor's t(14;18) clone.

  17. Assessment of human MAPCs for stem cell transplantation and cardiac regeneration after myocardial infarction in SCID mice.

    Science.gov (United States)

    Dimomeletis, Ilias; Deindl, Elisabeth; Zaruba, Marc; Groebner, Michael; Zahler, Stefan; Laslo, Saskia M; David, Robert; Kostin, Sawa; Deutsch, Markus A; Assmann, Gerd; Mueller-Hoecker, Josef; Feuring-Buske, Michaela; Franz, Wolfgang M

    2010-11-01

    Clinical studies suggest that transplantation of total bone marrow (BM) after myocardial infarction (MI) is feasible and potentially effective. However, focusing on a defined BM-derived stem cell type may enable a more specific and optimized treatment. Multilineage differentiation potential makes BM-derived multipotent adult progenitor cells (MAPCs) a promising stem cell pool for regenerative purposes. We analyzed the cardioregenerative potential of human MAPCs in a murine model of myocardial infarction. Human MAPCs were selected by negative depletion of CD45(+)/glycophorin(+) BM cells and plated on fibronectin-coated dishes. In vitro, stem cells were analyzed by reverse transcription polymerase chain reaction. In vivo, we transplanted human MAPCs (5 × 10(5)) by intramyocardial injection after MI in severe combined immunodeficient (SCID) beige mice. Six and 30 days after the surgical procedure, pressure-volume relationships were investigated in vivo. Heart tissues were analyzed immunohistochemically. Reverse transcription polymerase chain reaction experiments on early human MAPC passages evidenced an expression of Oct-4, a stem cell marker indicating pluripotency. In later passages, cardiac markers (Nkx2.5, GATA4, MLC-2v, MLC-2a, ANP, cTnT, cTnI,) and smooth muscle cell markers (SMA, SM22α) were expressed. Transplantation of human MAPCs into the ischemic border zone after MI resulted in an improved cardiac function at day 6 (ejection fraction, 26% vs 20%) and day 30 (ejection fraction, 30% vs 23%). Confirmation of human MAPC marker vimentin in immunohistochemistry demonstrated that human MAPC integrated in the peri-infarct region. The proliferation marker Ki67 was absent in immunohistochemistry and teratoma formation was not found, indicating no tumorous potential of transplanted human MAPCs in the tumor-sensitive SCID model. Transplantation of human MAPCs after MI ameliorates myocardial function, which may be explained by trophic effects of human MAPCs. Lack of

  18. Clinical Allogeneic and Autologous Islet Cell Transplantation: Update

    Directory of Open Access Journals (Sweden)

    Shinichi Matsumoto

    2011-06-01

    Full Text Available Islet cell transplantation is categorized as a β-cell replacement therapy for diabetic patients who lack the ability to secrete insulin. Allogeneic islet cell transplantation is for the treatment of type 1 diabetes, and autologous islet cell transplantation is for the prevention of surgical diabetes after a total pancreatectomy. The issues of allogeneic islet cell transplantation include poor efficacy of islet isolation, the need for multiple donor pancreata, difficulty maintaining insulin independence and undesirable side effects of immunosuppressive drugs. Those issues have been solved step by step and allogeneic islet cell transplantation is almost ready to be the standard therapy. The donor shortage will be the next issue and marginal and/or living donor islet cell transplantation might alleviate the issue. Xeno-islet cell transplantation, β-cell regeneration from human stem cells and gene induction of the naïve pancreas represent the next generation of β-cell replacement therapy. Autologous islet cell transplantation after total pancreatectomy for the treatment of chronic pancreatitis with severe abdominal pain is the standard therapy, even though only limited centers are able to perform this treatment. Remote center autologous islet cell transplantation is an attractive option for hospitals performing total pancreatectomies without the proper islet isolation facilities.

  19. Stem-cell-activated organ following ultrasound exposure: better transplant option for organ transplantation.

    Science.gov (United States)

    Wang, Sen; Li, Yu; Ji, Ying-Chang; Lin, Chang-Min; Man, Cheng; Zheng, Xiao-Xuan

    2010-01-01

    Although doctors try their best to protect transplants during surgery, there remain great challenges for the higher survival rate and less rejection of transplants after organ transplantation. Growing evidence indicates that the stem cells could function after injury rather than aging, implying that suitable injury may activate the stem cells of damaged organs. Furthermore, it has been revealed that stem cells can be used to induce tolerance in transplantation and the ultrasound has great biological effects on organs. Basing on these facts, we hypothesize that the stem cells within the transplants can be activated by ultrasound with high-frequency and medium-intensity. Therefore, the stem-cell-activated organs (SCAO) can be derived, and the SCAO will be better transplant option for organ transplantation. We postulate the ultrasound can change the molecular activity and/or quantity of the stem cells, the membrane permeability, the cell-cell junctions, and their surrounding microenvironments. As a result, the stem cells are activated, and the SCAO will acquire more regenerative capacity and less rejection. In the paper, we also discuss the process, methods and models for verifying the theory, and the consequences. We believe the theory may provide a practical method for the clinical application of the ultrasound and stem cells in organ transplantation.

  20. Reduction of microhemorrhages in the spinal cord of symptomatic ALS mice after intravenous human bone marrow stem cell transplantation accompanies repair of the blood-spinal cord barrier

    Science.gov (United States)

    Eve, David J.; Steiner, George; Mahendrasah, Ajay; Sanberg, Paul R.; Kurien, Crupa; Thomson, Avery; Borlongan, Cesar V.; Garbuzova-Davis, Svitlana

    2018-01-01

    Blood-spinal cord barrier (BSCB) alterations, including capillary rupture, have been demonstrated in animal models of amyotrophic lateral sclerosis (ALS) and ALS patients. To date, treatment to restore BSCB in ALS is underexplored. Here, we evaluated whether intravenous transplantation of human bone marrow CD34+ (hBM34+) cells into symptomatic ALS mice leads to restoration of capillary integrity in the spinal cord as determined by detection of microhemorrhages. Three different doses of hBM34+ cells (5 × 104, 5 × 105 or 1 × 106) or media were intravenously injected into symptomatic G93A SOD1 mice at 13 weeks of age. Microhemorrhages were determined in the cervical and lumbar spinal cords of mice at 4 weeks post-treatment, as revealed by Perls’ Prussian blue staining for ferric iron. Numerous microhemorrhages were observed in the gray and white matter of the spinal cords in media-treated mice, with a greater number of capillary ruptures within the ventral horn of both segments. In cell-treated mice, microhemorrhage numbers in the cervical and lumbar spinal cords were inversely related to administered cell doses. In particular, the pervasive microvascular ruptures determined in the spinal cords in late symptomatic ALS mice were significantly decreased by the highest cell dose, suggestive of BSCB repair by grafted hBM34+ cells. The study results provide translational outcomes supporting transplantation of hBM34+ cells at an optimal dose as a potential therapeutic strategy for BSCB repair in ALS patients. PMID:29535831

  1. The effects of hematopoietic stem cell transplant on splenic extramedullary hematopoiesis in patients with myeloproliferative neoplasm-associated myelofibrosis.

    Science.gov (United States)

    Pizzi, Marco; Gergis, Usama; Chaviano, Felicia; Orazi, Attilio

    2016-09-01

    Hematopoietic stem cell transplant (HSCT) is the only curative treatment for myeloproliferative neoplasm-associated myelofibrosis (MPN-MF). The main clinical manifestation of MPN-MF is splenomegaly secondary to extramedullary hematopoiesis (EMH). The effects of HSCT on splenic EMH and associated vascular and stromal changes are unknown. This study compares the findings seen in spleens following HSCT with those of nontransplanted patients, normal controls, and matched bone marrow (BM) samples. This study included three transplanted MPN-MF spleens, three nontransplanted MPN-MF spleens, and three normal controls. Spleens were assessed for: (a) presence/extent of EMH; (b) presence of Gamna-Gandy bodies; (c) splenic fibrosis; (d) CD34-positive microvessel density; (e) CD8-positive sinusoids; (f) frequency of smooth muscle actin-positive myoid cells; and (g) nerve growth factor receptor-positive adventitial reticulum cells. In two cases, matched BM samples were assessed for cellularity, presence of atypical megakaryocytes, and fibrosis. Compared with normal controls, all MPN-MF spleens were larger in size, had EMH, red pulp fibrosis, higher CD34-positive microvessel density, and decreased CD8-positive sinusoids. Compared with nontransplanted cases, post-HSCT spleens showed disappearance or reduction of EMH. Gamna-Gandy bodies were increased; no differences in the remaining parameters were found. A reduction of splenic EMH was associated with normalization of BM cellularity and megakaryopoiesis. HSCT reduces/abrogates splenic EMH and is associated with an increased number of Gamna-Gandy bodies, which may suggest vascular damage. The lack of stromal changes in spleens removed shortly after transplant is in line with similar observations in the BM, where a longer interval is often necessary for resolution of fibrosis. Copyright © 2016 King Faisal Specialist Hospital & Research Centre. Published by Elsevier Ltd. All rights reserved.

  2. Endothelial cell chimerism after renal transplantation and vascular rejection.

    NARCIS (Netherlands)

    Lagaaij, E.L.; Cramer-Knijnenburg, G.F.; Kemenade, F.J. van; Es, L.A. van; Bruijn, J.A.; Krieken, J.H.J.M. van

    2001-01-01

    BACKGROUND: The blood vessels of a transplanted organ are the interface between donor and recipient. The endothelium in the blood vessels is thought to be the major target for graft rejection. Endothelial cells of a transplanted organ are believed to remain of donor origin after transplantation. We

  3. MRI screening before stem cell transplantation - necessary?

    International Nuclear Information System (INIS)

    Zimmermann, U.; Mentzel, H.J.; Kaiser, W.A.; Wolf, J.; Fuchs, D.; Gruhn, B.; Zintl, F.

    2008-01-01

    Purpose: in the context of stem cell transplantation (SCT), we often observe neurological complications as a consequence of immune system suppression, conditioning therapy or prophylaxis and treatment of graft-versus-host disease. Furthermore, cerebral lesions in existence prior to transplantation can be found. The aim of this study was to evaluate the benefit of cerebral magnetic resonance imaging (MRI) prior to stem cell transplantation. Patients and method: cerebral MR examinations of 116 children and adolescents were performed before SCT. Patients ranged in age from 1.1 to 21.4 years (mean 12.6 years). All MR images were obtained by a 1.5 T System. The predefined short protocol included an axial T1-weighted SE sequence and a coronary T2-weighted TSE sequence. We evaluated existing cerebral lesions, the diameter of the ventricular system, and the paranasal sinuses. In the case of pathological findings, the short examination protocol was expanded. Results: in 5 of 116 children (4.3%) we observed prior to SCT findings requiring immediate treatment although the patients did not show any clinical symptoms (1 x aspergilloma, 1 x hemorrhage of vascular anomaly). An increased risk of bleeding caused by cavernoma or another vascular anomaly without hemorrhage also had to be taken into account. 32 of 116 patients (37.1%) showed atrophic lesions. In 42 children (36.2%), we observed affections of the paranasal sinuses. (orig.)

  4. Graft Transit Time Has No Effect on Outcome of Unrelated Donor Hematopoietic Cell Transplants Performed in Australia and New Zealand: A Study from the Australasian Bone Marrow Transplant Recipient Registry.

    Science.gov (United States)

    Patton, William Nigel; Nivison-Smith, Ian; Bardy, Peter; Dodds, Anthony; Ma, David; Shaw, Peter John; Kwan, John; Wilcox, Leonie; Butler, Andrew; Carter, John M; Blacklock, Hilary; Szer, Jeffrey

    2017-01-01

    A previous study found that platelet recovery and mortality were worse in recipients of myeloablative bone marrow transplants where graft transit times were longer than 20 hours. This retrospective study of unrelated myeloablative allogeneic transplantation performed within Australia and New Zealand analyzed transplant outcomes according to graft transit times. Of 233 assessable cases, 76 grafts (33%) were sourced from bone marrow (BM) and 157 (67%) from peripheral blood. Grafts sourced from Australia and New Zealand (47% of total) were associated with a median transit time of 6 hours versus 32 hours for overseas sourced grafts (53% of total). Graft transit temperature was refrigerated in 85%, ambient in 6%, and unknown in 9% of cases, respectively. Graft transit times had no significant effect on neutrophil or platelet engraftment, treatment-related mortality, overall survival, and incidence of acute or chronic graft-versus-host disease. Separate analysis of BM grafts, although of reduced power, also showed no significant difference in either neutrophil or platelet engraftment or survival between short and longer transport times. This study gives reassurance that both peripheral blood stem cell and especially BM grafts subjected to long transit times and transported at refrigerated temperatures may not be associated with adverse recipient outcomes. Copyright © 2017 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  5. The regulatory roles of B cell subsets in transplantation.

    Science.gov (United States)

    Chu, Zhulang; Zou, Weilong; Xu, Yanan; Sun, Qiquan; Zhao, Yong

    2018-02-01

    B cells mediate allograft rejection through antigen presentation, and production of cytokines and antibodies. More and more immunosuppressive agents specifically targeting B cells and plasma cells have been applied in clinical transplantation. However, recent studies have indicated the regulatory roles of B cells. Therefore, it is vital to clarify the different effects of B cell subsets in organ transplantation so that we can completely understand the diverse functions of B cells in transplantation. Areas covered: This review focuses on the regulatory roles of B cells in transplantation. B cell subsets with immune modulation and factors mediating immunosuppressive functions of regulatory B (Breg) cells were analyzed. Therapies targeting B cells and the application of B cells for transplant tolerance induction were discussed. Expert commentary: Besides involving rejection, B cells could also play regulatory roles in transplantation. Breg cells and the related markers may be used to predict the immune tolerant state in transplant recipients. New therapeutic strategies targeting B cells should be explored to promote tolerance induction with less impact on the host's protective immunity in organ transplanted patients.

  6. Cell lineage in vascularized bone transplantation.

    Science.gov (United States)

    Willems, Wouter F; Larsen, Mikko; Friedrich, Patricia F; Bishop, Allen T

    2014-01-01

    The biology behind vascularized bone allotransplantation remains largely unknown. We aim to study cell traffic between donor and recipient following bone auto-, and allografting. Vascularized femoral transplantation was performed with arteriovenous bundle implantation and short-term immunosuppression. Twenty male Piebald Virol Glaxo (PVG; RT1(c) ) rats received isotransplants from female PVG (RT1(c) ) rats and 22 male PVG rats received allografts from female Dark Agouti rats (DA, RT1(a) ), representing a major histocompatibility mismatch. Both groups were randomly analyzed at 4 or 18 weeks. Bone remodeling areas (inner and outer cortical samples) were labeled and laser capture microdissected. Analysis of sex-mismatch genes by real-time reverse transcription-polymerase chain reaction provided the relative Expression Ratio (rER) of donor (female) to recipient (male) cells. The rER was 0.456 ± 0.266 at 4 weeks and 0.749 ± 0.387 at 18 weeks (p = 0.09) in allotransplants. In isotransplants, the rER was 0.412 ± 0.239 and 0.467 ± 0.252 at 4 and 18 weeks, respectively (p = 0.21). At 4 weeks, the rER at the outer cortical area of isotransplants was significantly lower in isotransplants as compared with allotransplants (0.247 ± 0.181 vs. 0.549 ± 0.184, p = 0.007). Cells in the inner and outer cortical bone remodeling areas in isotransplants were mainly donor derived (rER 0.5) at 18 weeks. Applying novel methodology, we describe detailed cell traffic in vascularized bone transplants, elaborating our comprehension on bone transplantation. Copyright © 2013 Wiley Periodicals, Inc.

  7. Childhood Hematopoietic Cell Transplantation (PDQ®)—Health Professional Version

    Science.gov (United States)

    Hematopoietic cell transplantation involves the infusion of blood stem cells (peripheral/umbilical cord blood, bone marrow) into a patient to reconstitute the blood system. Get detailed information about autologous and allogeneic transplant, including cell selection, HLA matching, and preparative regimens, and the acute complications and late effects of treatment in this summary for clinicians.

  8. Stem cell biology and cell transplantation therapy in the retina.

    Science.gov (United States)

    Osakada, Fumitaka; Hirami, Yasuhiko; Takahashi, Masayo

    2010-01-01

    Embryonic stem (ES) cells, which are derived from the inner cell mass of mammalian blastocyst stage embryos, have the ability to differentiate into any cell type in the body and to grow indefinitely while maintaining pluripotency. During development, cells undergo progressive and irreversible differentiation into specialized adult cell types. Remarkably, in spite of this restriction in potential, adult somatic cells can be reprogrammed and returned to the naive state of pluripotency found in the early embryo simply by forcing expression of a defined set of transcription factors. These induced pluripotent stem (iPS) cells are molecularly and functionally equivalent to ES cells and provide powerful in vitro models for development, disease, and drug screening, as well as material for cell replacement therapy. Since functional impairment results from cell loss in most central nervous system (CNS) diseases, recovery of lost cells is an important treatment strategy. Although adult neurogenesis occurs in restricted regions, the CNS has poor potential for regeneration to compensate for cell loss. Thus, cell transplantation into damaged or diseased CNS tissues is a promising approach to treating various neurodegenerative disorders. Transplantation of photoreceptors or retinal pigment epithelium cells derived from human ES cells can restore some visual function. Patient-specific iPS cells may lead to customized cell therapy. However, regeneration of retinal function will require a detailed understanding of eye development, visual system circuitry, and retinal degeneration pathology. Here, we review the current progress in retinal regeneration, focusing on the therapeutic potential of pluripotent stem cells.

  9. Characterization of Organic Thin Film Solar Cells of PCDTBT : PC71BM Prepared by Different Mixing Ratio and Effect of Hole Transport Layer

    Directory of Open Access Journals (Sweden)

    Vijay Srinivasan Murugesan

    2015-01-01

    Full Text Available The organic thin film solar cells (OTFSCs have been successfully fabricated using PCDTBT : PC71BM with different mixing ratios (1 : 1 to 1 : 8 and the influence of hole transport layer thickness (PEDOT : PSS. The active layers with different mixing ratios of PCDTBT : PC71BM have been fabricated using o-dichlorobenzene (o-DCB. The surface morphology of the active layers and PEDOT : PSS layer with different thicknesses were characterized by AFM analysis. Here, we report that the OTFSCs with high performance have been optimized with 1 : 4 ratios of PCDTBT : PC71BM. The power conversion efficiency (PCE = 5.17% of the solar cells was significantly improved by changing thickness of PEDOT : PSS layer. The thickness of the PEDOT : PSS layer was found to be of significant importance; the thickness of the PEDOT : PSS layer at 45 nm (higher spin speed 5000 rpm shows higher short circuit current density (Jsc and lower series resistance (Rs and higher PCE.

  10. Dualism of mixed chimerism between hematopoiesis and stroma in chronic idiopathic myelofibrosis after allogeneic stem cell transplantation.

    Science.gov (United States)

    Thiele, J; Varus, E; Siebolts, U; Kvasnicka, H M; Wickenhauser, C; Metz, K A; Beelen, D W; Ditschkowski, M; Zander, A; Kröger, N

    2007-04-01

    Scant knowledge exists concerning lineage-restricted mixed chimerism (mCh) after allogeneic peripheral blood stem cell transplantation (PSCT) in patients with chronic idiopathic myelofibrosis (CIMF). Following a sex-mismatched PSCT, a combined immunopheno- and genotyping by fluorescence in-situ hybridization (FISH) was performed on sequential bone marrow (BM) biopsies at standardized intervals. Results were compared with PCR analysis of corresponding peripheral blood samples in five patients. According to FISH, pretransplant specimens revealed a gender congruence of more than 99%, while in the first three months the total BM exhibited a persistent fraction of host cells (30% to 40%) with a tendency to decline after about one year. It is noteworthy that the majority of endothelial cells maintained a recipient origin, whereas CD34+ progenitors and especially CD61+ megakaryocytes exhibited only very few host-derived cells. In keeping with the prevalence of donor cells in the hematopoietic compartment, PCR analysis of peripheral blood cells displayed a non-significant degree of mCh. In conclusion, according to FISH and PCR analysis, successful PSCT in CIMF results in an almost complete chimeric (donor-derived) state of the hematopoietic cell population. The non-transplantable stromal compartment includes the vascular endothelium with a predominance of recipient cells. The minimal mCh of this population implies probably a donor-derived origin (endothelial progenitor cells).

  11. Use of hematopoietic cell transplants to achieve tolerance in patients with solid organ transplants

    OpenAIRE

    Strober, Samuel

    2016-01-01

    The goals of tolerance in patients with solid organ transplants are to eliminate the lifelong need for immunosuppressive (IS) drugs and to prevent graft loss due to rejection or drug toxicity. Tolerance with complete withdrawal of IS drugs has been achieved in recipients of HLA-matched and mismatched living donor kidney transplants in 3 medical centers using hematopoietic cell transplants to establish mixed or complete chimerism.

  12. Use of hematopoietic cell transplants to achieve tolerance in patients with solid organ transplants.

    Science.gov (United States)

    Strober, Samuel

    2016-03-24

    The goals of tolerance in patients with solid organ transplants are to eliminate the lifelong need for immunosuppressive (IS) drugs and to prevent graft loss due to rejection or drug toxicity. Tolerance with complete withdrawal of IS drugs has been achieved in recipients of HLA-matched and mismatched living donor kidney transplants in 3 medical centers using hematopoietic cell transplants to establish mixed or complete chimerism. © 2016 by The American Society of Hematology.

  13. The lived experience of autologous stem cell-transplanted patients: Post-transplantation and before discharge.

    Science.gov (United States)

    Alnasser, Qasem; Abu Kharmah, Salahel Deen; Attia, Manal; Aljafari, Akram; Agyekum, Felicia; Ahmed, Falak Aftab

    2018-04-01

    To explore the lived experience of the patients post-haematopoietic stem cell transplantation and specifically after engraftment and before discharge. Patients post-stem cell transplantation experience significant changes in all life aspects. Previous studies carried out by other researchers focused mainly on the postdischarge experience, where patients reported their perceptions that have always been affected by the life post-transplantation and influenced by their surroundings. The lived experience of patients, specifically after engraftment and prior to discharge (the "transition" phase), has not been adequately explored in the literature. Doing so might provide greater insight into the cause of change post-haematopoietic stem cell transplantation. This study is a phenomenological description of the participants' perception about their lived experience post-haematopoietic stem cell transplantation. The study used Giorgi's method of analysis. Through purposive sampling, 15 post-haematopoietic stem cell transplantation patients were recruited. Data were collected by individual interviews. Data were then analysed based on Giorgi's method of analysis to reveal the meaning of a phenomenon as experienced through the identification of essential themes. The analysis process revealed 12 core themes covered by four categories that detailed patients lived experience post-haematopoietic stem cell transplantation. The four categories were general transplant experience, effects of transplantation, factors of stress alleviation and finally life post-transplantation. This study showed how the haematopoietic stem cell transplantation affected the patients' physical, psychological and spiritual well-being. Transplantation also impacted on the patients' way of thinking and perception of life. Attending to patients' needs during transplantation might help to alleviate the severity of the effects and therefore improve experience. Comprehensive information about transplantation needs

  14. Complications of allogeneic hematopoietic stem cell transplantation.

    Science.gov (United States)

    Arnaout, Karim; Patel, Nihar; Jain, Maneesh; El-Amm, Joelle; Amro, Farah; Tabbara, Imad A

    2014-08-01

    Infection, graft-versus-host disease (GVHD), and to a lesser extent sinusoidal obstructive syndrome (SOS) represent the major causes of morbidity and mortality in patients undergoing allogeneic hematopoietic stem cell transplantation (AHSCT). During the last decade, progress in prevention and treatment of these complications led to improvement in the outcome of these patients. Despite the fact that nonmyeloablative regimens have been increasingly used in elderly patients and in patients with co-morbidities, the nonrelapse related mortality remains a challenge and long-term follow-up is required. The objective of this manuscript is to provide an updated concise review of the complications of AHSCT and of the available treatment interventions.

  15. The journey of islet cell transplantation and future development.

    Science.gov (United States)

    Gamble, Anissa; Pepper, Andrew R; Bruni, Antonio; Shapiro, A M James

    2018-03-04

    Intraportal islet transplantation has proven to be efficacious in preventing severe hypoglycemia and restoring insulin independence in selected patients with type 1 diabetes. Multiple islet infusions are often required to achieve and maintain insulin independence. Many challenges remain in clinical islet transplantation, including substantial islet cell loss early and late after islet infusion. Contributions to graft loss include the instant blood-mediated inflammatory reaction, potent host auto- and alloimmune responses, and beta cell toxicity from immunosuppressive agents. Protective strategies are being tested to circumvent several of these events including exploration of alternative transplantation sites, stem cell-derived insulin producing cell therapies, co-transplantation with mesenchymal stem cells or exploration of novel immune protective agents. Herein, we provide a brief introduction and history of islet cell transplantation, limitations associated with this procedure and methods to alleviate islet cell loss as a means to improve engraftment outcomes.

  16. Indium-Free PTB7/PC71BM Polymer Solar Cells with Solution-Processed Al:ZnO Electrodes on PET Substrates

    Directory of Open Access Journals (Sweden)

    P. Fuchs

    2016-01-01

    Full Text Available Inverted PTB7/PC71BM polymer solar cells are prepared on solution-processed Al:ZnO transparent contacts on PET substrates. Al:ZnO is deposited by a low temperature chemical bath deposition route (T < 100°C at any step to comply with the temperature sensitive substrate. A maximum conversion efficiency of 6.4% and 6.9% is achieved for the indium-free solar cells on PET and glass substrates, respectively. The devices are relatively stable in air whereby an initial efficiency loss in the order of 15% after storage for 15 days can be fully recovered by light soaking.

  17. Transplantation Dose Alters the Differentiation Program of Hematopoietic Stem Cells.

    Science.gov (United States)

    Brewer, Casey; Chu, Elizabeth; Chin, Mike; Lu, Rong

    2016-05-24

    Hematopoietic stem cell (HSC) transplantation is the most prevalent stem cell therapy, but it remains a risky procedure. To improve this treatment, it is important to understand how transplanted stem cells rebuild the blood and immune systems and how this process is impacted by transplantation variables such as the HSC dose. Here, we find that, in the long term following transplantation, 70%-80% of donor-HSC-derived clones do not produce all measured blood cell types. High HSC doses lead to more clones that exhibit balanced lymphocyte production, whereas low doses produce more T-cell-specialized clones. High HSC doses also produce significantly higher proportions of early-differentiating clones compared to low doses. These complex differentiation behaviors uncover the clonal-level regeneration dynamics of hematopoietic regeneration and suggest that transplantation dose can be exploited to improve stem cell therapy. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  18. Worse outcome and more chronic GVHD with peripheral blood progenitor cells than bone marrow in HLA-matched sibling donor transplants for young patients with severe acquired aplastic anemia.

    NARCIS (Netherlands)

    Schrezenmeier, H.; Passweg, J.R.; Marsh, J.C.; Bacigalupo, A.; Bredeson, C.N.; Bullorsky, E.; Camitta, B.M.; Champlin, R.E.; Gale, R.P.; Fuhrer, M.; Klein, J.P.; Locasciulli, A.; Oneto, R.; Schattenberg, A.V.M.B.; Socie, G.; Eapen, M.

    2007-01-01

    We analyzed the outcome of 692 patients with severe aplastic anemia (SAA) receiving transplants from HLA-matched siblings. A total of 134 grafts were peripheral blood progenitor cell (PBPC) grafts, and 558 were bone marrow (BM) grafts. Rates of hematopoietic recovery and grades 2 to 4 chronic

  19. A 3.0-kb deletion including an erythroid cell-specific regulatory element in intron 1 of the ABO blood group gene in an individual with the Bm phenotype.

    Science.gov (United States)

    Sano, R; Kuboya, E; Nakajima, T; Takahashi, Y; Takahashi, K; Kubo, R; Kominato, Y; Takeshita, H; Yamao, H; Kishida, T; Isa, K; Ogasawara, K; Uchikawa, M

    2015-04-01

    We developed a sequence-specific primer PCR (SSP-PCR) for detection of a 5.8-kb deletion (B(m) 5.8) involving an erythroid cell-specific regulatory element in intron 1 of the ABO blood group gene. Using this SSP-PCR, we performed genetic analysis of 382 individuals with Bm or ABm. The 5.8-kb deletion was found in 380 individuals, and disruption of the GATA motif in the regulatory element was found in one individual. Furthermore, a novel 3.0-kb deletion involving the element (B(m) 3.0) was demonstrated in the remaining individual. Comparisons of single-nucleotide polymorphisms and microsatellites in intron 1 between B(m) 5.8 and B(m) 3.0 suggested that these deletions occurred independently. © 2014 International Society of Blood Transfusion.

  20. Automated processing of human bone marrow grafts for transplantation.

    Science.gov (United States)

    Zingsem, J; Zeiler, T; Zimmermanm, R; Weisbach, V; Mitschulat, H; Schmid, H; Beyer, J; Siegert, W; Eckstein, R

    1993-01-01

    Prior to purging or cryopreservation, we concentrated 21 bone marrow (BM) harvests using a modification of the 'grancollect-protocol' of the Fresenius AS 104 cell separator with the P1-Y set. Within 40-70 min, the initial marrow volume of 1,265 ml (+/- 537 ml) was processed two to three times. A mean of 47% (+/- 21%) of the initial mononuclear cells was recovered in a mean volume of 128 ml (+36 ml). The recovery of clonogenic cells, measured by CFU-GM assays, was 68% (+/- 47%). Red blood cells in the BM concentrates were reduced to 7% (+/- 4%) of the initial number. The procedure was efficient and yielded a BM cell fraction suitable for purging, cryopreservation and transplantation. At this time, 10 of the 21 patients whose BM was processed using this technique have been transplanted. Seven of these 10 patients have been grafted using the BM alone. Three of the 10 patients showed reduced cell viability and colony growth in the thawed BM samples, and therefore obtained BM and peripheral blood-derived stem cells. All transplanted patients showed an evaluable engraftment, achieving 1,000 granulocytes per microliter of peripheral blood in a mean of 18 days.

  1. Transplantation of retinal pigment epithelial cells - a possible future treatment for age-related macular degeneration

    DEFF Research Database (Denmark)

    Wiencke, Anne Katrine

    2001-01-01

    ophthalmology, age-related macular degeneration, transplantation, retinal pigment epithelial cells, treatment......ophthalmology, age-related macular degeneration, transplantation, retinal pigment epithelial cells, treatment...

  2. Transplantation of retinal pigment epithelial cells - a possible future treatment for age-related macular degeneration

    DEFF Research Database (Denmark)

    Wiencke, Anne Katrine

    2001-01-01

    ophthalmology, age-related macular degeneration, retinal pigment epithelial cells, transplantation, treatment......ophthalmology, age-related macular degeneration, retinal pigment epithelial cells, transplantation, treatment...

  3. Bombyx mori nucleopolyhedrovirus nucleic acid binding proteins BRO-B and BRO-E associate with host T-cell intracellular antigen 1 homologue BmTRN-1 to influence protein synthesis during infection.

    Science.gov (United States)

    Kotani, Eiji; Muto, Sayaka; Ijiri, Hiroshi; Mori, Hajime

    2015-07-01

    Previous reports have indicated that the Bombyx mori nucleopolyhedrovirus (BmNPV) nucleic acid binding proteins BRO-B and BRO-E are expressed during the early stage of infection and that the BRO family likely supports the regulation of mRNA; however, no study has directly examined the function of BRO family proteins in virus-permissive cells. Here, we show that BRO-B and BRO-E associate with cellular T-cell intracellular antigen 1 homologue (BmTRN-1), a translational regulator, and other cellular translation-related proteins in silkworm cells during viral infection. We created BM-N cells that expressed BRO-B/E to study molecular interactions between BmTRN-1 and BRO-B/E and how they influenced protein synthesis. Fluorescent microscopy revealed that BmTRN-1 was localized in cytoplasmic foci during BmNPV infection. Immunofluorescence studies confirmed that BmTRN-1 and BRO-B/E were colocalized in the amorphous conspicuous cytoplasmic foci. Reporter gene studies revealed that co-expression of BRO-B/E synergistically led to a significant decrease in protein synthesis from a designed transcript carrying the 5'untranslated region of a cellular mRNA with no significant change of transcript abundance. Additionally, RNA interference-mediated knockdown of BmTRN-1 resulted in a marked inhibition of the ability of BRO-B/E to regulate the transcript. These results suggested that the association of BmTRN-1 with BRO-B/E is responsible for the inhibitory regulation of certain mRNAs at the post-transcriptional level and add an additional mechanism for how baculoviruses control protein synthesis during infection.

  4. Islet Cell Transplantation: MedlinePlus Health Topic

    Science.gov (United States)

    ... and Kidney Diseases) Learn More Beta Cell Breakthroughs (American Diabetes Association) Innovative Approaches to Treating Type 1 Diabetes Addressed in Beta-Cell Replacement Presentations (American Diabetes Association) Islet Transplantation (American Diabetes Association) Also in Spanish ...

  5. [Hepatic cell transplantation: a new therapy in liver diseases].

    Science.gov (United States)

    Pareja, Eugenia; Cortés, Miriam; Martínez, Amparo; Vila, Juan José; López, Rafael; Montalvá, Eva; Calzado, Angeles; Mir, José

    2010-07-01

    Liver transplantation has been remarkably effective in the treatment in patients with end-stage liver disease. However, disparity between solid-organ supply and increased demand is the greatest limitation, resulting in longer waiting times and increase in mortality of transplant recipients. This situation creates the need to seek alternatives to orthotopic liver transplantation.Hepatocyte transplantation or liver cell transplantation has been proposed as the best method to support patients. The procedure consists of transplanting individual cells to a recipient organ in sufficient quantity to survive and restore the function. The capacity of hepatic regeneration is the biological basis of hepatocyte transplantation. This therapeutic option is an experimental procedure in some patients with inborn errors of metabolism, fulminant hepatic failure and acute and chronic liver failure, as a bridge to orthotopic liver transplantation. In the Hospital La Fe of Valencia, we performed the first hepatocyte transplantation in Spain creating a new research work on transplant program. Copyright 2009 AEC. Published by Elsevier Espana. All rights reserved.

  6. Is there any reason to prefer cord blood instead of adult donors for hematopoietic stem cell transplants?

    Directory of Open Access Journals (Sweden)

    Meral eBeksac

    2016-01-01

    Full Text Available As cord blood (CB enables rapid access and tolerance to HLA mismatches, number of unrelated cord blood transplants have reached 30 000. Such transplant activity has been the result of international accreditation programs maintaining highly qualified CBUs reaching more than 600 000 CBUs stored worldwide. Efforts to increase stem cell content or engraftment rate of the graft by ex vivo expansion, modulation by molecules such as fucose, Prostaglandin E2 derivative, complement, CD26 inhibitors or CXCR4/CXCL12 axis have been able to accelerate engraftment speed and rate. Furthermore introduction of reduced intensity conditioning protocols, better HLA matching and recognition of the importance of HLA-C have improved CBT success by decreasing Transplant Related Mortality (TRM. Cord blood progenitor/stem cell content has been compared with adult stem cells revealing higher long-term repopulating capacity compared to BM-MSC and less oncogenic potential than Induced Progenitor Stem Cells. This chapter summarizes the advantage and disadvantages of CB compared to adult stem cells within the context of stem cell biology and transplantation.

  7. Allogeneic stem cell transplantation in acute myeloid leukemia

    Directory of Open Access Journals (Sweden)

    Natasha Ali

    2012-11-01

    Full Text Available We report a case series of 12 patients with acute myeloid leukemia who underwent allogeneic stem cell transplant with a matched related donor. Male to female ratio was 1:1. The main complication post-transplant was graft-versus-host disease (n=7 patients. Transplant-related mortality involved one patient; cause of death was multi-organ failure. After a median follow up of 36.0±11.3 months, overall survival was 16%.

  8. Role of bone marrow transplantation for correcting hemophilia A in mice

    Science.gov (United States)

    Follenzi, Antonia; Raut, Sanj; Merlin, Simone; Sarkar, Rita

    2012-01-01

    To better understand cellular basis of hemophilia, cell types capable of producing FVIII need to be identified. We determined whether bone marrow (BM)–derived cells would produce cells capable of synthesizing and releasing FVIII by transplanting healthy mouse BM into hemophilia A mice. To track donor-derived cells, we used genetic reporters. Use of multiple coagulation assays demonstrated whether FVIII produced by discrete cell populations would correct hemophilia A. We found that animals receiving healthy BM cells survived bleeding challenge with correction of hemophilia, although donor BM-derived hepatocytes or endothelial cells were extremely rare, and these cells did not account for therapeutic benefits. By contrast, donor BM-derived mononuclear and mesenchymal stromal cells were more abundant and expressed FVIII mRNA as well as FVIII protein. Moreover, injection of healthy mouse Kupffer cells (liver macrophage/mononuclear cells), which predominantly originate from BM, or of healthy BM-derived mesenchymal stromal cells, protected hemophilia A mice from bleeding challenge with appearance of FVIII in blood. Therefore, BM transplantation corrected hemophilia A through donor-derived mononuclear cells and mesenchymal stromal cells. These insights into FVIII synthesis and production in alternative cell types will advance studies of pathophysiological mechanisms and therapeutic development in hemophilia A. PMID:22368271

  9. Cytomegalovirus (CMV) Infection: A Guide for Patients and Families After Stem Cell Transplant

    Science.gov (United States)

    ... Infection: A Guide for Patients and Families after Stem Cell Transplant What is cytomegalovirus (CMV)? Cytomegalovirus (CMV), a ... weakened by medicines that you must take after stem cell transplant and by the transplant itself. Your body ...

  10. Transplantation and differentiation of donor cells in the cloned pigs

    International Nuclear Information System (INIS)

    Shimada, Arata; Tomii, Ryo; Kano, Koichiro; Nagashima, Hiroshi

    2006-01-01

    The application of nuclear transfer technology is an interesting approach to investigate stem and progenitor cell transplantation therapy. If stem cells are used as a nuclear donor, donor cells can engraft into cloned animals without histocompatible problems. However, it is still uncertain whether donor cells can engraft to cloned animal and differentiate in vivo. To address this problem, we transplanted donor cells to dermal tissues of cloned pigs developed by using preadipocytes as donor cells. Preadipocytes are adipocytic progenitor which can differentiate to mature adipocytes in vitro. We showed that the donor preadipocytes were successfully transplanted into the cloned pigs without immune rejection and they differentiated into mature adipocytes in vivo 3 weeks after transplantation. In contrast, allogenic control preadipocytes, which can differentiate in vitro, did not differentiate in vivo. These results indicate that donor progenitor cells can differentiate in cloned animal

  11. Limbal Stem Cell Deficiency and Treatment with Stem Cell Transplantation.

    Science.gov (United States)

    Barut Selver, Özlem; Yağcı, Ayşe; Eğrilmez, Sait; Gürdal, Mehmet; Palamar, Melis; Çavuşoğlu, Türker; Ateş, Utku; Veral, Ali; Güven, Çağrı; Wolosin, Jose Mario

    2017-10-01

    The cornea is the outermost tissue of the eye and it must be transparent for the maintenance of good visual function. The superficial epithelium of the cornea, which is renewed continuously by corneal stem cells, plays a critical role in the permanence of this transparency. These stem cells are localized at the cornea-conjunctival transition zone, referred to as the limbus. When this zone is affected/destroyed, limbal stem cell deficiency ensues. Loss of limbal stem cell function allows colonization of the corneal surface by conjunctival epithelium. Over 6 million people worldwide are affected by corneal blindness, and limbal stem cell deficiency is one of the main causes. Fortunately, it is becoming possible to recover vision by autologous transplantation of limbal cells obtained from the contralateral eye in unilateral cases. Due to the potential risks to the donor eye, only a small amount of tissue can be obtained, in which only 1-2% of the limbal epithelial cells are actually limbal stem cells. Vigorous attempts are being made to expand limbal stem cells in culture to preserve or even enrich the stem cell population. Ex vivo expanded limbal stem cell treatment in limbal stem cell deficiency was first reported in 1997. In the 20 years since, various protocols have been developed for the cultivation of limbal epithelial cells. It is still not clear which method promotes effective stem cell viability and this remains a subject of ongoing research. The most preferred technique for limbal cell culture is the explant culture model. In this approach, a small donor eye limbal biopsy is placed as an explant onto a biocompatible substrate (preferably human amniotic membrane) for expansion. The outgrowth (cultivated limbal epithelial cells) is then surgically transferred to the recipient eye. Due to changing regulations concerning cell-based therapy, the implementation of cultivated limbal epithelial transplantation in accordance with Good Laboratory Practice using

  12. Late effects of stem cell transplantation

    International Nuclear Information System (INIS)

    Ishiko, Yuka; Ishida, Yuji; Kou, Katsuyoshi; Honda, Koujirou; Kigasawa, Hisato; Ishikawa, Kumiko; Ohnuma, Kei; Toyoda, Yasunori; Nishihira, Hirokazu

    1999-01-01

    We reviewed growth and endocrine functions in 29 patients who underwent stem cell transplantation (SCT) at the Kanagawa Children's Medical Center and survived without disease for more than 1 year after their SCT. In our study, the more severe decrease of height standard deviation score (SDS) was observed in children who had undergone SCT at an earlier age, using total body irradiation (TBI). The risk factor of hypothyroidism after SCT was the cranial irradiation before SCT. Gonadal dysfunction occurred frequently in both boys and girls regardless of preparative regimen before SCT. It is important to observe carefully the effect of SCT on growth and endocrine function, and to consider whether the hormonal therapy is indicated. (author)

  13. Patients with Multiple Myeloma Develop SOX2-Specific Autoantibodies after Allogeneic Stem Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Sebastian Kobold

    2011-01-01

    Full Text Available The occurrence of SOX2-specific autoantibodies seems to be associated with an improved prognosis in patients with monoclonal gammopathy of undetermined significance (MGUS. However, it is unclear if SOX2-specific antibodies also develop in established multiple myeloma (MM. Screening 1094 peripheral blood (PB sera from 196 MM patients and 100 PB sera from healthy donors, we detected SOX2-specific autoantibodies in 7.7% and 2.0% of patients and donors, respectively. We identified SOX2211–230 as an immunodominant antibody-epitope within the full protein sequence. SOX2 antigen was expressed in most healthy tissues and its expression did not correlate with the number of BM-resident plasma cells. Accordingly, anti-SOX2 immunity was not related to SOX2 expression levels or tumor burden in the patients’ BM. The only clinical factor predicting the development of anti-SOX2 immunity was application of allogeneic stem cell transplantation (alloSCT. Anti-SOX2 antibodies occurred more frequently in patients who had received alloSCT (n=74. Moreover, most SOX2-seropositive patients had only developed antibodies after alloSCT. This finding indicates that alloSCT is able to break tolerance towards this commonly expressed antigen. The questions whether SOX2-specific autoantibodies merely represent an epiphenomenon, are related to graft-versus-host effects or participate in the immune control of myeloma needs to be answered in prospective studies.

  14. Immunosuppressive T-cell antibody induction for heart transplant recipients

    DEFF Research Database (Denmark)

    Penninga, Luit; Møller, Christian H; Gustafsson, Finn

    2013-01-01

    Heart transplantation has become a valuable and well-accepted treatment option for end-stage heart failure. Rejection of the transplanted heart by the recipient's body is a risk to the success of the procedure, and life-long immunosuppression is necessary to avoid this. Clear evidence is required...... to identify the best, safest and most effective immunosuppressive treatment strategy for heart transplant recipients. To date, there is no consensus on the use of immunosuppressive antibodies against T-cells for induction after heart transplantation....

  15. Imaging of complications from hematopoietic stem cell transplant

    International Nuclear Information System (INIS)

    Pandey, Tarun; Maximin, Suresh; Bhargava, Puneet

    2014-01-01

    Stem cell transplant has been the focus of clinical research for a long time given its potential to treat several incurable diseases like hematological malignancies, diabetes mellitus, and neuro-degenerative disorders like Parkinson disease. Hematopoietic stem cell transplantation (HSCT) is the oldest and most widely used technique of stem cell transplant. HSCT has not only been used to treat hematological disorders including hematological malignancies, but has also been found useful in treamtent of genetic, immunological, and solid tumors like neuroblastoma, lymphoma, and germ cell tumors. In spite of the rapid advances in stem cell technology, success rate with this technique has not been universal and many complications have also been seen with this form of therapy. The key to a successful HSCT therapy lies in early diagnosis and effective management of complications associated with this treatment. Our article aims to review the role of imaging in diagnosis and management of stem cell transplant complications associated with HSCT

  16. Characterization of the Bm61 of the Bombyx mori nucleopolyhedrovirus.

    Science.gov (United States)

    Shen, Hongxing; Chen, Keping; Yao, Qin; Zhou, Yang

    2009-07-01

    orf61 (bm61) of Bombyx mori Nucleopolyhedrovirus (BmNPV) is a highly conserved baculovirus gene, suggesting that it performs an important role in the virus life cycle whose function is unknown. In this study, we describe the characterization of bm61. Quantitative polymerase chain reaction (qPCR) and western blot analysis demonstrated that bm61 was expressed as a late gene. Immunofluorescence analysis by confocal microscopy showed that BM61 protein was localized on nuclear membrane and in intranuclear ring zone of infected cells. Structure localization of the BM61 in BV and ODV by western analysis demonstrated that BM61 was the protein of both BV and ODV. In addition, our data indicated that BM61 was a late structure protein localized in nucleus.

  17. Depression and anxiety following hematopoietic stem cell transplantation

    DEFF Research Database (Denmark)

    Kuba, K; Esser, P; Mehnert, A

    2017-01-01

    In this prospective multicenter study, we investigated the course of depression and anxiety during hematopoietic stem cell transplantation (HSCT) until 5 years after transplantation adjusting for medical information. Patients were consulted before HSCT (n=239), at 3 months (n=150), 12 months (n=102...

  18. ES-cell derived hematopoietic cells induce transplantation tolerance.

    Directory of Open Access Journals (Sweden)

    Sabrina Bonde

    Full Text Available BACKGROUND: Bone marrow cells induce stable mixed chimerism under appropriate conditioning of the host, mediating the induction of transplantation tolerance. However, their strong immunogenicity precludes routine use in clinical transplantation due to the need for harsh preconditioning and the requirement for toxic immunosuppression to prevent rejection and graft-versus-host disease. Alternatively, embryonic stem (ES cells have emerged as a potential source of less immunogenic hematopoietic progenitor cells (HPCs. Up till now, however, it has been difficult to generate stable hematopoietic cells from ES cells. METHODOLOGY/PRINCIPAL FINDINGS: Here, we derived CD45(+ HPCs from HOXB4-transduced ES cells and showed that they poorly express MHC antigens. This property allowed their long-term engraftment in sublethally irradiated recipients across MHC barriers without the need for immunosuppressive agents. Although donor cells declined in peripheral blood over 2 months, low level chimerism was maintained in the bone marrow of these mice over 100 days. More importantly, chimeric animals were protected from rejection of donor-type cardiac allografts. CONCLUSIONS: Our data show, for the first time, the efficacy of ES-derived CD45(+ HPCs to engraft in allogenic recipients without the use of immunosuppressive agents, there by protecting cardiac allografts from rejection.

  19. 76 FR 11491 - Advisory Council on Blood Stem Cell Transplantation; Request for Nominations for Voting Members

    Science.gov (United States)

    2011-03-02

    ... transplantation, Program priorities, research priorities, and the scope and design of the Stem Cell Therapeutic... Council on Blood Stem Cell Transplantation; Request for Nominations for Voting Members AGENCY: Health... on Blood Stem Cell Transplantation. The Advisory Council on Blood Stem Cell Transplantation was...

  20. Solid organ transplantation after allogeneic hematopoietic stem cell transplantation: a retrospective, multicenter study of the EBMT

    DEFF Research Database (Denmark)

    Koenecke, C; Hertenstein, B; Schetelig, J

    2010-01-01

    To analyze the outcome of solid organ transplantation (SOT) in patients who had undergone allogeneic hematopoietic stem cell transplantation (HSCT), a questionnaire survey was carried out within 107 European Group of Blood and Marrow Transplantation centers. This study covered HSCT between 1984...... for underlying malignant diseases was 4% at 5 years (95% CI, 0% to 12%). In summary, this study shows that selected patients receiving SOT after HSCT have a remarkably good overall and organ survival. These data indicate that SOT should be considered in selected patients with single organ failure after HSCT....

  1. Transplantation Tolerance Induction: Cell Therapies and their Mechanisms

    Directory of Open Access Journals (Sweden)

    Joseph R Scalea

    2016-03-01

    Full Text Available Cell based therapies have been studied extensively in the context of transplantation tolerance induction. The most successful protocols have relied on transfusion of bone marrow prior to the transplantation of a renal allograft. However, it is not clear that stem cells found in bone marrow are required in order to render a transplant candidate immunologically tolerant. Accordingly, mesenchymal stem cells, regulatory myeloid cells, T regulatory cells, and other cell types, are being tested as possible routes to tolerance induction, in the absence of donor derived stem cells. Early data with each of these cell types have been encouraging. However, the induction regimen capable of achieving consistent tolerance, whilst avoiding unwanted sided effects, and which is scalable to the human patient, has yet to be identified. Here we present the status of investigations of various tolerogenic cell types and the mechanistic rationale for their use in in tolerance induction protocols.

  2. Establishment of a murine graft-versus-myeloma model using allogeneic stem cell transplantation.

    Directory of Open Access Journals (Sweden)

    Marilène Binsfeld

    Full Text Available Multiple myeloma (MM is a malignant plasma cell disorder with poor long-term survival and high recurrence rates. Despite evidence of graft-versus-myeloma (GvM effects, the use of allogeneic hematopoietic stem cell transplantation (allo-SCT remains controversial in MM. In the current study, we investigated the anti-myeloma effects of allo-SCT from B10.D2 mice into MHC-matched myeloma-bearing Balb/cJ mice, with concomitant development of chronic graft-versus-host disease (GvHD.Balb/cJ mice were injected intravenously with luciferase-transfected MOPC315.BM cells, and received an allogeneic (B10.D2 donor or autologous (Balb/cJ donor transplant 30 days later. We observed a GvM effect in 94% of the allogeneic transplanted mice, as the luciferase signal completely disappeared after transplantation, whereas all the autologous transplanted mice showed myeloma progression. Lower serum paraprotein levels and lower myeloma infiltration in bone marrow and spleen in the allogeneic setting confirmed the observed GvM effect. In addition, the treated mice also displayed chronic GvHD symptoms. In vivo and in vitro data suggested the involvement of effector memory CD4 and CD8 T cells associated with the GvM response. The essential role of CD8 T cells was demonstrated in vivo where CD8 T-cell depletion of the graft resulted in reduced GvM effects. Finally, TCR Vβ spectratyping analysis identified Vβ families within CD4 and CD8 T cells, which were associated with both GvM effects and GvHD, whereas other Vβ families within CD4 T cells were associated exclusively with either GvM or GvHD responses.We successfully established an immunocompetent murine model of graft-versus-myeloma. This is the first murine GvM model using immunocompetent mice that develop MM which closely resembles human MM disease and that are treated after disease establishment with an allo-SCT. Importantly, using TCR Vβ spectratyping, we also demonstrated the presence of GvM unique responses

  3. Allogeneic haematopoietic stem cell transplantation for mitochondrial neurogastrointestinal encephalomyopathy

    NARCIS (Netherlands)

    Halter, Joerg P.; Schuepbach, W. Michael M.; Mandel, Hanna; Casali, Carlo; Orchard, Kim; Collin, Matthew; Valcarcel, David; Rovelli, Attilio; Filosto, Massimiliano; Dotti, Maria T.; Marotta, Giuseppe; Pintos, Guillem; Barba, Pere; Accarino, Anna; Ferra, Christelle; Illa, Isabel; Beguin, Yves; Bakker, Jaap A.; Boelens, Jaap J.; de Coo, Irenaeus F. M.; Fay, Keith; Sue, Carolyn M.; Nachbaur, David; Zoller, Heinz; Sobreira, Claudia; Simoes, Belinda Pinto; Hammans, Simon R.; Savage, David; Marti, Ramon; Chinnery, Patrick F.; Elhasid, Ronit; Gratwohl, Alois; Hirano, Michio

    2015-01-01

    Haematopoietic stem cell transplantation has been proposed as treatment for mitochondrial neurogastrointestinal encephalomyopathy, a rare fatal autosomal recessive disease due to TYMP mutations that result in thymidine phosphorylase deficiency. We conducted a retrospective analysis of all known

  4. Transplantation of bone marrow cells into lethally irradiated mice

    International Nuclear Information System (INIS)

    Viktora, L.; Hermanova, E.

    1978-01-01

    Morphological changes were studied of megakaryocytes in the bone marrow and spleen of lethally irradiated mice (0.2 C/kg) after transplantation of living bone marrow cells. It was observed that functional trombopoietic megakaryocytes occur from day 15 after transplantation and that functional active megakaryocytes predominate in bone marrow and spleen from day 20. In addition, other types of cells, primarily granulocytes, were detected in some megakaryocytes. (author)

  5. Prospective Clinical Testing of Regulatory Dendritic Cells in Organ Transplantation

    OpenAIRE

    Thomson, Angus W.; Zahorchak, Alan F.; Ezzelarab, Mohamed B.; Butterfield, Lisa H.; Lakkis, Fadi G.; Metes, Diana M.

    2016-01-01

    Dendritic cells (DC) are rare, professional antigen-presenting cells with ability to induce or regulate alloimmune responses. Regulatory DC (DCreg) with potential to down-modulate acute and chronic inflammatory conditions that occur in organ transplantation can be generated in vitro under a variety of conditions. Here, we provide a rationale for evaluation of DCreg therapy in clinical organ transplantation with the goal of promoting sustained, donor-specific hyporesponsiveness, while lowering...

  6. Risk factors for Epstein-Barr virus-related post-transplant lymphoproliferative disease after allogeneic hematopoietic stem cell transplantation.

    Science.gov (United States)

    Uhlin, Michael; Wikell, Helena; Sundin, Mikael; Blennow, Ola; Maeurer, Markus; Ringden, Olle; Winiarski, Jacek; Ljungman, Per; Remberger, Mats; Mattsson, Jonas

    2014-02-01

    Allogeneic hematopoietic stem cell transplantation is a successful treatment for hematologic malignancies and a variety of genetic and metabolic disorders. In the period following stem cell transplantation, the immune-compromised milieu allows opportunistic pathogens to thrive. Epstein-Barr virus-associated post-transplant lymphoproliferative disease can be a life-threatening complication for transplanted patients because of suppressed T-cell-mediated immunity. We analyzed possible risk factors associated with post-transplant lymphoproliferative disease in a cohort of over 1,000 patients. The incidence of post-transplant lymphoproliferative disease was 4%. Significant risk factors identified by multivariate analysis were: human leukocyte antigen-mismatch (PEpstein-Barr virus mismatch recipient-/donor+ (Pdisease grade II to IV (P=0.006), pre-transplant splenectomy (P=0.008) and infusion of mesenchymal stromal cells (P=0.015). The risk of post-transplant lymphoproliferative disease has increased in more recent years, from less than 2% before 1998 to more than 6% after 2011. Additionally, we show that long-term survival of patients with post-transplant lymphoproliferative disease is poor despite initial successful treatment. The 3-year survival rate among the 40 patients with post-transplant lymphoproliferative disease was 20% as opposed to 62% among patients without post-transplant lymphoproliferative disease (Pdisease after transplantation in need of pre-emptive measures.

  7. Twitter Use in the Hematopoietic Cell Transplantation Community.

    Science.gov (United States)

    Patel, Sagar S; Majhail, Navneet S

    2018-02-01

    Social media has revolutionized the access and exchange of information in healthcare. The microblogging platform Twitter has been used by blood and marrow transplant physicians over the last several years with increasing enthusiasm. We review the adoption of Twitter in the transplant community and its implications on clinical care, education, and research. Twitter allows instantaneous access to the latest research publications, developments at national and international meetings, networking with colleagues, participation in advocacy, and promoting available clinical trials. Additionally, Twitter serves as a gateway for resources dedicated to education and support for patients undergoing transplantation. We demonstrate the utilization and various applications in using Twitter among hematopoietic cell transplant healthcare professionals, patients, and other affiliated stakeholders. Professionalism concerns with clinician use of such social media platforms, however, also exist. Overall, Twitter has enhanced and increased the opportunities for engagement in the transplant community.

