WorldWideScience

Sample records for transpiration noninvasive measurements

  1. Measuring Transpiration to Regulate Winter Irrigation Rates

    Energy Technology Data Exchange (ETDEWEB)

    Samuelson, Lisa [Auburn University

    2006-11-08

    Periodic transpiration (monthly sums) in a young loblolly pine plantation between ages 3 and 6 was measured using thermal dissipation probes. Fertilization and fertilization with irrigation were better than irrigation alone in increasing transpiration of young loblolly pines during winter months, apparently because of increased leaf area in fertilized trees. Irrigation alone did not significantly increase transpiration compared with the non-fertilized and non-irrigated control plots.

  2. Sap flow measurements to determine the transpiration of facade greenings

    Science.gov (United States)

    Hölscher, Marie-Therese; Nehls, Thomas; Wessolek, Gerd

    2014-05-01

    Facade greening is expected to make a major contribution to the mitigation of the urban heat-island effect through transpiration cooling, thermal insulation and shading of vertical built structures. However, no studies are available on water demand and the transpiration of urban vertical green. Such knowledge is needed as the plants must be sufficiently watered, otherwise the posited positive effects of vertical green can turn into disadvantages when compared to a white wall. Within the framework of the German Research Group DFG FOR 1736 "Urban Climate and Heat Stress" this study aims to test the practicability of the sap flow technique for transpiration measurements of climbing plants and to obtain potential transpiration rates for the most commonly used species. Using sap flow measurements we determined the transpiration of Fallopia baldschuanica, Parthenocissus tricuspidata and Hedera helix in pot experiments (about 1 m high) during the hot summer period from August 17th to August 30th 2012 under indoor conditions. Sap flow measurements corresponded well to simultaneous weight measurement on a daily base (factor 1.19). Fallopia baldschuanica has the highest daily transpiration rate based on leaf area (1.6 mm d-1) and per base area (5.0 mm d-1). Parthenocissus tricuspidata and Hedera helix show transpiration rates of 3.5 and 0.4 mm d-1 (per base area). Through water shortage, transpiration strongly decreased and leaf temperature measured by infrared thermography increased by 1 K compared to a well watered plant. We transferred the technique to outdoor conditions and will present first results for facade greenings in the inner-city of Berlin for the hottest period in summer 2013.

  3. Measuring and Modeling Tree Stand Level Transpiration

    Science.gov (United States)

    J.M. Vose; G.J. Harvey; K.J. Elliott; B.D. Clinton

    2003-01-01

    Transpiration is a key process in the application of phytoremediation to soil or groundwater pollutants. To be successful, vegetation must transpire enough water from the soil or groundwater to control or take up the contaminant. Transpiration is driven by a combination of abiotic (climate, soil water availability, and groundwater depth) and biotic (leaf area, stomatal...

  4. Measuring whole-plant transpiration gravimetrically: a scalable automated system built from components

    Science.gov (United States)

    Damian Cirelli; Victor J. Lieffers; Melvin T. Tyree

    2012-01-01

    Measuring whole-plant transpiration is highly relevant considering the increasing interest in understanding and improving plant water use at the whole-plant level. We present an original software package (Amalthea) and a design to create a system for measuring transpiration using laboratory balances based on the readily available commodity hardware. The system is...

  5. Measurement of transpiration and biomass of coconut palm with tritiated water

    International Nuclear Information System (INIS)

    Vasu, K.; Wahid, P.A.

    1990-01-01

    Measurements of transpiration rate and biomass of coconut palm have been made using tritiated water as a tracer. The method of tracer injection into the coconut trunk and the extraction of tritiated water from coconut leaves are outlined. The transpiration rate of the tree selected for the study was found to be 2.2 litres/hour with a total biomass of 172 kg. (author). 8 refs., 3 tabs

  6. The transient transpiration heat flux meter

    International Nuclear Information System (INIS)

    Martins, N.; Calisto, H.; Afgan, N.; Leontiev, A.I.

    2006-01-01

    A new heat flux measurement principle, based on the transient response of a transpiration radiometer, is proposed. The measurement principle of current transpiration radiometers is based on a steady-state temperature measurement in a porous element. Since it may typically take several seconds to reach these conditions, there are obvious benefits in reducing the instrument response time. This can be achieved through the analysis of its transient response in order to predict the incident heat flux. In addition, the proposed methodology enables the separate measurement of the radiative and convective components of incident heat fluxes, without compromising the known advantages of transpiration radiometers. The availability of such an instrument may enable the development of advanced monitoring, diagnostic and control systems for thermal equipment

  7. A phytotoxicity test using transpiration of willows

    DEFF Research Database (Denmark)

    Trapp, Stefan; Zambrano, Kim Cecilia; Kusk, Kresten Ole

    2000-01-01

    is expressed as % decrease after 48 and 72 h or longer compared to the initial transpiration, divided by the transpiration of control plants. More toxicity parameters are growth and water use efficiency of the plants. The sensitivity of the test was evaluated with 3,5-dichlorophenol. EC50 values between 5......A short-term acute toxicity assay for willow trees growing in contaminated solution or in polluted soil was developed and tested. The test apparatus consists of an Erlenmeyer flask with a prerooted tree cutting growing in it. Growth and reduction of transpiration are used to determine toxicity....... Transpiration is closely related to photosynthesis and growth, but is easier and faster to measure and can be measured without disturbance of the test system. Plants are grown for 24 h in uncontaminated nutrient solution before the toxicant is added to determine the initial transpiration. The loss of weight...

  8. Dominant controls of transpiration along a hillslope transect inferred from ecohydrological measurements and thermodynamic limits

    Science.gov (United States)

    Renner, Maik; Hassler, Sibylle K.; Blume, Theresa; Weiler, Markus; Hildebrandt, Anke; Guderle, Marcus; Schymanski, Stanislaus J.; Kleidon, Axel

    2016-05-01

    We combine ecohydrological observations of sap flow and soil moisture with thermodynamically constrained estimates of atmospheric evaporative demand to infer the dominant controls of forest transpiration in complex terrain. We hypothesize that daily variations in transpiration are dominated by variations in atmospheric demand, while site-specific controls, including limiting soil moisture, act on longer timescales. We test these hypotheses with data of a measurement setup consisting of five sites along a valley cross section in Luxembourg. Both hillslopes are covered by forest dominated by European beech (Fagus sylvatica L.). Two independent measurements are used to estimate stand transpiration: (i) sap flow and (ii) diurnal variations in soil moisture, which were used to estimate the daily root water uptake. Atmospheric evaporative demand is estimated through thermodynamically constrained evaporation, which only requires absorbed solar radiation and temperature as input data without any empirical parameters. Both transpiration estimates are strongly correlated to atmospheric demand at the daily timescale. We find that neither vapor pressure deficit nor wind speed add to the explained variance, supporting the idea that they are dependent variables on land-atmosphere exchange and the surface energy budget. Estimated stand transpiration was in a similar range at the north-facing and the south-facing hillslopes despite the different aspect and the largely different stand composition. We identified an inverse relationship between sap flux density and the site-average sapwood area per tree as estimated by the site forest inventories. This suggests that tree hydraulic adaptation can compensate for heterogeneous conditions. However, during dry summer periods differences in topographic factors and stand structure can cause spatially variable transpiration rates. We conclude that absorption of solar radiation at the surface forms a dominant control for turbulent heat and

  9. Measuring and modelling forest transpiration

    Czech Academy of Sciences Publication Activity Database

    Šír, Miloslav; Čermák, J.; Naděždina, N.; Pražák, Josef; Tesař, Miroslav

    2008-01-01

    Roč. 4, - (2008), č. 012050 ISSN 1755-1315. [Conference of the Danubian Countries on the Hydrological Forecasting and Hydrological Bases of Water Management /24./. Bled, 02.06.2008-04.06.2008] R&D Projects: GA ČR GA205/06/0375; GA ČR GA205/08/1174; GA ČR GA526/08/1016; GA MŠk MEB0808114; GA MŽP(CZ) SP/1A6/151/07; GA AV ČR 1QS200420562 Institutional research plan: CEZ:AV0Z20600510; CEZ:AV0Z20760514 Keywords : plant transpiration * SAP flow * floodplain forest Subject RIV: DA - Hydrology ; Limnology

  10. Terrestrial water fluxes dominated by transpiration.

    Science.gov (United States)

    Jasechko, Scott; Sharp, Zachary D; Gibson, John J; Birks, S Jean; Yi, Yi; Fawcett, Peter J

    2013-04-18

    Renewable fresh water over continents has input from precipitation and losses to the atmosphere through evaporation and transpiration. Global-scale estimates of transpiration from climate models are poorly constrained owing to large uncertainties in stomatal conductance and the lack of catchment-scale measurements required for model calibration, resulting in a range of predictions spanning 20 to 65 per cent of total terrestrial evapotranspiration (14,000 to 41,000 km(3) per year) (refs 1, 2, 3, 4, 5). Here we use the distinct isotope effects of transpiration and evaporation to show that transpiration is by far the largest water flux from Earth's continents, representing 80 to 90 per cent of terrestrial evapotranspiration. On the basis of our analysis of a global data set of large lakes and rivers, we conclude that transpiration recycles 62,000 ± 8,000 km(3) of water per year to the atmosphere, using half of all solar energy absorbed by land surfaces in the process. We also calculate CO2 uptake by terrestrial vegetation by connecting transpiration losses to carbon assimilation using water-use efficiency ratios of plants, and show the global gross primary productivity to be 129 ± 32 gigatonnes of carbon per year, which agrees, within the uncertainty, with previous estimates. The dominance of transpiration water fluxes in continental evapotranspiration suggests that, from the point of view of water resource forecasting, climate model development should prioritize improvements in simulations of biological fluxes rather than physical (evaporation) fluxes.

  11. Uncertainty in sap flow-based transpiration due to xylem properties

    Science.gov (United States)

    Looker, N. T.; Hu, J.; Martin, J. T.; Jencso, K. G.

    2014-12-01

    Transpiration, the evaporative loss of water from plants through their stomata, is a key component of the terrestrial water balance, influencing streamflow as well as regional convective systems. From a plant physiological perspective, transpiration is both a means of avoiding destructive leaf temperatures through evaporative cooling and a consequence of water loss through stomatal uptake of carbon dioxide. Despite its hydrologic and ecological significance, transpiration remains a notoriously challenging process to measure in heterogeneous landscapes. Sap flow methods, which estimate transpiration by tracking the velocity of a heat pulse emitted into the tree sap stream, have proven effective for relating transpiration dynamics to climatic variables. To scale sap flow-based transpiration from the measured domain (often area) to the whole-tree level, researchers generally assume constancy of scale factors (e.g., wood thermal diffusivity (k), radial and azimuthal distributions of sap velocity, and conducting sapwood area (As)) through time, across space, and within species. For the widely used heat-ratio sap flow method (HRM), we assessed the sensitivity of transpiration estimates to uncertainty in k (a function of wood moisture content and density) and As. A sensitivity analysis informed by distributions of wood moisture content, wood density and As sampled across a gradient of water availability indicates that uncertainty in these variables can impart substantial error when scaling sap flow measurements to the whole tree. For species with variable wood properties, the application of the HRM assuming a spatially constant k or As may systematically over- or underestimate whole-tree transpiration rates, resulting in compounded error in ecosystem-scale estimates of transpiration.

  12. Transpiration efficiency of three Mediterranean annual pasture species and wheat.

    Science.gov (United States)

    Bolger, T P; Turner, N C

    1998-06-01

    Attempts to improve water use efficiency in regions with Mediterranean climates generally focus on increasing plant transpiration relative to evaporation from the soil and increasing transpiration efficiency. Our aim was to determine if transpiration efficiency differs among key species occurring in annual pastures in southern Australia. Two glasshouse experiments were conducted with three key pasture species, subterranean clover (Trifolium subterraneum L.), capeweed [Arctotheca calendula (L.) Levyns] and annual ryegrass (Lolium rigidum Gaudin), and wheat (Triticum aestivum L.). Transpiration efficiency was assessed at the levels of␣whole-plant biomass and water use (W), leaf gas exchange measurements of the ratio of CO 2 assimilation to leaf conductance to water vapour (A/g), and carbon isotope discrimination (Δ) in leaf tissue. In addition, Δ was measured on shoots of the three pasture species growing together in the field. In the glasshouse studies, annual ryegrass had a consistently higher transpiration efficiency than subterranean clover or capeweed by all methods of measurement. Subterranean clover and capeweed had similar transpiration efficiencies by all three methods of measurement. Wheat had W values similar to ryegrass but A/g and Δ values similar to subterranean clover or capeweed. The high W of annual ryegrass seems to be related to a conservative leaf gas exchange behaviour, with lower assimilation and conductance but higher A/g than for the other species. In contrast to the glasshouse results, the three pasture species had similar Δ values when growing together in mixed-species swards in the field. Reasons for these differing responses between glasshouse and field-grown plants are discussed in terms of the implications for improving the transpiration efficiency of mixed-species annual pasture communities in the field.

  13. Validation of a simple evaporation-transpiration scheme (SETS) to estimate evaporation using micro-lysimeter measurements

    Science.gov (United States)

    Ghazanfari, Sadegh; Pande, Saket; Savenije, Hubert

    2014-05-01

    Several methods exist to estimate E and T. The Penman-Montieth or Priestly-Taylor methods along with the Jarvis scheme for estimating vegetation resistance are commonly used to estimate these fluxes as a function of land cover, atmospheric forcing and soil moisture content. In this study, a simple evaporation transpiration method is developed based on MOSAIC Land Surface Model that explicitly accounts for soil moisture. Soil evaporation and transpiration estimated by SETS is validated on a single column of soil profile with measured evaporation data from three micro-lysimeters located at Ferdowsi University of Mashhad synoptic station, Iran, for the year 2005. SETS is run using both implicit and explicit computational schemes. Results show that the implicit scheme estimates the vapor flux close to that by the explicit scheme. The mean difference between the implicit and explicit scheme is -0.03 mm/day. The paired T-test of mean difference (p-Value = 0.042 and t-Value = 2.04) shows that there is no significant difference between the two methods. The sum of soil evaporation and transpiration from SETS is also compared with P-M equation and micro-lysimeters measurements. The SETS predicts the actual evaporation with a lower bias (= 1.24mm/day) than P-M (= 1.82 mm/day) and with R2 value of 0.82.

  14. African Mahogany transpiration with Granier method and water table lysimeter

    Directory of Open Access Journals (Sweden)

    Ana C. O. Sérvulo

    Full Text Available ABSTRACT The thermal dissipation probe (Granier method is useful in the water deficit monitoring and irrigation management of African Mahogany, but its model needs proper adjustment. This paper aimed to adjust and validate the Granier sap flux model to estimate African Mahogany transpiration, measure transpiration using lysimeter and relate it to atmospheric water demand. Weather conditions, transpiration and sap flux were monitored in three units of 2.5-year-old African Mahogany trees in constant water table lysimeter, in Goiânia, GO. Sapwood area (SA, leaf area (LA, transpiration measured by lysimeter (TLYS and estimated by sap flux (TSF were evaluated. The SA comprised 55.24% of the trunk’s transversal section. The LA varied from 11.95 to 10.66 m2. TLYS and TSF varied from 2.94 to 29.31 and from 0.94 to 15.45 L d-1, respectively. The original model underestimated transpiration by 44.4%, being the adjusted equation F = 268.25 . k1.231. SA was significant (F < 0.05. Due the root confinement, the transpiration showed low correlation, but positive, with the atmospheric water demand.

  15. Plasma Wind Tunnel Testing of Electron Transpiration Cooling Concept

    Science.gov (United States)

    2017-02-28

    Colorado State University ETC Electron Transpiration Cooling LHTS Local Heat Transfer Simulation LTE Local Thermodynamic Equilibrium RCC Reinforced...ceramic electric material testing in plasma environment (not performed), 4. measurements and analysis of the Electron Transpiration Cooling (Sec. 4.2). 2...VKI 1D boundary layer code for computation of enthalpy and boundary layer parameters: a) iterate on ’virtually measured ’ heat flux, b) once enthalpy

  16. Stand, species, and individual traits impact transpiration in historically disturbed forests.

    Science.gov (United States)

    Blakely, B.; Rocha, A. V.; McLachlan, J. S.

    2017-12-01

    Historic logging disturbances have changed the structure and species composition of most Northern temperate forests. These changes impact the process of transpiration - which in turn impacts canopy surface temperature - but the links among structure, composition, and transpiration remain unclear. For this reason, ecosystem models typically use simplified structure and composition to simulate the impact of disturbances on forest transpiration. However, such simplifications ignore real variability among stands, species, and individual trees that may strongly influence transpiration across spatial and temporal scales. To capture this variability, we monitored transpiration in 48 individual trees of multiple species in both undisturbed (400+ yr) and historically logged (80 - 120 yr) forests. Using modern and historic forest surveys, we upscaled our observations to stand and regional scales to identify the key changes impacting transpiration. We extended these inferences by establishing a relationship between transpiration and measured surface temperature, linking disturbance-induced changes in structure and composition to local and regional climate. Despite greater potential evapotranspiration and basal area, undisturbed forest transpired less than disturbed (logged) forest. Transpiration was a strong predictor of surface temperature, and the canopy surface was warmer in undisturbed forest. Transpiration differences among disturbed and undisturbed forests resulted from (1) lesser transpiration and dampened seasonality in evergreen species (2) greater transpiration in younger individuals within a species, and (3) strong transpiration by large individuals. When transpiration was scaled to the stand or regional level in a simplified manner (e.g. a single transpiration rate for all deciduous individuals), the resulting estimates differed markedly from the original. Stand- species- and individual-level traits are therefore essential for understanding how transpiration and

  17. Studies on transpiration rates and tritium concentration in transpired water in some plant species at Kaiga site

    International Nuclear Information System (INIS)

    Selvi, S.B.; Ravi, P.M.; Hegde, A.G.

    2005-01-01

    Transpiration is the driving force for uptake of water and hence that of tritiated water from environment. Transpiration rates and tritium concentration in transpired water in some plants at Kaiga site were estimated. Good correlation was observed between transpiration rates with humidity, temperature and leaf surface area. Transpiration rates varied seasonally and diurnally due to the influence of interdependent parameters such as temperature, humidity, water availability, etc. The ratio between the tritium concentrations in transpired plant water to that in air moisture ranged from 0.1 to 0.2. (author)

  18. Hydraulic Limits on Maximum Plant Transpiration

    Science.gov (United States)

    Manzoni, S.; Vico, G.; Katul, G. G.; Palmroth, S.; Jackson, R. B.; Porporato, A. M.

    2011-12-01

    potential compare well with measured peak transpiration and minimum water potentials across plant types and biomes, suggesting that plant water transport system and stomatal regulation co-evolved to meet peak atmospheric demands, thus sustaining carbon uptake while avoiding tissue damage even in such harsh conditions.

  19. [Experimental study on crop photosynthesis, transpiration and high efficient water use].

    Science.gov (United States)

    Wang, Huixiao; Liu, Changming

    2003-10-01

    It is well known that the development of water-saving agriculture is a strategic choice for getting rid of the crisis of water shortage. In this paper, the crop photosynthesis, transpiration, stomatic behavior, and their affecting factors were studied in view of increasing the crop water use efficiency. The experimental results showed that there was a parabola relationship between photosynthesis and transpiration. The transpiration at the maximum photosynthesis was a critical value, above which, transpiration was the luxurious part. The luxurious transpiration could be controlled without affecting photosynthetic production. It is possible that the measures for increasing stomatic resistance and preventing transpiration could save water, and improve photosynthesis and yield as well. The photosynthesis rate increased with photosynthetic active radiation, and the light saturation point for photosynthesis existed. The light saturation point of dry treatment was much lower than that of wet treatment, and the relationship between transpiration and radiation was linear. When the photosynthetic active radiation was bigger than 1,000 mumol.m-2.s-1, some treatments could be carried out for decreasing transpiration and improving photosynthesis.

  20. Noninvasive Hemodynamic Measurements During Neurosurgical Procedures in Sitting Position.

    Science.gov (United States)

    Schramm, Patrick; Tzanova, Irene; Gööck, Tilman; Hagen, Frank; Schmidtmann, Irene; Engelhard, Kristin; Pestel, Gunther

    2017-07-01

    Neurosurgical procedures in sitting position need advanced cardiovascular monitoring. Transesophageal echocardiography (TEE) to measure cardiac output (CO)/cardiac index (CI) and stroke volume (SV), and invasive arterial blood pressure measurements for systolic (ABPsys), diastolic (ABPdiast) and mean arterial pressure (MAP) are established monitoring technologies for these kind of procedures. A noninvasive device for continuous monitoring of blood pressure and CO based on a modified Penaz technique (volume-clamp method) was introduced recently. In the present study the noninvasive blood pressure measurements were compared with invasive arterial blood pressure monitoring, and the noninvasive CO monitoring to TEE measurements. Measurements of blood pressure and CO were performed in 35 patients before/after giving a fluid bolus and a change from supine to sitting position, start of surgery, and repositioning from sitting to supine at the end of surgery. Data pairs from the noninvasive device (Nexfin HD) versus arterial line measurements (ABPsys, ABPdiast, MAP) and versus TEE (CO, CI, SV) were compared using Bland-Altman analysis and percentage error. All parameters compared (CO, CI, SV, ABPsys, ABPdiast, MAP) showed a large bias and wide limits of agreement. Percentage error was above 30% for all parameters except ABPsys. The noninvasive device based on a modified Penaz technique cannot replace arterial blood pressure monitoring or TEE in anesthetized patients undergoing neurosurgery in sitting position.

  1. Structural adjustments in resprouting trees drive differences in post-fire transpiration.

    Science.gov (United States)

    Nolan, Rachael H; Mitchell, Patrick J; Bradstock, Ross A; Lane, Patrick N J

    2014-02-01

    Following disturbance many woody species are capable of resprouting new foliage, resulting in a reduced leaf-to-sapwood area ratio and altered canopy structure. We hypothesized that such changes would promote adjustments in leaf physiology, resulting in higher rates of transpiration per unit leaf area, consistent with the mechanistic framework proposed by Whitehead et al. (Whitehead D, Jarvis PG, Waring RH (1984) Stomatal conductance, transpiration and resistance to water uptake in a Pinus sylvestris spacing experiment. Can J For Res 14:692-700). We tested this in Eucalyptus obliqua L'Hér following a wildfire by comparing trees with unburnt canopies with trees that had been subject to 100% canopy scorch and were recovering their leaf area via resprouting. In resprouting trees, foliage was distributed along the trunk and on lateral branches, resulting in shorter hydraulic path lengths. We evaluated measurements of whole-tree transpiration and structural and physiological traits expected to drive any changes in transpiration. We used these structural and physiological measurements to parameterize the Whitehead et al. equation, and found that the expected ratio of transpiration per unit leaf area between resprouting and unburnt trees was 3.41. This is similar to the observed ratio of transpiration per unit leaf area, measured from sapflow observations, which was 2.89 (i.e., resprouting trees had 188% higher transpiration per unit leaf area). Foliage at low heights (tree crown (14-18 m) in a number of traits, including higher specific leaf area, midday leaf water potential and higher rates of stomatal conductance and photosynthesis. We conclude that these post-fire adjustments in resprouting trees help to drive increased stomatal conductance and hydraulic efficiency, promoting the rapid return of tree-scale transpiration towards pre-disturbance levels. These transient patterns in canopy transpiration have important implications for modelling stand-level water fluxes

  2. Genetic variation in transpiration efficiency and relationships between whole plant and leaf gas exchange measurements in Saccharum spp. and related germplasm.

    Science.gov (United States)

    Jackson, Phillip; Basnayake, Jaya; Inman-Bamber, Geoff; Lakshmanan, Prakash; Natarajan, Sijesh; Stokes, Chris

    2016-02-01

    Fifty-one genotypes of sugarcane (Saccharum spp.) or closely related germplasm were evaluated in a pot experiment to examine genetic variation in transpiration efficiency. Significant variation in whole plant transpiration efficiency was observed, with the difference between lowest and highest genotypes being about 40% of the mean. Leaf gas exchange measurements were made across a wide range of conditions. There was significant genetic variation in intrinsic transpiration efficiency at a leaf level as measured by leaf internal CO2 (Ci) levels. Significant genetic variation in Ci was also observed within subsets of data representing narrow ranges of stomatal conductance. Ci had a low broad sense heritability (Hb = 0.11) on the basis of single measurements made at particular dates, because of high error variation and genotype × date interaction, but broad sense heritability for mean Ci across all dates was high (Hb = 0.81) because of the large number of measurements taken at different dates. Ci levels among genotypes at mid-range levels of conductance had a strong genetic correlation (-0.92 ± 0.30) with whole plant transpiration efficiency but genetic correlations between Ci and whole plant transpiration efficiency were weaker or not significant at higher and lower levels of conductance. Reduced Ci levels at any given level of conductance may result in improved yields in water-limited environments without trade-offs in rates of water use and growth. Targeted selection and improvement of lowered Ci per unit conductance via breeding may provide longer-term benefits for water-limited environments but the challenge will be to identify a low-cost screening methodology. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  3. Mapping dry-season tree transpiration of an oak woodland at the catchment scale, using object-attributes derived from satellite imagery and sap flow measurements

    NARCIS (Netherlands)

    Reyes-Acosta, J.L.; Lubczynski, M.

    2013-01-01

    Tree transpiration is an important plant-physiological process that influences the water cycle, thereby influencing ecosystems and even the quantity of available water resources. However, direct tree-transpiration measurements, particularly at large spatial scales, are still rare, due to the

  4. Transpiration of montane Pinus sylvestris L. and Quercus pubescens Willd. forest stands measured with sap flow sensors in NE Spain

    Directory of Open Access Journals (Sweden)

    R. Poyatos

    2005-01-01

    Full Text Available Stand transpiration was measured during the 2003 and 2004 growing seasons using heat dissipation sap flow sensors in a Scots pine (Pinus sylvestris L. and a pubescent oak (Quercus pubescens Willd. forests located in a montane area of the Eastern Pyrenees (NE Spain. The first aim of the study was to assess the differences in quantitative estimates of transpiration (Ec and the response to evaporative demand of the two stands. Over the studied period of 2003, characterised by a severe drought episode during the summer, the oak stand (Ec was only 110 mm compared to the 239 mm transpired by the Scots pine stand, although the ratio of transpiration to reference evapotranspiration (Ec/ET0 in the oak stand compares well with the expected values predicted for low leaf area index (LAI oak forests in southern Europe. Scots pine showed a strong reduction in (Ec/ET0 as the drought developed, whereas pubescent oak was less affected by soil moisture deficits in the upper soil. As a second objective, and given the contrasting meteorological conditions between 2003 and 2004 summer periods, the interannual variability of transpiration was studied in the Scots pine plot. Rainfall during the summer months (June-September in 2003 was almost 40% less than in the same interval in 2004. Accordingly, transpiration was also reduced about 25% in 2003. Finally, Scots pine data from 2003 and 2004 was used to calibrate a simple transpiration model using ET0 and soil moisture deficit (SMD as input variables, and implicitly including stomatal responses to high vapour pressure deficits (Dd and soil water status.

  5. Biophysical control of whole tree transpiration under an urban environment in Northern China

    Science.gov (United States)

    Chen, Lixin; Zhang, Zhiqiang; Li, Zhandong; Tang, Jianwu; Caldwell, Peter; Zhang, Wenjuan

    2011-05-01

    SummaryUrban reforestation in China has led to increasing debate about the impact of urban trees and forests on water resources. Although transpiration is the largest water flux leaving terrestrial ecosystems, little is known regarding whole tree transpiration in urban environments. In this study, we quantified urban tree transpiration at various temporal scales and examined the biophysical control of the transpiration pattern under different water conditions to understand how trees survive in an urban environment. Concurrent with microclimate and soil moisture measurements, transpiration from C edrus deodara(Roxb)Loud ., Zelkova schneideriana Hend.-Mazz., Euonymus bungeanus Maxim., and Metasequoia glyptostroboides Hu et cheng was measured over a 2-year period using thermal dissipation probe (TDP) techniques. The average monthly transpiration rates reached 12.78 ± 0.73 (S.E.) mm, 1.79 ± 0.16 mm, 10.18 ± 0.55 mm and 19.28 ± 2.24 mm for C. deodara, Z.schneideriana, E. bungeanus and M. glyptostroboides, respectively. Transpiration rates from M. glyptostroboides reported here may need further study as this species showed much higher sap flows and greater transpiration fluctuation under different environmental conditions than other species. Because of deep soil moisture supply, summer dry spells did not reduce transpiration rates even when tree transpiration exceeded rainfall. While vapor pressure deficit ( VPD) was the dominant environmental factor on transpiration, trees controlled canopy conductance effectively to limit transpiration in times of water stress. Our results provide evidence that urban trees could adopt strong physiological control over transpiration under high evaporative demands to avoid dehydration and can make use of water in deeper soil layers to survive summer dry spells. Moreover, urban trees have the ability to make the best use of precipitation when it is limited, and are sensitive to soil and air dryness.

  6. On the extent of genetic variation for transpiration efficiency in sorghum

    International Nuclear Information System (INIS)

    Hammer, G.L.; Broad, I.J.; Farquhar, G.D.

    1997-01-01

    A glasshouse study examined 49 diverse sorghum lines for variation in transpiration efficiency. Three of the 49 lines grown were Sorghum spp. native to Australia; one was the major weed Johnson grass (Sorghum halepense), and the remaining 45 lines were cultivars of Sorghum bicolor. All plants were grown under non-limiting water and nutrient conditions using a semi-automatic pot watering system designed to facilitate accurate measurement of water use. Plants were harvested 56-58 days after sowing and dry weights of plant parts were determined. Transpiration efficiency differed significantly among cultivars. The 3 Australian native sorghums had much lower transpiration efficiency than the other 46 cultivars, which ranged from 7.7 to 6.0 g/kg. For the 46 diverse cultivars, the ratio of range in transpiration efficiency to its l.s.d. was 2.0, which was similar to that found among more adapted cultivars in a previous study. This is a significant finding as it suggests that there is likely to be little pay-off from pursuing screening of unadapted material for increased variation in transpiration efficiency. It is necessary, however, also to examine absolute levels of transpiration efficiency to determine whether increased levels have been found. The cultivar with greatest transpiration efficiency in this study (IS9710) had a value 9% greater (P < 0.05) than the accepted standard for adapted sorghum cultivars. The potential impact of such an increase in transpiration efficiency warrants continued effort to capture it. Transpiration efficiency has been related theoretically and experimentally to the degree of carbon isotope discrimination in leaf tissue in sorghum, which thus offers a relatively simple selection index. In this study, the variation in transpiration efficiency was not related simply to carbon isotope discrimination. Significant associations of transpiration efficiency with ash content and indices of photosynthetic capacity were found. However, the

  7. Comparison of non-invasive tear film stability measurement techniques.

    Science.gov (United States)

    Wang, Michael Tm; Murphy, Paul J; Blades, Kenneth J; Craig, Jennifer P

    2018-01-01

    Measurement of tear film stability is commonly used to give an indication of tear film quality but a number of non-invasive techniques exists within the clinical setting. This study sought to compare three non-invasive tear film stability measurement techniques: instrument-mounted wide-field white light clinical interferometry, instrument-mounted keratoscopy and hand-held keratoscopy. Twenty-two subjects were recruited in a prospective, randomised, masked, cross-over study. Tear film break-up or thinning time was measured non-invasively by independent experienced examiners, with each of the three devices, in a randomised order, within an hour. Significant correlation was observed between instrument-mounted interferometric and keratoscopic measurements (p 0.05). Tear film stability values obtained from the hand-held device were significantly shorter and demonstrated narrower spread than the other two instruments (all p 0.05). Good clinical agreement exists between the instrument-mounted interferometric and keratoscopic measurements but not between the hand-held device and either of the instrument-mounted techniques. The results highlight the importance of specifying the instrument employed to record non-invasive tear film stability. © 2017 Optometry Australia.

  8. FPGA-based Fused Smart Sensor for Real-Time Plant-Transpiration Dynamic Estimation

    Directory of Open Access Journals (Sweden)

    Irineo Torres-Pacheco

    2010-09-01

    Full Text Available Plant transpiration is considered one of the most important physiological functions because it constitutes the plants evolving adaptation to exchange moisture with a dry atmosphere which can dehydrate or eventually kill the plant. Due to the importance of transpiration, accurate measurement methods are required; therefore, a smart sensor that fuses five primary sensors is proposed which can measure air temperature, leaf temperature, air relative humidity, plant out relative humidity and ambient light. A field programmable gate array based unit is used to perform signal processing algorithms as average decimation and infinite impulse response filters to the primary sensor readings in order to reduce the signal noise and improve its quality. Once the primary sensor readings are filtered, transpiration dynamics such as: transpiration, stomatal conductance, leaf-air-temperature-difference and vapor pressure deficit are calculated in real time by the smart sensor. This permits the user to observe different primary and calculated measurements at the same time and the relationship between these which is very useful in precision agriculture in the detection of abnormal conditions. Finally, transpiration related stress conditions can be detected in real time because of the use of online processing and embedded communications capabilities.

  9. FPGA-based Fused Smart Sensor for Real-Time Plant-Transpiration Dynamic Estimation

    Science.gov (United States)

    Millan-Almaraz, Jesus Roberto; de Jesus Romero-Troncoso, Rene; Guevara-Gonzalez, Ramon Gerardo; Contreras-Medina, Luis Miguel; Carrillo-Serrano, Roberto Valentin; Osornio-Rios, Roque Alfredo; Duarte-Galvan, Carlos; Rios-Alcaraz, Miguel Angel; Torres-Pacheco, Irineo

    2010-01-01

    Plant transpiration is considered one of the most important physiological functions because it constitutes the plants evolving adaptation to exchange moisture with a dry atmosphere which can dehydrate or eventually kill the plant. Due to the importance of transpiration, accurate measurement methods are required; therefore, a smart sensor that fuses five primary sensors is proposed which can measure air temperature, leaf temperature, air relative humidity, plant out relative humidity and ambient light. A field programmable gate array based unit is used to perform signal processing algorithms as average decimation and infinite impulse response filters to the primary sensor readings in order to reduce the signal noise and improve its quality. Once the primary sensor readings are filtered, transpiration dynamics such as: transpiration, stomatal conductance, leaf-air-temperature-difference and vapor pressure deficit are calculated in real time by the smart sensor. This permits the user to observe different primary and calculated measurements at the same time and the relationship between these which is very useful in precision agriculture in the detection of abnormal conditions. Finally, transpiration related stress conditions can be detected in real time because of the use of online processing and embedded communications capabilities. PMID:22163656

  10. Transpiration and crop yields

    NARCIS (Netherlands)

    Wit, de C.T.

    1958-01-01

    Theoretical and practical aspects of the transpiration of crops in the field are discussed and he concludes that the relationship between transpiration and total dry matter production is much less affected by growing conditions than has been supposed. In semi-arid and arid regions, this relationship

  11. Measurement of non-invasive X-ray measuring instruments

    International Nuclear Information System (INIS)

    Abe, Shinji

    2013-01-01

    Described are the history, measuring system, characteristics and present state of the instruments in the title (NXMI). NXMI, non-invasive to the inner circuit of X-ray generator, is now essential for the quality control of generator with reference to definitions by International Electrotechnical Commission (IEC) and Japan Industrial Standards (JIS). Non-invasive measurement of the generator's tube voltage in 1944 is the first report where the absorption difference of Cu plates with different thickness is used. At present, NXMI, being compact, can measure multiple properties of X-ray generated, such as the tube voltage (TV), current (TC), imaging time, dose/dose rate, total filtration, half value layer, and TV/output waveform. TV is measurable by the penetration difference of X-rays through Cu filters of different thickness, which is a linear function of TV; TC, with the clamp-type ammeter placed at the generator high voltage cable; and the dose, with the semiconductor detector. Characteristics can be evaluable within the upper trigger level of the detector (radiation time, dose measured here), in which measured are the irradiation (imaging) time, delay time, and TV (within the window width). Authors' practical quality control of the generator is conducted through calibration for which data are obtained by invasive (direct) precise measurement of TV, TC, imaging time and dose with reference to JIS. Periodical calibration and consequent quality control of NXMI are essential for the maintenance of precision of the generator. (T.T.)

  12. Sapfluxnet: a global database of sap flow measurements to unravel the ecological factors of transpiration regulation in woody plants

    Science.gov (United States)

    Poyatos, Rafael; Martínez-Vilalta, Jordi; Molowny-Horas, Roberto; Steppe, Kathy; Oren, Ram; Katul, Gabriel; Mahecha, Miguel

    2016-04-01

    Plant transpiration is one of the main components of the global water cycle, it controls land energy balance, determines catchment hydrological responses and exerts strong feedbacks on regional and global climate. At the same time, plant productivity, growth and survival are severely constrained by water availability, which is expected to decline in many areas of the world because of global-change driven increases in drought conditions. While global surveys of drought tolerance traits at the organ level are rapidly increasing our knowledge of the diversity in plant functional strategies to cope with drought stress, a whole-plant perspective of drought vulnerability is still lacking. Sap flow measurements using thermal methods have now been applied to measure seasonal patterns in water use and the response of transpiration to environmental drivers across hundreds of species of woody plants worldwide, covering a wide range of climates, soils and stand structural characteristics. Here, we present the first effort to build a global database of sub-daily, tree-level sap flow (SAPFLUXNET) that will be used to improve our understanding of physiological and structural determinants of plant transpiration and to further investigate the role of vegetation in controlling global water balance. We already have the expression of interest of data contributors representing >115 globally distributed sites, > 185 species and > 700 trees, measured over at least one growing season. However, the potential number of available sites and species is probably much higher given that > 2500 sap flow-related papers have been identified in a Scopus literature search conducted in November 2015. We will give an overview of how data collection, harmonisation and quality control procedures are implemented within the project. We will also discuss potential analytical strategies to synthesize hydroclimatic controls on sap flow into biologically meaningful traits related to whole-plant transpiration

  13. Leaf transpiration efficiency of sweet corn varieties from three eras of breeding

    Science.gov (United States)

    When measured under midday field conditions, modern varieties of corn often have sub-stomatal concentrations of carbon dioxide in excess of those required to saturate photosynthesis. This results in lower leaf transpiration efficiency, the ratio of photosynthesis to transpiration, than potentially ...

  14. Role of transpiration reduction during center-pivot sprinkler irrigation in application efficiency

    OpenAIRE

    Urrego Pereira, Yenny Fernanda; Cavero Campo, José; Medina Pueyo, Eva Teresa; Martínez-Cob, Antonio

    2013-01-01

    The magnitude and duration of corn transpiration reduction during center-pivot sprinkler irrigation was analyzed on a commercial plot. The irrigation event was defined as the period during which the pivot arm was passing over the transect AC and water droplets were moistening the plants (moist treatment). Corn transpiration rates were measured at three spots of that transect and simultaneously at another spot (dry treatment) located approximately 270 m east from the transect AC. Corn transpir...

  15. Modelling the effect of low soil temperatures on transpiration by Scots pine

    Science.gov (United States)

    Mellander, Per-Erik; Stähli, Manfred; Gustafsson, David; Bishop, Kevin

    2006-06-01

    For ecosystem modelling of the Boreal forest it is important to include processes associated with low soil temperature during spring-early summer, as these affect the tree water uptake. The COUP model, a physically based SVAT model, was tested with 2 years of soil and snow physical measurements and sap flow measurements in a 70-year-old Scots pine stand in the boreal zone of northern Sweden. During the first year the extent and duration of soil frost was manipulated in the field. The model was successful in reproducing the timing of the soil warming after the snowmelt and frost thaw. A delayed soil warming, into the growing season, severely reduced the transpiration. We demonstrated the potential for considerable overestimation of transpiration by the model if the reduction of the trees' capacity to transpire due to low soil temperatures is not taken into account. We also demonstrated that the accumulated effect of aboveground conditions could be included when simulating the relationship between soil temperature and tree water uptake. This improved the estimated transpiration for the control plot and when soil warming was delayed into the growing season. The study illustrates the need of including antecedent conditions on root growth in the model in order to catch these effects on transpiration. The COUP model is a promising tool for predicting transpiration in high-latitude stands.

  16. Daily course of transpiration productivity

    Energy Technology Data Exchange (ETDEWEB)

    Koch, W

    1957-01-01

    THIS STUDY OF THE RELATIONSHIP BETWEEN TRANSPIRATION AND DRY-MATTER PRODUCTION OF FIELD CROPS, INCLUDED ALSO INVESTIGATIONS OF NEEDLES OF SPRUCE AND SILVER FIR SUFFERING FROM SO/sup 3/ DAMAGE, IN WHICH A MARKED INCREASE IN TRANSPIRATION PRODUCTIVITY WAS NOTED. 25 REFERENCES, 32 FIGURES.

  17. Remote sensing of potential and actual daily transpiration of plant canopies based on spectral reflectance and infrared thermal measurements: Concept with preliminary test

    International Nuclear Information System (INIS)

    Inoue, Y.; Moran, M.S.; Pinter, P.J.Jr.

    1994-01-01

    A new concept for estimating potential and actual values of daily transpiration rate of vegetation canopies is presented along with results of an initial test. The method is based on a physical foundation of spectral radiation balance for a vegetation canopy, the key inputs to the model being the remotely sensed spectral reflectance and the surface temperature of the plant canopy. The radiation interception or absorptance is estimated more directly from remotely sensed spectral data than it is from the leaf area index. The potential daily transpiration is defined as a linear function of the absorbed solar radiation, which can be estimated using a linear relationship between the fraction absorptance of solar radiation and the remotely sensed Soil Adjusted Vegetation Index for the canopy. The actual daily transpiration rate is estimated by combining this concept with the Jackson-Idso Crop Water Stress Index, which also can be calculated from remotely sensed plant leaf temperatures measured by infrared thermometry. An initial demonstration with data sets from an alfalfa crop and a rangeland suggests that the method may give reasonable estimates of potential and actual values of daily transpiration rate over diverse vegetation area based on simple remote sensing measurements and basic meteorological parameters

  18. Latent manganese deficiency increases transpiration in barley (Hordeum vulgare).

    Science.gov (United States)

    Hebbern, Christopher A; Laursen, Kristian Holst; Ladegaard, Anne H; Schmidt, Sidsel B; Pedas, Pai; Bruhn, Dan; Schjoerring, Jan K; Wulfsohn, Dvoralai; Husted, Søren

    2009-03-01

    To investigate if latent manganese (Mn) deficiency leads to increased transpiration, barley plants were grown for 10 weeks in hydroponics with daily additions of Mn in the low nM range. The Mn-starved plants did not exhibit visual leaf symptoms of Mn deficiency, but Chl a fluorescence measurements revealed that the quantum yield efficiency of PSII (F(v)/F(m)) was reduced from 0.83 in Mn-sufficient control plants to below 0.5 in Mn-starved plants. Leaf Mn concentrations declined from 30 to 7 microg Mn g(-1) dry weight in control and Mn-starved plants, respectively. Mn-starved plants had up to four-fold higher transpiration than control plants. Stomatal closure and opening upon light/dark transitions took place at the same rate in both Mn treatments, but the nocturnal leaf conductance for water vapour was still twice as high in Mn-starved plants compared with the control. The observed increase in transpiration was substantiated by (13)C-isotope discrimination analysis and gravimetric measurement of the water consumption, showing significantly lower water use efficiency in Mn-starved plants. The extractable wax content of leaves of Mn-starved plants was approximately 40% lower than that in control plants, and it is concluded that the increased leaf conductance and higher transpirational water loss are correlated with a reduction in the epicuticular wax layer under Mn deficiency.

  19. [The study of transpiration influence on plant infrared radiation character].

    Science.gov (United States)

    Ling, Jun; Zhang, Shuan-Qin; Pan, Jia-Liang; Lian, Chang-Chun; Yang, Hui

    2012-07-01

    Studying vegetation infrared radiation character is the base of developing infrared camouflage and concealment technology of ground military target. Accurate fusion of target and background can be achieved by simulating formation mechanism of vegetation infrared radiation character. Leaf transpiration is characteristic physiological mechanism of vegetation and one of the main factors that influence its infrared radiation character. In the present paper, physical model of leaf energy balance is set up. Based on this model the influence of plant transpiration on leaf temperature is analyzed and calculated. The daily periodic variation of transpiration, leaf temperature and infrared radiation character of typical plants such as camphor tree and holly is actually measured with porometer and infrared thermal imaging system. By contrasting plant leaf with dryness leaf, experimental data indicates that plant transpiration can regulate leaf energy balance effectively and control leaf temperature in a reasonable range and suppress deep range variation of leaf infrared radiation character.

  20. Numerical simulation of gas-phonon coupling in thermal transpiration flows.

    Science.gov (United States)

    Guo, Xiaohui; Singh, Dhruv; Murthy, Jayathi; Alexeenko, Alina A

    2009-10-01

    Thermal transpiration is a rarefied gas flow driven by a wall temperature gradient and is a promising mechanism for gas pumping without moving parts, known as the Knudsen pump. Obtaining temperature measurements along capillary walls in a Knudsen pump is difficult due to extremely small length scales. Meanwhile, simplified analytical models are not applicable under the practical operating conditions of a thermal transpiration device, where the gas flow is in the transitional rarefied regime. Here, we present a coupled gas-phonon heat transfer and flow model to study a closed thermal transpiration system. Discretized Boltzmann equations are solved for molecular transport in the gas phase and phonon transport in the solid. The wall temperature distribution is the direct result of the interfacial coupling based on mass conservation and energy balance at gas-solid interfaces and is not specified a priori unlike in the previous modeling efforts. Capillary length scales of the order of phonon mean free path result in a smaller temperature gradient along the transpiration channel as compared to that predicted by the continuum solid-phase heat transfer. The effects of governing parameters such as thermal gradients, capillary geometry, gas and phonon Knudsen numbers and, gas-surface interaction parameters on the efficiency of thermal transpiration are investigated in light of the coupled model.

  1. Noninvasive Ph-telemetric Measurement of Gastrointestinal Function

    Science.gov (United States)

    Tietze, Karen J.

    1991-01-01

    The purpose of this study was to gain experience with and validate the Heidelberg pH-telemetric methodology in order to determine if the pH-telemetric methodology would be a useful noninvasive measure of gastrointestinal transit time for future ground-based and in-flight drug evaluation studies. The Heidelberg pH metering system is a noninvasive, nonradioactive telemetric system that, following oral ingestion, continuously measures intraluminal pH of the stomach, duodenum, small bowel, ileocecal junction, and large bowel. Gastrointestinal motility profiles were obtained in normal volunteers using the lactulose breath-hydrogen and Heidelberg pH metering techniques. All profiles were obtained in the morning after an overnight fast. Heidelberg pH profiles were obtained in the fasting and fed states; lactulose breath-hydrogen profiles were obtained after a standard breakfast. Mouth-to-cecum transit time was measured as the interval from administration of lactulose (30 ml; 20 g) to a sustained increase in breath-hydrogen of 10 ppm or more. Gastric emptying time was measured as the interval from the administration of the Heidelberg capsule to a sustained increase in pH of three units or more.

  2. OUT Success Stories: Transpired Solar Collectors

    International Nuclear Information System (INIS)

    Clyne, R.

    2000-01-01

    Transpired solar collectors are a reliable, low-cost technology for preheating building ventilation air. With simple payback periods ranging from 3 to 12 years and an estimated 30-year life span, transpired collector systems offer building owners substantial cost savings

  3. Noninvasive acceleration measurements to characterize knee arthritis and chondromalacia.

    Science.gov (United States)

    Reddy, N P; Rothschild, B M; Mandal, M; Gupta, V; Suryanarayanan, S

    1995-01-01

    Devising techniques and instrumentation for early detection of knee arthritis and chondromalacia presents a challenge in the domain of biomedical engineering. The purpose of the present investigation was to characterize normal knees and knees affected by osteoarthritis, rheumatoid arthritis, and chondromalacia using a set of noninvasive acceleration measurements. Ultraminiature accelerometers were placed on the skin over the patella in four groups of subjects, and acceleration measurements were obtained during leg rotation. Acceleration measurements were significantly different in the four groups of subjects in the time and frequency domains. Power spectral analysis revealed that the average power was significantly different for these groups over a 100-500 Hz range. Noninvasive acceleration measurements can characterize the normal, arthritis, and chondromalacia knees. However, a study on a larger group of subjects is indicated.

  4. Fruit load governs transpiration of olive trees

    Science.gov (United States)

    Bustan, Amnon; Dag, Arnon; Yermiyahu, Uri; Erel, Ran; Presnov, Eugene; Agam, Nurit; Kool, Dilia; Iwema, Joost; Zipori, Isaac; Ben-Gal, Alon

    2016-01-01

    We tested the hypothesis that whole-tree water consumption of olives (Olea europaea L.) is fruit load-dependent and investigated the driving physiological mechanisms. Fruit load was manipulated in mature olives grown in weighing-drainage lysimeters. Fruit was thinned or entirely removed from trees at three separate stages of growth: early, mid and late in the season. Tree-scale transpiration, calculated from lysimeter water balance, was found to be a function of fruit load, canopy size and weather conditions. Fruit removal caused an immediate decline in water consumption, measured as whole-plant transpiration normalized to tree size, which persisted until the end of the season. The later the execution of fruit removal, the greater was the response. The amount of water transpired by a fruit-loaded tree was found to be roughly 30% greater than that of an equivalent low- or nonyielding tree. The tree-scale response to fruit was reflected in stem water potential but was not mirrored in leaf-scale physiological measurements of stomatal conductance or photosynthesis. Trees with low or no fruit load had higher vegetative growth rates. However, no significant difference was observed in the overall aboveground dry biomass among groups, when fruit was included. This case, where carbon sources and sinks were both not limiting, suggests that the role of fruit on water consumption involves signaling and alterations in hydraulic properties of vascular tissues and tree organs. PMID:26802540

  5. Tamarix transpiration along a semiarid river has negligible impact on water resources

    Science.gov (United States)

    McDonald, Alyson K.; Wilcox, Bradford P.; Moore, Georgianne W.; Hart, Charles R.; Sheng, Zhuping; Owens, M. Keith

    2015-07-01

    The proliferation of saltcedar (Tamarix spp.) along regulated rivers in the western United States has transformed riparian plant communities. It is commonly assumed that transpiration by these alien plants has led to large losses of water that would otherwise contribute to streamflow. Control of saltcedar, therefore, has been considered a viable strategy for conserving water and increasing streamflow in these regions. In an effort to better understand the linkage between transpiration by saltcedar and streamflow, we monitored transpiration, stream stage, and groundwater elevations within a saltcedar stand along the Pecos River during June 2004. Transpiration, as determined by sap flow measurements, exhibited a strong diel pattern; stream stage did not. Diel fluctuations in groundwater levels were observed, but only in one well, which was located in the center of the saltcedar stand. In that well, the correlation between maximal transpiration and minimal groundwater elevation was weak (R2 = 0.16). No effects of transpiration were detected in other wells within the saltcedar stand, nor in the stream stage. The primary reason, we believe, is that the saltcedar stand along this reach of the Pecos River has relatively low sapwood area and a limited spatial extent resulting in very low transpiration compared with the stream discharge. Our results are important because they provide a mechanistic explanation for the lack of increase in streamflow following large-scale control of invasive trees along semiarid rivers.

  6. Remetabolism of transpired ethanol by Populus deltoides

    International Nuclear Information System (INIS)

    MacDonald, R.C.; Kimmerer, T.W.

    1990-01-01

    Ethanol is present in the transpiration stream of flooded and unflooded trees in concentrations up to 0.5mM. Transpired ethanol does not evaporate but is remetabolized by foliage and upper stems in Populus deltoides. 14 C-ethanol was supplied in the transpiration stream to excised leaves and shoots; more than 98% was incorporated. Less than 1% was respired as CO 2 . Organic and amino acids were labelled initially, with eventual accumulations in water- and chloroform-soluble fractions and into protein. Much of the label was incorporated into stem tissue, with little reaching the lamina. These experiments suggest that ethanol is not lost transpirationally through the leaves, but is efficiently recycled in a manner resembling lactate recycling in mammals

  7. Non-invasive measurements of carboxyhemoglobin and methemoglobin in children with sickle cell disease.

    Science.gov (United States)

    Caboot, Jason B; Jawad, Abbas F; McDonough, Joseph M; Bowdre, Cheryl Y; Arens, Raanan; Marcus, Carole L; Mason, Thornton B A; Smith-Whitley, Kim; Ohene-Frempong, Kwaku; Allen, Julian L

    2012-08-01

    Assessment of oxyhemoglobin saturation in patients with sickle cell disease (SCD) is vital for prompt recognition of hypoxemia. The accuracy of pulse oximeter measurements of blood oxygenation in SCD patients is variable, partially due to carboxyhemoglobin (COHb) and methemoglobin (MetHb), which decrease the oxygen content of blood. This study evaluated the accuracy and reliability of a non-invasive pulse co-oximeter in measuring COHb and MetHb percentages (SpCO and SpMet) in children with SCD. We hypothesized that measurements of COHb and MetHb by non-invasive pulse co-oximetry agree within acceptable clinical accuracy with those made by invasive whole blood co-oximetry. Fifty children with SCD-SS underwent pulse co-oximetry and blood co-oximetry while breathing room air. Non-invasive COHb and MetHb readings were compared to the corresponding blood measurements. The pulse co-oximeter bias was 0.1% for COHb and -0.22% for MetHb. The precision of the measured SpCO was ± 2.1% within a COHb range of 0.4-6.1%, and the precision of the measured SpMet was ± 0.33% within a MetHb range of 0.1-1.1%. Non-invasive pulse co-oximetry was useful in measuring COHb and MetHb levels in children with SCD. Although the non-invasive technique slightly overestimated the invasive COHb measurements and slightly underestimated the invasive MetHb measurements, there was close agreement between the two methods. Copyright © 2012 Wiley Periodicals, Inc.

  8. Leaf temperature and transpiration of rice plants in relation to short-wave radiation and wind speed

    International Nuclear Information System (INIS)

    Ito, D.; Haseba, T.

    1984-01-01

    Leaf temperature and transpiration amount of rice plants were measured in a steady environment in a laboratory and in field situations. The plants set in Wagner pots were used. Experiments were carried out at the tillering and booting stages, and on the date of maturity. Measured leaf temperatures and transpiration rates were analyzed in connection with incident short-wave radiation on a leaf and wind speed measured simultaneously.Instantaneous supplying and turning-off of steady artificial light caused cyclic changes in leaf temperature and transpiration. Leaf temperature dropped in feeble illumination compared with the steady temperature in the preceeding dark.On the date of maturity, a rice plant leaf was warmer than the air, even in feeble light. Then, the leaf-air temperature difference and transpiration rate showed approximately linear increases with short-wave radiation intensity. On the same date, an increase in wind speed produced a decrease in leaf-air temperature difference, i.e., leaf temperature dropped, and an increase in transpiration rate. The rates of both changes in leaf temperature and transpiration rate were fairly large in a range of wind speed below about 1m/s.For rice plants growing favorably from the tillering stage through the booting stage, the leaves were considerably cooler than the air, even in an intense light and/or solar radiation. The leaf temperature showed the lowest value at short-wave radiations between 0.15 and 0.20ly/min, at above which the leaf temperature rised with an increase in short-wave radiation until it approached the air temperature. Transpiration rate of rice plants increased rapidly with an increase in short-wave radiation ranging below 0.2 or 0.3ly/min, at above which the increase in transpiration rate slowed.The relationships between leaf temperature and/or transpiration rate and wind speed and/or incident short-wave radiation (solar radiation) which were obtained experimentally, supported the relationships

  9. Fruit load governs transpiration of olive trees.

    Science.gov (United States)

    Bustan, Amnon; Dag, Arnon; Yermiyahu, Uri; Erel, Ran; Presnov, Eugene; Agam, Nurit; Kool, Dilia; Iwema, Joost; Zipori, Isaac; Ben-Gal, Alon

    2016-03-01

    We tested the hypothesis that whole-tree water consumption of olives (Olea europaea L.) is fruit load-dependent and investigated the driving physiological mechanisms. Fruit load was manipulated in mature olives grown in weighing-drainage lysimeters. Fruit was thinned or entirely removed from trees at three separate stages of growth: early, mid and late in the season. Tree-scale transpiration, calculated from lysimeter water balance, was found to be a function of fruit load, canopy size and weather conditions. Fruit removal caused an immediate decline in water consumption, measured as whole-plant transpiration normalized to tree size, which persisted until the end of the season. The later the execution of fruit removal, the greater was the response. The amount of water transpired by a fruit-loaded tree was found to be roughly 30% greater than that of an equivalent low- or nonyielding tree. The tree-scale response to fruit was reflected in stem water potential but was not mirrored in leaf-scale physiological measurements of stomatal conductance or photosynthesis. Trees with low or no fruit load had higher vegetative growth rates. However, no significant difference was observed in the overall aboveground dry biomass among groups, when fruit was included. This case, where carbon sources and sinks were both not limiting, suggests that the role of fruit on water consumption involves signaling and alterations in hydraulic properties of vascular tissues and tree organs. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Novel idea to monitor and measure blood hemoglobin noninvasively ...

    African Journals Online (AJOL)

    Measuring blood hematocrit noninvasively is reviewed in this paper. Although there is an inclination to measure the hematocrit by determining the bioelectrical impedance of the blood, in vitro experimental methods still remain practically inapplicable. The blood sample size is determined when blood samples are examined.

  11. The ERECTA gene regulates plant transpiration efficiency in Arabidopsis.

    Science.gov (United States)

    Masle, Josette; Gilmore, Scott R; Farquhar, Graham D

    2005-08-11

    Assimilation of carbon by plants incurs water costs. In the many parts of the world where water is in short supply, plant transpiration efficiency, the ratio of carbon fixation to water loss, is critical to plant survival, crop yield and vegetation dynamics. When challenged by variations in their environment, plants often seem to coordinate photosynthesis and transpiration, but significant genetic variation in transpiration efficiency has been identified both between and within species. This has allowed plant breeders to develop effective selection programmes for the improved transpiration efficiency of crops, after it was demonstrated that carbon isotopic discrimination, Delta, of plant matter was a reliable and sensitive marker negatively related to variation in transpiration efficiency. However, little is known of the genetic controls of transpiration efficiency. Here we report the isolation of a gene that regulates transpiration efficiency, ERECTA. We show that ERECTA, a putative leucine-rich repeat receptor-like kinase (LRR-RLK) known for its effects on inflorescence development, is a major contributor to a locus for Delta on Arabidopsis chromosome 2. Mechanisms include, but are not limited to, effects on stomatal density, epidermal cell expansion, mesophyll cell proliferation and cell-cell contact.

  12. Water, heat, and airborne pollutants effects on transpiration of urban trees

    International Nuclear Information System (INIS)

    Wang Hua; Ouyang Zhiyun; Chen Weiping; Wang Xiaoke; Zheng Hua; Ren Yufen

    2011-01-01

    Transpiration rates of six urban tree species in Beijing evaluated by thermal dissipation method for one year were correlated to environmental variables in heat, water, and pollutant groups. To sort out colinearity of the explanatory variables, their individual and joint contributions to variance of tree transpiration were determined by the variation and hierarchical partitioning methods. Majority of the variance in transpiration rates was associated with joint effects of variables in heat and water groups and variance due to individual effects of explanatory group were in comparison small. Atmospheric pollutants exerted only minor effects on tree transpiration. Daily transpiration rate was most affected by air temperature, soil temperature, total radiation, vapor pressure deficit, and ozone. Relative humidity would replace soil temperature when factors influencing hourly transpiration rate was considered. - Highlights: → Heat, water, pollutants effect on transpiration was evaluated by partitioning method. → Urban tree transpiration was mainly affected by combined effects of these variables. → The heat and water variables affected transpiration of urban trees. → The urban air pollution merely acts as an antagonistic factor. - Heat and water related environmental variables affected transpiration of urban trees and ozone was an added yet minor stress factor.

  13. Tuning Transpiration by Interfacial Solar Absorber-Leaf Engineering.

    Science.gov (United States)

    Zhuang, Shendong; Zhou, Lin; Xu, Weichao; Xu, Ning; Hu, Xiaozhen; Li, Xiuqiang; Lv, Guangxin; Zheng, Qinghui; Zhu, Shining; Wang, Zhenlin; Zhu, Jia

    2018-02-01

    Plant transpiration, a process of water movement through a plant and its evaporation from aerial parts especially leaves, consumes a large component of the total continental precipitation (≈48%) and significantly influences global water distribution and climate. To date, various chemical and/or biological explorations have been made to tune the transpiration but with uncertain environmental risks. In recent years, interfacial solar steam/vapor generation is attracting a lot of attention for achieving high energy transfer efficiency. Various optical and thermal designs at the solar absorber-water interface for potential applications in water purification, seawater desalination, and power generation appear. In this work, the concept of interfacial solar vapor generation is extended to tunable plant transpiration by showing for the first time that the transpiration efficiency can also be enhanced or suppressed through engineering the solar absorber-leaf interface. By tuning the solar absorption of membrane in direct touch with green leaf, surface temperature of green leaf will change accordingly because of photothermal effect, thus the transpiration efficiency as well as temperature and relative humidity in the surrounding environment will be tuned. This tunable transpiration by interfacial absorber-leaf engineering can open an alternative avenue to regulate local atmospheric temperature, humidity, and eventually hydrologic cycle.

  14. Tuning Transpiration by Interfacial Solar Absorber‐Leaf Engineering

    Science.gov (United States)

    Zhuang, Shendong; Zhou, Lin; Xu, Weichao; Xu, Ning; Hu, Xiaozhen; Li, Xiuqiang; Lv, Guangxin; Zheng, Qinghui; Zhu, Shining

    2017-01-01

    Abstract Plant transpiration, a process of water movement through a plant and its evaporation from aerial parts especially leaves, consumes a large component of the total continental precipitation (≈48%) and significantly influences global water distribution and climate. To date, various chemical and/or biological explorations have been made to tune the transpiration but with uncertain environmental risks. In recent years, interfacial solar steam/vapor generation is attracting a lot of attention for achieving high energy transfer efficiency. Various optical and thermal designs at the solar absorber–water interface for potential applications in water purification, seawater desalination, and power generation appear. In this work, the concept of interfacial solar vapor generation is extended to tunable plant transpiration by showing for the first time that the transpiration efficiency can also be enhanced or suppressed through engineering the solar absorber–leaf interface. By tuning the solar absorption of membrane in direct touch with green leaf, surface temperature of green leaf will change accordingly because of photothermal effect, thus the transpiration efficiency as well as temperature and relative humidity in the surrounding environment will be tuned. This tunable transpiration by interfacial absorber‐leaf engineering can open an alternative avenue to regulate local atmospheric temperature, humidity, and eventually hydrologic cycle. PMID:29619300

  15. Leaf transpiration efficiency of some drought-resistant maize lines

    Science.gov (United States)

    Field measurements of leaf gas exchange in maize often indicate stomatal conductances higher than required to provide substomatal carbon dioxide concentrations saturating to photosynthesis. Thus maize leaves often operate at lower transpiration efficiency (TE) than potentially achievable for specie...

  16. Noninvasive microbubble-based pressure measurements: a simulation study

    NARCIS (Netherlands)

    Postema, Michiel; Postema, M.A.B.; Bouakaz, Ayache; de Jong, N.

    2004-01-01

    This paper describes a noninvasive method to measure local hydrostatic pressures in fluid filled cavities. The method is based on the disappearance time of a gas bubble, as the disappearance time is related to the hydrostatic pressure. When a bubble shrinks, its response to ultrasound changes. From

  17. Environmental and biological controls of urban tree transpiration in the Upper Midwest

    Science.gov (United States)

    Peters, E. B.; McFadden, J.; Montgomery, R.

    2009-12-01

    Urban trees provide a variety of ecosystem services to urban and suburban areas, including carbon uptake, climate amelioration, energy reduction, and stormwater management. Tree transpiration, in particular, modifies urban water budgets by providing an alternative pathway for water after rain events. The relative importance of environmental and biological controls on transpiration are poorly understood in urban areas, yet these controls are important for quantifying and scaling up the ecosystem services that urban trees provide at landscape and regional scales and predicting how urban ecosystems will respond to climate changes. The objectives of our study were to quantify the annual cycle of tree transpiration in an urban ecosystem and to determine how different urban tree species and plant functional types respond to environmental drivers. We continuously measured whole-tree transpiration using thermal dissipation sap flow at four urban forest stands that were broadly representative of the species composition and tree sizes found in a suburban residential neighborhood of Minneapolis-Saint Paul, Minnesota. A total of 40 trees, representing different species, plant functional types, successional stages, and xylem anatomy, were sampled throughout the 2007 and 2008 growing seasons (April-November). At each site we monitored soil moisture, air temperature, and relative humidity continuously, and we measured leaf area index weekly. Urban tree transpiration was strongly correlated with diurnal changes in vapor pressure deficit and photosynthetically active radiation and with seasonal changes in leaf area index. We found that plant functional type better explained species differences in transpiration per canopy area than either successional stage or xylem anatomy, largely due to differences in canopy structure between conifer and broad-leaf deciduous trees. We also observed inter-annual differences in transpiration rates due to a mid-season drought and longer growing

  18. Non-invasive clinical measurements of bone mineral

    International Nuclear Information System (INIS)

    Mazess, R.B.

    1982-01-01

    Non-invasive methods are now available for measurement of both compact and trabecular bone on both the appendicular and axial skeleton. Radiogrammetry and photodensitometry both are subject to large errors in areas of heavy tissue cover but precise measurements can be made on the hand bones. Single-photon absorptiometry with 125 I provides a more accurate and precise measure of appendicular compact bone, which is particularly useful for screening of metabolic bone disease and for monitoring renal osteodystrophy. Dual-photon absorptiometry with 153 Gd provides a measurement of the femoral neck and of the lumbar spine and hence is the most diagnostically sensitive measurement method. It is also the most sensitive for monitoring bone changes

  19. Non-invasive measurement of adrenocortical activity in a ...

    African Journals Online (AJOL)

    Measuring physiological stress reactions through the quantification of plasma cortisol often involves physical restraint, which acts as a stressor itself. Here, we present the validation of a non-invasive method for assessing adrenocortical activity as an indicator of stress in the bat-eared fox (Otocyon megalotis). By conducting ...

  20. Forest Transpiration: Resolving Species-Specific Root Water Uptake Patterns

    Science.gov (United States)

    Blume, T.; Heidbuechel, I.; Simard, S.; Guntner, A.; Weiler, M.; Stewart, R. D.

    2016-12-01

    Transpiration and its spatio-temporal variability are still not fully understood, despite their importance for the global water cycle. This is in part due to our inability to measure transpiration comprehensively. Transpiration is usually either estimated with empirical equations based on climatic variables and crop factors, by measuring sap velocities, estimating sap wood area and scaling up to the forest stand based on a number of assumptions or by measuring the integral signal across a footprint with eddy flux towers. All these methods are focused on the cumulated loss of water to the atmosphere and do not provide information on where this water is coming from. In this study, spatio-temporal variability of root water uptake was investigated in a forest in the northeastern German lowlands. The soils are sandy and the depth of the unsaturated zone ranges from 1 to 30 m. We estimated root water uptake from different soil depths, from 0.1 m down to 2 m, based on diurnal fluctuations in soil moisture content during rain-free days. The 15 field sites cover different topographic positions and forest stands: 4 pure stands of both mature and young beech and pine and 9 mixed stands. The resulting daily data set of root water uptake shows that the forest stands differ in total amounts as well as in uptake depth distributions. Temporal dynamics of signal strength within the profile suggest a locally shifting spatial distribution of uptake that changes with water availability. The relationship of these depth-resolved uptake rates to overall soil water availability varies considerably between tree species. Using the physically-based soil hydrological model HYDRUS we investigated to what extent the observed patterns in uptake can be related to soil physical relationships alone and where tree species-specific aspects come into play. We furthermore used the model to test assumptions and estimate uncertainties of this soil moisture based estimation of plant water uptake. The

  1. Sapflow-Based Stand Transpiration in a Semiarid Natural Oak Forest on China’s Loess Plateau

    Directory of Open Access Journals (Sweden)

    Mei-Jie Yan

    2016-10-01

    Full Text Available The semi-arid region of China’s Loess Plateau is characterized by fragile ecosystems and a shortage of water resources. The major natural forest type in this region is the secondary forest with the flora dominated by the Liaodong oak (Quercus liaotungensis Koidz.. To understand its transpiration water use in relation to environmental factors, we applied Granier-type thermal dissipation probes to monitor stem sap flows of 21 sample trees, representing different classes of diameter at breast height in a permanent plot. The stem- and stand-scale transpiration values during the 2008–2010 growing seasons were estimated using measurements of sap flux densities and corresponding sapwood areas. The dominant factors affecting stand-scale transpiration varied with time scales. Daily stand transpiration correlated with daily solar radiation and daytime average vapor pressure deficit. Seasonal and interannual changes in stand transpiration were closely related to leaf area index (LAI values. No obvious relationship was observed between monthly stand transpiration and soil moisture or precipitation during the period, probably as a result of both the hysteretic effect of precipitation on transpiration, and changes in LAI throughout the growing season. Stand transpiration during the three growing seasons ranged from 75 to 106 mm, representing low to normal values for the semi-arid forest. The proportion of transpiration by oak trees in the stand was stable ranging from 60% to 66% and corresponded to their basal area proportion of approximately 59%. The results suggest that the natural forest consisting mainly of oak trees is in a formal stage of forest development that maintains a normal magnitude of annual water consumption.

  2. Noninvasive hemoglobin measurement using dynamic spectrum

    Science.gov (United States)

    Yi, Xiaoqing; Li, Gang; Lin, Ling

    2017-08-01

    Spectroscopy methods for noninvasive hemoglobin (Hgb) measurement are interfered by individual difference and particular weak signal. In order to address these problems, we have put forward a series of improvement methods based on dynamic spectrum (DS), including instrument design, spectrum extraction algorithm, and modeling approach. The instrument adopts light sources composed of eight laser diodes with the wavelength range from 600 nm to 1100 nm and records photoplethysmography signals at eight wavelengths synchronously. In order to simplify the optical design, we modulate the light sources with orthogonal square waves and design the corresponding demodulation algorithm, instead of adopting a beam-splitting system. A newly designed algorithm named difference accumulation has been proved to be effective in improving the accuracy of dynamic spectrum extraction. 220 subjects are involved in the clinical experiment. An extreme learning machine calibration model between the DS data and the Hgb levels is established. Correlation coefficient and root-mean-square error of prediction sets are 0.8645 and 8.48 g/l, respectively. The results indicate that the Hgb level can be derived by this approach noninvasively with acceptable precision and accuracy. It is expected to achieve a clinic application in the future.

  3. Modelling maximum canopy conductance and transpiration in ...

    African Journals Online (AJOL)

    There is much current interest in predicting the maximum amount of water that can be transpired by Eucalyptus trees. It is possible that industrial waste water may be applied as irrigation water to eucalypts and it is important to predict the maximum transpiration rates of these plantations in an attempt to dispose of this ...

  4. Combining quantitative trait loci analysis with physiological models to predict genotype-specific transpiration rates.

    Science.gov (United States)

    Reuning, Gretchen A; Bauerle, William L; Mullen, Jack L; McKay, John K

    2015-04-01

    Transpiration is controlled by evaporative demand and stomatal conductance (gs ), and there can be substantial genetic variation in gs . A key parameter in empirical models of transpiration is minimum stomatal conductance (g0 ), a trait that can be measured and has a large effect on gs and transpiration. In Arabidopsis thaliana, g0 exhibits both environmental and genetic variation, and quantitative trait loci (QTL) have been mapped. We used this information to create a genetically parameterized empirical model to predict transpiration of genotypes. For the parental lines, this worked well. However, in a recombinant inbred population, the predictions proved less accurate. When based only upon their genotype at a single g0 QTL, genotypes were less distinct than our model predicted. Follow-up experiments indicated that both genotype by environment interaction and a polygenic inheritance complicate the application of genetic effects into physiological models. The use of ecophysiological or 'crop' models for predicting transpiration of novel genetic lines will benefit from incorporating further knowledge of the genetic control and degree of independence of core traits/parameters underlying gs variation. © 2014 John Wiley & Sons Ltd.

  5. Transpiration of greenhouse crops : an aid to climate management

    OpenAIRE

    Stanghellini, C.

    1987-01-01

    In this book some physical aspects of greenhouse climate are analyzed to show the direct interrelation between microclimate and crop transpiration. The energy balance of a greenhouse crop is shown to provide a sound physical framework to quantify the impact of microclimate on transpiration and to identify the constraints set on climate management by the termodynamic behaviour of the canopy. Before the relationship among microclimate, canopy temperature and transpiration is rendered i...

  6. Gravimetric phenotyping of whole plant transpiration responses to atmospheric vapour pressure deficit identifies genotypic variation in water use efficiency.

    Science.gov (United States)

    Ryan, Annette C; Dodd, Ian C; Rothwell, Shane A; Jones, Ros; Tardieu, Francois; Draye, Xavier; Davies, William J

    2016-10-01

    There is increasing interest in rapidly identifying genotypes with improved water use efficiency, exemplified by the development of whole plant phenotyping platforms that automatically measure plant growth and water use. Transpirational responses to atmospheric vapour pressure deficit (VPD) and whole plant water use efficiency (WUE, defined as the accumulation of above ground biomass per unit of water used) were measured in 100 maize (Zea mays L.) genotypes. Using a glasshouse based phenotyping platform with naturally varying VPD (1.5-3.8kPa), a 2-fold variation in WUE was identified in well-watered plants. Regression analysis of transpiration versus VPD under these conditions, and subsequent whole plant gas exchange at imposed VPDs (0.8-3.4kPa) showed identical responses in specific genotypes. Genotype response of transpiration versus VPD fell into two categories: 1) a linear increase in transpiration rate with VPD with low (high WUE) or high (low WUE) transpiration rate at all VPDs, 2) a non-linear response with a pronounced change point at low VPD (high WUE) or high VPD (low WUE). In the latter group, high WUE genotypes required a significantly lower VPD before transpiration was restricted, and had a significantly lower rate of transpiration in response to VPD after this point, when compared to low WUE genotypes. Change point values were significantly positively correlated with stomatal sensitivity to VPD. A change point in stomatal response to VPD may explain why some genotypes show contradictory WUE rankings according to whether they are measured under glasshouse or field conditions. Furthermore, this novel use of a high throughput phenotyping platform successfully reproduced the gas exchange responses of individuals measured in whole plant chambers, accelerating the identification of plants with high WUE. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Transpiration of Eucalyptus woodlands across a natural gradient of depth-to-groundwater.

    Science.gov (United States)

    Zolfaghar, Sepideh; Villalobos-Vega, Randol; Zeppel, Melanie; Cleverly, James; Rumman, Rizwana; Hingee, Matthew; Boulain, Nicolas; Li, Zheng; Eamus, Derek

    2017-07-01

    Water resources and their management present social, economic and environmental challenges, with demand for human consumptive, industrial and environmental uses increasing globally. However, environmental water requirements, that is, the allocation of water to the maintenance of ecosystem health, are often neglected or poorly quantified. Further, transpiration by trees is commonly a major determinant of the hydrological balance of woodlands but recognition of the role of groundwater in hydrological balances of woodlands remains inadequate, particularly in mesic climates. In this study, we measured rates of tree water-use and sapwood 13C isotopic ratio in a mesic, temperate Eucalypt woodland along a naturally occurring gradient of depth-to-groundwater (DGW), to examine daily, seasonal and annual patterns of transpiration. We found that: (i) the maximum rate of stand transpiration was observed at the second shallowest site (4.3 m) rather than the shallowest (2.4 m); (ii) as DGW increased from 4.3 to 37.5 m, stand transpiration declined; (iii) the smallest rate of stand transpiration was observed at the deepest (37.5 m) site; (iv) intrinsic water-use efficiency was smallest at the two intermediate DGW sites as reflected in the Δ13C of the most recently formed sapwood and largest at the deepest and shallowest DGW sites, reflecting the imposition of flooding at the shallowest site and the inaccessibility of groundwater at the deepest site; and (v) there was no evidence of convergence in rates of water-use for co-occurring species at any site. We conclude that even in mesic environments groundwater can be utilized by trees. We further conclude that these forests are facultatively groundwater-dependent when groundwater depth is transpiration is likely to increase significantly at the three shallowest DGW sites. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. [Meta-analyses on measurement precision of non-invasive hemodynamic monitoring technologies in adults].

    Science.gov (United States)

    Pestel, G; Fukui, K; Higashi, M; Schmidtmann, I; Werner, C

    2018-06-01

    An ideal non-invasive monitoring system should provide accurate and reproducible measurements of clinically relevant variables that enables clinicians to guide therapy accordingly. The monitor should be rapid, easy to use, readily available at the bedside, operator-independent, cost-effective and should have a minimal risk and side effect profile for patients. An example is the introduction of pulse oximetry, which has become established for non-invasive monitoring of oxygenation worldwide. A corresponding non-invasive monitoring of hemodynamics and perfusion could optimize the anesthesiological treatment to the needs in individual cases. In recent years several non-invasive technologies to monitor hemodynamics in the perioperative setting have been introduced: suprasternal Doppler ultrasound, modified windkessel function, pulse wave transit time, radial artery tonometry, thoracic bioimpedance, endotracheal bioimpedance, bioreactance, and partial CO 2 rebreathing have been tested for monitoring cardiac output or stroke volume. The photoelectric finger blood volume clamp technique and respiratory variation of the plethysmography curve have been assessed for monitoring fluid responsiveness. In this manuscript meta-analyses of non-invasive monitoring technologies were performed when non-invasive monitoring technology and reference technology were comparable. The primary evaluation criterion for all studies screened was a Bland-Altman analysis. Experimental and pediatric studies were excluded, as were all studies without a non-invasive monitoring technique or studies without evaluation of cardiac output/stroke volume or fluid responsiveness. Most studies found an acceptable bias with wide limits of agreement. Thus, most non-invasive hemodynamic monitoring technologies cannot be considered to be equivalent to the respective reference method. Studies testing the impact of non-invasive hemodynamic monitoring technologies as a trend evaluation on outcome, as well as

  9. Downwind evolution of transpiration by two irrigated crops under conditions of local advection

    Science.gov (United States)

    McAneney, K. J.; Brunet, Y.; Itier, B.

