Enhancement of transparency and accuracy of credit scoring models through genetic fuzzy classifier
Directory of Open Access Journals (Sweden)
Raja N. Ainon
2010-04-01
Full Text Available Credit risk evaluation systems play an important role in the financial decision-making by enabling faster credit decisions, reducing the cost of credit analysis and diminishing possible risks. Credit scoring is the most commonly used technique for evaluating the creditworthiness of the credit applicants. The credit models built with this technique should satisfy two important criteria, namely accuracy, which measures the capability of predicting the behaviour of the customers, and transparency, which reflects the ability of the model to describe the input-output relation in an understandable way. In our paper, two credit scoring models are proposed using two types of fuzzy systems, namely Takagi-Sugeno (TS and Mamdani types. The accuracy and transparency of these two models have been optimised. The TS fuzzy credit scoring model is generated using subtractive clustering method while the Mamdani fuzzy system is extracted using fuzzy C-means clustering algorithm. The accuracy and transparency of the two resulting fuzzy credit scoring models are optimised using two multi-objective evolutionary techniques. The potential of the proposed modelling approaches for enhancing the transparency of the credit scoring models while maintaining the classification accuracy is illustrated using two benchmark real world data sets. The TS fuzzy system is found to be highly accurate and computationally efficient while the Mamdani fuzzy system is highly transparent, intuitive and humanly understandable.
Construction of Fuzzy Ontologies from Fuzzy UML Models
Directory of Open Access Journals (Sweden)
Fu Zhang
2013-05-01
Full Text Available The success and proliferation of the Semantic Web depends heavily on construction of Web ontologies. However, classical ontology construction approaches are not sufficient for handling imprecise and uncertain information that is commonly found in many application domains. Therefore, great efforts on construction of fuzzy ontologies have been made in recent years. In this paper, we propose a formal approach and develop an automated tool for constructing fuzzy ontologies from fuzzy UML models. , we propose formalization methods of fuzzy UML models and fuzzy ontologies, where fuzzy UML models and fuzzy ontologies can be represented and interpreted by their respective formal definitions and semantic interpretation methods. , we propose an approach for constructing fuzzy ontologies from fuzzy UML models, i.e., transforming fuzzy UML models (including the structure and instance information of fuzzy UML models into fuzzy ontologies. , following the proposed approach, we implement a prototype transformation tool called that can construct fuzzy ontologies from fuzzy UML models. Constructing fuzzy ontologies from fuzzy UML models will facilitate the development of Web ontologies. , in order to show that the constructed fuzzy ontologies may be useful for reasoning on fuzzy UML models, we investigate how to reason on fuzzy UML models based on the constructed fuzzy ontologies, and it turns out that the reasoning tasks of fuzzy UML models can be checked by means of the reasoning mechanism of fuzzy ontologies.
Udupa, Jayaram K.; Odhner, Dewey; Falcao, Alexandre X.; Ciesielski, Krzysztof C.; Miranda, Paulo A. V.; Vaideeswaran, Pavithra; Mishra, Shipra; Grevera, George J.; Saboury, Babak; Torigian, Drew A.
2011-03-01
To make Quantitative Radiology (QR) a reality in routine clinical practice, computerized automatic anatomy recognition (AAR) becomes essential. As part of this larger goal, we present in this paper a novel fuzzy strategy for building bodywide group-wise anatomic models. They have the potential to handle uncertainties and variability in anatomy naturally and to be integrated with the fuzzy connectedness framework for image segmentation. Our approach is to build a family of models, called the Virtual Quantitative Human, representing normal adult subjects at a chosen resolution of the population variables (gender, age). Models are represented hierarchically, the descendents representing organs contained in parent organs. Based on an index of fuzziness of the models, 32 thorax data sets, and 10 organs defined in them, we found that the hierarchical approach to modeling can effectively handle the non-linear relationships in position, scale, and orientation that exist among organs in different patients.
Transparency of Computational Intelligence Models
Owotoki, Peter; Mayer-Lindenberg, Friedrich
This paper introduces the behaviour of transparency of computational intelligence (CI) models. Transparency reveals to end users the underlying reasoning process of the agent embodying CI models. This is of great benefit in applications (e.g. data mining, entertainment and personal robotics) with humans as end users because it increases their trust in the decisions of the agent and their acceptance of its results. Our integrated approach, wherein rules are just one of other transparency factors (TF), differs from previous related efforts which have focused mostly on generation of comprehensible rules as explanations. Other TF include degree of confidence measure and visualization of principal features. The transparency quotient is introduced as a measure of the transparency of models based on these factors. The transparency enabled generalized exemplar model has been developed to demonstrate the TF and transparency concepts introduced in this paper.
Transparency of Environmental Computer Models
Vos, de M.G.; Top, J.L.; van Hage, W.R.; Schreiber, A.Th.
2013-01-01
Environmental computer models are considered essential tools in supporting environmental decision making, but their main value is that they allow a better understanding of our complex environment. Despite numerous attempts to promote good modelling practice, transparency of current environmental
Fuzzy linguistic model for interpolation
International Nuclear Information System (INIS)
Abbasbandy, S.; Adabitabar Firozja, M.
2007-01-01
In this paper, a fuzzy method for interpolating of smooth curves was represented. We present a novel approach to interpolate real data by applying the universal approximation method. In proposed method, fuzzy linguistic model (FLM) applied as universal approximation for any nonlinear continuous function. Finally, we give some numerical examples and compare the proposed method with spline method
DEFF Research Database (Denmark)
Franco de los Rios, Camilo Andres; Hougaard, Jens Leth; Nielsen, Kurt
for decision support and multidimensional interval analysis. First, the original approach is extended using fuzzy set theory which makes it possible to handle both non-interval and interval data. Second, we re-examine the ranking procedure based on semi-equivalence classes and suggest a new complementary...
Fuzzy audit risk modeling algorithm
Directory of Open Access Journals (Sweden)
Zohreh Hajihaa
2011-07-01
Full Text Available Fuzzy logic has created suitable mathematics for making decisions in uncertain environments including professional judgments. One of the situations is to assess auditee risks. During recent years, risk based audit (RBA has been regarded as one of the main tools to fight against fraud. The main issue in RBA is to determine the overall audit risk an auditor accepts, which impact the efficiency of an audit. The primary objective of this research is to redesign the audit risk model (ARM proposed by auditing standards. The proposed model of this paper uses fuzzy inference systems (FIS based on the judgments of audit experts. The implementation of proposed fuzzy technique uses triangular fuzzy numbers to express the inputs and Mamdani method along with center of gravity are incorporated for defuzzification. The proposed model uses three FISs for audit, inherent and control risks, and there are five levels of linguistic variables for outputs. FISs include 25, 25 and 81 rules of if-then respectively and officials of Iranian audit experts confirm all the rules.
Fuzzy Stochastic Optimization Theory, Models and Applications
Wang, Shuming
2012-01-01
Covering in detail both theoretical and practical perspectives, this book is a self-contained and systematic depiction of current fuzzy stochastic optimization that deploys the fuzzy random variable as a core mathematical tool to model the integrated fuzzy random uncertainty. It proceeds in an orderly fashion from the requisite theoretical aspects of the fuzzy random variable to fuzzy stochastic optimization models and their real-life case studies. The volume reflects the fact that randomness and fuzziness (or vagueness) are two major sources of uncertainty in the real world, with significant implications in a number of settings. In industrial engineering, management and economics, the chances are high that decision makers will be confronted with information that is simultaneously probabilistically uncertain and fuzzily imprecise, and optimization in the form of a decision must be made in an environment that is doubly uncertain, characterized by a co-occurrence of randomness and fuzziness. This book begins...
Fuzzy Clustering Methods and their Application to Fuzzy Modeling
DEFF Research Database (Denmark)
Kroszynski, Uri; Zhou, Jianjun
1999-01-01
. A method to obtain an optimized number of clusters is outlined. Based upon the cluster's characteristics, a behavioural model is formulated in terms of a rule-base and an inference engine. The article reviews several variants for the model formulation. Some limitations of the methods are listed......Fuzzy modeling techniques based upon the analysis of measured input/output data sets result in a set of rules that allow to predict system outputs from given inputs. Fuzzy clustering methods for system modeling and identification result in relatively small rule-bases, allowing fast, yet accurate...
Modeling Research Project Risks with Fuzzy Maps
Bodea, Constanta Nicoleta; Dascalu, Mariana Iuliana
2009-01-01
The authors propose a risks evaluation model for research projects. The model is based on fuzzy inference. The knowledge base for fuzzy process is built with a causal and cognitive map of risks. The map was especially developed for research projects, taken into account their typical lifecycle. The model was applied to an e-testing research…
Markowitz portfolio optimization model employing fuzzy measure
Ramli, Suhailywati; Jaaman, Saiful Hafizah
2017-04-01
Markowitz in 1952 introduced the mean-variance methodology for the portfolio selection problems. His pioneering research has shaped the portfolio risk-return model and become one of the most important research fields in modern finance. This paper extends the classical Markowitz's mean-variance portfolio selection model applying the fuzzy measure to determine the risk and return. In this paper, we apply the original mean-variance model as a benchmark, fuzzy mean-variance model with fuzzy return and the model with return are modeled by specific types of fuzzy number for comparison. The model with fuzzy approach gives better performance as compared to the mean-variance approach. The numerical examples are included to illustrate these models by employing Malaysian share market data.
CAPP MODEL OF FUZZY SYSTEMS AND FUZZY MANUFACTURABILITY
Directory of Open Access Journals (Sweden)
Radivoje Antić
2013-10-01
Full Text Available They give the soles of technological design process using fuzzy logic for metal cutting, referring to the determination of all the elements of production process: the dimensions and quality of the workpiece material, the sequence and scope of operations, the order and content of the procedures, the size of the type of machine types and tool types and gauges, regime and time of processing. It further explains manufacturability machine parts for robust design of a new product. He also offers manufacturability for cylindrical, prismatic workpieces and boxes. It explains the mathematical expressions of fuzzy logic which described above manufacturability. In fuzzy logic are used mathematical operations minimization and maximization. They are used to determine the critical solutions and choice of cost effective solutions. Provides an example of using the model to determine of the manufacturability.
Epsilon-insensitive fuzzy c-regression models: introduction to epsilon-insensitive fuzzy modeling.
Leski, Jacek M
2004-02-01
This paper introduces a new epsilon-insensitive fuzzy c-regression models (epsilonFCRM), that can be used in fuzzy modeling. To fit these regression models to real data, a weighted epsilon-insensitive loss function is used. The proposed method make it possible to exclude an intrinsic inconsistency of fuzzy modeling, where crisp loss function (usually quadratic) is used to match real data and the fuzzy model. The epsilon-insensitive fuzzy modeling is based on human thinking and learning. This method allows easy control of generalization ability and outliers robustness. This approach leads to c simultaneous quadratic programming problems with bound constraints and one linear equality constraint. To solve this problem, computationally efficient numerical method, called incremental learning, is proposed. Finally, examples are given to demonstrate the validity of introduced approach to fuzzy modeling.
Driver's Behavior Modeling Using Fuzzy Logic
Directory of Open Access Journals (Sweden)
Sehraneh Ghaemi
2010-01-01
Full Text Available In this study, we propose a hierarchical fuzzy system for human in a driver-vehicle-environment system to model takeover by different drivers. The driver's behavior is affected by the environment. The climate, road and car conditions are included in fuzzy modeling. For obtaining fuzzy rules, experts' opinions are benefited by means of questionnaires on effects of parameters such as climate, road and car conditions on driving capabilities. Also the precision, age and driving individuality are used to model the driver's behavior. Three different positions are considered for driving and decision making. A fuzzy model called Model I is presented for modeling the change of steering angle and speed control by considering time distances with existing cars in these three positions, the information about the speed and direction of car, and the steering angle of car. Also we obtained two other models based on fuzzy rules called Model II and Model III by using Sugeno fuzzy inference. Model II and Model III have less linguistic terms than Model I for the steering angle and direction of car. The results of three models are compared for a driver who drives based on driving laws.
Takagi-Sugeno Neuro-Fuzzy Modeling of a Multivariable Nonlinear Antenna System
Directory of Open Access Journals (Sweden)
E. A. Al-Gallaf
2005-12-01
Full Text Available This article investigates the use of a clustered based neuro-fuzzy system to nonlinear dynamic system modeling. It is focused on the modeling via Takagi-Sugeno (T-S modeling procedure and the employment of fuzzy clustering to generate suitable initial membership functions. The T-S fuzzy modeling has been applied to model a nonlinear antenna dynamic system with two coupled inputs and outputs. Compared to other well-known approximation techniques such as artificial neural networks, the employed neuro-fuzzy system has provided a more transparent representation of the nonlinear antenna system under study, mainly due to the possible linguistic interpretation in the form of rules. Created initial memberships are then employed to construct suitable T-S models. Furthermore, the T-S fuzzy models have been validated and checked through the use of some standard model validation techniques (like the correlation functions. This intelligent modeling scheme is very useful once making complicated systems linguistically transparent in terms of the fuzzy if-then rules.
Development of a new fuzzy exposure model
International Nuclear Information System (INIS)
Vasconcelos, Wagner Eustaquio de; Lira, Carlos Alberto Brayner de Oliveira; Texeira, Marcello Goulart
2007-01-01
The main topic of this study is the development of an exposure fuzzy model to evaluate the exposure of inhabitants in an area containing uranium, which present a high natural background. In this work, a fuzzy model was created, based on some of the following main factors: activity concentration of uranium, physiological factors and characteristic customs of the exposed individuals. An inference block was created to evaluate some factors of radiation exposure. For this, AHP-fuzzy technique (Analytic Hierarchic Process) was used and its application was demonstrated for a subjected population to the radiation of the natural uranium. The Mandami type fuzzy model was also created from the opinion of specialists. The Monte Carlo method was used to generate a statistics of input data and the daily average exposure served as comparison parameter between the three techniques. The output fuzzy sets were expressed in form of linguistic variables, such as high, medium and low. In the qualitative analysis, the obtained results were satisfactory when translating the opinion of the specialists. In the quantitative analysis, the obtained values are part of the same fuzzy set as the values found in literature. The global results suggest that this type of fuzzy model is highly promising for analysis of exposure to ionizing radiation. (author)
APPLICATION OF FUZZY LOGIC TOOLBOX FOR MODELLING FUZZY LOGIC CONTROLLERS
Olesiak, Krzysztof
2017-01-01
Computer technology, which has been developing very fast in the recent years, can be also fruitfully applied in teaching. For example, the software package Matlab is highly useful in teaching students at Bachelor Programs of Electrical Engineering and Automatics and Robotics. Fuzzy Logic Toolbox of the Matlab package can be used for designing and modelling controllers. Thanks to a large number of pre-defined elements available in the libraries, it is possible to create even highly complicated...
Fuzzy Multiple Criteria Decision Making Model with Fuzzy Time Weight Scheme
Chin-Yao Low; Sung-Nung Lin
2013-01-01
In this study, we purpose a common fuzzy multiple criteria decision making model. A brand new concept - fuzzy time weighted scheme is adopted for considering in the model to establish a fuzzy multiple criteria decision making with time weight (FMCDMTW) model. A real case of fuzzy multiple criteria decision making (FMCDM) problems to be considering in this study. The performance evaluation of auction websites based on all criteria proposed in related literature. Obviously, the problem under in...
Fuzzy GML Modeling Based on Vague Soft Sets
Directory of Open Access Journals (Sweden)
Bo Wei
2017-01-01
Full Text Available The Open Geospatial Consortium (OGC Geography Markup Language (GML explicitly represents geographical spatial knowledge in text mode. All kinds of fuzzy problems will inevitably be encountered in spatial knowledge expression. Especially for those expressions in text mode, this fuzziness will be broader. Describing and representing fuzziness in GML seems necessary. Three kinds of fuzziness in GML can be found: element fuzziness, chain fuzziness, and attribute fuzziness. Both element fuzziness and chain fuzziness belong to the reflection of the fuzziness between GML elements and, then, the representation of chain fuzziness can be replaced by the representation of element fuzziness in GML. On the basis of vague soft set theory, two kinds of modeling, vague soft set GML Document Type Definition (DTD modeling and vague soft set GML schema modeling, are proposed for fuzzy modeling in GML DTD and GML schema, respectively. Five elements or pairs, associated with vague soft sets, are introduced. Then, the DTDs and the schemas of the five elements are correspondingly designed and presented according to their different chains and different fuzzy data types. While the introduction of the five elements or pairs is the basis of vague soft set GML modeling, the corresponding DTD and schema modifications are key for implementation of modeling. The establishment of vague soft set GML enables GML to represent fuzziness and solves the problem of lack of fuzzy information expression in GML.
Economy and Transparency: The Model Invention
Directory of Open Access Journals (Sweden)
Mahmud Hassan TALUKDAR
2013-12-01
Full Text Available Relation of Transparency and Economic growth is a long global debate in the society. Theoretically, policy makers, scholars and researchers argue that there is a close relation among these two variables. However, the quantitative relation and any global model is yet unrevealed. So, the main aim of this paper is to ascertain the nature, dimension and extent of the relationship between economy and Transparency as well as to invent a global model. This paper is useful for researchers, planners, policy makers and scholars who are directly or indirectly involved or willing to involve in the thrust for quantitative relation of these two variables. Literature review is the main source of information of this study. In introductory section, this paper briefly describes theoretical relationship of economy and Transparency as well as it also describes the proxy variables.GDP (2012 of different countries are used as proxy of Economy and Corruption Perception Index (CPI scores (2012 of different countries are used as proxy of level of Transparency. In methodology section this paper describes the detail methodology, sampling procedure and level of analysis. This study randomly selects 30 countries (10 from higher CPI scores+10 from moderate CPI scores+ 10 from lower CPI scores around the globe as sample. In the third section, this research presents the correlation value which divulge that there is a positive correlation (p=.047 with 95% confidence level. That reveals, if the level of transparency of any country increase, the GDP also increase accordingly. Then in this section two quantitative models are developed using linear regression analysis. First invented model is: Economy (GDP in billion US$ = [(8.983*Level of transparency -108.11]. This paper termed the first invented model as “Mahmud EcoT Model-1”. This model calibrates that one unit improvement of transparency leads 8.98 billion US$ improvement in the GDP of a country. Then taking this unit
HIERARCHICAL NEURO-FUZZY MODELS
FLAVIO JOAQUIM DE SOUZA
1999-01-01
Esta dissertação apresenta uma nova proposta de sistemas (modelos) neuro-fuzzy que possuem, além do tradicional aprendizado dos parâmetros, comuns às redes neurais e aos sistemas nero-fuzzy, as seguintes características: aprendizado de estrutura, a partir do uso de particionamentos recursisvos; número maior de entradas que o comumente encontrado nos sistemas neuro-fuzzy; e regras com hierarquia. A definição da estrutura é uma necessidade que surge quando da imp...
Sanchez, Mauricio A; Castro, Juan R
2017-01-01
In this book, a series of granular algorithms are proposed. A nature inspired granular algorithm based on Newtonian gravitational forces is proposed. A series of methods for the formation of higher-type information granules represented by Interval Type-2 Fuzzy Sets are also shown, via multiple approaches, such as Coefficient of Variation, principle of justifiable granularity, uncertainty-based information concept, and numerical evidence based. And a fuzzy granular application comparison is given as to demonstrate the differences in how uncertainty affects the performance of fuzzy information granules.
Tahriri, Farzad; Dawal, Siti Zawiah Md; Taha, Zahari
2014-01-01
A new multiobjective dynamic fuzzy genetic algorithm is applied to solve a fuzzy mixed-model assembly line sequencing problem in which the primary goals are to minimize the total make-span and minimize the setup number simultaneously. Trapezoidal fuzzy numbers are implemented for variables such as operation and travelling time in order to generate results with higher accuracy and representative of real-case data. An improved genetic algorithm called fuzzy adaptive genetic algorithm (FAGA) is ...
van Lith, Pascal; van Lith, P.F.; Betlem, Bernardus H.L.; Roffel, B.
2002-01-01
Hybrid fuzzy-first principles models can be a good alternative if a complete physical model is difficult to derive. These hybrid models consist of a framework of dynamic mass and energy balances, supplemented by fuzzy submodels describing additional equations, such as mass transformation and
Lith, Pascal F. van; Betlem, Ben H.L.; Roffel, Brian
2002-01-01
Hybrid fuzzy-first principles models can be a good alternative if a complete physical model is difficult to derive. These hybrid models consist of a framework of dynamic mass and energy balances, supplemented by fuzzy submodels describing additional equations, such as mass transformation and
Fuzzy One-Class Classification Model Using Contamination Neighborhoods
Directory of Open Access Journals (Sweden)
Lev V. Utkin
2012-01-01
Full Text Available A fuzzy classification model is studied in the paper. It is based on the contaminated (robust model which produces fuzzy expected risk measures characterizing classification errors. Optimal classification parameters of the models are derived by minimizing the fuzzy expected risk. It is shown that an algorithm for computing the classification parameters is reduced to a set of standard support vector machine tasks with weighted data points. Experimental results with synthetic data illustrate the proposed fuzzy model.
Evaluating software architecture using fuzzy formal models
Directory of Open Access Journals (Sweden)
Payman Behbahaninejad
2012-04-01
Full Text Available Unified Modeling Language (UML has been recognized as one of the most popular techniques to describe static and dynamic aspects of software systems. One of the primary issues in designing software packages is the existence of uncertainty associated with such models. Fuzzy-UML to describe software architecture has both static and dynamic perspective, simultaneously. The evaluation of software architecture design phase initiates always help us find some additional requirements, which helps reduce cost of design. In this paper, we use a fuzzy data model to describe the static aspects of software architecture and the fuzzy sequence diagram to illustrate the dynamic aspects of software architecture. We also transform these diagrams into Petri Nets and evaluate reliability of the architecture. The web-based hotel reservation system for further explanation has been studied.
A Fuzzy Student Modeling with Two Intelligent Agents.
Huang, Mu-Jung
1999-01-01
A new fuzzy student modeling method with two intelligent agents, a diagnosis agent and a learning agent, are suggested by this article for several aspects of student modeling in Intelligent Tutoring Systems. Also integrated are fuzzy theories and Fuzzy-Hasse diagrams for student modeling. (Author/AEF)
Fuzzy model-based control of a nuclear reactor
International Nuclear Information System (INIS)
Van Den Durpel, L.; Ruan, D.
1994-01-01
The fuzzy model-based control of a nuclear power reactor is an emerging research topic world-wide. SCK-CEN is dealing with this research in a preliminary stage, including two aspects, namely fuzzy control and fuzzy modelling. The aim is to combine both methodologies in contrast to conventional model-based PID control techniques, and to state advantages of including fuzzy parameters as safety and operator feedback. This paper summarizes the general scheme of this new research project
FUZZY MODELING BY SUCCESSIVE ESTIMATION OF RULES ...
African Journals Online (AJOL)
This paper presents an algorithm for automatically deriving fuzzy rules directly from a set of input-output data of a process for the purpose of modeling. The rules are extracted by a method termed successive estimation. This method is used to generate a model without truncating the number of fired rules, to within user ...
Bonissone CIDU Presentation: Design of Local Fuzzy Models
National Aeronautics and Space Administration — After reviewing key background concepts in fuzzy systems and evolutionary computing, we will focus on the use of local fuzzy models, which are related to both kernel...
Neuro-fuzzy modeling in bankruptcy prediction
Directory of Open Access Journals (Sweden)
Vlachos D.
2003-01-01
Full Text Available For the past 30 years the problem of bankruptcy prediction had been thoroughly studied. From the paper of Altman in 1968 to the recent papers in the '90s, the progress of prediction accuracy was not satisfactory. This paper investigates an alternative modeling of the system (firm, combining neural networks and fuzzy controllers, i.e. using neuro-fuzzy models. Classical modeling is based on mathematical models that describe the behavior of the firm under consideration. The main idea of fuzzy control, on the other hand, is to build a model of a human control expert who is capable of controlling the process without thinking in a mathematical model. This control expert specifies his control action in the form of linguistic rules. These control rules are translated into the framework of fuzzy set theory providing a calculus, which can stimulate the behavior of the control expert and enhance its performance. The accuracy of the model is studied using datasets from previous research papers.
DEFF Research Database (Denmark)
Flyverbom, Mikkel
2016-01-01
This article challenges the view of transparency as a matter of providing openness, insight, and clarity by conceptualizing it as a form of visibility management. We tend to think of transparency as a process of ensuring accountability through the timely and public disclosure of information...... articulates the complexities and dynamics of visibility management and highlights a set of critical questions about the politics, technologies, and power effects of contemporary transparency regimes....
Directory of Open Access Journals (Sweden)
K. A. Halim
2011-01-01
Full Text Available In this article, we consider a single-unit unreliable production system which produces a single item. During a production run, the production process may shift from the in-control state to the out-of-control state at any random time when it produces some defective items. The defective item production rate is assumed to be imprecise and is characterized by a trapezoidal fuzzy number. The production rate is proportional to the demand rate where the proportionality constant is taken to be a fuzzy number. Two production planning models are developed on the basis of fuzzy and stochastic demand patterns. The expected cost per unit time in the fuzzy sense is derived in each model and defuzzified by using the graded mean integration representation method. Numerical examples are provided to illustrate the optimal results of the proposed fuzzy models.
Intuitionistic Fuzzy Time Series Forecasting Model Based on Intuitionistic Fuzzy Reasoning
Directory of Open Access Journals (Sweden)
Ya’nan Wang
2016-01-01
Full Text Available Fuzzy sets theory cannot describe the data comprehensively, which has greatly limited the objectivity of fuzzy time series in uncertain data forecasting. In this regard, an intuitionistic fuzzy time series forecasting model is built. In the new model, a fuzzy clustering algorithm is used to divide the universe of discourse into unequal intervals, and a more objective technique for ascertaining the membership function and nonmembership function of the intuitionistic fuzzy set is proposed. On these bases, forecast rules based on intuitionistic fuzzy approximate reasoning are established. At last, contrast experiments on the enrollments of the University of Alabama and the Taiwan Stock Exchange Capitalization Weighted Stock Index are carried out. The results show that the new model has a clear advantage of improving the forecast accuracy.
Fuzzy modelling of Atlantic salmon physical habitat
St-Hilaire, André; Mocq, Julien; Cunjak, Richard
2015-04-01
Fish habitat models typically attempt to quantify the amount of available river habitat for a given fish species for various flow and hydraulic conditions. To achieve this, information on the preferred range of values of key physical habitat variables (e.g. water level, velocity, substrate diameter) for the targeted fishs pecies need to be modelled. In this context, we developed several habitat suitability indices sets for three Atlantic salmon life stages (young-of-the-year (YOY), parr, spawning adults) with the help of fuzzy logic modeling. Using the knowledge of twenty-seven experts, from both sides of the Atlantic Ocean, we defined fuzzy sets of four variables (depth, substrate size, velocity and Habitat Suitability Index, or HSI) and associated fuzzy rules. When applied to the Romaine River (Canada), median curves of standardized Weighted Usable Area (WUA) were calculated and a confidence interval was obtained by bootstrap resampling. Despite the large range of WUA covered by the expert WUA curves, confidence intervals were relatively narrow: an average width of 0.095 (on a scale of 0 to 1) for spawning habitat, 0.155 for parr rearing habitat and 0.160 for YOY rearing habitat. When considering an environmental flow value corresponding to 90% of the maximum reached by WUA curve, results seem acceptable for the Romaine River. Generally, this proposed fuzzy logic method seems suitable to model habitat availability for the three life stages, while also providing an estimate of uncertainty in salmon preferences.
Financial Markets Analysis by Probabilistic Fuzzy Modelling
J.H. van den Berg (Jan); W.-M. van den Bergh (Willem-Max); U. Kaymak (Uzay)
2003-01-01
textabstractFor successful trading in financial markets, it is important to develop financial models where one can identify different states of the market for modifying one???s actions. In this paper, we propose to use probabilistic fuzzy systems for this purpose. We concentrate on Takagi???Sugeno
SOIL QUALITY ASSESSMENT USING FUZZY MODELING
Maintaining soil productivity is essential if agriculture production systems are to be sustainable, thus soil quality is an essential issue. However, there is a paucity of tools for measurement for the purpose of understanding changes in soil quality. Here the possibility of using fuzzy modeling t...
DEFF Research Database (Denmark)
Flyverbom, Mikkel; Albu, Oana Brindusa
2017-01-01
Transparency is an increasingly prominent research topic in many scholarly disciplines and offers valuable insights for organizational communication. This entry provides an overview of the historical background and identifies some themes that presently inform the transparency literature. The entry...... then outlines the most important dimensions of the concept of transparency by highlighting two paradigmatic positions underpinning contemporary research in this area: namely, informational approaches that focus on the sharing of information and the perceived quality of that information and social process...... orientations that explore the dynamics of transparency in organizational settings. The entry highlights emergent methodological and conceptual insights concerning transparency as a dynamic and paradoxical social process with performative characteristics – an approach that remains underexplored....
Fuzzy model-based observers for fault detection in CSTR.
Ballesteros-Moncada, Hazael; Herrera-López, Enrique J; Anzurez-Marín, Juan
2015-11-01
Under the vast variety of fuzzy model-based observers reported in the literature, what would be the properone to be used for fault detection in a class of chemical reactor? In this study four fuzzy model-based observers for sensor fault detection of a Continuous Stirred Tank Reactor were designed and compared. The designs include (i) a Luenberger fuzzy observer, (ii) a Luenberger fuzzy observer with sliding modes, (iii) a Walcott-Zak fuzzy observer, and (iv) an Utkin fuzzy observer. A negative, an oscillating fault signal, and a bounded random noise signal with a maximum value of ±0.4 were used to evaluate and compare the performance of the fuzzy observers. The Utkin fuzzy observer showed the best performance under the tested conditions. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Jiménez-Losada, Andrés
2017-01-01
This book offers a comprehensive introduction to cooperative game theory and a practice-oriented reference guide to new models and tools for studying bilateral fuzzy relations among several agents or players. It introduces the reader to several fuzzy models, each of which is first analyzed in the context of classical games (crisp games) and subsequently in the context of fuzzy games. Special emphasis is given to the value of Shapley, which is presented for the first time in the context of fuzzy games. Students and researchers will find here a self-contained reference guide to cooperative fuzzy games, characterized by a wealth of examples, descriptions of a wide range of possible situations, step-by-step explanations of the basic mathematical concepts involved, and easy-to-follow information on axioms and properties.
Modeling of Kefir Production with Fuzzy Logic
Directory of Open Access Journals (Sweden)
Hüseyin Nail Akgül
2014-06-01
Full Text Available The fermentation is ended with pH 4.6 values in industrial production of kefir. In this study, the incubation temperature, the incubation time and inoculums of culture were chose as variable parameters of kefir. In conventional control systems, the value of pH can be found by trial method. In these systems, if the number of input parameters is greater, the method of trial and error creates a system dependent on the person as well as troublesome. Fuzzy logic can be used in such cases. Modeling studies with this fuzzy logic control are examined in two portions. The first part consists of fuzzy rules and membership functions, while the second part consists of clarify. Kefir incubation temperature between 20 and 25°C, the incubation period between 18 to 22 hours and the inoculum ratio of culture between 1-5% are selected for optimum production conditions. Three separate fuzzy sets (triangular membership function are used to blur the incubation temperature, the incubation time and the inoculum ratio of culture. Because the membership function numbers belonging to the the input parameters are 3 units, 3x3x3=27 line rule is obtained by multiplying these numbers. The table of fuzzy rules was obtained using the method of Mamdani. The membership function values were determined by the method of average weight using three trapezoidal area of membership functions created for clarification. The success of the system will be found, comparing the numerical values obtained with pH values that should be. Eventually, to achieve the desired pH value of 4.6 in the production of kefir, with the using of fuzzy logic, the workload of people will be decreased and the productivity of business can be increased. In this case, it can be provided savings in both cost and time.
Abrasive slurry jet cutting model based on fuzzy relations
Qiang, C. H.; Guo, C. W.
2017-12-01
The cutting process of pre-mixed abrasive slurry or suspension jet (ASJ) is a complex process affected by many factors, and there is a highly nonlinear relationship between the cutting parameters and cutting quality. In this paper, guided by fuzzy theory, the fuzzy cutting model of ASJ was developed. In the modeling of surface roughness, the upper surface roughness prediction model and the lower surface roughness prediction model were established respectively. The adaptive fuzzy inference system combines the learning mechanism of neural networks and the linguistic reasoning ability of the fuzzy system, membership functions, and fuzzy rules are obtained by adaptive adjustment. Therefore, the modeling process is fast and effective. In this paper, the ANFIS module of MATLAB fuzzy logic toolbox was used to establish the fuzzy cutting model of ASJ, which is found to be quite instrumental to ASJ cutting applications.
Fuzziness and fuzzy modelling in Bulgaria's energy policy decision-making dilemma
International Nuclear Information System (INIS)
Wang Xingquan
2006-01-01
The decision complexity resulting from imprecision in decision variables and parameters, a major difficulty for conventional decision analysis methods, can be relevantly analysed and modelled by fuzzy logic. Bulgaria's nuclear policy decision-making process implicates such complexity of imprecise nature: stakeholders, criteria, measurement, etc. Given the suitable applicability of fuzzy logic in this case, this article tries to offer a concrete fuzzy paradigm including delimitation of decision space, quantification of imprecise variables, and, of course, parameterisation. (author)
Fuzziness and fuzzy modelling in Bulgaria's energy policy decision-making dilemma
Energy Technology Data Exchange (ETDEWEB)
Wang Xingquan [GREGOR, University Paris I, Pantheon-Sorbonne, Paris (France)]. E-mail: wangxingquan@gmail.com
2006-07-01
The decision complexity resulting from imprecision in decision variables and parameters, a major difficulty for conventional decision analysis methods, can be relevantly analysed and modelled by fuzzy logic. Bulgaria's nuclear policy decision-making process implicates such complexity of imprecise nature: stakeholders, criteria, measurement, etc. Given the suitable applicability of fuzzy logic in this case, this article tries to offer a concrete fuzzy paradigm including delimitation of decision space, quantification of imprecise variables, and, of course, parameterisation. (author)
Yarn Strength Modelling Using Fuzzy Expert System
Abhijit Majumdar, Ph.D.; Anindya Ghosh, Ph.D.
2008-01-01
Yarn strength modelling and prediction has remained as the cynosure of research for the textile engineers although the investigation in this domain was first reported around one century ago. Several mathematical, statistical and empirical models have been developed in the past only to yield limited success in terms of prediction accuracy and general applicability. In recent years, soft computing tools like artificial neural networks and neural-fuzzy models have been developed, which have show...
Tahriri, Farzad; Dawal, Siti Zawiah Md; Taha, Zahari
2014-01-01
A new multiobjective dynamic fuzzy genetic algorithm is applied to solve a fuzzy mixed-model assembly line sequencing problem in which the primary goals are to minimize the total make-span and minimize the setup number simultaneously. Trapezoidal fuzzy numbers are implemented for variables such as operation and travelling time in order to generate results with higher accuracy and representative of real-case data. An improved genetic algorithm called fuzzy adaptive genetic algorithm (FAGA) is proposed in order to solve this optimization model. In establishing the FAGA, five dynamic fuzzy parameter controllers are devised in which fuzzy expert experience controller (FEEC) is integrated with automatic learning dynamic fuzzy controller (ALDFC) technique. The enhanced algorithm dynamically adjusts the population size, number of generations, tournament candidate, crossover rate, and mutation rate compared with using fixed control parameters. The main idea is to improve the performance and effectiveness of existing GAs by dynamic adjustment and control of the five parameters. Verification and validation of the dynamic fuzzy GA are carried out by developing test-beds and testing using a multiobjective fuzzy mixed production assembly line sequencing optimization problem. The simulation results highlight that the performance and efficacy of the proposed novel optimization algorithm are more efficient than the performance of the standard genetic algorithm in mixed assembly line sequencing model.
Directory of Open Access Journals (Sweden)
Farzad Tahriri
2014-01-01
Full Text Available A new multiobjective dynamic fuzzy genetic algorithm is applied to solve a fuzzy mixed-model assembly line sequencing problem in which the primary goals are to minimize the total make-span and minimize the setup number simultaneously. Trapezoidal fuzzy numbers are implemented for variables such as operation and travelling time in order to generate results with higher accuracy and representative of real-case data. An improved genetic algorithm called fuzzy adaptive genetic algorithm (FAGA is proposed in order to solve this optimization model. In establishing the FAGA, five dynamic fuzzy parameter controllers are devised in which fuzzy expert experience controller (FEEC is integrated with automatic learning dynamic fuzzy controller (ALDFC technique. The enhanced algorithm dynamically adjusts the population size, number of generations, tournament candidate, crossover rate, and mutation rate compared with using fixed control parameters. The main idea is to improve the performance and effectiveness of existing GAs by dynamic adjustment and control of the five parameters. Verification and validation of the dynamic fuzzy GA are carried out by developing test-beds and testing using a multiobjective fuzzy mixed production assembly line sequencing optimization problem. The simulation results highlight that the performance and efficacy of the proposed novel optimization algorithm are more efficient than the performance of the standard genetic algorithm in mixed assembly line sequencing model.
Tahriri, Farzad; Dawal, Siti Zawiah Md; Taha, Zahari
2014-01-01
A new multiobjective dynamic fuzzy genetic algorithm is applied to solve a fuzzy mixed-model assembly line sequencing problem in which the primary goals are to minimize the total make-span and minimize the setup number simultaneously. Trapezoidal fuzzy numbers are implemented for variables such as operation and travelling time in order to generate results with higher accuracy and representative of real-case data. An improved genetic algorithm called fuzzy adaptive genetic algorithm (FAGA) is proposed in order to solve this optimization model. In establishing the FAGA, five dynamic fuzzy parameter controllers are devised in which fuzzy expert experience controller (FEEC) is integrated with automatic learning dynamic fuzzy controller (ALDFC) technique. The enhanced algorithm dynamically adjusts the population size, number of generations, tournament candidate, crossover rate, and mutation rate compared with using fixed control parameters. The main idea is to improve the performance and effectiveness of existing GAs by dynamic adjustment and control of the five parameters. Verification and validation of the dynamic fuzzy GA are carried out by developing test-beds and testing using a multiobjective fuzzy mixed production assembly line sequencing optimization problem. The simulation results highlight that the performance and efficacy of the proposed novel optimization algorithm are more efficient than the performance of the standard genetic algorithm in mixed assembly line sequencing model. PMID:24982962
Fuzzy logic model to quantify risk perception
International Nuclear Information System (INIS)
Bukh, Julia; Dickstein, Phineas
2008-01-01
The aim of this study is a quantification of public risk perception towards the nuclear field so as to be considered in decision making whenever the public involvement is sought. The proposed model includes both qualitative factors such as familiarity and voluntariness and numerical factors influencing risk perception, such as probability of occurrence and severity of consequence. Since part of these factors can be characterized only by qualitative expressions and the determination of them are linked with vagueness, imprecision and uncertainty, the most suitable method for the risk level assessment is Fuzzy Logic, which models qualitative aspects of knowledge and reasoning processes without employing precise quantitative analyses. This work, then, offers a Fuzzy-Logic based mean of representing the risk perception by a single numerical feature, which can be weighted and accounted for in decision making procedures. (author)
Comparison of Fuzzy-Based Models in Landslide Hazard Mapping
Mijani, N.; Neysani Samani, N.
2017-09-01
Landslide is one of the main geomorphic processes which effects on the development of prospect in mountainous areas and causes disastrous accidents. Landslide is an event which has different uncertain criteria such as altitude, slope, aspect, land use, vegetation density, precipitation, distance from the river and distance from the road network. This research aims to compare and evaluate different fuzzy-based models including Fuzzy Analytic Hierarchy Process (Fuzzy-AHP), Fuzzy Gamma and Fuzzy-OR. The main contribution of this paper reveals to the comprehensive criteria causing landslide hazard considering their uncertainties and comparison of different fuzzy-based models. The quantify of evaluation process are calculated by Density Ratio (DR) and Quality Sum (QS). The proposed methodology implemented in Sari, one of the city of Iran which has faced multiple landslide accidents in recent years due to the particular environmental conditions. The achieved results of accuracy assessment based on the quantifier strated that Fuzzy-AHP model has higher accuracy compared to other two models in landslide hazard zonation. Accuracy of zoning obtained from Fuzzy-AHP model is respectively 0.92 and 0.45 based on method Precision (P) and QS indicators. Based on obtained landslide hazard maps, Fuzzy-AHP, Fuzzy Gamma and Fuzzy-OR respectively cover 13, 26 and 35 percent of the study area with a very high risk level. Based on these findings, fuzzy-AHP model has been selected as the most appropriate method of zoning landslide in the city of Sari and the Fuzzy-gamma method with a minor difference is in the second order.
Genetic fuzzy system modeling and simulation of vascular behaviour
DEFF Research Database (Denmark)
Tang, Jiaowei; Boonen, Harrie C.M.
in principle for any physiological system that is characterized by auto-regulatory control and adaptation. Methods: Currently, one modeling approach is being investigated, Genetic Fuzzy System (GFS). In Genetic Fuzzy Systems, the model algorithm mimics the biologic genetic evolutionary process to learn...... and find the optimal parameters in a Fuzzy Control set that can control the fluctuation of physical features in a blood vessel, based on experimental data (training data). Our solution is to create chromosomes or individuals composed of a sequence of parameters in the fuzzy system and find the best...... chromosome or individual to define the fuzzy system. The model is implemented by combining the Matlab Genetic algorithm and Fuzzy system toolboxes, respectively. To test the performance of this method, experimental data sets about calculated pressure change in different blood vessels after several chemical...
Normal Type-2 Fuzzy Geometric Curve Modeling: A Literature Review
Adesah, R. S.; Zakaria, R.
2017-09-01
Type-2 Fuzzy Set Theory (T2FST) is widely used for defining uncertainty data points rather than the traditional fuzzy set theory (type-1) since 2001. Recently, T2FST is used in many fields due to its ability to handle complex uncertainty data. In this paper, a review of normal type-2 fuzzy geometric curve modeling methods and techniques is presented. In particular, there have been recent applications of Normal Type-2 Fuzzy Set Theory (NT2FST) in geometric modeling, where it has helped improving results over type-1 fuzzy sets. In this paper, a concise and representative review of the processes in normal type-2 fuzzy geometrical curve modeling such as the fuzzification is presented.
a New Model for Fuzzy Personalized Route Planning Using Fuzzy Linguistic Preference Relation
Nadi, S.; Houshyaripour, A. H.
2017-09-01
This paper proposes a new model for personalized route planning under uncertain condition. Personalized routing, involves different sources of uncertainty. These uncertainties can be raised from user's ambiguity about their preferences, imprecise criteria values and modelling process. The proposed model uses Fuzzy Linguistic Preference Relation Analytical Hierarchical Process (FLPRAHP) to analyse user's preferences under uncertainty. Routing is a multi-criteria task especially in transportation networks, where the users wish to optimize their routes based on different criteria. However, due to the lake of knowledge about the preferences of different users and uncertainties available in the criteria values, we propose a new personalized fuzzy routing method based on the fuzzy ranking using center of gravity. The model employed FLPRAHP method to aggregate uncertain criteria values regarding uncertain user's preferences while improve consistency with least possible comparisons. An illustrative example presents the effectiveness and capability of the proposed model to calculate best personalize route under fuzziness and uncertainty.
A Fuzzy Knowledge Representation Model for Student Performance Assessment
DEFF Research Database (Denmark)
Badie, Farshad
Knowledge representation models based on Fuzzy Description Logics (DLs) can provide a foundation for reasoning in intelligent learning environments. While basic DLs are suitable for expressing crisp concepts and binary relationships, Fuzzy DLs are capable of processing degrees of truth/completene....../completeness about vague or imprecise information. This paper tackles the issue of representing fuzzy classes using OWL2 in a dataset describing Performance Assessment Results of Students (PARS)....
Clear and fuzzy fractal models of spreading dangerous environmental phenomena
Directory of Open Access Journals (Sweden)
A.E. Guy
2006-04-01
Full Text Available This article is devoted to investigation of possibility of widening models of spreading dangerous environmental phenomena, in particular Grassberger’s models, on the base of notion of fuzzy fractal sets introduced by one of the authors. Basic concepts from the theory of fuzzy fractals are considered.
Neuro-fuzzy model for evaluating the performance of processes ...
Indian Academy of Sciences (India)
CHIDOZIE CHUKWUEMEKA NWOBI-OKOYE
2017-11-16
Nov 16, 2017 ... In this work an Adaptive Neuro-Fuzzy Inference System (ANFIS) was used to model the periodic performance of some ..... Every node i in this layer is an adaptive node with a node function. Neuro-fuzzy model for .... spectral analysis and parameter optimization using genetic algorithm, the values of v10. and ...