  8. Hematopoietic stem cell transplantation for indolent lymphomas

    International Nuclear Information System (INIS)

    Izutsu, Koji

    2008-01-01

    Described are the review of the transplantation in the title (SCT), and the possible impact on its application and outcome of radio-immunotherapy (RIT) by new antibody drugs like ibritumomab tiuxetan (Ibr) and tositumomab (Tos), and of chemotherapy by purine analogs. Various regimens for the combination of auto-SCT, allo-SCT, chemotherapy and total body irradiation (TBI) have been used to treat the recurrent and progressive indolent lymphoma including follicular lymphoma (FL); however, their outcomes are still controversial. Introduction of new drugs like rituximab (Rit), Ibr and Tos has made it possible to extend the options of the regimen. For instance, in auto-SCT in FL, a high dose Rit therapy is used for in vivo purging to reduce tumor cell contamination of the graft instead of the exhausting, high-cost pretreatment for the in vitro purging with cyclophosphamide (CY)/TBI hitherto. In addition, RIT by Tos at the absorbed dose of 20-27 Gy in the critical organs with CY/VP16 combination is reportedly superior to CY/VP16/TBI. In allo-SCT where recurrence frequency is known low despite high mortality due to various complications, many regimens involving fludarabine/TBI have been also reported. Thus there has been neither clear standard for SCT in the lymphoma nor yet its prognosis after the therapy with new drugs described and the accumulation of their findings hereafter is important for future SCT application. (R.T.)

  9. Total body irradiation in hematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Fundagul Andic

    2014-06-01

    Full Text Available Total body irradiation is used in conjunction with chemotherapy as a conditioning regimen in the treatment of many disease such as leukemia, myelodysplastic syndrome, aplastic anemia, multiple myeloma and lymphoma prior to the hematopoetic stem cell transplantation. The main purposes of the hematopoetic stem cell transplantation are eradication of the recipient bone marrow and any residual cancer cells, creation of space in the receipient bone marrow for donor hematopoetic stem cells, and immunosuppression to prevent rejection of donor stem cells in the case of an allotransplant. [Archives Medical Review Journal 2014; 23(3.000: 398-410

  10. Establishment of A Novel Chinese Human Lung Adenocarcinoma Cell Line CPA-Yang3 and Its Real Bone Metastasis Clone CPA-Yang3BM in Immunodeficient Mice

    Directory of Open Access Journals (Sweden)

    Shunfang YANG

    2011-02-01

    Full Text Available Background and objective The recurrence and metastasis of lung cancer is a tough problem worldwide. The aim of this study is to establish a novel Chinese lung adenocarcinoma cell line and its real bone-seeking clone sub-line for exploring the molecular mechanism of lung cancer metastasis. Methods The cells came from the pleural effusion of a sixtyfive years old female patient with lung adenocarcinoma and supraclavicular lymph node metastases. The gene expression was detected by real-time quantitative PCR. Intracardiac injection of the cells into nude mice was performed and in vivo imaging was obtained by bone scintigraphy and conventional radiography. Bone metastases were determined on bone scintigraphy and then the lesions were resected under deep anesthesia for bone metastasis cancer cell culture. The process was repeated for four cycles to obtain a real bone-seeking clone. Results The tumorigenesis rate started at 4th passage in immunodeficient mice via subcutaneously and as well as later passages. Approximately 1×106 cancer cells were injected into left cardiac ventricle of immunodeficient mice resulted bone metastasis sites were successfully revealed by bone scintigraphy and pathological diagnosis, the mandible (100%, scapula (33%, humerus (50%, vertebral column (50%, femur (66.7% and accompanied invasion with other organs, the adrenal gland (17%, pulmonary (33%, liver (50%, submaxillary gland (33% in the mice after inoculation two-three weeks. The chromosome karyotype analysis of the cells was subdiploid. Quantitative real-time PCR was used to examined and compared with SPC-A-1 lung adenocarcinoma, ESM1, VEGF-C, IL-6, IL-8, AR, SVIL, FN1 genes were overexpress. The novel cell was named CPA-Yang3. The femur metastasis cell was repeated in vivo-in vitro-in vivo with three cycles and harvested a real bone metastasis clone. It was named CPA-Yang3BM. Conclusion Tne characteristics of novel strain CPAYang3 is a highly metastasis cell line of

  11. Enhanced Power Conversion Efficiency of P3HT : PC71BM Bulk Heterojunction Polymer Solar Cells by Doping a High-Mobility Small Organic Molecule

    OpenAIRE

    Wang, Hanyu; Wang, Xiao; Fan, Pu; Yang, Xin; Yu, Junsheng

    2015-01-01

    The effect of molecular doping with TIPS-pentacene on the photovoltaic performance of polymer solar cells (PSCs) with a structure of ITO/ZnO/poly(3-hexylthiophene-2,5-diyl) (P3HT) : [6,6]-phenyl C71-butyric acid methyl ester (PC71BM) : TIPS-pentacene/MoOx/Ag was systematically investigated by adjusting TIPS-pentacene doping ratios ranged from 0.3 to 1.2 wt%. The device with 0.6 wt% TIPS-pentacene exhibited the enhanced short-circuit current and fill factor by 1.23 mA/cm2 and 7.8%, respectivel...

  12. Reduction of microhemorrhages in the spinal cord of symptomatic ALS mice after intravenous human bone marrow stem cell transplantation accompanies repair of the blood-spinal cord barrier.

    Science.gov (United States)

    Eve, David J; Steiner, George; Mahendrasah, Ajay; Sanberg, Paul R; Kurien, Crupa; Thomson, Avery; Borlongan, Cesar V; Garbuzova-Davis, Svitlana

    2018-02-13

    Blood-spinal cord barrier (BSCB) alterations, including capillary rupture, have been demonstrated in animal models of amyotrophic lateral sclerosis (ALS) and ALS patients. To date, treatment to restore BSCB in ALS is underexplored. Here, we evaluated whether intravenous transplantation of human bone marrow CD34 + (hBM34 + ) cells into symptomatic ALS mice leads to restoration of capillary integrity in the spinal cord as determined by detection of microhemorrhages. Three different doses of hBM34 + cells (5 × 10 4 , 5 × 10 5 or 1 × 10 6 ) or media were intravenously injected into symptomatic G93A SOD1 mice at 13 weeks of age. Microhemorrhages were determined in the cervical and lumbar spinal cords of mice at 4 weeks post-treatment, as revealed by Perls' Prussian blue staining for ferric iron. Numerous microhemorrhages were observed in the gray and white matter of the spinal cords in media-treated mice, with a greater number of capillary ruptures within the ventral horn of both segments. In cell-treated mice, microhemorrhage numbers in the cervical and lumbar spinal cords were inversely related to administered cell doses. In particular, the pervasive microvascular ruptures determined in the spinal cords in late symptomatic ALS mice were significantly decreased by the highest cell dose, suggestive of BSCB repair by grafted hBM34 + cells. The study results provide translational outcomes supporting transplantation of hBM34 + cells at an optimal dose as a potential therapeutic strategy for BSCB repair in ALS patients.

  13. Adoptive regulatory T cell therapy: challenges in clinical transplantation.

    Science.gov (United States)

    Safinia, Niloufar; Sagoo, Pervinder; Lechler, Robert; Lombardi, Giovanna

    2010-08-01

    The identification and characterisation of regulatory T cells (Tregs) has recently opened up exciting opportunities for Treg cell therapy in transplantation. In this review, we outline the basic biology of Tregs and discuss recent advances and challenges for the identification, isolation and expansion of these cells for cell therapy. Tregs of thymic origin have been shown to be key regulators of immune responses in mice and humans, preventing autoimmunity, graft-versus-host disease and organ graft rejection in the transplantation setting. To date, a variety of different methods to isolate and expand Tregs ex vivo have been advocated. Although promising, relatively few clinical trials of human Treg cell infusion have been initiated. Many key questions about Treg cell therapy still remain and here we provide an in-depth analysis and highlight the challenges and opportunities for immune intervention with Treg-based therapeutics in clinical transplantation.

  14. Autologous hematopoietic stem cell transplantation in classical Hodgkin's lymphoma

    Directory of Open Access Journals (Sweden)

    Afonso José Pereira Cortez

    2011-02-01

    Full Text Available BACKGROUND: Hodgkin's lymphoma has high rates of cure, but in 15% to 20% of general patients and between 35% and 40% of those in advanced stages, the disease will progress or will relapse after initial treatment. For this group, hematopoietic stem cell transplantation is considered one option of salvage therapy. OBJECTIVES: To evaluate a group of 106 patients with Hodgkin's lymphoma, who suffered relapse or who were refractory to treatment, submitted to autologous hematopoietic stem cell transplantation in a single transplant center. METHODS: A retrospective study was performed with data collected from patient charts. The analysis involved 106 classical Hodgkin's lymphoma patients who were consecutively submitted to high-dose chemotherapy followed by autologous transplants in a single institution from April 1993 to December 2006. RESULTS: The overall survival rates of this population at five and ten years were 86% and 70%, respectively. The disease-free survival was approximately 60% at five years. Four patients died of procedure-related causes but relapse of classical Hodgkin's lymphoma after transplant was the most frequent cause of death. Univariate analysis shows that sensitivity to pre-transplant treatment and hemoglobin < 10 g/dL at diagnosis had an impact on patient survival. Unlike other studies, B-type symptoms did not seem to affect overall survival. Lactic dehydrogenase and serum albumin concentrations analyzed at diagnosis did not influence patient survival either. CONCLUSION: Autologous hematopoietic stem cell transplantation is an effective treatment strategy for early and late relapse in classical Hodgkin's lymphoma for cases that were responsive to pre-transplant chemotherapy. Refractory to treatment is a sign of worse prognosis. Additionally, a hemoglobin concentration below 10 g/dL at diagnosis of Hodgkin's lymphoma has a negative impact on the survival of patients after transplant. As far as we know this relationship has not

  15. Allogeneic Stem Cell Transplantation: A Historical and Scientific Overview.

    Science.gov (United States)

    Singh, Anurag K; McGuirk, Joseph P

    2016-11-15

    The field of hematopoietic stem cell transplant (HSCT) has made ground-breaking progress in the treatment of many malignant and nonmalignant conditions. It has also pioneered the concepts of stem cell therapy and immunotherapy as a tool against cancer. The success of transplant for hematologic malignancies derives both from the ability to treat patients with intensive chemoradiotherapy and from potent graft-versus-leukemia (GVL) effects mediated by donor immunity. Additionally, HSCT has been a curative therapy for several nonmalignant hematologic disorders through the provision of donor-derived hematopoiesis and immunity. Preclinical and clinical research in the field has contributed to an advanced understanding of histocompatibility, graft-versus-host disease (GVHD), GVL effect, and immune reconstitution after transplant. Improved donor selection, tailored conditioning regimens, and better supportive care have helped reduce transplant-related morbidity and mortality and expanded access. The development of unrelated donor registries and increased utilization of cord blood and partially matched related donor transplants have ensured a donor for essentially everyone who needs a transplant. However, significant barriers still remain in the form of disease relapse, GVHD infectious complications, and regimen-related toxicities. Recent developments in the field of cellular therapy are expected to further improve the efficacy of transplant. In this review, we discuss the current science of HSCT from a historical perspective, highlighting major discoveries. We also speculate on future directions in this field. Cancer Res; 76(22); 6445-51. ©2016 AACR. ©2016 American Association for Cancer Research.

  16. Desensitization for solid organ and hematopoietic stem cell transplantation.

    Science.gov (United States)

    Zachary, Andrea A; Leffell, Mary S

    2014-03-01

    Desensitization protocols are being used worldwide to enable kidney transplantation across immunologic barriers, i.e. antibody to donor HLA or ABO antigens, which were once thought to be absolute contraindications to transplantation. Desensitization protocols are also being applied to permit transplantation of HLA mismatched hematopoietic stem cells to patients with antibody to donor HLA, to enhance the opportunity for transplantation of non-renal organs, and to treat antibody-mediated rejection. Although desensitization for organ transplantation carries an increased risk of antibody-mediated rejection, ultimately these transplants extend and enhance the quality of life for solid organ recipients, and desensitization that permits transplantation of hematopoietic stem cells is life saving for patients with limited donor options. Complex patient factors and variability in treatment protocols have made it difficult to identify, precisely, the mechanisms underlying the downregulation of donor-specific antibodies. The mechanisms underlying desensitization may differ among the various protocols in use, although there are likely to be some common features. However, it is likely that desensitization achieves a sort of immune detente by first reducing the immunologic barrier and then by creating an environment in which an autoregulatory process restricts the immune response to the allograft. © 2014 The Authors. Immunological Reviews Published by John Wiley & Sons Ltd.

  17. Hematopoietic stem cell transplantation in Europe 2014: more than 40 000 transplants annually.

    Science.gov (United States)

    Passweg, J R; Baldomero, H; Bader, P; Bonini, C; Cesaro, S; Dreger, P; Duarte, R F; Dufour, C; Kuball, J; Farge-Bancel, D; Gennery, A; Kröger, N; Lanza, F; Nagler, A; Sureda, A; Mohty, M

    2016-06-01

    A record number of 40 829 hematopoietic stem cell transplantation (HSCT) in 36 469 patients (15 765 allogeneic (43%), 20 704 autologous (57%)) were reported by 656 centers in 47 countries to the 2014 survey. Trends include: continued growth in transplant activity, more so in Eastern European countries than in the west; a continued increase in the use of haploidentical family donors (by 25%) and slower growth for unrelated donor HSCT. The use of cord blood as a stem cell source has decreased again in 2014. Main indications for HSCT were leukemias: 11 853 (33%; 96% allogeneic); lymphoid neoplasias; 20 802 (57%; 11% allogeneic); solid tumors; 1458 (4%; 3% allogeneic) and non-malignant disorders; 2203 (6%; 88% allogeneic). Changes in transplant activity include more allogeneic HSCT for AML in CR1, myeloproliferative neoplasm (MPN) and aplastic anemia and decreasing use in CLL; and more autologous HSCT for plasma cell disorders and in particular for amyloidosis. In addition, data on numbers of teams doing alternative donor transplants, allogeneic after autologous HSCT, autologous cord blood transplants are presented.

  18. Hickman catheter embolism in a child during stem cell transplantation

    International Nuclear Information System (INIS)

    Ahmed, P.; Khan, B.; Ullah, K.; Ahmed, W.; Hussain, I.; Khan, A.A.; Anwar, M.

    2003-01-01

    The majority of stem cell recipients rely on indwelling central venous catheters situated in superior vena cava or right atrium. Semi-permanent tunneled silicone rubber Hickman catheters are widely used to provide durable central venous access for patients undergoing stem cell transplantation. A case of 5 years old child with diagnosis of severe aplastic anemia is reported. The patient received peripheral blood stem cells (PBSC) and had successful engraftment with complete hematological recovery. He had Hickman catheter embolism in the pulmonary circulation following unsuccessful attempt to remove the line. The catherter was successfully removed by midsternostomy operation. The child is normal with sustained remission on day +218 post stem cell transplant. (author)

  19. FIFTY YEARS OF MELPHALAN USE IN HEMATOPOIETIC STEM CELL TRANSPLANTATION

    Science.gov (United States)

    Bayraktar, Ulas D.; Bashir, Qaiser; Qazilbash, Muzaffar; Champlin, Richard E.; Ciurea, Stefan O.

    2015-01-01

    Melphalan remains the most widely used agent in preparative regimens for hematopoietic stem-cell transplantation. From its initial discovery more than 50 years ago, it has been gradually incorporated in the conditioning regimens for both autologous and allogeneic transplantation due to its myeloablative properties and broad antitumor effects as a DNA alkylating agent. Melphalan remains the mainstay conditioning for multiple myeloma and lymphomas; and has been used successfully in preparative regimens of a variety of other hematological and non-hematological malignancies. The addition of newer agents to conditioning like bortezomib or lenalidomide for myeloma, or clofarabine for myeloid malignancies, may improve antitumor effects for transplantation, while in combination with alemtuzumab may represent a backbone for future cellular therapy due to reliable engraftment and low toxicity profile. This review summarizes the development and the current use of this remarkable drug in hematopoietic stem-cell transplantation. PMID:22922522

  20. [Role of stem cell transplantation in treatment of primary cutaneous T‑cell lymphoma].

    Science.gov (United States)

    Stranzenbach, R; Theurich, S; Schlaak, M

    2017-09-01

    Within the heterogeneous group of cutaneous T‑cell lymphomas (CTCL) the therapeutic options for advanced and progressive forms are particularly limited. The therapeutic value of hematopoietic stem cell transplantation in CTCL was analyzed. A literature search using the keywords "hematopoietic stem cell transplantation" and "cutaneous T‑cell lymphoma" was performed in PubMed. Studies between 1990 and 2017 were taken into account. The studies identified were analyzed for relevance and being up to date. After reviewing the currently available literature no prospective randomized studies were found. Wu et al. showed a superiority of allogeneic transplantation in a comparison of autologous and allogeneic stem cell transplantation for cutaneous lymphoma. The graft-versus-lymphoma effect plays a significant role in a prolonged progression-free survival after allogeneic transplantation. By using a non-myeloablative conditioning regimen, stem cell transplantation can also be an option for elderly patients. The most extensive long-term data after allogeneic stem cell transplantation were reported by Duarte et al. in 2014. Autologous stem cell transplantation does not currently represent a therapeutic option, whereas allogeneic stem cell transplantation for advanced cutaneous T‑cell lymphoma, using a non-myeloablative conditioning scheme, does represent a therapeutic option. However, there is no consensus on the appropriate patients and the right timing. Morbidity and mortality of complications should be taken into account. Thus, this procedure is currently subject to an individual case decision.

  1. T cell reconstitution in allogeneic haematopoietic stem cell transplantation

    DEFF Research Database (Denmark)

    Kielsen, K; Jordan, K K; Uhlving, H H

    2015-01-01

    Infections and acute graft-versus-host disease (aGVHD) are major causes of treatment-related mortality and morbidity following allogeneic haematopoietic stem cell transplantation (HSCT). Both complications depend on reconstitution of the T-lymphocyte population based on donor T cells. Although...... it is well established that Interleukin-7 (IL-7) is a cytokine essential for de novo T cell development in the thymus and homoeostatic peripheral expansion of T cells, associations between circulating levels of IL-7 and T cell reconstitution following HSCT have not been investigated previously. We...... in patients treated with anti-thymocyte globulin (ATG) compared with those not treated with ATG (P = 0.0079). IL-7 levels at day +7 were negatively associated with T cell counts at day +30 to +60 (at day +60: CD3(+) : β = -10.6 × 10(6) cells/l, P = 0.0030; CD8(+) : β = -8.4 × 10(6) cells/l, P = 0.061; CD4...

  2. Dataset on the absorption of PCDTBT:PC70BM layers and the electro-optical characteristics of air-stable, large-area PCDTBT:PC70BM-based polymer solar cell modules, deposited with a custom built slot-die coater

    Directory of Open Access Journals (Sweden)

    Dimitar I. Kutsarov

    2017-04-01

    Full Text Available The data presented in this article is related to the research article entitled “Fabrication of air-stable, large-area, PCDTBT:PC70BM polymer solar cell modules using a custom built slot-die coater” (D.I. Kutsarov, E. New, F. Bausi, A. Zoladek-Lemanczyk, F.A. Castro, S.R.P. Silva, 2016 [1]. The repository name and reference number for the raw data from the abovementioned publication can be found under: https://doi.org/10.15126/surreydata.00813106. In this data in brief article, additional information about the absorption properties of PCDTBT:PC70BM layers deposited from a 12.5 mg/ml and 15 mg/ml photoactive layer dispersion are shown. Additionally, the best and average J-V curves of single cells, fabricated from the 10 and 15 mg/ml dispersions, are presented.

  3. Strength Training Following Hematopoietic Stem Cell Transplantation

    Science.gov (United States)

    Hacker, Eileen Danaher; Larson, Janet; Kujath, Amber; Peace, David; Rondelli, Damiano; Gaston, Lisa

    2010-01-01

    Background Patients receiving high-dose chemotherapy and hematopoietic stem cell transplantation (HSCT) experience considerable reductions in physical activity and deterioration of their health status. Objective The purpose of this pilot study was to test the effects of strength training compared to usual activity on physical activity, muscle strength, fatigue, health status perceptions, and quality of life following HSCT. Interventions/Methods Nineteen subjects were randomized to the exercise or control group. Moderate intensity strength training began following discharge from the hospital. Dependent variables included physical activity, muscle strength, fatigue, health status perceptions and quality of life. Variables were measured prior to admission to the hospital for HSCT, day 8 following HSCT, and six weeks following discharge from the hospital. Results Significant time effects were noted for many variables with anticipated declines in physical activity, muscle strength, fatigue, and health status perceptions immediately after HSCT with subsequent improvements six weeks following hospital discharge. One group effect was noted with subjects in the exercise group reporting less fatigue than subjects in the control group. Although no significant interactions were detected, the trends suggest that the exercise group may be more physically active following the intervention compared to the usual activity group. Conclusions This study demonstrates the potential positive effects of strength training on physical activity, fatigue, and quality of life in people receiving high-dose chemotherapy and HSCT. Implications for Practice Preliminary evidence is provided for using strength training to enhance early recovery following HSCT. Elastic resistance bands are easy to use and relatively inexpensive. PMID:21116175

  4. Stem Cell Microencapsulation for Phenotypic Control, Bioprocessing, and Transplantation

    Science.gov (United States)

    Wilson, Jenna L.

    2014-01-01

    Cell microencapsulation has been utilized for decades as a means to shield cells from the external environment while simultaneously permitting transport of oxygen, nutrients, and secretory molecules. In designing cell therapies, donor primary cells are often difficult to obtain and expand to appropriate numbers, rendering stem cells an attractive alternative due to their capacities for self-renewal, differentiation, and trophic factor secretion. Microencapsulation of stem cells offers several benefits, namely the creation of a defined microenvironment which can be designed to modulate stem cell phenotype, protection from hydrodynamic forces and prevention of agglomeration during expansion in suspension bioreactors, and a means to transplant cells behind a semi-permeable barrier, allowing for molecular secretion while avoiding immune reaction. This review will provide an overview of relevant microencapsulation processes and characterization in the context of maintaining stem cell potency, directing differentiation, investigating scalable production methods, and transplanting stem cells for clinically relevant disorders. PMID:23239279

  5. Oral changes in individuals undergoing hematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Regina Haddad Barrach

    2015-04-01

    Full Text Available INTRODUCTION: Patients undergoing hematopoietic stem cell transplantation receive high doses of chemotherapy and radiotherapy, which cause severe immunosuppression.OBJECTIVE: To report an oral disease management protocol before and after hematopoietic stem cell transplantation.METHODS: A prospective study was carried out with 65 patients aged > 18 years, with hematological diseases, who were allocated into two groups: A (allogeneic transplant, 34 patients; B (autologous transplant, 31 patients. A total of three dental status assessments were performed: in the pre-transplantation period (moment 1, one week after stem cell infusion (moment 2, and 100 days after transplantation (moment 3. In each moment, oral changes were assigned scores and classified as mild, moderate, and severe risks.RESULTS: The most frequent pathological conditions were gingivitis, pericoronitis in the third molar region, and ulcers at the third moment assessments. However, at moments 2 and 3, the most common disease was mucositis associated with toxicity from the drugs used in the immunosuppression.CONCLUSION: Mucositis accounted for the increased score and potential risk of clinical complications. Gingivitis, ulcers, and pericoronitis were other changes identified as potential risk factors for clinical complications.

  6. Characterization of Bombyx mori nucleopolyhedrovirus with a knockout of Bm17

    OpenAIRE

    Shen, Hongxing; Zhou, Yang; Zhang, Wen; Nin, Bin; Wang, Hua; Wang, Xiaochun; Shao, Shihe; Chen, Huiqing; Guo, Zhongjian; Liu, Xiaoyong; Yao, Qin; Chen, Keping

    2012-01-01

    Open reading frame 17 (Bm17) gene of Bombyx mori nucleopolyhedrovirus is a highly conserved gene in lepidopteran nucleopolyhedroviruses, but its function remains unknown. In this report, transient-expression and superinfection assays indicated that BM17 localized in the nucleus and cytoplasm of infected BmN cells. To determine the role of Bm17 in baculovirus life cycle, we constructed a Bm17 knockout virus and characterized its properties in cells. Analysis of the production and infection of ...

  7. COST BM0607

    International Nuclear Information System (INIS)

    Jong, M. de

    2009-01-01

    COST is an intergovernmental framework for European Cooperation in Science and Technology, allowing the coordination of nationally-funded research on a European level. COST contributes to reducing the fragmentation in European research investments and opening the European Research Area to cooperation worldwide. COST is specifically designed to network researchers mainly within the European Union that work on a specific topic. This COST BM0607 Action on cancer therapy using innovative targeting nanomedicines is highly multidisciplinary: nuclear medicine physicians, clinical oncologists, surgeons, physicists, radiobiologists, (in)organic chemists, radiochemists, radiopharmacists, pathologists and scientists from biomics participate in it. They define innovative new targets for cancer therapy, develop lead compounds and new radiolabelled ligands as vectors, perform molecular imaging and biologic testing, develop improved software and protocols for dosimetric calculations and select new vectors for early human use. Within the COST BM0607 more than 100 scientists from 21 countries are participating to work within 5 different working groups. Working group 1 works on the establishment of Database on Molecular Targets for Targeted Radionuclide Therapy, working group 2 deals with the development and improvement of chemistry related to new molecules for targeted radionuclide therapy. Working group 3 is dedicated to dosimetry aspects, whereas working group 4 tries to optimize the use of new radionuclides for therapy from cyclotron, reactor and generator production. Finally, working group 5 has the aim to bring together research related to pharmacology and small animal imaging with new tracers for targeted radionuclide therapy. COST thereby organizes annual meetings of the whole group and in between dedicated meetings of the working groups. Besides organizing meetings one aim of COST is additionally to promote young researchers where short term scientific missions (STSM) are

  8. Endovascular transplantation of stem cells to the injured rat CNS

    International Nuclear Information System (INIS)

    Lundberg, Johan; Soederman, Mikael; Andersson, Tommy; Holmin, Staffan; Le Blanc, Katarina

    2009-01-01

    Transplantation procedures using intraparenchymal injection of stem cells result in tissue injury in addition to associated surgical risks. Intravenous injection of mesenchymal stem cells gives engraftment to lesions, but the method has low efficiency and specificity. In traumatic brain injuries (TBI), there is a transient breakdown of the blood-brain barrier and an inflammatory response, which increase migration of cells from blood to parenchyma. The aim of this investigation was to analyze the effect of intra-arterial administration on cellular engraftment. Experimental TBI was produced in a rat model. Endovascular technique was used to administer human mesenchymal stem cells in the ipsilateral internal carotid artery. Evaluation of engraftment and side effects were performed by immunohistochemical analysis of the brain and several other organs. The results were compared to intravenous administration of stem cells. Intra-arterial transplantion of mesenchymal stem cells resulted in central nervous system (CNS) engraftment without thromboembolic ischemia. We observed a significantly higher number of transplanted cells in the injured hemisphere after intra-arterial compared to intravenous administration both 1 day (p<0.01) and 5 days (p<0.05) after the transplantation. Some cells were also detected in the spleen but not in the other organs analyzed. Selective intra-arterial administration of mesenchymal stem cells to the injured CNS is a minimally invasive method for transplantation. The method is significantly more efficient than the intravenous route and causes no side effects in the current model. The technique can potentially be used for repeated transplantation to the CNS after TBI and in other diseases. (orig.)

  9. Endovascular transplantation of stem cells to the injured rat CNS

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, Johan; Soederman, Mikael; Andersson, Tommy; Holmin, Staffan [Karolinska University Hospital, Department of Clinical Neuroscience, Karolinska Institutet, Department of Neuroradiology, Stockholm (Sweden); Le Blanc, Katarina [Karolinska University Hospital, Department of Stem Cell Research, Karolinska Institutet, Department of Clinical Immunology, Stockholm (Sweden)

    2009-10-15

    Transplantation procedures using intraparenchymal injection of stem cells result in tissue injury in addition to associated surgical risks. Intravenous injection of mesenchymal stem cells gives engraftment to lesions, but the method has low efficiency and specificity. In traumatic brain injuries (TBI), there is a transient breakdown of the blood-brain barrier and an inflammatory response, which increase migration of cells from blood to parenchyma. The aim of this investigation was to analyze the effect of intra-arterial administration on cellular engraftment. Experimental TBI was produced in a rat model. Endovascular technique was used to administer human mesenchymal stem cells in the ipsilateral internal carotid artery. Evaluation of engraftment and side effects were performed by immunohistochemical analysis of the brain and several other organs. The results were compared to intravenous administration of stem cells. Intra-arterial transplantion of mesenchymal stem cells resulted in central nervous system (CNS) engraftment without thromboembolic ischemia. We observed a significantly higher number of transplanted cells in the injured hemisphere after intra-arterial compared to intravenous administration both 1 day (p<0.01) and 5 days (p<0.05) after the transplantation. Some cells were also detected in the spleen but not in the other organs analyzed. Selective intra-arterial administration of mesenchymal stem cells to the injured CNS is a minimally invasive method for transplantation. The method is significantly more efficient than the intravenous route and causes no side effects in the current model. The technique can potentially be used for repeated transplantation to the CNS after TBI and in other diseases. (orig.)

  10. Advances in Cell Transplantation Therapy for Diseased Myocardium

    Directory of Open Access Journals (Sweden)

    Outi M. Villet

    2011-01-01

    Full Text Available The overall objective of cell transplantation is to repopulate postinfarction scar with contractile cells, thus improving systolic function, and to prevent or to regress the remodeling process. Direct implantation of isolated myoblasts, cardiomyocytes, and bone-marrow-derived cells has shown prospect for improved cardiac performance in several animal models and patients suffering from heart failure. However, direct implantation of cultured cells can lead to major cell loss by leakage and cell death, inappropriate integration and proliferation, and cardiac arrhythmia. To resolve these problems an approach using 3-dimensional tissue-engineered cell constructs has been investigated. Cell engineering technology has enabled scaffold-free sheet development including generation of communication between cell graft and host tissue, creation of organized microvascular network, and relatively long-term survival after in vivo transplantation.

  11. Allogeneic hematopoietic stem-cell transplantation for leukocyte adhesion deficiency

    DEFF Research Database (Denmark)

    Qasim, Waseem; Cavazzana-Calvo, Marina; Davies, E Graham

    2009-01-01

    OBJECTIVES: Leukocyte adhesion deficiency is a rare primary immune disorder caused by defects of the CD18 beta-integrin molecule on immune cells. The condition usually presents in early infancy and is characterized by deep tissue infections, leukocytosis with impaired formation of pus, and delayed...... of leukocyte adhesion deficiency who underwent hematopoietic stem-cell transplantation between 1993 and 2007 was retrospectively analyzed. Data were collected by the registries of the European Society for Immunodeficiencies/European Group for Blood and Marrow Transplantation, and the Center for International......, with full donor engraftment in 17 cases, mixed multilineage chimerism in 7 patients, and mononuclear cell-restricted chimerism in an additional 3 cases. CONCLUSIONS: Hematopoietic stem-cell transplantation offers long-term benefit in leukocyte adhesion deficiency and should be considered as an early...

  12. Facial Reconstruction by Biosurgery: Cell Transplantation Versus Cell Homing

    Science.gov (United States)

    Stosich, Michael S.; Moioli, Eduardo K.; Lee, Chang Hun; Fu, Susan Y.; Bastian, Barbara; Eisig, Sidney B.; Zemnick, Candice; Ascherman, Jeffrey; Wu, June; Rohde, Christine; Ahn, Jeffrey

    2010-01-01

    The face distinguishes one human being from another. When the face is disfigured because of trauma, tumor removal, congenital anomalies, or chronic diseases, the patient has a strong desire for functional and esthetic restoration. Current practice of facial reconstruction using autologous grafts, synthetic fillers, and prostheses is frequently below the surgeon's and patient's expectations. Facial reconstruction is yet to take advantage of recent advances in seemingly unrelated fields of stem cell biology, chemical engineering, biomaterials, and tissue engineering. “Biosurgery,” a new concept that we propose, will incorporate novel principles and strategies of bioactive cues, biopolymers, and/or cells to restore facial defects. Small facial defects can likely be reconstructed by cell homing and without cell transplantation. A critical advantage of cell homing is that agilely recruited endogenous cells have the potential to harness the host's innate capacity for regeneration, thus accelerating the rate of regulatory and commercialization processes for product development. Large facial defects, however, may not be restorable without cell delivery per our understanding at this time. New breakthrough in biosurgery will likely originate from integrated strategies of cell biology, cytokine biology, chemical engineering, biomaterials, and tissue engineering. Regardless of cell homing or cell delivery approaches, biosurgery not only will minimize surgical trauma and repetitive procedures, but also produce long-lasting results. At the same time, caution must be exercised against the development of products that lack scientific basis or dogmatic combination of cells, biomaterials, and biomolecules. Together, scientifically derived biosurgery will undoubtedly develop into new technologies that offer increasingly natural reconstruction and/or augmentation of the face. PMID:19891541

  13. Islet and Stem Cell Encapsulation for Clinical Transplantation

    Science.gov (United States)

    Krishnan, Rahul; Alexander, Michael; Robles, Lourdes; Foster 3rd, Clarence E.; Lakey, Jonathan R.T.

    2014-01-01

    Over the last decade, improvements in islet isolation techniques have made islet transplantation an option for a certain subset of patients with long-standing diabetes. Although islet transplants have shown improved graft function, adequate function beyond the second year has not yet been demonstrated, and patients still require immunosuppression to prevent rejection. Since allogeneic islet transplants have experienced some success, the next step is to improve graft function while eliminating the need for systemic immunosuppressive therapy. Biomaterial encapsulation offers a strategy to avoid the need for toxic immunosuppression while increasing the chances of graft function and survival. Encapsulation entails coating cells or tissue in a semipermeable biocompatible material that allows for the passage of nutrients, oxygen, and hormones while blocking immune cells and regulatory substances from recognizing and destroying the cell, thus avoiding the need for systemic immunosuppressive therapy. Despite advances in encapsulation technology, these developments have not yet been meaningfully translated into clinical islet transplantation, for which several factors are to blame, including graft hypoxia, host inflammatory response, fibrosis, improper choice of biomaterial type, lack of standard guidelines, and post-transplantation device failure. Several new approaches, such as the use of porcine islets, stem cells, development of prevascularized implants, islet nanocoating, and multilayer encapsulation, continue to generate intense scientific interest in this rapidly expanding field. This review provides a comprehensive update on islet and stem cell encapsulation as a treatment modality in type 1 diabetes, including a historical outlook as well as current and future research avenues. PMID:25148368

  14. Clinical trials for stem cell transplantation: when are they needed?

    Science.gov (United States)

    Van Pham, Phuc

    2016-04-27

    In recent years, both stem cell research and the clinical application of these promising cells have increased rapidly. About 1000 clinical trials using stem cells have to date been performed globally. More importantly, more than 10 stem cell-based products have been approved in some countries. With the rapid growth of stem cell applications, some countries have used clinical trials as a tool to diminish the rate of clinical stem cell applications. However, the point at which stem cell clinical trials are essential remains unclear. This commentary discusses when stem cell clinical trials are essential for stem cell transplantation therapies.

  15. Enhanced charge transport and photovoltaic performance of PBDTTT-C-T/PC70BM solar cells via UV-ozone treatment.

    Science.gov (United States)

    Adhikary, Prajwal; Venkatesan, Swaminathan; Adhikari, Nirmal; Maharjan, Purna P; Adebanjo, Olusegun; Chen, Jihua; Qiao, Qiquan

    2013-10-21

    In this work, the electron transport layer of PBDTTT-C-T/PC70BM polymer solar cells were subjected to UV-ozone treatment, leading to improved cell performances from 6.46% to 8.34%. The solar cell efficiency reached a maximum of 8.34% after an optimal 5 minute UV-ozone treatment, and then decreased if treated for a longer time. To the best of our knowledge, the mechanism behind the effects of UV-ozone treatment on the improvement of charge transport and cell performance is not fully understood. We have developed a fundamental understanding of the UV-ozone treatment mechanism, which explains both the enhancements in charge transport and photovoltaic performance at an optimal treatment time, and also the phenomenon whereby further treatment time leads to a drop in cell efficiency. Transient photocurrent measurements indicated that the cell charge transport times were 1370 ns, 770 ns, 832 ns, 867 ns, and 1150 ns for the 0 min, 5 min, 10 min, 15 min, and 20 min UV-ozone treatment times, respectively. Therefore the 5 min UV-ozone treatment time led to the shortest transport time and the most efficient charge transport in the cells. The 5 min UV-ozone treated sample exhibited the highest peak intensity (E2) in the Raman spectra of the treated films, at about 437 cm(-1), indicating that it possessed the best wurtzite phase crystallinity of the ZnO films. Further increasing the UV-ozone treatment time from 5 to 20 min induced the formation of p-type defects (e.g. interstitial oxygen atoms), pushing the ZnO Fermi-level further away from the vacuum level, and decreasing the wurtzite crystallinity.

  16. The effects of renal transplantation on circulating dendritic cells

    NARCIS (Netherlands)

    D.A. Hesselink (Dennis); L.M.B. Vaessen (Leonard); W.C.J. Hop (Wim); W. Schoordijk-Verschoor (Wenda); J.N.M. IJzermans (Jan); C.C. Baan (Carla); W. Weimar (Willem)

    2005-01-01

    textabstractThe effects of immunosuppressive agents on T cell function have been well characterized but virtually nothing is known about the effects of renal transplantation on human dendritic cells (DCs). With the use of flow cytometry, we studied the kinetics of myeloid and plasmacytoid DCs in

  17. Transplantation of hematopoietic and lymphoid cells in mice

    International Nuclear Information System (INIS)

    Bortin, M.M.; Rimm, A.A.; Rose, W.C.; Truitt, R.L.; Saltzstein, E.C.

    1976-01-01

    CBA mice were exposed to a supralethal dose of whole body x-irradiation and received transplants of graded, small doses of bone marrow, fetal liver, or fetal liver plus fetal thymus cells obtained from H-2 matched C58 or H-2 mismatched A donors. Survival at 20 days was used to evaluate the ability of the transplants to restore hematopoiesis following the acute radiation injury. In the higher dose ranges of 6 x 10 7 and 1.2 x 10 8 cells/kg body weight, the fetal cells were as effective as adult bone marrow in both the matched and mismatched strain combinations. Survival at 100 days was used to evaluate the severity of chronic graft-versus-host disease produced by each of the transplants. In the higher dose ranges, cells from fetal donors promoted higher long-term survival rates than did comparable doses of bone marrow cells in both the matched and mismatched strain combinations. The most important finding was that cells from mismatched unrelated fetal donors (using a cell dose per kilogram body weight comparable to the number of fetal liver and thymus cells which would be obtainable from one human fetus at 14 weeks of embryonation) promoted higher long-term survival rates than did bone marrow transplants from matched unrelated donors

  18. An update on ABO incompatible hematopoietic progenitor cell transplantation.

    Science.gov (United States)

    Staley, Elizabeth M; Schwartz, Joseph; Pham, Huy P

    2016-06-01

    Hematopoietic progenitor cell (HPC) transplantation has long been established as the optimal treatment for many hematologic malignancies. In the setting of allogenic HLA matched HPC transplantation, greater than 50% of unrelated donors and 30% of related donors demonstrate some degree of ABO incompatibility (ABOi), which is classified in one of three ways: major, minor, or bidirectional. Major ABOi refers to the presence of recipient isoagglutinins against the donor's A and/or B antigen. Minor ABOi occurs when the HPC product contains the isoagglutinins targeting the recipient's A and/or B antigen. Bidirectional refers to the presence of both major and minor ABOi. Major adverse events associated with ABOi HPC transplantation includes acute and delayed hemolysis, pure red cell aplasia, and delayed engraftment. ABOi HPC transplantation poses a unique challenge to the clinical transplantation unit, the HPC processing lab, and the transfusion medicine service. Therefore, it is essential that these services actively communicate with one another to ensure patient safety. This review will attempt to globally address the challenges related to ABOi HPC transplantation, with an increased focus on aspects related to the laboratory and transfusion medicine services. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Bone marrow transplantation across major histocompatibility barriers in mice. II. T cell requirement for engraftment in total lymphoid irradiation-conditioned recipients

    International Nuclear Information System (INIS)

    Vallera, D.A.; Soderling, C.C.; Carlson, G.J.; Kersey, J.H.

    1982-01-01

    Studies were undertaken to examine the role of T lymphocytes in engraftment of bone marrow (BM) in animals conditioned with total lymphoid irradiation (TLI) prior to transplantation across major histocompatibility barriers. Donor BM (added as a source of lymphohematopoietic stem cells) and spleen cells (added as a source of graft-versus-host disease (GVHD)-causing cells) were pretreated in vitro with monoclonal anti-Thy-1.2 plus complement (C). T cell-depleted grafts were then give to allogeneic mice conditioned with 900 rad of single dose TLI plus cyclophosphamide (CY). These mice did not engraft. Even in the absence of added spleen cells, elimination of the small T cell population from donor BM grafts prevented engraftment compared with animals that received the same conditioning regimen and untreated donor cells. These control animals demonstrated uniform evidence of engraftment about 1 month after transplantation. Similar findings were reported when recipients were conditioned with fractionated 17 x 200-rad TLI. In TLI plus CY-conditional recipients, we have also observed that increasing the donation of treated bone marrow cells still did not result in significant engraftment. Furthermore, graft failure in mice receiving normal dosages of anti-Thy-1.2 plus C-treated donor cells was not a strain-restricted phenomenon. Moreover, removal of bone marrow T cells with monoclonal anti-Lyt-1 plus complement also resulted in graft failure in TLI-conditioned recipients. In contrast to TLI conditioning, when Thy-1.2 plus C-treated donor cells were given to recipients conditioned with total body irradiation (TBI), a high percentage of engraftment was demonstrated by an H-2 microcytotoxicity assay. Plausible mechanisms for there findings are discussed

  20. Hematopoietic stem cell transplantation from unrelated donors in children with DOCK8 deficiency.

    Science.gov (United States)

    Uygun, Dilara Fatma K; Uygun, Vedat; Reisli, İsmail; Keleş, Sevgi; Özen, Ahmet; Yılmaz, Mustafa; Sayar, Esra H; Daloğlu, Hayriye; Öztürkmen, Seda I; Çakı, Suar; Karasu, Gülsün T; Yeşilipek, Akif

    2017-11-01

    DIDS is a unique form of combined immune deficiency characterized by an unusual susceptibility to cutaneous viral infections, severe allergies with eosinophilia and elevated immunoglobulin E titers, autoimmunity, and cancer. HSCT is considered the standard of care for this deadly disease. We have retrospectively analyzed the outcome of allogeneic HSCT from unrelated donors in patients with DIDS. Data from four patients, with five transplants, are presented. All patients received transplants from unrelated donors' BM, except for one patient who received a cord blood transplant. The conditioning regimens were based on myeloablative protocols for BM derived transplants; a NM regimen was pursued for the patient who received a cord blood transplant, which resulted in graft rejection. Although recurrent pneumonia and skin infections resolved immediately after transplantation, all patients subsequently developed human herpesvirus infection, including cutaneous herpetic lesions, cytomegalovirus reactivation, and zona zoster, which could be attributed to the use of ATG. Despite the presence of serious morbidities prior to transplantation, all patients recovered successfully. DIDS can be successfully treated with allogeneic HSCT from unrelated donors following a myeloablative conditioning regimen, with a reasonable safety profile. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Mobilized peripheral blood stem cells compared with bone marrow from HLA-identical siblings for reduced-intensity conditioning transplantation in acute myeloid leukemia in complete remission

    DEFF Research Database (Denmark)

    Nagler, Arnon; Labopin, Myriam; Shimoni, Avichai

    2012-01-01

    Reduced-intensity conditioning (RIC)-alloSCT is increasingly used for acute myelogenous leukemia. Limited data are available for the comparison of peripheral blood stem cells with bone marrow for RIC-alloSCT. We used the European Group for Blood and Marrow Transplantation (EBMT) ALWP data...... to compare the outcome of mobilized peripheral blood stem cells (PBSC) (n = 1430) vs. bone marrow (BM) (n = 107) for acute myelogenous leukemia (AML) patients with complete remission that underwent RIC-alloSCT from compatible sibling donors. The leukemia features, the disease status, and the time from...

  2. Maternal T cells limit engraftment after in utero hematopoietic cell transplantation in mice

    OpenAIRE

    Nijagal, Amar; Wegorzewska, Marta; Jarvis, Erin; Le, Tom; Tang, Qizhi; MacKenzie, Tippi C.

    2011-01-01

    Transplantation of allogeneic stem cells into the early gestational fetus, a treatment termed in utero hematopoietic cell transplantation (IUHCTx), could potentially overcome the limitations of bone marrow transplants, including graft rejection and the chronic immunosuppression required to prevent rejection. However, clinical use of IUHCTx has been hampered by poor engraftment, possibly due to a host immune response against the graft. Since the fetal immune system is relatively immature, we h...

  3. Anti-leukemic therapies induce cytogenetic changes of human bone marrow-derived mesenchymal stem cells.

    Science.gov (United States)

    Yeh, Su-Peng; Lo, Wen-Jyi; Lin, Chiao-Lin; Liao, Yu-Min; Lin, Chen-Yuan; Bai, Li-Yuan; Liang, Ji-An; Chiu, Chang-Fang

    2012-02-01

    Both bone marrow hematopoietic cells (BM-HCs) and mesenchymal stem cells (BM-MSCs) may have cytogenetic aberrations in leukemic patients, and anti-leukemic therapy may induce cytogenetic remission of BM-HCs. The impact of anti-leukemic therapy on BM-MSCs remains unknown. Cytogenetic studies of BM-MSCs from 15 leukemic patients with documented cytogenetic abnormalities of BM-HCs were investigated. To see the influence of anti-leukemic therapy on BM-MSCs, cytogenetic studies were carried out in seven of them after the completion of anti-leukemic therapy, including anthracycline/Ara-C-based chemotherapy in two patients, high-dose busulfan/cyclophosphamide-based allogeneic transplantation in two patients, and total body irradiation (TBI)-based allogeneic transplantation in three patients. To simulate the effect of TBI in vitro, three BM-MSCs from one leukemic patient and two normal adults were irradiated using the same dosage and dosing schedule of TBI and cytogenetics were re-examined after irradiation. At the diagnosis of leukemia, two BM-MSCs had cytogenetic aberration, which were completely different to their BM-HCs counterpart. After the completion of anti-leukemic therapy, cytogenetic aberration was no longer detectable in one patient. Unexpectedly, BM-MSCs from three patients receiving TBI-based allogeneic transplantation acquired new, clonal cytogenetic abnormalities after transplantation. Similarly, complex cytogenetic abnormalities were found in all the three BM-MSCs exposed to in vitro irradiation. In conclusion, anti-leukemic treatments induce not only "cytogenetic remission" but also new cytogenetic abnormalities of BM-MSCs. TBI especially exerts detrimental effect on the chromosomal integrity of BM-MSCs and highlights the equal importance of investigating long-term adverse effect of anti-leukemic therapy on BM-MSCs as opposed to beneficial effect on BM-HCs.

  4. Bombyx mori nucleopolyhedrovirus (BmNPV) Bm64 is required for BV production and per os infection.

    Science.gov (United States)

    Chen, Lin; Shen, Yunwang; Yang, Rui; Wu, Xiaofeng; Hu, Wenjun; Shen, Guoxin

    2015-10-24

    Bombyx mori nucleopolyhedrovirus (BmNPV) orf64 (Bm64, a homologue of ac78) is a core baculovirus gene. Recently, Li et al. reported that Ac78 was not essential for budded viruses (BVs) production and occlusion-derived viruses (ODVs) formation (Virus Res 191:70-82, 2014). Conversely, Tao et al. demonstrated that Ac78 was localized to the BV and ODV envelopes and was required for BV production and ODV formation (J Virol 87:8441-50, 2013). In this study, the function of Bm64 was characterized to determine the role of Bm64 in the BmNPV infection cycle. The temporal expression of Bm64 was examined using total RNA extracted from BmNPV-infected BmN cells at different time points by reverse-transcription PCR (RT-PCR) and 5' RACE analysis. To determine the functions of Bm64 in viral replication and the viral phenotype throughout the viral life cycle, a deletion virus (vBm(64KO)) was generated via homologous recombination in Escherichia coli. Viral replication and BV production were determined by real-time PCR. Electron microscopy was used to detect virion morphogenesis. The subcellular localization of Bm64 was determined by microscopy, and per os infectivity was used to determine its role in the baculovirus oral infection cycle. Viral plaque and titer assay results showed that a few infectious BVs were produced by vBm(64KO), suggesting that deletion of Bm64 affected BV production. Viral DNA replication was detected and polyhedra were observed in vBm(64KO)-transfected cells. Microscopy analysis revealed that Bm64 was predominantly localized to the ring zone of the nuclei during the infection cycle. Electron microscopy showed that Bm64 was not essential for the formation of ODVs or the subsequent occlusion of ODV into polyhedra. The per os infectivity results showed that the polyhedra of vBm(64KO) were unable to infect silkworm larvae. In conclusion, our results suggest that Bm64 plays an important role in BV production and per os infection, but is not required for viral DNA

  5. Subretinally transplanted embryonic stem cells rescue photoreceptor cells from degeneration in the RCS rats.

    Science.gov (United States)

    Schraermeyer, U; Thumann, G; Luther, T; Kociok, N; Armhold, S; Kruttwig, K; Andressen, C; Addicks, K; Bartz-Schmidt, K U

    2001-01-01

    The Royal College of Surgeons (RCS) rat is an animal model for retinal degeneration such as the age-related macular degeneration. The RCS rat undergoes a progressive retinal degeneration during the early postnatal period. A potential treatment to prevent this retinal degeneration is the transplantation into the subretinal space of cells that would replace functions of the degenerating retinal pigment epithelium (RPE) cells or may form neurotrophic factors. In this study we have investigated the potential of subretinally transplanted embryonic stem cells to prevent the genetically determined photoreceptor cell degeneration in the RCS rat. Embryonic stem cells from the inner cell mass of the mouse blastocyst were allowed to differentiate to neural precursor cells in vitro and were then transplanted into the subretinal space of 20-day-old RCS rats. Transplanted and sham-operated rats were sacrificed 2 months following cell transplantation. The eyes were enucleated and photoreceptor degeneration was quantified by analyzing and determining the thickness of the outer nuclear layer by light and electron microscopy. In the eyes transplanted with embryonic cells up to 8 rows of photoreceptor cell nuclei were observed, whereas in nontreated control eyes the outer nuclear layer had degenerated completely. Transplantation of embryonic stem cells appears to delay photoreceptor cell degeneration in RCS rats.

  6. Prospective Clinical Testing of Regulatory Dendritic Cells in Organ Transplantation.

    Science.gov (United States)

    Thomson, Angus W; Zahorchak, Alan F; Ezzelarab, Mohamed B; Butterfield, Lisa H; Lakkis, Fadi G; Metes, Diana M

    2016-01-01

    Dendritic cells (DC) are rare, professional antigen-presenting cells with ability to induce or regulate alloimmune responses. Regulatory DC (DCreg) with potential to down-modulate acute and chronic inflammatory conditions that occur in organ transplantation can be generated in vitro under a variety of conditions. Here, we provide a rationale for evaluation of DCreg therapy in clinical organ transplantation with the goal of promoting sustained, donor-specific hyporesponsiveness, while lowering the incidence and severity of rejection and reducing patients' dependence on anti-rejection drugs. Generation of donor- or recipient-derived DCreg that suppress T cell responses and prolong transplant survival in rodents or non-human primates has been well-described. Recently, good manufacturing practice (GMP)-grade DCreg have been produced at our Institution for prospective use in human organ transplantation. We briefly review experience of regulatory immune therapy in organ transplantation and describe our experience generating and characterizing human monocyte-derived DCreg. We propose a phase I/II safety study in which the influence of donor-derived DCreg combined with conventional immunosuppression on subclinical and clinical rejection and host alloimmune responses will be examined in detail.

  7. The anterior lens capsule used as support material in RPE cell-transplantation

    DEFF Research Database (Denmark)

    Nicolini, J; Kiilgaard, Jens Folke; Wiencke, A K

    2000-01-01

    To investigate the use of an ocular basement membrane as support material for transplanted porcine RPE cells.......To investigate the use of an ocular basement membrane as support material for transplanted porcine RPE cells....

  8. Hematopoietic stem cell transplantation for chronic lymphocytic leukemia.

    Science.gov (United States)

    Gladstone, Douglas E; Fuchs, Ephraim

    2012-03-01

    Although hematopoietic stem cell transplantation (HSCT) is the treatment of choice for many aggressive hematologic malignancies, the role of HSCT in chronic lymphocytic leukemia (CLL) has remained controversial. Now in the era of improved conventional treatment and better prognostication of long-term outcome, a review of autologous and allogeneic HSCT in CLL treatment is warranted. Despite an improved disease-free survival in some patients, multiple, prospective, randomized autologous HSCT CLL trials fail to demonstrate an overall survival benefit as compared to conventional therapy. Allogeneic bone marrow transplantation, although limited by donor availability, can successfully eradicate CLL with adverse prognostic features. In the older CLL patients, nonmyeloablative allogeneic transplants are better tolerated than myeloablative transplants. Nonmyeloablative allogeneic transplants are less effective in heavily diseased burdened patients. Outside of a clinical protocol, autologous HSCT for CLL cannot be justified. Nonmyeloablative allogeneic transplantation should be considered in high-risk populations early in the disease process, when disease burden is most easily controlled. Alternative donor selection using haploidentical donors and posttransplantation cyclophosphamide has the potential to vastly increase the availability of curative therapy in CLL while retaining a low treatment-related toxicity.

  9. Symptoms after hospital discharge following hematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Gamze Oguz

    2014-01-01

    Full Text Available Aims: The purposes of this study were to assess the symptoms of hematopoietic stem cell transplant patients after hospital discharge, and to determine the needs of transplant patients for symptom management. Materials and Methods: The study adopted a descriptive design. The study sample comprised of 66 hematopoietic stem cell transplant patients. The study was conducted in Istanbul. Data were collected using Patient Information Form and Memorial Symptom Assessment Scale (MSAS. Results: The frequency of psychological symptoms in hematopoietic stem cell transplant patients after discharge period (PSYCH subscale score 2.11 (standard deviation (SD = 0.69, range: 0.93-3.80 was higher in hematopoietic stem cell transplant patients than frequency of physical symptoms (PHYS subscale score: 1.59 (SD = 0.49, range: 1.00-3.38. Symptom distress caused by psychological and physical symptoms were at moderate level (Mean = 1.91, SD = 0.60, range: 0.95-3.63 and most distressing symptoms were problems with sexual interest or activity, difficulty sleeping, and diarrhea. Patients who did not have an additional chronic disease obtained higher MSAS scores. University graduates obtained higher Global Distress Index (GDI subscale and total MSAS scores with comparison to primary school graduates. Total MSAS, MSAS-PHYS subscale, and MSAS-PSYCH subscale scores were higher in patients with low level of income (P < 0.05. The patients (98.5% reported to receive education about symptom management after hospital discharge. Conclusions: Hematopoietic stem cell transplant patients continue to experience many distressing physical or psychological symptoms after discharge and need to be supported and educated for the symptom management.

  10. Preimplantation HLA typing for stem cell transplantation treatment of hemoglobinopathies

    Directory of Open Access Journals (Sweden)

    Anver Kuliev

    2014-09-01

    Full Text Available Preimplantation genetic diagnosis (PGD for HLA typing is steadily becoming an option for at risk couples with thalassemic children, requiring HLA matched bone marrow transplantation treatment. The paper presents the world’s largest PGD experience of 475 cases for over 2 dozens thalassemia mutations, resulting in birth of 132 unaffected children. A total of 146 cases were performed together with preimplantation HLA typing, resulting in detection and transfer of HLA matched unaffected embryos in 83 of them, yielding the birth of 16 HLA matched children, potential donors for their affected siblings. The presented experience of HLA matched stem cell transplantation for thalassemia, following PGD demonstrated a successful hematopoietic reconstitution both for younger and older patients. The data show that PGD is an efficient approach for HLA matched stem cell transplantation treatment for thalassemia.