    1994-09-01

    Previous measurements of water loss from small-dish evaporimeters mounted at the height of irrigated crops grown under conditions of extreme local advection in the Sudan are reexamined. From these evaporimeter measurements, it is possible to calculate fractional changes in the saturation deficit. Relationships between canopy conductance and saturation deficit are briefly reviewed and introduced into the Penman-Monteith equation to calculate transpiration rates as a function of distance downwind of the boundary between the upwind desert and the irrigated crop. In contradiction to most theoretical predictions, these new calculations show rates of transpiration to undergo only modest changes with increasing fetch. This occurs because of the feedback interaction between saturation deficit and stomatal conductance. This result is in good accord with a recent study suggesting that a dry-moist boundary transition may be best modelled as a simple step change in surface fluxes and further that the advective enhancement of evaporation may have been overestimated by many advection models. Larger effects are expected on dry matter yields because of the direct influence of saturation deficit on the yield-transpiration ratio.

  10. Model-assisted analysis of spatial and temporal variations in fruit temperature and transpiration highlighting the role of fruit development.

    Science.gov (United States)

    Nordey, Thibault; Léchaudel, Mathieu; Saudreau, Marc; Joas, Jacques; Génard, Michel

    2014-01-01

    Fruit physiology is strongly affected by both fruit temperature and water losses through transpiration. Fruit temperature and its transpiration vary with environmental factors and fruit characteristics. In line with previous studies, measurements of physical and thermal fruit properties were found to significantly vary between fruit tissues and maturity stages. To study the impact of these variations on fruit temperature and transpiration, a modelling approach was used. A physical model was developed to predict the spatial and temporal variations of fruit temperature and transpiration according to the spatial and temporal variations of environmental factors and thermal and physical fruit properties. Model predictions compared well to temperature measurements on mango fruits, making it possible to accurately simulate the daily temperature variations of the sunny and shaded sides of fruits. Model simulations indicated that fruit development induced an increase in both the temperature gradient within the fruit and fruit water losses, mainly due to fruit expansion. However, the evolution of fruit characteristics has only a very slight impact on the average temperature and the transpiration per surface unit. The importance of temperature and transpiration gradients highlighted in this study made it necessary to take spatial and temporal variations of environmental factors and fruit characteristics into account to model fruit physiology.

  11. Model-assisted analysis of spatial and temporal variations in fruit temperature and transpiration highlighting the role of fruit development.

    Directory of Open Access Journals (Sweden)

    Thibault Nordey

    Full Text Available Fruit physiology is strongly affected by both fruit temperature and water losses through transpiration. Fruit temperature and its transpiration vary with environmental factors and fruit characteristics. In line with previous studies, measurements of physical and thermal fruit properties were found to significantly vary between fruit tissues and maturity stages. To study the impact of these variations on fruit temperature and transpiration, a modelling approach was used. A physical model was developed to predict the spatial and temporal variations of fruit temperature and transpiration according to the spatial and temporal variations of environmental factors and thermal and physical fruit properties. Model predictions compared well to temperature measurements on mango fruits, making it possible to accurately simulate the daily temperature variations of the sunny and shaded sides of fruits. Model simulations indicated that fruit development induced an increase in both the temperature gradient within the fruit and fruit water losses, mainly due to fruit expansion. However, the evolution of fruit characteristics has only a very slight impact on the average temperature and the transpiration per surface unit. The importance of temperature and transpiration gradients highlighted in this study made it necessary to take spatial and temporal variations of environmental factors and fruit characteristics into account to model fruit physiology.

  12. Prediction of human core body temperature using non-invasive measurement methods.

    Science.gov (United States)

    Niedermann, Reto; Wyss, Eva; Annaheim, Simon; Psikuta, Agnes; Davey, Sarah; Rossi, René Michel

    2014-01-01

    The measurement of core body temperature is an efficient method for monitoring heat stress amongst workers in hot conditions. However, invasive measurement of core body temperature (e.g. rectal, intestinal, oesophageal temperature) is impractical for such applications. Therefore, the aim of this study was to define relevant non-invasive measures to predict core body temperature under various conditions. We conducted two human subject studies with different experimental protocols, different environmental temperatures (10 °C, 30 °C) and different subjects. In both studies the same non-invasive measurement methods (skin temperature, skin heat flux, heart rate) were applied. A principle component analysis was conducted to extract independent factors, which were then used in a linear regression model. We identified six parameters (three skin temperatures, two skin heat fluxes and heart rate), which were included for the calculation of two factors. The predictive value of these factors for core body temperature was evaluated by a multiple regression analysis. The calculated root mean square deviation (rmsd) was in the range from 0.28 °C to 0.34 °C for all environmental conditions. These errors are similar to previous models using non-invasive measures to predict core body temperature. The results from this study illustrate that multiple physiological parameters (e.g. skin temperature and skin heat fluxes) are needed to predict core body temperature. In addition, the physiological measurements chosen in this study and the algorithm defined in this work are potentially applicable as real-time core body temperature monitoring to assess health risk in broad range of working conditions.

  13. Thermal performance of a transpired solar collector updraft tower

    International Nuclear Information System (INIS)

    Eryener, Dogan; Hollick, John; Kuscu, Hilmi

    2017-01-01

    Highlights: • Transpired solar collector updraft tower has been studied experimentally. • Transpired solar collector updraft tower efficiency ranges from 60 to 80%. • A comparison has been made with other SUT prototypes. • Three times higher efficiency compared to the glazed collectors of conventional solar towers. - Abstract: A novel solar updraft tower prototype, which consists of transpired solar collector, is studied, its function principle is described and its experimental thermal performance is presented for the first time. A test unit of transpired solar collector updraft tower was installed at the campus of Trakya University Engineering Faculty in Edirne-Turkey in 2014. Solar radiation, ambient temperature, collector cavity temperatures, and chimney velocities were monitored during summer and winter period. The results showed that transpired solar collector efficiency ranges from 60% to 80%. The maximum temperature rise in the collector area is found to be 16–18 °C on the typical sunny day. Compared to conventional solar tower glazed collectors, three times higher efficiency is obtained. With increased thermal efficiency, large solar collector areas for solar towers can be reduced in half or less.

  14. Regional cerebral blood flow measurements using noninvasive 133Xe clearance method in children

    International Nuclear Information System (INIS)

    Nishimoto, Hiroshi; Maeda, Koji; Kagawa, Yukihide; Morozumi, Kunihiko; Hashimoto, Manami; Tsubokawa, Takashi.

    1985-01-01

    The noninvasive 133-Xe clearance method of estimating rCBF has been widely used in adult clinical studies. It is safe, noninvasive and reproducible, and has provided valuable insight into adult cerebrovascular pathophysiology. However, in children, this technique has not been used to measure rCBF for some fundamental problems. This study was performed to clarify these fundamental problems for applications of noninvasive 133-Xe clearance technique to children. The results showed that three fundamental problems concerning; (1) volume of dead spaces in airway circuits of the system, (2) increasing of look-through phenomenon and (3) correction methods for recirculated 133-Xe and airway artifacts to estimate rCBF are important for applications to children. These problems should be improved to measure as correct rCBF in children as in adults. (author)

  15. Can Sap Flow Help Us to Better Understand Transpiration Patterns in Landscapes?

    Science.gov (United States)

    Hassler, S. K.; Weiler, M.; Blume, T.

    2017-12-01

    Transpiration is a key process in the hydrological cycle and a sound understanding and quantification of transpiration and its spatial variability is essential for management decisions and for improving the parameterisation of hydrological and soil-vegetation-atmosphere transfer models. At the tree scale, transpiration is commonly estimated by measuring sap flow. Besides evaporative demand and water availability, tree-specific characteristics such as species, size or social status, stand-specific characteristics such as basal area or stand density and site-specific characteristics such as geology, slope position or aspect control sap flow of individual trees. However, little is known about the relative importance or the dynamic interplay of these controls. We studied these influences with multiple linear regression models to explain the variability of sap velocity measurements in 61 beech and oak trees, located at 24 sites spread over a 290 km²-catchment in Luxembourg. For each of 132 consecutive days of the growing season of 2014 we applied linear models to the daily spatial pattern of sap velocity and determined the importance of the different predictors. By upscaling sap velocities to the tree level with the help of species-dependent empirical estimates for sapwood area we also examined patterns of sap flow as a more direct representation of transpiration. Results indicate that a combination of mainly tree- and site-specific factors controls sap velocity patterns in this landscape, namely tree species, tree diameter, geology and aspect. For sap flow, the site-specific predictors provided the largest contribution to the explained variance, however, in contrast to the sap velocity analysis, geology was more important than aspect. Spatial variability of atmospheric demand and soil moisture explained only a small fraction of the variance. However, the temporal dynamics of the explanatory power of the tree-specific characteristics, especially species, were

  16. Biological and environmental controls on tree transpiration in a suburban landscape

    Science.gov (United States)

    Peters, Emily B.; McFadden, Joseph P.; Montgomery, Rebecca A.

    2010-12-01

    Tree transpiration provides a variety of ecosystem services in urban areas, including amelioration of urban heat island effects and storm water management. Tree species vary in the magnitude and seasonality of transpiration owing to differences in physiology, response to climate, and biophysical characteristics, thereby complicating efforts to manage evapotranspiration at city scales. We report sap flux measurements during the 2007 and 2008 growing seasons for dominant tree species in a suburban neighborhood of Minneapolis-Saint Paul, Minnesota, USA. Evergreen needleleaf trees had significantly higher growing season means and annual transpiration per unit canopy area (1.90 kg H2O m-2 d-1 and 307 kg H2O m-2 yr-1, respectively) than deciduous broadleaf trees (1.11 kg H2O m-2 d-1 and 153 kg H2O m-2 yr-1, respectively) because of a smaller projected canopy area (31.1 and 73.6 m2, respectively), a higher leaf area index (8.8 and 5.5 m2 m-2, respectively), and a longer growth season (8 and 4 months, respectively). Measurements also showed patterns consistent with the species' differences in xylem anatomy (conifer, ring porous, and diffuse porous). As the growing season progressed, conifer and diffuse porous genera had increased stomatal regulation to high vapor pressure deficit, while ring porous genera maintained greater and more constant stomatal regulation. These results suggest that evaporative responses to climate change in urban ecosystems will depend in part on species composition. Overall, plant functional type differences in canopy structure and growing season length were most important in explaining species' differences in midsummer and annual transpiration, offering an approach to predicting the evapotranspiration component of urban water budgets.

  17. Growth CO2 concentration modifies the transpiration response of Populus deltoides to drought and vapor pressure deficit

    International Nuclear Information System (INIS)

    Engel, V. C.; Griffin, K. L.; Murthy, R.; Patterson, L.; Klimas, C.; Potosnak, M.

    2004-01-01

    To gain a better understanding of the hydraulic constraints on transpiration, altered canopy water relations in response to elevated carbon dioxide was evaluated in a morphological context. It was expected that by integrating the information gained into predictive models of canopy water balance in elevated carbon dioxide, our understanding of leaf-level responses to drought stresses and evaporative demand will also improve. To achieve these objectives, transpiration rates and leaf-to-sapwood area ratios in clonal stands of cottonwoods grown in near-ambient and elevated carbon dioxide were measured at the Biosphere 2 facility near Oracle, Arizona. Results were interpreted in terms of physical controls versus the direct and indirect effects of growth mediated by morphological changes on transpiration fluxes during periods of drought and high evaporative demand. Leaf-level transpiration rates were found to be nearly equivalent across carbon dioxide treatments when soil water was not limited. However, during drought stress, canopy-level transpiration was roughly equivalent across carbon dioxide treatments, but leaf-level fluxes were reduced in elevated carbon dioxide by a factor equal to the leaf area ratio of the canopies. This shift from equivalent leaf-level transpiration to equivalent canopy-level transpiration with increasing drought stress is taken to mean that maximum water use rates are controlled by atmospheric demand at high soil water content and by soil water availability at low soil water content. Changes in vapor pressure deficits had less pronounced effect on transpiration than changes in soil water content. 37 refs., 3 tabs., 5 figs

  18. Transpiration of greenhouse crops : an aid to climate management

    NARCIS (Netherlands)

    Stanghellini, C.

    1987-01-01

    In this book some physical aspects of greenhouse climate are analyzed to show the direct interrelation between microclimate and crop transpiration. The energy balance of a greenhouse crop is shown to provide a sound physical framework to quantify the impact of microclimate on transpiration

  19. Noninvasive measurement of carboxyhemoglobin levels for adjustment of diffusion capacity measured during pulmonary function testing.

    Science.gov (United States)

    Mahoney, Anne M; Stimpson, Claudia L; Scott, Karen L; Hampson, Neil B

    2007-12-01

    The diffusing capacity of the lungs for carbon monoxide (D(LCO)) is commonly measured during pulmonary function testing (PFT). Although adjustment of the measured D(LCO) for an elevated baseline carboxyhemoglobin level is recommended, carboxyhemoglobin is not routinely measured, which may reduce the accuracy of D(LCO) measurements. We sought to assess the utility of routine carboxyhemoglobin measurement and subsequent D(LCO) correction in patients referred for PFT. We retrospectively reviewed 100 consecutive PFT results, including D(LCO) assessment. We used a pulse CO-oximeter (recently approved by the Food and Drug Administration) to noninvasively measure baseline carboxyhemoglobin (S(pCO)). We used simple descriptive statistics to compare the S(pCO) values. In subjects with elevated S(pCO) (> 2%) we adjusted the percent-of-predicted D(LCO). Interpretation of D(LCO) was categorized according to the American Thoracic Society classification scheme for respiratory impairment. The self-reported smokers had higher average S(pCO) than did self-reported nonsmokers (1.6% vs 3.5%, p carboxyhemoglobin is easy to perform during PFT. When precise measurement of D(LCO) is important, noninvasive measurement of carboxyhemoglobin may be of value. If routine S(pCO) measurement is considered, the highest yield is among current smokers.

  20. Hydraulic limits on maximum plant transpiration and the emergence of the safety-efficiency trade-off.

    Science.gov (United States)

    Manzoni, Stefano; Vico, Giulia; Katul, Gabriel; Palmroth, Sari; Jackson, Robert B; Porporato, Amilcare

    2013-04-01

    Soil and plant hydraulics constrain ecosystem productivity by setting physical limits to water transport and hence carbon uptake by leaves. While more negative xylem water potentials provide a larger driving force for water transport, they also cause cavitation that limits hydraulic conductivity. An optimum balance between driving force and cavitation occurs at intermediate water potentials, thus defining the maximum transpiration rate the xylem can sustain (denoted as E(max)). The presence of this maximum raises the question as to whether plants regulate transpiration through stomata to function near E(max). To address this question, we calculated E(max) across plant functional types and climates using a hydraulic model and a global database of plant hydraulic traits. The predicted E(max) compared well with measured peak transpiration across plant sizes and growth conditions (R = 0.86, P efficiency trade-off in plant xylem. Stomatal conductance allows maximum transpiration rates despite partial cavitation in the xylem thereby suggesting coordination between stomatal regulation and xylem hydraulic characteristics. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  1. Growth CO{sub 2} concentration modifies the transpiration response of Populus deltoides to drought and vapor pressure deficit

    Energy Technology Data Exchange (ETDEWEB)

    Engel, V. C. [South Florida Natural Resources Center, Everglades National Park, Homestead, FL (United States); Griffin, K. L. [Columbia University, Lamont-Doherty Earth Observatory, Palisades, NY (United States); Murthy, R.; Patterson, L.; Klimas, C. [Columbia University, Biosphere 2 Center, Oracle, AZ (United States); Potosnak, M. [National Center for Atmospheric Research, Boulder, CO (United States)

    2004-10-01

    To gain a better understanding of the hydraulic constraints on transpiration, altered canopy water relations in response to elevated carbon dioxide was evaluated in a morphological context. It was expected that by integrating the information gained into predictive models of canopy water balance in elevated carbon dioxide, our understanding of leaf-level responses to drought stresses and evaporative demand will also improve. To achieve these objectives, transpiration rates and leaf-to-sapwood area ratios in clonal stands of cottonwoods grown in near-ambient and elevated carbon dioxide were measured at the Biosphere 2 facility near Oracle, Arizona. Results were interpreted in terms of physical controls versus the direct and indirect effects of growth mediated by morphological changes on transpiration fluxes during periods of drought and high evaporative demand. Leaf-level transpiration rates were found to be nearly equivalent across carbon dioxide treatments when soil water was not limited. However, during drought stress, canopy-level transpiration was roughly equivalent across carbon dioxide treatments, but leaf-level fluxes were reduced in elevated carbon dioxide by a factor equal to the leaf area ratio of the canopies. This shift from equivalent leaf-level transpiration to equivalent canopy-level transpiration with increasing drought stress is taken to mean that maximum water use rates are controlled by atmospheric demand at high soil water content and by soil water availability at low soil water content. Changes in vapor pressure deficits had less pronounced effect on transpiration than changes in soil water content. 37 refs., 3 tabs., 5 figs.

  2. Transpiration of gaseous elemental mercury through vegetation in a subtropical wetland in florida

    Energy Technology Data Exchange (ETDEWEB)

    Lindberg, Steven Eric [ORNL; Dong, Weijin [ORNL; Meyers, Tilden [NOAA, Oak Ridge, TN

    2002-07-01

    Four seasonal sampling campaigns were carried out in the Florida Everglades to measure elemental Hg vapor (Hg{sup o}) fluxes over emergent macrophytes using a modified Bowen ratio gradient approach. The predominant flux of Hg{sup o} over both invasive cattail and native sawgrass stands was emission; mean day time fluxes over cattail ranged from {approx}20 (winter) to {approx}40 (summer) ng m{sup -2} h{sup -1}. Sawgrass fluxes were about half those over cattail during comparable periods. Emission from vegetation significantly exceeded evasion of Hg{sup o} from the underlying water surface ({approx}1-2 ng m{sup -2} h{sup -1}) measured simultaneously using floating chambers. Among several environmental factors (e.g. CO{sub 2} flux, water vapor flux, wind speed, water, air and leaf temperature, and solar radiation), water vapor exhibited the strongest correlation with Hg{sup o} flux, and transpiration is suggested as an appropriate term to describe this phenomenon. The lack of significant Hg{sup o} emissions from a live, but uprooted (floating) cattail stand suggests that a likely source of the transpired Hg{sup o} is the underlying sediments. The pattern of Hg{sup o} fluxes typically measured indicated a diel cycle with two peaks, possibly related to different gas exchange dynamics: one in early morning related to lacunal gas release, and a second at midday related to transpiration; nighttime fluxes approached zero.

  3. Energy and exergy analyses of Photovoltaic/Thermal flat transpired collectors: Experimental and theoretical study

    International Nuclear Information System (INIS)

    Gholampour, Maysam; Ameri, Mehran

    2016-01-01

    Highlights: • A Photovoltaic/Thermal flat transpired collector was theoretically and experimentally studied. • Performance of PV/Thermal flat transpired plate was evaluated using equivalent thermal, first, and second law efficiencies. • According to the actual exergy gain, a critical radiation level was defined and its effect was investigated. • As an appropriate tool, equivalent thermal efficiency was used to find optimum suction velocity and PV coverage percent. - Abstract: PV/Thermal flat transpired plate is a kind of air-based hybrid Photovoltaic/Thermal (PV/T) system concurrently producing both thermal and electrical energy. In order to develop a predictive model, validate, and investigate the PV/Thermal flat transpired plate capabilities, a prototype was fabricated and tested under outdoor conditions at Shahid Bahonar University of Kerman in Kerman, Iran. In order to develop a mathematical model, correlations for Nusselt numbers for PV panel and transpired plate were derived using CFD technique. Good agreement was obtained between measured and simulated values, with the maximum relative root mean square percent deviation (RMSE) being 9.13% and minimum correlation coefficient (R-squared) 0.92. Based on the critical radiation level defined in terms of the actual exergy gain, it was found that with proper fan and MPPT devices, there is no concern about the critical radiation level. To provide a guideline for designers, using equivalent thermal efficiency as an appropriate tool, optimum values for suction velocity and PV coverage percent under different conditions were obtained.

  4. Evolution of Corn Transpiration and Leaf Water Potential During Sprinkler Irrigation

    OpenAIRE

    Martínez-Cob, Antonio; Fernández-Navajas, Julián; Durán, Víctor; Cavero Campo, José

    2009-01-01

    Corn (Zea mays L.) transpiration during daytime solid-set sprinkler irrigation was analyzed on two neighbouring subplots to determine the effect of the transpiration reduction on water application efficiency. During each irrigation event, one subplot was irrigated (moist treatment) while the other was not (dry treatment). Transpiration rates were determined at each subplot by the heat balance method (Dynamax Flow4 System) before, during and after the irrigations. During irri...

  5. Tree-, stand- and site-specific controls on landscape-scale patterns of transpiration

    Science.gov (United States)

    Kathrin Hassler, Sibylle; Weiler, Markus; Blume, Theresa

    2018-01-01

    Transpiration is a key process in the hydrological cycle, and a sound understanding and quantification of transpiration and its spatial variability is essential for management decisions as well as for improving the parameterisation and evaluation of hydrological and soil-vegetation-atmosphere transfer models. For individual trees, transpiration is commonly estimated by measuring sap flow. Besides evaporative demand and water availability, tree-specific characteristics such as species, size or social status control sap flow amounts of individual trees. Within forest stands, properties such as species composition, basal area or stand density additionally affect sap flow, for example via competition mechanisms. Finally, sap flow patterns might also be influenced by landscape-scale characteristics such as geology and soils, slope position or aspect because they affect water and energy availability; however, little is known about the dynamic interplay of these controls.We studied the relative importance of various tree-, stand- and site-specific characteristics with multiple linear regression models to explain the variability of sap velocity measurements in 61 beech and oak trees, located at 24 sites across a 290 km2 catchment in Luxembourg. For each of 132 consecutive days of the growing season of 2014 we modelled the daily sap velocity and derived sap flow patterns of these 61 trees, and we determined the importance of the different controls.Results indicate that a combination of mainly tree- and site-specific factors controls sap velocity patterns in the landscape, namely tree species, tree diameter, geology and aspect. For sap flow we included only the stand- and site-specific predictors in the models to ensure variable independence. Of those, geology and aspect were most important. Compared to these predictors, spatial variability of atmospheric demand and soil moisture explains only a small fraction of the variability in the daily datasets. However, the temporal

  6. Noninvasive measurement of lung carbon-11-serotonin extraction in man

    International Nuclear Information System (INIS)

    Coates, G.; Firnau, G.; Meyer, G.J.; Gratz, K.F.

    1991-01-01

    The fraction of serotonin extracted on a single passage through the lungs is being used as an early indicator of lung endothelial damage but the existing techniques require multiple arterial blood samples. We have developed a noninvasive technique to measure lung serotonin uptake in man. We utilized the double indicator diffusion principle, a positron camera, 11 C-serotonin as the substrate, and 11 CO-erythrocytes as the vascular marker. From regions of interest around each lung, we recorded time-activity curves in 0.5-sec frames for 30 sec after a bolus injection of first the vascular marker 11 CO-erythrocytes and 10 min later 11 C-serotonin. A second uptake measurement was made after imipramine 25-35 mg was infused intravenously. In three normal volunteers, the single-pass uptake of 11 C-serotonin was 63.9% +/- 3.6%. This decreased in all subjects to a mean of 53.6% +/- 1.4% after imipramine. The rate of lung washout of 11 C was also significantly prolonged after imipramine. This noninvasive technique can be used to measure lung serotonin uptake to detect early changes in a variety of conditions that alter the integrity of the pulmonary endothelium

  7. Contribution of black spruce (Picea mariana) transpiration to growing season evapotranspiration in a subarctic discontinuous permafrost peatland complex

    Science.gov (United States)

    Helbig, M.; Warren, R. K.; Pappas, C.; Sonnentag, O.; Berg, A. A.; Chasmer, L.; Baltzer, J. L.; Quinton, W. L.; Patankar, R.

    2016-12-01

    Partitioning the components of evapotranspiration (ET), evaporation and transpiration, has been increasingly important for the better understanding and modeling of carbon, water, and energy dynamics, and for reliable water resources quantification and management. However, disentangling its individual processes remains highly uncertain. Here, we quantify the contribution of black spruce transpiration, the dominant overstory, to ET of a boreal forest-wetland landscape in the southern Taiga Plains. In these ecosystems, thawing permafrost induces rapid landscape change, whereby permafrost-supported forested plateaus are transformed into bogs or fens (wetlands), resulting in tree mortality. Using historical and projected rates of forest-wetland changes, we assess how the contribution of black spruce transpiration to landscape ET might be altered with continued permafrost loss, and quantify the resulting water balance changes. We use two nested eddy covariance flux towers and a footprint model to quantify ET over the entire landscape. Sap flux density of black spruce is measured using the heat ratio method during the 2013 (n=22) and 2014 (n=3) growing seasons, and is used to estimate tree-level transpiration. Allometric relations between tree height, diameter at breast height and sapwood area are derived to upscale tree-level transpiration to overstory transpiration within the eddy covariance footprint. Black spruce transpiration accounts for <10% of total landscape ET. The largest daily contribution of overstory transpiration to landscape ET is observed shortly after the landscape becomes snow-free, continually decreasing throughout the progression of the growing season. Total transpiration is notably lower in 2014 (2.34 mm) than 2013 (2.83 mm) over the same 40-day period, corresponding to 3% of cumulative landscape ET in both years. This difference is likely due to the antecedent moisture conditions, where the 2014 growing season was proceeded by lower than average

  8. Utility of noninvasive transcutaneous measurement of postoperative hemoglobin in total joint arthroplasty patients.

    Science.gov (United States)

    Stoesz, Michael; Wood, Kristin; Clark, Wesley; Kwon, Young-Min; Freiberg, Andrew A

    2014-11-01

    This study prospectively evaluated the clinical utility of a noninvasive transcutaneous device for postoperative hemoglobin measurement in 100 total hip and knee arthroplasty patients. A protocol to measure hemoglobin noninvasively, prior to venipuncture, successfully avoided venipuncture in 73% of patients. In the remaining 27 patients, there were a total of 48 venipunctures performed during the postoperative hospitalization period due to reasons including transcutaneous hemoglobin measurement less than or equal to 9 g/dL (19), inability to obtain a transcutaneous hemoglobin measurement (8), clinical signs of anemia (3), and noncompliance with the study protocol (18). Such screening protocols may provide a convenient and cost-effective alternative to routine venipuncture for identifying patients at risk for blood transfusion after elective joint arthroplasty. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Non-invasive multi wavelengths sensorsystem for measuring carboxy-and methemoglobin

    Directory of Open Access Journals (Sweden)

    Gewiß Helge

    2017-09-01

    Full Text Available Standard pulse oximetry only measures the functional derivatives oxyhemoglobin (O2Hb and deoxyhemoglobin (HHb to calculate the arterial oxygenation. However, the two dysfunctional hemoglobin derivatives carboxyhemoglobin (COHb and methemoglobin (MetHb are of much interest. The gold standard detecting abnormal concentration of COHb or MetHb is the blood gas analysis (BGA. In this paper a non-invasive method for measuring these derivatives and a setup for validation is presented.

  10. Masimo Rad-57 Pulse CO-Oximeter for noninvasive carboxyhemoglobin measurement.

    Science.gov (United States)

    Suner, Selim; McMurdy, John

    2009-03-01

    Noninvasive methods of body fluid chemical measurement have been expanding. New technologies are enabling the quantification of different compounds in the blood and interstitial tissues. One example of this is the pulse oximeter, which has facilitated the measurement of oxyhemoglobin rapidly and reliably without the requirement of blood-draws. The Masimo Rad-57 Pulse CO-Oximeter expanded the capabilities of pulse-oximetry to include measurements of carboxyhemoglobin and methemoglobin. This innovation has revolutionized the paradigm for detection of patients with CO poisoning. Previously, clinicians relied on historical information and patient signs and symptoms pointing to the possibility of CO exposure or toxicity. Only then would a blood test be ordered to measure carboxyhemoglobin levels. Since the presentation of CO poisoning is nonspecific and overlaps with many other conditions, and since the presence of environmental CO is often unknown, the detection of this condition was only possible in cases where the presence of CO was obvious or where the symptoms were severe. We now know, from studies conducted using the Rad-57, the only US FDA-approved device for noninvasive measurement of SpCO, that there are a significant number of patients who experience CO exposure but are nonsymptomatic. The Rad-57 provides a clinical justification for screening in the healthcare setting to identify patients with significant CO exposure who would otherwise be undetected.

  11. Aerosol-induced thermal effects increase modelled terrestrial photosynthesis and transpiration

    International Nuclear Information System (INIS)

    Steiner, Allison L.; Chameides, W.L.

    2005-01-01

    Previous studies suggest that the radiative effects of atmospheric aerosols (reducing total radiation while increasing the diffuse fraction) can enhance terrestrial productivity. Here, simulations using a regional climate/terrestrial biosphere model suggest that atmospheric aerosols could also enhance terrestrial photosynthesis and transpiration through an interaction between solar radiation, leaf temperature and stomatal conductance. During midday, clear-sky conditions, sunlit-leaf temperatures can exceed the optimum for photosynthesis, depressing both photosynthesis and transpiration. Aerosols decrease surface solar radiation, thereby reducing leaf temperatures and enhancing sunlit-leaf photosynthesis and transpiration. This modelling study finds that, under certain conditions, this thermal response of aerosols can have a greater impact on photosynthesis and transpiration than the radiative response. This implies that a full understanding of the impact of aerosols on climate and the global carbon cycle requires consideration of the biophysical responses of terrestrial vegetation as well as atmospheric radiative and thermodynamic effects

  12. Bayesian analysis for uncertainty estimation of a canopy transpiration model

    Science.gov (United States)

    Samanta, S.; Mackay, D. S.; Clayton, M. K.; Kruger, E. L.; Ewers, B. E.

    2007-04-01

    A Bayesian approach was used to fit a conceptual transpiration model to half-hourly transpiration rates for a sugar maple (Acer saccharum) stand collected over a 5-month period and probabilistically estimate its parameter and prediction uncertainties. The model used the Penman-Monteith equation with the Jarvis model for canopy conductance. This deterministic model was extended by adding a normally distributed error term. This extension enabled using Markov chain Monte Carlo simulations to sample the posterior parameter distributions. The residuals revealed approximate conformance to the assumption of normally distributed errors. However, minor systematic structures in the residuals at fine timescales suggested model changes that would potentially improve the modeling of transpiration. Results also indicated considerable uncertainties in the parameter and transpiration estimates. This simple methodology of uncertainty analysis would facilitate the deductive step during the development cycle of deterministic conceptual models by accounting for these uncertainties while drawing inferences from data.

  13. Latent manganese deficiency increases transpiration in barley (Hordeum vulgare)

    DEFF Research Database (Denmark)

    Hebbern, Christopher Alan; Laursen, Kristian Holst; Ladegaard, Anne Hald

    2009-01-01

    To investigate if latent manganese (Mn) deficiency leads to increased transpiration, barley plants were grown for 10 weeks in hydroponics with daily additions of Mn in the low nM range. The Mn-starved plants did not exhibit visual leaf symptoms of Mn deficiency, but Chl a fluorescence measurements...

  14. Relationships between stem diameter, sapwood area, leaf area and transpiration in a young mountain ash forest.

    Science.gov (United States)

    Vertessy, R A; Benyon, R G; O'Sullivan, S K; Gribben, P R

    1995-09-01

    We examined relationships between stem diameter, sapwood area, leaf area and transpiration in a 15-year-old mountain ash (Eucalyptus regnans F. Muell.) forest containing silver wattle (Acacia dealbata Link.) as a suppressed overstory species and mountain hickory (Acacia frigescens J.H. Willis) as an understory species. Stem diameter explained 93% of the variation in leaf area, 96% of the variation in sapwood area and 88% of the variation in mean daily spring transpiration in 19 mountain ash trees. In seven silver wattle trees, stem diameter explained 87% of the variation in sapwood area but was a poor predictor of the other variables. When transpiration measurements from individual trees were scaled up to a plot basis, using stem diameter values for 164 mountain ash trees and 124 silver wattle trees, mean daily spring transpiration rates of the two species were 2.3 and 0.6 mm day(-1), respectively. The leaf area index of the plot was estimated directly by destructive sampling, and indirectly with an LAI-2000 plant canopy analyzer and by hemispherical canopy photography. All three methods gave similar results.

  15. Noninvasive measurement of an index of renal blood flow

    International Nuclear Information System (INIS)

    Powers, T.A.; Rees, R.S.; Bowen, R.D.

    1983-01-01

    A new technique for the noninvasive measurement of an index of renal blood flow is described. The method utilizes ultrasound determined renal volume and radionuclide assessment of the mean transit time of a pertechnetate bolus through the kidneys. From this information a value for flow is calculated according to compartmental analysis principles. There is good correlation between renal blood flow estimated by this technique and that determined by microsphere injection

  16. Effects of leaf movement on leaf temperature, transpiration and radiation interception in soybean under water stress conditions

    International Nuclear Information System (INIS)

    Isoda, A.; Wang, P.

    2001-01-01

    Varietal differences in leaf movement were examined in terms of radiation interception, leaf temperature and transpiration under water stressed conditions. Five cultivars (Qindou 7232, Gaofei 16, Dongnong 87 - 138, 8285 - 8 and 8874) were grown in a concrete frame field in Xinjiang, China. Irrigation treatments (irrigation and no irrigation) were made from the flowering to the pod filling stage. A leaflet in the uppermost layer of the canopy was restrained horizontally. Leaf temperatures, transpiration rate (stem sap flow rate of the main stem per unit leaf area) and intercepted radiation of each leaflet were measured. There were greater varietal differences in leaf movement, leaf temperature and transpiration rate. Leaf temperature seemed to be adjusted by leaf movement and transpiration. The extent to which is adjusted by leaf movement and transpiration differed among the cultivars; leaf temperature was influenced mainly by leaf movement for Gaofei 16 and Dongnong 87 - 138, mainly by transpiration for Qindou 7232 and 8874, and by both for 8285 - 8. Intercepted radiation in the upper two layers of the canopy (20 cm from the uppermost) was greater in the irrigated plot, although the mean values of total leaflets of the irrigated plot were not different as compared to the non-irrigated plot. Although paraheliotropic leaf movement decreased radiation interception, it offers some possibilities for the improvement in radiation penetration within a dense canopy. Cumulated amount of transpiration during a day was compared between the restrained-leaf and the non-leaf-restrained plants in 8874. Paraheliotropic leaf movement reduced water loss by 23% in the irrigated and 71% in the non-irrigated plots

  17. A first look at the SAPFLUXNET database: global patterns in whole-plant transpiration and implications for ecohydrological research

    Science.gov (United States)

    Poyatos, R.; Granda, V.; Mencuccini, M.; Flo, V.; Oren, R.; Molowny-Horas, R.; Katul, G. G.; Mahecha, M. D.; Steppe, K.; Cabon, A.; De Cáceres, M.; Martínez-Vilalta, J.

    2017-12-01

    Plant transpiration is the fundamental process linking water and vegetation and it is therefore a central topic in ecohydrological research. Globally, plants display a huge variety of coordinated adjustments in their physiology and structure to regulate transpiration in response to fluctuations of water demand and supply at multiple temporal scales. Sap flow measured in plant stems reveals the temporal patterns of these responses but sap flow data have remained fragmentary and generally unavailable for syntheses of regional to global scope. Here we present the first global database of sap flow measurements from individual plants (SAPFLUXNET, http://sapfluxnet.creaf.cat/), which has been compiled from > 150 datasets contributed by researchers worldwide. Received datasets were harmonised and conveniently stored in custom-designed R objects holding sap flow and environmental data time series, together with several ancillary metadata, enabling data access for synthesis activities. SAPFLUXNET covers most vegetated biomes and holds data for > 1500 individual plants, mostly trees, belonging to >100 species and > 50 genera. We retrieved water use traits indicative of maximum transpiration rates and of transpiration sensitivity to vapour pressure deficit using quantile regression approaches and moving window analyses. Global patterns of these water use traits were then analysed as a function of climate, plant functional type and stand characteristics. For example, maximum transpiration rates at a given plant diameter or sapwood area tended to be higher for Angiosperms compared to Gymnosperms, but this relationships converged to a more similar scaling between transpiration and leaf area across these groups. SAPFLUXNET is also a valuable tool to evaluate water balance components in ecosystem models. We combined SAPFLUXNET data with the MEDFATE model (https://cran.r-project.org/web/packages/medfate/index.html) to validate an ecohydrological optimisation approach to retrieve

  18. Noninvasive measurement of blood glucose level using mid-infrared quantum cascade lasers

    Science.gov (United States)

    Yoshioka, Kiriko; Kino, Saiko; Matsuura, Yuji

    2017-04-01

    For non-invasive measurement of blood glucose level, attenuated total reflection (ATR) absorption spectroscopy system using a QCL as a light source was developed. The results of measurement of glucose solutions showed that the system had a sensitivity that was enough for blood glucose measurement. In-vivo measurement using the proposed system based on QCL showed that there was a correlation between absorptions measured with human lips and blood glucose level.

  19. The transpiration cooled first wall and blanket concept

    International Nuclear Information System (INIS)

    Barleon, Leopold; Wong, Clement

    2002-01-01

    To achieve high thermal performance at high power density the EVOLVE concept was investigated under the APEX program. The EVOLVE W-alloy first wall and blanket concept proposes to use transpiration cooling of the first wall and boiling or vaporizing lithium (Li) in the blanket zone. Critical issues of this concept are: the Magnetohydrodynamic (MHD) pressure losses of the Li circuit, the evaporation through a capillary structure and the needed superheating of the Li at the first wall and blanket zones. Application of the transpiration concept to the blanket region results in the integrated transpiration cooling concept (ITCC) with either toroidal or poloidal first wall channels. For both orientations the routing of the liquid Li and the Li vapor has been modeled and the corresponding pressure losses have been calculated by varying the width of the supplying slot and the capillary diameter. The concept works when the sum of the active and passive pumping head is higher than the total system pressure losses and when the temperature at the inner side of the first wall does not override the superheating limit of the coolant. This cooling concept has been extended to the divertor design, and the removal of a surface heat flux of up to 10 MW/m 2 appears to be possible, but this paper will focus on the transpiration cooled first wall and blanket concept assessment

  20. Transpiration and leaf growth of potato clones in response to soil water deficit

    Directory of Open Access Journals (Sweden)

    André Trevisan de Souza

    2014-04-01

    Full Text Available Potato (Solanum tuberosum ssp. Tuberosum crop is particularly susceptible to water deficit because of its small and shallow root system. The fraction of transpirable soil water (FTSW approach has been widely used in the evaluation of plant responses to water deficit in different crops. The FTSW 34 threshold (when stomatal closure starts is a trait of particular interest because it is an indicator of tolerance to water deficit. The FTSW threshold for decline in transpiration and leaf growth was evaluated in a drying soil to identify potato clones tolerant to water deficit. Two greenhouse experiments were carried out in pots, with three advanced clones and the cultivar Asterix. The FTSW, transpiration and leaf growth were measured on a daily basis, during the period of soil drying. FTSW was an efficient method to separate potato clones with regard to their response to water deficit. The advancedclones SMINIA 02106-11 and SMINIA 00017-6 are more tolerant to soil water deficit than the cultivar Asterix, and the clone SMINIA 793101-3 is more tolerant only under high solar radiation.

  1. Non-invasive plant growth measurements for detection of blue-light dose response of stem elongation in Chrysanthemum morifolium

    DEFF Research Database (Denmark)

    Kjær, Katrine Heinsvig

    2012-01-01

    . In the present study a non-invasive plant growth sensor (PlantEye, Phenospex B.V, Heerlen, NL) was tested in analysing changes in diurnal stem elongation patterns and plant height in response to the spectral quality of the light environment. Plants were grown in four different LED supplemental lighting...... treatments with 0%, 12.5%, 18.5% and 22.5% blue light under greenhouse conditions in winter (18 h day/4 h night). The non-invasive measurements were carried out automatically every four hour with three repetitions, and supported by manual measurements of plant height every third day. A strong linear relation...... between the non-invasive measurements and manual measurements of plant height was achieved, and a blue-light dose-response showing a decrease in plant height in relation to an increase in blue light was demonstrated. However, the non-invasive plant growth sensor was not able to distinguish between diurnal...

  2. Effect of transpiration on plant accumulation and translocation of PPCP/EDCs

    International Nuclear Information System (INIS)

    Dodgen, Laurel K.; Ueda, Aiko; Wu, Xiaoqin; Parker, David R.; Gan, Jay

    2015-01-01

    The reuse of treated wastewater for agricultural irrigation in arid and hot climates where plant transpiration is high may affect plant accumulation of pharmaceutical and personal care products (PPCPs) and endocrine disrupting chemicals (EDCs). In this study, carrot, lettuce, and tomato plants were grown in solution containing 16 PPCP/EDCs in either a cool-humid or a warm-dry environment. Leaf bioconcentration factors (BCF) were positively correlated with transpiration for chemical groups of different ionized states (p < 0.05). However, root BCFs were correlated with transpiration only for neutral PPCP/EDCs (p < 0.05). Neutral and cationic PPCP/EDCs showed similar accumulation, while anionic PPCP/EDCs had significantly higher accumulation in roots and significantly lower accumulation in leaves (p < 0.05). Results show that plant transpiration may play a significant role in the uptake and translocation of PPCP/EDCs, which may have a pronounced effect in arid and hot climates where irrigation with treated wastewater is common. - Highlights: • Leaf accumulation of PPCP/EDCs is related on plant transpiration. • Cationic and neutral PPCP/EDCs have similar leaf and root accumulation. • Anionic PPCP/EDCs have greater root accumulation and lesser leaf accumulation. • PPCP/EDCs are extensively metabolized in plant tissue and hydroponic solution. - High plant transpiration in arid and hot areas may lead to increased foliar accumulation of PPCP/EDCs from treated wastewater irrigation

  3. Forest fire effects on transpiration: process modeling of sapwood area reduction

    Science.gov (United States)

    Michaletz, Sean; Johnson, Edward

    2010-05-01

    Transpiration is a hydrological process that is strongly affected by forest fires. In crown fires, canopy fine fuels (foliage, buds, and small branches) combust, which kills individual trees and stops transpiration of the entire stand. In surface fires (intensities ≤ 2500 kW m-1), however, effects on transpiration are less predictable becuase heat transfer from the passing fireline can injure or kill fine roots, leaves, and sapwood; post-fire transpiration of forest stands is thus governed by fire effects on individual tree water budgets. Here, we consider fire effects on cross-sectional sapwood area. A two-dimensional model of transient bole heating is used to estimate radial isotherms for a range of fireline intensities typical of surface fires. Isotherms are then used to drive three processes by which heat may reduce sapwood area: 1) necrosis of living cells in contact with xylem conduits, which prevents repair of natural embolism; 2) relaxation of viscoelastic conduit wall polymers (cellulose, hemicelloluse, and lignin), which reduces cross-sectional conduit area; and 3) boiling of metastable water under tension, which causes conduit embolism. Results show that these processes operate on different time scales, suggesting that fire effects on transpiration vary with time since fire. The model can be linked with a three-dimensional physical fire spread model to predict size-dependent effects on individual trees, which can be used to estimate scaling of individual tree and stand-level transpiration.

  4. Salinity tolerance loci revealed in rice using high-throughput non-invasive phenotyping

    KAUST Repository

    Al-Tamimi, Nadia Ali

    2016-11-17

    High-throughput phenotyping produces multiple measurements over time, which require new methods of analyses that are flexible in their quantification of plant growth and transpiration, yet are computationally economic. Here we develop such analyses and apply this to a rice population genotyped with a 700k SNP high-density array. Two rice diversity panels, indica and aus, containing a total of 553 genotypes, are phenotyped in waterlogged conditions. Using cubic smoothing splines to estimate plant growth and transpiration, we identify four time intervals that characterize the early responses of rice to salinity. Relative growth rate, transpiration rate and transpiration use efficiency (TUE) are analysed using a new association model that takes into account the interaction between treatment (control and salt) and genetic marker. This model allows the identification of previously undetected loci affecting TUE on chromosome 11, providing insights into the early responses of rice to salinity, in particular into the effects of salinity on plant growth and transpiration.

  5. Salinity tolerance loci revealed in rice using high-throughput non-invasive phenotyping

    KAUST Repository

    Al-Tamimi, Nadia Ali; Brien, Chris; Oakey, Helena; Berger, Bettina; Saade, Stephanie; Ho, Yung Shwen; Schmö ckel, Sandra M.; Tester, Mark A.; Negrã o, Só nia

    2016-01-01

    High-throughput phenotyping produces multiple measurements over time, which require new methods of analyses that are flexible in their quantification of plant growth and transpiration, yet are computationally economic. Here we develop such analyses and apply this to a rice population genotyped with a 700k SNP high-density array. Two rice diversity panels, indica and aus, containing a total of 553 genotypes, are phenotyped in waterlogged conditions. Using cubic smoothing splines to estimate plant growth and transpiration, we identify four time intervals that characterize the early responses of rice to salinity. Relative growth rate, transpiration rate and transpiration use efficiency (TUE) are analysed using a new association model that takes into account the interaction between treatment (control and salt) and genetic marker. This model allows the identification of previously undetected loci affecting TUE on chromosome 11, providing insights into the early responses of rice to salinity, in particular into the effects of salinity on plant growth and transpiration.

  6. Biophysical control of whole tree transpiration under an urban environment in Northern China

    Science.gov (United States)

    Lixin Chen; Zhiqiang Zhang; Zhandong Li; Jianwu Tang; Peter Caldwell; et al

    2011-01-01

    Urban reforestation in China has led to increasing debate about the impact of urban trees and forests on water resources. Although transpiration is the largest water flux leaving terrestrial ecosystems, little is known regarding whole tree transpiration in urban environments. In this study, we quantified urban tree transpiration at various temporal scales and examined...

  7. Research on the multiple linear regression in non-invasive blood glucose measurement.

    Science.gov (United States)

    Zhu, Jianming; Chen, Zhencheng

    2015-01-01

    A non-invasive blood glucose measurement sensor and the data process algorithm based on the metabolic energy conservation (MEC) method are presented in this paper. The physiological parameters of human fingertip can be measured by various sensing modalities, and blood glucose value can be evaluated with the physiological parameters by the multiple linear regression analysis. Five methods such as enter, remove, forward, backward and stepwise in multiple linear regression were compared, and the backward method had the best performance. The best correlation coefficient was 0.876 with the standard error of the estimate 0.534, and the significance was 0.012 (sig. regression equation was valid. The Clarke error grid analysis was performed to compare the MEC method with the hexokinase method, using 200 data points. The correlation coefficient R was 0.867 and all of the points were located in Zone A and Zone B, which shows the MEC method provides a feasible and valid way for non-invasive blood glucose measurement.

  8. Difference of stand-scale transpiration between ridge and riparian area in a watershed with Japanese cypress plantation

    Science.gov (United States)

    Kume, T.; Tsuruta, K.; Komatsu, H.; Shinohara, Y.; Otsuki, K.

    2011-12-01

    Several different methods to assess water use are available, and the sap flux measurement technique is one of the most promising methods, especially in monotonous watershed. Previously, three spatial levels of scaling have been used to obtain bottom-up transpiration estimates based on the sap flux technique: from within-tree to tree, from tree to stand, and from stand to watershed or landscape. Although there are considerable variations that must be taken into account at each step, few studies have examined plot-to-plot variability of stand-scale transpirations. To design optimum sampling method to accurately estimate transpiration at the watershed-scale, it is indispensable to understand heterogeneity of stand-scale transpiration in a forested watershed and the factors determining the heterogeneity. This study was undertaken to clarify differences of stand-scale transpirations within a watershed and the factors determining the differences. To this aim, we conducted sap flux-based transpiration estimates in two plots such as a lower riparian (RZ) and an upper ridge (UZ) zone in a watershed with Japanese cypress plantation, Kyushu, Japan in two years. Tree height and diameter of breast height (DBH) were lager in RZ than those of UZ. The stand sapwood area (As) was lager in RZ than UZ (21.9 cm2h a-1, 16.8 cm2ha-1, respectively). Stand mean sap flux (Js) in RZ was almost same as that of UZ when relatively lower Js, while, Js in RZ was higher than that of UZ when relatively higher Js (i.e., bright days in summer season). Consequently, daily stand-scale transpiration (E), which is the multiple of As and Js, differed by two times between RZ and UZ in summer season. This study found significant heterogeneity of stand-scale transpiration within the watershed and that the differences could be caused by two aspects such as stand structure and sap flux velocity.

  9. Comparing the Validity of Non-Invasive Methods in Measuring Thoracic Kyphosis and Lumbar Lordosis

    Directory of Open Access Journals (Sweden)

    Mohammad Yousefi

    2012-04-01

    Full Text Available Background: the purpose of this article is to study the validity of each of the non-invasive methods (flexible ruler, spinal mouse, and processing the image versus the one through-Ray radiation (the basic method and comparing them with each other.Materials and Methods: for evaluating the validity of each of these non-invasive methods, the thoracic Kyphosis and lumber Lordosis angle of 20 students of Birjand University (age mean and standard deviation: 26±2, weight: 72±2.5 kg, height: 169±5.5 cm through fours methods of flexible ruler, spinal mouse, and image processing and X-ray.Results: the results indicated that the validity of the methods including flexible ruler, spinal mouse, and image processing in measuring the thoracic Kyphosis and lumber Lordosis angle respectively have an adherence of 0.81, 0.87, 0.73, 0.76, 0.83, 0.89 (p>0.05. As a result, regarding the gained validity against the golden method of X-ray, it could be stated that the three mentioned non-invasive methods have adequate validity. In addition, the one-way analysis of variance test indicated that there existed a meaningful relationship between the three methods of measuring the thoracic Kyphosis and lumber Lordosis, and with respect to the Tukey’s test result, the image processing method is the most precise one.Conclusion as a result, this method could be used along with other non-invasive methods as a valid measuring method.

  10. Transpiration Response and Growth in Pearl Millet Parental Lines and Hybrids Bred for Contrasting Rainfall Environments

    Directory of Open Access Journals (Sweden)

    Susan Medina

    2017-10-01

    Full Text Available Under conditions of high vapor pressure deficit (VPD and soil drying, restricting transpiration is an important avenue to gain efficiency in water use. The question we raise in this article is whether breeding for agro-ecological environments that differ for the rainfall have selected for traits that control plant water use. These are measured in pearl millet materials bred for zones varying in rainfall (8 combinations of parent and F1-hybrids, 18 F1-hybrids and then 40 F1-hybrids. In all cases, we found an agro-ecological variation in the slope of the transpiration response to increasing VPD, and parental line variation in the transpiration response to soil drying within hybrids/parent combinations. The hybrids adapted to lower rainfall had higher transpiration response curves than those from the highest rainfall zones, but showed no variation in how transpiration responded to soil drying. The genotypes bred for lower rainfall zones showed lower leaf area, dry matter, thicker leaves, root development, and exudation, than the ones bred for high rainfall zone when grown in the low VPD environment of the greenhouse, but there was no difference in their root length neither on the root/shoot index in these genotypes. By contrast, when grown under high VPD conditions outdoors, the lower rainfall hybrids had the highest leaf, tiller, and biomass development. Finally, under soil drying the genotypes from the lower rainfall accumulated less biomass than the ones from higher rainfall zone, and so did the parental lines compared to the hybrids. These differences in the transpiration response and growth clearly showed that breeding for different agro-ecological zones also bred for different genotype strategies in relation to traits related to plant water use.Highlights:• Variation in transpiration response reflected breeding for agro-ecological zones• Different growth strategies depended on the environmental conditions• Different ideotypes reflected

  11. Transpiration Response and Growth in Pearl Millet Parental Lines and Hybrids Bred for Contrasting Rainfall Environments.

    Science.gov (United States)

    Medina, Susan; Gupta, S K; Vadez, Vincent

    2017-01-01

    Under conditions of high vapor pressure deficit (VPD) and soil drying, restricting transpiration is an important avenue to gain efficiency in water use. The question we raise in this article is whether breeding for agro-ecological environments that differ for the rainfall have selected for traits that control plant water use. These are measured in pearl millet materials bred for zones varying in rainfall (8 combinations of parent and F 1 -hybrids, 18 F 1 -hybrids and then 40 F 1 -hybrids). In all cases, we found an agro-ecological variation in the slope of the transpiration response to increasing VPD, and parental line variation in the transpiration response to soil drying within hybrids/parent combinations. The hybrids adapted to lower rainfall had higher transpiration response curves than those from the highest rainfall zones, but showed no variation in how transpiration responded to soil drying. The genotypes bred for lower rainfall zones showed lower leaf area, dry matter, thicker leaves, root development, and exudation, than the ones bred for high rainfall zone when grown in the low VPD environment of the greenhouse, but there was no difference in their root length neither on the root/shoot index in these genotypes. By contrast, when grown under high VPD conditions outdoors, the lower rainfall hybrids had the highest leaf, tiller, and biomass development. Finally, under soil drying the genotypes from the lower rainfall accumulated less biomass than the ones from higher rainfall zone, and so did the parental lines compared to the hybrids. These differences in the transpiration response and growth clearly showed that breeding for different agro-ecological zones also bred for different genotype strategies in relation to traits related to plant water use. Highlights : • Variation in transpiration response reflected breeding for agro-ecological zones • Different growth strategies depended on the environmental conditions • Different ideotypes reflected

  12. Transpiration and water-use efficiency in mixed-species forests versus monocultures: effects of tree size, stand density and season.

    Science.gov (United States)

    Forrester, David I

    2015-03-01

    Mixtures can be more productive than monocultures and may therefore use more water, which may make them more susceptible to droughts. The species interactions that influence growth, transpiration and water-use efficiency (WUE, tree growth per unit transpiration) within a given mixture vary with intra- and inter-annual climatic variability, stand density and tree size, but these effects remain poorly quantified. These relationships were examined in mixtures and monocultures of Eucalyptus globulus Labill. and Acacia mearnsii de Wildeman. Growth and transpiration were measured between ages 14 and 15 years. All E. globulus trees in mixture that were growing faster than similar sized trees in monocultures had higher WUE, while trees with similar growth rates had similar WUE. By the age of 14 years A. mearnsii trees were beginning to senesce and there were no longer any relationships between tree size and growth or WUE. The relationship between transpiration and tree size did not differ between treatments for either species, so stand-level increases in transpiration simply reflected the larger mean tree size in mixtures. Increasing neighbourhood basal area increased the complementarity effect on E. globulus growth and transpiration. The complementarity effect also varied throughout the year, but this was not related to the climatic seasonality. This study shows that stand-level responses can be the net effect of a much wider range of individual tree-level responses, but at both levels, if growth has not increased for a given species, it appears unlikely that there will be differences in transpiration or WUE for that species. Growth data may provide a useful initial indication of whether mixtures have higher transpiration or WUE, and which species and tree sizes contribute to this effect. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Noninvasive blood pressure measurement scheme based on optical fiber sensor

    Science.gov (United States)

    Liu, Xianxuan; Yuan, Xueguang; Zhang, Yangan

    2016-10-01

    Optical fiber sensing has many advantages, such as volume small, light quality, low loss, strong in anti-jamming. Since the invention of the optical fiber sensing technology in 1977, optical fiber sensing technology has been applied in the military, national defense, aerospace, industrial, medical and other fields in recent years, and made a great contribution to parameter measurement in the environment under the limited condition .With the rapid development of computer, network system, the intelligent optical fiber sensing technology, the sensor technology, the combination of computer and communication technology , the detection, diagnosis and analysis can be automatically and efficiently completed. In this work, we proposed a noninvasive blood pressure detection and analysis scheme which uses optical fiber sensor. Optical fiber sensing system mainly includes the light source, optical fiber, optical detector, optical modulator, the signal processing module and so on. wavelength optical signals were led into the optical fiber sensor and the signals reflected by the human body surface were detected. By comparing actual testing data with the data got by traditional way to measure the blood pressure we can establish models for predicting the blood pressure and achieve noninvasive blood pressure measurement by using spectrum analysis technology. Blood pressure measurement method based on optical fiber sensing system is faster and more convenient than traditional way, and it can get accurate analysis results in a shorter period of time than before, so it can efficiently reduce the time cost and manpower cost.

  14. Transpiration directly regulates the emissions of water-soluble short-chained OVOCs.

    Science.gov (United States)

    Rissanen, K; Hölttä, T; Bäck, J

    2018-04-20

    Most plant-based emissions of volatile organic compounds (VOCs) are considered mainly temperature dependent. However, certain oxygenated VOCs (OVOCs) have high water solubility; thus, also stomatal conductance could regulate their emissions from shoots. Due to their water solubility and sources in stem and roots, it has also been suggested that their emissions could be affected by transport in xylem sap. Yet, further understanding on the role of transport has been lacking until present. We used shoot-scale long-term dynamic flux data from Scots pines (Pinus sylvestris) to analyse the effects of transpiration and transport in xylem sap flow on emissions of three water soluble OVOC: methanol, acetone and acetaldehyde. We found a direct effect of transpiration on the shoot emissions of the three OVOCs. The emissions were best explained by a regression model that combined linear transpiration and exponential temperature effects. In addition, a structural equation model indicated that stomatal conductance affects emissions mainly indirectly, by regulating transpiration. A part of temperature's effect is also indirect. The tight coupling of shoot emissions to transpiration clearly evidences that these OVOCs are transported in xylem sap from their sources in roots and stem to leaves and to ambient air. This article is protected by copyright. All rights reserved.

  15. Experimental investigation of biomimetic self-pumping and self-adaptive transpiration cooling.

    Science.gov (United States)

    Jiang, Pei-Xue; Huang, Gan; Zhu, Yinhai; Xu, Ruina; Liao, Zhiyuan; Lu, Taojie

    2017-09-01

    Transpiration cooling is an effective way to protect high heat flux walls. However, the pumps for the transpiration cooling system make the system more complex and increase the load, which is a huge challenge for practical applications. A biomimetic self-pumping transpiration cooling system was developed inspired by the process of trees transpiration that has no pumps. An experimental investigation showed that the water coolant automatically flowed from the water tank to the hot surface with a height difference of 80 mm without any pumps. A self-adaptive transpiration cooling system was then developed based on this mechanism. The system effectively cooled the hot surface with the surface temperature kept to about 373 K when the heating flame temperature was 1639 K and the heat flux was about 0.42 MW m -2 . The cooling efficiency reached 94.5%. The coolant mass flow rate adaptively increased with increasing flame heat flux from 0.24 MW m -2 to 0.42 MW m -2 while the cooled surface temperature stayed around 373 K. Schlieren pictures showed a protective steam layer on the hot surface which blocked the flame heat flux to the hot surface. The protective steam layer thickness also increased with increasing heat flux.

  16. Intercomparison of techniques for the non-invasive measurement of bone mass

    International Nuclear Information System (INIS)

    Cohn, S.H.

    1981-01-01

    A variety of methods are presently available for the non-invasive measurement of bone mass of both normal individuals and patients with metabolic disorders. Chief among these methods are radiographic techniques such as radiogrammetry, photon absorptiometry, computer tomography, Compton scattering and neutron activation analysis. In this review, the salient features of the bone measurement techniques are discussed along with their accuracy and precision. The advantages and disadvantages of the various techniques for measuring bone mass are summarized. Where possible, intercomparisons are made of the various techniques

  17. Effect of Transpiration on Plant Accumulation and Translocation of PPCP/EDCs

    Science.gov (United States)

    Dodgen, Laurel K; Ueda, Aiko; Wu, Xiaoqin; Parker, David R; Gan, Jay

    2015-01-01

    The reuse of treated wastewater for agricultural irrigation in arid and hot climates where plant transpiration is high may affect plant accumulation of pharmaceutical and personal care products (PPCPs) and endocrine disrupting chemicals (EDCs). In this study, carrot, lettuce, and tomato plants were grown in solution containing 16 PPCP/EDCs in either a cool-humid or a warm-dry environment. Leaf bioconcentration factors (BCF) were positively correlated with transpiration for chemical groups of different ionized states (p < 0.05). However, root BCFs were correlated with transpiration only for neutral PPCP/EDCs (p < 0.05). Neutral and cationic PPCP/EDCs showed similar accumulation, while anionic PPCP/EDCs had significantly higher accumulation in roots and significantly lower accumulation in leaves (p < 0.05). Results show that plant transpiration may play a significant role in the uptake and translocation of PPCP/EDCs, which may have a pronounced effect in arid and hot climates where irrigation with treated wastewater is common. PMID:25594843

  18. Scaling up and error analysis of transpiration for Populus euphratica in a desert riparian forest

    Science.gov (United States)

    Si, J.; Li, W.; Feng, Q.

    2013-12-01

    Water consumption information of the forest stand is the most important factor for regional water resources management. However, water consumption of individual trees are usually measured based on the limited sample trees , so, it is an important issue how to realize eventual scaling up of data from a series of sample trees to entire stand. Estimation of sap flow flux density (Fd) and stand sapwood area (AS-stand) are among the most critical factors for determining forest stand transpiration using sap flow measurement. To estimate Fd, the various links in sap flow technology have great impact on the measurement of sap flow, to estimate AS-stand, an appropriate indirect technique for measuring each tree sapwood area (AS-tree) is required, because it is impossible to measure the AS-tree of all trees in a forest stand. In this study, Fd was measured in 2 mature P. euphratic trees at several radial depths, 0~10, 10~30mm, using sap flow sensors with the heat ratio method, the relationship model between AS-tree and stem diameter (DBH), growth model of AS-tree were established, using investigative original data of DBH, tree-age, and AS-tree. The results revealed that it can achieve scaling up of transpiration from sample trees to entire forest stand using AS-tree and Fd, however, the transpiration of forest stand (E) will be overvalued by 12.6% if using Fd of 0~10mm, and it will be underestimated by 25.3% if using Fd of 10~30mm, it implied that major uncertainties in mean stand Fd estimations are caused by radial variations in Fd. E will be obviously overvalued when the AS-stand is constant, this result imply that it is the key to improve the prediction accuracy that how to simulate the AS-stand changes in the day scale; They also showed that the potential errors in transpiration with a sample size of approximately ≥30 were almost stable for P.euphrtica, this suggests that to make an allometric equation it might be necessary to sample at least 30 trees.

  19. Slug flow in horizontal pipes with transpiration at the wall

    Science.gov (United States)

    Loureiro, J. B. R.; Silva Freire, A. P.

    2011-12-01

    The present work investigates the behaviour of slug flows in horizontal pipes with a permeable wall. Measurements of pressure drop and of local velocity are given for nine different flow conditions. The liquid phase velocity was measured with laser Doppler anemometry. Single-phase data are compared with the results of other authors. The influence of flow transpiration and of roughness on the features of slug flows is shown to be pronounced. A Shadow Sizer system coupled with Particle Image Velocimetry is used to account for the properties of the slug cell.

  20. Slug flow in horizontal pipes with transpiration at the wall

    Energy Technology Data Exchange (ETDEWEB)

    Loureiro, J B R; Freire, A P Silva, E-mail: jbrloureiro@mecanica.ufrj.br [Mechanical Engineering Program, Federal University of Rio de Janeiro (COPPE/UFRJ), C.P. 68503, 21.941-972, Rio de Janeiro, RJ (Brazil)

    2011-12-22

    The present work investigates the behaviour of slug flows in horizontal pipes with a permeable wall. Measurements of pressure drop and of local velocity are given for nine different flow conditions. The liquid phase velocity was measured with laser Doppler anemometry. Single-phase data are compared with the results of other authors. The influence of flow transpiration and of roughness on the features of slug flows is shown to be pronounced. A Shadow Sizer system coupled with Particle Image Velocimetry is used to account for the properties of the slug cell.

  1. Slug flow in horizontal pipes with transpiration at the wall

    International Nuclear Information System (INIS)

    Loureiro, J B R; Freire, A P Silva

    2011-01-01

    The present work investigates the behaviour of slug flows in horizontal pipes with a permeable wall. Measurements of pressure drop and of local velocity are given for nine different flow conditions. The liquid phase velocity was measured with laser Doppler anemometry. Single-phase data are compared with the results of other authors. The influence of flow transpiration and of roughness on the features of slug flows is shown to be pronounced. A Shadow Sizer system coupled with Particle Image Velocimetry is used to account for the properties of the slug cell.

  2. Noninvasive photoacoustic measurement of absorption coefficient using internal light irradiation of cylindrical diffusing fiber

    Science.gov (United States)

    Peng, Dong-qing; Zhu, Li-li; Li, Zhi-fang; Li, Hui

    2017-09-01

    Absorption coefficient of biological tissue is an important parameter in biomedicine, but its determination remains a challenge. In this paper, we propose a method using focusing photoacoustic imaging technique and internal light irradiation of cylindrical diffusing fiber (CDF) to quantify the target optical absorption coefficient. Absorption coefficients for ink absorbers are firstly determined through photoacoustic and spectrophotometric measurements at the same excitation, which demonstrates the feasibility of this method. Also, the optical absorption coefficients of ink absorbers with several concentrations are measured. Finally, the two-dimensional scanning photoacoustic image is obtained. Optical absorption coefficient measurement and simultaneous photoacoustic imaging of absorber non-invasively are the typical characteristics of the method. This method can play a significant role for non-invasive determination of blood oxygen saturation, the absorption-based imaging and therapy.

  3. Environmental controls on saltcedar (Tamarix spp.) transpiration and stomatal conductance and implications for determining evapotranspiration by remote sensing

    Science.gov (United States)

    Nagler, P. L.; Glenn, E. P.; morino, K.

    2012-12-01

    Saltcedar is an introduced, salt-tolerant shrub that now dominates many flow-regulated western U.S. rivers. Saltcedar control programs have been implemented to salvage water and to allow the return of native vegetation to infested rivers. However, there is much debate about how much water saltcedar actually uses and the range of ecohydrological niches it occupies. Ground methods for measuring riparian zone ET have improved and there is considerable interest in developing remote sensing methods for saltcedar to conduct wide-area monitoring of water use. Both thermal band and vegetation index methods have been used to estimate riparian ET. However, several problems present themselves in applying existing remote sensing methods to riparian corridors. First, many riparian corridors are narrow and are surrounded by arid uplands, hence they cannot be treated as energetically closed systems, an assumption of thermal band methods that calculate ET as a residual in the surface energy balance. Second, contrary to the assumption that riparian phreatophytes typically grow under unstressed conditions since they are rooted into groundwater, we find that saltcedar stands are under substantial degrees of apparent moisture stress, exhibiting midday depression of transpiration and stomatal conductance, and decreases in stomatal conductance over the growing season as depth to groundwater increases. Furthermore, the degree of stress is site-specific, depending on local soil texture, salinity of the groundwater and distance from the river. This violates a key assumption of vegetation index methods for estimating ET. The implications of these findings for arid-zone riparian ecohydrology and for remote sensing methods that assume either a constant daily evaporative fraction or rate of stomatal conductance will be discussed using saltcedar stands measured in the Cibola NWR on the lower Colorado River as a case study. Daily rates of saltcedar transpiration ranged from 1.6-3.0 mm/m2 leaf

  4. Noninvasive measurement of blood flow and extraction fraction

    Energy Technology Data Exchange (ETDEWEB)

    Peters, A.M.; Gunasekera, R.D.; Henderson, B.L.; Brown, J.; Lavender, J.P.; De Souza, M.; Ash, J.M.; Gilday, D.L.

    1987-10-01

    We describe the theory of a technique for the noninvasive measurement of organ blood flow which is based on the principle of fractionation of cardiac output and is applicable with any recirculating gamma emitting tracer. The technique effectively determines the count rate that would be recorded over the organ if the tracer behaved like radiolabelled microspheres and was completely trapped in the organ's vascular bed on first pass. After correction for organ depth, the estimated first pass activity plateau, expressed as a fraction of the injected dose is equal to the organ's fraction of the cardiac output (CO). By extending the theory, organ extraction fraction of extractable tracers or mean transit time of nonextractable tracers can be measured. The technique was applied to the measurement of renal blood flow in the native and transplanted kidney, splenic blood flow, the extraction fraction of DTPA by the kidney and of sulphur colloid by the spleen.

  5. Noninvasive measurement of blood flow and extraction fraction

    International Nuclear Information System (INIS)

    Peters, A.M.; Gunasekera, R.D.; Henderson, B.L.; Brown, J.; Lavender, J.P.; De Souza, M.; Ash, J.M.; Gilday, D.L.

    1987-01-01

    We describe the theory of a technique for the noninvasive measurement of organ blood flow which is based on the principle of fractionation of cardiac output and is applicable with any recirculating gamma emitting tracer. The technique effectively determines the count rate that would be recorded over the organ if the tracer behaved like radiolabelled microspheres and was completely trapped in the organ's vascular bed on first pass. After correction for organ depth, the estimated first pass activity plateau, expressed as a fraction of the injected dose is equal to the organ's fraction of the cardiac output (CO). By extending the theory, organ extraction fraction of extractable tracers or mean transit time of nonextractable tracers can be measured. The technique was applied to the measurement of renal blood flow in the native and transplanted kidney, splenic blood flow, the extraction fraction of DTPA by the kidney and of sulphur colloid by the spleen. (author)

  6. Transpiration of shrub species, Alnus firma under changing atmospheric environments in montane area, Japan

    Science.gov (United States)

    Miyazawa, Y.; Maruyama, A.; Inoue, A.

    2014-12-01

    In the large caldera of Mt. Aso in Japan, grasslands have been traditionally managed by the farmers. Due to changes in the social structure of the region, a large area of the grassland has been abandoned and was invaded by the shrubs with different hydrological and ecophysiological traits. Ecophysiological traits and their responses to seasonally changing environments are fundamental to project the transpiration rates under changing air and soil water environments, but less is understood. We measured the tree- and leaf-level ecophysiological traits of a shrub, Alnus firma in montane region where both rainfall and soil water content drastically changes seasonally. Sap flux reached the annual peak in evaporative summer (July-August) both in 2013 and 2014, although the duration was limited within a short period due to the prolonged rainy season before summer (2014) and rapid decrease in the air vapor pressure deficit (D) in late summer. Leaf ecophysiological traits in close relationship with gas exchange showed modest seasonal changes and the values were kept at relatively high levels typical in plants with nitrogen fixation under nutrient-poor environments. Stomatal conductance, which was measured at leaf-level measurements and sap flux measurements, showed responses to D, which coincided with the theoretical response for isohydric leaves. A multilayer model, which estimates stand-level transpiration by scaling up the leaf-level data, successfully captured the temporal trends in sap flux, suggesting that major processes were incorporated. Thus, ecophysiological traits of A. firma were characterized by the absence of responses to seasonally changing environments and the transpiration rate was the function of the interannually variable environmental conditions.

  7. Transpiration rates of rice plants treated with Trichoderma spp.

    Science.gov (United States)

    Doni, Febri; Anizan, I.; Che Radziah C. M., Z.; Yusoff, Wan Mohtar Wan

    2014-09-01

    Trichoderma spp. are considered as successful plant growth promoting fungi and have positive role in habitat engineering. In this study, the potential for Trichoderma spp. to regulate transpiration process in rice plant was assessed experimentally under greenhouse condition using a completely randomized design. The study revealed that Trichoderma spp. have potential to enhance growth of rice plant through transpirational processes. The results of the study add to the advancement of the understanding as to the role of Trichoderma spp. in improving rice physiological process.

  8. Mechanistic assessment of hillslope transpiration controls of diel subsurface flow: a steady-state irrigation approach

    Science.gov (United States)

    H.R. Barnard; C.B. Graham; W.J. van Verseveld; J.R. Brooks; B.J. Bond; J.J. McDonnell

    2010-01-01

    Mechanistic assessment of how transpiration influences subsurface flow is necessary to advance understanding of catchment hydrology. We conducted a 24-day, steady-state irrigation experiment to quantify the relationships among soil moisture, transpiration and hillslope subsurface flow. Our objectives were to: (1) examine the time lag between maximum transpiration and...

  9. Relation of blood pressure and organ damage: comparison between feasible, noninvasive central hemodynamic measures and conventional brachial measures.

    Science.gov (United States)

    Lindroos, Annika S; Langén, Ville L; Kantola, Ilkka; Salomaa, Veikko; Juhanoja, Eeva P; Sivén, Sam S; Jousilahti, Pekka; Jula, Antti M; Niiranen, Teemu J

    2018-06-01

    The present cross-sectional study investigated whether central SBP and pulse pressure (PP) measured noninvasively with a novel cuff-based stand-alone monitor are more strongly associated with hypertensive end-organ damage than corresponding brachial measures. We investigated the cross-sectional association of central versus brachial SBP and PP with echocardiographic left ventricular mass index (LVMI), LV hypertrophy (LVH), carotid intima-media thickness (IMT), and increased IMT (IMT ≥ 75th percentile) among 246 participants drawn from the general population (mean age 57.2 years, 55.3% women). All blood pressure (BP) measures were positively correlated with LVMI and IMT (P area under curve (AUC) for SBP: 0.74 versus 0.76, P = 0.16; AUC for PP: 0.75 versus 0.73, P = 0.35] and IMT (AUC for SBP: 0.61 versus 0.61, P = 0.67; AUC for PP: 0.63 versus 0.61, P = 0.29). Our findings suggest that central SBP and PP measured with a stand-alone noninvasive BP monitor do not improve diagnostic accuracy for end-organ damage over corresponding brachial measures.

  10. Residual transpiration as a component of salinity stress tolerance mechanism: a case study for barley.

    Science.gov (United States)

    Hasanuzzaman, Md; Davies, Noel W; Shabala, Lana; Zhou, Meixue; Brodribb, Tim J; Shabala, Sergey

    2017-06-19

    While most water loss from leaf surfaces occurs via stomata, part of this loss also occurs through the leaf cuticle, even when the stomata are fully closed. This component, termed residual transpiration, dominates during the night and also becomes critical under stress conditions such as drought or salinity. Reducing residual transpiration might therefore be a potentially useful mechanism for improving plant performance when water availability is reduced (e.g. under saline or drought stress conditions). One way of reducing residual transpiration may be via increased accumulation of waxes on the surface of leaf. Residual transpiration and wax constituents may vary with leaf age and position as well as between genotypes. This study used barley genotypes contrasting in salinity stress tolerance to evaluate the contribution of residual transpiration to the overall salt tolerance, and also investigated what role cuticular waxes play in this process. Leaves of three different positions (old, intermediate and young) were used. Our results show that residual transpiration was higher in old leaves than the young flag leaves, correlated negatively with the osmolality, and was positively associated with the osmotic and leaf water potentials. Salt tolerant varieties transpired more water than the sensitive variety under normal growth conditions. Cuticular waxes on barley leaves were dominated by primary alcohols (84.7-86.9%) and also included aldehydes (8.90-10.1%), n-alkanes (1.31-1.77%), benzoate esters (0.44-0.52%), phytol related compounds (0.22-0.53%), fatty acid methyl esters (0.14-0.33%), β-diketones (0.07-0.23%) and alkylresorcinols (1.65-3.58%). A significant negative correlation was found between residual transpiration and total wax content, and residual transpiration correlated significantly with the amount of primary alcohols. Both leaf osmolality and the amount of total cuticular wax are involved in controlling cuticular water loss from barley leaves under well

  11. Biomass Allocation Patterns Are Linked to Genotypic Differences in Whole-Plant Transpiration Efficiency in Sunflower

    Directory of Open Access Journals (Sweden)

    Luciano Velázquez

    2017-11-01

    Full Text Available Increased transpiration efficiency (the ratio of biomass to water transpired, TE could lead to increased drought tolerance under some water deficit scenarios. Intrinsic (i.e., leaf-level TE is usually considered as the primary source of variation in whole-plant TE, but empirical data usually contradict this assumption. Sunflower has a significant variability in TE, but a better knowledge of the effect of leaf and plant-level traits could be helpful to obtain more efficient genotypes for water use. The objective of this study was, therefore, to assess if genotypic variation in whole-plant TE is better related to leaf- or plant-level traits. Three experiments were conducted, aimed at verifying the existence of variability in whole-plant TE and whole-plant and leaf-level traits, and to assess their correlation. Sunflower public inbred lines and a segregating population of recombinant inbred lines were grown under controlled conditions and subjected to well-watered and water-deficit treatments. Significant genotypic variation was found for TE and related traits. These differences in whole-plant transpiration efficiency, both between genotypes and between plants within each genotype, showed no association to leaf-level traits, but were significantly and negatively correlated to biomass allocation to leaves and to the ratio of leaf area to total biomass. These associations are likely of a physiological origin, and not only a consequence of genetic linkage in the studied population. These results suggest that genotypic variation for biomass allocation could be potentially exploited as a source for increased transpiration efficiency in sunflower breeding programmes. It is also suggested that phenotyping for TE in this species should not be restricted to leaf-level measurements, but also include measurements of plant-level traits, especially those related to biomass allocation between photosynthetic and non-photosynthetic organs.

  12. Biomass Allocation Patterns Are Linked to Genotypic Differences in Whole-Plant Transpiration Efficiency in Sunflower.

    Science.gov (United States)

    Velázquez, Luciano; Alberdi, Ignacio; Paz, Cosme; Aguirrezábal, Luis; Pereyra Irujo, Gustavo

    2017-01-01

    Increased transpiration efficiency (the ratio of biomass to water transpired, TE) could lead to increased drought tolerance under some water deficit scenarios. Intrinsic (i.e., leaf-level) TE is usually considered as the primary source of variation in whole-plant TE, but empirical data usually contradict this assumption. Sunflower has a significant variability in TE, but a better knowledge of the effect of leaf and plant-level traits could be helpful to obtain more efficient genotypes for water use. The objective of this study was, therefore, to assess if genotypic variation in whole-plant TE is better related to leaf- or plant-level traits. Three experiments were conducted, aimed at verifying the existence of variability in whole-plant TE and whole-plant and leaf-level traits, and to assess their correlation. Sunflower public inbred lines and a segregating population of recombinant inbred lines were grown under controlled conditions and subjected to well-watered and water-deficit treatments. Significant genotypic variation was found for TE and related traits. These differences in whole-plant transpiration efficiency, both between genotypes and between plants within each genotype, showed no association to leaf-level traits, but were significantly and negatively correlated to biomass allocation to leaves and to the ratio of leaf area to total biomass. These associations are likely of a physiological origin, and not only a consequence of genetic linkage in the studied population. These results suggest that genotypic variation for biomass allocation could be potentially exploited as a source for increased transpiration efficiency in sunflower breeding programmes. It is also suggested that phenotyping for TE in this species should not be restricted to leaf-level measurements, but also include measurements of plant-level traits, especially those related to biomass allocation between photosynthetic and non-photosynthetic organs.