Fuzzy Control Technique Applied to Modified Mathematical Model ...
African Journals Online (AJOL)
In this paper, fuzzy control technique is applied to the modified mathematical model for malaria control presented by the authors in an earlier study. Five Mamdani fuzzy controllers are constructed to control the input (some epidemiological parameters) to the malaria model simulated by 9 fully nonlinear ordinary differential ...
Type-2 fuzzy logic uncertain systems’ modeling and control
Antão, Rómulo
2017-01-01
This book focuses on a particular domain of Type-2 Fuzzy Logic, related to process modeling and control applications. It deepens readers’understanding of Type-2 Fuzzy Logic with regard to the following three topics: using simpler methods to train a Type-2 Takagi-Sugeno Fuzzy Model; using the principles of Type-2 Fuzzy Logic to reduce the influence of modeling uncertainties on a locally linear n-step ahead predictor; and developing model-based control algorithms according to the Generalized Predictive Control principles using Type-2 Fuzzy Sets. Throughout the book, theory is always complemented with practical applications and readers are invited to take their learning process one step farther and implement their own applications using the algorithms’ source codes (provided). As such, the book offers avaluable referenceguide for allengineers and researchers in the field ofcomputer science who are interested in intelligent systems, rule-based systems and modeling uncertainty.
Fuzzy model predictive control algorithm applied in nuclear power plant
International Nuclear Information System (INIS)
Zuheir, Ahmad
2006-01-01
The aim of this paper is to design a predictive controller based on a fuzzy model. The Takagi-Sugeno fuzzy model with an Adaptive B-splines neuro-fuzzy implementation is used and incorporated as a predictor in a predictive controller. An optimization approach with a simplified gradient technique is used to calculate predictions of the future control actions. In this approach, adaptation of the fuzzy model using dynamic process information is carried out to build the predictive controller. The easy description of the fuzzy model and the easy computation of the gradient sector during the optimization procedure are the main advantages of the computation algorithm. The algorithm is applied to the control of a U-tube steam generation unit (UTSG) used for electricity generation. (author)
Designing of fuzzy expert heuristic models with cost management ...
Indian Academy of Sciences (India)
In genuine industrial case, problems are inescapable and pose enormous challenges to incorporate accurate sustainability factors into supplier selection. In this present study, three different primarily based multicriteria decision making fuzzy models have been compared with their deterministic version so as to resolve fuzzy ...
Fuzzy expert systems models for operations research and management science
Turksen, I. B.
1993-12-01
Fuzzy expert systems can be developed for the effective use of management within the domains of concern associated with Operations Research and Management Science. These models are designed with: (1) expressive powers of representation embedded in linguistic variables and their linguistic values in natural language expressions, and (2) improved methods of interference based on fuzzy logic which is a generalization of multi-valued logic with fuzzy quantifiers. The results of these fuzzy expert system models are either (1) approximately good in comparison with their classical counterparts, or (2) much better than their counterparts. Moreover, for fuzzy expert systems models, it is only necessary to obtain ordinal scale data. Whereas for their classical counterparts, it is generally required that data be at least on ratio and absolute scale in order to guarantee the additivity and multiplicativity assumptions.
Secondary systems modeled as fuzzy sub-structures
DEFF Research Database (Denmark)
Tarp-Johansen, Niels Jacob; Ditlevsen, Ove Dalager; Lin, Y.K.
1998-01-01
in the simplest case be modeled by attaching random single degree of freedom oscillators, called fuzzies, to the master structure at randomly distributed points of the structure. Each of these fuzzies are characterized by a random triplet of mass, eigenfrequency, and damping ratio. This characterization can...... be combined with a model of the random distribution of the fuzzies over the structure by letting the entire system of fuzzies be characterized as a triplet of random fields over the structure. Two specific examples, a Poisson point pulse field and a Poisson square wave field, of such a triplet field...... the probabilistic properties of the impulse response function, say, or of the nonergodic steady state response to stationary excitation, say. The study prepares for a finite element model of a flexible master structure with a fuzzy subsystem attached to it....
A Novel Approach to Implement Takagi-Sugeno Fuzzy Models.
Chang, Chia-Wen; Tao, Chin-Wang
2017-09-01
This paper proposes new algorithms based on the fuzzy c-regressing model algorithm for Takagi-Sugeno (T-S) fuzzy modeling of the complex nonlinear systems. A fuzzy c-regression state model (FCRSM) algorithm is a T-S fuzzy model in which the functional antecedent and the state-space-model-type consequent are considered with the available input-output data. The antecedent and consequent forms of the proposed FCRSM consists mainly of two advantages: one is that the FCRSM has low computation load due to only one input variable is considered in the antecedent part; another is that the unknown system can be modeled to not only the polynomial form but also the state-space form. Moreover, the FCRSM can be extended to FCRSM-ND and FCRSM-Free algorithms. An algorithm FCRSM-ND is presented to find the T-S fuzzy state-space model of the nonlinear system when the input-output data cannot be precollected and an assumed effective controller is available. In the practical applications, the mathematical model of controller may be hard to be obtained. In this case, an online tuning algorithm, FCRSM-FREE, is designed such that the parameters of a T-S fuzzy controller and the T-S fuzzy state model of an unknown system can be online tuned simultaneously. Four numerical simulations are given to demonstrate the effectiveness of the proposed approach.
Model Reduction of Fuzzy Logic Systems
Directory of Open Access Journals (Sweden)
Zhandong Yu
2014-01-01
Full Text Available This paper deals with the problem of ℒ2-ℒ∞ model reduction for continuous-time nonlinear uncertain systems. The approach of the construction of a reduced-order model is presented for high-order nonlinear uncertain systems described by the T-S fuzzy systems, which not only approximates the original high-order system well with an ℒ2-ℒ∞ error performance level γ but also translates it into a linear lower-dimensional system. Then, the model approximation is converted into a convex optimization problem by using a linearization procedure. Finally, a numerical example is presented to show the effectiveness of the proposed method.
Intuitionistic fuzzy (IF) evaluations of multidimensional model
International Nuclear Information System (INIS)
Valova, I.
2012-01-01
There are different logical methods for data structuring, but no one is perfect enough. Multidimensional model-MD of data is presentation of data in a form of cube (referred also as info-cube or hypercube) with data or in form of 'star' type scheme (referred as multidimensional scheme), by use of F-structures (Facts) and set of D-structures (Dimensions), based on the notion of hierarchy of D-structures. The data, being subject of analysis in a specific multidimensional model is located in a Cartesian space, being restricted by D-structures. In fact, the data is either dispersed or 'concentrated', therefore the data cells are not distributed evenly within the respective space. The moment of occurrence of any event is difficult to be predicted and the data is concentrated as per time periods, location of performed business event, etc. To process such dispersed or concentrated data, various technical strategies are needed. The basic methods for presentation of such data should be selected. The approaches of data processing and respective calculations are connected with different options for data representation. The use of intuitionistic fuzzy evaluations (IFE) provide us new possibilities for alternative presentation and processing of data, subject of analysis in any OLAP application. The use of IFE at the evaluation of multidimensional models will result in the following advantages: analysts will dispose with more complete information for processing and analysis of respective data; benefit for the managers is that the final decisions will be more effective ones; enabling design of more functional multidimensional schemes. The purpose of this work is to apply intuitionistic fuzzy evaluations of multidimensional model of data. (authors)
A Fuzzy Petri Nets Model for Computing With Words
Cao, Yongzhi; Chen, Guoqing
2009-01-01
Motivated by Zadeh's paradigm of computing with words rather than numbers, several formal models of computing with words have recently been proposed. These models are based on automata and thus are not well-suited for concurrent computing. In this paper, we incorporate the well-known model of concurrent computing, Petri nets, together with fuzzy set theory and thereby establish a concurrency model of computing with words--fuzzy Petri nets for computing with words (FPNCWs). The new feature of ...
Fuzzy modeling and control theory and applications
Matía, Fernando; Jiménez, Emilio
2014-01-01
Much work on fuzzy control, covering research, development and applications, has been developed in Europe since the 90's. Nevertheless, the existing books in the field are compilations of articles without interconnection or logical structure or they express the personal point of view of the author. This book compiles the developments of researchers with demonstrated experience in the field of fuzzy control following a logic structure and a unified the style. The first chapters of the book are dedicated to the introduction of the main fuzzy logic techniques, where the following chapters focus on concrete applications. This book is supported by the EUSFLAT and CEA-IFAC societies, which include a large number of researchers in the field of fuzzy logic and control. The central topic of the book, Fuzzy Control, is one of the main research and development lines covered by these associations.
Prediction of conductivity by adaptive neuro-fuzzy model.
Directory of Open Access Journals (Sweden)
S Akbarzadeh
Full Text Available Electrochemical impedance spectroscopy (EIS is a key method for the characterizing the ionic and electronic conductivity of materials. One of the requirements of this technique is a model to forecast conductivity in preliminary experiments. The aim of this paper is to examine the prediction of conductivity by neuro-fuzzy inference with basic experimental factors such as temperature, frequency, thickness of the film and weight percentage of salt. In order to provide the optimal sets of fuzzy logic rule bases, the grid partition fuzzy inference method was applied. The validation of the model was tested by four random data sets. To evaluate the validity of the model, eleven statistical features were examined. Statistical analysis of the results clearly shows that modeling with an adaptive neuro-fuzzy is powerful enough for the prediction of conductivity.
Chen, Zhijia; Zhu, Yuanchang; Di, Yanqiang; Feng, Shaochong
2015-01-01
In IaaS (infrastructure as a service) cloud environment, users are provisioned with virtual machines (VMs). To allocate resources for users dynamically and effectively, accurate resource demands predicting is essential. For this purpose, this paper proposes a self-adaptive prediction method using ensemble model and subtractive-fuzzy clustering based fuzzy neural network (ESFCFNN). We analyze the characters of user preferences and demands. Then the architecture of the prediction model is constructed. We adopt some base predictors to compose the ensemble model. Then the structure and learning algorithm of fuzzy neural network is researched. To obtain the number of fuzzy rules and the initial value of the premise and consequent parameters, this paper proposes the fuzzy c-means combined with subtractive clustering algorithm, that is, the subtractive-fuzzy clustering. Finally, we adopt different criteria to evaluate the proposed method. The experiment results show that the method is accurate and effective in predicting the resource demands.
Directory of Open Access Journals (Sweden)
Zhijia Chen
2015-01-01
Full Text Available In IaaS (infrastructure as a service cloud environment, users are provisioned with virtual machines (VMs. To allocate resources for users dynamically and effectively, accurate resource demands predicting is essential. For this purpose, this paper proposes a self-adaptive prediction method using ensemble model and subtractive-fuzzy clustering based fuzzy neural network (ESFCFNN. We analyze the characters of user preferences and demands. Then the architecture of the prediction model is constructed. We adopt some base predictors to compose the ensemble model. Then the structure and learning algorithm of fuzzy neural network is researched. To obtain the number of fuzzy rules and the initial value of the premise and consequent parameters, this paper proposes the fuzzy c-means combined with subtractive clustering algorithm, that is, the subtractive-fuzzy clustering. Finally, we adopt different criteria to evaluate the proposed method. The experiment results show that the method is accurate and effective in predicting the resource demands.
Chen, Zhijia; Zhu, Yuanchang; Di, Yanqiang; Feng, Shaochong
2015-01-01
In IaaS (infrastructure as a service) cloud environment, users are provisioned with virtual machines (VMs). To allocate resources for users dynamically and effectively, accurate resource demands predicting is essential. For this purpose, this paper proposes a self-adaptive prediction method using ensemble model and subtractive-fuzzy clustering based fuzzy neural network (ESFCFNN). We analyze the characters of user preferences and demands. Then the architecture of the prediction model is constructed. We adopt some base predictors to compose the ensemble model. Then the structure and learning algorithm of fuzzy neural network is researched. To obtain the number of fuzzy rules and the initial value of the premise and consequent parameters, this paper proposes the fuzzy c-means combined with subtractive clustering algorithm, that is, the subtractive-fuzzy clustering. Finally, we adopt different criteria to evaluate the proposed method. The experiment results show that the method is accurate and effective in predicting the resource demands. PMID:25691896
An Integrated Risk Index Model Based on Hierarchical Fuzzy Logic for Underground Risk Assessment
Directory of Open Access Journals (Sweden)
Muhammad Fayaz
2017-10-01
Full Text Available Available space in congested cities is getting scarce due to growing urbanization in the recent past. The utilization of underground space is considered as a solution to the limited space in smart cities. The numbers of underground facilities are growing day by day in the developing world. Typical underground facilities include the transit subway, parking lots, electric lines, water supply and sewer lines. The likelihood of the occurrence of accidents due to underground facilities is a random phenomenon. To avoid any accidental loss, a risk assessment method is required to conduct the continuous risk assessment and report any abnormality before it happens. In this paper, we have proposed a hierarchical fuzzy inference based model for under-ground risk assessment. The proposed hierarchical fuzzy inference architecture reduces the total number of rules from the rule base. Rule reduction is important because the curse of dimensionality damages the transparency and interpretation as it is very tough to understand and justify hundreds or thousands of fuzzy rules. The computation time also increases as rules increase. The proposed model takes 175 rules having eight input parameters to compute the risk index, and the conventional fuzzy logic requires 390,625 rules, having the same number of input parameters to compute risk index. Hence, the proposed model significantly reduces the curse of dimensionality. Rule design for fuzzy logic is also a tedious task. In this paper, we have also introduced new rule schemes, namely maximum rule-based and average rule-based; both schemes can be used interchangeably according to the logic needed for rule design. The experimental results show that the proposed method is a virtuous choice for risk index calculation where the numbers of variables are greater.
Starek, Tomas; Svitek, Miroslav
The paper focuses on a detailed introduction of innovative socio-economic and qualitative ITS (Intelligent Transport Systems) impacts' estimation approach which also allows the transparent calculation of the transportation external costs. The methodology proposed utilizes the mathematical background of the fuzzy-linguistic approximation that in the case of insufficient expert knowledge-base is combined with the transport micro-simulation models' outputs.
Directory of Open Access Journals (Sweden)
Somaye Yeylaghi
2017-06-01
Full Text Available In this paper, a novel hybrid method based on interval-valued fuzzy neural network for approximate of interval-valued fuzzy regression models, is presented. The work of this paper is an expansion of the research of real fuzzy regression models. In this paper interval-valued fuzzy neural network (IVFNN can be trained with crisp and interval-valued fuzzy data. Here a neural network is considered as a part of a large field called neural computing or soft computing. Moreover, in order to find the approximate parameters, a simple algorithm from the cost function of the fuzzy neural network is proposed. Finally, we illustrate our approach by some numerical examples and compare this method with existing methods.
Fuzzy model investic do High-tech projektů
Directory of Open Access Journals (Sweden)
Alžběta Kubíčková
2013-10-01
Full Text Available Purpose of the article: Relations among parameters of High-tech projects are very complex, vague, partially inconsistent and multidimensional. Optimal decisions to invest into High-tech companies require top field experts and knowledgeable investors. Therefore the conventional methods of investments analysis are not relevant. Therefore fuzzy logic is introduced. Methodology/methods: A fuzzy knowledge base is a flexible framework for acquisition of vague inconsistent knowledge items which are typical for knowledge economics and consequently for High-tech projects. The pooling of the records and / or observations represents a trade-off between minimal modification of the original data and elimination of inconsistencies among available sets of data. Scientific aim: The paper presents a detailed description of fuzzy model of investment decision making into High-tech firm’s projects. A set of conditional statements was used to formalize the effects of selected variables on investment feasibility of High-tech projects. The main aim is to quantify feasibilities of High-tech projects risk investors make good /not bad decisions. Findings: A set of 50 observations of High-tech companies was transformed into a set of 50 conditional statements using 14 variables. The result is the fuzzy model, which can be used to answer investors’ queries. Two queries are answered and presented in details as an example and as a nucleus of a fuzzy dialogue investor – computer. Conclusions: The main problem is the sparseness of the fuzzy model. Many fuzzy similarities are relatively low and the decision process is therefore often problematic. A much more complex set of variables must be applied to specify the fuzzy model to increase reliability of predictions and decisions.
Diseases Diagnosis Using Medical Palmistry Fuzzy Model
Directory of Open Access Journals (Sweden)
Othman Zainab
2016-01-01
Full Text Available The design n, implementation, and use of biomedical information systems in the form of computer – aided decision support have become essential and widely used over the last two decades. Medical decision support systems play an increasingly important role in medical practice by assisting physicians who make clinical decisions. Medical scientists discovered that the hand can be used as an indicator for medical problems and the palm is the reflection of activities going on brain. The purpose of this research is to design and implement a decision support model for healthcare on the basis of medical palmistry to diagnose the diseases from palm colors. Database palm images for patients infected with specific disease is created from capturing live images from hospitals. Digital image processing techniques on input images are applied. Fuzzy Inference System is used to present medical knowledge as network diseases connected with each other by logical relations. The model is built to assist medical practitioners for taking diagnosis decision for four special diseases. The results obtained from this work are confidence.
Multidirectional Networks of Government Transparency: A Preliminary Model
Directory of Open Access Journals (Sweden)
Ahmad Subhan
2016-11-01
Full Text Available This article reviews some literature in theoretical level regarding two concepts: governance network and government transparency, in order to search for theoretical linkages and to build an alternative framework that can support the implementation of public disclosure. Transparency agenda has been implemented in various forms at international, national, and local level. Transparency application was also followed by Indonesia with the implementation of Public Information Disclosure Law since 2008. This enthusiasm is quite reasonable because transparency is believed to be one of the human rights principles; as well as a key to better governance, that can help democracy consolidation, prevent corruption, strengthen the legitimacy and improve efficiency. In order to maximize transparency, the government can use a network approach because of some changes at this time, such as democratization, decentralization, and liberalization has placed the government in a position where there is not one actor who manages the state power without stakeholder’s participation. In this context, the government needs to build synergies with other institutions in a reciprocal relationship with all stakeholders. Therefore, adopting the theory of government networks can be one of the strategies to strengthen government transparency. The findings of this article indicate that the government transparency application needs to develop networks in all directions: intragovernmental, intergovernmental and collaborative networks. These three types of network in contrast with the popular belief that government transparency is interpreted only as a procedural activity to outside parties. A preliminary model in this article gives an overview about the arena of government transparency with multi-directional networks more comprehensively.
Fuzzy Investment Portfolio Selection Models Based on Interval Analysis Approach
Directory of Open Access Journals (Sweden)
Haifeng Guo
2012-01-01
Full Text Available This paper employs fuzzy set theory to solve the unintuitive problem of the Markowitz mean-variance (MV portfolio model and extend it to a fuzzy investment portfolio selection model. Our model establishes intervals for expected returns and risk preference, which can take into account investors' different investment appetite and thus can find the optimal resolution for each interval. In the empirical part, we test this model in Chinese stocks investment and find that this model can fulfill different kinds of investors’ objectives. Finally, investment risk can be decreased when we add investment limit to each stock in the portfolio, which indicates our model is useful in practice.
Nguyen, Hung T
2005-01-01
THE CONCEPT OF FUZZINESS Examples Mathematical modeling Some operations on fuzzy sets Fuzziness as uncertainty Exercises SOME ALGEBRA OF FUZZY SETS Boolean algebras and lattices Equivalence relations and partitions Composing mappings Isomorphisms and homomorphisms Alpha-cuts Images of alpha-level sets Exercises FUZZY QUANTITIES Fuzzy quantities Fuzzy numbers Fuzzy intervals Exercises LOGICAL ASPECTS OF FUZZY SETS Classical two-valued logic A three-valued logic Fuzzy logic Fuzzy and Lukasiewi
Fuzzy Model-based Pitch Stabilization and Wing Vibration Suppression of Flexible Wing Aircraft.
Ayoubi, Mohammad A.; Swei, Sean Shan-Min; Nguyen, Nhan T.
2014-01-01
This paper presents a fuzzy nonlinear controller to regulate the longitudinal dynamics of an aircraft and suppress the bending and torsional vibrations of its flexible wings. The fuzzy controller utilizes full-state feedback with input constraint. First, the Takagi-Sugeno fuzzy linear model is developed which approximates the coupled aeroelastic aircraft model. Then, based on the fuzzy linear model, a fuzzy controller is developed to utilize a full-state feedback and stabilize the system while it satisfies the control input constraint. Linear matrix inequality (LMI) techniques are employed to solve the fuzzy control problem. Finally, the performance of the proposed controller is demonstrated on the NASA Generic Transport Model (GTM).
Color Image Segmentation Using Fuzzy C-Regression Model
Directory of Open Access Journals (Sweden)
Min Chen
2017-01-01
Full Text Available Image segmentation is one important process in image analysis and computer vision and is a valuable tool that can be applied in fields of image processing, health care, remote sensing, and traffic image detection. Given the lack of prior knowledge of the ground truth, unsupervised learning techniques like clustering have been largely adopted. Fuzzy clustering has been widely studied and successfully applied in image segmentation. In situations such as limited spatial resolution, poor contrast, overlapping intensities, and noise and intensity inhomogeneities, fuzzy clustering can retain much more information than the hard clustering technique. Most fuzzy clustering algorithms have originated from fuzzy c-means (FCM and have been successfully applied in image segmentation. However, the cluster prototype of the FCM method is hyperspherical or hyperellipsoidal. FCM may not provide the accurate partition in situations where data consists of arbitrary shapes. Therefore, a Fuzzy C-Regression Model (FCRM using spatial information has been proposed whose prototype is hyperplaned and can be either linear or nonlinear allowing for better cluster partitioning. Thus, this paper implements FCRM and applies the algorithm to color segmentation using Berkeley’s segmentation database. The results show that FCRM obtains more accurate results compared to other fuzzy clustering algorithms.
Paired fuzzy sets and other opposite-based models
DEFF Research Database (Denmark)
Montero, Javier; Gómez, Daniel; Tinguaro Rodríguez, J.
2016-01-01
In this paper we stress the relevance of those fuzzy models that impose a couple of simultaneous views in order to represent concepts. In particular, we point out that the basic model to start with should contain at least two somehow opposite valuations plus a number of neutral concepts that are ......In this paper we stress the relevance of those fuzzy models that impose a couple of simultaneous views in order to represent concepts. In particular, we point out that the basic model to start with should contain at least two somehow opposite valuations plus a number of neutral concepts...... that are generated from the semantic relationship between those two opposites. Such a basic model should be distinguished from some other similar approaches that can be found in the literature, and that may bring some difficulties in intuition, partially because of their denomination. The general term “paired fuzzy...
Directory of Open Access Journals (Sweden)
Jing Zhao
2016-01-01
Full Text Available The diversity of medical factors makes the analysis and judgment of uncertainty one of the challenges of medical diagnosis. A well-designed classification and judgment system for medical uncertainty can increase the rate of correct medical diagnosis. In this paper, a new multidimensional classifier is proposed by using an intelligent algorithm, which is the general fuzzy cerebellar model neural network (GFCMNN. To obtain more information about uncertainty, an intuitionistic fuzzy linguistic term is employed to describe medical features. The solution of classification is obtained by a similarity measurement. The advantages of the novel classifier proposed here are drawn out by comparing the same medical example under the methods of intuitionistic fuzzy sets (IFSs and intuitionistic fuzzy cross-entropy (IFCE with different score functions. Cross verification experiments are also taken to further test the classification ability of the GFCMNN multidimensional classifier. All of these experimental results show the effectiveness of the proposed GFCMNN multidimensional classifier and point out that it can assist in supporting for correct medical diagnoses associated with multiple categories.
Fuzzy modeling to predict chicken egg hatchability in commercial hatchery.
Peruzzi, N J; Scala, N L; Macari, M; Furlan, R L; Meyer, A D; Fernandez-Alarcon, M F; Kroetz Neto, F L; Souza, F A
2012-10-01
Experimental studies have shown that hatching rate depends, among other factors, on the main physical characteristics of the eggs. The physical parameters used in our work were egg weight, eggshell thickness, egg sphericity, and yolk per albumen ratio. The relationships of these parameters in the incubation process were modeled by Fuzzy logic. The rules of the Fuzzy modeling were based on the analysis of the physical characteristics of the hatching eggs and the respective hatching rate using a commercial hatchery by applying a trapezoidal membership function into the modeling process. The implementations were performed in software. Aiming to compare the Fuzzy with a statistical modeling, the same data obtained in the commercial hatchery were analyzed using multiple linear regression. The estimated parameters of multiple linear regressions were based on a backward selection procedure. The results showed that the determination coefficient and the mean square error were higher using the Fuzzy method when compared with the statistical modeling. Furthermore, the predicted hatchability rates by Fuzzy Logic agreed with hatching rates obtained in the commercial hatchery.
Quantitative modeling of gene networks of biological systems using fuzzy Petri nets and fuzzy sets
Directory of Open Access Journals (Sweden)
Raed I. Hamed
2018-01-01
Full Text Available Quantitative demonstrating of organic frameworks has turned into an essential computational methodology in the configuration of novel and investigation of existing natural frameworks. Be that as it may, active information that portrays the framework's elements should be known keeping in mind the end goal to get pertinent results with the routine displaying strategies. This information is frequently robust or even difficult to get. Here, we exhibit a model of quantitative fuzzy rational demonstrating approach that can adapt to obscure motor information and hence deliver applicable results despite the fact that dynamic information is fragmented or just dubiously characterized. Besides, the methodology can be utilized as a part of the blend with the current cutting edge quantitative demonstrating strategies just in specific parts of the framework, i.e., where the data are absent. The contextual analysis of the methodology suggested in this paper is performed on the model of nine-quality genes. We propose a kind of FPN model in light of fuzzy sets to manage the quantitative modeling of biological systems. The tests of our model appear that the model is practical and entirely powerful for information impersonation and thinking of fuzzy expert frameworks.
Neuro-fuzzy model for evaluating the performance of processes ...
Indian Academy of Sciences (India)
In this work an Adaptive Neuro-Fuzzy Inference System (ANFIS) was used to model the periodic performance of some multi-input single-output (MISO) processes, namely: brewery operations (case study 1) and soap production (case study 2) processes. Two ANFIS models were developed to model the performance of the ...
Fuzzy Universal Model Approximator for Distributed Solar Collector Field Control
Elmetennani, Shahrazed
2014-07-01
This paper deals with the control of concentrating parabolic solar collectors by forcing the outlet oil temperature to track a set reference. A fuzzy universal approximate model is introduced in order to accurately reproduce the behavior of the system dynamics. The proposed model is a low order state space representation derived from the partial differential equation describing the oil temperature evolution using fuzzy transform theory. The resulting set of ordinary differential equations simplifies the system analysis and the control law design and is suitable for real time control implementation. Simulation results show good performance of the proposed model.
Applying fuzzy analytic network process in quality function deployment model
Directory of Open Access Journals (Sweden)
Mohammad Ali Afsharkazemi
2012-08-01
Full Text Available In this paper, we propose an empirical study of QFD implementation when fuzzy numbers are used to handle the uncertainty associated with different components of the proposed model. We implement fuzzy analytical network to find the relative importance of various criteria and using fuzzy numbers we calculate the relative importance of these factors. The proposed model of this paper uses fuzzy matrix and house of quality to study the products development in QFD and also the second phase i.e. part deployment. In most researches, the primary objective is only on CRs to implement the quality function deployment and some other criteria such as production costs, manufacturing costs etc were disregarded. The results of using fuzzy analysis network process based on the QFD model in Daroupat packaging company to develop PVDC show that the most important indexes are being waterproof, resistant pill packages, and production cost. In addition, the PVDC coating is the most important index in terms of company experts’ point of view.
Type-2 fuzzy graphical models for pattern recognition
Zeng, Jia
2015-01-01
This book discusses how to combine type-2 fuzzy sets and graphical models to solve a range of real-world pattern recognition problems such as speech recognition, handwritten Chinese character recognition, topic modeling as well as human action recognition. It covers these recent developments while also providing a comprehensive introduction to the fields of type-2 fuzzy sets and graphical models. Though primarily intended for graduate students, researchers and practitioners in fuzzy logic and pattern recognition, the book can also serve as a valuable reference work for researchers without any previous knowledge of these fields. Dr. Jia Zeng is a Professor at the School of Computer Science and Technology, Soochow University, China. Dr. Zhi-Qiang Liu is a Professor at the School of Creative Media, City University of Hong Kong, China.
AN INTEGRATED FUZZY AHP AND TOPSIS MODEL FOR SUPPLIER EVALUATION
Directory of Open Access Journals (Sweden)
Željko Stević
2016-05-01
Full Text Available In today’s modern supply chains, the adequate suppliers’ choice has strategic meaning for entire companies’ business. The aim of this paper is to evaluate different suppliers using the integrated model that recognizes a combination of fuzzy AHP (Analytical Hierarchy Process and the TOPSIS method. Based on six criteria, the expert team was formed to compare them, so determination of their significance is being done with fuzzy AHP method. Expert team also compares suppliers according to each criteria and on the base of triangular fuzzy numbers. Based on their inputs, TOPSIS method is used to estimate potential solutions. Suggested model accomplishes certain advantages in comparison with previously used traditional models which were used to make decisions about evaluation and choice of supplier.
Fuzzy Optimization of Option Pricing Model and Its Application in Land Expropriation
Directory of Open Access Journals (Sweden)
Aimin Heng
2014-01-01
Full Text Available Option pricing is irreversible, fuzzy, and flexible. The fuzzy measure which is used for real option pricing is a useful supplement to the traditional real option pricing method. Based on the review of the concepts of the mean and variance of trapezoidal fuzzy number and the combination with the Carlsson-Fuller model, the trapezoidal fuzzy variable can be used to represent the current price of land expropriation and the sale price of land on the option day. Fuzzy Black-Scholes option pricing model can be constructed under fuzzy environment and problems also can be solved and discussed through numerical examples.
Application of Fuzzy Clustering in Modeling of a Water Hydraulics System
DEFF Research Database (Denmark)
Zhou, Jianjun; Kroszynski, Uri
2000-01-01
This article presents a case study of applying fuzzy modeling techniques for a water hydraulics system. The obtained model is intended to provide a basis for model-based control of the system. Fuzzy clustering is used for classifying measured input-output data points into partitions. The fuzzy...
Modelling with ANIMO: between fuzzy logic and differential equations.
Schivo, Stefano; Scholma, Jetse; van der Vet, Paul E; Karperien, Marcel; Post, Janine N; van de Pol, Jaco; Langerak, Rom
2016-07-27
Computational support is essential in order to reason on the dynamics of biological systems. We have developed the software tool ANIMO (Analysis of Networks with Interactive MOdeling) to provide such computational support and allow insight into the complex networks of signaling events occurring in living cells. ANIMO makes use of timed automata as an underlying model, thereby enabling analysis techniques from computer science like model checking. Biology experts are able to use ANIMO via a user interface specifically tailored for biological applications. In this paper we compare the use of ANIMO with some established formalisms on two case studies. ANIMO is a powerful and user-friendly tool that can compete with existing continuous and discrete paradigms. We show this by presenting ANIMO models for two case studies: Drosophila melanogaster circadian clock, and signal transduction events downstream of TNF α and EGF in HT-29 human colon carcinoma cells. The models were originally developed with ODEs and fuzzy logic, respectively. Two biological case studies that have been modeled with respectively ODE and fuzzy logic models can be conveniently modeled using ANIMO. The ANIMO models require less parameters than ODEs and are more precise than fuzzy logic. For this reason we position the modelling paradigm of ANIMO between ODEs and fuzzy logic.
A fuzzy approach for modelling radionuclide in lake system
International Nuclear Information System (INIS)
Desai, H.K.; Christian, R.A.; Banerjee, J.; Patra, A.K.
2013-01-01
Radioactive liquid waste is generated during operation and maintenance of Pressurised Heavy Water Reactors (PHWRs). Generally low level liquid waste is diluted and then discharged into the near by water-body through blowdown water discharge line as per the standard waste management practice. The effluents from nuclear installations are treated adequately and then released in a controlled manner under strict compliance of discharge criteria. An attempt was made to predict the concentration of 3 H released from Kakrapar Atomic Power Station at Ratania Regulator, about 2.5 km away from the discharge point, where human exposure is expected. Scarcity of data and complex geometry of the lake prompted the use of Heuristic approach. Under this condition, Fuzzy rule based approach was adopted to develop a model, which could predict 3 H concentration at Ratania Regulator. Three hundred data were generated for developing the fuzzy rules, in which input parameters were water flow from lake and 3 H concentration at discharge point. The Output was 3 H concentration at Ratania Regulator. These data points were generated by multiple regression analysis of the original data. Again by using same methodology hundred data were generated for the validation of the model, which were compared against the predicted output generated by using Fuzzy Rule based approach. Root Mean Square Error of the model came out to be 1.95, which showed good agreement by Fuzzy model of natural ecosystem. -- Highlights: • Uncommon approach (Fuzzy Rule Base) of modelling radionuclide dispersion in Lake. • Predicts 3 H released from Kakrapar Atomic Power Station at a point of human exposure. • RMSE of fuzzy model is 1.95, which means, it has well imitated natural ecosystem
Fuzzy economic production quantity model with time dependent demand rate
Directory of Open Access Journals (Sweden)
Susanta Kumar Indrajitsingha
2016-09-01
Full Text Available Background: In this paper, an economic production quantity model is considered under a fuzzy environment. Both the demand cost and holding cost are considered using fuzzy pentagonal numbers. The Signed Distance Method is used to defuzzify the total cost function. Methods: The results obtained by these methods are compared with the help of a numerical example. Sensitivity analysis is also carried out to explore the effect of changes in the values of some of the system parameters. Results and conclusions: The fuzzy EPQ model with time dependent demand rate was presented together with the possible implementation. The behavior of changes in parameters was analyzed. The possible extension of the implementation of this method was presented.
On Theories and Models in Fuzzy Predicate Logics
Czech Academy of Sciences Publication Activity Database
Hájek, Petr; Cintula, Petr
2006-01-01
Roč. 71, č. 3 (2006), s. 863-880 ISSN 0022-4812 R&D Projects: GA AV ČR IAA100300503 Institutional research plan: CEZ:AV0Z10300504 Keywords : fuzzy logic * model theory * witnessed models * conservative extension * completeness theorem Subject RIV: BA - General Mathematics Impact factor: 0.664, year: 2006
modelling room cooling capacity with fuzzy logic procedure
African Journals Online (AJOL)
user
for automatic and economical supplementary tools that will allow expertise input into design process [9]. Reasoning based on fuzzy models was however identified to provide an optional direction of handling the way humans think and make judgments [10]. This study developed and validated a model capable of estimating ...
modelling room cooling capacity with fuzzy logic procedure
African Journals Online (AJOL)
The primary aim of this study is to develop a model for estimation of the cooling requirement of residential rooms. Fuzzy logic was employed to model four input variables (window area (m2), roof area (m2), external wall area (m2) and internal load (Watt). The algorithm of the inference engine applied sets of 81 linguistic ...
Transparent Model Transformation: Turning Your Favourite Model Editor into a Transformation Tool
DEFF Research Database (Denmark)
Acretoaie, Vlad; Störrle, Harald; Strüber, Daniel
2015-01-01
Current model transformation languages are supported by dedicated editors, often closely coupled to a single execution engine. We introduce Transparent Model Transformation, a paradigm enabling modelers to specify transformations using a familiar tool: their model editor. We also present VMTL, th...... model transformation tool sharing the model editor’s benefits, transparently....
Trends and Issues in Fuzzy Control and Neuro-Fuzzy Modeling
Chiu, Stephen
1996-01-01
Everyday experience in building and repairing things around the home have taught us the importance of using the right tool for the right job. Although we tend to think of a 'job' in broad terms, such as 'build a bookcase,' we understand well that the 'right job' associated with each 'right tool' is typically a narrowly bounded subtask, such as 'tighten the screws.' Unfortunately, we often lose sight of this principle when solving engineering problems; we treat a broadly defined problem, such as controlling or modeling a system, as a narrow one that has a single 'right tool' (e.g., linear analysis, fuzzy logic, neural network). We need to recognize that a typical real-world problem contains a number of different sub-problems, and that a truly optimal solution (the best combination of cost, performance and feature) is obtained by applying the right tool to the right sub-problem. Here I share some of my perspectives on what constitutes the 'right job' for fuzzy control and describe recent advances in neuro-fuzzy modeling to illustrate and to motivate the synergistic use of different tools.
FUZZY DECISION MAKING MODEL FOR BYZANTINE AGREEMENT
Directory of Open Access Journals (Sweden)
S. MURUGAN
2014-04-01
Full Text Available Byzantine fault tolerance is of high importance in the distributed computing environment where malicious attacks and software errors are common. A Byzantine process sends arbitrary messages to every other process. An effective fuzzy decision making approach is proposed to eliminate the Byzantine behaviour of the services in the distributed environment. It is proposed to derive a fuzzy decision set in which the alternatives are ranked with grade of membership and based on that an appropriate decision can be arrived on the messages sent by the different services. A balanced decision is to be taken from the messages received across the services. To accomplish this, Hurwicz criterion is used to balance the optimistic and pessimistic views of the decision makers on different services. Grades of membership for the services are assessed using the non-functional Quality of Service parameters and have been estimated using fuzzy entropy measure which logically ranks the participant services. This approach for decision making is tested by varying the number of processes, varying the number of faulty services, varying the message values sent to different services and considering the variation in the views of the decision makers about the services. The experimental result shows that the decision reached is an enhanced one and in case of conflict, the proposed approach provides a concrete result, whereas decision taken using the Lamport’s algorithm is an arbitrary one.
Fuzzy Modelling for Human Dynamics Based on Online Social Networks.
Cuenca-Jara, Jesus; Terroso-Saenz, Fernando; Valdes-Vela, Mercedes; Skarmeta, Antonio F
2017-08-24
Human mobility mining has attracted a lot of attention in the research community due to its multiple implications in the provisioning of innovative services for large metropolises. In this scope, Online Social Networks (OSN) have arisen as a promising source of location data to come up with new mobility models. However, the human nature of this data makes it rather noisy and inaccurate. In order to deal with such limitations, the present work introduces a framework for human mobility mining based on fuzzy logic. Firstly, a fuzzy clustering algorithm extracts the most active OSN areas at different time periods. Next, such clusters are the building blocks to compose mobility patterns. Furthermore, a location prediction service based on a fuzzy rule classifier has been developed on top of the framework. Finally, both the framework and the predictor has been tested with a Twitter and Flickr dataset in two large cities.
Fuzzy modeling of farmers' knowledge for land suitability classification
Sicat, R.S.; Carranza, E.J.M.; Nidumolu, U.B.
2005-01-01
In a case study, we demonstrate fuzzy modeling of farmers' knowledge (FK) for agricultural land suitability classification using GIS. Capture of FK was through rapid rural participatory approach. The farmer respondents consider, in order of decreasing importance, cropping season, soil color, soil
A NEURO FUZZY MODEL FOR THE INVESTIGATION OF ...
African Journals Online (AJOL)
Several factors may contribute directly or indirectly to the structural failure of metallic pipes. The most important of which is corrosion. Corrosivity of pipes is not a directly measurable parameter as pipe corrosion is a very random phenomenon. The main aim of the present study is to develop a neuro-fuzzy model capable of ...
A fuzzy approach for modelling radionuclide in lake system.
Desai, H K; Christian, R A; Banerjee, J; Patra, A K
2013-10-01
Radioactive liquid waste is generated during operation and maintenance of Pressurised Heavy Water Reactors (PHWRs). Generally low level liquid waste is diluted and then discharged into the near by water-body through blowdown water discharge line as per the standard waste management practice. The effluents from nuclear installations are treated adequately and then released in a controlled manner under strict compliance of discharge criteria. An attempt was made to predict the concentration of (3)H released from Kakrapar Atomic Power Station at Ratania Regulator, about 2.5 km away from the discharge point, where human exposure is expected. Scarcity of data and complex geometry of the lake prompted the use of Heuristic approach. Under this condition, Fuzzy rule based approach was adopted to develop a model, which could predict (3)H concentration at Ratania Regulator. Three hundred data were generated for developing the fuzzy rules, in which input parameters were water flow from lake and (3)H concentration at discharge point. The Output was (3)H concentration at Ratania Regulator. These data points were generated by multiple regression analysis of the original data. Again by using same methodology hundred data were generated for the validation of the model, which were compared against the predicted output generated by using Fuzzy Rule based approach. Root Mean Square Error of the model came out to be 1.95, which showed good agreement by Fuzzy model of natural ecosystem. Copyright © 2013 Elsevier Ltd. All rights reserved.
Modeling and control of an unstable system using probabilistic fuzzy inference system
Directory of Open Access Journals (Sweden)
Sozhamadevi N.
2015-09-01
Full Text Available A new type Fuzzy Inference System is proposed, a Probabilistic Fuzzy Inference system which model and minimizes the effects of statistical uncertainties. The blend of two different concepts, degree of truth and probability of truth in a unique framework leads to this new concept. This combination is carried out both in Fuzzy sets and Fuzzy rules, which gives rise to Probabilistic Fuzzy Sets and Probabilistic Fuzzy Rules. Introducing these probabilistic elements, a distinctive probabilistic fuzzy inference system is developed and this involves fuzzification, inference and output processing. This integrated approach accounts for all of the uncertainty like rule uncertainties and measurement uncertainties present in the systems and has led to the design which performs optimally after training. In this paper a Probabilistic Fuzzy Inference System is applied for modeling and control of a highly nonlinear, unstable system and also proved its effectiveness.
Introduction to n-adaptive fuzzy models to analyze public opinion on AIDS
Kandasamy, D W B V; Kandasamy, Dr.W.B.Vasantha; Smarandache, Dr.Florentin
2006-01-01
There are many fuzzy models like Fuzzy matrices, Fuzzy Cognitive Maps, Fuzzy relational Maps, Fuzzy Associative Memories, Bidirectional Associative memories and so on. But almost all these models can give only one sided solution like hidden pattern or a resultant output vector dependent on the input vector depending in the problem at hand. So for the first time we have defined a n-adaptive fuzzy model which can view or analyze the problem in n ways (n >=2) Though we have defined these n- adaptive fuzzy models theorectically we are not in a position to get a n-adaptive fuzzy model for n > 2 for practical real world problems. The highlight of this model is its capacity to analyze the same problem in different ways thereby arriving at various solutions that mirror multiple perspectives. We have used the 2-adaptive fuzzy model having the two fuzzy models, fuzzy matrices model and BAMs viz. model to analyze the views of public about HIV/ AIDS disease, patient and the awareness program. This book has five chapters ...
Zhijia Chen; Yuanchang Zhu; Yanqiang Di; Shaochong Feng
2015-01-01
In IaaS (infrastructure as a service) cloud environment, users are provisioned with virtual machines (VMs). To allocate resources for users dynamically and effectively, accurate resource demands predicting is essential. For this purpose, this paper proposes a self-adaptive prediction method using ensemble model and subtractive-fuzzy clustering based fuzzy neural network (ESFCFNN). We analyze the characters of user preferences and demands. Then the architecture of the prediction model is const...
Fuzzy classification of phantom parent groups in an animal model
Directory of Open Access Journals (Sweden)
Fikse Freddy
2009-09-01
Full Text Available Abstract Background Genetic evaluation models often include genetic groups to account for unequal genetic level of animals with unknown parentage. The definition of phantom parent groups usually includes a time component (e.g. years. Combining several time periods to ensure sufficiently large groups may create problems since all phantom parents in a group are considered contemporaries. Methods To avoid the downside of such distinct classification, a fuzzy logic approach is suggested. A phantom parent can be assigned to several genetic groups, with proportions between zero and one that sum to one. Rules were presented for assigning coefficients to the inverse of the relationship matrix for fuzzy-classified genetic groups. This approach was illustrated with simulated data from ten generations of mass selection. Observations and pedigree records were randomly deleted. Phantom parent groups were defined on the basis of gender and generation number. In one scenario, uncertainty about generation of birth was simulated for some animals with unknown parents. In the distinct classification, one of the two possible generations of birth was randomly chosen to assign phantom parents to genetic groups for animals with simulated uncertainty, whereas the phantom parents were assigned to both possible genetic groups in the fuzzy classification. Results The empirical prediction error variance (PEV was somewhat lower for fuzzy-classified genetic groups. The ranking of animals with unknown parents was more correct and less variable across replicates in comparison with distinct genetic groups. In another scenario, each phantom parent was assigned to three groups, one pertaining to its gender, and two pertaining to the first and last generation, with proportion depending on the (true generation of birth. Due to the lower number of groups, the empirical PEV of breeding values was smaller when genetic groups were fuzzy-classified. Conclusion Fuzzy
Directory of Open Access Journals (Sweden)
Singh Chaman
2011-01-01
Full Text Available In the changing market scenario, supply chain management is getting phenomenal importance amongst researchers. Studies on supply chain management have emphasized the importance of a long-term strategic relationship between the manufacturer, distributor and retailer. In the present paper, a model has been developed by assuming that the demand rate and production rate as triangular fuzzy numbers and items deteriorate at a constant rate. The expressions for the average inventory cost are obtained both in crisp and fuzzy sense. The fuzzy model is defuzzified using the fuzzy extension principle, and its optimization with respect to the decision variable is also carried out. Finally, an example is given to illustrate the model and sensitivity analysis is performed to study the effect of parameters.