  11. Unique B cell differentiation profile in tolerant kidney transplant patients.

    Science.gov (United States)

    Chesneau, M; Pallier, A; Braza, F; Lacombe, G; Le Gallou, S; Baron, D; Giral, M; Danger, R; Guerif, P; Aubert-Wastiaux, H; Néel, A; Michel, L; Laplaud, D-A; Degauque, N; Soulillou, J-P; Tarte, K; Brouard, S

    2014-01-01

    Operationally tolerant patients (TOL) display a higher number of blood B cells and transcriptional B cell signature. As they rarely develop an allo-immune response, they could display an abnormal B cell differentiation. We used an in vitro culture system to explore T-dependent differentiation of B cells into plasma cells. B cell phenotype, apoptosis, proliferation, cytokine, immunoglobulin production and markers of differentiation were followed in blood of these patients. Tolerant recipients show a higher frequency of CD20(+) CD24(hi) CD38(hi) transitional and CD20(+) CD38(lo) CD24(lo) naïve B cells compared to patients with stable graft function, correlating with a decreased frequency of CD20(-) CD38(+) CD138(+) differentiated plasma cells, suggestive of abnormal B cell differentiation. B cells from TOL proliferate normally but produce more IL-10. In addition, B cells from tolerant recipients exhibit a defective expression of factors of the end step of differentiation into plasma cells and show a higher propensity for cell death apoptosis compared to patients with stable graft function. This in vitro profile is consistent with down-regulation of B cell differentiation genes and anti-apoptotic B cell genes in these patients in vivo. These data suggest that a balance between B cells producing IL-10 and a deficiency in plasma cells may encourage an environment favorable to the tolerance maintenance. © Copyright 2013 The American Society of Transplantation and the American Society of Transplant Surgeons.

  12. Germ cell transplantation in an azoospermic Klinefelter bull.

    Science.gov (United States)

    Joerg, Hannes; Janett, Fredi; Schlatt, Stefan; Mueller, Simone; Graphodatskaya, Daria; Suwattana, Duangsmorn; Asai, Mika; Stranzinger, Gerald

    2003-12-01

    Germ cell transplantation is a technique that transfers donor testicular cells into recipient testes. A population of germ cells can colonize the recipient testis, initiate spermatogenesis, and produce sperm capable of fertilization. In the present study, a nonmosaic Klinefelter bull was used as a germ cell recipient. The donor cell suspension was introduced into the rete testis using ultrasound-guided puncture. A pulsatile administration of GnRH was performed to stimulate spermatogenesis. The molecular approach to detect donor cells was done by a quantitative polymerase chain reaction with allele discrimination based on a genetic mutation between donor and recipient. Therefore, a known genetic mutation, associated with coat-color phenotype, was used to calculate the ratio of donor to recipient cells in the biopsy specimens and ejaculates for 10 mo. After slaughtering, meiotic preparations were performed. The injected germ cells did not undergo spermatogenesis. Six months after germ cell transplantation, the donor cells were rejected, which indicates that the donor cells could not incorporate in the testis. The hormone stimulation showed that the testosterone-producing Leydig cells were functionally intact. Despite subfertility therapy, neither the recipient nor the donor cells underwent spermatogenesis. Therefore, nonmosaic Klinefelter bulls are not suitable as germ cell recipients. Future germ cell recipients in cattle could be mosaic Klinefelters, interspecies hybrids, bulls with Sertoli cell-only syndrome, or bulls with disrupted germ cell migration caused by RNA interference.

  13. Current Status and Future Development of Cell Transplantation Therapy for Periodontal Tissue Regeneration

    Science.gov (United States)

    Yoshida, Toshiyuki; Washio, Kaoru; Iwata, Takanori; Okano, Teruo; Ishikawa, Isao

    2012-01-01

    It has been shown that stem cell transplantation can regenerate periodontal tissue, and several clinical trials involving transplantation of stem cells into human patients have already begun or are in preparation. However, stem cell transplantation therapy is a new technology, and the events following transplantation are poorly understood. Several studies have reported side effects and potential risks associated with stem cell transplantation therapy. To protect patients from such risks, governments have placed regulations on stem cell transplantation therapies. It is important for the clinicians to understand the relevant risks and governmental regulations. This paper describes the ongoing clinical studies, basic research, risks, and governmental controls related to stem cell transplantation therapy. Then, one clinical study is introduced as an example of a government-approved periodontal cell transplantation therapy. PMID:22315604

  14. Current Status and Future Development of Cell Transplantation Therapy for Periodontal Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Toshiyuki Yoshida

    2012-01-01

    Full Text Available It has been shown that stem cell transplantation can regenerate periodontal tissue, and several clinical trials involving transplantation of stem cells into human patients have already begun or are in preparation. However, stem cell transplantation therapy is a new technology, and the events following transplantation are poorly understood. Several studies have reported side effects and potential risks associated with stem cell transplantation therapy. To protect patients from such risks, governments have placed regulations on stem cell transplantation therapies. It is important for the clinicians to understand the relevant risks and governmental regulations. This paper describes the ongoing clinical studies, basic research, risks, and governmental controls related to stem cell transplantation therapy. Then, one clinical study is introduced as an example of a government-approved periodontal cell transplantation therapy.

  15. Isolation, culture and intraportal transplantation of rat marrow stromal cell

    International Nuclear Information System (INIS)

    Wang Ping; Wang Jianhua; Yan Zhiping; Li Wentao; Lin Genlai; Hu Meiyu; Wang Yanhong

    2004-01-01

    Objective: To observe the tracing and evolution of marrow stromal cell (MSC) after intraportal transplantation into the liver of homogenous rats, and to provide experimental data for MSC differentiation to hepatocyte in vivo. Methods: The MSC was isolated from the leg bone marrow of adult SD rats, and purified by culture-expanded in vitro. Before transplantation, MSC was labeled with DAPI. Then 10 5 MSC were intraportally transplanted into the homogenous rat liver. Rats were killed at 2 hours and 1, 2, 3 and 4 weeks after transplantation. The cryosection samples of liver and lung were observed under fluorescence microscopy. Results: MSC in vitro culture had high ability of proliferation. Except 4 rats were dead because of abdominal bleeding or infection, other recipients were healthy until sacrificed. The implantation cells were detected by identifying the DAPI labeled MSC in the host livers, but not in the host lungs. Conclusion: Intraportal transplanted MSC could immigrate and survive in the host livers at least for 4 weeks. They could immigrate from the small branches of portal veins to hepatic parenchyma

  16. Stem cell transplantation for treating Duchenne muscular dystrophy

    Science.gov (United States)

    Yang, Xiaofeng

    2012-01-01

    OBJECTIVE: To identify global research trends in stem cell transplantation for treating Duchenne muscular dystrophy using a bibliometric analysis of Web of Science. DATA RETRIEVAL: We performed a bibliometric analysis of studies on stem cell transplantation for treating Duchenne muscular dystrophy from 2002 to 2011 retrieved from Web of Science. SELECTION CRITERIA: Inclusion criteria: (a) peer-reviewed published articles on stem cell transplantation for treating Duchenne muscular dystrophy indexed in Web of Science; (b) original research articles, reviews, meeting abstracts, proceedings papers, book chapters, editorial material, and news items; and (c) publication between 2002 and 2011. Exclusion criteria: (a) articles that required manual searching or telephone access; (b) documents that were not published in the public domain; and (c) corrected papers. MAIN OUTCOME MEASURES: (1) Annual publication output; (2) distribution according to subject areas; (3) distribution according to journals; (4) distribution according to country; (5) distribution according to institution; (6) distribution according to institution in China; (7) distribution according to institution that cooperated with Chinese institutions; (8) top-cited articles from 2002 to 2006; (9) top-cited articles from 2007 to 2011. RESULTS: A total of 318 publications on stem cell transplantation for treating Duchenne muscular dystrophy were retrieved from Web of Science from 2002 to 2011, of which almost half derived from American authors and institutes. The number of publications has gradually increased over the past 10 years. Most papers appeared in journals with a focus on gene and molecular research, such as Molecular Therapy, Neuromuscular Disorders, and PLoS One. The 10 most-cited papers from 2002 to 2006 were mostly about different kinds of stem cell transplantation for muscle regeneration, while the 10 most-cited papers from 2007 to 2011 were mostly about new techniques of stem cell transplantation

  17. Extramedullary Relapse Following Total Marrow and Lymphoid Irradiation in Patients Undergoing Allogeneic Hematopoietic Cell Transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Hyun [Department of Radiation Oncology, City of Hope National Medical Center, Duarte, California (United States); Stein, Anthony [Department of Hematology/Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, California (United States); Tsai, Nicole [Department of Biostatistics, City of Hope National Medical Center, Duarte, California (United States); Schultheiss, Timothy E. [Department of Radiation Oncology, City of Hope National Medical Center, Duarte, California (United States); Palmer, Joycelynne [Department of Biostatistics, City of Hope National Medical Center, Duarte, California (United States); Liu, An [Department of Radiation Oncology, City of Hope National Medical Center, Duarte, California (United States); Rosenthal, Joseph [Department of Hematology/Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, California (United States); Department of Pediatrics, City of Hope National Medical Center, Duarte, California (United States); Forman, Stephen J. [Department of Hematology/Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, California (United States); Wong, Jeffrey Y.C., E-mail: jwong@coh.org [Department of Radiation Oncology, City of Hope National Medical Center, Duarte, California (United States)

    2014-05-01

    Purpose: Approximately 5% to 20% of patients who undergo total body irradiation (TBI) in preparation for hematopoietic cell transplantation (HCT) can develop extramedullary (EM) relapse. Whereas total marrow and lymphoid irradiation (TMLI) provides a more conformally targeted radiation therapy for patients, organ sparing has the potential to place the patient at a higher risk for EM relapse than TBI. This study evaluated EM relapse in patients treated with TMLI at our institution. Methods and Materials: Patients eligible for analysis had been enrolled in 1 of 3 prospective TMLI trials between 2006 and 2012. The TMLI targeted bones, major lymph node chains, liver, spleen, testes, and brain, using image-guided tomotherapy with total dose ranging from 12 to 15 Gy. Results: A total of 101 patients with a median age of 47 years were studied. The median follow-up was 12.8 months. Incidence of EM relapse and bone marrow (BM) relapse were 12.9% and 25.7%, respectively. Of the 13 patients who had EM relapse, 4 also had BM relapse, and 7 had EM disease prior to HCT. There were a total of 19 EM relapse sites as the site of initial recurrence: 11 soft tissue, 6 lymph node, 2 skin. Nine of these sites were within the target region and received ≥12 Gy. Ten initial EM relapse sites were outside of the target region: 5 sites received 10.1 to 11.4 Gy while 5 sites received <10 Gy. Pretransplantation EM was the only significant predictor of subsequent EM relapse. The cumulative incidence of EM relapse was 4% at 1 year and 11.4% at 2 years. Conclusions: EM relapse incidence was as frequent in regions receiving ≥10 Gy as those receiving <10 Gy. EM relapse rates following TMLI that included HCT regimens were comparable to published results with regimens including TBI and suggest that TMLI is not associated with an increased EM relapse risk.

  18. Extramedullary Relapse Following Total Marrow and Lymphoid Irradiation in Patients Undergoing Allogeneic Hematopoietic Cell Transplantation

    International Nuclear Information System (INIS)

    Kim, Ji Hyun; Stein, Anthony; Tsai, Nicole; Schultheiss, Timothy E.; Palmer, Joycelynne; Liu, An; Rosenthal, Joseph; Forman, Stephen J.; Wong, Jeffrey Y.C.

    2014-01-01

    Purpose: Approximately 5% to 20% of patients who undergo total body irradiation (TBI) in preparation for hematopoietic cell transplantation (HCT) can develop extramedullary (EM) relapse. Whereas total marrow and lymphoid irradiation (TMLI) provides a more conformally targeted radiation therapy for patients, organ sparing has the potential to place the patient at a higher risk for EM relapse than TBI. This study evaluated EM relapse in patients treated with TMLI at our institution. Methods and Materials: Patients eligible for analysis had been enrolled in 1 of 3 prospective TMLI trials between 2006 and 2012. The TMLI targeted bones, major lymph node chains, liver, spleen, testes, and brain, using image-guided tomotherapy with total dose ranging from 12 to 15 Gy. Results: A total of 101 patients with a median age of 47 years were studied. The median follow-up was 12.8 months. Incidence of EM relapse and bone marrow (BM) relapse were 12.9% and 25.7%, respectively. Of the 13 patients who had EM relapse, 4 also had BM relapse, and 7 had EM disease prior to HCT. There were a total of 19 EM relapse sites as the site of initial recurrence: 11 soft tissue, 6 lymph node, 2 skin. Nine of these sites were within the target region and received ≥12 Gy. Ten initial EM relapse sites were outside of the target region: 5 sites received 10.1 to 11.4 Gy while 5 sites received <10 Gy. Pretransplantation EM was the only significant predictor of subsequent EM relapse. The cumulative incidence of EM relapse was 4% at 1 year and 11.4% at 2 years. Conclusions: EM relapse incidence was as frequent in regions receiving ≥10 Gy as those receiving <10 Gy. EM relapse rates following TMLI that included HCT regimens were comparable to published results with regimens including TBI and suggest that TMLI is not associated with an increased EM relapse risk

  19. Donor-derived circulating endothelial cells after kidney transplantation

    NARCIS (Netherlands)

    Popa, ER; Kas-Deelen, AM; Hepkema, BG; van Son, WJ; The, TH; Harmsen, MC

    2002-01-01

    Background. In solid-organ transplantation, the allograft vasculature, in particular the endothelium, is prone to injury inflicted by peritransplantational and posttransplantational factors. Previously, we have shown that circulating endothelial cells (cEC) can be detected in the peripheral blood of

  20. Bortezomib consolidation after autologous stem cell transplantation in multiple myeloma

    DEFF Research Database (Denmark)

    Mellqvist, Ulf-Henrik; Gimsing, Peter; Hjertner, Oyvind

    2013-01-01

    The Nordic Myeloma Study Group conducted an open randomized trial to compare bortezomib as consolidation therapy given after high-dose therapy and autologous stem cell transplantation (ASCT) with no consolidation in bortezomib-naive patients with newly diagnosed multiple myeloma. Overall, 370...

  1. Sexual function 1-year after allogeneic hematopoietic stem cell transplantation

    DEFF Research Database (Denmark)

    Noerskov, K. H.; Schjødt, I.; Syrjala, K. L.

    2016-01-01

    Treatment with allogeneic hematopoietic stem cell transplantation (HSCT) is associated with short and long-term toxicities that can result in alterations in sexual functioning. The aims of this prospective evaluation were to determine: (1) associations between HSCT and increased sexual dysfunction...

  2. Longitudinal Assessment of Hematopoietic Stem Cell Transplantation and Hyposalivation

    DEFF Research Database (Denmark)

    Laaksonen, Matti; Ramseier, Adrian; Rovó, Alicia

    2011-01-01

    Hyposalivation is a common adverse effect of anti-neoplastic therapy of head and neck cancer, causing impaired quality of life and predisposition to oral infections. However, data on the effects of hematopoietic stem cell transplantation (HSCT) on salivary secretion are scarce. The present study...

  3. Soluble urokinase plasminogen activator receptor during allogeneic stem cell transplantation

    DEFF Research Database (Denmark)

    Haastrup, E; Andersen, J; Ostrowski, S R

    2011-01-01

    the course of allogeneic stem cell transplantation (SCT). Twenty SCT patients were included in the study. suPAR was measured by ELISA in daily taken plasma samples during the pretransplant conditioning with chemotherapy and weekly for 1 month after infusion of the graft. suPAR levels before the start...

  4. Lung function after allogeneic hematopoietic stem cell transplantation in children

    DEFF Research Database (Denmark)

    Uhlving, Hilde Hylland; Larsen Bang, Cæcilie; Christensen, Ib Jarle

    2013-01-01

    Reduction in pulmonary function (PF) has been reported in up to 85% of pediatric patients during the first year after hematopoietic stem cell transplantation (HSCT). Our understanding of the etiology for this decrease in lung function is, however, sparse. The aim of this study was to describe PF...

  5. Child and parental adaptation to pediatric stem cell transplantation

    NARCIS (Netherlands)

    Vrijmoet-Wiersma, C. M. Jantien; Kolk, Annemarie M.; Grootenhuis, Martha A.; Spek, Emmelien M.; van Klink, Jeanine M. M.; Egeler, R. Maarten; Bredius, Robbert G. M.; Koopman, Hendrik M.

    2009-01-01

    Allogeneic pediatric stem cell transplantation (SCT) is a very intensive treatment with a high mortality and morbidity. The objectives of this study were to assess the (1) self- and proxy-reported health-related quality of life (HRQoL) compared to a norm group, (2) levels of parenting stress

  6. Child and parental adaptation to pediatric stem cell transplantation

    NARCIS (Netherlands)

    Vrijmoet-Wiersma, C.M.J.; Kolk, A.M.; Grootenhuis, M.A.; Spek, E.M.; van Klink, J.M.M.; Egeler, R.M.; Bredius, R.G.M.; Koopman, H.M.

    2009-01-01

    Goals of work: Allogeneic pediatric stem cell transplantation (SCT) is a very intensive treatment with a high mortality and morbidity. The objectives of this study were to assess the (1) self- and proxy-reported health-related quality of life (HRQoL) compared to a norm group, (2) levels of parenting

  7. Transplants of cells engineered to produce GABA suppress spontaneous seizures

    Czech Academy of Sciences Publication Activity Database

    Thompson, K. W.; Suchomelová, Lucie

    2004-01-01

    Roč. 45, č. 1 (2004), s. 4-12 ISSN 0013-9580 Grant - others:VA Greater Los Angeles Healthcare System Research Service(US) MREP Institutional research plan: CEZ:AV0Z5011922 Keywords : cell transplantation * epilepsy * seizures Subject RIV: FH - Neurology Impact factor: 3.329, year: 2004

  8. Bombyx mori nucleopolyhedrovirus BM5 protein regulates progeny virus production and viral gene expression

    International Nuclear Information System (INIS)

    Kokusho, Ryuhei; Koh, Yoshikazu; Fujimoto, Masaru; Shimada, Toru; Katsuma, Susumu

    2016-01-01

    Bombyx mori nucleopolyhedrovirus (BmNPV) orf5 (Bm5) is a core gene of lepidopteran baculoviruses and encodes the protein with the conserved amino acid residues (DUF3627) in its C-terminus. Here, we found that Bm5 disruption resulted in lower titers of budded viruses and fewer numbers of occlusion bodies (OBs) in B. mori cultured cells and larvae, although viral genome replication was not affected. Bm5 disruption also caused aberrant expression of various viral genes at the very late stage of infection. Immunocytochemical analysis revealed that BM5 localized to the nuclear membrane. We also found that DUF3627 is important for OB production, transcriptional regulation of viral genes, and subcellular localization of BM5. Compared with wild-type BmNPV infection, larval death was delayed when B. mori larvae were infected with Bm5 mutants. These results suggest that BM5 is involved in progeny virus production and regulation of viral gene expression at the very late stage of infection. -- Highlights: •The role of BmNPV BM5 protein was examined in B. mori cultured cells and larvae. •BM5 contributes to efficient production of budded viruses and occlusion bodies. •BM5 regulates viral gene expression at the very late stage of infection. •BM5 dominantly localizes to the nuclear membrane. •Bm5 mutant showed v-cath down-regulation and resulting delay of larval death.

  9. Bombyx mori nucleopolyhedrovirus BM5 protein regulates progeny virus production and viral gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Kokusho, Ryuhei, E-mail: kokusho@ss.ab.a.u-tokyo.ac.jp; Koh, Yoshikazu; Fujimoto, Masaru; Shimada, Toru; Katsuma, Susumu, E-mail: katsuma@ss.ab.a.u-tokyo.ac.jp

    2016-11-15

    Bombyx mori nucleopolyhedrovirus (BmNPV) orf5 (Bm5) is a core gene of lepidopteran baculoviruses and encodes the protein with the conserved amino acid residues (DUF3627) in its C-terminus. Here, we found that Bm5 disruption resulted in lower titers of budded viruses and fewer numbers of occlusion bodies (OBs) in B. mori cultured cells and larvae, although viral genome replication was not affected. Bm5 disruption also caused aberrant expression of various viral genes at the very late stage of infection. Immunocytochemical analysis revealed that BM5 localized to the nuclear membrane. We also found that DUF3627 is important for OB production, transcriptional regulation of viral genes, and subcellular localization of BM5. Compared with wild-type BmNPV infection, larval death was delayed when B. mori larvae were infected with Bm5 mutants. These results suggest that BM5 is involved in progeny virus production and regulation of viral gene expression at the very late stage of infection. -- Highlights: •The role of BmNPV BM5 protein was examined in B. mori cultured cells and larvae. •BM5 contributes to efficient production of budded viruses and occlusion bodies. •BM5 regulates viral gene expression at the very late stage of infection. •BM5 dominantly localizes to the nuclear membrane. •Bm5 mutant showed v-cath down-regulation and resulting delay of larval death.

  10. What Unrelated Hematopoietic Stem Cell Transplantation in Thalassemia Taught us about Transplant Immunogenetics

    Science.gov (United States)

    La Nasa, Giorgio; Vacca, Adriana; Littera, Roberto; Piras, Eugenia; Orru, Sandro; Greco, Marianna; Carcassi, Carlo; Caocci, Giovanni

    2016-01-01

    Although the past few decades have shown an improvement in the survival and complication-free survival rates in patients with beta-thalassemia major and gene therapy is already at an advanced stage of experimentation, hematopoietic stem cell transplantation (HSCT) continues to be the only effective and realistic approach to the cure of this chronic non-malignant disease. Historically, human leukocyte antigen (HLA)-matched siblings have been the preferred source of donor cells owing to superior outcomes compared with HSCT from other sources. Nowadays, the availability of an international network of voluntary stem cell donor registries and cord blood banks has significantly increased the odds of finding a suitable HLA matched donor. Stringent immunogenetic criteria for donor selection have made it possible to achieve overall survival (OS) and thalassemia-free survival (TFS) rates comparable to those of sibling transplants. However, acute and chronic graft-versus-host disease (GVHD) remains the most important complication in unrelated HSCT in thalassemia, leading to significant rates of morbidity and mortality for a chronic non-malignant disease. A careful immunogenetic assessment of donors and recipients makes it possible to individualize appropriate strategies for its prevention and management. This review provides an overview of recent insights about immunogenetic factors involved in GVHD, which seem to have a potential role in the outcome of transplantation for thalassemia. PMID:27872728

  11. WHAT UNRELATED HEMATOPOIETIC STEM CELL TRANSPLANTATION IN THALASSEMIA TAUGHT US ABOUT TRANSPLANT IMMUNOGENETICS.

    Directory of Open Access Journals (Sweden)

    Giorgio La Nasa

    2016-10-01

    Full Text Available Abstract Although the past few decades have shown an improvement in the survival and complication-free survival rates in patients with beta-thalassemia major and gene therapy is already at an advanced stage of experimentation, hematopoietic stem cell transplantation (HSCT continues to be the only effective and realistic approach to the cure of this chronic non-malignant disease. Historically, human leukocyte antigen (HLA-matched siblings have been the preferred source of donor cells owing to superior outcomes compared with HSCT from other sources. Nowadays, the availability of an international network of voluntary stem cell donor registries and cordon blood banks has significantly increased the odds of finding a suitable HLA matched donor. Stringent immunogenetic criteria for donor selection have made it possible to achieve overall survival (OS and thalassemia-free survival (TFS rates comparable to those of sibling transplants. However, acute and chronic graft-versus-host disease (GVHD remains the most important complication in unrelated HSCT in thalassemia, leading to considerable rates of morbidity and mortality for a chronic non-malignant disease. A careful immunogenetic assessment of donors and recipients makes it possible to individuate appropriate strategies for its prevention and management. This review provides an overview on recent insights about immunogenetic factors involved in GVHD, which seem to have a potential role in the outcome of transplantation for thalassemia.

  12. Recovery of Unrelated Donors of Peripheral Blood Stem Cells versus Recovery of Unrelated Donors of Bone Marrow: A Prespecified Analysis from the Phase III Blood and Marrow Transplant Clinical Trials Network Protocol 0201.

    Science.gov (United States)

    Burns, Linda J; Logan, Brent R; Chitphakdithai, Pintip; Miller, John P; Drexler, Rebecca; Spellman, Stephen; Switzer, Galen E; Wingard, John R; Anasetti, Claudio; Confer, Dennis L

    2016-06-01

    We report a comparison of time to recovery, side effects, and change in blood counts from baseline to after donation from unrelated donors who participated in the Blood and Marrow Transplant Clinical Trials Network phase III randomized, multicenter trial (0201) in which donor-recipient pairs were randomized to either peripheral blood stem cell (PBSC) or bone marrow (BM) donation. Of the entire cohort, 262 donated PBSC and 264 donated BM; 372 (71%) donors were from domestic and 154 (29%) were from international centers (145 German and 9 Canadian). PBSC donors recovered in less time, with a median time to recovery of 1 week compared with 2.3 weeks for BM donors. The number of donors reporting full recovery was significantly greater for donors of PBSC than of BM at 1, 2, and 3 weeks and 3 months after donation. Multivariate analysis showed that PBSC donors were more likely to recover at any time after donation compared with BM donors (hazard ratio, 2.08; 95% confidence interval [CI], 1.73 to 2.50; P donor and donation in more recent years. Donors of BM were more likely to report grades 2 to 4 skeletal pain, body symptoms, and fatigue at 1 week after donation. In logistic regression analysis of domestic donors only in which toxicities at peri-collection time points (day 5 filgrastim for PBSC donors and day 2 after collection of BM donors) could be analyzed, no variable was significantly associated with grades 2 to 4 skeletal pain, including product donated (BM versus PBSC; odds ratio, 1.13; 95% CI, .74 to 1.74; P = .556). Blood counts were affected by product donated, with greater mean change from baseline to after donation for white blood cells, neutrophils, mononuclear cells, and platelets in PBSC donors whereas BM donors experienced a greater mean change in hemoglobin. This analysis provided an enhanced understanding of donor events as product donated was independent of physician bias or donor preference. Copyright © 2016 The American Society for Blood and

  13. Hemopoietic precursor cell regeneration following irradiation and syngeneic marrow transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Melchner, H. von

    1983-01-01

    The transplantation of hemopoietic cells into adequately pretreated recipients represents one of the most promising approaches in the treatment of immunohematological disorders such as aplastic anemia, immunodeficiency diseases, leukemias and malignant lymphomas. The basic property of the hemopoietic cells permitting such therapeutic procedure, namely, the capacity of hemopoietic precursors to actively proliferate and differentiate in recipients suffering the consequences of various kinds of hemopoietic failure, represents the subject of the present review. The main cell populations addressed in the subsequent sections are the hemopoietic precursor cells. Mature end cells and in particular lymphocytes did not receive as much attention.

  14. The hematopoietic stem cell transplantation in Indonesia: an unsolved dilemma.

    Science.gov (United States)

    Hariman, H

    2008-08-01

    Allogeneic BMT was performed in Indonesia, but had to be stopped prematurely because of the small number of patients. In the beginning, only patients with sufficient financial resources to travel to western countries could undergo transplant procedures. When neighbouring countries (Singapore and Malaysia) began performing transplant, patients were referred to those centres. In both countries, the procedure is more economical and therefore patients come from a broader range of economic classes. The Indonesian hematologist must deal with the post-transplantation side effects, such as GVHD, which are mostly of the chronic type of GVHD. The types of the post-transplant complications do not differ too much from other centres and need the same treatment used in the transplant centres. Hematologists in Indonesia also treat complications of HSCT performed in other countries. When there is no recovery of HSCT development in Indonesia so far, many commercially oriented companies or centres from other countries see Indonesia as a good commercial market and offer services, some of which are not scientifically sound. One of the main problems is umbilical cord blood stem cell banking from foreign countries, which is eagerly offered to parents expecting a baby. Moreover, parents are not fully protected by law. In conclusion, Indonesia needs to revive its own HSCT program to serve and protect its own patients of being used as commercial targets by other countries.

  15. Regulatory immune cells and functions in autoimmunity and transplantation immunology.

    Science.gov (United States)

    Papp, Gabor; Boros, Peter; Nakken, Britt; Szodoray, Peter; Zeher, Margit

    2017-05-01

    In physiological circumstances, various tolerogenic mechanisms support the protection of self-structures during immune responses. However, quantitative and/or qualitative changes in regulatory immune cells and mediators can evoke auto-reactive immune responses, and upon susceptible genetic background, along with the presence of other concomitant etiological factors, autoimmune disease may develop. In transplant immunology, tolerogenic mechanisms are also critical, since the balance between of alloantigen-reactive effector cells and the regulatory immune cells will ultimately determine whether a graft is accepted or rejected. Better understanding of the immunological tolerance and the potential modulations of immune regulatory processes are crucial for developing effective therapies in autoimmune diseases as well as in organ transplantation. In this review, we focus on the novel insights regarding the impaired immune regulation and other relevant factors contributing to the development of auto-reactive and graft-reactive immune responses in autoimmune diseases and transplant rejection, respectively. We also address some promising approaches for modification of immune-regulatory processes and tolerogenic mechanisms in autoimmunity and solid organ transplantation, which may be beneficial in future therapeutic strategies. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. ATP-ase positive cells in human oral mucosa transplanted to nude mice

    DEFF Research Database (Denmark)

    Dabelsteen, E; Kirkeby, S

    1981-01-01

    A model to study the differentiation of human oral epithelium in vivo utilizing transplantation of human tissue to nude mice has been described. Previous studies have described the epithelial cells in this model. In this study we demonstrate that 8 d after transplantation, Langerhans cells, ident......, identified as ATP-ase positive dendritic cells, have almost disappeared from the transplanted epithelium whereas at day 21 after transplantation such cells were abundant. It is suggested that the ATP-ase positive cells which reappear in the transplanted epithelium are of mouse origin....

  17. RESULTS OF HEMATOPOIETIC CELL TRANSPLANTATION IN PEDIATRIC LEUKEMIA

    Directory of Open Access Journals (Sweden)

    A. Mousavi

    2008-05-01

    Full Text Available Hematopoietic cell transplantation (HCT is an accepted treatment for acute myeloid leukemia (AML in first remission, the treatment of choice for chronic myeloid leukemia (CML and high risk groups of ALL who relapse with conventional chemotherapy. We assessed results of HCT for pediatric leukemia in our center. A total of 92 children, 63 with diagnose of AML, 23 with ALL and 6 with CML received allogeneic transplantation from HLA full matched siblings (57.6% and autologous transplantation (42.4%. Source of hematopoietic cells were peripheral blood 83.7%, bone marrow 15.2% and cord blood 1.6%. The median transplanted nucleated cells were 6.4 ± 4.7 ×108 /Kg (body weight of patients and mononuclear cells were 5.5 ± 2.9×108/Kg. The most common conditioning regimens were cyclophosphamide + busulfan. Prophylaxis regimen for GVHD was cyclosporin ± methotrexate. GVHD occurred in 50 (54.3% patients. Eighty five of children had engraftment, 26 (28.6% relapsed and 57 (62% are alive. The most common cause of death was relapse (68.6%. Five years overall survival of patients with AML and ALL were 49% and 44% respectively and disease free survival of them were 52% and 49%. One year overall survival and disease free survival of CML was 57%. Overall survival increased with increasing age of patients at transplantation time (P = 0.06. Longer survival significantly related to earlier WBC and platelet recovery (P < 0.0001 and P = 0.006 respectively. Considering acceptable overall and disease free survival of patients after HCT, we concluded that is a good modality in treatment of leukemia of children.

  18. Bilateral Transplantation of Allogenic Adult Human Bone Marrow-Derived Mesenchymal Stem Cells into the Subventricular Zone of Parkinson’s Disease: A Pilot Clinical Study

    Directory of Open Access Journals (Sweden)

    N. K. Venkataramana

    2012-01-01

    Full Text Available The progress of PD and its related disorders cannot be prevented with the medications available. In this study, we recruited 8 PD and 4 PD plus patients between 5 to 15 years after diagnosis. All patients received BM-MSCs bilaterally into the SVZ and were followed up for 12 months. PD patients after therapy reported a mean improvement of 17.92% during “on” and 31.21% during “off” period on the UPDRS scoring system. None of the patients increased their medication during the follow-up period. Subjectively, the patients reported clarity in speech, reduction in tremors, rigidity, and freezing attacks. The results correlated with the duration of the disease. Those patients transplanted in the early stages of the disease (less than 5 years showed more improvement and no further disease progression than the later stages (11–15 years. However, the PD plus patients did not show any change in their clinical status after stem cell transplantation. This study demonstrates the safety of adult allogenic human BM-MSCs transplanted into the SVZ of the brain and its efficacy in early-stage PD patients.

  19. Solving the BM Camelopardalis puzzle

    Science.gov (United States)

    Teke, Mathias; Busby, Michael R.; Hall, Douglas S.

    1989-01-01

    BM Camelopardalis (=12 Cam) is a chromospherically active binary star with a relatively large orbital eccentricity. Systems with large eccentricities usually rotate pseudosynchronously. However, BM Cam has been a puzzle since its observed rotation rate is virtually equal to its orbital period indicating synchronization. All available photometry data for BM Cam have been collected and analyzed. Two models of modulated ellipticity effect are proposed, one based on equilibrium tidal deformation of the primary star and the other on a dynamical tidal effect. When the starspot variability is removed from the data, the dynamical tidal model was the better approximation to the real physical situation. The analysis indicates that BM Cam is not rotating pseudosynchronously but rotating in virtual synchronism after all.

  20. Autologous Pancreatic Islet Transplantation in Human Bone Marrow

    Science.gov (United States)

    Maffi, Paola; Balzano, Gianpaolo; Ponzoni, Maurilio; Nano, Rita; Sordi, Valeria; Melzi, Raffaella; Mercalli, Alessia; Scavini, Marina; Esposito, Antonio; Peccatori, Jacopo; Cantarelli, Elisa; Messina, Carlo; Bernardi, Massimo; Del Maschio, Alessandro; Staudacher, Carlo; Doglioni, Claudio; Ciceri, Fabio; Secchi, Antonio; Piemonti, Lorenzo

    2013-01-01

    The liver is the current site of choice for pancreatic islet transplantation, even though it is far from being ideal. We recently have shown in mice that the bone marrow (BM) may be a valid alternative to the liver, and here we report a pilot study to test feasibility and safety of BM as a site for islet transplantation in humans. Four patients who developed diabetes after total pancreatectomy were candidates for the autologous transplantation of pancreatic islet. Because the patients had contraindications for intraportal infusion, islets were infused in the BM. In all recipients, islets engrafted successfully as shown by measurable posttransplantation C-peptide levels and histopathological evidence of insulin-producing cells or molecular markers of endocrine tissue in BM biopsy samples analyzed during follow-up. Thus far, we have recorded no adverse events related to the infusion procedure or the presence of islets in the BM. Islet function was sustained for the maximum follow-up of 944 days. The encouraging results of this pilot study provide new perspectives in identifying alternative sites for islet infusion in patients with type 1 diabetes. Moreover, this is the first unequivocal example of successful engraftment of endocrine tissue in the BM in humans. PMID:23733196

  1. Progress of PET imaging in the study of neural stem cell transplantation treating Parkinson's disease

    International Nuclear Information System (INIS)

    Tan Haibo; Liu Xingdang

    2004-01-01

    PET imaging has important value in the study of neural stem cell transplantation treating Parkinson's disease, especial in the evaluation of the effect, the study of treating mechanisms and the comparation of effect in different transplantation places. PET imaging as a non-invasive method plays a more and more important role in the study of neural stem cell transplantation treating Parkinson's disease. (authors)

  2. Endobronchial Epstein-Barr Virus Associated Post-transplant Lymphoproliferative Disorder in Hematopoietic Stem Cell Transplantation

    Directory of Open Access Journals (Sweden)

    S. Feuillet

    2009-01-01

    Full Text Available The Epstein-Barr virus (EBV associated Post-Transplant Lymphoproliferative Disorders (PTLD are increasingly recognized as a fatal complication of hematological stem cell transplantation (HSCT. Thoracic involvement, that may be isolated or part of a disseminated disease, usually encompasses pulmonary nodules or masses and mediastinal lymph node enlargement. The current case study presents 2 patients who underwent HSCT, one allogenic and the other autologous, who developed an exceptional endobronchial EBV related PTLD. The first patient had a fleshy white endobronchial mass resulting in a right upper lobe atelectasis and the second had an extensive necrotising mucosa from trachea to both basal bronchi without any significant change of lung parenchyma on the CT scan. In both cases, the diagnosis was made by bronchial biopsies. Physicians should be aware of an endobronchial pattern of EBV associated PTLD after HSCT to permit quick diagnosis and therapeutic intervention.

  3. Improved performance of polymer solar cells using PBDTT-F-TT:PC_7_1BM blend film as active layer

    International Nuclear Information System (INIS)

    Zang, Yue; Gao, Xiumin; Lu, Xinmiao; Xin, Qing; Lin, Jun; Zhao, Jufeng

    2016-01-01

    Highlights: • The PCE of PBDTT-F-TT-based PSCs was improved to 9.34% by morphology control and device engineering. • Effect of DIO additive on the BHJ morphology and charge transport was investigated. • Effect of device architecture on the performance was studied in depth by optical modeling. • A low-temperature processed interfacial layer was introduced for plastic substrates. - Abstract: A detailed study of high-efficiency polymer solar cells (PSCs) based on a low bandgap polymer PBDTT-F-TT and PC_7_1BM as the bulk heterojunction (BHJ) layer is carried out. By using 1,8-diiodooctane (DIO) as solvent additive to control the morphology of active layer and comparing different device architecture to optimize the optical field distribution, the power conversion efficiency (PCE) of the resulted devices can be reached as high as 9.34%. Comprehensive characterization and optical modeling of the resulting devices is performed to understand the effect of DIO and device geometry on photovoltaic performance. It was found that the addition of DIO can significantly improve the nanoscale morphology and increased electron mobility in the BHJ layer. The inverted device architecture was chosen because the results from optical modeling shows that it offers better optical field distribution and exciton generation profile. Based on these results, a low-temperature processed ZnO was finally introduced as an electron transport layer to facility the fabrication on flexible substrates and showed comparable performance with the device based on conventional ZnO interlayer prepared by sol-gel process.

  4. Introduction of a Quality Management System and Outcome After Hematopoietic Stem-Cell Transplantation

    NARCIS (Netherlands)

    Gratwohl, Alois; Brand, Ronald; Niederwieser, Dietger; Baldomero, Helen; Chabannon, Christian; Cornelissen, Jan; de Witte, Theo; Ljungman, Per; McDonald, Fiona; McGrath, Eoin; Passweg, Jakob; Peters, Christina; Rocha, Vanderson; Slaper-Cortenbach, Ineke; Sureda, Anna; Tichelli, Andre; Apperley, Jane

    2011-01-01

    Purpose A comprehensive quality management system called JACIE (Joint Accreditation Committee International Society for Cellular Therapy and the European Group for Blood and Marrow Transplantation), was introduced to improve quality of care in hematopoietic stem-cell transplantation (HSCT). We

  5. Role of SDF1/CXCR4 Interaction in Experimental Hemiplegic Models with Neural Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Noboru Suzuki

    2012-02-01

    Full Text Available Much attention has been focused on neural cell transplantation because of its promising clinical applications. We have reported that embryonic stem (ES cell derived neural stem/progenitor cell transplantation significantly improved motor functions in a hemiplegic mouse model. It is important to understand the molecular mechanisms governing neural regeneration of the damaged motor cortex after the transplantation. Recent investigations disclosed that chemokines participated in the regulation of migration and maturation of neural cell grafts. In this review, we summarize the involvement of inflammatory chemokines including stromal cell derived factor 1 (SDF1 in neural regeneration after ES cell derived neural stem/progenitor cell transplantation in mouse stroke models.

  6. Bone marrow-derived cells in the population of spinal microglia after peripheral nerve injury

    Science.gov (United States)

    Tashima, Ryoichi; Mikuriya, Satsuki; Tomiyama, Daisuke; Shiratori-Hayashi, Miho; Yamashita, Tomohiro; Kohro, Yuta; Tozaki-Saitoh, Hidetoshi; Inoue, Kazuhide; Tsuda, Makoto

    2016-01-01

    Accumulating evidence indicates that peripheral nerve injury (PNI) activates spinal microglia that are necessary for neuropathic pain. Recent studies using bone marrow (BM) chimeric mice have reported that after PNI, circulating BM-derived cells infiltrate into the spinal cord and differentiate into microglia-like cells. This raises the possibility that the population of spinal microglia after PNI may be heterogeneous. However, the infiltration of BM cells in the spinal cord remains controversial because of experimental adverse effects of strong irradiation used for generating BM chimeric mice. In this study, we evaluated the PNI-induced spinal infiltration of BM-derived cells not only by irradiation-induced myeloablation with various conditioning regimens, but also by parabiosis and mice with genetically labelled microglia, models without irradiation and BM transplantation. Results obtained from these independent approaches provide compelling evidence indicating little contribution of circulating BM-derived cells to the population of spinal microglia after PNI. PMID:27005516

  7. Peripheral blood stem cell collection for allogeneic hematopoietic stem cell transplantation: Practical implications after 200 consequent transplants.

    Science.gov (United States)

    Goren Sahin, Deniz; Arat, Mutlu

    2017-12-01

    Proper stem cell mobilization is one of the most important steps in hematopoietic stem cell transplantation (HSCT). The aim of this paper is to share our 6 years' experience and provide practical clinical approaches particularly for stem cell mobilization and collection within the series of more than 200 successive allogeneic HSCT at our transplant center. Two hundred and seven consecutive patients who underwent allogeneic peripheral blood stem cell transplantation were included in this study. Age, sex, weight, complete blood counts, CD34 + cell counts, total collected amount of CD34 + cells, CD34 + cells per 10l processed, mobilization failure and adverse events were reviewed. Median age was 40.2±12.9 (21-68) years and 46.4±13.4 (17-67) years for donors and patients, respectively. The number of donors who had undergone adequate CD34 + cell harvesting and completed the procedure on the fourth day was 67 (32.8% of all patients). Only 12 patients required cell apheresis both on day 5 and 6. Apheresis was completed on day 4 and/or day 5 in 94.2% of all our donors. There was no significant association between CD34 + stem cell volume and age, gender and weight values of donors. Mobilization failure was not seen in our series. G-CSF is highly effective in 1/3 of the donors on the 4th day in order to collect enough number of stem cells. We propose that peripheral stem cell collection might start on day 4th of G-CSF treatment for avoiding G-CSF related side effects and complications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Method of cell transplantation promoting the organization of intraarterial thrombus.

    Science.gov (United States)

    Hirano, Koji; Shimono, Takatsugu; Imanaka-Yoshida, Kyoko; Miyamoto, Keiichi; Fujinaga, Kazuya; Kajimoto, Masaki; Miyake, Yoichiro; Nishikawa, Masakatsu; Yoshida, Toshimichi; Uchida, Atsumasa; Shimpo, Hideto; Yada, Isao; Hirata, Hitoshi

    2005-08-30

    Endovascular aortic repairs have been developed as less invasive treatments for aortic aneurysms. Some aneurismal cavities, however, remain without organization, causing a re-expansion of the aneurysms. We studied cell transplantation into the aneurismal sac to promote the organization of thrombus for the complete healing of aneurysms. Skin fibroblasts and skeletal myoblasts were isolated from rats for cell transplantation. An intraarterial thrombus model was made by ligation of the carotid artery. Culture medium (medium group, n=11), collagen gel (gel group, n=11), fibroblasts with collagen gel (F group, n=15), myoblasts with collagen gel (M group, n=12), or mixture of fibroblasts and myoblasts with collagen gel (F+M group, n=14) were injected into the thrombus. After 28 days, histologically, the arterial lumens of the F and M groups were partly filled with fibrous tissues, whereas in the F+M group organization was almost completed and luminal sizes diminished. Immunohistochemical staining demonstrated that alpha-smooth muscle actin-positive cells were more abundantly contained in the organized area of the F+M group than in the other groups. We also analyzed cellular function in vitro with immunofluorescence; coculture of fibroblasts and myoblasts showed that the fraction of alpha-smooth muscle actin-positive fibroblasts increased. This phenomenon accounts for the rapid organization of thrombus in the F+M group in vivo. Cell transplantation accelerated thrombus organization. Especially, myoblasts enhanced differentiation of fibroblasts into myofibroblasts, contributing to rapid thrombus organization. Cell transplantation into unorganized spaces seems applicable to endovascular treatment of aneurysms.

  9. Allogeneic hematopoietic stem cell transplantation in children with primary immunodeficiencies: Hospital Israelita Albert Einstein experience.

    Science.gov (United States)

    Fernandes, Juliana Folloni; Kerbauy, Fabio Rodrigues; Ribeiro, Andreza Alice Feitosa; Kutner, Jose Mauro; Camargo, Luis Fernando Aranha; Stape, Adalberto; Troster, Eduardo Juan; Zamperlini-Netto, Gabriele; Azambuja, Alessandra Milani Prandini de; Carvalho, Bruna; Dorna, Mayra de Barros; Vilela, Marluce Dos Santos; Jacob, Cristina Miuki Abe; Costa-Carvalho, Beatriz Tavares; Cunha, Jose Marcos; Carneiro-Sampaio, Magda Maria; Hamerschlak, Nelson

    2011-06-01

    To report the experience of a tertiary care hospital with allogeneic hematopoietic stem cell transplantation in children with primary immunodeficiencies. Seven pediatric patients with primary immunodeficiencies (severe combined immunodeficiency: n = 2; combined immunodeficiency: n = 1; chronic granulomatous disease: n = 1; hyper-IgM syndrome: n = 2; and IPEX syndrome: n = 1) who underwent eight hematopoietic stem cell transplants in a single center, from 2007 to 2010, were studied. Two patients received transplants from HLA-identical siblings; the other six transplants were done with unrelated donors (bone marrow: n = 1; cord blood: n = 5). All patients had pre-existing infections before hematopoietic stem cell transplants. One patient received only anti-thymocyte globulin prior to transplant, three transplants were done with reduced intensity conditioning regimens and four transplants were done after myeloablative therapy. Two patients were not evaluated for engraftment due to early death. Three patients engrafted, two had primary graft failure and one received a second transplant with posterior engraftment. Two patients died of regimen related toxicity (hepatic sinusoidal obstruction syndrome); one patient died of progressive respiratory failure due to Parainfluenza infection present prior to transplant. Four patients are alive and well from 60 days to 14 months after transplant. Patients' status prior to transplant is the most important risk factor on the outcome of hematopoietic stem cell transplants in the treatment of these diseases. Early diagnosis and the possibility of a faster referral of these patients for treatment in reference centers may substantially improve their survival and quality of life.

  10. Etanercept blocks inflammatory responses orchestrated by TNF-α to promote transplanted cell engraftment and proliferation in rat liver

    Science.gov (United States)

    Viswanathan, Preeti; Kapoor, Sorabh; Kumaran, Vinay; Joseph, Brigid; Gupta, Sanjeev

    2014-01-01

    Engraftment of transplanted cells is critical for liver-directed cell therapy but most transplanted cells are rapidly cleared from liver sinusoids by proinflammatory cytokines/chemokines/receptors after activation of neutrophils or Kupffer cells. To define whether TNF-α served roles in cell-transplantation-induced hepatic inflammation, we used TNF-α antagonist, etanercept, for studies in syngeneic rat hepatocyte transplantation systems. After cell transplantation, multiple cytokines/chemokines/receptors were overexpressed, whereas etanercept prior to cell transplantation essentially normalized these responses. Moreover, ETN downregulated cell transplantation-induced intrahepatic release of secretory cytokines, such as high mobility group box 1. These effects of etanercept decreased cell transplantation-induced activation of neutrophils but not of Kupffer cells. Transplanted cell engraftment improved by several-fold in etanercept-treated animals. These gains in cell engraftment were repeatedly realized after pretreatment of animals with etanercept before multiple cell transplantation sessions. Transplanted cell numbers did not change over time indicating absence of cell proliferation after etanercept alone. By contrast, in animals preconditioned with retrorsine and partial hepatectomy, cell transplantation after etanercept pretreatment significantly accelerated liver repopulation compared with control rats. We concluded that TNF-α played a major role in orchestrating cell transplantation-induced inflammation through regulation of multiple cytokines/chemokines/receptor expression. As TNF-α antagonism by etanercept decreased transplanted cell clearance, improved cell engraftment and accelerated liver repopulation, this pharmacological approach to control hepatic inflammation will help optimize clinical strategies for liver cell therapy. PMID:24844924

  11. Transplantation of co-aggregates of Sertoli cells and islet cells into liver without immunosuppression.

    Science.gov (United States)

    Takemoto, Naohiro; Liu, Xibao; Takii, Kento; Teramura, Yuji; Iwata, Hiroo

    2014-02-15

    Transplantation of islets of Langerhans (islets) was used to treat insulin-dependent diabetes mellitus. However, islet grafts must be maintained by administration of immunosuppressive drugs, which can lead to complications in the long term. An approach that avoids immunosuppressive drug use is desirable. Co-aggregates of Sertoli cells and islet cells from BALB/c mice that were prepared by the hanging drop method were transplanted into C57BL/6 mouse liver through the portal vein as in human clinical islet transplantation. The core part of the aggregates contained mainly Sertoli cells, and these cells were surrounded by islet cells. The co-aggregates retained the functions of both Sertoli and islet cells. When 800 co-aggregates were transplanted into seven C57BL/6 mice via the portal vein, six of seven recipient mice demonstrated quasi-normoglycemia for more than 100 days. The hanging drop method is suitable for preparing aggregates of Sertoli and islet cells for transplantation. Notably, transplantation of these allogeneic co-aggregates into mice with chemically induced diabetes via the portal vein resulted in long-term graft survival without systemic immunosuppression.

  12. System for tracking transplanted limbal epithelial stem cells in the treatment of corneal stem cell deficiency

    Science.gov (United States)

    Boadi, J.; Sangwal, V.; MacNeil, S.; Matcher, S. J.

    2015-03-01

    The prevailing hypothesis for the existence and healing of the avascular corneal epithelium is that this layer of cells is continually produced by stem cells in the limbus and transported onto the cornea to mature into corneal epithelium. Limbal Stem Cell Deficiency (LSCD), in which the stem cell population is depleted, can lead to blindness. LSCD can be caused by chemical and thermal burns to the eye. A popular treatment, especially in emerging economies such as India, is the transplantation of limbal stem cells onto damaged limbus with hope of repopulating the region. Hence regenerating the corneal epithelium. In order to gain insights into the success rates of this treatment, new imaging technologies are needed in order to track the transplanted cells. Optical Coherence Tomography (OCT) is well known for its high resolution in vivo images of the retina. A custom OCT system has been built to image the corneal surface, to investigate the fate of transplanted limbal stem cells. We evaluate two methods to label and track transplanted cells: melanin labelling and magneto-labelling. To evaluate melanin labelling, stem cells are loaded with melanin and then transplanted onto a rabbit cornea denuded of its epithelium. The melanin displays strongly enhanced backscatter relative to normal cells. To evaluate magneto-labelling the stem cells are loaded with magnetic nanoparticles (20-30nm in size) and then imaged with a custom-built, magneto-motive OCT system.

  13. Rhizomucor and Scedosporium Infection Post Hematopoietic Stem-Cell Transplant

    Directory of Open Access Journals (Sweden)

    Dânia Sofia Marques

    2011-01-01

    Full Text Available Hematopoietic stem-cell transplant recipients are at increased risk of developing invasive fungal infections. This is a major cause of morbidity and mortality. We report a case of a 17-year-old male patient diagnosed with severe idiopathic acquired aplastic anemia who developed fungal pneumonitis due to Rhizomucor sp. and rhinoencephalitis due to Scedosporium apiospermum 6 and 8 months after undergoing allogeneic hematopoietic stem-cell transplant from an HLA-matched unrelated donor. Discussion highlights risk factors for invasive fungal infections (i.e., mucormycosis and scedosporiosis, its clinical features, and the factors that must be taken into account to successfully treat them (early diagnosis, correction of predisposing factors, aggressive surgical debridement, and antifungal and adjunctive therapies.

  14. Role of HLA in Hematopoietic Stem Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Meerim Park

    2012-01-01

    Full Text Available The selection of hematopoietic stem cell transplantation (HSCT donors includes a rigorous assessment of the availability and human leukocyte antigen (HLA match status of donors. HLA plays a critical role in HSCT, but its involvement in HSCT is constantly in flux because of changing technologies and variations in clinical transplantation results. The increased availability of HSCT through the use of HLA-mismatched related and unrelated donors is feasible with a more complete understanding of permissible HLA mismatches and the role of killer-cell immunoglobulin-like receptor (KIR genes in HSCT. The influence of nongenetic factors on the tolerability of HLA mismatching has recently become evident, demonstrating a need for the integration of both genetic and nongenetic variables in donor selection.

  15. Immune Reconstitution after Allogeneic Hematopoietic Stem Cell Transplantation

    Science.gov (United States)

    Ogonek, Justyna; Kralj Juric, Mateja; Ghimire, Sakhila; Varanasi, Pavankumar Reddy; Holler, Ernst; Greinix, Hildegard; Weissinger, Eva

    2016-01-01

    The timely reconstitution and regain of function of a donor-derived immune system is of utmost importance for the recovery and long-term survival of patients after allogeneic hematopoietic stem cell transplantation (HSCT). Of note, new developments such as umbilical cord blood or haploidentical grafts were associated with prolonged immunodeficiency due to delayed immune reconstitution, raising the need for better understanding and enhancing the process of immune reconstitution and finding strategies to further optimize these transplant procedures. Immune reconstitution post-HSCT occurs in several phases, innate immunity being the first to regain function. The slow T cell reconstitution is regarded as primarily responsible for deleterious infections with latent viruses or fungi, occurrence of graft-versus-host disease, and relapse. Here we aim to summarize the major steps of the adaptive immune reconstitution and will discuss the importance of immune balance in patients after HSCT. PMID:27909435

  16. [Sirolimus associated pneumonitis in a hematopoietic stem cell transplant patient].

    Science.gov (United States)

    García, Estefanía; Buenasmañanas, Diana; Martín, Carmen; Rojas, Rafael

    2015-07-06

    Sirolimus (SR) is a lipophilic macrocytic lactone with immunosuppressive properties (mTOR inhibitor) commonly used in solid organ transplantation and recently introduced in the prophylaxis and treatment of graft-versus-host disease. Its numerous side effects include: hyperlipidemia, arthralgias, noncardiac peripheral edema, thrombotic microangiopathy and interstitial pneumonitis. SR-associated pneumonitis is a rare but potentially serious complication due to its increasing utilization in transplant patients. We report the case of a patient undergoing hematopoietic stem cell transplantation with severe respiratory distress and SR therapy. Microbiological tests were all negative and other complications related to transplantation were discarded. The chest computed tomography of high-resolution showed pneumonitis. The SR therapy was interrupted and treatment was started with steroids with resolution of symptoms. SR associated pneumonitis is a potentially fatal side effect. In patients treated with SR and respiratory failure, we must suspect this complication because early recognition along with drug discontinuation and steroid treatment is essential to reverse this complication. Copyright © 2015 Elsevier España, S.L.U. All rights reserved.

  17. IMMUNITY TO INFECTIONS AFTER HAPLOIDENTICAL HEMATOPOIETIC STEM CELL TRANSPLANTATION

    Directory of Open Access Journals (Sweden)

    Franco Aversa

    2016-10-01

    Full Text Available The advantage of using a Human Leukocyte Antigen (HLA-mismatched related donor is that almost every patient who does not have a HLA-identical donor or who urgently needs hematopoietic stem cell transplantation (HSCT has at least one family member with whom shares one haplotype (haploidentical and who is promptly available as a donor. The major challenge of haplo-HSCT is intense bi-directional alloreactivity leading to high incidences of graft rejection and graft-versus-host disease (GVHD. Advances in graft processing and in pharmacologic prophylaxis of GVHD have reduced these risks and have made haplo-HSCT a viable alternative for patients lacking a matched donor. Indeed, the haplo-HSCT  has spread to centers worldwide even though some centers have preferred an approach based on T cell depletion of G-CSF-mobilized peripheral blood progenitor cells (PBPCs, others have focused on new strategies for GvHD prevention, such as G-CSF priming of bone marrow and robust post-transplant immune suppression or post-transplant cyclophosphamide (PTCY. Today, the graft can be a megadose of T-cell depleted PBPCs or standard dose of unmanipulated bone marrow and/or PBPCs.  Although haplo-HSCT modalities are based mainly on high intensity conditioning regimens, recently introduced reduced intensity regimens (RIC   showed promise in decreasing early transplant-related mortality (TRM, and extending the opportunity of HSCT to an elderly population with more comorbidities. Infections are still mostly responsible for toxicity and non-relapse mortality due to prolonged immunosuppression related, or not, to GVHD. Future challenges lie in determining the safest preparative conditioning regimen, minimizing GvHD and promoting rapid and more robust immune reconstitution.