  13. Variable coupling between sap-flow and transpiration in pine trees under drought conditions

    Science.gov (United States)

    Preisler, Yakir; Tatarinov, Fyodor; Rohatyn, Shani; Rotenberg, Eyal; Grunzweig, Jose M.; Yakir, Dan

    2016-04-01

    Changes in diurnal patterns in water transport and physiological activities in response to changes in environmental conditions are important adjustments of trees to drought. The rate of sap flow (SF) in trees is expected to be in agreement with the rate of tree-scale transpiration (T) and provides a powerful measure of water transport in the soil-plant-atmosphere system. The aim of this five-years study was to investigate the temporal links between SF and T in Pinus halepensis exposed to extreme seasonal drought in the Yatir forest in Israel. We continuously measured SF (20 trees), the daily variations in stem diameter (ΔDBH, determined with high precision dendrometers; 8 trees), and ecosystem evapotranspiration (ET; eddy covariance), which were complemented with short-term campaigns of leaf-scale measurements of H2O and CO2 gas exchange, water potentials, and hydraulic conductivity. During the rainy season, tree SF was well synchronized with ecosystem ET, reaching maximum rates during midday in all trees. However, during the dry season, the daily SF trends greatly varied among trees, allowing a classification of trees into three classes: 1) Trees that remain with SF maximum at midday, 2) trees that advanced their SF peak to early morning, and 3) trees that delayed their SF peak to late afternoon hours. This classification remained valid for the entire study period (2010-2015), and strongly correlated with tree height and DBH, and to a lower degree with crown size and competition index. In the dry season, class 3 trees (large) tended to delay the timing of SF maximum to the afternoon, and to advance their maximum diurnal DBH to early morning, while class 2 trees (smaller) advanced their SF maximum to early morning and had maximum daily DBH during midday and afternoon. Leaf-scale transpiration (T), measurements showed a typical morning peak in all trees, irrespective of classification, and a secondary peak in the afternoon in large trees only. Water potential and

  14. Effect of nitrogen supply on transpiration and stomatal behaviour of beans (Phaseolus vulgaris L. )

    Energy Technology Data Exchange (ETDEWEB)

    Shimshi, D

    1970-01-01

    The effect of nitrogen supply on the transpiration rate and stomatal opening of potted bean plants was studied in a series of experiments. The transpiration rates of N-supplied plants were higher than those of N-deficient plants when soil moisture was relatively high; as soil moisture approached the wilting range, the transpiration rates of N-supplied plants dropped to below those of N-deficient plants. In spite of the marked differences in transpiration rates, as influenced by soil moisture and nitrogen supply, the stomata appeared closed. By coating the upper or lower surfaces of the leaves with a vapor-impervious compound it was shown that stomatal apertures below the limit of microscopic resolution control the rate of transpiration. Under conditions that encourage stomatal opening (covering the plants with transparent plastic bags), the stomata of the N-deficient plants opened to a lesser degree than those of N-supplied plants. There was some evidence that when stomata were visibly open, transpiration rates were regulated by the degree of plant hydration rather than by the degree of stomatal opening. It is concluded that N-deficient plants fail to open their stomata as widely and to close them as tightly as N-supplied plants. 8 references, 2 tables.

  15. Adaptive control with self-tuning for non-invasive beat-by-beat blood pressure measurement.

    Science.gov (United States)

    Nogawa, Masamichi; Ogawa, Mitsuhiro; Yamakoshi, Takehiro; Tanaka, Shinobu; Yamakoshi, Ken-ichi

    2011-01-01

    Up to now, we have successfully carried out the non-invasive beat-by-beat measurement of blood pressure (BP) in the root of finger, superficial temporal and radial artery based on the volume-compensation technique with reasonable accuracy. The present study concerns with improvement of control method for this beat-by-beat BP measurement. The measurement system mainly consists of a partial pressurization cuff with a pair of LED and photo-diode for the detection of arterial blood volume, and a digital self-tuning control method. Using healthy subjects, the performance and accuracy of this system were evaluated through comparison experiments with the system using a conventional empirically tuned PID controller. The significant differences of BP measured in finger artery were not showed in systolic (SBP), p=0.52, and diastolic BP (DBP), p=0.35. With the advantage of the adaptive control with self-tuning method, which can tune the control parameters without disturbing the control system, the application area of the non-invasive beat-by-beat measurement method will be broadened.

  16. Spatial Variability of Tree Transpiration Along a Soil Drainage Gradient of Boreal Black Spruce Forest

    Science.gov (United States)

    Angstmann, J. L.; Ewers, B. E.; Kwon, H.; Bond-Lamberty, B.; Amiro, B.; Gower, S. T.

    2008-12-01

    Boreal forests are an integral component in obtaining a predictive understanding of global climate change because they comprise 33% of the world's forests and store large amounts of carbon. Much of this carbon storage is a result of peat formation in cold, poorly-drained soils. Transpiration plays a crucial role in the interaction between carbon and water cycles due to stomatal control of these fluxes. The primary focus of this study is to quantify the spatial variability and drivers of tree transpiration in boreal forest stands across a well- to poorly-drained soil drainage gradient. Species composition of this region of boreal forest changes during succession in well-drained soils from being primarily dominated by Picea mariana with co-dominant Pinus banksiana and Populus tremuloides in younger stands to being dominated solely by Picea marianain older stands. Poorly-drained soils are dominated by Picea mariana and change little with succession. Previous work in well-drained stands showed that 1) tree transpiration changed substantially with stand age due to sapwood-to-leaf area ratio dynamics and 2) minimum leaf water potential (Ψ) was kept constant to prevent excessive cavitation. We hypothesized that 1) minimum Ψ would be constant, 2) transpiration would be proportional to the sapwood-to-leaf area ratio across a soil drainage gradient, and 3) spatial relationships between trees would vary depending on stomatal responses to vapor pressure deficit (D). We tested these hypotheses by measuring Ψ of 33 trees and sap flux from 204 trees utilizing cyclic sampling constructed to study spatial relationships. Measurements were conducted at a 42-year-old stand representing maximum tree diversity during succession. There were no significant differences between growing season averaged Ψ in well- (-0.35 and -1.37 for pre-dawn and mid-day respectively) and poorly- drained soil conditions (-0.38 and -1.41 for pre-dawn and mid-day respectively) for Picea mariana. Water use

  17. Noninvasive technique for measurement of heartbeat regularity in zebrafish (Danio rerio embryos

    Directory of Open Access Journals (Sweden)

    Cheng Shuk

    2009-02-01

    Full Text Available Abstract Background Zebrafish (Danio rerio, due to its optical accessibility and similarity to human, has emerged as model organism for cardiac research. Although various methods have been developed to assess cardiac functions in zebrafish embryos, there lacks a method to assess heartbeat regularity in blood vessels. Heartbeat regularity is an important parameter for cardiac function and is associated with cardiotoxicity in human being. Using stereomicroscope and digital video camera, we have developed a simple, noninvasive method to measure the heart rate and heartbeat regularity in peripheral blood vessels. Anesthetized embryos were mounted laterally in agarose on a slide and the caudal blood circulation of zebrafish embryo was video-recorded under stereomicroscope and the data was analyzed by custom-made software. The heart rate was determined by digital motion analysis and power spectral analysis through extraction of frequency characteristics of the cardiac rhythm. The heartbeat regularity, defined as the rhythmicity index, was determined by short-time Fourier Transform analysis. Results The heart rate measured by this noninvasive method in zebrafish embryos at 52 hour post-fertilization was similar to that determined by direct visual counting of ventricle beating (p > 0.05. In addition, the method was validated by a known cardiotoxic drug, terfenadine, which affects heartbeat regularity in humans and induces bradycardia and atrioventricular blockage in zebrafish. A significant decrease in heart rate was found by our method in treated embryos (p p Conclusion The data support and validate this rapid, simple, noninvasive method, which includes video image analysis and frequency analysis. This method is capable of measuring the heart rate and heartbeat regularity simultaneously via the analysis of caudal blood flow in zebrafish embryos. With the advantages of rapid sample preparation procedures, automatic image analysis and data analysis, this

  18. Noninvasive Sensor for Measuring Muscle Metabolism During Exercise

    Science.gov (United States)

    Soller, B. R.; Yang, Y.; Lee, S. M. C.; Soyemi, O. O.; Wilson, C.; Hagan, R. D.

    2007-01-01

    The measurement of oxygen uptake (VO2) and lactate threshold (LT) are utilized to assess changes in aerobic capacity and the efficacy of exercise countermeasures in astronauts. During extravehicular activity (EVA), real-time knowledge of VO2 and relative work intensity can be used to monitor crew activity levels and organize tasks to reduce the cumulative effects of fatigue. Currently VO2 and LT are determined with complicated measurement techniques that require sampling of expired ventilatory gases, which may not be accurate in enclosed, oxygen-rich environments such as the EVA suit. The UMMS team has developed a novel near infrared spectroscopic (NIRS) system which noninvasively, simultaneously and continuously measures muscle oxygen tension, oxygen saturation, pH (pHm), and hematocrit from a small sensor placed on the leg. This system is unique in that it allows accurate, absolute measurement of these parameters in the thigh muscle by correcting spectra for the interference from skin pigment and fat. These parameters can be used to estimate VO2 and LT. A preliminary evaluation of the system s capabilities was performed in the NASA JSC Exercise Physiology Lab.

  19. [Photosynthesis and transpiration characteristics of female and male Trichosanthes kirilowii Maxim individuals].

    Science.gov (United States)

    Liu, Yun; Zhong, Zhang-cheng; Wang, Xiao-xue; Xie, Jun; Yang, Wen-ying

    2011-03-01

    A field research was conducted on the photosynthesis and transpiration characteristics of dioecious Trichosanthes kirilowii individuals at four key development stages. At vegetative growth stage, the photosynthesis rate, transpiration rate, stomatal conductance, and water use efficiency of male individuals were higher than those of female individuals, and hence, male individuals entered into reproductive growth stage 22 days earlier than female individuals. After entering into reproductive growth stage, male individuals had higher photosynthesis rate, transpiration rate, and stomatal conductance, but slightly lower water use efficiency than female individuals. As the female individuals started to reproductive growth, their photosynthesis rate and water use efficiency were significantly lower, while the transpiration rate and stomatal conductance were higher than those of the male individuals. The effects of climate factors on the growth and development of T. kirilowii mainly occurred at its vegetative growth and early reproductive growth stages, and weakened at later reproductive growth stages. Higher temperature and lower relative humidity benefited the growth and development of T. kirilowii, and illumination could enhance the photosynthesis rate of T. kirilowii, especially its male individuals. After entering into reproductive growth stage, the photosynthesis rate of male individuals increased significantly with increasing illumination, but that of female individuals only had a slight increase, and the transpiration rate of male individuals as well as the photosynthesis rate of female individuals all increased significantly with increasing temperature.

  20. Modelling noninvasively measured cerebral signals during a hypoxemia challenge: steps towards individualised modelling.

    Directory of Open Access Journals (Sweden)

    Beth Jelfs

    Full Text Available Noninvasive approaches to measuring cerebral circulation and metabolism are crucial to furthering our understanding of brain function. These approaches also have considerable potential for clinical use "at the bedside". However, a highly nontrivial task and precondition if such methods are to be used routinely is the robust physiological interpretation of the data. In this paper, we explore the ability of a previously developed model of brain circulation and metabolism to explain and predict quantitatively the responses of physiological signals. The five signals all noninvasively-measured during hypoxemia in healthy volunteers include four signals measured using near-infrared spectroscopy along with middle cerebral artery blood flow measured using transcranial Doppler flowmetry. We show that optimising the model using partial data from an individual can increase its predictive power thus aiding the interpretation of NIRS signals in individuals. At the same time such optimisation can also help refine model parametrisation and provide confidence intervals on model parameters. Discrepancies between model and data which persist despite model optimisation are used to flag up important questions concerning the underlying physiology, and the reliability and physiological meaning of the signals.

  1. Investigation of the vaporization of boric acid by transpiration thermogravimetry and knudsen effusion mass spectrometry.

    Science.gov (United States)

    Balasubramanian, R; Lakshmi Narasimhan, T S; Viswanathan, R; Nalini, S

    2008-11-06

    The vaporization of H3BO3(s) was studied by using a commercial thermogravimetric apparatus and a Knudsen effusion mass spectrometer. The thermogravimetric measurements involved use of argon as the carrier gas for vapor transport and derivation of vapor pressures of H3BO3(g) in the temperature range 315-352 K through many flow dependence and temperature dependence runs. The vapor pressures as well as the enthalpy of sublimation obtained in this study represent the first results from measurements at low temperatures that are in accord with the previously reported near-classical transpiration measurements (by Stackelberg et al. 70 years ago) at higher temperatures (382-413 K with steam as the carrier gas). The KEMS measurements performed for the first time on boric acid showed H3BO3(g) as the principal vapor species with no meaningful information discernible on H2O(g) though. The thermodynamic parameters, both p(H3BO3) and Delta sub H degrees m(H3BO3,g), deduced from KEMS results in the temperature range 295-342 K are in excellent agreement with the transpiration results lending further credibility to the latter. All this information points toward congruent vaporization at the H3BO3 composition in the H2O-B2O3 binary system. The vapor pressures obtained from transpiration (this study and that of Stackelberg et al.) as well as from KEMS measurements are combined to recommend the following: log [p(H3BO3)/Pa]=-(5199+/-74)/(T/K)+(15.65+/-0.23), valid for T=295-413 K; and Delta sub H degrees m=98.3+/-9.5 kJ mol (-1) at T=298 K for H3BO3(s)=H3BO3(g).

  2. Non-invasive measurements of soil water content using a pulsed 14 MeV neutron generator

    Science.gov (United States)

    Most current techniques of setting crop irrigation schedules use invasive, labor-intensive soil-water content measurements. We developed a cart-mounted neutron probe capable of non-invasive measurements of volumetric soil moisture contents. The instrument emits neutrons which are captured by hydroge...

  3. A fluid-structure interaction model of the internal carotid and ophthalmic arteries for the noninvasive intracranial pressure measurement method.

    Science.gov (United States)

    Misiulis, Edgaras; Džiugys, Algis; Navakas, Robertas; Striūgas, Nerijus

    2017-05-01

    Accurate and clinically safe measurements of intracranial pressure (ICP) are crucial for secondary brain damage prevention. There are two methods of ICP measurement: invasive and noninvasive. Invasive methods are clinically unsafe; therefore, safer noninvasive methods are being developed. One of the noninvasive ICP measurement methods implements the balance principle, which assumes that if the velocity of blood flow in both ophthalmic artery segments - the intracranial (IOA) and extracranial (EOA) - is equal, then the acting ICP on the IOA and the external pressure (Pe) on the EOA are also equal. To investigate the assumption of the balance principle, a generalized computational model incorporating a fluid-structure interaction (FSI) module was created and used to simulate noninvasive ICP measurement by accounting for the time-dependent behavior of the elastic internal carotid (ICA) and ophthalmic (OA) arteries and their interaction with pulsatile blood flow. It was found that the extra balance pressure term, which incorporates the hydrodynamic pressure drop between measurement points, must be added into the balance equation, and the corrections on a difference between the velocity of blood flow in the IOA and EOA must be made, due to a difference in the blood flow rate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Noninvasive measures of brain edema predict outcome in pediatric cerebral malaria.

    Science.gov (United States)

    Kampondeni, Samuel D; Birbeck, Gretchen L; Seydel, Karl B; Beare, Nicholas A; Glover, Simon J; Hammond, Colleen A; Chilingulo, Cowles A; Taylor, Terrie E; Potchen, Michael J

    2018-01-01

    Increased brain volume (BV) and subsequent herniation are strongly associated with death in pediatric cerebral malaria (PCM), a leading killer of children in developing countries. Accurate noninvasive measures of BV are needed for optimal clinical trial design. Our objectives were to examine the performance of six different magnetic resonance imaging (MRI) BV quantification measures for predicting mortality in PCM and to review the advantages and disadvantages of each method. Receiver operator characteristics were generated from BV measures of MRIs of children admitted to an ongoing research project with PCM between 2009 and 2014. Fatal cases were matched to the next available survivor. A total of 78 MRIs of children aged 5 months to 13 years (mean 4.0 years), of which 45% were males, were included. Areas under the curve (AUC) with 95% confidence interval on measures from the initial MRIs were: Radiologist-derived score = 0.69 (0.58-0.79; P = 0.0037); prepontine cistern anteroposterior (AP) dimension = 0.70 (0.56-0.78; P = 0.0133); SamKam ratio [Rt. parietal lobe height/(prepontine AP dimension + fourth ventricle AP dimension)] = 0.74 (0.63-0.83; P = 0.0002); and global cerebrospinal fluid (CSF) space ascertained by ClearCanvas = 0.67 (0.55-0.77; P = 0.0137). For patients with serial MRIs ( n = 37), the day 2 global CSF space AUC was 0.87 (0.71-0.96; P dimension ≤3 mm; cisternal CSF volume ≤7.5 ml; SamKam ratio ≥6.5; and recovery factor ≤0.75. All noninvasive measures of BV performed well in predicting death and providing a proxy measure for brain volume. Initial MRI assessment may inform future clinical trials for subject selection, risk adjustment, or stratification. Measures of temporal change may be used to stage PCM.

  5. Comparative measurements of transpiration an canopy conductance in two mixed deciduous woodlands differing in structure and species composition

    DEFF Research Database (Denmark)

    Herbst, Mathias; Rosier, Paul T.W.; Morecroft, Michael D.

    2008-01-01

    a continuous hazel (Corylus avellana L.) understory. Wytham Woods, which had an LAI of 3.6, was dominated by ash (Fraxinus excelsior L.) and sycamore (Acer pseudoplatanus L.) and had only a sparse understory. Annual canopy transpiration was 367 mm for Grimsbury Wood and 397 mm for Wytham Woods. These values...

  6. Review of invasive urodynamics and progress towards non-invasive measurements in the assessment of bladder outlet obstruction

    Directory of Open Access Journals (Sweden)

    C J Griffiths

    2009-01-01

    Full Text Available Objective: This article defines the need for objective measurements to help diagnose the cause of lower urinary tract symptoms (LUTS. It describes the conventional techniques available, mainly invasive, and then summarizes the emerging range of non-invasive measurement techniques. Methods: This is a narrative review derived form the clinical and scientific knowledge of the authors together with consideration of selected literature. Results: Consideration of measured bladder pressure urinary flow rate during voiding in an invasive pressure flow study is considered the gold standard for categorization of bladder outlet obstruction (BOO. The diagnosis is currently made by plotting the detrusor pressure at maximum flow (p detQmax and maximum flow rate (Q max on the nomogram approved by the International Continence Society. This plot will categorize the void as obstructed, equivocal or unobstructed. The invasive and relatively complex nature of this investigation has led to a number of inventive techniques to categorize BOO either by measuring bladder pressure non-invasively or by providing a proxy measure such as bladder weight. Conclusion: Non-invasive methods of diagnosing BOO show great promise and a few have reached the stage of being commercially available. Further studies are however needed to validate the measurement technique and assess their worth in the assessment of men with LUTS.

  7. Thermal transpiration: A molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    T, Joe Francis [Computational Nanotechnology Laboratory, School of Nano Science and Technology, National Institute of Technology Calicut, Kozhikode (India); Sathian, Sarith P. [Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai (India)

    2014-12-09

    Thermal transpiration is a phenomenon where fluid molecules move from the cold end towards the hot end of a channel under the influence of longitudinal temperature gradient alone. Although the phenomenon of thermal transpiration is observed at rarefied gas conditions in macro systems, the phenomenon can occur at atmospheric pressure if the characteristic dimensions of the channel is less than 100 nm. The flow through these nanosized channels is characterized by the free molecular flow regimes and continuum theory is inadequate to describe the flow. Thus a non-continuum method like molecular dynamics (MD) is necessary to study such phenomenon. In the present work, MD simulations were carried out to investigate the occurance of thermal transpiration in copper and platinum nanochannels at atmospheric pressure conditions. The mean pressure of argon gas confined inside the nano channels was maintained around 1 bar. The channel height is maintained at 2nm. The argon atoms interact with each other and with the wall atoms through the Lennard-Jones potential. The wall atoms are modelled using an EAM potential. Further, separate simulations were carried out where a Harmonic potential is used for the atom-atom interaction in the platinum channel. A thermally insulating wall was introduced between the low and high temperature regions and those wall atoms interact with fluid atoms through a repulsive potential. A reduced cut off radius were used to achieve this. Thermal creep is induced by applying a temperature gradient along the channel wall. It was found that flow developed in the direction of the increasing temperature gradient of the wall. An increase in the volumetric flux was observed as the length of the cold and the hot regions of the wall were increased. The effect of temperature gradient and the wall-fluid interaction strength on the flow parameters have been studied to understand the phenomenon better.

  8. Partitioning evaporation and transpiration in a maize field with heat-pulse sensors used for evaporation

    Science.gov (United States)

    Evaporation (E) and transpiration (T) occur simultaneously in many systems with varying levels of importance, yet terms are typically lumped as evapotranspiration (ET) due to difficulty with distinguishing component fluxes. Few studies have measured all three terms (ET, E, and T), and in the few cas...

  9. Estimation of Transpiration and Water Use Efficiency Using Satellite and Field Observations

    Science.gov (United States)

    Choudhury, Bhaskar J.; Quick, B. E.

    2003-01-01

    Structure and function of terrestrial plant communities bring about intimate relations between water, energy, and carbon exchange between land surface and atmosphere. Total evaporation, which is the sum of transpiration, soil evaporation and evaporation of intercepted water, couples water and energy balance equations. The rate of transpiration, which is the major fraction of total evaporation over most of the terrestrial land surface, is linked to the rate of carbon accumulation because functioning of stomata is optimized by both of these processes. Thus, quantifying the spatial and temporal variations of the transpiration efficiency (which is defined as the ratio of the rate of carbon accumulation and transpiration), and water use efficiency (defined as the ratio of the rate of carbon accumulation and total evaporation), and evaluation of modeling results against observations, are of significant importance in developing a better understanding of land surface processes. An approach has been developed for quantifying spatial and temporal variations of transpiration, and water-use efficiency based on biophysical process-based models, satellite and field observations. Calculations have been done using concurrent meteorological data derived from satellite observations and four dimensional data assimilation for four consecutive years (1987-1990) over an agricultural area in the Northern Great Plains of the US, and compared with field observations within and outside the study area. The paper provides substantive new information about interannual variation, particularly the effect of drought, on the efficiency values at a regional scale.

  10. Transpiration and Groundwater Uptake Dynamics of Pinus Brutia on a Fractured Mediterranean Mountain Slope during Two Hydrologically Contrasting Years

    Science.gov (United States)

    Eliades, Marinos; Bruggeman, Adriana; Lubczynski, Maciek; Christou, Andreas; Camera, Corrado; Djuma, Hakan

    2017-04-01

    Semi-arid environments tend to have extreme temporal variability in rainfall, resulting in extended periods with little to no precipitation. The mountainous topography is characterized by steep slopes, often leading to shallow soil layers with limited water storage capacity. Tree species survive in these environments by developing various adaptation mechanisms to access water. The main objective of this study is to examine the differences of two hydrologically contrasting years on the transpiration and groundwater uptake dynamics of Pinus brutia trees. We selected four trees for sap flow monitoring in an 8966-m2 fenced area of Pinus brutia forest. The site is located at 620 m elevation, on the northern foothills of the Troodos mountains in Cyprus. The slope of the site ranges between 0 and 82%. The average daily minimum temperature is 5 0C in January and the average daily maximum temperature is 35 oC in August. The mean annual rainfall is 425 mm. Monitoring started on 1 January 2015 and is ongoing. We measured soil depth in a 1-m grid around each of the selected trees for monitoring. We processed soil depths in ArcGIS software (ESRI) to create a soil depth map. We used a Total Station and a differential GPS for the creation of a high resolution DEM of the area covering the selected trees. We installed seventeen soil moisture sensors at 12-cm depth and two at 30-cm depth, where the soil was deeper than 24 cm. We randomly installed 28 metric manual rain gauges under the trees' canopy to measure throughfall. For stemflow we installed a plastic tube around each tree trunk and connected it to a manual rain gauge. We used sap flow heat ratio method (HRM) instruments to determine sap flow rates of the Pinus brutia. Hourly meteorological conditions were observed by an automatic meteorological station. Here we present the results of the January to October periods, in order to have comparable results for the two contrasting years. During the wet year of 2015, we measured 439

  11. Monte Carlo analysis of thermal transpiration effects in capacitance diaphragm gauges with helicoidal baffle system

    International Nuclear Information System (INIS)

    Vargas, M; Stefanov, S; Wüest, M

    2012-01-01

    The Capacitance Diaphragm Gauge (CDG) is one of the most widely used vacuum gauges in low and middle vacuum ranges. This device consists basically of a very thin ceramic or metal diaphragm which forms one of the electrodes of a cap acitor. The pressure is determined by measuring the variation in the capacitance due to the deflection of the diaphragm caused by the pressure difference established across the membrane. In order to minimize zero drift, some CDGs are operated keeping the sensor at a higher temperature. This difference in the temperature between the sensor and the vacuum chamber makes the behaviour of the gauge non-linear due to thermal transpiration effects. This effect becomes more significant when we move from the transitional flow to the free molecular regime. Besides, CDGs may incorporate different baffle systems to avoid the condensation on the membrane or its contamination. In this work, the thermal transpiration effect on the behaviour of a rarefied gas and on the measurements in a CDG with a helicoidal baffle system is investigated by using the Direct Simulation Monte Carlo method (DSMC). The study covers the behaviour of the system under the whole range of rarefaction, from the continuum up to the free molecular limit and the results are compared with empirical results. Moreover, the influence of the boundary conditions on the thermal transpiration effects is investigated by using Maxwell boundary conditions.

  12. Non-invasive tissue temperature measurements based on quantitative diffuse optical spectroscopy (DOS) of water

    Energy Technology Data Exchange (ETDEWEB)

    Chung, S H [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Cerussi, A E; Tromberg, B J [Beckman Laser Institute and Medical Clinic, University of California, Irvine, 1002 Health Sciences Road, Irvine 92612, CA (United States); Merritt, S I [Masimo Corporation, 40 Parker, Irvine, CA 92618 (United States); Ruth, J, E-mail: bjtrombe@uci.ed [Department of Bioengineering, University of Pennsylvania, 210 S. 33rd Street, Room 240, Skirkanich Hall, Philadelphia, PA 19104 (United States)

    2010-07-07

    We describe the development of a non-invasive method for quantitative tissue temperature measurements using Broadband diffuse optical spectroscopy (DOS). Our approach is based on well-characterized opposing shifts in near-infrared (NIR) water absorption spectra that appear with temperature and macromolecular binding state. Unlike conventional reflectance methods, DOS is used to generate scattering-corrected tissue water absorption spectra. This allows us to separate the macromolecular bound water contribution from the thermally induced spectral shift using the temperature isosbestic point at 996 nm. The method was validated in intralipid tissue phantoms by correlating DOS with thermistor measurements (R = 0.96) with a difference of 1.1 {+-} 0.91 {sup 0}C over a range of 28-48 {sup 0}C. Once validated, thermal and hemodynamic (i.e. oxy- and deoxy-hemoglobin concentration) changes were measured simultaneously and continuously in human subjects (forearm) during mild cold stress. DOS-measured arm temperatures were consistent with previously reported invasive deep tissue temperature studies. These results suggest that DOS can be used for non-invasive, co-registered measurements of absolute temperature and hemoglobin parameters in thick tissues, a potentially important approach for optimizing thermal diagnostics and therapeutics.

  13. [A non-invasive glucose measurement method based on orthogonal twin-polarized light and its pilot experimental investigation].

    Science.gov (United States)

    Wang, Hong; Wu, Baoming; Liu, Ding

    2010-04-01

    In order to overcome the existing shortcomings of the non-invasive blood glucose polarized light measurement methods of optical heterodyne detection and direct detection, we present in this paper a new orthogonal twin-polarized light (OTPL) non-invasive blood glucose measurement method, which converts the micro-angle rotated by an optical active substance such as glucose to the energy difference of OTPL, amplifies the signals by the high-sensitivity lock-in amplifier made of relevant principle, controls Faraday coil current to compensate the changes in deflection angle caused by blood glucose, and makes use of the linear relationship between blood glucose concentration and Faraday coil current to calculate blood glucose concentration. In our comparative experiment using the data measured by LX-20 automatic biochemical analyzer as a standard, a 0.9777 correlation coefficient is obtained in glucose concentration experiment, and a 0.952 in serum experiment. The result shows that this method has higher detection sensitivity and accuracy and lays a foundation for the development of practical new type of non-invasive blood glucose tester for diabetic patients.

  14. Towards a smart non-invasive fluid loss measurement system.

    Science.gov (United States)

    Suryadevara, N K; Mukhopadhyay, S C; Barrack, L

    2015-04-01

    In this article, a smart wireless sensing non-invasive system for estimating the amount of fluid loss, a person experiences while physical activity is presented. The system measures three external body parameters, Heart Rate, Galvanic Skin Response (GSR, or skin conductance), and Skin Temperature. These three parameters are entered into an empirically derived formula along with the user's body mass index, and estimation for the amount of fluid lost is determined. The core benefit of the developed system is the affluence usage in combining with smart home monitoring systems to care elderly people in ambient assisted living environments as well in automobiles to monitor the body parameters of a motorist.

  15. Predictive value of noninvasive measures of atherosclerosis for incident myocardial infarction - The Rotterdam study

    NARCIS (Netherlands)

    van der Meer, IM; Bots, ML; Hofman, A; del Sol, AI; van der Kuip, DAM; Witteman, JCM

    2004-01-01

    Background - Several noninvasive methods are available to investigate the severity of extracoronary atherosclerotic disease. No population- based study has yet examined whether differences exist between these measures with regard to their predictive value for myocardial infarction (MI) or whether a

  16. Rising CO2 widens the transpiration-photosynthesis optimality space

    Science.gov (United States)

    de Boer, Hugo J.; Eppinga, Maarten B.; Dekker, Stefan C.

    2016-04-01

    ). Measurements of gs and V cmax were obtained with a portable photosynthesis system. Our empirical results support the prediction that the V cmax:gs-ratio increases with higher CO2 in both Solanum genotypes. The 'dry' genotype revealed a significantly higher Huber value and lower V cmax than the 'wet' genotype at each CO2 growth level. Moreover, we found that the down-regulation of V cmax under higher CO2 was stronger in the 'dry' genotype than in the 'wet' genotype, whereas no change in the Huber value was observed between CO2 levels. Consistent with the theoretical trade-off between the resulting costs of transpiration and photosynthesis, we found that the CO2-induced increase in the V cmax:gs-ratio was stronger in the 'wet' genotype than in the 'dry' genotype. Given the divergence of V cmax:gs relationships observed, we conclude that rising atmospheric CO2 may widen the V cmax - gs optimality space available for plants to achieve an optimal trade-off between photosynthesis and transpiration. References Prentice, I. C., Dong, N., Gleason, S. M., Maire, V. and Wright, I. J.: Balancing the costs of carbon gain and water transport: testing a new theoretical framework for plant functional ecology, Ecol. Lett., 17(1), 82-91, 2014.

  17. Leaf hydraulic conductance declines in coordination with photosynthesis, transpiration and leaf water status as soybean leaves age regardless of soil moisture

    Science.gov (United States)

    Locke, Anna M.; Ort, Donald R.

    2014-01-01

    Photosynthesis requires sufficient water transport through leaves for stomata to remain open as water transpires from the leaf, allowing CO2 to diffuse into the leaf. The leaf water needs of soybean change over time because of large microenvironment changes over their lifespan, as leaves mature in full sun at the top of the canopy and then become progressively shaded by younger leaves developing above. Leaf hydraulic conductance (K leaf), a measure of the leaf’s water transport capacity, can often be linked to changes in microenvironment and transpiration demand. In this study, we tested the hypothesis that K leaf would decline in coordination with transpiration demand as soybean leaves matured and aged. Photosynthesis (A), stomatal conductance (g s) and leaf water potential (Ψleaf) were also measured at various leaf ages with both field- and chamber-grown soybeans to assess transpiration demand. K leaf was found to decrease as soybean leaves aged from maturity to shading to senescence, and this decrease was strongly correlated with midday A. Decreases in K leaf were further correlated with decreases in g s, although the relationship was not as strong as that with A. Separate experiments investigating the response of K leaf to drought demonstrated no acclimation of K leaf to drought conditions to protect against cavitation or loss of g s during drought and confirmed the effect of leaf age in K leaf observed in the field. These results suggest that the decline of leaf hydraulic conductance as leaves age keeps hydraulic supply in balance with demand without K leaf becoming limiting to transpiration water flux. PMID:25281701

  18. Differentiating transpiration from evaporation in seasonal agricultural wetlands and the link to advective fluxes in the root zone

    International Nuclear Information System (INIS)

    Bachand, P.A.M.; Bachand, S.; Fleck, J.; Anderson, F.; Windham-Myers, L.

    2014-01-01

    The current state of science and engineering related to analyzing wetlands overlooks the importance of transpiration and risks data misinterpretation. In response, we developed hydrologic and mass budgets for agricultural wetlands using electrical conductivity (EC) as a natural conservative tracer. We developed simple differential equations that quantify evaporation and transpiration rates using flow rates and tracer concentrations at wetland inflows and outflows. We used two ideal reactor model solutions, a continuous flow stirred tank reactor (CFSTR) and a plug flow reactor (PFR), to bracket real non-ideal systems. From those models, estimated transpiration ranged from 55% (CFSTR) to 74% (PFR) of total evapotranspiration (ET) rates, consistent with published values using standard methods and direct measurements. The PFR model more appropriately represents these non-ideal agricultural wetlands in which check ponds are in series. Using a flux model, we also developed an equation delineating the root zone depth at which diffusive dominated fluxes transition to advective dominated fluxes. This relationship is similar to the Peclet number that identifies the dominance of advective or diffusive fluxes in surface and groundwater transport. Using diffusion coefficients for inorganic mercury (Hg) and methylmercury (MeHg) we calculated that during high ET periods typical of summer, advective fluxes dominate root zone transport except in the top millimeters below the sediment–water interface. The transition depth has diel and seasonal trends, tracking those of ET. Neglecting this pathway has profound implications: misallocating loads along different hydrologic pathways; misinterpreting seasonal and diel water quality trends; confounding Fick's First Law calculations when determining diffusion fluxes using pore water concentration data; and misinterpreting biogeochemical mechanisms affecting dissolved constituent cycling in the root zone. In addition, our understanding of

  19. Individual variation of sap-flow rate in large pine and spruce trees and stand transpiration: a pilot study at the central NOPEX site

    Science.gov (United States)

    Čermák, J.; Cienciala, E.; Kučera, J.; Lindroth, A.; Bednářová, E.

    1995-06-01

    Transpiration in a mixed old stand of sub-boreal forest in the Norunda region (central Sweden) was estimated on the basis of direct measurement of sap flow rate in 24 large Scots pine and Norway spruce trees in July and August 1993. Sap flow rate was measured using the trunk tissue heat balance method based on internal (electric) heating and sensing of temperature. Transpiration was only 0.7 mm day -1 in a relatively dry period in July (i.e. about 20% of potential evaporation) and substantially higher after a rainy period in August. The error of the estimates of transpiration was higher during a dry period (about 13% and 22% in pine and spruce, respectively) and significantly lower (about 9% in both species) during a period of sufficient water supply. Shallow-rooted spruce trees responded much faster to precipitation than deeply rooted pines.

  20. Uncertainty in the response of transpiration to CO2 and implications for climate change

    International Nuclear Information System (INIS)

    Mengis, N; Keller, D P; Oschlies, A; Eby, M

    2015-01-01

    While terrestrial precipitation is a societally highly relevant climate variable, there is little consensus among climate models about its projected 21st century changes. An important source of precipitable water over land is plant transpiration. Plants control transpiration by opening and closing their stomata. The sensitivity of this process to increasing CO 2 concentrations is uncertain. To assess the impact of this uncertainty on future climate, we perform experiments with an intermediate complexity Earth System Climate Model (UVic ESCM) for a range of model-imposed transpiration-sensitivities to CO 2 . Changing the sensitivity of transpiration to CO 2 causes simulated terrestrial precipitation to change by −10% to +27% by 2100 under a high emission scenario. This study emphasises the importance of an improved assessment of the dynamics of environmental impact on vegetation to better predict future changes of the terrestrial hydrological and carbon cycles. (letter)

  1. Effect of different soil water potential on leaf transpiration and on stomatal conductance in poinsettia

    Directory of Open Access Journals (Sweden)

    Jacek S. Nowak

    2013-12-01

    Full Text Available Euphorbia pulcherrima Wild.'Lilo' was grown in containers in 60% peat, 30% perlite and 10% clay (v/v mixture, with different irrigation treatments based on soil water potential. Plants were watered at two levels of drought stress: -50kPa or wilting. The treatments were applied at different stages of plant development for a month or soil was brought to the moisture stress only twice. Additionally, some plants were watered at -50 kPa during the entire cultivation period while the control plants were watered at -5kPa. Plants were also kept at maximum possible moisture level (watering at -0,5kPa or close to it (-1.OkPa through the entire growing period. Soil water potential was measured with tensiometer. Drought stress applied during entire cultivation period or during the flushing stage caused significant reduction in transpiration and conductance of leaves. Stress applied during bract coloration stage had not as great effect on the stomatal conductance and transpiration of leaves as the similar stress applied during the flushing stage. High soil moisture increased stomatal conductance and transpiration rate, respectively by 130% and 52% (flushing stage, and 72% and 150% (bract coloration stage at maximum, compared to the control.

  2. Epicuticular wax on cherry laurel (Prunus laurocerasus) leaves does not constitute the cuticular transpiration barrier.

    Science.gov (United States)

    Zeisler, Viktoria; Schreiber, Lukas

    2016-01-01

    Epicuticular wax of cherry laurel does not contribute to the formation of the cuticular transpiration barrier, which must be established by intracuticular wax. Barrier properties of cuticles are established by cuticular wax deposited on the outer surface of the cuticle (epicuticular wax) and in the cutin polymer (intracuticular wax). It is still an open question to what extent epi- and/or intracuticular waxes contribute to the formation of the transpiration barrier. Epicuticular wax was mechanically removed from the surfaces of isolated cuticles and intact leaf disks of cherry laurel (Prunus laurocerasus L.) by stripping with different polymers (collodion, cellulose acetate and gum arabic). Scanning electron microscopy showed that two consecutive treatments with all three polymers were sufficient to completely remove epicuticular wax since wax platelets disappeared and cuticle surfaces appeared smooth. Waxes in consecutive polymer strips and wax remaining in the cuticle after treatment with the polymers were determined by gas chromatography. This confirmed that two treatments of the polymers were sufficient for selectively removing epicuticular wax. Water permeability of isolated cuticles and cuticles covering intact leaf disks was measured using (3)H-labelled water before and after selectively removing epicuticular wax. Cellulose acetate and its solvent acetone led to a significant increase of cuticular permeability, indicating that the organic solvent acetone affected the cuticular transpiration barrier. However, permeability did not change after two subsequent treatments with collodion and gum arabic or after treatment with the corresponding solvents (diethyl ether:ethanol or water). Thus, in the case of P. laurocerasus the epicuticular wax does not significantly contribute to the formation of the cuticular transpiration barrier, which evidently must be established by the intracuticular wax.

  3. A Lab-on-a-Chip-Based Non-Invasive Optical Sensor for Measuring Glucose in Saliva

    Directory of Open Access Journals (Sweden)

    Dong Geon Jung

    2017-11-01

    Full Text Available A lab-on-a-chip (LOC-based non-invasive optical sensor for measuring glucose in saliva was fabricated. Existing glucose sensors utilizing blood require acquisition of a blood sample by pricking the finger, which is painful and inconvenient. To overcome these limitations, we propose a non-invasive glucose sensor with LOC, micro-electro-mechanical system and optical measurement technology. The proposed sensor for measuring glucose in saliva involves pretreatment, mixing, and measurement on a single tiny chip. Saliva containing glucose and glucose oxidase for glucose oxidation are injected through Inlets 1 and 2, respectively. Next, H2O2 is produced by the reaction between glucose and glucose oxidase in the pretreatment part. The saliva and generated H2O2 are mixed with a colorizing agent injected through Inlet 3 during the mixing part and the absorbance of the colorized mixture is measured in the measurement part. The absorbance of light increases as a function of glucose concentration at a wavelength of 630 nm. To measure the absorbance of the colorized saliva, a light-emitting diode with a wavelength of 630 nm and a photodiode were used during the measurement part. As a result, the measured output current of the photodiode decreased as glucose concentration in the saliva increased.

  4. Radon transport from uranium mill tailings via plant transpiration. Final report

    International Nuclear Information System (INIS)

    Lewis, B.A.G.

    1985-01-01

    Radon exhalation by vegetation planted on bare or soil-covered uranium mill wastes was studied based on an assumption that radon transport from soil to atmosphere via plants takes place in the transpiration stream. Results show that radon exhalation by plants is inversely related to water transpired, primarily a dilution effect. Radon released appeared directly related to leaf area, suggesting that radon is carried into the plant by mass flow in water; however, once within the plant, radon very likely diffuses through the entire leaf cuticle, while water vapor diffuses primarily through open stomates. Application of a computerized model for water transpiration to radon exhalation is not immediately useful until the role of water in radon transport is defined throughout the continuum from rooting medium to the atmosphere. Until then, a simple calculation based on leaf area index and Ra-226 concentration in the rooting medium can provide an estimate of radon release from revegetated wastes containing radium

  5. An Investigation of Pulse Transit Time as a Non-Invasive Blood Pressure Measurement Method

    International Nuclear Information System (INIS)

    McCarthy, B M; O'Flynn, B; Mathewson, A

    2011-01-01

    The objective of this paper is to examine the Pulse Transit Method (PTT) as a non-invasive means to track Blood Pressure over a short period of time. PTT was measured as the time it takes for an ECG R-wave to propagate to the finger, where it is detected by a photoplethysmograph sensor. The PTT method is ideal for continuous 24-hour Blood Pressure Measurement (BPM) since it is both cuff-less and non-invasive and therefore comfortable and unobtrusive for the patient. Other techniques, such as the oscillometric method, have shown to be accurate and reliable but require a cuff for operation, making them unsuitable for long term monitoring. Although a relatively new technique, the PTT method has shown to be able to accurately track blood pressure changes over short periods of time, after which re-calibration is necessary. The purpose of this study is to determine the accuracy of the method.

  6. A simple non-invasive method for measuring gross brain size in small live fish with semi-transparent heads

    Directory of Open Access Journals (Sweden)

    Joacim Näslund

    2014-09-01

    Full Text Available This paper describes a non-invasive method for estimating gross brain size in small fish with semi-transparent heads, using system camera equipment. Macro-photographs were taken from above on backlit free-swimming fish undergoing light anaesthesia. From the photographs, the width of the optic tectum was measured. This measure (TeO-measure correlates well with the width of the optic tectum as measured from out-dissected brains in both brown trout fry and zebrafish (Pearson r > 0.90. The TeO-measure also correlates well with overall brain wet weight in brown trout fry (r = 0.90, but less well for zebrafish (r = 0.79. A non-invasive measure makes it possible to quickly assess brain size from a large number of individuals, as well as repeatedly measuring brain size of live individuals allowing calculation of brain growth.

  7. Individualized estimation of human core body temperature using noninvasive measurements.

    Science.gov (United States)

    Laxminarayan, Srinivas; Rakesh, Vineet; Oyama, Tatsuya; Kazman, Josh B; Yanovich, Ran; Ketko, Itay; Epstein, Yoram; Morrison, Shawnda; Reifman, Jaques

    2018-06-01

    A rising core body temperature (T c ) during strenuous physical activity is a leading indicator of heat-injury risk. Hence, a system that can estimate T c in real time and provide early warning of an impending temperature rise may enable proactive interventions to reduce the risk of heat injuries. However, real-time field assessment of T c requires impractical invasive technologies. To address this problem, we developed a mathematical model that describes the relationships between T c and noninvasive measurements of an individual's physical activity, heart rate, and skin temperature, and two environmental variables (ambient temperature and relative humidity). A Kalman filter adapts the model parameters to each individual and provides real-time personalized T c estimates. Using data from three distinct studies, comprising 166 subjects who performed treadmill and cycle ergometer tasks under different experimental conditions, we assessed model performance via the root mean squared error (RMSE). The individualized model yielded an overall average RMSE of 0.33 (SD = 0.18)°C, allowing us to reach the same conclusions in each study as those obtained using the T c measurements. Furthermore, for 22 unique subjects whose T c exceeded 38.5°C, a potential lower T c limit of clinical relevance, the average RMSE decreased to 0.25 (SD = 0.20)°C. Importantly, these results remained robust in the presence of simulated real-world operational conditions, yielding no more than 16% worse RMSEs when measurements were missing (40%) or laden with added noise. Hence, the individualized model provides a practical means to develop an early warning system for reducing heat-injury risk. NEW & NOTEWORTHY A model that uses an individual's noninvasive measurements and environmental variables can continually "learn" the individual's heat-stress response by automatically adapting the model parameters on the fly to provide real-time individualized core body temperature estimates. This

  8. Genotypic variation in carbon isotope discrimination and transpiration efficiency in wheat. Leaf gas exchange and whole plant studies

    International Nuclear Information System (INIS)

    Condon, A.G.; Farquhar, G.D.; Richards, R.A.

    1990-01-01

    The relationship between carbon isotope discrimination, Δ, measured in plant dry matter and the ratio of intercellular to atmospheric partial pressures of CO 2 ,p i /p a , in leaves was examined in two glasshouse experiments using 14 wheat genotypes selected on the basis of variation in Δ of dry matter. Genotypic variation in Δ was similar in both experiments, with an average range of 1.8 x 10 -3 . Δ measured in dry matter and p i /p a measured in flag leaves were positively correlated. Variation among genotypes in p i /p a was attributed, approximately equally, to variation in leaf conductance and in photosynthetic capacity. The relationship between plant transpiration efficiency, W * (the amount of above-ground dry matter produced per unit water transpired) and Δ was was also examined. The results indicate that genotypic variation in Δ, measured in dry matter, should provide a reasonable measure of genotypic variation in long-term mean leaf p i /p a in wheat. 42 refs., 2 tabs., 5 figs

  9. Transpiration of helium and carbon monoxide through a multihundred watt, PICS filter

    International Nuclear Information System (INIS)

    Schaeffer, D.R.

    1976-01-01

    The transpiration of CO through the Multihundred Watt (MHW) filter can be described by Fick's first law or as a first order, reversible reaction. From Fick's first law, a ''diffusion'' coefficient of 7.8 x 10 -4 cm.L/sec (L is the average path length through the filter) was determined. For the first order reversible reaction, a rate constant of 0.0058 hr -1 was obtained for both the forward and reverse reactions (they were assumed to be equal). This corresponds to a half-life of 120 hr. It was also concluded that the rate constants and thus the transpiration rates, which were determined for the test, are smaller than those expected in the IHS. The effect of increasing the number of filters, changing the volumes, and increasing the temperature, changes the rate constant of the transpiration into the PICS to roughly 0.074 hr -1 (t/sub 1 / 2 / = 9.4 hr) and out of the PICS to 0.84 hr -1 (t/sub 1/2/ = 0.8 hr). Of the two suggested mechanisms for the generation of CO inside the IHS, the cyclic process requires a much larger rate of transpiration than the process requiring oxygen exchange of CO given off by the graphite. The data indicate that the cyclic process can provide the CO generation rates observed in the IHS gas taps if there is no delay in time for any other kinetic process involved in the formation of CO or CO 2 . Since the cyclic process (which requires the fastest rate of transpiration) appears possible, this study does not indicate which reaction is occurring but concludes both are possible

  10. Water relations and transpiration of quinoa (Chenopodium quinoa Willd.) under salinity and soil drying

    DEFF Research Database (Denmark)

    Razzaghi, Fatemeh; Ahmadi, Seyed Hamid; Adolf, Verena Isabelle

    2011-01-01

    water potential (Wl), shoot and root abscisic acid concentration ([ABA]) and transpiration rate were measured in full irrigation (FI; around 95 % of water holding capacity (WHC)) and progressive drought (PD) treatments using the irrigation water with five salinity levels (0, 10, 20, 30 and 40 dS m)1...

  11. Constraining Ecosystem Gross Primary Production and Transpiration with Measurements of Photosynthetic 13CO2 Discrimination

    Science.gov (United States)

    Blonquist, J. M.; Wingate, L.; Ogeé, J.; Bowling, D. R.

    2011-12-01

    The stable carbon isotope composition of atmospheric CO2 (δ13Ca) can provide useful information on water use efficiency (WUE) dynamics of terrestrial ecosystems and potentially constrain models of CO2 and water fluxes at the land surface. This is due to the leaf-level relationship between photosynthetic 13CO2 discrimination (Δ), which influences δ13Ca, and the ratio of leaf intercellular to atmospheric CO2 mole fractions (Ci / Ca), which is related to WUE and is determined by the balance between C assimilation (CO2 demand) and stomatal conductance (CO2 supply). We used branch-scale Δ derived from tunable diode laser absorption spectroscopy measurements collected in a Maritime pine forest to estimate Ci / Ca variations over an entire growing season. We combined Ci / Ca estimates with rates of gross primary production (GPP) derived from eddy covariance (EC) to estimate canopy-scale stomatal conductance (Gs) and transpiration (T). Estimates of T were highly correlated to T estimates derived from sapflow data (y = 1.22x + 0.08; r2 = 0.61; slope P MuSICA) (y = 0.88x - 0.05; r2 = 0.64; slope P MuSICA (y = 1.10 + 0.42; r2 = 0.50; slope P < 0.001). Results demonstrate that the leaf-level relationship between Δ and Ci / Ca can be extended to the canopy-scale and that Δ measurements have utility for partitioning ecosystem-scale CO2 and water fluxes.

  12. A principle for the noninvasive measurement of steady-state heat transfer parameters in living tissues

    Directory of Open Access Journals (Sweden)

    S. Yu. Makarov

    2014-01-01

    Full Text Available Measuring the parameters of biological tissues (include in vivo is of great importance for medical diagnostics. For example, the value of the blood perfusion parameter is associated with the state of the blood microcirculation system and its functioning affects the state of the tissues of almost all organs. This work describes a previously proposed principle [1] in generalized terms. The principle is intended for noninvasive measuring the parameters of stationary heat transfer in biological tissues. The results of some experiments (natural and numeric are also presented in the research.For noninvasive measurement of thermophysical parameters a number of techniques have been developed using non-stationary thermal process in biological tissue [2][3]. But these techniques require the collecting a lot of data to represent the time-dependent thermal signal. In addition, subsequent processing with specialized algorithms is required for optimal selecting the parameters. The goal of this research is to develop an alternative approach using stationary thermal process for non-invasive measuring the parameters of stationary heat transfer in living tissues.A general principle can be formulated for the measurement methods based on this approach. Namely, the variations (changes of two physical values are measured in the experiment at the transition from one thermal stationary state to another. One of these two physical values unambiguously determines the stationary thermal field into the biological tissue under specified experimental conditions while the other one is unambiguously determined through the thermal field. Then, the parameters can be found from the numerical (or analytical functional dependencies linking the measured variations because the dependencies contain unknown parameters.The dependencies are expressed in terms of the formula:dqi = fi({pj},Ui dUi,Here dqi is a variation of a physical value q which is unambiguously determined from the

  13. Non-invasive and non-destructive measurements of confluence in cultured adherent cell lines.

    Science.gov (United States)

    Busschots, Steven; O'Toole, Sharon; O'Leary, John J; Stordal, Britta

    2015-01-01

    Many protocols used for measuring the growth of adherent monolayer cells in vitro are invasive, destructive and do not allow for the continued, undisturbed growth of cells within flasks. Protocols often use indirect methods for measuring proliferation. Microscopy techniques can analyse cell proliferation in a non-invasive or non-destructive manner but often use expensive equipment and software algorithms. In this method images of cells within flasks are captured by photographing under a standard inverted phase contract light microscope using a digital camera with a camera lens adaptor. Images are analysed for confluence using ImageJ freeware resulting in a measure of confluence known as an Area Fraction (AF) output. An example of the AF method in use on OVCAR8 and UPN251 cell lines is included. •Measurements of confluence from growing adherent cell lines in cell culture flasks is obtained in a non-invasive, non-destructive, label-free manner.•The technique is quick, affordable and eliminates sample manipulation.•The technique provides an objective, consistent measure of when cells reach confluence and is highly correlated to manual counting with a haemocytometer. The average correlation co-efficient from a Spearman correlation (n = 3) was 0.99 ± 0.008 for OVCAR8 (p = 0.01) and 0.99 ± 0.01 for UPN251 (p = 0.01) cell lines.

  14. Non-Invasive Electromagnetic Skin Patch Sensor to Measure Intracranial Fluid–Volume Shifts

    Directory of Open Access Journals (Sweden)

    Jacob Griffith

    2018-03-01

    Full Text Available Elevated intracranial fluid volume can drive intracranial pressure increases, which can potentially result in numerous neurological complications or death. This study’s focus was to develop a passive skin patch sensor for the head that would non-invasively measure cranial fluid volume shifts. The sensor consists of a single baseline component configured into a rectangular planar spiral with a self-resonant frequency response when impinged upon by external radio frequency sweeps. Fluid volume changes (10 mL increments were detected through cranial bone using the sensor on a dry human skull model. Preliminary human tests utilized two sensors to determine feasibility of detecting fluid volume shifts in the complex environment of the human body. The correlation between fluid volume changes and shifts in the first resonance frequency using the dry human skull was classified as a second order polynomial with R2 = 0.97. During preliminary and secondary human tests, a ≈24 MHz and an average of ≈45.07 MHz shifts in the principal resonant frequency were measured respectively, corresponding to the induced cephalad bio-fluid shifts. This electromagnetic resonant sensor may provide a non-invasive method to monitor shifts in fluid volume and assist with medical scenarios including stroke, cerebral hemorrhage, concussion, or monitoring intracranial pressure.

  15. Noninvasive measurement of burn wound depth applying infrared thermal imaging (Conference Presentation)

    Science.gov (United States)

    Jaspers, Mariëlle E.; Maltha, Ilse M.; Klaessens, John H.; Vet, Henrica C.; Verdaasdonk, Rudolf M.; Zuijlen, Paul P.

    2016-02-01

    In burn wounds early discrimination between the different depths plays an important role in the treatment strategy. The remaining vasculature in the wound determines its healing potential. Non-invasive measurement tools that can identify the vascularization are therefore considered to be of high diagnostic importance. Thermography is a non-invasive technique that can accurately measure the temperature distribution over a large skin or tissue area, the temperature is a measure of the perfusion of that area. The aim of this study was to investigate the clinimetric properties (i.e. reliability and validity) of thermography for measuring burn wound depth. In a cross-sectional study with 50 burn wounds of 35 patients, the inter-observer reliability and the validity between thermography and Laser Doppler Imaging were studied. With ROC curve analyses the ΔT cut-off point for different burn wound depths were determined. The inter-observer reliability, expressed by an intra-class correlation coefficient of 0.99, was found to be excellent. In terms of validity, a ΔT cut-off point of 0.96°C (sensitivity 71%; specificity 79%) differentiates between a superficial partial-thickness and deep partial-thickness burn. A ΔT cut-off point of -0.80°C (sensitivity 70%; specificity 74%) could differentiate between a deep partial-thickness and a full-thickness burn wound. This study demonstrates that thermography is a reliable method in the assessment of burn wound depths. In addition, thermography was reasonably able to discriminate among different burn wound depths, indicating its potential use as a diagnostic tool in clinical burn practice.

  16. Non-invasive measuring instrument of kVp, R/M and exposure time

    International Nuclear Information System (INIS)

    Laan, Flavio T. van der; Elbern, Alwin W.

    1996-01-01

    The development of an instrument for fast measurement of essential parameters related to quality control of X-ray equipment is described. The unit is designed with a 80 C31 micro controller, a function keyboard, an αnumeric display and a probe with PV diodes. Testing and calibration in this non-invasive instrument has been done at the X-rays equipment for the Santa Rita Hospital in Porto Alegre, Rio Grande do Sul State, Brazil

  17. Fog reduces transpiration in tree species of the Canarian relict heath-laurel cloud forest (Garajonay National Park, Spain).

    Science.gov (United States)

    Ritter, Axel; Regalado, Carlos M; Aschan, Guido

    2009-04-01

    The ecophysiologic role of fog in the evergreen heath-laurel 'laurisilva' cloud forests of the Canary Islands has not been unequivocally demonstrated, although it is generally assumed that fog water is important for the survival and the distribution of this relict paleoecosystem of the North Atlantic Macaronesian archipelagos. To determine the role of fog in this ecosystem, we combined direct transpiration measurements of heath-laurel tree species, obtained with Granier's heat dissipation probes, with micrometeorological and artificial fog collection measurements carried out in a 43.7-ha watershed located in the Garajonay National Park (La Gomera, Canary Islands, Spain) over a 10-month period. Median ambient temperature spanned from 7 to 15 degrees C under foggy conditions whereas higher values, ranging from 9 to 21 degrees C, were registered during fog-free periods. Additionally, during the periods when fog water was collected, global solar radiation values were linearly related (r2=0.831) to those under fog-free conditions, such that there was a 75+/-1% reduction in median radiation in response to fog. Fog events greatly reduced median diurnal tree transpiration, with rates about 30 times lower than that during fog-free conditions and approximating the nighttime rates in both species studied (the needle-like leaf Erica arborea L. and the broadleaf Myrica faya Ait.). This large decrease in transpiration in response to fog was independent of the time of the day, tree size and species and micrometeorological status, both when expressed on a median basis and in cumulative terms for the entire 10-month measuring period. We conclude that, in contrast to the turbulent deposition of fog water droplets on the heath-laurel species, which may be regarded as a localized hydrological phenomenon that is important for high-altitude wind-exposed E. arborea trees, the cooler, wetter and shaded microenvironment provided by the cloud immersion belt represents a large-scale effect

  18. Community level offset of rain use- and transpiration efficiency for a heavily grazed ecosystem in inner Mongolia grassland.

    Science.gov (United States)

    Gao, Ying Z; Giese, Marcus; Gao, Qiang; Brueck, Holger; Sheng, Lian X; Yang, Hai J

    2013-01-01

    Water use efficiency (WUE) is a key indicator to assess ecosystem adaptation to water stress. Rain use efficiency (RUE) is usually used as a proxy for WUE due to lack of transpiration data. Furthermore, RUE based on aboveground primary productivity (RUEANPP) is used to evaluate whole plant water use because root production data is often missing as well. However, it is controversial as to whether RUE is a reliable parameter to elucidate transpiration efficiency (TE), and whether RUEANPP is a suitable proxy for RUE of the whole plant basis. The experiment was conducted at three differently managed sites in the Inner Mongolia steppe: a site fenced since 1979 (UG79), a winter grazing site (WG) and a heavily grazed site (HG). Site HG had consistent lowest RUEANPP and RUE based on total net primary productivity (RUENPP). RUEANPP is a relatively good proxy at sites UG79 and WG, but less reliable for site HG. Similarly, RUEANPP is good predictor of transpiration efficiency based on aboveground net primary productivity (TEANPP) at sites UG79 and WG but not for site HG. However, if total net primary productivity is considered, RUENPP is good predictor of transpiration efficiency based on total net primary productivity (TENPP) for all sites. Although our measurements indicate decreased plant transpiration and consequentially decreasing RUE under heavy grazing, productivity was relatively compensated for with a higher TE. This offset between RUE and TE was even enhanced under water limited conditions and more evident when belowground net primary productivity (BNNP) was included. These findings suggest that BNPP should be considered when studies fucus on WUE of more intensively used grasslands. The consideration of the whole plant perspective and "real" WUE would partially revise our picture of system performance and therefore might affect the discussion on the C-sequestration and resilience potential of ecosystems.

  19. Evaluating potential impacts of species conversion on transpiration in the Piedmont of North Carolina

    Science.gov (United States)

    Boggs, J.; Treasure, E.; Simpson, G.; Domec, J.; Sun, G.; McNulty, S.

    2010-12-01

    Land management practices that include species conversion or vegetation manipulation can have consequences to surface water availability, groundwater recharge, streamflow generation, and water quality through altering the transpiration processes in forested watersheds. Our objective in this study is to compare stand water use or transpiration in a piedmont mixed hardwood stand (i.e., present stand) to five hypothetical single species stands (i.e., management scenarios), [Quercus spp. (oak), Acer Rubrum (red maple), Liquidambar styraciflua (sweetgum), Liriodendron tulipifera (tulip poplar), and Pinus Taeda (loblolly pine]. Since October 2007, six watersheds with a flume or v-notch weir installed at the watershed outlet have been monitored for baseline streamflow rates (mm d-1). In the summer of 2010, five trees from each of the above species were instrumented with sap flow sensors in the riparian upland of one watershed to develop linkages between stand stream runoff and transpiration. The sap flow or thermal heat dissipation method was used to calculate tree sap flux density for the mixed hardwood stand. Tree sapwood area and stand tree density were then used to compute stand transpiration rates, mm d-1, from June - August 2010. The parameters of the hypothetical single species stands were based on values determined from mixed hardwood stand conditions (e.g., the same stand sapwood area and stand tree density were applied to each option). The diameter at beast height of the monitored trees ranged from 10 cm to 38 cm with a water use range of 1.8 kg d-1 to 104 kg d-1. From our preliminary data, we found daily transpiration from the mixed hardwood stand (2.8 mm d-1 ± 0.06) was significantly (p < 0.05) lower than daily transpiration from the red maple (3.7 mm d-1 ± 0.14) and tulip poplar (3.5 mm d-1 ± 0.12) single species stand management option and significantly (p < 0.05) higher than the loblolly pine (2.3 mm d-1 ± 0.08), sweetgum (2.1 mm d-1 ± 0.08) and oak

  20. Non-invasive continuous finger blood pressure measurement during orthostatic stress compared to intra-arterial pressure

    NARCIS (Netherlands)

    Imholz, B. P.; Settels, J. J.; van der Meiracker, A. H.; Wesseling, K. H.; Wieling, W.

    1990-01-01

    The aim of the study was to evaluate whether invasive blood pressure responses to orthostatic stress can be replaced by non-invasive continuous finger blood pressure responses. DESIGN - Intrabrachial and Finapres blood pressures were simultaneously measured during passive head up tilt and during

  1. Rootstock control of scion transpiration and its acclimation to water deficit are controlled by different genes.

    Science.gov (United States)

    Marguerit, Elisa; Brendel, Oliver; Lebon, Eric; Van Leeuwen, Cornelis; Ollat, Nathalie

    2012-04-01

    The stomatal control of transpiration is one of the major strategies by which plants cope with water stress. Here, we investigated the genetic architecture of the rootstock control of scion transpiration-related traits over a period of 3 yr. The rootstocks studied were full sibs from a controlled interspecific cross (Vitis vinifera cv. Cabernet Sauvignon × Vitis riparia cv. Gloire de Montpellier), onto which we grafted a single scion genotype. After 10 d without stress, the water supply was progressively limited over a period of 10 d, and a stable water deficit was then applied for 15 d. Transpiration rate was estimated daily and a mathematical curve was fitted to its response to water deficit intensity. We also determined δ(13) C values in leaves, transpiration efficiency and water extraction capacity. These traits were then analysed in a multienvironment (year and water status) quantitative trait locus (QTL) analysis. Quantitative trait loci, independent of year and water status, were detected for each trait. One genomic region was specifically implicated in the acclimation of scion transpiration induced by the rootstock. The QTLs identified colocalized with genes involved in water deficit responses, such as those relating to ABA and hydraulic regulation. Scion transpiration rate and its acclimation to water deficit are thus controlled genetically by the rootstock, through different genetic architectures. © 2012 INRA. New Phytologist © 2012 New Phytologist Trust.

  2. Biotic, temporal and spatial variability of tritium concentrations in transpirate samples collected in the vicinity of a near-surface low-level nuclear waste disposal site and nearby research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Twining, J.R., E-mail: jrt@ansto.gov.au [Institute for Environmental Research, ANSTO, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Hughes, C.E.; Harrison, J.J.; Hankin, S.; Crawford, J.; Johansen, M.; Dyer, L. [Institute for Environmental Research, ANSTO, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia)

    2011-06-15

    The results of a 21 month sampling program measuring tritium in tree transpirate with respect to local sources are reported. The aim was to assess the potential of tree transpirate to indicate the presence of sub-surface seepage plumes. Transpirate gathered from trees near low-level nuclear waste disposal trenches contained activity concentrations of {sup 3}H that were significantly higher (up to {approx}700 Bq L{sup -1}) than local background levels (0-10 Bq L{sup -1}). The effects of the waste source declined rapidly with distance to be at background levels within 10s of metres. A research reactor 1.6 km south of the site contributed significant (p < 0.01) local fallout {sup 3}H but its influence did not reach as far as the disposal trenches. The elevated {sup 3}H levels in transpirate were, however, substantially lower than groundwater concentrations measured across the site (ranging from 0 to 91% with a median of 2%). Temporal patterns of tree transpirate {sup 3}H, together with local meteorological observations, indicate that soil water within the active root zones comprised a mixture of seepage and rainfall infiltration. The degree of mixing was variable given that the soil water activity concentrations were heterogeneous at a scale equivalent to the effective rooting volume of the trees. In addition, water taken up by roots was not well mixed within the trees. Based on correlation modelling, net rainfall less evaporation (a surrogate for infiltration) over a period of from 2 to 3 weeks prior to sampling seems to be the optimum predictor of transpirate {sup 3}H variability for any sampled tree at this site. The results demonstrate successful use of {sup 3}H in transpirate from trees to indicate the presence and general extent of sub-surface contamination at a low-level nuclear waste site. - Highlights: > Data on environmental tritium behaviour over 21 months related to a legacy waste site are presented. > The relative contributions of atmospheric and

  3. Development of synchronized, autonomous, and self-regulated oscillations in transpiration rate of a whole tomato plant under water stress.

    Science.gov (United States)

    Wallach, Rony; Da-Costa, Noam; Raviv, Michael; Moshelion, Menachem

    2010-07-01

    Plants respond to many environmental changes by rapidly adjusting their hydraulic conductivity and transpiration rate, thereby optimizing water-use efficiency and preventing damage due to low water potential. A multiple-load-cell apparatus, time-series analysis of the measured data, and residual low-pass filtering methods were used to monitor continuously and analyse transpiration of potted tomato plants (Solanum lycopersicum cv. Ailsa Craig) grown in a temperature-controlled greenhouse during well-irrigated and drought periods. A time derivative of the filtered residual time series yielded oscillatory behaviour of the whole plant's transpiration (WPT) rate. A subsequent cross-correlation analysis between the WPT oscillatory pattern and wet-wick evaporation rates (vertical cotton fabric, 0.14 m(2) partly submerged in water in a container placed on an adjacent load cell) revealed that autonomous oscillations in WPT rate develop under a continuous increase in water stress, whereas these oscillations correspond with the fluctuations in evaporation rate when water is fully available. The relative amplitude of these autonomous oscillations increased with water stress as transpiration rate decreased. These results support the recent finding that an increase in xylem tension triggers hydraulic signals that spread instantaneously via the plant vascular system and control leaf conductance. The regulatory role of synchronized oscillations in WPT rate in eliminating critical xylem tension points and preventing embolism is discussed.

  4. Influence of irrigation and fertilization on transpiration and hydraulic properties of Populus deltoides.

    Energy Technology Data Exchange (ETDEWEB)

    Samuelson, Lisa, J.; Stokes, Thomas, A.; Coleman, Mark, D.

    2007-02-01

    Summary Long-term hydraulic acclimation to resource availability was explored in 3-year-bld Populus deltoides Bartr. ex Marsh. clones by examining transpiration. leaf-specific hydraulic conductance (GL), canopy stomatal conductance (Gs) and leaf to sapwood area ratio (AL:Asi)n response to imgation (13 and 551 mm year in addition to ambient precipitation) and fertilization (0 and 120 kg N ha-' year-'). Sap flow was measured continuously over one growing season with thermal dissipation probes. Fertilization had a greater effect on growth and hydraulic properties than imgation, and fertilization effects were independent of irrigation treatment. Transpiration on a ground area basis (E) ranged between 0.3 and 1.8 mm day-', and increased 66% and 90% in response to imgation and fertilization, respectively. Increases in GL, Gs at a reference vapor pressure deficit of 1 kPa, and transpiration per unit leaf areain response to increases in resource availability were associated with reductions in AL:As and consequently a minimal change in the water potential gradient from soil to leaf. Imgation and fertilization increased leaf area index similarly, from an average 1.16 in control stands to 1.45, but sapwood area was increased from 4.0 to 6.3 m ha-' by irrigation and from 3.7 to 6.7 m2 ha-' by fertilization. The balance between leaf area and sapwood area was important in understanding long-term hydraulic acclimation to resource availability and mechanisms controlling maximum productivity in Populus deltoides.

  5. Bioenergy Sorghum Crop Model Predicts VPD-Limited Transpiration Traits Enhance Biomass Yield in Water-Limited Environments.

    Science.gov (United States)

    Truong, Sandra K; McCormick, Ryan F; Mullet, John E

    2017-01-01

    Bioenergy sorghum is targeted for production in water-limited annual cropland therefore traits that improve plant water capture, water use efficiency, and resilience to water deficit are necessary to maximize productivity. A crop modeling framework, APSIM, was adapted to predict the growth and biomass yield of energy sorghum and to identify potentially useful traits for crop improvement. APSIM simulations of energy sorghum development and biomass accumulation replicated results from field experiments across multiple years, patterns of rainfall, and irrigation schemes. Modeling showed that energy sorghum's long duration of vegetative growth increased water capture and biomass yield by ~30% compared to short season crops in a water-limited production region. Additionally, APSIM was extended to enable modeling of VPD-limited transpiration traits that reduce crop water use under high vapor pressure deficits (VPDs). The response of transpiration rate to increasing VPD was modeled as a linear response until a VPD threshold was reached, at which the slope of the response decreases, representing a range of responses to VPD observed in sorghum germplasm. Simulation results indicated that the VPD-limited transpiration trait is most beneficial in hot and dry regions of production where crops are exposed to extended periods without rainfall during the season or to a terminal drought. In these environments, slower but more efficient transpiration increases biomass yield and prevents or delays the exhaustion of soil water and onset of leaf senescence. The VPD-limited transpiration responses observed in sorghum germplasm increased biomass accumulation by 20% in years with lower summer rainfall, and the ability to drastically reduce transpiration under high VPD conditions could increase biomass by 6% on average across all years. This work indicates that the productivity and resilience of bioenergy sorghum grown in water-limited environments could be further enhanced by development

  6. Terrestrial water fluxes dominated by transpiration: Comment

    Science.gov (United States)

    Daniel R. Schlaepfer; Brent E. Ewers; Bryan N. Shuman; David G. Williams; John M. Frank; William J. Massman; William K. Lauenroth

    2014-01-01

    The fraction of evapotranspiration (ET) attributed to plant transpiration (T) is an important source of uncertainty in terrestrial water fluxes and land surface modeling (Lawrence et al. 2007, Miralles et al. 2011). Jasechko et al. (2013) used stable oxygen and hydrogen isotope ratios from 73 large lakes to investigate the relative roles of evaporation (E) and T in ET...

  7. Data Driven Estimation of Transpiration from Net Water Fluxes: the TEA Algorithm

    Science.gov (United States)

    Nelson, J. A.; Carvalhais, N.; Cuntz, M.; Delpierre, N.; Knauer, J.; Migliavacca, M.; Ogee, J.; Reichstein, M.; Jung, M.

    2017-12-01

    The eddy covariance method, while powerful, can only provide a net accounting of ecosystem fluxes. Particularly with water cycle components, efforts to partitioning total evapotranspiration (ET) into the biotic component (transpiration, T) and the abiotic component (here evaporation, E) have seen limited success, with no one method emerging as a standard.Here we demonstrate a novel method that uses ecosystem WUE to predict transpiration in two steps: (1) a filtration step that to isolate the signal of ET for periods where E is minimized and ET is likely dominated by the signal of T; and (2) a step which predicts the WUE using meteorological variables, as well as information derived from the carbon and energy fluxes. To assess the the underlying assumptions, we tested the proposed method on three ecological models, allowing validation where the underlying carbon:water relationships, as well as the transpiration estimates, are know.The partitioning method shows high correlation (R²>0.8) between Tmodel/ET and TTEA/ET across timescales from half-hourly to annually, as well as capturing spatial variability across sites. Apart from predictive performance, we explore the sensitivities of the method to the underlying assumptions, such as the effects of residual evaporation in the training dataset. Furthermore, we show initial transpiration estimates from the algorithm at global scale, via the FLUXNET dataset.

  8. Thermodynamic balance of photosynthesis and transpiration at increasing CO2 concentrations and rapid light fluctuations.

    Science.gov (United States)

    Marín, Dolores; Martín, Mercedes; Serrot, Patricia H; Sabater, Bartolomé

    2014-02-01

    Experimental and theoretical flux models have been developed to reveal the influence of sun flecks and increasing CO2 concentrations on the energy and entropy balances of the leaf. The rapid and wide range of fluctuations in light intensity under field conditions were simulated in a climatic gas exchange chamber and we determined the energy and entropy balance of the leaf based on radiation and gas exchange measurements. It was estimated that the energy of photosynthetic active radiation (PAR) accounts for half of transpiration, which is the main factor responsible for the exportation of the entropy generated in photosynthesis (Sg) out of the leaf in order to maintain functional the photosynthetic machinery. Although the response of net photosynthetic production to increasing concentrations of CO2 under fluctuating light is similar to that under continuous light, rates of transpiration respond slowly to changes of light intensity and are barely affected by the concentration of CO2 in the range of 260-495 ppm, in which net photosynthesis increases by more than 100%. The analysis of the results confirms that future increases of CO2 will improve the efficiency of the conversion of radiant energy into biomass, but will not reduce the contribution of plant transpiration to the leaf thermal balance. Copyright © 2013 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  9. Partitioning of evaporation into transpiration, soil evaporation and interception : A comparison between isotope measurements and a HYDRUS-1D model + Corrigendum

    NARCIS (Netherlands)

    Sutanto, S.J.; Wenninger, J.; Coenders-Gerrits, A.M.J.; Uhlenbrook, S.

    Knowledge of the water fluxes within the soil-vegetation-atmosphere system is crucial to improve water use efficiency in irrigated land. Many studies have tried to quantify these fluxes, but they encountered difficulties in quantifying the relative contribution of evaporation and transpiration. In

  10. Evaporation and transpiration from forests in Central Europe - relevance of patch-level studies for spatial scaling

    Science.gov (United States)

    Köstner, B.

    Spatial scaling from patch to the landscape level requires knowledge on the effects of vegetation structure on maximum surface conductances and evaporation rates. The following paper summarizes results on atmospheric, edaphic, and structural controls on forest evaporation and transpiration observed in stands of Norway spruce (Picea abies), Scots pine (Pinus sylvestris) and European beech (Fagus sylvatica). Forest canopy transpiration (Ec) was determined by tree sapflow measurements scaled to the stand level. Estimates of understory transpiration and forest floor evaporation were derived from lysimeter and chamber measurements. Strong reduction of Ec due to soil drought was only observed at a Scots pine stand when soil water content dropped below 16% v/v. Although relative responses of Ec on atmospheric conditions were similar, daily maximum rates of could differ more than 100% between forest patches of different structure (1.5-3.0mmd-1 and 2.6-6.4mmd-1 for spruce and beech, respectively). A significant decrease of Ecmax per leaf area index with increasing stand age was found for monocultures of Norway spruce, whereas no pronounced changes in were observed for beech stands. It is concluded that structural effects on Ecmax can be specified and must be considered for spatial scaling from forest stands to landscapes. Hereby, in conjunction with LAI, age-related structural parameters are important for Norway spruce stands. Although compensating effects of tree canopy layers and understory on total evaporation of forests were observed, more information is needed to quantify structure-function relationships in forests of heterogenous structure.

  11. Non-invasive in vivo measurement of macular carotenoids

    Science.gov (United States)

    Lambert, James L. (Inventor); Borchert, Mark S. (Inventor)

    2009-01-01

    A non-invasive in vivo method for assessing macular carotenoids includes performing Optical Coherence Tomography (OCT) on a retina of a subject. A spatial representation of carotenoid levels in the macula based on data from the OCT of the retina can be generated.

  12. Non-Invasive Measurement of Intracranial Pressure Pulsation using Ultrasound

    Science.gov (United States)

    Ueno, Toshiaki; Ballard, R. E.; Yost, W. T.; Hargens, A. R.

    1997-01-01

    Exposure to microgravity causes a cephalad fluid shift which may elevate intracranial pressure (ICP). Elevation in ICP may affect cerebral hemodynamics in astronauts during space flight. ICP is, however, a difficult parameter to measure due to the invasiveness of currently available techniques. We already reported our development of a non-invasive ultrasound device for measurement of ICP. We recently modified the device so that we might reproducibly estimate ICP changes in association with cardiac cycles. In the first experiment, we measured changes in cranial distance with the ultrasound device in cadavera while changing ICP by infusing saline into the lateral ventricle. In the second experiment, we measured changes in cranial distance in five healthy volunteers while placing them in 60 deg, 30 deg head-up tilt, supine, and 10 deg head-down tilt position. In the cadaver study, fast Fourier transformation revealed that cranial pulsation is clearly associated with ICP pulsation. The ratio of cranial distance and ICP pulsation is 1.3microns/mmHg. In the tilting study, the magnitudes of cranial pulsation are linearly correlated to tilt angles (r=0.87). The ultrasound device has sufficient sensitivity to detect cranial pulsation in association with cardiac cycles. By analyzing the magnitude of cranial pulsation, estimates of ICP during space flight are possible.