Spatial object modeling in fuzzy topological spaces: with applications to land cover change
Tang, Xinming; Tang, Xinming
2004-01-01
The central topic of this thesis focuses on the accommodation of fuzzy spatial objects in a GIS. Several issues are discussed theoretically and practically, including the definition of fuzzy spatial objects, the topological relations between them, the modeling of fuzzy spatial objects, the
DEFF Research Database (Denmark)
Friis, Lars; Ohlrich, Mogens
2008-01-01
is considered as one or more fuzzy substructures that are known in some statistical sense only. Experiments have shown that such fuzzy substructures often introduce a damping in the master which is much higher than the structural losses account for. A special method for modeling fuzzy substructures with a one...
Model-based fuzzy control solutions for a laboratory Antilock Braking System
DEFF Research Database (Denmark)
Precup, Radu-Emil; Spataru, Sergiu; Rǎdac, Mircea-Bogdan
2010-01-01
This paper gives two original model-based fuzzy control solutions dedicated to the longitudinal slip control of Antilock Braking System laboratory equipment. The parallel distributed compensation leads to linear matrix inequalities which guarantee the global stability of the fuzzy control systems....... Real-time experimental results validate the new fuzzy control solutions....
Modelling and control of a continuous distillation tower through fuzzy techniques
BARCELÓ RICO, FÁTIMA; Gozálvez Zafrilla, José Marcial; Diez Ruano, José Luís; Santafé Moros, María Asunción
2011-01-01
This paper presents a methodology for the design of a fuzzy controller applicable to continuous processes based on local fuzzy models and velocity linearizations. It has been applied to the implementation of a fuzzy controller for a continuous distillation tower. Continuous distillation towers can be subjected to variations in feed characteristics that cause loss of product quality or excessive energy consumption. Therefore, the use of a fuzzy controller is interesting to control process perf...
A new approach for automatic control modeling, analysis and design in fully fuzzy environment
Gabr, Walaa Ibrahim
2015-01-01
The paper presents a new approach for the modeling, analysis and design of automatic control systems in fully fuzzy environment based on the normalized fuzzy matrices. The approach is also suitable for determining the propagation of fuzziness in automatic control and dynamical systems where all system coefficients are expressed as fuzzy parameters. A new consolidity chart is suggested based on the recently newly developed system consolidity index for testing the susceptibility of the system t...
Fuzzy techniques for subjective workload-score modeling under uncertainties.
Kumar, Mohit; Arndt, Dagmar; Kreuzfeld, Steffi; Thurow, Kerstin; Stoll, Norbert; Stoll, Regina
2008-12-01
This paper deals with the development of a computer model to estimate the subjective workload score of individuals by evaluating their heart-rate (HR) signals. The identification of a model to estimate the subjective workload score of individuals under different workload situations is too ambitious a task because different individuals (due to different body conditions, emotional states, age, gender, etc.) show different physiological responses (assessed by evaluating the HR signal) under different workload situations. This is equivalent to saying that the mathematical mappings between physiological parameters and the workload score are uncertain. Our approach to deal with the uncertainties in a workload-modeling problem consists of the following steps: 1) The uncertainties arising due the individual variations in identifying a common model valid for all the individuals are filtered out using a fuzzy filter; 2) stochastic modeling of the uncertainties (provided by the fuzzy filter) use finite-mixture models and utilize this information regarding uncertainties for identifying the structure and initial parameters of a workload model; and 3) finally, the workload model parameters for an individual are identified in an online scenario using machine learning algorithms. The contribution of this paper is to propose, with a mathematical analysis, a fuzzy-based modeling technique that first filters out the uncertainties from the modeling problem, analyzes the uncertainties statistically using finite-mixture modeling, and, finally, utilizes the information about uncertainties for adapting the workload model to an individual's physiological conditions. The approach of this paper, demonstrated with the real-world medical data of 11 subjects, provides a fuzzy-based tool useful for modeling in the presence of uncertainties.
Autoregressive Model Using Fuzzy C-Regression Model Clustering for Traffic Modeling
Tanaka, Fumiaki; Suzuki, Yukinori; Maeda, Junji
A robust traffic modeling is required to perform an effective congestion control for the broad band digital network. An autoregressive model using a fuzzy c-regression model (FCRM) clustering is proposed for a traffic modeling. This is a simpler modeling method than previous methods. The experiments show that the proposed method is more robust for traffic modeling than the previous method.
Modelling Of Anticipated Damage Ratio On Breakwaters Using Fuzzy Logic
Mercan, D. E.; Yagci, O.; Kabdasli, S.
2003-04-01
In breakwater design the determination of armour unit weight is especially important in terms of the structure's life. In a typical experimental breakwater stability study, different wave series composed of different wave heights; wave period and wave steepness characteristics are applied in order to investigate performance the structure. Using a classical approach, a regression equation is generated for damage ratio as a function of characteristic wave height. The parameters wave period and wave steepness are not considered. In this study, differing from the classical approach using a fuzzy logic, a relationship between damage ratio as a function of mean wave period (T_m), wave steepness (H_s/L_m) and significant wave height (H_s) was further generated. The system's inputs were mean wave period (T_m), wave steepness (H_s/L_m) and significant wave height (H_s). For fuzzification all input variables were divided into three fuzzy subsets, their membership functions were defined using method developed by Mandani (Mandani, 1974) and the rules were written. While for defuzzification the centroid method was used. In order to calibrate and test the generated models an experimental study was conducted. The experiments were performed in a wave flume (24 m long, 1.0 m wide and 1.0 m high) using 20 different irregular wave series (P-M spectrum). Throughout the study, the water depth was 0.6 m and the breakwater cross-sectional slope was 1V/2H. In the armour layer, a type of artificial armour unit known as antifer cubes were used. The results of the established fuzzy logic model and regression equation model was compared with experimental data and it was determined that the established fuzzy logic model gave a more accurate prediction of the damage ratio on this type of breakwater. References Mandani, E.H., "Application of Fuzzy Algorithms for Control of Simple Dynamic Plant", Proc. IEE, vol. 121, no. 12, December 1974.
A Hybrid Fuzzy Model for Lean Product Development Performance Measurement
Osezua Aikhuele, Daniel; Mohd Turan, Faiz
2016-02-01
In the effort for manufacturing companies to meet up with the emerging consumer demands for mass customized products, many are turning to the application of lean in their product development process, and this is gradually moving from being a competitive advantage to a necessity. However, due to lack of clear understanding of the lean performance measurements, many of these companies are unable to implement and fully integrated the lean principle into their product development process. Extensive literature shows that only few studies have focus systematically on the lean product development performance (LPDP) evaluation. In order to fill this gap, the study therefore proposed a novel hybrid model based on Fuzzy Reasoning Approach (FRA), and the extension of Fuzzy-AHP and Fuzzy-TOPSIS methods for the assessment of the LPDP. Unlike the existing methods, the model considers the importance weight of each of the decision makers (Experts) since the performance criteria/attributes are required to be rated, and these experts have different level of expertise. The rating is done using a new fuzzy Likert rating scale (membership-scale) which is designed such that it can address problems resulting from information lost/distortion due to closed-form scaling and the ordinal nature of the existing Likert scale.
High dimensional model representation method for fuzzy structural dynamics
Adhikari, S.; Chowdhury, R.; Friswell, M. I.
2011-03-01
Uncertainty propagation in multi-parameter complex structures possess significant computational challenges. This paper investigates the possibility of using the High Dimensional Model Representation (HDMR) approach when uncertain system parameters are modeled using fuzzy variables. In particular, the application of HDMR is proposed for fuzzy finite element analysis of linear dynamical systems. The HDMR expansion is an efficient formulation for high-dimensional mapping in complex systems if the higher order variable correlations are weak, thereby permitting the input-output relationship behavior to be captured by the terms of low-order. The computational effort to determine the expansion functions using the α-cut method scales polynomically with the number of variables rather than exponentially. This logic is based on the fundamental assumption underlying the HDMR representation that only low-order correlations among the input variables are likely to have significant impacts upon the outputs for most high-dimensional complex systems. The proposed method is first illustrated for multi-parameter nonlinear mathematical test functions with fuzzy variables. The method is then integrated with a commercial finite element software (ADINA). Modal analysis of a simplified aircraft wing with fuzzy parameters has been used to illustrate the generality of the proposed approach. In the numerical examples, triangular membership functions have been used and the results have been validated against direct Monte Carlo simulations. It is shown that using the proposed HDMR approach, the number of finite element function calls can be reduced without significantly compromising the accuracy.
Multiobjective Fuzzy Mixed Assembly Line Sequencing Optimization Model
Tahriri, Farzad; Zawiah Md Dawal, Siti; Taha, Zahari
2014-01-01
It can be deduced from previous studies that there exists a research gap in assembly line sequencing optimization model for mixed-model production lines. In particular, there is a lack of studies which focus on the integration between job shop and assembly lines using fuzzy techniques. Hence, this paper is aimed at addressing the multiobjective mixed-model assembly line sequencing problem by integrating job shop and assembly production lines for factories with modular layouts. The primary go...
International Nuclear Information System (INIS)
Da-Zhong, Ma; Hua-Guang, Zhang; Zhan-Shan, Wang; Jian, Feng
2010-01-01
In this paper the fault tolerant synchronization of two chaotic systems based on fuzzy model and sample data is investigated. The problem of fault tolerant synchronization is formulated to study the global asymptotical stability of the error system with the fuzzy sampled-data controller which contains a state feedback controller and a fault compensator. The synchronization can be achieved no matter whether the fault occurs or not. To investigate the stability of the error system and facilitate the design of the fuzzy sampled-data controller, a Takagi–Sugeno (T–S) fuzzy model is employed to represent the chaotic system dynamics. To acquire good performance and produce a less conservative analysis result, a new parameter-dependent Lyapunov–Krasovksii functional and a relaxed stabilization technique are considered. The stability conditions based on linear matrix inequality are obtained to achieve the fault tolerant synchronization of the chaotic systems. Finally, a numerical simulation is shown to verify the results. (general)
Hamdy, M; Hamdan, I
2015-07-01
In this paper, a robust H∞ fuzzy output feedback controller is designed for a class of affine nonlinear systems with disturbance via Takagi-Sugeno (T-S) fuzzy bilinear model. The parallel distributed compensation (PDC) technique is utilized to design a fuzzy controller. The stability conditions of the overall closed loop T-S fuzzy bilinear model are formulated in terms of Lyapunov function via linear matrix inequality (LMI). The control law is robustified by H∞ sense to attenuate external disturbance. Moreover, the desired controller gains can be obtained by solving a set of LMI. A continuous stirred tank reactor (CSTR), which is a benchmark problem in nonlinear process control, is discussed in detail to verify the effectiveness of the proposed approach with a comparative study. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Intuitionistic fuzzy-based model for failure detection.
Aikhuele, Daniel O; Turan, Faiz B M
2016-01-01
In identifying to-be-improved product component(s), the customer/user requirements which are mainly considered, and achieved through customer surveys using the quality function deployment (QFD) tool, often fail to guarantee or cover aspects of the product reliability. Even when they do, there are always many misunderstandings. To improve the product reliability and quality during product redesigning phase and to create that novel product(s) for the customers, the failure information of the existing product, and its component(s) should ordinarily be analyzed and converted to appropriate design knowledge for the design engineer. In this paper, a new intuitionistic fuzzy multi-criteria decision-making method has been proposed. The new approach which is based on an intuitionistic fuzzy TOPSIS model uses an exponential-related function for the computation of the separation measures from the intuitionistic fuzzy positive ideal solution (IFPIS) and intuitionistic fuzzy negative ideal solution (IFNIS) of alternatives. The proposed method has been applied to two practical case studies, and the result from the different cases has been compared with some similar computational approaches in the literature.
Development of a Fuzzy Model for Iranian Marine Casualties Management
Directory of Open Access Journals (Sweden)
Ali Moradi
2014-09-01
Full Text Available Marine Accident investigation multidimensional and complex, so this study aimed to provide a systematic approach to determining the degree of the most influential parameters (dimensions in accident occurrence in order to improve marine safety in the direction of good governance. In this paper, two-phase procedures are proposed. The first stage utilizes the fuzzy Delphi method (FDM to determine the critical factors of Marine Accident Investigation by interviewing the pertinent authorities. In the second stage, the fuzzy analytic hierarchy process (FAHP is applied to pair fuzzy numbers as measurable indices and finally to rank by degree each influential criterion within accident investigation. This study considers 1 goal, 4 aspects, and 31 criteria (parameters and establishes a ranking model that allows decision-makers to assess the prior ordering of reasons and sort by the most effective parameters involved in marine accident occurrence. The empirical study indicated that People, working and living conditions, effect is considered the highest ranking aspect, and Ability, skills, and knowledge of workers is considered the most important evaluation criterion overall by experts. These results were derived from fuzzy Delphi analytical hierarchy processing (FDAHP. A demonstration of the prior ordering of accident-causing parameters by authorities was addressed as well. Therefore, ranking the priority of every influential criterion (parameter will help marine transportation decision makers emphasize the areas in which to improve in order to prevent future marine accidents.
Multiobjective Fuzzy Mixed Assembly Line Sequencing Optimization Model
Directory of Open Access Journals (Sweden)
Farzad Tahriri
2014-01-01
Full Text Available It can be deduced from previous studies that there exists a research gap in assembly line sequencing optimization model for mixed-model production lines. In particular, there is a lack of studies which focus on the integration between job shop and assembly lines using fuzzy techniques. Hence, this paper is aimed at addressing the multiobjective mixed-model assembly line sequencing problem by integrating job shop and assembly production lines for factories with modular layouts. The primary goal is to minimize the make-span, setup time, and cost simultaneously in mixed-model assembly lines. Such conflicting goals arise when switching between different products. A genetic algorithm (GA approach is used to solve this problem, in which trapezoidal fuzzy numbers are implemented for variables such as operation and travelling time in order to generate results with higher accuracy and representative of real-case data.
Fuzzy Logic-Based Aerodynamic Modeling with Continuous Differentiability
Directory of Open Access Journals (Sweden)
Ray C. Chang
2013-01-01
Full Text Available This paper presents a modeling method based on a fuzzy-logic algorithm to establish aerodynamic models by using the datasets from flight data recorder (FDR. The fuzzy-logic aerodynamic models are utilized to estimate more accurately the nonlinear unsteady aerodynamics for a transport aircraft, including the effects of atmospheric turbulence. The main objective in this paper is to present the model development and the resulting models with continuous differentiability. The uncertainty and correlation of the data points are estimated and improved by monitoring a multivariable correlation coefficient in the modeling process. The latter is increased by applying a least square method to a set of data points to train a set of modeling coefficients. A commercial transport aircraft encountered severe atmospheric turbulence twice at transonic flight in descending phase is the study case in the present paper. The robustness and nonlinear interpolation capability of the fuzzy-logic algorithm are demonstrated in predicting the degradation in performance and stability characteristics of this transport in severe atmospheric turbulence with sudden plunging motion.
Fuzzy pricing for urban water resources: model construction and application.
Zhao, Ranhang; Chen, Shouyu
2008-08-01
A rational water price system plays a crucial role in the optimal allocation of water resources. In this paper, a fuzzy pricing model for urban water resources is presented, which consists of a multi-criteria fuzzy evaluation model and a water resources price (WRP) computation model. Various factors affecting WRP are comprehensively evaluated with multiple levels and objectives in the multi-criteria fuzzy evaluation model, while the price vectors of water resources are constructed in the WRP computation model according to the definition of the bearing water price index, and then WRP is calculated. With the incorporation of an operator's knowledge, it considers iterative weights and subjective preference of operators for weight-assessment. The weights determined are more rational and the evaluation results are more realistic. Particularly, dual water supply is considered in the study. Different prices being fixed for water resources with different qualities conforms to the law of water resources value (WRV) itself. A high-quality groundwater price computation model is also proposed to provide optimal water allocation and to meet higher living standards. The developed model is applied in Jinan for evaluating its validity. The method presented in this paper offers some new directions in the research of WRP.
Paired fuzzy sets and other opposite-based models
DEFF Research Database (Denmark)
Montero, Javier; Gómez, Daniel; Tinguaro Rodríguez, J.
2016-01-01
In this paper we stress the relevance of those fuzzy models that impose a couple of simultaneous views in order to represent concepts. In particular, we point out that the basic model to start with should contain at least two somehow opposite valuations plus a number of neutral concepts that are ...... sets” is then proposed together with the notion of sub-antonym, to be considered as a particular case of opposition relationship....
Hybrid Neuro-Fuzzy Classifier Based On Nefclass Model
Directory of Open Access Journals (Sweden)
Bogdan Gliwa
2011-01-01
Full Text Available The paper presents hybrid neuro-fuzzy classifier, based on NEFCLASS model, which wasmodified. The presented classifier was compared to popular classifiers – neural networks andk-nearest neighbours. Efficiency of modifications in classifier was compared with methodsused in original model NEFCLASS (learning methods. Accuracy of classifier was testedusing 3 datasets from UCI Machine Learning Repository: iris, wine and breast cancer wisconsin.Moreover, influence of ensemble classification methods on classification accuracy waspresented.
Fuzzy Temporal Logic Based Railway Passenger Flow Forecast Model
Dou, Fei; Jia, Limin; Wang, Li; Xu, Jie; Huang, Yakun
2014-01-01
Passenger flow forecast is of essential importance to the organization of railway transportation and is one of the most important basics for the decision-making on transportation pattern and train operation planning. Passenger flow of high-speed railway features the quasi-periodic variations in a short time and complex nonlinear fluctuation because of existence of many influencing factors. In this study, a fuzzy temporal logic based passenger flow forecast model (FTLPFFM) is presented based on fuzzy logic relationship recognition techniques that predicts the short-term passenger flow for high-speed railway, and the forecast accuracy is also significantly improved. An applied case that uses the real-world data illustrates the precision and accuracy of FTLPFFM. For this applied case, the proposed model performs better than the k-nearest neighbor (KNN) and autoregressive integrated moving average (ARIMA) models. PMID:25431586
Bilevel Fuzzy Chance Constrained Hospital Outpatient Appointment Scheduling Model
Directory of Open Access Journals (Sweden)
Xiaoyang Zhou
2016-01-01
Full Text Available Hospital outpatient departments operate by selling fixed period appointments for different treatments. The challenge being faced is to improve profit by determining the mix of full time and part time doctors and allocating appointments (which involves scheduling a combination of doctors, patients, and treatments to a time period in a department optimally. In this paper, a bilevel fuzzy chance constrained model is developed to solve the hospital outpatient appointment scheduling problem based on revenue management. In the model, the hospital, the leader in the hierarchy, decides the mix of the hired full time and part time doctors to maximize the total profit; each department, the follower in the hierarchy, makes the decision of the appointment scheduling to maximize its own profit while simultaneously minimizing surplus capacity. Doctor wage and demand are considered as fuzzy variables to better describe the real-life situation. Then we use chance operator to handle the model with fuzzy parameters and equivalently transform the appointment scheduling model into a crisp model. Moreover, interactive algorithm based on satisfaction is employed to convert the bilevel programming into a single level programming, in order to make it solvable. Finally, the numerical experiments were executed to demonstrate the efficiency and effectiveness of the proposed approaches.
Using the fuzzy modeling for the retrieval algorithms
International Nuclear Information System (INIS)
Mohamed, A.H
2010-01-01
A rapid growth in number and size of images in databases and world wide web (www) has created a strong need for more efficient search and retrieval systems to exploit the benefits of this large amount of information. However, the collection of this information is now based on the image technology. One of the limitations of the current image analysis techniques necessitates that most image retrieval systems use some form of text description provided by the users as the basis to index and retrieve images. To overcome this problem, the proposed system introduces the using of fuzzy modeling to describe the image by using the linguistic ambiguities. Also, the proposed system can include vague or fuzzy terms in modeling the queries to match the image descriptions in the retrieval process. This can facilitate the indexing and retrieving process, increase their performance and decrease its computational time . Therefore, the proposed system can improve the performance of the traditional image retrieval algorithms.
Evaluation-Function-based Model-free Adaptive Fuzzy Control
Directory of Open Access Journals (Sweden)
Agus Naba
2016-12-01
Full Text Available Designs of adaptive fuzzy controllers (AFC are commonly based on the Lyapunov approach, which requires a known model of the controlled plant. They need to consider a Lyapunov function candidate as an evaluation function to be minimized. In this study these drawbacks were handled by designing a model-free adaptive fuzzy controller (MFAFC using an approximate evaluation function defined in terms of the current state, the next state, and the control action. MFAFC considers the approximate evaluation function as an evaluative control performance measure similar to the state-action value function in reinforcement learning. The simulation results of applying MFAFC to the inverted pendulum benchmark veriﬁed the proposed scheme’s efficacy.
Chaotic System Identification Based on a Fuzzy Wiener Model with Particle Swarm Optimization
International Nuclear Information System (INIS)
Yong, Li; Ying-Gan, Tang
2010-01-01
A fuzzy Wiener model is proposed to identify chaotic systems. The proposed fuzzy Wiener model consists of two parts, one is a linear dynamic subsystem and the other is a static nonlinear part, which is represented by the Takagi–Sugeno fuzzy model. Identification of chaotic systems is converted to find optimal parameters of the fuzzy Wiener model by minimizing the state error between the original chaotic system and the fuzzy Wiener model. Particle swarm optimization algorithm, a global optimizer, is used to search the optimal parameter of the fuzzy Wiener model. The proposed method can identify the parameters of the linear part and nonlinear part simultaneously. Numerical simulations for Henón and Lozi chaotic system identification show the effectiveness of the proposed method
Fuzzy regression modeling for tool performance prediction and degradation detection.
Li, X; Er, M J; Lim, B S; Zhou, J H; Gan, O P; Rutkowski, L
2010-10-01
In this paper, the viability of using Fuzzy-Rule-Based Regression Modeling (FRM) algorithm for tool performance and degradation detection is investigated. The FRM is developed based on a multi-layered fuzzy-rule-based hybrid system with Multiple Regression Models (MRM) embedded into a fuzzy logic inference engine that employs Self Organizing Maps (SOM) for clustering. The FRM converts a complex nonlinear problem to a simplified linear format in order to further increase the accuracy in prediction and rate of convergence. The efficacy of the proposed FRM is tested through a case study - namely to predict the remaining useful life of a ball nose milling cutter during a dry machining process of hardened tool steel with a hardness of 52-54 HRc. A comparative study is further made between four predictive models using the same set of experimental data. It is shown that the FRM is superior as compared with conventional MRM, Back Propagation Neural Networks (BPNN) and Radial Basis Function Networks (RBFN) in terms of prediction accuracy and learning speed.
Smets, P
1995-01-01
We start by describing the nature of imperfect data, and giving an overview of the various models that have been proposed. Fuzzy sets theory is shown to be an extension of classical set theory, and as such has a proeminent role or modelling imperfect data. The mathematic of fuzzy sets theory is detailled, in particular the role of the triangular norms. The use of fuzzy sets theory in fuzzy logic and possibility theory,the nature of the generalized modus ponens and of the implication operator for approximate reasoning are analysed. The use of fuzzy logic is detailled for application oriented towards process control and database problems.
Mathematical Modelling with Fuzzy Sets of Sustainable Tourism Development
Directory of Open Access Journals (Sweden)
Nenad Stojanović
2011-10-01
Full Text Available In the first part of the study we introduce fuzzy sets that correspond to comparative indicators for measuring sustainable development of tourism. In the second part of the study it is shown, on the base of model created, how one can determine the value of sustainable tourism development in protected areas based on the following established groups of indicators: to assess the economic status, to assess the impact of tourism on the social component, to assess the impact of tourism on cultural identity, to assess the environmental conditions and indicators as well as to assess tourist satisfaction, all using fuzzy logic.It is also shown how to test the confidence in the rules by which, according to experts, appropriate decisions can be created in order to protect biodiversity of protected areas.
THE FUZZY OVERLAY STUDENT MODEL IN AN INTELLIGENT TUTORING SYSTEM
Directory of Open Access Journals (Sweden)
D. I. Popov
2015-01-01
Full Text Available The article is devoted to the development of the student model for use in an intelligent tutoring system (ITS designed for the evaluation of students’ competencies in different Higher Education Facilities. There are classification and examples of the various student models, the most suitable for the evaluation of competencies is selected and finalized. The dynamic overlay fuzzy student model builded on the domain model based on the concept of didactic units is described in this work. The formulas, chart and diagrams are provided.
An inexact fuzzy-chance-constrained air quality management model.
Xu, Ye; Huang, Guohe; Qin, Xiaosheng
2010-07-01
Regional air pollution is a major concern for almost every country because it not only directly relates to economic development, but also poses significant threats to environment and public health. In this study, an inexact fuzzy-chance-constrained air quality management model (IFAMM) was developed for regional air quality management under uncertainty. IFAMM was formulated through integrating interval linear programming (ILP) within a fuzzy-chance-constrained programming (FCCP) framework and could deal with uncertainties expressed as not only possibilistic distributions but also discrete intervals in air quality management systems. Moreover, the constraints with fuzzy variables could be satisfied at different confidence levels such that various solutions with different risk and cost considerations could be obtained. The developed model was applied to a hypothetical case of regional air quality management. Six abatement technologies and sulfur dioxide (SO2) emission trading under uncertainty were taken into consideration. The results demonstrated that IFAMM could help decision-makers generate cost-effective air quality management patterns, gain in-depth insights into effects of the uncertainties, and analyze tradeoffs between system economy and reliability. The results also implied that the trading scheme could achieve lower total abatement cost than a nontrading one.
A fuzzy set preference model for market share analysis
Turksen, I. B.; Willson, Ian A.
1992-01-01
Consumer preference models are widely used in new product design, marketing management, pricing, and market segmentation. The success of new products depends on accurate market share prediction and design decisions based on consumer preferences. The vague linguistic nature of consumer preferences and product attributes, combined with the substantial differences between individuals, creates a formidable challenge to marketing models. The most widely used methodology is conjoint analysis. Conjoint models, as currently implemented, represent linguistic preferences as ratio or interval-scaled numbers, use only numeric product attributes, and require aggregation of individuals for estimation purposes. It is not surprising that these models are costly to implement, are inflexible, and have a predictive validity that is not substantially better than chance. This affects the accuracy of market share estimates. A fuzzy set preference model can easily represent linguistic variables either in consumer preferences or product attributes with minimal measurement requirements (ordinal scales), while still estimating overall preferences suitable for market share prediction. This approach results in flexible individual-level conjoint models which can provide more accurate market share estimates from a smaller number of more meaningful consumer ratings. Fuzzy sets can be incorporated within existing preference model structures, such as a linear combination, using the techniques developed for conjoint analysis and market share estimation. The purpose of this article is to develop and fully test a fuzzy set preference model which can represent linguistic variables in individual-level models implemented in parallel with existing conjoint models. The potential improvements in market share prediction and predictive validity can substantially improve management decisions about what to make (product design), for whom to make it (market segmentation), and how much to make (market share
Design, modelling, implementation, and intelligent fuzzy control of a hovercraft
El-khatib, M. M.; Hussein, W. M.
2011-05-01
A Hovercraft is an amphibious vehicle that hovers just above the ground or water by air cushion. The concept of air cushion vehicle can be traced back to 1719. However, the practical form of hovercraft nowadays is traced back to 1955. The objective of the paper is to design, simulate and implement an autonomous model of a small hovercraft equipped with a mine detector that can travel over any terrains. A real time layered fuzzy navigator for a hovercraft in a dynamic environment is proposed. The system consists of a Takagi-Sugenotype fuzzy motion planner and a modified proportional navigation based fuzzy controller. The system philosophy is inspired by human routing when moving between obstacles based on visual information including the right and left views from which he makes his next step towards the goal in the free space. It intelligently combines two behaviours to cope with obstacle avoidance as well as approaching a goal using a proportional navigation path accounting for hovercraft kinematics. MATLAB/Simulink software tool is used to design and verify the proposed algorithm.
Business Models, transparency and efficient stock price formation
DEFF Research Database (Denmark)
Nielsen, Christian; Vali, Edward; Hvidberg, Rene
and the lack of growth of competitors. This is a problem, because the company is deprived of having its own direct influence on its share price, which often leads to hasty short-term decisions in order to meet the expectations of the market and to benefit its shareholders in the short term. On the basis...... of this, our hypothesis is that if it is possible to improve, simplify and define the way a company communicates its business model to the market, then it must be possible for the company to create a more efficient price formation of its share. To begin with, we decided to investigate whether transparency...... the operational and tactical strategies complement each other. This brings us to the following definition of a business model: A business model is a representation of the company's concept. The concept shows in what way the company is trying to establish a unique identity in the market in comparison to its...
Fuzzy delay model based fault simulator for crosstalk delay fault test ...
Indian Academy of Sciences (India)
In this paper, a fuzzy delay model based crosstalk delay fault simulator is proposed. As design trends move towards nanometer technologies, more number of new parameters affects the delay of the component. Fuzzy delay models are ideal for modelling the uncertainty found in the design and manufacturing steps.
NEURO-FUZZY MODELLING OF BLENDING PROCESS IN CEMENT PLANT
Directory of Open Access Journals (Sweden)
Dauda Olarotimi Araromi
2015-11-01
Full Text Available The profitability of a cement plant depends largely on the efficient operation of the blending stage, therefore, there is a need to control the process at the blending stage in order to maintain the chemical composition of the raw mix near or at the desired value with minimum variance despite variation in the raw material composition. In this work, neuro-fuzzy model is developed for a dynamic behaviour of the system to predict the total carbonate content in the raw mix at different clay feed rates. The data used for parameter estimation and model validation was obtained from one of the cement plants in Nigeria. The data was pre-processed to remove outliers and filtered using smoothening technique in order to reveal its dynamic nature. Autoregressive exogenous (ARX model was developed for comparison purpose. ARX model gave high root mean square error (RMSE of 5.408 and 4.0199 for training and validation respectively. Poor fit resulting from ARX model is an indication of nonlinear nature of the process. However, both visual and statistical analyses on neuro-fuzzy (ANFIS model gave a far better result. RMSE of training and validation are 0.28167 and 0.7436 respectively, and the sum of square error (SSE and R-square are 39.6692 and 0.9969 respectively. All these are an indication of good performance of ANFIS model. This model can be used for control design of the process.
T-S Fuzzy Modelling and H∞ Attitude Control for Hypersonic Gliding Vehicles
Directory of Open Access Journals (Sweden)
Weidong Zhang
2017-01-01
Full Text Available This paper addresses the T-S fuzzy modelling and H∞ attitude control in three channels for hypersonic gliding vehicles (HGVs. First, the control-oriented affine nonlinear model has been established which is transformed from the reentry dynamics. Then, based on Taylor’s expansion approach and the fuzzy linearization approach, the homogeneous T-S local modelling technique for HGVs is proposed. Given the approximation accuracy and controller design complexity, appropriate fuzzy premise variables and operating points of interest are selected to construct the T-S homogeneous submodels. With so-called fuzzy blending, the original plant is transformed into the overall T-S fuzzy model with disturbance. By utilizing Lyapunov functional approach, a state feedback fuzzy controller has been designed based on relaxed linear matrix inequality (LMI conditions to stable the original plants with a prescribed H∞ performance of disturbance. Finally, numerical simulations are performed to demonstrate the effectiveness of the proposed H∞ T-S fuzzy controller for the original attitude dynamics; the superiority of the designed T-S fuzzy controller compared with other local controllers based on the constructed fuzzy model is shown as well.
A transparent and data-driven global tectonic regionalisation model for seismic hazard assessment
Chen, Yen-Shin; Weatherill, Graeme; Pagani, Marco; Cotton, Fabrice
2018-01-01
A key concept that is common to many assumptions inherent within seismic hazard assessment is that of tectonic similarity. This recognises that certain regions of the globe may display similar geophysical characteristics, such as in the attenuation of seismic waves, the magnitude scaling properties of seismogenic sources or the seismic coupling of the lithosphere. Previous attempts at tectonic regionalisation, particularly within a seismic hazard assessment context, have often been based on expert judgements; in most of these cases, the process for delineating tectonic regions is neither reproducible nor consistent from location to location. In this work, the regionalisation process is implemented in a scheme that is reproducible, comprehensible from a geophysical rationale, and revisable when new relevant data are published. A spatial classification-scheme is developed based on fuzzy logic, enabling the quantification of concepts that are approximate rather than precise. Using the proposed methodology, we obtain a transparent and data-driven global tectonic regionalisation model for seismic hazard applications as well as the subjective probabilities (e.g. degree of being active/degree of being cratonic) indicate the degree to which a site belongs in a tectonic category.
Fuzzy Approximate Model for Distributed Thermal Solar Collectors Control
Elmetennani, Shahrazed
2014-07-01
This paper deals with the problem of controlling concentrated solar collectors where the objective consists of making the outlet temperature of the collector tracking a desired reference. The performance of the novel approximate model based on fuzzy theory, which has been introduced by the authors in [1], is evaluated comparing to other methods in the literature. The proposed approximation is a low order state representation derived from the physical distributed model. It reproduces the temperature transfer dynamics through the collectors accurately and allows the simplification of the control design. Simulation results show interesting performance of the proposed controller.
A Novel Fuzzy Document Based Information Retrieval Model for Forecasting
Directory of Open Access Journals (Sweden)
Partha Roy
2017-06-01
Full Text Available Information retrieval systems are generally used to find documents that are most appropriate according to some query that comes dynamically from users. In this paper a novel Fuzzy Document based Information Retrieval Model (FDIRM is proposed for the purpose of Stock Market Index forecasting. The novelty of proposed approach is a modified tf-idf scoring scheme to predict the future trend of the stock market index. The contribution of this paper has two dimensions, 1 In the proposed system the simple time series is converted to an enriched fuzzy linguistic time series with a unique approach of incorporating market sentiment related information along with the price and 2 A unique approach is followed while modeling the information retrieval (IR system which converts a simple IR system into a forecasting system. From the performance comparison of FDIRM with standard benchmark models it can be affirmed that the proposed model has a potential of becoming a good forecasting model. The stock market data provided by Standard & Poor’s CRISIL NSE Index 50 (CNX NIFTY-50 index of National Stock Exchange of India (NSE is used to experiment and validate the proposed model. The authentic data for validation and experimentation is obtained from http://www.nseindia.com which is the official website of NSE. A java program is under construction to implement the model in real-time with graphical users’ interface.
Szulczyński, Bartosz; Gębicki, Jacek; Namieśnik, Jacek
2018-01-01
The paper presents the possibility of application of fuzzy logic to determine the odour intensity of model, ternary gas mixtures (α-pinene, toluene and triethylamine) using electronic nose prototype. The results obtained using fuzzy logic algorithms were compared with the values obtained using multiple linear regression (MLR) model and sensory analysis. As the results of the studies, it was found the electronic nose prototype along with the fuzzy logic pattern recognition system can be successfully used to estimate the odour intensity of tested gas mixtures. The correctness of the results obtained using fuzzy logic was equal to 68%.
Hierarchization process by possibilistic fuzzy clustering of fuzzy rules
Salgado, Paulo; Cunha, Manuela; Pavão, João; Igrejas, Getúlio
2010-01-01
This paper presents a possibilistic fuzzy clustering algorithm that is applied to a multidimensional fuzzy set or fuzzy rules. This method can be used to decompose the fuzzy system into an hierarchical structure. The methodology presented leads to a fuzzy partition of the fuzzy rules, one for each cluster, which corresponds to a new set of fuzzy sub-systems. This technique is tested to organize the fuzzy model into a new and more comprehensive structure.
Nadiri, Ata Allah; Sedghi, Zahra; Khatibi, Rahman; Gharekhani, Maryam
2017-09-01
Driven by contamination risks, mapping Vulnerability Indices (VI) of multiple aquifers (both unconfined and confined) is investigated by integrating the basic DRASTIC framework with multiple models overarched by Artificial Neural Networks (ANN). The DRASTIC framework is a proactive tool to assess VI values using the data from the hydrosphere, lithosphere and anthroposphere. However, a research case arises for the application of multiple models on the ground of poor determination coefficients between the VI values and non-point anthropogenic contaminants. The paper formulates SCFL models, which are derived from the multiple model philosophy of Supervised Committee (SC) machines and Fuzzy Logic (FL) and hence SCFL as their integration. The Fuzzy Logic-based (FL) models include: Sugeno Fuzzy Logic (SFL), Mamdani Fuzzy Logic (MFL), Larsen Fuzzy Logic (LFL) models. The basic DRASTIC framework uses prescribed rating and weighting values based on expert judgment but the four FL-based models (SFL, MFL, LFL and SCFL) derive their values as per internal strategy within these models. The paper reports that FL and multiple models improve considerably on the correlation between the modeled vulnerability indices and observed nitrate-N values and as such it provides evidence that the SCFL multiple models can be an alternative to the basic framework even for multiple aquifers. The study area with multiple aquifers is in Varzeqan plain, East Azerbaijan, northwest Iran. Copyright © 2017 Elsevier B.V. All rights reserved.
Adaptive Control of MEMS Gyroscope Based on T-S Fuzzy Model
Directory of Open Access Journals (Sweden)
Yunmei Fang
2015-01-01
Full Text Available A multi-input multioutput (MIMO Takagi-Sugeno (T-S fuzzy model is built on the basis of a nonlinear model of MEMS gyroscope. A reference model is adjusted so that a local linear state feedback controller could be designed for each T-S fuzzy submodel based on a parallel distributed compensation (PDC method. A parameter estimation scheme for updating the parameters of the T-S fuzzy models is designed and analyzed based on the Lyapunov theory. A new adaptive law can be selected to be the former adaptive law plus a nonnegative in variable to guarantee that the derivative of the Lyapunov function is smaller than zero. The controller output is implemented on the nonlinear model and T-S fuzzy model, respectively, for the purpose of comparison. Numerical simulations are investigated to verify the effectiveness of the proposed control scheme and the correctness of the T-S fuzzy model.
Fuzzy Goal Programming Approach in Selective Maintenance Reliability Model
Directory of Open Access Journals (Sweden)
Neha Gupta
2013-12-01
Full Text Available 800x600 In the present paper, we have considered the allocation problem of repairable components for a parallel-series system as a multi-objective optimization problem and have discussed two different models. In first model the reliability of subsystems are considered as different objectives. In second model the cost and time spent on repairing the components are considered as two different objectives. These two models is formulated as multi-objective Nonlinear Programming Problem (MONLPP and a Fuzzy goal programming method is used to work out the compromise allocation in multi-objective selective maintenance reliability model in which we define the membership functions of each objective function and then transform membership functions into equivalent linear membership functions by first order Taylor series and finally by forming a fuzzy goal programming model obtain a desired compromise allocation of maintenance components. A numerical example is also worked out to illustrate the computational details of the method. Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4
Fuzzy Modelling of Knee Joint with Genetic Optimization
Directory of Open Access Journals (Sweden)
B. S. K. K. Ibrahim
2011-01-01
Full Text Available Modelling of joint properties of lower limbs in people with spinal cord injury is significantly challenging for researchers due to the complexity of the system. The objective of this study is to develop a knee joint model capable of relating electrical parameters to dynamic joint torque as well as knee angle for functional electrical stimulation application. The joint model consists of a segmental dynamic, time-invariant passive properties and uncertain time-variant active properties. The knee joint model structure comprising optimised equations of motion and fuzzy models to represent the passive viscoelasticity and active muscle properties is formulated. The model thus formulated is optimised using genetic optimization, and validated against experimental data. The developed model can be used for simulation of joint movements as well as for control development. The results show that the model developed gives an accurate dynamic characterisation of the knee joint.
River flow modelling using fuzzy decision trees
Han, D.; Cluckie, I. D.; Karbassioun, D.; Lawry, J.; Krauskopf, B.
2002-01-01
A modern real time flood forecasting system requires its mathematical model(s) to handle highly complex rainfall runoff processes. Uncertainty in real time flood forecasting will involve a variety of components such as measurement noise from telemetry systems, inadequacy of the models, insufficiency
Local probing by use of transparent model materials
Philippe, P.
2017-12-01
The present contribution emphasizes on two distinct examples the benefit with using transparent materials that enable direct visualization within different types of model systems. Our first use of transparent materials investigates the elementary mechanisms involved in soil erosion based on three key ingredients: a) cohesive model materials (i.e. glass beads bonded by solid bridges); b) optical techniques (Refractive Index Matching and Planar Laser Induced Fluorescence [1,2]) ; c) specific mechanical tests to estimate the mechanical strength of the solid bonds. Then, critical shear-stress at erosion onset can be related to tensile strength considering an extension of the classical Shields' number [3,4].Our second example uses a transparent elasto-visco-plastic fluid (Carbopol) as a model of debris flows. Different geometrical configurations allow for an accurate investigation of the flow over an obstacle [5] or a cavity [6], inducing the existence of a dead-zone and consequently of a frontier between solid-like and fluid-like regions that is of particular relevance for debris flows mobilization and deposition. Practically, the hydrodynamics of the flow is investigated by means of high-resolution optical velocimetry (PIV) and underlines a non-monotonous evolution of the shear rate, which increases from zero at the solid-liquid interface, passes through a peak (sometimes leveling off at its maximum value), and returns to zero in a plug zone sufficiently far above the cavity or the obstacle. [1] Philippe P., and Badiane M. Phys. Rev. E 87, 042206 (2013). [2] Dijksman J.A., Rietz F., Lorincz K.A., van Hecke M., and Losert W. Review of Scientific Instruments 83(1), 011301 (2012). [3] Badr S., Gauthier G., and Gondret P. Phys. Fluids 26:023302 (2014). [4] Brunier-Coulin F., Cuéllar P., and Philippe P. Phys. Rev. Fluids 87, 2: 034302 (2017). [5] Luu L.-H., Philippe P., and Chambon G. Phys. Rev. E 91, 013013 (2015). [6] Luu L.-H., Philippe P.; and Chambon G. Journal of
Fuzzy Modelling and Simulation - The Evaluating Scales Problem
Czech Academy of Sciences Publication Activity Database
Vrba, Josef
2001-01-01
Roč. 41, - (2001), s. 257-288 ISSN 0232-9298 Institutional research plan: CEZ:AV0Z4072921 Keywords : fuzzy evaluating scale * membership asymmetry * fuzzy arithmetic Subject RIV: CI - Industrial Chemistry, Chemical Engineering
Interval-Valued Model Level Fuzzy Aggregation-Based Background Subtraction.
Chiranjeevi, Pojala; Sengupta, Somnath
2017-09-01
In a recent work, the effectiveness of neighborhood supported model level fuzzy aggregation was shown under dynamic background conditions. The multi-feature fuzzy aggregation used in that approach uses real fuzzy similarity values, and is robust for low and medium-scale dynamic background conditions such as swaying vegetation, sprinkling water, etc. The technique, however, exhibited some limitations under heavily dynamic background conditions, as features have high uncertainty under such noisy conditions and these uncertainties were not captured by real fuzzy similarity values. Our proposed algorithm is particularly focused toward improving the detection under heavy dynamic background conditions by modeling uncertainties in the data by interval-valued fuzzy set. In this paper, real-valued fuzzy aggregation has been extended to interval-valued fuzzy aggregation by considering uncertainties over real similarity values. We build up a procedure to calculate the uncertainty that varies for each feature, at each pixel, and at each time instant. We adaptively determine membership values at each pixel by the Gaussian of uncertainty value instead of fixed membership values used in recent fuzzy approaches, thereby, giving importance to a feature based on its uncertainty. Interval-valued Choquet integral is evaluated using interval similarity values and the membership values in order to calculate interval-valued fuzzy similarity between model and current. Adequate qualitative and quantitative studies are carried out to illustrate the effectiveness of the proposed method in mitigating heavily dynamic background situations as compared to state-of-the-art.