  18. THE PURE RED BLOOD CELL APLASIA IN RENAL TRANSPLANT RECIPIENT

    OpenAIRE

    B. T. Dzumabaeva; L. S. Birjukova; L. B. Kaplanskaya; D. P. Maksimov

    2011-01-01

    The pure red blood cell aplasia of renal transplant recipients caused by parvovirus B19 (PB19) is characterized by persistent anemia which resistant to erythropoietin therapy, lack of reticulocytes, bone marrow hypoplasia, and clinically accompanied by severe recurrent bacterial, fungal and viral infection. In case of reactivation PB19 it is necessarv, first of all, eliminate the causes activation of this virus and to cancel or reduce the dose of drugs which depressed the normal hematopoiesis...

  19. Transplanting Retinal Cells using Bucky Paper for Support

    Science.gov (United States)

    Loftus, David J.; Cinke, Martin; Meyyappan, Meyya; Fishman, Harvey; Leng, Ted; Huie, Philip; Bilbao, Kalayaan

    2004-01-01

    A novel treatment for retinal degenerative disorders involving transplantation of cells into the eye is currently under development at NASA Ames Research Center and Stanford University School of Medicine. The technique uses bucky paper as a support material for retinal pigment epithelial (RPE) cells, iris pigment epithelial (IPE) cells, and/or stem cells. This technology is envisioned as a treatment for age-related macular degeneration, which is the leading cause of blindness in persons over age 65 in Western nations. Additionally, patients with other retinal degenerative disorders, such as retinitis pigmentosa, may be treated by this strategy. Bucky paper is a mesh of carbon nanotubes (CNTs), as shown in Figure 1, that can be made from any of the commercial sources of CNTs. Bucky paper is biocompatible and capable of supporting the growth of biological cells. Because bucky paper is highly porous, nutrients, oxygen, carbon dioxide, and waste can readily diffuse through it. The thickness, density, and porosity of bucky paper can be tailored in manufacturing. For transplantation of cells into the retina, bucky paper serves simultaneously as a substrate for cell growth and as a barrier for new blood vessel formation, which can be a problem in the exudative type of macular degeneration. Bucky paper is easily handled during surgical implantation into the eye. Through appropriate choice of manufacturing processes, bucky paper can be made relatively rigid yet able to conform to the retina when the bucky paper is implanted. Bucky paper offers a distinct advantage over other materials that have been investigated for retinal cell transplantation - lens capsule and Descemet's membrane - which are difficult to handle during surgery because they are flimsy and do not stay flat.

  20. Alefacept and Allogeneic Hematopoietic Stem Cell Transplantation

    Science.gov (United States)

    2017-07-24

    Thalassemia; Sickle Cell Disease; Glanzmann Thrombasthenia; Wiskott-Aldrich Syndrome; Chronic-granulomatous Disease; Severe Congenital Neutropenia; Leukocyte Adhesion Deficiency; Schwachman-Diamond Syndrome; Diamond-Blackfan Anemia; Fanconi Anemia; Dyskeratosis-congenita; Chediak-Higashi Syndrome; Severe Aplastic Anemia

  1. Preclinical Studies of Induced Pluripotent Stem Cell-Derived Astrocyte Transplantation in ALS

    Science.gov (United States)

    2012-10-01

    Pluripotent Stem Cell -Derived Astrocyte Transplantation in ALS PRINCIPAL INVESTIGATOR: Nicholas J. Maragakis, M.D...Pluripotent Stem Cell -Derived Astrocyte Transplantation in ALS 5b. GRANT NUMBER W81XWH-10-1-0520 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...into astrocytes following transplantation. 15. SUBJECT TERMS Stem Cells , iPS cells, astrocytes, familial ALS 16. SECURITY CLASSIFICATION OF

  2. Early NK Cell Reconstitution Predicts Overall Survival in T-Cell Replete Allogeneic Hematopoietic Stem Cell Transplantation

    DEFF Research Database (Denmark)

    Minculescu, Lia; Marquart, Hanne Vibeke; Friis, Lone Smidstrups

    2016-01-01

    Early immune reconstitution plays a critical role in clinical outcome after allogeneic hematopoietic stem cell transplantation (HSCT). Natural killer (NK) cells are the first lymphocytes to recover after transplantation and are considered powerful effector cells in HSCT. We aimed to evaluate...... the clinical impact of early NK cell recovery in T-cell replete transplant recipients. Immune reconstitution was studied in 298 adult patients undergoing HSCT for acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL) and myelodysplastic syndrome (MDS) from 2005 to 2013. In multivariate analysis NK...... cell numbers day 30 (NK30) >150cells/µL were independently associated with superior overall survival (hazard ratio 0.79, 95% confidence interval 0.66-0.95, p=0.01). Cumulative incidence analyses showed that patients with NK30 >150cells/µL had significantly less transplant related mortality (TRM), p=0...

  3. Unrelated allogeneic stem-cell transplantation in adult patients – 10-year experience

    Directory of Open Access Journals (Sweden)

    Jožef Pretnar

    2012-12-01

    Conclusion: Unrelated allogeneic stem-cell transplantation is suitable for acute myeloblastic leukemias with unfavorable risk factors. However, results in acute lymphoblastic leukemia are worse. Unrelated transplantation is not efficient as salvage treatment for patients with recurrent disease after autologous transplantation or chemotherapy- resistant relapse.

  4. Outcome of children with high-risk acute myeloid leukemia given autologous or allogeneic hematopoietic cell transplantation in the aieop AML-2002/01 study.

    Science.gov (United States)

    Locatelli, F; Masetti, R; Rondelli, R; Zecca, M; Fagioli, F; Rovelli, A; Messina, C; Lanino, E; Bertaina, A; Favre, C; Giorgiani, G; Ripaldi, M; Ziino, O; Palumbo, G; Pillon, M; Pession, A; Rutella, S; Prete, A

    2015-02-01

    We analyzed the outcome of 243 children with high-risk (HR) AML in first CR1 enrolled in the AIEOP-2002/01 protocol, who were given either allogeneic (ALLO; n=141) or autologous (AUTO; n=102) hematopoietic SCT (HSCT), depending on the availability of a HLA-compatible sibling. Infants, patients with AML-M7, or complex karyotype or those with FLT3-ITD, were eligible to be transplanted also from alternative donors. All patients received a myeloablative regimen combining busulfan, cyclophosphamide and melphalan; [corrected] AUTO-HSCT patients received BM cells in most cases, while in children given ALLO-HSCT stem cell source was BM in 96, peripheral blood in 19 and cord blood in 26. With a median follow-up of 57 months (range 12-130), the probability of disease-free survival (DFS) was 73% and 63% in patients given either ALLO- or AUTO-HSCT, respectively (P=NS). Although the cumulative incidence (CI) of relapse was lower in ALLO- than in AUTO-HSCT recipients (17% vs 28%, respectively; P=0.043), the CI of TRM was 7% in both groups. Patients transplanted with unrelated donor cord blood had a remarkable 92.3% 8-year DFS probability. Altogether, these data confirm that HSCT is a suitable option for preventing leukemia recurrence in HR children with CR1 AML.

  5. Detection of Transketolase in Bone Marrow—Derived Insulin-Producing Cells: Benfotiamine Enhances Insulin Synthesis and Glucose Metabolism

    OpenAIRE

    Oh, Seh-Hoon; Witek, Rafal P.; Bae, Si-Hyun; Darwiche, Houda; Jung, Youngmi; Pi, Liya; Brown, Alicia; Petersen, Bryon E.

    2009-01-01

    Adult bone marrow (BM)-derived insulin-producing cells (IPCs) are capable of regulating blood glucose levels in chemically induced hyperglycemic mice. Using cell transplantation therapy, fully functional BM-derived IPCs help to mediate treatment of diabetes mellitus. Here, we demonstrate the detection of the pentose phosphate pathway enzyme, transketolase (TK), in BM-derived IPCs cultured under high-glucose conditions. Benfotiamine, a known activator of TK, was not shown to affect the prolife...

  6. Fishing Fish Stem Cells and Nuclear Transplants

    OpenAIRE

    Hong, Yunhan

    2011-01-01

    Fish has been the subject of various research fields, ranging from ecology, evolution, physiology and toxicology to aquaculture. In the past decades fish has attracted considerable attention for functional genomics, cancer biology and developmental genetics, in particular nuclear transfer for understanding of cytoplasmic-nuclear relationship. This special issue reports on recent progress made in fish stem cells and nuclear transfer.

  7. NK Cells and Other Innate Lymphoid Cells in Hematopoietic Stem Cell Transplantation.

    Science.gov (United States)

    Vacca, Paola; Montaldo, Elisa; Croxatto, Daniele; Moretta, Francesca; Bertaina, Alice; Vitale, Chiara; Locatelli, Franco; Mingari, Maria Cristina; Moretta, Lorenzo

    2016-01-01

    Natural killer (NK) cells play a major role in the T-cell depleted haploidentical hematopoietic stem cell transplantation (haplo-HSCT) to cure high-risk leukemias. NK cells belong to the expanding family of innate lymphoid cells (ILCs). At variance with NK cells, the other ILC populations (ILC1/2/3) are non-cytolytic, while they secrete different patterns of cytokines. ILCs provide host defenses against viruses, bacteria, and parasites, drive lymphoid organogenesis, and contribute to tissue remodeling. In haplo-HSCT patients, the extensive T-cell depletion is required to prevent graft-versus-host disease (GvHD) but increases risks of developing a wide range of life-threatening infections. However, these patients may rely on innate defenses that are reconstituted more rapidly than the adaptive ones. In this context, ILCs may represent important players in the early phases following transplantation. They may contribute to tissue homeostasis/remodeling and lymphoid tissue reconstitution. While the reconstitution of NK cell repertoire and its role in haplo-HSCT have been largely investigated, little information is available on ILCs. Of note, CD34(+) cells isolated from different sources of HSC may differentiate in vitro toward various ILC subsets. Moreover, cytokines released from leukemia blasts (e.g., IL-1β) may alter the proportions of NK cells and ILC3, suggesting the possibility that leukemia may skew the ILC repertoire. Further studies are required to define the timing of ILC development and their potential protective role after HSCT.

  8. Thymosin From Bombyx mori Is Down-Regulated in Expression by BmNPV Exhibiting Antiviral Activity.

    Science.gov (United States)

    Zhang, Chen; Wang, Yongdi; Fang, Qiang; Xu, Minlin; Lv, Mengyuan; Liao, Jinxu; Li, Si; Nie, Zuoming; Zhang, Wenping

    2016-01-01

    Thymosins have been highly conserved during evolution. These hormones exist in many animal species and play an essential role in many biological events. However, little is known regarding the physiological function of silkworm Bombyx mori thymosin (BmTHY). In this study, we investigated the expression pattern of BmTHY in a Bombyx mori larval ovarian cell line (BmN) challenged with Bombyx mori nuclear polyhydrosis virus (BmNPV) and the antiviral effect of recombinant BmTHY (rBmTHY) for Bombyx mori against BmNPV. Western-blot assay and qRT-PCR analysis revealed that the level of BmTHY protein expression and transcription decreased over time when BmN cells were infected by BmNPV. Treatment with endotoxin-free rBmTHY led to a significant reduction in viral titer in the supernatant of BmN cells challenged with BmNPV. The results from antiviral tests performed in vitro and in vivo showed that endotoxin-free rBmTHY improved the survival rate of Bombyx mori infected with BmNPV. These findings suggest that BmTHY exerts immunomodulatory effects on Bombyx mori, rendering them resistant to viral infection. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America.

  9. TRANSPLANTATION

    African Journals Online (AJOL)

    stage ... renal artery thrombosis, renal vein thrombosis, ureteric leak or stenosis ... alternative organ source for patients with end-stage renal disease. Kidney ... status.27,28 Post-transplant acute tubular necrosis is caused by ischaemic injury to the ...

  10. Unmasking Stem/Progenitor Cell Properties in Differentiated Epithelial Cells Using Short-term Transplantation

    National Research Council Canada - National Science Library

    Lewis, Michael T

    2006-01-01

    ...) To determine the range of mammary stem cell types participating in gland regeneration. 2) To develop the short-term transplantation assay as a means by which critical regulators of stem and progenitor cell behavior can be discovered and evaluated. Relevance: Studies will provide a direct test of prevailing stem cell models.

  11. Unmasking Stem/Progenitor Cell Properties in Differentiated Epithelial Cells Using Short-term Transplantation

    National Research Council Canada - National Science Library

    Lewis, Michael T

    2007-01-01

    ...) To determine the range of mammary stem cell types participating in gland regeneration. 2) To develop the short-term transplantation assay as a means by which critical regulators of stem and progenitor cell behavior can be discovered and evaluated. Relevance: Studies will provide a direct test of prevailing stem cell models.

  12. Cell Therapy in Organ Transplantation: Our Experience on the Clinical Translation of Regulatory T Cells

    Directory of Open Access Journals (Sweden)

    Niloufar Safinia

    2018-02-01

    Full Text Available Solid organ transplantation is the treatment of choice for patients with end-stage organ dysfunction. Despite improvements in short-term outcome, long-term outcome is suboptimal due to the increased morbidity and mortality associated with the toxicity of immunosuppressive regimens and chronic rejection (1–5. As such, the attention of the transplant community has focused on the development of novel therapeutic strategies to achieve allograft tolerance, a state whereby the immune system of the recipient can be re-educated to accept the allograft, averting the need for long-term immunosuppression. Indeed, reports of “operational” tolerance, whereby the recipient is off all immunosuppressive drugs and maintaining good graft function, is well documented in the literature for both liver and kidney transplantations (6–8. However, this phenomenon is rare and in the setting of liver transplantation has been shown to occur late after transplantation, with the majority of patients maintained on life-long immunosupression to prevent allograft rejection (9. As such, significant research has focused on immune regulation in the context of organ transplantation with regulatory T cells (Tregs identified as cells holding considerable promise in this endeavor. This review will provide a brief introduction to human Tregs, their phenotypic and functional characterization and focuses on our experience to date at the clinical translation of Treg immunotherapy in the setting of solid organ transplantation.

  13. Brain Region-Dependent Rejection of Neural Precursor Cell Transplants

    Directory of Open Access Journals (Sweden)

    Nina Fainstein

    2018-04-01

    Full Text Available The concept of CNS as an immune-privileged site has been challenged by the occurrence of immune surveillance and allogeneic graft rejection in the brain. Here we examined whether the immune response to allogeneic neural grafts is determined by the site of implantation in the CNS. Dramatic regional differences were observed between immune responses to allogeneic neural precursor/stem cell (NPC grafts in the striatum vs. the hippocampus. Striatal grafts were heavily infiltrated with IBA-1+ microglia/macrophages and CD3+ T cells and completely rejected. In contrast, hippocampal grafts exhibited milder IBA-1+ cell infiltration, were not penetrated efficiently by CD3+ cells, and survived efficiently for at least 2 months. To evaluate whether the hippocampal protective effect is universal, astrocytes were then transplanted. Allogeneic astrocyte grafts elicited a vigorous rejection process from the hippocampus. CD200, a major immune-inhibitory signal, plays an important role in protecting grafts from rejection. Indeed, CD200 knock out NPC grafts were rejected more efficiently than wild type NPCs from the striatum. However, lack of CD200 expression did not elicit NPC graft rejection from the hippocampus. In conclusion, the hippocampus has partial immune-privilege properties that are restricted to NPCs and are CD200-independent. The unique hippocampal milieu may be protective for allogeneic NPC grafts, through host-graft interactions enabling sustained immune-regulatory properties of transplanted NPCs. These findings have implications for providing adequate immunosuppression in clinical translation of cell therapy.

  14. Autologous Hematopoietic Stem Cell Transplantation to Prevent Antibody Mediated Rejection After Vascularized Composite Allotransplantation

    Science.gov (United States)

    2017-10-01

    Award Number: W81XWH-16-1-0664 TITLE: Autologous Hematopoietic Stem Cell Transplantation to Prevent Antibody-Mediated Rejection after...Annual 3. DATES COVERED 15 Sep 2016 – 14 Sep 2017 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Autologous Hematopoietic Stem Cell Transplantation to...sensitization, autologous hematopoietic stem cell transplantation, antibody mediated rejection, donor specific antibodies 16. SECURITY CLASSIFICATION OF

  15. Transplantation of Human Pancreatic Endoderm Cells Reverses Diabetes Post Transplantation in a Prevascularized Subcutaneous Site

    Directory of Open Access Journals (Sweden)

    Andrew R. Pepper

    2017-06-01

    Full Text Available Beta-cell replacement therapy is an effective means to restore glucose homeostasis in select humans with autoimmune diabetes. The scarcity of “healthy” human donor pancreata restricts the broader application of this effective curative therapy. “β-Like” cells derived from human embryonic stem cells (hESC, with the capacity to secrete insulin in a glucose-regulated manner, have been developed in vitro, with limitless capacity for expansion. Here we report long-term diabetes correction in mice transplanted with hESC-derived pancreatic endoderm cells (PECs in a prevascularized subcutaneous site. This advancement mitigates chronic foreign-body response, utilizes a device- and growth factor-free approach, facilitates in vivo differentiation of PECs into glucose-responsive insulin-producing cells, and reliably restores glycemic control. Basal and stimulated human C-peptide secretion was detected throughout the study, which was abolished upon graft removal. Recipient mice demonstrated physiological clearance of glucose in response to metabolic challenge and safely retrieved grafts contained viable glucose regulatory cells.

  16. 78 FR 54257 - Advisory Council on Blood Stem Cell Transplantation; Request for Nominations for Voting Members

    Science.gov (United States)

    2013-09-03

    ...; Program priorities; research priorities; and the scope and design of the Stem Cell Therapeutic Outcomes... Council on Blood Stem Cell Transplantation; Request for Nominations for Voting Members AGENCY: Health... on the Advisory Council on Blood Stem Cell Transplantation (ACBSCT). The ACBSCT was established...

  17. Critical care of the hematopoietic stem cell transplant recipient.

    Science.gov (United States)

    Afessa, Bekele; Azoulay, Elie

    2010-01-01

    An estimated 50,000 to 60,000 patients undergo hematopoietic stem cell transplantation (HSCT) worldwide annually, of which 15.7% are admitted to the intensive care unit (ICU). The most common reason for ICU admission is respiratory failure and almost all develop single or multiorgan failure. Most HSCT recipients admitted to ICU receive invasive mechanical ventilation (MV). The overall short-term mortality rate of HSCT recipients admitted to ICU is 65%, and 86.4% for those receiving MV. Patient outcome has improved over time. Poor prognostic indicators include advanced age, poor functional status, active disease at transplant, allogeneic transplant, the severity of acute illness, and the development of multiorgan failure. ICU resource limitations often lead to triage decisions for admission. For HSCT recipients, the authors recommend (1) ICU admission for full support during their pre-engraftment period and when there is no evidence of disease recurrence; (2) no ICU admission for patients who refuse it and those who are bedridden with disease recurrence and without treatment options except palliation; (3) a trial ICU admission for patients with unknown status of disease recurrence with available treatment options.

  18. Sleep disruption among cancer patients following autologous hematopoietic cell transplantation.

    Science.gov (United States)

    Nelson, Ashley M; Jim, Heather S L; Small, Brent J; Nishihori, Taiga; Gonzalez, Brian D; Cessna, Julie M; Hyland, Kelly A; Rumble, Meredith E; Jacobsen, Paul B

    2018-03-01

    Despite a high prevalence of sleep disruption among hematopoietic cell transplant (HCT) recipients, relatively little research has investigated its relationships with modifiable cognitive or behavioral factors or used actigraphy to characterize sleep disruption in this population. Autologous HCT recipients who were 6-18 months post transplant completed self-report measures of cancer-related distress, fear of cancer recurrence, dysfunctional sleep cognitions, and inhibitory sleep behaviors upon enrollment. Patients then wore an actigraph for 7 days and completed a self-report measure of sleep disruption on day 7 of the study. Among the 84 participants (age M = 60, 45% female), 41% reported clinically relevant sleep disruption. Examination of actigraph data confirmed that, on average, sleep was disrupted (wake after sleep onset M = 66 min) and sleep efficiency was less than recommended (sleep efficiency M = 78%). Cancer-related distress, fear of recurrence, dysfunctional sleep cognitions, and inhibitory sleep behaviors were related to self-reported sleep disruption (p valuesdisruption after transplant. Cancer-related distress, fear of recurrence, dysfunctional sleep cognitions, and maladaptive sleep behaviors are related to self-reported sleep disruption and should be considered targets for cognitive behavioral intervention in this population.

  19. Nonspecific suppressor T cells cause decreased mixed lymphocyte culture reactivity in bone marrow transplant patients

    International Nuclear Information System (INIS)

    Harada, M.; Ueda, M.; Nakao, S.; Kondo, K.; Odaka, K.; Shiobara, S.; Matsue, K.; Mori, T.; Matsuda, T.

    1986-01-01

    Decreased reactivity in mixed lymphocyte culture (MLC) was observed in patients within 1 yr after allogeneic and autologous bone marrow transplantation. Suppressor activity of peripheral blood mononuclear cells (PBMC) from transplant patients was studied by adding these cells as modulator cells to a bidirectional MLC with cells from normal individuals. PBMC from transplant patients markedly suppressed MLC reactivity in a dose-dependent manner. Suppressor activity was present in cells forming rosettes with sheep erythrocytes. Treatment of modulator cells with monoclonal antibodies against T cell differentiation antigens (OKT8, OKIa1) and complement completely abolished suppression of MLC. Suppressor activity was unaffected by 30 Gy irradiation. Suppressor activity declined gradually after transplantation and was inversely correlated with MLC reactivity of each patient at a significant level (p less than 0.01). These observations suggest that OKT8+ Ia+ radioresistant suppressor T cells play a role in the development of decreased MLC reactivity observed during the early post-transplant period

  20. Concerns of stem cell transplant patients during routine ambulatory assessment

    Directory of Open Access Journals (Sweden)

    Klein C

    2013-01-01

    Full Text Available Lisa Kennedy Sheldon,1 Maryum Kazmi,1 Cynthia Klein,2 Donna L Berry31University of Massachusetts Boston, Boston, MA, 2Seattle Cancer Care Alliance, Seattle, WA, 3Phyllis Cantor Center for Research in Nursing and Patient Care Services, Dana-Farber Cancer Institute, Boston, MA, USABackground: Stem cell transplant (SCT is a treatment choice for many hematological malignancies. There is currently a lack of evidence regarding the self-reported concerns of SCT patients before and after SCT.Aim and design: This exploratory study performed a secondary analysis of self-reported, written concerns of SCT patients before and after transplant to determine patients' concerns.Methods: Content analysis of text box entries of SCT patients collected between 2005 and 2007 at the Seattle Cancer Care Alliance. Text box entries were collected as part of symptom assessment using the Electronic Self-Report Assessment – Cancer instrument. The assessment was presented to 137 patients undergoing SCT at two time points: prior to ambulatory visits before any therapy had begun (T1 and at the first visit after hospital discharge following SCT (T2.Results: Text box entries were made before (n = 52 and after (n = 87 the transplant, resulting in 139 text box entries made by 137 patients representing 133 concerns. Using content analysis, the entries were categorized and ranked according to frequency. After symptom concerns, patients ranked work and financial issues the most frequent concerns prior to SCT. After SCT, symptoms remained the most frequently entered area of concern, followed by survival.Conclusion: Oncology providers need to assess SCT patients for work and financial concerns before and after transplant. Appropriate and timely referrals may ease the burden of these concerns for patients. Thus, assessment of financial and work concerns by the oncology team should be an integral part of quality health care for patients undergoing SCT.Keywords: self-report, electronic

  1. Comparative Peripheral Blood T Cells Analysis Between Adult Deceased Donor Liver Transplantation (DDLT) and Living Donor Liver Transplantation (LDLT).

    Science.gov (United States)

    Kim, Jong Man; Kwon, Choon Hyuck David; Joh, Jae-Won; Choi, Gyu-Seong; Kang, Eun-Suk; Lee, Suk-Koo

    2017-08-08

    BACKGROUND T lymphocytes are an essential component of allograft rejection and tolerance. The aim of the present study was to analyze and compare the characteristics of T cell subsets in patients who underwent deceased donor liver transplantation (DDLT) versus living donor liver transplantation (LDLT). MATERIAL AND METHODS Between April 2013 and June 2014, 64 patients underwent adult liver transplantation. The distribution of peripheral blood T lymphocyte subsets before transplantation and at 4, 8, 12, and 24 weeks post-transplantation were monitored serially. RESULTS In the serial peripheral blood samples, the absolute CD3+ T cell counts in the LDLT group were higher than those in the DDLT group (p=0.037). The CD4+, CD8+, CD4/CD8, Vδ1, Vδ2, and γδ T cell counts did not change significantly over time in either group. The Vδ1/Vδ2 ratio was higher in patients with cytomegalovirus (CMV) infection than in patients without CMV infection (0.12 versus 0.26; p=0.033). The median absolute CD3+ and CD8+ T cell counts in patients with biopsy-proven acute rejection (BPAR) were 884 (range, 305-1,320) and 316 (range, 271-1,077), respectively, whereas they were 320 (range, 8-1,167) and 257 (range, 58-1,472) in patients without BPAR. The absolute CD3+ and CD8 T cell counts were higher in patients with BPAR than in patients without BPAR (p=0.007 and p=0.039, respectively). CONCLUSIONS With the exception of CD3+ T cells, T cell populations did not differ significantly between patients who received DDLT versus LDLT. In liver transplantation patients, CMV infection and BPAR were closely associated with T cell population changes.

  2. Reduced-intensity conditioning for alternative donor hematopoietic stem cell transplantation in patients with dyskeratosis congenita.

    Science.gov (United States)

    Nishio, Nobuhiro; Takahashi, Yoshiyuki; Ohashi, Haruhiko; Doisaki, Sayoko; Muramatsu, Hideki; Hama, Asahito; Shimada, Akira; Yagasaki, Hiroshi; Kojima, Seiji

    2011-03-01

    DC is an inherited bone marrow failure syndrome mainly characterized by nail dystrophy, abnormal skin pigmentation, and oral leukoplakia. Bone marrow failure is the most common cause of death in patients with DC. Because previous results of HSCT with a myeloablative regimen were disappointing, we used a reduced-intensity conditioning regimen for two patients with classic DC, and one patient with cryptic DC who harbored the TERT mutation. Graft sources included two mismatched-related bone marrow (BM) donors and one unrelated BM donor. Successful engraftment was achieved with few regimen-related toxicities in all patients. They were alive 10, 66, and 72 months after transplantation, respectively. Long-term follow-up is crucial to determine the late effects of our conditioning regimen. © 2010 John Wiley & Sons A/S.

  3. GVHD (Graft-Versus-Host Disease): A Guide for Patients and Families After Stem Cell Transplant

    Science.gov (United States)

    ... Disease): A guide for patients and families after stem cell transplant The immune system is the body's tool ... and attacking them. When you receive a donor's stem cells (the “graft”), the stem cells recreate the donor's ...

  4. MAPC transplantation confers a more durable benefit than AC133+ cell transplantation in severe hind limb ischemia.

    Science.gov (United States)

    Aranguren, Xabier L; Pelacho, Beatriz; Peñuelas, Ivan; Abizanda, Gloria; Uriz, Maialen; Ecay, Margarita; Collantaes, María; Araña, Miriam; Beerens, Manu; Coppiello, Giulia; Prieto, Inés; Perez-Ilzarbe, Maitane; Andreu, Enrique J; Luttun, Aernout; Prósper, Felipe

    2011-01-01

    There is a need for comparative studies to determine which cell types are better candidates to remedy ischemia. Here, we compared human AC133(+) cells and multipotent adult progenitor cells (hMAPC) in a mouse model reminiscent of critical limb ischemia. hMAPC or hAC133(+) cell transplantation induced a significant improvement in tissue perfusion (measured by microPET) 15 days posttransplantation compared to controls. This improvement persisted for 30 days in hMAPC-treated but not in hAC133(+)-injected animals. While transplantation of hAC133(+) cells promoted capillary growth, hMAPC transplantation also induced collateral expansion, decreased muscle necrosis/fibrosis, and improved muscle regeneration. Incorporation of differentiated hAC133(+) or hMAPC progeny into new vessels was limited; however, a paracrine angio/arteriogenic effect was demonstrated in animals treated with hMAPC. Accordingly, hMAPC-conditioned, but not hAC133(+)-conditioned, media stimulated vascular cell proliferation and prevented myoblast, endothelial, and smooth muscle cell apoptosis in vitro. Our study suggests that although hAC133(+) cell and hMAPC transplantation both contribute to vascular regeneration in ischemic limbs, hMAPC exert a more robust effect through trophic mechanisms, which translated into collateral and muscle fiber regeneration. This, in turn, conferred tissue protection and regeneration with longer term functional improvement. © 2011 Cognizant Comm. Corp.

  5. Relapsed Diffuse Large B-Cell Lymphoma Treated by Reduced-Intensity Allogeneic Stem Cell Transplantation with Donor Lymphocyte Infusion

    International Nuclear Information System (INIS)

    Chudhry, Q.N.; Ahmed, P.; Ullah, K.; Satti, T.M.; Raza, S.; Mehmood, S.K.; Akram, M.; Ahmed, S.

    2010-01-01

    A 42 years old male with relapsed diffuse large B-cell lymphoma was given second-line chemotherapy followed by reduced intensity allogeneic stem cell transplantation from HLA matched brother. Twelve weeks post transplant, his disease relapsed evidenced by the appearance of lymphoma cells in the peripheral blood and declining donor chimerism. Donor lymphocyte infusion was given that induced complete lymphoma remission. The patient is well 3 years post transplant with his disease in complete remission. (author)

  6. Characterization of Bombyx mori nucleopolyhedrovirus with a knockout of Bm17.

    Science.gov (United States)

    Shen, Hongxing; Zhou, Yang; Zhang, Wen; Nin, Bin; Wang, Hua; Wang, Xiaochun; Shao, Shihe; Chen, Huiqing; Guo, Zhongjian; Liu, Xiaoyong; Yao, Qin; Chen, Keping

    2012-12-01

    Open reading frame 17 (Bm17) gene of Bombyx mori nucleopolyhedrovirus is a highly conserved gene in lepidopteran nucleopolyhedroviruses, but its function remains unknown. In this report, transient-expression and superinfection assays indicated that BM17 localized in the nucleus and cytoplasm of infected BmN cells. To determine the role of Bm17 in baculovirus life cycle, we constructed a Bm17 knockout virus and characterized its properties in cells. Analysis of the production and infection of budded virions, the level of viral DNA replication revealed showed that there was no significant difference among the mutant, the control, and the Bm17 repaired virus strains. These results suggest that BM17 is not essential for virus replication in cultured cells.

  7. Hematopoietic Stem Cell Transplantation in India-2017 Annual Update.

    Science.gov (United States)

    Naithani, Rahul

    2018-01-01

    There has been a steady rise in number of transplant centers in India over last few years. This year many papers related to bone marrow transplants were presented in annual conference of Indian society of Hematology and Transfusion Medicine. All oral and poster presentations which were published were reviewed. There were many publications on autologous transplant, allogeneic transplant and lab aspects of transplant. Centers shared their data on autologous transplants in newly set-up units with resource constraints with good outcomes. Encouraging data from across India is likely to boost more centers to set up transplant centers.

  8. Mac-1low early myeloid cells in the bone marrow-derived SP fraction migrate into injured skeletal muscle and participate in muscle regeneration

    International Nuclear Information System (INIS)

    Ojima, Koichi; Uezumi, Akiyoshi; Miyoshi, Hiroyuki; Masuda, Satoru; Morita, Yohei; Fukase, Akiko; Hattori, Akihito; Nakauchi, Hiromitsu; Miyagoe-Suzuki, Yuko; Takeda, Shin'ichi

    2004-01-01

    Recent studies have shown that bone marrow (BM) cells, including the BM side population (BM-SP) cells that enrich hematopoietic stem cells (HSCs), are incorporated into skeletal muscle during regeneration, but it is not clear how and what kinds of BM cells contribute to muscle fiber regeneration. We found that a large number of SP cells migrated from BM to muscles following injury in BM-transplanted mice. These BM-derived SP cells in regenerating muscles expressed different surface markers from those of HSCs and could not reconstitute the mouse blood system. BM-derived SP/Mac-1 low cells increased in number in regenerating muscles following injury. Importantly, our co-culture studies with activated satellite cells revealed that this fraction carried significant potential for myogenic differentiation. By contrast, mature inflammatory (Mac-1 high ) cells showed negligible myogenic activities. Further, these BM-derived SP/Mac-1 low cells gave rise to mononucleate myocytes, indicating that their myogenesis was not caused by stochastic fusion with host myogenic cells, although they required cell-to-cell contact with myogenic cells for muscle differentiation. Taken together, our data suggest that neither HSCs nor mature inflammatory cells, but Mac-1 low early myeloid cells in the BM-derived SP fraction, play an important role in regenerating skeletal muscles

  9. Islet cell transplant: Update on current clinical trials

    Science.gov (United States)

    Schuetz, Christian; Markmann, James F.

    2016-01-01

    In the last 15 years clinical islet transplantation has made the leap from experimental procedure to standard of care for a highly selective group of patients. Due to a risk-benefit calculation involving the required systemic immunosuppression the procedure is only considered in patients with type 1 diabetes, complicated by severe hypoglycemia or end stage renal disease. In this review we summarize current outcomes of the procedure and take a look at ongoing and future improvements and refinements of beta cell therapy. PMID:28451515

  10. THE PURE RED BLOOD CELL APLASIA IN RENAL TRANSPLANT RECIPIENT

    Directory of Open Access Journals (Sweden)

    B. T. Dzumabaeva

    2011-01-01

    Full Text Available The pure red blood cell aplasia of renal transplant recipients caused by parvovirus B19 (PB19 is characterized by persistent anemia which resistant to erythropoietin therapy, lack of reticulocytes, bone marrow hypoplasia, and clinically accompanied by severe recurrent bacterial, fungal and viral infection. In case of reactivation PB19 it is necessarv, first of all, eliminate the causes activation of this virus and to cancel or reduce the dose of drugs which depressed the normal hematopoiesis germs, thus to reduce the pancytopenia associating complications in this population. 

  11. Hematopoietic Stem Cell Transplantation Activity and Trends at a Pediatric Transplantation Center in Turkey During 1998-2008

    Directory of Open Access Journals (Sweden)

    Volkan Hazar

    2012-06-01

    Full Text Available OBJECTIVE: The aim of this study was to document hematopoietic stem cell transplantation (HSCT activity and trends at our treatment center. METHODS: Data collected over a 10-year period were retrospectively analyzed, concentrating primarily on types of HSCT, transplant-related mortality (TRM, stem cell sources, indications for HSCT, and causes of death following HSCT. RESULTS: In total, 222 allogeneic (allo-HSCT (87.4% and 32 autologous (auto-HSCT (12.6% procedures were performed between 1998 and 2008. Stem cells obtained from unrelated donors were used in 22.6% (50/222 of the allo- HSCTs. Cord blood was the source of hematopoietic stem cells (HSC in 12.2% of all transplants. The most common indication for allo-HSCT was hemoglobinopathy (43.2%, versus neuroblastoma (53.1% for auto-HSCT. The TRM rate 1 year post transplantation was 18.3% ± 2.5% for all transplants, but differed according to transplantation type (23.5% ± 7.9% for auto-HSCT and 17.5% ± 2.6% for allo-HSCT. The most common cause of death 1 year post HSCT was infection (35.9%. CONCLUSION: The TRM rate in the patients that underwent allo-HSCT was similar to that which has been previously reported; however, the TRM rate in the patients that underwent auto-HSCT was higher than previously reported in developed countries. The selection of these patients to be transplanted must be made attentively.

  12. Stem cell transplantation therapy for multifaceted therapeutic benefits after stroke.

    Science.gov (United States)

    Wei, Ling; Wei, Zheng Z; Jiang, Michael Qize; Mohamad, Osama; Yu, Shan Ping

    2017-10-01

    One of the exciting advances in modern medicine and life science is cell-based neurovascular regeneration of damaged brain tissues and repair of neuronal structures. The progress in stem cell biology and creation of adult induced pluripotent stem (iPS) cells has significantly improved basic and pre-clinical research in disease mechanisms and generated enthusiasm for potential applications in the treatment of central nervous system (CNS) diseases including stroke. Endogenous neural stem cells and cultured stem cells are capable of self-renewal and give rise to virtually all types of cells essential for the makeup of neuronal structures. Meanwhile, stem cells and neural progenitor cells are well-known for their potential for trophic support after transplantation into the ischemic brain. Thus, stem cell-based therapies provide an attractive future for protecting and repairing damaged brain tissues after injury and in various disease states. Moreover, basic research on naïve and differentiated stem cells including iPS cells has markedly improved our understanding of cellular and molecular mechanisms of neurological disorders, and provides a platform for the discovery of novel drug targets. The latest advances indicate that combinatorial approaches using cell based therapy with additional treatments such as protective reagents, preconditioning strategies and rehabilitation therapy can significantly improve therapeutic benefits. In this review, we will discuss the characteristics of cell therapy in different ischemic models and the application of stem cells and progenitor cells as regenerative medicine for the treatment of stroke. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Pleiotrophin Regulates the Retention and Self-Renewal of Hematopoietic Stem Cells in the Bone Marrow Vascular Niche

    Directory of Open Access Journals (Sweden)

    Heather A. Himburg

    2012-10-01

    Full Text Available The mechanisms through which the bone marrow (BM microenvironment regulates hematopoietic stem cell (HSC fate remain incompletely understood. We examined the role of the heparin-binding growth factor pleiotrophin (PTN in regulating HSC function in the niche. PTN−/− mice displayed significantly decreased BM HSC content and impaired hematopoietic regeneration following myelosuppression. Conversely, mice lacking protein tyrosine phosphatase receptor zeta, which is inactivated by PTN, displayed significantly increased BM HSC content. Transplant studies revealed that PTN action was not HSC autonomous, but rather was mediated by the BM microenvironment. Interestingly, PTN was differentially expressed and secreted by BM sinusoidal endothelial cells within the vascular niche. Furthermore, systemic administration of anti-PTN antibody in mice substantially impaired both the homing of hematopoietic progenitor cells to the niche and the retention of BM HSCs in the niche. PTN is a secreted component of the BM vascular niche that regulates HSC self-renewal and retention in vivo.

  14. Endothelial cell chimerism associated with graft rejection after human lung transplantation.

    OpenAIRE

    Ratajczak , Philippe; Murata , Hideyuki; Meignin , Véronique; Groussard , Odile; Fournier , Michel; Socié , Gérard; Mal , Hervé; Janin , Anne

    2008-01-01

    International audience; Endotheliitis is a major sign of graft rejection. Recipient-derived endothelial cells found in two series of liver and kidney transplants were related to graft rejection. Here, we assessed the presence and the number of chimeric endothelial cells in lung transplants, and their relation with graft rejection. In six males grafted with female lungs out of 193 lung transplantations, endothelial chimerism was studied by combined XY-fluorescent in situ hybridization with CD3...

  15. Allogeneic hematopoietic stem cell transplantation in children with primary immunodeficiencies: Hospital Israelita Albert Einstein experience

    Directory of Open Access Journals (Sweden)

    Juliana Folloni Fernandes

    2011-06-01

    Full Text Available Objective: To report the experience of a tertiary care hospital withallogeneic hematopoietic stem cell transplantation in children withprimary immunodeficiencies. Methods: Seven patients with primaryimmunodeficiencies (severe combined immunodeficiency: n = 2;combined immunodeficiency: n = 1; chronic granulomatous disease:n = 1; hyper-IgM syndrome: n = 2; and IPEX syndrome: n = 1who underwent eight hematopoietic stem cell transplants (HSCTin a single center, from 2007 to 2010, were studied. Results: Twopatients received transplants from HLA-identical siblings; the othersix transplants were done with unrelated donors (bone marrow: n= 1; cord blood: n = 5. All patients had pre-existing infectionsbefore hematopoietic stem cell transplants. One patient receivedonly anti-thymocyte globulin prior to transplant, three transplantswere done with reduced intensity conditioning regimens and fourtransplants were done after myeloablative therapy. Two patientswere not evaluable for engraftment due to early death. Three patientsengrafted, two had primary graft failure and one received a secondtransplant with posterior engraftment. Two patients died of regimenrelated toxicity (hepatic sinusoidal obstruction syndrome; one patient died of progressive respiratory failure due to Parainfluenza infection diagnosed prior to transplant. Four patients are alive and well from 60 days to 14 months after transplant. Conclusion: Patients’ status prior to transplant is the most important risk factor on the outcome of hematopoietic stem cell transplants in the treatment of these diseases. Early diagnosis and the possibility of a faster referral of these patients for treatment in reference centers may substantially improve their survival and quality of life.

  16. Unrelated haematopoietic stem cell transplantation in Taiwan and beyond.

    Science.gov (United States)

    Yang, K L; Chang, C Y; Lin, S; Shyr, M H; Lin, P Y

    2009-06-01

    Since its inception in October 1993, the world-renowned Buddhist Tzu Chi Marrow Donor Registry has facilitated more than 1800 cases of stem cell donations for patients in 27 countries to date. Under the auspices of the Buddhist Tzu Chi Stem Cells Center (BTCSCC), the Registry (> 310,000 donors) offers, on average, one case of stem cell donation every day to national or international transplantation community. The accomplishment of the Registry stems from the philosophy and spirit of giving without reward that was inspired by its founder Dharma Master Cheng Yen, the Samaritan devotions of selfless voluntary stem cell donors and the efforts from a dedicated network of volunteer workers. Demographically speaking, slightly less than one third of the donations are provided to domestic patients and the rest to mainland China and countries in Asia, North America, Europe, Middle East, Oceania, and South Africa. While most of the patients belong to the Oriental ethnic group, a few of the patients are non-Oriental. In addition to the Registry, a non-profit umbilical cord blood (UCB) bank is operating since 2002 to provide a complimentary role for patients unable to identify appropriate bone marrow stem cell donors in the Registry in time. To date, with an inventory of over 12,000 units of UCB cryopreserved in the Tzu Chi Cord Blood Bank, 47 units have been employed in 37 cases of transplantation for both paediatric and adult patients domestically and internationally. The fact that Buddhist Tzu Chi Marrow Donor Registry and Cord Blood Bank are established and operating without governmental financial support is unique and special. To facilitate haematopoietic stem cells to its domestic patients experiencing financial burdens, the BTCSCC offers financial aids to the underprivileged for their medical relief. This humanitarian approach and compassion is definitely a role model for many countries in the world.

  17. Ocular findings after allogeneic hematopoietic stem cell transplantation.

    Science.gov (United States)

    Tabbara, Khalid F; Al-Ghamdi, Ahmad; Al-Mohareb, Fahad; Ayas, Mouhab; Chaudhri, Naeem; Al-Sharif, Fahad; Al-Zahrani, Hazzaa; Mohammed, Said Y; Nassar, Amr; Aljurf, Mahmoud

    2009-09-01

    To study the incidence, causes, and outcome of major ocular complications in patients undergoing allogeneic hematopoietic stem cell transplantation (HSCT). Retrospective, noncomparative, observational clinical study. The study included a total of 620 patients who underwent allogeneic HSCT in the period from 1997 to 2007 at King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia. Allogeneic HSCT. Patients with ocular complications were referred to the ophthalmology division for complete ophthalmologic examination, including visual acuity, tonometry, Schirmer test, biomicroscopy, and dilated ophthalmoscopy. Laboratory investigations were performed whenever indicated. The incidence and causes of major ocular complications after allogeneic HSCT were determined. Visual acuity at 1 year after allogeneic HSCT was recorded. Major ocular complications occurred in 80 (13%) of 620 patients who underwent allogeneic HSCT. There were 36 male patients (45%) and 44 female patients (55%) with a mean age of 29 years and an age range of 9 to 65 years. Prophylaxis for graft-versus-host disease (GVHD) consisted of cyclosporine and methotrexate in 69 patients, and cyclosporine, methotrexate and corticosteroids, or mycophenolate mofetil in 11 patients. The most frequently encountered ocular complications were chronic GVHD, dry eye syndrome without GVHD, corneal ulcers, cataract, glaucoma, cytomegalovirus retinitis, fungal endophthalmitis, and acquisition of allergic conjunctivitis from atopic donors. There was no correlation between the pattern of ocular complications and the transplanted stem cell source. Best-corrected visual acuity (BCVA) at 1 year after transplantation was less than 20/200 in 13 patients (16%), less than 20/50 in 17 patients (21%), and better than 20/50 in 50 patients (63%). Ocular complications are common in patients undergoing allogeneic HSCT. Early recognition and prompt treatment are important. The author(s) have no proprietary or commercial

  18. Osteosarcoma target therapy with stem cell transplant: A case review

    International Nuclear Information System (INIS)

    Fawzy, A.

    2005-01-01

    Full text: Radioisotopes with medium-energy beta emission and half life of a few days are attractive option for systemic delivery of targeted irradiation. Samarium-153 ethylene diamine tetra-ethylene phosphonale (153Sm-EDTMP), a bone-seeking radiopharmaceutical, provides therapeutic irradiation to osteoblastic osseous lesion. The usual dose of Sm-153 in metastatic disease is 1mCi/Kg (37MBq/Kg) and the dose limiting toxicity is thrombocytopenia. As local radiotherapy has only a limited therapeutic role in the treatment of osteosarcoma, and some types of the tumour portray an unpredictable response to chemotherapy. High dose Sm-153 (30mCi/Kg) was proposed for the target management of recurrent osteosarcoma, this was followed by stem cell transplant (peripheral-blood progenitor, PBPCs). A female child, 10 years old, with polyostotic osteosarcoma with local recurrence in the right hipbone was chosen for therapy. She had left knee prosthesis, right lower limb dis-articulation, and was given chemotherapy in multiple regions. She was subjected to MDP bone scan showing active uptake in an expanding bone lesion in the right hip bone, and was also subjected to MIBI scan, which showed negative uptake. She received 30mCi/Kg Sm-153 (660mCi in total dose), with no major events occurring in the post-injection period. After 10 days the patient went into pancytopenia, which necessitated haematological support. By day 14, there was minimal radiation in the whole body image and the child received her bone marrow transplant. There was marked improvement in the tumour size after 6 weeks of therapy, with improvement in the alkaline phosphatase level (from 1350Iu, before treatment to 350 post treatment). This was confirmed by serial MDP bone scan. High dose Sm-153 with stem cell transplant is considered view a promising method in the management of osteosarcoma. (author)

  19. Cell transplantation for the treatment of spinal cord injury - bone marrow stromal cells and choroid plexus epithelial cells

    Directory of Open Access Journals (Sweden)

    Chizuka Ide

    2016-01-01

    Full Text Available Transplantation of bone marrow stromal cells (BMSCs enhanced the outgrowth of regenerating axons and promoted locomotor improvements of rats with spinal cord injury (SCI. BMSCs did not survive long-term, disappearing from the spinal cord within 2-3 weeks after transplantation. Astrocyte-devoid areas, in which no astrocytes or oligodendrocytes were found, formed at the epicenter of the lesion. It was remarkable that numerous regenerating axons extended through such astrocyte-devoid areas. Regenerating axons were associated with Schwann cells embedded in extracellular matrices. Transplantation of choroid plexus epithelial cells (CPECs also enhanced axonal regeneration and locomotor improvements in rats with SCI. Although CPECs disappeared from the spinal cord shortly after transplantation, an extensive outgrowth of regenerating axons occurred through astrocyte-devoid areas, as in the case of BMSC transplantation. These findings suggest that BMSCs and CPECs secret neurotrophic factors that promote tissue repair of the spinal cord, including axonal regeneration and reduced cavity formation. This means that transplantation of BMSCs and CPECs promotes "intrinsic" ability of the spinal cord to regenerate. The treatment to stimulate the intrinsic regeneration ability of the spinal cord is the safest method of clinical application for SCI. It should be emphasized that the generally anticipated long-term survival, proliferation and differentiation of transplanted cells are not necessarily desirable from the clinical point of view of safety.

  20. Application of cell sheet technology to bone marrow stromal cell transplantation for rat brain infarct.

    Science.gov (United States)

    Ito, Masaki; Shichinohe, Hideo; Houkin, Kiyohiro; Kuroda, Satoshi

    2017-02-01

    Bone marrow stromal cells (BMSC) transplantation enhances functional recovery after cerebral infarct, but the optimal delivery route is undetermined. This study was aimed to assess whether a novel cell-sheet technology non-invasively serves therapeutic benefits to ischemic stroke. First, the monolayered cell sheet was engineered by culturing rat BMSCs on a temperature-responsive dish. The cell sheet was analysed histologically and then transplanted onto the ipsilateral neocortex of rats subjected to permanent middle cerebral artery occlusion at 7 days after the insult. Their behaviours and histology were compared with those in the animals treated with direct injection of BMSCs or vehicle over 4 weeks post-transplantation. The cell sheet was 27.9 ± 8.0 μm thick and was composed of 9.8 ± 2.4 × 10 5 cells. Cell sheet transplantation significantly improved motor function when compared with the vehicle-injected animals. Histological analysis revealed that the BMSCs were densely distributed to the neocortex adjacent to the cerebral infarct and expressed neuronal phenotype in the cell sheet-transplanted animals. These findings were almost equal to those for the animals treated with direct BMSC injection. The attachment of the BMSC sheet to the brain surface did not induce reactive astrocytes in the adjacent neocortex, although direct injection of BMSCs profoundly induced reactive astrocytes around the injection site. These findings suggest that the BMSCs in cell sheets preserve their biological capacity of migration and neural differentiation. Cell-sheet technology may enhance functional recovery after ischaemic stroke, using a less invasive method. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.

  1. Rhesus monkey neural stem cell transplantation promotes neural regeneration in rats with hippocampal lesions

    Directory of Open Access Journals (Sweden)

    Li-juan Ye

    2016-01-01

    Full Text Available Rhesus monkey neural stem cells are capable of differentiating into neurons and glial cells. Therefore, neural stem cell transplantation can be used to promote functional recovery of the nervous system. Rhesus monkey neural stem cells (1 × 105 cells/μL were injected into bilateral hippocampi of rats with hippocampal lesions. Confocal laser scanning microscopy demonstrated that green fluorescent protein-labeled transplanted cells survived and grew well. Transplanted cells were detected at the lesion site, but also in the nerve fiber-rich region of the cerebral cortex and corpus callosum. Some transplanted cells differentiated into neurons and glial cells clustering along the ventricular wall, and integrated into the recipient brain. Behavioral tests revealed that spatial learning and memory ability improved, indicating that rhesus monkey neural stem cells noticeably improve spatial learning and memory abilities in rats with hippocampal lesions.

  2. Could Cells from Your Nose Fix Your Heart? Transplantation of Olfactory Stem Cells in a Rat Model of Cardiac Infarction

    Directory of Open Access Journals (Sweden)

    Cameron McDonald

    2010-01-01

    Full Text Available This study examines the hypothesis that multipotent olfactory mucosal stem cells could provide a basis for the development of autologous cell transplant therapy for the treatment of heart attack. In humans, these cells are easily obtained by simple biopsy. Neural stem cells from the olfactory mucosa are multipotent, with the capacity to differentiate into developmental fates other than neurons and glia, with evidence of cardiomyocyte differentiation in vitro and after transplantation into the chick embryo. Olfactory stem cells were grown from rat olfactory mucosa. These cells are propagated as neurosphere cultures, similar to other neural stem cells. Olfactory neurospheres were grown in vitro, dissociated into single cell suspensions, and transplanted into the infarcted hearts of congeneic rats. Transplanted cells were genetically engineered to express green fluorescent protein (GFP in order to allow them to be identified after transplantation. Functional assessment was attempted using echocardiography in three groups of rats: control, unoperated; infarct only; infarcted and transplanted. Transplantation of neurosphere-derived cells from adult rat olfactory mucosa appeared to restore heart rate with other trends towards improvement in other measures of ventricular function indicated. Importantly, donor-derived cells engrafted in the transplanted cardiac ventricle and expressed cardiac contractile proteins.

  3. Bm91 is an envelope component of ODV but is dispensable for the propagation of Bombyx mori nucleopolyhedrovirus.

    Science.gov (United States)

    Tang, Qi; Li, Guohui; Yao, Qin; Chen, Liang; Lv, Peng; Lian, Chaoqun; Chen, Keping

    2013-05-01

    Orf91 (Bm91) of Bombyx mori nucleopolyhedrovirus (BmNPV) is a highly conserved gene that encodes a predicted 105-amino-acid protein, but its function remains unknown. In the current study, 5'-RACE revealed that the transcription initiation site of Bm91 was - 12 nucleotides upstream of the start codon ATG, transcription of Bm91 was detected from 12 to 96 h postinfection (p.i.) and Bm91 protein was detected from 24 to 96 h p.i. in BmNPV-infected BmN cells. Furthermore, Western blot analysis revealed that Bm91 was in occlusion-derived virus (ODV) but not in budded virus (BV). To investigate the role of Bm91 in baculovirus life cycle, a Bm91-knockout virus was constructed by bacmid recombination in E. coli. Fluorescence and light microscopy showed that the production of BV and occlusion bodies (OBs) in Bm91-deficient-virus-infected BmN cells were similar to those in wild-type-virus-infected ones. Bioassay results showed that genetic deletion of Bm91 did not significantly affect BmNPV infectivity, but extended the median lethal time (LT50). Taken together, these results indicate that Bm91 is not essential for viral propagation in vitro, but absence of the gene may affect the virulence of ODVs in silkworm larvae. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. NK cells and other innate lymphoid cells in haematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Paola eVacca

    2016-05-01

    Full Text Available Natural Killer (NK cells play a major role in the T-cell depleted haploidentical haematopoietic stem cell transplantation (haplo-HSCT to cure high-risk leukemias. NK cells belong to the expanding family of innate lymphoid cells (ILC. At variance with NK cells, the other ILC populations (ILC1/2/3 are non-cytolytic, while they secrete different patterns of cytokines. ILC provide host defences against viruses, bacteria and parasites, drive lymphoid organogenesis, and contribute to tissue remodelling. In haplo-HSCT patients, the extensive T-cell depletion is required to prevent graft-versus-host disease (GvHD but increases risks of developing a wide range of life-threatening infections. However, these patients may rely on innate defences that are reconstituted more rapidly than the adaptive ones. In this context, ILC may represent important players in the early phases following transplantation. They may contribute to tissue homeostasis/remodelling and lymphoid tissue reconstitution. While the reconstitution of NK cell repertoire and its role in haplo-HSCT have been largely investigated, little information is available on ILC. Of note, CD34+ cells isolated from different sources of HSC, may differentiate in vitro towards various ILC subsets. Moreover, cytokines released from leukemia blasts (e.g. IL-1β may alter the proportions of NK cells and ILC3, suggesting the possibility that leukemia may skew the ILC repertoire. Further studies are required to define the timing of ILC development and their potential protective role after HSCT.

  5. Suppressor cells in transplantation tolerance II. Maturation of suppressor cells in the bone marrow chimera

    International Nuclear Information System (INIS)

    Tutschka, P.J.; Ki, P.F.; Beschorner, W.E.; Hess, A.D.; Santos, G.W.

    1981-01-01

    Histoincompatible bone marrow allografts were established in lethally irradiated rats. At various times after transplantation, the spleen cells were harvested, subjected to mixed lymphocyte cultures, and assayed for suppressor cells in vitro and in vivo by adoptive transfer studies. Alloantigen-nonspecific suppressor cells appeared in the chimera at 40 days after grafting, coinciding with the resolution of graft-versus-host disease (GVHD). At 250 days the nonspecific suppressor cells were replaced by suppressor cells specifically suppressing donor-versus-host alloantigen responses. At 720 days suppressor cells could no longer be identified by in vitro methods but were identified by in vivo adoptive transfer of transplantation tolerance. After injection of host-type antigen into chimeras, the suppressor cells could be again demonstrated by in vitro methods

  6. Suppressor cells in transplantation tolerance. II. maturation of suppressor cells in the bone marrow chimera

    International Nuclear Information System (INIS)

    Tutschka, P.J.; Ki, P.F.; Beschorner, W.E.; Hess, A.D.; Santos, G.W.