  13. Transpiration response of upland rice to water deficit changed by different levels of eucalyptus biochar

    Directory of Open Access Journals (Sweden)

    Rogério Gomes Pereira

    2012-05-01

    Full Text Available The objective of this work was to evaluate the effect of eucalyptus biochar on the transpiration rate of upland rice 'BRSMG Curinga' as an alternative means to decrease the effect of water stress on plant growth and development. Two-pot experiments were carried out using a completely randomized block design, in a split-plot arrangement, with six replicates. Main plots were water stress (WS and no-water stress (NWS, and the subplots were biochar doses at 0, 6, 12 and 24% in growing medium (sand. Total transpirable soil water (TTSW, the p factor - defined as the average fraction of TTSW which can be depleted from the root zone before water stress limits growth -, and the normalized transpiration rate (NTR were determined. Biochar addition increased TTSW and the p factor, and reduced NTR. Consequently, biochar addition was able to change the moisture threshold (p factor of the growing medium, up to 12% maximum concentration, delaying the point where transpiration declines and affects yield.

  14. The relationship between transpiration and nutrient uptake in wheat changes under elevated atmospheric CO2.

    Science.gov (United States)

    Houshmandfar, Alireza; Fitzgerald, Glenn J; O'Leary, Garry; Tausz-Posch, Sabine; Fletcher, Andrew; Tausz, Michael

    2017-12-04

    The impact of elevated [CO 2 ] (e[CO 2 ]) on crops often includes a decrease in their nutrient concentrations where reduced transpiration-driven mass flow of nutrients has been suggested to play a role. We used two independent approaches, a free-air CO 2 enrichment (FACE) experiment in the South Eastern wheat belt of Australia and a simulation study employing the agricultural production systems simulator (APSIM), to show that transpiration (mm) and nutrient uptake (g m -2 ) of nitrogen (N), potassium (K), sulfur (S), calcium (Ca), magnesium (Mg) and manganese (Mn) in wheat are correlated under e[CO 2 ], but that nutrient uptake per unit water transpired is higher under e[CO 2 ] than under ambient [CO 2 ] (a[CO 2 ]). This result suggests that transpiration-driven mass flow of nutrients contributes to decreases in nutrient concentrations under e[CO 2 ], but cannot solely explain the overall decline. © 2017 Scandinavian Plant Physiology Society.

  15. Development of a high-sensitivity and portable cell using Helmholtz resonance for noninvasive blood glucose-level measurement based on photoacoustic spectroscopy.

    Science.gov (United States)

    Tachibana, K; Okada, K; Kobayashi, R; Ishihara, Y

    2016-08-01

    We describe the possibility of high-sensitivity noninvasive blood glucose measurement based on photoacoustic spectroscopy (PAS). The demand for noninvasive blood glucose-level measurement has increased due to the explosive increase in diabetic patients. We have developed a noninvasive blood glucose-level measurement based on PAS. The conventional method uses a straight-type resonant cell. However, the cell volume is large, which results in a low detection sensitivity and difficult portability. In this paper, a small-sized Helmholtz-type resonant cell is proposed to improve detection sensitivity and portability by reducing the cell dead volume. First, the acoustic property of the small-sized Helmholtz-type resonant cell was evaluated by performing an experiment using a silicone rubber. As a result, the detection sensitivity of the small-sized Helmholtz-type resonant cell was approximately two times larger than that of the conventional straight-type resonant cell. In addition, the inside volume was approximately 30 times smaller. Second, the detection limits of glucose concentration were estimated by performing an experiment using glucose solutions. The experimental results showed that a glucose concentration of approximately 1% was detected by the small-sized Helmholtz-type resonant cell. Although these results on the sensitivity of blood glucose-level measurement are currently insufficient, they suggest that miniaturization of a resonance cell is effective in the application of noninvasive blood glucose-level measurement.

  16. Noninvasive Doppler tissue measurement of pulmonary artery compliance in children with pulmonary hypertension.

    Science.gov (United States)

    Dyer, Karrie; Lanning, Craig; Das, Bibhuti; Lee, Po-Feng; Ivy, D Dunbar; Valdes-Cruz, Lilliam; Shandas, Robin

    2006-04-01

    We have shown previously that input impedance of the pulmonary vasculature provides a comprehensive characterization of right ventricular afterload by including compliance. However, impedance-based compliance assessment requires invasive measurements. Here, we develop and validate a noninvasive method to measure pulmonary artery (PA) compliance using ultrasound color M-mode (CMM) Doppler tissue imaging (DTI). Dynamic compliance (C(dyn)) of the PA was obtained from CMM DTI and continuous wave Doppler measurement of the tricuspid regurgitant velocity. C(dyn) was calculated as: [(D(s) - D(d))/(D(d) x P(s))] x 10(4); where D(s) = systolic diameter, D(d) = diastolic diameter, and P(s) = systolic pressure. The method was validated both in vitro and in 13 patients in the catheterization laboratory, and then tested on 27 pediatric patients with pulmonary hypertension, with comparison with 10 age-matched control subjects. C(dyn) was also measured in an additional 13 patients undergoing reactivity studies. Instantaneous diameter measured using CMM DTI agreed well with intravascular ultrasound measurements in the in vitro models. Clinically, C(dyn) calculated by CMM DTI agreed with C(dyn) calculated using invasive techniques (23.4 +/- 16.8 vs 29.1 +/- 20.6%/100 mm Hg; P = not significant). Patients with pulmonary hypertension had significantly lower peak wall velocity values and lower C(dyn) values than control subjects (P < .01). C(dyn) values followed an exponentially decaying relationship with PA pressure, indicating the nonlinear stress-strain behavior of these arteries. Reactivity in C(dyn) agreed with reactivity measured using impedance techniques. The C(dyn) method provides a noninvasive means of assessing PA compliance and should be useful as an additional measure of vascular reactivity subsequent to pulmonary vascular resistance in patients with pulmonary hypertension.

  17. Noninvasive methods to measure airway inflammation: future considerations

    NARCIS (Netherlands)

    Magnussen, H.; Holz, O.; Sterk, P. J.; Hargreave, F. E.

    2000-01-01

    This last contribution to the series focuses on open questions regarding: 1) methodological issues; and 2) the potential clinical application of the noninvasive methods such as induced sputum and the analysis of exhaled air for the assessment of airway inflammation. In addition their potential

  18. NONINVASIVE MEASUREMENT OF INTRARENAL BLOOD-FLOW DISTRIBUTION - KINETIC-MODEL OF RENAL I-123 HIPPURAN HANDLING

    NARCIS (Netherlands)

    JANSSEN, WMT; BEEKHUIS, H; DEBRUIN, R; DEJONG, PE; DEZEEUW, D

    1995-01-01

    A new technique for noninvasive measurement of intrarenal blood flow distribution over cortex and medulla is proposed. The tech nique involves analysis of I-123-labeled hippuran renography, according to a kinetic model that describes the flow of I-123- hippuran from the heart (input) through the

  19. Effect of fluorine in the substrate on the intensity of stomato-cuticular transpiration and on photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Navara, J

    1963-01-01

    This paper investigates the effect of fluorine in the substrate on the intensity of stomato-cuticular transpiration and on the intensity of photosynthesis in the common bean (Phaseolus vularis L.) in the early phases of ontogenetic development. Fluorine concentrations in the substrate in the range of 3 x 10/sup -3/ to 3 x 10/sup -4/ g/l produced no inhibition in the intensity of stomato-cuticular transpiration in 12-day-old test plants, whereas the intensity of photosynthesis was stimulated. An increase of 3 x 10/sup -3/ g/l in the fluorine level led to inhibition of these processes. As growth continued, an inhibitive effect on the intensity of stomato-cuticular transpiration was noted in 16-day-old plants even at a concentration of 3 x 10/sup -4/ g/l. The decrease in the intensity of stomato-cuticular transpiration is accompanied by an increase in the water-retention capacity of the leaf tissue. From these results, the conclusion can be drawn that the reduction in transpiration and photosynthesis is the result of a worsening in the plant's supply of water, resulting from disturbance of the absorptive capacity of the root system.

  20. A non-invasive experimental approach for surface temperature measurements on semi-crystalline thermoplastics

    Science.gov (United States)

    Boztepe, Sinan; Gilblas, Remi; de Almeida, Olivier; Le Maoult, Yannick; Schmidt, Fabrice

    2017-10-01

    Most of the thermoforming processes of thermoplastic polymers and their composites are performed adopting a combined heating and forming stages at which a precursor is heated prior to the forming. This step is done in order to improve formability by softening the thermoplastic polymer. Due to low thermal conductivity and semi-transparency of polymers, infrared (IR) heating is widely used for thermoforming of such materials. Predictive radiation heat transfer models for temperature distributions are therefore critical for optimizations of thermoforming process. One of the key challenges is to build a predictive model including the physical background of radiation heat transfer phenomenon in semi-crystalline thermoplastics as their microcrystalline structure introduces an optically heterogeneous medium. In addition, the accuracy of a predictive model is required to be validated experimentally where IR thermography is one of the suitable methods for such a validation as it provides a non-invasive, full-field surface temperature measurement. Although IR cameras provide a non-invasive measurement, a key issue for obtaining a reliable measurement depends on the optical characteristics of a heated material and the operating spectral band of IR camera. It is desired that the surface of a material to be measured has a spectral band where the material behaves opaque and an employed IR camera operates in the corresponding band. In this study, the optical characteristics of the PO-based polymer are discussed and, an experimental approach is proposed in order to measure the surface temperature of the PO-based polymer via IR thermography. The preliminary analyses showed that IR thermographic measurements may not be simply performed on PO-based polymers and require a correction method as their semi-transparent medium introduce a challenge to obtain reliable surface temperature measurements.

  1. Noninvasive electrical conductivity measurement by MRI: a test of its validity and the electrical conductivity characteristics of glioma.

    Science.gov (United States)

    Tha, Khin Khin; Katscher, Ulrich; Yamaguchi, Shigeru; Stehning, Christian; Terasaka, Shunsuke; Fujima, Noriyuki; Kudo, Kohsuke; Kazumata, Ken; Yamamoto, Toru; Van Cauteren, Marc; Shirato, Hiroki

    2018-01-01

    This study noninvasively examined the electrical conductivity (σ) characteristics of diffuse gliomas using MRI and tested its validity. MRI including a 3D steady-state free precession (3D SSFP) sequence was performed on 30 glioma patients. The σ maps were reconstructed from the phase images of the 3D SSFP sequence. The σ histogram metrics were extracted and compared among the contrast-enhanced (CET) and noncontrast-enhanced tumour components (NCET) and normal brain parenchyma (NP). Difference in tumour σ histogram metrics among tumour grades and correlation of σ metrics with tumour grades were tested. Validity of σ measurement using this technique was tested by correlating the mean tumour σ values measured using MRI with those measured ex vivo using a dielectric probe. Several σ histogram metrics of CET and NCET of diffuse gliomas were significantly higher than NP (Bonferroni-corrected p ≤ .045). The maximum σ of NCET showed a moderate positive correlation with tumour grade (r = .571, Bonferroni-corrected p = .018). The mean tumour σ measured using MRI showed a moderate positive correlation with the σ measured ex vivo (r = .518, p = .040). Tissue σ can be evaluated using MRI, incorporation of which may better characterise diffuse gliomas. • This study tested the validity of noninvasive electrical conductivity measurements by MRI. • This study also evaluated the electrical conductivity characteristics of diffuse glioma. • Gliomas have higher electrical conductivity values than the normal brain parenchyma. • Noninvasive electrical conductivity measurement can be helpful for better characterisation of glioma.

  2. Flux Measurements in Trees: Methodological Approach and Application to Vineyards

    Directory of Open Access Journals (Sweden)

    Francesca De Lorenzi

    2008-03-01

    Full Text Available In this paper a review of two sap flow methods for measuring the transpiration in vineyards is presented. The objective of this work is to examine the potential of detecting transpiration in trees in response to environmental stresses, particularly the high concentration of ozone (O3 in troposphere. The methods described are the stem heat balance and the thermal dissipation probe; advantages and disadvantages of each method are detailed. Applications of both techniques are shown, in two large commercial vineyards in Southern Italy (Apulia and Sicily, submitted to semi-arid climate. Sap flow techniques allow to measure transpiration at plant scale and an upscaling procedure is necessary to calculate the transpiration at the whole stand level. Here a general technique to link the value of transpiration at plant level to the canopy value is presented, based on experimental relationships between transpiration and biometric characteristics of the trees. In both vineyards transpiration measured by sap flow methods compares well with evapotranspiration measured by micrometeorological techniques at canopy scale. Moreover soil evaporation component has been quantified. In conclusion, comments about the suitability of the sap flow methods for studying the interactions between trees and ozone are given.

  3. Comparison of the gold standard of hemoglobin measurement with the clinical standard (BGA) and noninvasive hemoglobin measurement (SpHb) in small children: a prospective diagnostic observational study.

    Science.gov (United States)

    Wittenmeier, Eva; Bellosevich, Sophia; Mauff, Susanne; Schmidtmann, Irene; Eli, Michael; Pestel, Gunther; Noppens, Ruediger R

    2015-10-01

    Collecting a blood sample is usually necessary to measure hemoglobin levels in children. Especially in small children, noninvasively measuring the hemoglobin level could be extraordinarily helpful, but its precision and accuracy in the clinical environment remain unclear. In this study, noninvasive hemoglobin measurement and blood gas analysis were compared to hemoglobin measurement in a clinical laboratory. In 60 healthy preoperative children (0.2-7.6 years old), hemoglobin was measured using a noninvasive method (SpHb; Radical-7 Pulse Co-Oximeter), a blood gas analyzer (clinical standard, BGAHb; ABL 800 Flex), and a laboratory hematology analyzer (reference method, labHb; Siemens Advia). Agreement between the results was assessed by Bland-Altman analysis and by determining the percentage of outliers. Sixty SpHb measurements, 60 labHb measurements, and 59 BGAHb measurements were evaluated. In 38% of the children, the location of the SpHb sensor had to be changed more than twice for the signal quality to be sufficient. The bias/limits of agreement between SpHb and labHb were -0.65/-3.4 to 2.1 g·dl(-1) . Forty-four percent of the SpHb values differed from the reference value by more than 1 g·dl(-1) . Age, difficulty of measurement, and the perfusion index (PI) had no influence on the accuracy of SpHb. The bias/limits of agreement between BGAHb and labHb were 1.14/-1.6 to 3.9 g·dl(-1) . Furthermore, 66% of the BGAHb values differed from the reference values by more than 1 g·dl(-1) . The absolute mean difference between SpHb and labHb (1.1 g·dl(-1) ) was smaller than the absolute mean difference between BGAHb and labHb (1.5 g·dl(-1) /P = 0.024). Noninvasive measurement of hemoglobin agrees more with the reference method than the measurement of hemoglobin using a blood gas analyzer. However, both methods can show clinically relevant differences from the reference method (ClinicalTrials.gov: NCT01693016). © 2015 John Wiley & Sons Ltd.

  4. Modeling the Uptake and Transpiration of TCE Using Phreatophytic Trees

    National Research Council Canada - National Science Library

    Wise, Douglas

    1997-01-01

    .... The purpose of this research is to develop quantitative concepts for understanding the dynamics of TCE uptake and transpiration by phreatophytic trees over a short rotation woody crop time frame...

  5. Reactivity of dogs' brain oscillations to visual stimuli measured with non-invasive electroencephalography.

    Directory of Open Access Journals (Sweden)

    Miiamaaria V Kujala

    Full Text Available Studying cognition of domestic dogs has gone through a renaissance within the last decades. However, although the behavioral studies of dogs are beginning to be common in the field of animal cognition, the neural events underlying cognition remain unknown. Here, we employed a non-invasive electroencephalography, with adhesive electrodes attached to the top of the skin, to measure brain activity of from 8 domestic dogs (Canis familiaris while they stayed still to observe photos of dog and human faces. Spontaneous oscillatory activity of the dogs, peaking in the sensors over the parieto-occipital cortex, was suppressed statistically significantly during visual task compared with resting activity at the frequency of 15-30 Hz. Moreover, a stimulus-induced low-frequency (~2-6 Hz suppression locked to the stimulus onset was evident at the frontal sensors, possibly reflecting a motor rhythm guiding the exploratory eye movements. The results suggest task-related reactivity of the macroscopic oscillatory activity in the dog brain. To our knowledge, the study is the first to reveal non-invasively measured reactivity of brain electrophysiological oscillations in healthy dogs, and it has been based purely on positive operant conditional training, without the need for movement restriction or medication.

  6. The effect of grass transpiration on the air temperature

    Czech Academy of Sciences Publication Activity Database

    Šír, M.; Tesař, Miroslav; Lichner, Ľ.; Czachor, H.

    2014-01-01

    Roč. 69, č. 11 (2014), s. 1570-1576 ISSN 0006-3088 Institutional support: RVO:67985874 Keywords : air temperature oscillations * embolism * plant transpiration * soil water * tensiometric pressure * xylem tension Subject RIV: DA - Hydrology ; Limnology Impact factor: 0.827, year: 2014

  7. Compensating effect of sap velocity for stand density leads to uniform hillslope-scale forest transpiration across a steep valley cross-section

    Science.gov (United States)

    Renner, Maik; Hassler, Sibylle; Blume, Theresa; Weiler, Markus; Hildebrandt, Anke; Guderle, Marcus; Schymanski, Stan; Kleidon, Axel

    2016-04-01

    Roberts (1983) found that forest transpiration is relatively uniform across different climatic conditions and suggested that forest transpiration is a conservative process compensating for environmental heterogeneity. Here we test this hypothesis at a steep valley cross-section composed of European Beech in the Attert basin in Luxemburg. We use sapflow, soil moisture, biometric and meteorological data from 6 sites along a transect to estimate site scale transpiration rates. Despite opposing hillslope orientation, different slope angles and forest stand structures, we estimated relatively similar transpiration responses to atmospheric demand and seasonal transpiration totals. This similarity is related to a negative correlation between sap velocity and site-average sapwood area. At the south facing sites with an old, even-aged stand structure and closed canopy layer, we observe significantly lower sap velocities but similar stand-average transpiration rates compared to the north-facing sites with open canopy structure, tall dominant trees and dense understorey. This suggests that plant hydraulic co-ordination allows for flexible responses to environmental conditions leading to similar transpiration rates close to the water and energy limits despite the apparent heterogeneity in exposition, stand density and soil moisture. References Roberts, J. (1983). Forest transpiration: A conservative hydrological process? Journal of Hydrology 66, 133-141.

  8. Evaluating Uncertainties in Sap Flux Scaled Estimates of Forest Transpiration, Canopy Conductance and Photosynthesis

    Science.gov (United States)

    Ward, E. J.; Bell, D. M.; Clark, J. S.; Kim, H.; Oren, R.

    2009-12-01

    Thermal dissipation probes (TDPs) are a common method for estimating forest transpiration and canopy conductance from sap flux rates in trees, but their implementation is plagued by uncertainties arising from missing data and variability in the diameter and canopy position of trees, as well as sapwood conductivity within individual trees. Uncertainties in estimates of canopy conductance also translate into uncertainties in carbon assimilation in models such as the Canopy Conductance Constrained Carbon Assimilation (4CA) model that combine physiological and environmental data to estimate photosynthetic rates. We developed a method to propagate these uncertainties in the scaling and imputation of TDP data to estimates of canopy transpiration and conductance using a state-space Jarvis-type conductance model in a hierarchical Bayesian framework. This presentation will focus on the impact of these uncertainties on estimates of water and carbon fluxes using 4CA and data from the Duke Free Air Carbon Enrichment (FACE) project, which incorporates both elevated carbon dioxide and soil nitrogen treatments. We will also address the response of canopy conductance to vapor pressure deficit, incident radiation and soil moisture, as well as the effect of treatment-related stand structure differences in scaling TDP measurements. Preliminary results indicate that in 2006, a year of normal precipitation (1127 mm), canopy transpiration increased in elevated carbon dioxide ~8% on a ground area basis. In 2007, a year with a pronounced drought (800 mm precipitation), this increase was only present in the combined carbon dioxide and fertilization treatment. The seasonal dynamics of water and carbon fluxes will be discussed in detail.

  9. Relationship between transpiration and amino acid accumulation in Brassica leaf discs treated with cytokinins and fusicoccin

    International Nuclear Information System (INIS)

    Kuraishi, Susumu; Ishikawa, Fumio

    1977-01-01

    Both cytokinins and fusicoccin (FC) stimulated the transpiration and the amino acid accumulation in leaf discs of Brassica campestris var. komatsuna. Enhancement effects were of the same magnitude. Both the accumulation and the transpiration were similarly inhibited when vaseline was smeared on the leaf surface. Abscisic acid (ABA) also inhibited those cytokinin-induced effects. The accumulation of amino acid- 14 C was at the cytokinin- or FC-treated site unless the leaf surface was smeared with vaseline. These facts suggest that cytokinin- or FC-induced amino acid accumulation in leaf is caused by the stimulation of transpiration. (auth.)

  10. Transpiration and biomass production of the bioenergy crop Giant Knotweed Igniscum under various supplies of water and nutrients

    Directory of Open Access Journals (Sweden)

    Mantovani Dario

    2014-12-01

    Full Text Available Soil water availability, nutrient supply and climatic conditions are key factors for plant production. For a sustainable integration of bioenergy plants into agricultural systems, detailed studies on their water uses and growth performances are needed. The new bioenergy plant Igniscum Candy is a cultivar of the Sakhalin Knotweed (Fallopia sachalinensis, which is characterized by a high annual biomass production. For the determination of transpiration-yield relations at the whole plant level we used wicked lysimeters at multiple irrigation levels associated with the soil water availability (25, 35, 70, 100% and nitrogen fertilization (0, 50, 100, 150 kg N ha-1. Leaf transpiration and net photosynthesis were determined with a portable minicuvette system. The maximum mean transpiration rate was 10.6 mmol m-2 s-1 for well-watered plants, while the mean net photosynthesis was 9.1 μmol m-2 s-1. The cumulative transpiration of the plants during the growing seasons varied between 49 l (drought stressed and 141 l (well-watered per plant. The calculated transpiration coefficient for Fallopia over all of the treatments applied was 485.6 l kg-1. The transpiration-yield relation of Igniscum is comparable to rye and barley. Its growth performance making Fallopia a potentially good second generation bioenergy crop.

  11. Entropy production and plant transpiration in the Liz catchment

    Czech Academy of Sciences Publication Activity Database

    Šír, Miloslav; Tesař, Miroslav; Krejča, M.; Weger, J.

    2008-01-01

    Roč. 1, č. 1 (2008), s. 81-89 ISSN 1802-503X Grant - others:MŠMT(CZ) 2B06132 Institutional research plan: CEZ:AV0Z20600510 Keywords : plant transpiration * phytomass productivity * heat balance * entropy production Subject RIV: DA - Hydrology ; Limnology

  12. Noninvasive measurement of renal blood flow by magnetic resonance imaging in rats.

    Science.gov (United States)

    Romero, Cesar A; Cabral, Glauber; Knight, Robert A; Ding, Guangliang; Peterson, Edward L; Carretero, Oscar A

    2018-01-01

    Renal blood flow (RBF) provides important information regarding renal physiology and nephropathies. Arterial spin labeling-magnetic resonance imaging (ASL-MRI) is a noninvasive method of measuring blood flow without exogenous contrast media. However, low signal-to-noise ratio and respiratory motion artifacts are challenges for RBF measurements in small animals. Our objective was to evaluate the feasibility and reproducibility of RBF measurements by ASL-MRI using respiratory-gating and navigator correction methods to reduce motion artifacts. ASL-MRI images were obtained from the kidneys of Sprague-Dawley (SD) rats on a 7-Tesla Varian MRI system with a spin-echo imaging sequence. After 4 days, the study was repeated to evaluate its reproducibility. RBF was also measured in animals under unilateral nephrectomy and in renal artery stenosis (RST) to evaluate the sensitivity in high and low RBF models, respectively. RBF was also evaluated in Dahl salt-sensitive (SS) rats and spontaneous hypertensive rats (SHR). In SD rats, the cortical RBFs (cRBF) were 305 ± 59 and 271.8 ± 39 ml·min -1 ·100 g tissue -1 in the right and left kidneys, respectively. Retest analysis revealed no differences ( P = 0.2). The test-retest reliability coefficient was 92 ± 5%. The cRBFs before and after the nephrectomy were 296.8 ± 30 and 428.2 ± 45 ml·min -1 ·100 g tissue -1 ( P = 0.02), respectively. The kidneys with RST exhibited a cRBF decrease compared with sham animals (86 ± 17.6 vs. 198 ± 33.7 ml·min -1 ·100 g tissue -1 ; P < 0.01). The cRBFs in SD, Dahl-SS, and SHR rats were not different ( P = 0.35). We conclude that ASL-MRI performed with navigator correction and respiratory gating is a feasible and reliable noninvasive method for measuring RBF in rats.

  13. Toenail as Non-invasive Biomarker in Metal Toxicity Measurement of Welding Fumes Exposure - A Review

    Science.gov (United States)

    Bakri, S. F. Z.; Hariri, A.; Ma'arop, N. F.; Hussin, N. S. A. W.

    2017-01-01

    Workers are exposed to a variety of heavy metal pollutants that are released into the environment as a consequence of workplace activities. This chemical pollutants are incorporated into the human by varies of routes entry and can then be stored and distributed in different tissues, consequently have a potential to lead an adverse health effects and/or diseases. As to minimize the impact, a control measures should be taken to avoid these effects and human biological marker is a very effective tool in the assessment of occupational exposure and potential related risk as the results is normally accurate and reproducible. Toenail is the ideal matrix for most common heavy metals due to its reliability and practicality compared to other biological samples as well as it is a non-invasive and this appears as a huge advantage of toenail as a biomarker. This paper reviews studies that measure the heavy metals concentration in toenail as non-invasive matrix which later may adapt in the investigation of metal fume emitted from welding process. The development of new methodology and modern analytical techniques has allowed the use of toenail as non-invasive approach. The presence of a heavy metal in this matrix reflects an exposure but the correlations between heavy metal levels in the toenail must be established to ensure that these levels are related to the total body burden. These findings suggest that further studies on interactions of these heavy metals in metal fumes utilizing toenail biomarker endpoints are highly warranted especially among welders.

  14. High atmospheric demand for water can limit forest carbon uptake and transpiration as severely as dry soil

    Science.gov (United States)

    Benjamin N. Sulman; Daniel Tyler Roman; Koong Yi; Lixin Wang; Richard P. Phillips; Kimberly A. Novick

    2016-01-01

    When stressed by low soil water content (SWC) or high vapor pressure deficit (VPD), plants close stomata, reducing transpiration and photosynthesis. However, it has historically been difficult to disentangle the magnitudes of VPD compared to SWC limitations on ecosystem-scale fluxes. We used a 13 year record of eddy covariance measurements from a forest in south...

  15. Review of Stratum Corneum Impedance Measurement in Non-Invasive Penetration Application

    Directory of Open Access Journals (Sweden)

    Fei Lu

    2018-03-01

    Full Text Available Due to advances in telemedicine, mobile medical care, wearable health monitoring, and electronic skin, great efforts have been directed to non-invasive monitoring and treatment of disease. These processes generally involve disease detection from interstitial fluid (ISF instead of blood, and transdermal drug delivery. However, the quantitative extraction of ISF and the level of drug absorption are greatly affected by the individual’s skin permeability, which is closely related to the properties of the stratum corneum (SC. Therefore, measurement of SC impedance has been proposed as an appropriate way for assessing individual skin differences. In order to figure out the current status and research direction of human SC impedance detection, investigations regarding skin impedance measurement have been reviewed in this paper. Future directions are concluded after a review of impedance models, electrodes, measurement methods and systems, and their applications in treatment. It is believed that a well-matched skin impedance model and measurement method will be established for clinical and point-of care applications in the near future.

  16. A novel wearable device for continuous, non-invasion blood pressure measurement.

    Science.gov (United States)

    Xin, Qin; Wu, Jianping

    2017-08-01

    In this paper, we have developed a wearable cuffless device for daily blood pressure (BP) measurement. We incorporated the light based sensor and other hard wares in a small volume for BP detection. With optimized algorithm, the real-time BP reading could be achieved, the data could be presented in the screen and be transmitted by internet of things (IoT) for history data comparison and multi-terminal viewing. Thus, further analysis provides the probability for diet or sports suggestion and alarm. We have measured BP from more than 60 subjects, compare to traditional mercury blood pressure meter, no obvious error in both systolic blood pressure (SBP) and diastolic blood pressure (DBP) are detected. Such device can be used for continues non-invasion BP detection, and further data docking and health analysis could be achieved. Copyright © 2017. Published by Elsevier Ltd.

  17. Surface Acoustic Waves to Drive Plant Transpiration.

    Science.gov (United States)

    Gomez, Eliot F; Berggren, Magnus; Simon, Daniel T

    2017-03-31

    Emerging fields of research in electronic plants (e-plants) and agro-nanotechnology seek to create more advanced control of plants and their products. Electronic/nanotechnology plant systems strive to seamlessly monitor, harvest, or deliver chemical signals to sense or regulate plant physiology in a controlled manner. Since the plant vascular system (xylem/phloem) is the primary pathway used to transport water, nutrients, and chemical signals-as well as the primary vehicle for current e-plant and phtyo-nanotechnology work-we seek to directly control fluid transport in plants using external energy. Surface acoustic waves generated from piezoelectric substrates were directly coupled into rose leaves, thereby causing water to rapidly evaporate in a highly localized manner only at the site in contact with the actuator. From fluorescent imaging, we find that the technique reliably delivers up to 6x more water/solute to the site actuated by acoustic energy as compared to normal plant transpiration rates and 2x more than heat-assisted evaporation. The technique of increasing natural plant transpiration through acoustic energy could be used to deliver biomolecules, agrochemicals, or future electronic materials at high spatiotemporal resolution to targeted areas in the plant; providing better interaction with plant physiology or to realize more sophisticated cyborg systems.

  18. Solar-induced chlorophyll fluorescence tracks the trend of canopy stomatal conductance and transpiration at diurnal and seasonal scales

    Science.gov (United States)

    Zhang, Y.; Shan, N.; Ju, W.; Chen, J.

    2017-12-01

    Transpiration is the process of plant water loss through the stomata on the leaf surface and plays a key role in the energy and water balance of the land surface. Plant stomata function as a control interface for regulating photosynthetic uptake of CO2 and transpiration, strongly linked to plant productivity. Stomatal conductance is fundamental to larger-scale regional prediction of carbon-water cycles and their feedbacks to climate. The widely used Ball-Berry model coupled photosynthesis to a semi-empirical model of stomatal conductance. However large uncertainties remain in simulation of carbon assimilation rate in ecosystem and regional scales. The strong correlations of solar-induced fluorescence (SIF) and GPP have been demonstrated and provides an important opportunity to accurately monitor photosynthetic activity and water exchange. In this presentation, we compared both canopy-observed SIF and satellite-derived SIF with tower-based canopy stomatal conductance from hourly to 8-day scales in forest and cropland ecosystem. Using the model of stomatal conductance based on SIF, the transpiration was estimated at hourly and daily scales and compared with flux tower measurements. The results showed that the seasonal pattern of canopy stomatal conductance agreed better with SIF compared to NDVI and their relationship was higher during sunny days for forest ecosystem. Canopy stomatal conductance correlated with both tower-observed SIF and SIF from the Global Ozone Monitoring Experiment-2. Estimation of transpiration from SIF performed well in both forest and cropland ecosystem. This remotely sensed approaches from SIF for modelling stomatal conductance opens a new era to analysis and simulation of coupled carbon and water cycles under climate change.

  19. Transpiration of glasshouse rose crops: evaluation of regression models

    NARCIS (Netherlands)

    Baas, R.; Rijssel, van E.

    2006-01-01

    Regression models of transpiration (T) based on global radiation inside the greenhouse (G), with or without energy input from heating pipes (Eh) and/or vapor pressure deficit (VPD) were parameterized. Therefore, data on T, G, temperatures from air, canopy and heating pipes, and VPD from both a

  20. Mathematical Modeling of Dual Intake Transparent Transpired Solar Collector

    Directory of Open Access Journals (Sweden)

    Thomas Semenou

    2015-01-01

    Full Text Available Nowadays, in several types of commercial or institutional buildings, a significant rise of transpired solar collectors used to preheat the fresh air of the building can be observed. Nevertheless, when the air mass flow rate is low, the collector efficiency collapses and a large amount of energy remains unused. This paper presents a simple yet effective mathematical model of a transparent transpired solar collector (TTC with dual intake in order to remove stagnation problems in the plenum and ensure a better thermal efficiency and more heat recovery. A thermal model and a pressure loss model were developed. Then, the combined model was validated with experimental data from the Solar Rating and Certification Corporation (SRCC. The results show that the collector efficiency can be up to 70% and even 80% regardless of operating conditions. The temperature gain is able to reach 20°K when the solar irradiation is high.

  1. Noninvasive measurement of postocclusive parameters in human forearm blood by near infrared spectroscopy

    Science.gov (United States)

    Rao, K. Prahlad; Radhakrishnan, S.; Reddy, M. Ramasubba

    2005-04-01

    Near infrared (NIR) light in the wavelength range from 700 to 900 nm can pass through skin, bone and other tissues relatively easily. As a result, NIR techniques allow a noninvasive assessment of hemoglobin saturation for a wide range of applications, such as in the study of muscle metabolism, the diagnosis of vascular disorders, brain imaging, and breast cancer detection. Near infrared Spectroscopy (NIRS) is an effective tool to measure the hemoglobin concentration in the tissues, which can discriminate optically the oxy- and deoxy- hemoglobin species because of their different near-infrared absorption spectra. We have developed an NIRS probe consisting of a laser diode of 830 nm wavelength and a PIN photodiode in reflectance mode. We have selected a set of healthy volunteers (mean age 30, range 26-40 years) for the study. The probe is placed on forearm of each subject and the backscattered light intensity is measured by occluding the blood flow at 210, 110 and 85 mmHg pressures. Recovery time, peak time and time after 50% release of the cuff pressure are determined from the optical densities during the post occlusive state of forearm. These parameters are useful for determining the transient increase in blood flow after the release of blood occlusion. Clinically, the functional aspects of blood flow in the limbs could be evaluated noninvasively by NIRS.

  2. A New Method to Quantify the Isotopic Signature of Leaf Transpiration: Implications for Landscape-Scale Evapotranspiration Partitioning Studies

    Science.gov (United States)

    Wang, L.; Good, S. P.; Caylor, K. K.

    2010-12-01

    Characterizing the constituent components of evapotranspiration is crucial to better understand ecosystem-level water budgets and water use dynamics. Isotope based evapotranspiration partitioning methods are promising but their utility lies in the accurate estimation of the isotopic composition of underlying transpiration and evaporation. Here we report a new method to quantify the isotopic signature of leaf transpiration under field conditions. This method utilizes a commercially available laser-based isotope analyzer and a transparent leaf chamber, modified from Licor conifer leaf chamber. The method is based on the water mass balance in ambient air and leaf transpired air. We verified the method using “artificial leaves” and glassline extracted samples. The method provides a new and direct way to estimate leaf transpiration isotopic signatures and it has wide applications in ecology, hydrology and plant physiology.

  3. Genotype-dependent variation in the transpiration efficiency of plants and photosynthetic activity of flag leaves in spring barley under varied nutrition.

    Science.gov (United States)

    Krzemińska, Anetta; Górny, Andrzej G

    2003-01-01

    In the study, spring barley genotypes of various origin and breeding history were found to show a broad genetic variation in the vegetative and generative measures of the whole-plant transpiration efficiency (TE), photosynthesis (A) and transpiration (E) rates of flag leaves, leaf efficiency of gas exchange (A/E) and stress tolerance (T) when grown till maturity in soil-pots under high and reduced NPK supplies. Broad-sense heritabilities for the characteristics ranged from 0.61 to 0.87. Significant genotype-nutrition interactions were noticed, constituting 19-23% of the total variance in TE measures. The results suggest that at least some 'exotic' accessions from Ethiopia, Syria, Morocco and/or Tibet may serve as attractive genetic sources of novel variations in TE, T and A for the breeding of barleys of improved adaptation to less favourable fertilisation.

  4. Noninvasive imaging of experimental lung fibrosis.

    Science.gov (United States)

    Zhou, Yong; Chen, Huaping; Ambalavanan, Namasivayam; Liu, Gang; Antony, Veena B; Ding, Qiang; Nath, Hrudaya; Eary, Janet F; Thannickal, Victor J

    2015-07-01

    Small animal models of lung fibrosis are essential for unraveling the molecular mechanisms underlying human fibrotic lung diseases; additionally, they are useful for preclinical testing of candidate antifibrotic agents. The current end-point measures of experimental lung fibrosis involve labor-intensive histological and biochemical analyses. These measures fail to account for dynamic changes in the disease process in individual animals and are limited by the need for large numbers of animals for longitudinal studies. The emergence of noninvasive imaging technologies provides exciting opportunities to image lung fibrosis in live animals as often as needed and to longitudinally track the efficacy of novel antifibrotic compounds. Data obtained by noninvasive imaging provide complementary information to histological and biochemical measurements. In addition, the use of noninvasive imaging in animal studies reduces animal usage, thus satisfying animal welfare concerns. In this article, we review these new imaging modalities with the potential for evaluation of lung fibrosis in small animal models. Such techniques include micro-computed tomography (micro-CT), magnetic resonance imaging, positron emission tomography (PET), single photon emission computed tomography (SPECT), and multimodal imaging systems including PET/CT and SPECT/CT. It is anticipated that noninvasive imaging will be increasingly used in animal models of fibrosis to gain insights into disease pathogenesis and as preclinical tools to assess drug efficacy.

  5. Structural and compositional controls on transpiration in 40- and 450-year-old riparian forests in western Oregon, USA.

    Science.gov (United States)

    Moore, Georgianne W; Bond, Barbara J; Jones, Julia A; Phillips, Nathan; Meinzer, Federick C

    2004-05-01

    Large areas of forests in the Pacific Northwest are being transformed to younger forests, yet little is known about the impact this may have on hydrological cycles. Previous work suggests that old trees use less water per unit leaf area or sapwood area than young mature trees of the same species in similar environments. Do old forests, therefore, use less water than young mature forests in similar environments, or are there other structural or compositional components in the forests that compensate for tree-level differences? We investigated the impacts of tree age, species composition and sapwood basal area on stand-level transpiration in adjacent watersheds at the H.J. Andrews Forest in the western Cascades of Oregon, one containing a young, mature (about 40 years since disturbance) conifer forest and the other an old growth (about 450 years since disturbance) forest. Sap flow measurements were used to evaluate the degree to which differences in age and species composition affect water use. Stand sapwood basal area was evaluated based on a vegetation survey for species, basal area and sapwood basal area in the riparian area of two watersheds. A simple scaling exercise derived from estimated differences in water use as a result of differences in age, species composition and stand sapwood area was used to estimate transpiration from late June through October within the entire riparian area of these watersheds. Transpiration was higher in the young stand because of greater sap flux density (sap flow per unit sapwood area) by age class and species, and greater total stand sapwood area. During the measurement period, mean daily sap flux density was 2.30 times higher in young compared with old Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) trees. Sap flux density was 1.41 times higher in young red alder (Alnus rubra Bong.) compared with young P. menziesii trees, and was 1.45 times higher in old P. menziesii compared with old western hemlock (Tsuga heterophylla (Raf

  6. Techniques for Non-Invasive Monitoring of Arterial Blood Pressure

    Directory of Open Access Journals (Sweden)

    Agnes S. Meidert

    2018-01-01

    Full Text Available Since both, hypotension and hypertension, can potentially impair the function of vital organs such as heart, brain, or kidneys, monitoring of arterial blood pressure (BP is a mainstay of hemodynamic monitoring in acutely or critically ill patients. Arterial BP can either be obtained invasively via an arterial catheter or non-invasively. Non-invasive BP measurement provides either intermittent or continuous readings. Most commonly, an occluding upper arm cuff is used for intermittent non-invasive monitoring. BP values are then obtained either manually (by auscultation of Korotkoff sounds or palpation or automatically (e.g., by oscillometry. For continuous non-invasive BP monitoring, the volume clamp method or arterial applanation tonometry can be used. Both techniques enable the arterial waveform and BP values to be obtained continuously. This article describes the different techniques for non-invasive BP measurement, their advantages and limitations, and their clinical applicability.

  7. Non-invasive measurements of exhaled NO and CO associated with methacholine responses in mice

    Directory of Open Access Journals (Sweden)

    Ameredes Bill T

    2008-05-01

    Full Text Available Abstract Background Nitric oxide (NO and carbon monoxide (CO in exhaled breath are considered obtainable biomarkers of physiologic mechanisms. Therefore, obtaining their measures simply, non-invasively, and repeatedly, is of interest, and was the purpose of the current study. Methods Expired NO (ENO and CO (ECO were measured non-invasively using a gas micro-analyzer on several strains of mice (C57Bl6, IL-10-/-, A/J, MKK3-/-, JNK1-/-, NOS-2-/- and NOS-3-/- with and without allergic airway inflammation (AI induced by ovalbumin systemic sensitization and aerosol challenge, compared using independent-sample t-tests between groups, and repeated measures analysis of variance (ANOVA within groups over time of inflammation induction. ENO and ECO were also measured in C57Bl6 and IL-10-/- mice, ages 8–58 weeks old, the relationship of which was determined by regression analysis. S-methionyl-L-thiocitrulline (SMTC, and tin protoporphyrin (SnPP were used to inhibit neuronal/constitutive NOS-1 and heme-oxygenase, respectively, and alter NO and CO production, respectively, as assessed by paired t-tests. Methacholine-associated airway responses (AR were measured by the enhanced pause method, with comparisons by repeated measures ANOVA and post-hoc testing. Results ENO was significantly elevated in naïve IL-10-/- (9–14 ppb and NOS-2-/- (16 ppb mice as compared to others (average: 5–8 ppb, whereas ECO was significantly higher in naïve A/J, NOS-3-/- (3–4 ppm, and MKK3-/- (4–5 ppm mice, as compared to others (average: 2.5 ppm. As compared to C57Bl6 mice, AR of IL-10-/-, JNK1-/-, NOS-2-/-, and NOS-3-/- mice were decreased, whereas they were greater for A/J and MKK3-/- mice. SMTC significantly decreased ENO by ~30%, but did not change AR in NOS-2-/- mice. SnPP reduced ECO in C57Bl6 and IL-10-/- mice, and increased AR in NOS-2-/- mice. ENO decreased as a function of age in IL-10-/- mice, remaining unchanged in C57Bl6 mice. Conclusion These results are

  8. Influence of water deficit on transpiration and radiation use efficiency of chickpea (Cicer arietinum L.)

    International Nuclear Information System (INIS)

    Singh, P.; Sri Rama, Y.V.

    1989-01-01

    Information on the relationship between biomass production, radiation use and water use of chickpea (Cicer arietinum L.) is essential to estimate biomass production in different water regimes. Experiments were conducted during three post-rainy seasons on a Vertisol (a typic pallustert) to study the effect of water deficits on radiation use, radiation use efficiency (RUE), transpiration and transpiration efficiency (TE) of chickpea. Different levels of soil water availability were created, either by having irrigated and non-irrigated plots or using a line source. Biomass production was linearly related to both cumulative intercepted solar radiation and transpiration in both well watered and water deficit treatments. Soil water availability did not affect RUE (total dry matter produced per unit of solar radiation interception) when at least 30% of extractable soil water (ESW) was present in the rooting zone, but below 30% ESW, RUE decreased linearly with the decrease in soil water content. RUE was also significantly correlated (R 2 = 0.61, P < 0.01) with the ratio of actual to potential transpiration (T/Tp) and it declined curvilinearly with the decrease in T/Tp. TE decreased with the increase in saturation deficit (SD) of air. Normalization of TE with SD gave a conservative value of 4.8 g kPa kg −1 . To estimate biomass production of chickpea in different environments, we need to account for the effect of plant water deficits on RUE in a radiation-based model and the effect of SD on TE in a transpiration-based model. (author)

  9. Clinical comparison of automatic, noninvasive measurements of blood pressure in the forearm and upper arm.

    Science.gov (United States)

    Schell, Kathleen; Bradley, Elisabeth; Bucher, Linda; Seckel, Maureen; Lyons, Denise; Wakai, Sandra; Bartell, Deborah; Carson, Elizabeth; Chichester, Melanie; Foraker, Teresa; Simpson, Kathleen

    2005-05-01

    When the upper arm (area from shoulder to elbow) is inaccessible and/or a standard-sized blood pressure cuff does not fit, some healthcare workers use the forearm to measure blood pressure. To compare automatic noninvasive measurements of blood pressure in the upper arm and forearm. A descriptive, correlational comparison study was conducted in the emergency department of a 1071-bed teaching hospital. Subjects were 204 English-speaking patients 6 to 91 years old in medically stable condition who had entered the department on foot or by wheelchair and who had no exclusions to using their left upper extremity. A Welch Allyn Vital Signs 420 series monitor was used to measure blood pressure in the left upper arm and forearm with the subject seated and the upper arm or forearm at heart level. Pearson r correlation coefficients between measurements in the upper arm and forearm were 0.88 for systolic blood pressure and 0.76 for diastolic blood pressure (P upper arm and forearm differed significantly (t = 2.07, P = .04). A Bland-Altman analysis indicated that the distances between the mean values and the limits of agreement for the 2 sites ranged from 15 mm Hg (mean arterial pressure) to 18.4 mm Hg (systolic pressure). Despite strict attention to correct cuff size and placement of the upper arm or forearm at heart level, measurements of blood pressure obtained noninvasively in the arm and forearm of seated patients in stable condition are not interchangeable.

  10. Reply to Miglietta et al.: Maximal transpiration controlled by plants

    NARCIS (Netherlands)

    Boer, H.J. de; Lammertsma, E.I.; Wagner-Cremer, F.; Dilcher, D.L.; Wassen, M.J.; Dekker, S.C.

    2011-01-01

    We thank Miglietta et al. for their interest in our study. Their first and main point arises from the idea that plant transpiration (T) is driven by atmospheric demand, giving plants limited control over the water they lose...

  11. A Rationally Designed Agonist Defines Subfamily IIIA Abscisic Acid Receptors As Critical Targets for Manipulating Transpiration.

    Science.gov (United States)

    Vaidya, Aditya S; Peterson, Francis C; Yarmolinsky, Dmitry; Merilo, Ebe; Verstraeten, Inge; Park, Sang-Youl; Elzinga, Dezi; Kaundal, Amita; Helander, Jonathan; Lozano-Juste, Jorge; Otani, Masato; Wu, Kevin; Jensen, Davin R; Kollist, Hannes; Volkman, Brian F; Cutler, Sean R

    2017-11-17

    Increasing drought and diminishing freshwater supplies have stimulated interest in developing small molecules that can be used to control transpiration. Receptors for the plant hormone abscisic acid (ABA) have emerged as key targets for this application, because ABA controls the apertures of stomata, which in turn regulate transpiration. Here, we describe the rational design of cyanabactin, an ABA receptor agonist that preferentially activates Pyrabactin Resistance 1 (PYR1) with low nanomolar potency. A 1.63 Å X-ray crystallographic structure of cyanabactin in complex with PYR1 illustrates that cyanabactin's arylnitrile mimics ABA's cyclohexenone oxygen and engages the tryptophan lock, a key component required to stabilize activated receptors. Further, its sulfonamide and 4-methylbenzyl substructures mimic ABA's carboxylate and C6 methyl groups, respectively. Isothermal titration calorimetry measurements show that cyanabactin's compact structure provides ready access to high ligand efficiency on a relatively simple scaffold. Cyanabactin treatments reduce Arabidopsis whole-plant stomatal conductance and activate multiple ABA responses, demonstrating that its in vitro potency translates to ABA-like activity in vivo. Genetic analyses show that the effects of cyanabactin, and the previously identified agonist quinabactin, can be abolished by the genetic removal of PYR1 and PYL1, which form subclade A within the dimeric subfamily III receptors. Thus, cyanabactin is a potent and selective agonist with a wide spectrum of ABA-like activities that defines subfamily IIIA receptors as key target sites for manipulating transpiration.

  12. Stomatal acclimation to vapour pressure deficit doubles transpiration of small tree seedlings with warming

    DEFF Research Database (Denmark)

    Marchin, Renée M.; Broadhead, Alice A.; Bostic, Laura E.

    2016-01-01

    chamber VPD. Warming increased mean water use of Carya by 140% and Quercus by 150%, but had no significant effect on water use of Acer. Increased water use of ring-porous species was attributed to (1) higher air T and (2) stomatal acclimation to VPD resulting in higher gs and more sensitive stomata......Future climate change is expected to increase temperature (T) and atmospheric vapour pressure deficit (VPD) in many regions, but the effect of persistent warming on plant stomatal behaviour is highly uncertain. We investigated the effect of experimental warming of 1.9-5.1 °C and increased VPD of 0.......5-1.3 kPa on transpiration and stomatal conductance (gs ) of tree seedlings in the temperate forest understory (Duke Forest, North Carolina, USA). We observed peaked responses of transpiration to VPD in all seedlings, and the optimum VPD for transpiration (Dopt ) shifted proportionally with increasing...

  13. Sound Propagation in Saturated Gas-Vapor-Droplet Suspensions Considering the Effect of Transpiration on Droplet Evaporation

    Science.gov (United States)

    Kandula, Max

    2012-01-01

    The Sound attenuation and dispersion in saturated gas-vapor-droplet mixtures with evaporation has been investigated theoretically. The theory is based on an extension of the work of Davidson (1975) to accommodate the effects of transpiration on the linear particle relaxation processes of mass, momentum and energy transfer. It is shown that the inclusion of transpiration in the presence of mass transfer improves the agreement between the theory and the experimental data of Cole and Dobbins (1971) for sound attenuation in air-water fogs at low droplet mass concentrations. The results suggest that transpiration has an appreciable effect on both sound absorption and dispersion for both low and high droplet mass concentrations.

  14. Low-Cost and Light-Weight Transpiration-Cooled Thrust Chambers, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed effort aims to evaluate the feasibility of using transpiration-cooled Titanium as the primary material in small-scale thrust chambers for in-space...

  15. Measurement of Non-Invasive Blood Glucose Level Based Sensor Color TCS3200 and Arduino

    Science.gov (United States)

    Kurniadi Wardana, Humaidillah; Indahwati, Elly; Arifah Fitriyah, Lina

    2018-04-01

    Design and measurement of Arduino-based urinary (non-invasive) urine glucose using RGB tcs3200 sensor. This research was conducted by making use of the urine in diabetes patients detected by sensor colours then measured levels of colour based on the RGB colour of the urine of diabetics. The detection is done on 4 urine samples with each consisting of 3 diabetics and 1 non-diabetics. Equipment used in this research, among others, Arduino Uno, colour sensor tcs3200, LCD 16x4. The results showed that the detection of RGB values in diabetics 230 with blue and not diabetics 200 with red.

  16. The importance of micrometeorological variations for photosynthesis and transpiration in a boreal coniferous forest

    DEFF Research Database (Denmark)

    Schurgers, Guy; Lagergren, F.; Molder, M.

    2015-01-01

    the importance of vertical variations in light, temperature, CO2 concentration and humidity within the canopy for fluxes of photosynthesis and transpiration of a boreal coniferous forest in central Sweden. A leaf-level photosynthesis-stomatal conductance model was used for aggregating these processes to canopy...... abovecanopy and within-canopy humidity, and despite large gradients in CO2 concentration during early morning hours after nights with stable conditions, neither humidity nor CO2 played an important role for vertical heterogeneity of photosynthesis and transpiration....

  17. Weaning mechanical ventilation after off-pump coronary artery bypass graft procedures directed by noninvasive gas measurements.

    Science.gov (United States)

    Chakravarthy, Murali; Narayan, Sandeep; Govindarajan, Raghav; Jawali, Vivek; Rajeev, Subramanyam

    2010-06-01

    Partial pressure of carbon dioxide and oxygen were transcutaneously measured in adults after off-pump coronary artery bypass (OPCAB) surgery. The clinical use of such measurements and interchangeability with arterial blood gas measurements for weaning patients from postoperative mechanical ventilation were assessed. This was a prospective observational study. Tertiary referral heart hospital. Postoperative OPCAB surgical patients. Transcutaneous oxygen and carbon dioxide measurements. In this prospective observational study, 32 consecutive adult patients in a tertiary care medical center underwent OPCAB surgery. Noninvasive measurement of respiratory gases was performed during the postoperative period and compared with arterial blood gases. The investigator was blinded to the reports of arterial blood gas studies and weaned patients using a "weaning protocol" based on transcutaneous gas measurement. The number of patients successfully weaned based on transcutaneous measurements and the number of times the weaning process was held up were noted. A total of 212 samples (pairs of arterial and transcutaneous values of oxygen and carbon dioxide) were obtained from 32 patients. Bland-Altman plots and mountain plots were used to analyze the interchangeability of the data. Twenty-five (79%) of the patients were weaned from the ventilator based on transcutaneous gas measurements alone. Transcutaneous carbon dioxide measurements were found to be interchangeable with arterial carbon dioxide during 96% of measurements, versus 79% for oxygen measurements. More than three fourths of the patients were weaned from mechanical ventilation and extubated based on transcutaneous gas values alone after OPCAB surgery. The noninvasive transcutaneous carbon dioxide measurement can be used as a surrogate for arterial carbon dioxide measurement to manage postoperative OPCAB patients. Copyright 2010 Elsevier Inc. All rights reserved.

  18. Coordination of Leaf Photosynthesis, Transpiration, and Structural Traits in Rice and Wild Relatives (Genus Oryza).

    Science.gov (United States)

    Giuliani, Rita; Koteyeva, Nuria; Voznesenskaya, Elena; Evans, Marc A; Cousins, Asaph B; Edwards, Gerald E

    2013-07-01

    The genus Oryza, which includes rice (Oryza sativa and Oryza glaberrima) and wild relatives, is a useful genus to study leaf properties in order to identify structural features that control CO(2) access to chloroplasts, photosynthesis, water use efficiency, and drought tolerance. Traits, 26 structural and 17 functional, associated with photosynthesis and transpiration were quantified on 24 accessions (representatives of 17 species and eight genomes). Hypotheses of associations within, and between, structure, photosynthesis, and transpiration were tested. Two main clusters of positively interrelated leaf traits were identified: in the first cluster were structural features, leaf thickness (Thick(leaf)), mesophyll (M) cell surface area exposed to intercellular air space per unit of leaf surface area (S(mes)), and M cell size; a second group included functional traits, net photosynthetic rate, transpiration rate, M conductance to CO(2) diffusion (g(m)), stomatal conductance to gas diffusion (g(s)), and the g(m)/g(s) ratio.While net photosynthetic rate was positively correlated with gm, neither was significantly linked with any individual structural traits. The results suggest that changes in gm depend on covariations of multiple leaf (S(mes)) and M cell (including cell wall thickness) structural traits. There was an inverse relationship between Thick(leaf) and transpiration rate and a significant positive association between Thick(leaf) and leaf transpiration efficiency. Interestingly, high g(m) together with high g(m)/g(s) and a low S(mes)/g(m) ratio (M resistance to CO(2) diffusion per unit of cell surface area exposed to intercellular air space) appear to be ideal for supporting leaf photosynthesis while preserving water; in addition, thick M cell walls may be beneficial for plant drought tolerance.

  19. Noninvasive studies of human visual cortex using neuromagnetic techniques

    International Nuclear Information System (INIS)

    Aine, C.J.; George, J.S.; Supek, S.; Maclin, E.L.

    1990-01-01

    The major goals of noninvasive studies of the human visual cortex are: to increase knowledge of the functional organization of cortical visual pathways; and to develop noninvasive clinical tests for the assessment of cortical function. Noninvasive techniques suitable for studies of the structure and function of human visual cortex include magnetic resonance imaging (MRI), positron emission tomography (PET), single photon emission tomography (SPECT), scalp recorded event-related potentials (ERPs), and event-related magnetic fields (ERFs). The primary challenge faced by noninvasive functional measures is to optimize the spatial and temporal resolution of the measurement and analytic techniques in order to effectively characterize the spatial and temporal variations in patterns of neuronal activity. In this paper we review the use of neuromagnetic techniques for this purpose. 8 refs., 3 figs

  20. Noninvasive wearable sensor for indirect glucometry.

    Science.gov (United States)

    Zilberstein, Gleb; Zilberstein, Roman; Maor, Uriel; Righetti, Pier Giorgio

    2018-04-02

    A noninvasive mini-sensor for blood glucose concentration assessment has been developed. The monitoring is performed by gently pressing a wrist or fingertip onto the chemochromic mixture coating a thin glass or polymer film positioned on the back panel of a smart watch with PPG/HRM (photoplethysmographic/heart rate monitoring sensor). The various chemochromic components measure the absolute values of the following metabolites present in the sweat: acetone, acetone beta-hydroxybutirate, aceto acetate, water, carbon dioxide, lactate anion, pyruvic acid, Na and K salts. Taken together, all these parameters give information about blood glucose concentration, calculated via multivariate analysis based on neural network algorithms built into the sensor. The Clarke Error Grid shows an excellent correlation between data measured by the standard invasive glucose analyser and the present noninvasive sensor, with all points aligned along a 45-degree diagonal and contained almost exclusively in sector A. Graphs measuring glucose levels five times a day (prior, during and after breakfast and prior, during and after lunch), for different individuals (males and females) show a good correlation between the two curves of conventional, invasive meters vs. the noninvasive sensor, with an error of ±15%. This novel, noninvasive sensor for indirect glucometry is fully miniaturized, easy to use and operate and could represent a valid alternative in clinical settings and for individual, personal users, to current, invasive tools. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Separating foliar physiology from morphology reveals the relative roles of vertically structured transpiration factors within red maple crowns and limitations of larger scale models

    Science.gov (United States)

    Bauerle, William L.; Bowden, Joseph D.

    2011-01-01

    A spatially explicit mechanistic model, MAESTRA, was used to separate key parameters affecting transpiration to provide insights into the most influential parameters for accurate predictions of within-crown and within-canopy transpiration. Once validated among Acer rubrum L. genotypes, model responses to different parameterization scenarios were scaled up to stand transpiration (expressed per unit leaf area) to assess how transpiration might be affected by the spatial distribution of foliage properties. For example, when physiological differences were accounted for, differences in leaf width among A. rubrum L. genotypes resulted in a 25% difference in transpiration. An in silico within-canopy sensitivity analysis was conducted over the range of genotype parameter variation observed and under different climate forcing conditions. The analysis revealed that seven of 16 leaf traits had a ≥5% impact on transpiration predictions. Under sparse foliage conditions, comparisons of the present findings with previous studies were in agreement that parameters such as the maximum Rubisco-limited rate of photosynthesis can explain ∼20% of the variability in predicted transpiration. However, the spatial analysis shows how such parameters can decrease or change in importance below the uppermost canopy layer. Alternatively, model sensitivity to leaf width and minimum stomatal conductance was continuous along a vertical canopy depth profile. Foremost, transpiration sensitivity to an observed range of morphological and physiological parameters is examined and the spatial sensitivity of transpiration model predictions to vertical variations in microclimate and foliage density is identified to reduce the uncertainty of current transpiration predictions. PMID:21617246

  2. Primary flow and temperature measurements in PWRS using non-invasive techniques

    International Nuclear Information System (INIS)

    Favennec, J.M.; Jossinet, G.; Thomas, P.

    1995-08-01

    PWR primary flow and temperature measurements are classically done with either indirect or invasive techniques. EDF has developed and installed non-invasive innovative techniques on an industrial nuclear power plant (Chooz N1 type PWR). Primary flow-rate is determined by measurement of velocity of primary water in the hot leg: the time fluctuation of γ-ray activity from Nitrogen-16 (produced by neutron activation of 016) is measured outside of the pipe by two specially-designed detectors. The signals from both detectors are then cross-correlated to determine the transit time of primary water between the two detectors; primary flow-rate is then deduced Primary temperature is determined by measurement of sound velocity in hot and cold leg: two pairs of ultrasonic transducers, installed on pipe outer wall, emit pulses periodically, for which the time of flight along the two pipes diameters are determined. The sound velocity thus computed (diameter over time of flight) is then converted into temperature, by use of a calibration formula relating sound velocity to temperature and pressure. This paper addresses metrological and technical aspects of the methods. Experience feedback on industrial PWRs is also presented. (author). 4 refs., 13 figs

  3. Clinical Utility of Noninvasive Method to Measure Specific Gravity in the Pediatric Population.

    Science.gov (United States)

    Hall, Jeanine E; Huynh, Pauline P; Mody, Ameer P; Wang, Vincent J

    2018-04-01

    Clinicians rely on any combination of signs and symptoms, clinical scores, or invasive procedures to assess the hydration status in children. Noninvasive tests to evaluate for dehydration in the pediatric population are appealing. The objective of our study is to assess the utility of measuring specific gravity of tears compared to specific gravity of urine and the clinical assessment of dehydration. We conducted a prospective cohort convenience sample study, in a pediatric emergency department at a tertiary care children's hospital. We approached parents/guardians of children aged 6 months to 4 years undergoing transurethral catheterization for evaluation of urinary tract infection for enrollment. We collected tears and urine for measurement of tear specific gravity (TSG) and urine specific gravity (USG), respectively. Treating physicians completed dehydration assessment forms to assess for hydration status. Among the 60 participants included, the mean TSG was 1.0183 (SD = 0.007); the mean USG was 1.0186 (SD = 0.0083). TSG and USG were positively correlated with each other (Pearson Correlation = 0.423, p = 0.001). Clinical dehydration scores ranged from 0 to 3, with 87% assigned a score of 0, by physician assessment. Mean number of episodes of vomiting and diarrhea in a 24-hour period were 2.2 (SD = 3.9) and 1.5 (SD = 3.2), respectively. Sixty-two percent of parents reported decreased oral intake. TSG measurements yielded similar results compared with USG. Further studies are needed to determine if TSG can be used as a noninvasive method of dehydration assessment in children. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Simultaneous viscous-inviscid coupling via transpiration

    International Nuclear Information System (INIS)

    Yiu, K.F.C.; Giles, M.B.

    1995-01-01

    In viscous-inviscid coupling analysis, the direct coupling technique and the inverse coupling technique are commonly adopted. However, stability and convergence of the algorithms derived are usually very unsatisfactory. Here, by using the transpiration technique to simulate the effect of the displacement thickness, a new simultaneous coupling method is derived. The integral boundary layer equations and the full potential equation are chosen to be the viscous-inviscid coupled system. After discretization, the Newton-Raphson technique is proposed to solve the coupled nonlinear system. Several numerical results are used to demonstrate the accuracy and efficiency of the proposed method. 15 refs., 23 figs

  5. The effect of water availability on stand-level productivity, transpiration, water use efficiency and radiation use efficiency of field-grown willow clones

    International Nuclear Information System (INIS)

    Linderson, Maj-Lena; Iritz, Zinaida; Lindroth, Anders

    2007-01-01

    The effect of water availability on stand-level productivity, transpiration, water use efficiency (WUE) and radiation use efficiency (RUE) is evaluated for different willow clones at stand level. The measurements were made during the growing season 2000 in a 3-year-old plantation in Scania, southernmost Sweden. Six willow clones were included in the study: L78183, SW Rapp, SW Jorunn, SW Jorr, SW Tora and SW Loden. All clones were exposed to two water treatments: rain-fed, non-irrigated treatment and reduced water availability by reduced soil water recharge. Field measurements of stem sap-flow and biometry are up-scaled to stand transpiration and stand dry substance production and used to assess WUE. RUE is estimated from the ratio between the stand dry substance production and the accumulated absorbed photosynthetic active radiation over the growing season. The total stand transpiration rate for the 5 months lies between 100 and 325 mm, which is fairly low compared to the Penman-Monteith transpiration for willow, reaching 400-450 mm for the same period. Mean WUE of all clones and treatments is 5.3 g/kg, which is high compared to earlier studies, while average RUE is 0.31 g/mol, which is slightly low compared to other results. Generally, all clones, except for Jorunn, seem to be better off concerning biomass production, WUE and RUE than the reference clone. Jorr, Jorunn and Loden also seem to be able to cope with the reduced water availability with increase in the water use efficiency. Tora performs significantly better than the other clones concerning both growth and efficiency in light and water use, but the effect of the dry treatment on stem growth shows sensitivity to water availability. The reduced stem growth could be due to a change in allocation patterns

  6. Biotic, temporal and spatial variability of tritium concentrations in transpirate samples collected in the vicinity of a near-surface low-level nuclear waste disposal site and nearby research reactor.

    Science.gov (United States)

    Twining, J R; Hughes, C E; Harrison, J J; Hankin, S; Crawford, J; Johansen, M; Dyer, L

    2011-06-01

    The results of a 21 month sampling program measuring tritium in tree transpirate with respect to local sources are reported. The aim was to assess the potential of tree transpirate to indicate the presence of sub-surface seepage plumes. Transpirate gathered from trees near low-level nuclear waste disposal trenches contained activity concentrations of (3)H that were significantly higher (up to ∼700 Bq L(-1)) than local background levels (0-10 Bq L(-1)). The effects of the waste source declined rapidly with distance to be at background levels within 10s of metres. A research reactor 1.6 km south of the site contributed significant (p nuclear waste site. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  7. Numerical investigation on critical heat flux and coolant volume required for transpiration cooling with phase change

    International Nuclear Information System (INIS)

    He, Fei; Wang, Jianhua

    2014-01-01

    Highlights: • Five states during the transpiration cooling are discussed. • A suit of applicable program is developed. • The variations of the thickness of two-phase region and the pressure are analyzed. • The relationship between heat flux and coolant mass flow rate is presented. • An approach is given to define the desired case of transpiration cooling. - Abstract: The mechanism of transpiration cooling with liquid phase change is numerically investigated to protect the thermal structure exposed to extremely high heat flux. According to the results of theoretical analysis, there is a lower critical and an upper critical external heat flux corresponding a certain coolant mass flow rate, between the two critical values, the phase change of liquid coolant occurs within porous structure. A strongly applicable self-edit program is developed to solve the states of fluid flow and heat transfer probably occurring during the phase change procedure. The distributions of temperature and saturation in these states are presented. The variations of the thickness of two-phase region and the pressure including capillary are analyzed, and capillary pressure is found to be the main factor causing pressure change. From the relationships between the external heat flux and coolant mass flow rate obtained at different cooling cases, an approach is given to estimate the maximal heat flux afforded and the minimal coolant consumption required by the desired case of transpiration cooling. Thus the pressure and coolant consumption required in a certain thermal circumstance can be determined, which are important in the practical application of transpiration cooling

  8. Determination of NIR informative wavebands for transmission non-invasive blood glucose measurement using a Fourier transform spectrometer

    Science.gov (United States)

    Yang, Wenming; Liao, Ningfang; Cheng, Haobo; Li, Yasheng; Bai, Xueqiong; Deng, Chengyang

    2018-03-01

    Non-invasive blood glucose measurement using near infrared (NIR) spectroscopy relies on wavebands that provide reliable information about spectral absorption. In this study, we investigated wavebands which are informative for blood glucose in the NIR shortwave band (900˜1450 nm) and the first overtone band (1450˜1700 nm) through a specially designed NIR Fourier transform spectrometer (FTS), which featured a test fixture (where a sample or subject's finger could be placed) and all-reflective optics, except for a Michelson structure. Different concentrations of glucose solution and seven volunteers who had undergone oral glucose tolerance tests (OGTT) were studied to acquire transmission spectra in the shortwave band and the first overtone band. Characteristic peaks of glucose absorption were identified from the spectra of glucose aqueous solution by second-order derivative processing. The wavebands linked to blood glucose were successfully estimated through spectra of the middle fingertip of OGTT participants by a simple linear regression and correlation coefficient. The light intensity difference showed that glucose absorption in the first overtone band was much more prominent than it was in the shortwave band. The results of the SLR model established from seven OGTTs in total on seven participants enabled a positive estimation of the glucose-linked wavelength. It is suggested that wavebands with prominent characteristic peaks, a high correlation coefficient between blood glucose and light intensity difference and a relatively low standard deviation of predicted values will be the most informative wavebands for transmission non-invasive blood glucose measurement methods. This work provides a guidance for waveband selection for the development of non-invasive NIR blood glucose measurement.

  9. Effects of storage conditions on transpiration rate of pomegranate ...

    African Journals Online (AJOL)

    This study investigated the effects of temperature (5, 10, 15 and 22 °C) and relative humidity (RH) (76%, 86% and 96%) on the transpiration rate (TR) of pomegranate (Punica granatum L.) cv. Bhagwa fruit fractions, namely arils and aril-sac. Both temperature and RH had significant effects on the TR of fruit fractions. The TR ...

  10. Non-invasive body temperature measurement of wild chimpanzees using fecal temperature decline.

    Science.gov (United States)

    Jensen, Siv Aina; Mundry, Roger; Nunn, Charles L; Boesch, Christophe; Leendertz, Fabian H

    2009-04-01

    New methods are required to increase our understanding of pathologic processes in wild mammals. We developed a noninvasive field method to estimate the body temperature of wild living chimpanzees habituated to humans, based on statistically fitting temperature decline of feces after defecation. The method was established with the use of control measures of human rectal temperature and subsequent changes in fecal temperature over time. The method was then applied to temperature data collected from wild chimpanzee feces. In humans, we found good correspondence between the temperature estimated by the method and the actual rectal temperature that was measured (maximum deviation 0.22 C). The method was successfully applied and the average estimated temperature of the chimpanzees was 37.2 C. This simple-to-use field method reliably estimates the body temperature of wild chimpanzees and probably also other large mammals.

  11. Study of vaporization of sodium metaborate by transpiration thermogravimetry and Knudsen effusion mass spectrometry.

    Science.gov (United States)

    Narasimhan, T S Lakshmi; Viswanathan, R; Nalini, S

    2011-11-17

    The vaporization of solid sodium metaborate NaBO(2)(s) was studied by transpiration thermogravimetry (TTG) and Knudsen effusion mass spectrometry (KEMS). The transpiration measurements, performed for the first time on NaBO(2)(s), involved use of argon as the carrier gas for vapor transport and derivation of vapor pressure of NaBO(2)(g) (by assuming it as the sole vapor species) through many flow-dependence runs and temperature-dependence runs in the temperature range 1075-1218 K. The KEMS measurements performed in the temperature range 1060-1185 K confirmed NaBO(2)(g) as the principal vapor species over NaBO(2)(s), in accord with the previously reported KEMS studies. The values of p(NaBO(2)) obtained by both TTG and KEMS are consistent within the uncertainties associated with each method and so are the second- and third-law values of enthalpy of sublimation, the latter aspect consistently missing in all previous vaporization studies. The results of both TTG and KEMS were combined to recommend the following thermodynamic parameters pertinent to the sublimation reaction, NaBO(2)(s) = NaBO(2)(g): Log{p(NaBO(2))/Pa} = -(17056 ± 441)/(T/K) + (14.73 ± 0.35) for the temperature range 1060-1218 K; Δ(r)H°(m)(298.15 K) = (346.3 ± 9.4) kJ·mol(-1); and Δ(r)S°(m)(298.15 K) = (210.2 ± 6.8) J·mol(-1)·K(-1).

  12. Edge type affects leaf-level water relations and estimated transpiration of Eucalyptus arenacea.

    Science.gov (United States)

    Wright, Thomas E; Tausz, Michael; Kasel, Sabine; Volkova, Liubov; Merchant, Andrew; Bennett, Lauren T

    2012-03-01

    While edge effects on tree water relations are well described for closed forests, they remain under-examined in more open forest types. Similarly, there has been minimal evaluation of the effects of contrasting land uses on the water relations of open forest types in highly fragmented landscapes. We examined edge effects on the water relations and gas exchange of a dominant tree (Eucalyptus arenacea Marginson & Ladiges) in an open forest type (temperate woodland) of south-eastern Australia. Edge effects in replicate woodlands adjoined by cleared agricultural land (pasture edges) were compared with those adjoined by 7- to 9-year-old eucalypt plantation with a 25m fire break (plantation edges). Consistent with studies in closed forest types, edge effects were pronounced at pasture edges where photosynthesis, transpiration and stomatal conductance were greater for edge trees than interior trees (75m into woodlands), and were related to greater light availability and significantly higher branch water potentials at woodland edges than interiors. Nonetheless, gas exchange values were only ∼50% greater for edge than interior trees, compared with ∼200% previously found in closed forest types. In contrast to woodlands adjoined by pasture, gas exchange in winter was significantly lower for edge than interior trees in woodlands adjoined by plantations, consistent with shading and buffering effects of plantations on edge microclimate. Plantation edge effects were less pronounced in summer, although higher water use efficiency of edge than interior woodland trees indicated possible competition for water between plantation trees and woodland edge trees in the drier months (an effect that might have been more pronounced were there no firebreak between the two land uses). Scaling up of leaf-level water relations to stand transpiration using a Jarvis-type phenomenological model indicated similar differences between edge types. That is, transpiration was greater at pasture than

  13. Challenges in the noninvasive detection of body composition using near-infrared spectroscopy

    Directory of Open Access Journals (Sweden)

    Wenliang Chen

    2014-11-01

    Full Text Available Noninvasive detection of body composition plays a significant role in the improvement of life quality and reduction in complications of the patients, and the near-infrared (NIR spectroscopy, with the advantages of painlessness and convenience, is considered as the most promising tool for the online noninvasive monitoring of body composition. However, quite different from other fields of online detection using NIR spectroscopy, such as food safety and environment monitoring, noninvasive detection of body composition demands higher precision of the instruments as well as more rigorousness of measurement conditions. Therefore, new challenges emerge when NIR spectroscopy is applied to the noninvasive detection of body composition, which, in this paper, are first concluded from the aspects of measurement methods, measurement conditions, instrument precision, multi-component influence, individual difference and novel weak-signal extraction method based on our previous research in the cutting-edge field of NIR noninvasive blood glucose detection. Moreover, novel ideas and approaches of our group to solve these problems are introduced, which may provide evidence for the future development of noninvasive blood glucose detection, and further contribute to the noninvasive detection of other body compositions using NIR spectroscopy.

  14. Why use Finapres or Portapres rather than intra-arterial or intermittent non-invasive techniques of blood pressure measurement?

    NARCIS (Netherlands)

    Langewouters, G. J.; Settels, J. J.; Roelandt, R.; Wesseling, K. H.

    1998-01-01

    In the clinic, blood pressure is measured almost exclusively using non-invasive intermittent techniques, of which the auscultatory (Riva-Rocci/Korotkoff, RRK) and the computerized oscillometric method are most often used. However, both methods only provide a momentary value. In addition, the

  15. Non-Invasive Acoustic-Based Monitoring of Heavy Water and Uranium Process Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Pantea, Cristian [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sinha, Dipen N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lakis, Rollin Evan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Beedle, Christopher Craig [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Davis, Eric Sean [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-20

    This presentation includes slides on Project Goals; Heavy Water Production Monitoring: A New Challenge for the IAEA; Noninvasive Measurements in SFAI Cell; Large Scatter in Literature Values; Large Scatter in Literature Values; Highest Precision Sound Speed Data Available: New Standard in H/D; ~400 pts of data; Noninvasive Measurements in SFAI Cell; New funding from NA241 SGTech; Uranium Solution Monitoring: Inspired by IAEA Challenge in Kazakhstan; Non-Invasive Acoustic-Based Monitoring of Uranium in Solutions; Non-Invasive Acoustic-Based Monitoring of Uranium in Solutions; and finally a summary.

  16. A study on new method of noninvasive esophageal venous pressure measurement based on the airflow and laser detection technology.

    Science.gov (United States)

    Hu, Chenghuan; Huang, Feizhou; Zhang, Rui; Zhu, Shaihong; Nie, Wanpin; Liu, Xunyang; Liu, Yinglong; Li, Peng

    2015-01-01

    Using optics combined with automatic control and computer real-time image detection technology, a novel noninvasive method of noncontact pressure manometry was developed based on the airflow and laser detection technology in this study. The new esophageal venous pressure measurement system was tested in-vitro experiments. A stable and adjustable pulse stream was produced from a self-developed pump and a laser emitting apparatus could generate optical signals which can be captured by image acquisition and analysis system program. A synchronization system simultaneous measured the changes of air pressure and the deformation of the vein wall to capture the vascular deformation while simultaneously record the current pressure value. The results of this study indicated that the pressure values tested by the new method have good correlation with the actual pressure value in animal experiments. The new method of noninvasive pressure measurement based on the airflow and laser detection technology is accurate, feasible, repeatable and has a good application prospects.

  17. Gingival blood flow under total combs by functional pressure evaluated with laser-Doppler flowmetry, a non-invasive method of blood flow measurement

    International Nuclear Information System (INIS)

    Hengl, St.

    1996-09-01

    Gingival blood flow under total-combs by functional pressure evaluated with Laser-Doppler Flowmetry, a non-invasive method of blood flow measurement. Microcirculation of gum's capillary system can be measured non-invasive by Laser-Doppler-Flowmetry (LDF). Circulation, defined by the number of floating erythrocytes per unit of time, is measured by a fibro-optical Laser-Doppler-Flowmetry. The task was to examine, if there is any change of gum's circulation during strain and relief. Circulation on defined measurepoints, divided on the four quadrants, was determined among maximal strain and subsequent relief, on one probationer (complete denture bearer). Before every measure session systemic pressure was taken. LDF-value was taken on top of jaw-comb, in doing so, to get reproducible result and a satisfying fixation of the probe, there was made an artificial limb of the upper and lower comb. In the upper comb a dynamometer-box, which determined minimal and maximal comb pressure, was integrated. The received results of the LDF-measurement, expressed as perfusion units (PU) were lower under applied pressure than by pressure points more distant. Hyperemia, resulting during relief, seemed the more intense, the less perfusion was before. This new, non-invasive kind of circulation measurement seems to be quite predestined to be used for gingival diagnostic under artificial limb in the future. (author)

  18. Evaluation of left ventricular function by invasive and noninvasive methods

    Energy Technology Data Exchange (ETDEWEB)

    Kusukawa, R [Yamaguchi Univ., Ube (Japan). School of Medicine

    1982-06-01

    Noninvasive methods in cardiology have progressed very rapidly in recent years. Cardiac catheterization and angiocardiography are the standard methods for evaluating of cardiac performance, however, they need expensive apparatus and are time-consuming, arduous procedures which do not permit to repeat frequently, and sometimes risky. In this article, the indices of pump and muscle function of the heart obtained by invasive methods were compared to those indices obtained by noninvasive methods, and correlation between two groups and usefulness and limitation were discussed. Systolic time intervals are convenient and repeatable measures of left ventricular performance in clinical cardiology. There are significant correlations of PEP/LVET with stroke volume, ejection fraction and mean circumferential shortening velocity. Although some limitations are present in application of this method to certain diseases, these measures are useful in the evaluation of left ventricular performance. Echocardiography has made an era of the noninvasive cardiology. Left ventricular volume, ejection fraction, mean circumferential shortening velocity and PSP/ESVI are accurately calculated by echocardiographic measurement. Nuclear cardiology is also accurate noninvasive method in evaluation of cardiac performance. With this tremendous growth in this field, it will make next era of noninvasive cardiology.