Modeling and PDC fuzzy control of planar parallel robot
Directory of Open Access Journals (Sweden)
Benyamine Allouche
2017-02-01
Full Text Available Many works in the literature have studied the kinematical and dynamical issues of parallel robots. But it is still difficult to extend the vast control strategies to parallel mechanisms due to the complexity of the model-based control. This complexity is mainly caused by the presence of multiple closed kinematic chains, making the system naturally described by a set of differential–algebraic equations. The aim of this work is to control a two-degree-of-freedom parallel manipulator. A mechanical model based on differential–algebraic equations is given. The goal is to use the structural characteristics of the mechanical system to reduce the complexity of the nonlinear model. Therefore, a trajectory tracking control is achieved using the Takagi-Sugeno fuzzy model derived from the differential–algebraic equation forms and its linear matrix inequality constraints formulation. Simulation results show that the proposed approach based on differential–algebraic equations and Takagi-Sugeno fuzzy modeling leads to a better robustness against the structural uncertainties.
Mathematical Modelling for EOQ Inventory System with Advance Payment and Fuzzy Parameters
Directory of Open Access Journals (Sweden)
S Priyan
2014-11-01
Full Text Available This study considers an EOQ inventory model with advance payment policy in a fuzzy situation by employing two types of fuzzy numbers that are trapezoidal and triangular. Two fuzzy models are developed here. In the first model the cost parameters are fuzzified, but the demand rate is treated as crisp constant. In the second model, the demand rate is fuzzified but the cost parameters are treated as crisp constants. For each fuzzy model, we use signed distance method to defuzzify the fuzzy total cost and obtain an estimate of the total cost in the fuzzy sense. Numerical example is provided to ascertain the sensitiveness in the decision variables about fuzziness in the components. In practical situations, costs may be dependent on some foreign monetary unit. In such a case, due to a change in the exchange rates, the costs are often not known precisely. The first model can be used in this situation. In actual applications, demand is uncertain and must be predicted. Accordingly, the decision maker faces a fuzzy environment rather than a stochastic one in these cases. The second model can be used in this situation. Moreover, the proposed models can be expended for imperfect production process.
Estimation of collapse moment for the wall-thinned pipe bends using fuzzy model identification
International Nuclear Information System (INIS)
Na, Man Gyun; Kim, Jin Weon; Hwang, In Joon
2006-01-01
In this work, the collapse moment due to wall-thinned defects is estimated through fuzzy model identification. A subtractive clustering method is used as the basis of a fast and robust algorithm for identifying the fuzzy model. The fuzzy model is optimized by a genetic algorithm combined with a least squares method. The developed fuzzy model has been applied to the numerical data obtained from the finite element analysis. Principal component analysis is used to preprocess the input signals into the fuzzy model to reduce the sensitivity to the input change and the fuzzy model are trained by using the data set prepared for training (training data) and verified by using another data set different (independent) from the training data. Also, three fuzzy models are trained, respectively, for three data sets divided into the three classes of extrados, intrados, and crown defects, which is because they have different characteristics. The relative root mean square (RMS) errors of the estimated collapse moment are 0.5397% for the training data and 0.8673% for the test data. It is known from this result that the fuzzy models are sufficiently accurate to be used in the integrity evaluation of wall-thinned pipe bends and elbows
Estimation of collapse moment for the wall-thinned pipe bends using fuzzy model identification
Energy Technology Data Exchange (ETDEWEB)
Na, Man Gyun [Department of Nuclear Engineering, Chosun University 375 Seosuk-Dong, Dong-Gu, Gwangju 501-759 (Korea, Republic of)]. E-mail: magyna@chosun.ac.kr; Kim, Jin Weon [Department of Nuclear Engineering, Chosun University 375 Seosuk-Dong, Dong-Gu, Gwangju 501-759 (Korea, Republic of); Hwang, In Joon [Department of Nuclear Engineering, Chosun University 375 Seosuk-Dong, Dong-Gu, Gwangju 501-759 (Korea, Republic of)
2006-07-15
In this work, the collapse moment due to wall-thinned defects is estimated through fuzzy model identification. A subtractive clustering method is used as the basis of a fast and robust algorithm for identifying the fuzzy model. The fuzzy model is optimized by a genetic algorithm combined with a least squares method. The developed fuzzy model has been applied to the numerical data obtained from the finite element analysis. Principal component analysis is used to preprocess the input signals into the fuzzy model to reduce the sensitivity to the input change and the fuzzy model are trained by using the data set prepared for training (training data) and verified by using another data set different (independent) from the training data. Also, three fuzzy models are trained, respectively, for three data sets divided into the three classes of extrados, intrados, and crown defects, which is because they have different characteristics. The relative root mean square (RMS) errors of the estimated collapse moment are 0.5397% for the training data and 0.8673% for the test data. It is known from this result that the fuzzy models are sufficiently accurate to be used in the integrity evaluation of wall-thinned pipe bends and elbows.
Zoning of agricultural fields is an important task for utilization of precision farming technology. One method for the definition of zones with different levels of productivity is based on fuzzy indicator model. Fuzzy indicator model for identification of zones with different levels of productivit...
Su, Chiu Hung; Tzeng, Gwo-Hshiung; Hu, Shu-Kung
2016-01-01
The purpose of this study was to address this problem by applying a new hybrid fuzzy multiple criteria decision-making model including (a) using the fuzzy decision-making trial and evaluation laboratory (DEMATEL) technique to construct the fuzzy scope influential network relationship map (FSINRM) and determine the fuzzy influential weights of the…
An adaptive fuzzy neural network for MIMO system model approximation in high-dimensional spaces.
Chak, C K; Feng, G; Ma, J
1998-01-01
An adaptive fuzzy system implemented within the framework of neural network is proposed. The integration of the fuzzy system into a neural network enables the new fuzzy system to have learning and adaptive capabilities. The proposed fuzzy neural network can locate its rules and optimize its membership functions by competitive learning, Kalman filter algorithm and extended Kalman filter algorithms. A key feature of the new architecture is that a high dimensional fuzzy system can be implemented with fewer number of rules than the Takagi-Sugeno fuzzy systems. A number of simulations are presented to demonstrate the performance of the proposed system including modeling nonlinear function, operator's control of chemical plant, stock prices and bioreactor (multioutput dynamical system).
Type-2 fuzzy elliptic membership functions for modeling uncertainty
DEFF Research Database (Denmark)
Kayacan, Erdal; Sarabakha, Andriy; Coupland, Simon
2018-01-01
Whereas type-1 and type-2 membership functions (MFs) are the core of any fuzzy logic system, there are no performance criteria available to evaluate the goodness or correctness of the fuzzy MFs. In this paper, we make extensive analysis in terms of the capability of type-2 elliptic fuzzy MFs in m...
Neuro-fuzzy model of homocysteine metabolism
Indian Academy of Sciences (India)
SHAIK Mohammad Naushad
2017-12-08
Dec 8, 2017 ... training of the model was based on 'hybrid' method with error tolerance of 0.0001 and epochs of 3000. The train- ing of the model was stopped when ..... improve the metabolic health of patients with cardiovascular disease risk. Curr. Pharm. Des. 20, 6078–6088. Mohammad N. S., Yedluri R., Addepalli P., ...
Fuzzy Stochastic Petri Nets for Modeling Biological Systems with Uncertain Kinetic Parameters.
Liu, Fei; Heiner, Monika; Yang, Ming
2016-01-01
Stochastic Petri nets (SPNs) have been widely used to model randomness which is an inherent feature of biological systems. However, for many biological systems, some kinetic parameters may be uncertain due to incomplete, vague or missing kinetic data (often called fuzzy uncertainty), or naturally vary, e.g., between different individuals, experimental conditions, etc. (often called variability), which has prevented a wider application of SPNs that require accurate parameters. Considering the strength of fuzzy sets to deal with uncertain information, we apply a specific type of stochastic Petri nets, fuzzy stochastic Petri nets (FSPNs), to model and analyze biological systems with uncertain kinetic parameters. FSPNs combine SPNs and fuzzy sets, thereby taking into account both randomness and fuzziness of biological systems. For a biological system, SPNs model the randomness, while fuzzy sets model kinetic parameters with fuzzy uncertainty or variability by associating each parameter with a fuzzy number instead of a crisp real value. We introduce a simulation-based analysis method for FSPNs to explore the uncertainties of outputs resulting from the uncertainties associated with input parameters, which works equally well for bounded and unbounded models. We illustrate our approach using a yeast polarization model having an infinite state space, which shows the appropriateness of FSPNs in combination with simulation-based analysis for modeling and analyzing biological systems with uncertain information.
Wai, Rong-Jong; Yang, Zhi-Wei
2008-10-01
This paper focuses on the development of adaptive fuzzy neural network control (AFNNC), including indirect and direct frameworks for an n-link robot manipulator, to achieve high-precision position tracking. In general, it is difficult to adopt a model-based design to achieve this control objective due to the uncertainties in practical applications, such as friction forces, external disturbances, and parameter variations. In order to cope with this problem, an indirect AFNNC (IAFNNC) scheme and a direct AFNNC (DAFNNC) strategy are investigated without the requirement of prior system information. In these model-free control topologies, a continuous-time Takagi-Sugeno (T-S) dynamic fuzzy model with online learning ability is constructed to represent the system dynamics of an n-link robot manipulator. In the IAFNNC, an FNN estimator is designed to tune the nonlinear dynamic function vector in fuzzy local models, and then, the estimative vector is used to indirectly develop a stable IAFNNC law. In the DAFNNC, an FNN controller is directly designed to imitate a predetermined model-based stabilizing control law, and then, the stable control performance can be achieved by only using joint position information. All the IAFNNC and DAFNNC laws and the corresponding adaptive tuning algorithms for FNN weights are established in the sense of Lyapunov stability analyses to ensure the stable control performance. Numerical simulations and experimental results of a two-link robot manipulator actuated by dc servomotors are given to verify the effectiveness and robustness of the proposed methodologies. In addition, the superiority of the proposed control schemes is indicated in comparison with proportional-differential control, fuzzy-model-based control, T-S-type FNN control, and robust neural fuzzy network control systems.
Utilisation of transparent synthetic soil surrogates in geotechnical physical models: A review
Directory of Open Access Journals (Sweden)
Abideen Adekunle Ganiyu
2016-08-01
Full Text Available Efforts to obtain non-intrusive measurement of deformations and spatial flow within soil mass prior to the advent of transparent soils have perceptible limitations. The transparent soil is a two-phase medium composed of both the synthetic aggregate and fluid components of identical refractive indices aiming at attaining transparency of the resulting soil. The transparency facilitates real life visualisation of soil continuum in physical models. When applied in conjunction with advanced photogrammetry and image processing techniques, transparent soils enable the quantification of the spatial deformation, displacement and multi-phase flow in physical model tests. Transparent synthetic soils have been successfully employed in geotechnical model tests as soil surrogates based on the testing results of their geotechnical properties which replicate those of natural soils. This paper presents a review on transparent synthetic soils and their numerous applications in geotechnical physical models. The properties of the aggregate materials are outlined and the features of the various transparent clays and sands available in the literature are described. The merits of transparent soil are highlighted and the need to amplify its application in geotechnical physical model researches is emphasised. This paper will serve as a concise compendium on the subject of transparent soils for future researchers in this field.
Meta Modelling of Submerged-Arc Welding Design based on Fuzzy Algorithm
Song, Chang-Yong; Park, Jonghwan; Goh, Dugab; Park, Woo-Chang; Lee, Chang-Ha; Kim, Mun Yong; Kang, Jinseo
2017-12-01
Fuzzy algorithm based meta-model is proposed for approximating submerged-arc weld design factors such as weld speed and weld output. Orthogonal array design based on the submerged-arc weld numerical analysis is applied to the proposed approach. The nonlinear finite element analysis is carried out to simulate the submerged-arc weld numerical analysis using thermo-mechanical and temperature-dependent material properties for general mild steel. The proposed meta-model based on fuzzy algorithm design is generated with triangle membership functions and fuzzy if-then rules using training data obtained from the Taguchi orthogonal array design data. The aim of proposed approach is to develop a fuzzy meta-model to effectively approximate the optimized submerged-arc weld factors. To validate the meta-model, the results obtained from the fuzzy meta-model are compared to the best cases from the Taguchi orthogonal array.
Fuzzy rule base design using tabu search algorithm for nonlinear system modeling.
Bagis, Aytekin
2008-01-01
This paper presents an approach to fuzzy rule base design using tabu search algorithm (TSA) for nonlinear system modeling. TSA is used to evolve the structure and the parameter of fuzzy rule base. The use of the TSA, in conjunction with a systematic neighbourhood structure for the determination of fuzzy rule base parameters, leads to a significant improvement in the performance of the model. To demonstrate the effectiveness of the presented method, several numerical examples given in the literature are examined. The results obtained by means of the identified fuzzy rule bases are compared with those belonging to other modeling approaches in the literature. The simulation results indicate that the method based on the use of a TSA performs an important and very effective modeling procedure in fuzzy rule base design in the modeling of the nonlinear or complex systems.
Oladipupo Bello; Yskandar Hamam; Karim Djouani
2014-01-01
In this paper, a fuzzy model predictive control (FMPC) strategy is proposed to regulate the output variables of a coagulation chemical dosing unit. A multiple-input, multiple-output (MIMO) process model in form of a linearised Takagi–Sugeno (T–S) fuzzy model is derived. The process model is obtained through subtractive clustering from the plant's data set. The MIMO model is described by a set of coupled multiple-input, single-output models (MISO). In the controller design, the T–S fuzzy model...
A fuzzy mathematical model of West Java population with logistic growth model
Nurkholipah, N. S.; Amarti, Z.; Anggriani, N.; Supriatna, A. K.
2018-03-01
In this paper we develop a mathematics model of population growth in the West Java Province Indonesia. The model takes the form as a logistic differential equation. We parameterize the model using several triples of data, and choose the best triple which has the smallest Mean Absolute Percentage Error (MAPE). The resulting model is able to predict the historical data with a high accuracy and it also able to predict the future of population number. Predicting the future population is among the important factors that affect the consideration is preparing a good management for the population. Several experiment are done to look at the effect of impreciseness in the data. This is done by considering a fuzzy initial value to the crisp model assuming that the model propagates the fuzziness of the independent variable to the dependent variable. We assume here a triangle fuzzy number representing the impreciseness in the data. We found that the fuzziness may disappear in the long-term. Other scenarios also investigated, such as the effect of fuzzy parameters to the crisp initial value of the population. The solution of the model is obtained numerically using the fourth-order Runge-Kutta scheme.
Elzamly, Abdelrafe; Hussin, Burairah
2014-01-01
The aim of this paper is to propose new mining techniques by which we can study the impact of different risk management techniques and different software risk factors on software analysis development projects. The new mining technique uses the fuzzy multiple regression analysis techniques with fuzzy concepts to manage the software risks in a software project and mitigating risk with software process improvement. Top ten software risk factors in analysis phase and thirty risk management techni...
Directory of Open Access Journals (Sweden)
Hideki Katagiri
2017-10-01
Full Text Available This paper considers linear programming problems (LPPs where the objective functions involve discrete fuzzy random variables (fuzzy set-valued discrete random variables. New decision making models, which are useful in fuzzy stochastic environments, are proposed based on both possibility theory and probability theory. In multi-objective cases, Pareto optimal solutions of the proposed models are newly defined. Computational algorithms for obtaining the Pareto optimal solutions of the proposed models are provided. It is shown that problems involving discrete fuzzy random variables can be transformed into deterministic nonlinear mathematical programming problems which can be solved through a conventional mathematical programming solver under practically reasonable assumptions. A numerical example of agriculture production problems is given to demonstrate the applicability of the proposed models to real-world problems in fuzzy stochastic environments.
Barbosa, A Márcia; Real, Raimundo
2012-01-01
We modelled the distributions of two toads (Bufo bufo and Epidalea calamita) in the Iberian Peninsula using the favourability function, which makes predictions directly comparable for different species and allows fuzzy logic operations to relate different models. The fuzzy intersection between individual models, representing favourability for the presence of both species simultaneously, was compared with another favourability model built on the presences shared by both species. The fuzzy union between individual models, representing favourability for the presence of any of the two species, was compared with another favourability model based on the presences of either or both of them. The fuzzy intersections between favourability for each species and the complementary of favourability for the other (corresponding to the logical operation "A and not B") were compared with models of exclusive presence of one species versus the exclusive presence of the other. The results of modelling combined species data were highly similar to those of fuzzy logic operations between individual models, proving fuzzy logic and the favourability function valuable for comparative distribution modelling. We highlight several advantages of fuzzy logic over other forms of combining distribution models, including the possibility to combine multiple species models for management and conservation planning.
Baraldi, Andrea; Parmiggiani, Flavio
1996-06-01
According to the following definition, taken from the literature, a fuzzy clustering mechanism allows the same input pattern to belong to multiple categories to different degrees. Many clustering neural network (NN) models claim to feature fuzzy properties, but several of them (like the Fuzzy ART model) do not satisfy this definition. Vice versa, we believe that Kohonen's Self-Organizing Map, SOM, satisfies the definition provided above, even though this NN model is well-known to (robustly) perform topologically ordered mapping rather than fuzzy clustering. This may sound as a paradox if we consider that several fuzzy NN models (such as the Fuzzy Learning Vector Quantization, FLVQ, which was first called Fuzzy Kohonen Clustering Network, FKCN) were originally developed to enhance Kohonen's models (such as SOM and the vector quantization model, VQ). The fuzziness of SOM indicates that a network of processing elements (PEs) can verify the fuzzy clustering definition when it exploits local rules which are biologically plausible (such as the Kohonen bubble strategy). This is equivalent to state that the exploitation of the fuzzy set theory in the development of complex systems (e.g., clustering NNs) may provide new mathematical tools (e.g., the definition of membership function) to simulate the behavior of those cooperative/competitive mechanisms already identified by neurophysiological studies. When a biologically plausible cooperative/competitive strategy is pursued effectively, neighboring PEs become mutually coupled to gain sensitivity to contextual effects. PEs which are mutually coupled are affected by vertical (inter-layer) as well as horizontal (intra-layer) connections. To summarize, we suggest to relate the study of fuzzy clustering mechanisms to the multi-disciplinary science of complex systems, with special regard to the investigation of the cooperative/competitive local rules employed by complex systems to gain sensitivity to contextual effects in
Directory of Open Access Journals (Sweden)
Zhe Zhang
2014-06-01
Full Text Available Purpose: The aim of this paper is to deal with the supply chain management (SCM with quantity discount policy under the complex fuzzy environment, which is characterized as the bi-fuzzy variables. By taking into account the strategy and the process of decision making, a bi-fuzzy nonlinear multiple objective decision making (MODM model is presented to solve the proposed problem.Design/methodology/approach: The bi-fuzzy variables in the MODM model are transformed into the trapezoidal fuzzy variables by the DMs's degree of optimism ?1 and ?2, which are de-fuzzified by the expected value index subsequently. For solving the complex nonlinear model, a multi-objective adaptive particle swarm optimization algorithm (MO-APSO is designed as the solution method.Findings: The proposed model and algorithm are applied to a typical example of SCM problem to illustrate the effectiveness. Based on the sensitivity analysis of the results, the bi-fuzzy nonlinear MODM SCM model is proved to be sensitive to the possibility level ?1.Practical implications: The study focuses on the SCM under complex fuzzy environment in SCM, which has a great practical significance. Therefore, the bi-fuzzy MODM model and MO-APSO can be further applied in SCM problem with quantity discount policy.Originality/value: The bi-fuzzy variable is employed in the nonlinear MODM model of SCM to characterize the hybrid uncertain environment, and this work is original. In addition, the hybrid crisp approach is proposed to transferred to model to an equivalent crisp one by the DMs's degree of optimism and the expected value index. Since the MODM model consider the bi-fuzzy environment and quantity discount policy, so this paper has a great practical significance.
A High Effective Fuzzy Synthetic Evaluation Multi-model Estimation
Directory of Open Access Journals (Sweden)
Yang LIU
2014-01-01
Full Text Available In view of the questions that the algorithm flow of variable structure multi-model method (VSMM is too complex and the tracking performance is inefficient and therefore it is so difficult to apply VSMM into installing equipment. The paper presents a high-performance variable structure multi-model method basing on multi-factor fuzzy synthetic evaluation (HEFS_VSMM. Under the guidance of variable structure method, HEFS_VSMM uses the technique of multi-factor fuzzy synthetic evaluation in the strategy of model set adaptive to select the appropriate model set in real time and reduce the computation complexity of the model evaluation, firstly. Secondly, select the model set center according to the evaluation results of each model and set the property value for current model set. Thirdly, choose different processes basing on the current model set property value to simplify the logical complexity of the algorithm. At last, the algorithm gets the total estimation by the theories of optimal information fusion on the above-mentioned processing results. The results of simulation show that, compared with the FSMM and EMA, the mean of estimation error belonging to position, velocity and acceleration in the HEFS_VSMM is improved from -0.029 (m, -0.350 (m/s, -10.051(m/s2 to -0.023 (m, 0.052 (m/s, -5.531 (m/s2. The algorithm cycle is reduced from 0.0051(s to 0.0025 (s.
KONTROL TRACKING FUZZY MENGGUNAKAN MODEL FOLLOWING UNTUK SISTEM PENDULUM KERETA
Directory of Open Access Journals (Sweden)
Jimmy Hennyta Satya Putra
2017-01-01
Full Text Available Sistem pendulum kereta memiliki karakteristik yang tidak stabil dan nonlinear. Pada Tugas Akhir ini membahas tentang kontrol tracking dengan menggunakan struktur kontrol berbasis model following. Permasalahan dalam desain struktur kontrol tracking pada sistem pendulum kereta ini adalah bagaimana membuat posisi kereta dapat mengikuti sinyal referensi dengan tetap mempertahankan batang pendulum pada posisi equilibriumnya yaitu pada sudut nol radian. Model nonlinear dari sistem pendulum kereta direpresentasikan sebagai model fuzzy Takagi-Sugeno. Berdasarkan model tersebut, aturan kontroler disusun menggunakan konsep Parallel Distributed Compensation (PDC berbasis teknik kontrol optimal. Hasil simulasi dan implementasi menunjukkan bahwa posisi kereta dapat mengikuti sinyal referensi tanpa adanya beda fasa antara respon posisi kereta terhadap sinyal referensi. Sinyal referensi sinus memberikan performansi tracking terbaik, dengan Integral Absolute Error (IAE terkecil diantara sinyal referensi lain, yaitu pada simulasi sebesar 0,2622 dan pada implementasi sebesar 0,8477
A fuzzy approach to the Weighted Overlap Dominance model
DEFF Research Database (Denmark)
Franco de los Rios, Camilo Andres; Hougaard, Jens Leth; Nielsen, Kurt
2013-01-01
Decision support models are required to handle the various aspects of multi-criteria decision problems in order to help the individual understand its possible solutions. In this sense, such models have to be capable of aggregating and exploiting different types of measurements and evaluations...... in an interactive way, where input data can take the form of uniquely-graded or interval-valued information. Here we explore the Weighted Overlap Dominance (WOD) model from a fuzzy perspective and its outranking approach to decision support and multidimensional interval analysis. Firstly, imprecision measures...... are introduced for characterizing the type of uncertainty being expressed by intervals, examining at the same time how the WOD model handles both non-interval as well as interval data, and secondly, relevance degrees are proposed for obtaining a ranking over the alternatives. Hence, a complete methodology...
Structural modeling and fuzzy-logic based diagnosis of a ship propulsion benchmark
DEFF Research Database (Denmark)
Izadi-Zamanabadi, Roozbeh; Blanke, M.; Katebi, S.D.
2000-01-01
An analysis of structural model of a ship propulsion benchmark leads to identifying the subsystems with inherent redundant information. For a nonlinear part of the system, a Fuzzy logic based FD algorithm with adaptive threshold is employed. The results illustrate the applicability of structural...... analysis as well as fuzzy observer....
Structural modeling and fuzzy-logic based diagnosis of a ship propulsion benchmark
DEFF Research Database (Denmark)
Izadi-Zamanabadi, Roozbeh; Blanke, M.; Katebi, S.D.
2000-01-01
An analysis of structural model of a ship propulsion benchmark leads to identifying the subsystems with inherent redundant information. For a nonlinear part of the system, a Fuzzy logic based FD algorithm with adaptive threshold is employed. The results illustrate the applicability of structural...... analysis as well as fuzzy observer...
Chance-constrained programming models for capital budgeting with NPV as fuzzy parameters
Huang, Xiaoxia
2007-01-01
In an uncertain economic environment, experts' knowledge about outlays and cash inflows of available projects consists of much vagueness instead of randomness. Investment outlays and annual net cash flows of a project are usually predicted by using experts' knowledge. Fuzzy variables can overcome the difficulties in predicting these parameters. In this paper, capital budgeting problem with fuzzy investment outlays and fuzzy annual net cash flows is studied based on credibility measure. Net present value (NPV) method is employed, and two fuzzy chance-constrained programming models for capital budgeting problem are provided. A fuzzy simulation-based genetic algorithm is provided for solving the proposed model problems. Two numerical examples are also presented to illustrate the modelling idea and the effectiveness of the proposed algorithm.
Fuzzy chance constrained linear programming model for scrap charge optimization in steel production
DEFF Research Database (Denmark)
Rong, Aiying; Lahdelma, Risto
2008-01-01
the uncertainty based on fuzzy set theory and constrain the failure risk based on a possibility measure. Consequently, the scrap charge optimization problem is modeled as a fuzzy chance constrained linear programming problem. Since the constraints of the model mainly address the specification of the product......, the crisp equivalent of the fuzzy constraints should be less relaxed than that purely based on the concept of soft constraints. Based on the application context we adopt a strengthened version of soft constraints to interpret fuzzy constraints and form a crisp model with consistent and compact constraints...... for solution. Simulation results based on realistic data show that the failure risk can be managed by proper combination of aspiration levels and confidence factors for defining fuzzy numbers. There is a tradeoff between failure risk and material cost. The presented approach applies also for other scrap...
Folded Sheet Versus Transparent Sheet Models for Human Symmetry Judgments
Directory of Open Access Journals (Sweden)
Jacques Ninio
2011-07-01
Full Text Available As a contribution to the mysteries of human symmetry perception, reaction time data were collected on the detection of symmetry or repetition violations, in the context of short term visual memory studies. The histograms for reaction time distributions are rather narrow in the case of symmetry judgments. Their analysis was performed in terms of a simple kinetic model of a mental process in two steps, a slow one for the construction of the representation of the images to be compared, and a fast one, in the 50 ms range, for the decision. There was no need for an additional ‘mental rotation’ step. Symmetry seems to facilitate the construction step. I also present here original stimuli showing a color equalization effect across a symmetry axis, and its counterpart in periodic patterns. According to a “folded sheet model”, when a shape is perceived, the brain automatically constructs a mirror-image representation of the shape. Based in part on the reaction time analysis, I present here an alternative “transparent sheet” model in which the brain constructs a single representation, which can be accessed from two sides, thus generating simultaneously a pattern and its mirror-symmetric partner. Filtering processes, implied by current models of symmetry perception could intervene at an early stage, by nucleating the propagation of similar perceptual groupings in the two symmetric images.
A fuzzy model for exploiting customer requirements
Directory of Open Access Journals (Sweden)
Zahra Javadirad
2016-09-01
Full Text Available Nowadays, Quality function deployment (QFD is one of the total quality management tools, where customers’ views and requirements are perceived and using various techniques improves the production requirements and operations. The QFD department, after identification and analysis of the competitors, takes customers’ feedbacks to meet the customers’ demands for the products compared with the competitors. In this study, a comprehensive model for assessing the importance of the customer requirements in the products or services for an organization is proposed. The proposed study uses linguistic variables, as a more comprehensive approach, to increase the precision of the expression evaluations. The importance of these requirements specifies the strengths and weaknesses of the organization in meeting the requirements relative to competitors. The results of these experiments show that the proposed method performs better than the other methods.
A hybrid learning method for constructing compact rule-based fuzzy models.
Zhao, Wanqing; Niu, Qun; Li, Kang; Irwin, George W
2013-12-01
The Takagi–Sugeno–Kang-type rule-based fuzzy model has found many applications in different fields; a major challenge is, however, to build a compact model with optimized model parameters which leads to satisfactory model performance. To produce a compact model, most existing approaches mainly focus on selecting an appropriate number of fuzzy rules. In contrast, this paper considers not only the selection of fuzzy rules but also the structure of each rule premise and consequent, leading to the development of a novel compact rule-based fuzzy model. Here, each fuzzy rule is associated with two sets of input attributes, in which the first is used for constructing the rule premise and the other is employed in the rule consequent. A new hybrid learning method combining the modified harmony search method with a fast recursive algorithm is hereby proposed to determine the structure and the parameters for the rule premises and consequents. This is a hard mixed-integer nonlinear optimization problem, and the proposed hybrid method solves the problem by employing an embedded framework, leading to a significantly reduced number of model parameters and a small number of fuzzy rules with each being as simple as possible. Results from three examples are presented to demonstrate the compactness (in terms of the number of model parameters and the number of rules) and the performance of the fuzzy models obtained by the proposed hybrid learning method, in comparison with other techniques from the literature.
On the Power of Fuzzy Markup Language
Loia, Vincenzo; Lee, Chang-Shing; Wang, Mei-Hui
2013-01-01
One of the most successful methodology that arose from the worldwide diffusion of Fuzzy Logic is Fuzzy Control. After the first attempts dated in the seventies, this methodology has been widely exploited for controlling many industrial components and systems. At the same time, and very independently from Fuzzy Logic or Fuzzy Control, the birth of the Web has impacted upon almost all aspects of computing discipline. Evolution of Web, Web 2.0 and Web 3.0 has been making scenarios of ubiquitous computing much more feasible; consequently information technology has been thoroughly integrated into everyday objects and activities. What happens when Fuzzy Logic meets Web technology? Interesting results might come out, as you will discover in this book. Fuzzy Mark-up Language is a son of this synergistic view, where some technological issues of Web are re-interpreted taking into account the transparent notion of Fuzzy Control, as discussed here. The concept of a Fuzzy Control that is conceived and modeled in terms...
Usage Intention Framework Model: A Fuzzy Logic Interpretation of the Classical Utaut Model
Sandaire, Johnny
2009-01-01
A fuzzy conjoint analysis (FCA: Turksen, 1992) model for enhancing management decision in the technology adoption domain was implemented as an extension to the UTAUT model (Venkatesh, Morris, Davis, & Davis, 2003). Additionally, a UTAUT-based Usage Intention Framework Model (UIFM) introduced a closed-loop feedback system. The empirical evidence…
A Fuzzy Logic Framework for Integrating Multiple Learned Models
Energy Technology Data Exchange (ETDEWEB)
Hartog, Bobi Kai Den [Univ. of Nebraska, Lincoln, NE (United States)
1999-03-01
The Artificial Intelligence field of Integrating Multiple Learned Models (IMLM) explores ways to combine results from sets of trained programs. Aroclor Interpretation is an ill-conditioned problem in which trained programs must operate in scenarios outside their training ranges because it is intractable to train them completely. Consequently, they fail in ways related to the scenarios. We developed a general-purpose IMLM solution, the Combiner, and applied it to Aroclor Interpretation. The Combiner's first step, Scenario Identification (M), learns rules from very sparse, synthetic training data consisting of results from a suite of trained programs called Methods. S1 produces fuzzy belief weights for each scenario by approximately matching the rules. The Combiner's second step, Aroclor Presence Detection (AP), classifies each of three Aroclors as present or absent in a sample. The third step, Aroclor Quantification (AQ), produces quantitative values for the concentration of each Aroclor in a sample. AP and AQ use automatically learned empirical biases for each of the Methods in each scenario. Through fuzzy logic, AP and AQ combine scenario weights, automatically learned biases for each of the Methods in each scenario, and Methods' results to determine results for a sample.
Road Sign Recognition with Fuzzy Adaptive Pre-Processing Models
Directory of Open Access Journals (Sweden)
Ming-Shi Wang
2012-05-01
Full Text Available A road sign recognition system based on adaptive image pre-processing models using two fuzzy inference schemes has been proposed. The first fuzzy inference scheme is to check the changes of the light illumination and rich red color of a frame image by the checking areas. The other is to check the variance of vehicle’s speed and angle of steering wheel to select an adaptive size and position of the detection area. The Adaboost classifier was employed to detect the road sign candidates from an image and the support vector machine technique was employed to recognize the content of the road sign candidates. The prohibitory and warning road traffic signs are the processing targets in this research. The detection rate in the detection phase is 97.42%. In the recognition phase, the recognition rate is 93.04%. The total accuracy rate of the system is 92.47%. For video sequences, the best accuracy rate is 90.54%, and the average accuracy rate is 80.17%. The average computing time is 51.86 milliseconds per frame. The proposed system can not only overcome low illumination and rich red color around the road sign problems but also offer high detection rates and high computing performance.
A framework for fuzzy model of thermoradiotherapy efficiency
International Nuclear Information System (INIS)
Kosterev, V.V.; Averkin, A.N.
2005-01-01
Full text: The use of hyperthermia as an adjuvant to radiation in the treatment of local and regional disease currently offers the most significant advantages. For processing of information of thermo radiotherapy efficiency, it is expedient to use the fuzzy logic based decision-support system - fuzzy system (FS). FSs are widely used in various application areas of control and decision making. Their popularity is due to the following reasons. Firstly, FS with triangular membership functions is universal approximator. Secondly, the designing of FS does not need the exact model of the process, but needs only qualitative linguistic dependences between the parameters. Thirdly, there are many program and hardware realizations of FS with very high speed of calculations. Fourthly, accuracy of the decisions received based on FS, usually is not worse and sometimes is better than accuracy of the decisions received by traditional methods. Moreover, dependence between input and output variables can be easily expressed in linguistic scales. The goal of this research is to choose the data fusion RULE's operators suitable to experimental results and taking into consideration uncertainty factor. Methods of aggregation and data fusion might be used which provide a methodology to extract comprehensible rules from data. Several data fusion algorithms have been developed and applied, individually and in combination, providing users with various levels of informational detail. In reviewing these emerging technology three basic categories (levels) of data fusion has been developed. These fusion levels are differentiated according to the amount of information they provide. Refs. 2 (author)
Nguyen, Huu-Tho; Dawal, Siti Zawiah Md; Nukman, Yusoff; Rifai, Achmad P; Aoyama, Hideki
2016-01-01
The conveyor system plays a vital role in improving the performance of flexible manufacturing cells (FMCs). The conveyor selection problem involves the evaluation of a set of potential alternatives based on qualitative and quantitative criteria. This paper presents an integrated multi-criteria decision making (MCDM) model of a fuzzy AHP (analytic hierarchy process) and fuzzy ARAS (additive ratio assessment) for conveyor evaluation and selection. In this model, linguistic terms represented as triangular fuzzy numbers are used to quantify experts' uncertain assessments of alternatives with respect to the criteria. The fuzzy set is then integrated into the AHP to determine the weights of the criteria. Finally, a fuzzy ARAS is used to calculate the weights of the alternatives. To demonstrate the effectiveness of the proposed model, a case study is performed of a practical example, and the results obtained demonstrate practical potential for the implementation of FMCs.
Evaluating transit operator efficiency: An enhanced DEA model with constrained fuzzy-AHP cones
Xin Li; Yue Liu; Yaojun Wang; Zhigang Gao
2016-01-01
This study addresses efforts to comb the Analytic Hierarchy Process (AHP) with Data Envelopment Analysis (DEA) to deliver a robust enhanced DEA model for transit operator efficiency assessment. The proposed model is designed to better capture inherent preferences information over input and output indicators by adding constraint cones to the conventional DEA model. A revised fuzzy-AHP model is employed to generate cones, where the proposed model features the integration of the fuzzy logic with...
A local model of light interaction with transparent crystalline media.
Debelov, Victor A; Kozlov, Dmitry S
2013-08-01
The paper is devoted to the derivation of a bidirectional distribution function for crystals, which specifies all outgoing rays for a ray coming to the boundary of two transparent crystalline media with different optical properties, i.e., a particular mineral, directions of optical axes if they exist, and other features. A local model of interaction based on the notion of polarized light ray is introduced, which is specified by a geometric ray, its polarization state, light intensity, and so on. The computational algorithm that is suggested allows computing the directions and other properties of all (up to four) outgoing rays. In this paper, isotropic, uniaxial, and biaxial crystals are processed in a similar manner. The correctness of the model is validated by comparison of photos of real uniaxial crystals with corresponding computed images. The case of biaxial crystals is validated by testing the effect of conical refraction. Specifications of a series of tests devoted to rendering of optically different objects is presented also.
Reproducibility and Transparency in Ocean-Climate Modeling
Hannah, N.; Adcroft, A.; Hallberg, R.; Griffies, S. M.
2015-12-01
Reproducibility is a cornerstone of the scientific method. Within geophysical modeling and simulation achieving reproducibility can be difficult, especially given the complexity of numerical codes, enormous and disparate data sets, and variety of supercomputing technology. We have made progress on this problem in the context of a large project - the development of new ocean and sea ice models, MOM6 and SIS2. Here we present useful techniques and experience.We use version control not only for code but the entire experiment working directory, including configuration (run-time parameters, component versions), input data and checksums on experiment output. This allows us to document when the solutions to experiments change, whether due to code updates or changes in input data. To avoid distributing large input datasets we provide the tools for generating these from the sources, rather than provide raw input data.Bugs can be a source of non-determinism and hence irreproducibility, e.g. reading from or branching on uninitialized memory. To expose these we routinely run system tests, using a memory debugger, multiple compilers and different machines. Additional confidence in the code comes from specialised tests, for example automated dimensional analysis and domain transformations. This has entailed adopting a code style where we deliberately restrict what a compiler can do when re-arranging mathematical expressions.In the spirit of open science, all development is in the public domain. This leads to a positive feedback, where increased transparency and reproducibility makes using the model easier for external collaborators, who in turn provide valuable contributions. To facilitate users installing and running the model we provide (version controlled) digital notebooks that illustrate and record analysis of output. This has the dual role of providing a gross, platform-independent, testing capability and a means to documents model output and analysis.
Predicting recycling behaviour: Comparison of a linear regression model and a fuzzy logic model.
Vesely, Stepan; Klöckner, Christian A; Dohnal, Mirko
2016-03-01
In this paper we demonstrate that fuzzy logic can provide a better tool for predicting recycling behaviour than the customarily used linear regression. To show this, we take a set of empirical data on recycling behaviour (N=664), which we randomly divide into two halves. The first half is used to estimate a linear regression model of recycling behaviour, and to develop a fuzzy logic model of recycling behaviour. As the first comparison, the fit of both models to the data included in estimation of the models (N=332) is evaluated. As the second comparison, predictive accuracy of both models for "new" cases (hold-out data not included in building the models, N=332) is assessed. In both cases, the fuzzy logic model significantly outperforms the regression model in terms of fit. To conclude, when accurate predictions of recycling and possibly other environmental behaviours are needed, fuzzy logic modelling seems to be a promising technique. Copyright © 2015 Elsevier Ltd. All rights reserved.
Modelling of Reservoir Operations using Fuzzy Logic and ANNs
Van De Giesen, N.; Coerver, B.; Rutten, M.
2015-12-01
Today, almost 40.000 large reservoirs, containing approximately 6.000 km3 of water and inundating an area of almost 400.000 km2, can be found on earth. Since these reservoirs have a storage capacity of almost one-sixth of the global annual river discharge they have a large impact on the timing, volume and peaks of river discharges. Global Hydrological Models (GHM) are thus significantly influenced by these anthropogenic changes in river flows. We developed a parametrically parsimonious method to extract operational rules based on historical reservoir storage and inflow time-series. Managing a reservoir is an imprecise and vague undertaking. Operators always face uncertainties about inflows, evaporation, seepage losses and various water demands to be met. They often base their decisions on experience and on available information, like reservoir storage and the previous periods inflow. We modeled this decision-making process through a combination of fuzzy logic and artificial neural networks in an Adaptive-Network-based Fuzzy Inference System (ANFIS). In a sensitivity analysis, we compared results for reservoirs in Vietnam, Central Asia and the USA. ANFIS can indeed capture reservoirs operations adequately when fed with a historical monthly time-series of inflows and storage. It was shown that using ANFIS, operational rules of existing reservoirs can be derived without much prior knowledge about the reservoirs. Their validity was tested by comparing actual and simulated releases with each other. For the eleven reservoirs modelled, the normalised outflow, , was predicted with a MSE of 0.002 to 0.044. The rules can be incorporated into GHMs. After a network for a specific reservoir has been trained, the inflow calculated by the hydrological model can be combined with the release and initial storage to calculate the storage for the next time-step using a mass balance. Subsequently, the release can be predicted one time-step ahead using the inflow and storage.
C. K. Kwong; K. Y. Fung; Huimin Jiang; K. Y. Chan; Kin Wai Michael Siu
2013-01-01
Affective design is an important aspect of product development to achieve a competitive edge in the marketplace. A neural-fuzzy network approach has been attempted recently to model customer satisfaction for affective design and it has been proved to be an effective one to deal with the fuzziness and non-linearity of the modeling as well as generate explicit customer satisfaction models. However, such an approach to modeling customer satisfaction has two limitations. First, it is not suitable...
Ramli, Nazirah; Mutalib, Siti Musleha Ab; Mohamad, Daud
2017-08-01
Fuzzy time series forecasting model has been proposed since 1993 to cater for data in linguistic values. Many improvement and modification have been made to the model such as enhancement on the length of interval and types of fuzzy logical relation. However, most of the improvement models represent the linguistic term in the form of discrete fuzzy sets. In this paper, fuzzy time series model with data in the form of trapezoidal fuzzy numbers and natural partitioning length approach is introduced for predicting the unemployment rate. Two types of fuzzy relations are used in this study which are first order and second order fuzzy relation. This proposed model can produce the forecasted values under different degree of confidence.
Fuzzy linear model for production optimization of mining systems with multiple entities
Vujic, Slobodan; Benovic, Tomo; Miljanovic, Igor; Hudej, Marjan; Milutinovic, Aleksandar; Pavlovic, Petar
2011-12-01
Planning and production optimization within multiple mines or several work sites (entities) mining systems by using fuzzy linear programming (LP) was studied. LP is the most commonly used operations research methods in mining engineering. After the introductory review of properties and limitations of applying LP, short reviews of the general settings of deterministic and fuzzy LP models are presented. With the purpose of comparative analysis, the application of both LP models is presented using the example of the Bauxite Basin Niksic with five mines. After the assessment, LP is an efficient mathematical modeling tool in production planning and solving many other single-criteria optimization problems of mining engineering. After the comparison of advantages and deficiencies of both deterministic and fuzzy LP models, the conclusion presents benefits of the fuzzy LP model but is also stating that seeking the optimal plan of production means to accomplish the overall analysis that will encompass the LP model approaches.
A Stone Resource Assignment Model under the Fuzzy Environment
Directory of Open Access Journals (Sweden)
Liming Yao
2012-01-01
to tackle a stone resource assignment problem with the aim of decreasing dust and waste water emissions. On the upper level, the local government wants to assign a reasonable exploitation amount to each stone plant so as to minimize total emissions and maximize employment and economic profit. On the lower level, stone plants must reasonably assign stone resources to produce different stone products under the exploitation constraint. To deal with inherent uncertainties, the object functions and constraints are defuzzified using a possibility measure. A fuzzy simulation-based improved simulated annealing algorithm (FS-ISA is designed to search for the Pareto optimal solutions. Finally, a case study is presented to demonstrate the practicality and efficiency of the model. Results and a comparison analysis are presented to highlight the performance of the optimization method, which proves to be very efficient compared with other algorithms.
Fuzzy model for predicting the number of deformed wheels
Directory of Open Access Journals (Sweden)
Ž. Đorđević
2015-10-01
Full Text Available Deformation of the wheels damage cars and rails and affect on vehicle stability and safety. Repair and replacement cause high costs and lack of wagons. Planning of maintenance of wagons can not be done without estimates of the number of wheels that will be replaced due to wear and deformation in a given period of time. There are many influencing factors, the most important are: weather conditions, quality of materials, operating conditions, and distance between the two replacements. The fuzzy logic model uses the collected data as input variables to predict the output variable - number of deformed wheels for a certain type of vehicle in the defined period at a particular section of the railway.
Fuzzy modeling based on generalized neural networks and fuzzy clustering objective functions
Sun, Chuen-Tsai; Jang, Jyh-Shing
1991-01-01
An approach to the formulation of fuzzy if-then rules based on clustering objective functions is proposed. The membership functions are then calibrated with the generalized neural networks technique to achieve a desired input-output mapping. The learning procedure is basically a gradient-descent algorithm. A Kalman filter algorithm is used to improve the overall performance.