    1981-01-01

    Histoincompatible bone marrow allografts were established in lethally irradiated rats. At various times after transplantation, the spleen cells were harvested, subjected to mixed lymphocyte cultures, and assayed for suppressor cells in vitro and in vivo by adoptive transfer studies. Alloantigen-nonspecific suppressor cells appeared in the chimera at 40 days after grafting, coinciding with the resolution of graft-versus-host disease (GVHD). At 250 days the nonspecific suppressor cells were replaced by suppressor cells specifically suppressing donor-versus-host alloantigen responses. At 720 days suppressor cells could no longer be identified by in vitro methods but were identified by in vivo adoptive transfer of transplantation tolerance. After injection of host-type antigen into chimeras, the suppressor cells could be again demonstrated by in vitro methods

  7. Hematopoietic stem cell transplantation for acquired aplastic anemia

    Science.gov (United States)

    Georges, George E.; Storb, Rainer

    2016-01-01

    Purpose of review There has been steady improvement in outcomes with allogeneic bone marrow transplantation (BMT) for severe aplastic anemia (SAA), due to progress in optimization of the conditioning regimens, donor hematopoietic cell source and supportive care. Here we review recently published data that highlight the improvements and current issues in the treatment of SAA. Recent findings Approximately one-third of AA patients treated with immune suppression therapy (IST) have acquired mutations in myeloid cancer candidate genes. Because of the greater probability for eventual failure of IST, human leukocyte antigen (HLA)-matched sibling donor BMT is the first-line of treatment for SAA. HLA-matched unrelated donor (URD) BMT is generally recommended for patients who have failed IST. However, in younger patients for whom a 10/10-HLA-allele matched URD can be rapidly identified, there is a strong rationale to proceed with URD BMT as first-line therapy. HLA-haploidentical BMT using post-transplant cyclophosphamide (PT-CY) conditioning regimens, is now a reasonable second-line treatment for patients who failed IST. Summary Improved outcomes have led to an increased first-line role of BMT for treatment of SAA. The optimal cell source from an HLA-matched donor is bone marrow. Additional studies are needed to determine the optimal conditioning regimen for HLA-haploidentical donors. PMID:27607445

  8. Thrombotic Microangiopathy in Haematopoietic Cell Transplantation: an Update

    Science.gov (United States)

    Stavrou, Evi; Lazarus, Hillard M.

    2010-01-01

    Allogeneic hematopoietic cell transplantation (HCT) represents a vital procedure for patients with various hematologic conditions. Despite advances in the field, HCT carries significant morbidity and mortality. A rare but potentially devastating complication is transplantation-associated thrombotic microangiopathy (TA-TMA). In contrast to idiopathic TTP, whose etiology is attributed to deficient activity of ADAMTS13, (a member of the A Disintegrin And Metalloprotease with Thrombospondin 1 repeats family of metalloproteases), patients with TA-TMA have > 5% ADAMTS13 activity. Pathophysiologic mechanisms associated with TA-TMA, include loss of endothelial cell integrity induced by intensive conditioning regimens, immunosuppressive therapy, irradiation, infections and graft-versus-host (GVHD) disease. The reported incidence of TA-TMA ranges from 0.5% to 75%, reflecting the difficulty of accurate diagnosis in these patients. Two different groups have proposed consensus definitions for TA-TMA, yet they fail to distinguish the primary syndrome from secondary causes such as infections or medication exposure. Despite treatment, mortality rate in TA-TMA ranges between 60% to 90%. The treatment strategies for TA-TMA remain challenging. Calcineurin inhibitors should be discontinued and replaced with alternative immunosuppressive agents. Daclizumab, a humanized monoclonal anti-CD25 antibody, has shown promising results in the treatment of TA-TMA. Rituximab or the addition of defibrotide, have been reported to induce remission in this patient population. In general, plasma exchange is not recommended. PMID:21776339

  9. THROMBOTIC MICROANGIOPATHY IN HAEMATOPOIETIC CELL TRANSPLANTATION:AN UPDATE

    Directory of Open Access Journals (Sweden)

    Evi Stavrou

    2010-10-01

    Full Text Available Allogeneic hematopoietic cell transplantation (HCT represents a vital procedure for patients with various hematologic conditions. Despite advances in the field, HCT carries significant morbidity and mortality. A rare but potentially devastating complication is transplantation-associated thrombotic microangiopathy (TA-TMA. In contrast to idiopathic TTP, whose etiology is attributed to deficient activity of ADAMTS13, (a member of the A Disintegrin And Metalloprotease with Thrombospondin 1 repeats family of metalloproteases, patients with TA-TMA have > 5% ADAMTS13 activity. Pathophysiologic mechanisms associated with TA-TMA, include loss of endothelial cell integrity induced by intensive conditioning regimens, immunosuppressive therapy, irradiation, infections and graft-versus-host (GVHD disease. The reported incidence of TA-TMA ranges from 0.5% to 75%, reflecting the difficulty of accurate diagnosis in these patients. Two different groups have proposed consensus definitions for TA-TMA, yet they fail to distinguish the primary syndrome from secondary causes such as infections or medication exposure. Despite treatment, mortality rate in TA-TMA ranges between 60% to 90%. The treatment strategies for TA-TMA remain challenging. Calcineurin inhibitors should be discontinued and replaced with alternative immunosuppressive agents.  Daclizumab, a humanized monoclonal anti-CD25 antibody, has shown promising results in the treatment of TA-TMA. Rituximab or the addition of defibrotide, have been reported to induce remission in this patient population. In general, plasma exchange is not recommended.

  10. [Results of hematopoietic stem cell transplantation in hemoglobinopathies: thalassemia major and sickle cell disease].

    Science.gov (United States)

    Hladun, R; Elorza, I; Olivé, T; Dapena, J L; Llort, A; Sánchez de Toledo, J; Díaz de Heredia, C

    2013-08-01

    The prevalence of hemoglobinopathies in Spain is increasing as a result of immigration. Thalassemia major presents with chronic hemolytic anemia that requires regular red blood cell transfusions within the first year of life. Patients with sickle cell disease suffer from chronic anemia, vasculopathy and progressive damage in almost any organ. There is decreased life expectancy in both conditions. Allogeneic hematopoietic stem cell transplantation represents the only potentially curative option. Seventeen patients (fourteen thalassemia major, and three sickle cell disease) underwent allogeneic hematopoietic stem cell transplantations. In the thalassemia group, nine donors were HLA-geno-identical siblings, two were partially matched related donors (one HLA allele mismatch), and three unrelated donors. All three patients with sickle cell disease were transplanted from HLA-geno-identical siblings. The source of stem cells was bone marrow in sixteen cases. Median patient age at transplant was six years (range: 1-16) in the thalassemia group, and twelve years (range: 8-15) in the sickle cell disease group. The graft was successful in all patients. Secondary graft rejection was observed in two thalassemia patients rendering them dependent on blood transfusions. Complete chimerism was observed in thirteen patients and, although mixed chimerism occurred in two, with all of them showing normal hemoglobin levels after transplantation and not requiring further transfusion support. Patients affected by sickle cell disease did not present with new vaso-occlusive crises, and stabilization of pulmonary and neurological function was observed. Chronic graft-versus-host disease was detected in three patients affected by thalassemia, and hypogonadotrophic hypogonadism in five patients. We conclude that for thalassemia major and sickle cell disease, allogenic hematopoietic stem cell transplantation from HLA-geno-identical siblings offers a high probability of complication-free survival

  11. BM61 of Bombyx mori nucleopolyhedrovirus: its involvement in the egress of nucleocapsids from the nucleus.

    Science.gov (United States)

    Shen, Hongxing; Chen, Keping

    2012-04-05

    All lepidopteran baculovirus genomes sequenced encode a homolog of the Bombyx mori nucleopolyhedrovirus orf61 gene (Bm61). To determine the role of Bm61 in the baculoviral life cycle, we constructed a Bm61 knockout virus and characterized it in cells. We observed that the Bm61 deletion bacmid led to a defect in production of infectious budded virus (BV). Quantitative PCR analysis of BV in the media culturing the transfected cell indicated that BV was not produced due to Bm61 deletion. Electron microscope analysis showed that in the knockout of Bm61, nucleocapsids were not transported from the nucleus to the cytoplasm. From these results we concluded that BM61 is required in the BV pathway for the egress of nucleocapsids from the nucleus to the cytoplasm. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  12. Differential diagnosis of skin lesions after allogeneic haematopoietic stem cell transplantation

    NARCIS (Netherlands)

    Canninga-van Dijk, MR; Sanders, CJ; Verdonck, LF; Fijnheer, R; van den Tweel, JG

    Allogeneic haematopoietic stem cell transplantation (i.e. bone marrow or peripheral blood stem cell transplantation) is a common procedure in the treatment of various haematological disorders such as aplastic anaemia, (pre)leukaemias, some malignant lymphomas, multiple myeloma and immunodeficiency

  13. Relapsing tumefactive lesion in an adult with medulloblastoma previously treated with chemoradiotherapy and stem cell transplant.

    Science.gov (United States)

    Mahta, Ali; Qu, Yan; Nastic, Denis; Sundstrom, Maria; Kim, Ryan Y; Saria, Marlon; Santagata, Sandro; Kesari, Santosh

    2012-04-01

    Herein, we present an adult case of medulloblastoma who received chemotherapy, radiation therapy and stem cell transplantation, and underwent multiple surgical resections for what were thought to be recurrences; however pathology confirmed a diagnosis of relapsing tumefactive lesions. This phenomenon seems to be a consequence of stem cell transplantation rather than a simple radiation treatment effect.

  14. Bm65 is essential for the propagation of Bombyx mori nucleopolyhedrovirus.

    Science.gov (United States)

    Tang, Qi; Li, Guohui; Yao, Qin; Chen, Liang; Feng, Fan; Yuan, Yi; Chen, Keping

    2013-01-01

    Orf65 (Bm65) of Bombyx mori nucleopolyhedrovirus (BmNPV) is a highly conserved gene that encodes an unknown 104-amino acid protein. In the present study, we have shown the role of Bm65 in the baculovirus life cycle. 5'-RACE analysis showed that the transcription start site of Bm65 was 14 nucleotides upstream of the start codon ATG. The transcription profile of Bm65 was detected from 6 to 72 h postinfection (p. i.) by RT-PCR. A Bm65-knockout bacmid was constructed by homologous recombination to characterize the role of Bm65 in viral life cycle. Fluorescence microscopy showed that Bm65-knockout virus was unable to generate infectious budded virus in BmN cells. Furthermore, quantitative real-time PCR analysis demonstrated that Bm65 deletion did not affect the viral DNA replication. To conclude, Bm65 is essential for the propagation of BmNPV, but is unnecessary for the replication of viral DNA.

  15. Effect of liver histopathology on islet cell engraftment in the model mimicking autologous islet cell transplantation.

    Science.gov (United States)

    Desai, Chirag S; Khan, Khalid M; Ma, Xiaobo; Li, Henghong; Wang, Juan; Fan, Lijuan; Chen, Guoling; Smith, Jill P; Cui, Wanxing

    2017-11-02

    The inflammatory milieu in the liver as determined by histopathology is different in individual patients undergoing autologous islet cell transplantation. We hypothesized that inflammation related to fatty-liver adversely impacts islet survival. To test this hypothesis, we used a mouse model of fatty-liver to determine the outcome of syngeneic islet transplantation after chemical pancreatectomy. Mice (C57BL/6) were fed a high-fat-diet from 6 weeks of age until attaining a weight of ≥28 grams (6-8 weeks) to produce a fatty liver (histologically > 30% fat);steatosis was confirmed with lipidomic profile of liver tissue. Islets were infused via the intra-portal route in fatty-liver and control mice after streptozotocin induction of diabetes. Outcomes were assessed by the rate of euglycemia, liver histopathology, evaluation of liver inflammation by measuring tissue cytokines IL-1β and TNF-α by RT-PCR and CD31 expression by immunohistochemistry. The difference in the euglycemic fraction between the normal liver group (90%, 9/10) and the fatty-liver group (37.5%, 3/8) was statistically significant at the 18 th day post- transplant and was maintained to the end of the study (day 28) (p = 0.019, X 2 = 5.51). Levels of TNF-α and IL-1β were elevated in fatty-liver mice (p = 0.042, p = 0.037). Compared to controls cytokine levels were elevated after islet cell transplantation and in transplanted fatty-liver mice as compared to either fatty- or islet transplant group alone (p = NS). A difference in the histochemical pattern of CD31 could not be determined. Fatty-liver creates an inflammatory state which adversely affects the outcome of autologous islet cell transplantation.

  16. The Power and the Promise of Cell Reprogramming: Personalized Autologous Body Organ and Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Ana Belen Alvarez Palomo

    2014-04-01

    Full Text Available Reprogramming somatic cells to induced pluripotent stem cells (iPSCs or direct reprogramming to desired cell types are powerful and new in vitro methods for the study of human disease, cell replacement therapy, and drug development. Both methods to reprogram cells are unconstrained by the ethical and social questions raised by embryonic stem cells. iPSC technology promises to enable personalized autologous cell therapy and has the potential to revolutionize cell replacement therapy and regenerative medicine. Potential applications of iPSC technology are rapidly increasing in ambition from discrete cell replacement applications to the iPSC assisted bioengineering of body organs for personalized autologous body organ transplant. Recent work has demonstrated that the generation of organs from iPSCs is a future possibility. The development of embryonic-like organ structures bioengineered from iPSCs has been achieved, such as an early brain structure (cerebral organoids, bone, optic vesicle-like structures (eye, cardiac muscle tissue (heart, primitive pancreas islet cells, a tooth-like structure (teeth, and functional liver buds (liver. Thus, iPSC technology offers, in the future, the powerful and unique possibility to make body organs for transplantation removing the need for organ donation and immune suppressing drugs. Whilst it is clear that iPSCs are rapidly becoming the lead cell type for research into cell replacement therapy and body organ transplantation strategies in humans, it is not known whether (1 such transplants will stimulate host immune responses; and (2 whether this technology will be capable of the bioengineering of a complete and fully functional human organ. This review will not focus on reprogramming to iPSCs, of which a plethora of reviews can be found, but instead focus on the latest developments in direct reprogramming of cells, the bioengineering of body organs from iPSCs, and an analysis of the immune response induced by i

  17. The Spleen as an Optimal Site for Islet Transplantation and a Source of Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Naoaki Sakata

    2018-05-01

    Full Text Available This review demonstrates the unique potential of the spleen as an optimal site for islet transplantation and as a source of mesenchymal stem cells. Islet transplantation is a cellular replacement therapy used to treat severe diabetes mellitus; however, its clinical outcome is currently unsatisfactory. Selection of the most appropriate transplantation site is a major factor affecting the clinical success of this therapy. The spleen has long been studied as a candidate site for islet transplantation. Its advantages include physiological insulin drainage and regulation of immunity, and it has recently also been shown to contribute to the regeneration of transplanted islets. However, the efficacy of transplantation in the spleen is lower than that of intraportal transplantation, which is the current representative method of clinical islet transplantation. Safer and more effective methods of islet transplantation need to be established to allow the spleen to be used for clinical transplantation. The spleen is also of interest as a mesenchymal stem cell reservoir. Splenic mesenchymal stem cells contribute to the repair of damaged tissue, and their infusion may thus be a promising therapy for autoimmune diseases, including type 1 diabetes mellitus and Sjogren’s syndrome.

  18. The Spleen as an Optimal Site for Islet Transplantation and a Source of Mesenchymal Stem Cells.

    Science.gov (United States)

    Sakata, Naoaki; Yoshimatsu, Gumpei; Kodama, Shohta

    2018-05-07

    This review demonstrates the unique potential of the spleen as an optimal site for islet transplantation and as a source of mesenchymal stem cells. Islet transplantation is a cellular replacement therapy used to treat severe diabetes mellitus; however, its clinical outcome is currently unsatisfactory. Selection of the most appropriate transplantation site is a major factor affecting the clinical success of this therapy. The spleen has long been studied as a candidate site for islet transplantation. Its advantages include physiological insulin drainage and regulation of immunity, and it has recently also been shown to contribute to the regeneration of transplanted islets. However, the efficacy of transplantation in the spleen is lower than that of intraportal transplantation, which is the current representative method of clinical islet transplantation. Safer and more effective methods of islet transplantation need to be established to allow the spleen to be used for clinical transplantation. The spleen is also of interest as a mesenchymal stem cell reservoir. Splenic mesenchymal stem cells contribute to the repair of damaged tissue, and their infusion may thus be a promising therapy for autoimmune diseases, including type 1 diabetes mellitus and Sjogren’s syndrome.

  19. Stem-Cell Inactivation on Transplantation of Haemopoietic Cell Suspensions from Genetically Different Donors

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, R. V. [Institute of Biophysics, Ministry of Public Health of the USSR, Moscow, USSR (Russian Federation)

    1969-07-15

    The transplantation of a mixture of haemopoietic or lymphoid cells from two genetically different mice into lethally irradiated F{sub 1} recipients results in marked or total inactivation of the colony-forming units of the graft. This phenomenon is observed following transplantation of mixtures of spleen cells or bone-marrow cells from animals of different genotypes: CBA + C57BL, A + CBA, A + C57BL, C3H + C57BL, CBA + (CBA x C57BL) F{sub 1}. Maximum inactivation is observed when lymph-node cells of one genotype are transplanted with spleen or bone-marrow cells of another genotype. Use of non-syngenic kidney cells or lymphoid cells inactivated by irradiation as one component of the mixture shows that inactivation of genetically heterogeneous stem cells requires the participation of viable lymphoid cells. The inactivation phenomenon is also observed with Jerne's method. This shows that inactivation affects not only colony-forming cells but also the immunologically competent precursors of antibody-producing cells. (author)

  20. Experience of families of children and adolescents submitted to Hematopoietic Stem Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Verônica de Azevedo Mazza

    2016-12-01

    Full Text Available A descriptive study with a qualitative approach to describe how families of children and adolescents submitted to Hematopoietic Stem Cell Transplantation went through this experience. We conducted semi-structured interviews with 16 relatives of children and adolescents submitted to transplantation between December of 2014 to March of 2015 at the bone marrow transplantation service at a university hospital located at the South of Brazil. We analyzed the data with steps described by Creswell, with the support of the software IRAMUTEQ. From this analysis, the emerging categories were: the mother as an active subject in the transplantation process; family experience with the transplantation; transplantation impact for the child and/or adolescent; and, transplantation: from fear to hope. Considering our results, it is possible to ponderate about the care provided by the nursing team, becoming indispensable for these professionals to plan assistance focused not only on the patient but the whole family nucleus.

  1. Generation of Transplantable Beta Cells for Patient-Specific Cell Therapy

    Directory of Open Access Journals (Sweden)

    Xiaojie Wang

    2012-01-01

    Full Text Available Islet cell transplantation offers a potential cure for type 1 diabetes, but it is challenged by insufficient donor tissue and side effects of current immunosuppressive drugs. Therefore, alternative sources of insulin-producing cells and isletfriendly immunosuppression are required to increase the efficiency and safety of this procedure. Beta cells can be transdifferentiated from precursors or another heterologous (non-beta-cell source. Recent advances in beta cell regeneration from somatic cells such as fibroblasts could circumvent the usage of immunosuppressive drugs. Therefore, generation of patient-specific beta cells provides the potential of an evolutionary treatment for patients with diabetes.

  2. Using resonant x-ray scattering to determine how structure controls the charge generation process in PCPDTBT:PC70BM solar cells

    Science.gov (United States)

    Pope, Michael; Waldrip, Matthew; Ferron, Thomas; Collins, Brian

    Increased solar power conversion efficiencies to 12% in bulk heterojunction organic photovoltaics (OPVs) continue to brighten their prospects as an economically viable source of solar energy. It is known that OPV performance can be enhanced through processing additives that change the nanostructure. We track these critical structure-property relationships in the OPV system PCPDTBT:PC70BM while varying the amount of DIO additive. Resonant Soft X-ray Scattering reveals domain purity, domain size, and molecular orientation to highlight the system's complex dependence on DIO concentration. We will show the effect the resulting structure has on charge generation and recombination via in-situ transient and steady state optoelectronic measurements. By measuring structure, excited state dynamics and device performance all on the same sample enables direct relationships to be measured. We show that the appropriate balance of crystallinity, domain size and domain purity are important for optimized excited state dynamics and device performance.

  3. Autologous CLL cell vaccination early after transplant induces leukemia-specific T cells.

    Science.gov (United States)

    Burkhardt, Ute E; Hainz, Ursula; Stevenson, Kristen; Goldstein, Natalie R; Pasek, Mildred; Naito, Masayasu; Wu, Di; Ho, Vincent T; Alonso, Anselmo; Hammond, Naa Norkor; Wong, Jessica; Sievers, Quinlan L; Brusic, Ana; McDonough, Sean M; Zeng, Wanyong; Perrin, Ann; Brown, Jennifer R; Canning, Christine M; Koreth, John; Cutler, Corey; Armand, Philippe; Neuberg, Donna; Lee, Jeng-Shin; Antin, Joseph H; Mulligan, Richard C; Sasada, Tetsuro; Ritz, Jerome; Soiffer, Robert J; Dranoff, Glenn; Alyea, Edwin P; Wu, Catherine J

    2013-09-01

    Patients with advanced hematologic malignancies remain at risk for relapse following reduced-intensity conditioning (RIC) allogeneic hematopoietic stem cell transplantation (allo-HSCT). We conducted a prospective clinical trial to test whether vaccination with whole leukemia cells early after transplantation facilitates the expansion of leukemia-reactive T cells and thereby enhances antitumor immunity. We enrolled 22 patients with advanced chronic lymphocytic leukemia (CLL), 18 of whom received up to 6 vaccines initiated between days 30 and 45 after transplantation. Each vaccine consisted of irradiated autologous tumor cells admixed with GM-CSF-secreting bystander cells. Serial patient PBMC samples following transplantation were collected, and the impact of vaccination on T cell activity was evaluated. At a median follow-up of 2.9 (range, 1-4) years, the estimated 2-year progression-free and overall survival rates of vaccinated subjects were 82% (95% CI, 54%-94%) and 88% (95% CI, 59%-97%), respectively. Although vaccination only had a modest impact on recovering T cell numbers, CD8+ T cells from vaccinated patients consistently reacted against autologous tumor, but not alloantigen-bearing recipient cells with increased secretion of the effector cytokine IFN-γ, unlike T cells from nonvaccinated CLL patients undergoing allo-HSCT. Further analysis confirmed that 17% (range, 13%-33%) of CD8+ T cell clones isolated from 4 vaccinated patients by limiting dilution of bulk tumor-reactive T cells solely reacted against CLL-associated antigens. Our studies suggest that autologous tumor cell vaccination is an effective strategy to advance long-term leukemia control following allo-HSCT. Clinicaltrials.gov NCT00442130. NCI (5R21CA115043-2), NHLBI (5R01HL103532-03), and Leukemia and Lymphoma Society Translational Research Program.

  4. Allogeneic stem cell transplantation for thalassemia major in India

    Directory of Open Access Journals (Sweden)

    Vikram Mathews

    2017-12-01

    Full Text Available Allogeneic stem cell transplantation (allo-SCT is the only currently available curative treatment for thalassemia major. Since it was first done in 1981, several thousand patients have benefited from it and it is now possible to offer this treatment in different parts of the world with good results. With better risk stratification and supportive care, the results of allo-SCT are now very good even in high risk patients who have significant iron overload related organ dysfunction. The improvements have mainly been in the conditioning strategies with less toxic myeloablation and management of the complications of SCT. However, several challenges remain. Transplant related complications still cause significant morbidity and mortality. There is data to show that the results of transplantation as best if done in well transfused and chelated patients <7 years of age. As only a third of the patients will have a matched related donor, there is need for investigating SCT with alternative donors. Experience with SCT for thalassemia major from matched unrelated donors or haplo-identical donors is still limited but needs further exploration. Adequate management needs to be provided post-SCT for all pre-existing complications particularly iron chelation to prevent further organ dysfunction. Systematic follow-up is needed to measure long term outcomes. The biggest challenges in India are the cost of this treatment and access to centres capable of providing this treatment. With greater support from the government, health insurance and philanthropic programs, there has been a rapid increase in the number of SCTs for thalassemia major in India. The number centres providing this treatment are also increasing making this curative treatment more widely available in India.

  5. BACTERIAL INFECTIONS IN HEMATOPOIETIC STEM CELL TRANSPLANT RECIPIENTS

    Directory of Open Access Journals (Sweden)

    Elisa Balletto

    2015-07-01

    Full Text Available Bacterial infections are major complications after Hematopoietic Stem Cell Transplant (HSCT. They consist mainly of bloodstream infections (BSI, followed by pneumonia and gastrointestinal infections, including typhlitis and Clostridium difficile infection. Microbiological data come mostly from BSI. Coagulase negative staphylococci and Enterobacteriaceae are the most frequent pathogens causing approximately 25% of BSI each, followed by enterococci, P. aeruginosa and viridans streptococci. Bacterial pneumonia is frequent after HSCT, and Gram-negatives are predominant. Clostridium difficile infection affects approximately 15% of HSCT recipients, being more frequent in case of allogeneic than autologous HSCT. The epidemiology and the prevalence of resistant strains vary significantly between transplant centres. In some regions, multi-drug resistant Gram-negative rods are increasingly frequent. In others, vancomycin-resistant enterococci are predominant. In the era of an increasing resistance to antibiotics, the efficacy of fluoroquinolone prophylaxis and standard treatment of febrile neutropenia have been questioned. Therefore, thorough evaluation of local epidemiology is mandatory in order to decide the need for prophylaxis and the choice of the best regimen for empirical treatment of febrile neutropenia. For the latter, individualised approach has been proposed, consisting of either escalation or de-escalation strategy. De-escalation strategy is recommended is resistant bacteria should be covered upfront, mainly in patients with severe clinical presentation and previous infection or colonisation with a resistant pathogens. Non-pharmacological interventions, such as screening for resistant bacteria, applying isolation and contact precautions should be put in place in order to limit the spread of MDR bacteria. Antimicrobial stewardship program should be implemented in transplant centres.

  6. Application of human amniotic mesenchymal cells as an allogeneic transplantation cell source in bone regenerative therapy

    International Nuclear Information System (INIS)

    Tsuno, Hiroaki; Yoshida, Toshiko; Nogami, Makiko; Koike, Chika; Okabe, Motonori; Noto, Zenko; Arai, Naoya; Noguchi, Makoto; Nikaido, Toshio

    2012-01-01

    Autogenous mesenchymal stem cells (MSCs) have therapeutic applications in bone regenerative therapy due to their pluripotency. However, the ability of MSCs to proliferate and differentiate varies between donors. Furthermore, alternative sources of MSCs are required for patients with contraindications to autogenous cell therapy. The aim of this study was to evaluate the potential of mesenchymal cells from the human amniotic membrane (HAM) as a source of cells for allogeneic transplantation in bone regenerative therapy. Cells that retained a proliferative capacity of more than 50 population doubling level were distinguished from other HAM cells as HAMα cells and induced to osteogenic status—their in vivo osteogenesis was subsequently investigated in rats. It was found that HAMα cells were spindle shaped and were positive for MSC markers and negative for hematopoietic stem cell markers. Alkaline phosphatase activity and calcium deposition increased with osteogenic status of HAMα cells. The expression of osteocalcin mRNA was increased in HAMα cells cultured on calcium phosphate scaffolds. Moreover, xenografted HAMα cells remained viable and produced extracellular matrix for several weeks. Thus, this study suggests that human amniotic mesenchymal cells possess osteogenic differentiation potential and could be applied to allogeneic transplantation in bone regenerative therapy. - Highlights: ► Human amniotic mesenchymal cells include cells (HAMα cells) that have the properties of MSCs. ► HAMα cells have excellent osteogenic differentiation potential. ► Osteogenic differentiation ability of HAMα was amplified by calcium phosphate scaffolds. ► HAMα cells can be applicable to allogeneic cell transplantation in bone regenerative therapy.

  7. Application of human amniotic mesenchymal cells as an allogeneic transplantation cell source in bone regenerative therapy

    Energy Technology Data Exchange (ETDEWEB)

    Tsuno, Hiroaki [Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Department of Oral and Maxillofacial Surgery, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Yoshida, Toshiko [Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Nogami, Makiko [Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Department of Orthopedic Surgery, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Koike, Chika; Okabe, Motonori [Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Noto, Zenko [Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Department of Oral and Maxillofacial Surgery, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Arai, Naoya; Noguchi, Makoto [Department of Oral and Maxillofacial Surgery, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Nikaido, Toshio, E-mail: tnikaido@med.u-toyama.ac.jp [Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan)

    2012-12-01

    Autogenous mesenchymal stem cells (MSCs) have therapeutic applications in bone regenerative therapy due to their pluripotency. However, the ability of MSCs to proliferate and differentiate varies between donors. Furthermore, alternative sources of MSCs are required for patients with contraindications to autogenous cell therapy. The aim of this study was to evaluate the potential of mesenchymal cells from the human amniotic membrane (HAM) as a source of cells for allogeneic transplantation in bone regenerative therapy. Cells that retained a proliferative capacity of more than 50 population doubling level were distinguished from other HAM cells as HAM{alpha} cells and induced to osteogenic status-their in vivo osteogenesis was subsequently investigated in rats. It was found that HAM{alpha} cells were spindle shaped and were positive for MSC markers and negative for hematopoietic stem cell markers. Alkaline phosphatase activity and calcium deposition increased with osteogenic status of HAM{alpha} cells. The expression of osteocalcin mRNA was increased in HAM{alpha} cells cultured on calcium phosphate scaffolds. Moreover, xenografted HAM{alpha} cells remained viable and produced extracellular matrix for several weeks. Thus, this study suggests that human amniotic mesenchymal cells possess osteogenic differentiation potential and could be applied to allogeneic transplantation in bone regenerative therapy. - Highlights: Black-Right-Pointing-Pointer Human amniotic mesenchymal cells include cells (HAM{alpha} cells) that have the properties of MSCs. Black-Right-Pointing-Pointer HAM{alpha} cells have excellent osteogenic differentiation potential. Black-Right-Pointing-Pointer Osteogenic differentiation ability of HAM{alpha} was amplified by calcium phosphate scaffolds. Black-Right-Pointing-Pointer HAM{alpha} cells can be applicable to allogeneic cell transplantation in bone regenerative therapy.

  8. Evolution of β-Cell Replacement Therapy in Diabetes Mellitus: Islet Cell Transplantation

    Science.gov (United States)

    Jahansouz, Cyrus; Jahansouz, Cameron; Kumer, Sean C.; Brayman, Kenneth L.

    2011-01-01

    Diabetes mellitus remains one of the leading causes of morbidity and mortality worldwide. According to the Centers for Disease Control and Prevention, approximately 23.6 million people in the United States are affected. Of these individuals, 5 to 10% have been diagnosed with Type 1 diabetes mellitus (T1DM), an autoimmune disease. Although it often appears in childhood, T1DM may manifest at any age, leading to significant morbidity and decreased quality of life. Since the 1960s, the surgical treatment for diabetes mellitus has evolved to become a viable alternative to insulin administration, beginning with pancreatic transplantation. While islet cell transplantation has emerged as another potential alternative, its role in the treatment of T1DM remains to be solidified as research continues to establish it as a truly viable alternative for achieving insulin independence. In this paper, the historical evolution, procurement, current status, benefits, risks, and ongoing research of islet cell transplantation are explored. PMID:22013505

  9. EPSTEIN-BARR VIRUS RELATED LYMPHOPROLIFERATIONS AFTER STEM CELL TRANSPLANTATION

    Directory of Open Access Journals (Sweden)

    Patrizia Chiusolo

    2009-11-01

    Full Text Available

    Epstein-Barr virus related lymphoproliferative  disorders are a rare but potentially fatal complication of allogeneic stem cell transplantation with an incidence of 1-3% and  occurring within 6 months after transplantation.  The most relevant risk factors include the use of in vivo T-cell depletion with antithymocyte globulin, HLA disparities between donor and recipient, donor type,  splenectomy etc. The higher the numbers of risk factors the higher the risk of developing Epstein-Barr virus related lymphoproliferative  disorders. Monitoring EBV viremia after transplantation is of value and it should be applied to high risk patients since it allows pre-emptive therapy initiation  at specified threshold values   and early treatment. This strategy  might reduce mortality which was >80% prior to the implementation of anti-EBV therapy . Treatment of EBV-LPD after allogeneic SCT may consist of anti-B-cell therapy (rituximab, adoptive T-cell immunotherapy or both. Rituximab treatment should be considered the first treatment option, preferably guided by intensive monitoring of EBV DNA while reduction of immunosuppression should be carefully evaluated for the risk of graft versus host disease.

  10. EFFECT ON LIFESPAN OF HIGH YIELD NONMYELOABLATING TRANSPLANTATION OF BONE MARROW FROM YOUNG TO OLD MICE

    Directory of Open Access Journals (Sweden)

    Marina eKovina

    2013-08-01

    Full Text Available Tissue renewal is a well-known phenomenon by which old and dying-off cells of various tissues of the body are replaced by progeny of local or circulating stem cells (SC. An interesting question is whether donor stem cells are capable to prolong the lifespan of an ageing organism by tissue renewal.. In this work we investigated the possible use of bone marrow SC for lifespan extension. To this purpose, chimeric C57BL/6 mice were created by transplanting bone marrow from young 1.5-month donors to 21.5-month-old recipients. Transplantation was carried out by means of a recently developed method which allowed to transplant without myeloablation up to 1.5×108 cells, that is, about 25 % of the total BM cells of the mouse. As a result, the mean survival time, counting from the age of 21.5 months, the start of the experiment, was +3.6 and +5.0 (± 0.1 months for the control and experimental groups, respectively, corresponding to a 39% ± 4% increase in the experimental group over the control. In earlier studies on BM transplantation a considerably smaller quantity of donor cells (5×106 was used, about 1 % of the total own BM cells. The recipients before transplantation were exposed to a lethal (for control animals X-ray dose which eliminated the possibility of studying the lifespan extension by this method.

  11. Repopulation dynamics of single haematopoietic stem cells in mouse transplantation experiments: Importance of stem cell composition in competitor cells.

    Science.gov (United States)

    Ema, Hideo; Uchinomiya, Kouki; Morita, Yohei; Suda, Toshio; Iwasa, Yoh

    2016-04-07

    The transplantation of blood tissues from bone marrow into a lethally irradiated animal is an experimental procedure that is used to study how the blood system is reconstituted by haematopoietic stem cells (HSC). In a competitive repopulation experiment, a lethally irradiated mouse was transplanted with a single HSC as a test cell together with a number of bone marrow cells as competitor cells, and the fraction of the test cell progeny (percentage of chimerism) was traced over time. In this paper, we studied the stem cell kinetics in this experimental procedure. The balance between symmetric self-renewal and differentiation divisions in HSC determined the number of cells which HSC produce and the length of time for which HSC live after transplantation. The percentage of chimerism depended on the type of test cell (long-, intermediate-, or short-term HSC), as well as the type and number of HSC included in competitor cells. We next examined two alternative HSC differentiation models, one-step and multi-step differentiation models. Although these models differed in blood cell production, the percentage of chimerism appeared very similar. We also estimated the numbers of different types of HSC in competitor cells. Based on these results, we concluded that the experimental results inevitably include stochasticity with regard to the number and the type of HSC in competitor cells, and that, in order to detect different types of HSC, an appropriate number of competitor cells needs to be used in transplantation experiments. Copyright © 2016. Published by Elsevier Ltd.

  12. The clinical application of mesenchymal stromal cells in hematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Ke Zhao

    2016-05-01

    Full Text Available Abstract Mesenchymal stromal cells (MSCs are multipotent stem cells well known for repairing tissue, supporting hematopoiesis, and modulating immune and inflammation response. These outstanding properties make MSCs as an attractive candidate for cellular therapy in immune-based disorders, especially hematopoietic stem cell transplantation (HSCT. In this review, we outline the progress of MSCs in preventing and treating engraftment failure (EF, graft-versus-host disease (GVHD following HSCT and critically discuss unsolved issues in clinical applications.

  13. Impact of Autologous and Allogeneic Stem Cell Transplantation in Peripheral T-Cell Lymphomas

    Directory of Open Access Journals (Sweden)

    Peter Reimer

    2010-01-01

    Full Text Available Peripheral T/NK-cell lymphomas (PTCLs are rare malignancies characterized by poor prognosis. So far, no standard therapy has been established, due to the lack of randomised studies. High-dose therapy and autologous stem cell transplantation (HDT-autoSCT have shown good feasibility with low toxicity in retrospective studies. In relapsing and refractory PTCL several comparison analyses suggest similar efficacy for PTCL when compared with aggressive B-cell lymphoma. In the upfront setting, prospective data show promising results with a long-lasting overall survival in a relevant subset of patients. Achieving a complete remission at transplantation seems to be the most important prognostic factor. Allogeneic stem cell transplantation (alloSCT has been investigated only as salvage treatment. Especially when using reduced intensity conditioning regimen, eligible patients seem to benefit from this approach. To define the role for upfront stem cell transplantation a randomised trial by the German High-Grade Non-Hodgkin Lymphoma Study Group comparing HDT-autoSCT and alloSCT will be initiated this year.

  14. Macrophage depletion and Schwann cell transplantation reduce cyst size after rat contusive spinal cord injury.

    Science.gov (United States)

    Lee, Yee-Shuan; Funk, Lucy H; Lee, Jae K; Bunge, Mary Bartlett

    2018-04-01

    Schwann cell transplantation is a promising therapy for the treatment of spinal cord injury (SCI) and is currently in clinical trials. In our continuing efforts to improve Schwann cell transplantation strategies, we sought to determine the combined effects of Schwann cell transplantation with macrophage depletion. Since macrophages are major inflammatory contributors to the acute spinal cord injury, and are the major phagocytic cells, we hypothesized that transplanting Schwann cells after macrophage depletion will improve cell survival and integration with host tissue after SCI. To test this hypothesis, rat models of contusive SCI at thoracic level 8 were randomly subjected to macrophage depletion or not. In rat subjected to macrophage depletion, liposomes filled with clodronate were intraperitoneally injected at 1, 3, 6, 11, and 18 days post injury. Rats not subjected to macrophage depletion were intraperitoneally injected with liposomes filled with phosphate buffered saline. Schwann cells were transplanted 1 week post injury in all rats. Biotinylated dextran amine (BDA) was injected at thoracic level 5 to evalute axon regeneration. The Basso, Beattie, and Bresnahan locomotor test, Gridwalk test, and sensory test using von Frey filaments were performed to assess functional recovery. Immunohistochemistry was used to detect glial fibrillary acidic protein, neurofilament, and green fluorescent protein (GFP), and also to visulize BDA-labelled axons. The GFP labeled Schwann cell and cyst and lesion volumes were quantified using stained slides. The numbers of BDA-positive axons were also quantified. At 8 weeks after Schwann cell transplantation, there was a significant reduction in cyst and lesion volumes in the combined treatment group compared to Schwann cell transplantation alone. These changes were not associated, however, with improved Schwann cell survival, axon growth, or locomotor recovery. Although combining Schwann cell transplantation with macrophage

  15. Macrophage depletion and Schwann cell transplantation reduce cyst size after rat contusive spinal cord injury

    Science.gov (United States)

    Lee, Yee-Shuan; Funk, Lucy H.; Lee, Jae K.; Bunge, Mary Bartlett

    2018-01-01

    Schwann cell transplantation is a promising therapy for the treatment of spinal cord injury (SCI) and is currently in clinical trials. In our continuing efforts to improve Schwann cell transplantation strategies, we sought to determine the combined effects of Schwann cell transplantation with macrophage depletion. Since macrophages are major inflammatory contributors to the acute spinal cord injury, and are the major phagocytic cells, we hypothesized that transplanting Schwann cells after macrophage depletion will improve cell survival and integration with host tissue after SCI. To test this hypothesis, rat models of contusive SCI at thoracic level 8 were randomly subjected to macrophage depletion or not. In rat subjected to macrophage depletion, liposomes filled with clodronate were intraperitoneally injected at 1, 3, 6, 11, and 18 days post injury. Rats not subjected to macrophage depletion were intraperitoneally injected with liposomes filled with phosphate buffered saline. Schwann cells were transplanted 1 week post injury in all rats. Biotinylated dextran amine (BDA) was injected at thoracic level 5 to evalute axon regeneration. The Basso, Beattie, and Bresnahan locomotor test, Gridwalk test, and sensory test using von Frey filaments were performed to assess functional recovery. Immunohistochemistry was used to detect glial fibrillary acidic protein, neurofilament, and green fluorescent protein (GFP), and also to visulize BDA-labelled axons. The GFP labeled Schwann cell and cyst and lesion volumes were quantified using stained slides. The numbers of BDA-positive axons were also quantified. At 8 weeks after Schwann cell transplantation, there was a significant reduction in cyst and lesion volumes in the combined treatment group compared to Schwann cell transplantation alone. These changes were not associated, however, with improved Schwann cell survival, axon growth, or locomotor recovery. Although combining Schwann cell transplantation with macrophage

  16. Macrophage depletion and Schwann cell transplantation reduce cyst size after rat contusive spinal cord injury

    Directory of Open Access Journals (Sweden)

    Yee-Shuan Lee

    2018-01-01

    Full Text Available Schwann cell transplantation is a promising therapy for the treatment of spinal cord injury (SCI and is currently in clinical trials. In our continuing efforts to improve Schwann cell transplantation strategies, we sought to determine the combined effects of Schwann cell transplantation with macrophage depletion. Since macrophages are major inflammatory contributors to the acute spinal cord injury, and are the major phagocytic cells, we hypothesized that transplanting Schwann cells after macrophage depletion will improve cell survival and integration with host tissue after SCI. To test this hypothesis, rat models of contusive SCI at thoracic level 8 were randomly subjected to macrophage depletion or not. In rat subjected to macrophage depletion, liposomes filled with clodronate were intraperitoneally injected at 1, 3, 6, 11, and 18 days post injury. Rats not subjected to macrophage depletion were intraperitoneally injected with liposomes filled with phosphate buffered saline. Schwann cells were transplanted 1 week post injury in all rats. Biotinylated dextran amine (BDA was injected at thoracic level 5 to evalute axon regeneration. The Basso, Beattie, and Bresnahan locomotor test, Gridwalk test, and sensory test using von Frey filaments were performed to assess functional recovery. Immunohistochemistry was used to detect glial fibrillary acidic protein, neurofilament, and green fluorescent protein (GFP, and also to visulize BDA-labelled axons. The GFP labeled Schwann cell and cyst and lesion volumes were quantified using stained slides. The numbers of BDA-positive axons were also quantified. At 8 weeks after Schwann cell transplantation, there was a significant reduction in cyst and lesion volumes in the combined treatment group compared to Schwann cell transplantation alone. These changes were not associated, however, with improved Schwann cell survival, axon growth, or locomotor recovery. Although combining Schwann cell transplantation with

  17. Histone deacetylase inhibition regulates inflammation and enhances Tregs after allogeneic hematopoietic cell transplantation in humans

    NARCIS (Netherlands)

    Choi, S.W.; Gatza, E.; Hou, G.; Sun, Y; Whitfield, J.; Song, Y.; Oravecz-Wilson, K.; Tawara, I.; Dinarello, C.A.; Reddy, P.

    2015-01-01

    We examined immunological responses in patients receiving histone deacetylase (HDAC) inhibition (vorinostat) for graft-versus-host disease prophylaxis after allogeneic hematopoietic cell transplant. Vorinostat treatment increased histone acetylation in peripheral blood mononuclear cells (PBMCs) from

  18. A transplant recipient with a mixed germ-cell ovarian tumor

    Directory of Open Access Journals (Sweden)

    Ketata Hafed

    2008-01-01

    Full Text Available Immunosuppressed renal transplant recipients seem to be at significantly increased risk of developing neoplasms comparatively to nonimmunosuppressed individuals. A history of malignancy exposes the patient to a high risk for relapse after transplantation. We present a trans-plant recipient with a history of an ovarian mixed germ-cell tumor, with choriocarcinoma com-ponent, which was treated seven years prior to transplantation. After three years of follow-up, there was no evidence of tumor relapse. To our knowledge, there is no report of such case in the English literature. Regarding our case report and patients with a history of ovarian germ-cell neoplasm, waiting time before transplantation must take into consideration the stage of the tumor, its prognosis, the proportion of different tumor components, and the overall prognosis of the patient if transplantation is withheld.

  19. Mismatch repair deficient hematopoietic stem cells are preleukemic stem cells.

    Directory of Open Access Journals (Sweden)

    Yulan Qing

    Full Text Available Whereas transformation events in hematopoietic malignancies may occur at different developmental stages, the initial mutation originates in hematopoietic stem cells (HSCs, creating a preleukemic stem cell (PLSC. Subsequent mutations at either stem cell or progenitor cell levels transform the PLSC into lymphoma/leukemia initiating cells (LIC. Thymic lymphomas have been thought to develop from developing thymocytes. T cell progenitors are generated from HSCs in the bone marrow (BM, but maturation and proliferation of T cells as well as T-lymphomagenesis depends on both regulatory mechanisms and microenvironment within the thymus. We studied PLSC linked to thymic lymphomas. In this study, we use MSH2-/- mice as a model to investigate the existence of PLSC and the evolution of PLSC to LIC. Following BM transplantation, we found that MSH2-/- BM cells from young mice are able to fully reconstitute multiple hematopoietic lineages of lethally irradiated wild-type recipients. However, all recipients developed thymic lymphomas within three and four months post transplantation. Transplantation of different fractions of BM cells or thymocytes from young health MSH2-/- mice showed that an HSC enriched fraction always reconstituted hematopoiesis followed by lymphoma development. In addition, lymphomas did not occur in thymectomized recipients of MSH2-/- BM. These results suggest that HSCs with DNA repair defects such as MSH2-/- are PLSCs because they retain hematopoietic function, but also carry an obligate lymphomagenic potential within their T-cell progeny that is dependent on the thymic microenvironment.

  20. The role of exogenous neural stem cells transplantation in cerebral ischemic stroke.

    Science.gov (United States)

    Chen, Lukui; Qiu, Rong; Li, Lushen; He, Dan; Lv, Haiqin; Wu, Xiaojing; Gu, Ning

    2014-11-01

    To observe the effects of neural stem cells (NSCs) transplantation in rats' striatum and subventricular zone (SVZ) in rat models of focal cerebral ischemia and reperfusion. Hippocampus was extracted from fetal rats with 14 days of gestation. Suspension culture was used to isolate and culture the rat's NSCs. A cerebral ischemia and reperfusion rat's model was made on the left side of the brain through occlusion of the left middle cerebral artery. Neurological signs were assessed by Zea Longa's five-grade scale, with scores 1, 2, and 3 used to determine the successful establishment of the rat's model. The NSCs were stereotaxically injected into the left striatum 24 hours after the successful rat's model was built. Rats were then randomly divided into 5 groups, namely, normal group, sham operation group, ischemia group, PBS transplantation group, and NSCs transplantation group, each of which was observed on day 3, day 7, and day 14. The ischemia-related neurological deficits were assessed by using a 7-point evaluation criterion. Forelimb injuries were evaluated in all rats using the foot-fault approach. Infarct size changes were observed through TTC staining and cell morphology and structure in the infarct region were investigated by Nissl staining. Apoptosis and apoptosis-positive cell counts were studied by Tunel assay. Expressions of double-labeling positive cells in the striatum and subventricular zone (SVZ) were observed by BrdU/NeuN and BrdU/GFAP fluorescent double-labeling method and the number of positive cells in the striatum and SVZ was counted. Results from the differently treated groups showed that right hemiplegia occurred in the ischemia group, PBS transplantation group, and NSCs transplantation group in varying degrees. Compared with the former two groups, there was least hemiplegia in the NSCs transplantation group. The TTC staining assay showed that rats in the NSCs transplantation group had smaller infarct volume than those from the PBS

  1. Central nervous system infection following allogeneic hematopoietic stem cell transplantation.

    Science.gov (United States)

    Hanajiri, Ryo; Kobayashi, Takeshi; Yoshioka, Kosuke; Watanabe, Daisuke; Watakabe, Kyoko; Murata, Yutaka; Hagino, Takeshi; Seno, Yasushi; Najima, Yuho; Igarashi, Aiko; Doki, Noriko; Kakihana, Kazuhiko; Sakamaki, Hisashi; Ohashi, Kazuteru

    2017-03-01

    Here, we described the clinical characteristics and outcomes of central nervous system (CNS) infections occurring after allogeneic hematopoietic stem cell transplantation (allo-HSCT) in a single institution over the previous 6 years. Charts of 353 consecutive allogeneic transplant recipients were retrospectively reviewed for CNS infection. A total of 17 cases of CNS infection were identified at a median of 38 days (range, 10-1028 days) after allo-HSCT. Causative pathogens were human herpesvirus-6 (n=6), enterococcus (n=2), staphylococcus (n=2), streptococcus (n=2), varicella zoster virus (n=1), cytomegalovirus (n=1), John Cunningham virus (n=1), adenovirus (n=1), and Toxoplasma gondii (n=1). The cumulative incidence of CNS infection was 4.1% at 1 year and 5.5% at 5 years. Multivariate analysis revealed that high-risk disease status was a risk factor for developing CNS infection (p=.02), and that overall survival at 3 years after allo-HSCT was 33% in patients with CNS infection and 53% in those without CNS infection (p=.04). Copyright © 2016 King Faisal Specialist Hospital & Research Centre. Published by Elsevier Ltd. All rights reserved.

  2. Endocrinopathies after Allogeneic and Autologous Transplantation of Hematopoietic Stem Cells

    Directory of Open Access Journals (Sweden)

    Francesco Orio

    2014-01-01

    Full Text Available Early and late endocrine disorders are among the most common complications in survivors after hematopoietic allogeneic- (allo- and autologous- (auto- stem cell transplant (HSCT. This review summarizes main endocrine disorders reported in literature and observed in our center as consequence of auto- and allo-HSCT and outlines current options for their management. Gonadal impairment has been found early in approximately two-thirds of auto- and allo-HSCT patients: 90–99% of women and 60–90% of men. Dysfunctions of the hypothalamus-pituitary-growth hormone/insulin growth factor-I axis, hypothalamus-pituitary-thyroid axis, and hypothalamus-pituitary-adrenal axis were documented as later complicances, occurring in about 10, 30, and 40–50% of transplanted patients, respectively. Moreover, overt or subclinical thyroid complications (including persistent low-T3 syndrome, chronic thyroiditis, subclinical hypo- or hyperthyroidism, and thyroid carcinoma, gonadal failure, and adrenal insufficiency may persist many years after HSCT. Our analysis further provides evidence that main recognized risk factors for endocrine complications after HSCT are the underlying disease, previous pretransplant therapies, the age at HSCT, gender, total body irradiation, posttransplant derangement of immune system, and in the allogeneic setting, the presence of graft-versus-host disease requiring prolonged steroid treatment. Early identification of endocrine complications can greatly improve the quality of life of long-term survivors after HSCT.

  3. Gauchers disease--a reappraisal of hematopoietic stem cell transplantation.

    Science.gov (United States)

    Ito, Sawa; Barrett, A John

    2013-03-01

    Hematopoietic stem cell transplantation (HSCT), first performed in 1984, was the first treatment approach for Gaucher's disease (GD) which had curative intent. The early successes in HSCT were soon eclipsed by the introduction of a highly effective enzyme replacement therapy (ERT), which has remained the single most widely used treatment. Experience with HSCT is limited to about 50 reported cases, mainly performed in the last century, with an overall survival around 85%. HSCT typically achieves complete correction of visceral and bony changes and can fully stabilize neurological features in otherwise progressive type II and III GD. ERT, in contrast, is completely safe and effective, but is limited by cost, incomplete resolution of visceral, hematological, and bony features in some patients, and lack of neurological correction in type II and III disease. In this review, we summarize and compare HSCT and ERT. With 20 years of experience of ERT, its limitations as well as its advantages are now well delineated. Meanwhile progress in HSCT over the last decade suggests that transplantation would today represent a very safe curative approach for GD offering one time complete correction of the disease, contrasting with the lifelong need for ERT with its associated expense and dependence on sophisticated drug manufacture. Additionally, unlike ERT, HSCT can be beneficial for neurological forms of GD. We conclude that the time has come to re-evaluate HSCT in selected patients with GD where ERT is less likely to fully eradicate symptoms of the disease.

  4. Fertility preservation issues in pediatric hematopoietic stem cell transplantation

    DEFF Research Database (Denmark)

    Balduzzi, A; Dalle, J-H; Jahnukainen, K

    2017-01-01

    Fertility preservation is an urgent challenge in the transplant setting. A panel of transplanters and fertility specialists within the Pediatric Diseases Working Party of the European Society for Blood and Marrow Transplantation (EBMT) and the International BFM Study Group provides specific guide...

  5. Comparison of therapeutic characteristics of islet cell transplantation simultaneous with pancreatic mesenchymal stem cell transplantation in rats with Type 1 diabetes mellitus.

    Science.gov (United States)

    Unsal, Ilknur Ozturk; Ginis, Zeynep; Pinarli, Ferda Alparslan; Albayrak, Aynur; Cakal, Erman; Sahin, Mustafa; Delibasi, Tuncay

    2015-06-01

    Although, pancreas islet call transplantation is a new, promising method for type 1 diabetic patients, it remains as an experimental procedure applied in selected patients. The present study aimed to investigate effect of pancreatic mesenchymal stem cell transplantation simultaneous with islet cell transplantation on islet liveliness and thus on the treatment of diabetes in type 1 diabetic rats. The study used Wistar Albino Rats and was performed in a total of four groups [control (G1), mesenchymal stem cell (G2), islet (G3) and islet + mesencymal stem cell (G4)] each including 8 rats. Blood glucose level of the rats, in which diabetes model has been created using streptozotocin, was measured after 72 h. Blood samples were obtained from the rats 30 days after transplantation and then, their livers and pancreases were kept in 10% formaldehyde and the experiment was ended. Following staining with H&E, they were morphologically evaluated under a light microscope. Change in mean blood glucose level was statistically significant in G3 and G4 versus G1 and G2 (p = 0.001, p islet cells in the pancreases of the rats was higher in G4; difference between the groups was statistically significant (p Transplantation of islet cells together with mesenchymal stem cells showed beneficial effects in terms of prolonging survival of islet grafts suggesting that transplantation of mesenchymal stem cells together with islet cells during clinical islet transplantation may be beneficial in increasing the number of noninsulin-dependent patients in Type 1 diabetes.

  6. Impact of HLA Diversity on Donor Selection in Organ and Stem Cell Transplantation

    OpenAIRE

    Tiercy Jean-Marie; Claas Frans

    2013-01-01

    The human major histocompatibility complex is a multigene system encoding polymorphic human leucocyte antigens (HLA) that present peptides derived from pathogens to the immune system. The high diversity of HLA alleles and haplotypes in the worldwide populations represents a major barrier to organ and allogeneic hematopoietic stem cell transplantation because HLA incompatibilities are efficiently recognized by T and B lymphocytes. In organ transplantation pre transplant anti HLA antibodies nee...

  7. Chemotherapy and Stem Cell Transplantation Increase p16INK4a Expression, a Biomarker of T-cell Aging

    Directory of Open Access Journals (Sweden)

    William A. Wood

    2016-09-01

    Full Text Available The expression of markers of cellular senescence increases exponentially in multiple tissues with aging. Age-related physiological changes may contribute to adverse outcomes in cancer survivors. To investigate the impact of high dose chemotherapy and stem cell transplantation on senescence markers in vivo, we collected blood and clinical data from a cohort of 63 patients undergoing hematopoietic cell transplantation. The expression of p16INK4a, a well-established senescence marker, was determined in T-cells before and 6 months after transplant. RNA sequencing was performed on paired samples from 8 patients pre- and post-cancer therapy. In patients undergoing allogeneic transplant, higher pre-transplant p16INK4a expression was associated with a greater number of prior cycles of chemotherapy received (p = 0.003, prior autologous transplantation (p = 0.01 and prior exposure to alkylating agents (p = 0.01. Transplantation was associated with a marked increase in p16INK4a expression 6 months following transplantation. Patients receiving autologous transplant experienced a larger increase in p16INK4a expression (3.1-fold increase, p = 0.002 than allogeneic transplant recipients (1.9-fold increase, p = 0.0004. RNA sequencing of T-cells pre- and post- autologous transplant or cytotoxic chemotherapy demonstrated increased expression of transcripts associated with cellular senescence and physiological aging. Cytotoxic chemotherapy, especially alkylating agents, and stem cell transplantation strongly accelerate expression of a biomarker of molecular aging in T-cells.