  19. Transpiration in mango using Granier method

    OpenAIRE

    VELLAME, Lucas M.; COELHO FILHO, Mauricio A.; PAZ, Vital P. S.

    2009-01-01

    Objetivou-se, com esse trabalho avaliar o método Granier (sonda de dissipação térmica) para a cultura da manga quanto à viabilidade de uso em condições de campo e ajustar a equação de determinação do fluxo de seiva com base em medidas lisimétricas, iniciando-se com três mudas da variedade Tommy Atkins, plantadas em vasos que, colocados sobre plataforma de pesagem, funcionaram como lisímetros. A área condutora do caule (AS) foi determinada por meio da aplicação de corantes. Medidas de transpir...

  20. Noninvasive Intracranial Pressure and Tissue Oxygen Measurements for Space and Earth

    Science.gov (United States)

    Hargens, A. R.; Ballard, R. E.; Murthy, G.; Watenpaugh, D. E.

    1994-01-01

    The paper discusses the following: Increasing intracranial pressure in humans during simulated microgravity. and near-infrared monitoring of model chronic compartment syndrome in exercising skeletal muscle. Compared to upright-seated posture, 0 deg. supine, 6 deg. HDT, and 15 deg. HDT produced TMD changes of 317 +/- 112, 403 +/- 114, and 474 +/- 112 n1 (means +/- S.E.), respectively. Furthermore, postural transitions from 0 deg. supine to 6 deg. HDT and from 6 deg. to 15 deg. HDT generated significant TMD changes (p less than 0.05). There was no hysteresis when postural transitions to HDT were compared to reciprocal transitions toward upright seated posture. Currently, diagnosis of chronic compartment syndrome (CCS) depends on measurement of intramuscular pressure by invasive catheterization. We hypothesized that this syndrome can be detected noninvasively by near-infrared (NIR) spectroscopy, which tracks variations in muscle hemoglobin/myoglobin oxygen saturation. CCS was simulated in the tibialis anterior muscle of 7 male and 3 female subjects by gradual inflation of a cuff placed around the leg to 40 mmHg during 14 minutes of cyclic isokinetic dorsiflexion exercise. On a separate day, subjects underwent the identical exercise protocol with no external compression. In both cases, tissue oxygenation (T(sub O2) was measured in the tibialis anterior by NIR spectroscopy and normalized to a percentage scale between baseline and a T(sub O2) nadir reached during exercise to ischemic exhaustion. Over the course of exercise, T(sub O2) declined at a rate of 1.4 +/- 0.3% per minute with model CCS, yet did not decrease during control exercise. Post-exercise recovery of T(sub O2) was slower with model CCS (2.5 +/- 0.6 min) than in control (1.3 +/- 0.2 min). These results demonstrate that NIR spectroscopy can detect muscle deoxygenation caused by pathologically elevated intramuscular pressure in exercising skeletal muscle. Consequently, this technique shows promise as a

  1. Noninvasive measurement of mean alveolar carbon dioxide tension and Bohr's dead space during tidal breathing.

    Science.gov (United States)

    Koulouris, N G; Latsi, P; Dimitroulis, J; Jordanoglou, B; Gaga, M; Jordanoglou, J

    2001-06-01

    The lack of methodology for measuring the alveolar carbon dioxide tension (PA,CO2) has forced investigators to make several assumptions, such as that PA,CO2 is equal to end-tidal (PET,CO2) and arterial CO2 tension (Pa,CO2). The present study measured the mean PA,CO2 and Bohr's dead space ratio (Bohr's dead space/tidal volume (VD,Bohr/VT)) during tidal breathing. The method used is a new, simple and noninvasive technique, based on the analysis of the expired CO2 volume per breath (VCO2) versus the exhaled VT. This curve was analysed in 21 normal, healthy subjects and 35 chronic obstructive pulmonary disease (COPD) patients breathing tidally through a mouthpiece apparatus in the sitting position. It is shown that: 1) PA,CO2 is similar to Pa,CO2 in normal subjects, whilst it is significantly lower than Pa,CO2 in COPD patients; 2) PA,CO2 is significantly higher than PET,CO2 in all subjects, especially in COPD patients; 3) VD,Bohr/VT is increased in COPD patients as compared to normal subjects; and 4) VD,Bohr/VT is lower than the "physiological" dead space ratio (VD,phys/VT) in COPD patients. It is concluded that the expired carbon dioxide versus tidal volume curve is a useful tool for research and clinical work, because it permits the noninvasive and accurate measurement of Bohr's dead space and mean alveolar carbon dioxide tension accurately during spontaneous breathing.

  2. How Noninvasive Haemoglobin Measurement with Pulse CO-Oximetry Can Change Your Practice: An Expert Review

    Directory of Open Access Journals (Sweden)

    Gregor Lindner

    2013-01-01

    Full Text Available Trauma related haemorrhagic anaemia is rarely diagnosed by physical examination alone but typically includes measurement of blood haemoglobin, one of the most frequently ordered laboratory tests. Recently, noninvasive technologies have been developed that allow haemoglobin to be measured immediately without the need for intravenous access or having to take venous, arterial, or capillary blood. Moreover, with these technologies haemoglobin can be continuously measured in patients with active bleeding, to guide the start and stop of blood transfusions and to detect occult bleeding. Recent studies on the accuracy of the devices showed promising results in terms of accuracy of hemoglobin measurement compared to laboratory determination. The present review gives an overview on the technology itself and reviews the current literature on the subject.

  3. Transpiration characteristics of forests and shrubland under land cover change within the large caldera of Mt. Aso, Japan

    Science.gov (United States)

    Miyazawa, Y.; Inoue, A.; Maruyama, A.

    2013-12-01

    Grassland within a caldera of Mt. Aso has been maintained for fertilizer production from grasses and cattle feeding. Due to the changes in the agricultural and social structure since 1950's, a large part of the grassland was converted to plantations or abandoned to shrublands. Because vegetations of different plant functional types differ in evapotranspiration; ET, a research project was launched to examine the effects of the ongoing land use change on the ET within the caldera, and consequently affect the surface and groundwater discharge of the region. As the part of the project, transpiration rate; E of the major 3 forest types were investigated using sap flow measurements. Based on the measured data, stomatal conductance; Gs was inversely calculated and its response to the environmental factors was modeled using Jarvis-type equation in order to estimate ET of a given part of the caldera based on the plant functional type and the weather data. The selected forests were conifer plantation, deciduous broadleaved plantation and shrubland, which were installed with sap flow sensors to calculate stand-level transpiration rate. Sap flux; Js did not show clear differences among sites despite the large differences in sapwood area. In early summer solar radiation was limited to low levels due to frequent rainfall events and therefore, Js was the function of solar radiation rather than other environmental factors, such as vapor pressure deficit and soil water content. Gs was well regressed with the vapor pressure deficit and solar radiation. The estimated E based on Gs model and the weather data was 0.3-1.2 mm day-1 for each site and was comparable to the E of grassland in other study sites. Results suggested that transpiration rate in growing was not different between vegetations but its annual value are thought to differ due to the different phenology.

  4. Seasonal shift in climatic limiting factors on tree transpiration: evidence from sap flow observations at alpine treelines in southeast Tibet

    Directory of Open Access Journals (Sweden)

    Liu Xinsheng

    2016-07-01

    Full Text Available Alpine and northern treelines are primarily controlled by low temperatures. However, little is known about the impact of low soil temperature on tree transpiration at treelines. We aim to test the hypothesis that in cold-limited forests, the main limiting factors for tree transpiration switch from low soil temperature before summer solstice to atmospheric evaporative demand after summer solstice, which generally results in low transpiration in the early growing season. Sap flow, meteorological factors and predawn needle water potential were continuously monitored throughout one growing season across Smith fir (Abies georgei var. smithii and juniper (Juniperus saltuaria treelines in southeast Tibet. Sap flow started in early May and corresponded to a threshold mean air-temperature of 0 oC. Across tree species, transpiration was mainly limited by low soil temperature prior to the summer solstice but by vapor pressure deficit and solar radiation post-summer solstice, which was further confirmed on a daily scale. As a result, tree transpiration for both tree species was significantly reduced in the pre-summer solstice period as compared to post-summer solstice, resulting in a lower predawn needle water potential for Smith fir trees in the early growing season. Our data supported the hypothesis, suggesting that tree transpiration mainly responds to soil temperature variations in the early growing season. The results are important for understanding the hydrological response of cold-limited forest ecosystems to climate change.

  5. Cross-scale modelling of transpiration from stomata via the leaf boundary layer

    Science.gov (United States)

    Defraeye, Thijs; Derome, Dominique; Verboven, Pieter; Carmeliet, Jan; Nicolai, Bart

    2014-01-01

    Background and Aims Leaf transpiration is a key parameter for understanding land surface–climate interactions, plant stress and plant structure–function relationships. Transpiration takes place at the microscale level, namely via stomata that are distributed discretely over the leaf surface with a very low surface coverage (approx. 0·2–5 %). The present study aims to shed more light on the dependency of the leaf boundary-layer conductance (BLC) on stomatal surface coverage and air speed. Methods An innovative three-dimensional cross-scale modelling approach was applied to investigate convective mass transport from leaves, using computational fluid dynamics. The gap between stomatal and leaf scale was bridged by including all these scales in the same computational model (10−5–10−1 m), which implies explicitly modelling individual stomata. Key Results BLC was strongly dependent on stomatal surface coverage and air speed. Leaf BLC at low surface coverage ratios (CR), typical for stomata, was still relatively high, compared with BLC of a fully wet leaf (hypothetical CR of 100 %). Nevertheless, these conventional BLCs (CR of 100 %), as obtained from experiments or simulations on leaf models, were found to overpredict the convective exchange. In addition, small variations in stomatal CR were found to result in large variations in BLCs. Furthermore, stomata of a certain size exhibited a higher mass transfer rate at lower CRs. Conclusions The proposed cross-scale modelling approach allows us to increase our understanding of transpiration at the sub-leaf level as well as the boundary-layer microclimate in a way currently not feasible experimentally. The influence of stomatal size, aperture and surface density, and also flow-field parameters can be studied using the model, and prospects for further improvement of the model are presented. An important conclusion of the study is that existing measures of conductances (e.g. from artificial leaves) can be

  6. Leaf transpiration efficiency in corn varieties grown at elevated carbon dioxide

    Science.gov (United States)

    Higher leaf transpiration efficiency (TE) without lower photosynthesis has been identified in some varieties of corn in field tests, and could be a useful trait to improve yield under dry conditions without sacrificing yield under favorable conditions. However, because the carbon dioxide concentrat...

  7. Updated Scar Management Practical Guidelines: Non-invasive and invasive measures

    NARCIS (Netherlands)

    Monstrey, S.; Middelkoop, E.; Vranckx, J.J.; Bassetto, F.; Ziegler, U.E.; Meaume, S.; Teot, L.

    2014-01-01

    Hypertrophic scars and keloids can be aesthetically displeasing and lead to severe psychosocial impairment. Many invasive and non-invasive options are available for the plastic (and any other) surgeon both to prevent and to treat abnormal scar formation. Recently, an updated set of practical

  8. Evaporative demand, transpiration, and photosynthesis: How are they changing?

    Science.gov (United States)

    Farquhar, G. D.; Roderick, M. L.

    2009-04-01

    Carbon dioxide concentration is increasing. This affects photosynthesis via increases in substrate availability (Farquhar et al. 1980). It reduces the amount of water transpired by plants to fix a given amount of carbon into an organic form; i.e it increases transpiration efficiency (Wong et al. 1979). It also warms the earth's surface. It is commonly supposed that this warming causes an increase in evaporative demand - the rate of water loss from a wet surface. This supposition has then been extended to effects on plant water availability, with the idea that there would be offsets to the gains in productivity associated with increased transpiration efficiency. The assumption that increased temperature means increased evaporative demand has also been applied to global maps of changes in soil water content. However, observations of pan evaporation rate show that this measure of evaporative demand has been decreasing in most areas examined over the last few decades. We reconcile these observations with theory by noting that, on long time scales, warming also involves water bodies, so that the vapour pressure at the earth's surface also increases. Using the physics of pan evaporation (Rotstayn et al. 2006) we show that the reduction in evaporative demand has been associated with two main effects, (1) "dimming", a reduction in sunlight received at the earth's surface because of aerosols and clouds, being the first phenomenon identified (Roderick and Farquhar 2002), and (2) "stilling", a reduction in wind speed, being the second (Roderick et al. 2007). We show that better accounting for changes in evaporative demand is important for estimating soil water changes, particularly in regions where precipitation exceeds evaporative demand (i.e where there are rivers) (Hobbins et al. 2008). We synthesise some of these results with others on vegetation change. References: Farquhar, GD, von Caemmerer, S, and Berry, JA, 1980: A biochemical model of photosynthetic CO2 assimilation

  9. Reduced nighttime transpiration is a relevant breeding target for high water-use efficiency in grapevine.

    Science.gov (United States)

    Coupel-Ledru, Aude; Lebon, Eric; Christophe, Angélique; Gallo, Agustina; Gago, Pilar; Pantin, Florent; Doligez, Agnès; Simonneau, Thierry

    2016-08-09

    Increasing water scarcity challenges crop sustainability in many regions. As a consequence, the enhancement of transpiration efficiency (TE)-that is, the biomass produced per unit of water transpired-has become crucial in breeding programs. This could be achieved by reducing plant transpiration through a better closure of the stomatal pores at the leaf surface. However, this strategy generally also lowers growth, as stomatal opening is necessary for the capture of atmospheric CO2 that feeds daytime photosynthesis. Here, we considered the reduction in transpiration rate at night (En) as a possible strategy to limit water use without altering growth. For this purpose, we carried out a genetic analysis for En and TE in grapevine, a major crop in drought-prone areas. Using recently developed phenotyping facilities, potted plants of a cross between Syrah and Grenache cultivars were screened for 2 y under well-watered and moderate soil water deficit scenarios. High genetic variability was found for En under both scenarios and was primarily associated with residual diffusion through the stomata. Five quantitative trait loci (QTLs) were detected that underlay genetic variability in En Interestingly, four of them colocalized with QTLs for TE. Moreover, genotypes with favorable alleles on these common QTLs exhibited reduced En without altered growth. These results demonstrate the interest of breeding grapevine for lower water loss at night and pave the way to breeding other crops with this underexploited trait for higher TE.

  10. Increased vapor pressure deficit due to higher temperature leads to greater transpiration and faster mortality during drought for tree seedlings common to the forest-grassland ecotone.

    Science.gov (United States)

    Will, Rodney E; Wilson, Stuart M; Zou, Chris B; Hennessey, Thomas C

    2013-10-01

    Tree species growing along the forest-grassland ecotone are near the moisture limit of their range. Small increases in temperature can increase vapor pressure deficit (VPD) which may increase tree water use and potentially hasten mortality during severe drought. We tested a 40% increase in VPD due to an increase in growing temperature from 30 to 33°C (constant dewpoint 21°C) on seedlings of 10 tree species common to the forest-grassland ecotone in the southern Great Plains, USA. Measurement at 33 vs 30°C during reciprocal leaf gas exchange measurements, that is, measurement of all seedlings at both growing temperatures, increased transpiration for seedlings grown at 30°C by 40% and 20% for seedlings grown at 33°C. Higher initial transpiration of seedlings in the 33°C growing temperature treatment resulted in more negative xylem water potentials and fewer days until transpiration decreased after watering was withheld. The seedlings grown at 33°C died 13% (average 2 d) sooner than seedlings grown at 30°C during terminal drought. If temperature and severity of droughts increase in the future, the forest-grassland ecotone could shift because low seedling survival rate may not sufficiently support forest regeneration and migration. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  11. Changes in the physiological regulation of transpiration caused by the effects of industrial air pollution. [Cucumis sativus

    Energy Technology Data Exchange (ETDEWEB)

    Kozinka, V; Klasova, A; Niznansky, A

    1963-01-01

    Through Hygen's method of quantitative analysis of transpiration curves, the authors studied the intensity of stomatal and cuticular transpiration of germinating leaves of Cucumis sativus which were experimentally exposed to solid impurities containing F. The difference between the control and experimental plants shows that the impurities not only blocked the regulating system of breathing but also caused increased cuticular transpiration. Numerous lesions were observed; cuticle damage also spread to the inner tissues. A direct relationship between microscopic and macroscopic symptoms was not proven. The creation of conditions adverse to the normal development of the water balance was intensified when the impurities were dropped onto the surface of the leaves. The possible protective function of trichomes is mentioned, but applies only when the impurities settle on a dry surface.

  12. Nitrogen regulation of transpiration controls mass-flow acquisition of nutrients.

    Science.gov (United States)

    Matimati, Ignatious; Verboom, G Anthony; Cramer, Michael D

    2014-01-01

    Transpiration may enhance mass-flow of nutrients to roots, especially in low-nutrient soils or where the root system is not extensively developed. Previous work suggested that nitrogen (N) may regulate mass-flow of nutrients. Experiments were conducted to determine whether N regulates water fluxes, and whether this regulation has a functional role in controlling the mass-flow of nutrients to roots. Phaseolus vulgaris were grown in troughs designed to create an N availability gradient by restricting roots from intercepting a slow-release N source, which was placed at one of six distances behind a 25 μm mesh from which nutrients could move by diffusion or mass-flow (termed 'mass-flow' treatment). Control plants had the N source supplied directly to their root zone so that N was available through interception, mass-flow, and diffusion (termed 'interception' treatment). 'Mass-flow' plants closest to the N source exhibited 2.9-fold higher transpiration (E), 2.6-fold higher stomatal conductance (gs), 1.2-fold higher intercellular [CO2] (Ci), and 3.4-fold lower water use efficiency than 'interception' plants, despite comparable values of photosynthetic rate (A). E, gs, and Ci first increased and then decreased with increasing distance from the N source to values even lower than those of 'interception' plants. 'Mass-flow' plants accumulated phosphorus and potassium, and had maximum concentrations at 10mm from the N source. Overall, N availability regulated transpiration-driven mass-flow of nutrients from substrate zones that were inaccessible to roots. Thus when water is available, mass-flow may partially substitute for root density in providing access to nutrients without incurring the costs of root extension, although the efficacy of mass-flow also depends on soil nutrient retention and hydraulic properties.

  13. Non-invasive means of measuring hepatic fat content.

    Science.gov (United States)

    Mehta, Sanjeev-R; Thomas, E-Louise; Bell, Jimmy-D; Johnston, Desmond-G; Taylor-Robinson, Simon-D

    2008-06-14

    Hepatic steatosis affects 20% to 30% of the general adult population in the western world. Currently, the technique of choice for determining hepatic fat deposition and the stage of fibrosis is liver biopsy. However, it is an invasive procedure and its use is limited, particularly in children. It may also be subject to sampling error. Non-invasive techniques such as ultrasound, computerised tomography (CT), magnetic resonance imaging (MRI) and proton magnetic resonance spectroscopy ((1)H MRS) can detect hepatic steatosis, but currently cannot distinguish between simple steatosis and steatohepatitis, or stage the degree of fibrosis accurately. Ultrasound is widely used to detect hepatic steatosis, but its sensitivity is reduced in the morbidly obese and also in those with small amounts of fatty infiltration. It has been used to grade hepatic fat content, but this is subjective. CT can detect hepatic steatosis, but exposes subjects to ionising radiation, thus limiting its use in longitudinal studies and in children. Recently, magnetic resonance (MR) techniques using chemical shift imaging have provided a quantitative assessment of the degree of hepatic fatty infiltration, which correlates well with liver biopsy results in the same patients. Similarly, in vivo (1)H MRS is a fast, safe, non-invasive method for the quantification of intrahepatocellular lipid (IHCL) levels. Both techniques will be useful tools in future longitudinal clinical studies, either in examining the natural history of conditions causing hepatic steatosis (e.g. non-alcoholic fatty liver disease), or in testing new treatments for these conditions.

  14. How soil moisture mediates the influence of transpiration on streamflow at hourly to interannual scales in a forested catchment

    Science.gov (United States)

    G.W. Moore; J.A. Jones; B.J. Bond

    2011-01-01

    The water balance equation dictates that streamflow may be reduced by transpiration. Yet temporal disequilibrium weakens the relationship between transpiration and streamflow in many cases where inputs and outputs are unbalanced. We address two critical knowledge barriers in ecohydrology with respect to time, scale dependence and lags. Study objectives were to...

  15. Expression of Arabidopsis Hexokinase in Citrus Guard Cells Controls Stomatal Aperture and Reduces Transpiration.

    Science.gov (United States)

    Lugassi, Nitsan; Kelly, Gilor; Fidel, Lena; Yaniv, Yossi; Attia, Ziv; Levi, Asher; Alchanatis, Victor; Moshelion, Menachem; Raveh, Eran; Carmi, Nir; Granot, David

    2015-01-01

    Hexokinase (HXK) is a sugar-phosphorylating enzyme involved in sugar-sensing. It has recently been shown that HXK in guard cells mediates stomatal closure and coordinates photosynthesis with transpiration in the annual species tomato and Arabidopsis. To examine the role of HXK in the control of the stomatal movement of perennial plants, we generated citrus plants that express Arabidopsis HXK1 (AtHXK1) under KST1, a guard cell-specific promoter. The expression of KST1 in the guard cells of citrus plants has been verified using GFP as a reporter gene. The expression of AtHXK1 in the guard cells of citrus reduced stomatal conductance and transpiration with no negative effect on the rate of photosynthesis, leading to increased water-use efficiency. The effects of light intensity and humidity on stomatal behavior were examined in rooted leaves of the citrus plants. The optimal intensity of photosynthetically active radiation and lower humidity enhanced stomatal closure of AtHXK1-expressing leaves, supporting the role of sugar in the regulation of citrus stomata. These results suggest that HXK coordinates photosynthesis and transpiration and stimulates stomatal closure not only in annual species, but also in perennial species.

  16. Validation of Noninvasive MOEMS-Assisted Measurement System Based on CCD Sensor for Radial Pulse Analysis

    Directory of Open Access Journals (Sweden)

    Rolanas Dauksevicius

    2013-04-01

    Full Text Available Examination of wrist radial pulse is a noninvasive diagnostic method, which occupies a very important position in Traditional Chinese Medicine. It is based on manual palpation and therefore relies largely on the practitioner’s subjective technical skills and judgment. Consequently, it lacks reliability and consistency, which limits practical applications in clinical medicine. Thus, quantifiable characterization of the wrist pulse diagnosis method is a prerequisite for its further development and widespread use. This paper reports application of a noninvasive CCD sensor-based hybrid measurement system for radial pulse signal analysis. First, artery wall deformations caused by the blood flow are calibrated with a laser triangulation displacement sensor, following by the measurement of the deformations with projection moiré method. Different input pressures and fluids of various viscosities are used in the assembled artificial blood flow system in order to test the performance of laser triangulation technique with detection sensitivity enhancement through microfabricated retroreflective optical element placed on a synthetic vascular graft. Subsequently, the applicability of double-exposure whole-field projection moiré technique for registration of blood flow pulses is considered: a computational model and representative example are provided, followed by in vitro experiment performed on a vascular graft with artificial skin atop, which validates the suitability of the technique for characterization of skin surface deformations caused by the radial pulsation.

  17. Differential Mueller matrix polarimetry technique for non-invasive measurement of glucose concentration on human fingertip.

    Science.gov (United States)

    Phan, Quoc-Hung; Lo, Yu-Lung

    2017-06-26

    A differential Mueller matrix polarimetry technique is proposed for obtaining non-invasive (NI) measurements of the glucose concentration on the human fingertip. The feasibility of the proposed method is demonstrated by detecting the optical rotation angle and depolarization index of tissue phantom samples containing de-ionized water (DI), glucose solutions with concentrations ranging from 0~500 mg/dL and 2% lipofundin. The results show that the extracted optical rotation angle increases linearly with an increasing glucose concentration, while the depolarization index decreases. The practical applicability of the proposed method is demonstrated by measuring the optical rotation angle and depolarization index properties of the human fingertips of healthy volunteers.

  18. Near-optimal response of instantaneous transpiration efficiency to vapour pressure deficit, temperature and [CO2] in cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    The instantaneous transpiration efficiency (ITE, the ratio of photosynthesis rate to transpiration) is an important variable for crops, because it ultimately affects dry mass production per unit of plant water lost to the atmosphere. The theory that stomata optimize carbon uptake per unit water used...

  19. Applied potential tomography. A new noninvasive technique for measuring gastric emptying

    International Nuclear Information System (INIS)

    Avill, R.; Mangnall, Y.F.; Bird, N.C.; Brown, B.H.; Barber, D.C.; Seagar, A.D.; Johnson, A.G.; Read, N.W.

    1987-01-01

    Applied potential tomography is a new, noninvasive technique that yields sequential images of the resistivity of gastric contents after subjects have ingested a liquid or semisolid meal. This study validates the technique as a means of measuring gastric emptying. Experiments in vitro showed an excellent correlation between measurements of resistivity and either the square of the radius of a glass rod or the volume of water in a spherical balloon when both were placed in an oval tank containing saline. Altering the lateral position of the rod in the tank did not alter the values obtained. Images of abdominal resistivity were also directly correlated with the volume of air in a gastric balloon. Profiles of gastric emptying of liquid meals obtained using applied potential tomography were very similar to those obtained using scintigraphy or dye dilution techniques, provided that acid secretion was inhibited by cimetidine. Profiles of emptying of a mashed potato meal using applied potential tomography were also very similar to those obtained by scintigraphy. Measurements of the emptying of a liquid meal from the stomach were reproducible if acid secretion was inhibited by cimetidine. Thus, applied potential tomography is an accurate and reproducible method of measuring gastric emptying of liquids and particulate food. It is inexpensive, well tolerated, easy to use, and ideally suited for multiple studies in patients, even those who are pregnant

  20. Applied potential tomography. A new noninvasive technique for measuring gastric emptying

    Energy Technology Data Exchange (ETDEWEB)

    Avill, R.; Mangnall, Y.F.; Bird, N.C.; Brown, B.H.; Barber, D.C.; Seagar, A.D.; Johnson, A.G.; Read, N.W.

    1987-04-01

    Applied potential tomography is a new, noninvasive technique that yields sequential images of the resistivity of gastric contents after subjects have ingested a liquid or semisolid meal. This study validates the technique as a means of measuring gastric emptying. Experiments in vitro showed an excellent correlation between measurements of resistivity and either the square of the radius of a glass rod or the volume of water in a spherical balloon when both were placed in an oval tank containing saline. Altering the lateral position of the rod in the tank did not alter the values obtained. Images of abdominal resistivity were also directly correlated with the volume of air in a gastric balloon. Profiles of gastric emptying of liquid meals obtained using applied potential tomography were very similar to those obtained using scintigraphy or dye dilution techniques, provided that acid secretion was inhibited by cimetidine. Profiles of emptying of a mashed potato meal using applied potential tomography were also very similar to those obtained by scintigraphy. Measurements of the emptying of a liquid meal from the stomach were reproducible if acid secretion was inhibited by cimetidine. Thus, applied potential tomography is an accurate and reproducible method of measuring gastric emptying of liquids and particulate food. It is inexpensive, well tolerated, easy to use, and ideally suited for multiple studies in patients, even those who are pregnant.

  1. Modelled hydraulic redistribution by sunflower (Helianthus annuus L.) matches observed data only after including night-time transpiration.

    Science.gov (United States)

    Neumann, Rebecca B; Cardon, Zoe G; Teshera-Levye, Jennifer; Rockwell, Fulton E; Zwieniecki, Maciej A; Holbrook, N Michele

    2014-04-01

    The movement of water from moist to dry soil layers through the root systems of plants, referred to as hydraulic redistribution (HR), occurs throughout the world and is thought to influence carbon and water budgets and ecosystem functioning. The realized hydrologic, biogeochemical and ecological consequences of HR depend on the amount of redistributed water, whereas the ability to assess these impacts requires models that correctly capture HR magnitude and timing. Using several soil types and two ecotypes of sunflower (Helianthus annuus L.) in split-pot experiments, we examined how well the widely used HR modelling formulation developed by Ryel et al. matched experimental determination of HR across a range of water potential driving gradients. H. annuus carries out extensive night-time transpiration, and although over the last decade it has become more widely recognized that night-time transpiration occurs in multiple species and many ecosystems, the original Ryel et al. formulation does not include the effect of night-time transpiration on HR. We developed and added a representation of night-time transpiration into the formulation, and only then was the model able to capture the dynamics and magnitude of HR we observed as soils dried and night-time stomatal behaviour changed, both influencing HR. © 2013 John Wiley & Sons Ltd.

  2. Air pulse deformation measurement: a preliminary method for noninvasive vocal fold pliability analysis.

    Science.gov (United States)

    Larsson, Hans; Lindestad, P Å; Hertegård, S

    2011-01-01

    A new method, air pulse pliability measurement, is presented, with which the pliability and elasticity of the vocal folds was measured in vitro and in vivo using air pulses. The size of the mucosal movements induced by air pulse stimulation was measured with a laser-based technique. The air pulses fed via a 2-mm tubing, introduced through the working channel of a flexible endoscope. Both in vitro and in vivo tests were performed. Nine normal, vocally healthy subjects were examined by air pulse stimulations of the vocal folds, of the skin (cheek and dorsum of the hand) and of the inside of the lips. The in vitro tests showed a coefficient of variation of 5% within a range of 1-5 mm from the probe to the surface. The elasticity data showed no differences between vocal folds, lips or cheek. The hand data showed a significantly higher stiffness as compared to the other 3 measuring points (p measuring points, but in ideal conditions on skin it was 9%. The results show that the technique allows automatic, quantitative, noninvasive vocal fold pliability measurements on awake subjects. Copyright © 2010 S. Karger AG, Basel.

  3. In vivo, noninvasive functional measurements of bone sarcoma using diffuse optical spectroscopic imaging

    Science.gov (United States)

    Peterson, Hannah M.; Hoang, Bang H.; Geller, David; Yang, Rui; Gorlick, Richard; Berger, Jeremy; Tingling, Janet; Roth, Michael; Gill, Jonathon; Roblyer, Darren

    2017-12-01

    Diffuse optical spectroscopic imaging (DOSI) is an emerging near-infrared imaging technique that noninvasively measures quantitative functional information in thick tissue. This study aimed to assess the feasibility of using DOSI to measure optical contrast from bone sarcomas. These tumors are rare and pose technical and practical challenges for DOSI measurements due to the varied anatomic locations and tissue depths of presentation. Six subjects were enrolled in the study. One subject was unable to be measured due to tissue contact sensitivity. For the five remaining subjects, the signal-to-noise ratio, imaging depth, optical properties, and quantitative tissue concentrations of oxyhemoglobin, deoxyhemoglobin, water, and lipids from tumor and contralateral normal tissues were assessed. Statistical differences between tumor and contralateral normal tissue were found in chromophore concentrations and optical properties for four subjects. Low signal-to-noise was encountered during several subject's measurements, suggesting increased detector sensitivity will help to optimize DOSI for this patient population going forward. This study demonstrates that DOSI is capable of measuring optical properties and obtaining functional information in bone sarcomas. In the future, DOSI may provide a means to stratify treatment groups and monitor chemotherapy response for this disease.

  4. Genotypic variation in transpiration efficiency, carbon-isotope discrimination and carbon allocation during early growth in sunflower

    International Nuclear Information System (INIS)

    Virgona, J.M.; Farquhar, G.D.; Hubick, K.T.; Rawson, H.M.; Downes, R.W.

    1990-01-01

    Transpiration efficiency of dry matter production (W), carbon-isotope discrimination (Δ) and dry matter partitioning were measured on six sunflower (Helianthus annuus L.) genotypes grown for 32 days in a glasshouse. Two watering regimes, one well watered (HW) and the other delivering half the water used by the HW plants (LW), were imposed. Four major results emerged from this study: Three was significant genotypic variation in W in sunflower and this was closely reflected in Δ for both watering treatments; the low watering regime caused a decrease in Δ but no change in W; nonetheless the genotypic ranking for either Δ or W was not significantly altered by water stress; a positive correlation between W and biomass accumulation occurred among genotypes of HW plants; ρ, the ratio of total plant carbon content to leaf area, was positively correlated with W and negatively correlated with Δ. These results are discussed with reference to the connection between transpiration efficiency and plant growth, indicating that Δ can be used to select for W among young sunflower plants. However, selection for W may be accompanied by changes in other important plant growth characteristics such as ρ. 19 refs., 4 figs

  5. Transpiration effect on the uptake and distribution of bromacil, nitrobenzene, and phenol in soybean plants

    International Nuclear Information System (INIS)

    McFarlane, J.C.; Pfleeger, T.; Fletcher, J.

    1987-01-01

    The influence of transpiration rate on the uptake and translocation of two industrial waste compounds, phenol and nitrobenzene, and one pesticide, 5-bromo-3-sec-butyl-6-methyluracil (bromacil), was examined. Carbon-14 moieties of each compound were provided separately in hydroponic solution to mature soybean plants maintained under three humidity conditions. The uptake of each compound was determined by monitoring the removal of 14 C from the hydroponic solution. The extent to which 14 C was adsorbed to roots and translocated to plant shoots and leaves was examined by assaying root and shoot parts for 14 C. Bromacil was taken up slower than the other chemicals, had the most 14 C translocated to the shoot, and the amount translocated to the shoot responded directly to the rate of transpiration. In contrast, both phenol and nitrobenzene were rapidly lost from solution and bound to the roots. Less than 1.5% of the 14 C from phenol or nitrobenzene was translocated to the plant shoots. Increased transpiration rates had little influence on root binding of 14 C; however, increasing transpiration rate from low to medium was associated with an increased uptake of nitrobenzene. The three chemicals studied have similar Log K/sub ow/ values, but their interactions with soybean were not the same. Thus, despite the usefulness of the octanol/water partitioning coefficient in predicting the fate of organic chemicals in animals and in correlating with root binding and plant uptake for many pesticides, log K/sub ow/ may not be equally useful in describing uptake and binding of nonpesticide chemicals in plants

  6. Aquaporin Expression and Water Transport Pathways inside Leaves Are Affected by Nitrogen Supply through Transpiration in Rice Plants

    Directory of Open Access Journals (Sweden)

    Lei Ding

    2018-01-01

    Full Text Available The photosynthetic rate increases under high-N supply, resulting in a large CO2 transport conductance in mesophyll cells. It is less known that water movement is affected by nitrogen supply in leaves. This study investigated whether the expression of aquaporin and water transport were affected by low-N (0.7 mM and high-N (7 mM concentrations in the hydroponic culture of four rice varieties: (1 Shanyou 63 (SY63, a hybrid variant of the indica species; (2 Yangdao 6 (YD6, a variant of indica species; (3 Zhendao 11 (ZD11, a hybrid variant of japonica species; and (4 Jiuyou 418 (JY418, another hybrid of the japonica species. Both the photosynthetic and transpiration rate were increased by the high-N supply in the four varieties. The expressions of aquaporins, plasma membrane intrinsic proteins (PIPs, and tonoplast membrane intrinsic protein (TIP were higher in high-N than low-N leaves, except in SY63. Leaf hydraulic conductance (Kleaf was lower in high-N than low-N leaves in SY63, while Kleaf increased under high-N supply in the YD6 variant. Negative correlations were observed between the expression of aquaporin and the transpiration rate in different varieties. Moreover, there was a significant negative correlation between transpiration rate and intercellular air space. In conclusion, the change in expression of aquaporins could affect Kleaf and transpiration. A feedback effect of transpiration would regulate aquaporin expression. The present results imply a coordination of gas exchange with leaf hydraulic conductance.

  7. Laser induced fluorescence thermometry (LIF-T) as a non-invasive temperature measurement technique for thermal hydraulic experiments

    Energy Technology Data Exchange (ETDEWEB)

    Strack, J.; Leung, K.; Walker, A., E-mail: strackj@mcmaster.ca [McMaster Univ., Hamilton, ON (Canada)

    2014-07-01

    Laser induced fluorescence (LIF) is an experimental technique whereby a scalar field in a fluid system is measured optically from the fluorescence intensity of a tracer dye following excitation by laser light. For laser induced fluorescence thermometry (LIF-T), a temperature sensitive dye is used. Through the use of a temperature sensitive tracer dye, sheet laser optics, optical filters, and photography, a 2D temperature field can be measured non-invasively. An experiment to test the viability of using LIF-T for macroscopic thermal hydraulic experiments was developed and tested. A reference calibration curve to relate fluorescence measurements to temperature is presented. (author)

  8. Skin-like biosensor system via electrochemical channels for noninvasive blood glucose monitoring.

    Science.gov (United States)

    Chen, Yihao; Lu, Siyuan; Zhang, Shasha; Li, Yan; Qu, Zhe; Chen, Ying; Lu, Bingwei; Wang, Xinyan; Feng, Xue

    2017-12-01

    Currently, noninvasive glucose monitoring is not widely appreciated because of its uncertain measurement accuracy, weak blood glucose correlation, and inability to detect hyperglycemia/hypoglycemia during sleep. We present a strategy to design and fabricate a skin-like biosensor system for noninvasive, in situ, and highly accurate intravascular blood glucose monitoring. The system integrates an ultrathin skin-like biosensor with paper battery-powered electrochemical twin channels (ETCs). The designed subcutaneous ETCs drive intravascular blood glucose out of the vessel and transport it to the skin surface. The ultrathin (~3 μm) nanostructured biosensor, with high sensitivity (130.4 μA/mM), fully absorbs and measures the glucose, owing to its extreme conformability. We conducted in vivo human clinical trials. The noninvasive measurement results for intravascular blood glucose showed a high correlation (>0.9) with clinically measured blood glucose levels. The system opens up new prospects for clinical-grade noninvasive continuous glucose monitoring.

  9. Transpiration cooling assisted ablative thermal protection of aerospace substructures

    International Nuclear Information System (INIS)

    Khan, M.B.; Iqbal, N.; Haider, Z.

    2009-01-01

    Ablatives are heat-shielding materials used to protect aerospace substructures. These materials are sacrificial in nature and provide protection primarily through the large endothermic transformation during exposure to hyper thermal environment such as encountered in re-entry modules. The performance of certain ablatives was reported in terms of their TGA/DTA in Advanced Materials-97 (pp 57-65). The focus of this earlier research resided in the consolidation of interface between the refractory inclusion and the host polymeric matrix to improve thermal resistance. In the present work we explore the scope of transpiration cooling in ablative performance through flash evaporation of liquid incorporated in the host EPDM (Ethylene Propylene Diene Monomer) matrix. The compression-molded specimens were exposed separately to plasma flame (15000 C) and oxyacetylene torch (3000 C) and the back face transient temperature is recorded in situ employing a thermocouple/data logger system. Both head on impingement (HOI) and parallel flow (PF) through a central cavity in the ablator were used. It is observed that transpiration cooling is effective and yields (a) rapid thermal equilibrium in the specimen, (b) lower back face temperature and (c) lower ablation rate, compared to conventional ablatives. SEM/EDS analysis is presented to amplify the point. (author)

  10. Magnetic resonance imaging based noninvasive measurements of brain hemodynamics in neonates

    DEFF Research Database (Denmark)

    De Vis, Jill B; Alderliesten, Thomas; Hendrikse, Jeroen

    2016-01-01

    Perinatal disturbances of brain hemodynamics can have a detrimental effect on the brain's parenchyma with consequently adverse neurodevelopmental outcome. Noninvasive, reliable tools to evaluate the neonate's brain hemodynamics are scarce. Advances in magnetic resonance imaging have provided new...

  11. Response of transpiration to rain pulses for two tree species in a semiarid plantation

    Science.gov (United States)

    Chen, Lixin; Zhang, Zhiqiang; Zeppel, Melanie; Liu, Caifeng; Guo, Junting; Zhu, Jinzhao; Zhang, Xuepei; Zhang, Jianjun; Zha, Tonggang

    2014-09-01

    Responses of transpiration ( E c) to rain pulses are presented for two semiarid tree species in a stand of Pinus tabulaeformis and Robinia pseudoacacia. Our objectives are to investigate (1) the environmental control over the stand transpiration after rainfall by analyzing the effect of vapor pressure deficit (VPD), soil water condition, and rainfall on the post-rainfall E c development and recovery rate, and (2) the species responses to rain pulses and implications on vegetation coverage under a changing rainfall regime. Results showed that the sensitivity of canopy conductance ( G c) to VPD varied under different incident radiation and soil water conditions, and the two species exhibited the same hydraulic control (-d G c/dlnVPD to G cref ratio) over transpiration. Strengthened physiological control and low sapwood area of the stand contributed to low E c. VPD after rainfall significantly influenced the magnitude and time series of post-rainfall stand E c. The fluctuation of post-rainfall VPD in comparison with the pre-rainfall influenced the E c recovery. Further, the stand E c was significantly related to monthly rainfall, but the recovery was independent of the rainfall event size. E c enhanced with cumulative soil moisture change (ΔVWC) within each dry-wet cycle, yet still was limited in large rainfall months. The two species had different response patterns of post-rainfall E c recovery. E c recovery of P. tabulaeformis was influenced by the pre- and post-rainfall VPD differences and the duration of rainless interval. R. pseudoacacia showed a larger immediate post-rainfall E c increase than P. tabulaeformis did. We, therefore, concluded that concentrated rainfall events do not trigger significant increase of transpiration unless large events penetrate the deep soil and the species differences of E c in response to pulses of rain may shape the composition of semiarid woodlands under future rainfall regimes.

  12. Non-invasive assessment of coronary calcification

    International Nuclear Information System (INIS)

    Vliegenthart, Rozemarijn; Oei, Hok-Hay S.; Hofman, Albert; Oudkerk, Matthijs; Witteman, Jackqueline C. M.

    2004-01-01

    Electron-beam tomography (EBT) and multi-detector computed tomography (MDCT) enable the noninvasive assessment of coronary calcification. The amount of coronary calcification, as detected by EBT, has a close relation with the amount of coronary atherosclerosis, which is the substrate for the occurrence of myocardial infarction and sudden cardiac death. Calcification of the coronary arteries can be seen as a cumulative measure of life-time exposure to cardiovascular risk factors. Several studies have shown that the amount of coronary calcification is associated with the risk of coronary heart disease. Therefore, coronary calcification is a promising method for non-invasive detection of asymptomatic subjects at high risk of developing coronary heart disease. Whether measurement of coronary calcification also increases the predictive power of coronary events based on cardiovascular risk factors is topic of current research

  13. Hyperspectral narrowband and multispectral broadband indices for remote sensing of crop evapotranspiration and its components (transpiration and soil evaporation)

    Science.gov (United States)

    Marshall, Michael T.; Thenkabail, Prasad S.; Biggs, Trent; Post, Kirk

    2016-01-01

    Evapotranspiration (ET) is an important component of micro- and macro-scale climatic processes. In agriculture, estimates of ET are frequently used to monitor droughts, schedule irrigation, and assess crop water productivity over large areas. Currently, in situ measurements of ET are difficult to scale up for regional applications, so remote sensing technology has been increasingly used to estimate crop ET. Ratio-based vegetation indices retrieved from optical remote sensing, like the Normalized Difference Vegetation Index (NDVI), Soil Adjusted Vegetation Index, and Enhanced Vegetation Index are critical components of these models, particularly for the partitioning of ET into transpiration and soil evaporation. These indices have their limitations, however, and can induce large model bias and error. In this study, micrometeorological and spectroradiometric data collected over two growing seasons in cotton, maize, and rice fields in the Central Valley of California were used to identify spectral wavelengths from 428 to 2295 nm that produced the highest correlation to and lowest error with ET, transpiration, and soil evaporation. The analysis was performed with hyperspectral narrowbands (HNBs) at 10 nm intervals and multispectral broadbands (MSBBs) commonly retrieved by Earth observation platforms. The study revealed that (1) HNB indices consistently explained more variability in ET (ΔR2 = 0.12), transpiration (ΔR2 = 0.17), and soil evaporation (ΔR2 = 0.14) than MSBB indices; (2) the relationship between transpiration using the ratio-based index most commonly used for ET modeling, NDVI, was strong (R2 = 0.51), but the hyperspectral equivalent was superior (R2 = 0.68); and (3) soil evaporation was not estimated well using ratio-based indices from the literature (highest R2 = 0.37), but could be after further evaluation, using ratio-based indices centered on 743 and 953 nm (R2 = 0.72) or 428 and 1518 nm (R2 = 0.69).

  14. Modelling soil temperature and moisture and corresponding seasonality of photosynthesis and transpiration in a boreal spruce ecosystem

    Science.gov (United States)

    Wu, S. H.; Jansson, P.-E.

    2013-02-01

    Recovery of photosynthesis and transpiration is strongly restricted by low temperatures in air and/or soil during the transition period from winter to spring in boreal zones. The extent to which air temperature (Ta) and soil temperature (Ts) influence the seasonality of photosynthesis and transpiration of a boreal spruce ecosystem was investigated using a process-based ecosystem model (CoupModel) together with eddy covariance (EC) data from one eddy flux tower and nearby soil measurements at Knottåsen, Sweden. A Monte Carlo-based uncertainty method (GLUE) provided prior and posterior distributions of simulations representing a wide range of soil conditions and performance indicators. The simulated results showed sufficient flexibility to predict the measured cold and warm Ts in the moist and dry plots around the eddy flux tower. Moreover, the model presented a general ability to describe both biotic and abiotic processes for the Norway spruce stand. The dynamics of sensible heat fluxes were well described by the corresponding latent heat fluxes and net ecosystem exchange of CO2. The parameter ranges obtained are probably valid to represent regional characteristics of boreal conifer forests, but were not easy to constrain to a smaller range than that produced by the assumed prior distributions. Finally, neglecting the soil temperature response function resulted in fewer behavioural models and probably more compensatory errors in other response functions for regulating the seasonality of ecosystem fluxes.

  15. Expression of Arabidopsis hexokinase in citrus guard cells controls stomatal aperture and reduces transpiration

    Directory of Open Access Journals (Sweden)

    Nitsan eLugassi

    2015-12-01

    Full Text Available Hexokinase (HXK is a sugar-phosphorylating enzyme involved in sugar-sensing. It has recently been shown that HXK in guard cells mediates stomatal closure and coordinates photosynthesis with transpiration in the annual species tomato and Arabidopsis. To examine the role of HXK in the control of the stomatal movement of perennial plants, we generated citrus plants that express Arabidopsis HXK1 (AtHXK1 under KST1, a guard cell-specific promoter. The expression of KST1 in the guard cells of citrus plants has been verified using GFP as a reporter gene. The expression of AtHXK1 in the guard cells of citrus reduced stomatal conductance and transpiration with no negative effect on the rate of photosynthesis, leading to increased water-use efficiency. The effects of light intensity and humidity on stomatal behavior were examined in rooted leaves of the citrus plants. The optimal intensity of photosynthetically active radiation and lower humidity enhanced stomatal closure of AtHXK1-expressing leaves, supporting the role of sugar in the regulation of citrus stomata. These results suggest that HXK coordinates photosynthesis and transpiration and stimulates stomatal closure not only in annual species, but also in perennial species.

  16. Anaphylaxis Imaging: Non-Invasive Measurement of Surface Body Temperature and Physical Activity in Small Animals.

    Directory of Open Access Journals (Sweden)

    Krisztina Manzano-Szalai

    Full Text Available In highly sensitized patients, the encounter with a specific allergen from food, insect stings or medications may rapidly induce systemic anaphylaxis with potentially lethal symptoms. Countless animal models of anaphylaxis, most often in BALB/c mice, were established to understand the pathophysiology and to prove the safety of different treatments. The most common symptoms during anaphylactic shock are drop of body temperature and reduced physical activity. To refine, improve and objectify the currently applied manual monitoring methods, we developed an imaging method for the automated, non-invasive measurement of the whole-body surface temperature and, at the same time, of the horizontal and vertical movement activity of small animals. We tested the anaphylaxis imaging in three in vivo allergy mouse models for i milk allergy, ii peanut allergy and iii egg allergy. These proof-of-principle experiments suggest that the imaging technology represents a reliable non-invasive method for the objective monitoring of small animals during anaphylaxis over time. We propose that the method will be useful for monitoring diseases associated with both, changes in body temperature and in physical behaviour.

  17. Effect of solar loading on greenhouse containers used in transpiration efficiency screening

    Science.gov (United States)

    Earlier we described a simple high throughput method of screening sorghum for transpiration efficiency (TE). Subsequently it was observed that while results were consistent between lines exhibiting high and low TE, ranking between lines with similar TE was variable. We hypothesized that variable mic...

  18. Transpirational drying and costs for transporting woody biomass - a preliminary review

    Science.gov (United States)

    Bryce J. Stokes; Bryce J. McDonaStokes; Timothy P. McDonald; Tyrone Kelley

    1993-01-01

    High transport costs arc a factor to consider in the use of forest residues for fuel. Costs can be reduced by increasing haul capacities, reducing high moisture contents, and improving trucking efficiency. The literature for transpirational drying and the economics of hauling woody biomass is summarized here. Some additional, unpublished roundwood and chipdrying test...

  19. A new method for noninvasive measurement of pulmonary gas exchange using expired gas.

    Science.gov (United States)

    West, John B; Prisk, G Kim

    2018-01-01

    Measurement of the gas exchange efficiency of the lung is often required in the practice of pulmonary medicine and in other settings. The traditional standard is the values of the PO2, PCO2, and pH of arterial blood. However arterial puncture requires technical expertise, is invasive, uncomfortable for the patient, and expensive. Here we describe how the composition of expired gas can be used in conjunction with pulse oximetry to obtain useful measures of gas exchange efficiency. The new procedure is noninvasive, well tolerated by the patient, and takes only a few minutes. It could be particularly useful when repeated measurements of pulmonary gas exchange are required. One product of the procedure is the difference between the PO2 of end-tidal alveolar gas and the calculated PO2 of arterial blood. This measurement is related to the classical alveolar-arterial PO2 difference based on ideal alveolar gas. However that traditional index is heavily influenced by lung units with low ventilation-perfusion ratios, whereas the new index has a broader physiological basis because it includes contributions from the whole lung. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Non-Invasive Ocular Rigidity Measurement: A Differential Tonometry Approach

    Directory of Open Access Journals (Sweden)

    Efstathios T. Detorakis

    2015-12-01

    Full Text Available Purpose: Taking into account the fact that Goldmann applanation tonometry (GAT geometrically deforms the corneal apex and displaces volume from the anterior segment whereas Dynamic Contour Tonometry (DCT does not, we aimed at developing an algorithm for the calculation of ocular rigidity (OR based on the differences in pressure and volume between deformed and non-deformed status according to the general Friedenwald principle of differential tonometry. Methods: To avoid deviations of GAT IOP from true IOP in eyes with corneas different from the “calibration cornea” we applied the previously described Orssengo-Pye algorithm to calculate an error coefficient “C/B”. To test the feasibility of the proposed model, we calculated the OR coefficient (r in 17 cataract surgery candidates (9 males and 8 females. Results: The calculated r according to our model (mean ± SD, range was 0.0174 ± 0.010 (0.0123–0.022 mmHg/μL. A negative statistically significant correlation between axial length and r was detected whereas correlations between r and other biometric parameters examined were statistically not significant. Conclusions: The proposed method may prove a valid non-invasive tool for the measurement method of OR, which could help in introducing OR in the decision-making of the routine clinical practice.

  1. Predicting photosynthesis and transpiration responses to ozone: decoupling modeled photosynthesis and stomatal conductance

    Directory of Open Access Journals (Sweden)

    D. Lombardozzi

    2012-08-01

    Full Text Available Plants exchange greenhouse gases carbon dioxide and water with the atmosphere through the processes of photosynthesis and transpiration, making them essential in climate regulation. Carbon dioxide and water exchange are typically coupled through the control of stomatal conductance, and the parameterization in many models often predict conductance based on photosynthesis values. Some environmental conditions, like exposure to high ozone (O3 concentrations, alter photosynthesis independent of stomatal conductance, so models that couple these processes cannot accurately predict both. The goals of this study were to test direct and indirect photosynthesis and stomatal conductance modifications based on O3 damage to tulip poplar (Liriodendron tulipifera in a coupled Farquhar/Ball-Berry model. The same modifications were then tested in the Community Land Model (CLM to determine the impacts on gross primary productivity (GPP and transpiration at a constant O3 concentration of 100 parts per billion (ppb. Modifying the Vcmax parameter and directly modifying stomatal conductance best predicts photosynthesis and stomatal conductance responses to chronic O3 over a range of environmental conditions. On a global scale, directly modifying conductance reduces the effect of O3 on both transpiration and GPP compared to indirectly modifying conductance, particularly in the tropics. The results of this study suggest that independently modifying stomatal conductance can improve the ability of models to predict hydrologic cycling, and therefore improve future climate predictions.

  2. Development of biosensors for non-invasive measurements of heart failure biomarkers in saliva

    Science.gov (United States)

    Alcacer, Albert; Streklas, Angelos; Baraket, Abdoullatif; Zine, Nadia; Errachid, Abdelhamid; Bausells, Joan

    2017-06-01

    Biomedical engineering research today is focused on non-invasive techniques for detection of biomarkers related to specific health issues 1. Three metal layer microelectrode (μE) sensors have been implemented to detect specific biomarkers which can be found in human saliva related with heart failure problems 2 such as interleukin and Tumore Necrosis Factor-α (TNF-α), and used as highly sensitive saliva sensors. We designed specialized μEs combining different technologies for multiple measurements aiming to a lab-on-a-chip future integration. Measurements are based to basic principles of Cyclic Voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS). Thus, certain planar technology was used involving three metal layers of gold, platinum and silver deposited over an oxidized silicon substrate following standard cleanroom procedures of lithography for the definition of μEs, sputtering physical vapor deposition (PVD) for gold, evaporation PVD for silver and platinum, and plasma enhanced chemical vapor deposition (PECVD) for passivation layer of silicon nitride.

  3. SAPFLUXNET: towards a global database of sap flow measurements.

    Science.gov (United States)

    Poyatos, Rafael; Granda, Víctor; Molowny-Horas, Roberto; Mencuccini, Maurizio; Steppe, Kathy; Martínez-Vilalta, Jordi

    2016-12-01

    Plant transpiration is the main evaporative flux from terrestrial ecosystems; it controls land surface energy balance, determines catchment hydrological responses and influences regional and global climate. Transpiration regulation by plants is a key (and still not completely understood) process that underlies vegetation drought responses and land evaporative fluxes under global change scenarios. Thermometric methods of sap flow measurement have now been widely used to quantify whole-plant and stand transpiration in forests, shrublands and orchards around the world. A large body of research has applied sap flow methods to analyse seasonal and diurnal patterns of transpiration and to quantify their responses to hydroclimatic variability, but syntheses of sap flow data at regional to global scales are extremely rare. Here we present the SAPFLUXNET initiative, aimed at building the first global database of plant-level sap flow measurements. A preliminary metadata survey launched in December 2015 showed an encouraging response by the sap flow community, with sap flow data sets from field studies representing >160 species and >120 globally distributed sites. The main goal of SAPFLUXNET is to analyse the ecological factors driving plant- and stand-level transpiration. SAPFLUXNET will open promising research avenues at an unprecedented global scope, namely: (i) exploring the spatio-temporal variability of plant transpiration and its relationship with plant and stand attributes, (ii) summarizing physiological regulation of transpiration by means of few water-use traits, usable for land surface models, (iii) improving our understanding of the coordination between gas exchange and plant-level traits (e.g., hydraulics) and (iv) analysing the ecological factors controlling stand transpiration and evapotranspiration partitioning. Finally, SAPFLUXNET can provide a benchmark to test models of physiological controls of transpiration, contributing to improve the accuracy of

  4. Fluid Vessel Quantity using Non-Invasive PZT Technology Flight Volume Measurements Under Zero G Analysis

    Science.gov (United States)

    Garofalo, Anthony A.

    2013-01-01

    The purpose of the project is to perform analysis of data using the Systems Engineering Educational Discovery (SEED) program data from 2011 and 2012 Fluid Vessel Quantity using Non-Invasive PZT Technology flight volume measurements under Zero G conditions (parabolic Plane flight data). Also experimental planning and lab work for future sub-orbital experiments to use the NASA PZT technology for fluid volume measurement. Along with conducting data analysis of flight data, I also did a variety of other tasks. I provided the lab with detailed technical drawings, experimented with 3d printers, made changes to the liquid nitrogen skid schematics, and learned how to weld. I also programmed microcontrollers to interact with various sensors and helped with other things going on around the lab.

  5. Convergent approaches to determine an ecosystem's transpiration fraction

    Science.gov (United States)

    Berkelhammer, M.; Noone, D. C.; Wong, T. E.; Burns, S. P.; Knowles, J. F.; Kaushik, A.; Blanken, P. D.; Williams, M. W.

    2016-06-01

    The transpiration (T) fraction of total terrestrial evapotranspiration (ET), T/ET, can vary across ecosystems between 20-95% with a global average of ˜60%. The wide range may either reflect true heterogeneity between ecosystems and/or uncertainties in the techniques used to derive this property. Here we compared independent approaches to estimate T/ET at two needleleaf forested sites with a factor of 3 difference in leaf area index (LAI). The first method utilized water vapor isotope profiles and the second derived transpiration through its functional relationship with gross primary production. We found strong agreement between T/ET values from these two independent approaches although we noted a discrepancy at low vapor pressure deficits (VPD). We hypothesize that this divergence arises because stomatal conductance is independent of humidity at low VPD. Overall, we document significant synoptic-scale T/ET variability but minimal growing season-scale variability. This result indicates a high sensitivity of T/ET to passing weather but convergence toward a stable mean state, which is set by LAI. While changes in T/ET could emerge from a myriad of processes, including aboveground (LAI) or belowground (rooting depth) changes, there was only minimal interannual variability and no secular trend in our analysis of T/ET from the 15 year eddy covariance time series at Niwot Ridge. If the lack of trend observed here is apparent elsewhere, it suggests that the processes controlling the T and E fluxes are coupled in a way to maintain a stable ratio.

  6. Flexible Transpiration Cooled Thermal Protection System for Inflatable Atmospheric Capture and Entry Systems, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Andrews Space, Inc. proposes an innovative transpiration cooled aerobrake TPS design that is thermally protective, structurally flexible, and lightweight. This...

  7. Flexible Transpiration Cooled Thermal Protection System for Inflatable Atmospheric Capture and Entry Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Andrews Space, Inc. proposes an innovative transpiration cooled aerobrake TPS design that is thermally protective, structurally flexible, and lightweight. This...

  8. Elastography methods for the non-invasive assessment of portal hypertension.

    Science.gov (United States)

    Roccarina, Davide; Rosselli, Matteo; Genesca, Joan; Tsochatzis, Emmanuel A

    2018-02-01

    The gold standard to assess the presence and severity of portal hypertension remains the hepatic vein pressure gradient, however the recent development of non-invasive assessment using elastography techniques offers valuable alternatives. In this review, we discuss the diagnostic accuracy and utility of such techniques in patients with portal hypertension due to cirrhosis. Areas covered: A literature search focused on liver and spleen stiffness measurement with different elastographic techniques for the assessment of the presence and severity of portal hypertension and oesophageal varices in people with chronic liver disease. The combination of elastography with parameters such as platelet count and spleen size is also discussed. Expert commentary: Non-invasive assessment of liver fibrosis and portal hypertension is a validated tool for the diagnosis and follow-up of patients. Baveno VI recommended the combination of transient elastography and platelet count for ruling out varices needing treatment in patients with compensated advanced chronic liver disease. Assessment of aetiology specific cut-offs for ruling in and ruling out clinically significant portal hypertension is an unmet clinical need. The incorporation of spleen stiffness measurements in non-invasive algorithms using validated software and improved measuring scales might enhance the non-invasive diagnosis of portal hypertension in the next 5 years.

  9. Improved non-invasive method for aerosol particle charge measurement employing in-line digital holography

    Science.gov (United States)

    Tripathi, Anjan Kumar

    Electrically charged particles are found in a wide range of applications ranging from electrostatic powder coating, mineral processing, and powder handling to rain-producing cloud formation in atmospheric turbulent flows. In turbulent flows, particle dynamics is influenced by the electric force due to particle charge generation. Quantifying particle charges in such systems will help in better predicting and controlling particle clustering, relative motion, collision, and growth. However, there is a lack of noninvasive techniques to measure particle charges. Recently, a non-invasive method for particle charge measurement using in-line Digital Holographic Particle Tracking Velocimetry (DHPTV) technique was developed in our lab, where charged particles to be measured were introduced to a uniform electric field, and their movement towards the oppositely charged electrode was deemed proportional to the amount of charge on the particles (Fan Yang, 2014 [1]). However, inherent speckle noise associated with reconstructed images was not adequately removed and therefore particle tracking data was contaminated. Furthermore, particle charge calculation based on particle deflection velocity neglected the particle drag force and rebound effect of the highly charged particles from the electrodes. We improved upon the existing particle charge measurement method by: 1) hologram post processing, 2) taking drag force into account in charge calculation, 3) considering rebound effect. The improved method was first fine-tuned through a calibration experiment. The complete method was then applied to two different experiments, namely conduction charging and enclosed fan-driven turbulence chamber, to measure particle charges. In all three experiments conducted, the particle charge was found to obey non-central t-location scale family of distribution. It was also noted that the charge distribution was insensitive to the change in voltage applied between the electrodes. The range of voltage

  10. Effects of sulfite and pH an abscisic acid (ABA) dependent transpiration and on stomatal opening

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, N.; Maruta, I.; Sugahara, K.

    1980-01-01

    In rice, alday, wheat and tobacco (Nicotiana tabacum l. samsun and samsun nn) plants which contained large amounts of ABA, the transpiration rate decreased rapidly with 2 ppM SO/sub 2/ fumigation and reached 20 to 65% of the initial level after 5- to 30-min exposure depending on their ABAj contents. In the cases of broad bean and tobacco (n. Gutinosa l.) with low ABA contents, the rate slightly increased for 20 and 40 min, respectively, after the start of the fumigation and then decreased gradually. The transpiration rates of corn and sorghum, in spite of their extremely low ABA contents, pronouncedly decreased with SO/sub 2/ fumigation and reached 65 and 50%, respectively, of the initial levels after 40-min exposure. Foliar application of 0.04 N HCL to N. tacum l. samsun nn leaves remarkably depressed the transpiration rate, while the application of 0.04 m NA/sub 2/SO/sub 3/ decreased the rate only to the same level as water treatment. Foliar application of either HCL of Na/sub 2/SO/sub 3/ to N. glutinosa l. leaves exerted little change in the transpiration rate. When 10-4 m ABA was applied to broad bean leaves prior to HCl and Na/sub 2/SO/sub 3/ treatment, their transpiration rate was decreased by HCl, but not by Na/sub 2/SO/sub 3/ application. In sonicated epidermal strips peeled from broad bean leaves, Na/sub 2/SO/sub 3/ produced a slight increase in the stomatal aperture size in the absence of ABA, but showed no effect in the presence of ABA. The aperture size was identical in the pH range of 3.0 to 7.0 in the incubation medium. In the presence of ABA in the medium, the aperture size was small in the acidic region of pH with a minimal value at pH 4.0. ABA decreased the aperture size at concentrations above 10-9 m at pH 4.0 and 10-6 m at pH 7.0 in the medium. ABA uptake by epidermal strips was large in the acidic region, especially at pH 4.0.

  11. Quantifying the Components of Evapotranspiration from Plant Communities, Soil Evaporation and Plant Transpiration, with Oxygen-18 Isotopes and Micrometeorology

    Energy Technology Data Exchange (ETDEWEB)

    Denmead, Tom [CSIRO Centre for Environmental Mechanics, GPO Box 821, Canberra, ACT 2601 (Australia); Heng, Lee; Nguyen, Long [Soil and Water Management and Crop Nutrition Section, IAEA (Austria); Zeeman, Matthias [Karlsruhe Institute of Technology, Garmisch-Partenkirchen (Germany); Mayr, Leo; Arrillaga, Jose Luis [Soil and Water Management and Crop Nutrition Laboratory, IAEA (Austria); Cepuder, Peter [Department of Water-Atmosphere-Environment, Institute for Hydraulics and Rural Water Management (BOKU), Vienna (Austria)

    2013-01-15

    The Keeling plot (Keeling, 1961) approach has been shown to provide an estimate of the relative proportions of water vapour emanating from evaporation (E) from soil, and transpiration (T) from the plant canopy (Moreira et. al., 1997; Williams et al., 2004). This estimate can be used in conjunction with measurements of the net water vapour flux and evapotranspiration (ET), to quantify the E and T components using an Inverse Lagrangian (IL) approach based on canopy turbulence (Raupach, 1989), which allows the identification of water vapour in the different canopy layers (Denmead et al., 2005). A study was carried out on a wheat crop over a 3-day period in April (daily temperatures ranged from 14-23''oC) at the BOKU experimental field outside Vienna to provide an independent check of the relative proportions of soil evaporation (E) and plant transpiration (T) estimated by the Keeling plot {sigma}{sup 18}O isotope analysis and by the application of the IL model of water vapour transport in plant canopies. The eddy covariance instrumentation to measure ET was provided by the Karlsruhe Institute of Technology at Garmisch-Partenkirchen, Germany. Transpiration rates, estimated by the {sigma}{sup 18}O isotopic technique were similar to those derived from Inverse Lagrangian analyses. indicating that the IL and isotopic analyses gave essentially the same partitioning of evapotranspiration into E and T. The use of the IL analysis to determine water vapour in different segments of the canopy is illustrated. In these observations the soil was dry (9-12 %) and soil evaporation was small. The eddy covariance approach confirmed the correctness of the IL analysis for the total water loss from the canopy (to within 6%) (data not shown). The IL and the isotopic analyses gave essentially the same partitioning of ET into E and T for 3 days on a dry soil. The isotopic analysis using {sigma}{sup 18}O gave E/ET {approx} 4% and T/ET {approx} 96%, while IL analysis gave corresponding figures

  12. Non-invasive Assessments of Adipose Tissue Metabolism In Vitro.

    Science.gov (United States)

    Abbott, Rosalyn D; Borowsky, Francis E; Quinn, Kyle P; Bernstein, David L; Georgakoudi, Irene; Kaplan, David L

    2016-03-01

    Adipose tissue engineering is a diverse area of research where the developed tissues can be used to study normal adipose tissue functions, create disease models in vitro, and replace soft tissue defects in vivo. Increasing attention has been focused on the highly specialized metabolic pathways that regulate energy storage and release in adipose tissues which affect local and systemic outcomes. Non-invasive, dynamic measurement systems are useful to track these metabolic pathways in the same tissue model over time to evaluate long term cell growth, differentiation, and development within tissue engineering constructs. This approach reduces costs and time in comparison to more traditional destructive methods such as biochemical and immunochemistry assays and proteomics assessments. Towards this goal, this review will focus on important metabolic functions of adipose tissues and strategies to evaluate them with non-invasive in vitro methods. Current non-invasive methods, such as measuring key metabolic markers and endogenous contrast imaging will be explored.

  13. A New, Noninvasive Method of Measuring Impaired Pulmonary Gas Exchange in Lung Disease: An Outpatient Study.

    Science.gov (United States)

    West, John B; Crouch, Daniel R; Fine, Janelle M; Makadia, Dipen; Wang, Daniel L; Prisk, G Kim

    2018-02-13

    It would be valuable to have a noninvasive method of measuring impaired pulmonary gas exchange in patients with lung disease and thus reduce the need for repeated arterial punctures. This study reports the results of using a new test in a group of outpatients attending a pulmonary clinic. Inspired and expired partial pressure of oxygen (PO 2 ) and Pco 2 are continually measured by small, rapidly responding analyzers. The arterial PO 2 is calculated from the oximeter blood oxygen saturation level and the oxygen dissociation curve. The PO 2 difference between the end-tidal gas and the calculated arterial value is called the oxygen deficit. Studies on 17 patients with a variety of pulmonary diseases are reported. The mean ± SE oxygen deficit was 48.7 ± 3.1 mm Hg. This finding can be contrasted with a mean oxygen deficit of 4.0 ± 0.88 mm Hg in a group of 31 normal subjects who were previously studied (P gas in determining ventilation-perfusion ratio inequality. This factor is largely ignored in the classic index of impaired pulmonary gas exchange using the ideal alveolar PO 2 to calculate the alveolar-arterial oxygen gradient. The results previously reported in normal subjects and the present studies suggest that this new noninvasive test will be valuable in assessing abnormal gas exchange in the clinical setting. Copyright © 2018 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  14. Noninvasive ventilation.

    Science.gov (United States)

    Rabatin, J T; Gay, P C

    1999-08-01

    Noninvasive ventilation refers to the delivery of assisted ventilatory support without the use of an endotracheal tube. Noninvasive positive pressure ventilation (NPPV) can be delivered by using a volume-controlled ventilator, a pressure-controlled ventilator, a bilevel positive airway pressure ventilator, or a continuous positive airway pressure device. During the past decade, there has been a resurgence in the use of noninvasive ventilation, fueled by advances in technology and clinical trials evaluating its use. Several manufacturers produce portable devices that are simple to operate. This review describes the equipment, techniques, and complications associated with NPPV and also the indications for both short-term and long-term applications. NPPV clearly represents an important addition to the techniques available to manage patients with respiratory failure. Future clinical trials evaluating its many clinical applications will help to define populations of patients most apt to benefit from this type of treatment.

  15. Effect of EC and transpiration on production of greenhouse tomato (Lycopersicon esculentum L.)

    NARCIS (Netherlands)

    Li, Y.; Stanghellini, C.; Challa, H.

    2001-01-01

    We investigated the hypothesis that manipulating water out-flow of a plant through the shoot environment (potential transpiration, ET0) in a glasshouse could modulate the effect of salinity/osmotic potential in the root environment upon yield of tomatoes. Contrasting root-zone salinity treatments

  16. Non-invasive tryptophan fluorescence measurements as a novel method of grading cataract

    DEFF Research Database (Denmark)

    Erichsen, Jesper Høiberg; Mensah, Aurore; Kessel, Line

    2017-01-01

    . All cataracts were age-related. Lens material from 16 eyes of 14 patients was included in the study. Cataracts were preoperatively graded in categories 1, 2 and 3. No lenses were category 4. For nuclear cataracts mean values of F-factor were 52.9 (SD 12.2), 61.7 (SD 5.3) and 75.7 (SD 8.9......) for categories 1, 2 and 3 respectively. Linear regression on F-factor as a function of preoperative grading category showed increasing values of F-factor with increasing preoperative grading category, R2 = 0.515. Our experiment showed that preoperative optical grading of cataracts by Scheimpflug imaging may......Development of non-invasive treatments for cataract calls for a sensitive diagnostic assay. We conducted a study to test whether the ratio of folded tryptophan to non-tryptophan fluorescence emission (F-factor) may be used for grading cataracts in human lenses. The F-factor was measured...

  17. Differentiating transpiration from evaporation in seasonal agricultural wetlands and the link to advective fluxes in the root zone

    Science.gov (United States)

    Bachand, P.A.M.; S. Bachand,; Fleck, Jacob A.; Anderson, Frank E.; Windham-Myers, Lisamarie

    2014-01-01

    The current state of science and engineering related to analyzing wetlands overlooks the importance of transpiration and risks data misinterpretation. In response, we developed hydrologic and mass budgets for agricultural wetlands using electrical conductivity (EC) as a natural conservative tracer. We developed simple differential equations that quantify evaporation and transpiration rates using flowrates and tracer concentrations atwetland inflows and outflows. We used two ideal reactormodel solutions, a continuous flowstirred tank reactor (CFSTR) and a plug flow reactor (PFR), to bracket real non-ideal systems. From those models, estimated transpiration ranged from 55% (CFSTR) to 74% (PFR) of total evapotranspiration (ET) rates, consistent with published values using standard methods and direct measurements. The PFR model more appropriately represents these nonideal agricultural wetlands in which check ponds are in series. Using a fluxmodel, we also developed an equation delineating the root zone depth at which diffusive dominated fluxes transition to advective dominated fluxes. This relationship is similar to the Peclet number that identifies the dominance of advective or diffusive fluxes in surface and groundwater transport. Using diffusion coefficients for inorganic mercury (Hg) and methylmercury (MeHg) we calculated that during high ET periods typical of summer, advective fluxes dominate root zone transport except in the top millimeters below the sediment–water interface. The transition depth has diel and seasonal trends, tracking those of ET. Neglecting this pathway has profound implications: misallocating loads along different hydrologic pathways; misinterpreting seasonal and diel water quality trends; confounding Fick's First Law calculations when determining diffusion fluxes using pore water concentration data; and misinterpreting biogeochemicalmechanisms affecting dissolved constituent cycling in the root zone. In addition,our understanding of internal

  18. Non-invasive measure of respiratory mechanics and conventional respiratory parameters in conscious large animals by high frequency Airwave Oscillometry.

    Science.gov (United States)

    Bassett, Leanne; Troncy, Eric; Robichaud, Annette; Schuessler, Thomas F; Pouliot, Mylène; Ascah, Alexis; Authier, Simon

    2014-01-01

    A number of drugs in clinical trials are discontinued due to potentially life-threatening airway obstruction. As some drugs may not cause changes in core battery parameters such as tidal volume (Vt), respiratory rate (RR) or minute ventilation (MV), including measurements of respiratory mechanics in safety pharmacology studies represents an opportunity for design refinement. The present study aimed to test a novel non-invasive methodology to concomitantly measure respiratory system resistance (Rrs) and conventional respiratory parameters (Vt, RR, MV) in conscious Beagle dogs and cynomolgus monkeys. An Airwave Oscillometry system (tremoFlo; THORASYS Inc., Montreal, Canada) was used to concomitantly assess Rrs and conventional respiratory parameters before and after intravenous treatment with a bronchoactive agent. Respiratory mechanics measurements were performed by applying a short (i.e. 16s) single high frequency (19Hz) waveform at the subject's airway opening via a face mask. During measurements, pressure and flow signals were recorded. After collection of baseline measurements, methacholine was administered intravenously to Beagle dogs (n=6) and cynomolgus monkeys (n=4) at 8 and 68μg/kg, respectively. In dogs, methacholine induced significant increases in Vt, RR and MV while in monkeys, it only augmented RR. A significant increase in Rrs was observed after methacholine administration in both species with mean percentage peak increases from baseline of 88 (53)% for dogs and 28 (16)% for cynomolgus monkeys. Airwave Oscillometry appears to be a promising non-invasive methodology to enable respiratory mechanics measurements in conscious large animals, a valuable refinement in respiratory safety pharmacology. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Potential application of glazed transpired collectors to space heating in cold climates

    International Nuclear Information System (INIS)

    Gao, Lixin; Bai, Hua; Mao, Shufeng

    2014-01-01

    Highlights: • A mathematical model for glazed transpired collectors (GTC) is developed. • Glazing results in optical loss, but it decreases convective heat loss effectively. • Thermal performance of GTC shows considerable improvement on flat-plate collectors. • GTC using recirculated air is applicable to space heating in cold climates. - Abstract: Although unglazed transpired collectors (UTC) succeed in industrial ventilation applications, solar fraction is very low when they are used in space heating in cold climates due to the lower exit air temperature. Considering the potential for glazed transpired collectors (GTC) using recirculated air for space heating applications in cold climates, a mathematical model is developed for predicting the thermal performance of GTC. Simulation results show that although glazing results in optical loss, it could decrease convective heat loss resulted from high crosswind velocities effectively. For a solar radiation of 400 W/m 2 , an ambient temperature of −10 °C, and a suction velocity of 0.01 m/s, the exit air temperature of GTC is higher than that of UTC for crosswind velocities exceeding 3.0 m/s. By comparison with a conventional flat-plate solar air collector operating under the same conditions, the thermal performance of GTC shows a significant improvement. For a five-storey hotel building located in the severe cold climate zone of China, case study shows that the annual solar fraction of the GTC-based solar air heating system is about 20%, which is two times higher than that of the flat-plate collector-based system and nearly nine times higher than that of the UTC-based system respectively. Hence, an enormous amount of energy will be saved with the application of GTC to space heating in cold climates

  20. Specificity and sensitivity of noninvasive measurement of pulmonary vascular protein leak

    International Nuclear Information System (INIS)

    Dauber, I.M.; Pluss, W.T.; VanGrondelle, A.; Trow, R.S.; Weil, J.V.