Study of Problems Faced by Parents of Children with Disability Using Fuzzy Cognitive Maps Model
S. UDAYAKUMAR; A. GURUMOORTHY
2015-01-01
In this paper the stress and social stigma suffered by parents of disabled children are analysed using Fuzzy Cognitive Maps (FCMs) model. Such study is new for researchers have studied only the problems faced by disabled children using mathematical models. However study of the problems faced by those parents using fuzzy models is absent in literature. Here the study is carried out by a pilot survey of 50 odd parents who have been interviewed for this purpose.
On enhancing on-line collaboration using fuzzy logic modeling
Directory of Open Access Journals (Sweden)
Leontios J. Hadjileontiadis
2004-04-01
Full Text Available Web-based collaboration calls for professional skills and competences to the benefit of the quality of the collaboration and its output. Within this framework, educational virtual environments may provide a means for training upon these skills and in particular the collaborative ones. On the basis of the existing technological means such training may be enhanced even more. Designing considerations towards this direction include the close follow-up of the collaborative activity and provision of support grounded upon a pedagogical background. To this vein, a fuzzy logic-based expert system, namely Collaboration/Reflection-Fuzzy Inference System (C/R-FIS, is presented in this paper. By means of interconnected FISs, the C/R-FIS expert system automatically evaluates the collaborative activity of two peers, during their asynchronous, written, web-based collaboration. This information is used for the provision of adaptive support to peers during their collaboration, towards equilibrium of their collaborative activity. In particular, this enhanced formative feedback aims at diminishing the possible dissonance between the individual collaborative skills by challenging self-adjustment procedures. The proposed model extents the evaluation system of a web-based collaborative tool namely Lin2k, which has served as a test-bed for the C/R-FIS experimental use. Results from its experimental use have proved the potentiality of the proposed model to significantly contribute to the enhancement of the collaborative activity and its transferability to other collaborative learning contexts, such as medicine, environmental engineering, law, and music education.
A concurrent optimization model for supplier selection with fuzzy quality loss
Energy Technology Data Exchange (ETDEWEB)
Rosyidi, C.; Murtisari, R.; Jauhari, W.
2017-07-01
The purpose of this research is to develop a concurrent supplier selection model to minimize the purchasing cost and fuzzy quality loss considering process capability and assembled product specification. Design/methodology/approach: This research integrates fuzzy quality loss in the model to concurrently solve the decision making in detailed design stage and manufacturing stage. Findings: The resulted model can be used to concurrently select the optimal supplier and determine the tolerance of the components. The model balances the purchasing cost and fuzzy quality loss. Originality/value: An assembled product consists of many components which must be purchased from the suppliers. Fuzzy quality loss is integrated in the supplier selection model to allow the vagueness in final assembly by grouping the assembly into several grades according to the resulted assembly tolerance.
Intelligent multiagent coordination based on reinforcement hierarchical neuro-fuzzy models.
Mendoza, Leonardo Forero; Vellasco, Marley; Figueiredo, Karla
2014-12-01
This paper presents the research and development of two hybrid neuro-fuzzy models for the hierarchical coordination of multiple intelligent agents. The main objective of the models is to have multiple agents interact intelligently with each other in complex systems. We developed two new models of coordination for intelligent multiagent systems, which integrates the Reinforcement Learning Hierarchical Neuro-Fuzzy model with two proposed coordination mechanisms: the MultiAgent Reinforcement Learning Hierarchical Neuro-Fuzzy with a market-driven coordination mechanism (MA-RL-HNFP-MD) and the MultiAgent Reinforcement Learning Hierarchical Neuro-Fuzzy with graph coordination (MA-RL-HNFP-CG). In order to evaluate the proposed models and verify the contribution of the proposed coordination mechanisms, two multiagent benchmark applications were developed: the pursuit game and the robot soccer simulation. The results obtained demonstrated that the proposed coordination mechanisms greatly improve the performance of the multiagent system when compared with other strategies.
A concurrent optimization model for supplier selection with fuzzy quality loss
International Nuclear Information System (INIS)
Rosyidi, C.; Murtisari, R.; Jauhari, W.
2017-01-01
The purpose of this research is to develop a concurrent supplier selection model to minimize the purchasing cost and fuzzy quality loss considering process capability and assembled product specification. Design/methodology/approach: This research integrates fuzzy quality loss in the model to concurrently solve the decision making in detailed design stage and manufacturing stage. Findings: The resulted model can be used to concurrently select the optimal supplier and determine the tolerance of the components. The model balances the purchasing cost and fuzzy quality loss. Originality/value: An assembled product consists of many components which must be purchased from the suppliers. Fuzzy quality loss is integrated in the supplier selection model to allow the vagueness in final assembly by grouping the assembly into several grades according to the resulted assembly tolerance.
Extracting T–S Fuzzy Models Using the Cuckoo Search Algorithm
Directory of Open Access Journals (Sweden)
Mourad Turki
2017-01-01
Full Text Available A new method called cuckoo search (CS is used to extract and learn the Takagi–Sugeno (T–S fuzzy model. In the proposed method, the particle or cuckoo of CS is formed by the structure of rules in terms of number and selected rules, the antecedent, and consequent parameters of the T–S fuzzy model. These parameters are learned simultaneously. The optimized T–S fuzzy model is validated by using three examples: the first a nonlinear plant modelling problem, the second a Box–Jenkins nonlinear system identification problem, and the third identification of nonlinear system, comparing the obtained results with other existing results of other methods. The proposed CS method gives an optimal T–S fuzzy model with fewer numbers of rules.
Application of a New Hybrid Fuzzy AHP Model to the Location Choice
Directory of Open Access Journals (Sweden)
Chien-Chang Chou
2013-01-01
Full Text Available The purpose of this paper is to propose a new hybrid fuzzy Analytic Hierarchy Process (AHP algorithm to deal with the decision-making problems in an uncertain and multiple-criteria environment. In this study, the proposed hybrid fuzzy AHP model is applied to the location choices of international distribution centers in international ports from the view of multiple-nation corporations. The results show that the proposed new hybrid fuzzy AHP model is an appropriate tool to solve the decision-making problems in an uncertain and multiple-criteria environment.
Directory of Open Access Journals (Sweden)
A.A. Fahmy
2013-12-01
Full Text Available This paper presents a new neuro-fuzzy controller for robot manipulators. First, an inductive learning technique is applied to generate the required inverse modeling rules from input/output data recorded in the off-line structure learning phase. Second, a fully differentiable fuzzy neural network is developed to construct the inverse dynamics part of the controller for the online parameter learning phase. Finally, a fuzzy-PID-like incremental controller was employed as Feedback servo controller. The proposed control system was tested using dynamic model of a six-axis industrial robot. The control system showed good results compared to the conventional PID individual joint controller.
Phase Structure Of Fuzzy Field Theories And Multi trace Matrix Models
International Nuclear Information System (INIS)
Tekel, J.
2015-01-01
We review the interplay of fuzzy field theories and matrix models, with an emphasis on the phase structure of fuzzy scalar field theories. We give a self-contained introduction to these topics and give the details concerning the saddle point approach for the usual single trace and multi trace matrix models. We then review the attempts to explain the phase structure of the fuzzy field theory using a corresponding random matrix ensemble, showing the strength and weaknesses of this approach. We conclude with a list of challenges one needs to overcome and the most interesting open problems one can try to solve. (author)
Fuzzy model-based adaptive synchronization of time-delayed chaotic systems
International Nuclear Information System (INIS)
Vasegh, Nastaran; Majd, Vahid Johari
2009-01-01
In this paper, fuzzy model-based synchronization of a class of first order chaotic systems described by delayed-differential equations is addressed. To design the fuzzy controller, the chaotic system is modeled by Takagi-Sugeno fuzzy system considering the properties of the nonlinear part of the system. Assuming that the parameters of the chaotic system are unknown, an adaptive law is derived to estimate these unknown parameters, and the stability of error dynamics is guaranteed by Lyapunov theory. Numerical examples are given to demonstrate the validity of the proposed adaptive synchronization approach.
Fuzzy Boundary and Fuzzy Semiboundary
M. Athar; B. Ahmad
2008-01-01
We present several properties of fuzzy boundary and fuzzy semiboundary which have been supported by examples. Properties of fuzzy semi-interior, fuzzy semiclosure, fuzzy boundary, and fuzzy semiboundary have been obtained in product-related spaces. We give necessary conditions for fuzzy continuous (resp., fuzzy semicontinuous, fuzzy irresolute) functions. Moreover, fuzzy continuous (resp., fuzzy semicontinuous, fuzzy irresolute) functions have been characterized via fuzzy-derived (resp., fuzz...
MODEL PERANCANGAN DISTRIBUSI AIR DENGAN PENDEKATAN JARINGAN FUZZY
Directory of Open Access Journals (Sweden)
Mulyono Mulyono
2014-02-01
Full Text Available Pada wilayah tertentu belum ada keseimbangan antara permintaan penggunaan air dan nilai aliran maksimum pada jaringan distribusi air Perusahaan Daerah Air Minum (PDAM. Nilai aliran maksimum pada jaringan pipa distribusi air dalam suatu wilayah minimal harus sama dengan ketersediaan suplai air dari sumber mata air dalam wilayah tersebut, agar kebutuhan air pada wilayah yang dilayani dapat tercukupi.Dengan demikian perlu dirancang sebuah jaringan yang dapat mengatasi masalah tersebut. Dalam penelitian ini digunakan pendekatan jaringan fuzzy, yaitu sebuah jaringan dengan parameter berupa bilangan fuzzy. Dalam hal ini digunakan jaringan fuzzy, karena tidak ada data yang pasti tentang kapasitas pipa dalam sebuah jaringan. Dalam penelitian ini telah dihasilkan program untuk memodelkan jaringan fuzzy dan menentukan nilai aliran maksimum pada jaringan fuzzy tersebut. Selanjutnya nilai aliran maksimum digunakan untuk menganalisis pemenuhan kebutuhan air pelanggan dalam suatu wilayah.
Kwong, C K; Fung, K Y; Jiang, Huimin; Chan, K Y; Siu, Kin Wai Michael
2013-01-01
Affective design is an important aspect of product development to achieve a competitive edge in the marketplace. A neural-fuzzy network approach has been attempted recently to model customer satisfaction for affective design and it has been proved to be an effective one to deal with the fuzziness and non-linearity of the modeling as well as generate explicit customer satisfaction models. However, such an approach to modeling customer satisfaction has two limitations. First, it is not suitable for the modeling problems which involve a large number of inputs. Second, it cannot adapt to new data sets, given that its structure is fixed once it has been developed. In this paper, a modified dynamic evolving neural-fuzzy approach is proposed to address the above mentioned limitations. A case study on the affective design of mobile phones was conducted to illustrate the effectiveness of the proposed methodology. Validation tests were conducted and the test results indicated that: (1) the conventional Adaptive Neuro-Fuzzy Inference System (ANFIS) failed to run due to a large number of inputs; (2) the proposed dynamic neural-fuzzy model outperforms the subtractive clustering-based ANFIS model and fuzzy c-means clustering-based ANFIS model in terms of their modeling accuracy and computational effort.
Directory of Open Access Journals (Sweden)
C. K. Kwong
2013-01-01
Full Text Available Affective design is an important aspect of product development to achieve a competitive edge in the marketplace. A neural-fuzzy network approach has been attempted recently to model customer satisfaction for affective design and it has been proved to be an effective one to deal with the fuzziness and non-linearity of the modeling as well as generate explicit customer satisfaction models. However, such an approach to modeling customer satisfaction has two limitations. First, it is not suitable for the modeling problems which involve a large number of inputs. Second, it cannot adapt to new data sets, given that its structure is fixed once it has been developed. In this paper, a modified dynamic evolving neural-fuzzy approach is proposed to address the above mentioned limitations. A case study on the affective design of mobile phones was conducted to illustrate the effectiveness of the proposed methodology. Validation tests were conducted and the test results indicated that: (1 the conventional Adaptive Neuro-Fuzzy Inference System (ANFIS failed to run due to a large number of inputs; (2 the proposed dynamic neural-fuzzy model outperforms the subtractive clustering-based ANFIS model and fuzzy c-means clustering-based ANFIS model in terms of their modeling accuracy and computational effort.
Fuzzy Multicriteria Model for Selection of Vibration Technology
Directory of Open Access Journals (Sweden)
María Carmen Carnero
2016-01-01
Full Text Available The benefits of applying the vibration analysis program are well known and have been so for decades. A large number of contributions have been produced discussing new diagnostic, signal treatment, technical parameter analysis, and prognosis techniques. However, to obtain the expected benefits from a vibration analysis program, it is necessary to choose the instrumentation which guarantees the best results. Despite its importance, in the literature, there are no models to assist in taking this decision. This research describes an objective model using Fuzzy Analytic Hierarchy Process (FAHP to make a choice of the most suitable technology among portable vibration analysers. The aim is to create an easy-to-use model for processing, manufacturing, services, and research organizations, to guarantee adequate decision-making in the choice of vibration analysis technology. The model described recognises that judgements are often based on ambiguous, imprecise, or inadequate information that cannot provide precise values. The model incorporates judgements from several decision-makers who are experts in the field of vibration analysis, maintenance, and electronic devices. The model has been applied to a Health Care Organization.
A brief comparison of fuzzy associative memory models for guiding autonomous problems
Directory of Open Access Journals (Sweden)
Guilherme Augusto de Lima Freitas
2011-09-01
Full Text Available Fuzzy associative memories (FAMs are models inspired in the human brain ability to store and recall information. These models can be used for the storage of associations of fuzzy sets and, thus, they can be used as inference engines in fuzzy controllers. Several FAM models have been developed in the last years, but we are not aware of a work comparing the performance of novel FAMs in control. In this paper, we briefly investigate the performance of some FAMs in the automatic guidance problems of backing-up a truck (BT and backing-up a truck and trailer (BTT. In particular, we note that the dual implicative fuzzy associative memories (co-IFAMs constitute an interesting alternative to traditional models such as that of Kosko and Mamdani.
Load-following Operation for PWRs Using Fuzzy Model Predictive Control
Energy Technology Data Exchange (ETDEWEB)
Lee, Sim Won; Kim, Jae Hwan; Na, Man Gyun; Yu, Keuk Jong [Chosun University, Gwangju (Korea, Republic of)
2011-05-15
In this study, a fuzzy model predictive control method is applied to design an automatic controller for thermal power and axial shape index (ASI) in pressurized water reactors. The future reactor power and ASI are predicted by using the fuzzy model identified by a subtractive clustering method of a fast and robust algorithm. The genetic algorithm that is useful to accomplish multiple objectives is used to optimize the fuzzy model predictive controller. A 3-dimensional nuclear reactor analysis code is used to verify the proposed controller for a nuclear reactor. From results of numerical simulation to check the performance of the proposed controller at the increase or decrease of a desired load (rapid change, load follow), it was found that the nuclear power level and ASI controlled by the proposed fuzzy model predictive controller could track the desired power level and ASI very well
The use of fuzzy logic for data analysis and modelling of European ...
African Journals Online (AJOL)
The use of fuzzy logic for data analysis and modelling of European harmful algal blooms: results of the HABES project. AN Blauw, P Anderson, M Estrada, M Johansen, J Laanemets, L Peperzak, D Purdie, R Raine, E Vahtera ...
Determining factors influencing survival of breast cancer by fuzzy logistic regression model.
Nikbakht, Roya; Bahrampour, Abbas
2017-01-01
Fuzzy logistic regression model can be used for determining influential factors of disease. This study explores the important factors of actual predictive survival factors of breast cancer's patients. We used breast cancer data which collected by cancer registry of Kerman University of Medical Sciences during the period of 2000-2007. The variables such as morphology, grade, age, and treatments (surgery, radiotherapy, and chemotherapy) were applied in the fuzzy logistic regression model. Performance of model was determined in terms of mean degree of membership (MDM). The study results showed that almost 41% of patients were in neoplasm and malignant group and more than two-third of them were still alive after 5-year follow-up. Based on the fuzzy logistic model, the most important factors influencing survival were chemotherapy, morphology, and radiotherapy, respectively. Furthermore, the MDM criteria show that the fuzzy logistic regression have a good fit on the data (MDM = 0.86). Fuzzy logistic regression model showed that chemotherapy is more important than radiotherapy in survival of patients with breast cancer. In addition, another ability of this model is calculating possibilistic odds of survival in cancer patients. The results of this study can be applied in clinical research. Furthermore, there are few studies which applied the fuzzy logistic models. Furthermore, we recommend using this model in various research areas.
Modelling and Internal Fuzzy Model Power Control of a Francis Water Turbine
Directory of Open Access Journals (Sweden)
Klemen Nagode
2014-02-01
Full Text Available This paper presents dynamic modelling of a Francis turbine with a surge tank and the control of a hydro power plant (HPP. Non-linear and linear models include technical parameters and show high similarity to measurement data. Turbine power control with an internal model control (IMC is proposed, based on a turbine fuzzy model. Considering appropriate control responses in the entire area of turbine power, the model parameters of the process are determined from a fuzzy model, which are further included in the internal model controller. The results are compared to a proportional-integral (PI controller tuned with an integral absolute error (IAE objective function, and show an improved response of internal model control.
Software for occupational health and safety risk analysis based on a fuzzy model.
Stefanovic, Miladin; Tadic, Danijela; Djapan, Marko; Macuzic, Ivan
2012-01-01
Risk and safety management are very important issues in healthcare systems. Those are complex systems with many entities, hazards and uncertainties. In such an environment, it is very hard to introduce a system for evaluating and simulating significant hazards. In this paper, we analyzed different types of hazards in healthcare systems and we introduced a new fuzzy model for evaluating and ranking hazards. Finally, we presented a developed software solution, based on the suggested fuzzy model for evaluating and monitoring risk.
Analysis and synthesis for interval type-2 fuzzy-model-based systems
Li, Hongyi; Lam, Hak-Keung; Gao, Yabin
2016-01-01
This book develops a set of reference methods capable of modeling uncertainties existing in membership functions, and analyzing and synthesizing the interval type-2 fuzzy systems with desired performances. It also provides numerous simulation results for various examples, which fill certain gaps in this area of research and may serve as benchmark solutions for the readers. Interval type-2 T-S fuzzy models provide a convenient and flexible method for analysis and synthesis of complex nonlinear systems with uncertainties.
Model for Adjustment of Aggregate Forecasts using Fuzzy Logic
Directory of Open Access Journals (Sweden)
Taracena–Sanz L. F.
2010-07-01
Full Text Available This research suggests a contribution in the implementation of forecasting models. The proposed model is developed with the aim to fit the projection of demand to surroundings of firms, and this is based on three considerations that cause that in many cases the forecasts of the demand are different from reality, such as: 1 one of the problems most difficult to model in the forecasts is the uncertainty related to the information available; 2 the methods traditionally used by firms for the projection of demand mainly are based on past behavior of the market (historical demand; and 3 these methods do not consider in their analysis the factors that are influencing so that the observed behaviour occurs. Therefore, the proposed model is based on the implementation of Fuzzy Logic, integrating the main variables that affect the behavior of market demand, and which are not considered in the classical statistical methods. The model was applied to a bottling of carbonated beverages, and with the adjustment of the projection of demand a more reliable forecast was obtained.
Fuzzy interaction modelling for participants in innovation development: approaches and examples
Directory of Open Access Journals (Sweden)
CHERNOV Vladimir
2018-01-01
Full Text Available The article considers the interaction problems of the participants in innovative development at the regional level. Mathematical approaches and formulations for mode lling, such as the interaction on the basis of game approaches and the theory of fuzzy sets, have been proposed. In particular, the interaction model of innovative participants in the region, considered as a fuzzy coalition game, is presented. Its theoretical justification and an example of practical calculations are given. Further, the methodology of interaction modelling is considered , taking into account the motives of the participants in innovative development when forming fuzzy coalitions. An example of the corresponding calculations is also given. Also, the interaction model of "state-regions" in the interpretation of the fuzzy hierarchical game is proposed and described. The features of its solution are described and an example of calculations is presented.
A fuzzy logic approach to modeling the underground economy in Taiwan
Yu, Tiffany Hui-Kuang; Wang, David Han-Min; Chen, Su-Jane
2006-04-01
The size of the ‘underground economy’ (UE) is valuable information in the formulation of macroeconomic and fiscal policy. This study applies fuzzy set theory and fuzzy logic to model Taiwan's UE over the period from 1960 to 2003. Two major factors affecting the size of the UE, the effective tax rate and the degree of government regulation, are used. The size of Taiwan's UE is scaled and compared with those of other models. Although our approach yields different estimates, similar patterns and leading are exhibited throughout the period. The advantage of applying fuzzy logic is twofold. First, it can avoid the complex calculations in conventional econometric models. Second, fuzzy rules with linguistic terms are easy for human to understand.
Modeling of type-2 fuzzy cubic B-spline surface for flood data problem in Malaysia
Bidin, Mohd Syafiq; Wahab, Abd. Fatah
2017-08-01
Malaysia possesses a low and sloping land areas which may cause flood. The flood phenomenon can be analyzed if the surface data of the study area can be modeled by geometric modeling. Type-2 fuzzy data for the flood data is defined using type-2 fuzzy set theory in order to solve the uncertainty of complex data. Then, cubic B-spline surface function is used to produce a smooth surface. Three main processes are carried out to find a solution to crisp type-2 fuzzy data which is fuzzification (α-cut operation), type-reduction and defuzzification. Upon conducting these processes, Type-2 Fuzzy Cubic B-Spline Surface Model is applied to visualize the surface data of the flood areas that are complex uncertainty.
A fuzzy Bi-linear management model in reverse logistic chains
Directory of Open Access Journals (Sweden)
Tadić Danijela
2016-01-01
Full Text Available The management of the electrical and electronic waste (WEEE problem in the uncertain environment has a critical effect on the economy and environmental protection of each region. The considered problem can be stated as a fuzzy non-convex optimization problem with linear objective function and a set of linear and non-linear constraints. The original problem is reformulated by using linear relaxation into a fuzzy linear programming problem. The fuzzy rating of collecting point capacities and fix costs of recycling centers are modeled by triangular fuzzy numbers. The optimal solution of the reformulation model is found by using optimality concept. The proposed model is verified through an illustrative example with real-life data. The obtained results represent an input for future research which should include a good benchmark base for tested reverse logistic chains and their continuous improvement. [Projekat Ministarstva nauke Republike Srbije, br. 035033: Sustainable development technology and equipment for the recycling of motor vehicles
Modelling of the automatic stabilization system of the aircraft course by a fuzzy logic method
Mamonova, T.; Syryamkin, V.; Vasilyeva, T.
2016-04-01
The problem of the present paper concerns the development of a fuzzy model of the system of an aircraft course stabilization. In this work modelling of the aircraft course stabilization system with the application of fuzzy logic is specified. Thus the authors have used the data taken for an ordinary passenger plane. As a result of the study the stabilization system models were realised in the environment of Matlab package Simulink on the basis of the PID-regulator and fuzzy logic. The authors of the paper have shown that the use of the method of artificial intelligence allows reducing the time of regulation to 1, which is 50 times faster than the time when standard receptions of the management theory are used. This fact demonstrates a positive influence of the use of fuzzy regulation.
Reliability modelling of repairable systems using Petri nets and fuzzy Lambda-Tau methodology
Energy Technology Data Exchange (ETDEWEB)
Knezevic, J.; Odoom, E.R
2001-07-01
A methodology is developed which uses Petri nets instead of the fault tree methodology and solves for reliability indices utilising fuzzy Lambda-Tau method. Fuzzy set theory is used for representing the failure rate and repair time instead of the classical (crisp) set theory because fuzzy numbers allow expert opinions, linguistic variables, operating conditions, uncertainty and imprecision in reliability information to be incorporated into the system model. Petri nets are used because unlike the fault tree methodology, the use of Petri nets allows efficient simultaneous generation of minimal cut and path sets.
Coupland, Simon
2006-01-01
There has recently been a significant increase in academic interest in the field oftype-2 fuzzy sets and systems. Type-2 fuzzy systems offer the ability to model and reason with uncertain concepts. When faced with uncertainties type-2 fuzzy systems should, theoretically, give an increase in performance over type-l fuzzy systems. However, the computational complexity of generalised type-2 fuzzy systems is significantly higher than type-l systems. A direct consequence of this is that, prior to ...
Directory of Open Access Journals (Sweden)
Jing Lu
2014-11-01
Full Text Available We propose a weather prediction model in this article based on neural network and fuzzy inference system (NFIS-WPM, and then apply it to predict daily fuzzy precipitation given meteorological premises for testing. The model consists of two parts: the first part is the “fuzzy rule-based neural network”, which simulates sequential relations among fuzzy sets using artificial neural network; and the second part is the “neural fuzzy inference system”, which is based on the first part, but could learn new fuzzy rules from the previous ones according to the algorithm we proposed. NFIS-WPM (High Pro and NFIS-WPM (Ave are improved versions of this model. It is well known that the need for accurate weather prediction is apparent when considering the benefits. However, the excessive pursuit of accuracy in weather prediction makes some of the “accurate” prediction results meaningless and the numerical prediction model is often complex and time-consuming. By adapting this novel model to a precipitation prediction problem, we make the predicted outcomes of precipitation more accurate and the prediction methods simpler than by using the complex numerical forecasting model that would occupy large computation resources, be time-consuming and which has a low predictive accuracy rate. Accordingly, we achieve more accurate predictive precipitation results than by using traditional artificial neural networks that have low predictive accuracy.
Excellent approach to modeling urban expansion by fuzzy cellular automata: agent base model
Khajavigodellou, Yousef; Alesheikh, Ali A.; Mohammed, Abdulrazak A. S.; Chapi, Kamran
2014-09-01
Recently, the interaction between humans and their environment is the one of important challenges in the world. Landuse/ cover change (LUCC) is a complex process that includes actors and factors at different social and spatial levels. The complexity and dynamics of urban systems make the applicable practice of urban modeling very difficult. With the increased computational power and the greater availability of spatial data, micro-simulation such as the agent based and cellular automata simulation methods, has been developed by geographers, planners, and scholars, and it has shown great potential for representing and simulating the complexity of the dynamic processes involved in urban growth and land use change. This paper presents Fuzzy Cellular Automata in Geospatial Information System and remote Sensing to simulated and predicted urban expansion pattern. These FCA-based dynamic spatial urban models provide an improved ability to forecast and assess future urban growth and to create planning scenarios, allowing us to explore the potential impacts of simulations that correspond to urban planning and management policies. A fuzzy inference guided cellular automata approach. Semantic or linguistic knowledge on Land use change is expressed as fuzzy rules, based on which fuzzy inference is applied to determine the urban development potential for each pixel. The model integrates an ABM (agent-based model) and FCA (Fuzzy Cellular Automata) to investigate a complex decision-making process and future urban dynamic processes. Based on this model rapid development and green land protection under the influences of the behaviors and decision modes of regional authority agents, real estate developer agents, resident agents and non- resident agents and their interactions have been applied to predict the future development patterns of the Erbil metropolitan region.
Vibration modeling of structural fuzzy with continuous boundary
DEFF Research Database (Denmark)
Friis, Lars; Ohlrich, Mogens
2008-01-01
From experiments it is well known that the vibration response of a main structure with many attached substructures often shows more damping than structural losses in the components can account for. In practice, these substructures, which are not attached in an entirely rigid manner, behave like...... effect of the fuzzy with spatial memory is demonstrated by numerical simulations of a main beam structure with fuzzy attachments. It is shown that the introduction of spatial memory reduces the damping effect of the fuzzy and in certain cases the damping effect may even be eliminated completely....
Directory of Open Access Journals (Sweden)
A. Stanley Raj
2015-01-01
Full Text Available Soft computing based geoelectrical data inversion differs from conventional computing in fixing the uncertainty problems. It is tractable, robust, efficient, and inexpensive. In this paper, fuzzy logic clustering methods are used in the inversion of geoelectrical resistivity data. In order to characterize the subsurface features of the earth one should rely on the true field oriented data validation. This paper supports the field data obtained from the published results and also plays a crucial role in making an interdisciplinary approach to solve complex problems. Three clustering algorithms of fuzzy logic, namely, fuzzy C-means clustering, fuzzy K-means clustering, and fuzzy subtractive clustering, were analyzed with the help of fuzzy inference system (FIS training on synthetic data. Here in this approach, graphical user interface (GUI was developed with the integration of three algorithms and the input data (AB/2 and apparent resistivity, while importing will process each algorithm and interpret the layer model parameters (true resistivity and depth. A complete overview on the three above said algorithms is presented in the text. It is understood from the results that fuzzy logic subtractive clustering algorithm gives more reliable results and shows efficacy of soft computing tools in the inversion of geoelectrical resistivity data.
Postoperative vomiting in pediatric oncologic patients: prediction by a fuzzy logic model.
Bassanezi, Betina S B; de Oliveira-Filho, Antônio G; Jafelice, Rosana S M; Bustorff-Silva, Joaquim M; Udelsmann, Artur
2013-01-01
To report a fuzzy logic mathematical model to predict postoperative vomiting (POV) in pediatric oncologic patients and compare with preexisting scores. Although POV has a high incidence in children and may decrease parental satisfaction after surgeries, there is only one specific score that predicts POV in children: the Eberhart's score. In this study, we report a fuzzy model that intends to predict the probability of POV in pediatric oncologic patients. Fuzzy logic is a mathematical theory that recognizes more than simple true and false values and takes into account levels of continuous variables such as age or duration of the surgery. The fuzzy model tries to account for subjectiveness in the variables. Preoperative potential risk factors for POV in 198 children (0-19 year old) with malignancies were collected and analyzed. Data analysis was performed with the chi-square test and logistic regression to evaluate probable risk factors for POV. A system based on fuzzy logic was developed with the risk factors found in the logistic regression, and a computational interface was created to calculate the probability of POV. The model showed a good performance in predicting POV. After the analysis, the model was compared with Eberhart's score in the same population and showed a better performance. The fuzzy score can predict the chance of POV in children with cancer with good accuracy, allowing better planning for postoperative prophylaxis of vomiting. The computational interface is available for free download at the internet and is very easy to use. © 2012 Blackwell Publishing Ltd.
Ruan, Jinghua; Chen, Yong; Xiao, Xiao; Yong, Gan; Huang, Ranran; Miao, Zuohua
2018-01-01
Aimed at the fuzziness and randomness during the evaluation process, this paper constructed a fuzzy comprehensive evaluation method based on cloud model. The evaluation index system was established based on the inherent risk, present level and control situation, which had been proved to be able to convey the main contradictions of ecological risk in mine on the macro level, and be advantageous for comparison among mines. The comment sets and membership functions improved by cloud model could reflect the uniformity of ambiguity and randomness effectively. In addition, the concept of fuzzy entropy was introduced to further characterize the fuzziness of assessments results and the complexities of ecological problems in target mine. A practical example in Chengchao Iron Mine evidenced that, the assessments results can reflect actual situations appropriately and provide a new theoretic guidance for comprehensive ecological risk evaluation of underground iron mine.
Fuzzy-probabilistic model for risk assessment of radioactive material railway transportation.
Avramenko, M; Bolyatko, V; Kosterev, V
2005-01-01
Transportation of radioactive materials is obviously accompanied by a certain risk. A model for risk assessment of emergency situations and terrorist attacks may be useful for choosing possible routes and for comparing the various defence strategies. In particular, risk assessment is crucial for safe transportation of excess weapons-grade plutonium arising from the removal of plutonium from military employment. A fuzzy-probabilistic model for risk assessment of railway transportation has been developed taking into account the different natures of risk-affecting parameters (probabilistic and not probabilistic but fuzzy). Fuzzy set theory methods as well as standard methods of probability theory have been used for quantitative risk assessment. Information-preserving transformations are applied to realise the correct aggregation of probabilistic and fuzzy parameters. Estimations have also been made of the inhalation doses resulting from possible accidents during plutonium transportation. The obtained data show the scale of possible consequences that may arise from plutonium transportation accidents.
A reduced-form intensity-based model under fuzzy environments
Wu, Liang; Zhuang, Yaming
2015-05-01
The external shocks and internal contagion are the important sources of default events. However, the external shocks and internal contagion effect on the company is not observed, we cannot get the accurate size of the shocks. The information of investors relative to the default process exhibits a certain fuzziness. Therefore, using randomness and fuzziness to study such problems as derivative pricing or default probability has practical needs. But the idea of fuzzifying credit risk models is little exploited, especially in a reduced-form model. This paper proposes a new default intensity model with fuzziness and presents a fuzzy default probability and default loss rate, and puts them into default debt and credit derivative pricing. Finally, the simulation analysis verifies the rationality of the model. Using fuzzy numbers and random analysis one can consider more uncertain sources in the default process of default and investors' subjective judgment on the financial markets in a variety of fuzzy reliability so as to broaden the scope of possible credit spreads.
Fuzzy Dodecahedron topology and E-infinity spacetime as a model for quantum physics
International Nuclear Information System (INIS)
El Naschie, M.S.
2006-01-01
The geometry of classical platonic solids and their generalization to four-dimensional fuzzy polytopes are considered. Subsequently it is shown how the so obtained relationships and the associated symmetry groups are related to high energy particle physics. In particular the topology of a fuzzy Dodecahedron and four-dimensional polytopes are used to give information about the elementary particles content of the standard model of high energy physics
Fuzzy Modeled K-Cluster Quality Mining of Hidden Knowledge for Decision Support
S. Parkash Kumar; K. S. Ramaswami
2011-01-01
Problem statement: The work presented Fuzzy Modeled K-means Cluster Quality Mining of hidden knowledge for Decision Support. Based on the number of clusters, number of objects in each cluster and its cohesiveness, precision and recall values, the cluster quality metrics is measured. The fuzzy k-means is adapted approach by using heuristic method which iterates the cluster to form an efficient valid cluster. With the obtained data clusters, quality assessment is made by predictive mining using...
Decentralized Fuzzy P-hub Centre Problem: Extended Model and Genetic Algorithms
Sara Mousavinia; Majid Khalili; Mohammad Shafiee
2017-01-01
This paper studies the uncapacitated P-hub center problem in a network under decentralized management assuming time as a fuzzy variable. In this network, transport companies act independently, each company makes its route choices according to its own criteria. In this model, time is presented by triangular fuzzy number and used to calculate the fraction of users that probably choose hub routes instead of direct routes. To solve the problem, two genetic algorithms are proposed. The computation...
Vipan Kumar Sohpal; Amarpal Singh; Apurba Dey
2011-01-01
Biodiesel is an alternative source of fuel that can be synthesized from edible, non-edible and waste oils through transesterification. Firstly Transesterification reaction of Jatropha Curcas oil with butanol in the ratio of 1:25 investigated by using of sodium hydroxide catalyst with mixing intensity of 250 rpm in isothermal batch reactor. Secondly the fuzzy model of the temperature is developed. Performance was evaluated by comparing fuzzy model with the batch kinetic data. Fuzzy models were...
A Novel Exercise Thermophysiology Comfort Prediction Model with Fuzzy Logic
Directory of Open Access Journals (Sweden)
Nan Jia
2016-01-01
Full Text Available Participation in a regular exercise program can improve health status and contribute to an increase in life expectancy. However, exercise accidents like dehydration, exertional heatstroke, syncope, and even sudden death exist. If these accidents can be analyzed or predicted before they happen, it will be beneficial to alleviate or avoid uncomfortable or unacceptable human disease. Therefore, an exercise thermophysiology comfort prediction model is needed. In this paper, coupling the thermal interactions among human body, clothing, and environment (HCE as well as the human body physiological properties, a human thermophysiology regulatory model is designed to enhance the human thermophysiology simulation in the HCE system. Some important thermal and physiological performances can be simulated. According to the simulation results, a human exercise thermophysiology comfort prediction method based on fuzzy inference system is proposed. The experiment results show that there is the same prediction trend between the experiment result and simulation result about thermophysiology comfort. At last, a mobile application platform for human exercise comfort prediction is designed and implemented.
Fuzzy subtractive clustering based prediction model for brand association analysis
Directory of Open Access Journals (Sweden)
Widodo Imam Djati
2018-01-01
Full Text Available The brand is one of the crucial elements that determine the success of a product. Consumers in determining the choice of a product will always consider product attributes (such as features, shape, and color, however consumers are also considering the brand. Brand will guide someone to associate a product with specific attributes and qualities. This study was designed to identify the product attributes and predict brand performance with those attributes. A survey was run to obtain the attributes affecting the brand. Subtractive Fuzzy Clustering was used to classify and predict product brand association based aspects of the product under investigation. The result indicates that the five attributes namely shape, ease, image, quality and price can be used to classify and predict the brand. Training step gives best FSC model with radii (ra = 0.1. It develops 70 clusters/rules with MSE (Training is 9.7093e-016. By using 14 data testing, the model can predict brand very well (close to the target with MSE is 0.6005 and its’ accuracy rate is 71%.
Transport Routes Optimization Model Through Application of Fuzzy Logic
Directory of Open Access Journals (Sweden)
Ivan Bortas
2018-03-01
Full Text Available The transport policy of the European Union is based on the mission of restructuring road traffic into other and energy-favourable transport modes which have not been sufficiently represented yet. Therefore, the development of the inland waterway and rail transport, and connectivity in the intermodal transport network are development planning priorities of the European transport strategy. The aim of this research study was to apply the scientific methodology and thus analyse the factors that affect the distribution of the goods flows and by using the fuzzy logic to make an optimization model, according to the criteria of minimizing the costs and negative impact on the environment, for the selection of the optimal transport route. Testing of the model by simulation, was performed on the basis of evaluating the criteria of the influential parameters with unprecise and indefinite input parameters. The testing results show that by the distribution of the goods flow from road transport network to inland waterways or rail transport, can be predicted in advance and determine the transport route with optimal characteristics. The results of the performed research study will be used to improve the process of planning the transport service, with the aim of reducing the transport costs and environmental pollution.
Inclusive integral evaluation for mammograms using the hierarchical fuzzy integral (HFI) model
International Nuclear Information System (INIS)
Amano, Takashi; Yamashita, Kazuya; Arao, Shinichi; Kitayama, Akira; Hayashi, Akiko; Suemori, Shinji; Ohkura, Yasuhiko
2000-01-01
Physical factors (physically evaluated values) and psychological factors (fuzzy measurements) of breast x-ray images were comprehensively evaluated by applying breast x-ray images to an extended stratum-type fuzzy integrating model. In addition, x-ray images were evaluated collectively by integrating the quality (sharpness, graininess, and contrast) of x-ray images and three representative shadows (fibrosis, calcification, tumor) in the breast x-ray images. We selected the most appropriate system for radiography of the breast from three kinds of intensifying screens and film systems for evaluation by this method and investigated the relationship between the breast x-ray images and noise equivalent quantum number, which is called the overall physical evaluation method, and between the breast x-ray images and psychological evaluation by a visual system with a stratum-type fuzzy integrating model. We obtained a linear relationship between the breast x-ray image and noise-equivalent quantum number, and linearity between the breast x-ray image and psychological evaluation by the visual system. Therefore, the determination of fuzzy measurement, which is a scale for fuzzy evaluation of psychological factors of the observer, and physically evaluated values with a stratum-type fuzzy integrating model enabled us to make a comprehensive evaluation of x-ray images that included both psychological and physical aspects. (author)
Modeling the transparent shape memory gels by 3D printer Acculas
Kumagai, Hiroaki; Arai, Masanori; Gong, Jin; Sakai, Kazuyuki; Kawakami, Masaru; Furukawa, Hidemitsu
2016-04-01
In our group, highly transparent shape memory gels were successfully synthesized for the first time in the world. These gels have the high strength of 3MPs modulus even with the water content of 40wt% water and high transparency. We consider that these highly transparent and high strength gels can be applied to the optical devices such as intraocular-lenses and optical fibers. In previous research by our group, attempts were made to manufacture the gel intraocular-lenses using highly transparent shape memory gels. However, it was too difficult to print the intraocular-lens finely enough. Here, we focus on a 3D printer, which can produce objects of irregular shape. 3D printers generally we fused deposition modeling (FDM), a stereo lithography apparatus (SLA) and selective laser sintering (SLS). Because highly transparent shape memory gels are gelled by light irradiation, we used 3D printer with stereo lithography apparatus (SLA). In this study, we found the refractive index of highly transparent shape memory gels depend on monomer concentration, and does not depend on the cross-linker or initiator concentration. Furthermore, the cross-linker and initiator concentration can change the gelation progression rate. As a result, we have developed highly transparent shape memory gels, which can have a range of refractive indexes, and we defined the optimal conditions that can be modeling in the 3D printer by changing the cross-linker and initiator concentration. With these discoveries we were able to produce a gel intraocular-lens replica.
Directory of Open Access Journals (Sweden)
Oladipupo Bello
2014-09-01
Full Text Available In this paper, a fuzzy model predictive control (FMPC strategy is proposed to regulate the output variables of a coagulation chemical dosing unit. A multiple-input, multiple-output (MIMO process model in form of a linearised Takagi–Sugeno (T–S fuzzy model is derived. The process model is obtained through subtractive clustering from the plant's data set. The MIMO model is described by a set of coupled multiple-input, single-output models (MISO. In the controller design, the T–S fuzzy model is applied in combination with the nonlinear model predictive control (MPC algorithm. The results show that the proposed controller has good set-point tracking when compared with nonlinear MPC and adequate disturbance rejection ability required for efficient coagulation control and process optimisation in water treatment operations.
A novel methodology improves reservoir characterization models using geologic fuzzy variables
Energy Technology Data Exchange (ETDEWEB)
Soto B, Rodolfo [DIGITOIL, Maracaibo (Venezuela); Soto O, David A. [Texas A and M University, College Station, TX (United States)
2004-07-01
One of the research projects carried out in Cusiana field to explain its rapid decline during the last years was to get better permeability models. The reservoir of this field has a complex layered system that it is not easy to model using conventional methods. The new technique included the development of porosity and permeability maps from cored wells following the same trend of the sand depositions for each facie or layer according to the sedimentary facie and the depositional system models. Then, we used fuzzy logic to reproduce those maps in three dimensions as geologic fuzzy variables. After multivariate statistical and factor analyses, we found independence and a good correlation coefficient between the geologic fuzzy variables and core permeability and porosity. This means, the geologic fuzzy variable could explain the fabric, the grain size and the pore geometry of the reservoir rock trough the field. Finally, we developed a neural network permeability model using porosity, gamma ray and the geologic fuzzy variable as input variables. This model has a cross-correlation coefficient of 0.873 and average absolute error of 33% compared with the actual model with a correlation coefficient of 0.511 and absolute error greater than 250%. We tested different methodologies, but this new one showed dramatically be a promiser way to get better permeability models. The use of the models have had a high impact in the explanation of well performance and workovers, and reservoir simulation models. (author)
Directory of Open Access Journals (Sweden)
Nguyen Kim Quoc
2015-08-01
Full Text Available The bottleneck control by active queue management mechanisms at network nodes is essential. In recent years, some researchers have used fuzzy argument to improve the active queue management mechanisms to enhance the network performance. However, the projects using the fuzzy controller depend heavily on professionals and their parameters cannot be updated according to changes in the network, so the effectiveness of this mechanism is not high. Therefore, we propose a model combining the fuzzy controller with neural network (FNN to overcome the limitations above. Results of the training of the neural networks will find the optimal parameters for the adaptive fuzzy controller well to changes of the network. This improves the operational efficiency of the active queue management mechanisms at network nodes.
A genetic-based neuro-fuzzy approach for modeling and control of dynamical systems.
Farag, W A; Quintana, V H; Lambert-Torres, G
1998-01-01
Linguistic modeling of complex irregular systems constitutes the heart of many control and decision making systems, and fuzzy logic represents one of the most effective algorithms to build such linguistic models. In this paper, a linguistic (qualitative) modeling approach is proposed. The approach combines the merits of the fuzzy logic theory, neural networks, and genetic algorithms (GA's). The proposed model is presented in a fuzzy-neural network (FNN) form which can handle both quantitative (numerical) and qualitative (linguistic) knowledge. The learning algorithm of an FNN is composed of three phases. The first phase is used to find the initial membership functions of the fuzzy model. In the second phase, a new algorithm is developed and used to extract the linguistic-fuzzy rules. In the third phase, a multiresolutional dynamic genetic algorithm (MRD-GA) is proposed and used for optimized tuning of membership functions of the proposed model. Two well-known benchmarks are used to evaluate the performance of the proposed modeling approach, and compare it with other modeling approaches.