  8. Reconstitution of Th17, Tc17 and Treg cells after paediatric haematopoietic stem cell transplantation

    DEFF Research Database (Denmark)

    Kielsen, Katrine; Ryder, Lars P; Lennox-Hvenekilde, David

    2018-01-01

    behind these associations have not been investigated previously. We hypothesized that increased levels of IL-7 post-transplant alters the balance between immune-regulatory T cell subsets during the post-transplant lymphocyte recovery towards a more pro-inflammatory profile. We quantified Th17 cells, Tc17.......025). The plasma level of IL-7 at day +90 correlated inversely with Th17 cell counts (rs=-0.65, P=0.0002) and the proportion of Tc17 cells (rs=0.64, P=0.0005) at day +90, but not with Tregs. Furthermore, high IL-7 levels at day +7 were predictive of a less naïve T-cell phenotype at day +90. These findings add...

  9. Patient housing barriers to hematopoietic cell transplantation: results from a mixed-methods study of transplant center social workers.

    Science.gov (United States)

    Preussler, Jaime M; Mau, Lih-Wen; Majhail, Navneet S; Bevans, Margaret; Clancy, Emilie; Messner, Carolyn; Parran, Leslie; Pederson, Kate A; Ferguson, Stacy Stickney; Walters, Kent; Murphy, Elizabeth A; Denzen, Ellen M

    2016-03-01

    Hematopoietic cell transplantation (HCT) is performed in select centers in the United States (U.S.), and patients are often required to temporarily relocate to receive care. The purpose of this study was to identify housing barriers impacting access to HCT and potential solutions. A mixed-methods primary study of HCT social workers was conducted to learn about patient housing challenges and solutions in place that help address those barriers. Three telephone focus groups were conducted with adult and pediatric transplant social workers (n = 15). Focus group results informed the design of a national survey. The online survey was e-mailed to a primary social worker contact at 133 adult and pediatric transplant centers in the U.S. Transplant centers were classified based on the patient population cared for by the social worker. The survey response rate was 49%. Among adult programs (n = 45), 93% of centers had patients that had to relocate closer to the transplant center to proceed with HCT. The most common type of housing option offered was discounted hotel rates. Among pediatric programs (n = 20), 90% of centers had patients that had to relocate closer to the transplant center to proceed with HCT. Ronald McDonald House was the most common option available. This study is the first to explore housing challenges faced by patients undergoing HCT in the U.S. from the perspective of social workers and to highlight solutions that centers use. Transplant centers will benefit from this knowledge by learning about options for addressing housing barriers for their patients.

  10. Human amniotic mesenchymal stromal cell transplantation improves endometrial regeneration in rodent models of intrauterine adhesions.

    Science.gov (United States)

    Gan, Lu; Duan, Hua; Xu, Qian; Tang, Yi-Qun; Li, Jin-Jiao; Sun, Fu-Qing; Wang, Sha

    2017-05-01

    Intrauterine adhesion (IUA) is a common uterine cavity disease characterized by the unsatisfactory regeneration of damaged endometria. Recently, stem cell transplantation has been proposed to promote the recovery process. Here we investigated whether human amniotic mesenchymal stromal cells (hAMSCs), a valuable resource for transplantation therapy, could improve endometrial regeneration in rodent IUA models. Forty female Sprague-Dawley rats were randomly assigned to five groups: normal, sham-operated, mechanical injury, hAMSC transplantation, and negative control group. One week after intervention and transplantation, histological analyses were performed, and immunofluorescent and immunohistochemical expression of cell-specific markers and messenger RNA expression of cytokines were measured. Thicker endometria, increased gland numbers and fewer fibrotic areas were found in the hAMSC transplantation group compared with the mechanical injury group. Engraftment of hAMSCs was detected by the presence of anti-human nuclear antigen-positive cells in the endometrial glands of the transplantation uteri. Transplantation of hAMSCs significantly decreased messenger RNA levels of pro-inflammatory cytokines (tumor necrosis factor-α and interleukin-1β), and increased those of anti-inflammatory cytokines (basic fibroblast growth factor, and interleukin-6) compared with the injured uterine horns. Immunohistochemical expression of endometrial epithelial cells was revealed in specimens after hAMSC transplantation, whereas it was absent in the mechanically injured uteri. hAMSC transplantation promotes endometrial regeneration after injury in IUA rat models, possibly due to immunomodulatory properties. These cells provide a more easily accessible source of stem cells for future research into the impact of cell transplantation on damaged endometria. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  11. Regulatory B cells: an exciting target for future therapeutics in transplantation

    Directory of Open Access Journals (Sweden)

    Alexandre eNouël

    2014-01-01

    Full Text Available Transplantation is the preferred treatment for most end-stage solid organ diseases. Despite potent immunosuppressive agents, chronic rejection remains a real problem in transplantation. For many years, the predominant immunological focus of research into transplant rejection has been T cells. The pillar of immunotherapy in clinical practice is T cell-directed, which efficiently prevents acute T cell-mediated allograft rejection. However, the root of late allograft failure is chronic rejection and the humoral arm of the immune response now emerges as an important factor in transplantation. Thus, the potential effects of Abs and B cell infiltrates on transplants have cast B cells as major actors in late graft rejection. Consequently, a number of recent drugs target either B cells or plasma cells. However, immunotherapies, such as the anti-CD20 B cell-depleting Ab, can generate deleterious effects on the transplant, likely due to the deletion of beneficial population. The positive contribution of regulatory B (Breg cells -or B10 cells- has been reported in the case of transplantation, mainly in mice models and highlights the primordial role that some populations of B cells can play in graft tolerance. Yet, this regulatory aspect remains poorly characterized in clinical transplantation. Thus, total B cell depletion treatments should be avoided and novel approaches should be considered that manipulate the different B cell subsets. This article provides an overview of the current knowledge on the link between Breg cells and grafts, and reports a number of data advising Breg cells as a new target for future therapeutic approaches.

  12. In vitro proliferation and differentiation of hepatic oval cells and their potential capacity for intrahepatic transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Z.; Chen, J. [Liaocheng People' s Hospital, Department of Hepatobiliary Surgery, Liaocheng, Shandong, China, Department of Hepatobiliary Surgery, Liaocheng People’s Hospital, Liaocheng, Shandong (China); Li, L.; Ran, J.H.; Liu, J. [The First People' s Hospital of Kunming, Kunming, Yunnan, China, The First People’s Hospital of Kunming, Kunming, Yunnan (China); Gao, T.X.; Guo, B.Y. [Dongchangfu Hospital of Women and Child Health Care, Liaocheng, Shandong (China); Li, X.H.; Liu, Z.H.; Liu, G.J.; Gao, Y.C.; Zhang, X.L. [Liaocheng People' s Hospital, Department of Hepatobiliary Surgery, Liaocheng, Shandong, China, Department of Hepatobiliary Surgery, Liaocheng People’s Hospital, Liaocheng, Shandong (China)

    2013-07-30

    Hepatic oval cells (HOCs) are recognized as facultative liver progenitor cells that play a role in liver regeneration after acute liver injury. Here, we investigated the in vitro proliferation and differentiation characteristics of HOCs in order to explore their potential capacity for intrahepatic transplantation. Clusters or scattered HOCs were detected in the portal area and interlobular bile duct in the liver of rats subjected to the modified 2-acetylaminofluorene and partial hepatectomy method. Isolated HOCs were positive for c-kit and CD90 staining (99.8% and 88.8%, respectively), and negative for CD34 staining (3.6%) as shown by immunostaining and flow cytometric analysis. In addition, HOCs could be differentiated into hepatocytes and bile duct epithelial cells after leukemia inhibitory factor deprivation. A two-cuff technique was used for orthotopic liver transplantation, and HOCs were subsequently transplanted into recipients. Biochemical indicators of liver function were assessed 4 weeks after transplantation. HOC transplantation significantly prolonged the median survival time and improved the liver function of rats receiving HOCs compared to controls (P=0.003, Student t-test). Administration of HOCs to rats also receiving liver transplantation significantly reduced acute allograft rejection compared to control liver transplant rats 3 weeks following transplantation (rejection activity index score: control=6.3±0.9; HOC=3.5±1.5; P=0.005). These results indicate that HOCs may be useful in therapeutic liver regeneration after orthotopic liver transplantation.

  13. In vitro proliferation and differentiation of hepatic oval cells and their potential capacity for intrahepatic transplantation

    International Nuclear Information System (INIS)

    Li, Z.; Chen, J.; Li, L.; Ran, J.H.; Liu, J.; Gao, T.X.; Guo, B.Y.; Li, X.H.; Liu, Z.H.; Liu, G.J.; Gao, Y.C.; Zhang, X.L.

    2013-01-01

    Hepatic oval cells (HOCs) are recognized as facultative liver progenitor cells that play a role in liver regeneration after acute liver injury. Here, we investigated the in vitro proliferation and differentiation characteristics of HOCs in order to explore their potential capacity for intrahepatic transplantation. Clusters or scattered HOCs were detected in the portal area and interlobular bile duct in the liver of rats subjected to the modified 2-acetylaminofluorene and partial hepatectomy method. Isolated HOCs were positive for c-kit and CD90 staining (99.8% and 88.8%, respectively), and negative for CD34 staining (3.6%) as shown by immunostaining and flow cytometric analysis. In addition, HOCs could be differentiated into hepatocytes and bile duct epithelial cells after leukemia inhibitory factor deprivation. A two-cuff technique was used for orthotopic liver transplantation, and HOCs were subsequently transplanted into recipients. Biochemical indicators of liver function were assessed 4 weeks after transplantation. HOC transplantation significantly prolonged the median survival time and improved the liver function of rats receiving HOCs compared to controls (P=0.003, Student t-test). Administration of HOCs to rats also receiving liver transplantation significantly reduced acute allograft rejection compared to control liver transplant rats 3 weeks following transplantation (rejection activity index score: control=6.3±0.9; HOC=3.5±1.5; P=0.005). These results indicate that HOCs may be useful in therapeutic liver regeneration after orthotopic liver transplantation

  14. In vivo transformation of neural stem cells following transplantation in the injured nervous system.

    Science.gov (United States)

    Radtke, Christine; Redeker, Joern; Jokuszies, Andreas; Vogt, Peter M

    2010-04-01

    Johnson et al report tumor formation following murine neural precursor cell transplantation in a rat peripheral nerve injury model, emphasizing the importance of full in vitro characterization of cells prior to transplantation. Cell lines can change during expansion and subclones which may become tumerogenic may be selected in the process of expansion. Cell transplantation studies with committed cells that have been minimally manipulated and expanded in culture such as olfactory ensheathing cells and Schwann cells may pose less risk of tumerogenicity, but have the disadvantage of limited cell harvest yields. The balance between in vitro transformation of expanded cell lines and the limitation of cell harvest yields from preparation of more stable committed cells must be considered in selection of cells for therapeutic intervention for nerve repair. Copyright Thieme Medical Publishers.

  15. Hematopoietic stem cell transplantation in sickle cell disease: patient selection and special considerations

    Directory of Open Access Journals (Sweden)

    Bhatia M

    2015-07-01

    Full Text Available Monica Bhatia,1 Sujit Sheth21Division of Pediatric Hematology/Oncology/Stem Cell Transplantation, Columbia University Medical Center, 2Division of Pediatric Hematology and Oncology, Weill Cornell Medical College, New York, NY, USAAbstract: Hematopoietic stem cell transplantation remains the only curative treatment currently in use for patients with sickle cell disease (SCD. The first successful hematopoietic stem cell transplantation was performed in 1984. To date, approximately 1,200 transplants have been reported. Given the high prevalence of this disorder in Africa, and its emergence in the developed world through immigration, this number is relatively small. There are many reasons for this; primary among them are the availability of a donor, the risks associated with this complex procedure, and the cost and availability of resources in the developing world. Of these, it is fair to say that the risks associated with the procedure have steadily decreased to the point where, if currently performed in a center with experience using a matched sibling donor, overall survival is close to 100% and event-free survival is over 90%. While there is little controversy around offering hematopoietic stem cell transplantation to symptomatic SCD patients with a matched sibling donor, there is much debate surrounding the use of this modality in “less severe” patients. An overview of the current state of our understanding of the pathology and treatment of SCD is important to show that our current strategy is not having the desired impact on survival of homozygous SCD patients, and should be changed to significantly impact the small proportion of these patients who have matched siblings and could be cured, especially those without overt clinical manifestations. Both patient families and providers must be made to understand the progressive nature of SCD, and should be encouraged to screen full siblings of patients with homozygous SCD for their potential to

  16. Skin Cancer Risk in Hematopoietic Stem-Cell Transplant Recipients Compared With Background Population and Renal Transplant Recipients

    DEFF Research Database (Denmark)

    Omland, Silje Haukali; Gniadecki, Robert; Hædersdal, Merete

    2016-01-01

    IMPORTANCE: While a high risk of nonmelanoma skin cancer is well recognized in solid-organ transplant recipients, the risk of skin cancer in hematopoietic stem-cell transplant (HSCT) recipients has not been extensively studied. OBJECTIVE: To determine the risk of cutaneous cancer in HSCT recipients...... autologous) from 1999 through 2014, 4789 RTRs from 1976 through 2014, and 10 age- and sex-matched nontransplanted individuals for each of the groups from the background population. Person-years at risk were calculated from the time of study inclusion until first cutaneous cancer. To compare the risk of skin...... cancer between transplant recipients and background population, we used a stratified proportional hazard regression model for hazard ratio (HR) estimations. By use of the cumulative incidence, we estimated 5- and 10-year risks of skin cancers. All RTR and HSCT recipients were treated and followed up...

  17. Intestinal Adenovirus Shedding Before Allogeneic Stem Cell Transplantation Is a Risk Factor for Invasive Infection Post-transplant

    Directory of Open Access Journals (Sweden)

    Karin Kosulin

    2018-02-01

    Full Text Available Human adenoviruses (HAdV are a major cause of morbidity and mortality in pediatric human stem cell transplant (HSCT recipients. Our previous studies identified the gastrointestinal tract as a site of HAdV persistence, but the role of intestinal virus shedding pre-transplant for the risk of ensuing invasive infection has not been entirely elucidated. Molecular HAdV monitoring of serial stool samples using RQ-PCR was performed in 304 children undergoing allogeneic HSCT. Analysis of stool and peripheral blood specimens was performed pre-transplant and at short intervals until day 100 post-HSCT. The virus was detected in the stool of 129 patients (42%, and 42 tested positive already before HSCT. The patients displaying HAdV shedding pre-transplant showed a significantly earlier increase of intestinal HAdV levels above the critical threshold associated with high risk of invasive infection (p < 0.01. In this subset of patients, the occurrence of invasive infection characterized by viremia was significantly higher than in patients without HAdV shedding before HSCT (33% vs 7%; p < 0.0001. The data demonstrate that intestinal HAdV shedding before HSCT confers a greatly increased risk for invasive infection and disseminated disease post-transplant, and highlights the need for timely HAdV monitoring and pre-emptive therapeutic considerations in HSCT recipients.

  18. B Cell Depletion: Rituximab in Glomerular Disease and Transplantation

    Directory of Open Access Journals (Sweden)

    S. Marinaki

    2013-12-01

    Full Text Available B cells play a central role in the pathogenesis of many autoimmune diseases. Selective targeting can be achieved with the use of the monoclonal antibody rituximab. In addition to being a drug for non-Hodgkin's lymphoma, rituximab is also an FDA-approved treatment for refractory rheumatoid arthritis and, since recently, ANCA vasculitis. It has shown efficacy in many autoimmune diseases. This review will discuss current evidence and the rationale of the use of rituximab in glomerular diseases, including randomized controlled trials. The focus will be on the use of rituximab in idiopathic membranous nephropathy, systemic lupus erythematosus and ANCA-associated vasculitis. The emerging role of rituximab in renal transplantation, where it seems to be important for the desensitization protocols for highly sensitized patients as well as for the preconditioning of ABO-incompatible recipients and the treatment of antibody-mediated rejection, will also be addressed.

  19. Fetal progenitor cell transplantation treats methylmalonic aciduria in a mouse model

    International Nuclear Information System (INIS)

    Buck, Nicole E.; Pennell, Samuel D.; Wood, Leonie R.; Pitt, James J.; Allen, Katrina J.; Peters, Heidi L.

    2012-01-01

    Highlights: ► Fetal cells were transplanted into a methylmalonic acid mouse model. ► Cell engraftment was detected in liver, spleen and bone marrow. ► Biochemical disease correction was measured in blood samples. ► A double dose of 5 million cells (1 week apart) proved more effective. ► Higher levels of engraftment may be required for greater disease correction. -- Abstract: Methylmalonic aciduria is a rare disorder caused by an inborn error of organic acid metabolism. Current treatment options are limited and generally focus on disease management. We aimed to investigate the use of fetal progenitor cells to treat this disorder using a mouse model with an intermediate form of methylmalonic aciduria. Fetal liver cells were isolated from healthy fetuses at embryonic day 15–17 and intravenously transplanted into sub-lethally irradiated mice. Liver donor cell engraftment was determined by PCR. Disease correction was monitored by urine and blood methylmalonic acid concentration and weight change. Initial studies indicated that pre-transplantation sub-lethal irradiation followed by transplantation with 5 million cells were suitable. We found that a double dose of 5 million cells (1 week apart) provided a more effective treatment. Donor cell liver engraftment of up to 5% was measured. Disease correction, as defined by a decrease in blood methylmalonic acid concentration, was effected in methylmalonic acid mice transplanted with a double dose of cells and who showed donor cell liver engraftment. Mean plasma methylmalonic acid concentration decreased from 810 ± 156 (sham transplanted) to 338 ± 157 μmol/L (double dose of 5 million cells) while mean blood C3 carnitine concentration decreased from 20.5 ± 4 (sham transplanted) to 5.3 ± 1.9 μmol/L (double dose of 5 million cells). In conclusion, higher levels of engraftment may be required for greater disease correction; however these studies show promising results for cell transplantation biochemical

  20. [Gene therapy and cell transplantation for Parkinson's disease].

    Science.gov (United States)

    Muramatsu, Shin-ichi

    2005-11-01

    Increasing enthusiasm in the field of stem cell research is raising the hope of novel cell replacement therapies for Parkinson's disease (PD), but it also raises both scientific and ethical concerns. In most cases, dopaminergic cells are transplanted ectopically into the striatum instead of the substantia nigra. If the main mechanism underlying any observed functional recovery with these cell replacement therapies is restoration of dopaminergic neurotransmission, then viral vector-mediated gene delivery of dopamine-synthesizing enzymes is a more straight forward approach. The development of a recombinant adeno-associated viral (AAV) vector is making gene therapy for PD a feasible therapeutic option in the clinical arena. Efficient and long-term expression of genes for dopamine-synthesizing enzymes in the striatum restored local dopamine production and allowed behavioral recovery in animal models of PD. A clinical trial to evaluate the safety and efficacy of AAV vector-mediated gene transfer of aromatic L-amino acid decarboxylase, an enzyme that converts L-dopa to dopamine, is underway. With this strategy patients would still need to take L-dopa to control their PD symptoms, however, dopamine production could be regulated by altering the dose of L-dopa. Another AAV vector-based clinical trial is also ongoing in which the subthalamic nucleus is transduced to produce inhibitory transmitters.

  1. Autologous Bone Marrow Mononuclear Cells Intrathecal Transplantation in Chronic Stroke

    Directory of Open Access Journals (Sweden)

    Alok Sharma

    2014-01-01

    Full Text Available Cell therapy is being widely explored in the management of stroke and has demonstrated great potential. It has been shown to assist in the remodeling of the central nervous system by inducing neurorestorative effect through the process of angiogenesis, neurogenesis, and reduction of glial scar formation. In this study, the effect of intrathecal administration of autologous bone marrow mononuclear cells (BMMNCs is analyzed on the recovery process of patients with chronic stroke. 24 patients diagnosed with chronic stroke were administered cell therapy, followed by multidisciplinary neurorehabilitation. They were assessed on functional independence measure (FIM objectively, along with assessment of standing and walking balance, ambulation, and hand functions. Out of 24 patients, 12 improved in ambulation, 10 in hand functions, 6 in standing balance, and 9 in walking balance. Further factor analysis was done. Patients of the younger groups showed higher percentage of improvement in all the areas. Patients who underwent cell therapy within 2 years after the stroke showed better changes. Ischemic type of stroke had better recovery than the hemorrhagic stroke. This study demonstrates the potential of autologous BMMNCs intrathecal transplantation in improving the prognosis of functional recovery in chronic stage of stroke. Further clinical trials are recommended. This trial is registered with NCT02065778.

  2. Immunoglobulin therapy in hematologic neoplasms and after hematopoietic cell transplantation.

    Science.gov (United States)

    Ueda, Masumi; Berger, Melvin; Gale, Robert Peter; Lazarus, Hillard M

    2018-03-01

    Immunoglobulins are used to prevent or reduce infection risk in primary immune deficiencies and in settings which exploit its anti-inflammatory and immune-modulatory effects. Rigorous proof of immunoglobulin efficacy in persons with lympho-proliferative neoplasms, plasma cell myeloma, and persons receiving hematopoietic cell transplants is lacking despite many clinical trials. Further, there are few consensus guidelines or algorithms for use in these conditions. Rapid development of new therapies targeting B-cell signaling and survival pathways and increased use of chimeric antigen receptor T-cell (CAR-T) therapy will likely result in more acquired deficiencies of humoral immunity and infections in persons with cancer. We review immunoglobulin formulations and discuss efficacy and potential adverse effects in the context of preventing infections and in graft-versus-host disease. We suggest an algorithm for evaluating acquired deficiencies of humoral immunity in persons with hematologic neoplasms and recommend appropriate use of immunoglobulin therapy. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Intraspinal Stem Cell Transplantation for Amyotrophic Lateral Sclerosis

    Science.gov (United States)

    Chen, Kevin S.; Sakowski, Stacey A.; Feldman, Eva L.

    2015-01-01

    Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder in which the loss of upper and lower motor neurons produces progressive weakness and eventually death. In the decades since the approval of riluzole, the only FDA approved medication to moderately slow progression of ALS, no new therapeutics have arisen to alter the course of the disease. This is partly due to our incomplete understanding of the complex pathogenesis of motor neuron degeneration. Stem cells have emerged as an attractive option in treating ALS since they come armed with equally complex cellular machinery and may modulate the local microenvironment in many ways to rescue diseased motor neurons. While various stem cell types are being evaluated in preclinical and early clinical applications, here we review the preclinical strategies and advances supporting the recent clinical translation of neural progenitor cell therapy for ALS. Specifically, we focus on the use of spinal cord neural progenitor cells and the pipeline starting from preclinical studies to the designs of the Phase I and IIa clinical trials involving direct intraspinal transplantation in humans. PMID:26696091

  4. Transplante de células-tronco hematopoéticas (TCTH em doenças falciformes Hematopoietic stem cell transplantation in sickle cell anemia

    Directory of Open Access Journals (Sweden)

    Fabiano Pieroni

    2007-09-01

    Full Text Available O único tratamento curativo para pacientes com doença falciforme é o transplante de células tronco hematopoéticas (TCTH. Neste artigo sumarizamos os resultados do TCTH em pacientes falciformes publicados na literatura e a experiência brasileira. As indicações atuais para o TCTH nestes pacientes serão discutidas.The only curative treatment approach for patients with sickle cell anemia is allogeneic stem cell transplantation. In this article we will review the published data about stem cell transplantation in patients with sickle cell disease and the small Brazilian experience in this field. The possible indications for stem cell patients will be discussed.

  5. The Fourth Nagoya International Blood and Marrow Transplantation Symposium: new horizons in allogeneic hematopoietic cell transplantation--2001 revolution.

    Science.gov (United States)

    Sao, Hiroshi; Morishita, Yoshihisa

    2002-02-01

    In this symposium, we saw new horizons in allogeneic transplantation. Are these truly revolutionary? We do not yet know the answer. However, there is no question about the importance of allogeneic T cells. T cells are much more powerful than any pharmacological drug man has ever generated. The question is, how do we take the most advantage of their potential. Every participant was encouraged to search for good answers to this question until the next meeting.

  6. Role of Natural Killer Cells in the Innate Immune System After Intraportal Islet Transplantation in Mice.

    Science.gov (United States)

    Saeki, Y; Ishiyama, K; Ishida, N; Tanaka, Y; Ohdan, H

    Both liver natural killer (NK) and NK T cells of the innate immune system play a crucial role in islet graft loss after intraportal islet transplantation, although a relationship between NK and NK T cells in islet loss has not been proven. In this study, we investigated the role of NK cells in the innate immune system in islet graft loss after intraportal islet transplantation. To investigate the involvement of liver NK cells in islet destruction, we assessed the differences in graft survival after intraportal islet transplantation between CD1d -/- diabetic mice and NK cell-depleted CD1d -/- diabetic mice. The transplantation of 400 islets into the liver was sufficient to reverse hyperglycemia in wild-type diabetic mice (100%, 4/4). However, normoglycemia could not be achieved when 200 islets were transplanted (0%, 0/4). In contrast, intraportal transplantation of 200 islets in NK cell-depleted CD1d -/- diabetic mice ameliorated hyperglycemia in 71% of cases (5/7), whereas transplantation of the same number of islets in CD1d -/- diabetic mice did not (0%, 0/4). Histologic findings also confirmed that intact islets were observed in NK cell-depleted CD1d -/- diabetic mice, but were difficult to observe in CD1d -/- diabetic mice. The involvement of liver NK cells in the innate immune system related to islet graft loss after intraportal islet transplantation is revealed by improved graft survival and function in NK cell-depleted CD1d -/- diabetic mice. Our data reveal that regulation of NK cell activity is particularly important when insufficient islet numbers are used for transplantation. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. THROMBOTIC MICROANGIOPATHY IN HAEMATOPOIETIC CELL TRANSPLANTATION:AN UPDATE

    Directory of Open Access Journals (Sweden)

    Hillard Michael Lazarus

    2010-08-01

    Full Text Available Allogeneic hematopoietic cell transplantation (HCT represents a vital procedure for patients with various hematologic conditions. Despite advances in the field, HCT carries significant morbidity and mortality. A rare but potentially devastating complication is transplantation-associated thrombotic microangiopathy (TA-TMA. In contrast to idiopathic TTP, whose etiology is attributed to deficient activity of ADAMTS13, (a member of the A Disintegrin And Metalloprotease with Thrombospondin 1 repeats family of metalloproteases, patients with TA-TMA have > 5% ADAMTS13 activity. Pathophysiologic mechanisms associated with TA-TMA, include loss of endothelial cell integrity induced by intensive conditioning regimens, immunosuppressive therapy, irradiation, infections and graft-versus-host (GVHD disease. The reported incidence of TA-TMA ranges from 0.5% to 75%, reflecting the difficulty of accurate diagnosis in these patients. Two different groups have proposed consensus definitions for TA-TMA, yet they fail to distinguish the primary syndrome from secondary causes such as infections or medication exposure. Despite treatment, mortality rate in TA-TMA ranges between 60% to 90%. The treatment strategies for TA-TMA remain challenging. Calcineurin inhibitors should be discontinued and replaced with alternative immunosuppressive agents.  Daclizumab, a humanized monoclonal anti-CD25 antibody, has shown promising results in the treatment of TA-TMA. Rituximab or the addition of defibrotide, have been reported to induce remission in this patient population. In general, plasma exchange is not recommended.

  8. Imaging and 1-day kinetics of intracoronary stem cell transplantation in patients with idiopathic dilated cardiomyopathy

    International Nuclear Information System (INIS)

    Lezaic, Luka; Socan, Aljaz; Peitl, Petra Kolenc; Poglajen, Gregor; Sever, Matjaz; Cukjati, Marko; Cernelc, Peter; Vrtovec, Bojan

    2016-01-01

    Background: Stem cell transplantation is an emerging method of treatment for patients with cardiovascular disease. There are few studies completed or ongoing on stem cell therapy in patients with idiopathic dilated cardiomyopathy (IDCM). Information on stem cell homing and distribution in the myocardium after transplantation might provide important insight into effectiveness of transplantation procedure. Aim: To assess early engraftment, retention and migration of intracoronarily transplanted stem cells in the myocardium of patients with advanced dilated cardiomyopathy of non-ischaemic origin using stem cell labeling with 99m Tc-exametazime (HMPAO). Materials, methods: Thirty-five patients with IDCM and advanced heart failure were included in the study. Autologous hematopoietic (CD34 +) stem cells were harvested by peripheral blood apheresis after bone marrow stimulation, labeled with 99m Tc-HMPAO, tested for viability and injected into coronary vessel supplying areas of myocardium selected by myocardial perfusion scintigraphy as dysfunctional yet viable. Imaging was performed 1 h and 18 h after transplantation. Results: Myocardial stem cell retention ranged from 0 to 1.44% on early and 0–0.97% on delayed imaging. Significant efflux of stem cells occurred from site of delivery in this time period (p < 0.001). Stem cell viability was not affected by labeling. Conclusion: Stem cell labeling with 99m Tc-HMPAO is a feasible method for stem cell tracking after transplantation in patients with IDCM.

  9. Edaravone combined with Schwann cell transplantation may repair spinal cord injury in rats

    Directory of Open Access Journals (Sweden)

    Shu-quan Zhang

    2015-01-01

    Full Text Available Edaravone has been shown to delay neuronal apoptosis, thereby improving nerve function and the microenvironment after spinal cord injury. Edaravone can provide a favorable environment for the treatment of spinal cord injury using Schwann cell transplantation. This study used rat models of complete spinal cord transection at T 9. Six hours later, Schwann cells were transplanted in the head and tail ends of the injury site. Simultaneously, edaravone was injected through the caudal vein. Eight weeks later, the PKH-26-labeled Schwann cells had survived and migrated to the center of the spinal cord injury region in rats after combined treatment with edaravone and Schwann cells. Moreover, the number of PKH-26-labeled Schwann cells in the rat spinal cord was more than that in rats undergoing Schwann cell transplantation alone or rats without any treatment. Horseradish peroxidase retrograde tracing revealed that the number of horseradish peroxidase-positive nerve fibers was greater in rats treated with edaravone combined withSchwann cells than in rats with Schwann cell transplantation alone. The results demonstrated that lower extremity motor function and neurophysiological function were better in rats treated with edaravone and Schwann cells than in rats with Schwann cell transplantation only. These data confirmed that Schwann cell transplantation combined with edaravone injection promoted the regeneration of nerve fibers of rats with spinal cord injury and improved neurological function.

  10. A novel method of mouse ex utero transplantation of hepatic progenitor cells into the fetal liver

    International Nuclear Information System (INIS)

    Shikanai, Mima; Asahina, Kinji; Iseki, Sachiko; Teramoto, Kenichi; Nishida, Tomohiro; Shimizu-Saito, Keiko; Ota, Masato; Eto, Kazuhiro; Teraoka, Hirobumi

    2009-01-01

    Avoiding the limitations of the adult liver niche, transplantation of hepatic stem/progenitor cells into fetal liver is desirable to analyze immature cells in a hepatic developmental environment. Here, we established a new monitor tool for cell fate of hepatic progenitor cells transplanted into the mouse fetal liver by using ex utero surgery. When embryonic day (ED) 14.5 hepatoblasts were injected into the ED14.5 fetal liver, the transplanted cells expressed albumin abundantly or α-fetoprotein weakly, and contained glycogen in the neonatal liver, indicating that transplanted hepatoblasts can proliferate and differentiate in concord with surrounding recipient parenchymal cells. The transplanted cells became mature in the liver of 6-week-old mice. Furthermore, this method was applicable to transplantation of hepatoblast-like cells derived from mouse embryonic stem cells. These data indicate that this unique technique will provide a new in vivo experimental system for studying cell fate of hepatic stem/progenitor cells and liver organogenesis.

  11. The Bombyx mori nucleopolyhedrovirus Bm111 affects virulence but not virus replication.

    Science.gov (United States)

    Han, Yingying; Xia, Hengchuan; Tang, Qi; Lü, Peng; Ma, Shangshang; Yang, Yanhua; Shao, Dandan; Ma, Quanbing; Chen, Keping

    2014-07-01

    The Bm111 of Bombyx mori nucleopolyhedrovirus (BmNPV) encodes a small polypeptide (70 amino acids) of which the function remains unknown. To characterize its function, multiple sequence alignments were performed, and the predicted protein was found to share amazingly high (98 %) sequence identity with the Bombyx mandarina nucleopolyhedrovirus ORF110 (Boma110) but negligible with proteins of other insect viruses, indicating the close relationship between these two NPVs with silkworm larvae. The transcription of Bm111 was detected as early as 3 hpi in BmNPV-infected BmN cells, suggesting it is an early gene. To investigate the role of Bm111 in baculovirus life cycle, a Bm111-knockout virus was constructed by bacmid recombination in Escherichia coli. The results showed that knockout of the Bm111 did not affect the replication of virus DNA, but significantly extended the death time of infected silkworm larvae compared to the wild-type or rescued viruses. We also successfully expressed the recombinant protein Bm111 in E. coli to provide sufficient material for subsequent studies. Taken together, our data indicate that Bm111 only affects the virulence of BmNPV, but not its replication.

  12. Human dental pulp cell culture and cell transplantation with an alginate scaffold.

    Science.gov (United States)

    Kumabe, Shunji; Nakatsuka, Michiko; Kim, Gi-Seup; Jue, Seong-Suk; Aikawa, Fumiko; Shin, Je-Won; Iwai, Yasutomo

    2006-02-01

    Many studies on tissue stem cells have been conducted in the field of regenerative medicine, and some studies have indicated that cultured dental pulp mesenchymal cells secrete dentin matrix. In the present study we used alginate as a scaffold to transplant subcultured human dental pulp cells subcutaneously into the backs of nude mice. We found that when beta-glycerophosphate was added to the culture medium, dentin sialophosphoprotein mRNA coding dentin sialoprotein (DSP) was expressed. An increase in alkaline phosphatase, which is an early marker for odontoblast differentiation, was also demonstrated. At 6 weeks after implantation the subcutaneous formation of radio-opaque calcified bodies was observed in situ. Immunohistochemical and fine structure studies identified expression of type I collagen, type III collagen, and DSP in the mineralizing transplants. Isolated odontoblast-like cells initiated dentin-like hard tissue formation and scattered autolyzing apoptotic cells were also observed in the transplants. The study showed that subcultured dental pulp cells actively differentiate into odontoblast-like cells and induce calcification in an alginate scaffold.

  13. Blood and Bone Marrow Transplant?

    Science.gov (United States)

    ... Topics / Blood and Bone Marrow Transplant Blood and Bone Marrow Transplant Also known as Hematopoietic Stem Cell Transplant , Hematopoietic ... person, called a donor, it is an allogeneic transplant. Blood or bone marrow transplants most commonly are used to treat ...

  14. Hematopoietic Stem Cell Transplantation in Primary Immunodeficiency Patients in the Black Sea Region of Turkey

    Directory of Open Access Journals (Sweden)

    Alişan Yıldıran

    2017-12-01

    Full Text Available Hematopoietic stem cell transplantation is a promising curative therapy for many combined primary immunodeficiencies and phagocytic disorders. We retrospectively reviewed pediatric cases of patients diagnosed with primary immunodeficiencies and scheduled for hematopoietic stem cell transplantation. We identified 22 patients (median age, 6 months; age range, 1 month to 10 years with various diagnoses who received hematopoietic stem cell transplantation. The patient diagnoses included severe combined immunodeficiency (n=11, Chediak-Higashi syndrome (n=2, leukocyte adhesion deficiency (n=2, MHC class 2 deficiency (n=2, chronic granulomatous syndrome (n=2, hemophagocytic lymphohistiocytosis (n=1, Wiskott-Aldrich syndrome (n=1, and Omenn syndrome (n=1. Of the 22 patients, 7 received human leukocyte antigen-matched related hematopoietic stem cell transplantation, 12 received haploidentical hematopoietic stem cell transplantation, and 2 received matched unrelated hematopoietic stem cell transplantation. The results showed that 5 patients had graft failure. Fourteen patients survived, yielding an overall survival rate of 67%. Screening newborn infants for primary immunodeficiency diseases may result in timely administration of hematopoietic stem cell transplantation.

  15. Hematopoietic Stem Cell Transplantation in Primary Immunodeficiency Patients in the Black Sea Region of Turkey.

    Science.gov (United States)

    Yıldıran, Alişan; Çeliksoy, Mehmet Halil; Borte, Stephan; Güner, Şükrü Nail; Elli, Murat; Fışgın, Tunç; Özyürek, Emel; Sancak, Recep; Oğur, Gönül

    2017-12-01

    Hematopoietic stem cell transplantation is a promising curative therapy for many combined primary immunodeficiencies and phagocytic disorders. We retrospectively reviewed pediatric cases of patients diagnosed with primary immunodeficiencies and scheduled for hematopoietic stem cell transplantation. We identified 22 patients (median age, 6 months; age range, 1 month to 10 years) with various diagnoses who received hematopoietic stem cell transplantation. The patient diagnoses included severe combined immunodeficiency (n=11), Chediak-Higashi syndrome (n=2), leukocyte adhesion deficiency (n=2), MHC class 2 deficiency (n=2), chronic granulomatous syndrome (n=2), hemophagocytic lymphohistiocytosis (n=1), Wiskott-Aldrich syndrome (n=1), and Omenn syndrome (n=1). Of the 22 patients, 7 received human leukocyte antigen-matched related hematopoietic stem cell transplantation, 12 received haploidentical hematopoietic stem cell transplantation, and 2 received matched unrelated hematopoietic stem cell transplantation. The results showed that 5 patients had graft failure. Fourteen patients survived, yielding an overall survival rate of 67%. Screening newborn infants for primary immunodeficiency diseases may result in timely administration of hematopoietic stem cell transplantation.

  16. Long-term survival of transplanted allogeneic cells engineered to express a T cell chemorepellent.

    Science.gov (United States)

    Papeta, Natalia; Chen, Tao; Vianello, Fabrizio; Gererty, Lyle; Malik, Ashish; Mok, Ying-Ting; Tharp, William G; Bagley, Jessamyn; Zhao, Guiling; Stevceva, Liljana; Yoon, Victor; Sykes, Megan; Sachs, David; Iacomini, John; Poznansky, Mark C

    2007-01-27

    Alloantigen specific T cells have been shown to be required for allograft rejection. The chemokine, stromal cell derived factor-1 (SDF-1) at high concentration, has been shown to act as a T-cell chemorepellent and abrogate T-cell infiltration into a site of antigen challenge in vivo via a mechanism termed fugetaxis or chemorepulsion. We postulated that this mechanism could be exploited therapeutically and that allogeneic cells engineered to express a chemorepellent protein would not be rejected. Allogeneic murine insulinoma beta-TC3 cells and primary islets from BALB/C mice were engineered to constitutively secrete differential levels of SDF-1 and transplanted into allogeneic diabetic C57BL/6 mice. Rejection was defined as the permanent return of hyperglycemia and was correlated with the level of T-cell infiltration. The migratory response of T-cells to SDF-1 was also analyzed by transwell migration assay and time-lapse videomicroscopy. The cytotoxicity of cytotoxic T cell (CTLs) against beta-TC3 cells expressing high levels of SDF-1 was measured in standard and modified chromium-release assays in order to determine the effect of CTL migration on killing efficacy. Control animals rejected allogeneic cells and remained diabetic. In contrast, high level SDF-1 production by transplanted cells resulted in increased survival of the allograft and a significant reduction in blood glucose levels and T-cell infiltration into the transplanted tissue. This is the first demonstration of a novel approach that exploits T-cell chemorepulsion to induce site specific immune isolation and thereby overcomes allograft rejection without the use of systemic immunosuppression.

  17. Efficient Annealing-Free P3HT:PC_6_1BM-Based Organic Solar Cells by Using a Novel Solvent Additive without a Halogen or Sulphur Atom

    International Nuclear Information System (INIS)

    Xiao Man-Jun; Zhu Wei-Guo; Shen Wen-Fei; Wang Jun-Yi; Han Liang-Liang; Chen Wei-Chao; Bao Xi-Chang; Yang Ren-Qiang

    2015-01-01

    The power conversion efficiency (PCE) of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61-butyric acid methyl ester (PC_6_1BM) based organic solar cells (OSCs) is significantly improved by using benzyl acetate (BA), an organic compound without any halogen or sulphur atom, as a processing additive to control the blend morphology. The solar cells show PCE of 3.85% with a fill factor (FF) of 65.22%, which are higher than those of the common thermal annealing device (PCE 3.30%, FF 60.83%). The overall increased PCE depends upon the enhanced crystallinity of P3HT and good carriers transport, with a high balanced charge carrier mobility. (cross-disciplinary physics and related areas of science and technology)

  18. Evidence of homing of each fraction of bone marrow cells after scheduled transplantation in mice

    International Nuclear Information System (INIS)

    Sun Suping; Cai Jianming; Xiang Yingsong; Huang Dingde; Zhao Fang; Gao Jianguo; Yang Rujun

    2003-01-01

    Objective: To identify homing of bone marrow cells after every fractionation during scheduled transplantation. Methods: The recipient mice were transplanted with homologous (H-2K d ) and allogeneic (H-2K b ) mouse bone marrow cells after lethal irradiation, and the homing status of allogeneic bone marrow cells in host bone marrow and spleen was observed. Results: A quantity of allogeneic homed cells were observed in host bone marrow, and the percentage of homing cells in second fraction was the highest in all groups (P<0.01). The allogeneic homed cells in spleen declined along with increase of the number of fraction, suggesting that regulation of homing to spleen was different from that to bone marrow. Conclusion: In scheduled bone marrow transplantation niche may be more effectively utilized and thus transplantation efficiency be enhanced

  19. BmDredd is an initiator caspase and participates in Emodin-induced apoptosis in the silkworm, Bombyx mori.

    Science.gov (United States)

    Wang, La; Song, Juan; Bao, Xi-Yan; Chen, Peng; Yi, Hua-Shan; Pan, Min-Hui; Lu, Cheng

    2016-10-15

    The identification and analysis of the caspases is essential to research into apoptosis in lepidoptera insects. The domesticated silkworm, Bombyx mori, is the model system for lepidopterans. In this study, we cloned and characterized a B. mori Dredd gene, BmDredd, the proposed insect homologue of human caspase-8, which encoded a polypeptide of 543 amino acids. BmDredd possesses a long N-terminal prodomain, a p20 domain, and a p10 domain. When transiently expressed in Escherichia coli cells, BmDredd underwent spontaneous cleavage and exhibited high proteolytic activity for caspase-8 substrate but relatively low for caspase-3 or -9 substrate. In addition, BmDredd induced apoptosis when transiently expressed in BmN-SWU1 cells, an ovarian cell line of B. mori. Moreover, after the treatment of Emodin, a novel apoptosis inducer, endogenous BmDredd expression level, the caspase-8 activity and the apoptotic rate increased notably in BmN-SWU1 cells. When BmDredd was subjected to interference in BmN-SWU1 cells and Emodin treatment, BmDredd expression levels decreased and the apoptotic rate also decreased significantly. These results suggest BmDredd is the homologue of human caspase-8 and plays a role in Emodin-induced apoptosis in BmN-SWU1 cells of B. mori. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Evaluation of Performance Status and Hematopoietic Cell Transplantation Specific Comorbidity Index on Unplanned Admission Rates in Patients with Multiple Myeloma Undergoing Outpatient Autologous Stem Cell Transplantation.

    Science.gov (United States)

    Obiozor, Cynthia; Subramaniam, Dipti P; Divine, Clint; Shune, Leyla; Singh, Anurag K; Lin, Tara L; Abhyankar, Sunil; Chen, G John; McGuirk, Joseph; Ganguly, Siddhartha

    2017-10-01

    Although outpatient autologous stem cell transplantation (ASCT) is safe and feasible in most instances, some patients undergoing planned outpatient transplantation for multiple myeloma (MM) will need inpatient admission for transplantation-related complications. We aim to evaluate the difference, if any, between outpatient and inpatient ASCT cohorts of MM patients in terms of admission rate, transplantation outcome, and overall survival. We also plan to assess whether the Hematopoietic Cell Transplantation Comorbidity Index (HCT-CI) and Karnofsky Performance Status (KPS) can predict unplanned admissions after adjusting for confounding factors. Patients with MM (n = 448) who underwent transplantation at our institution between 2009 and 2014 were included in this retrospective analysis. Patients were grouped into 3 cohorts: cohort A, planned inpatient ASCT (n = 216); cohort B, unplanned inpatient admissions (n = 57); and cohort C, planned outpatient SCT (n = 175). The statistical approach included descriptive, bivariate, and survival analyses. There were no differences among the 3 cohorts in terms of type of myeloma, stage at diagnosis, time from diagnosis to transplantation, CD34 cell dose, engraftment kinetics, and 100-day response rates. Serum creatinine was higher and patients were relatively older in both the planned inpatient (median age, 62 years; range, 33 to 80 years) and unplanned (median age, 59 years; range, 44 to 69 years) admission cohorts compared with the outpatient-only cohort (median age, 57 years; range, 40 to 70 years) (P Performance status (cohort A: median, 90%; range, 60% to 100%; cohort B: 80%, 50% to 100%; cohort C: 80%, 60% to 100%) was lower (P performance status (KPS 2 also appeared to be associated with worse outcomes compared with HCT-CI 0 to 1, the the difference did not reach statistical significance (hazard ratio, 1.41l 95% confidence interval, 0.72 to 2.76). Only 1 patient out of 448 died from a transplantation

  1. Human cardiomyocyte progenitor cell transplantation preserves long-term function of the infarcted mouse myocardium

    NARCIS (Netherlands)

    Smits, Anke M.; van Laake, Linda W.; den Ouden, Krista; Schreurs, Chantal; Szuhai, Karoly; van Echteld, Cees J.; Mummery, Christine L.; Doevendans, Pieter A.; Goumans, Marie-Jose

    2009-01-01

    Recent clinical studies revealed that positive results of cell transplantation on cardiac function are limited to the short- and mid-term restoration phase following myocardial infarction (MI), emphasizing the need for long-term follow-up. These transient effects may depend on the transplanted

  2. Four decades of stem cell transplantation for Fanconi anaemia in the Netherlands

    NARCIS (Netherlands)

    Smetsers, Stephanie E.; Smiers, Frans J.; Bresters, Dorine; Sonnevelt, Martine C.; Bierings, Marc B.

    2016-01-01

    This article presents the haematopoietic stem cell transplantation (SCT) results of the complete Dutch Fanconi anaemia (FA) patient cohort. Sixty-eight Dutch FA patients have been transplanted since 1972. In total, 63 (93%) patients engrafted, 54 after first SCT and 9 after second SCT. Fludarabine

  3. Effectiveness of Partner Social Support Predicts Enduring Psychological Distress after Hematopoietic Stem Cell Transplantation

    Science.gov (United States)

    Rini, Christine; Redd, William H.; Austin, Jane; Mosher, Catherine E.; Meschian, Yeraz Markarian; Isola, Luis; Scigliano, Eileen; Moskowitz, Craig H.; Papadopoulos, Esperanza; Labay, Larissa E.; Rowley, Scott; Burkhalter, Jack E.; Schetter, Christine Dunkel; DuHamel, Katherine N.

    2011-01-01

    Objective: Hematopoietic stem cell transplant (HSCT) survivors who are 1 to 3 years posttransplant are challenged by the need to resume valued social roles and activities--a task that may be complicated by enduring transplant-related psychological distress common in this patient population. The present study investigated whether transplant…

  4. Bm59 is an early gene, but is unessential for the propagation and assembly of Bombyx mori nucleopolyhedrovirus.

    Science.gov (United States)

    Hu, Xiaolong; Shen, Yunwang; Zheng, Qin; Wang, Guobao; Wu, Xiaofeng; Gong, Chengliang

    2016-02-01

    Bombyx mori nucleopolyhedrovirus (BmNPV) is a major pathogen that specifically infects the domestic silkworm and causes serious economic loss to sericulture around the world. The function of BmNPV Bm59 gene in the viral life cycle is inconclusive. To investigate the role of Bm59 during viral infection, the transcription initiation site and temporal expression of Bm59 were analyzed, and Bm59-knockout virus was generated through homologous recombination in Escherichia coli. The results showed that Bm59 is an early transcription gene with an atypia early transcriptional start motif. Budded virion (BV) production and DNA replication in the BmN cells transfected with the Bm59-knockout virus bacmid were similar to those in the cells transfected with the wild-type virus. Electron microscopy revealed that the occlusion-derived virus can be produced in cells infected with the Bm59-knockout virus. These results indicated that Bm59 is an early gene and is not essential for viral replication or assembly of BmNPV. These findings suggested that non-essential gene (Bm59) remained in the viral genome, which may interact with other viral/host genes in a certain situation.

  5. Differential protective effects of immune lymphoid cells against transplanted line Ib leukemia and immune polioencephalomyelitis

    International Nuclear Information System (INIS)

    Duffey, P.S.; Lukasewycz, O.A.; Olson, D.S.; Murphy, W.H.

    1978-01-01

    The capacity of immune cells obtained from the major lymphoid compartments to protect C58 mice from transplanted line Ib leukemia, and from an age-dependent autoimmune CNS disease (immune polioencephalomyelitis = IPE) elicited by immunizing old C58 mice with inactivated Ib cells was quantified. Cells used for comparative adoptive protection tests were harvested from the major lymphoid compartments 14 to 15 days after young C58 mice were immunized with inactivated Ib cell preparations. Regression curves were plotted from survival data and the log 10 PD 50 values were determined. Immune spleen (ISC) and peritoneal cells (IPEC) were significantly more protective against transplanted Ib cells than immune lymph node (ILNC), thymic (ITC), and marrow cells (IMC). In contrast, IPEC and IMC were not protective against IPE and ITC were only marginally protective. ILNC afforded significant protection to transplantable leukemia but were only marginally protective to IPE. When ISC were treated with anti-thy 1.2 serum and complement, protection against transplanted leukemia and IPE was reduced > 99%. When donors of immune lymphoid cells were treated with 12.5 mg of cortisone acetate daily for 2 days before lymphoid cells were harvested, protection against transplanted Ib cells by ISC was reduced by approximately 90% whereas protection against IPE was totally eliminated. Considered together, these results indicate that the protective mechanisms to transplantable leukemia and IPE differ significantly in the same indicator mouse strain

  6. Magentic Cell labeling of primary and stem cell-derived pig hepatocytes for MRI-based cell tracking of heptocytes transplantation

    Science.gov (United States)

    Pig hepatocytes are an important investigational tool for optimizing hepatocyte transplantation schemes in both allogeneic and xenogeneic transplant scenarios. MRI can be used to serially monitor the transplanted cells, but only if the hepatocytes can be labeled with a magnetic particle. In this wo...

  7. An injectable spheroid system with genetic modification for cell transplantation therapy.

    Science.gov (United States)

    Uchida, Satoshi; Itaka, Keiji; Nomoto, Takahiro; Endo, Taisuke; Matsumoto, Yu; Ishii, Takehiko; Kataoka, Kazunori

    2014-03-01

    The new methodology to increase a therapeutic potential of cell transplantation was developed here by the use of three-dimensional spheroids of transplanting cells subsequent to the genetic modification with non-viral DNA vectors, polyplex nanomicelles. Particularly, spheroids in regulated size of 100-μm of primary hepatocytes transfected with luciferase gene were formed on the micropatterned culture plates coated with thermosensitive polymer, and were recovered in the form of injectable liquid suspension simply by cooling the plates. After subcutaneously transplanting these hepatocyte spheroids, efficient transgene expression was observed in host tissue for more than a month, whereas transplantation of a single-cell suspension from a monolayer culture resulted in an only transient expression. The spheroid system contributed to the preservation of innate functions of transplanted hepatocytes in the host tissue, such as albumin expression, thereby possessing high potential for expressing transgene. Intravital observation of transplanted cells showed that those from spheroid cultures had a tendency to localize in the vicinity of blood vessels, making a favorable microenvironment for preserving cell functionality. Furthermore, spheroids transfected with erythropoietin-expressing DNA showed a significantly higher hematopoietic effect than that of cell suspensions from monolayer cultures, demonstrating high potential of this genetically-modified spheroid transplantation system for therapeutic applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Targeting the bone marrow: applications in stem cell transplantation

    International Nuclear Information System (INIS)

    Orchard, K.; Cooper, M.

    2004-01-01

    Therapeutic doses of radiation cab be selectively directed to the bone marrow either directly using vectors that bind to myeloid and/or lymphoid specific antigens or indirectly by targeting bone matrix. The combination of an accessible target tissue and relatively radiation sensitive malignant cells favours the use of targeted radiotherapy in the treatment of haematopoietic malignancies. Dose escalation of targeted radiation can increase tumour cell destruction and has led to the use of myelosuppressive and possibly myeloablative doses of targeted radiation. A natural development has been the use of targeted radiation in conditioning prior to haematopoietic stem cell transplantation (HSCT). Several groups are actively exploring the use of targeted radiotherapy in the context of HSCT as treatment for haematological malignancies. Although no randomised trials using targeted radiotherapy in HSCT have been published, phase I and II trials have shown very encouraging results stimulating further clinical research in this field. After more than a decade of translational research the optimal combination of therapeutic radioisotope and vector has not been determined. This review summarises the clinical experience of targeted radiotherapy in HSCT and discusses the problems that still need to be solved to maximise the potential of this new treatment modality in HSCT

  9. Clonal dominance and transplantation dynamics in hematopoietic stem cell compartments.

    Directory of Open Access Journals (Sweden)

    Peter Ashcroft

    2017-10-01

    Full Text Available Hematopoietic stem cells in mammals are known to reside mostly in the bone marrow, but also transitively passage in small numbers in the blood. Experimental findings have suggested that they exist in a dynamic equilibrium, continuously migrating between these two compartments. Here we construct an individual-based mathematical model of this process, which is parametrised using existing empirical findings from mice. This approach allows us to quantify the amount of migration between the bone marrow niches and the peripheral blood. We use this model to investigate clonal hematopoiesis, which is a significant risk factor for hematologic cancers. We also analyse the engraftment of donor stem cells into non-conditioned and conditioned hosts, quantifying the impact of different treatment scenarios. The simplicity of the model permits a thorough mathematical analysis, providing deeper insights into the dynamics of both the model and of the real-world system. We predict the time taken for mutant clones to expand within a host, as well as chimerism levels that can be expected following transplantation therapy, and the probability that a preconditioned host is reconstituted by donor cells.

  10. Rhoh deficiency reduces peripheral T-cell function and attenuates allogenic transplant rejection

    DEFF Research Database (Denmark)

    Porubsky, Stefan; Wang, Shijun; Kiss, Eva

    2011-01-01

    better graft function. This effect was independent of the lower T-cell numbers in Rhoh-deficient recipients, because injection of equal numbers of Rhoh-deficient or control T cells into kidney transplanted mice with SCID led again to a significant 60% reduction of rejection. Mixed lymphocyte reaction...... deficiency in a clinically relevant situation, in which T-cell inhibition is desirable. In murine allogenic kidney transplantation, Rhoh deficiency caused a significant 75% reduction of acute and chronic transplant rejection accompanied by 75% lower alloantigen-specific antibody levels and significantly...

  11. Identification, gene expression and immune function of the novel Bm-STAT gene in virus-infected Bombyx mori.

    Science.gov (United States)

    Zhang, Xiaoli; Guo, Rui; Kumar, Dhiraj; Ma, Huanyan; Liu, Jiabin; Hu, Xiaolong; Cao, Guangli; Xue, Renyu; Gong, Chengliang

    2016-02-10

    Genes in the signal transducer and activator of transcription (STAT) family are vital for activities including gene expression and immune response. To investigate the functions of the silkworm Bombyx mori STAT (Bm-STAT) gene in antiviral immunity, two Bm-STAT gene isoforms, Bm-STAT-L for long form and Bm-STAT-S for short form, were cloned. Sequencing showed that the open reading frames were 2313 bp encoding 770 amino acid residues for Bm-STAT-L and 2202 bp encoding 734 amino acid residues for Bm-STAT-S. The C-terminal 42 amino acid residues of Bm-STAT-L were different from the last 7 amino acid residues of Bm-STAT-S. Immunofluorescence showed that Bm-STAT was primarily distributed in the nucleus. Transcription levels of Bm-STAT in different tissues were determined by quantitative PCR, and the results revealed Bm-STAT was mainly expressed in testes. Western blots showed two bands with molecular weights of 70 kDa and 130 kDa in testes, but no bands were detected in ovaries by using anti-Bm-STAT antibody as the primary antibody. Expression of Bm-STAT in hemolymph at 48 h post infection with B. mori macula-like virus (BmMLV) was slightly enhanced compared with controls, suggesting a weak response induced by infection with BmMLV. Hemocyte immunofluorescence showed that Bm-STAT expression was elevated in B. mori nucleopolyhedrovirus (BmNPV)-infected cells. Moreover, resistance of BmN cells to BmNPV was reduced by downregulation of Bm-STAT expression and increased by upregulation. Resistance of BmN cells to BmCPV was not significantly improved by upregulating Bm-STAT expression. Therefore, we concluded that Bm-STAT is a newly identified insect gene of the STAT family. The JAK-STAT pathway has a more specialized role in antiviral defense in silkworms, but JAK-STAT pathway is not triggered in response to all viruses. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Gene expression changes in the injured spinal cord following transplantation of mesenchymal stem cells or olfactory ensheathing cells.