    1985-01-01

    Noninvasive techniques employing external counting of radiolabeled protein have the potential for measuring pulmonary vascular protein permeability, but their specificity and sensitivity remain unclear. The authors tested the specificity and sensitivity of a double-radioisotope method by injecting radiolabeled albumin ( 131 I) and erythrocytes (/sup 99m/Tc) into anesthetized dogs and measuring the counts of each isotope for 150 min after injection with an external gamma probe fixed over the lung. They calculated the rate of increase of albumin counts measured by the probe (which reflects the rate at which protein leaks into the extravascular space). To assess permeability the authors normalized the rate of increase in albumin counts for changes in labeled erythrocyte signal to minimize influence of changes in vascular surface area and thus derived an albumin leak index. They measured the albumin leak index and gravimetric lung water during hydrostatic edema (acutely elevating left atrial pressure by left atrial balloon inflation: mean pulmonary arterial wedge pressure = 22.6 Torr) and in lung injury edema induced by high- (1.0 g/kg) and low-dose (0.25 g/kg) intravenous thiourea. To test specificity hydrostatic and high-dose thiourea edema were compared. The albumin leak index increased nearly fourfold from control after thiourea injury (27.2 +/- 2.3 x 10-4 vs. 7.6 +/- 0.9 x 10-4 min-1) but did not change from control levels after elevating left atrial pressure (8.9 +/- 1.2 x 10-4 min-1) despite comparable increases in gravimetric lung water. To test sensitivity the authors compared low-dose thiourea with controls. Following low-dose thiourea, the albumin leak index nearly doubled despite the absence of a measurable increase in lung water

  1. Noninvasive Measurement of EKG Properties of 3D Artificial Heart Muscle

    Directory of Open Access Journals (Sweden)

    Betsy H. Salazar

    2017-06-01

    Full Text Available Developing and testing a custom fabricated 16-electrode noninvasive direct contact system was necessary to assess the electrical properties of bioengineered heart muscle and to further evaluate the efficacy of cardiac constructs. By culturing neonatal rat primary cardiac cells on a fibrin gel, we constructed 3D artificial heart muscle (3D-AHM, as described in previous studies, which were used in validating this novel system. Electrical and mechanical functional assessment of the tissues was performed, which yielded contractile forces of the tissues, electrical field potential characteristics, and tissue conduction velocities (CV (20–170 cm/s. Immunohistological evaluation revealed the formation of cardiac tissue structures and cardiomyocyte proliferation. EKG data analysis also yielded time delays between signals in the range of 0–38 ms with electrical maps showing some evidence of synchronous contraction within the fabricated tissues. This study demonstrates the effectiveness and practicality of our novel EKG measuring system to acquire distinct electrical metrics of 3D-AHM, which will aid in increasing the viability and applicability of cardiac tissue constructs.

  2. Development and assessment of Transpirative Deficit Index (D-TDI) for agricultural drought monitoring

    Science.gov (United States)

    Borghi, Anna; Rienzner, Michele; Gandolfi, Claudio; Facchi, Arianna

    2017-04-01

    Drought is a major cause of crop yield loss, both in rainfed and irrigated agroecosystems. In past decades, many approaches have been developed to assess agricultural drought, usually based on the monitoring or modelling of the soil water content condition. All these indices show weaknesses when applied for a real time drought monitoring and management at the local scale, since they do not consider explicitly crops and soil properties at an adequate spatial resolution. This work describes a newly developed agricultural drought index, called Transpirative Deficit Index (D-TDI), and assesses the results of its application over a study area of about 210 km2 within the Po River Plain (northern Italy). The index is based on transforming the interannual distribution of the transpirative deficit (potential crop transpiration minus actual transpiration), calculated daily by means of a spatially distributed conceptual hydrological model and cumulated over user-selected time-steps, to a standard normal distribution (following the approach proposed by the meteorological index SPI - Standard Precipitation Index). For the application to the study area a uniform maize crop cover (maize is the most widespread crop in the area) and 22-year (1993-2014) meteorological data series were considered. Simulation results consist in maps of the index cumulated over 10-day time steps over a mesh with cells of 250 m. A correlation analysis was carried out (1) to study the characteristics and the memory of D-TDI and to assess its intra- and inter-annual variability, (2) to assess the response of the agricultural drought (i.e., the information provided by D-TDI) to the meteorological drought computed through the SPI over different temporal steps. The D-TDI is positively auto-correlated with a persistence of 30 days, and positively cross-correlated to the SPI with a persistence of 40 days, demonstrating that D-TDI responds to meteorological forcing. Correlation analyses demonstrate that soils

  3. Will intra-specific differences in transpiration efficiency in wheat be maintained in a high CO₂ world? A FACE study.

    Science.gov (United States)

    Tausz-Posch, Sabine; Norton, Robert M; Seneweera, Saman; Fitzgerald, Glenn J; Tausz, Michael

    2013-06-01

    This study evaluates whether the target breeding trait of superior leaf level transpiration efficiency is still appropriate under increasing carbon dioxide levels of a future climate using a semi-arid cropping system as a model. Specifically, we investigated whether physiological traits governing leaf level transpiration efficiency, such as net assimilation rates (A(net)), stomatal conductance (g(s)) or stomatal sensitivity were affected differently between two Triticum aestivum L. cultivars differing in transpiration efficiency (cv. Drysdale, superior; cv. Hartog, low). Plants were grown under Free Air Carbon dioxide Enrichment (FACE, approximately 550 µmol mol⁻¹ or ambient CO₂ concentrations (approximately 390 µmol mol⁻¹). Mean A(net) (approximately 15% increase) and gs (approximately 25% decrease) were less affected by elevated [CO₂] than previously found in FACE-grown wheat (approximately 25% increase and approximately 32% decrease, respectively), potentially reflecting growth in a dry-land cropping system. In contrast to previous FACE studies, analyses of the Ball et al. model revealed an elevated [CO₂] effect on the slope of the linear regression by 12% indicating a decrease in stomatal sensitivity to the combination of [CO₂], photosynthesis rate and humidity. Differences between cultivars indicated greater transpiration efficiency for Drysdale with growth under elevated [CO₂] potentially increasing the response of this trait. This knowledge adds valuable information for crop germplasm improvement for future climates. Copyright © Physiologia Plantarum 2012.

  4. Size-mediated tree transpiration along soil drainage gradients in a boreal black spruce forest wildfire chronosequence.

    Science.gov (United States)

    Angstmann, J L; Ewers, B E; Kwon, H

    2012-05-01

    Boreal forests are crucial to climate change predictions because of their large land area and ability to sequester and store carbon, which is controlled by water availability. Heterogeneity of these forests is predicted to increase with climate change through more frequent wildfires, warmer, longer growing seasons and potential drainage of forested wetlands. This study aims at quantifying controls over tree transpiration with drainage condition, stand age and species in a central Canadian black spruce boreal forest. Heat dissipation sensors were installed in 2007 and data were collected through 2008 on 118 trees (69 Picea mariana (Mill.) Britton, Sterns & Poggenb. (black spruce), 25 Populus tremuloides Michx. (trembling aspen), 19 Pinus banksiana Lamb. (jack pine), 3 Larix laricina (Du Roi) K. Koch (tamarack) and 2 Salix spp. (willow)) at four stand ages (18, 43, 77 and 157 years old) each containing a well- and poorly-drained stand. Transpiration estimates from sap flux were expressed per unit xylem area, J(S), per unit ground area, E(C) and per unit leaf area, E(L), using sapwood (A(S)) and leaf (A(L)) area calculated from stand- and species-specific allometry. Soil drainage differences in transpiration were variable; only the 43- and 157-year-old poorly-drained stands had ∼ 50% higher total stand E(C) than well-drained locations. Total stand E(C) tended to decrease with stand age after an initial increase between the 18- and 43-year-old stands. Soil drainage differences in transpiration were controlled primarily by short-term physiological drivers such as vapor pressure deficit and soil moisture whereas stand age differences were controlled by successional species shifts and changes in tree size (i.e., A(S)). Future predictions of boreal climate change must include stand age, species and soil drainage heterogeneity to avoid biased estimates of forest water loss and latent energy exchanges.

  5. Leaf transpiration plays a role in phosphorus acquisition among a large set of chickpea genotypes.

    Science.gov (United States)

    Pang, Jiayin; Zhao, Hongxia; Bansal, Ruchi; Bohuon, Emilien; Lambers, Hans; Ryan, Megan H; Siddique, Kadambot H M

    2018-01-09

    Low availability of inorganic phosphorus (P) is considered a major constraint for crop productivity worldwide. A unique set of 266 chickpea (Cicer arietinum L.) genotypes, originating from 29 countries and with diverse genetic background, were used to study P-use efficiency. Plants were grown in pots containing sterilized river sand supplied with P at a rate of 10 μg P g -1 soil as FePO 4 , a poorly soluble form of P. The results showed large genotypic variation in plant growth, shoot P content, physiological P-use efficiency, and P-utilization efficiency in response to low P supply. Further investigation of a subset of 100 chickpea genotypes with contrasting growth performance showed significant differences in photosynthetic rate and photosynthetic P-use efficiency. A positive correlation was found between leaf P concentration and transpiration rate of the young fully expanded leaves. For the first time, our study has suggested a role of leaf transpiration in P acquisition, consistent with transpiration-driven mass flow in chickpea grown in low-P sandy soils. The identification of 6 genotypes with high plant growth, P-acquisition, and P-utilization efficiency suggests that the chickpea reference set can be used in breeding programmes to improve both P-acquisition and P-utilization efficiency under low-P conditions. © 2018 John Wiley & Sons Ltd.

  6. The contribution of large trees to total transpiration rates in a pre-montane tropical forest and its implications for selective logging practices

    Science.gov (United States)

    Orozco, G.; Moore, G. W.; Miller, G. R.

    2012-12-01

    In the humid tropics, conservationists generally prefer selective logging practices over clearcutting. Large valuable timber is removed while the remaining forest is left relatively undisturbed. However, little is known about the impact of selective logging on site water balance. Because large trees have very deep sapwood and exposed canopies, they tend to have high transpiration. The first objective was to evaluate the methods used for scaling sap flow measurements to the watershed with particular emphasis on large trees. The second objective of this study was to determine the relative contribution of large trees to site water balance. Our study was conducted in a pre-montane transitional forest at the Texas A&M University Soltis Center in north-central Costa Rica. During the period between January and July 2012, sap flux was monitored in a 30-m diameter plot within a 10-ha watershed. Two pairs of heat dissipation sensors were installed in the outer 0-20 mm of each of 15 trees selected to represent the full range of tree sizes. In six of the largest trees, depth profiles were recorded at 10-mm intervals to a depth of 60 mm using compensation heat pulse sensors. To estimate sapwood basal area of the entire watershed, a stand survey was conducted in three 30-m-diameter plots. In each plot, we measured basal area of all trees and estimated sapwood basal area from sapwood depth measured in nearly half of the trees. An estimated 36.5% of the total sapwood area in this watershed comes from the outer 20 mm of sapwood, with the remaining 63.5% of sapwood from depths deeper than 20 mm. Nearly 13% of sapwood is from depths beyond 60 mm. Sap velocity profiles indicate the highest flow rates occurred in the 0-2 cm depths, with declines of 17% and 25% in the 20-40 mm and 40-60 mm ranges, respectively. Our results demonstrate the need to measure sap velocity profiles in large tropical trees. If total transpiration had been estimated solely from the 0-20 mm heat dissipation

  7. Heat pulse probe measurements of soil water evaporation in a corn field

    Science.gov (United States)

    Latent heat fluxes from cropped fields consist of soil water evaporation and plant transpiration. It is difficult to accurately separate evapotranspiration into evaporation and transpiration. Heat pulse probes have been used to measure bare field subsurface soil water evaporation, however, the appl...

  8. The importance of optical methods for non-invasive measurements in the skin care industry

    Science.gov (United States)

    Stamatas, Georgios N.

    2010-02-01

    Pharmaceutical and cosmetic industries are concerned with treating skin disease, as well as maintaining and promoting skin health. They are dealing with a unique tissue that defines our body in space. As such, skin provides not only the natural boundary with the environment inhibiting body dehydration as well as penetration of exogenous aggressors to the body, it is also ideally situated for optical measurements. A plurality of spectroscopic and imaging methods is being used to understand skin physiology and pathology and document the effects of topically applied products on the skin. The obvious advantage of such methods over traditional biopsy techniques is the ability to measure the cutaneous tissue in vivo and non-invasively. In this work, we will review such applications of various spectroscopy and imaging methods in skin research that is of interest the cosmetic and pharmaceutical industry. Examples will be given on the importance of optical techniques in acquiring new insights about acne pathogenesis and infant skin development.

  9. Canopy Transpiration and Stomatal Responses to Prolonged Drought by a Dominant Desert Species in Central Asia

    Directory of Open Access Journals (Sweden)

    Daxing Gu

    2017-06-01

    Full Text Available In arid and semiarid lands, canopy transpiration and its dynamics depend largely on stomatal sensitivity to drought. In this study, the sap flow of a dominant species, Haloxylon ammodendron growing in Central Asian deserts, was monitored using Granier-type sensors, from which the canopy stomatal conductance was derived. The responses of canopy transpiration and stomatal conductance to environmental variables during the second half of the growing season, when annual prolonged drought occurred, was analyzed for four continuous years, from 2013 to 2016. A soil water content (SWC of 3% was identified as the lower soil water threshold for this species, below which the plant lost the ability for stomatal regulation on water loss and suffered the risk of mortality. Above this threshold, the sensitivity of canopy transpiration to vapor pressure deficit, VPD (K, was linearly correlated with SWC, which mainly resulted from different stomatal behaviors at varying drought intensities. Stomatal sensitivity to VPD (m/Gsref increased linearly with soil moisture deficit, inducing a shift from more anisohydric to a more isohydric stomatal behavior. The flexibility of stomatal behavior regarding soil drought was one key element facilitating the survival of H. ammodendron in such an extreme dry environment.

  10. Arbuscular Mycorrhiza Alleviates Restrictions to Substrate Water Flow and Delays Transpiration Limitation to Stronger Drought in Tomato.

    Science.gov (United States)

    Bitterlich, Michael; Sandmann, Martin; Graefe, Jan

    2018-01-01

    Arbuscular mycorrhizal fungi (AMF) proliferate in soil pores, on the surface of soil particles and affect soil structure. Although modifications in substrate moisture retention depend on structure and could influence plant water extraction, mycorrhizal impacts on water retention and hydraulic conductivity were rarely quantified. Hence, we asked whether inoculation with AMF affects substrate water retention, water transport properties and at which drought intensity those factors become limiting for plant transpiration. Solanum lycopersicum plants were set up in the glasshouse, inoculated or not with Funneliformis mosseae , and grown for 35 days under ample water supply. After mycorrhizal establishment, we harvested three sets of plants, one before (36 days after inoculation) and the second (day 42) and third (day 47) within a sequential drying episode. Sampling cores were introduced into pots before planting. After harvest, moisture retention and substrate conductivity properties were assessed and water retention and hydraulic conductivity models were fitted. A root water uptake model was adopted in order to identify the critical substrate moisture that induces soil derived transpiration limitation. Neither substrate porosity nor saturated water contents were affected by inoculation, but both declined after substrates dried. Drying also caused a decline in pot water capacity and hydraulic conductivity. Plant available water contents under wet (pF 1.8-4.2) and dry (pF 2.5-4.2) conditions increased in mycorrhizal substrates and were conserved after drying. Substrate hydraulic conductivity was higher in mycorrhizal pots before and during drought exposure. After withholding water from pots, higher substrate drying rates and lower substrate water potentials were found in mycorrhizal substrates. Mycorrhiza neither affected leaf area nor root weight or length. Consistently with higher substrate drying rates, AMF restored the plant hydraulic status, and increased plant

  11. Evaluation of a novel noninvasive continuous core temperature measurement system with a zero heat flux sensor using a manikin of the human body.

    Science.gov (United States)

    Brandes, Ivo F; Perl, Thorsten; Bauer, Martin; Bräuer, Anselm

    2015-02-01

    Reliable continuous perioperative core temperature measurement is of major importance. The pulmonary artery catheter is currently the gold standard for measuring core temperature but is invasive and expensive. Using a manikin, we evaluated the new, noninvasive SpotOn™ temperature monitoring system (SOT). With a sensor placed on the lateral forehead, SOT uses zero heat flux technology to noninvasively measure core temperature; and because the forehead is devoid of thermoregulatory arteriovenous shunts, a piece of bone cement served as a model of the frontal bone in this study. Bias, limits of agreements, long-term measurement stability, and the lowest measurable temperature of the device were investigated. Bias and limits of agreement of the temperature data of two SOTs and of the thermistor placed on the manikin's surface were calculated. Measurements obtained from SOTs were similar to thermistor values. The bias and limits of agreement lay within a predefined clinically acceptable range. Repeat measurements differed only slightly, and stayed stable for hours. Because of its temperature range, the SOT cannot be used to monitor temperatures below 28°C. In conclusion, the new SOT could provide a reliable, less invasive and cheaper alternative for measuring perioperative core temperature in routine clinical practice. Further clinical trials are needed to evaluate these results.

  12. Non-invasive cardiac output monitoring in neonates using bioreactance: a comparison with echocardiography.

    LENUS (Irish Health Repository)

    Weisz, Dany E

    2012-01-01

    Non-invasive cardiac output monitoring is a potentially useful clinical tool in the neonatal setting. Our aim was to evaluate a new method of non-invasive continuous cardiac output (CO) measurement (NICOM™) based on the principle of bioreactance in neonates.

  13. Non-invasive airway health measurement using synchrotron x-ray microscopy of high refractive index glass microbeads

    Energy Technology Data Exchange (ETDEWEB)

    Donnelley, Martin, E-mail: martin.donnelley@adelaide.edu.au; Farrow, Nigel; Parsons, David [Respiratory & Sleep Medicine, Women’s and Children’s Hospital, North Adelaide, South Australia (Australia); Robinson Research Institute, University of Adelaide, South Australia (Australia); School of Paediatrics and Reproductive Health, University of Adelaide, South Australia (Australia); Morgan, Kaye; Siu, Karen [School of Physics, Monash University, Victoria (Australia)

    2016-01-28

    Cystic fibrosis (CF) is caused by a gene defect that compromises the ability of the mucociliary transit (MCT) system to clear the airways of debris and pathogens. To directly characterise airway health and the effects of treatments we have developed a synchrotron X-ray microscopy method that non-invasively measures the local rate and patterns of MCT behaviour. Although the nasal airways of CF mice exhibit the CF pathophysiology, there is evidence that nasal MCT is not altered in CF mice1. The aim of this experiment was to determine if our non-invasive local airway health assessment method could identify differences in nasal MCT rate between normal and CF mice, information that is potentially lost in bulk MCT measurements. Experiments were performed on the BL20XU beamline at the SPring-8 Synchrotron in Japan. Mice were anaesthetized, a small quantity of micron-sized marker particles were delivered to the nose, and images of the nasal airways were acquired for 15 minutes. The nasal airways were treated with hypertonic saline or mannitol to increase surface hydration and MCT. Custom software was used to locate and track particles and calculate individual and bulk MCT rates. No statistically significant differences in MCT rate were found between normal and CF mouse nasal airways or between treatments. However, we hope that the improved sensitivity provided by this technique will accelerate the ability to identify useful CF lung disease-modifying interventions in small animal models, and enhance the development and efficacy of proposed new therapies.

  14. Non-invasive treatment efficacy evaluation for high-intensity focused ultrasound therapy using magnetically induced magnetoacoustic measurement

    Science.gov (United States)

    Guo, Gepu; Wang, Jiawei; Ma, Qingyu; Tu, Juan; Zhang, Dong

    2018-04-01

    Although the application of high intensity focused ultrasound (HIFU) has been demonstrated to be a non-invasive treatment technology for tumor therapy, the real-time temperature monitoring is still a key issue in the practical application. Based on the temperature-impedance relation, a fixed-point magnetically induced magnetoacoustic measurement technology of treatment efficacy evaluation for tissue thermocoagulation during HIFU therapy is developed with a sensitive indicator of critical temperature monitoring in this study. With the acoustic excitation of a focused transducer in the magnetoacoustic tomography with the magnetic induction system, the distributions of acoustic pressure, temperature, electrical conductivity, and acoustic source strength in the focal region are simulated, and the treatment time dependences of the peak amplitude and the corresponding amplitude derivative under various acoustic powers are also achieved. It is proved that the strength peak of acoustic sources is generated by tissue thermocoagulation with a sharp conductivity variation. The peak amplitude of the transducer collected magnetoacoustic signal increases accordingly along with the increase in the treatment time under a fixed acoustic power. When the temperature in the range with the radial and axial widths of about ±0.46 mm and ±2.2 mm reaches 69 °C, an obvious peak of the amplitude derivative can be achieved and used as a sensitive indicator of the critical status of treatment efficacy. The favorable results prove the feasibility of real-time non-invasive temperature monitoring and treatment efficacy evaluation for HIFU ablation using the magnetically induced magnetoacoustic measurement, and might provide a new strategy for accurate dose control during HIFU therapy.

  15. Non-invasive airway health measurement using synchrotron x-ray microscopy of high refractive index glass microbeads

    Science.gov (United States)

    Donnelley, Martin; Morgan, Kaye; Farrow, Nigel; Siu, Karen; Parsons, David

    2016-01-01

    Cystic fibrosis (CF) is caused by a gene defect that compromises the ability of the mucociliary transit (MCT) system to clear the airways of debris and pathogens. To directly characterise airway health and the effects of treatments we have developed a synchrotron X-ray microscopy method that non-invasively measures the local rate and patterns of MCT behaviour. Although the nasal airways of CF mice exhibit the CF pathophysiology, there is evidence that nasal MCT is not altered in CF mice1. The aim of this experiment was to determine if our non-invasive local airway health assessment method could identify differences in nasal MCT rate between normal and CF mice, information that is potentially lost in bulk MCT measurements. Experiments were performed on the BL20XU beamline at the SPring-8 Synchrotron in Japan. Mice were anaesthetized, a small quantity of micron-sized marker particles were delivered to the nose, and images of the nasal airways were acquired for 15 minutes. The nasal airways were treated with hypertonic saline or mannitol to increase surface hydration and MCT. Custom software was used to locate and track particles and calculate individual and bulk MCT rates. No statistically significant differences in MCT rate were found between normal and CF mouse nasal airways or between treatments. However, we hope that the improved sensitivity provided by this technique will accelerate the ability to identify useful CF lung disease-modifying interventions in small animal models, and enhance the development and efficacy of proposed new therapies.

  16. Noninvasive Quantification of Pancreatic Fat in Humans

    OpenAIRE

    Lingvay, Ildiko; Esser, Victoria; Legendre, Jaime L.; Price, Angela L.; Wertz, Kristen M.; Adams-Huet, Beverley; Zhang, Song; Unger, Roger H.; Szczepaniak, Lidia S.

    2009-01-01

    Objective: To validate magnetic resonance spectroscopy (MRS) as a tool for non-invasive quantification of pancreatic triglyceride (TG) content and to measure the pancreatic TG content in a diverse human population with a wide range of body mass index (BMI) and glucose control.

  17. Transpiration and stomatal conductance in a young secondary tropical montane forest: contrasts between native trees and invasive understorey shrubs.

    Science.gov (United States)

    Ghimire, Chandra Prasad; Bruijnzeel, L Adrian; Lubczynski, Maciek W; Zwartendijk, Bob W; Odongo, Vincent Omondi; Ravelona, Maafaka; van Meerveld, H J Ilja

    2018-04-21

    It has been suggested that vigorous secondary tropical forests can have very high transpiration rates, but sap flow and stomatal conductance dynamics of trees and shrubs in these forests are understudied. In an effort to address this knowledge gap, sap flow (thermal dissipation method, 12 trees) and stomatal conductance (porometry, six trees) were measured for young (5-7 years) Psiadia altissima (DC.) Drake trees, a widely occurring species dominating young regrowth following abandonment of swidden agriculture in upland eastern Madagascar. In addition, stomatal conductance (gs) was determined for three individuals of two locally common invasive shrubs (Lantana camara L. and Rubus moluccanus L.) during three periods with contrasting soil moisture conditions. Values of gs for the three investigated species were significantly higher and more sensitive to climatic conditions during the wet period compared with the dry period. Further, gs of the understorey shrubs was much more sensitive to soil moisture content than that of the trees. Tree transpiration rates (Ec) were relatively stable during the dry season and were only affected somewhat by soil water content at the end of the dry season, suggesting the trees had continued access to soil water despite drying out of the topsoil. The Ec exhibited a plateau-shaped relation with vapour pressure deficit (VPD), which was attributed to stomatal closure at high VPD. Vapour pressure deficit was the major driver of variation in Ec, during both the wet and the dry season. Overall water use of the trees was modest, possibly reflecting low site fertility after three swidden cultivation cycles. The observed contrast in gs response to soil water and climatic conditions for the trees and shrubs underscores the need to take root distributions into account when modelling transpiration from regenerating tropical forests.

  18. Noninvasive Ventilation in Premature Neonates.

    Science.gov (United States)

    Flanagan, Keri Ann

    2016-04-01

    The use of noninvasive ventilation is a constantly evolving treatment option for respiratory disease in the premature infant. The goals of these noninvasive ventilation techniques are to improve gas exchange in the premature infant's lungs and to minimize the need for intubation and invasive mechanical ventilation. The goals of this article are to consider various uses of nasal interfaces, discuss skin care and developmental positioning concerns faced by the bedside nurse, and discuss the medical management aimed to reduce morbidity and mortality. This article explores the nursing role, the advances in medical strategies for noninvasive ventilation, and the team approach to noninvasive ventilation use in this population. Search strategy included a literature review on medical databases, such as EBSCOhost, CINAHL, PubMed, and NeoReviews. Innovative products, nursing research on developmental positioning and skin care, and advanced medical management have led to better and safer outcomes for premature infants requiring noninvasive ventilation. The medical focus of avoiding long-term mechanical ventilation would not be possible without the technology to provide noninvasive ventilation to these premature infants and the watchful eye of the nurse in terms of careful positioning, preventing skin breakdown and facial scarring, and a proper seal to maximize ventilation accuracy. This article encourages nursing-based research to quantify some of the knowledge about skin care and positioning as well as research into most appropriate uses for noninvasive ventilation devices.

  19. Preliminary clinical evaluation of a noninvasive device for the measurement of coagulability in the elderly

    Directory of Open Access Journals (Sweden)

    Lerman Y

    2011-08-01

    = 0.304, corresponding to mean INR and PT values of 1.07 (SD = 0.3; control group, INR and PT ≥ 1 (N = 32, mean TMI = 1.24 (SD = 0.32. R2 of all control and warfarin patients (N = 67 was 0.55 (P < 0.00001. In summary, the newly introduced TMI index is significantly correlated with INR and PT values.Keywords: anticoagulant monitoring, elderly, noninvasive coagulability index, noninvasive measurement

  20. The impact of arm circumference on noninvasive oscillometric blood pressure referenced with intra-aortic blood pressure.

    Science.gov (United States)

    Shangguan, Qing; Wu, Yanqing; Xu, Jinsong; Su, Hai; Li, Juxiang; Hong, Kui; Cheng, Xiaoshu

    2015-12-01

    To investigate the influence of arm circumference (AC) on the brachial blood pressure (BP) measured with an adult cuff. This study included 208 patients (150 men, 61.0±8.0 years) for coronary angiography. Intra-aortic BP and noninvasive right brachial oscillometric BP (noninvasive BP) were measured simultaneously before coronary angiography. The noninvasive BP was measured using an electronic oscillometric device with an adult cuff (12×22 cm). The mid-ACs were measured. Thus, proper cuff-arm (≤26 cm) and small cuff (>26 cm) groups were created. The difference in intra-aortic and noninvasive BP was calculated as BPi-n. The correlation coefficients (r) between noninvasive and invasive systolic blood pressure (SBP), mean artery pressure, and diastolic blood pressure (DBP) were 0.88, 0.76, and 0.58, respectively. The SBPi-n was higher (7.9±1.6 vs. 5.2±1.1 mmHg), but the DBPi-n (3.9±1.4 vs. 6.1±1.0 mmHg, P26 cm. Among the four subgroups divided by 20-23, 24-26, 27-30, and 31-37 cm of AC, as the AC increased, the SBPi-n increased, but DBP decreased, resulting in noninvasive SBP 4.6 mmHg higher and noninvasive DBP 4.6 mmHg lower in the 31-37 cm group in comparison with the 20-23 cm group. When an adult cuff was used, the noninvasive oscillometric SBP was overestimated, but DBP was underestimated in the individuals with large arms against the intra-aortic BP.

  1. Abscisic acid-dependent changes in transpiration rate with SO/sub 2/ fumigation and the effects of sulfite and pH on stomatal aperture

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, N.; Maruta, I.; Sugahara, K.

    1980-01-01

    Transpiration rate of rice plants which contained extremely large amounts of abscisic acid (ABA) decreased rapidly with 2.0 ppm SO/sub 2/ fumigation, reached 20% of the initial level after 5 min exposure, then recovered slightly and thereafter remained constant. SO/sub 2/ fumigation of alday and tobacco (Nicotiana tabacum L. Samsun) which have a lower ABA content showed a 50% decrease in transpiration rate. Similarly, rates for wheat and tobacco (N. tabacum L. Samsun NN) which contained even smaller amounts of ABA than alday and tobacco (Samsun) decreased by 35 and 45%, respectively, 30 min after the beginning of the fumigation. In the cases of broad bean and tobacco (N. glutinosa L.) with low ABA contents, the rates slightly increased immediately after the start of the fumigation and began to decrease gradually 20 and 40 min later, respectively. The transpiration rates of corn and sorghum, in spite of their extremely low ABA contents, decreased significantly with SO/sub 2/ fumigation and reached 65 and 50% of the initial levels after 20 and 40 min exposure, respectively. Foliar application of 0.04 N HCl to peanut leaves remarkably depressed the transpiration rate, while the application of 0.04 M Na/sub 2/SO/sub 3/ decreased the rate only to the same level as water treatment. Foliar application of either HCl or Na/sub 2/SO/sub 3/ to radish leaves exerted no change in the transpiration rate. When 3 X 10/sup -4/ M ABA was applied to radish leaves prior to HCl and Na/sub 2/SO/sub 3/ treatment, the transpiration rate of radish was decreased by HCl application, but not by Na/sub 2/SO/sub 3/.

  2. Cooling Duct Analysis for Transpiration/Film Cooled Liquid Propellant Rocket Engines

    Science.gov (United States)

    Micklow, Gerald J.

    1996-01-01

    The development of a low cost space transportation system requires that the propulsion system be reusable, have long life, with good performance and use low cost propellants. Improved performance can be achieved by operating the engine at higher pressure and temperature levels than previous designs. Increasing the chamber pressure and temperature, however, will increase wall heating rates. This necessitates the need for active cooling methods such as film cooling or transpiration cooling. But active cooling can reduce the net thrust of the engine and add considerably to the design complexity. Recently, a metal drawing process has been patented where it is possible to fabricate plates with very small holes with high uniformity with a closely specified porosity. Such a metal plate could be used for an inexpensive transpiration/film cooled liner to meet the demands of advanced reusable rocket engines, if coolant mass flow rates could be controlled to satisfy wall cooling requirements and performance. The present study investigates the possibility of controlling the coolant mass flow rate through the porous material by simple non-active fluid dynamic means. The coolant will be supplied to the porous material by series of constant geometry slots machined on the exterior of the engine.

  3. Effect of postprandial hyperglycaemia in non-invasive measurement of cerebral metabolic rate of glucose in non-diabetic subjects

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchida, Tatsuro; Itoh, Harumi [Department of Radiology, Fukui Medical University, Matsuoka (Japan); Sadato, Norihiro; Nishizawa, Sadahiko; Yonekura, Yoshiharu [Biomedical Imaging Research Center, Fukui Medical University (Japan)

    2002-02-01

    The aim of this study was to determine the effect of postprandial hyperglycaemia (HG) on the non-invasive measurement of cerebral metabolic rate of glucose (CMRGlc). Five patients who had a meal within an hour before a fluorine-18 fluorodeoxyglucose positron emission tomography (FDG-PET) examination were recruited in this study. They underwent intermittent arterial blood sampling (measured input function), and, based on this sampling, CMRGlc was calculated using an autoradiographic method (CMRGlc{sub real}). Simulated input functions were generated based on standardised input function, body surface area and net injected dose of FDG, and simulated CMRGlc (CMRGlc{sub sim}) was also calculated. Percent error of the area under the curve (AUC) between measured (AUC{sub real}) and simulated input function (AUC{sub IFsim}) and percent error between CMRGlc{sub real} and CMRGlc{sub sim} were calculated. These values were compared with those obtained from a previous study conducted under fasting conditions (F). The serum glucose level in the HG group was significantly higher than that in the F group (165{+-}69 vs 100{+-}9 mg/dl, P=0.0007). Percent errors of AUC and CMRGlc in grey matter and white matter in HG were significantly higher than those in F (12.9%{+-}1.3% vs 3.5%{+-}2.2% in AUC, P=0.0015; 18.2%{+-}2.2% vs 2.9%{+-}1.9% in CMRGlc in grey matter, P=0.0028; 24.0%{+-}4.6% vs 3.4%{+-}2.2% in CMRGlc in white matter, P=0.0028). It is concluded that a non-invasive method of measuring CMRGlc should be applied only in non-diabetic subjects under fasting conditions. (orig.)

  4. Effect of postprandial hyperglycaemia in non-invasive measurement of cerebral metabolic rate of glucose in non-diabetic subjects

    International Nuclear Information System (INIS)

    Tsuchida, Tatsuro; Itoh, Harumi; Sadato, Norihiro; Nishizawa, Sadahiko; Yonekura, Yoshiharu

    2002-01-01

    The aim of this study was to determine the effect of postprandial hyperglycaemia (HG) on the non-invasive measurement of cerebral metabolic rate of glucose (CMRGlc). Five patients who had a meal within an hour before a fluorine-18 fluorodeoxyglucose positron emission tomography (FDG-PET) examination were recruited in this study. They underwent intermittent arterial blood sampling (measured input function), and, based on this sampling, CMRGlc was calculated using an autoradiographic method (CMRGlc real ). Simulated input functions were generated based on standardised input function, body surface area and net injected dose of FDG, and simulated CMRGlc (CMRGlc sim ) was also calculated. Percent error of the area under the curve (AUC) between measured (AUC real ) and simulated input function (AUC IFsim ) and percent error between CMRGlc real and CMRGlc sim were calculated. These values were compared with those obtained from a previous study conducted under fasting conditions (F). The serum glucose level in the HG group was significantly higher than that in the F group (165±69 vs 100±9 mg/dl, P=0.0007). Percent errors of AUC and CMRGlc in grey matter and white matter in HG were significantly higher than those in F (12.9%±1.3% vs 3.5%±2.2% in AUC, P=0.0015; 18.2%±2.2% vs 2.9%±1.9% in CMRGlc in grey matter, P=0.0028; 24.0%±4.6% vs 3.4%±2.2% in CMRGlc in white matter, P=0.0028). It is concluded that a non-invasive method of measuring CMRGlc should be applied only in non-diabetic subjects under fasting conditions. (orig.)

  5. Wavelength selection for portable noninvasive blood component measurement system based on spectral difference coefficient and dynamic spectrum

    Science.gov (United States)

    Feng, Ximeng; Li, Gang; Yu, Haixia; Wang, Shaohui; Yi, Xiaoqing; Lin, Ling

    2018-03-01

    Noninvasive blood component analysis by spectroscopy has been a hotspot in biomedical engineering in recent years. Dynamic spectrum provides an excellent idea for noninvasive blood component measurement, but studies have been limited to the application of broadband light sources and high-resolution spectroscopy instruments. In order to remove redundant information, a more effective wavelength selection method has been presented in this paper. In contrast to many common wavelength selection methods, this method is based on sensing mechanism which has a clear mechanism and can effectively avoid the noise from acquisition system. The spectral difference coefficient was theoretically proved to have a guiding significance for wavelength selection. After theoretical analysis, the multi-band spectral difference coefficient-wavelength selection method combining with the dynamic spectrum was proposed. An experimental analysis based on clinical trial data from 200 volunteers has been conducted to illustrate the effectiveness of this method. The extreme learning machine was used to develop the calibration models between the dynamic spectrum data and hemoglobin concentration. The experiment result shows that the prediction precision of hemoglobin concentration using multi-band spectral difference coefficient-wavelength selection method is higher compared with other methods.

  6. Transpirational water use and its regulation in the mountainous terrain of S. Korea

    Science.gov (United States)

    Otieno Dennis, O.; Eunyoung, J.; Sinkyu, K.; Tenhunen, J. D.

    2009-12-01

    Quantifying water use by forests growing on complex mountainous terrain is difficult and understanding of controls on water use by these forests a challenge. Yet mountains are crucial as water towers and better understanding of their hydrology and ecology is critical for sustainable management. Consequently, there is a growing need for new research approaches designed with attention to the particular needs and constraints of large-scale studies and that have the potential to generate reliable and accurate data. The use of a combination of different sapflow-measurement techniques provides a unique opportunity to monitor water use by the understory and canopy forest tree species at micro-scale, allowing for accurate estimation of total forest water use. The obtained data, in conjunction with intensively measured climatic variables, allow for better understanding and interpretation of transpiration results. A research initiative under the International Training Group: Complex Terrain and Ecological Heterogeneity (TERRECO) seeks to address pertinent issues related to forest water use and production in complex terrain. Stem Heat balance (SHB) and Heat Dissipation techniques have been employed to measure sapflow in the understory woody plants and tree branches and on stems of canopy trees respectively. Measurements have been stratified to account for differences in tree sizes and species diversity. To better understand the data, we are intensively monitoring soil moisture at 5, 10 and 30 cm depths, in addition to a range of micrometeorology sensors that have been set up below, within and above the canopy. These measurements have been planned, taking into account altitudinal/elevation gradient, aspect and within site differences in species composition and tree sizes and to generate data for large-scale modeling of the entire catchment. A total of 70 trees from 9 species growing in six different locations at varying elevations and aspects are being monitored. Peak daily

  7. Transient water stress in a vegetation canopy - Simulations and measurements

    Science.gov (United States)

    Carlson, Toby N.; Belles, James E.; Gillies, Robert R.

    1991-01-01

    Consideration is given to observational and modeling evidence of transient water stress, the effects of the transpiration plateau on the canopy radiometric temperature, and the factors responsible for the onset of the transpiration plateau, such as soil moisture. Attention is also given to the point at which the transient stress can be detected by remote measurement of surface temperature.

  8. Raman Spectroscopy as a Promising Tool for Noninvasive Point-of-Care Glucose Monitoring

    NARCIS (Netherlands)

    Scholtes-Timmerman, M.J.; Bijlsma, S.; Fokkert, M.J.; Slingerland, R.; Veen, S.J.F. van

    2014-01-01

    Self-monitoring of glucose is important for managing diabetes. Noninvasive glucose monitors are not yet available, but patients would benefit highly from such a device. We present results that may lead to a novel, point-of-care noninvasive system to measure blood glucose based on Raman spectroscopy.

  9. [Response processes of Aralia elata photosynthesis and transpiration to light and soil moisture].

    Science.gov (United States)

    Chen, Jian; Zhang, Guang-Can; Zhang, Shu-Yong; Wang, Meng-Jun

    2008-06-01

    By using CIRAS-2 portable photosynthesis system, the light response processes of Aralia elata photosynthesis and transpiration under different soil moisture conditions were studied, aimed to understand the adaptability of A. elata to different light and soil moisture conditions. The results showed that the response processes of A. elata net photosynthetic rate (Pn), transpiration rate (Tr), and water use efficiency (WUE) to photon flux density (PFD) were different. With the increasing PFD in the range of 800-1800 micromol x m2(-2) x s(-1), Pn changed less, Tr decreased gradually, while WUE increased obviously. The light saturation point (LSP) and light compensation point (LCP) were about 800 and 30 micromol m(-2) x s(-1), respectively, and less affected by soil water content; while the apparent photosynthetic quantum yield (Phi) and dark respiratory rate (Rd) were more affected by the moisture content. The Pn and WUE had evident threshold responses to the variations of soil water content. When the soil relative water content (RWC) was in the range of 44%-79%, A. elata could have higher levels of Pn and WUE.

  10. Azimuthal and radial variations in sap flux density and effects on stand-scale transpiration estimates in a Japanese cedar forest.

    Science.gov (United States)

    Shinohara, Yoshinori; Tsuruta, Kenji; Ogura, Akira; Noto, Fumikazu; Komatsu, Hikaru; Otsuki, Kyoichi; Maruyama, Toshisuke

    2013-05-01

    Understanding radial and azimuthal variation, and tree-to-tree variation, in sap flux density (Fd) as sources of uncertainty is important for estimating transpiration using sap flow techniques. In a Japanese cedar (Cryptomeria japonica D. Don.) forest, Fd was measured at several depths and aspects for 18 trees, using heat dissipation (Granier-type) sensors. We observed considerable azimuthal variation in Fd. The coefficient of variation (CV) calculated from Fd at a depth of 0-20 mm (Fd1) and Fd at a depth of 20-40 mm (Fd2) ranged from 6.7 to 37.6% (mean = 28.3%) and from 19.6 to 62.5% (mean = 34.6%) for the -azimuthal directions. Fd at the north aspect averaged for nine trees, for which azimuthal measurements were made, was -obviously smaller than Fd at the other three aspects (i.e., west, south and east) averaged for the nine trees. Fd1 averaged for the nine trees was significantly larger than Fd2 averaged for the nine trees. The error for stand-scale transpiration (E) estimates caused by ignoring the azimuthal variation was larger than that caused by ignoring the radial variation. The error caused by ignoring tree-to-tree variation was larger than that caused by ignoring both radial and azimuthal variations. Thus, tree-to-tree variation in Fd would be more important than both radial and azimuthal variations in Fd for E estimation. However, Fd for each tree should not be measured at a consistent aspect but should be measured at various aspects to make accurate E estimates and to avoid a risk of error caused by the relationship of Fd to aspect.

  11. Unconstrained and Noninvasive Measurement of Swimming Behavior of Small Fish Based on Ventilatory Signals

    Science.gov (United States)

    Kitayama, Shigehisa; Soh, Zu; Hirano, Akira; Tsuji, Toshio; Takiguchi, Noboru; Ohtake, Hisao

    Ventilatory signal is a kind of bioelectric signals reflecting the ventilatory conditions of fish, and has received recent attention as an indicator for assessment of water quality, since breathing is adjusted by the respiratory center according to changes in the underwater environment surrounding the fish. The signals are thus beginning to be used in bioassay systems for water examination. Other than ventilatory conditions, swimming behavior also contains important information for water examination. The conventional bioassay systems, however, only measure either ventilatory signals or swimming behavior. This paper proposes a new unconstrained and noninvasive measurement method that is capable of conducting ventilatory signal measurement and behavioral analysis of fish at the same time. The proposed method estimates the position and the velocity of a fish in free-swimming conditions using power spectrum distribution of measured ventilatory signals from multiple electrodes. This allowed the system to avoid using a camera system which requires light sources. In order to validate estimation accuracy, the position and the velocity estimated by the proposed method were compared to those obtained from video analysis. The results confirmed that the estimated error of the fish positions was within the size of fish, and the correlation coefficient between the velocities was 0.906. The proposed method thus not only can measure the ventilatory signals, but also performs behavioral analysis as accurate as using a video camera.

  12. [Photosynthetic rate, transpiration rate, and water use efficiency of cotton canopy in oasis edge of Linze].

    Science.gov (United States)

    Xie, Ting-Ting; Su, Pei-Xi; Gao, Song

    2010-06-01

    The measurement system of Li-8100 carbon flux and the modified assimilation chamber were used to study the photosynthetic characteristics of cotton (Gossypium hirsutum L.) canopy in the oasis edge region in middle reach of Heihe River Basin, mid Hexi Corridor of Gansu. At the experimental site, soil respiration and evaporation rates were significantly higher in late June than in early August, and the diurnal variation of canopy photosynthetic rate showed single-peak type. The photosynthetic rate was significantly higher (P transpiration rate also presented single-peak type, with the daily average value in late June and early August being (3.10 +/- 0.34) mmol H2O x m(-2) x s(-1) and (1.60 +/- 0.26) mmol H2O x m(-2) x s(-1), respectively, and differed significantly (P efficiency in late June and early August was (15.67 +/- 1.77) mmol CO2 x mol(-1) H2O and (23.08 +/- 5.54) mmol CO2 x mol(-1) H2O, respectively, but the difference was not significant (P > 0.05). Both in late June and in early August, the canopy photosynthetic rate was positively correlated with air temperature, PAR, and soil moisture content, suggesting that there was no midday depression of photosynthesis in the two periods. In August, the canopy photosynthetic rate and transpiration rate decreased significantly, because of the lower soil moisture content and leaf senescence, but the canopy water use efficiency had no significant decrease.

  13. Canopy transpiration of pure and mixed forest stands with variable abundance of European beech

    Science.gov (United States)

    Gebauer, Tobias; Horna, Viviana; Leuschner, Christoph

    2012-06-01

    SummaryThe importance of tree species identity and diversity for biogeochemical cycles in forests is not well understood. In the past, forestry has widely converted mixed forests to pure stands while contemporary forest policy often prefers mixed stands again. However, the hydrological consequences of these changes remain unclear. We tested the hypotheses (i) that significant differences in water use per ground area exist among the tree species of temperate mixed forests and that these differences are more relevant for the amount of stand-level canopy transpiration (Ec) than putative complementarity effects of tree water use, and (ii) that the seasonal patterns of Ec in mixed stands are significantly influenced by the identity of the present tree species. We measured xylem sap flux during 2005 (average precipitation) and 2006 (relatively dry) synchronously in three nearby old-growth forest stands on similar soil differing in the abundance of European beech (pure beech stand, 3-species stand with 70% beech, 5-species stand with sapwood area basis, reflecting a considerable variation in hydraulic architecture and leaf conductance regulation among the co-existing species. Moreover, transpiration per crown projection area (ECA) also differed up to 5-fold among the different species in the mixed stands, probably reflecting contrasting sapwood/crown area ratios. We conclude that Ec is not principally higher in mixed forests than in pure beech stands. However, tree species-specific traits have an important influence on the height of Ec and affect its seasonal variation. Species with a relatively high ECA (notably Tilia) may exhaust soil water reserves early in summer, thereby increasing drought stress in dry years and possibly reducing ecosystem stability in mixed forests.

  14. Non-invasive optical measurement of cerebral metabolism and hemodynamics in infants.

    Science.gov (United States)

    Lin, Pei-Yi; Roche-Labarbe, Nadege; Dehaes, Mathieu; Carp, Stefan; Fenoglio, Angela; Barbieri, Beniamino; Hagan, Katherine; Grant, P Ellen; Franceschini, Maria Angela

    2013-03-14

    Perinatal brain injury remains a significant cause of infant mortality and morbidity, but there is not yet an effective bedside tool that can accurately screen for brain injury, monitor injury evolution, or assess response to therapy. The energy used by neurons is derived largely from tissue oxidative metabolism, and neural hyperactivity and cell death are reflected by corresponding changes in cerebral oxygen metabolism (CMRO₂). Thus, measures of CMRO₂ are reflective of neuronal viability and provide critical diagnostic information, making CMRO₂ an ideal target for bedside measurement of brain health. Brain-imaging techniques such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT) yield measures of cerebral glucose and oxygen metabolism, but these techniques require the administration of radionucleotides, so they are used in only the most acute cases. Continuous-wave near-infrared spectroscopy (CWNIRS) provides non-invasive and non-ionizing radiation measures of hemoglobin oxygen saturation (SO₂) as a surrogate for cerebral oxygen consumption. However, SO₂ is less than ideal as a surrogate for cerebral oxygen metabolism as it is influenced by both oxygen delivery and consumption. Furthermore, measurements of SO₂ are not sensitive enough to detect brain injury hours after the insult, because oxygen consumption and delivery reach equilibrium after acute transients. We investigated the possibility of using more sophisticated NIRS optical methods to quantify cerebral oxygen metabolism at the bedside in healthy and brain-injured newborns. More specifically, we combined the frequency-domain NIRS (FDNIRS) measure of SO2 with the diffuse correlation spectroscopy (DCS) measure of blood flow index (CBFi) to yield an index of CMRO₂ (CMRO₂i). With the combined FDNIRS/DCS system we are able to quantify cerebral metabolism and hemodynamics. This represents an improvement over CWNIRS for detecting brain health, brain

  15. Tuberous Roots Yield, Transpiration Rate, Stomatal Conductance and Water Use Efficiency of Divergent Cassava Clones as Influenced by Climate and Growth Stage

    International Nuclear Information System (INIS)

    Githunguri, C.M; Chewa, J.A; Ekanayake, I.J

    1999-01-01

    Cassava roots provide a cheap source of dietary energy to millions of people in the tropics. Variations in yield, stomatal conductance, transpiration rate and water use efficiency occur due to various factors. This makes selection of clones with wide ecological adaptation and high yield difficult. The influence of crop age and agroecozones (AEZ) in Nigeria on above parametres were studied. The tested AEZs were Sudan savanna (Minjibir), Southern Guinea savanna (Mokwa) and forest-savanna transition (Ibadan) AEZ. The environment plays a significant role in determining root yield with plant age playing a bigger role at the early stages. Results suggest root development was restricted by low moisture stress. Cassava ought to be harvested at eight months after planting (MAP) rather than at 12 MAP in order to obtain maximum yields. Yields at Mokwa were significantly higher than both Minjibir and Ibadan suggesting that cassava is not a crop for either forest or semi arid zones. During both seasons Minjbir had the highest stomatal conductance trend while Ibadan had the lowest. Stomatal conductance at Minjibir becomes critical at 12 MAP. The highest transpiration rate was recorded at Minijibir at 4 and 12 MAP. The lowest transpiration rate ws observed at Ibadan. The lowest transpiration rate was also observed during drought. There was a close positive close relationship between tuberous roots yield and transpiration. The lowest and highest water use efficiency (WUE) was recorded at 4 and 8 MAP during rains. The lowest and the highest WUE was recorded at Ibadan and Mokwa respectively. The two seasons trends were similar. Clone TMS 50395 had the highest WUE. Tere was close positive relationship between WUE and tuberous roots yield

  16. Noninvasive Urodynamic Evaluation

    Directory of Open Access Journals (Sweden)

    Carlos Arturo Levi D'Ancona

    2012-09-01

    Full Text Available The longevity of the world's population is increasing, and among male patients, complaints of lower urinary tract symptoms (LUTS are growing. Testing to diagnose LUTS and to differentiate between the various causes should be quick, easy, cheap, specific, not too bothersome for the patient, and noninvasive or minimally so. Urodynamic evaluation is the gold standard for diagnosing bladder outlet obstruction (BOO but presents some inconveniences such as embarrassment, pain, and dysuria; furthermore, 19% of cases experience urinary retention, macroscopic hematuria, or urinary tract infection. A greater number of resources in the diagnostic armamentarium could increase the opportunity for selecting less invasive tests. A number of groups have risen to this challenge and have formulated and developed ideas and technologies to improve noninvasive methods to diagnosis BOO. These techniques start with flowmetry, an increase in the interest of ultrasound, and finally the performance of urodynamic evaluation without a urethral catheter. Flowmetry is not sufficient for confirming a diagnosis of BOO. Ultrasound of the prostate and the bladder can help to assess BOO noninvasively in all men and can be useful for evaluating the value of BOO at assessment and during treatment of benign prostatic hyperplasia patients in the future. The great advantages of noninvasive urodynamics are as follows: minimal discomfort, minimal risk of urinary tract infection, and low cost. This method can be repeated many times, permitting the evaluation of obstruction during clinical treatment. A urethral connector should be used to diagnose BOO, in evaluation for surgery, and in screening for treatment. In the future, noninvasive urodynamics can be used to identify patients with BOO to initiate early medical treatment and evaluate the results. This approach permits the possibility of performing surgery before detrusor damage occurs.

  17. Estimation of coronary wave intensity analysis using noninvasive techniques and its application to exercise physiology.

    Science.gov (United States)

    Broyd, Christopher J; Nijjer, Sukhjinder; Sen, Sayan; Petraco, Ricardo; Jones, Siana; Al-Lamee, Rasha; Foin, Nicolas; Al-Bustami, Mahmud; Sethi, Amarjit; Kaprielian, Raffi; Ramrakha, Punit; Khan, Masood; Malik, Iqbal S; Francis, Darrel P; Parker, Kim; Hughes, Alun D; Mikhail, Ghada W; Mayet, Jamil; Davies, Justin E

    2016-03-01

    Wave intensity analysis (WIA) has found particular applicability in the coronary circulation where it can quantify traveling waves that accelerate and decelerate blood flow. The most important wave for the regulation of flow is the backward-traveling decompression wave (BDW). Coronary WIA has hitherto always been calculated from invasive measures of pressure and flow. However, recently it has become feasible to obtain estimates of these waveforms noninvasively. In this study we set out to assess the agreement between invasive and noninvasive coronary WIA at rest and measure the effect of exercise. Twenty-two patients (mean age 60) with unobstructed coronaries underwent invasive WIA in the left anterior descending artery (LAD). Immediately afterwards, noninvasive LAD flow and pressure were recorded and WIA calculated from pulsed-wave Doppler coronary flow velocity and central blood pressure waveforms measured using a cuff-based technique. Nine of these patients underwent noninvasive coronary WIA assessment during exercise. A pattern of six waves were observed in both modalities. The BDW was similar between invasive and noninvasive measures [peak: 14.9 ± 7.8 vs. -13.8 ± 7.1 × 10(4) W·m(-2)·s(-2), concordance correlation coefficient (CCC): 0.73, P Exercise increased the BDW: at maximum exercise peak BDW was -47.0 ± 29.5 × 10(4) W·m(-2)·s(-2) (P Physiological Society.

  18. Noninvasive ultrasonic measurements of temperature distribution and heat fluxes in nuclear systems

    International Nuclear Information System (INIS)

    Jia, Yunlu; Skliar, Mikhail

    2015-01-01

    Measurements of temperature and heat fluxes through structural materials are important in many nuclear systems. One such example is dry storage casks (DSC) that are built to store highly radioactive materials, such as spent nuclear reactor fuel. The temperature inside casks must be maintained within allowable limits of the fuel assemblies and the DSC components because many degradation mechanisms are thermally controlled. In order to obtain direct, real-time measurements of temperature distribution without insertion of sensing elements into harsh environment of storage casks, we are developing noninvasive ultrasound (US) methods for measuring spatial distribution of temperature inside solid materials, such as concrete overpacks, steel casings, thimbles, and rods. The measured temperature distribution can then be used to obtain heat fluxes that provide calorimetric characterisation of the fuel decay, fuel distribution inside the cask, its integrity, and accounting of nuclear materials. The physical basis of the proposed approach is the temperature dependence of the speed of sound in solids. By measuring the time it takes an ultrasound signal to travel a known distance between a transducer and a receiver, the indication about the temperature distribution along the path of the ultrasound propagation may be obtained. However, when temperature along the path of US propagation is non-uniform, the overall time of flight of an ultrasound signal depends on the temperature distribution in a complex and unknown way. To overcome this difficulty, the central idea of our method is to create an US propagation path inside material of interest which incorporates partial ultrasound reflectors (back scatterers) at known locations and use the train of created multiple echoes to estimate the temperature distribution. In this paper, we discuss experimental validation of this approach, the achievable accuracy and spatial resolution of the measured temperature profile, and stress the

  19. Observational study comparing non-invasive blood pressure measurement at the arm and ankle during caesarean section.

    Science.gov (United States)

    Drake, M J P; Hill, J S

    2013-05-01

    Upper-arm non-invasive blood pressure measurement during caesarean section can be uncomfortable and unreliable because of movement artefact in the conscious parturient. We aimed to determine whether ankle blood pressure measurement could be used instead in this patient group by comparing concurrent arm and ankle blood pressure measured throughout elective caesarean section under regional anaesthesia in 64 term parturients. Bland-Altman analysis of mean difference (95% limits of agreement [range]) between the ankle and arm was 11.2 (-20.3 to +42.7 [-67 to +102]) mmHg for systolic arterial pressure, -0.5 (-21.0 to +19.9 [-44 to +91]) mmHg for mean arterial pressure and -3.8 (-25.3 to +17.8 [-41 to +94]) mmHg for diastolic arterial pressure. Although ankle blood pressure measurement is well tolerated and allows greater mobility of the arms than measurement from the arm, the degree of discrepancy between the two sites is unacceptable to allow routine use of ankle blood pressure measurement, especially for systolic arterial pressure. However, ankle blood pressure measurement may be a useful alternative in situations where arm blood pressure measurement is difficult or impossible. Anaesthesia © 2013 The Association of Anaesthetists of Great Britain and Ireland.

  20. Genotypic variation in transpiration efficiency due to differences in photosynthetic capacity among sugarcane-related clones.

    Science.gov (United States)

    Li, Chunjia; Jackson, Phillip; Lu, Xin; Xu, Chaohua; Cai, Qing; Basnayake, Jayapathi; Lakshmanan, Prakash; Ghannoum, Oula; Fan, Yuanhong

    2017-04-01

    Sugarcane, derived from the hybridization of Saccharum officinarum×Saccharum spontaneum, is a vegetative crop in which the final yield is highly driven by culm biomass production. Cane yield under irrigated or rain-fed conditions could be improved by developing genotypes with leaves that have high intrinsic transpiration efficiency, TEi (CO2 assimilation/stomatal conductance), provided this is not offset by negative impacts from reduced conductance and growth rates. This study was conducted to partition genotypic variation in TEi among a sample of diverse clones from the Chinese collection of sugarcane-related germplasm into that due to variation in stomatal conductance versus that due to variation in photosynthetic capacity. A secondary goal was to define protocols for optimized larger-scale screening of germplasm collections. Genotypic variation in TEi was attributed to significant variation in both stomatal and photosynthetic components. A number of genotypes were found to possess high TEi as a result of high photosynthetic capacity. This trait combination is expected to be of significant breeding value. It was determined that a small number of observations (16) is sufficient for efficiently screening TEi in larger populations of sugarcane genotypes The research methodology and results reported are encouraging in supporting a larger-scale screening and introgression of high transpiration efficiency in sugarcane breeding. However, further research is required to quantify narrow sense heritability as well as the leaf-to-field translational potential of genotypic variation in transpiration efficiency-related traits observed in this study. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  1. Five-band microwave radiometer system for noninvasive brain temperature measurement in newborn babies: Phantom experiment and confidence interval

    Science.gov (United States)

    Sugiura, T.; Hirata, H.; Hand, J. W.; van Leeuwen, J. M. J.; Mizushina, S.

    2011-10-01

    Clinical trials of hypothermic brain treatment for newborn babies are currently hindered by the difficulty in measuring deep brain temperatures. As one of the possible methods for noninvasive and continuous temperature monitoring that is completely passive and inherently safe is passive microwave radiometry (MWR). We have developed a five-band microwave radiometer system with a single dual-polarized, rectangular waveguide antenna operating within the 1-4 GHz range and a method for retrieving the temperature profile from five radiometric brightness temperatures. This paper addresses (1) the temperature calibration for five microwave receivers, (2) the measurement experiment using a phantom model that mimics the temperature profile in a newborn baby, and (3) the feasibility for noninvasive monitoring of deep brain temperatures. Temperature resolutions were 0.103, 0.129, 0.138, 0.105 and 0.111 K for 1.2, 1.65, 2.3, 3.0 and 3.6 GHz receivers, respectively. The precision of temperature estimation (2σ confidence interval) was about 0.7°C at a 5-cm depth from the phantom surface. Accuracy, which is the difference between the estimated temperature using this system and the measured temperature by a thermocouple at a depth of 5 cm, was about 2°C. The current result is not satisfactory for clinical application because the clinical requirement for accuracy must be better than 1°C for both precision and accuracy at a depth of 5 cm. Since a couple of possible causes for this inaccuracy have been identified, we believe that the system can take a step closer to the clinical application of MWR for hypothermic rescue treatment.

  2. Non-invasive measurement and imaging of tissue iron oxide nanoparticle concentrations in vivo using proton relaxometry

    International Nuclear Information System (INIS)

    St Pierre, T G; Clark, P R; Chua-anusorn, W; Fleming, A; Pardoe, H; Jeffrey, G P; Olynyk, J K; Pootrakul, P; Jones, S; Moroz, P

    2005-01-01

    Magnetic nanoparticles and microparticles can be found in biological tissues for a variety of reasons including pathological deposition of biogenic particles, administration of synthetic particles for scientific or clinical reasons, and the inclusion of biogenic magnetic particles for the sensing of the geomagnetic field. In applied magnetic fields, the magnetisation of tissue protons can be manipulated with radiofrequency radiation such that the macroscopic magnetisation of the protons precesses freely in the plane perpendicular to the applied static field. The presence of magnetic particles within tissue enhances the rate of dephasing of proton precession with higher concentrations of particles resulting in higher dephasing rates. Magnetic resonance imaging instruments can be used to measure and image the rate of decay of spin echo recoverable proton transverse magnetisation (R 2 ) within tissues enabling the measurement and imaging of magnetic particle concentrations with the aid of suitable calibration curves. Applications include the non-invasive measurement of liver iron concentrations in iron-overload disorders and measurement and imaging of magnetic particle concentrations used in magnetic hyperthermia therapy. Future applications may include the tracking of magnetically labelled drugs or biomolecules and the measurement of fibrotic liver damage

  3. Noninvasive optoacoustic system for rapid diagnostics and management of circulatory shock

    Science.gov (United States)

    Esenaliev, Rinat O.; Petrov, Irene Y.; Petrov, Yuriy; Kinsky, Michael; Prough, Donald S.

    2012-02-01

    Circulatory shock is lethal, if not promptly diagnosed and effectively treated. Typically, circulatory shock resuscitation is guided by blood pressure, heart rate, and mental status, which have poor predictive value. In patients, in whom early goaldirected therapy was applied using central venous oxygenation measurement, a substantial reduction of mortality was reported (from 46.5% to 30%). However, central venous catheterization is invasive, time-consuming and often results in complications. We proposed to use the optoacoustic technique for noninvasive, rapid assessment of central venous oxygenation. In our previous works we demonstrated that the optoacoustic technique can provide measurement of blood oxygenation in veins and arteries due to high contrast and high resolution. In this work we developed a novel optoacoustic system for noninvasive, automatic, real-time, and continuous measurement of central venous oxygenation. We performed pilot clinical tests of the system in human subjects with different oxygenation in the internal jugular vein and subclavian vein. A novel optoacoustic interface incorporating highly-sensitive optoacoustic probes and standard ultrasound imaging probes were developed and built for the study. Ultrasound imaging systems Vivid i and hand-held Vscan (GE Healthcare) as well as Site-Rite 5 (C.R. Bard) were used in the study. We developed a special algorithm for oxygenation monitoring with minimal influence of overlying tissue. The data demonstrate that the system provides precise measurement of venous oxygenation continuously and in real time. Both current value of the venous oxygenation and trend (in absolute values and for specified time intervals) are displayed in the system. The data indicate that: 1) the optoacoustic system developed by our group is capable of noninvasive measurement of blood oxygenation in specific veins; 2) clinical ultrasound imaging systems can facilitate optoacoustic probing of specific blood vessels; 3) the

  4. Seasonal, synoptic and diurnal variation of atmospheric water-isotopologues in the boundary layer of Southwestern Germany caused by plant transpiration, cold-front passages and dewfall.

    Science.gov (United States)

    Christner, Emanuel; Dyroff, Christoph; Kohler, Martin; Zahn, Andreas; Gonzales, Yenny; Schneider, Matthias

    2013-04-01

    Atmospheric water is an enormously crucial trace gas. It is responsible for ~70 % of the natural greenhouse effect (Schmidt et al., JGR, 2010) and carries huge amounts of latent heat. The isotopic composition of water vapor is an elegant tracer for a better understanding and quantification of the extremely complex and variable hydrological cycle in Earth's atmosphere (evaporation, cloud condensation, rainout, re-evaporation, snow), which in turn is a prerequisite to improve climate modeling and predictions. As H216O, H218O and HDO differ in vapor pressure and mass, isotope fractionation occurs due to condensation, evaporation and diffusion processes. In contrast to that, plants are able to transpire water with almost no isotope fractionation. For that reason the ratio of isotopologue concentrations in the boundary layer (BL) provides, compared to humidity measurements alone, independent and additional constraints for quantifying the strength of evaporation and transpiration. Furthermore the isotope ratios contain information about transport history of an air mass and microphysical processes, that is not accessible by humidity measurements. Within the project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water) a commercial Picarro Analyzer L2120-i is operated at Karlsruhe in Southwestern Germany, which is continuously measuring the isotopologues H216O, HDO and H218O of atmospheric water vapor since January 2012. A one year record of H216O, HDO and H218O shows clear seasonal, synoptic and diurnal characteristics and reveals the main driving processes affecting the isotopic composition of water vapor in the Middle European BL. Changes in continental plant transpiration and evaporation throughout the year lead to a slow seasonal HDO/H216O-variation, that cannot be explained by pure Rayleigh condensation. Furthermore, cold-front passages from NW lead to fast and pronounced depletion of the HDO/H216O-ratio within

  5. The alpha-subunit of the Arabidopsis heterotrimeric G protein, GPA1, is a regulator of transpiration efficiency.

    Science.gov (United States)

    Nilson, Sarah E; Assmann, Sarah M

    2010-04-01

    Land plants must balance CO2 assimilation with transpiration in order to minimize drought stress and maximize their reproductive success. The ratio of assimilation to transpiration is called transpiration efficiency (TE). TE is under genetic control, although only one specific gene, ERECTA, has been shown to regulate TE. We have found that the alpha-subunit of the heterotrimeric G protein in Arabidopsis (Arabidopsis thaliana), GPA1, is a regulator of TE. gpa1 mutants, despite having guard cells that are hyposensitive to abscisic acid-induced inhibition of stomatal opening, have increased TE under ample water and drought stress conditions and when treated with exogenous abscisic acid. Leaf-level gas-exchange analysis shows that gpa1 mutants have wild-type assimilation versus internal CO2 concentration responses but exhibit reduced stomatal conductance compared with ecotype Columbia at ambient and below-ambient internal CO2 concentrations. The increased TE and reduced whole leaf stomatal conductance of gpa1 can be primarily attributed to stomatal density, which is reduced in gpa1 mutants. GPA1 regulates stomatal density via the control of epidermal cell size and stomata formation. GPA1 promoter::beta-glucuronidase lines indicate that the GPA1 promoter is active in the stomatal cell lineage, further supporting a function for GPA1 in stomatal development in true leaves.

  6. Skin-like biosensor system via electrochemical channels for noninvasive blood glucose monitoring

    OpenAIRE

    Chen, Yihao; Lu, Siyuan; Zhang, Shasha; Li, Yan; Qu, Zhe; Chen, Ying; Lu, Bingwei; Wang, Xinyan; Feng, Xue

    2017-01-01

    Currently, noninvasive glucose monitoring is not widely appreciated because of its uncertain measurement accuracy, weak blood glucose correlation, and inability to detect hyperglycemia/hypoglycemia during sleep. We present a strategy to design and fabricate a skin-like biosensor system for noninvasive, in situ, and highly accurate intravascular blood glucose monitoring. The system integrates an ultrathin skin-like biosensor with paper battery–powered electrochemical twin channels (ETCs). The ...

  7. Noninvasive measurement of cardiopulmonary blood volume: evaluation of the centroid method

    International Nuclear Information System (INIS)

    Fouad, F.M.; MacIntyre, W.J.; Tarazi, R.C.

    1981-01-01

    Cardiopulmonary blood volume (CPV) and mean pulmonary transit time (MTT) determined by radionuclide measurements (Tc-99m HSA) were compared with values obtained from simultaneous dye-dilution (DD) studies (indocyanine green). The mean transit time was obtained from radionuclide curves by two methods: the peak-to-peak time and the interval between the two centroids determined from the right and left-ventricular time-concentration curves. Correlation of dye-dilution MTT and peak-to-peak time was significant (r = 0.79, p < 0.001), but its correlation with centroid-derived values was better (r = 0.86, p < 0.001). CPV values (using the centroid method for radionuclide technique) correlated significantly with values derived from dye-dilution curves (r = 0.74, p < 0.001). Discrepancies between the two were greater the more rapid the circulation (r = 0.61, p < 0.01), suggesting that minor inaccuracies of dye-dilution methods, due to positioning or delay of the system, can become magnified in hyperkinetic conditions. The radionuclide method is simple, repeatable, and noninvasive, and it provides simultaneous evaluation of pulmonary and systemic hemodynamics. Further, calculation of the ratio of cardiopulmonary to total blood volume can be used as an index of overall venous distensibility and relocation of intravascular blood volume

  8. Cell wall composition contributes to the control of transpiration efficiency in Arabidopsis thaliana.

    Science.gov (United States)

    Liang, Yun-Kuan; Xie, Xiaodong; Lindsay, Shona E; Wang, Yi Bing; Masle, Josette; Williamson, Lisa; Leyser, Ottoline; Hetherington, Alistair M

    2010-11-01

    To identify loci in Arabidopsis involved in the control of transpirational water loss and transpiration efficiency (TE) we carried out an infrared thermal imaging-based screen. We report the identification of a new allele of the Arabidopsis CesA7 cellulose synthase locus designated AtCesA7(irx3-5) involved in the control of TE. Leaves of the AtCesA7(irx3-5) mutant are warmer than the wild type (WT). This is due to reduced stomatal pore widths brought about by guard cells that are significantly smaller than the WT. The xylem of the AtCesA7(irx3-5) mutant is also partially collapsed, and we suggest that the small guard cells in the mutant result from decreased water supply to the developing leaf. We used carbon isotope discrimination to show that TE is increased in AtCesA7(irx3-5) when compared with the WT. Our work identifies a new class of genes that affects TE and raises the possibility that other genes involved in cell wall biosynthesis will have an impact on water use efficiency. © 2010 The Authors. The Plant Journal © 2010 Blackwell Publishing Ltd.

  9. TaER Expression Is Associated with Transpiration Efficiency Traits and Yield in Bread Wheat.

    Science.gov (United States)

    Zheng, Jiacheng; Yang, Zhiyuan; Madgwick, Pippa J; Carmo-Silva, Elizabete; Parry, Martin A J; Hu, Yin-Gang

    2015-01-01

    ERECTA encodes a receptor-like kinase and is proposed as a candidate for determining transpiration efficiency of plants. Two genes homologous to ERECTA in Arabidopsis were identified on chromosomes 6 (TaER2) and 7 (TaER1) of bread wheat (Triticum aestivum L.), with copies of each gene on the A, B and D genomes of wheat. Similar expression patterns were observed for TaER1 and TaER2 with relatively higher expression of TaER1 in flag leaves of wheat at heading (Z55) and grain-filling (Z73) stages. Significant variations were found in the expression levels of both TaER1 and TaER2 in the flag leaves at both growth stages among 48 diverse bread wheat varieties. Based on the expression of TaER1 and TaER2, the 48 wheat varieties could be classified into three groups having high (5 varieties), medium (27 varieties) and low (16 varieties) levels of TaER expression. Significant differences were also observed between the three groups varying for TaER expression for several transpiration efficiency (TE)- related traits, including stomatal density (SD), transpiration rate, photosynthetic rate (A), instant water use efficiency (WUEi) and carbon isotope discrimination (CID), and yield traits of biomass production plant-1 (BYPP) and grain yield plant-1 (GYPP). Correlation analysis revealed that the expression of TaER1 and TaER2 at the two growth stages was significantly and negatively associated with SD (Ptranspiration rate (Ptranspiration efficiency -related traits and yield in bread wheat, implying a function for TaER in regulating leaf development of bread wheat and contributing to expression of these traits. Moreover, the results indicate that TaER could be exploitable for manipulating important agronomical traits in wheat improvement.

  10. The measurement of carboxyhemoglobin and methemoglobin using a non-invasive pulse CO-oximeter.

    Science.gov (United States)

    Zaouter, Cédrick; Zavorsky, Gerald S

    2012-07-01

    The pulse CO-oximeter (Rad-57 Masimo Corporation, Irvine, CA) allows non-invasive and instantaneous measurement of carboxyhemoglobin (COHb) and methemoglobin (MetHb) percentage level using a finger probe. However, the accuracy and reliability of the Rad-57 against the gold standard of venous or arterial blood samples have not been clearly established. Thus, the objective of this trial is to evaluate the accuracy and precision of the Rad-57 pulse CO-oximeter by comparing it with venous sampling on the same subjects. Nine healthy subjects were subjected to carbon monoxide such that it raised the COHb to 10-14% on two different days and pooled together. The COHb and MetHb were measured with a blood gas-analyzer and simultaneously with the Rad-57 as the COHb increased from 1.4 to 14%. Results were compared using linear regression and a Bland and Altman method comparison. Mean bias and precision for COHb measured with the Rad-57 was -1% and 2.5%, respectively. The mean bias and precision for MetHb measured with the Rad-57 was 0.0% and 0.3%, respectively. The ability to detect a COHb ≥ 10% occurred in 54% of the samples in which COHb was ≥ 10-14%. In conclusion, the Rad-57 provides a reading that is between -6% and +4% of the true COHb value for 95% of all samples. The Rad-57 seems to be a good substitute as a first screening test of COHb when the pulse CO-oximeter reads <15%. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. British Thoracic Society Quality Standards for acute non-invasive ventilation in adults

    Science.gov (United States)

    Davies, Michael; Allen, Martin; Bentley, Andrew; Bourke, Stephen C; Creagh-Brown, Ben; D’Oliveiro, Rachel; Glossop, Alastair; Gray, Alasdair; Jacobs, Phillip; Mahadeva, Ravi; Moses, Rachael; Setchfield, Ian

    2018-01-01

    Introduction The purpose of the quality standards document is to provide healthcare professionals, commissioners, service providers and patients with a guide to standards of care that should be met for the provision of acute non-invasive ventilation in adults together with measurable markers of good practice. Methods Development of British Thoracic Society (BTS) Quality Standards follows the BTS process of quality standard production based on the National Institute for Health and Care Excellence process manual for the development of quality standards. Results 6 quality statements have been developed, each describing a standard of care for the provision of acute non-invasive ventilation in the UK, together with measurable markers of good practice. Conclusion BTS Quality Standards for acute non-invasive ventilation in adults form a key part of the range of supporting materials that the Society produces to assist in the dissemination and implementation of guideline’s recommendations. PMID:29636979

  12. Noninvasive Respiratory Management of Patients With Neuromuscular Disease.

    Science.gov (United States)

    Bach, John R

    2017-08-01

    This review article describes definitive noninvasive respiratory management of respiratory muscle dysfunction to eliminate need to resort to tracheotomy. In 2010 clinicians from 22 centers in 18 countries reported 1,623 spinal muscular atrophy type 1 (SMA1), Duchenne muscular dystrophy (DMD), and amyotrophic lateral sclerosis users of noninvasive ventilatory support (NVS) of whom 760 required it continuously (CNVS). The CNVS sustained their lives by over 3,000 patient-years without resort to indwelling tracheostomy tubes. These centers have now extubated at least 74 consecutive ventilator unweanable patients with DMD, over 95% of CNVS-dependent patients with SMA1, and hundreds of others with advanced neuromuscular disorders (NMDs) without resort to tracheotomy. Two centers reported a 99% success rate at extubating 258 ventilator unweanable patients without resort to tracheotomy. Patients with myopathic or lower motor neuron disorders can be managed noninvasively by up to CNVS, indefinitely, despite having little or no measurable vital capacity, with the use of physical medicine respiratory muscle aids. Ventilator-dependent patients can be decannulated of their tracheostomy tubes.

  13. Effects of thinning on transpiration by riparian buffer trees in response to advection and solar radiation

    Science.gov (United States)

    Advective energy occurring in edge environments may increase tree water use. In humid agricultural landscapes, advection-enhanced transpiration in riparian buffers may provide hydrologic regulation; however, research in humid environments is lacking. The objectives of this study were to determine ho...

  14. Stress-inducible expression of At DREB1A in transgenic peanut (Arachis hypogaea L.) increases transpiration efficiency under water-limiting conditions.

    Science.gov (United States)

    Bhatnagar-Mathur, Pooja; Devi, M Jyostna; Reddy, D Srinivas; Lavanya, M; Vadez, Vincent; Serraj, R; Yamaguchi-Shinozaki, K; Sharma, Kiran K

    2007-12-01

    Water deficit is the major abiotic constraint affecting crop productivity in peanut (Arachis hypogaea L.). Water use efficiency under drought conditions is thought to be one of the most promising traits to improve and stabilize crop yields under intermittent water deficit. A transcription factor DREB1A from Arabidopsis thaliana, driven by the stress inducible promoter from the rd29A gene, was introduced in a drought-sensitive peanut cultivar JL 24 through Agrobacterium tumefaciens-mediated gene transfer. The stress inducible expression of DREB1A in these transgenic plants did not result in growth retardation or visible phenotypic alterations. T3 progeny of fourteen transgenic events were exposed to progressive soil drying in pot culture. The soil moisture threshold where their transpiration rate begins to decline relative to control well-watered (WW) plants and the number of days needed to deplete the soil water was used to rank the genotypes using the average linkage cluster analysis. Five diverse events were selected from the different clusters and further tested. All the selected transgenic events were able to maintain a transpiration rate equivalent to the WW control in soils dry enough to reduce transpiration rate in wild type JL 24. All transgenic events except one achieved higher transpiration efficiency (TE) under WW conditions and this appeared to be explained by a lower stomatal conductance. Under water limiting conditions, one of the selected transgenic events showed 40% higher TE than the untransformed control.

  15. Assessment of transpiration efficiency in peanut (Arachis hypogaea L.) under drought using a lysimetric system.

    Science.gov (United States)

    Ratnakumar, P; Vadez, V; Nigam, S N; Krishnamurthy, L

    2009-11-01

    Transpiration efficiency (TE) is an important trait for drought tolerance in peanut (Arachis hypogaea L.). The variation in TE was assessed gravimetrically using a long time interval in nine peanut genotypes (Chico, ICGS 44, ICGV 00350, ICGV 86015, ICGV 86031, ICGV 91114, JL 24, TAG 24 and TMV 2) grown in lysimeters under well-watered or drought conditions. Transpiration was measured by regularly weighing the lysimeters, in which the soil surface was mulched with a 2-cm layer of polythene beads. TE in the nine genotypes used varied from 1.4 to 2.9 g kg(-1) under well-watered and 1.7 to 2.9 g kg(-1) under drought conditions, showing consistent variation in TE among genotypes. A higher TE was found in ICGV 86031 in both well-watered and drought conditions and lower TE was found in TAG-24 under both water regimes. Although total water extraction differed little across genotypes, the pattern of water extraction from the soil profile varied among genotypes. High water extraction within 24 days following stress imposition was negatively related to pod yield (r(2) = 0.36), and negatively related to water extraction during a subsequent period of 32 days (r(2) = 0.73). By contrast, the latter, i.e. water extraction during a period corresponding to grain filling (24 to 56 days after flowering) was positively related to pod yield (r(2) = 0.36). TE was positively correlated with pod weight (r(2) = 0.30) under drought condition. Our data show that under an intermittent drought regime, TE and water extraction from the soil profile during a period corresponding to pod filling were the most important components.

  16. Transpiration and water use efficiency in native chilean and exotic species, a usefull tool for catchment management?

    Science.gov (United States)

    Hervé-Fernández, P.; Oyarzun, C. E.