Application of an advanced fuzzy logic model for landslide susceptibility analysis
Directory of Open Access Journals (Sweden)
Biswajeet Pradhan
2010-09-01
Full Text Available The aim of this study is to evaluate the susceptibility of landslides at Klang valley area, Malaysia, using a Geographic Information System (GIS and remote sensing. Landslide locations were identified in the study area from interpretation of aerial photographs and from field surveys. Topographical and geological data and satellite images were collected, processed, and constructed into a spatial database using GIS and image processing. A data derived model (frequency ratio and a knowledge-derived model (fuzzy operator were combined for landslide susceptibility analysis. The nine factors that influence landslide occurrence were extracted from the database and the frequency ratio coefficient for each factor was computed. Using the factors and the identified landslide, the fuzzy membership values were calculated. Then fuzzy algebraic operators were applied to the fuzzy membership values for landslide susceptibility mapping. Finally, the produced map was verified by comparing with existing landslide locations for calculating prediction accuracy. Among the fuzzy operators, in the case in which the gamma operator (l = 0.8 showed the best accuracy (91% while the case in which the fuzzy algebraic product was applied showed the worst accuracy (79%.
Liu, Fang; Zhang, Wei-Guo
2014-08-01
Due to the vagueness of real-world environments and the subjective nature of human judgments, it is natural for experts to estimate their judgements by using incomplete interval fuzzy preference relations. In this paper, based on the technique for order preference by similarity to ideal solution method, we present a consensus model for group decision-making (GDM) with incomplete interval fuzzy preference relations. To do this, we first define a new consistency measure for incomplete interval fuzzy preference relations. Second, a goal programming model is proposed to estimate the missing interval preference values and it is guided by the consistency property. Third, an ideal interval fuzzy preference relation is constructed by using the induced ordered weighted averaging operator, where the associated weights of characterizing the operator are based on the defined consistency measure. Fourth, a similarity degree between complete interval fuzzy preference relations and the ideal one is defined. The similarity degree is related to the associated weights, and used to aggregate the experts' preference relations in such a way that more importance is given to ones with the higher similarity degree. Finally, a new algorithm is given to solve the GDM problem with incomplete interval fuzzy preference relations, which is further applied to partnership selection in formation of virtual enterprises.
A new approach for automatic control modeling, analysis and design in fully fuzzy environment
Directory of Open Access Journals (Sweden)
Walaa Ibrahim Gabr
2015-09-01
Full Text Available The paper presents a new approach for the modeling, analysis and design of automatic control systems in fully fuzzy environment based on the normalized fuzzy matrices. The approach is also suitable for determining the propagation of fuzziness in automatic control and dynamical systems where all system coefficients are expressed as fuzzy parameters. A new consolidity chart is suggested based on the recently newly developed system consolidity index for testing the susceptibility of the system to withstand changes due to any system or input parameters changes effects. Implementation procedures are elaborated for the consolidity analysis of existing control systems and the design of new ones, including systems comparisons based on such implementation consolidity results. Application of the proposed methodology is demonstrated through illustrative examples, covering fuzzy impulse response of systems, fuzzy Routh–Hurwitz stability criteria, fuzzy controllability and observability. Moreover, the use of the consolidity chart for the appropriate design of control system is elaborated through handling the stabilization of inverted pendulum through pole placement technique. It is also shown that the regions comparison in consolidity chart is based on type of consolidity region shape such as elliptical or circular, slope or angle in degrees of the centerline of the geometric shape, the centroid of the geometric shape, area of the geometric shape, length of principal diagonals of the shape, and the diversity ratio of consolidity points for each region. Finally, it is recommended that the proposed consolidity chart approach be extended as a unified theory for modeling, analysis and design of continuous and digital automatic control systems operating in fully fuzzy environment.
Carlsson, Christer; Fullér, Robert
2004-01-01
Fuzzy Logic in Management demonstrates that difficult problems and changes in the management environment can be more easily handled by bringing fuzzy logic into the practice of management. This explicit theme is developed through the book as follows: Chapter 1, "Management and Intelligent Support Technologies", is a short survey of management leadership and what can be gained from support technologies. Chapter 2, "Fuzzy Sets and Fuzzy Logic", provides a short introduction to fuzzy sets, fuzzy relations, the extension principle, fuzzy implications and linguistic variables. Chapter 3, "Group Decision Support Systems", deals with group decision making, and discusses methods for supporting the consensus reaching processes. Chapter 4, "Fuzzy Real Options for Strategic Planning", summarizes research where the fuzzy real options theory was implemented as a series of models. These models were thoroughly tested on a number of real life investments, and validated in 2001. Chapter 5, "Soft Computing Methods for Reducing...
Structural Health Monitoring of Transport Aircraft with Fuzzy Logic Modeling
Directory of Open Access Journals (Sweden)
Ray C. Chang
2013-01-01
Full Text Available A structural health monitoring method based on the concept of static aeroelasticity is presented in this paper. This paper focuses on the estimation of these aeroelastic effects on older transport aircraft, in particular the structural components that are most affected, in severe atmospheric turbulence. Because the structural flexibility properties are mostly unknown to aircraft operators, only the trend, not the magnitude, of these effects is estimated. For this purpose, one useful concept in static aeroelastic effects for conventional aircraft structures is that under aeroelastic deformation the aerodynamic center should move aft. This concept is applied in the present paper by using the fuzzy-logic aerodynamic models. A twin-jet transport aircraft in severe atmospheric turbulence involving plunging motion is examined. It is found that the pitching moment derivatives in cruise with moderate to severe turbulence in transonic flight indicate some degree of abnormality in the stabilizer (i.e., the horizontal tail. Therefore, the horizontal tail is the most severely affected structural component of the aircraft probably caused by vibration under the dynamic loads induced by turbulence.
Takagi-Sugeno fuzzy models in the framework of orthonormal basis functions.
Machado, Jeremias B; Campello, Ricardo J G B; Amaral, Wagner Caradori
2013-06-01
An approach to obtain Takagi-Sugeno (TS) fuzzy models of nonlinear dynamic systems using the framework of orthonormal basis functions (OBFs) is presented in this paper. This approach is based on an architecture in which local linear models with ladder-structured generalized OBFs (GOBFs) constitute the fuzzy rule consequents and the outputs of the corresponding GOBF filters are input variables for the rule antecedents. The resulting GOBF-TS model is characterized by having only real-valued parameters that do not depend on any user specification about particular types of functions to be used in the orthonormal basis. The fuzzy rules of the model are initially obtained by means of a well-known technique based on fuzzy clustering and least squares. Those rules are then simplified, and the model parameters (GOBF poles, GOBF expansion coefficients, and fuzzy membership functions) are subsequently adjusted by using a nonlinear optimization algorithm. The exact gradients of an error functional with respect to the parameters to be optimized are computed analytically. Those gradients provide exact search directions for the optimization process, which relies solely on input-output data measured from the system to be modeled. An example is presented to illustrate the performance of this approach in the modeling of a complex nonlinear dynamic system.
Application of fuzzy goal programming approach to multi-objective linear fractional inventory model
Dutta, D.; Kumar, Pavan
2015-09-01
In this paper, we propose a model and solution approach for a multi-item inventory problem without shortages. The proposed model is formulated as a fractional multi-objective optimisation problem along with three constraints: budget constraint, space constraint and budgetary constraint on ordering cost of each item. The proposed inventory model becomes a multiple criteria decision-making (MCDM) problem in fuzzy environment. This model is solved by multi-objective fuzzy goal programming (MOFGP) approach. A numerical example is given to illustrate the proposed model.
Introduction to Fuzzy Set Theory
Kosko, Bart
1990-01-01
An introduction to fuzzy set theory is described. Topics covered include: neural networks and fuzzy systems; the dynamical systems approach to machine intelligence; intelligent behavior as adaptive model-free estimation; fuzziness versus probability; fuzzy sets; the entropy-subsethood theorem; adaptive fuzzy systems for backing up a truck-and-trailer; product-space clustering with differential competitive learning; and adaptive fuzzy system for target tracking.
Fuzzy Control Model and Simulation for Nonlinear Supply Chain System with Lead Times
Directory of Open Access Journals (Sweden)
Songtao Zhang
2017-01-01
Full Text Available A new fuzzy robust control strategy for the nonlinear supply chain system in the presence of lead times is proposed. Based on Takagi-Sugeno fuzzy control system, the fuzzy control model of the nonlinear supply chain system with lead times is constructed. Additionally, we design a fuzzy robust H∞ control strategy taking the definition of maximal overlapped-rules group into consideration to restrain the impacts such as those caused by lead times, switching actions among submodels, and customers’ stochastic demands. This control strategy can not only guarantee that the nonlinear supply chain system is robustly asymptotically stable but also realize soft switching among subsystems of the nonlinear supply chain to make the less fluctuation of the system variables by introducing the membership function of fuzzy system. The comparisons between the proposed fuzzy robust H∞ control strategy and the robust H∞ control strategy are finally illustrated through numerical simulations on a two-stage nonlinear supply chain with lead times.
Boutalis, Yiannis; Kottas, Theodore; Christodoulou, Manolis A
2014-01-01
Presenting current trends in the development and applications of intelligent systems in engineering, this monograph focuses on recent research results in system identification and control. The recurrent neurofuzzy and the fuzzy cognitive network (FCN) models are presented. Both models are suitable for partially-known or unknown complex time-varying systems. Neurofuzzy Adaptive Control contains rigorous proofs of its statements which result in concrete conclusions for the selection of the design parameters of the algorithms presented. The neurofuzzy model combines concepts from fuzzy systems and recurrent high-order neural networks to produce powerful system approximations that are used for adaptive control. The FCN model stems from fuzzy cognitive maps and uses the notion of “concepts” and their causal relationships to capture the behavior of complex systems. The book shows how, with the benefit of proper training algorithms, these models are potent system emulators suitable for use in engineering s...
Nonlinear Aerodynamic Modeling From Flight Data Using Advanced Piloted Maneuvers and Fuzzy Logic
Brandon, Jay M.; Morelli, Eugene A.
2012-01-01
Results of the Aeronautics Research Mission Directorate Seedling Project Phase I research project entitled "Nonlinear Aerodynamics Modeling using Fuzzy Logic" are presented. Efficient and rapid flight test capabilities were developed for estimating highly nonlinear models of airplane aerodynamics over a large flight envelope. Results showed that the flight maneuvers developed, used in conjunction with the fuzzy-logic system identification algorithms, produced very good model fits of the data, with no model structure inputs required, for flight conditions ranging from cruise to departure and spin conditions.
Assessment of groundwater vulnerability using supervised committee to combine fuzzy logic models.
Nadiri, Ata Allah; Gharekhani, Maryam; Khatibi, Rahman; Moghaddam, Asghar Asghari
2017-03-01
Vulnerability indices of an aquifer assessed by different fuzzy logic (FL) models often give rise to differing values with no theoretical or empirical basis to establish a validated baseline or to develop a comparison basis between the modeling results and baselines, if any. Therefore, this research presents a supervised committee fuzzy logic (SCFL) method, which uses artificial neural networks to overarch and combine a selection of FL models. The indices are expressed by the widely used DRASTIC framework, which include geological, hydrological, and hydrogeological parameters often subject to uncertainty. DRASTIC indices represent collectively intrinsic (or natural) vulnerability and give a sense of contaminants, such as nitrate-N, percolating to aquifers from the surface. The study area is an aquifer in Ardabil plain, the province of Ardabil, northwest Iran. Improvements on vulnerability indices are achieved by FL techniques, which comprise Sugeno fuzzy logic (SFL), Mamdani fuzzy logic (MFL), and Larsen fuzzy logic (LFL). As the correlation between estimated DRASTIC vulnerability index values and nitrate-N values is as low as 0.4, it is improved significantly by FL models (SFL, MFL, and LFL), which perform in similar ways but have differences. Their synergy is exploited by SCFL and uses the FL modeling results "conditioned" by nitrate-N values to raise their correlation to higher than 0.9.
A fuzzy-logic-based approach to qualitative safety modelling for marine systems
International Nuclear Information System (INIS)
Sii, H.S.; Ruxton, Tom; Wang Jin
2001-01-01
Safety assessment based on conventional tools (e.g. probability risk assessment (PRA)) may not be well suited for dealing with systems having a high level of uncertainty, particularly in the feasibility and concept design stages of a maritime or offshore system. By contrast, a safety model using fuzzy logic approach employing fuzzy IF-THEN rules can model the qualitative aspects of human knowledge and reasoning processes without employing precise quantitative analyses. A fuzzy-logic-based approach may be more appropriately used to carry out risk analysis in the initial design stages. This provides a tool for working directly with the linguistic terms commonly used in carrying out safety assessment. This research focuses on the development and representation of linguistic variables to model risk levels subjectively. These variables are then quantified using fuzzy sets. In this paper, the development of a safety model using fuzzy logic approach for modelling various design variables for maritime and offshore safety based decision making in the concept design stage is presented. An example is used to illustrate the proposed approach
A location-routing problem model with multiple periods and fuzzy demands
Directory of Open Access Journals (Sweden)
Ali Nadizadeh
2014-08-01
Full Text Available This paper puts forward a dynamic capacitated location-routing problem with fuzzy demands (DCLRP-FD. It is given on input a set of identical vehicles (each having a capacity, a fixed cost and availability level, a set of depots with restricted capacities and opening costs, a set of customers with fuzzy demands, and a planning horizon with multiple periods. The problem consists of determining the depots to be opened only in the first period of the planning horizon, the customers and the vehicles to be assigned to each opened depot, and performing the routes that may be changed in each time period due to fuzzy demands. A fuzzy chance-constrained programming (FCCP model has been designed using credibility theory and a hybrid heuristic algorithm with four phases is presented in order to solve the problem. To obtain the best value of the fuzzy parameters of the model and show the influence of the availability level of vehicles on final solution, some computational experiments are carried out. The validity of the model is then evaluated in contrast with CLRP-FD's models in the literature. The results indicate that the model and the proposed algorithm are robust and could be used in real world problems.
Modelling and management of subjective information in a fuzzy setting
Bouchon-Meunier, Bernadette; Lesot, Marie-Jeanne; Marsala, Christophe
2013-01-01
Subjective information is very natural for human beings. It is an issue at the crossroad of cognition, semiotics, linguistics, and psycho-physiology. Its management requires dedicated methods, among which we point out the usefulness of fuzzy and possibilistic approaches and related methods, such as evidence theory. We distinguish three aspects of subjectivity: the first deals with perception and sensory information, including the elicitation of quality assessment and the establishment of a link between physical and perceived properties; the second is related to emotions, their fuzzy nature, and their identification; and the last aspect stems from natural language and takes into account information quality and reliability of information.
Modelling and Control of the Qball X4 Quadrotor System based on Pid and Fuzzy Logic Structure
Bodrumlu, Tolga; Turan Soylemez, Mehmet; Mutlu, Ilhan
2017-01-01
This work focuses on a quadrocopter model, which was developed by QuanserTM and named as Qball X4. First, mathematical model of the Qball X4 is obtained. Then, a conventional PID control technique is presented. This PID control parameters come from Qball user manual. After the presentation of conventional PID control, as an extension of the conventional PID control theory, a different fuzzy controller structure is given. The proposed fuzzy controller structure is based on fuzzy logic and its name is PID type fuzzy controller. All of the simulations are done in MATLABTM environment.
Establishing the existence of a distance-based upper bound for a fuzzy DEA model using duality
International Nuclear Information System (INIS)
Soleimani-damaneh, M.
2009-01-01
In a recent paper [Soleimani-damaneh M. Fuzzy upper bounds and their applications. Chaos, Solitons and Fractals 2008;36:217-25.], I established the existence of a distance-based fuzzy upper bound for the objective function of a fuzzy DEA model, using the properties of a discussed signed distance, and provided an effective approach to solve that model. In this paper a new dual-based proof for the existence of the above-mentioned upper bound is provided which gives a useful insight into the theory of fuzzy DEA.
Neuro-fuzzy models for systems identification applied to the operation of nuclear power plants
International Nuclear Information System (INIS)
Alves, Antonio Carlos Pinto Dias
2000-09-01
A nuclear power plant has a myriad of complex system and sub-systems that, working cooperatively, make the control of the whole plant. Nevertheless their operation be automatic most of the time, the integral understanding of their internal- logic can be away of the comprehension of even experienced operators because of the poor interpretability those controls offer. This difficulty does not happens only in nuclear power plants but in almost every a little more complex control system. Neuro-fuzzy models have been used for the last years in a attempt of suppress these difficulties because of their ability of modelling in linguist form even a system which behavior is extremely complex. This is a very intuitive human form of interpretation and neuro-fuzzy model are gathering increasing acceptance. Unfortunately, neuro-fuzzy models can grow up to become of hard interpretation because of the complexity of the systems under modelling. In general, that growing occurs in function of redundant rules or rules that cover a very little domain of the problem. This work presents an identification method for neuro-fuzzy models that not only allows models grow in function of the existent complexity but that beforehand they try to self-adapt to avoid the inclusion of new rules. This form of construction allowed to arrive to highly interpretative neuro-fuzzy models even of very complex systems. The use of this kind of technique in modelling the control of the pressurizer of a PWR nuclear power plant allowed verify its validity and how neuro-fuzzy models so built can be useful in understanding the automatic operation of a nuclear power plant. (author)
Медведєва, Олена Михайлівна
2012-01-01
The aim of the research is to design the models of quantitative concept of values of parties concerned to solve the problem of activity forecasting of parties concerned in their interaction in situations of joint decision-making on the further development of the project. Methodological basis of the research comprises the methods of the possibility theory, fuzzy math, fuzzy cognitive cards, in particular, generalized fuzzy productional cards, graphic simulation technique. The main results of t...
Fuzzy adaptive interacting multiple model nonlinear filter for integrated navigation sensor fusion.
Tseng, Chien-Hao; Chang, Chih-Wen; Jwo, Dah-Jing
2011-01-01
In this paper, the application of the fuzzy interacting multiple model unscented Kalman filter (FUZZY-IMMUKF) approach to integrated navigation processing for the maneuvering vehicle is presented. The unscented Kalman filter (UKF) employs a set of sigma points through deterministic sampling, such that a linearization process is not necessary, and therefore the errors caused by linearization as in the traditional extended Kalman filter (EKF) can be avoided. The nonlinear filters naturally suffer, to some extent, the same problem as the EKF for which the uncertainty of the process noise and measurement noise will degrade the performance. As a structural adaptation (model switching) mechanism, the interacting multiple model (IMM), which describes a set of switching models, can be utilized for determining the adequate value of process noise covariance. The fuzzy logic adaptive system (FLAS) is employed to determine the lower and upper bounds of the system noise through the fuzzy inference system (FIS). The resulting sensor fusion strategy can efficiently deal with the nonlinear problem for the vehicle navigation. The proposed FUZZY-IMMUKF algorithm shows remarkable improvement in the navigation estimation accuracy as compared to the relatively conventional approaches such as the UKF and IMMUKF.
Three fuzzy reasoning models as a decision suport aid, to find an electrical energy tariff
Directory of Open Access Journals (Sweden)
Daniela GHINITA
2005-12-01
Full Text Available This contribution is a laboratory-work developed as an example of approximate (fuzzy reasoning for students, possible to be used as a decision – support to estimate an electrical energy (EE price for consumers. The three fuzzy tariff estimation models that are developed, integrate not only the S.C Electrica S.A.-single-supplier rate position, but and some (social constraints/ compulsions of National Authority of Settlements from Energy (NASE beginning with 1999, in this transition period from Romania. Although is possible, the paper not refer to a partial-price concrete case (internal tariff used in certain year, production price, transport price, distribution price, spot price, or an external price to be sold electrical energy, etc. This “laboratory-work-paper” shows how, by changing the parameters of S.C Electrica S.A. and NASE, it is possible to can perform sensitivity tests on the tariff function model, until can obtain an acceptable and true price. In this aim, the three fuzzy models use different rules for pricing: conservative, aggressive, and different order of words concerning the rules respectively, finally doing a comparation among prices and models. The paper not finished all fuzzy possibilities (rules which can influences the expected value of a some EE tariff but, with certitude, can create a discussion base, about the way of approximate/ fuzzy reasoning, as a modality to find and to refine an EE price.
FUZZY MODELS AS DECISION-SUPPORT APPLICATIONS OF ELECTRICAL ENERGY TARIFFING
Directory of Open Access Journals (Sweden)
Daniela GHINITA
2004-12-01
Full Text Available The paper is a decision – support application which design and use two fuzzy models to estimation an electrical energy tariff, as it to be sell at consumers. The fuzzy tariff estimation model integrate not only the S.C Electrica S.A. rate position, but and some constraints/ compulsions of National Authority of Settlements from Energy (NASE, beginning with 1999, in this transition period from Romania. The paper not refer to a price concrete case (internal tariff used in certain year, production price, transport price, distribution price, spot price, or an external price to be sold electrical energy – EE, etc. The paper shows how, by changing the parameters of S.C Electrica S.A and NASE, it is possible to can perform sensitivity tests on the tariff function model until we obtain an acceptable price. Much more: the two fuzzy models use different rules (conservative and aggressive, with hedge operators, respectively for pricing. Finally, the paper not finished all fuzzy possibilities (rules which can influences the expected value of a some EE tariff but, can create a discussion base about the way of approximate/ fuzzy reasoning, as a decision-support application to find a new EE price.
Yang, Shiju; Li, Chuandong; Huang, Tingwen
2016-03-01
The problem of exponential stabilization and synchronization for fuzzy model of memristive neural networks (MNNs) is investigated by using periodically intermittent control in this paper. Based on the knowledge of memristor and recurrent neural network, the model of MNNs is formulated. Some novel and useful stabilization criteria and synchronization conditions are then derived by using the Lyapunov functional and differential inequality techniques. It is worth noting that the methods used in this paper are also applied to fuzzy model for complex networks and general neural networks. Numerical simulations are also provided to verify the effectiveness of theoretical results. Copyright © 2015 Elsevier Ltd. All rights reserved.
Fuzzy model of the computer integrated decision support and management system in mineral processing
Directory of Open Access Journals (Sweden)
Miljanović Igor
2008-01-01
Full Text Available During the research on the subject of computer integrated systems for decision making and management support in mineral processing based on fuzzy logic, realized at the Department of Applied Computing and System Engineering of the Faculty of Mining and Geology, University of Belgrade, for the needs of doctoral thesis of the first author, and wider demands of the mineral industry, the incompleteness of the developed and contemporary computer integrated systems fuzzy models was noticed. The paper presents an original model with the seven staged hierarchical monitoring-management structure, in which the shortcomings of the models utilized today were eliminated.
Fuzzy-GA modeling in air quality assessment.
Yadav, Jyoti; Kharat, Vilas; Deshpande, Ashok
2015-04-01
In this paper, the authors have suggested and implemented the defined soft computing methods in air quality classification with case studies. The first study relates to the application of Fuzzy C mean (FCM) clustering method in estimating pollution status in cities of Maharashtra State, India. In this study, the computation of weighting factor using a new concept of reference group is successfully demonstrated. The authors have also investigated the efficacy of fuzzy set theoretic approach in combination with genetic algorithm in straightway describing air quality in linguistic terms with linguistic degree of certainty attached to each description using Zadeh-Deshpande (ZD) approach. Two metropolitan cities viz., Mumbai in India and New York in the USA are identified for the assessment of the pollution status due to their somewhat similar geographical features. The case studies infer that the fuzzy sets drawn on the basis of expert knowledge base for the criteria pollutants are not much different from those obtained using genetic algorithm. Pollution forecast using various methods including fuzzy time series forms an integral part of the paper.
Business modelling in the fuzzy front end of innovation
Limonard, A.J.P.; Berkers, F.T.H.M.; Niamut, O.A.; Bachet, T.T.; Reuver, M. de
2011-01-01
In this paper we address the techno-economic dilemma in the fuzzy front end of R&D consortia: how to bridge the gap between the lack of knowledge on future demand for a technology and the need to make design decisions. The problem in these types of collaborations that the business interests to
A fuzzy inference model for short-term load forecasting
International Nuclear Information System (INIS)
Mamlook, Rustum; Badran, Omar; Abdulhadi, Emad
2009-01-01
This paper is concerned with the short-term load forecasting (STLF) in power system operations. It provides load prediction for generation scheduling and unit commitment decisions, and therefore precise load forecasting plays an important role in reducing the generation cost and the spinning reserve capacity. Short-term electricity demand forecasting (i.e., the prediction of hourly loads (demand)) is one of the most important tools by which an electric utility/company plans, dispatches the loading of generating units in order to meet system demand. The accuracy of the dispatching system, which is derived from the accuracy of the forecasting algorithm used, will determine the economics of the operation of the power system. The inaccuracy or large error in the forecast simply means that load matching is not optimized and consequently the generation and transmission systems are not being operated in an efficient manner. In the present study, a proposed methodology has been introduced to decrease the forecasted error and the processing time by using fuzzy logic controller on an hourly base. Therefore, it predicts the effect of different conditional parameters (i.e., weather, time, historical data, and random disturbances) on load forecasting in terms of fuzzy sets during the generation process. These parameters are chosen with respect to their priority and importance. The forecasted values obtained by fuzzy method were compared with the conventionally forecasted ones. The results showed that the STLF of the fuzzy implementation have more accuracy and better outcomes
Fuzzy social choice models explaining the government formation process
C Casey, Peter; A Goodman, Carly; Pook, Kelly Nelson; N Mordeson, John; J Wierman, Mark; D Clark, Terry
2014-01-01
This book explores the extent to which fuzzy set logic can overcome some of the shortcomings of public choice theory, particularly its inability to provide adequate predictive power in empirical studies. Especially in the case of social preferences, public choice theory has failed to produce the set of alternatives from which collective choices are made. The book presents empirical findings achieved by the authors in their efforts to predict the outcome of government formation processes in European parliamentary and semi-presidential systems. Using data from the Comparative Manifesto Project (CMP), the authors propose a new approach that reinterprets error in the coding of CMP data as ambiguity in the actual political positions of parties on the policy dimensions being coded. The range of this error establishes parties’ fuzzy preferences. The set of possible outcomes in the process of government formation is then calculated on the basis of both the fuzzy Pareto set and the fuzzy maximal set, and the pre...
Modelling of dynamics through fuzzy enhanced high level petri net
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
Peterson. 1981; Desrochers et al ... The various extensions of PNs include predicate/transition nets (P/T nets) (Generich &. Lautenbach 1979) ..... PCTLC is the set of control places; PTNLC is the set of transition places; PFZ is the set of fuzzy places.
Shear wave prediction using committee fuzzy model constrained by lithofacies, Zagros basin, SW Iran
Shiroodi, Sadjad Kazem; Ghafoori, Mohammad; Ansari, Hamid Reza; Lashkaripour, Golamreza; Ghanadian, Mostafa
2017-02-01
The main purpose of this study is to introduce the geological controlling factors in improving an intelligence-based model to estimate shear wave velocity from seismic attributes. The proposed method includes three main steps in the framework of geological events in a complex sedimentary succession located in the Persian Gulf. First, the best attributes were selected from extracted seismic data. Second, these attributes were transformed into shear wave velocity using fuzzy inference systems (FIS) such as Sugeno's fuzzy inference (SFIS), adaptive neuro-fuzzy inference (ANFIS) and optimized fuzzy inference (OFIS). Finally, a committee fuzzy machine (CFM) based on bat-inspired algorithm (BA) optimization was applied to combine previous predictions into an enhanced solution. In order to show the geological effect on improving the prediction, the main classes of predominate lithofacies in the reservoir of interest including shale, sand, and carbonate were selected and then the proposed algorithm was performed with and without lithofacies constraint. The results showed a good agreement between real and predicted shear wave velocity in the lithofacies-based model compared to the model without lithofacies especially in sand and carbonate.
Fuzzy-DEA model for measuring the efficiency of transport quality
Directory of Open Access Journals (Sweden)
Dragan S. Pamučar
2011-10-01
Full Text Available Data envelopment analysis (DEA is becoming increasingly important as a tool for evaluating and improving the performance of manufacturing and service operations. It has been extensively applied in performance evaluation and benchmarking of schools, hospitals, bank branches, production plants, etc. DEA enables mathematical programming for implicit evaluation of the ratio between a number of input and output performance parameters. The result is quantification of the efficiency of business opportunities and providing insight into some flaws from the level of top management. Levels of efficiency determined under the same parametres make this analytical process objective and allow for the application of best practices based on the assessment of the overall efficiency. This paper presents a fuzzy-DEA model for evaluating the effectiveness of urban and suburban public transport- USPT. A fuzzy-DEA model provides insight into the current transport quality provided by USPT and proposes for the improvement of inefficient systems up to the level of best standards possible. Such quantification makes long-term stability of USPT possible. Since most of the acquired data is characterized by a high degree of imprecision, subjectivity and uncertainty, fuzzy logic was used for displaying them. Fuzzy linguistic descriptors are given in the output parameters of DEA models. In this way, fuzzy logic enables the exploitation of tolerance that exists in imprecision, uncertainty and partial accuracy of the acquired research results.
Determination of Economic Order Quantity in a fuzzy EOQ Model using of GMIR Deffuzification
Directory of Open Access Journals (Sweden)
Hamidreza Salmani Mojaveri
2017-03-01
Full Text Available Inappropriate inventory control policies and its incorrect implementation can cause improper operation and uncompetitive advantage of organization logistic operation in the market. Therefore, analysis inventory control policies are important to be understood, including carrying cost, ordering cost, warehouse renting cost, and buying cost. In this research, Economic Order Quantity (EOQ problem in fuzzy condition is reviewed in two different situations. The first model concerned to costs (carrying cost, ordering cost, warehouse renting cost and buying cost, which is considered as triangular fuzzy numbers. The second model was in addition to inventory the cost system, in which annual demand is also reviewed as fuzzy numbers. In each model, graded mean integration representation (GMIR deffuzification was used for parameters deffuzification. Then, the final objective from this analysis was to obtain economic quantity formula through derivation.
Fuzzy-logic modeling of Fenton's oxidation of anaerobically pretreated poultry manure wastewater.
Yetilmezsoy, Kaan
2012-07-01
A multiple inputs and multiple outputs (MIMO) fuzzy-logic-based model was proposed to estimate color and chemical oxygen demand (COD) removal efficiencies in the post-treatment of anaerobically pretreated poultry manure wastewater effluent using Fenton's oxidation process. Three main input variables including initial pH, Fe+2, and H2O2 dosages were fuzzified in a new numerical modeling scheme by the use of an artificial intelligence-based approach. Trapezoidal membership functions with eight levels were conducted for the fuzzy subsets, and a Mamdani-type fuzzy inference system was used to implement a total of 70 rules in the IF-THEN format. The product (prod) and the center of gravity (centroid) methods were applied as the inference operator and defuzzification methods, respectively. Fuzzy-logic predicted results were compared with the outputs of two first-order polynomial regression models derived in the scope of this study. Estimated results were also compared to the multiple regression approach by means of various descriptive statistical indicators, such as root mean-squared error, index of agreement, fractional variance, proportion of systematic error, etc. Results of the statistical analysis clearly revealed that, compared to conventional regression models, the proposed MIMO fuzzy-logic model produced very smaller deviations and demonstrated a superior predictive performance on forecasting of color and COD removal efficiencies with satisfactory determination coefficients over 0.98. Due to high capability of the fuzzy-logic methodology in capturing the non-linear interactions, it was demonstrated that a complex dynamic system, such as Fenton's oxidation, could be easily modeled.
A hybrid conceptual-fuzzy inference streamflow modelling for the Letaba River system in South Africa
Katambara, Zacharia; Ndiritu, John G.
There has been considerable water resources developments in South Africa and other regions in the world in order to meet the ever-increasing water demands. These developments have not been matched with a similar development of hydrological monitoring systems and hence there is inadequate data for managing the developed water resources systems. The Letaba River system ( Fig. 1) is a typical case of such a system in South Africa. The available water on this river is over-allocated and reliable daily streamflow modelling of the Letaba River that adequately incorporates the main components and processes would be an invaluable aid to optimal operation of the system. This study describes the development of a calibrated hybrid conceptual-fuzzy-logic model and explores its capability in reproducing the natural processes and human effects on the daily stream flow in the Letaba River. The model performance is considered satisfactory in view of the complexity of the system and inadequacy of relevant data. Performance in modelling streamflow improves towards the downstream and matches that of a stand-alone fuzzy-logic model. The hybrid model obtains realistic estimates of the major system components and processes including the capacities of the farm dams and storage weirs and their trajectories. This suggests that for complex data-scarce River systems, hybrid conceptual-fuzzy-logic modelling may be used for more detailed and dependable operational and planning analysis than stand-alone fuzzy modelling. Further work will include developing and testing other hybrid model configurations.
Fuzzy logic controller optimization
Sepe, Jr., Raymond B; Miller, John Michael
2004-03-23
A method is provided for optimizing a rotating induction machine system fuzzy logic controller. The fuzzy logic controller has at least one input and at least one output. Each input accepts a machine system operating parameter. Each output produces at least one machine system control parameter. The fuzzy logic controller generates each output based on at least one input and on fuzzy logic decision parameters. Optimization begins by obtaining a set of data relating each control parameter to at least one operating parameter for each machine operating region. A model is constructed for each machine operating region based on the machine operating region data obtained. The fuzzy logic controller is simulated with at least one created model in a feedback loop from a fuzzy logic output to a fuzzy logic input. Fuzzy logic decision parameters are optimized based on the simulation.
Wu, Xiao; Shen, Jiong; Li, Yiguo; Lee, Kwang Y
2014-05-01
This paper develops a novel data-driven fuzzy modeling strategy and predictive controller for boiler-turbine unit using fuzzy clustering and subspace identification (SID) methods. To deal with the nonlinear behavior of boiler-turbine unit, fuzzy clustering is used to provide an appropriate division of the operation region and develop the structure of the fuzzy model. Then by combining the input data with the corresponding fuzzy membership functions, the SID method is extended to extract the local state-space model parameters. Owing to the advantages of the both methods, the resulting fuzzy model can represent the boiler-turbine unit very closely, and a fuzzy model predictive controller is designed based on this model. As an alternative approach, a direct data-driven fuzzy predictive control is also developed following the same clustering and subspace methods, where intermediate subspace matrices developed during the identification procedure are utilized directly as the predictor. Simulation results show the advantages and effectiveness of the proposed approach. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Fuzzy cross-entropy, mean, variance, skewness models for portfolio selection
Directory of Open Access Journals (Sweden)
Rupak Bhattacharyya
2014-01-01
Full Text Available In this paper, fuzzy stock portfolio selection models that maximize mean and skewness as well as minimize portfolio variance and cross-entropy are proposed. Because returns are typically asymmetric, in addition to typical mean and variance considerations, third order moment skewness is also considered in generating a larger payoff. Cross-entropy is used to quantify the level of discrimination in a return for a given satisfactory return value. As returns are uncertain, stock returns are considered triangular fuzzy numbers. Stock price data from the Bombay Stock Exchange are used to illustrate the effectiveness of the proposed model. The solutions are done by genetic algorithms.
Nonlinear Fuzzy Model Predictive Control for a PWR Nuclear Power Plant
Directory of Open Access Journals (Sweden)
Xiangjie Liu
2014-01-01
Full Text Available Reliable power and temperature control in pressurized water reactor (PWR nuclear power plant is necessary to guarantee high efficiency and plant safety. Since the nuclear plants are quite nonlinear, the paper presents nonlinear fuzzy model predictive control (MPC, by incorporating the realistic constraints, to realize the plant optimization. T-S fuzzy modeling on nuclear power plant is utilized to approximate the nonlinear plant, based on which the nonlinear MPC controller is devised via parallel distributed compensation (PDC scheme in order to solve the nonlinear constraint optimization problem. Improved performance compared to the traditional PID controller for a TMI-type PWR is obtained in the simulation.
Inventory Model for Deteriorating Items Involving Fuzzy with Shortages and Exponential Demand
Directory of Open Access Journals (Sweden)
Sharmila Vijai Stanly
2015-11-01
Full Text Available This paper considers the fuzzy inventory model for deteriorating items for power demand under fully backlogged conditions. We define various factors which are affecting the inventory cost by using the shortage costs. An intention of this paper is to study the inventory modelling through fuzzy environment. Inventory parameters, such as holding cost, shortage cost, purchasing cost and deterioration cost are assumed to be the trapezoidal fuzzy numbers. In addition, an efficient algorithm is developed to determine the optimal policy, and the computational effort and time are small for the proposed algorithm. It is simple to implement, and our approach is illustrated through some numerical examples to demonstrate the application and the performance of the proposed methodology.
A two-stage fuzzy chance-constrained water management model.
Xu, Jiaxuan; Huang, Guohe; Li, Zoe; Chen, Jiapei
2017-05-01
In this study, an inexact two-stage fuzzy gradient chance-constrained programming (ITSFGP) method is developed and applied to the water resources management in the Heshui River Basin, Jiangxi Province, China. The optimization model is established by incorporating interval programming, two-stage stochastic programming, and fuzzy gradient chance-constrained programming within an optimization framework. The hybrid model can address uncertainties represented as fuzzy sets, probability distributions, and interval numbers. It can effectively tackle the interactions between pre-regulated economic targets and the associated environmental penalties attributed to water allocation schemes and reflect the tradeoffs between economic revenues and system-failure risk. Furthermore, uncertainties associated with the decision makers' preferences are considered in decision-making processes. The obtained results can provide decision support for the local sustainable economic development and water resources allocation strategies under multiple uncertainties.
Fuzzy possibilistic model for medium-term power generation planning with environmental criteria
International Nuclear Information System (INIS)
Muela, E.; Schweickardt, G.; Garces, F.
2007-01-01
The aim of this paper is to apply a fuzzy possibilistic model to the power generation planning that includes environmental criteria. Since it is not always meaningful to relate uncertainty to frequency, the proposed approach analyzes the imprecision and ambiguity into the decision making, especially when the system involves human subjectivity. This paper highlights the subjacent differences between fuzzy and possibilistic entities. Additionally, it illustrates the use of fuzzy sets theory and possibility theory for modeling flexibility, and nonprobablistic uncertainty, respectively. The necessity of a new direction for the environmental problem in a power system is outlined, an approach that attempts a greater integral quality of planning instead of searching for a simple optimal solution. This process must be consistent with a wider and more suitable interpretation about both the problem as such and the concept of solution in uncertain situations
Fuzzy Decision-Making Approach in Geometric Programming for a Single Item EOQ Model
Directory of Open Access Journals (Sweden)
Monalisha Pattnaik
2015-06-01
Full Text Available Background and methods: Fuzzy decision-making approach is allowed in geometric programming for a single item EOQ model with dynamic ordering cost and demand-dependent unit cost. The setup cost varies with the quantity produced/purchased and the modification of objective function with storage area in the presence of imprecisely estimated parameters are investigated. It incorporates all concepts of a fuzzy arithmetic approach, the quantity ordered, and demand per unit compares both fuzzy geometric programming technique and other models for linear membership functions. Results and conclusions: Investigation of the properties of an optimal solution allows developing an algorithm whose validity is illustrated through an example problem and the results discu ssed. Sensitivity analysis of the optimal solution is also studied with respect to changes in different parameter values.
Fuzzification of the Distributed Activation Energy Model Using the Fuzzy Weibull Distribution
Directory of Open Access Journals (Sweden)
Alok Dhaundiyal
2018-01-01
Full Text Available This study focuses on the influence of some of the relevant parameters of biomass pyrolysis on a fuzzified solution of the Distributed Activation Energy Model (DAEM due to randomness and inaccuracy of data. The study investigates the fuzzified Distributed Activation Energy Model using the fuzzy Weibull distribution. The activation energy, frequency factor, and distribution variables of the 3-parameter Weibull analysis are converted into a non-crisp set. The expression for the fuzzy sets, and their α-cut are discussed with an initial distribution for the activation energies following the Weibull distribution function. The thermo-analytical data for pine needles is used to illustrate the methodology to exhibit the fuzziness of some of the parameters relevant to biomass pyrolysis.
A Fuzzy Logic Model to Classify Design Efficiency of Nursing Unit Floors
Directory of Open Access Journals (Sweden)
Tuğçe KAZANASMAZ
2010-01-01
Full Text Available This study was conducted to determine classifications for the planimetric design efficiency of certain public hospitals by developing a fuzzy logic algorithm. Utilizing primary areas and circulation areas from nursing unit floor plans, the study employed triangular membership functions for the fuzzy subsets. The input variables of primary areas per bed and circulation areas per bed were fuzzified in this model. The relationship between input variables and output variable of design efficiency were displayed as a result of fuzzy rules. To test existing nursing unit floors, efficiency output values were obtained and efficiency classes were constructed by this model in accordance with general norms, guidelines and previous studies. The classification of efficiency resulted from the comparison of hospitals.
Fuzzy hierarchical model for risk assessment principles, concepts, and practical applications
Chan, Hing Kai
2013-01-01
Risk management is often complicated by situational uncertainties and the subjective preferences of decision makers. Fuzzy Hierarchical Model for Risk Assessment introduces a fuzzy-based hierarchical approach to solve risk management problems considering both qualitative and quantitative criteria to tackle imprecise information. This approach is illustrated through number of case studies using examples from the food, fashion and electronics sectors to cover a range of applications including supply chain management, green product design and green initiatives. These practical examples explore how this method can be adapted and fine tuned to fit other industries as well. Supported by an extensive literature review, Fuzzy Hierarchical Model for Risk Assessment comprehensively introduces a new method for project managers across all industries as well as researchers in risk management.
An Assessment Model of National Grants of University Based on Fuzzy Analytic Hierarchy Process
Directory of Open Access Journals (Sweden)
Xia Yang
2016-01-01
Full Text Available How to assess kinds of grants scientifically, effectively and regularly is an important topic for the funding workers to study. According to the national grants’ basic conditions, an assessment model is established on the basis of fuzzy analytic hierarchy process. And Finally an example is given to illustrate the scientificalness and operability of this model.
Fuzzy rule-based macroinvertebrate habitat suitability models for running waters
Broekhoven, Van E.; Adriaenssens, V.; Baets, De B.; Verdonschot, P.F.M.
2006-01-01
A fuzzy rule-based approach was applied to a macroinvertebrate habitat suitability modelling problem. The model design was based on a knowledge base summarising the preferences and tolerances of 86 macroinvertebrate species for four variables describing river sites in springs up to small rivers in
A train dispatching model based on fuzzy passenger demand forecasting during holidays
Directory of Open Access Journals (Sweden)
Fei Dou Dou
2013-03-01
Full Text Available Abstract: Purpose: The train dispatching is a crucial issue in the train operation adjustment when passenger flow outbursts. During holidays, the train dispatching is to meet passenger demand to the greatest extent, and ensure safety, speediness and punctuality of the train operation. In this paper, a fuzzy passenger demand forecasting model is put up, then a train dispatching optimization model is established based on passenger demand so as to evacuate stranded passengers effectively during holidays. Design/methodology/approach: First, the complex features and regularity of passenger flow during holidays are analyzed, and then a fuzzy passenger demand forecasting model is put forward based on the fuzzy set theory and time series theory. Next, the bi-objective of the train dispatching optimization model is to minimize the total operation cost of the train dispatching and unserved passenger volume during holidays. Finally, the validity of this model is illustrated with a case concerned with the Beijing-Shanghai high-speed railway in China. Findings: The case study shows that the fuzzy passenger demand forecasting model can predict outcomes more precisely than ARIMA model. Thus train dispatching optimization plan proves that a small number of trains are able to serve unserved passengers reasonably and effectively. Originality/value: On the basis of the passenger demand predictive values, the train dispatching optimization model is established, which enables train dispatching to meet passenger demand in condition that passenger flow outbursts, so as to maximize passenger demand by offering the optimal operation plan.
Assessment of uncertainties in expert knowledge, illustrated in fuzzy rule-based models
Janssen, Judith; Krol, Martinus S.; Schielen, Ralph Mathias Johannes; Hoekstra, Arjen Ysbert; de Kok, Jean-Luc
2010-01-01
The coherence between different aspects in the environmental system leads to a demand for comprehensive models of this system to explore the effects of different management alternatives. Fuzzy logic has been suggested as a means to extend the application domain of environmental modelling from
DEFF Research Database (Denmark)
Rodríguez, J. Tinguaro; Franco de los Ríos, Camilo; Gómez, Daniel
2015-01-01
In this paper we want to stress the relevance of paired fuzzy sets, as already proposed in previous works of the authors, as a family of fuzzy sets that offers a unifying view for different models based upon the opposition of two fuzzy sets, simply allowing the existence of different types...