    Directory of Open Access Journals (Sweden)

    Abel Torres-Espín

    Full Text Available Transplantation of bone marrow derived mesenchymal stromal cells (MSC or olfactory ensheathing cells (OEC have demonstrated beneficial effects after spinal cord injury (SCI, providing tissue protection and improving the functional recovery. However, the changes induced by these cells after their transplantation into the injured spinal cord remain largely unknown. We analyzed the changes in the spinal cord transcriptome after a contusion injury and MSC or OEC transplantation. The cells were injected immediately or 7 days after the injury. The mRNA of the spinal cord injured segment was extracted and analyzed by microarray at 2 and 7 days after cell grafting. The gene profiles were analyzed by clustering and functional enrichment analysis based on the Gene Ontology database. We found that both MSC and OEC transplanted acutely after injury induce an early up-regulation of genes related to tissue protection and regeneration. In contrast, cells transplanted at 7 days after injury down-regulate genes related to tissue regeneration. The most important change after MSC or OEC transplant was a marked increase in expression of genes associated with foreign body response and adaptive immune response. These data suggest a regulatory effect of MSC and OEC transplantation after SCI regarding tissue repair processes, but a fast rejection response to the grafted cells. Our results provide an initial step to determine the mechanisms of action and to optimize cell therapy for SCI.

  13. Repeated Gene Transfection Impairs the Engraftment of Transplanted Porcine Neonatal Pancreatic Cells

    Directory of Open Access Journals (Sweden)

    Min Koo Seo

    2011-02-01

    Full Text Available BackgroundPreviously, we reported that neonatal porcine pancreatic cells transfected with hepatocyte growth factor (HGF gene in an Epstein-Barr virus (EBV-based plasmid (pEBVHGF showed improved proliferation and differentiation compared to those of the control. In this study, we examined if pancreatic cells transfected repeatedly with pEBVHGF can be successfully grafted to control blood glucose in a diabetes mouse model.MethodsNeonatal porcine pancreatic cells were cultured as a monolayer and were transfected with pEBVHGF every other day for a total of three transfections. The transfected pancreatic cells were re-aggregated and transplanted into kidney capsules of diabetic nude mice or normal nude mice. Blood glucose level and body weight were measured every other day after transplantation. The engraftment of the transplanted cells and differentiation into beta cells were assessed using immunohistochemistry.ResultsRe-aggregation of the pancreatic cells before transplantation improved engraftment of the cells and facilitated neovascularization of the graft. Right before transplantation, pancreatic cells that were transfected with pEBVHGF and then re-aggregated showed ductal cell marker expression. However, ductal cells disappeared and the cells underwent fibrosis in a diabetes mouse model two to five weeks after transplantation; these mice also did not show controlled blood glucose levels. Furthermore, pancreatic cells transplanted into nude mice with normal blood glucose showed poor graft survival regardless of the type of transfected plasmid (pCEP4, pHGF, or pEBVHGF.ConclusionFor clinical application of transfected neonatal porcine pancreatic cells, further studies are required to develop methods of overcoming the damage for the cells caused by repeated transfection and to re-aggregate them into islet-like structures.

  14. Financial burden in recipients of allogeneic hematopoietic cell transplantation.

    Science.gov (United States)

    Khera, Nandita; Chang, Yu-hui; Hashmi, Shahrukh; Slack, James; Beebe, Timothy; Roy, Vivek; Noel, Pierre; Fauble, Veena; Sproat, Lisa; Tilburt, Jon; Leis, Jose F; Mikhael, Joseph

    2014-09-01

    Although allogeneic hematopoietic cell transplantation (HCT) is an expensive treatment for hematological disorders, little is known about the financial consequences for the patients who undergo this procedure. We analyzed factors associated with its financial burden and its impact on health behaviors of allogeneic HCT recipients. A questionnaire was retrospectively mailed to 482 patients who underwent allogeneic HCT from January 2006 to June 2012 at the Mayo Clinic, to collect information regarding current financial concerns, household income, employment, insurance, out-of-pocket expenses, and health and functional status. A multivariable logistic regression analysis identified factors associated with financial burden and treatment nonadherence. Of the 268 respondents (56% response rate), 73% reported that their sickness had hurt them financially. All patients for whom the insurance information was available (missing, n = 13) were insured. Forty-seven percent of respondents experienced financial burden, such as household income decreased by >50%, selling/mortgaging home, or withdrawing money from retirement accounts. Three percent declared bankruptcy. Younger age and poor current mental and physical functioning increased the likelihood of financial burden. Thirty-five percent of patients reported deleterious health behaviors because of financial constraints. These patients were likely to be younger, have lower education, and with a longer time since HCT. Being employed decreased the likelihood of experiencing financial burden and treatment nonadherence due to concern about costs. A significant proportion of allogeneic HCT survivors experience financial hardship despite insurance coverage. Future research should investigate potential interventions to help at-risk patients and prevent adverse financial outcomes after this life-saving procedure. Copyright © 2014 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  15. The role of gamma delta T cells in haematopoietic stem cell transplantation

    DEFF Research Database (Denmark)

    Minculescu, L; Sengeløv, H

    2015-01-01

    transplantation modalities increasingly focuses on selective cell depletion and graft engineering with the aim of retaining beneficial immune donor cells for the graft-versus-leukaemia (GVL) effect. In this context, the adoptive and especially innate effector functions of γδ T cells together with clinical studies...... recognition independent from the major histocompatibility complex (MHC) allows for the theoretical possibility of mediating GVL without an allogeneic response in terms of GVHD. Early studies on the impact of γδ T cells in HSCT have reported conflicting results. Recent studies, however, do suggest an overall...

  16. Invasive Pulmonary Aspergillosis in a Sickle Cell Patient Transplant Recipient: A Successful Treatment

    Directory of Open Access Journals (Sweden)

    Katia Paciaroni

    2015-08-01

    Full Text Available Sickle Cell Anaemia (SCA is the most common inherited blood disorder and is associated with severe morbidity and decreased survival. Allogeneic Haematopoietic Stem Cell Transplantation (HSCT is the only curative approach. Nevertheless the decision to perform a marrow transplant includes the risk of major complications  and mortality transplant related. The infections represent the main cause of mortality for SCA patients undergoing transplant. Invasive Pulmonary Aspergillosis (IPA is a devastating opportunistic infection and remains a significant cause of morbidity and mortality in HSCT recipients. Data regarding IPA in the setting of SCA are lacking. In the present report,  we describe a patient with SCA who developed IPA after allogeneic bone marrow transplant. The fungal infection was treated by systemic antifungal therapy in addition to the surgery, despite  mild chronic GVHD and with continuing immunosuppression therapy. This case shows that IPA occurring in bone marrow recipient with SCA can be successful treated

  17. The effect of thymus cells on bone marrow transplants into sublethally irradiated mice

    International Nuclear Information System (INIS)

    Kruszewski, J.A.; Szcylik, C.; Wiktor-Jedrzejczak, W.

    1984-01-01

    Bone marrow cells formed similar numbers of 10-days spleen colonies in sublethally (6 Gy) irradiated C57B1/6 mice as in lethally (7.5 Gy) irradiated mice i.e. approximately 20 per 10 5 cells. Numbers of 10 day endogenous spleen colonies in sublethally irradiated mice (0.2 to 0.6 per spleen) did not differ significantly from the numbers in lethally irradiated mice. Yet, transplants of 10 7 coisogenic marrow cells into sublethally irradiated mice resulted in predominantly endogenous recovery of granulocyte system as evidenced by utilization of ''beige'' marker for transplanted cells. Nevertheless, transplanted cells engrafted into sublethally irradiated mice were present in their hemopoietic tissues throughout the observation period of 2 months never exceeding 5 to 10% of cells. Thymus cells stimulated endogenous and exogenous spleen colony formation as well as endogenous granulopoietic recovery. Additionally, they increased both the frequency and absolute numbers of graft-derived granulocytic cells in hemopoietic organs of transplanted mice. They failed, however, to essentially change the quantitative relationships between endogenous and exogenous hemopoietic recovery. These results may suggest that spleen colony studies are not suitable for prediction of events following bone marrow transplant into sublethally irradiated mice. Simultaneously, they have strengthened the necessity for appropriate conditioning of recipients of marrow transplants. (orig.) [de

  18. Transplantation of olfactory ensheathing cells as adjunct cell therapy for peripheral nerve injury.

    Science.gov (United States)

    Radtke, Christine; Wewetzer, Konstantin; Reimers, Kerstin; Vogt, Peter M

    2011-01-01

    Traumatic events, such as work place trauma or motor vehicle accident violence, result in a significant number of severe peripheral nerve lesions, including nerve crush and nerve disruption defects. Transplantation of myelin-forming cells, such as Schwann cells (SCs) or olfactory ensheathing cells (OECs), may be beneficial to the regenerative process because the applied cells could mediate neurotrophic and neuroprotective effects by secretion of chemokines. Moreover, myelin-forming cells are capable of bridging the repair site by establishing an environment permissive to axonal regeneration. The cell types that are subject to intense investigation include SCs and OECs either derived from the olfactory bulb or the olfactory mucosa, stromal cells from bone marrow (mesenchymal stem cells, MSCs), and adipose tissue-derived cells. OECs reside in the peripheral and central nervous system and have been suggested to display unique regenerative properties. However, so far OECs were mainly used in experimental studies to foster central regeneration and it was not until recently that their regeneration-promoting activity for the peripheral nervous system was recognized. In the present review, we summarize recent experimental evidence regarding the regenerative effects of OECs applied to the peripheral nervous system that may be relevant to design novel autologous cell transplantation therapies. © 2011 Cognizant Comm. Corp.

  19. Discarded human fetal tissue and cell cultures for transplantation research

    International Nuclear Information System (INIS)

    Hay, R.J.; Phillips, T.; Thompson, A.; Vilner, L.; Cleland, M.; Tchaw-ren Chen; Zabrenetzky, V.

    1999-01-01

    A feasibility study has been performed to explore the utility of various tissues from discarded human abortuses for transplantation and related research. Specifically, aborted fetuses plus parental blood samples and all relevant clinical data were obtained through a local hospital complex. Whenever possible, pancreas, skin and skeletal muscle, heart, liver, kidney, cartilage and lung tissues were removed, dissociated and subfractionated for cryopreservation, characterization and cultivation trials in vitro. Existing protocols for these manipulations were compared and improved upon as required. Clonal culture, cell aggregate maintenance techniques and use of feeder cell populations have been utilized where appropriate to develop quantitative comparative data. Histological and biochemical assays were applied both to evaluate separation/cultivation methods and to identify optimal culture conditions for maintaining functional cells. Immunochemical and molecular biological procedures were applied to study expression of Major Histocompatibility Vomplex (MHC) class 1 and 11 molecules on cell lines derived. Tissue and cell culture populations were examined for infections with bacteria, ftingi, mycoplasma, HIV, CMV, hepatitis B and other viruses. Only 1% of the abortuses tested were virally infected. Cytogenetic analyses confin-ned the normal diploid status in the vast majority (>98%) of lines tested. A total of over 250 abortuses have been obtained and processed. Only 25 were found to be contaminated with bacteria or fungi and unsuitable for further cultivation trials. A total of over 200 cell populations were isolated, characterized and cryopreserved for further study. Included were kidney, lung, liver and epidermal epithelia: cartilage-derived cells from the spine and epiphyses plus myogenic myoblasts. Selected lines have been immortalized using HPV I 6E6/E7 sequences. Epithelia from the liver and pancreas and cardiac myocytes were the most problematic in that initial

  20. Stem cell comparison : What can we learn clinically from unrelated cord blood transplantation as an alternative stem cell source?

    NARCIS (Netherlands)

    Milano, Filippo; Boelens, Jaap Jan

    2015-01-01

    Allogeneic hematopoietic cell transplantation (HCT) is an important therapeutic option for a variety of malignant and non-malignant disorders (NMD). The use of umbilical cord blood transplantation (UCBT) has made HCT available to many more patients. The increased level of human leukocyte antigen

  1. Disruption of Bombyx mori nucleopolyhedrovirus ORF71 (Bm71) results in inefficient budded virus production and decreased virulence in host larvae.

    Science.gov (United States)

    Zhang, Min-Juan; Cheng, Ruo-Lin; Lou, Yi-Han; Ye, Wan-Lu; Zhang, Tao; Fan, Xiao-Ying; Fan, Hai-Wei; Zhang, Chuan-Xi

    2012-08-01

    The Bombyx mori nucleopolyhedrovirus (BmNPV) is a baculovirus that selectively infects domestic silkworm. BmNPV ORF71 (Bm71) is not a core set gene in baculovirus and shares 92 % amino acid sequence identity with Autographa californica multinucleocapsid NPV ORF88 (Ac88/cg30). Previously, it has been reported that virus lacking Ac88 had no striking phenotypes in cell lines or host larvae. However, the exact role of Bm71 during BmNPV life cycle remains unknown. In the present study, we constructed a Bm71-disrupted (Bm71-D) virus and assessed the effect of the Bm71 disruption on viral replication and viral phenotype throughout the viral life cycle. Results showed that the Bm71-D bacmid could successfully transfect Bm5 cell lines and produce infectious budded virus (BV). But the BV titer was 10- to 100-fold lower than that of the wild-type (WT) virus during infection, and the decreased BV titer was rescued by Bm71 gene repair virus (Bm71-R). A larval bioassay showed that Bm71-D virus took 7.5 h longer than the WT to kill Bombyx mori larvae. Transmission electron microscopy analysis indicated that the Bm71-D virus-infected cells had typical virogenic stroma, bundles of nucleocapsids and polyhedra. Taken together, these results suggest that Bm71 has important implications for determining BV yield and virulence in viral life cycle even though it is not an essential gene for replication of BmNPV.

  2. Cell proliferation markers in the transplanted canine transmissible venereal tumor

    Directory of Open Access Journals (Sweden)

    F.G.A. Santos

    2011-12-01

    Full Text Available Adult male mongrel dogs were subcutaneously transplanted with the canine transmissible venereal tumor (TVT on the hypogastric region. Twelve specimens of tumors were collected, half during the proliferative phase and the other half during the regressive phase. Fragments of the tumor were fixed in 10% buffered formalin and routinely processed for light microscopy. Sections of 4µm were stained by Schorr or AgNOR or either immunostained for MIB1 (Ki67. Schorr stain, AgNOR and MIB1 showed an increased proliferative activity through mitotic index, nuclear argyrophilic protein stain and cycling tumoral cells in the growing tumors, respectively. All of the three cell proliferation markers were able to distinguish the TVT in both evolution phases. MIB1 monoclonal antibody was the best in the morphologic evaluation of growth and regression of TVT. This resulted in higher values than AgNORs counting and mitotic index. MIB1 immunostaining was the most effective parameter of the proliferative activity of TVT. However, a significant correlation has been detected only between mitosis counting and AgNORs.

  3. Autologous or reduced-intensity conditioning allogeneic hematopoietic cell transplantation for chemotherapy-sensitive mantle-cell lymphoma: analysis of transplantation timing and modality.

    Science.gov (United States)

    Fenske, Timothy S; Zhang, Mei-Jie; Carreras, Jeanette; Ayala, Ernesto; Burns, Linda J; Cashen, Amanda; Costa, Luciano J; Freytes, César O; Gale, Robert P; Hamadani, Mehdi; Holmberg, Leona A; Inwards, David J; Lazarus, Hillard M; Maziarz, Richard T; Munker, Reinhold; Perales, Miguel-Angel; Rizzieri, David A; Schouten, Harry C; Smith, Sonali M; Waller, Edmund K; Wirk, Baldeep M; Laport, Ginna G; Maloney, David G; Montoto, Silvia; Hari, Parameswaran N

    2014-02-01

    To examine the outcomes of patients with chemotherapy-sensitive mantle-cell lymphoma (MCL) following a first hematopoietic stem-cell transplantation (HCT), comparing outcomes with autologous (auto) versus reduced-intensity conditioning allogeneic (RIC allo) HCT and with transplantation applied at different times in the disease course. In all, 519 patients who received transplantations between 1996 and 2007 and were reported to the Center for International Blood and Marrow Transplant Research were analyzed. The early transplantation cohort was defined as those patients in first partial or complete remission with no more than two lines of chemotherapy. The late transplantation cohort was defined as all the remaining patients. Auto-HCT and RIC allo-HCT resulted in similar overall survival from transplantation for both the early (at 5 years: 61% auto-HCT v 62% RIC allo-HCT; P = .951) and late cohorts (at 5 years: 44% auto-HCT v 31% RIC allo-HCT; P = .202). In both early and late transplantation cohorts, progression/relapse was lower and nonrelapse mortality was higher in the allo-HCT group. Overall survival and progression-free survival were highest in patients who underwent auto-HCT in first complete response. Multivariate analysis of survival from diagnosis identified a survival benefit favoring early HCT for both auto-HCT and RIC allo-HCT. For patients with chemotherapy-sensitive MCL, the optimal timing for HCT is early in the disease course. Outcomes are particularly favorable for patients undergoing auto-HCT in first complete remission. For those unable to achieve complete remission after two lines of chemotherapy or those with relapsed disease, either auto-HCT or RIC allo-HCT may be effective, although the chance for long-term remission and survival is lower.

  4. Nonmyeloablative HLA-matched sibling allogeneic hematopoietic stem cell transplantation for severe sickle cell phenotype.

    Science.gov (United States)

    Hsieh, Matthew M; Fitzhugh, Courtney D; Weitzel, R Patrick; Link, Mary E; Coles, Wynona A; Zhao, Xiongce; Rodgers, Griffin P; Powell, Jonathan D; Tisdale, John F

    2014-07-02

    Myeloablative allogeneic hematopoietic stem cell transplantation (HSCT) is curative for children with severe sickle cell disease, but toxicity may be prohibitive for adults. Nonmyeloablative transplantation has been attempted with degrees of preparative regimen intensity, but graft rejection and graft-vs-host disease remain significant. To determine the efficacy, safety, and outcome on end-organ function with this low-intensity regimen for sickle cell phenotype with or without thalassemia. From July 16, 2004, to October 25, 2013, 30 patients aged 16-65 years with severe disease enrolled in this nonmyeloablative transplant study, consisting of alemtuzumab (1 mg/kg in divided doses), total-body irradiation (300 cGy), sirolimus, and infusion of unmanipulated filgrastim mobilized peripheral blood stem cells (5.5-31.7 × 10(6) cells/kg) from human leukocyte antigen-matched siblings. The primary end point was treatment success at 1 year after the transplant, defined as a full donor-type hemoglobin for patients with sickle cell disease and transfusion independence for patients with thalassemia. The secondary end points were the level of donor leukocyte chimerism; incidence of acute and chronic graft-vs-host disease; and sickle cell-thalassemia disease-free survival, immunologic recovery, and changes in organ function, assessed by annual brain imaging, pulmonary function, echocardiographic image, and laboratory testing. Twenty-nine patients survived a median 3.4 years (range, 1-8.6), with no nonrelapse mortality. One patient died from intracranial bleeding after relapse. As of October 25, 2013, 26 patients (87%) had long-term stable donor engraftment without acute or chronic graft-vs-host disease. The mean donor T-cell level was 48% (95% CI, 34%-62%); the myeloid chimerism levels, 86% (95% CI, 70%-100%). Fifteen engrafted patients discontinued immunosuppression medication with continued stable donor chimerism and no graft-vs-host disease. The normalized hemoglobin and

  5. Allogeneic stem cell transplantation for advanced acute promyelocytic leukemia in the ATRA and ATO era

    Science.gov (United States)

    Ramadan, Safaa M.; Di Veroli, Ambra; Camboni, Agnese; Breccia, Massimo; Iori, Anna Paola; Aversa, Franco; Cupelli, Luca; Papayannidis, Cristina; Bacigalupo, Andrea; Arcese, William; Lo-Coco, Francesco

    2012-01-01

    The role of allogeneic stem cell transplant in advanced acute promyelocytic leukemia patients who received standard first- and second-line therapy is still unknown. We report the outcome of 31 acute promyelocytic leukemia patients (median age 39 years) who underwent allogeneic transplant in second remission (n=15) or beyond (n=16). Sixteen patients were real-time polymerase chain reaction positive and 15 negative for PML/RARA pre-transplant. The 4-year overall survival was 62% and 31% for patients transplanted in second remission and beyond, respectively (P=0.05), and 64% and 27% for patients with pre-transplant negative and positive real-time polymerase chain reaction, respectively (P=0.03). The 4-year cumulative incidence of relapse was 32% and 44% for patients transplanted in second remission and beyond, respectively (P=0.37), and 30% and 47% for patients transplanted with negative and positive real-time polymerase chain reaction, respectively (P=0.30). Transplant-related mortality was 19.6%. In conclusion, allogeneic transplant is effective in advanced acute promyelocytic leukemia in the all-trans-retinoic acid and arsenic trioxide era, and should be considered once relapse is diagnosed. PMID:22689684

  6. Islet cell transplantation for the treatment of type 1 diabetes: recent advances and future challenges

    Directory of Open Access Journals (Sweden)

    Bruni A

    2014-06-01

    Full Text Available Anthony Bruni, Boris Gala-Lopez, Andrew R Pepper, Nasser S Abualhassan, AM James Shapiro Clinical Islet Transplant Program and Department of Surgery, University of Alberta, Edmonton, AB, Canada Abstract: Islet transplantation is a well-established therapeutic treatment for a subset of patients with complicated type I diabetes mellitus. Prior to the Edmonton Protocol, only 9% of the 267 islet transplant recipients since 1999 were insulin independent for >1 year. In 2000, the Edmonton group reported the achievement of insulin independence in seven consecutive patients, which in a collaborative team effort propagated expansion of clinical islet transplantation centers worldwide in an effort to ameliorate the consequences of this disease. To date, clinical islet transplantation has established improved success with insulin independence rates up to 5 years post-transplant with minimal complications. In spite of marked clinical success, donor availability and selection, engraftment, and side effects of immunosuppression remain as existing obstacles to be addressed to further improve this therapy. Clinical trials to improve engraftment, the availability of insulin-producing cell sources, as well as alternative transplant sites are currently under investigation to expand treatment. With ongoing experimental and clinical studies, islet transplantation continues to be an exciting and attractive therapy to treat type I diabetes mellitus with the prospect of shifting from a treatment for some to a cure for all. Keywords: islet transplantation, type I diabetes mellitus, Edmonton Protocol, engraftment, immunosuppression

  7. Evaluation of hematopoietic potential generated by transplantation of muscle-derived stem cells in mice.

    Science.gov (United States)

    Farace, Francoise; Prestoz, Laetitita; Badaoui, Sabrina; Guillier, Martine; Haond, Celine; Opolon, Paule; Thomas, Jean-Leon; Zalc, Bernard; Vainchenker, William; Turhan, Ali G

    2004-02-01

    Muscle tissue of adult mice has been shown to contain stem cells with hematopoietic repopulation ability in vivo. To determine the functional characteristics of stem cells giving rise to this hematopoietic activity, we have performed hematopoietic reconstitution experiments by the use of muscle versus marrow transplantation in lethally irradiated mice and followed the fate of transplanted cells by Y-chimerism using PCR and fluorescence in situ hybridization (FISH) analysis. We report here that transplantation of murine muscle generate a major hematopoietic chimerism at the level of CFU-C, CFU-S, and terminally-differentiated cells in three generations of lethally irradiated mice followed up to 1 year after transplantation. This potential is totally abolished when muscle grafts were performed by the use of muscle from previously irradiated mice. As compared to marrow transplantation, muscle transplants were able to generate similar potencies to give rise to myeloid, T, B, and natural killer (NK) cells. Interestingly, marrow stem cells that have been generated in primary and then in secondary recipients were able to contribute efficiently to myofibers in the muscle tissue of tertiary recipients. Altogether, our data demonstrate that muscle-derived stem cells present a major hematopoietic repopulating ability with evidence of self-replication in vivo. They are radiation-sensitive and similar to marrow-derived stem cells in terms of their ability to generate multilineage hematopoiesis. Finally, our data demonstrate that muscle-derived hematopoietic stem cells do not lose their ability to contribute to myofiber generation after at least two rounds of serial transplantation, suggesting a potential that is probably equivalent to that generated by marrow transplantation.

  8. Mesenchymal Stem Cells in Organ Transplantation: Immunomodulatory properties of mesenchymal stem cells for application in organ transplantation

    OpenAIRE

    Crop, Meindert

    2010-01-01

    textabstractKidney transplantation is the only effective treatment for patients with end-stage renal disease. Transplantation of a donor organ, however, leads to recognition of the foreign donor antigens by the recipient’s immune system, resulting in rejection of the graft. In addition, ischemia-reperfusion injury leads to the initiation of immune responses. To prevent graft rejection, transplant recipients need to use life-long immunosuppressive medication. These drugs, however, can lead to ...

  9. Iron Administration before Stem Cell Harvest Enables MR Imaging Tracking after Transplantation

    OpenAIRE

    Khurana, Aman; Chapelin, Fanny; Beck, Graham; Lenkov, Olga D.; Donig, Jessica; Nejadnik, Hossein; Messing, Solomon; Derugin, Nikita; Chan, Ray Chun-Fai; Gaur, Amitabh; Sennino, Barbara; McDonald, Donald M.; Kempen, Paul J.; Tikhomirov, Grigory A.; Rao, Jianghong

    2013-01-01

    Transplanted mesenchymal stem cells (MSCs) could be detected and tracked with MR imaging, if the donor is treated with an intravenous injection of the Food and Drug Administration–approved iron supplement ferumoxytol prior to MSC harvesting.

  10. Socially disadvantaged parents of children treated with allogeneic haematopoietic stem cell transplantation (HSCT)

    DEFF Research Database (Denmark)

    Larsen, Hanne Bækgaard; Heilmann, Carsten; Johansen, Christoffer

    2013-01-01

    PURPOSE: This study was undertaken to test a daily Family Navigator Nurse (FNN) conducted intervention program, to support parents during the distressful experience of their child's Allogeneic Haematopoietic Stem Cell Transplantation (HSCT). METHODS: A qualitative analysis of the supportive...

  11. Will Post-Transplantation Cell Therapies for Pediatric Patients Become Standard of Care?

    NARCIS (Netherlands)

    Lankester, Arjan C.; Locatelli, Franco; Bader, Peter; Rettinger, Eva; Egeler, Maarten; Katewa, Satyendra; Pulsipher, Michael A.; Nierkens, Stefan; Schultz, Kirk; Handgretinger, Rupert; Grupp, Stephan A.; Boelens, Jaap Jan; Bollard, Catherine M.

    Although allogeneic hematopoietic stem cell transplantation (HSCT) is a curative approach for many pediatric patients with hematologic malignancies and some nonmalignant disorders, some critical obstacles remain to be overcome, including relapse, engraftment failure, graft-versus-host disease

  12. Parametric Response Mapping as an Indicator of Bronchiolitis Obliterans Syndrome after Hematopoietic Stem Cell Transplantation

    NARCIS (Netherlands)

    Galban, Craig J.; Boes, Jennifer L.; Bule, Maria; Kitko, Carrie L.; Couriel, Daniel R.; Johnson, Timothy D.; Lama, Vihba; Telenga, Eef D.; van den Berge, Maarten; Rehemtulla, Alnawaz; Kazerooni, Ella A.; Ponkowski, Michael J.; Ross, Brian D.; Yanik, Gregory A.

    2014-01-01

    The management of bronchiolitis obliterans syndrome (BOS) after hematopoietic cell transplantation presents many challenges, both diagnostically and therapeutically. We developed a computed tomography (CT) voxel-wise methodology termed parametric response mapping (PRM) that quantifies normal

  13. Oral features and dental health in Hurler Syndrome following hematopoietic stem cell transplantation.

    LENUS (Irish Health Repository)

    McGovern, Eleanor

    2010-09-01

    Hurler Syndrome is associated with a deficiency of a specific lysosomal enzyme involved in the degradation of glycosaminoglycans. Hematopoietic stem cell transplantation (HSCT) in early infancy is undertaken to help prevent the accumulation of glycosaminoglycans and improve organ function.

  14. Transplantation of Adipose Derived Stromal Cells into the Developing Mouse Eye

    International Nuclear Information System (INIS)

    Yu, Song-Hee; Jang, Yu-Jin; Lee, Eun-Shil; Hwang, Dong-Youn; Jeon, Chang-Jin

    2010-01-01

    Adipose derived stromal cells (ADSCs) were transplanted into a developing mouse eye to investigate the influence of a developing host micro environment on integration and differentiation. Green fluorescent protein-expressing ADSCs were transplanted by intraocular injections. The age of the mouse was in the range of 1 to 10 days postnatal (PN). Survival dates ranged from 7 to 28 post transplantation (DPT), at which time immunohistochemistry was performed. The transplanted ADSCs displayed some morphological differentiations in the host eye. Some cells expressed microtubule associated protein 2 (marker for mature neuron), or glial fibrillary acid protein (marker for glial cell). In addition, some cells integrated into the ganglion cell layer. The integration and differentiation of the transplanted ADSCs in the 5 and 10 PN 7 DPT were better than in the host eye the other age ranges. This study was aimed at demonstrating how the age of host micro environment would influence the differentiation and integration of the transplanted ADSCs. However, it was found that the integration and differentiation into the developing retina were very limited when compared with other stem cells, such as murine brain progenitor cell

  15. Nanotechnology as an adjunct tool for transplanting engineered cells and tissues.

    Science.gov (United States)

    Borlongan, Cesar V; Masuda, Tadashi; Walker, Tiffany A; Maki, Mina; Hara, Koichi; Yasuhara, Takao; Matsukawa, Noriyuki; Emerich, Dwaine F

    2007-11-01

    Laboratory and clinical studies have provided evidence of feasibility, safety and efficacy of cell transplantation to treat a wide variety of diseases characterized by tissue and cell dysfunction ranging from diabetes to spinal cord injury. However, major hurdles remain and limit pursuing large clinical trials, including the availability of a universal cell source that can be differentiated into specific cellular phenotypes, methods to protect the transplanted allogeneic or xenogeneic cells from rejection by the host immune system, techniques to enhance cellular integration of the transplant within the host tissue, strategies for in vivo detection and monitoring of the cellular implants, and new techniques to deliver genes to cells without eliciting a host immune response. Finding ways to circumvent these obstacles will benefit considerably from being able to understand, visualize, and control cellular interactions at a sub-micron level. Cutting-edge discoveries in the multidisciplinary field of nanotechnology have provided us a platform to manipulate materials, tissues, cells, and DNA at the level of and within the individual cell. Clearly, the scientific innovations achieved with nanotechnology are a welcome strategy for enhancing the generally encouraging results already achieved in cell transplantation. This review article discusses recent progress in the field of nanotechnology as a tool for tissue engineering, gene therapy, cell immunoisolation, and cell imaging, highlighting its direct applications in cell transplantation therapy.

  16. Perceptions of Hematopoietic Stem Cell Transplantation and Coping Predict Emotional Distress During the Acute Phase After Transplantation.

    Science.gov (United States)

    Baliousis, Michael; Rennoldson, Michael; Dawson, David L; Mills, Jayne; das Nair, Roshan

    2017-01-01

    To test whether a widely used model of adjustment to illness, the self-regulatory model, explains the patterns of distress during acute hematopoietic stem cell transplantation (HSCT). According to the model, perceptions of HSCT, coping, and coping appraisals are associated with distress.
. Longitudinal, correlational.
. The Centre for Clinical Haematology at Nottingham City Hospital and the Department of Haematology at Royal Hallamshire Hospital in Sheffield, both in the United Kingdom.
. 45 patients receiving mostly autologous transplantations for a hematologic malignancy.
. Patients were assessed at baseline, on transplantation day, and two and four weeks after transplantation using three questionnaires. Psychological distress, including depression, anxiety, stress, and overall distress (DASS-21); use of different coping styles (Brief COPE); and perceptions of HSCT and coping appraisals (Brief IPQ).
. As suggested by the self-regulatory model, greater distress was associated with negative perceptions of HSCT, controlling for the effects of confounding variables. Mixed support was found for the model's predictions about the impact of coping styles on distress. Use of active and avoidant coping styles was associated with more distress during the acute phase after HSCT.
. Negative perceptions of HSCT and coping contribute to psychological distress during the acute phase after HSCT and suggest the basis for intervention.
. Eliciting and discussing patients' negative perceptions of HSCT beforehand and supporting helpful coping may be important ways to reduce distress during HSCT.

  17. Chemokine Receptor Signatures in Allogeneic Stem Cell Transplantation

    Science.gov (United States)

    2015-08-01

    No Impact of Pre-transplant Extramedullary Disease on Outcome” Bone Marrow Transplant (In Press) 7. Urbano Ispizua A, Pavletic S, Flowers ME, Klein...with experience in global collaborative research. Career Development Plan for Columbia University On July 1st, 2015 I will commence my position at

  18. Imatinib prevents beta cell death in vitro but does not improve islet transplantation outcome.

    Science.gov (United States)

    King, Aileen J F; Griffiths, Lisa A; Persaud, Shanta J; Jones, Peter M; Howell, Simon L; Welsh, Nils

    2016-05-01

    Introduction Improving islet transplantation outcome could not only bring benefits to individual patients but also widen the patient pool to which this life-changing treatment is available. Imatinib has previously been shown to protect beta cells from apoptosis in a variety of in vitro and in vivo models. The aim of this study was to investigate whether imatinib could be used to improve islet transplantation outcome. Methods Islets were isolated from C57Bl/6 mice and pre-cultured with imatinib prior to exposure to streptozotocin and cytokines in vitro. Cell viability and glucose-induced insulin secretion were measured. For transplantation experiments, islets were pre-cultured with imatinib for either 72 h or 24 h prior to transplantation into streptozotocin-diabetic C57Bl/6 mice. In one experimental series mice were also administered imatinib after islet transplantation. Results Imatinib partially protected islets from beta cell death in vitro. However, pre-culturing islets in imatinib or administering the drug to the mice in the days following islet transplantation did not improve blood glucose concentrations more than control-cultured islets. Conclusion Although imatinib protected against beta cell death from cytokines and streptozotocin in vitro, it did not significantly improve syngeneic islet transplantation outcome.

  19. Efficacy of Surgery Combined with Autologous Bone Marrow Stromal Cell Transplantation for Treatment of Intracerebral Hemorrhage

    Directory of Open Access Journals (Sweden)

    Jianxin Zhu

    2015-01-01

    Full Text Available Bone marrow stromal cells (BMSCs may differentiate into nerve cells under a certain condition; however, the clinical application for treating nervous system disease remains unclear. The aim is to assess the safety profile, feasibility, and effectiveness of surgery combined with autologous BMSCs transplantation for treating ICH. 206 ICH patients who had received surgical procedure were divided into transplantation (n=110 or control group (n=96. For transplantation group, BMSCs were injected into the perihemorrhage area in the base ganglia through an intracranial drainage tube 5.5 (3.01–6.89 days after surgery, followed by a second injection into the subarachnoid space through lumbar puncture 4 weeks later. Neurologic impairment and daily activities were assessed with National Institute Stroke Scale (NIHSS, Barthel index, and Rankin scale before transplantation and 6 months and 12 months after transplantation. Our results revealed that, compared with control group, NIHSS score and Rankin scale were both significantly decreased but Barthel index was increased in transplantation group after 6 months. Interestingly, no significant difference was observed between 12 months and 6 months. No transplantation-related adverse effects were investigated during follow-up assessments. Our findings suggest that surgery combined with autologous BMSCs transplantation is safe for treatment of ICH, providing short-term therapeutic benefits.

  20. Megakaryocytopoiesis and the number of thrombocytes after bone marrow cell transplantation in lethally irradiated mice

    International Nuclear Information System (INIS)

    Viktora, L.; Hermanova, E.; Zoubkova, M.

    1977-01-01

    Changes were studied in the number of thrombocytes in the peripheral blood and megakaryocytes in the bone marrow and spleen in lethally irradiated mice after the transplantation of bone marrow cells. It was found that the thrombocytes increased in dependence on time after transplantation with the maximal values around the 20th day. An increased megakaryocytopoiesis was observed not only in the bone marrow but also in the spleen. These ascertainments suggest the importance of the transplantation of bone marrow cells and the role of thrombocytes for the survival of the organism after irradiation. (author)

  1. Persistent seropositivity for yellow fever in a previously vaccinated autologous hematopoietic stem cell transplantation recipient.

    Science.gov (United States)

    Hayakawa, Kayoko; Takasaki, Tomohiko; Tsunemine, Hiroko; Kanagawa, Shuzo; Kutsuna, Satoshi; Takeshita, Nozomi; Mawatari, Momoko; Fujiya, Yoshihiro; Yamamoto, Kei; Ohmagari, Norio; Kato, Yasuyuki

    2015-08-01

    The duration of a protective level of yellow fever antibodies after autologous hematopoietic stem cell transplantation in a previously vaccinated person is unclear. The case of a patient who had previously been vaccinated for yellow fever and who remained seropositive for 22 months after autologous peripheral blood stem cell transplantation for malignant lymphoma is described herein. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Prospective clinical testing of regulatory dendritic cells (DCreg) in organ transplantation

    OpenAIRE

    ANGUS W THOMSON; ALAN F ZAHORCHAK; Mohamed B. Ezzelarab; Lisa H. Butterfield; Fadi G. Lakkis; Diana M Metes

    2016-01-01

    Dendritic cells (DC) are rare, professional antigen-presenting cells with ability to induce or regulate alloimmune responses. Regulatory DC (DCreg) with potential to down-modulate acute and chronic inflammatory conditions that occur in organ transplantation can be generated in vitro under a variety of conditions. Here, we provide a rationale for evaluation of DCreg therapy in clinical organ transplantation with the goal of promoting sustained, donor-specific hyporesponsiveness, while lowering...

  3. Imbalances in Mobilization and Activation of Pro-Inflammatory and Vascular Reparative Bone Marrow-Derived Cells in Diabetic Retinopathy.

    Directory of Open Access Journals (Sweden)

    Harshini Chakravarthy

    Full Text Available Diabetic retinopathy is a sight-threatening complication of diabetes, affecting 65% of patients after 10 years of the disease. Diabetic metabolic insult leads to chronic low-grade inflammation, retinal endothelial cell loss and inadequate vascular repair. This is partly due to bone marrow (BM pathology leading to increased activity of BM-derived pro-inflammatory monocytes and impaired function of BM-derived reparative circulating angiogenic cells (CACs. We propose that diabetes has a significant long-term effect on the nature and proportion of BM-derived cells that circulate in the blood, localize to the retina and home back to their BM niche. Using a streptozotocin mouse model of diabetic retinopathy with GFP BM-transplantation, we have demonstrated that BM-derived circulating pro-inflammatory monocytes are increased in diabetes while reparative CACs are trapped in the BM and spleen, with impaired release into circulation. Diabetes also alters activation of splenocytes and BM-derived dendritic cells in response to LPS stimulation. A majority of the BM-derived GFP cells that migrate to the retina express microglial markers, while others express endothelial, pericyte and Müller cell markers. Diabetes significantly increases infiltration of BM-derived microglia in an activated state, while reducing infiltration of BM-derived endothelial progenitor cells in the retina. Further, control CACs injected into the vitreous are very efficient at migrating back to their BM niche, whereas diabetic CACs have lost this ability, indicating that the in vivo homing efficiency of diabetic CACs is dramatically decreased. Moreover, diabetes causes a significant reduction in expression of specific integrins regulating CAC migration. Collectively, these findings indicate that BM pathology in diabetes could play a role in both increased pro-inflammatory state and inadequate vascular repair contributing to diabetic retinopathy.

  4. Hispanics have the lowest stem cell transplant utilization rate for autologous hematopoietic cell transplantation for multiple myeloma in the United States: A CIBMTR report.

    Science.gov (United States)

    Schriber, Jeffrey R; Hari, Parameswaran N; Ahn, Kwang Woo; Fei, Mingwei; Costa, Luciano J; Kharfan-Dabaja, Mohamad A; Angel-Diaz, Miguel; Gale, Robert P; Ganguly, Siddharatha; Girnius, Saulius K; Hashmi, Shahrukh; Pawarode, Attaphol; Vesole, David H; Wiernik, Peter H; Wirk, Baldeep M; Marks, David I; Nishihori, Taiga; Olsson, Richard F; Usmani, Saad Z; Mark, Tomer M; Nieto, Yago L; D'Souza, Anita

    2017-08-15

    Race/ethnicity remains an important barrier in clinical care. The authors investigated differences in the receipt of autologous hematopoietic cell transplantation (AHCT) among patients with multiple myeloma (MM) and outcomes based on race/ethnicity in the United States. The Center for International Blood and Marrow Transplant Research database was used to identify 28,450 patients who underwent AHCT for MM from 2008 through 2014. By using data from the National Cancer Institute's Surveillance, Epidemiology, and End Results 18 registries, the incidence of MM was calculated, and a stem cell transplantation utilization rate (STUR) was derived. Post-AHCT outcomes were analyzed among patients ages 18 to 75 years who underwent melphalan-conditioned peripheral cell grafts (N = 24,102). The STUR increased across all groups from 2008 to 2014. The increase was substantially lower among Hispanics (range, 8.6%-16.9%) and non-Hispanic blacks (range, 12.2%-20.5%) compared with non-Hispanic whites (range, 22.6%-37.8%). There were 18,046 non-Hispanic whites, 4123 non-Hispanic blacks, and 1933 Hispanic patients. The Hispanic group was younger (P blacks (42%) compared with non-Hispanic whites (56%). A Karnofsky score 3 were more common in non-Hispanic blacks compared with Hispanic and non-Hispanic whites (P blacks (54%) and non-Hispanic whites (52%; P blacks (45%) and non-Hispanic whites (44%) had a very good partial response or better before transplantation (P = .005). Race/ethnicity did not impact post-AHCT outcomes. Although the STUR increased, it remained low and was significantly lower among Hispanics followed by non-Hispanic blacks compared with non-Hispanic whites. Race/ethnicity did not impact transplantation outcomes. Efforts to increase the rates of transplantation for eligible patients who have MM, with an emphasis on groups that underuse transplantation, are warranted. Cancer 2017;123:3141-9. © 2017 American Cancer Society. © 2017 American Cancer Society.

  5. Noninvasive Assessment of Cell Fate and Biology in Transplanted Mesenchymal Stem Cells.

    Science.gov (United States)

    Franchi, Federico; Rodriguez-Porcel, Martin

    2017-01-01

    Recently, molecular imaging has become a conditio sine qua non for cell-based regenerative medicine. Developments in molecular imaging techniques, such as reporter gene technology, have increasingly enabled the noninvasive assessment of the fate and biology of cells after cardiovascular applications. In this context, bioluminescence imaging is the most commonly used imaging modality in small animal models of preclinical studies. Here, we present a detailed protocol of a reporter gene imaging approach for monitoring the viability and biology of Mesenchymal Stem Cells transplanted in a mouse model of myocardial ischemia reperfusion injury.

  6. Establishing an autologous versus allogeneic hematopoietic cell transplant program in nations with emerging economies.

    Science.gov (United States)

    Chaudhri, Naeem A; Aljurf, Mahmoud; Almohareb, Fahad I; Alzahrani, Hazzaa A; Bashir, Qaiser; Savani, Bipin; Gupta, Vikas; Hashmi, Shahrukh K

    2017-12-01

    More than 70,000 hematopoietic cell transplants are currently performed each year, and these continue to increase every year. However, there is a significant variation in the number of absolute transplants and transplant rates between centers, countries, and global regions. The prospect for emerging countries to develop a hematopoietic cell transplantation (HCT) program, as well as to decide on whether autologous HCT (auto-HCT) or allogeneic HCT (allo-HCT) should be established to start with, relies heavily on factors that can explain differences between these two procedures. Major factors that will influence a decision about establishing the type of HCT program are macroeconomic factors such as organization of the healthcare network, available resources and infrastructure. Prevalence of specific diseases in the region as well genetic background of donors and recipients will also influence the mandate or priority of the HCT in the national healthcare plan to explain some of the country-specific differences. Furthermore, microeconomic factors play a role, such as center-specific experience in treating various disorders requiring hematopoietic stem cell transplantation, along with accreditation status and patient volume. The objective of the transplant procedure was to improve the survival and quality of life of patients. The regional difference that one notices in emerging countries about the higher number of allo-HCT compared with auto-HCT procedures performed is primarily based on suboptimal healthcare network in treating various malignant disorders that are the primary indication for auto-stem cell transplantation. In this context, nonmalignant disorders such as bone marrow failure syndromes, inherited genetic disorders and hemoglobinopathies have become the major indication for stem cell transplantation. Better understanding of these factors will assist in establishing new transplant centers in the emerging countries to achieve their specific objectives and

  7. Hematopoietic Stem Cell Transplantation Activity in Pediatric Cancer between 2008 and 2014 in the United States: A Center for International Blood and Marrow Transplant Research Report.

    Science.gov (United States)

    Khandelwal, Pooja; Millard, Heather R; Thiel, Elizabeth; Abdel-Azim, Hisham; Abraham, Allistair A; Auletta, Jeffery J; Boulad, Farid; Brown, Valerie I; Camitta, Bruce M; Chan, Ka Wah; Chaudhury, Sonali; Cowan, Morton J; Angel-Diaz, Miguel; Gadalla, Shahinaz M; Gale, Robert Peter; Hale, Gregory; Kasow, Kimberly A; Keating, Amy K; Kitko, Carrie L; MacMillan, Margaret L; Olsson, Richard F; Page, Kristin M; Seber, Adriana; Smith, Angela R; Warwick, Anne B; Wirk, Baldeep; Mehta, Parinda A

    2017-08-01

    This Center for International Blood and Marrow Transplant Research report describes the use of hematopoietic stem cell transplantation (HSCT) in pediatric patients with cancer, 4408 undergoing allogeneic (allo) and3076 undergoing autologous (auto) HSCT in the United States between 2008 and 2014. In both settings, there was a greater proportion of boys (n = 4327; 57%), children reports of transplant practices in the United States. Copyright © 2017 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  8. Effects of nonpharmacological interventions on reducing fatigue after hematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Hedayat Jafari

    2017-01-01

    Full Text Available Fatigue is one of the main complaints of patients undergoing allogeneic and autologous hematopoietic stem cell transplantation (HSCT. Since nonpharmacological interventions are cost-effective and causes fewer complications, this study aimed to review the studies performed on the effects of nonpharmacological interventions on fatigue in patients undergoing HSCT during September 2016. MEDLINE, CINAHL, Scientific Information Database, IranMedex, PubMed, ScienceDirect, Scopus, Magiran, and IRANDOC databases were searched using Persian and English keywords. A total of 1217 articles were retrieved, 21 of which were used in this study. Exercise is known as an effective intervention in alleviating physical and mental problems of patients undergoing stem cell transplant. This review-based study showed that nonpharmacological methods such as exercise might be effective in decreasing fatigue in patients undergoing stem cell transplant. There is a multitude of studies on some of the complementary and alternative therapy methods, such as music therapy, yoga, relaxation, and therapeutic massage. These studies demonstrated the positive effects of the aforementioned therapies on reduction of fatigue in patients undergoing stem cell transplantation. All the investigated methods in this study were nonaggressive, safe, and cost-effective and could be used along with common treatments or even as an alternative for pharmacological treatments for the reduction, or elimination of fatigue in patients undergoing stem cell transplantation. Given the advantages of complementary and alternative medicine, conducting further studies on this issue is recommended to reduce fatigue in patients after stem cell transplantation.

  9. The impact of HLA matching on long-term transplant outcome after allogeneic hematopoietic stem cell transplantation for CLL: a retrospective study from the EBMT registry.

    NARCIS (Netherlands)

    Michallet, M.; Sobh, M.; Milligan, D.; Morisset, S.; Niederwieser, D.; Koza, V.; Ruutu, T.; Russell, N.H.; Verdonck, L.; Dhedin, N.; Vitek, A.; Boogaerts, M.; Vindelov, L.; Finke, J.; Dubois, V.; Biezen, A. van; Brand, R.; Witte, T.J.M. de; Dreger, P.

    2010-01-01

    We analyzed 368 chronic lymphocytic leukemia patients who underwent allogeneic hematopoietic stem cell transplantation reported to the EBMT registry between 1995 and 2007. There were 198 human leukocyte antigen (HLA)-identical siblings; among unrelated transplants, 31 were well matched in high

  10. The impact of HLA matching on long-term transplant outcome after allogeneic hematopoietic stem cell transplantation for CLL: a retrospective study from the EBMT registry

    DEFF Research Database (Denmark)

    Michallet, M; Sobh, M; Milligan, D

    2010-01-01

    We analyzed 368 chronic lymphocytic leukemia patients who underwent allogeneic hematopoietic stem cell transplantation reported to the EBMT registry between 1995 and 2007. There were 198 human leukocyte antigen (HLA)-identical siblings; among unrelated transplants, 31 were well matched in high re...

  11. Cytogenetic studies on recipients of allogeneic bone marrow transplants after fractionated total body irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, N; Goedde-Salz, E; Loeffler, H [Christian-Albrechts-Univ., Kiel (Germany, F.R.)

    1985-06-01

    Cytogenetic findings from the bone marrow (BM) and the peripheral blood (PB) of nine consecutive patients after allogeneic bone marrow transplantation (BMT) for acute or chronic myelogenous leukaemia are reported. After a conditioning regimen consisting of cyclophosphamide and fractionated total body irradiation (TBI) given in five or six fractions of 2 Gy, persistence of host cells was detected in four out of seven cases with permanent engraftment. While one of these patients relapsed 4 months after host cells had been found in BM and PB, the other patients stayed relapse-free 124, 257 and 347 d after grafting. Before transplantation, the leukaemic cells in all three cases carried unique cytogenetic abnormalities giving the opportunity to distinguish the leukaemic population from chromosomally non-aberrant cells thought to represent residual normal host cells. As the persisting host cells after BMT lacked any cytogenetic abnormalities, it is suggested that they were members of residual normal clones not involved in the leukaemic process.

  12. Cytogenetic studies on recipients of allogeneic bone marrow transplants after fractionated total body irradiation

    International Nuclear Information System (INIS)

    Schmitz, N.; Goedde-Salz, E.; Loeffler, H.

    1985-01-01

    Cytogenetic findings from the bone marrow (BM) and the peripheral blood (PB) of nine consecutive patients after allogeneic bone marrow transplantation (BMT) for acute or chronic myelogenous leukaemia are reported. After a conditioning regimen consisting of cyclophosphamide and fractionated total body irradiation (TBI) given in five or six fractions of 2 Gy, persistence of host cells was detected in four out of seven cases with permanent engraftment. While one of these patients relapsed 4 months after host cells had been found in BM and PB, the other patients stayed relapse-free 124, 257 and 347 d after grafting. Before transplantation, the leukaemic cells in all three cases carried unique cytogenetic abnormalities giving the opportunity to distinguish the leukaemic population from chromosomally non-aberrant cells thought to represent residual normal host cells. As the persisting host cells after BMT lacked any cytogenetic abnormalities, it is suggested that they were members of residual normal clones not involved in the leukaemic process. (author)

  13. Syngeneic peripheral blood stem cell transplantation with immunosuppression for hepatitis-associated severe aplastic anemia

    Directory of Open Access Journals (Sweden)

    Aleksandar Savic

    2010-12-01

    Full Text Available Hepatitis-associated aplastic anemia occurs in up to 10% of all aplastic anemia cases. Syngeneic bone marrow transplantation is rare in patients with severe aplastic anemia and usually requires pre-transplant conditioning to provide engraftment. We report on a 29-year-old male patient with hepatitis-associated severe aplastic anemia who had a series of severe infectious conditions before transplantation, including tracheal inflammation. Life-threatening bleeding, which developed after bronchoscopy, was successfully treated with activated recombinant factor VII and platelet transfusions. Syngeneic peripheral blood stem cell transplantation using immunosuppressive treatment with antithymocyte globulin and cyclosporin A without high-dose pre-transplant conditioning was performed, followed by complete hematologic and hepatic recovery.

  14. Evolving Hematopoietic Stem Cell Transplantation Strategies in Severe Aplastic Anemia

    Science.gov (United States)

    Dietz, Andrew C.; Lucchini, Giovanna; Samarasinghe, Sujith; Pulsipher, Michael A.

    2016-01-01

    Purpose of Review Significant improvements in unrelated donor hematopoietic stem cell transplantation (HSCT) in recent years has solidified its therapeutic role in severe aplastic anemia (SAA) and led to evolution of treatment algorithms, particularly for children. Recent Findings Advances in understanding genetics of inherited bone marrow failure syndromes (IBMFS) have allowed more confidence in accurately diagnosing SAA and avoiding treatments that could be dangerous and ineffective in individuals with IBMFS, which can be diagnosed in 10–20% of children presenting with a picture of SAA. Additionally long-term survival after matched sibling donor (MSD) and matched unrelated donor (MUD) HSCT now exceed 90% in children. Late effects after HSCT for SAA are minimal with current strategies and compare favorably to late effects after up-front immunosuppressive therapy (IST), except for patients with chronic graft versus host disease (GVHD). Summary 1) Careful assessment for signs or symptoms of IBMFS along with genetic screening for these disorders is of major importance. 2) MSD HSCT is already considered standard of care for up-front therapy and some groups are evaluating MUD HSCT as primary therapy. 3) Ongoing studies will continue to challenge treatment algorithms and may lead to an even more expanded role for HSCT in SAA. PMID:26626557

  15. Compassionate presence: The meaning of hematopoietic stem cell transplant nursing.

    Science.gov (United States)

    Sabo, Brenda M

    2011-04-01

    Within oncology, working with patients who are suffering or at end-of-life has been recognized repeatedly as stress-inducing, yet there is little agreement on what specifically nurses may experience as a result of their work. Further, research focused on caring work within the context of hematopoietic stem cell transplant (HSCT) nursing is almost non-existent. In light of the gap, this interpretative phenomenological study focused on enhancing the knowledge and understanding of the effect(s) of nursing work on the psychosocial health and well being of HSCT nurses. An interpretative phenomenological design grounded in the work of Heidegger and van Manen was used to explore nursing work among HSCT nurses. Twelve nurses from three Canadian tertiary healthcare facilities participated in multiple interviews and focus groups. Thematic analysis resulted in the emergence of four core themes and one overarching novel theme, compassionate presence. The discussion provides an overview of the novel finding, compassionate presence, which challenges the notion that working with individuals who are suffering or at end-of-life inevitably leads to adverse psychosocial effects. Implications for practice, education and research are also provided. Compassionate presence emerged to suggest a potential buffering effect against adverse consequences of HSCT nursing work. This finding underscored the value of the relationship as an integral component of nursing work. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Growth and development after hematopoietic cell transplant in children.

    Science.gov (United States)

    Sanders, J E

    2008-01-01

    Hematopoietic cell transplantation (HCT) following high-dose chemotherapy or chemoradiotherapy for children with malignant or nonmalignant hematologic disorders has resulted in an increasing number of long-term disease-free survivors. The preparative regimens include high doses of alkylating agents, such as CY with or without BU, and may include TBI. These agents impact the neuroendocrine system in growing children and their subsequent growth and development. Children receiving high-dose CY or BUCY have normal thyroid function, but those who receive TBI-containing regimens may develop thyroid function abnormalities. Growth is not impacted by chemotherapy-only preparative regimens, but TBI is likely to result in growth hormone deficiency and decreased growth rates that need to be treated with synthetic growth hormone therapy. Children who receive high-dose CY-only have normal development through puberty, whereas those who receive BUCY have a high incidence of delayed pubertal development. Following fractionated TBI preparative regimens, approximately half of the patients have normal pubertal development. These data demonstrate that the growth and development problems after HCT are dependent upon the preparative regimen received. All children should be followed for years after HCT for detection of growth and development abnormalities that are treatable with appropriate hormone therapy.