    2012-04-01

    Land-use and forest cover change play important roles in socio-economic processes and have been linked with water supply and other ecosystem services in various regions of the world. Water yield from watersheds is a major ecosystem service for human activities but has been altered by landscape management superimposed on climatic variability and change. Sustaining ecosystem services important to humans, while providing a dependable water supply for agriculture and urban needs is a major challenge faced by managers of human-dominated or increased antropical effect over watersheds. Since water is mostly consumed by vegetation (i.e: transpiration), which strongly depends on trees physiological characteristics (i.e: foliar area, transpiration capacity) are very important. The quantity of water consumed by plantations is influenced mainly by forest characteristics (species physiology, age and management), catchment water retention capacity and meteorological characteristics. Eventhough in Chile, the forest sector accounts for 3.6% of the gross domestic product (GDP) and 12.5% of total exports (INFOR, 2003), afforestation with fast growing exotic species has ended up being socially and politically questionable because of the supposed impact on the environment and water resources. We present data of trees transpiration and water use efficiency from three headwater catchments: (a) second growth native evergreen forest (Aetoxicon punctatum, Drimys winterii, Gevuina avellana, Laureliopsis philippiana); (b) Eucalyptus globulus plantation, and (c) a mixed native deciduous (Nothofagus obliqua and some evergreen species) forest and Eucalyptus globulus and Acacia melanoxylon plantation located at the Coastal Mountain Range in southern Chile (40°S). Annual transpiration rates ranged from 1.24 ± 0.41 mol•m-2•s-1 (0.022 ± 0.009 L•m-2•s-1) for E. globulus, while the lowest observed was for L. philippiana 0.44 ± 0.31 mol•m-2•s-1 (0.008 ± 0.006 L•m-2•s-1). However

  17. Focal depth measurements of the vaginal wall: a new method to noninvasively quantify vaginal wall thickness in the diagnosis and treatment of vaginal atrophy

    NARCIS (Netherlands)

    Weber, Maaike A.; Diedrich, Chantal M.; Ince, Can; Roovers, Jan-Paul

    2016-01-01

    The aim of the study was to evaluate if vaginal focal depth measurement could be a noninvasive method to quantify vaginal wall thickness. Postmenopausal women undergoing topical estrogen therapy because of vaginal atrophy (VA) were recruited. VA was diagnosed based on the presence of symptoms and

  18. The potential of non-invasive pre- and post-mortem carcass measurements to predict the contribution of carcass components to slaughter yield of guinea pigs.

    Science.gov (United States)

    Barba, Lida; Sánchez-Macías, Davinia; Barba, Iván; Rodríguez, Nibaldo

    2018-06-01

    Guinea pig meat consumption is increasing exponentially worldwide. The evaluation of the contribution of carcass components to carcass quality potentially can allow for the estimation of the value added to food animal origin and make research in guinea pigs more practicable. The aim of this study was to propose a methodology for modelling the contribution of different carcass components to the overall carcass quality of guinea pigs by using non-invasive pre- and post mortem carcass measurements. The selection of predictors was developed through correlation analysis and statistical significance; whereas the prediction models were based on Multiple Linear Regression. The prediction results showed higher accuracy in the prediction of carcass component contribution expressed in grams, compared to when expressed as a percentage of carcass quality components. The proposed prediction models can be useful for the guinea pig meat industry and research institutions by using non-invasive and time- and cost-efficient carcass component measuring techniques. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Invasive and noninvasive hemodynamic monitoring of patients with cerebrovascular accidents.

    Science.gov (United States)

    Velmahos, G C; Wo, C C; Demetriades, D; Bishop, M H; Shoemaker, W C

    1998-01-01

    Seventeen patients with hemodynamic instability from acute cerebrovascular accidents were evaluated shortly after arrival at the emergency department of a university-run county hospital with both invasive Swan-Ganz pulmonary artery catheter placement and a new, noninvasive, thoracic electrical bioimpedance device. Values were recorded and temporal patterns of survivors and nonsurvivors were described. Cardiac indices obtained simultaneously by the 2 techniques were compared. Of the 17 patients, 11 (65%) died. Survivors had higher values than nonsurvivors for mean arterial pressure, cardiac index, and oxygen saturation, delivery, and consumption at comparable times. Cardiac index values, as measured by invasive and noninvasive methods, were correlated. We concluded that hemodynamic monitoring in an acute care setting may recognize temporal circulatory patterns associated with outcome. Noninvasive electrical bioimpedance technology offers a new method for early hemodynamic evaluation. Further research in this area is warranted. PMID:9682626

  20. Enhanced transpiration by riparian buffer trees in response to advection in a humid temperate agricultural landscape

    Science.gov (United States)

    Hernandez-Santana, V.; Asbjornsen, H.; Sauer, T.; Isenhart, T.; Schilling, K.; Schultz, Ronald

    2011-01-01

    Riparian buffers are designed as management practices to increase infiltration and reduce surface runoff and transport of sediment and nonpoint source pollutants from crop fields to adjacent streams. Achieving these ecosystem service goals depends, in part, on their ability to remove water from the soil via transpiration. In these systems, edges between crop fields and trees of the buffer systems can create advection processes, which could influence water use by trees. We conducted a field study in a riparian buffer system established in 1994 under a humid temperate climate, located in the Corn Belt region of the Midwestern U.S. (Iowa). The goals were to estimate stand level transpiration by the riparian buffer, quantify the controls on water use by the buffer system, and determine to what extent advective energy and tree position within the buffer system influence individual tree transpiration rates. We primarily focused on the water use response (determined with the Heat Ratio Method) of one of the dominant species (Acer saccharinum) and a subdominant (Juglans nigra). A few individuals of three additional species (Quercus bicolor, Betula nigra, Platanus occidentalis) were monitored over a shorter time period to assess the generality of responses. Meteorological stations were installed along a transect across the riparian buffer to determine the microclimate conditions. The differences found among individuals were attributed to differences in species sap velocities and sapwood depths, location relative to the forest edge and prevailing winds and canopy exposure and dominance. Sapflow rates for A. saccharinum trees growing at the SE edge (prevailing winds) were 39% greater than SE interior trees and 30% and 69% greater than NW interior and edge trees, respectively. No transpiration enhancement due to edge effect was detected in the subdominant J. nigra. The results were interpreted as indicative of advection effects from the surrounding crops. Further, significant

  1. Non-invasive and non-intrusive gas flow measurement based on the dynamic thermal characteristics of a pipeline

    Science.gov (United States)

    Fan, Zichuan; Cai, Maolin; Xu, Weiqing

    2012-10-01

    This paper proposes a non-intrusive and non-invasive method for measuring the gas flow rate in pneumatic industry. A heater unit is fixed on the partial circumference of the external wall of a pipeline and emits specific thermal pulses in a predetermined mode. Two sensors attached to the external wall detect the upstream temperature, and the gas flow can be measured according to the relationship between the flow rate and the dynamic thermal characteristics of the pipeline. To determine the preferable relationship, the temperature field model of the measurement system is built. Then, based on the measurement modes and the corresponding simulations, the objective functions for the gas flow specified on different dynamic thermal characteristics are established. Additionally, the minimum measurement time of the method, named reference time scale, is proposed. Further, robustness tests of the measurement method are derived by considering the influences of multiple factors on the objective functions. The experiments confirm that this method does not need to open the pipeline and disturb the flow regime in order to obtain the data; this method also avoids the typical time-consuming and complex operations, resists ambient temperature disturbance and achieves approximately acceptable results.

  2. Non-invasive and non-intrusive gas flow measurement based on the dynamic thermal characteristics of a pipeline

    International Nuclear Information System (INIS)

    Fan, Zichuan; Cai, Maolin; Xu, Weiqing

    2012-01-01

    This paper proposes a non-intrusive and non-invasive method for measuring the gas flow rate in pneumatic industry. A heater unit is fixed on the partial circumference of the external wall of a pipeline and emits specific thermal pulses in a predetermined mode. Two sensors attached to the external wall detect the upstream temperature, and the gas flow can be measured according to the relationship between the flow rate and the dynamic thermal characteristics of the pipeline. To determine the preferable relationship, the temperature field model of the measurement system is built. Then, based on the measurement modes and the corresponding simulations, the objective functions for the gas flow specified on different dynamic thermal characteristics are established. Additionally, the minimum measurement time of the method, named reference time scale, is proposed. Further, robustness tests of the measurement method are derived by considering the influences of multiple factors on the objective functions. The experiments confirm that this method does not need to open the pipeline and disturb the flow regime in order to obtain the data; this method also avoids the typical time-consuming and complex operations, resists ambient temperature disturbance and achieves approximately acceptable results. (paper)

  3. Noninvasive particle sizing using camera-based diffuse reflectance spectroscopy

    DEFF Research Database (Denmark)

    Abildgaard, Otto Højager Attermann; Frisvad, Jeppe Revall; Falster, Viggo

    2016-01-01

    Diffuse reflectance measurements are useful for noninvasive inspection of optical properties such as reduced scattering and absorption coefficients. Spectroscopic analysis of these optical properties can be used for particle sizing. Systems based on optical fiber probes are commonly employed...

  4. Non-invasive, kinetic measurements of [3H]nitrendipine binding to isolated rat myocytes by condensed phase radioluminescence

    International Nuclear Information System (INIS)

    Tscharner, V. von; Bailey, I.A.

    1983-01-01

    The binding of 3 H-labelled drug molecules to membranes of living cells give rise to photon emission from tryptophan residues at proteinaceous binding sites. This phenomenon, called condensed phase radioluminescence, has been used to measure non-invasively the kinetics of [ 3 H]nitrendipine binding and dissociation on the same samples of cultured beating cardiac myocytes. Signal arose only from bound drug molecules. Binding was monoexponential (tau = 5.5 min) as was dissociation (14.3 min). Preincubating cells with non-radioactive nifedipine reduced the amplitude and rate of [ 3 H]nitrendipine but not of [ 3 H]dihydroalprenolol binding. The potential uses of this phenomenon are discussed. (Auth.)

  5. Water- and nitrogen-dependent alterations in the inheritance mode of transpiration efficiency in winter wheat at the leaf and whole-plant level.

    Science.gov (United States)

    Ratajczak, Dominika; Górny, Andrzej G

    2012-11-01

    The effects of contrasting water and nitrogen (N) supply on the observed inheritance mode of transpiration efficiency (TE) at the flag-leaf and whole-season levels were examined in winter wheat. Major components of the photosynthetic capacity of leaves and the season-integrated efficiency of water use in vegetative and grain mass formation were evaluated in parental lines of various origins and their diallel F(2)-hybrids grown in a factorial experiment under different moisture and N status of the soil. A broad genetic variation was mainly found for the season-long TE measures. The variation range in the leaf photosynthetic indices was usually narrow, but tended to slightly enhance under water and N shortage. Genotype-treatment interaction effects were significant for most characters. No consistency between the leaf- and season-long TE measures was observed. Preponderance of additivity-dependent variance was mainly identified for the season-integrated TE and leaf CO(2) assimilation rate. Soil treatments exhibited considerable influence on the phenotypic expression of gene action for the residual leaf measures. The contribution of non-additive gene effects and degree of dominance tended to increase in water- and N-limited plants, especially for the leaf transpiration rate and stomatal conductance. The results indicate that promise exists to improve the season-integrated TE. However, selection for TE components should be prolonged for later hybrid generations to eliminate the masking of non-additive causes. Such evaluation among families grown under sub-optimal water and nitrogen supply seems to be the most promising strategy in winter wheat.

  6. Transpiration and metabolisation of TCE by willow plants - a pot experiment.

    Science.gov (United States)

    Schöftner, Philipp; Watzinger, Andrea; Holzknecht, Philipp; Wimmer, Bernhard; Reichenauer, Thomas G

    2016-01-01

    Willows were grown in glass cylinders filled with compost above water-saturated quartz sand, to trace the fate of TCE in water and plant biomass. The experiment was repeated once with the same plants in two consecutive years. TCE was added in nominal concentrations of 0, 144, 288, and 721 mg l(-1). Unplanted cylinders were set-up and spiked with nominal concentrations of 721 mg l(-1) TCE in the second year. Additionally, (13)C-enriched TCE solution (δ(13)C = 110.3 ‰) was used. Periodically, TCE content and metabolites were analyzed in water and plant biomass. The presence of TCE-degrading microorganisms was monitored via the measurement of the isotopic ratio of carbon ((13)C/(12)C) in TCE, and the abundance of (13)C-labeled microbial PLFAs (phospholipid fatty acids). More than 98% of TCE was lost via evapotranspiration from the planted pots within one month after adding TCE. Transpiration accounted to 94 to 78% of the total evapotranspiration loss. Almost 1% of TCE was metabolized in the shoots, whereby trichloroacetic acid (TCAA) and dichloroacetic acid (DCAA) were dominant metabolites; less trichloroethanol (TCOH) and TCE accumulated in plant tissues. Microbial degradation was ruled out by δ(13)C measurements of water and PLFAs. TCE had no detected influence on plant stress status as determined by chlorophyll-fluorescence and gas exchange.

  7. Non-invasive Field Measurements of Soil Water Content Using a Pulsed 14 MeV Neutron Generator

    Energy Technology Data Exchange (ETDEWEB)

    Mitra S.; Wielopolski L.; Omonode, R.; Novak, J.; Frederick, J.; Chan, A.

    2012-01-26

    Current techniques of soil water content measurement are invasive and labor-intensive. Here, we demonstrate that an in situ soil carbon (C) analyzer with a multi-elemental analysis capability, developed for studies of terrestrial C sequestration, can be used concurrently to non-invasively measure the water content of large-volume ({approx}0.3 m{sup 3}) soil samples. Our objectives were to investigate the correlations of the hydrogen (H) and oxygen (O) signals with water to the changes in the soil water content in laboratory experiments, and in an agricultural field. Implementing prompt gamma neutron activation analyses we showed that in the field, the signal from the H nucleus better indicates the soil water content than does that from the O nucleus. Using a field calibration, we were able to use the H signal to estimate a minimum detectable change of {approx}2% volumetric water in a 0-30 cm depth of soil.

  8. Effect of incident beam and diffuse radiation on par absorption, photosynthesis and transpiration of sitka spruce - a simulation study

    International Nuclear Information System (INIS)

    Wang, Y.P.; Jarvis, P.G.

    1990-01-01

    A simulation model, Maestro, is used to study the influence of beam fraction in the incident radiation and the radiance distribution of the sky diffuse radiation on PAR absorption, photosynthesis and transpiration of a Sitka spruce (Picea sitchensis (Bong.) Carr) tree crown. It is concluded that inaccurate separation of beam and diffuse radiation leads to significant errors in estimating the amounts of PAR absorbed, photosynthesis and transpiration by a tree in the stand. Much more attention should be paid to adequate descriptions of the radiance distribution of the sky diffuse radiation under different sky conditions. A useful approach is proposed for simulating the incident global radiaiton in a physiological, process-based model

  9. Microclimate, Water Potential, Transpiration, and Bole Dielectric Constant of Coniferous and Deciduous Tree Species in the Continental Boreal Ecotone of Central Alaska

    Science.gov (United States)

    Zimmermann, R.; McDonald, K.; Way, J.; Oren, R.

    1994-01-01

    Tree canopy microclimate, xylem water flux and xylem dielectric constant have been monitored in situ since June 1993 in two adjacent natural forest stands in central Alaska. The deciduous stand represents a mature balsam poplar site on the Tanana River floodplain, while the coniferous stand consists of mature white spruce with some black spruce mixed in. During solstice in June and later in summer, diurnal changes of xylem water potential were measured to investigate the occurrence and magnitude of tree transpiration and dielectric constant changes in stems.

  10. Optoacoustic technique for noninvasive monitoring of blood oxygenation: a feasibility study

    Science.gov (United States)

    Esenaliev, Rinat O.; Larina, Irina V.; Larin, Kirill V.; Deyo, Donald J.; Motamedi, Massoud; Prough, Donald S.

    2002-08-01

    Replacement of invasive monitoring of cerebral venous oxygenation with noninvasive techniques offers great promise in the management of life-threatening neurologic illnesses including traumatic brain injury. We developed and built an optoacoustic system to noninvasively monitor cerebral venous oxygenation; the system includes a nanosecond Nd:YAG laser and a specially designed optoacoustic probe. We tested the system in vitro in sheep blood with experimentally varied oxygenation. Our results demonstrated that (1) the amplitude and temporal profile of the optoacoustic waves increase with blood oxygenation in the range from 24% to 92%, (2) optoacoustic signals can be detected despite optical and acoustic attenuation by thick bone, and (3) the system is capable of real-time and continuous measurements. These results suggest that the optoacoustic technique is technically feasible for continuous, noninvasive monitoring of cerebral venous oxygenation.

  11. Uptake of 32P and 86Rb as influenced by temperature, transpiration suppress and shading treatment in rice plants

    International Nuclear Information System (INIS)

    Lee, G.B.; Hong, Y.P.; Im, J.N.; Chung, K.W.

    1989-01-01

    This study was carried out to know the uptake pattern of phosphorous and potassium in rice plants using by two radioisotopes, 32P and 86Rb as tracers for two years, 1987 and 1988. Rice plants were grown in the hydroponic culture with Yoshida's solution, and treated with different temperatures, transpiration suppress, shading, and phosphorous and potassium deletions. The uptake amount of 32P and 86Rb were increased with the increasing temperature in root sphere of rice plant, particularly remarkable increase of 86Rb uptake at 35deg C. The uptake of 32P tended to be promoted at the treatment of low air-high water temperature (17-30deg C), while that of 86Rb was not significantly differenced from different temperature treatments. The effect of transpiration on the uptake of 32P and 86Rb was extremely low. This phenomenon may suggest that the absorption be depending on active uptake rather than passive one by transpiration stream. The total carbohydrate contents of rice root were decreased by shading treatment, resulting significant reduction in the uptake of 32P and 86Rb. The uptake of 86Rb was remarkably increased in the treatment of potassium deletion, but that of 32P was not significantly increased in the delection of phosphorous

  12. Uptake of 32P and 86Rb as influenced by temperature, transpiration suppress and shading treatment in rice plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, G. B.; Hong, Y. P.; Im, J. N.; Chung, K. W.

    1989-07-01

    This study was carried out to know the uptake pattern of phosphorous and potassium in rice plants using by two radioisotopes, 32P and 86Rb as tracers for two years, 1987 and 1988. Rice plants were grown in the hydroponic culture with Yoshida's solution, and treated with different temperatures, transpiration suppress, shading, and phosphorous and potassium deletions. The uptake amount of 32P and 86Rb were increased with the increasing temperature in root sphere of rice plant, particularly remarkable increase of 86Rb uptake at 35deg C. The uptake of 32P tended to be promoted at the treatment of low air-high water temperature (17-30deg C), while that of 86Rb was not significantly differenced from different temperature treatments. The effect of transpiration on the uptake of 32P and 86Rb was extremely low. This phenomenon may suggest that the absorption be depending on active uptake rather than passive one by transpiration stream. The total carbohydrate contents of rice root were decreased by shading treatment, resulting significant reduction in the uptake of 32P and 86Rb. The uptake of 86Rb was remarkably increased in the treatment of potassium deletion, but that of 32P was not significantly increased in the delection of phosphorous.

  13. Noninvasive Measurement of Hemoglobin Using Spectrophotometry: Is it Useful for the Critically Ill Child?

    Science.gov (United States)

    Akyildiz, Basak

    2018-01-01

    This study compared the accuracy of noninvasively measuring hemoglobin using spectrophotometry (SpHb) with a pulse CO-oximeter and laboratory hemoglobin (Hb) measurements. A total of 345 critically ill children were included prospectively. Age, sex, and factors influencing the reliabilityof SpHb such as SpO2, heart rate, perfusion index (PI), and vasoactive inotropic score were recorded. SpHb measurements were recorded during the blood draw and compared with the Hb measurement. Thirteen patients (low PI in 9 patients and no available Hb in 4 patients) were excluded and 332 children were eligible for final analysis. The mean Hb was 8.71±1.49 g/dL (range, 5.9 to 12 g/dL) and the mean SpHb level was 9.55±1.53 g/dL (range, 6 to 14.2 g/dL). The SpHb bias was 0.84±0.86,with the limits of agreement ranging from -2.5 to 0.9 g/dL. The difference between Hb and SpHb was >1.5 g/dL for only 47 patients. Of these, 24 patients had laboratory Hb levels <7 g/dL. There was a weak positive correlation between differences and PI (r=0.349; P= 0.032). The pulse CO-oximeter is a promising tool for measuring SpHb and monitoring critically ill children. However, PI may affect these results. Additional studies investigating the reliability of the trend of continuous SpHb values compared with simultaneously measured laboratory Hb values in the same patient are warranted.

  14. Estimation of beech tree transpiration in relation to their social status in forest stand

    International Nuclear Information System (INIS)

    Střelcová, K.; Matejka, F.; Minďáš, J.

    2002-01-01

    The results of sap flow continuous measurements by a tree-trunk heat balance method (THB) on beech model trees are analysed in this paper. Experimental research works were carried out in a mature mixed fir-spruce-beech stand in the research area Pol'ana - Hukavský Grúň (φ = 48°39', λ = 19°29', H = 850 m a.s.l.) in UNESCO Biosphere Reserve on two co-dominant and one sub-dominant beech trees. A mathematical model of daily transpiration dynamics was proposed for a quantitative analysis of the daily course of sap flow intensity. The model works on a one-tree level and enables to consider the influence of the tree social position in the stand on the sap flow intensity of model beech trees and to express the dependence of sap flow intensity on the tree height and crown projection

  15. Non-invasive acoustic-based monitoring of uranium in solution and H/D ratio

    Energy Technology Data Exchange (ETDEWEB)

    Pantea, Cristian [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Beedle, Christopher Craig [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sinha, Dipen N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lakis, Rollin Evan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-08-01

    The primary objective of this project is to adapt existing non-invasive acoustic techniques (Swept-Frequency Acoustic Interferometry and Gaussian-pulse acoustic technique) for the purpose of demonstrating the ability to quantify U or H/D ratios in solution. Furthermore, a successful demonstration will provide an easily implemented, low cost, and non-invasive method for remote and unattended uranium mass measurements for International Atomic Energy Agency (IAEA).

  16. A non-invasive and rapid seed vigor biosensor based on quantitative measurement of superoxide generated by aleurone cell in intact seeds.

    Science.gov (United States)

    Liu, Xuejun; Gao, Caiji; Xing, Da

    2009-02-15

    Superoxide generated during the early imbibition is an excellent marker for evaluating seed vigor. In this paper, a new principle biosensor for non-invasive detection of seed vigor based on quantitative measurement of superoxide via selective probe 2-methyl-6-(p-methoxyphenyl)-3,7-dihydroimidazo [1,2alpha] pyrazin-3-one (MCLA)-mediated chemiluminescence (CL) was developed. The biosensor, which used a compact single-photon counting module (SPCM) to collect the CL signal, could evaluate seed vigor in vivo. Benefiting from the high CL efficiency of MCLA reacting with superoxide and high sensitivity of the SPCM technique, the trace superoxide generated by dry seeds under storage state can be detected to achieve rapid and non-invasive determination of the seed vigor. In comparison with the traditional methods for fast measuring seed vigor based on measurement of physiological and biochemical properties, our proposed technique has significant advantages such as low cost, simplicity, convenient operation and short time consuming. To demonstrate the utility of the system, it was applied to evaluate MCLA-mediated CL of three different plant species wheat (Ze Yu No. 2), maize (Tai Gu No. 1 and 2) and rice (Jing Dao No. 21) seeds with different degrees of aging. The experimental results suggested that there was an excellent positive correlation between the seed vigor assessment from quantitative TTC-test and the detection based on MCLA-mediated CL of superoxide measurement. The new principle of seed vigor measurement is a challenge and breakthrough to conventional method of seed vigor determination and may be a potential technique of the next generation seed vigor detection.

  17. Canopy transpiration of two black locust (Robinia pseudoacacia) plantations with different ages in semi-arid Loess Plateau, China

    Science.gov (United States)

    Jiao, L.

    2015-12-01

    Black locust (Robinia pseudoacacia) was widely planted to control soil erosion and restore degraded ecosystem in Loess Plateau. The water use of the plantations was concerned due to its potential effects on hydrological cycle and regional water resource. Although some studies estimated canopy transpiration (Ec) of the mature black locust plantation, variation in Ec in plantations with different ages was not clear. In this study, we selected two plantations with different ages (12 years and 27 years, denoted as young stand and mature stand, respectively) in similar topographical conditions in Yangjuangou catchment in the central of Loess Plateau. Sap flux density (Fd) and tree biometrics were measured in each stand during the growing season in 2014. Soil water content (SWC) in each plot and meteorological variables in the catchment were simultaneously monitored. Tree transpiration (Et) was derived from Fd and tree sapwood area (As). Canopy transpiration (Ec) was estimated by a product of mean stand sap flux density (Js) and stand total sapwood area (AST). The mean Fd of mature trees was 2-fold larger than that of young trees.However, tree-to-tree variation in Fd among sampled trees within mature stand was evident compared to that within young stand. Mean Et in mature stand was higher than that in young stand. Ec in mature stand was significant higher than that in young stand,with cumulative value of 54 mm and 27 mm respectively. This is attributed to higher Js in mature stand although AST in young is slightly higher than that in mature stand. The patterns of daily Ec during the growing season were similar in both stands during the study period. A exponential saturation model can explain the responses of Ec to vapor deficit pressure (VPD) and solar radiation (Rs) in both stands.The relationship between Ec and SWC was not detected. Our finding suggested that stand age should be taken into consideration when estimated vegetation water use in this region. Further

  18. Clinical results from a noninvasive blood glucose monitor

    Science.gov (United States)

    Blank, Thomas B.; Ruchti, Timothy L.; Lorenz, Alex D.; Monfre, Stephen L.; Makarewicz, M. R.; Mattu, Mutua; Hazen, Kevin

    2002-05-01

    Non-invasive blood glucose monitoring has long been proposed as a means for advancing the management of diabetes through increased measurement and control. The use of a near-infrared, NIR, spectroscopy based methodology for noninvasive monitoring has been pursued by a number of groups. The accuracy of the NIR measurement technology is limited by challenges related to the instrumentation, the heterogeneity and time-variant nature of skin tissue, and the complexity of the calibration methodology. In this work, we discuss results from a clinical study that targeted the evaluation of individual calibrations for each subject based on a series of controlled calibration visits. While the customization of the calibrations to individuals was intended to reduce model complexity, the extensive requirements for each individual set of calibration data were difficult to achieve and required several days of measurement. Through the careful selection of a small subset of data from all samples collected on the 138 study participants in a previous study, we have developed a methodology for applying a single standard calibration to multiple persons. The standard calibrations have been applied to a plurality of individuals and shown to be persistent over periods greater than 24 weeks.

  19. Recent advances in noninvasive glucose monitoring

    Directory of Open Access Journals (Sweden)

    So CF

    2012-06-01

    Full Text Available Chi-Fuk So,1 Kup-Sze Choi,1 Thomas KS Wong,2 Joanne WY Chung2,31Centre for Integrative Digital Health, School of Nursing, The Hong Kong Polytechnic University, Hong Kong, 2Department of Nursing and Health Sciences, Tung Wah College, Hong Kong, 3Department of Health and Physical Education, The Hong Kong Institute of Education, Hong KongAbstract: The race for the next generation of painless and reliable glucose monitoring for diabetes mellitus is on. As technology advances, both diagnostic techniques and equipment improve. This review describes the main technologies currently being explored for noninvasive glucose monitoring. The principle of each technology is mentioned; its advantages and limitations are then discussed. The general description and the corresponding results for each device are illustrated, as well as the current status of the device and the manufacturer; internet references for the devices are listed where appropriate. Ten technologies and eleven potential devices are included in this review. Near infrared spectroscopy has become a promising technology, among others, for blood glucose monitoring. Although some reviews have been published already, the rapid development of technologies and information makes constant updating mandatory. While advances have been made, the reliability and the calibration of noninvasive instruments could still be improved, and more studies carried out under different physiological conditions of metabolism, bodily fluid circulation, and blood components are needed.Keywords: noninvasive, glucose monitoring, diabetes mellitus, blood glucose measurement

  20. Reduction of plant water consumption through anti-transpirants foliar application in tomato plants (Solanum lycopersicum L.)

    Science.gov (United States)

    Optimizing water use efficiency (WUE) is a crucial goal. However, water savings must not be made at the expense of yield and fruit quality in order to secure economical sustainability for producers. The impact of different anti-transpirants (ATS) on WUE, water consumption (WC), net carbon assimilati...

  1. Modelling of root ABA synthesis, stomatal conductance, transpiration and potato production under water saving irrigation regimes

    DEFF Research Database (Denmark)

    Plauborg, Finn; Abrahamsen, Per; Gjettermann, Birgitte

    2010-01-01

    . Experimental data was compared to simulated results from the new enhanced Daisy model which include modelling 2D soil water flow, abscisic acid (ABA) signalling and its effect on stomatal conductance and hence on transpiration and assimilation, and finally crop yield. The results demonstrated that the enhanced...

  2. Prediction of transpiration effects on heat and mass transfer by different turbulence models

    International Nuclear Information System (INIS)

    Bucci, M.; Sharabi, M.; Ambrosini, W.; Forgione, N.; Oriolo, F.; He, S.

    2008-01-01

    The paper reports the results of a study related to transpirating flows, stimulated by the interest that these phenomena, occurring in the presence of simultaneous heat and mass transfer, have for nuclear reactor applications. The work includes a summary and the follow-up of previous experimental and numerical investigations on filmwise condensation and falling film evaporation and of a recent review of different forms of the heat and mass transfer analogy. The particular objective here pursued is to compare transpiration effects as predicted by different turbulence models with classical suction and blowing multipliers based on stagnant layer theories, in the attempt to clarify their quantitative implications on the predicted mass transfer rates. A commercial and an in-house CFD code have been adopted for evaluating the heat and mass transfer rates occurring over a flat plate exposed to an air-vapour stream, with uniform bulk steam mass fraction and temperature boundary conditions at the wall. This simple configuration was purposely selected since it is a simplified representation of the test section of an experimental facility presently in operation at the University of Pisa. This allows a direct comparison between the heat and mass transfer coefficients predicted by CFD models and classical correlations for Nusselt and Sherwood numbers

  3. Comparison of high-definition oscillometry -- a non-invasive technology for arterial blood pressure measurement -- with a direct invasive method using radio-telemetry in awake healthy cats.

    Science.gov (United States)

    Martel, Eric; Egner, Beate; Brown, Scott A; King, Jonathan N; Laveissiere, Arnaud; Champeroux, Pascal; Richard, Serge

    2013-12-01

    This study compared indirect blood pressure measurements using a non-invasive method, high-definition oscillometry (HDO), with direct measurements using a radio-telemetry device in awake cats. Paired measurements partitioned to five sub-ranges were collected in six cats using both methods. The results were analysed for assessment of correlation and agreement between the two methods, taking into account all pressure ranges, and with data separated in three sub-groups, low, normal and high ranges of systolic (SBP) and diastolic (DBP) blood pressure. SBP data displayed a mean correlation coefficient of 0.92 ± 0.02 that was reduced for low SBP. The agreement level evaluated from the whole data set was high and slightly reduced for low SBP values. The mean correlation coefficient of DBP was lower than for SBP (ie, 0.81 ± 0.02). The bias for DBP between the two methods was 22.3 ± 1.6 mmHg, suggesting that HDO produced lower values than telemetry. These results suggest that HDO met the validation criteria defined by the American College of Veterinary Internal Medicine consensus panel and provided a faithful measurement of SBP in conscious cats. For DBP, results suggest that HDO tended to underestimate DBP. This finding is clearly inconsistent with the good agreement reported in dogs, but is similar to outcomes achieved in marmosets and cynomolgus monkeys, suggesting that this is not related to HDO but is species related. The data support that the HDO is the first and only validated non-invasive blood pressure device and, as such, it is the only non-invasive reference technique that should be used in future validation studies.

  4. Validation of multi-detector computed tomography as a non-invasive method for measuring ovarian volume in macaques (Macaca fascicularis).

    Science.gov (United States)

    Jones, Jeryl C; Appt, Susan E; Werre, Stephen R; Tan, Joshua C; Kaplan, Jay R

    2010-06-01

    The purpose of this study was to validate low radiation dose, contrast-enhanced, multi-detector computed tomography (MDCT) as a non-invasive method for measuring ovarian volume in macaques. Computed tomography scans of four known-volume phantoms and nine mature female cynomolgus macaques were acquired using a previously described, low radiation dose scanning protocol, intravenous contrast enhancement, and a 32-slice MDCT scanner. Immediately following MDCT, ovaries were surgically removed and the ovarian weights were measured. The ovarian volumes were determined using water displacement. A veterinary radiologist who was unaware of actual volumes measured ovarian CT volumes three times, using a laptop computer, pen display tablet, hand-traced regions of interest, and free image analysis software. A statistician selected and performed all tests comparing the actual and CT data. Ovaries were successfully located in all MDCT scans. The iliac arteries and veins, uterus, fallopian tubes, cervix, ureters, urinary bladder, rectum, and colon were also consistently visualized. Large antral follicles were detected in six ovaries. Phantom mean CT volume was 0.702+/-SD 0.504 cc and the mean actual volume was 0.743+/-SD 0.526 cc. Ovary mean CT volume was 0.258+/-SD 0.159 cc and mean water displacement volume was 0.257+/-SD 0.145 cc. For phantoms, the mean coefficient of variation for CT volumes was 2.5%. For ovaries, the least squares mean coefficient of variation for CT volumes was 5.4%. The ovarian CT volume was significantly associated with actual ovarian volume (ICC coefficient 0.79, regression coefficient 0.5, P=0.0006) and the actual ovarian weight (ICC coefficient 0.62, regression coefficient 0.6, P=0.015). There was no association between the CT volume accuracy and mean ovarian CT density (degree of intravenous contrast enhancement), and there was no proportional or fixed bias in the CT volume measurements. Findings from this study indicate that MDCT is a valid non-invasive

  5. Noninvasive Test Detects Cardiovascular Disease

    Science.gov (United States)

    2007-01-01

    At NASA's Jet Propulsion Laboratory (JPL), NASA-developed Video Imaging Communication and Retrieval (VICAR) software laid the groundwork for analyzing images of all kinds. A project seeking to use imaging technology for health care diagnosis began when the imaging team considered using the VICAR software to analyze X-ray images of soft tissue. With marginal success using X-rays, the team applied the same methodology to ultrasound imagery, which was already digitally formatted. The new approach proved successful for assessing amounts of plaque build-up and arterial wall thickness, direct predictors of heart disease, and the result was a noninvasive diagnostic system with the ability to accurately predict heart health. Medical Technologies International Inc. (MTI) further developed and then submitted the technology to a vigorous review process at the FDA, which cleared the software for public use. The software, patented under the name Prowin, is being used in MTI's patented ArterioVision, a carotid intima-media thickness (CIMT) test that uses ultrasound image-capturing and analysis software to noninvasively identify the risk for the major cause of heart attack and strokes: atherosclerosis. ArterioVision provides a direct measurement of atherosclerosis by safely and painlessly measuring the thickness of the first two layers of the carotid artery wall using an ultrasound procedure and advanced image-analysis software. The technology is now in use in all 50 states and in many countries throughout the world.

  6. Artificial Fruit: Postharvest Online Monitoring of Agricultural Food by Measuring Humidity and Temperature

    Science.gov (United States)

    Hübert, T.; Lang, C.

    2012-09-01

    An online monitoring of environmental and inherent product parameters is required during transportation and storage of fruit and vegetables to avoid quality degradation and spoilage. The control of transpiration losses is suggested as an indicator for fruit freshness by humidity measurements. For that purpose, an electronic sensor is surrounded by a wet porous fiber material which is in contact with the outer atmosphere. Transpiration reduces the water content of the porous material and thus also the internal water activity. The sensor system, known as "artificial fruit," measures the relative humidity and temperature inside the wet material. Humidity and temperature data are collected and transmitted on demand by a miniaturized radio communication unit. The decrease in the measured relative humidity has been calibrated against the mass loss of tomatoes under different external influencing parameters such as temperature, humidity, and air flow. Current battery life allows the sensor system, embedded in a fruit crate, to transmit data on transpiration losses via radio transmission for up to two weeks.

  7. Comparison of three noninvasive methods for hemoglobin screening of blood donors.

    Science.gov (United States)

    Ardin, Sergey; Störmer, Melanie; Radojska, Stela; Oustianskaia, Larissa; Hahn, Moritz; Gathof, Birgit S

    2015-02-01

    To prevent phlebotomy of anemic individuals and to ensure hemoglobin (Hb) content of the blood units, Hb screening of blood donors before donation is essential. Hb values are mostly evaluated by measurement of capillary blood obtained from fingerstick. Rapid noninvasive methods have recently become available and may be preferred by donors and staff. The aim of this study was to evaluate for the first time all different noninvasive methods for Hb screening. Blood donors were screened for Hb levels in three different trials using three different noninvasive methods (Haemospect [MBR Optical Systems GmbH & Co. KG], NBM 200 [LMB Technology GmbH], Pronto-7 [Masimo Europe Ltd]) in comparison to the established fingerstick method (CompoLab Hb [Fresenius Kabi GmbH]) and to levels obtained from venous samples on a cell counter (Sysmex [Sysmex Europe GmbH]) as reference. The usability of the noninvasive methods was assessed with an especially developed survey. Technical failures occurred by using the Pronto-7 due to nail polish, skin color, or ambient light. The NBM 200 also showed a high sensitivity to ambient light and noticeably lower Hb levels for women than obtained from the Sysmex. The statistical analysis showed the following bias and standard deviation of differences of all methods in comparison to the venous results: Haemospect, -0.22 ± 1.24; NBM, 200 -0.12 ± 1.14; Pronto-7, -0.50 ± 0.99; and CompoLab Hb, -0.53 ± 0.81. Noninvasive Hb tests represent an attractive alternative by eliminating pain and reducing risks of blood contamination. The main problem for generating reliable results seems to be preanalytical variability in sampling. Despite the sensitivity to environmental stress, all methods are suitable for Hb measurement. © 2014 AABB.

  8. Noninvasive ventilation in hypoxemic respiratory failure

    Directory of Open Access Journals (Sweden)

    Raja Dhar

    2016-01-01

    Full Text Available Noninvasive ventilation (NIV refers to positive pressure ventilation delivered through a noninvasive interface (nasal mask, facemask, or nasal plugs etc. Over the past decade its use has become more common as its benefits are increasingly recognized. This review will focus on the evidence supporting the use of NIV in various conditions resulting in acute hypoxemic respiratory failure (AHRF, that is, non-hypercapnic patients having acute respiratory failure in the absence of a cardiac origin or underlying chronic pulmonary disease. Outcomes depend on the patient's diagnosis and clinical characteristics. Patients should be monitored closely for signs of noninvasive ventilation failure and promptly intubated before a crisis develops. The application of noninvasive ventilation by a trained and experienced team, with careful patient selection, should optimize patient outcomes.

  9. Tentative type test of a non-invasive high-voltage meter with respect to the quantity of practical peak voltage

    International Nuclear Information System (INIS)

    Peixoto, J.G.P.; Selbach, H.J.; Kramer, H.M.; Lange, B.

    2001-04-01

    In Working Group 3 of Sub-committee 62C of the international electrotechnical commission (IEC) a new project is underway [1] with the objective of specifying requirements for the performance characteristics of instruments for the non-invasive measurement of the X-ray tube voltage in diagnostic radiology. In this draft the X-ray tube voltage is specified in terms of the practical peak voltage [2]. The objective of the present work is to perform a tentative type test, based on the ''Requirements for Instruments for Non-invasive Measurements of the X-ray Tube Voltage'' defined in the IEC draft, with a commercially available non-invasive high-voltage meter. The instrument was modified so that the practical peak voltage can be measured. It is shown that the instrument, with the modifications made, is suitable for the non-invasive measurement of the practical peak voltage between 50 kV and 150 kV within the required limits of variation of the response. (orig.)

  10. MR measures of renal perfusion, oxygen bioavailability and total renal blood flow in a porcine model: noninvasive regional assessment of renal function.

    Science.gov (United States)

    Wentland, Andrew L; Artz, Nathan S; Fain, Sean B; Grist, Thomas M; Djamali, Arjang; Sadowski, Elizabeth A

    2012-01-01

    Magnetic resonance imaging (MRI) may be a useful adjunct to current methods of evaluating renal function. MRI is a noninvasive imaging modality that has the ability to evaluate the kidneys regionally, which is lacking in current clinical methods. Other investigators have evaluated renal function with MRI-based measurements, such as with techniques to measure cortical and medullary perfusion, oxygen bioavailability and total renal blood flow (TRBF). However, use of all three techniques simultaneously, and therefore the relationships between these MRI-derived functional parameters, have not been reported previously. To evaluate the ability of these MRI techniques to track changes in renal function, we scanned 11 swine during a state of hyperperfusion with acetylcholine and a saline bolus and subsequently scanned during a state of hypoperfusion with the prolonged use of isoflurane anesthesia. For each time point, measurements of perfusion, oxygen bioavailability and TRBF were acquired. Measurements of perfusion and oxygen bioavailability were compared with measurements of TRBF for all swine across all time points. Cortical perfusion, cortical oxygen bioavailability, medullary oxygen bioavailability and TRBF significantly increased with the acetylcholine challenge. Cortical perfusion, medullary perfusion, cortical oxygen bioavailability and TRBF significantly decreased during isoflurane anesthesia. Cortical perfusion (Spearman's correlation coefficient = 0.68; P renal function. Maintenance of the medullary oxygen bioavailability in low blood flow states may reflect the autoregulation particular to this region of the kidney. The ability to non-invasively measure all three parameters of kidney function in a single MRI examination and to evaluate the relationships between these functional parameters is potentially useful for evaluating the state of the human kidneys in situ in future studies.

  11. Abscisic acid and transpiration rate are involved in the response to boron toxicity in Arabidopsis plants.

    Science.gov (United States)

    Macho-Rivero, Miguel Ángel; Camacho-Cristóbal, Juan José; Herrera-Rodríguez, María Begoña; Müller, Maren; Munné-Bosch, Sergi; González-Fontes, Agustín

    2017-05-01

    Boron (B) is an essential microelement for vascular plant development, but its toxicity is a major problem affecting crop yields in arid and semi-arid areas of the world. In the literature, several genes involved in abscisic acid (ABA) signalling and responses are upregulated in Arabidopsis roots after treatment with excess B. It is known that the AtNCED3 gene, which encodes a crucial enzyme for ABA biosynthesis, plays a key role in the plant response to drought stress. In this study, root AtNCED3 expression and shoot ABA content were rapidly increased in wild-type plants upon B-toxicity treatment. The Arabidopsis ABA-deficient nced3-2 mutant had higher transpiration rate, stomatal conductance and accumulated more B in their shoots than wild-type plants, facts that were associated with the lower levels of ABA in this mutant. However, in wild-type plants, B toxicity caused a significant reduction in stomatal conductance, resulting in a decreased transpiration rate. This response could be a mechanism to limit the transport of excess B from the roots to the leaves under B toxicity. In agreement with the higher transpiration rate of the nced3-2 mutant, this genotype showed an increased leaf B concentration and damage upon exposure to 5 mM B. Under B toxicity, ABA application decreased B accumulation in wild-type and nced3-2 plants. In summary, this work shows that excess B applied to the roots leads to rapid changes in AtNCED3 expression and gas exchange parameters that would contribute to restrain the B entry into the leaves, this effect being mediated by ABA. © 2016 Scandinavian Plant Physiology Society.

  12. Plant transpiration and net entropy exchange on the Earth’s surface in a Czech watershed

    Czech Academy of Sciences Publication Activity Database

    Tesař, Miroslav; Šír, Miloslav; Lichner, Ľ.; Čermák, J.

    2007-01-01

    Roč. 62, č. 5 (2007), s. 547-551 ISSN 0006-3088 R&D Projects: GA AV ČR 1QS200420562; GA ČR GA205/05/2312 Institutional research plan: CEZ:AV0Z20600510 Keywords : entropy * Gaia theory * hydrologic cycle * plant transpiration Subject RIV: DA - Hydrology ; Limnology Impact factor: 0.207, year: 2007

  13. THE INTENSITY OF TRANSPIRATION OF THE LEAVES OF GLYCINE MAX (L. MERR. DEPENDING ON THE GROWTH PHASE AND THE TIERED ARRANGEMENT ON THE PLANT

    Directory of Open Access Journals (Sweden)

    A. V. Amelin

    2018-01-01

    Full Text Available The thematic core facilities plan, CCU of Orel state agrarian university "Genetic resources of plants and their use" for a joint program with Shatilovskay of Institute of leguminous and cereal crops, of field and vegetation experiments on the study of specific features of manifestation of the activity of transpiration leaves of soybean are achieved. The object of the study were 10 varieties of soybeans that were grown on plots of 15 m2 in four replications. Seeding was carried out breeding seeder calculated 600 thousand of viable seeds per hectare. the way the plots were allocated systematically with offset. The care of crops was carried out in accordance with the recommended regional events. It was demonstrated that leaf transpiration activity of the culture increases sharply in the transition of plants to the generative period of development, reaching a maximum in the phase of mass fruit formation, when the most active growth and, consequently, the demand for assimilate. The intensity of transpiration of leaves during this period of plant development was by 8.22 mmol H2O/m2c. The highest transpiration activity was typical for the upper leaves located in the generative sphere of plants, the lowest - activity was fount for the lowerst leaves. On the 5th node from the bottom, its value was 2.2 times lower compared to the assimilating leaves at the top of the plants (3-4 knots top. Thus, the most intensive evaporation of the water by leaves are held from 9:00 to 13:00 hours Moscow time. The intensity of transpiration in this period amounted to an average of 5.42 mmol H2O/m2c, which was 19.9% higher than in the morning (from 7:00 to 8:00 and 42.3% in the afternoon (from 15:00 to 17:00.

  14. Noninvasive measurements of regional cerebral perfusion in preterm and term neonates by magnetic resonance arterial spin labeling.

    Science.gov (United States)

    Miranda, Maria J; Olofsson, Kern; Sidaros, Karam

    2006-09-01

    Magnetic resonance arterial spin labeling (ASL) at 3 Tesla has been investigated as a quantitative technique for measuring regional cerebral perfusion (RCP) in newborn infants. RCP values were measured in 49 healthy neonates: 32 preterm infants born before 34 wk of gestation and 17 term-born neonates. Examinations were performed on unsedated infants at postmenstrual age of 39-40 wk in both groups. Due to motion, reliable data were obtained from 23 preterm and 6 term infants. Perfusion in the basal ganglia (39 and 30 mL/100 g/min for preterm and term neonates, respectively) was significantly higher (p neonates at term-equivalent age and in term neonates. Perfusion was significantly higher (p = 0.01) in the preterm group than in the term infants, indicating that RCP may be influenced by developmental and postnatal ages. This study demonstrates, for the first time, that noninvasive ASL at 3T may be used to measure RCP in healthy unsedated preterm and term neonates. ASL is, therefore, a viable tool that will allow serial studies of RCP in high-risk neonates.

  15. Differential antioxidative responses in transgenic peanut bear no relationship to their superior transpiration efficiency under drought stress.

    Science.gov (United States)

    Bhatnagar-Mathur, Pooja; Devi, M Jyostna; Vadez, Vincent; Sharma, Kiran K

    2009-07-15

    To counter the effects of environmental stresses, the plants must undergo detoxification that is crucial to avoid the accumulation of damaging free oxygen radicals (ROI). Here, we detail the oxidative damage, the antioxidant composition, and the osmoprotection achieved in transgenic plants of peanut overexpressing the AtDREB1A transgene, driven by a stress-inducible promoter (Atrd29A) when exposed to progressive water stress conditions. This study explored the biochemical mechanisms where (i) the antioxidants such as superoxide dismutase (SOD), ascorbate peroxidase (APOX), and glutathione reductase (GR) accumulated in the transgenic plants at comparably higher levels than their untransformed counterparts under dry soil conditions, (ii) a significant increase in the proline levels in the transgenic plants was observed in dry soils, and (iii) a dramatic increase in the lipid peroxidation in the untransformed controls in drier soils. Most of the biochemical parameters related to the antioxidative machinery in the tested peanut transgenics were triggered by the overexpression of AtDREB1A that appeared to differ from the untransformed controls. The antioxidants showed a negative correlation with the fraction of transpirable soil water (FTSW) thresholds, where the normalized transpiration rate (NTR) started decreasing in the tested plants. However, no significant relationship was observed between any of these biochemical indicators and the higher transpiration efficiency (TE) values found in the transgenic events. Our results show that changes in the antioxidative machinery in these transgenic peanut plants (overexpressing the AtDREB1A transcription factor) under water-limiting conditions played no causative role in improved TE.

  16. Noninvasive neuromodulation in migraine and cluster headache.

    Science.gov (United States)

    Starling, Amaal

    2018-06-01

    The purpose of this narrative review is to provide an overview of the currently available noninvasive neuromodulation devices for the treatment of migraine and cluster headache. Over the last decade, several noninvasive devices have undergone development and clinical trials to evaluate efficacy and safety. Based on this body of work, single-pulse transcranial magnetic stimulation, transcutaneous supraorbital neurostimulation, and noninvasive vagal nerve stimulation devices have been cleared by the United States Food and Drug Administration and are available for clinical use for the treatment of primary headache disorders. Overall, these novel noninvasive devices appear to be safe, well tolerated, and have demonstrated promising results in clinical trials in both migraine and cluster headache. This narrative review will provide a summary and update of the proposed mechanisms of action, evidence, safety, and future directions of various currently available modalities of noninvasive neuromodulation for the treatment of migraine and cluster headache.

  17. Noninvasive measurement of cerebral venous oxygenation in neonates with a multi-wavelength, fiber-coupled laser diode optoacoustic system

    Science.gov (United States)

    Herrmann, Stephen; Petrov, Irene Y.; Petrov, Yuriy; Fonseca, Rafael A.; Richardson, C. Joan; Shanina, Ekaterina; Prough, Donald S.; Esenaliev, Rinat O.

    2018-03-01

    Noninvasive measurement of cerebral venous oxygenation in neonates could provide critical information for clinicians such as cerebral hypoxia without the risks involved with invasive catheterization. Evaluation of cerebral hypoxia is important in many clinical settings such as hypoxic-ischemic encephalopathy, perfusion monitoring in cardiovascular surgery or in traumatic brain injury. By probing the superior sagittal sinus (SSS), a large central cerebral vein, we can obtain stable signals with our recently developed multi-wavelength, fiber-coupled laser diode optoacoustic system for measurement of SSS blood oxygenation. The neonatal SSS oxygenation was measured in the reflection mode through open anterior and posterior fontanelles without obscuration by the overlying calvarium. In the transmission mode it was measured through the skull in the occipital area. Our device is lightweight, easily maneuverable, and user friendly for physicians. We monitored the SSS oxygenation in neonates admitted to the Neonatal Intensive Care Unit (NICU) of UTMB with varying gestation, birth weight and clinical histories to identify normal range and difference between neonates with and without risk factors for cerebral hypoxia.

  18. The use of non-invasive instruments in characterizing human facial and abdominal skin.

    Science.gov (United States)

    Bailey, Steven H; Oni, Georgette; Brown, Spencer A; Kashefi, Natalie; Cheriyan, Salim; Maxted, Michael; Stewart, Collin; Jones, Caroline; Maluso, Patrick; Kenkel, Ashley M; Kenkel, Matthew M; Hoopman, John; Barton, Fritz; Kenkel, Jeffrey M

    2012-02-01

    The skin is highly variable. This variation, although helpful for function, causes inconsistencies when assessed using subjective scales. The purpose of this study is to measure differences in skin on the face and abdomen using non-invasive, objective devices as a method to eliminate subjective error and help reduce intra- and inter-observer variability in clinical analysis. Eighty-eight subjects between the ages of 18 and 61 were enrolled in this study. These subjects varied in age, ethnicity, and Fitzpatrick score. Facial analysis was performed by clinical evaluation and utilizing non-invasive objective devices which included the DermaScan C 20 MHz HFUS (Cyberderm, Broomall, PA), Tru Vu (Johnson and Johnson), BTC 2000 (SRLI Technologies, Nashville, TN), Derma Unit SSC3 (CK Electronic, Köln, Germany), and the Chromometer. Non-invasive devices were shown to be consistent and accurate through repeated measurement at each of the anatomical points with error rates of less than 5%. Chromometer measurements were able to categorize patients into Fitzpatrick level. DermaScan measurements demonstrated decreasing skin thicknesses associated with increasing age, smoking, and female gender. Derma Unit SSC 3 showed gender and sun exposure related differences in sebum concentration, pH, and moisture content. The Derma Unit SSC 3 sebum concentration also showed correlation with Tru Vu readings for clogged pores and bacterial activity. The skin assessment scales that are in use today are often prone to variability and inaccuracy due to their subjectivity. Use of the described objective non-invasive facial analysis method provides an accurate, objective analysis of human skin which can be used to measure changes pre- and post-operatively, or even screen patients prior to procedure to identify non-responders or those prone to adverse events. Utilization of these devices introduces a foundation on which a strong evidence-based approach to aesthetic medicine can be built. Copyright

  19. Real-Time Determination of Photosynthesis, Transpiration, Water-Use Efficiency and Gene Expression of Two Sorghum bicolor (Moench Genotypes Subjected to Dry-Down

    Directory of Open Access Journals (Sweden)

    Alessandra Fracasso

    2017-05-01

    Full Text Available Plant growth and productivity are strongly affected by limited water availability in drought prone environments. The current climate change scenario, characterized by long periods without precipitations followed by short but intense rainfall, forces plants to implement different strategies to cope with drought stress. Understanding how plants use water during periods of limited water availability is of primary importance to identify and select the best adapted genotypes to a certain environment. Two sorghum genotypes IS22330 and IS20351, previously characterized as drought tolerant and drought sensitive genotypes, were subjected to progressive drought stress through a dry-down experiment. A whole-canopy multi-chamber system was used to determine the in vivo water use efficiency (WUE. This system records whole-canopy net photosynthetic and transpiration rate of 12 chambers five times per hour allowing the calculation of whole-canopy instantaneous WUE daily trends. Daily net photosynthesis and transpiration rates were coupled with gene expression dynamics of five drought related genes. Under drought stress, the tolerant genotype increased expression level for all the genes analyzed, whilst the opposite trend was highlighted by the drought sensitive genotype. Correlation between gene expression dynamics and gas exchange measurements allowed to identify three genes as valuable candidate to assess drought tolerance in sorghum.

  20. Real-Time Determination of Photosynthesis, Transpiration, Water-Use Efficiency and Gene Expression of Two Sorghum bicolor (Moench) Genotypes Subjected to Dry-Down.

    Science.gov (United States)

    Fracasso, Alessandra; Magnanini, Eugenio; Marocco, Adriano; Amaducci, Stefano

    2017-01-01

    Plant growth and productivity are strongly affected by limited water availability in drought prone environments. The current climate change scenario, characterized by long periods without precipitations followed by short but intense rainfall, forces plants to implement different strategies to cope with drought stress. Understanding how plants use water during periods of limited water availability is of primary importance to identify and select the best adapted genotypes to a certain environment. Two sorghum genotypes IS22330 and IS20351, previously characterized as drought tolerant and drought sensitive genotypes, were subjected to progressive drought stress through a dry-down experiment. A whole-canopy multi-chamber system was used to determine the in vivo water use efficiency (WUE). This system records whole-canopy net photosynthetic and transpiration rate of 12 chambers five times per hour allowing the calculation of whole-canopy instantaneous WUE daily trends. Daily net photosynthesis and transpiration rates were coupled with gene expression dynamics of five drought related genes. Under drought stress, the tolerant genotype increased expression level for all the genes analyzed, whilst the opposite trend was highlighted by the drought sensitive genotype. Correlation between gene expression dynamics and gas exchange measurements allowed to identify three genes as valuable candidate to assess drought tolerance in sorghum.

  1. [A Case of Noninvasive Ductal Carcinoma of the Breast in a Male].

    Science.gov (United States)

    Yamashita, Yamato; Ishiba, Toshiyuki; Oda, Goshi; Nakagawa, Tsuyoshi; Aburatani, Tomoki; Ogo, Taiichi; Nakashima, Yutaka; Baba, Hironobu; Hoshino, Naoaki; Nishioka, Yoshinobu; Kawano, Tatsuyuki; Itoh, Takashi; Kirimura, Susumu; Kobayashi, Hirotoshi

    2017-11-01

    Breast cancer in male is rare, accounting for 1%of all breast cancers.Among male breast cancers, noninvasive carcinoma is extremely rare.We experienced a case of noninvasive carcinoma of the breast in a male.A 72-year-old male was referred to our hospital with a chief complaint of the tumor and blood secretion from the left nipple.Mammography revealed a highdensity mass.Ultrasound examination revealed low echoic mass at the E area, and it measured 1.5 cm.Core needle biopsy failed to provide a definitive diagnosis, and we performed an excisional biopsy of the tumor.The pathological diagnosis was noninvasive ductal carcinoma.He underwent a mastectomy without sentinel lymph node biopsy because the resection margin was positive.The patient received no adjuvant therapy and the patient's postoperative course was uneventful for 1 year.As there have been few reports on male noninvasive ductal carcinoma, we do not have evidence for indication of the sentinel lymph nodes and postoperative adjuvant therapy such as tamoxifen.We may confuse the treatment policy.

  2. A Pilot Study: Comparison of Arm Versus Ankle Noninvasive Blood Pressure Measurement at 2 Different Levels of Backrest Elevation.

    Science.gov (United States)

    Henley, Nicole; Quatrara, Beth D; Conaway, Mark

    2015-01-01

    Standard practice for obtaining noninvasive blood pressure includes arm blood pressure (BP) cuff placement at the level of the heart; however, some critical care patients cannot have BPs taken in their arm because of various conditions, and ankle BPs are frequently used as substitutes. The aim of this study was to determine if there was a significant variation between upper arm and ankle BP measurements at different backrest elevations with consideration of peripheral edema factors. After institutional review board approval was obtained, a pilot study was implemented to evaluate noninvasive BP measurements of the arm and ankle with backrest elevation at 0° and 30° in a population of medical intensive care unit patients. Participants served as their own controls and were randomly assigned to left- versus right-side BP readings. Data were also collected on presence of arm versus ankle edema. A total of 30 participants enrolled in the study and provided 120 BP measurements. Blood pressure readings were analyzed in terms of diastolic and systolic findings as well as backrest elevations and edema presence. Thirteen participants presented with either arm or ankle edema. There was a statistical difference between the systolic arm and ankle BP measurements in the 0° (P = .008) and 30° (P arm and ankle diastolic BP is greater for participants without ankle edema (P = .038, r = 0.54) than for participants with ankle edema (P = .650, r = 0.14), but it is not statistically significant (P = .47). Even though ankle BPs are often substituted for arm BPs when the arm is unable to be used, ankle BPs and arm BPs are not interchangeable. Adjustments in backrest elevation and considerations of edema do not normalize the differences. Blood pressures obtained from the ankle are significantly greater than those obtained from the arm. This information needs to be considered when arms are not available and legs are used as surrogates for the upper arm.

  3. Moderate water stress from regulated deficit irrigation decreases transpiration similarly to net carbon exchange in grapevine canopies

    Science.gov (United States)

    To determine the effects of timing and extent of regulated deficit irrigation (RDI) on grapevine (Vitis vinifera) canopies, whole-canopy transpiration (TrV) and canopy conductance to water vapor (gc) were calculated from whole-vine gas exchange near key stages of fruit development. The vines were ma...

  4. New trend in non-invasive prenatal diagnosis.

    Science.gov (United States)

    Ferrari, M; Carrera, P; Lampasona, V; Galbiati, S

    2015-12-07

    The presence of fetal DNA in maternal plasma represents a source of genetic material which can be obtained non-invasively. To date, the translation of noninvasive prenatal diagnosis from research into clinical practice has been rather fragmented, and despite the advances in improving the analytical sensitivity of methods, distinguishing between fetal and maternal sequences remains very challenging. Thus, the field of noninvasive prenatal diagnosis of genetic diseases has yet to attain a routine application in clinical diagnostics. On the contrary, fetal sex determination in pregnancies at high risk of sex-linked disorders, tests for fetal RHD genotyping and non-invasive assessment of chromosomal aneuploidies are now available worldwide. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Noninvasive arterial blood pressure waveforms in patients with continuous-flow left ventricular assist devices.

    Science.gov (United States)

    Martina, Jerson R; Westerhof, Berend E; de Jonge, Nicolaas; van Goudoever, Jeroen; Westers, Paul; Chamuleau, Steven; van Dijk, Diederik; Rodermans, Ben F M; de Mol, Bas A J M; Lahpor, Jaap R

    2014-01-01

    Arterial blood pressure and echocardiography may provide useful physiological information regarding cardiac support in patients with continuous-flow left ventricular assist devices (cf-LVADs). We investigated the accuracy and characteristics of noninvasive blood pressure during cf-LVAD support. Noninvasive arterial pressure waveforms were recorded with Nexfin (BMEYE, Amsterdam, The Netherlands). First, these measurements were validated simultaneously with invasive arterial pressures in 29 intensive care unit patients. Next, the association between blood pressure responses and measures derived by echocardiography, including left ventricular end-diastolic dimensions (LVEDDs), left ventricular end-systolic dimensions (LVESDs), and left ventricular shortening fraction (LVSF) were determined during pump speed change procedures in 30 outpatients. Noninvasive arterial blood pressure waveforms by the Nexfin monitor slightly underestimated invasive measures during cf-LVAD support. Differences between noninvasive and invasive measures (mean ± SD) of systolic, diastolic, mean, and pulse pressures were -7.6 ± 5.8, -7.0 ± 5.2, -6.9 ± 5.1, and -0.6 ± 4.5 mm Hg, respectively (all blood pressure responses did not correlate with LVEDD, LVESD, or LVSF, while LVSF correlated weakly with both pulse pressure (r = 0.24; p = 0.005) and (dP(art)/dt)max (r = 0.25; p = 0.004). The dicrotic notch in the pressure waveform was a better predictor of aortic valve opening (area under the curve [AUC] = 0.87) than pulse pressure (AUC = 0.64) and (dP(art)/dt)max (AUC = 0.61). Patients with partial support rather than full support at 9,000 rpm had a significant change in systolic pressure, pulse pressure, and (dP(art)/dt)max during ramp studies, while echocardiographic measures did not change. Blood pressure measurements by Nexfin were reliable and may thereby act as a compliment to the assessment of the cf-LVAD patient.

  6. Validity of bioluminescence measurements for noninvasive in vivo imaging of tumor load in small animals

    NARCIS (Netherlands)

    Klerk, Clara P. W.; Overmeer, Renée M.; Niers, Tatjana M. H.; Versteeg, Henri H.; Richel, Dick J.; Buckle, Tessa; van Noorden, Cornelis J. F.; van Tellingen, Olaf

    2007-01-01

    A relatively new strategy to longitudinally monitor tumor load in intact animals and the effects of therapy is noninvasive bioluminescence imaging (BLI). The validity of BLI for quantitative assessment of tumor load in small animals is critically evaluated in the present review. Cancer cells are

  7. Response of ammonium removal to growth and transpiration of Juncus effusus during the treatment of artificial sewage in laboratory-scale wetlands.

    Science.gov (United States)

    Wiessner, A; Kappelmeyer, U; Kaestner, M; Schultze-Nobre, L; Kuschk, P

    2013-09-01

    The correlation between nitrogen removal and the role of the plants in the rhizosphere of constructed wetlands are the subject of continuous discussion, but knowledge is still insufficient. Since the influence of plant growth and physiological activity on ammonium removal has not been well characterized in constructed wetlands so far, this aspect is investigated in more detail in model wetlands under defined laboratory conditions using Juncus effusus for treating an artificial sewage. Growth and physiological activity, such as plant transpiration, have been found to correlate with both the efficiency of ammonium removal within the rhizosphere of J. effusus and the methane formation. The uptake of ammonium by growing plant stocks is within in a range of 45.5%, but under conditions of plant growth stagnation, a further nearly complete removal of the ammonium load points to the likely existence of additional nitrogen removal processes. In this way, a linear correlation between the ammonium concentration inside the rhizosphere and the transpiration of the plant stocks implies that an influence of plant physiological activity on the efficiency of N-removal exists. Furthermore, a linear correlation between methane concentration and plant transpiration has been estimated. The findings indicate a fast response of redox processes to plant activities. Accordingly, not only the influence of plant transpiration activity on the plant-internal convective gas transport, the radial oxygen loss by the plant roots and the efficiency of nitrification within the rhizosphere, but also the nitrogen gas released by phytovolatilization are discussed. The results achieved by using an unplanted control system are different in principle and characterized by a low efficiency of ammonium removal and a high methane enrichment of up to a maximum of 72.7% saturation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Association of low non-invasive near-infrared spectroscopic measurements during initial trauma resuscitation with future development of multiple organ dysfunction.

    Science.gov (United States)

    Nicks, Bret A; Campons, Kevin M; Bozeman, William P

    2015-01-01

    Near-infrared spectroscopy (NIRS) non-invasively monitors muscle tissue oxygen saturation (StO2). It may provide a continuous noninvasive measurement to identify occult hypoperfusion, guide resuscitation, and predict the development of multiple organ dysfunction (MOD) after severe trauma. We evaluated the correlation between initial StO2 and the development of MOD in multi-trauma patients. Patients presenting to our urban, academic, Level I Trauma Center/Emergency Department and meeting standardized trauma-team activation criteria were enrolled in this prospective trial. NIRS monitoring was initiated immediately on arrival with collection of StO2 at the thenar eminence and continued up to 24 hours for those admitted to the Trauma Intensive Care Unit (TICU). Standardized resuscitation laboratory measures and clinical evaluation tools were collected. The primary outcome was the association between initial StO2 and the development of MOD within the first 24 hours based on a MOD score of 6 or greater. Descriptive statistical analyses were performed; numeric means, multivariate regression and rank sum comparisons were utilized. Clinicians were blinded from the StO2 values. Over a 14 month period, 78 patients were enrolled. Mean age was 40.9 years (SD 18.2), 84.4% were male, 76.9% had a blunt trauma mechanism and mean injury severity score (ISS) was 18.5 (SD 12.9). Of the 78 patients, 26 (33.3%) developed MOD within the first 24 hours. The MOD patients had mean initial StO2 values of 53.3 (SD 10.3), significantly lower than those of non-MOD patients 61.1 (SD 10.0); P=0.002. The mean ISS among MOD patients was 29.9 (SD 11.5), significantly higher than that of non-MODS patients, 12.1 (SD 9.1) (P<0.0001). The mean shock index (SI) among MOD patients was 0.92 (SD 0.28), also significantly higher than that of non-MODS patients, 0.73 (SD 0.19) (P=0.0007). Lactate values were not significantly different between groups. Non-invasive, continuous StO2 near-infrared spectroscopy

  9. Noninvasive optoacoustic system for rapid diagnosis and management of circulatory shock

    Science.gov (United States)

    Petrov, Irene Y.; Kinsky, Michael; Petrov, Yuriy; Petrov, Andrey; Henkel, S. N.; Seeton, Roger; Esenaliev, Rinat O.; Prough, Donald S.

    2013-03-01

    Circulatory shock can lead to death or severe complications, if not promptly diagnosed and effectively treated. Typically, diagnosis and management of circulatory shock are guided by blood pressure and heart rate. However, these variables have poor specificity, sensitivity, and predictive value. Early goal-directed therapy in septic shock patients, using central venous catheterization (CVC), reduced mortality from 46.5% to 30%. However, CVC is invasive and complication-prone. We proposed to use an optoacoustic technique for noninvasive, rapid assessment of peripheral and central venous oxygenation. In this work we used a medical grade optoacoustic system for noninvasive, ultrasound image-guided measurement of central and peripheral venous oxygenation. Venous oxygenation during shock declines more rapidly in the periphery than centrally. Ultrasound imaging of the axillary [peripheral] and internal jugular vein [central] was performed using the Vivid e (GE Healthcare). We built an optoacoustic interface incorporating an optoacoustic transducer and a standard ultrasound imaging probe. Central and peripheral venous oxygenations were measured continuously in healthy volunteers. To simulate shock-induced changes in central and peripheral oxygenation, we induced peripheral vasoconstriction in the upper extremity by using a cooling blanket. Central and peripheral venous oxygenations were measured before (baseline) and after cooling and after rewarming. During the entire experiment, central venous oxygenation was relatively stable, while peripheral venous oxygenation decreased by 5-10% due to cooling and recovered after rewarming. The obtained data indicate that noninvasive, optoacoustic measurements of central and peripheral venous oxygenation may be used for diagnosis and management of circulatory shock with high sensitivity and specificity.

  10. Noninvasive measurement of cerebrospinal fluid flow using an ultrasonic transit time flow sensor: a preliminary study.

    Science.gov (United States)

    Pennell, Thomas; Yi, Juneyoung L; Kaufman, Bruce A; Krishnamurthy, Satish

    2016-03-01

    OBJECT Mechanical failure-which is the primary cause of CSF shunt malfunction-is not readily diagnosed, and the specific reasons for mechanical failure are not easily discerned. Prior attempts to measure CSF flow noninvasively have lacked the ability to either quantitatively or qualitatively obtain data. To address these needs, this preliminary study evaluates an ultrasonic transit time flow sensor in pediatric and adult patients with external ventricular drains (EVDs). One goal was to confirm the stated accuracy of the sensor in a clinical setting. A second goal was to observe the sensor's capability to record real-time continuous CSF flow. The final goal was to observe recordings during instances of flow blockage or lack of flow in order to determine the sensor's ability to identify these changes. METHODS A total of 5 pediatric and 11 adult patients who had received EVDs for the treatment of hydrocephalus were studied in a hospital setting. The primary EVD was connected to a secondary study EVD that contained a fluid-filled pressure transducer and an in-line transit time flow sensor. Comparisons were made between the weight of the drainage bag and the flow measured via the sensor in order to confirm its accuracy. Data from the pressure transducer and the flow sensor were recorded continuously at 100 Hz for a period of 24 hours by a data acquisition system, while the hourly CSF flow into the drip chamber was recorded manually. Changes in the patient's neurological status and their time points were noted. RESULTS The flow sensor demonstrated a proven accuracy of ± 15% or ± 2 ml/hr. The flow sensor allowed real-time continuous flow waveform data recordings. Dynamic analysis of CSF flow waveforms allowed the calculation of the pressure-volume index. Lastly, the sensor was able to diagnose a blocked catheter and distinguish between the blockage and lack of flow. CONCLUSIONS The Transonic flow sensor accurately measures CSF output within ± 15% or ± 2 ml

  11. Noninvasive glucose monitoring using saliva nano-biosensor

    Directory of Open Access Journals (Sweden)

    Wenjun Zhang

    2015-06-01

    Full Text Available Millions of people worldwide live with diabetes and several millions die from it each year. A noninvasive, painless method of glucose testing would highly improve compliance and glucose control while reducing complications and overall disease management costs. To provide accurate, low cost, and continuous glucose monitoring, we have developed a unique, disposable saliva nano-biosensor. More than eight clinical trials on real-time noninvasive salivary glucose monitoring were carried out on two healthy individuals (a 2–3 h-period for each trial, including both regular food and standard glucose beverage intake with more than 35 saliva samples obtained. Excellent clinical accuracy was revealed as compared to the UV Spectrophotometer. By measuring subjects’ salivary glucose and blood glucose in parallel, we found the two generated profiles share the same fluctuation trend but the correlation between them is individual dependent. There is a time lag between the peak glucose values from blood and from saliva. However, the correlation between the two glucose values at fasting is constant for each person enabling noninvasive diagnosis of diabetes through saliva instead of blood. Furthermore, a good correlation of glucose levels in saliva and in blood before and 2 h after glucose intake was observed. Glucose monitoring before and 2 h after meals is usually prescribed by doctors for diabetic patients. Thus, this disposable biosensor will be an alternative for real-time salivary glucose tracking at any time.

  12. Rapid Biolayer Interferometry Measurements of Urinary CXCL9 to Detect Cellular Infiltrates Noninvasively After Kidney Transplantation

    Directory of Open Access Journals (Sweden)

    Ilaria Gandolfini

    2017-11-01

    Discussion: Together, our proof-of-principle results demonstrate that BLI-based urinary CXCL9 detection has potential as a point-of-care noninvasive biomarker to diagnose and guide therapy for ACR in kidney transplantation recipients.

  13. Genetic Variation of Morphological Traits and Transpiration in an Apple Core Collection under Well-Watered Conditions: Towards the Identification of Morphotypes with High Water Use Efficiency.

    Directory of Open Access Journals (Sweden)

    Gerardo Lopez

    Full Text Available Water use efficiency (WUE is a quantitative measurement which improvement is a major issue in the context of global warming and restrictions in water availability for agriculture. In this study, we aimed at studying the variation and genetic control of WUE and the respective role of its components (plant biomass and transpiration in a perennial fruit crop. We explored an INRA apple core collection grown in a phenotyping platform to screen one-year-old scions for their accumulated biomass, transpiration and WUE under optimal growing conditions. Plant biomass was decompose into morphological components related to either growth or organ expansion. For each trait, nine mixed models were evaluated to account for the genetic effect and spatial heterogeneity inside the platform. The Best Linear Unbiased Predictors of genetic values were estimated after model selection. Mean broad-sense heritabilities were calculated from variance estimates. Heritability values indicated that biomass (0.76 and WUE (0.73 were under genetic control. This genetic control was lower in plant transpiration with an heritability of 0.54. Across the collection, biomass accounted for 70% of the WUE variability. A Hierarchical Ascendant Classification of the core collection indicated the existence of six groups of genotypes with contrasting morphology and WUE. Differences between morphotypes were interpreted as resulting from differences in the main processes responsible for plant growth: cell division leading to the generation of new organs and cell elongation leading to organ dimension. Although further studies will be necessary on mature trees with more complex architecture and multiple sinks such as fruits, this study is a first step for improving apple plant material for the use of water.

  14. Genetic Variation of Morphological Traits and Transpiration in an Apple Core Collection under Well-Watered Conditions: Towards the Identification of Morphotypes with High Water Use Efficiency.

    Science.gov (United States)

    Lopez, Gerardo; Pallas, Benoît; Martinez, Sébastien; Lauri, Pierre-Éric; Regnard, Jean-Luc; Durel, Charles-Éric; Costes, Evelyne

    2015-01-01

    Water use efficiency (WUE) is a quantitative measurement which improvement is a major issue in the context of global warming and restrictions in water availability for agriculture. In this study, we aimed at studying the variation and genetic control of WUE and the respective role of its components (plant biomass and transpiration) in a perennial fruit crop. We explored an INRA apple core collection grown in a phenotyping platform to screen one-year-old scions for their accumulated biomass, transpiration and WUE under optimal growing conditions. Plant biomass was decompose into morphological components related to either growth or organ expansion. For each trait, nine mixed models were evaluated to account for the genetic effect and spatial heterogeneity inside the platform. The Best Linear Unbiased Predictors of genetic values were estimated after model selection. Mean broad-sense heritabilities were calculated from variance estimates. Heritability values indicated that biomass (0.76) and WUE (0.73) were under genetic control. This genetic control was lower in plant transpiration with an heritability of 0.54. Across the collection, biomass accounted for 70% of the WUE variability. A Hierarchical Ascendant Classification of the core collection indicated the existence of six groups of genotypes with contrasting morphology and WUE. Differences between morphotypes were interpreted as resulting from differences in the main processes responsible for plant growth: cell division leading to the generation of new organs and cell elongation leading to organ dimension. Although further studies will be necessary on mature trees with more complex architecture and multiple sinks such as fruits, this study is a first step for improving apple plant material for the use of water.

  15. A new noninvasive device for measuring central ejection dP/dt mathematical foundation of cardiac dP/dt measurement using a model for a collapsible artery.

    Science.gov (United States)

    Gorenberg, Miguel; Rotztein, Hector; Marmor, Alon

    2009-03-01

    We have developed a novel non-invasive device for the measurement of one of the most sensitive indices of myocardial contractility as represented by the rate of increase of intraventricular pressure (left ventricular dP/dt and arterial dP/dt performance index (dP/dt(ejc)). Up till now, these parameters could be obtained only by invasive catheterization methods. The new technique is based on the concept of applying multiple successive occlusive pressures on the brachial artery from peak systole to diastole using a inflatable cuff and plotting the values against time intervals that leads to the reconstruction of the central aortic pressure noninvasively. The following describes the computer simulator developed for providing a mathematical foundation of the new sensor. At the core of the simulator lies a hemodynamic model of the blood flow on an artery under externally applied pressure. The purpose of the model is to reproduce the experimental results obtained in studies on patients (Gorenberg et al. in Cardiovasc Eng: 305-311, 2004; Gorenberg et al. in Emerg med J 22 (7): 486-489, 2005) and a animal model where ischemia resulted from balloon inflation during coronary catheterization (Gorenberg and Marmor in J Med Eng Technol, 2006) and to describe correlations between the dP/dt(ejc) and other hemodynamic variables. The model has successfully reproduced the trends observed experimentally, providing a solid in-depth understanding of the hemodynamics involved in the new measurement. A high correlation between the dP/dt(ejc) and the rate of pressure rise in the aorta during the ejection phase was observed. dP/dt(ejc) dependence on other hemodynamic parameters was also investigated.

  16. Non-invasive hemoglobin monitoring.

    Science.gov (United States)

    Joseph, Bellal; Haider, Ansab; Rhee, Peter

    2016-09-01

    Technology has transformed the practice of medicine and surgery in particular over the last several decades. This change in practice has allowed diagnostic and therapeutic tests to be performed less invasively. Hemoglobin monitoring remains one of the most commonly performed diagnostic tests in the United States. Recently, non-invasive hemoglobin monitoring technology has gained popularity. The aim of this article is to review the principles of how this technology works, pros and cons, and the implications of non-invasive hemoglobin technology particularly in trauma surgery. Copyright © 2015 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.