A Technique of Fuzzy C-Mean in Multiple Linear Regression Model toward Paddy Yield
Syazwan Wahab, Nur; Saifullah Rusiman, Mohd; Mohamad, Mahathir; Amira Azmi, Nur; Che Him, Norziha; Ghazali Kamardan, M.; Ali, Maselan
2018-04-01
In this paper, we propose a hybrid model which is a combination of multiple linear regression model and fuzzy c-means method. This research involved a relationship between 20 variates of the top soil that are analyzed prior to planting of paddy yields at standard fertilizer rates. Data used were from the multi-location trials for rice carried out by MARDI at major paddy granary in Peninsular Malaysia during the period from 2009 to 2012. Missing observations were estimated using mean estimation techniques. The data were analyzed using multiple linear regression model and a combination of multiple linear regression model and fuzzy c-means method. Analysis of normality and multicollinearity indicate that the data is normally scattered without multicollinearity among independent variables. Analysis of fuzzy c-means cluster the yield of paddy into two clusters before the multiple linear regression model can be used. The comparison between two method indicate that the hybrid of multiple linear regression model and fuzzy c-means method outperform the multiple linear regression model with lower value of mean square error.
Ďuračiová, Renata; Rášová, Alexandra; Lieskovský, Tibor
2017-12-01
When combining spatial data from various sources, it is often important to determine similarity or identity of spatial objects. Besides the differences in geometry, representations of spatial objects are inevitably more or less uncertain. Fuzzy set theory can be used to address both modelling of the spatial objects uncertainty and determining the identity, similarity, and inclusion of two sets as fuzzy identity, fuzzy similarity, and fuzzy inclusion. In this paper, we propose to use fuzzy measures to determine the similarity or identity of two uncertain spatial object representations in geographic information systems. Labelling the spatial objects by the degree of their similarity or inclusion measure makes the process of their identification more efficient. It reduces the need for a manual control. This leads to a more simple process of spatial datasets update from external data sources. We use this approach to get an accurate and correct representation of historical streams, which is derived from contemporary digital elevation model, i.e. we identify the segments that are similar to the streams depicted on historical maps.
Fuzzy Risk Graph Model for Determining Safety Integrity Level
Directory of Open Access Journals (Sweden)
R. Nait-Said
2008-01-01
Full Text Available The risk graph is one of the most popular methods used to determine the safety integrity level for safety instrumented functions. However, conventional risk graph as described in the IEC 61508 standard is subjective and suffers from an interpretation problem of risk parameters. Thus, it can lead to inconsistent outcomes that may result in conservative SIL's. To overcome this difficulty, a modified risk graph using fuzzy rule-based system is proposed. This novel version of risk graph uses fuzzy scales to assess risk parameters, and calibration may be made by varying risk parameter values. Furthermore, the outcomes which are numerical values of risk reduction factor (the inverse of the probability of failure on demand can be compared directly with those given by quantitative and semiquantitative methods such as fault tree analysis (FTA, quantitative risk assessment (QRA, and layers of protection analysis (LOPA.
Comparing clustering models in bank customers: Based on Fuzzy relational clustering approach
Directory of Open Access Journals (Sweden)
Ayad Hendalianpour
2016-11-01
Full Text Available Clustering is absolutely useful information to explore data structures and has been employed in many places. It organizes a set of objects into similar groups called clusters, and the objects within one cluster are both highly similar and dissimilar with the objects in other clusters. The K-mean, C-mean, Fuzzy C-mean and Kernel K-mean algorithms are the most popular clustering algorithms for their easy implementation and fast work, but in some cases we cannot use these algorithms. Regarding this, in this paper, a hybrid model for customer clustering is presented that is applicable in five banks of Fars Province, Shiraz, Iran. In this way, the fuzzy relation among customers is defined by using their features described in linguistic and quantitative variables. As follows, the customers of banks are grouped according to K-mean, C-mean, Fuzzy C-mean and Kernel K-mean algorithms and the proposed Fuzzy Relation Clustering (FRC algorithm. The aim of this paper is to show how to choose the best clustering algorithms based on density-based clustering and present a new clustering algorithm for both crisp and fuzzy variables. Finally, we apply the proposed approach to five datasets of customer's segmentation in banks. The result of the FCR shows the accuracy and high performance of FRC compared other clustering methods.
Fuzzy Evidential Network and Its Application as Medical Prognosis and Diagnosis Models.
Janghorbani, Amin; Moradi, Mohammad Hassan
2017-08-01
Uncertainty is one of the important facts of the medical knowledge. Medical prognosis and diagnosis, as the essential parts of medical knowledge, is affected by different aspects of uncertainty, which must be managed. In the previous studies, different theories such as Bayesian probability theory, evidence theory, and fuzzy set theory have been developed to represent and manage different aspects of uncertainty. Recently, hybrid frameworks are suggested to deal with various types of uncertainty in a single framework. Evidential networks are general frameworks for dealing explicitly with total and partial ignorance and offer powerful combination rule of contradictory evidence. In this framework, the fuzziness of linguistic variables is neglected while these variables commonly appear in the medical domain knowledge and different sources of medical information. In addition, the evidential network parameters are determined based on the experts' knowledge and no data-driven algorithm is provided to learn these parameters. In this study, a novel hybrid framework called fuzzy evidential network was suggested to manage the imprecision and epistemic uncertainty of medical prognosis and diagnosis. Also, a data-driven algorithm based on the fuzzy set theory and the fuzzy maximum likelihood is provided to learn the network parameters from clinical databases. The performance of the proposed framework as various prognosis and diagnosis models, compared with well-known machine learning algorithms and the results showed its superiority. Also, an evidential method is suggested to handle the missing values and its results were compared with KNN imputation method. Copyright © 2017 Elsevier Inc. All rights reserved.
Turnbull, Heather; Omenzetter, Piotr
2017-04-01
The recent shift towards development of clean, sustainable energy sources has provided a new challenge in terms of structural safety and reliability: with aging, manufacturing defects, harsh environmental and operational conditions, and extreme events such as lightning strikes wind turbines can become damaged resulting in production losses and environmental degradation. To monitor the current structural state of the turbine, structural health monitoring (SHM) techniques would be beneficial. Physics based SHM in the form of calibration of a finite element model (FEMs) by inverse techniques is adopted in this research. Fuzzy finite element model updating (FFEMU) techniques for damage severity assessment of a small-scale wind turbine blade are discussed and implemented. The main advantage is the ability of FFEMU to account in a simple way for uncertainty within the problem of model updating. Uncertainty quantification techniques, such as fuzzy sets, enable a convenient mathematical representation of the various uncertainties. Experimental frequencies obtained from modal analysis on a small-scale wind turbine blade were described by fuzzy numbers to model measurement uncertainty. During this investigation, damage severity estimation was investigated through addition of small masses of varying magnitude to the trailing edge of the structure. This structural modification, intended to be in lieu of damage, enabled non-destructive experimental simulation of structural change. A numerical model was constructed with multiple variable additional masses simulated upon the blades trailing edge and used as updating parameters. Objective functions for updating were constructed and minimized using both particle swarm optimization algorithm and firefly algorithm. FFEMU was able to obtain a prediction of baseline material properties of the blade whilst also successfully predicting, with sufficient accuracy, a larger magnitude of structural alteration and its location.
Improved Fuzzy Modelling to Predict the Academic Performance of Distance Education Students
Directory of Open Access Journals (Sweden)
Osman Yildiz
2013-12-01
Full Text Available It is essential to predict distance education students’ year-end academic performance early during the course of the semester and to take precautions using such prediction-based information. This will, in particular, help enhance their academic performance and, therefore, improve the overall educational quality. The present study was on the development of a mathematical model intended to predict distance education students’ year-end academic performance using the first eight-week data on the learning management system. First, two fuzzy models were constructed, namely the classical fuzzy model and the expert fuzzy model, the latter being based on expert opinion. Afterwards, a gene-fuzzy model was developed optimizing membership functions through genetic algorithm. The data on distance education were collected through Moodle, an open source learning management system. The data were on a total of 218 students who enrolled in Basic Computer Sciences in 2012. The input data consisted of the following variables: When a student logged on to the system for the last time after the content of a lesson was uploaded, how often he/she logged on to the system, how long he/she stayed online in the last login, what score he/she got in the quiz taken in Week 4, and what score he/she got in the midterm exam taken in Week 8. A comparison was made among the predictions of the three models concerning the students’ year-end academic performance.
Bratsas, Charalampos; Koutkias, Vassilis; Kaimakamis, Evangelos; Bamidis, Panagiotis; Maglaveras, Nicos
2007-01-01
Medical Computational Problem (MCP) solving is related to medical problems and their computerized algorithmic solutions. In this paper, an extension of an ontology-based model to fuzzy logic is presented, as a means to enhance the information retrieval (IR) procedure in semantic management of MCPs. We present herein the methodology followed for the fuzzy expansion of the ontology model, the fuzzy query expansion procedure, as well as an appropriate ontology-based Vector Space Model (VSM) that was constructed for efficient mapping of user-defined MCP search criteria and MCP acquired knowledge. The relevant fuzzy thesaurus is constructed by calculating the simultaneous occurrences of terms and the term-to-term similarities derived from the ontology that utilizes UMLS (Unified Medical Language System) concepts by using Concept Unique Identifiers (CUI), synonyms, semantic types, and broader-narrower relationships for fuzzy query expansion. The current approach constitutes a sophisticated advance for effective, semantics-based MCP-related IR.
Fuzzy comprehensive evaluation model of interuniversity collaborative learning based on network
Wenhui, Ma; Yu, Wang
2017-06-01
Learning evaluation is an effective method, which plays an important role in the network education evaluation system. But most of the current network learning evaluation methods still use traditional university education evaluation system, which do not take into account of web-based learning characteristics, and they are difficult to fit the rapid development of interuniversity collaborative learning based on network. Fuzzy comprehensive evaluation method is used to evaluate interuniversity collaborative learning based on the combination of fuzzy theory and analytic hierarchy process. Analytic hierarchy process is used to determine the weight of evaluation factors of each layer and to carry out the consistency check. According to the fuzzy comprehensive evaluation method, we establish interuniversity collaborative learning evaluation mathematical model. The proposed scheme provides a new thought for interuniversity collaborative learning evaluation based on network.
An Intuitionistic Fuzzy Logic Models for Multicriteria Decision Making Under Uncertainty
Jana, Biswajit; Mohanty, Sachi Nandan
2017-04-01
The purpose of this paper is to enhance the applicability of the fuzzy sets for developing mathematical models for decision making under uncertainty, In general a decision making process consist of four stages, namely collection of information from various sources, compile the information, execute the information and finally take the decision/action. Only fuzzy sets theory is capable to quantifying the linguistic expression to mathematical form in complex situation. Intuitionistic fuzzy set (IFSs) which reflects the fact that the degree of non membership is not always equal to one minus degree of membership. There may be some degree of hesitation. Thus, there are some situations where IFS theory provides a more meaningful and applicable to cope with imprecise information present for solving multiple criteria decision making problem. This paper emphasis on IFSs, which is help for solving real world problem in uncertainty situation.
Fuzzy model for determination and assessment of groundwater quality in the city of Zrenjanin, Serbia
Directory of Open Access Journals (Sweden)
Kiurski-Milosević Jelena Ž.
2015-01-01
Full Text Available The application of the fuzzy logic for determination and assessment of the chemical quality of groundwater for drinking purposes in the city of Zrenjanin is presented. The degree of certainty and uncertainties are one of the problems in the most commonly used methods for assessing the water quality. Fuzzy logic can successfully handle these problems. Evaluation of fuzzy model was carried out on the samples from two representative wells that are located at depths of two aquifers from which water is taken to supply the population as drinking water. The samples were analyzed on 8 different chemical water quality parameters. In the research arsenic concentration (As3+, As5+ is considered as the dominant parameter due to its suspecting carcinogenic effects on human health. This type of research is for the first time conducted in the city of Zrenjanin, middle Banat region. [Projekat Ministarstva nauke Republike Srbije, br. MNTR174009 i br. TR34014
Model-Based Evolution of a Fast Hybrid Fuzzy Adaptive Controller for a Pneumatic Muscle Actuator
Directory of Open Access Journals (Sweden)
Alexander Hošovský
2012-07-01
Full Text Available Pneumatic artificial muscle-based robotic systems usually necessitate the use of various nonlinear control techniques in order to improve their performance. Their robustness to parameter variation, which is generally difficult to predict, should also be tested. Here a fast hybrid adaptive control is proposed, where a conventional PD controller is placed into the feedforward branch and a fuzzy controller is placed into the adaptation branch. The fuzzy controller compensates for the actions of the PD controller under conditions of inertia moment variation. The fuzzy controller of Takagi-Sugeno type is evolved through a genetic algorithm using the dynamic model of a pneumatic muscle actuator. The results confirm the capability of the designed system to provide robust performance under the conditions of varying inertia.
Fuzzy logic applied to the modeling of water dynamics in an Oxisol in northeastern Brazil
Directory of Open Access Journals (Sweden)
Antônio Cláudio Marques Afonso
2014-04-01
Full Text Available Modeling of water movement in non-saturated soil usually requires a large number of parameters and variables, such as initial soil water content, saturated water content and saturated hydraulic conductivity, which can be assessed relatively easily. Dimensional flow of water in the soil is usually modeled by a nonlinear partial differential equation, known as the Richards equation. Since this equation cannot be solved analytically in certain cases, one way to approach its solution is by numerical algorithms. The success of numerical models in describing the dynamics of water in the soil is closely related to the accuracy with which the water-physical parameters are determined. That has been a big challenge in the use of numerical models because these parameters are generally difficult to determine since they present great spatial variability in the soil. Therefore, it is necessary to develop and use methods that properly incorporate the uncertainties inherent to water displacement in soils. In this paper, a model based on fuzzy logic is used as an alternative to describe water flow in the vadose zone. This fuzzy model was developed to simulate the displacement of water in a non-vegetated crop soil during the period called the emergency phase. The principle of this model consists of a Mamdani fuzzy rule-based system in which the rules are based on the moisture content of adjacent soil layers. The performances of the results modeled by the fuzzy system were evaluated by the evolution of moisture profiles over time as compared to those obtained in the field. The results obtained through use of the fuzzy model provided satisfactory reproduction of soil moisture profiles.
Decentralized Fuzzy P-hub Centre Problem: Extended Model and Genetic Algorithms
Directory of Open Access Journals (Sweden)
Sara Mousavinia
2017-02-01
Full Text Available This paper studies the uncapacitated P-hub center problem in a network under decentralized management assuming time as a fuzzy variable. In this network, transport companies act independently, each company makes its route choices according to its own criteria. In this model, time is presented by triangular fuzzy number and used to calculate the fraction of users that probably choose hub routes instead of direct routes. To solve the problem, two genetic algorithms are proposed. The computational results compared with LINGO indicate that the proposed algorithm solves large-scale instances within promising computational time and outperforms LINGO in terms of solution quality.
Characterization and adaptive fuzzy model reference control for a magnetic levitation system
Directory of Open Access Journals (Sweden)
J.J. Hernández-Casañas
2016-09-01
Full Text Available This paper shows the implementation of a fuzzy controller applied for magnetic levitation, to make this, the characterization of the magnetic actuator was computed by using ANSYS® analysis. The control law was a Mamdani PD implemented with two microcontrollers, to get a smooth control signal, it was used a model reference. A learning scheme was used to update the consequents of the fuzzy rules. Different reference signals and disturbances were applied to the system to show the robustness of the controller. Finally, LabVIEW® was used to plot the results.
Simulation research on multivariable fuzzy model predictive control of nuclear power plant
International Nuclear Information System (INIS)
Su Jie
2012-01-01
To improve the dynamic control capabilities of the nuclear power plant, the algorithm of the multivariable nonlinear predictive control based on the fuzzy model was applied in the main parameters control of the nuclear power plant, including control structure and the design of controller in the base of expounding the math model of the turbine and the once-through steam generator. The simulation results show that the respond of the change of the gas turbine speed and the steam pressure under the algorithm of multivariable fuzzy model predictive control is faster than that under the PID control algorithm, and the output value of the gas turbine speed and the steam pressure under the PID control algorithm is 3%-5% more than that under the algorithm of multi-variable fuzzy model predictive control. So it shows that the algorithm of multi-variable fuzzy model predictive control can control the output of the main parameters of the nuclear power plant well and get better control effect. (author)
Energy Technology Data Exchange (ETDEWEB)
Na, Man Gyun [Department of Nuclear Engineering, Chosun University, 375 Seosuk-dong, Dong-gu, Gwangju 501-759 (Korea, Republic of)]. E-mail: magyna@chosun.ac.kr; Upadhyaya, Belle R. [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996-2300 (United States)
2006-11-15
In this work, a model predictive control method combined with fuzzy identification, is applied to the design of the thermoelectric (TE) power control in the SP-100 space reactor. The future TE power is predicted by using the fuzzy model identified by a subtractive clustering method of a fast and robust algorithm. The objectives of the proposed fuzzy model predictive controller are to minimize both the difference between the predicted TE power and the desired power, and the variation of control drum angle that adjusts the control reactivity. Also, the objectives are subject to maximum and minimum control drum angle and maximum drum angle variation speed. The genetic algorithm that is effective in accomplishing multiple objectives is used to optimize the fuzzy model predictive controller. A lumped parameter simulation model of the SP-100 nuclear space reactor is used to verify the proposed controller. The results of numerical simulations to check the performance of the proposed controller show that the TE generator power level controlled by the proposed controller could track the target power level effectively, satisfying all control constraints.
A clustering-based fuzzy wavelet neural network model for short-term load forecasting.
Kodogiannis, Vassilis S; Amina, Mahdi; Petrounias, Ilias
2013-10-01
Load forecasting is a critical element of power system operation, involving prediction of the future level of demand to serve as the basis for supply and demand planning. This paper presents the development of a novel clustering-based fuzzy wavelet neural network (CB-FWNN) model and validates its prediction on the short-term electric load forecasting of the Power System of the Greek Island of Crete. The proposed model is obtained from the traditional Takagi-Sugeno-Kang fuzzy system by replacing the THEN part of fuzzy rules with a "multiplication" wavelet neural network (MWNN). Multidimensional Gaussian type of activation functions have been used in the IF part of the fuzzyrules. A Fuzzy Subtractive Clustering scheme is employed as a pre-processing technique to find out the initial set and adequate number of clusters and ultimately the number of multiplication nodes in MWNN, while Gaussian Mixture Models with the Expectation Maximization algorithm are utilized for the definition of the multidimensional Gaussians. The results corresponding to the minimum and maximum power load indicate that the proposed load forecasting model provides significantly accurate forecasts, compared to conventional neural networks models.
Zhang, Chenglong; Zhang, Fan; Guo, Shanshan; Liu, Xiao; Guo, Ping
2018-01-01
An inexact nonlinear mλ-measure fuzzy chance-constrained programming (INMFCCP) model is developed for irrigation water allocation under uncertainty. Techniques of inexact quadratic programming (IQP), mλ-measure, and fuzzy chance-constrained programming (FCCP) are integrated into a general optimization framework. The INMFCCP model can deal with not only nonlinearities in the objective function, but also uncertainties presented as discrete intervals in the objective function, variables and left-hand side constraints and fuzziness in the right-hand side constraints. Moreover, this model improves upon the conventional fuzzy chance-constrained programming by introducing a linear combination of possibility measure and necessity measure with varying preference parameters. To demonstrate its applicability, the model is then applied to a case study in the middle reaches of Heihe River Basin, northwest China. An interval regression analysis method is used to obtain interval crop water production functions in the whole growth period under uncertainty. Therefore, more flexible solutions can be generated for optimal irrigation water allocation. The variation of results can be examined by giving different confidence levels and preference parameters. Besides, it can reflect interrelationships among system benefits, preference parameters, confidence levels and the corresponding risk levels. Comparison between interval crop water production functions and deterministic ones based on the developed INMFCCP model indicates that the former is capable of reflecting more complexities and uncertainties in practical application. These results can provide more reliable scientific basis for supporting irrigation water management in arid areas.
Fuzzy sets as extension of probabilistic models for evaluating human reliability
International Nuclear Information System (INIS)
Przybylski, F.
1996-11-01
On the base of a survey of established quantification methodologies for evaluating human reliability, a new computerized methodology was developed in which a differential consideration of user uncertainties is made. In this quantification method FURTHER (FUzzy Sets Related To Human Error Rate Prediction), user uncertainties are quantified separately from model and data uncertainties. As tools fuzzy sets are applied which, however, stay hidden to the method's user. The user in the quantification process only chooses an action pattern, performance shaping factors and natural language expressions. The acknowledged method HEART (Human Error Assessment and Reduction Technique) serves as foundation of the fuzzy set approach FURTHER. By means of this method, the selection of a basic task in connection with its basic error probability, the decision how correct the basic task's selection is, the selection of a peformance shaping factor, and the decision how correct the selection and how important the performance shaping factor is, were identified as aspects of fuzzification. This fuzzification is made on the base of data collection and information from literature as well as of the estimation by competent persons. To verify the ammount of additional information to be received by the usage of fuzzy sets, a benchmark session was accomplished. In this benchmark twelve actions were assessed by five test-persons. In case of the same degree of detail in the action modelling process, the bandwidths of the interpersonal evaluations decrease in FURTHER in comparison with HEART. The uncertainties of the single results could not be reduced up to now. The benchmark sessions conducted so far showed plausible results. A further testing of the fuzzy set approach by using better confirmed fuzzy sets can only be achieved in future practical application. Adequate procedures, however, are provided. (orig.) [de
Modeling of the influence of transparency of the derivatives market on financial depth
Directory of Open Access Journals (Sweden)
Irina Burdenko
2016-07-01
Full Text Available The market of derivative tools becomes an integral part of the financial market, the functions which are carrying out in it peculiar only to it: hedging, distribution of risks, ensuring liquidity of basic assets, information support of future movement of the prices, decrease in asymmetry of information in the financial markets. However, the insufficiency or lack of transparent information can lead to emergence of the crisis phenomena, shocks in the financial market and growth of system risk. Emergence of need for strengthening of information function of the market of derivatives changes of requirements to transparency of information had been caused by financial crisis of 2008-2009. In this article the attempt of an assessment of influence was made by means of autoregressive models the change of requirements to standard transparency, such as qualitative characteristic of the derivatives market, on quantitative indices of the financial market, in particular financial depth. The results of research demonstrate that reforming of the legislation concerning strengthening of transparency in the derivatives market positively influences the growth of financial depth. The research of this question will promote the best understanding of importance of reforming of regulation of the derivatives market, in particular strengthening of requirements to transparency. Recommendations of the further researches concern the needs of input of reforms of financial regulation in the derivatives market in Ukraine, and, thus, to provide the corresponding conditions for his development
A hybrid algorithm and its applications to fuzzy logic modeling of nonlinear systems
Wang, Zhongjun
System models allow us to simulate and analyze system dynamics efficiently. Most importantly, system models allow us to make prediction about system behaviors and to perform system parametric variation analysis without having to build the actual systems. The fuzzy logic modeling technique has been successfully applied in complex nonlinear system modeling such as unsteady aerodynamics modeling etc. recently. However, the current forward search algorithm to identify fuzzy logic model structures is very time-consuming. It is not unusual to spend several days or even a few weeks in computer CPU time to obtain better nonlinear system model structures by this forward search. Moreover, how to speed up the fuzzy logic model parameter identification process is also challenging when the number of influencing variables of nonlinear systems is large. To solve these problems, a hybrid algorithm for the nonlinear system modeling is proposed, formalized, implemented, and evaluated in this dissertation. By combining the fuzzy logic modeling technique with genetic algorithms, the developed hybrid algorithm is applied to both fuzzy logic model structure identification and model parameter identification. In the model structure identification process, the hybrid algorithm has the ability to find feasible structures more efficiently and effectively than the forward search. In the model parameter identification process (by using Newton gradient descent algorithm), the proposed hybrid algorithm incorporates genetic search algorithm to dynamically select convergence factors. It has the advantages of quick search yet maintains the monotonically convergent properties of the Newton gradient descent algorithm. To evaluate the properties of the developed hybrid algorithm, a nonlinear, unsteady aerodynamic normal force model with a complex system involving fourteen influencing variables is established from flight data. The results show that this hybrid algorithm can identify the aerodynamic
An Analysis of Gene Expression Variations in Lymphoma, Using a Fuzzy Classification Model
Directory of Open Access Journals (Sweden)
Zahra Roozbahani
2017-01-01
Full Text Available Introduction: Cancer is a major cause of mortality in the modern world, and one of the most important health problems in societies. During recent years, research on cancer as a system biology disease is focused on molecular differences between cancer cells and healthy cells. Most of the proposed methods for classifying cancer using gene expression data act as black boxes and lack biological interpretability. The goal of this study is to design an interpretable fuzzy model for classifying gene expression data of Lymphoma cancer. Method: In this research, the investigated microarray contained 45 samples of lymphoma. Total number of genes was 4026 samples. At first, we offer a hybrid approach to reduce the data dimension for detecting genes involved in lymphoma cancer. In lymphoma microarray, six out of 4029 genes were selected. Then, a fuzzy interpretable classifier was presented for classification of data. Fuzzy inference was performed using two rules which had the highest scores. Weka3.6.9 software was used to reduce the features and the fuzzy classifier model was implemented in MATLAB R2010a. Results of this study were assessed by two measures of accuracy and precision. Results: In pre-processing stage, in order to classify gene expression data of Lymphoma, six out of 4026 genes were identified as cancer-causing genes, and then the fuzzy classifier model was applied on the obtained data. The accuracy of the results of classification was 96 percent using 10 rules with the highest scores and that using 2 rules with the highest scores was about 98 percent. Conclusion: In the proposed approach, for the first time, a fully fuzzy method named a minimal rule fuzzy classification (MRFC was introduced for extracting fuzzy rules with biological interpretability and meaning extraction from gene expression data. Among the most outstanding features of this method is the ability of extracting a small set of rules to interpret effective gene expression in
Directory of Open Access Journals (Sweden)
P.K. Tripathy
2008-07-01
Full Text Available A new type of replenishment policy is suggested in an entropy order quantity model for a perishable product possessing fuzzy holding cost and fuzzy disposal cost. This model represents an appropriate combination of two component demand with discounted selling price, particularly over a finite time horizon. Its main aim lies in the need for an entropic cost of the cycle time is a key feature of specific perishable product like fruits, vegetables, food stuffs, fishes etc. To handle this multiplicity of objectives in a pragmatic approach, entropic ordering quantity model with discounted selling price during pre and post deterioration of perishable items to optimize its payoff is proposed. It has been imperative to demonstrate this model by analysis, which reveals some important characteristics of discounted structure. Furthermore, numerical experiments are conducted to evaluate the difference between the crisp and fuzzy cases in EOQ and EnOQ separately. This paper explores the economy of investing in economics of lot sizing in Fuzzy EOQ, Crisp EOQ and Crisp EnOQ models. The proposed paper reveals itself as a pragmatic alternative to other approaches based on two component demand function with very sound theoretical underpinnings but with few possibilities of actually being put into practice. The results indicate that this can become a good model and can be replicated by researchers in neighbourhood of its possible extensions.
Fuzzy C-Means Clustering Model Data Mining For Recognizing Stock Data Sampling Pattern
Directory of Open Access Journals (Sweden)
Sylvia Jane Annatje Sumarauw
2007-06-01
Full Text Available Abstract Capital market has been beneficial to companies and investor. For investors, the capital market provides two economical advantages, namely deviden and capital gain, and a non-economical one that is a voting .} hare in Shareholders General Meeting. But, it can also penalize the share owners. In order to prevent them from the risk, the investors should predict the prospect of their companies. As a consequence of having an abstract commodity, the share quality will be determined by the validity of their company profile information. Any information of stock value fluctuation from Jakarta Stock Exchange can be a useful consideration and a good measurement for data analysis. In the context of preventing the shareholders from the risk, this research focuses on stock data sample category or stock data sample pattern by using Fuzzy c-Me, MS Clustering Model which providing any useful information jar the investors. lite research analyses stock data such as Individual Index, Volume and Amount on Property and Real Estate Emitter Group at Jakarta Stock Exchange from January 1 till December 31 of 204. 'he mining process follows Cross Industry Standard Process model for Data Mining (CRISP,. DM in the form of circle with these steps: Business Understanding, Data Understanding, Data Preparation, Modelling, Evaluation and Deployment. At this modelling process, the Fuzzy c-Means Clustering Model will be applied. Data Mining Fuzzy c-Means Clustering Model can analyze stock data in a big database with many complex variables especially for finding the data sample pattern, and then building Fuzzy Inference System for stimulating inputs to be outputs that based on Fuzzy Logic by recognising the pattern. Keywords: Data Mining, AUz..:y c-Means Clustering Model, Pattern Recognition
Luo, Junhui; Wu, Chao; Liu, Xianlin; Mi, Decai; Zeng, Fuquan; Zeng, Yongjun
2018-01-01
At present, the prediction of soft foundation settlement mostly use the exponential curve and hyperbola deferred approximation method, and the correlation between the results is poor. However, the application of neural network in this area has some limitations, and none of the models used in the existing cases adopted the TS fuzzy neural network of which calculation combines the characteristics of fuzzy system and neural network to realize the mutual compatibility methods. At the same time, the developed and optimized calculation program is convenient for engineering designers. Taking the prediction and analysis of soft foundation settlement of gully soft soil in granite area of Guangxi Guihe road as an example, the fuzzy neural network model is established and verified to explore the applicability. The TS fuzzy neural network is used to construct the prediction model of settlement and deformation, and the corresponding time response function is established to calculate and analyze the settlement of soft foundation. The results show that the prediction of short-term settlement of the model is accurate and the final settlement prediction result has certain engineering reference value.
Fuzzy delay model based fault simulator for crosstalk delay fault test ...
Indian Academy of Sciences (India)
In this paper, the fuzzy delay model is employed for test generation of crosstalk delay faults in ... Section 2 reviews the previous works on test generation and simulation of asynchronous sequential circuits. ...... Takahashi H, Keller K J, Le K T, Saluja K K and Takamatsu Y 2005 A Method for Reducing the Target. Fault list of ...
A Comparison of Neural Networks and Fuzzy Logic Methods for Process Modeling
Cios, Krzysztof J.; Sala, Dorel M.; Berke, Laszlo
1996-01-01
The goal of this work was to analyze the potential of neural networks and fuzzy logic methods to develop approximate response surfaces as process modeling, that is for mapping of input into output. Structural response was chosen as an example. Each of the many methods surveyed are explained and the results are presented. Future research directions are also discussed.
Genetic optimization of neural network and fuzzy logic for oil bubble point pressure modeling
Energy Technology Data Exchange (ETDEWEB)
Afshar, Mohammad [Islamic Azad University, Kharg (Iran, Islamic Republic of); Gholami, Amin [Petroleum University of Technology, Abadan (Iran, Islamic Republic of); Asoodeh, Mojtaba [Islamic Azad University, Birjand (Iran, Islamic Republic of)
2014-03-15
Bubble point pressure is a critical pressure-volume-temperature (PVT) property of reservoir fluid, which plays an important role in almost all tasks involved in reservoir and production engineering. We developed two sophisticated models to estimate bubble point pressure from gas specific gravity, oil gravity, solution gas oil ratio, and reservoir temperature. Neural network and adaptive neuro-fuzzy inference system are powerful tools for extracting the underlying dependency of a set of input/output data. However, the mentioned tools are in danger of sticking in local minima. The present study went further by optimizing fuzzy logic and neural network models using the genetic algorithm in charge of eliminating the risk of being exposed to local minima. This strategy is capable of significantly improving the accuracy of both neural network and fuzzy logic models. The proposed methodology was successfully applied to a dataset of 153 PVT data points. Results showed that the genetic algorithm can serve the neural network and neuro-fuzzy models from local minima trapping, which might occur through back-propagation algorithm.
Optimization of the High-Shear Wet Granulation Wetting Process Using Fuzzy Logic Modeling
Czech Academy of Sciences Publication Activity Database
Bělohlav, Z.; Břenková, L.; Kalčíková, J.; Hanika, Jiří; Durdil, P.; Tomášek, V.; Palatová, M.
2007-01-01
Roč. 12, č. 4 (2007), s. 345-352 ISSN 1083-7450 Institutional research plan: CEZ:AV0Z40720504 Keywords : fuzzy logic * mathematical model * granulation Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 0.876, year: 2007
Fuzzy delay model based fault simulator for crosstalk delay fault test ...
Indian Academy of Sciences (India)
generation is that the test patterns must guarantee not only that the deterministic fault effect is captured correctly ... In digital circuits, the delays associated with each element are different and may not be known with precision for a ... In this paper, the fuzzy delay model is employed for test generation of crosstalk delay faults in.
Fuzzy uncertainty modeling applied to AP1000 nuclear power plant LOCA
International Nuclear Information System (INIS)
Ferreira Guimaraes, Antonio Cesar; Franklin Lapa, Celso Marcelo; Lamego Simoes Filho, Francisco Fernando; Cabral, Denise Cunha
2011-01-01
Research highlights: → This article presents an uncertainty modelling study using a fuzzy approach. → The AP1000 Westinghouse NPP was used and it is provided of passive safety systems. → The use of advanced passive safety systems in NPP has limited operational experience. → Failure rates and basic events probabilities used on the fault tree analysis. → Fuzzy uncertainty approach was employed to reliability of the AP1000 large LOCA. - Abstract: This article presents an uncertainty modeling study using a fuzzy approach applied to the Westinghouse advanced nuclear reactor. The AP1000 Westinghouse Nuclear Power Plant (NPP) is provided of passive safety systems, based on thermo physics phenomenon, that require no operating actions, soon after an incident has been detected. The use of advanced passive safety systems in NPP has limited operational experience. As it occurs in any reliability study, statistically non-significant events report introduces a significant uncertainty level about the failure rates and basic events probabilities used on the fault tree analysis (FTA). In order to model this uncertainty, a fuzzy approach was employed to reliability analysis of the AP1000 large break Loss of Coolant Accident (LOCA). The final results have revealed that the proposed approach may be successfully applied to modeling of uncertainties in safety studies.
Microgrid planning based on fuzzy interval prediction models of renewable resources
Morales, R.; Sáez, D.; Marín, L.G.; Nunez Vicencio, Alfredo; Cordon, O.
2016-01-01
Microgrids are sustainable solutions for electrification of rural zones that can make use of their local renewable resources. In this paper, we propose a new method for microgrid planning which includes the effect of the uncertainties of the renewable resources explicitly. Fuzzy interval models are
DEFF Research Database (Denmark)
Achiche, S.; Shlechtingen, M.; Raison, M.
2016-01-01
This paper presents the results obtained from a research work investigating the performance of different Adaptive Neuro-Fuzzy Inference System (ANFIS) models developed to predict excitation forces on a dynamically loaded flexible structure. For this purpose, a flexible structure is equipped with ...
On Witnessed Models in Fuzzy Logic III - Witnessed Gödel Logics
Czech Academy of Sciences Publication Activity Database
Hájek, Petr
2010-01-01
Roč. 56, č. 2 (2010), s. 171-174 ISSN 0942-5616 R&D Projects: GA MŠk(CZ) 1M0545 Institutional research plan: CEZ:AV0Z10300504 Keywords : mathematical fuzzy logic * Gödel logic * witnessed models * arithmetical complexity Subject RIV: BA - General Mathematics Impact factor: 0.361, year: 2010
Designing a model for selection of air pollution control equipment using fuzzy logic
Directory of Open Access Journals (Sweden)
F. Golbabaei
2014-07-01
Conclusion: Finally, the proposed model that is based on the Fuzzy Analytic Hierarchy Process indicates that the Baghouse Technique is the most appropriate technique for the purpose of dust filtration in major sources of air pollution spread in Shargh Cement Company.
Pandian, P.; Dhivya Lakshmi, M.
2017-11-01
In this paper, a production inventory model for non-deteriorating items with a constant demand rate and completely backlogged in a fuzzy environment is presented. The production rate of the model is assumed to be a constant and to be proportional to demand rate. Each cycle of the developed model is considered in four different types of situations. The optimal average fuzzy total inventory cost of a cycle and optimal fuzzy time for each situation are obtained. Numerical example is presented to illustrate the proposed model.
Experimental studies of ECC delivery in a 1/15-scale transparent vessel model
International Nuclear Information System (INIS)
Flanigan, L.J.; Cudnik, R.A.; Denning, R.S.
1975-11-01
A description is presented of experimental studies in a 1 / 15 -scale transparent vessel model of a 4-loop PWR, operated at approximately atmospheric pressure. The studies are being conducted to extend the understanding of steam-water interaction phenomena and of processes associated with a loss-of-coolant accident
Amarti, Z.; Nurkholipah, N. S.; Anggriani, N.; Supriatna, A. K.
2018-03-01
Predicting the future of population number is among the important factors that affect the consideration in preparing a good management for the population. This has been done by various known method, one among them is by developing a mathematical model describing the growth of the population. The model usually takes form in a differential equation or a system of differential equations, depending on the complexity of the underlying properties of the population. The most widely used growth models currently are those having a sigmoid solution of time series, including the Verhulst logistic equation and the Gompertz equation. In this paper we consider the Allee effect of the Verhulst’s logistic population model. The Allee effect is a phenomenon in biology showing a high correlation between population size or density and the mean individual fitness of the population. The method used to derive the solution is the Runge-Kutta numerical scheme, since it is in general regarded as one among the good numerical scheme which is relatively easy to implement. Further exploration is done via the fuzzy theoretical approach to accommodate the impreciseness of the initial values and parameters in the model.
A Distance Model of Intuitionistic Fuzzy Cross Entropy to Solve Preference Problem on Alternatives
Directory of Open Access Journals (Sweden)
Mei Li
2016-01-01
Full Text Available In the field of decision-making, for the multiple attribute decision-making problem with the partially unknown attribute weights, the evaluation information in the form of the intuitionistic fuzzy numbers, and the preference on alternatives, this paper proposes a comprehensive decision model based on the intuitionistic fuzzy cross entropy distance and the grey correlation analysis. The creative model can make up the deficiency that the traditional intuitionistic fuzzy distance measure is easy to cause the confusion of information and can improve the accuracy of distance measure; meanwhile, the grey correlation analysis method, suitable for the small sample and the poor information decision-making, is applied in the evaluation. This paper constructs a mathematical optimization model of maximizing the synthesis grey correlation coefficient between decision-making evaluation values and decision-makers’ subjective preference values, calculates the attribute weights with the known partial weight information, and then sorts the alternatives by the grey correlation coefficient values. Taking venture capital firm as an example, through the calculation and the variable disturbance, we can see that the methodology used in this paper has good stability and rationality. This research makes the decision-making process more scientific and further improves the theory of intuitionistic fuzzy multiple attribute decision-making.
Fuzzy systems modeling of in situ bioremediation of chlorinatedsolve n ts
Energy Technology Data Exchange (ETDEWEB)
Faybishenko, Boris; Hazen, Terry C.
2001-09-05
A large-scale vadose zone-groundwater bioremediationdemonstration was conducted at the Savannah River Site (SRS) by injectingseveral types of gases (ambient air, methane, and nitrous oxide andtriethyl phosphate mixtures) through a horizontal well in the groundwaterat a 175 ft depth. Simultaneously, soil gas was extracted through aparallel horizontal well in the vadose zone at a 80 ft depth Monitoringrevealed a wide range of spatial and temporal variations ofconcentrations of VOCs, enzymes, and biomass in groundwater and vadosezone monitoring boreholes over the field site. One of the powerful modernapproaches to analyze uncertain and imprecise data chemical data is basedon the use of methods of fuzzy systems modeling. Using fuzzy modeling weanalyzed the spatio-temporal TCE and PCE concentrations and methanotrophdensities in groundwater to assess the effectiveness of differentcampaigns of air stripping and bioremediation, and to determine the fuzzyrelationship between these compounds. Our analysis revealed some detailsabout the processes involved in remediation, which were not identified inthe previous studies of the SRS demonstration. We also identified somefuture directions for using fuzzy systems modeling, such as theevaluation of the mass balance of the vadose zone - groundwater system,and the development of fuzzy-ruled methods for optimization of managingremediation activities, predictions, and risk assessment.
A fuzzy compromise programming approach for the Black-Litterman portfolio selection model
Directory of Open Access Journals (Sweden)
Mohsen Gharakhani
2013-01-01
Full Text Available In this paper, we examine advanced optimization approach for portfolio problem introduced by Black and Litterman to consider the shortcomings of Markowitz standard Mean-Variance optimization. Black and Litterman propose a new approach to estimate asset return. They present a way to incorporate the investor’s views into asset pricing process. Since the investor’s view about future asset return is always subjective and imprecise, we can represent it by using fuzzy numbers and the resulting model is multi-objective linear programming. Therefore, the proposed model is analyzed through fuzzy compromise programming approach using appropriate membership function. For this purpose, we introduce the fuzzy ideal solution concept based on investor preference and indifference relationships using canonical representation of proposed fuzzy numbers by means of their correspondingα-cuts. A real world numerical example is presented in which MSCI (Morgan Stanley Capital International Index is chosen as the target index. The results are reported for a portfolio consisting of the six national indices. The performance of the proposed models is compared using several financial criteria.
Howard, Ayanna
2005-01-01
The Fuzzy Logic Engine is a software package that enables users to embed fuzzy-logic modules into their application programs. Fuzzy logic is useful as a means of formulating human expert knowledge and translating it into software to solve problems. Fuzzy logic provides flexibility for modeling relationships between input and output information and is distinguished by its robustness with respect to noise and variations in system parameters. In addition, linguistic fuzzy sets and conditional statements allow systems to make decisions based on imprecise and incomplete information. The user of the Fuzzy Logic Engine need not be an expert in fuzzy logic: it suffices to have a basic understanding of how linguistic rules can be applied to the user's problem. The Fuzzy Logic Engine is divided into two modules: (1) a graphical-interface software tool for creating linguistic fuzzy sets and conditional statements and (2) a fuzzy-logic software library for embedding fuzzy processing capability into current application programs. The graphical- interface tool was developed using the Tcl/Tk programming language. The fuzzy-logic software library was written in the C programming language.
Genetic Fuzzy Modelling of User Perception of 3D Shapes
DEFF Research Database (Denmark)
Achiche, Sofiane; Ahmed-Kristensen, Saeema
2011-01-01
Defining the aesthetic and emotional value of a product is an important consideration for its design. Furthermore, if several designers are faced with the task of creating an object that describe a certain emotion/perception (aggressive, soft, heavy, etc.), each is most likely to interpret...... the emotion/perception with different shapes composed of a set of different geometric features. In this paper, the authors propose an automatic approach to formalize the relationships between geometric information of 3D objects and the intended emotional content using fuzzy logic. In addition...
Habbi, Hacene; Kinnaert, Michel; Zelmat, Mimoun
2009-07-01
In this paper, an efficient fuzzy model-based leak detection algorithm is designed for a pilot heat exchanger. A dynamic fuzzy model of the physical plant is first derived from input-output measurements using a fuzzy clustering technique. This model is run in parallel to the process for symptom generation. The leak detection mechanism has been tested and validated on the real co-current heat exchanger, and has proven to be efficient in detecting leaks of different magnitudes in the water circulation pipe.
Usage of Fuzzy Spatial Theory for Modelling of Terrain Passability
Directory of Open Access Journals (Sweden)
Alois Hofmann
2013-01-01
Full Text Available Geographic support of decision-making processes is based on various geographic products, usually in digital form, which come from various foundations and sources. Each product can be characterized by its quality or by its utility value for the given type of task or group of tasks, for which the product is used. They also usually have different characteristics and thus can very significantly influence the resulting analytical material. The aim of the paper is to contribute to the solution of the question of how it is possible to work with diverse spatial geographic information so that the user has an idea about the resulting product. The concept of fuzzy sets is used for representation of classes, whose boundaries are not clearly (not sharply set, namely, the fuzzy approach in overlaying operations realized in ESRI ArcGIS environment. The paper is based on a research project which is being solved at the Faculty of Military Technologies of the University of Defence. The research deals with the influence of geographic and climatic factors on the activity of armed forces and the Integrated Rescue System.