  17. High-Yield Purification, Preservation, and Serial Transplantation of Human Satellite Cells

    Directory of Open Access Journals (Sweden)

    Steven M. Garcia

    2018-03-01

    Full Text Available Summary: Investigation of human muscle regeneration requires robust methods to purify and transplant muscle stem and progenitor cells that collectively constitute the human satellite cell (HuSC pool. Existing approaches have yet to make HuSCs widely accessible for researchers, and as a result human muscle stem cell research has advanced slowly. Here, we describe a robust and predictable HuSC purification process that is effective for each human skeletal muscle tested and the development of storage protocols and transplantation models in dystrophin-deficient and wild-type recipients. Enzymatic digestion, magnetic column depletion, and 6-marker flow-cytometric purification enable separation of 104 highly enriched HuSCs per gram of muscle. Cryostorage of HuSCs preserves viability, phenotype, and transplantation potential. Development of enhanced and species-specific transplantation protocols enabled serial HuSC xenotransplantation and recovery. These protocols and models provide an accessible system for basic and translational investigation and clinical development of HuSCs. : Garcia and colleagues report methods for efficient purification of satellite cells from human skeletal muscle. They use their approaches to demonstrate stem cell functions of endogenous satellite cells and to make human satellite cells accessible for sharing among researchers. Keywords: human satellite cell purification, serial transplantation, satellite cell cryopreservation

  18. Hormone Use for Therapeutic Amenorrhea and Contraception During Hematopoietic Cell Transplantation

    Science.gov (United States)

    Chang, Katherine; Merideth, Melissa A.; Stratton, Pamela

    2015-01-01

    There is a growing population of women who have or will undergo hematopoietic stem cell transplant for a variety of malignant and benign conditions. Gynecologists play an important role in addressing the gynecologic and reproductive health concerns for these women throughout the transplant process. As women undergo cell transplantation, they should avoid becoming pregnant and are at risk of uterine bleeding. Thus, counseling about and implementing hormonal treatments such as gonadotropin-releasing hormone agonists, combined hormonal contraceptives, and progestin-only methods help to achieve therapeutic amenorrhea and can serve as contraception during the peritransplant period. In this commentary, we summarize the timing, risks and benefits of the hormonal options just prior, during and for the year after hematopoietic stem cell transplantation. PMID:26348182

  19. Transplanted Human Umbilical Cord Mesenchymal Stem Cells Facilitate Lesion Repair in B6.Fas Mice

    Directory of Open Access Journals (Sweden)

    Guang-ping Ruan

    2014-01-01

    Full Text Available Background. Systemic lupus erythematosus (SLE is a multisystem disease that is characterized by the appearance of serum autoantibodies. No effective treatment for SLE currently exists. Methods. We used human umbilical cord mesenchymal stem cell (H-UC-MSC transplantation to treat B6.Fas mice. Results. After four rounds of cell transplantation, we observed a statistically significant decrease in the levels of mouse anti-nuclear, anti-histone, and anti-double-stranded DNA antibodies in transplanted mice compared with controls. The percentage of CD4+CD25+Foxp3+ T cells in mouse peripheral blood significantly increased after H-UC-MSC transplantation. Conclusions. The results showed that H-UC-MSCs could repair lesions in B6.Fas mice such that all of the relevant disease indicators in B6.Fas mice were restored to the levels observed in normal C57BL/6 mice.

  20. Experimental treatment of diabetic mice with microencapsulated rat islet cells transplantation

    International Nuclear Information System (INIS)

    Luo Yun; Xue Yilong; Li Yanling; Li Xinjian

    2006-01-01

    To observe treatment effects of diabetic mice with microcapsulated and non-microcapsulated rat islet cell transplantation, pancreas of SD rat was perfused with collagenase through cloledchus, and then the pancreatic tissues were isolated and digested. Histopaque-1077 was used to purify the digested pancreas. Islet cells were collected and implanted into the peritoneal cavity of diabetic mice. The isolated islets had a response upon glucose stimulation. When the microcapsulated islets and non- microcapsulated islets were transplanted into diabetic mices the high blood glucose level could be decreased to normal. The normal blood glucose level in the diabetic mice transpanted with microcapsulated islets could be maintained for over 30 days,but it could be mainlained only for 2-3 days in the diabetic mice transplanted with non-microcapsulated islets. Thus it is believed that microcapsulated islet cell transplantation exerts good effect on diabetic mice and the microcapsules possessed good immunoisolating function. (authors)

  1. Identification of resident and inflammatory bone marrow derived cells in the sclera by bone marrow and haematopoietic stem cell transplantation.

    Science.gov (United States)

    Hisatomi, Toshio; Sonoda, Koh-hei; Ishikawa, Fumihiko; Qiao, Hong; Nakazawa, Takahiro; Fukata, Mitsuhiro; Nakamura, Toru; Noda, Kousuke; Miyahara, Shinsuke; Harada, Mine; Kinoshita, Shigeru; Hafezi-Moghadam, Ali; Ishibashi, Tatsuro; Miller, Joan W

    2007-04-01

    To characterise bone marrow derived cells in the sclera under normal and inflammatory conditions, we examined their differentiation after transplantation from two different sources, bone marrow and haematopoietic stem cells (HSC). Bone marrow and HSC from green fluorescent protein (GFP) transgenic mice were transplanted into irradiated wild-type mice. At 1 month after transplantation, mice were sacrificed and their sclera examined by histology, immunohistochemistry (CD11b, CD11c, CD45), and transmission and scanning electron microscopy. To investigate bone marrow derived cell recruitment under inflammatory conditions, experimental autoimmune uveitis (EAU) was induced in transplanted mice. GFP positive cells were distributed in the entire sclera and comprised 22.4 (2.8)% (bone marrow) and 28.4 (10.9)% (HSC) of the total cells in the limbal zone and 18.1 (6.7)% (bone marrow) and 26.3 (3.4)% (HSC) in the peripapillary zone. Immunohistochemistry showed that GFP (+) CD11c (+), GFP (+) CD11b (+) cells migrated in the sclera after bone marrow and HSC transplantation. Transmission and scanning electron microscopy revealed antigen presenting cells among the scleral fibroblasts. In EAU mice, vast infiltration of GFP (+) cells developed into the sclera. We have provided direct and novel evidence for the migration of bone marrow and HSC cells into the sclera differentiating into macrophages and dendritic cells. Vast infiltration of bone marrow and HSC cells was found to be part of the inflammatory process in EAU.

  2. Haematopoietic stem cell transplantation as first-line treatment in myeloma: a global perspective of current concepts and future possibilities

    Directory of Open Access Journals (Sweden)

    Catriona Elizabeth Mactier

    2012-10-01

    Full Text Available Stem cell transplantation forms an integral part of the treatment for multiple myeloma. This paper reviews the current role of transplantation and the progress that has been made in order to optimize the success of this therapy. Effective induction chemotherapy is important and a combination regimen incorporating the novel agent bortezomib is now favorable. Adequate induction is a crucial adjunct to stem cell transplantation and in some cases may potentially postpone the need for transplant. Different conditioning agents prior to transplantation have been explored: high-dose melphalan is most commonly used and bortezomib is a promising additional agent. There is no well-defined superior transplantation protocol but single or tandem autologous stem cell transplantations are those most commonly used, with allogeneic transplantation only used in clinical trials. The appropriate timing of transplantation in the treatment plan is a matter of debate. Consolidation and maintenance chemotherapies, particularly thalidomide and bortezomib, aim to improve and prolong disease response to transplantation and delay recurrence. Prognostic factors for the outcome of stem cell transplant in myeloma have been highlighted. Despite good responses to chemotherapy and transplantation, the problem of disease recurrence persists. Thus, there is still much room for improvement. Treatments which harness the graft-versus-myeloma effect may offer a potential cure for this disease. Trials of novel agents are underway, including targeted therapies for specific antigens such as vaccines and monoclonal antibodies.

  3. Diagnosis and treatment of fungal infections in allogeneic stem cell and solid organ transplant recipients.

    Science.gov (United States)

    Vehreschild, Jörg J; Rüping, Maria J G T; Steinbach, Angela; Cornely, Oliver A

    2010-01-01

    Invasive fungal diseases (IFD) are severe complications in patients receiving immunosuppression after solid organ or allogeneic stem cell transplantation. Extensive study has been conducted on therapeutic strategies for IFD in neutropenic patients, mostly those with hematological malignancy. There is an ongoing discussion on whether these studies may be applied to transplant patients as well. We have reviewed relevant literature on transplantation and clinical mycology of the last 20 years and selected articles relevant for today's treatment decisions. This article reports on the epidemiology of IFD in transplant recipients and current antifungal drugs in the context of tansplantation medicine. For invasive aspergillosis and invasive candidiasis, we give a detailed report of current clinical evidence. This review is intended as a quick-start for clinicians and other care providers new to transplant care and as an update for experienced transplant physicians. In a field in which evidence is scarce and conflicting, we provide evidence-based strategies for diagnosing and treating the most relevant IFD in transplant recipients. Physicians treating transplant patients should maintain a high level of awareness towards IFD. They should know the local epidemiology of IFD to make the optimal decision between current diagnostic and therapeutic strategies. Prophylaxis or early treatment should be considered given the high mortality of IFD.

  4. Impact of stem cell source on allogeneic stem cell transplantation outcome in hematological malignancies

    Directory of Open Access Journals (Sweden)

    Stamatović Dragana

    2011-01-01

    Full Text Available Background/Aim. Peripheral blood (PB is used more frequently as a source of stem cells (SCs for allogeneic transplantation. However, the influence of cell source on the clinical outcome of SC transplantation is not yet well established. The aim of this study was to compare the results of PBSC transplantation (PBSCT with bone marrow transplantation (BMT on the basis of engraftment, frequency and severity of immediate (mucositis, acute Graft versus Host Disease - aGvHD and delayed (chronic GvHD - cGvHD complications, as well as transplant-related mortality (TRM, transfusion needs, relapses and overall survival (OS. Methods. We analyzed 158 patients, women/men ratio 64/94 median age 29 (range 9-57, who underwent allogeneic SC transplantation between 1989 and 2009. All included patients had diseases as follows: acute myeloid leukemia (AML - 39, acute lymphoblastic leukemia (ALL - 47, chronic myeloid leukemia (CML - 32, myelodysplastic syndrome (MDS - 10, Hodgkin’s lymphoma (HL - 2, multiple myeloma (MM - 3, granulocytic sarcoma (GrSa - 3, severe aplastic anemia (sAA - 22. The patients underwent transplantations were divided into two groups: BMT group (74 patients and PBSCT group (84 patients. Each recipient had HLA identical sibling donor. SCs from bone marrow were collected by multiple aspirations of iliac bone and from PB by one “Large Volume Leukapheresis” (after recombinant human granulocyte colony stimulating factor, rHuG-CSF application (5-12 μg/kgbm, 5 days. Conditioning regimens were applied according to primary disease, GvHD prophylaxis consisted of combination of a cyclosporine A and methotrexate. Results. Engraftment, according to the count of polymorphonuclear and platelets, were significantly (p < 0.001 faster in the PBSCT vs BMT group. The needs for transfusion support were significantly (p < 0.01 higher in the BMT group. Those patients had more frequently oropharingeal mucositis grade 3/4 (33.3% vs 10.0%, p < 0.05. There were

  5. Intestinal Microbiota and Relapse After Hematopoietic-Cell Transplantation.

    Science.gov (United States)

    Peled, Jonathan U; Devlin, Sean M; Staffas, Anna; Lumish, Melissa; Khanin, Raya; Littmann, Eric R; Ling, Lilan; Kosuri, Satyajit; Maloy, Molly; Slingerland, John B; Ahr, Katya F; Porosnicu Rodriguez, Kori A; Shono, Yusuke; Slingerland, Ann E; Docampo, Melissa D; Sung, Anthony D; Weber, Daniela; Alousi, Amin M; Gyurkocza, Boglarka; Ponce, Doris M; Barker, Juliet N; Perales, Miguel-Angel; Giralt, Sergio A; Taur, Ying; Pamer, Eric G; Jenq, Robert R; van den Brink, Marcel R M

    2017-05-20

    Purpose The major causes of mortality after allogeneic hematopoietic-cell transplantation (allo-HCT) are relapse, graft-versus-host disease (GVHD), and infection. We have reported previously that alterations in the intestinal flora are associated with GVHD, bacteremia, and reduced overall survival after allo-HCT. Because intestinal bacteria are potent modulators of systemic immune responses, including antitumor effects, we hypothesized that components of the intestinal flora could be associated with relapse after allo-HCT. Methods The intestinal microbiota of 541 patients admitted for allo-HCT was profiled by means of 16S ribosomal sequencing of prospectively collected stool samples. We examined the relationship between abundance of microbiota species or groups of related species and relapse/progression of disease during 2 years of follow-up time after allo-HCT by using cause-specific proportional hazards in a retrospective discovery-validation cohort study. Results Higher abundance of a bacterial group composed mostly of Eubacterium limosum in the validation set was associated with a decreased risk of relapse/progression of disease (hazard ratio [HR], 0.82 per 10-fold increase in abundance; 95% CI, 0.71 to 0.95; P = .009). When the patients were categorized according to presence or absence of this bacterial group, presence also was associated with less relapse/progression of disease (HR, 0.52; 95% CI, 0.31 to 0.87; P = .01). The 2-year cumulative incidences of relapse/progression among patients with and without this group of bacteria were 19.8% and 33.8%, respectively. These associations remained significant in multivariable models and were strongest among recipients of T-cell-replete allografts. Conclusion We found associations between the abundance of a group of bacteria in the intestinal flora and relapse/progression of disease after allo-HCT. These might serve as potential biomarkers or therapeutic targets to prevent relapse and improve survival after allo-HCT.

  6. Persistent Fatigue in Hematopoietic Stem Cell Transplantation Survivors.

    Science.gov (United States)

    Hacker, Eileen Danaher; Fink, Anne M; Peters, Tara; Park, Chang; Fantuzzi, Giamila; Rondelli, Damiano

    Fatigue is highly prevalent after hematopoietic stem cell transplantation (HCT). It has been described as intense and may last for years following treatment. The aim of this study is to compare fatigue, physical activity, sleep, emotional distress, cognitive function, and biological measures in HCT survivors with persistent fatigue (n = 25) with age- and gender-matched healthy controls with occasional tiredness (n = 25). Data were collected using (a) objective, real-time assessments of physical activity and sleep over 7 days; (b) patient-reported fatigue assessments; (c) computerized objective testing of cognitive functioning; and (d) biological measures. Differences between groups were examined using multivariate analysis of variance. Survivors of HCT reported increased physical (P < .001), mental (P < .001), and overall (P < .001) fatigue as well as increased anxiety (P < .05) and depression (P < .01) compared with healthy controls. Red blood cell (RBC) levels were significantly lower in HCT survivors (P < .001). Levels of RBC for both groups, however, were in the normal range. Tumor necrosis factor-α (P < .001) and interleukin-6 (P < .05) levels were significantly higher in HCT survivors. Persistent fatigue in HCT survivors compared with healthy controls with occasional tiredness is accompanied by increased anxiety and depression along with decreased RBC counts. Elevated tumor necrosis factor-α and interleukin-6 levels may be important biomarkers. This study provides preliminary support for the conceptualization of fatigue as existing on a continuum, with tiredness anchoring one end and exhaustion the other. Persistent fatigue experienced by HCT survivors is more severe than the occasional tiredness of everyday life.

  7. Increasing Human Neural Stem Cell Transplantation Dose Alters Oligodendroglial and Neuronal Differentiation after Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Katja M. Piltti

    2017-06-01

    Full Text Available Multipotent human central nervous system-derived neural stem cells transplanted at doses ranging from 10,000 (low to 500,000 (very high cells differentiated predominantly into the oligodendroglial lineage. However, while the number of engrafted cells increased linearly in relationship to increasing dose, the proportion of oligodendrocytic cells declined. Increasing dose resulted in a plateau of engraftment, enhanced neuronal differentiation, and increased distal migration caudal to the transplantation sites. Dose had no effect on terminal sensory recovery or open-field locomotor scores. However, total human cell number and decreased oligodendroglial proportion were correlated with hindlimb girdle coupling errors. Conversely, greater oligodendroglial proportion was correlated with increased Ab step pattern, decreased swing speed, and increased paw intensity, consistent with improved recovery. These data suggest that transplant dose, and/or target niche parameters can regulate donor cell engraftment, differentiation/maturation, and lineage-specific migration profiles.

  8. Demonstration of clonable alloreactive host T cells in a primate model for bone marrow transplantation

    International Nuclear Information System (INIS)

    Reisner, Y.; Ben-Bassat, I.; Douer, D.; Kaploon, A.; Schwartz, E.; Ramot, B.

    1986-01-01

    The phenomenon of marrow rejection following supralethal radiochemotherapy was explained in the past mainly by non-T-cell mechanisms known to be resistant to high-dose irradiation. In the present study a low but significant number of radiochemoresistant-clonable T cells was found in the peripheral blood and spleen of Rhesus monkeys following the cytoreductive protocol used for treatment of leukemia patients prior to bone marrow transplantation. More than 95% of the clonable cells are concentrated in the spleen 5 days after transplant. The cells possess immune memory as demonstrated by the generation of alloreactive-specific cytotoxicity. The present findings suggest that host-versus-graft activity may be mediated by alloreactive T cells. It is hoped that elimination of such cells prior to bone marrow transplantation will increase the engraftment rate of HLA-nonidentical marrow in leukemia patients

  9. Hodgkin's disease as unusual presentation of post-transplant lymphoproliferative disorder after autologous hematopoietic cell transplantation for malignant glioma

    Directory of Open Access Journals (Sweden)

    Scelsi Mario

    2005-08-01

    Full Text Available Abstract Background Post-transplant lymphoproliferative disorder (PTLD is a complication of solid organ and allogeneic hematopoietic stem cell transplantation (HSCT; following autologous HSCT only rare cases of PTLD have been reported. Here, a case of Hodgkin's disease (HD, as unusual presentation of PTLD after autologous HSCT for malignant glioma is described. Case presentation 60-years old man affected by cerebral anaplastic astrocytoma underwent subtotal neurosurgical excision and subsequent high-dose chemotherapy followed by autologous HSCT. During the post HSCT course, cranial irradiation and corticosteroids were administered as completion of therapeutic program. At day +105 after HSCT, the patient developed HD, nodular sclerosis type, with polymorphic HD-like skin infiltration. Conclusion The clinical and pathological findings were consistent with the diagnosis of PTLD.

  10. Endothelial and circulating progenitor cells in hematological diseases and allogeneic hematopoietic stem cell transplantation.

    Science.gov (United States)

    Ruggeri, Annalisa; Paviglianiti, Annalisa; Volt, Fernanda; Kenzey, Chantal; Rafii, Hanadi; Rocha, Vanderson; Gluckman, Eliane

    2017-10-12

    Circulating endothelial cells (CECs), originated form endothelial progenitors (EPCs) are mature cells which are not associated with vessel walls, and that are detached from the endothelium. Normally, they are present in insignificant amounts in the peripheral blood of healthy individuals. On the other hand, elevated CECs and EPCs levels have been reported in the peripheral blood of patients with different types of cancers and some other diseases. Consequently, CECs and EPCs represent a potential biomarker in several clinical conditions involving endothelial turnover and remodeling, such as hematological diseases. These cells may be involved in disease progression and the neoplastic angiogenesis process. Moreover, CESs and EPCs are probably involved in endothelial damage that is a marker of several complications following allogeneic hematopoietic stem cell transplantation. This review aims to provide an overview on the characterization of CECs and EPCs, describe isolation methods and to identify the potential role of these cells in hematological diseases and hematopoietic stem cell transplantation. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Orchestration of transplantation tolerance by regulatory dendritic cell therapy or in situ targeting of dendritic cells

    Science.gov (United States)

    Morelli, Adrian E.; Thomson, Angus W.

    2014-01-01

    Purpose of review Extensive research in murine transplant models over the past two decades has convincingly demonstrated the ability of regulatory dendritic cells (DCreg) to promote long-term allograft survival. We review important considerations regarding the source of therapeutic DCreg (donor or recipient) and their mode of action, in situ targeting of DCreg, and optimal therapeutic regimens to promote DCreg function. Recent findings Recent studies have defined protocols and mechanisms whereby ex vivo-generated DCreg of donor or recipient origin subvert allogeneic T cell responses and promote long-term organ transplant survival. Particular interest has focused on how donor antigen (Ag) is acquired, processed and presented by autologous DCs, on the stability of DCreg, and on in situ targeting of DC to promote their tolerogenic function. New evidence of the therapeutic efficacy of DCreg in a clinically-relevant non-human primate organ transplant model and production of clinical grade DCreg support early evaluation of DCreg therapy in human graft recipients. Summary We discuss strategies currently used to promote DC tolerogenicity, including DCreg therapy and in situ targeting of DC, with a view to improved understanding of underlying mechanisms and identification of the most promising strategies for therapeutic application. PMID:24926700

  12. Transplantation of Reprogrammed Autologous Stem Cells for Chronic Pain and Drug Abuse

    Science.gov (United States)

    2015-10-01

    after infusion. Cells Tissues Organs. 2001;169:12–20. 41. Karp JM, Leng Teo GS. Mesenchymal stem cell homing: the devil is in the details. Cell Stem...LL, and ZH isolated and characterized MSCs. ZH, LL, JS, KC , AL, JY, and LW performed the transplantation and behavioral experiments. LL and ZH

  13. Reduction of acute rejection by bone marrow mesenchymal stem cells during rat small bowel transplantation.

    Directory of Open Access Journals (Sweden)

    Yang Yang

    Full Text Available Bone marrow mesenchymal stem cells (BMMSCs have shown immunosuppressive activity in transplantation. This study was designed to determine whether BMMSCs could improve outcomes of small bowel transplantation in rats.Heterotopic small bowel transplantation was performed from Brown Norway to Lewis rats, followed by infusion of BMMSCs through the superficial dorsal veins of the penis. Controls included rats infused with normal saline (allogeneic control, isogeneically transplanted rats (BN-BN and nontransplanted animals. The animals were sacrificed after 1, 5, 7 or 10 days. Small bowel histology and apoptosis, cytokine concentrations in serum and intestinal grafts, and numbers of T regulatory (Treg cells were assessed at each time point.Acute cellular rejection occurred soon after transplantation and became aggravated over time in the allogeneic control rats, with increase in apoptosis, inflammatory response, and T helper (Th1/Th2 and Th17/Treg-related cytokines. BMMSCs significantly attenuated acute cellular rejection, reduced apoptosis and suppressed the concentrations of interleukin (IL-2, IL-6, IL-17, IL-23, tumor necrosis factor (TNF-α, and interferon (IFN-γ while upregulating IL-10 and transforming growth factor (TGF-β expression and increasing Treg levels.BMMSCs improve the outcomes of allogeneic small bowel transplantation by attenuating the inflammatory response and acute cellular rejection. Treatment with BMMSCs may overcome acute cellular rejection in small bowel transplantation.

  14. Imaging transplanted stem cells in real time using an MRI dual-contrast method

    Science.gov (United States)

    Ngen, Ethel J.; Wang, Lee; Kato, Yoshinori; Krishnamachary, Balaji; Zhu, Wenlian; Gandhi, Nishant; Smith, Barbara; Armour, Michael; Wong, John; Gabrielson, Kathleen; Artemov, Dmitri

    2015-01-01

    Stem cell therapies are currently being investigated for the repair of brain injuries. Although exogenous stem cell labelling with superparamagnetic iron oxide nanoparticles (SPIONs) prior to transplantation provides a means to noninvasively monitor stem cell transplantation by magnetic resonance imaging (MRI), monitoring cell death is still a challenge. Here, we investigate the feasibility of using an MRI dual-contrast technique to detect cell delivery, cell migration and cell death after stem cell transplantation. Human mesenchymal stem cells were dual labelled with SPIONs and gadolinium-based chelates (GdDTPA). The viability, proliferation rate, and differentiation potential of the labelled cells were then evaluated. The feasibility of this MRI technique to distinguish between live and dead cells was next evaluated using MRI phantoms, and in vivo using both immune-competent and immune-deficient mice, following the induction of brain injury in the mice. All results were validated with bioluminescence imaging. In live cells, a negative (T2/T2*) MRI contrast predominates, and is used to track cell delivery and cell migration. Upon cell death, a diffused positive (T1) MRI contrast is generated in the vicinity of the dead cells, and serves as an imaging marker for cell death. Ultimately, this technique could be used to manage stem cell therapies. PMID:26330231

  15. Importance of killer immunoglobulin-like receptors in allogeneic hematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Danilo Santana Alessio Franceschi

    2011-01-01

    Full Text Available Hematopoietic stem cell transplantation is the treatment of choice for many hematologic diseases, such as multiple myeloma, bone marrow aplasia and leukemia. Human leukocyte antigen (HLA compatibility is an important tool to prevent post-transplant complications such as graft rejection and graft-versus-host disease, but the high rates of relapse limit the survival of transplant patients. Natural Killer cells, a type of lymphocyte that is a key element in the defense against tumor cells, cells infected with viruses and intracellular microbes, have different receptors on their surfaces that regulate their cytotoxicity. Killer immunoglobulin-like receptors are the most important, interacting consistently with human leukocyte antigen class I molecules present in other cells and thus controlling the activation of natural killer cells. Several studies have shown that certain combinations of killer immunoglobulin-like receptors and human leukocyte antigens (in both donors and recipients can affect the chances of survival of transplant patients, particularly in relation to the graft-versusleukemia effect, which may be associated to decreased relapse rates in certain groups. This review aims to shed light on the mechanisms and effects of killer immunoglobulin-like receptors - human leukocyte antigen associations and their implications following hematopoietic stem cell transplantation, and to critically analyze the results obtained by the studies presented herein.

  16. Protein regulation of induced pluripotent stem cells by transplanting in a Huntington's animal model.

    Science.gov (United States)

    Mu, S; Han, L; Zhou, G; Mo, C; Duan, J; He, Z; Wang, Z; Ren, L; Zhang, J

    2016-10-01

    The purpose of this study was to determine the functional recovery and protein regulation by transplanted induced pluripotent stem cells in a rat model of Huntington's disease (HD). In a quinolinic acid-induced rat model of striatal degeneration, induced pluripotent stem cells were transplanted into the ipsilateral lateral ventricle 10 days after the quinolinic acid injection. At 8 weeks after transplantation, fluorodeoxyglucose-PET/CT scan and balance-beam test were performed to evaluate the functional recovery of experimental rats. In addition, immunofluorescence and protein array analysis were used to investigate the regulation of stimulated protein expression in the striatum. At 8 weeks after induced pluripotent stem cell transplantation, motor function was improved in comparison with the quinolinic acid-treated rats. High fluorodeoxyglucose accumulation in the injured striatum was also observed by PET/CT scans. In addition, immunofluorescence analysis demonstrated that implanted cells migrated from the lateral ventricle into the lesioned striatum and differentiated into striatal projection neurons. Array analysis showed a significant upregulation of GFR (Glial cell line-derived neurotrophic factor receptor) alpha-1, Adiponectin/Acrp30, basic-fibroblast growth factors, MIP-1 (Macrophage-inflammatory protein) alpha and leptin, as well as downregulation of cytokine-induced neutrophil chemoattractant-3 in striatum after transplantatation of induced pluripotent stem cells in comparison with the quinolinic acid -treated rats. The findings in this work indicate that transplantation of induced pluripotent stem cells is a promising therapeutic candidate for HD. © 2016 British Neuropathological Society.

  17. The Role of Tissue-Resident Donor T Cells in Rejection of Clinical Face Transplants

    Science.gov (United States)

    2017-10-01

    cells contribute to VCA rejection, and that pathogenic T cells (both donor and recipient-derived) are detectable in blood during rejection to serve as...AWARD NUMBER: W81XWH-16-1-0760 TITLE: The role of tissue-resident donor T cells in rejection of clinical face transplants PRINCIPAL...AND SUBTITLE The role of tissue-resident donor T cells in rejection of clinical face transplants 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-16-1

  18. Characterization of the Organic Thin Film Solar Cells with Active Layers of PTB7/PC71BM Prepared by Using Solvent Mixtures with Different Additives

    Directory of Open Access Journals (Sweden)

    Masakazu Ito

    2014-01-01

    Full Text Available Organic thin film solar cells (OTFSCs were fabricated with blended active layers of poly[[4,8-bis[(2-ethylhexyloxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexylcarbonyl]thieno[3,4-b]thiophenediyl

  19. Liver fibrosis alleviation after co-transplantation of hematopoietic stem cells with mesenchymal stem cells in patients with thalassemia major.

    Science.gov (United States)

    Ghavamzadeh, Ardeshir; Sotoudeh, Masoud; Hashemi Taheri, Amir Pejman; Alimoghaddam, Kamran; Pashaiefar, Hossein; Jalili, Mahdi; Shahi, Farhad; Jahani, Mohammad; Yaghmaie, Marjan

    2018-02-01

    The aims of this study are to determine the replacement rate of damaged hepatocytes by donor-derived cells in sex-mismatched recipient patients with thalassemia major and to determine whether co-transplantation of mesenchymal stem cells and hematopoietic stem cells (HSCs) can alleviate liver fibrosis. Ten sex-mismatched donor-recipient pairs who received co-transplantation of HSCs with mesenchymal stem cells were included in our study. Liver biopsy was performed before transplantation. Two other liver biopsies were performed between 2 and 5 years after transplantation. The specimens were studied for the presence of donor-derived epithelial cells or hepatocytes using fluorescence in situ hybridization by X- and Y-centromeric probes and immunohistochemical staining for pancytokeratin, CD45, and a hepatocyte-specific antigen. All sex-mismatched tissue samples demonstrated donor-derived hepatocyte independent of donor gender. XY-positive epithelial cells or hepatocytes accounted for 11 to 25% of the cells in histologic sections of female recipients in the first follow-up. It rose to 47-95% in the second follow-up. Although not statistically significant, four out of ten patients showed signs of improvement in liver fibrosis. Our results showed that co-transplantation of HSC with mesenchymal stem cells increases the rate of replacement of recipient hepatocytes by donor-derived cells and may improve liver fibrosis.

  20. Umbilical cord mesenchymal stem cell (UC-MSC) transplantations for cerebral palsy

    Science.gov (United States)

    Dong, Huajiang; Li, Gang; Shang, Chongzhi; Yin, Huijuan; Luo, Yuechen; Meng, Huipeng; Li, Xiaohong; Wang, Yali; Lin, Ling; Zhao, Mingliang

    2018-01-01

    This study reports a case of a 4-year-old boy patient with abnormalities of muscle tone, movement and motor skills, as well as unstable gait leading to frequent falls. The results of the electroencephalogram (EEG) indicate moderately abnormal EEG, accompanied by irregular seizures. Based on these clinical characteristics, the patient was diagnosed with cerebral palsy (CP) in our hospital. In this study, the patient was treated with umbilical cord mesenchymal stem cell (UC-MSC) transplantation therapy. This patient received UC-MSC transplantation 3 times (5.3*107) in total. After three successive cell transplantations, the patient recovered well and showed obvious improvements in EEG and limb strength, motor function, and language expression. However, the improvement in intelligence quotient (IQ) was less obvious. These results indicate that UC-MSC transplantation is a promising treatment for cerebral palsy. PMID:29636880

  1. The role of endothelial cells on islet function and revascularization after islet transplantation.

    Science.gov (United States)

    Del Toro-Arreola, Alicia; Robles-Murillo, Ana Karina; Daneri-Navarro, Adrian; Rivas-Carrillo, Jorge David

    2016-01-02

    Islet transplantation has become a widely accepted therapeutic option for selected patients with type 1 diabetes mellitus. However, in order to achieve insulin independence a great number of islets are often pooled from 2 to 4 pancreata donors. Mostly, it is due to the massive loss of islets immediately after transplant. The endothelium plays a key role in the function of native islets and during the revascularization process after islet transplantation. However, if a delayed revascularization occurs, even the remaining islets will also undergo to cell death and late graft dysfunction. Therefore, it is essential to understand how the signals are released from endothelial cells, which might regulate both differentiation of pancreatic progenitors and thereby maintenance of the graft function. New strategies to facilitate islet engraftment and a prompt revascularization could be designed to intervene and might lead to improve future results of islet transplantation.

  2. Bombyx mori E26 transformation-specific 2 (BmEts2), an Ets family protein, represses Bombyx mori Rels (BmRels)-mediated promoter activation of antimicrobial peptide genes in the silkworm Bombyx mori.

    Science.gov (United States)

    Tanaka, H; Sagisaka, A; Suzuki, N; Yamakawa, M

    2016-10-01

    E26 transformation-specific (Ets) family transcription factors are known to play roles in various biological phenomena, including immunity, in vertebrates. However, the mechanisms by which Ets proteins contribute to immunity in invertebrates remain poorly understood. In this study, we identified a cDNA encoding BmEts2, which is a putative orthologue of Drosophila Yan and human translocation-ets-leukemia/Ets-variant gene 6, from the silkworm Bombyx mori. Expression of the BmEts2 gene was significantly increased in the fat bodies of silkworm larvae in response to injection with Escherichia coli and Staphylococcus aureus. BmEts2 overexpression dramatically repressed B. mori Rels (BmRels)-mediated promoter activation of antimicrobial peptide genes in silkworm cells. Conversely, gene knockdown of BmEts2 significantly enhanced BmRels activity. In addition, two κB sites located on the 5' upstream region of cecropin B1 were found to be involved in the repression of BmRels-mediated promoter activation. Protein-competition analysis further demonstrated that BmEts2 competitively inhibited binding of BmRels to κB sites. Overall, BmEts2 acts as a repressor of BmRels-mediated transactivation of antimicrobial protein genes by inhibiting the binding of BmRels to κB sites. © 2016 The Royal Entomological Society.

  3. The transplantation of neural stem cells and predictive factors in hematopoietic recovery in irradiated mice.

    Science.gov (United States)

    Filip, S; Mokrý, J; Karbanová, J; Vávrová, J; Vokurková, J; Bláha, M; English, D

    2005-04-01

    A number of surprising observations have shown that stem cells, in suitable conditions, have the ability to produce a whole spectrum of cell types, regardless, whether these tissues are derived from the same germ layer or not. This phenomenon is called stem cell plasticity, which means that tissue-specific stem cells are mutually interchangeable. In our experiments, as a model, we used neural stem cells (NSCs) harvested from fetal (E14-15) neocortex and beta-galactosidase positive. In the first experiment we found that on days 12 and 30 after sub-lethal irradiation (LD 8.5 Gy) and (beta-galactosidase(+)) NSCs transplantation all mice survived, just as the group with bone marrow transplantation. Moreover, the bone marrow of mice transplanted NSCs contained the number of CFU-GM colonies with beta-galactosidase(+) cells which was as much as 50% higher. These differences were statistically significant, pthird experiment, we verified the mutual interchange of Sca-1 surface antigen in the bone marrow cells and NSCs before transplantation. Analysis of this antigen showed 24.8% Sca-1 positive cells among the bone marrow cells, while NSCs were Sca-1 negative. Our experiments show that NSCs share hemopoietic identity and may significantly influence the recovery of damaged hematopoiesis but do not have typical superficial markers as HSCs. This result is important for the determination of predictive factors for hemopoiesis recovery, for stem cell plasticity and for their use in the cell therapy.

  4. Aging impairs recipient T cell intrinsic and extrinsic factors in response to transplantation.

    Directory of Open Access Journals (Sweden)

    Hua Shen

    Full Text Available As increasing numbers of older people are listed for solid organ transplantation, there is an urgent need to better understand how aging modifies alloimmune responses. Here, we investigated whether aging impairs the ability of donor dendritic cells or recipient immunity to prime alloimmune responses to organ transplantation.Using murine experimental models, we found that aging impaired the host environment to expand and activate antigen specific CD8(+ T cells. Additionally, aging impaired the ability of polyclonal T cells to induce acute allograft rejection. However, the alloimmune priming capability of donor dendritic cells was preserved with aging.Aging impairs recipient responses, both T cell intrinsic and extrinsic, in response to organ transplantation.

  5. Propofol promotes spinal cord injury repair by bone marrow mesenchymal stem cell transplantation

    Science.gov (United States)

    Zhou, Ya-jing; Liu, Jian-min; Wei, Shu-ming; Zhang, Yun-hao; Qu, Zhen-hua; Chen, Shu-bo

    2015-01-01

    Propofol is a neuroprotective anesthetic. Whether propofol can promote spinal cord injury repair by bone marrow mesenchymal stem cells remains poorly understood. We used rats to investigate spinal cord injury repair using bone marrow mesenchymal stem cell transplantation combined with propofol administration via the tail vein. Rat spinal cord injury was clearly alleviated; a large number of newborn non-myelinated and myelinated nerve fibers appeared in the spinal cord, the numbers of CM-Dil-labeled bone marrow mesenchymal stem cells and fluorogold-labeled nerve fibers were increased and hindlimb motor function of spinal cord-injured rats was markedly improved. These improvements were more prominent in rats subjected to bone marrow mesenchymal cell transplantation combined with propofol administration than in rats receiving monotherapy. These results indicate that propofol can enhance the therapeutic effects of bone marrow mesenchymal stem cell transplantation on spinal cord injury in rats. PMID:26487860

  6. Serum Cytokines as Biomarkers in Islet Cell Transplantation for Type 1 Diabetes.

    Directory of Open Access Journals (Sweden)

    Cornelis R van der Torren

    Full Text Available Islet cell transplantation holds a potential cure for type 1 diabetes, but many islet recipients do not reach long-lasting insulin independence. In this exploratory study, we investigated whether serum cytokines, chemokines and adipokines are associated with the clinical outcome of islet transplantation.Thirteen islet transplant patients were selected on basis of good graft function (reaching insulin independence or insufficient engraftment (insulin requiring from our cohort receiving standardized grafts and immune suppressive therapy. Patients reaching insulin independence were divided in those with continued (>12 months versus transient (<6 months insulin independence. A panel of 94 proteins including cytokines and adipokines was measured in sera taken before and at one year after transplantation using a validated multiplex immunoassay platform.Ninety serum proteins were detectable in concentrations varying markedly among patients at either time point. Thirteen markers changed after transplantation, while another seven markers changed in a clinical subpopulation. All other markers remained unaffected after transplantation under generalized immunosuppression. Patterns of cytokines could distinguish good graft function from insufficient function including IFN-α, LIF, SCF and IL-1RII before and after transplantation, by IL-16, CCL3, BDNF and M-CSF only before and by IL-22, IL-33, KIM-1, S100A12 and sCD14 after transplantation. Three other proteins (Leptin, Cathepsin L and S100A12 associated with loss of temporary graft function before or after transplantation.Distinct cytokine signatures could be identified in serum that predict or associate with clinical outcome. These serum markers may help guiding patient selection and choice of immunotherapy, or act as novel drug targets in islet transplantation.

  7. Autologous Stem Cell Transplantation in Patients with Acute Myeloid Leukemia: a Single-Centre Experience

    Directory of Open Access Journals (Sweden)

    Kakucs Enikő

    2013-04-01

    Full Text Available Introduction: Autologous haemopoietic stem cell transplantation (SCT is an important treatment modality for patients with acute myeloid leukemia with low and intermediate risk disease. It has served advantages over allogenic transplantation, because it does not need a matched donor, there is no graft versus host disease, there are less complications and a faster immune reconstitution than in the allo-setting. The disadvantage is the lack of the graft versus leukaemia effect.

  8. Barriers to Mental Health Service Use among Hematopoietic Stem Cell Transplant Survivors

    OpenAIRE

    Mosher, Catherine E.; DuHamel, Katherine N.; Rini, Christine M.; Li, Yuelin; Isola, Luis; Labay, Larissa; Rowley, Scott; Papadopoulos, Esperanza; Moskowitz, Craig; Scigliano, Eileen; Grosskreutz, Celia; Redd, William H.

    2009-01-01

    Summary This study examined barriers to mental health service use and their demographic, medical, and psychosocial correlates among hematopoietic stem cell transplant (HSCT) survivors. A sample of 253 HSCT survivors who were 1- to 3-years post-transplant completed measures of demographic, physical, psychological, and social characteristics as well as a newly modified measure of barriers to mental health service use. Only 50% of distressed HSCT survivors had received mental health services. An...

  9. Recovery from Bell Palsy after Transplantation of Peripheral Blood Mononuclear Cells and Platelet-Rich Plasma

    OpenAIRE

    Seffer, Istvan; Nemeth, Zoltan

    2017-01-01

    Summary: Peripheral blood mononuclear cells (PBMCs) are multipotent, and plasma contains growth factors involving tissue regeneration. We hypothesized that transplantation of PBMC-plasma will promote the recovery of paralyzed facial muscles in Bell palsy. This case report describes the effects of PBMC-plasma transplantations in a 27-year-old female patient with right side Bell palsy. On the affected side of the face, the treatment resulted in both morphological and functional recovery includi...

  10. The biology of NK cells and their receptors affects clinical outcomes after hematopoietic cell transplantation (HCT).

    Science.gov (United States)

    Foley, Bree; Felices, Martin; Cichocki, Frank; Cooley, Sarah; Verneris, Michael R; Miller, Jeffrey S

    2014-03-01

    Natural killer (NK) cells were first identified for their capacity to reject bone marrow allografts in lethally irradiated mice without prior sensitization. Subsequently, human NK cells were detected and defined by their non-major histocompatibility complex (MHC)-restricted cytotoxicity toward transformed or virally infected target cells. Karre et al. later proposed 'the missing self hypothesis' to explain the mechanism by which self-tolerant cells could kill targets that had lost self MHC class I. Subsequently, the receptors that recognize MHC class I to mediate tolerance in the host were identified on NK cells. These class I-recognizing receptors contribute to the acquisition of function by a dynamic process known as NK cell education or licensing. In the past, NK cells were assumed to be short lived, but more recently NK cells have been shown to mediate immunologic memory to secondary exposures to cytomegalovirus infection. Because of their ability to lyse tumors with aberrant MHC class I expression and to produce cytokines and chemokines upon activation, NK cells may be primed by many stimuli, including viruses and inflammation, to contribute to a graft-versus-tumor effect. In addition, interactions with other immune cells support the therapeutic potential of NK cells to eradicate tumor and to enhance outcomes after hematopoietic cell transplantation. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Primate Primordial Germ Cells Acquire Transplantation Potential by Carnegie Stage 23.

    Science.gov (United States)

    Clark, Amander T; Gkountela, Sofia; Chen, Di; Liu, Wanlu; Sosa, Enrique; Sukhwani, Meena; Hennebold, Jon D; Orwig, Kyle E

    2017-07-11

    Primordial germ cells (PGCs) are the earliest embryonic progenitors in the germline. Correct formation of PGCs is critical to reproductive health as an adult. Recent work has shown that primate PGCs can be differentiated from pluripotent stem cells; however, a bioassay that supports their identity as transplantable germ cells has not been reported. Here, we adopted a xenotransplantation assay by transplanting single-cell suspensions of human and nonhuman primate embryonic Macaca mulatta (rhesus macaque) testes containing PGCs into the seminiferous tubules of adult busulfan-treated nude mice. We discovered that both human and nonhuman primate embryonic testis are xenotransplantable, generating colonies while not generating tumors. Taken together, this work provides two critical references (molecular and functional) for defining transplantable primate PGCs. These results provide a blueprint for differentiating pluripotent stem cells to transplantable PGC-like cells in a species that is amenable to transplantation and fertility studies. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  12. Fetal progenitor cell transplantation treats methylmalonic aciduria in a mouse model

    Energy Technology Data Exchange (ETDEWEB)

    Buck, Nicole E., E-mail: nicole.buck@mcri.edu.au [Metabolic Research, Murdoch Childrens Research Institute, The University of Melbourne, Department of Paediatrics, Royal Children' s Hospital, Flemington Road, Parkville, VIC 3052 (Australia); Pennell, Samuel D.; Wood, Leonie R. [Metabolic Research, Murdoch Childrens Research Institute, The University of Melbourne, Department of Paediatrics, Royal Children' s Hospital, Flemington Road, Parkville, VIC 3052 (Australia); Pitt, James J. [Victorian Clinical Genetics Services, Murdoch Childrens Research Institute, Royal Children' s Hospital, Parkville (Australia); Allen, Katrina J. [Gastro and Food Allergy, Murdoch Childrens Research Institute, Parkville (Australia); Peters, Heidi L. [Metabolic Research, Murdoch Childrens Research Institute, The University of Melbourne, Department of Paediatrics, Royal Children' s Hospital, Flemington Road, Parkville, VIC 3052 (Australia)

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer Fetal cells were transplanted into a methylmalonic acid mouse model. Black-Right-Pointing-Pointer Cell engraftment was detected in liver, spleen and bone marrow. Black-Right-Pointing-Pointer Biochemical disease correction was measured in blood samples. Black-Right-Pointing-Pointer A double dose of 5 million cells (1 week apart) proved more effective. Black-Right-Pointing-Pointer Higher levels of engraftment may be required for greater disease correction. -- Abstract: Methylmalonic aciduria is a rare disorder caused by an inborn error of organic acid metabolism. Current treatment options are limited and generally focus on disease management. We aimed to investigate the use of fetal progenitor cells to treat this disorder using a mouse model with an intermediate form of methylmalonic aciduria. Fetal liver cells were isolated from healthy fetuses at embryonic day 15-17 and intravenously transplanted into sub-lethally irradiated mice. Liver donor cell engraftment was determined by PCR. Disease correction was monitored by urine and blood methylmalonic acid concentration and weight change. Initial studies indicated that pre-transplantation sub-lethal irradiation followed by transplantation with 5 million cells were suitable. We found that a double dose of 5 million cells (1 week apart) provided a more effective treatment. Donor cell liver engraftment of up to 5% was measured. Disease correction, as defined by a decrease in blood methylmalonic acid concentration, was effected in methylmalonic acid mice transplanted with a double dose of cells and who showed donor cell liver engraftment. Mean plasma methylmalonic acid concentration decreased from 810 {+-} 156 (sham transplanted) to 338 {+-} 157 {mu}mol/L (double dose of 5 million cells) while mean blood C3 carnitine concentration decreased from 20.5 {+-} 4 (sham transplanted) to 5.3 {+-} 1.9 {mu}mol/L (double dose of 5 million cells). In conclusion, higher levels of engraftment may

  13. Loss of end-differentiated β-cell phenotype following pancreatic islet transplantation.

    Science.gov (United States)

    Anderson, S J; White, M G; Armour, S L; Maheshwari, R; Tiniakos, D; Muller, Y D; Berishvili, E; Berney, T; Shaw, J A M

    2018-03-01

    Replacement of pancreatic β-cells through deceased donor islet transplantation is a proven therapy for preventing recurrent life-threatening hypoglycemia in type 1 diabetes. Although near-normal glucose levels and insulin independence can be maintained for many years following successful islet transplantation, restoration of normal functional β-cell mass has remained elusive. It has recently been proposed that dedifferentiation/plasticity towards other endocrine phenotypes may play an important role in stress-induced β-cell dysfunction in type 2 diabetes. Here we report loss of end-differentiated β-cell phenotype in 2 intraportal islet allotransplant recipients. Despite excellent graft function and sustained insulin independence, all examined insulin-positive cells had lost expression of the end-differentiation marker, urocortin-3, or appeared to co-express the α-cell marker, glucagon. In contrast, no insulin + /urocortin-3 - cells were seen in nondiabetic deceased donor control pancreatic islets. Loss of end-differentiated phenotype may facilitate β-cell survival during the stresses associated with islet isolation and culture, in addition to sustained hypoxia following engraftment. As further refinements in islet isolation and culture are made in parallel with exploration of alternative β-cell sources, graft sites, and ultimately fully vascularized bioengineered insulin-secreting microtissues, differentiation status immunostaining provides a novel tool to assess whether fully mature β-cell phenotype has been maintained. © 2017 The American Society of Transplantation and the American Society of Transplant Surgeons.

  14. Stem Cells Transplantation in the Treatment of Patients with Liver Failure.

    Science.gov (United States)

    Tao, Ya-Chao; Wang, Meng-Lan; Chen, En-Qiang; Tang, Hong

    2018-02-23

    Liver failure is a life-threatening liver disease encompassing severe acute deterioration of liver function. Emergency liver transplantation is the only curative treatment for liver failure, but is restricted by the severe shortage of organ donors. Stem cell, including embroyonic stem cells, induced pluripotent stem cells, mesenchymal stem cells, hematopoietic stem cells and hepatic progenitor cells, have capacity to proliferate and differentiate and could be used in a variety of liver diseases including hereditary liver diseases, cirrhosis and liver failure. We summarized the basic experimental and clinical advances of stem cell transplantation in liver failure treatment, and also discussed the advantages and disadvantage of different stem cells subtype in this field, aiming to provide a perspective on the stem cell-based therapy for liver failure. Stem cells, especially mesenchymal stem cells (mainly low immunogenicity and paracrine characteristics) and induced pluripotent stem cells (generation of desired cell type from somatic cell), are feasible candidates for cell therapy in the treatment of liver failure, but there are some drawbacks remaining to be resolved, such as low engraftment, cryotpreservation methods and tumorigenesis. Stem cell transplantation is a promising but challenging strategy and paves a new way for curing liver failure. But more efforts need to be made to overcome problems before this new strategy could be safely and effectively applied to humans. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Donor-specific Anti-HLA antibodies in allogeneic hematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Sarah Morin-Zorman

    2016-08-01

    Full Text Available Allogeneic Hematopoietic Stem Cell Transplantation (AHSCT is a curative treatment for a wide variety of hematological diseases. In 30% of the cases, a geno-identical donor is available. Any other situation displays some level of Human Leukocyte Antigen (HLA incompatibility between donor and recipient. Deleterious effects of anti-HLA immunization have long been recognized in solid organ transplant recipients. More recently, anti-HLA immunization was shown to increase the risk of Primary Graft Failure (PGF, a severe complication of AHSCT that occurs in 3 to 4% of matched unrelated donor transplantation and up to 15% in cord blood transplantation and T-cell depleted haplo-identical stem cell transplantation. Rates of PGF in patients with DSA were reported to be between 24 to 83% with the highest rates in haplo-identical and cord blood transplantation recipients. This led to the recommendation of anti-HLA antibody screening to detect Donor Specific Antibodies (DSA in recipients prior to AHSCT. In this review, we highlight the role of anti-HLA antibodies in AHSCT and the mechanisms that may lead to PGF in patients with DSA, and discuss current issues in the field.

  16. Intracerebral neural stem cell transplantation improved the auditory of mice with presbycusis.

    Science.gov (United States)

    Ren, Hongmiao; Chen, Jichuan; Wang, Yinan; Zhang, Shichang; Zhang, Bo

    2013-01-01

    Stem cell-based regenerative therapy is a potential cellular therapeutic strategy for patients with incurable brain diseases. Embryonic neural stem cells (NSCs) represent an attractive cell source in regenerative medicine strategies in the treatment of diseased brains. Here, we assess the capability of intracerebral embryonic NSCs transplantation for C57BL/6J mice with presbycusis in vivo. Morphology analyses revealed that the neuronal rate of apoptosis was lower in the aged group (10 months of age) but not in the young group (2 months of age) after NSCs transplantation, while the electrophysiological data suggest that the Auditory Brain Stem Response (ABR) threshold was significantly decreased in the aged group at 2 weeks and 3 weeks after transplantation. By contrast, there was no difference in the aged group at 4 weeks post-transplantation or in the young group at any time post-transplantation. Furthermore, immunofluorescence experiments showed that NSCs differentiated into neurons that engrafted and migrated to the brain, even to sites of lesions. Together, our results demonstrate that NSCs transplantation improve the auditory of C57BL/6J mice with presbycusis.

  17. Impact of HLA diversity on donor selection in organ and stem cell transplantation.

    Science.gov (United States)

    Tiercy, Jean-Marie; Claas, Frans

    2013-01-01

    The human major histocompatibility complex is a multigene system encoding polymorphic human leucocyte antigens (HLA) that present peptides derived from pathogens to the immune system. The high diversity of HLA alleles and haplotypes in the worldwide populations represents a major barrier to organ and allogeneic hematopoietic stem cell transplantation, because HLA incompatibilities are efficiently recognized by T and B lymphocytes. In organ transplantation, pre-transplant anti-HLA antibodies need to be taken into account for organ allocation. Although HLA-incompatible transplants can be performed thanks to immunosuppressive drugs, the de novo production of anti-HLA antibodies still represents a major cause of graft failure. The HLAMatchmaker computer algorithm determines the immunogenicity of HLA mismatches and allows to define HLA antigens that will not induce an antibody response. Because of the much higher stringency of HLA compatibility criteria in stem cell transplantation, the best donor is a HLA genotypically identical sibling. However, more than 50% of the transplants are now performed with hematopoietic stem cells from volunteer donors selected from the international registry. The development of European national registries covering populations with different HLA haplotype frequencies is essential for optimizing donor search algorithms and providing the best chance for European patients to find a fully compatible donor.

  18. Acquisition and Cure of Autoimmune Disease Following Allogeneic Hematopoietic Stem Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Hsin-An Hou

    2007-09-01

    Full Text Available Hematopoietic stem cell transplantation (HSCT can either cause or eliminate autoimmune disease. Here, we report two cases. One was a 33-year-old woman with myelodysplastic syndrome (refractory anemia who received bone marrow transplantation from her human leukocyte antigen (HLA-identical sister who had a history of Graves' disease. Antithyroid antibodies, including antimicrosomal antibody and antithy-roglobulin antibody, appeared 4 months after transplantation. Clinical hyperthyroidism appeared 7 months after transplantation, and a hypothyroid state was noted 2 months later. The other case was a 50-year-old woman with Sjögren's syndrome and hypothyroidism who was diagnosed with peripheral T cell non-Hodgkin's lymphoma. She received allogeneic peripheral blood stem cell transplantation (PBSCT from her histocompatible sister owing to only partial response to traditional chemotherapy. Cure of lymphoma and remission of Sjögren's syndrome was noted 4 years after PBSCT. These two illustrative cases, one of acquisition of hyperthyroidism and the other of remission of Sjögren's syndrome after transplantation, highlights that HSCT can induce adoptive autoimmune disease or cure coincidental autoimmune disease. Donor selection and attentive monitoring is required in such circumstances.

  19. Evaluation of Quality of Life and Care Needs of Turkish Patients Undergoing Hematopoietic Stem Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Neslisah Yasar

    2016-01-01

    Full Text Available This descriptive study explored the quality of life and care needs of Turkish patients who underwent hematopoietic stem cell transplantation. The study sample consisted of 100 hematopoietic stem cell transplant patients. Their quality of life was assessed using Functional Assessment of Cancer Therapy-Bone Marrow Transplant Scale. The mean patient age was 44.99 ± 13.92 years. Changes in sexual functions, loss of hair, loss of taste, loss of appetite, and sleep disturbances were the most common symptoms. The quality of life of transplant patients was moderately affected; the functional well-being and social/family well-being subscales were the most adversely and least negatively affected (12.13 ± 6.88 dimensions, respectively. Being female, being between 50 and 59 years of age, being single, having a chronic disease, and having a history of hospitalization were associated with lower quality of life scores. Interventions to improve functional status, physical well-being, and emotional status of patients during the transplantation process may help patients cope with treatment-related impairments more effectively. Frequent screening and management of patient symptoms in order to help patients adapt to life following allogeneic hematopoietic stem cell transplantation are crucial for meeting care needs and developing strategies to improve their quality of life.

  20. High-risk cutaneous squamous cell carcinoma in a Japanese allogeneic bone marrow transplant recipient on long-term voriconazole.

    Science.gov (United States)

    Ng, William; Takahashi, Akira; Muto, Yusuke; Yamazaki, Naoya

    2017-10-01

    Cutaneous squamous cell carcinomas arise as secondary cancers in hematopoietic stem cell transplant survivors. They have been documented primarily in Western cohorts and relatively little is known about their occurrence in Asian hematopoietic stem cell transplant recipients, with no reports of squamous cell carcinomas with high-risk features in Asian patients. We describe a case of a cutaneous squamous cell carcinoma with high-risk features on the scalp of a Japanese bone marrow transplant recipient approximately 6.5 years post-transplant, who was on long-term voriconazole. The history of a photodistributed erythema followed by the appearance of multiple actinic keratoses and solar lentigines, together with the rarity of cutaneous squamous cell carcinomas in Asian hematopoietic stem cell transplant cohorts revealed in our literature review, suggest that voriconazole use contributed to the development of high-risk squamous cell carcinoma in our patient. © 2017 Japanese Dermatological Association.