  17. Noninvasive, three-dimensional full-field body sensor for surface deformation monitoring of human body in vivo

    Science.gov (United States)

    Chen, Zhenning; Shao, Xinxing; He, Xiaoyuan; Wu, Jialin; Xu, Xiangyang; Zhang, Jinlin

    2017-09-01

    Noninvasive, three-dimensional (3-D), full-field surface deformation measurements of the human body are important for biomedical investigations. We proposed a 3-D noninvasive, full-field body sensor based on stereo digital image correlation (stereo-DIC) for surface deformation monitoring of the human body in vivo. First, by applying an improved water-transfer printing (WTP) technique to transfer optimized speckle patterns onto the skin, the body sensor was conveniently and harmlessly fabricated directly onto the human body. Then, stereo-DIC was used to achieve 3-D noncontact and noninvasive surface deformation measurements. The accuracy and efficiency of the proposed body sensor were verified and discussed by considering different complexions. Moreover, the fabrication of speckle patterns on human skin, which has always been considered a challenging problem, was shown to be feasible, effective, and harmless as a result of the improved WTP technique. An application of the proposed stereo-DIC-based body sensor was demonstrated by measuring the pulse wave velocity of human carotid artery.

  18. Noninvasive 133Xe inhalation method for cerebral blood flow measurement

    International Nuclear Information System (INIS)

    Takagi, Shigeharu; Kobatake, Keitaro; Shinohara, Yukito

    1991-01-01

    Recent development of the 133 Xe inhalation technique has made it possible to measure cerebral blood flow (CBF) noninvasively. Recording of the head curves from the frontal and temporal areas during inhalation of 133 Xe, however, is contaminated by the artifact from the air passages. A method based on Fourier transforms was reported to be able to eliminate air passage artifact (APA) effectively. However, it was pointed out that such an algorithm does not give a complete correction if the artifact seen by the head detectors differs in shape from that recorded from the airways at the mouth, which may happen when there is a slow isotope convection in the nasal and sinus cavities. The purpose of this study was to compare the CBF values calculated by the Fourier method with those by the conventional method of Obrist (VM method). Mean hemispheric gray matter flow (F 1 ) calculated by the VM method in 11 subjects, including normal volunteers and patients with various neurological diseases, was 69.2±13.2 mg/100 g brain/ min, whereas F 1 calculated by the Fourier method in the same subjects was 64.4±13.5, indicating that APA can be effectively eliminated by the Fourier method. The F 1 values calculated by the Fourier method from the frontal and temporal regions were relatively high, and closer to the F 1 values calculated by the VM method. The size of the APA was large in these regions. It was concluded that the deformed APA contaminated the results in these regions, and could not be eliminated effectively by the Fourier method. It is suggested that the shape of the head curve and the size of APA should be carefully examined to ensure that CBF data are reliable. (author)

  19. Clinical application of noninvasive diagnosis of liver fibrosis

    Directory of Open Access Journals (Sweden)

    ZHU Chuanlong

    2015-03-01

    Full Text Available Hepatic fibrosis is the common outcome of chronic liver diseases of various causes. At present, liver biopsy is the “gold standard” for the diagnosis of liver fibrosis, but it has limitations and is invasive, which leads to the development of noninvasive assessment of liver fibrosis. The article mainly introduces the technology and application of noninvasive diagnosis of liver fibrosis from the aspects of clinical manifestation, serology, and radiology. It has pointed out the clinical value of these noninvasive diagnosis techniques, and it discusses the progress in clinical research and its limitations for noninvasive diagnosis of liver fibrosis.

  20. Integrated circuits and electrode interfaces for noninvasive physiological monitoring.

    Science.gov (United States)

    Ha, Sohmyung; Kim, Chul; Chi, Yu M; Akinin, Abraham; Maier, Christoph; Ueno, Akinori; Cauwenberghs, Gert

    2014-05-01

    This paper presents an overview of the fundamentals and state of the-art in noninvasive physiological monitoring instrumentation with a focus on electrode and optrode interfaces to the body, and micropower-integrated circuit design for unobtrusive wearable applications. Since the electrode/optrode-body interface is a performance limiting factor in noninvasive monitoring systems, practical interface configurations are offered for biopotential acquisition, electrode-tissue impedance measurement, and optical biosignal sensing. A systematic approach to instrumentation amplifier (IA) design using CMOS transistors operating in weak inversion is shown to offer high energy and noise efficiency. Practical methodologies to obviate 1/f noise, counteract electrode offset drift, improve common-mode rejection ratio, and obtain subhertz high-pass cutoff are illustrated with a survey of the state-of-the-art IAs. Furthermore, fundamental principles and state-of-the-art technologies for electrode-tissue impedance measurement, photoplethysmography, functional near-infrared spectroscopy, and signal coding and quantization are reviewed, with additional guidelines for overall power management including wireless transmission. Examples are presented of practical dry-contact and noncontact cardiac, respiratory, muscle and brain monitoring systems, and their clinical applications.

  1. Influence of hemoglobin on non-invasive optical bilirubin sensing

    Science.gov (United States)

    Jiang, Jingying; Gong, Qiliang; Zou, Da; Xu, Kexin

    2012-03-01

    Since the abnormal metabolism of bilirubin could lead to diseases in the human body, especially the jaundice which is harmful to neonates. Traditional invasive measurements are difficult to be accepted by people because of pain and infection. Therefore, the real-time and non-invasive measurement of bilirubin is of great significance. However, the accuracy of currently transcutaneous bilirubinometry(TcB) is generally not high enough, and affected by many factors in the human skin, mostly by hemoglobin. In this talk, absorption spectra of hemoglobin and bilirubin have been collected and analyzed, then the Partial Least Squares (PLS) models have been built. By analyzing and comparing the Correlation and Root Mean Square Error of Prediction(RMSEP), the results show that the Correlation of bilirubin solution model is larger than that of the mixture solution added with hemoglobin, and its RMSEP value is smaller than that of mixture solution. Therefore, hemoglobin has influences on the non-invasive optical bilirubin sensing. In next step, it is necessary to investigate how to eliminate the influence.

  2. Non-Invasive In Vivo Characterization of Breast Tumors Using Photon Migration Spectroscopy

    Directory of Open Access Journals (Sweden)

    Bruce J. Tromberg

    2000-01-01

    Full Text Available Frequency-domain photon migration (FDPM is a noninvasive optical technique that utilizes intensity-modulated, near-infrared (NIR light to quantitatively measure optical properties in thick tissues. Optical properties (absorption, μa, and scattering, μs′, parameters derived from FDPM measurements can be used to construct low-resolution (0.5 to 1 cm functional images of tissue hemoglobin (total, oxy-, and deoxyforms, oxygen saturation, blood volume fraction, water content, fat content and cellular structure. Unlike conventional NIR transillumination, FDPM enables quantitative analysis of tissue absorption and scattering parameters in a single non-invasive measurement. The unique functional information provided by FDPM makes it well-suited to characterizing tumors in thick tissues. In order to test the sensitivity of FDPM for cancer diagnosis, we have initiated clinical studies to quantitatively determine normal and malignant breast tissue optical and physiological properties in human subjects. Measurements are performed using a non-invasive, multi-wavelength, diode-laser FDPM device optimized for clinical studies. Results show that ductal carcinomas (invasive and in situ and benign fibroadenomas exhibit 1.25 to 3-fold higher absorption than normal breast tissue. Within this group, absorption is greatest for measurements obtained from sites of invasive cancer. Optical scattering is approximately 20% greater in pre-menopausal versus post-menopausal subjects due to differences in gland/cell proliferation and collagen/fat content. Spatial variations in tissue scattering reveal the loss of differentiation associated with breast disease progression. Overall, the metabolic demands of hormonal stimulation and tumor growth are detectable using photon migration techniques. Measurements provide quantitative optical property values that reflect changes in tissue perfusion, oxygen consumption, and cell/matrix development.

  3. Advancing ecological understandings through technological transformations in noninvasive genetics.

    Science.gov (United States)

    Beja-Pereira, Albano; Oliveira, Rita; Alves, Paulo C; Schwartz, Michael K; Luikart, Gordon

    2009-09-01

    Noninvasive genetic approaches continue to improve studies in molecular ecology, conservation genetics and related disciplines such as forensics and epidemiology. Noninvasive sampling allows genetic studies without disturbing or even seeing the target individuals. Although noninvasive genetic sampling has been used for wildlife studies since the 1990s, technological advances continue to make noninvasive approaches among the most used and rapidly advancing areas in genetics. Here, we review recent advances in noninvasive genetics and how they allow us to address important research and management questions thanks to improved techniques for DNA extraction, preservation, amplification and data analysis. We show that many advances come from the fields of forensics, human health and domestic animal health science, and suggest that molecular ecologists explore literature from these fields. Finally, we discuss how the combination of advances in each step of a noninvasive genetics study, along with fruitful areas for future research, will continually increase the power and role of noninvasive genetics in molecular ecology and conservation genetics. © 2009 Blackwell Publishing Ltd.

  4. An Image Registration Based Technique for Noninvasive Vascular Elastography

    OpenAIRE

    Valizadeh, Sina; Makkiabadi, Bahador; Mirbagheri, Alireza; Soozande, Mehdi; Manwar, Rayyan; Mozaffarzadeh, Moein; Nasiriavanaki, Mohammadreza

    2018-01-01

    Non-invasive vascular elastography is an emerging technique in vascular tissue imaging. During the past decades, several techniques have been suggested to estimate the tissue elasticity by measuring the displacement of the Carotid vessel wall. Cross correlation-based methods are the most prevalent approaches to measure the strain exerted in the wall vessel by the blood pressure. In the case of a low pressure, the displacement is too small to be apparent in ultrasound imaging, especially in th...

  5. Transpiration efficiency over an annual cycle, leaf gas exchange and wood carbon isotope ratio of three tropical tree species.

    Science.gov (United States)

    Cernusak, Lucas A; Winter, Klaus; Aranda, Jorge; Virgo, Aurelio; Garcia, Milton

    2009-09-01

    Variation in transpiration efficiency (TE) and its relationship with the stable carbon isotope ratio of wood was investigated in the saplings of three tropical tree species. Five individuals each of Platymiscium pinnatum (Jacq.) Dugand, Swietenia macrophylla King and Tectona grandis Linn. f. were grown individually in large (760 l) pots over 16 months in the Republic of Panama. Cumulative transpiration was determined by repeatedly weighing the pots with a pallet truck scale. Dry matter production was determined by destructive harvest. The TE, expressed as experiment-long dry matter production divided by cumulative water use, averaged 4.1, 4.3 and 2.9 g dry matter kg(-1) water for P. pinnatum, S. macrophylla and T. grandis, respectively. The TE of T. grandis was significantly lower than that of the other two species. Instantaneous measurements of the ratio of intercellular to ambient CO(2) partial pressures (c(i)/c(a)), taken near the end of the experiment, explained 66% of variation in TE. Stomatal conductance was lower in S. macrophylla than in T. grandis, whereas P. pinnatum had similar stomatal conductance to T. grandis, but with a higher photosynthetic rate. Thus, c(i)/c(a) and TE appeared to vary in response to both stomatal conductance and photosynthetic capacity. Stem-wood delta(13)C varied over a relatively narrow range of just 2.2 per thousand, but still explained 28% of variation in TE. The results suggest that leaf-level processes largely determined variation among the three tropical tree species in whole-plant water-use efficiency integrated over a full annual cycle.

  6. Non-invasive techniques for determining musculoskeleton body composition

    International Nuclear Information System (INIS)

    Cohn, S.H.

    1984-01-01

    In vivo neutron activation analysis, combined with gamma spectrometry, has ushered in a new era of clinical diagnosis and evaluation of therapies, as well as investigation into and modelling of body composition in both normal individuals and patients suffering from various diseases and dysfunctions. Body composition studies have provided baseline data on such vital constituents as nitrogen, potassium and calcium. The non-invasive measurement techniques are particularly suitable for study of the musculo-skeletal changes in body composition. Of particular relevance here is the measurement of calcium loss in astronauts during prolonged space flights

  7. Location of the internal carotid artery and ophthalmic artery segments for non-invasive intracranial pressure measurement by multi-depth TCD.

    Science.gov (United States)

    Hamarat, Yasin; Deimantavicius, Mantas; Kalvaitis, Evaldas; Siaudvytyte, Lina; Januleviciene, Ingrida; Zakelis, Rolandas; Bartusis, Laimonas

    2017-12-01

    The aim of the present study was to locate the ophthalmic artery by using the edge of the internal carotid artery (ICA) as the reference depth to perform a reliable non-invasive intracranial pressure measurement via a multi-depth transcranial Doppler device and to then determine the positions and angles of an ultrasonic transducer (UT) on the closed eyelid in the case of located segments. High tension glaucoma (HTG) patients and healthy volunteers (HVs) undergoing non-invasive intracranial pressure measurement were selected for this prospective study. The depth of the edge of the ICA was identified, followed by a selection of the depths of the IOA and EOA segments. The positions and angles of the UT on the closed eyelid were measured. The mean depth of the identified ICA edge for HTG patients was 64.3 mm and was 63.0 mm for HVs (p = 0.21). The mean depth of the selected IOA segment for HTG patients was 59.2 mm and 59.3 mm for HVs (p = 0.91). The mean depth of the selected EOA segment for HTG patients was 48.5 mm and 49.8 mm for HVs (p = 0.14). The difference in the located depths of the segments between groups was not statistically significant. The results showed a significant difference in the measured UT angles in the case of the identified edge of the ICA and selected ophthalmic artery segments (p = 0.0002). We demonstrated that locating the IOA and EOA segments can be achieved using the edge of the ICA as a reference point. OA: ophthalmic artery; IOA: intracranial segments of the ophthalmic artery; EOA: extracranial segments of the ophthalmic artery; ICA: internal carotid artery; UT: ultrasonic transducer; HTG: high tension glaucoma; SD: standard deviation; ICP: intracranial pressure; TCD: transcranial Doppler.

  8. Non-invasive blood glucose monitoring with Raman spectroscopy: prospects for device miniaturization

    International Nuclear Information System (INIS)

    Wróbel, M.S.

    2016-01-01

    The number of patients with diabetes has reached over 350 million, and still continues to increase. The need for regular blood glucose monitoring sparks the interest in the development of modern detection technologies. One of those methods, which allows for noninvasive measurements, is Raman spectroscopy. The ability of infrared light to penetrate deep into tissues allows for obtaining measurements through the skin without its perforation. This paper presents the limitations and possibilities of non-invasive blood glucose monitoring with Raman spectroscopy. Especially focusing on the possibilities for device miniaturization. Such device incorporates a Raman spectrometer, a fiber-optical probe, and a computing device (microcontroller, smartphone, etc.) which calculates the glucose concentration using specialized algorithms. Simplification of device design, as well as turbidity correction technique and a new proposed method of synchronized detection are described

  9. Noninvasive electrical conductivity measurement by MRI. A test of its validity and the electrical conductivity characteristics of glioma

    Energy Technology Data Exchange (ETDEWEB)

    Tha, Khin Khin; Kudo, Kohsuke [Hokkaido University Hospital, Department of Diagnostic and Interventional Radiology, N-14, W-5, Kita-ku, Sapporo (Japan); Hokkaido University, Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education, Sapporo (Japan); Katscher, Ulrich; Stehning, Christian [Philips Research Laboratories, Hamburg (Germany); Yamaguchi, Shigeru; Terasaka, Shunsuke; Kazumata, Ken [Faculty of Medicine, Hokkaido University, Department of Neurosurgery, Sapporo (Japan); Fujima, Noriyuki [Hokkaido University Hospital, Department of Diagnostic and Interventional Radiology, N-14, W-5, Kita-ku, Sapporo (Japan); Yamamoto, Toru [Hokkaido University, Faculty of Health Sciences, Sapporo (Japan); Van Cauteren, Marc [Clinical Science Philips Healthtech Asia Pacific, Tokyo (Japan); Shirato, Hiroki [Hokkaido University, Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education, Sapporo (Japan); Faculty of Medicine, Hokkaido University, Department of Radiation Medicine, Sapporo (Japan)

    2018-01-15

    This study noninvasively examined the electrical conductivity (σ) characteristics of diffuse gliomas using MRI and tested its validity. MRI including a 3D steady-state free precession (3D SSFP) sequence was performed on 30 glioma patients. The σ maps were reconstructed from the phase images of the 3D SSFP sequence. The σ histogram metrics were extracted and compared among the contrast-enhanced (CET) and noncontrast-enhanced tumour components (NCET) and normal brain parenchyma (NP). Difference in tumour σ histogram metrics among tumour grades and correlation of σ metrics with tumour grades were tested. Validity of σ measurement using this technique was tested by correlating the mean tumour σ values measured using MRI with those measured ex vivo using a dielectric probe. Several σ histogram metrics of CET and NCET of diffuse gliomas were significantly higher than NP (Bonferroni-corrected p ≤.045). The maximum σ of NCET showed a moderate positive correlation with tumour grade (r =.571, Bonferroni-corrected p =.018). The mean tumour σ measured using MRI showed a moderate positive correlation with the σ measured ex vivo (r =.518, p =.040). Tissue σ can be evaluated using MRI, incorporation of which may better characterise diffuse gliomas. (orig.)

  10. Optical sensor technology for a noninvasive medical blood diagnosis

    Science.gov (United States)

    Kraitl, Jens; Ewald, Hartmut; Gehring, Hartmut

    2007-02-01

    NIR-spectroscopy and Photoplethysmography (PPG) and is used for a measurement of blood components. The fact that the absorption-coefficients μ a and scattering-coefficients μ s for blood differ at difference wavelengths has been exploited and is used for calculation of the optical absorbability characteristics of human blood yielding information on blood components like hemoglobin and oxygen saturation. The measured PPG time signals and the ratio between the peak to peak pulse amplitudes are used for a measurement of these parameters. A newly developed PMD device has been introduced. The non-invasive in-vivo multi-spectral method is based on the radiation of monochromatic light, emitted by laser diodes, through an area of skin on the finger. Deferrals between the proportions of hemoglobin and plasma in the intravasal volume should be detected photo-electrically by signal-analytic evaluation of the signals. The computed nonlinear coefficients are used for the measurement and calculation of the relative hemoglobin concentration change. Results with this photometric method to measure changes in the hemoglobin concentration were demonstrated during measurements with a hemodynamic model and healthy subjects. The PMD is suitable for non-invasive continuous online monitoring of one or more biologic constituent values. The objective of this development is to reduce the dependence on measurement techniques which require that a sample of blood be withdrawn from the patient for in-vitro analysis. Any invasive method used on the patient to obtain blood is accompanied by problems of inconvenience, stress, and discomfort. The patient is also exposed to the normal risks of infection associated with such invasive methods.

  11. Growth and wall-transpiration control of nonlinear unsteady Görtler vortices forced by free-stream vortical disturbances

    Science.gov (United States)

    Marensi, Elena; Ricco, Pierre

    2017-11-01

    The generation, nonlinear evolution, and wall-transpiration control of unsteady Görtler vortices in an incompressible boundary layer over a concave plate is studied theoretically and numerically. Görtler rolls are initiated and driven by free-stream vortical perturbations of which only the low-frequency components are considered because they penetrate the most into the boundary layer. The formation and development of the disturbances are governed by the nonlinear unsteady boundary-region equations with the centrifugal force included. These equations are subject to appropriate initial and outer boundary conditions, which account for the influence of the upstream and free-stream forcing in a rigorous and mutually consistent manner. Numerical solutions show that the stabilizing effect on nonlinearity, which also occurs in flat-plate boundary layers, is significantly enhanced in the presence of centrifugal forces. Sufficiently downstream, the nonlinear vortices excited at different free-stream turbulence intensities Tu saturate at the same level, proving that the initial amplitude of the forcing becomes unimportant. At low Tu, the disturbance exhibits a quasi-exponential growth with the growth rate being intensified for more curved plates and for lower frequencies. At higher Tu, in the typical range of turbomachinery applications, the Görtler vortices do not undergo a modal stage as nonlinearity saturates rapidly, and the wall curvature does not affect the boundary-layer response. Good quantitative agreement with data from direct numerical simulations and experiments is obtained. Steady spanwise-uniform and spanwise-modulated zero-mass-flow-rate wall transpiration is shown to attenuate the growth of the Görtler vortices significantly. A novel modified version of the Fukagata-Iwamoto-Kasagi identity, used for the first time to study a transitional flow, reveals which terms in the streamwise momentum balance are mostly affected by the wall transpiration, thus

  12. Destruction of an industrial wastewater by supercritical water oxidation in a transpiring wall reactor

    International Nuclear Information System (INIS)

    Bermejo, M.D.; Cocero, M.J.

    2006-01-01

    The supercritical water oxidation (SCWO) is a technology that takes advantage of the special properties of water in the surroundings of critical point of water to completely oxidize wastes in residence times lower than 1 min. The problems caused by the harsh operational conditions of the SCWO process are being solved by new reactor designs, such as the transpiring wall reactor (TWR). In this work, the operational parameters of a TWR have been studied for the treatment of an industrial wastewater. As a result, the process has been optimized for a feed flow of 16 kg/h with feed inlet temperatures higher than 300 deg. C and transpiring flow relation (R) between 0.2 and 0.6 working with an 8% (w/w) isopropanol (IPA) as a fuel. The experimental data and a mathematical model have been applied for the destruction of an industrial waste containing acetic acid and crotonaldehyde as main compounds. As the model predicted, removal efficiencies higher than 99.9% were obtained, resulting in effluents with 2 ppm total organic carbon (TOC) at feed flow of 16 kg/h, 320 deg. C of feed temperature and R = 0.32. An effluent TOC of 35 ppm under conditions feed flow of 18 kg/h, feed inlet temperatures of 290 deg. C, reaction temperatures of 570 deg. C and R = 0.6

  13. A Controlled Environment System For Measuring Plant-Atmosphere Gas Exchange

    Science.gov (United States)

    James M. Brown

    1975-01-01

    Describes an inexpensive, efficient system for measuring plant-atmosphere gas exchange. Designed to measure transpiration from potted tree seedlings, it is readily adaptable for measuring other gas exchanges or gas exchange by plant parts. Light level, air and root temperature can be precisely controlled at minimum cost.

  14. Transpiração e temperatura foliar da cana-de-açúcar sob diferentes valores de potencial matricial Transpiration and leaf temperature of sugarcane under different matric potential values

    Directory of Open Access Journals (Sweden)

    Roberto Trentin

    2011-12-01

    Full Text Available O objetivo deste trabalho foi avaliar a variação diurna da transpiração e da temperatura foliar da cana-de-açúcar, cv. RB867515, sob diferentes potenciais matriciais de água no substrato de cultivo e as condições meteorológicas em ambiente protegido. O efeito do estresse hídrico na transpiração e temperatura foliar foi determinado a partir da suspensão da irrigação, quando foram realizadas três campanhas de medições, iniciadas aos 122; 150 e 185 dias após o plantio (DAP até que o potencial matricial de água no substrato (Ψ alcançasse -1.500 kPa, aproximadamente. Sob ausência de estresse hídrico (Ψ>-50 kPa, a transpiração das plantas atingiu o valor máximo entre 10 e 13 h, próximo de 60; 70 e 100 g planta-1 h-1 para 122; 150 e 185 DAP, respectivamente. Sob condições de estresse hídrico severo (ΨThe objective of this study was to evaluate the diurnal behaviour of transpiration and leaf temperature of sugarcane (cv. RB867515 under different water matrix potential in the cultivation substrate and greenhouse meteorological conditions. The water stress effect on transpiration and leaf temperature was determined after irrigation suspension, when three measurement campaigns were initiated at 122; 150 and 185 days after planting (DAP until the matrix water potential in the substrate (Ψ reached -1,500 kPa, approximately. Under the absence of water stress (Ψ>-50 kPa, plant transpiration reached the maximum value between 10:00 AM and 13:00 PM, near to 60; 70 e 100 gplant-1h-1, for 122; 150 and 185 DAP, respectively. Under severe water stress (Ψ<-1,100 kPa, there was daily transpiration reduction of approximately 73%, compared to measurements performed without water stress and under similar meteorological conditions. Under the absence of water stress and overcast sky conditions, the average value of the difference between leaf temperature and air temperature was -2.9 ºC. In contrast, under severe water stress and high

  15. Non-invasive blood glucose monitor based on spectroscopy using a smartphone.

    Science.gov (United States)

    Dantu, Vishnu; Vempati, Jagannadh; Srivilliputhur, Srinivasan

    2014-01-01

    Development of a novel method for non-invasive measurement of blood glucose concentration using smartphone is discussed. Our research work has three major contributions to society and science. First, we modified and extended the Beer-Lambert's law in physics to accommodate for multiple wavelengths. This extension can aid researchers who wish to perform optical spectroscopy. Second, we successfully developed a creative and non-invasive way for diabetic patients to measure glucose levels via a smartphone. Researchers and chemists can now use their smartphones to determine the absorbance and, therefore, concentration of a chemical. Third, we created an inexpensive way to perform optical spectroscopy by using a smartphone. Monitoring blood glucose using a smartphone application that simply uses equipment already available on smartphones will improve the lives of diabetic patients who can continuously check their blood glucose levels while avoiding the current inconvenient, unhygienic, and costly invasive glucose meters.

  16. Validation of non-invasive haemodynamic methods in patients with liver disease

    DEFF Research Database (Denmark)

    Brittain, Jane M; Busk, Troels M; Møller, Søren

    2018-01-01

    Patients with advanced cirrhosis often present a hyperdynamic circulation characterized by a decrease in systolic and diastolic blood pressure (SBP and DBP), and an increase in heart rate (HR) and cardiac output (CO). Accurate assessment of the altered circulation can be performed invasively......; however, due to the disadvantages of this approach, non-invasive methods are warranted. The purpose of this study was to compare continuous non-invasive measurements of haemodynamic variables by the Finometer and the Task Force Monitor with simultaneous invasive measurements. In 25 patients with cirrhosis......, respectively; and CO: 0·1 ± 1·6 and -1·0 ± 2·0 L min(-1) , respectively. The study demonstrates that the overall performances of the Finometer and the Task Force Monitor in estimating absolute values of SBP, DBP, HR and CO in patients with cirrhosis are not equivalent to the gold standard, but may have...

  17. Non-invasive biomarkers and pulmonary function in smokers

    OpenAIRE

    Borrill, Zo? L; Roy, Kay; Vessey, Rupert S; Woodcock, Ashley A; Singh, Dave

    2008-01-01

    Zoë L Borrill1, Kay Roy1, Rupert S Vessey2, Ashley A Woodcock1, Dave Singh11Medicines Evaluation Unit, University of Manchester, Wythenshawe Hospital, Southmoor Rd, Manchester, UK; 2Glaxo Smith Kline, Philadelphia, USAAbstract: Limited information exists regarding measurement, reproducibility and interrelationships of non-invasive biomarkers in smokers. We compared exhaled breath condensate (EBC) leukotriene B4 (LTB4) and 8-isoprostane, exhaled nitric oxide, induced sputum, spirometr...

  18. Fluid challenge: tracking changes in cardiac output with blood pressure monitoring (invasive or non-invasive).

    Science.gov (United States)

    Lakhal, Karim; Ehrmann, Stephan; Perrotin, Dominique; Wolff, Michel; Boulain, Thierry

    2013-11-01

    To assess whether invasive and non-invasive blood pressure (BP) monitoring allows the identification of patients who have responded to a fluid challenge, i.e., who have increased their cardiac output (CO). Patients with signs of circulatory failure were prospectively included. Before and after a fluid challenge, CO and the mean of four intra-arterial and oscillometric brachial cuff BP measurements were collected. Fluid responsiveness was defined by an increase in CO ≥10 or ≥15% in case of regular rhythm or arrhythmia, respectively. In 130 patients, the correlation between a fluid-induced increase in pulse pressure (Δ500mlPP) and fluid-induced increase in CO was weak and was similar for invasive and non-invasive measurements of BP: r² = 0.31 and r² = 0.29, respectively (both p area under the receiver-operating curve (AUC) of 0.82 (0.74-0.88), similar (p = 0.80) to that of non-invasive Δ500mlPP [AUC of 0.81 (0.73-0.87)]. Outside large gray zones of inconclusive values (5-23% for invasive Δ500mlPP and 4-35% for non-invasive Δ500mlPP, involving 35 and 48% of patients, respectively), the detection of responsiveness or unresponsiveness to fluid was reliable. Cardiac arrhythmia did not impair the performance of invasive or non-invasive Δ500mlPP. Other BP-derived indices did not outperform Δ500mlPP. As evidenced by large gray zones, BP-derived indices poorly reflected fluid responsiveness. However, in our deeply sedated population, a high increase in invasive pulse pressure (>23%) or even in non-invasive pulse pressure (>35%) reliably detected a response to fluid. In the absence of a marked increase in pulse pressure (<4-5%), a response to fluid was unlikely.

  19. Advancing ecological understandings through technological transformations in noninvasive genetics

    Science.gov (United States)

    Albano Beja-Pereira; Rita Oliveira; Paulo C. Alves; Michael K. Schwartz; Gordon Luikart

    2009-01-01

    Noninvasive genetic approaches continue to improve studies in molecular ecology, conservation genetics and related disciplines such as forensics and epidemiology. Noninvasive sampling allows genetic studies without disturbing or even seeing the target individuals. Although noninvasive genetic sampling has been used for wildlife studies since the 1990s, technological...

  20. Using ISBA model for partitioning evapotranspiration into soil evaporation and plant transpiration of irrigated crops under semi-arid climate

    Science.gov (United States)

    Aouade, Ghizlane; Jarlan, Lionel; Ezzahar, Jamal; Er-raki, Salah; Napoly, Adrien; Benkaddour, Abdelfettah; Khabba, Said; Boulet, Gilles; Chehbouni, Abdelghani; Boone, Aaron

    2016-04-01

    The Haouz region, typical of southern Mediterranean basins, is characterized by a semi-arid climate, with average annual rainfall of 250, whilst evaporative demand is about 1600 mm per year. Under these conditions, crop irrigation is inevitable for growth and development. Irrigated agriculture currently consumes the majority of total available water (up to 85%), making it critical for more efficient water use. Flood irrigation is widely practiced by the majority of the farmers (more than 85 %) with an efficiency which does not exceed 50%. In this context, a good knowledge of the partitioning of evapotranspiration (ET) into soil evaporation and plant transpiration is of crucial need for improving the irrigation scheduling and thus water use efficiency. In this study, the ISBA (Interactions Soil-Biosphere-Atmosphere) model was used for estimating ET and its partition over an olive orchard and a wheat field located near to the Marrakech City (Centre of Morocco). Two versions were evaluated: standard version which simulates a single energy balance for the soil and vegetation and the recently developed multiple energy balance (MEB) version which solves a separate energy balance for each of the two sources. Eddy covariance system, which provides the sensible and latent heat fluxes and meteorological instruments were operated during years 2003-2004 for the Olive Orchard and during years 2013 for wheat. The transpiration component was measured using a Sap flow system during summer over the wheat crop and stable isotope samples were gathered over wheat. The comparison between ET estimated by ISBA model and that measured by the Eddy covariance system showed that MEB version yielded a remarkable improvement compared to the standard version. The root mean square error (RMSE) and the correlation coefficient (R²) were about 45wm-2 and 0.8 for MEB version. By contrast, for the standard version, the RMSE and R² were about 60wm-2 and 0.7, respectively. The result also showed that

  1. State-of-the-art sensor technology in Spain: invasive and non-invasive techniques for monitoring respiratory variables.

    Science.gov (United States)

    Domingo, Christian; Blanch, Lluis; Murias, Gaston; Luján, Manel

    2010-01-01

    The interest in measuring physiological parameters (especially arterial blood gases) has grown progressively in parallel to the development of new technologies. Physiological parameters were first measured invasively and at discrete time points; however, it was clearly desirable to measure them continuously and non-invasively. The development of intensive care units promoted the use of ventilators via oral intubation ventilators via oral intubation and mechanical respiratory variables were progressively studied. Later, the knowledge gained in the hospital was applied to out-of-hospital management. In the present paper we review the invasive and non-invasive techniques for monitoring respiratory variables.

  2. A New Approach to Sap Flow Measurement Using 3D Printed Gauges and Open-source Electronics

    Science.gov (United States)

    Ham, J. M.; Miner, G. L.; Kluitenberg, G. J.

    2015-12-01

    A new type of sap flow gauge was developed to measure transpiration from herbaceous plants using a modified heat pulse technique. Gauges were fabricated using 3D-printing technology and low-cost electronics to keep the materials cost under $20 (U.S.) per sensor. Each gauge consisted of small-diameter needle probes fastened to a 3D-printed frame. One needle contained a resistance heater to provide a 6 to 8 second heat pulse while the other probes measured the resultant temperature increase at two distances from the heat source. The data acquisition system for the gauges was built from a low-cost Arduino microcontroller. The system read the gauges every 10 minutes and stored the results on a SD card. Different numerical techniques were evaluated for estimating sap velocity from the heat pulse data - including analytical solutions and parameter estimation approaches . Prototype gauges were tested in the greenhouse on containerized corn and sunflower. Sap velocities measured by the gauges were compared to independent gravimetric measurements of whole plant transpiration. Results showed the system could measure daily transpiration to within 3% of the gravimetric measurements. Excellent agreement was observed when two gauges were attached the same stem. Accuracy was not affected by rapidly changing transpiration rates observed under partly cloudy conditions. The gauge-based estimates of stem thermal properties suggested the system may also detect the onset of water stress. A field study showed the gauges could run for 1 to 2 weeks on a small battery pack. Sap flow measurements on multiple corn stems were scaled up by population to estimate field-scale transpiration. During full canopy cover, excellent agreement was observed between the scaled-up sap flow measurements and reference crop evapotranspiration calculated from weather data. Data also showed promise as a way to estimate real-time canopy resistance required for model verification and development. Given the low

  3. Effects of above- and below-ground competition from shrubs on photosynthesis, transpiration and growth in Quercus robur L

    Science.gov (United States)

    Anna M. Jensen; Magnus Lof; Emile S. Gardiner

    2011-01-01

    For a tree seedling to successfully establish in dense shrubbery, it must maintain function under heterogeneous resource availability. We evaluated leaf-level acclimation in photosynthetic capacity, seedling-level transpiration, and seedling morphology and growth to gain an understanding of the effects of above- and below-ground competition on Quercus robur seedlings....

  4. Non-invasive ambient pressure estimation using non-linear ultrasound contrast agents

    DEFF Research Database (Denmark)

    Andersen, Klaus Scheldrup

    Many attempts to find a non-invasive procedure to measure the blood pressure locally in the body have been made. This dissertation focuses on the approaches which utilize highly compressible ultrasound contrast agents as ambient pressure sensors. The literature within the topic has been reviewed...

  5. Non-invasive techniques for the measurement of extraction fraction and permeability surface area product of 99Tcm DTPA in the human forearm

    International Nuclear Information System (INIS)

    Bell, S.D.; Peters, A.M.; Myers, M.J.

    1992-01-01

    Only a very limited number of clinical studies have been reported on the measurement of endothelial permeability to hydrophilic solutes (molecular weight 99 Tc m DTPA, are perfusion-dependent as well as diffusion-dependent. The authors describe non-invasive techniques for measurement of clearance and extraction fraction of 99 Tc m DTPA into the extravascular space of the resting forearm using a scintillation probe, from which we then calculated permeability surface area (PS) product. Their values for extraction fraction of about 0.5 and for PS product of about 3 ml per minute per 100 ml tissue are comparable to values reported in the literature for resting skeletal muscle using more invasive techniques. (author)

  6. Flexible Sheet-Type Sensor for Noninvasive Measurement of Cellular Oxygen Metabolism on a Culture Dish.

    Directory of Open Access Journals (Sweden)

    Mari Kojima

    Full Text Available A novel flexible sensor was developed for the noninvasive oxygen metabolism measurement of cultivated cells and tissues. This device is composed of a transparent double-layered polymer sheet of ethylene-vinyl alcohol (EVOH and poly(dimethylsiloxane (PDMS having an array of microhole structures of 90 μm diameter and 50 μm depth on its surface. All the microhole structures were equipped with a 1-μm-thick optical chemical sensing layer of platinum porphyrin-fluoropolymer on their bottom. The three-dimensional microstructures of the sensor were fabricated by a newly developed simple and low-cost production method named self-aligned hot embossing. The device was designed to be attached slightly above the cells cultivated on a dish to form a temporarily closed microspace over the target cells during measurement. Since the change in oxygen concentration is relatively fast in the microcompartmentalized culture medium, a rapid evaluation of the oxygen consumption rate is possible by measuring the phosphorescence lifetime of the platinum porphyrin-fluoropolymer. The combined use of the device and an automated optical measurement system enabled the high-throughput sensing of cellular oxygen consumption (100 points/min. We monitored the oxygen metabolism of the human breast cancer cell line MCF7 on a Petri dish and evaluated the oxygen consumption rate to be 0.72 ± 0.12 fmol/min/cell. Furthermore, to demonstrate the utility of the developed sensing system, we demonstrated the mapping of the oxygen consumption rate of rat brain slices and succeeded in visualizing a clear difference among the layer structures of the hippocampus, i.e., the cornu ammonis (CA1 and CA3 and dentate gyrus (DG.

  7. Noninvasive, three-dimensional full-field body sensor for surface deformation monitoring of human body in vivo.

    Science.gov (United States)

    Chen, Zhenning; Shao, Xinxing; He, Xiaoyuan; Wu, Jialin; Xu, Xiangyang; Zhang, Jinlin

    2017-09-01

    Noninvasive, three-dimensional (3-D), full-field surface deformation measurements of the human body are important for biomedical investigations. We proposed a 3-D noninvasive, full-field body sensor based on stereo digital image correlation (stereo-DIC) for surface deformation monitoring of the human body in vivo. First, by applying an improved water-transfer printing (WTP) technique to transfer optimized speckle patterns onto the skin, the body sensor was conveniently and harmlessly fabricated directly onto the human body. Then, stereo-DIC was used to achieve 3-D noncontact and noninvasive surface deformation measurements. The accuracy and efficiency of the proposed body sensor were verified and discussed by considering different complexions. Moreover, the fabrication of speckle patterns on human skin, which has always been considered a challenging problem, was shown to be feasible, effective, and harmless as a result of the improved WTP technique. An application of the proposed stereo-DIC-based body sensor was demonstrated by measuring the pulse wave velocity of human carotid artery. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  8. Noninvasive vaccination against infectious diseases.

    Science.gov (United States)

    Zheng, Zhichao; Diaz-Arévalo, Diana; Guan, Hongbing; Zeng, Mingtao

    2018-04-06

    The development of a successful vaccine, which should elicit a combination of humoral and cellular responses to control or prevent infections, is the first step in protecting against infectious diseases. A vaccine may protect against bacterial, fungal, parasitic, or viral infections in animal models, but to be effective in humans there are some issues that should be considered, such as the adjuvant, the route of vaccination, and the antigen-carrier system. While almost all licensed vaccines are injected such that inoculation is by far the most commonly used method, injection has several potential disadvantages, including pain, cross contamination, needlestick injury, under- or overdosing, and increased cost. It is also problematic for patients from rural areas of developing countries, who must travel to a hospital for vaccine administration. Noninvasive immunizations, including oral, intranasal, and transcutaneous administration of vaccines, can reduce or eliminate pain, reduce the cost of vaccinations, and increase their safety. Several preclinical and clinical studies as well as experience with licensed vaccines have demonstrated that noninvasive vaccine immunization activates cellular and humoral immunity, which protect against pathogen infections. Here we review the development of noninvasive immunization with vaccines based on live attenuated virus, recombinant adenovirus, inactivated virus, viral subunits, virus-like particles, DNA, RNA, and antigen expression in rice in preclinical and clinical studies. We predict that noninvasive vaccine administration will be more widely applied in the clinic in the near future.

  9. Report on Non-invasive acoustic monitoring of D2O concentration Oct 31 2017

    Energy Technology Data Exchange (ETDEWEB)

    Pantea, Cristian [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sinha, Dipen N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lakis, Rollin Evan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Beedle, Christopher Craig [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Davis, Eric Sean [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-06

    There is an urgent need for real-time monitoring of the hydrogen /deuterium ratio (H/D) for heavy water production monitoring. Based upon published literature, sound speed is sensitive to the deuterium content of heavy water and can be measured using existing acoustic methods to determine the deuterium concentration in heavy water solutions. We plan to adapt existing non-invasive acoustic techniques (Swept-Frequency Acoustic Interferometry and Gaussian-pulse acoustic technique) for the purpose of quantifying H/D ratios in solution. A successful demonstration will provide an easily implemented, low cost, and non-invasive method for remote and unattended H/D ratio measurements with a resolution of less than 0.2% vol.

  10. Non-invasive measurement of brain glycogen by NMR spectroscopy and its application to the study of brain metabolism

    Science.gov (United States)

    Tesfaye, Nolawit; Seaquist, Elizabeth R.; Öz, Gülin

    2011-01-01

    Glycogen is the reservoir for glucose in the brain. Beyond the general agreement that glycogen serves as an energy source in the central nervous system, its exact role in brain energy metabolism has yet to be elucidated. Experiments performed in cell and tissue culture and animals have shown that glycogen content is affected by several factors including glucose, insulin, neurotransmitters, and neuronal activation. The study of in vivo glycogen metabolism has been hindered by the inability to measure glycogen non-invasively, but in the past several years, the development of a non-invasive localized 13C nuclear magnetic resonance (NMR) spectroscopy method has enabled the study of glycogen metabolism in the conscious human. With this technique, 13C-glucose is administered intravenously and its incorporation into and wash-out from brain glycogen is tracked. One application of this method has been to the study of brain glycogen metabolism in humans during hypoglycemia: data have shown that mobilization of brain glycogen is augmented during hypoglycemia and, after a single episode of hypoglycemia, glycogen synthesis rate is increased, suggesting that glycogen stores rebound to levels greater than baseline. Such studies suggest glycogen may serve as a potential energy reservoir in hypoglycemia and may participate in the brain's adaptation to recurrent hypoglycemia and eventual development of hypoglycemia unawareness. Beyond this focused area of study, 13C NMR spectroscopy has a broad potential for application in the study of brain glycogen metabolism and carries the promise of a better understanding of the role of brain glycogen in diabetes and other conditions. PMID:21732401

  11. Transthoracic Doppler echocardiography – noninvasive diagnostic window for coronary flow reserve assessment

    Directory of Open Access Journals (Sweden)

    Dimitrow Paweł

    2003-04-01

    Full Text Available Abstract This review focuses on transthoracic Doppler echocardiography as noninvasive method used to assess coronary flow reserve (CFR in a wide spectrum of clinical settings. Transthoracic Doppler echocardiography is rapidly gaining appreciation as popular tool to measure CFR both in stenosed and normal epicardial coronary arteries (predominantly in left anterior descending coronary artery. Post-stenotic CFR measurement is helpful in: functional assessment of moderate stenosis, detection of significant or critical stenosis, monitoring of restenosis after revascularization. In the absence of stenosis in the epicardial coronary artery, decreased CFR enable to detect impaired microvascular vasodilatation in: reperfused myocardial infarct, arterial hypertension with or without left ventricular hypertrophy, diabetes mellitus, hypercholesterolemia, syndrome X, hypertrophic cardiomyopathy. In these diseases, noninvasive transthoracic Doppler echocardiography allows for serial CFR evaluations to explore the effect of various pharmacological therapies.

  12. Noninvasive Positive Pressure Ventilatory Support Begins During Sleep.

    Science.gov (United States)

    Bach, John R

    2017-12-01

    The goal of sleep doctors has been to titrate away apneas and hypopneas using noninvasive ventilation, a term that has become synonymous with continuous positive airway pressure and bilevel positive airway pressure at the lowest effective bilevel settings. It is now time to appreciate noninvasive ventilatory support as an alternative to invasive mechanical ventilation. This article discusses mechanisms of action, two paradigms, and ancillary techniques for noninvasive ventilatory support. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Nutrient and water addition effects on day- and night-time conductance and transpiration in a C3 desert annual

    NARCIS (Netherlands)

    Ludwig, F.; Jewitt, R.A.; Donovan, L.A.

    2006-01-01

    Recent research has shown that many C3 plant species have significant stomatal opening and transpire water at night even in desert habitats. Day-time stomatal regulation is expected to maximize carbon gain and prevent runaway cavitation, but little is known about the effect of soil resource

  14. Comparison of different models for non-invasive FFR estimation

    Science.gov (United States)

    Mirramezani, Mehran; Shadden, Shawn

    2017-11-01

    Coronary artery disease is a leading cause of death worldwide. Fractional flow reserve (FFR), derived from invasively measuring the pressure drop across a stenosis, is considered the gold standard to diagnose disease severity and need for treatment. Non-invasive estimation of FFR has gained recent attention for its potential to reduce patient risk and procedural cost versus invasive FFR measurement. Non-invasive FFR can be obtained by using image-based computational fluid dynamics to simulate blood flow and pressure in a patient-specific coronary model. However, 3D simulations require extensive effort for model construction and numerical computation, which limits their routine use. In this study we compare (ordered by increasing computational cost/complexity): reduced-order algebraic models of pressure drop across a stenosis; 1D, 2D (multiring) and 3D CFD models; as well as 3D FSI for the computation of FFR in idealized and patient-specific stenosis geometries. We demonstrate the ability of an appropriate reduced order algebraic model to closely predict FFR when compared to FFR from a full 3D simulation. This work was supported by the NIH, Grant No. R01-HL103419.

  15. Noninvasive method for the calibration of the peak voltage (kVp) meters

    International Nuclear Information System (INIS)

    Macedo, E.M.; Navarro, M.V.T.; Pereira, L.; Garcia, I.F.M.; Navarro, V.C.C.

    2015-01-01

    Quality control in diagnostic radiology is one of the mechanisms that minimize radiation exposure, and the measurement of tube voltage is one of the main test in these procedures. So, the calibration of non-invasive tube voltage meters is essential to maintain the metrological reliability of quality control tests. Thus, this work describes the implementation of the calibration methodology of the quantity tube peak voltage by the substitution method, using non-invasive standard meter, at LABPROSAUD-IFBA. The results showed great performance and when compared with calibrations by invasive methods, showed maximum difference of 4%, contemplated in the uncertainty ranges of the calibrations. (author)

  16. Matériaux architecturés pour refroidissement par transpiration : application aux chambres de combustion

    OpenAIRE

    Pinson , Sébastien

    2016-01-01

    In order to cool aero-engine combustion chambers as efficiently as possible, there is today a special interest given to transpiration cooling technology. The cooling air flows through a porous liner in which a large amount of heat can be exchanged by convection. The air injection could then take benefit of the pore distribution to form a more homogeneous protective boundary layer.Partially sintered metallic materials are potential candidates to form these porous liners. The present work focus...

  17. What determines the complex kinetics of stomatal conductance under blueless PAR in Festuca arundinacea? Subsequent effects on leaf transpiration.

    Science.gov (United States)

    Barillot, Romain; Frak, Ela; Combes, Didier; Durand, Jean-Louis; Escobar-Gutiérrez, Abraham J

    2010-06-01

    Light quality and, in particular, its content of blue light is involved in plant functioning and morphogenesis. Blue light variation frequently occurs within a stand as shaded zones are characterized by a simultaneous decrease of PAR and blue light levels which both affect plant functioning, for example, gas exchange. However, little is known about the effects of low blue light itself on gas exchange. The aims of the present study were (i) to characterize stomatal behaviour in Festuca arundinacea leaves through leaf gas exchange measurements in response to a sudden reduction in blue light, and (ii) to test the putative role of Ci on blue light gas exchange responses. An infrared gas analyser (IRGA) was used with light transmission filters to study stomatal conductance (gs), transpiration (Tr), assimilation (A), and intercellular concentration of CO(2) (Ci) responses to blueless PAR (1.80 mumol m(-2) s(-1)). The results were compared with those obtained under a neutral filter supplying a similar photosynthetic efficiency to the blueless PAR filter. It was shown that the reduction of blue light triggered a drastic and instantaneous decrease of gs by 43.2% and of Tr by 40.0%, but a gradual stomatal reopening began 20 min after the start of the low blue light treatment, thus leading to new steady-states. This new stomatal equilibrium was supposed to be related to Ci. The results were confirmed in more developed plants although they exhibited delayed and less marked responses. It is concluded that stomatal responses to blue light could play a key role in photomorphogenetic mechanisms through their effect on transpiration.

  18. Clinical role of non-invasive assessment of portal hypertension.

    Science.gov (United States)

    Bolognesi, Massimo; Di Pascoli, Marco; Sacerdoti, David

    2017-01-07

    Measurement of portal pressure is pivotal in the evaluation of patients with liver cirrhosis. The measurement of the hepatic venous pressure gradient represents the reference method by which portal pressure is estimated. However, it is an invasive procedure that requires significant hospital resources, including experienced staff, and is associated with considerable cost. Non-invasive methods that can be reliably used to estimate the presence and the degree of portal hypertension are urgently needed in clinical practice. Biochemical and morphological parameters have been proposed for this purpose, but have shown disappointing results overall. Splanchnic Doppler ultrasonography and the analysis of microbubble contrast agent kinetics with contrast-enhanced ultrasonography have shown better accuracy for the evaluation of patients with portal hypertension. A key advancement in the non-invasive evaluation of portal hypertension has been the introduction in clinical practice of methods able to measure stiffness in the liver, as well as stiffness/congestion in the spleen. According to the data published to date, it appears to be possible to rule out clinically significant portal hypertension in patients with cirrhosis ( i.e ., hepatic venous pressure gradient ≥ 10 mmHg) with a level of clinically-acceptable accuracy by combining measurements of liver stiffness and spleen stiffness along with Doppler ultrasound evaluation. It is probable that the combination of these methods may also allow for the identification of patients with the most serious degree of portal hypertension, and ongoing research is helping to ensure progress in this field.

  19. NON-INVASIVE INVERSE PROBLEM IN CIVIL ENGINEERING

    Directory of Open Access Journals (Sweden)

    Jan Havelka

    2017-11-01

    Full Text Available In this contribution we focus on recovery of spatial distribution of material parameters utilizing only non-invasive boundary measurements. Such methods has gained its importance as imaging techniques in medicine, geophysics or archaeology. We apply similar principles for non-stationary heat transfer in civil engineering. In oppose to standard technique which rely on external loading devices, we assume the natural fluctuation of temperature throughout day and night can provide sufficient information to recover the underlying material parameters. The inverse problem was solved by a modified regularised Gauss-Newton iterative scheme and the underlying forward problem is solved with a finite element space-time discretisation. We show a successful reconstruction of material parameters on a synthetic example with real measurements. The virtual experiment also reveals the insensitivity to practical precision of sensor measurements.

  20. Noninvasive Assessment of Excessive Erythrocytosis as a Screening Method for Chronic Mountain Sickness at High Altitude.

    Science.gov (United States)

    Vyas, Kaetan J; Danz, David; Gilman, Robert H; Wise, Robert A; León-Velarde, Fabiola; Miranda, J Jaime; Checkley, William

    2015-06-01

    Vyas, Kaetan J., David Danz, Robert H. Gilman, Robert A. Wise, Fabiola León-Velarde, J. Jaime Miranda, and William Checkley. Noninvasive assessment of excessive erythrocytosis as a screening method for chronic mountain sickness at high altitude. High Alt Med Biol 16:162-168, 2015.--Globally, over 140 million people are at risk of developing chronic mountain sickness, a common maladaptation to life at high altitude (>2500 meters above sea level). The diagnosis is contingent upon the identification of excessive erythrocytosis (EE). Current best practices to identify EE require a venous blood draw, which is cumbersome for large-scale surveillance. We evaluated two point-of-care biomarkers to screen for EE: noninvasive spot-check tests of total hemoglobin and oxyhemoglobin saturation (Pronto-7, Masimo Corporation). We conducted paired evaluations of total serum hemoglobin from a venous blood draw and noninvasive, spot-check testing of total hemoglobin and oxyhemoglobin saturation with the Pronto-7 in 382 adults aged ≥35 years living in Puno, Peru (3825 meters above sea level). We used the Bland-Altman method to measure agreement between the noninvasive hemoglobin assessment and the gold standard lab hemoglobin analyzer. Mean age was 58.8 years and 47% were male. The Pronto-7 test was unsuccessful in 21 (5%) participants. Limits of agreement between total hemoglobin measured via venous blood draw and the noninvasive, spot-check test ranged from -2.8 g/dL (95% CI -3.0 to -2.5) to 2.5 g/dL (95% CI 2.2 to 2.7), with a bias of -0.2 g/dL (95% CI -0.3 to -0.02) for the difference between total hemoglobin and noninvasive hemoglobin concentrations. Overall, the noninvasive spot-check test of total hemoglobin had a better area under the receiver operating characteristic curve compared to oxyhemoglobin saturation for the identification of EE as measured by a gold standard laboratory hemoglobin analyzer (0.96 vs. 0.82; p<0.001). Best cut-off values to screen for EE with

  1. Thermodynamic properties over (Ni{sub 2}Te{sub 3}O{sub 8} + NiTe{sub 2}O{sub 5}) in the Ni-Te-O system. Transpiration thermogravimetric and Knudsen effusion mass spectrometric studies

    Energy Technology Data Exchange (ETDEWEB)

    Narasimhan, Tiruppatur Subramaniam Lakshmi; Nalini, Seshadreesan; Manikandan, Palraj; Trinadh, Vinjavarapu Venkata [Indira Gandhi Centre for Atomic Research, Kalpakkam (India). Fuel Chemistry Div.; Baba, Magapu Sai [Indira Gandhi Centre for Atomic Research, Kalpakkam (India). Resources Management Group

    2016-02-15

    Vaporisation studies over (Ni{sub 2}Te{sub 3}O{sub 8} + NiTe{sub 2}O{sub 5}) in the Ni-Te-O system were carried out by means of transpiration thermogravimetry (TTG) and Knudsen effusion mass spectrometry (KEMS) in the temperature ranges of 950 - 1 060 K and 850 - 950 K respectively. The transpiration measurements were performed for the first time. Comparison of total pressures obtained by TTG with that deduced using partial pressures of vaporising species from KEMS showed a good agreement providing reliable vapour pressures over this phase region. From vapour pressures, enthalpies of solid-gas and gas-phase equilibria and subsequently enthalpy and Gibbs free energies of formation of NiTe{sub 2}O{sub 5}(s) were derived. A thermochemical calculation was performed to assess the possibility of formation of the ternary NiTe{sub 2}O{sub 5}(s) phase on stainless steel clad of mixed-oxide fuelled fast breeder nuclear reactors.

  2. CARDIAC TRANSPLANT REJECTION AND NON-INVASIVE COMON CAROTID ARTERY WALL FUNCTIONAL INDICES

    Directory of Open Access Journals (Sweden)

    A. O. Shevchenko

    2015-01-01

    Full Text Available Allograft rejection would entail an increase in certain blood biomarkers and active substances derived from activated inflammatory cells which could influence entire vascular endothelial function and deteriorate arterial wall stiffness. We propose that carotid wall functional indices measured with non-invasive ultrasound could we valuable markers of the subclinical cardiac allograft rejection. Aim. Our goal was to analyze the clinical utility of functional common carotid wall (CCW variables measured with high-resolution Doppler ultrasound as a non-invasive screening tool for allograft rejection in cardiac transplant patients (pts. Methods. One hundred and seventy one pts included 93 cardiac recipients, 30 dilated cardiomyopathy waiting list pts, and 48 stable coronary artery disease (SCAD pts without decompensated heart failure were included. Along with resistive index (Ri, pulsative index (Pi, and CCW intima-media thickness (IMT, CCW rigidity index (iRIG was estimated using empirical equation. Non-invasive evaluation was performed in cardiac transplant recipients prior the endomyo- cardial biopsy. Results. Neither of Ri, Pi, or CCW IMT were different in studied subgroups. iRIG was signifi- cantly lower in SCAD pts when compared to the dilated cardiomyopathy subgroup. The later had similar values with cardiac transplant recipients without rejection. Antibody-mediated and cellular rejection were found in 22 (23.7% and 17 (18.3% cardiac recipients, respectively. Mean iRIG in pts without rejection was significantly lower in comparison to antibody-mediated rejection and cell-mediated (5514.7 ± 2404.0 vs 11856.1 ± 6643.5 and 16071.9 ± 10029.1 cm/sec2, respectively, p = 0.001. Area under ROC for iRIG was 0.90 ± 0.03 units2. Analysis showed that iRIG values above estimated treshold 7172 cm/sec2 suggested relative risk of any type of rejection 17.7 (95%CI = 6.3–49.9 sensitivity 80.5%, specificity – 81.1%, negative predictive value – 84

  3. Effects of increased atmospheric CO{sub 2} concentrations on transpiration of a wheat field in consideration of water and nitrogen limitation; Die Wirkung von erhoehten atmosphaerischen CO{sub 2}-Konzentrationen auf die Transpiration eines Weizenbestandes unter Beruecksichtigung von Wasser- und Stickstofflimitierung

    Energy Technology Data Exchange (ETDEWEB)

    Grossman-Clarke, S

    2000-09-01

    Primary responses of C{sub 3}-plants to elevated atmospheric CO{sub 2} concentrations are an increase in the net assimilation rate, leading to greater biomass, and an associated decrease in the transpiration rate per unit leaf area due to CO{sub 2}-induced stomatal closure. The question has therefore arisen: does canopy transpiration increase because of the greater biomass, or decrease because of the stomatal closure? The direct impact of an elevated atmospheric CO{sub 2} concentration of 550 {mu}mol mol{sup -1} on the seasonal course of canopy transpiration of a spring wheat crop was investigated by means of the simulation model DEMETER for production under unlimited water and nutrient supply, production under limited water but unlimited nutrient supply and the production under unlimited water but limited nitrogen supply. Independent data of the free-air carbon dioxide enrichment wheat experiments in Arizona, USA (1993-96) were used to test if the model is able to make reasonable predictions of water use and productivity of the spring wheat crop using only parameters derived from the literature. A model integrating leaf photosynthesis, stomatal conductance and energy fluxes between the plant and the atmosphere was scaled to a canopy level in order to be used in the wheat crop growth model. Temporal changes of the model parameters were considered by describing them as dependent on the changing leaf nitrogen content. Comparison of the simulation and experimental results showed that the applicability of the model approach was limited after anthesis by asynchronous changes in mesophyll and stomatal conductance. Therefore a new model approach was developed describing the interaction between assimilation rate and stomatal conductance during grain filling. The simulation results revealed only small differences in the cumulative sum of canopy transpiration and soil evaporation between elevated CO{sub 2} and control conditions. For potential growth conditions the model

  4. Noninvasive Raman spectroscopy of rat tibiae: approach to in vivo assessment of bone quality

    Science.gov (United States)

    Okagbare, Paul I.; Begun, Dana; Tecklenburg, Mary; Awonusi, Ayorinde; Goldstein, Steven A.

    2012-01-01

    Abstract. We report on in vivo noninvasive Raman spectroscopy of rat tibiae using robust fiber-optic Raman probes and holders designed for transcutaneous Raman measurements in small animals. The configuration allows placement of multiple fibers around a rat leg, maintaining contact with the skin. Bone Raman data are presented for three regions of the rat tibia diaphysis with different thicknesses of overlying soft tissue. The ability to perform in vivo noninvasive Raman measurement and evaluation of subtle changes in bone composition is demonstrated with rat leg phantoms in which the tibia has carbonated hydroxylapatite, with different carbonate contents. Our data provide proof of the principle that small changes in bone composition can be monitored through soft tissue at anatomical sites of interest in biomedical studies. PMID:23085899

  5. Noninvasive measurement of nutrient portal blood shunting: an experimental study with [14C]ursodeoxycholic acid

    International Nuclear Information System (INIS)

    Nordlinger, B.; Parquet, M.; Infante, R.; Moreels, R.; Blondiau, P.; Boschat, M.; Groussard, M.; Huguet, C.

    1982-01-01

    All of the methods proposed for measuring portal blood flow are either invasive, estimate total rather than nutrient flow, and none has proved reliable in cirrhotic patients. A method has been derived from pharmacokinetic principles used for the calculation of bioavailability of drugs according to the route of administration (i.v. or p.o.) and tested experimentally in 20 pigs. A tracer dose of [ 14 C]ursodeoxycholic acid, a biliary acid with a high-liver first-pass effect, is administered in the duodenum, and serial peripheral blood samples are taken. Later, the same dose of the same drug is administered i.v. The shunt fraction of portal blood F is obtained by the ratio of the areas under the plasma level vs. time curves (AUC) after p.o. and i.v. administrations: (see formula in text). The pigs were divided into three experimental groups. (i) Group I: undisturbed portal flow; (ii) Group II: total diversion of portal blood with an end-to-side portacaval shunt, and (iii) Group III: partial diversion of portal blood through a side-to-side portacaval shunt. Portal flow was measured during surgery with an electromagnetic flowmeter above and below the shunt and the degree of shunting calculated. Results show that the shunt fraction measured with ursodeoxycholic acid is well-correlated with hemodynamic data. No overlap between Groups I and III is observed. It is concluded that the shunt fraction of nutrient portal blood can be measured with this noninvasive method. Minute amounts of ursodeoxycholic acid were used in order to be completely metabolized by the liver, even in spite of hepatocellular dysfunction. Therefore, this method should be valid in cirrhotic patients and be useful to decide the type of portasystemic shunt to propose for the decompression of gastroesophageal varices

  6. Plant delta 15N correlates with the transpiration efficiency of nitrogen acquisition in tropical trees.

    Science.gov (United States)

    Cernusak, Lucas A; Winter, Klaus; Turner, Benjamin L

    2009-11-01

    Based upon considerations of a theoretical model of (15)N/(14)N fractionation during steady-state nitrate uptake from soil, we hypothesized that, for plants grown in a common soil environment, whole-plant delta(15)N (deltaP) should vary as a function of the transpiration efficiency of nitrogen acquisition (F(N)/v) and the difference between deltaP and root delta(15)N (deltaP - deltaR). We tested these hypotheses with measurements of several tropical tree and liana species. Consistent with theoretical expectations, both F(N)/v and deltaP - deltaR were significant sources of variation in deltaP, and the relationship between deltaP and F(N)/v differed between non-N(2)-fixing and N(2)-fixing species. We interpret the correlation between deltaP and F(N)/v as resulting from variation in mineral nitrogen efflux-to-influx ratios across plasma membranes of root cells. These results provide a simple explanation of variation in delta(15)N of terrestrial plants and have implications for understanding nitrogen cycling in ecosystems.

  7. Water dynamics in mango (Mangifera indica L.) fruit during the young and mature fruit seasons as measured by the stem heat balance method

    International Nuclear Information System (INIS)

    Higuchi, H.; Sakuratani, T.

    2006-01-01

    Water flows in the stem and peduncle of mango fruit were monitored, and the surface transpiration from the fruit was measured during the fruit-growing season. The stem heat balance method was used on the peduncle to monitor the inward water flow during the nighttime, and the reverse water flow from the fruit during the daytime when the stem transpiration water flow increased. This diurnal fluctuation pattern in the water flow was more evident in mature fruit than in young fruit. In mature fruit, the daily water loss due to the reverse flow was estimated to be 3% of the fruit weight. The reverse flow water loss and transpired water loss were compensated for by nocturnal inward water flow, through the peduncle, of 30 g over 15 h. These results were well supported by measurements of fruit dimensions, which indicated a circadian rhythm of contraction and expansion. The reverse flow amounted to 80% of the water loss from the daytime contraction of the fruit, a much greater proportion than the fruit surface transpiration

  8. Noninvasive continuous blood pressure monitoring by the ClearSight system during robot-assisted laparoscopic radical prostatectomy.

    Science.gov (United States)

    Sakai, Yoko; Yasuo M, Tsutsumi; Oyama, Takuro; Murakami, Chiaki; Kakuta, Nami; Tanaka, Katsuya

    2018-01-01

    Robot-assisted laparoscopic radical prostatectomy (RALRP) is commonly performed in the surgical treatment of prostate cancer. However, the steep Trendelenburg position (25) and pneumoperitoneum required for this procedure can sometimes cause hemodynamic changes. Although blood pressure is traditionally monitored invasively during RALRP, the ClearSight system (BMEYE, Amsterdam, The Netherlands) enables a totally noninvasive and simple continuous blood pressure and cardiac output monitoring based on finger arterial pressure pulse contour analysis. We therefore investigated whether noninvasive continuous arterial blood pressure measurements using the ClearSight system were comparable to those obtained invasively in patients undergoing RALRP. Ten patients scheduled for RALRP with American Society of Anesthesiologists physical status I-II were included in this study. At each of the seven defined time points, noninvasive and invasive blood pressure measurements were documented and compared in each patient using Bland-Altman analysis. Although the blood pressure measured with the ClearSight system correlated with that measured invasively, a large difference between the values obtained by the two devices was noted. The ClearSight system was unable to detect blood pressure accurately during RALRP, suggesting that blood pressure monitoring using this device alone is not feasible in this small patient population. J. Med. Invest. 65:69-73, February, 2018.

  9. Treatment of Neck Pain: Noninvasive Interventions

    Science.gov (United States)

    Carragee, Eugene J.; van der Velde, Gabrielle; Carroll, Linda J.; Nordin, Margareta; Guzman, Jaime; Peloso, Paul M.; Holm, Lena W.; Côté, Pierre; Hogg-Johnson, Sheilah; Cassidy, J. David; Haldeman, Scott

    2008-01-01

    Study Design. Best evidence synthesis. Objective. To identify, critically appraise, and synthesize literature from 1980 through 2006 on noninvasive interventions for neck pain and its associated disorders. Summary of Background Data. No comprehensive systematic literature reviews have been published on interventions for neck pain and its associated disorders in the past decade. Methods. We systematically searched Medline and screened for relevance literature published from 1980 through 2006 on the use, effectiveness, and safety of noninvasive interventions for neck pain and associated disorders. Consensus decisions were made about the scientific merit of each article; those judged to have adequate internal validity were included in our best evidence synthesis. Results. Of the 359 invasive and noninvasive intervention articles deemed relevant, 170 (47%) were accepted as scientifically admissible, and 139 of these related to noninvasive interventions (including health care utilization, costs, and safety). For whiplash-associated disorders, there is evidence that educational videos, mobilization, and exercises appear more beneficial than usual care or physical modalities. For other neck pain, the evidence suggests that manual and supervised exercise interventions, low-level laser therapy, and perhaps acupuncture are more effective than no treatment, sham, or alternative interventions; however, none of the active treatments was clearly superior to any other in either the short-or long-term. For both whiplash-associated disorders and other neck pain without radicular symptoms, interventions that focused on regaining function as soon as possible are relatively more effective than interventions that do not have such a focus. Conclusion. Our best evidence synthesis suggests that therapies involving manual therapy and exercise are more effective than alternative strategies for patients with neck pain; this was also true of therapies which include educational interventions

  10. Non-invasive prediction of hematocrit levels by portable visible and near-infrared spectrophotometer.

    Science.gov (United States)

    Sakudo, Akikazu; Kato, Yukiko Hakariya; Kuratsune, Hirohiko; Ikuta, Kazuyoshi

    2009-10-01

    After blood donation, in some individuals having polycythemia, dehydration causes anemia. Although the hematocrit (Ht) level is closely related to anemia, the current method of measuring Ht is performed after blood drawing. Furthermore, the monitoring of Ht levels contributes to a healthy life. Therefore, a non-invasive test for Ht is warranted for the safe donation of blood and good quality of life. A non-invasive procedure for the prediction of hematocrit levels was developed on the basis of a chemometric analysis of visible and near-infrared (Vis-NIR) spectra of the thumbs using portable spectrophotometer. Transmittance spectra in the 600- to 1100-nm region from thumbs of Japanese volunteers were subjected to a partial least squares regression (PLSR) analysis and leave-out cross-validation to develop chemometric models for predicting Ht levels. Ht levels of masked samples predicted by this model from Vis-NIR spectra provided a coefficient of determination in prediction of 0.6349 with a standard error of prediction of 3.704% and a detection limit in prediction of 17.14%, indicating that the model is applicable for normal and abnormal value in Ht level. These results suggest portable Vis-NIR spectrophotometer to have potential for the non-invasive measurement of Ht levels with a combination of PLSR analysis.

  11. Effect of Leaf Water Potential on Internal Humidity and CO2 Dissolution: Reverse Transpiration and Improved Water Use Efficiency under Negative Pressure.

    Science.gov (United States)

    Vesala, Timo; Sevanto, Sanna; Grönholm, Tiia; Salmon, Yann; Nikinmaa, Eero; Hari, Pertti; Hölttä, Teemu

    2017-01-01

    The pull of water from the soil to the leaves causes water in the transpiration stream to be under negative pressure decreasing the water potential below zero. The osmotic concentration also contributes to the decrease in leaf water potential but with much lesser extent. Thus, the surface tension force is approximately balanced by a force induced by negative water potential resulting in concavely curved water-air interfaces in leaves. The lowered water potential causes a reduction in the equilibrium water vapor pressure in internal (sub-stomatal/intercellular) cavities in relation to that over water with the potential of zero, i.e., over the flat surface. The curved surface causes a reduction also in the equilibrium vapor pressure of dissolved CO 2 , thus enhancing its physical solubility to water. Although the water vapor reduction is acknowledged by plant physiologists its consequences for water vapor exchange at low water potential values have received very little attention. Consequences of the enhanced CO 2 solubility to a leaf water-carbon budget have not been considered at all before this study. We use theoretical calculations and modeling to show how the reduction in the vapor pressures affects transpiration and carbon assimilation rates. Our results indicate that the reduction in vapor pressures of water and CO 2 could enhance plant water use efficiency up to about 10% at a leaf water potential of -2 MPa, and much more when water potential decreases further. The low water potential allows for a direct stomatal water vapor uptake from the ambient air even at sub-100% relative humidity values. This alone could explain the observed rates of foliar water uptake by e.g., the coastal redwood in the fog belt region of coastal California provided the stomata are sufficiently open. The omission of the reduction in the water vapor pressure causes a bias in the estimates of the stomatal conductance and leaf internal CO 2 concentration based on leaf gas exchange

  12. Imaging the pancreas: from ex vivo to non-invasive technology

    DEFF Research Database (Denmark)

    Holmberg, D; Ahlgren, U

    2008-01-01

    While many recently published reviews have covered non-invasive nuclear imaging techniques, the aim of this review is to focus on current developments in optical imaging technologies for investigating the pancreas. Several of these modalities are being developed into non-invasive, real-time monit......While many recently published reviews have covered non-invasive nuclear imaging techniques, the aim of this review is to focus on current developments in optical imaging technologies for investigating the pancreas. Several of these modalities are being developed into non-invasive, real...

  13. Isotopic estimation of the evapo-transpiration flux in a plain agricultural region (Po plain, Northern Italy)

    International Nuclear Information System (INIS)

    Elmi, Giovanni; Sacchi, Elisa; Zuppi, Gian Maria; Cerasuolo, Marcello; Allais, Enrico

    2013-01-01

    Highlights: ► Isotopic data from 19-months monitoring of water vapour and monthly precipitation. ► The mean annual weighted δ 18 O in rainwater samples is −6.90 ± 2.2. ► Results interpreted in relationship to climatic factors and to air masses circulation. ► Besides local vapour, moisture is carried by continental and maritime circulations. ► A computational method based on isotopes (EMMA) allows quantifying the local vapour fraction. - Abstract: Samples of water vapour and monthly precipitation were collected in Pavia, located 50 km south of Milan (Western Po plain, Northern Italy), over a period of 19 months, from March 2006 to September 2007. Results are interpreted in relation to the local climatic factors (temperature and precipitation rates), and to air mass circulation patterns, derived from sea level pressure maps, geopotential maps and satellite images. Since most water vapour samples represent a mixture of continental air masses and local evapo-transpiration fluxes, a computational method based on the stable isotope content (EMMA) has been used to evaluate the percentage of the different components and to quantify the local vapour fraction. The regression line equation for rainwater samples is: δ 2 H vs.VSMOW =8.8(±0.5)·δ 18 O vs.SMOW +14.5(±3.5)‰(R 2 =0.96;n=17) The slope of the line is extremely high and probably related to the dataset used, which includes two summer seasons and one winter season. In addition, the latter was somewhat anomalous, with recorded average temperatures higher than the average calculated for the years 1970–2002. The mean annual weighted δ 18 O in rainwater samples is equal to −6.90 ± 2.2‰. The regression line equation for water vapour samples is: δ 2 H vs.VSMOW =6.8(±0.3)·δ 18 O vs.SMOW -7.4(±4.9)‰(R 2 =0.92;n=37). The two regression lines meet at δ 18 O = −10.82 ± 13.97‰. This value appears more depleted than the mean annual weighted precipitation value, but is close to the isotope

  14. Unveiling stomata 24/7: can we use carbonyl sulfide (COS) and oxygen isotopes (18O) to constrain estimates of nocturnal transpiration across different evolutionary plant forms?

    Science.gov (United States)

    Gimeno, Teresa E.; Ogee, Jerome; Bosc, Alexander; Genty, Bernard; Wohl, Steven; Wingate, Lisa

    2015-04-01

    Numerous studies have reported a continued flux of water through plants at night, suggesting that stomata are not fully closed. Growing evidence indicates that this nocturnal flux of transpiration might constitute an important fraction of total ecosystem water use in certain environments. However, because evaporative demand is usually low at night, nocturnal transpiration fluxes are generally an order of magnitude lower than rates measured during the day and perilously close to the measurement error of traditional gas-exchange porometers. Thus estimating rates of stomatal conductance in the dark (gnight) precisely poses a significant methodological challenge. As a result, we lack accurate field estimates of gnight and how it responds to different atmospheric drivers, indicating the need for a different measurement approach. In this presentation we propose a novel method to obtain detectable and robust estimates of gnight. We will demonstrate using mechanistic theory how independent tracers including the oxygen isotope composition of CO2 (δ18O) and carbonyl sulfide (COS) can be combined to obtain robust estimates of gnight. This is because COS and CO18O exchange within leaves are controlled by the light insensitive enzyme carbonic anhydrase. Thus, if plant stomata are open in the dark we will continue to observe COS and CO18O exchange. Using our theoretical model we will demonstrate that the exchange of these tracers can now be measured using advances in laser spectrometry techniques at a precision high enough to determine robust estimates of gnight. We will also present our novel experimental approach designed to measure simultaneously the exchange of CO18O and COS alongside the conventional technique that relies on measuring the total water flux from leaves in the dark. Using our theoretical approach we will additionally explore the feasibility of our proposed experimental design to detect variations in gnight during drought stress and across a variety of plant

  15. Non-invasive physical treatments for chronic/recurrent headache.

    NARCIS (Netherlands)

    Bronfort, G.; Nilsson, N.; Haas, M.; Evans, R.; Goldsmith, C. H.; Assendelft, W. J.; Bouter, L. M.

    2004-01-01

    BACKGROUND: Non-invasive physical treatments are often used to treat common types of chronic/recurrent headache. OBJECTIVES: To quantify and compare the magnitude of short- and long-term effects of non-invasive physical treatments for chronic/recurrent headaches. SEARCH STRATEGY: We searched the

  16. Non-invasive physical treatments for chronic/recurrent headache

    NARCIS (Netherlands)

    Brønfort, Gert; Haas, Mitchell; Evans, Roni L.; Goldsmith, Charles H.; Assendelft, Willem J.J.; Bouter, Lex M.

    2014-01-01

    Background: Non-invasive physical treatments are often used to treat common types of chronic/recurrent headache. Objectives: To quantify and compare the magnitude of short- and long-term effects of non-invasive physical treatments for chronic/recurrent headaches. Search methods: We searched the

  17. Fetal motion estimation from noninvasive cardiac signal recordings.

    Science.gov (United States)

    Biglari, Hadis; Sameni, Reza

    2016-11-01

    Fetal motility is a widely accepted indicator of the well-being of a fetus. In previous research, it has be shown that fetal motion (FM) is coherent with fetal heart rate accelerations and an indicator for active/rest cycles of the fetus. The most common approach for FM and fetal heart rate (FHR) assessment is by Doppler ultrasound (DUS). While DUS is the most common approach for studying the mechanical activities of the heart, noninvasive fetal electrocardiogram (ECG) and magnetocardiogram (MCG) recording and processing techniques have been considered as a possible competitor (or complement) for the DUS. In this study, a fully automatic and robust framework is proposed for the extraction, ranking and alignment of fetal QRS-complexes from noninvasive fetal ECG/MCG. Using notions from subspace tracking, two measures, namely the actogram and rotatogram, are defined for fetal motion tracking. The method is applied to four fetal ECG/MCG databases, including twin MCG recordings. By defining a novel measure of causality, it is shown that there is significant coherency and causal relationship between the actogram/rotatogram and FHR accelerations/decelerations. Using this measure, it is shown that in many cases, the actogram and rotatogram precede the FHR variations, which supports the idea of motion-induced FHR accelerations/decelerations for these cases and raises attention for the non-motion-induced FHR variations, which can be associated to the fetal central nervous system developments. The results of this study can lead to novel perspectives of the fetal sympathetic and parasympathetic brain systems and future requirements of fetal cardiac monitoring.

  18. An uncommon case of noninvasive ocular surface squamous ...

    African Journals Online (AJOL)

    We describe a rare case of noninvasive OSSN involving the entire cornea in a human immunodeficiency virus‑negative patient. The patient was successfully treated with no recurrence, after intact surgical removal, mitomycin C treatment, and cryotherapy. Keywords: Noninvasive ocular surface squamous neoplasia, ocular ...

  19. Non-Invasive Assessment of Dairy Products Using SpatiallyResolved Diffuse Reflectance Spectroscopy

    DEFF Research Database (Denmark)

    Abildgaard, Otto Højager Attermann; Kamran, Faisal; Dahl, Anders Bjorholm

    2015-01-01

    of commercially available milk and yogurt products with three different levels of fat content are measured. These constitute a relevant range of products at a dairy plant. The measured reduced scattering properties of the samples are presented and show a clear discrimination between levels of fat contents as well...... as fermentation. The presented measurement technique and method of analysis is thus suitable for a rapid, noncontact, and non-invasive inspection that can deduce physically interpretable properties....

  20. The relation between invasive and non-invasive tear break-up time ...

    African Journals Online (AJOL)

    Tear stability normal to Nigerians with consideration of gender and age has not been reported. Tear stability in young adults was measured using invasive and non-invasive tear break-up time (TBUT and NIBUT). Forty –five subjects aged 20 to 30 years were selected from among the students of University of. Benin, Edo ...