DEVELOPMENT OF A HYBRID FUZZY GENETIC ALGORITHM MODEL FOR SOLVING TRANSPORTATION SCHEDULING PROBLEM
Directory of Open Access Journals (Sweden)
H.C.W. Lau
2015-12-01
Full Text Available There has been an increasing public demand for passenger rail service in the recent times leading to a strong focus on the need for effective and efficient use of resources and managing the increasing passenger requirements, service reliability and variability by the railway management. Whilst shortening the passengers’ waiting and travelling time is important for commuter satisfaction, lowering operational costs is equally important for railway management. Hence, effective and cost optimised train scheduling based on the dynamic passenger demand is one of the main issues for passenger railway management. Although the passenger railway scheduling problem has received attention in operations research in recent years, there is limited literature investigating the adoption of practical approaches that capitalize on the merits of mathematical modeling and search algorithms for effective cost optimization. This paper develops a hybrid fuzzy logic based genetic algorithm model to solve the multi-objective passenger railway scheduling problem aiming to optimize total operational costs at a satisfactory level of customer service. This hybrid approach integrates genetic algorithm with the fuzzy logic approach which uses the fuzzy controller to determine the crossover rate and mutation rate in genetic algorithm approach in the optimization process. The numerical study demonstrates the improvement of the proposed hybrid approach, and the fuzzy genetic algorithm has demonstrated its effectiveness to generate better results than standard genetic algorithm and other traditional heuristic approaches, such as simulated annealing.
A Fuzzy Computing Model for Identifying Polarity of Chinese Sentiment Words
Directory of Open Access Journals (Sweden)
Bingkun Wang
2015-01-01
Full Text Available With the spurt of online user-generated contents on web, sentiment analysis has become a very active research issue in data mining and natural language processing. As the most important indicator of sentiment, sentiment words which convey positive and negative polarity are quite instrumental for sentiment analysis. However, most of the existing methods for identifying polarity of sentiment words only consider the positive and negative polarity by the Cantor set, and no attention is paid to the fuzziness of the polarity intensity of sentiment words. In order to improve the performance, we propose a fuzzy computing model to identify the polarity of Chinese sentiment words in this paper. There are three major contributions in this paper. Firstly, we propose a method to compute polarity intensity of sentiment morphemes and sentiment words. Secondly, we construct a fuzzy sentiment classifier and propose two different methods to compute the parameter of the fuzzy classifier. Thirdly, we conduct extensive experiments on four sentiment words datasets and three review datasets, and the experimental results indicate that our model performs better than the state-of-the-art methods.
A Fuzzy Computing Model for Identifying Polarity of Chinese Sentiment Words.
Wang, Bingkun; Huang, Yongfeng; Wu, Xian; Li, Xing
2015-01-01
With the spurt of online user-generated contents on web, sentiment analysis has become a very active research issue in data mining and natural language processing. As the most important indicator of sentiment, sentiment words which convey positive and negative polarity are quite instrumental for sentiment analysis. However, most of the existing methods for identifying polarity of sentiment words only consider the positive and negative polarity by the Cantor set, and no attention is paid to the fuzziness of the polarity intensity of sentiment words. In order to improve the performance, we propose a fuzzy computing model to identify the polarity of Chinese sentiment words in this paper. There are three major contributions in this paper. Firstly, we propose a method to compute polarity intensity of sentiment morphemes and sentiment words. Secondly, we construct a fuzzy sentiment classifier and propose two different methods to compute the parameter of the fuzzy classifier. Thirdly, we conduct extensive experiments on four sentiment words datasets and three review datasets, and the experimental results indicate that our model performs better than the state-of-the-art methods.
Directory of Open Access Journals (Sweden)
Çiğdem ÖZARİ
2018-01-01
Full Text Available In this study, we have worked on developing a brand-new index called Fuzzy-bankruptcy index. The aim of this index is to find out the default probability of any company X, independent from the sector it belongs. Fuzzy logic is used to state the financial ratiointerruption change related with time and inside different sectors, the new index is created to eliminate the number of the relativity of financial ratios. The four input variables inside the five main input variables used for the fuzzy process, are chosen from both factor analysis and clustering and the last input variable calculated from Merton Model. As we analyze in the past cases of the default history of companies, one could explore different reasons such as managerial arrogance, fraud and managerial mistakes, that are responsible for the very poor endings of prestigious companies like Enron, K-Mart. Because of these kind of situations, we try to design a model which one could be able to get a better view of a company’s financial position, and it couldbe prevent credit loan companies from investing in the wrong company and possibly from losing all investments using our Fuzzy-bankruptcy index.
An order level inventory model under two level storage system with fuzzy demand
Directory of Open Access Journals (Sweden)
Sakrar S.
2013-01-01
Full Text Available Deterministic inventory model with two levels of storage has been studied by numerous authors. In this paper we developed a fuzzy inventory model with two ware houses (one is the existing storage known as own warehouse (OW and the other is hired on rental basis known as rented warehouse (RW. The model allows constant levels of item deterioration in both houses. The stock is transferred from RW to OW in continuous release pattern and the associated transportation cost is taken into account. To make the model more realistic in nature, fuzzy demand has been considered. Using α-cut for defuzzification, the total variable cost per unit time is derived. Therefore, the problem is reduced to crisp annual costs. The multi-objective model is solved by Global Criteria Method supported by GRG (Generalized Reduced Gradient Technique, which is illustrated by a numerical example.
Directory of Open Access Journals (Sweden)
BORBA, José Alonso
2007-05-01
and product that is not real in many cases. In order to handle this not-linearity, this research presents a methodology based on fuzzy logic concepts in order to model both the subjectivity and uncertainty inherent in the environmental allocation process. A case from Hansen and Mowen (2001, p. 584 has been used as a reference for the construction of the fuzzy model. Following, new variables were incorporated, and a proposed solution was developed utilizing fuzzy logic concepts. A total of 126 inference rules were created with the help of the specific software FuzzyTECH®, which resulted in the new cost drivers that were used to allocate the environmental costs to the products. The results founded in the proposed model FuzzyABC (Fuzzy Activity Based Costing show that fuzzy logic can be used as a helpful tool in environmental cost allocation due to the ambiguity and subjectivity inherent in these process.RESUMENEn muchos casos, prevenir la contaminación y la destrucción del medio ambiente es menos gravoso que remediar estos daños. En este contexto, el hecho de asignar costos ambientales a los productos permite una mejor visualización y análisis de la rentabilidad de los productos. Pero, el atribuir costos ambientales a cada producto envuelve informaciones estimadas y asume una linealidad entre el consumo de las actividades y los productos, que muchas veces no existe. Para contemplar esa falta de linealidad, este trabajo presenta una metodología con base en la utilización de la lógica fuzzy para modelar la incertidumbre y la subjetividad, inherentes al proceso de asignación de los costos ambientales. Para eso, además de un estudio de caso desarrollado por Hansen y Mowen (2001, p.584, que fue utilizado como referencia, otras variables fueron incorporadas. Seguidamente una propuesta de solución, que utiliza fundamentos de la teoría de los conjuntos fuzzy, o nebulosos, fue desarrollada con el propósito de atender la subjetividad y la incertidumbre en la
Parameterized data-driven fuzzy model based optimal control of a semi-batch reactor.
Kamesh, Reddi; Rani, K Yamuna
2016-09-01
A parameterized data-driven fuzzy (PDDF) model structure is proposed for semi-batch processes, and its application for optimal control is illustrated. The orthonormally parameterized input trajectories, initial states and process parameters are the inputs to the model, which predicts the output trajectories in terms of Fourier coefficients. Fuzzy rules are formulated based on the signs of a linear data-driven model, while the defuzzification step incorporates a linear regression model to shift the domain from input to output domain. The fuzzy model is employed to formulate an optimal control problem for single rate as well as multi-rate systems. Simulation study on a multivariable semi-batch reactor system reveals that the proposed PDDF modeling approach is capable of capturing the nonlinear and time-varying behavior inherent in the semi-batch system fairly accurately, and the results of operating trajectory optimization using the proposed model are found to be comparable to the results obtained using the exact first principles model, and are also found to be comparable to or better than parameterized data-driven artificial neural network model based optimization results. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Putti, Fernando Ferrari; Filho, Luis Roberto Almeida Gabriel; Gabriel, Camila Pires Cremasco; Neto, Alfredo Bonini; Bonini, Carolina Dos Santos Batista; Rodrigues Dos Reis, André
2017-06-01
This study aimed to develop a fuzzy mathematical model to estimate the impacts of global warming on the vitality of Laelia purpurata growing in different Brazilian environmental conditions. In order to develop the mathematical model was considered as intrinsic factors the parameters: temperature, humidity and shade conditions to determine the vitality of plants. Fuzzy model results could accurately predict the optimal conditions for cultivation of Laelia purpurata in several sites of Brazil. Based on fuzzy model results, we found that higher temperatures and lacking of properly shading can reduce the vitality of orchids. Fuzzy mathematical model could precisely detect the effect of higher temperatures causing damages on vitality of plants as a consequence of global warming. Copyright © 2017 Elsevier Inc. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Mackey, Lester [Department of Statistics, Stanford University,Stanford, CA 94305 (United States); Nachman, Benjamin [Department of Physics, Stanford University,Stanford, CA 94305 (United States); SLAC National Accelerator Laboratory, Stanford University,2575 Sand Hill Rd, Menlo Park, CA 94025 (United States); Schwartzman, Ariel [SLAC National Accelerator Laboratory, Stanford University,2575 Sand Hill Rd, Menlo Park, CA 94025 (United States); Stansbury, Conrad [Department of Physics, Stanford University,Stanford, CA 94305 (United States)
2016-06-01
Collimated streams of particles produced in high energy physics experiments are organized using clustering algorithms to form jets. To construct jets, the experimental collaborations based at the Large Hadron Collider (LHC) primarily use agglomerative hierarchical clustering schemes known as sequential recombination. We propose a new class of algorithms for clustering jets that use infrared and collinear safe mixture models. These new algorithms, known as fuzzy jets, are clustered using maximum likelihood techniques and can dynamically determine various properties of jets like their size. We show that the fuzzy jet size adds additional information to conventional jet tagging variables in boosted topologies. Furthermore, we study the impact of pileup and show that with some slight modifications to the algorithm, fuzzy jets can be stable up to high pileup interaction multiplicities.
Fuzzy bilevel programming with multiple non-cooperative followers: model, algorithm and application
Ke, Hua; Huang, Hu; Ralescu, Dan A.; Wang, Lei
2016-04-01
In centralized decision problems, it is not complicated for decision-makers to make modelling technique selections under uncertainty. When a decentralized decision problem is considered, however, choosing appropriate models is no longer easy due to the difficulty in estimating the other decision-makers' inconclusive decision criteria. These decision criteria may vary with different decision-makers because of their special risk tolerances and management requirements. Considering the general differences among the decision-makers in decentralized systems, we propose a general framework of fuzzy bilevel programming including hybrid models (integrated with different modelling methods in different levels). Specially, we discuss two of these models which may have wide applications in many fields. Furthermore, we apply the proposed two models to formulate a pricing decision problem in a decentralized supply chain with fuzzy coefficients. In order to solve these models, a hybrid intelligent algorithm integrating fuzzy simulation, neural network and particle swarm optimization based on penalty function approach is designed. Some suggestions on the applications of these models are also presented.
Directory of Open Access Journals (Sweden)
Fitrian Imaduddin
2017-10-01
Full Text Available This paper presents the characterization and hysteresis modeling of magnetorheological (MR damper with meandering type valve. The meandering type MR valve, which employs the combination of multiple annular and radial flow passages, has been introduced as the new type of high performance MR valve with higher achievable pressure drop and controllable performance range than similar counterparts in its class. Since the performance of a damper is highly determined by the valve performance, the utilization of the meandering type MR valve in an MR damper could potentially improve the damper performance. The damping force characterization of the MR damper is conducted by measuring the damping force as a response to the variety of harmonic excitations. The hysteresis behavior of the damper is identified by plotting the damping force relationship to the excitation displacement and velocity. For the hysteresis modeling purpose, some parts of the data are taken as the training data source for the optimization parameters in the neuro-fuzzy model. The performance of the trained neuro-fuzzy model is assessed by validating the model output with the remaining measurement data and benchmarking the results with the output of the parametric hysteresis model. The validation results show that the neuro-fuzzy model is demonstrating good agreement with the measurement results indicated by the average relative error of only around 7%. The model also shows robustness with no tendency of growing error when the input values are changed.
Zhang, Qiuwen; Yang, Xiaohong; Zhang, Yan; Zhong, Ming
2013-01-01
Groundwater contamination is a serious threat to water supply. Risk assessment of groundwater contamination is an effective way to protect the safety of groundwater resource. Groundwater is a complex and fuzzy system with many uncertainties, which is impacted by different geological and hydrological factors. In order to deal with the uncertainty in the risk assessment of groundwater contamination, we propose an approach with analysis hierarchy process and fuzzy comprehensive evaluation integrated together. Firstly, the risk factors of groundwater contamination are identified by the sources-pathway-receptor-consequence method, and a corresponding index system of risk assessment based on DRASTIC model is established. Due to the complexity in the process of transitions between the possible pollution risks and the uncertainties of factors, the method of analysis hierarchy process is applied to determine the weights of each factor, and the fuzzy sets theory is adopted to calculate the membership degrees of each factor. Finally, a case study is presented to illustrate and test this methodology. It is concluded that the proposed approach integrates the advantages of both analysis hierarchy process and fuzzy comprehensive evaluation, which provides a more flexible and reliable way to deal with the linguistic uncertainty and mechanism uncertainty in groundwater contamination without losing important information.
Sari, Hanife; Yetilmezsoy, Kaan; Ilhan, Fatih; Yazici, Senem; Kurt, Ugur; Apaydin, Omer
2013-06-01
Three multiple input and multiple output-type fuzzy-logic-based models were developed as an artificial intelligence-based approach to model a novel integrated process (UF-IER-EDBM-FO) consisted of ultrafiltration (UF), ion exchange resins (IER), electrodialysis with bipolar membrane (EDBM), and Fenton's oxidation (FO) units treating young, middle-aged, and stabilized landfill leachates. The FO unit was considered as the key process for implementation of the proposed modeling scheme. Four input components such as H(2)O(2)/chemical oxygen demand ratio, H(2)O(2)/Fe(2+) ratio, reaction pH, and reaction time were fuzzified in a Mamdani-type fuzzy inference system to predict the removal efficiencies of chemical oxygen demand, total organic carbon, color, and ammonia nitrogen. A total of 200 rules in the IF-THEN format were established within the framework of a graphical user interface for each fuzzy-logic model. The product (prod) and the center of gravity (centroid) methods were performed as the inference operator and defuzzification methods, respectively, for the proposed prognostic models. Fuzzy-logic predicted results were compared to the outputs of multiple regression models by means of various descriptive statistical indicators, and the proposed methodology was tested against the experimental data. The testing results clearly revealed that the proposed prognostic models showed a superior predictive performance with very high determination coefficients (R (2)) between 0.930 and 0.991. This study indicated a simple means of modeling and potential of a knowledge-based approach for capturing complicated inter-relationships in a highly non-linear problem. Clearly, it was shown that the proposed prognostic models provided a well-suited and cost-effective method to predict removal efficiencies of wastewater parameters prior to discharge to receiving streams.
Directory of Open Access Journals (Sweden)
Baghdad BELABES
2008-12-01
Full Text Available In this paper a hybrid controller combining a linear model following controller (LMFC and fuzzy logic control (FLC for speed vector controlled permanent magnet synchronous motor (PMSM is described on this study. The FLC is introduced at the adaptive mechanism level. First, an LMFC system is designed to allow the plant states to be controlled to follow the states produced by a reference model. In the nominal conditions, the model following is perfect and the adaptive mechanism based on the fuzzy logic is idle. Secondly, when parameter variations or external disturbances occur, an augmented signal will be generated by FLC mechanism to preserve the desired model following control performance. The effectiveness and robustness of the proposed controller is demonstrated by some simulation results.
Sugeno-Fuzzy Expert System Modeling for Quality Prediction of Non-Contact Machining Process
Sivaraos; Khalim, A. Z.; Salleh, M. S.; Sivakumar, D.; Kadirgama, K.
2018-03-01
Modeling can be categorised into four main domains: prediction, optimisation, estimation and calibration. In this paper, the Takagi-Sugeno-Kang (TSK) fuzzy logic method is examined as a prediction modelling method to investigate the taper quality of laser lathing, which seeks to replace traditional lathe machines with 3D laser lathing in order to achieve the desired cylindrical shape of stock materials. Three design parameters were selected: feed rate, cutting speed and depth of cut. A total of twenty-four experiments were conducted with eight sequential runs and replicated three times. The results were found to be 99% of accuracy rate of the TSK fuzzy predictive model, which suggests that the model is a suitable and practical method for non-linear laser lathing process.
Data-Mining-Based Coronary Heart Disease Risk Prediction Model Using Fuzzy Logic and Decision Tree.
Kim, Jaekwon; Lee, Jongsik; Lee, Youngho
2015-07-01
The importance of the prediction of coronary heart disease (CHD) has been recognized in Korea; however, few studies have been conducted in this area. Therefore, it is necessary to develop a method for the prediction and classification of CHD in Koreans. A model for CHD prediction must be designed according to rule-based guidelines. In this study, a fuzzy logic and decision tree (classification and regression tree [CART])-driven CHD prediction model was developed for Koreans. Datasets derived from the Korean National Health and Nutrition Examination Survey VI (KNHANES-VI) were utilized to generate the proposed model. The rules were generated using a decision tree technique, and fuzzy logic was applied to overcome problems associated with uncertainty in CHD prediction. The accuracy and receiver operating characteristic (ROC) curve values of the propose systems were 69.51% and 0.594, proving that the proposed methods were more efficient than other models.
Transparent Tiger barb Puntius tetrazona, a fish model for in vivo analysis of nocardial infection.
Wang, F; Wang, X G; Liu, C; Chang, O Q; Feng, Y Y; Jiang, L; Li, K B
2017-11-01
Nocardiosis afflicts multiple species of cultured fish, resulting in substantial economic losses to the aquaculture industry, however, lack of detailed knowledge on disease pathogenesis has hampered the development of effective prevention and control strategies. In this study, we injected a green fluorescent protein (GFP)-labeled Nocardia seriolae strain into a transparent mutant strain of Tiger barb (Puntius tetrazona) to monitor tissue pathogen accumulation and tissue damage in vivo, and to clarify the relationship between pathogenic processes and overt symptoms. GFP-labeled bacteria were phagocytized by leukocytes and could proliferate within these cells, which in turn led to leukocyte aggregation, leukocyte death, and granuloma formation. In addition, intracellular bacteria could permanently colonize various tissues via leukocyte circulation, causing multi-organ infection as revealed by changes of tissue transparency. Histology revealed granulomatous lesions in organs such as muscle, kidney, and spleen that was corresponded to the tissue opacities in vivo. Confocal microscopy confirmed massive accumulations of GFP-labeled bacteria within these granulomas, which often contained a necrotic core. Tiger barb transparency allows for real-time observation of in vivo pathological changes within the same animal, and the pathogenic process can be evaluated based on the shape and size of body opacities. Thus, transparent Tiger barb is a promising model to study the pathogenesis of nocardiosis. Copyright © 2017. Published by Elsevier B.V.
Directory of Open Access Journals (Sweden)
Vessela Krasteva
Full Text Available This study presents a 2-stage heartbeat classifier of supraventricular (SVB and ventricular (VB beats. Stage 1 makes computationally-efficient classification of SVB-beats, using simple correlation threshold criterion for finding close match with a predominant normal (reference beat template. The non-matched beats are next subjected to measurement of 20 basic features, tracking the beat and reference template morphology and RR-variability for subsequent refined classification in SVB or VB-class by Stage 2. Four linear classifiers are compared: cluster, fuzzy, linear discriminant analysis (LDA and classification tree (CT, all subjected to iterative training for selection of the optimal feature space among extended 210-sized set, embodying interactive second-order effects between 20 independent features. The optimization process minimizes at equal weight the false positives in SVB-class and false negatives in VB-class. The training with European ST-T, AHA, MIT-BIH Supraventricular Arrhythmia databases found the best performance settings of all classification models: Cluster (30 features, Fuzzy (72 features, LDA (142 coefficients, CT (221 decision nodes with top-3 best scored features: normalized current RR-interval, higher/lower frequency content ratio, beat-to-template correlation. Unbiased test-validation with MIT-BIH Arrhythmia database rates the classifiers in descending order of their specificity for SVB-class: CT (99.9%, LDA (99.6%, Cluster (99.5%, Fuzzy (99.4%; sensitivity for ventricular ectopic beats as part from VB-class (commonly reported in published beat-classification studies: CT (96.7%, Fuzzy (94.4%, LDA (94.2%, Cluster (92.4%; positive predictivity: CT (99.2%, Cluster (93.6%, LDA (93.0%, Fuzzy (92.4%. CT has superior accuracy by 0.3-6.8% points, with the advantage for easy model complexity configuration by pruning the tree consisted of easy interpretable 'if-then' rules.
Krasteva, Vessela; Jekova, Irena; Leber, Remo; Schmid, Ramun; Abächerli, Roger
2015-01-01
This study presents a 2-stage heartbeat classifier of supraventricular (SVB) and ventricular (VB) beats. Stage 1 makes computationally-efficient classification of SVB-beats, using simple correlation threshold criterion for finding close match with a predominant normal (reference) beat template. The non-matched beats are next subjected to measurement of 20 basic features, tracking the beat and reference template morphology and RR-variability for subsequent refined classification in SVB or VB-class by Stage 2. Four linear classifiers are compared: cluster, fuzzy, linear discriminant analysis (LDA) and classification tree (CT), all subjected to iterative training for selection of the optimal feature space among extended 210-sized set, embodying interactive second-order effects between 20 independent features. The optimization process minimizes at equal weight the false positives in SVB-class and false negatives in VB-class. The training with European ST-T, AHA, MIT-BIH Supraventricular Arrhythmia databases found the best performance settings of all classification models: Cluster (30 features), Fuzzy (72 features), LDA (142 coefficients), CT (221 decision nodes) with top-3 best scored features: normalized current RR-interval, higher/lower frequency content ratio, beat-to-template correlation. Unbiased test-validation with MIT-BIH Arrhythmia database rates the classifiers in descending order of their specificity for SVB-class: CT (99.9%), LDA (99.6%), Cluster (99.5%), Fuzzy (99.4%); sensitivity for ventricular ectopic beats as part from VB-class (commonly reported in published beat-classification studies): CT (96.7%), Fuzzy (94.4%), LDA (94.2%), Cluster (92.4%); positive predictivity: CT (99.2%), Cluster (93.6%), LDA (93.0%), Fuzzy (92.4%). CT has superior accuracy by 0.3-6.8% points, with the advantage for easy model complexity configuration by pruning the tree consisted of easy interpretable 'if-then' rules.
International Nuclear Information System (INIS)
Liang, Zhong Wei; Wang, Yi Jun; Ye, Bang Yan; Brauwer, Richard Kars
2012-01-01
In inspecting the detailed performance results of surface precision modeling in different external parameter conditions, the integrated chip surfaces should be evaluated and assessed during topographic spatial modeling processes. The application of surface fitting algorithms exerts a considerable influence on topographic mathematical features. The influence mechanisms caused by different surface fitting algorithms on the integrated chip surface facilitate the quantitative analysis of different external parameter conditions. By extracting the coordinate information from the selected physical control points and using a set of precise spatial coordinate measuring apparatus, several typical surface fitting algorithms are used for constructing micro topographic models with the obtained point cloud. In computing for the newly proposed mathematical features on surface models, we construct the fuzzy evaluating data sequence and present a new three dimensional fuzzy quantitative evaluating method. Through this method, the value variation tendencies of topographic features can be clearly quantified. The fuzzy influence discipline among different surface fitting algorithms, topography spatial features, and the external science parameter conditions can be analyzed quantitatively and in detail. In addition, quantitative analysis can provide final conclusions on the inherent influence mechanism and internal mathematical relation in the performance results of different surface fitting algorithms, topographic spatial features, and their scientific parameter conditions in the case of surface micro modeling. The performance inspection of surface precision modeling will be facilitated and optimized as a new research idea for micro-surface reconstruction that will be monitored in a modeling process
Evaluating transit operator efficiency: An enhanced DEA model with constrained fuzzy-AHP cones
Directory of Open Access Journals (Sweden)
Xin Li
2016-06-01
Full Text Available This study addresses efforts to comb the Analytic Hierarchy Process (AHP with Data Envelopment Analysis (DEA to deliver a robust enhanced DEA model for transit operator efficiency assessment. The proposed model is designed to better capture inherent preferences information over input and output indicators by adding constraint cones to the conventional DEA model. A revised fuzzy-AHP model is employed to generate cones, where the proposed model features the integration of the fuzzy logic with a hierarchical AHP structure to: 1 normalize the scales of different evaluation indicators, 2 construct the matrix of pair-wise comparisons with fuzzy set, and 3 optimize the weight of each criterion with a non-linear programming model. With introduction of cone-based constraints, the new system offers accounting advantages in the interaction among indicators when evaluating the performance of transit operators. To illustrate the applicability of the proposed approach, a real case in Nanjing City, the capital of China's Jiangsu Province, has been selected to assess the efficiencies of seven bus companies based on 2009 and 2010 datasets. A comparison between conventional DEA and enhanced DEA was also conducted to clarify the new system's superiority. Results reveal that the proposed model is more applicable in evaluating transit operator's efficiency thus encouraging a boarder range of applications.
Rouzbehi, Kumars; Miranian, Arash; Luna Alloza, Álvaro; Rodríguez Cortés, Pedro
2012-01-01
With the rapid proliferation of the DC distribution systems, special attentions are paid to the photovoltaic (PV) generations. This paper addresses the problem of maximum power point tracking (MPPT) for PV systems using a local neuro fuzzy (LNF) network and steepest descent (SD) optimization algorithm. The proposed approach, termed LNF + SD, first identifies a valid an accurate model for the PV system using the LNF network and through measurement data. Then the identified PV model is used for...
Fuzzy inferencing to identify degree of interaction in the development of fault prediction models
Directory of Open Access Journals (Sweden)
Rinkaj Goyal
2017-01-01
One related objective is the identification of influential metrics in the development of fault prediction models. A fuzzy rule intrinsically represents a form of interaction between fuzzified inputs. Analysis of these rules establishes that Low and NOT (High level of inheritance based metrics significantly contributes to the F-measure estimate of the model. Further, the Lack of Cohesion of Methods (LCOM metric was found insignificant in this empirical study.
Heddam, Salim
2014-01-01
This article presents a comparison of two adaptive neuro-fuzzy inference systems (ANFIS)-based neuro-fuzzy models applied for modeling dissolved oxygen (DO) concentration. The two models are developed using experimental data collected from the bottom (USGS station no: 420615121533601) and top (USGS station no: 420615121533600) stations at Klamath River at site KRS12a nr Rock Quarry, Oregon, USA. The input variables used for the ANFIS models are water pH, temperature, specific conductance, and sensor depth. Two ANFIS-based neuro-fuzzy systems are presented. The two neuro-fuzzy systems are: (1) grid partition-based fuzzy inference system, named ANFIS_GRID, and (2) subtractive-clustering-based fuzzy inference system, named ANFIS_SUB. In both models, 60 % of the data set was randomly assigned to the training set, 20 % to the validation set, and 20 % to the test set. The ANFIS results are compared with multiple linear regression models. The system proposed in this paper shows a novelty approach with regard to the usage of ANFIS models for DO concentration modeling.
Jafari, Zohreh; Edrisi, Mehdi; Marateb, Hamid Reza
2014-01-01
The purpose of this study was to estimate the torque from high-density surface electromyography signals of biceps brachii, brachioradialis, and the medial and lateral heads of triceps brachii muscles during moderate-to-high isometric elbow flexion-extension. The elbow torque was estimated in two following steps: First, surface electromyography (EMG) amplitudes were estimated using principal component analysis, and then a fuzzy model was proposed to illustrate the relationship between the EMG amplitudes and the measured torque signal. A neuro-fuzzy method, with which the optimum number of rules could be estimated, was used to identify the model with suitable complexity. Utilizing the proposed neuro-fuzzy model, the clinical interpretability was introduced; contrary to the previous linear and nonlinear black-box system identification models. It also reduced the estimation error compared with that of the most recent and accurate nonlinear dynamic model introduced in the literature. The optimum number of the rules for all trials was 4 ± 1, that might be related to motor control strategies and the % variance accounted for criterion was 96.40 ± 3.38 which in fact showed considerable improvement compared with the previous methods. The proposed method is thus a promising new tool for EMG-Torque modeling in clinical applications. PMID:25426427
Using neuro-fuzzy based method to develop nuclear turbine cycle model
International Nuclear Information System (INIS)
Chan Yeakuang; Chang Chinjang
2009-01-01
The purpose of this study is to describe a hybrid soft-computing modeling technique used to develop the steam turbine cycle model for nuclear power plants. The technique uses neuro-fuzzy model to predict the generator output. Firstly, the plant past three fuel cycles operating data above 95% load were collected and validated as the baseline performance data set. Then the signal errors for new operating data were detected by comparison with the baseline data set and their allowable range of variations. Finally, the most important parameters were selected as an input of the neuro-fuzzy based steam turbine cycle model. After training and testing with key parameters (i.e. throttle pressure, condenser backpressure, feedwater flow rate, and final feedwater temperature), the proposed model can be used to predict the generator output. The analysis results show this neuro-fuzzy based turbine cycle model can be used to predict the generator output with a good agreement. Moreover, the achievement of this study provides an alternative approach in thermal performance evaluation for nuclear power plants. (author)
Condition monitoring with wind turbine SCADA data using Neuro-Fuzzy normal behavior models
DEFF Research Database (Denmark)
Schlechtingen, Meik; Santos, Ilmar
2012-01-01
System (ANFIS) models are employed to learn the normal behavior in a training phase, where the component condition can be considered healthy. In the application phase the trained models are applied to predict the target signals, e.g. temperatures, pressures, currents, power output, etc. The behavior......This paper presents the latest research results of a project that focuses on normal behavior models for condition monitoring of wind turbines and their components, via ordinary Supervisory Control And Data Acquisition (SCADA) data. In this machine learning approach Adaptive Neuro-Fuzzy Interference...... the component condition Fuzzy Interference System (FIS) structures are used. Based on rules that are established with the prediction error behavior during faults previously experienced and generic rules, the FIS outputs the component condition (green, yellow and red). Furthermore a first diagnosis of the root...
A load-following controller for PWRs using fuzzy model predictive method
Energy Technology Data Exchange (ETDEWEB)
Man Gyun, Na; In Joon, Hwang [Chosun Univ., Dept. of Nuclear Engineering, Gwangju (Korea, Republic of); Yoon Joon, Lee [Cheju National Univ., Dept. of Nuclear and Energy Engineering (Korea, Republic of)
2007-07-01
In this paper, a fuzzy model predictive control (MPC) method is applied to design an automatic controller for power level and axial power distribution controls in pressurized water reactors. The future reactor power and axial shape index (ASI) are predicted by using the fuzzy model identified by a subtractive clustering method of a fast and robust algorithm. The proposed controller is applied to the integrated power level and axial power distribution controls for a Korea Standard Nuclear Power Plant (KSNP). The power level and the ASI are controlled by two kinds of the 5 regulating control rod banks and the 2 part-strength control rod banks together with the automatic adjustment of boric acid concentration. The 3-dimensional reactor analysis code, MASTER, which models the KSNP, is interfaced to the proposed controller to verify the proposed controller for controlling the reactor power level and the ASI. It is known from numerical simulations that the proposed controller exhibits very fast tracking responses. (authors)
A fuzzy logic model to forecast stock market momentum in Indonesia's property and real estate sector
Penawar, H. K.; Rustam, Z.
2017-07-01
The Capital market has the important role in Indonesia's economy. The capital market does not only support the economy of Indonesia but also being an indicator Indonesia's economy improvement. Something that has been traded in the capital market is stock (stock market). Nowadays, the stock market is full of uncertainty. That uncertainty values make predicting stock market is all that we have to do before we make a decision in the stock market. One that can be predicted in the stock market is momentum. To forecast stock market momentum, it can use fuzzy logic model. In the process of modeling, it will be used 14 days historical data that consisting the value of open, high, low, and close, to predict the next 5 days momentum categories. There are three momentum categories namely Bullish, Neutral, and Bearish. To illustrate the fuzzy logic model, we will use stocks data from several companies that listed on Indonesia Stock Exchange (IDX) in property and real estate sector.
A Fuzzy Optimization Model for High-Speed Railway Timetable Rescheduling
Directory of Open Access Journals (Sweden)
Li Wang
2012-01-01
Full Text Available A fuzzy optimization model based on improved symmetric tolerance approach is introduced, which allows for rescheduling high-speed railway timetable under unexpected interferences. The model nests different parameters of the soft constraints with uncertainty margin to describe their importance to the optimization purpose and treats the objective in the same manner. Thus a new optimal instrument is expected to achieve a new timetable subject to little slack of constraints. The section between Nanjing and Shanghai, which is the busiest, of Beijing-Shanghai high-speed rail line in China is used as the simulated measurement. The fuzzy optimization model provides an accurate approximation on train running time and headway time, and hence the results suggest that the number of seriously impacted trains and total delay time can be reduced significantly subject to little cost and risk.
Directory of Open Access Journals (Sweden)
Lingli Jiang
2011-01-01
Full Text Available This paper proposes a new approach combining autoregressive (AR model and fuzzy cluster analysis for bearing fault diagnosis and degradation assessment. AR model is an effective approach to extract the fault feature, and is generally applied to stationary signals. However, the fault vibration signals of a roller bearing are non-stationary and non-Gaussian. Aiming at this problem, the set of parameters of the AR model is estimated based on higher-order cumulants. Consequently, the AR parameters are taken as the feature vectors, and fuzzy cluster analysis is applied to perform classification and pattern recognition. Experiments analysis results show that the proposed method can be used to identify various types and severities of fault bearings. This study is significant for non-stationary and non-Gaussian signal analysis, fault diagnosis and degradation assessment.
Application of Fuzzy theory to project scheduling with critical path ...
African Journals Online (AJOL)
Application of Fuzzy theory to project scheduling with critical path method. ... Journal of Applied Sciences and Environmental Management ... theory. The crisp activity durations are modeled as triangular fuzzy sets. Fuzzy forward pass was carried out to determine fuzzy activity earliest start, fuzzy event earliest time and fuzzy ...
Developing a fuzzy analytic hierarchical process model for building energy conservation assessment
Energy Technology Data Exchange (ETDEWEB)
Zheng, Guozhong; Jing, Youyin; Shi, Guohua; Zhang, Xutao [School of Energy and Power Engineering, North China Electric Power University, Baoding, 071003 (China); Huang, Hongxia [School of Electrical and Electronic Engineering, North China Electric Power University, Baoding 071003 (China)
2010-01-15
The building sector is responsible for one-third of global final energy consumption. The object of building conservation assessment is to establish and limit the upper boundary for energy consumption in buildings and to promote the utilization of renewable energy and new energy technologies and products. In this paper, a methodology based on fuzzy analytic hierarchy process (FAHP) is proposed for building energy conservation assessment. Within the proposed model, seven factors (building structure, wall, roof, door and window, heating and air conditioning, equipment, and energy) and 22 sub-factors are defined. In the assessment, a decision group is established and members in the decision group are required to provide linguistic variables on the basis of their knowledge and expertise for each sub-factor at the bottom level. Then the decision group is asked to compare the elements at a given level on a pair-wise basis by triangular fuzzy number, then fuzzy pair-wise comparison matrixes are constructed to determine the weights of the factors and sub-factors. The membership degrees on each sub-factor and factor are calculated based on the assessment results. The fuzzy synthesis assessment matrix and the fuzzy synthesis assessment result are then calculated. In order to distinguish the energy conservation degree, the building energy conservation star system is established and the building energy conservation star of the building is obtained according to the assessment results. Then an example is used to illustrate the proposed approach. The results demonstrate the engineering practicability and effectiveness of this method. (author)
Usability Prediction & Ranking of SDLC Models Using Fuzzy Hierarchical Usability Model
Gupta, Deepak; Ahlawat, Anil K.; Sagar, Kalpna
2017-06-01
Evaluation of software quality is an important aspect for controlling and managing the software. By such evaluation, improvements in software process can be made. The software quality is significantly dependent on software usability. Many researchers have proposed numbers of usability models. Each model considers a set of usability factors but do not cover all the usability aspects. Practical implementation of these models is still missing, as there is a lack of precise definition of usability. Also, it is very difficult to integrate these models into current software engineering practices. In order to overcome these challenges, this paper aims to define the term `usability' using the proposed hierarchical usability model with its detailed taxonomy. The taxonomy considers generic evaluation criteria for identifying the quality components, which brings together factors, attributes and characteristics defined in various HCI and software models. For the first time, the usability model is also implemented to predict more accurate usability values. The proposed system is named as fuzzy hierarchical usability model that can be easily integrated into the current software engineering practices. In order to validate the work, a dataset of six software development life cycle models is created and employed. These models are ranked according to their predicted usability values. This research also focuses on the detailed comparison of proposed model with the existing usability models.
DEFF Research Database (Denmark)
Christensen, Claus Lynge; Rindel, Jens Holger
2006-01-01
The paper describes a new method for simulating the frequency-dependent reflection and transmission of reflector arrays, and the frequency-dependent airborne sound insulation between rooms by means of a room acoustic computer model. The method makes use of a transparency method in the ray...... of the partition, and this is useful for the auralization of sound transmission through different building constructions. The acoustic properties like volume, reverberation time, and the area of the transmitting surfaces are included in the simulation....
Rogeaulito: A World Energy Scenario Modeling Tool for Transparent Energy System Thinking
International Nuclear Information System (INIS)
Benichou, Léo; Mayr, Sebastian
2014-01-01
Rogeaulito is a world energy model for scenario building developed by the European think tank The Shift Project. It’s a tool to explore world energy choices from a very long-term and systematic perspective. As a key feature and novelty it computes energy supply and demand independently from each other revealing potentially missing energy supply by 2100. It is further simple to use, didactic, and open source. As such, it targets a broad user group and advocates for reproducibility and transparency in scenario modeling as well as model-based learning. Rogeaulito applies an engineering approach using disaggregated data in a spreadsheet model.
Fuzzy Logic and Neuro-fuzzy Systems: A Systematic Introduction
Yue Wu; Biaobiao Zhang; Jiabin Lu; K. -L. Du
2011-01-01
Fuzzy logic is a rigorous mathematical field, and it provides an effective vehicle for modeling the uncertainty in human reasoning. In fuzzy logic, the knowledge of experts is modeled by linguistic rules represented in the form of IF-THEN logic. Like neural network models such as the multilayer perceptron (MLP) and the radial basis function network (RBFN), some fuzzy inference systems (FISs) have the capability of universal approximation. Fuzzy logic can be used in most areas where neural net...
Fuzzy control and identification
Lilly, John H
2010-01-01
This book gives an introduction to basic fuzzy logic and Mamdani and Takagi-Sugeno fuzzy systems. The text shows how these can be used to control complex nonlinear engineering systems, while also also suggesting several approaches to modeling of complex engineering systems with unknown models. Finally, fuzzy modeling and control methods are combined in the book, to create adaptive fuzzy controllers, ending with an example of an obstacle-avoidance controller for an autonomous vehicle using modus ponendo tollens logic.
Kopasakis, George
1997-01-01
Performance Seeking Control (PSC) attempts to find and control the process at the operating condition that will generate maximum performance. In this paper a nonlinear multivariable PSC methodology will be developed, utilizing the Fuzzy Model Reference Learning Control (FMRLC) and the method of Steepest Descent or Gradient (SDG). This PSC control methodology employs the SDG method to find the operating condition that will generate maximum performance. This operating condition is in turn passed to the FMRLC controller as a set point for the control of the process. The conventional SDG algorithm is modified in this paper in order for convergence to occur monotonically. For the FMRLC control, the conventional fuzzy model reference learning control methodology is utilized, with guidelines generated here for effective tuning of the FMRLC controller.
Directory of Open Access Journals (Sweden)
C. Subba Rami Reddy
2011-07-01
Full Text Available This paper introduces an Integrated fuzzy logic controller (IFLC for brushless dc (BLDC motor drives using advanced simulation model and presents a comparative study of performances of PID controller and IFLC. The dynamic characteristics of speed and torque are effectively monitored and analyzed using the proposed model. The aim of IFLC is to obtain improved performance in terms of disturbance rejection or parameter variation than obtained using PID controller. The IFLC is constructed by using Fuzzy logic controller (FLC and PID controller. A performance comparison of the controllers is also given based on the integral of the absolute value of the error (IAE, the integral of the squared error (ISE, the integral of the time-weighted absolute error (ITAE and the integral of the time-weighted squared error (ITSE. The results show the effectiveness of the proposed controller.
Applying Fuzzy Multiobjective Integrated Logistics Model to Green Supply Chain Problems
Directory of Open Access Journals (Sweden)
Chui-Yu Chiu
2014-01-01
Full Text Available The aim of this paper is attempting to explore the optimal way of supply chain management within the domain of environmental responsibility and concerns. The background of this research involves the issue of green supply chain management (GSCM and the concept of the multiobjective integrated logistics model. More specifically, in this paper, we suggest the fuzzy multiobjective integrated logistics model with the transportation cost and demand fuzziness to solve green supply chain problems in the uncertain environment which is illustrated via the detailed numerical example. Results and the sensitivity analysis of the numerical example indicate that when the governmental subsidy value increased the profits of the reverse chain also increased. The finding shows that the governmental subsidy policy could remain of significant influence for used-product reverse logistics chain.
Photovoltaic System Modeling with Fuzzy Logic Based Maximum Power Point Tracking Algorithm
Directory of Open Access Journals (Sweden)
Hasan Mahamudul
2013-01-01
Full Text Available This paper represents a novel modeling technique of PV module with a fuzzy logic based MPPT algorithm and boost converter in Simulink environment. The prime contributions of this work are simplification of PV modeling technique and implementation of fuzzy based MPPT system to track maximum power efficiently. The main highlighted points of this paper are to demonstrate the precise control of the duty cycle with respect to various atmospheric conditions, illustration of PV characteristic curves, and operation analysis of the converter. The proposed system has been applied for three different PV modules SOLKAR 36 W, BP MSX 60 W, and KC85T 87 W. Finally the resultant data has been compared with the theoretical prediction and company specified value to ensure the validity of the system.
Modelling Multi Hazard Mapping in Semarang City Using GIS-Fuzzy Method
Nugraha, A. L.; Awaluddin, M.; Sasmito, B.
2018-02-01
One important aspect of disaster mitigation planning is hazard mapping. Hazard mapping can provide spatial information on the distribution of locations that are threatened by disaster. Semarang City as the capital of Central Java Province is one of the cities with high natural disaster intensity. Frequent natural disasters Semarang city is tidal flood, floods, landslides, and droughts. Therefore, Semarang City needs spatial information by doing multi hazard mapping to support disaster mitigation planning in Semarang City. Multi Hazards map modelling can be derived from parameters such as slope maps, rainfall, land use, and soil types. This modelling is done by using GIS method with scoring and overlay technique. However, the accuracy of modelling would be better if the GIS method is combined with Fuzzy Logic techniques to provide a good classification in determining disaster threats. The Fuzzy-GIS method will build a multi hazards map of Semarang city can deliver results with good accuracy and with appropriate threat class spread so as to provide disaster information for disaster mitigation planning of Semarang city. from the multi-hazard modelling using GIS-Fuzzy can be known type of membership that has a good accuracy is the type of membership Gauss with RMSE of 0.404 the smallest of the other membership and VAF value of 72.909% of the largest of the other membership.
Interval-valued intuitionistic fuzzy multi-criteria model for design concept selection
Directory of Open Access Journals (Sweden)
Daniel Osezua Aikhuele
2017-09-01
Full Text Available This paper presents a new approach for design concept selection by using an integrated Fuzzy Analytical Hierarchy Process (FAHP and an Interval-valued intuitionistic fuzzy modified TOP-SIS (IVIF-modified TOPSIS model. The integrated model which uses the improved score func-tion and a weighted normalized Euclidean distance method for the calculation of the separation measures of alternatives from the positive and negative intuitionistic ideal solutions provides a new approach for the computation of intuitionistic fuzzy ideal solutions. The results of the two approaches are integrated using a reflection defuzzification integration formula. To ensure the feasibility and the rationality of the integrated model, the method is successfully applied for eval-uating and selecting some design related problems including a real-life case study for the selec-tion of the best concept design for a new printed-circuit-board (PCB and for a hypothetical ex-ample. The model which provides a novel alternative, has been compared with similar computa-tional methods in the literature.
Regional SAR Image Segmentation Based on Fuzzy Clustering with Gamma Mixture Model
Li, X. L.; Zhao, Q. H.; Li, Y.
2017-09-01
Most of stochastic based fuzzy clustering algorithms are pixel-based, which can not effectively overcome the inherent speckle noise in SAR images. In order to deal with the problem, a regional SAR image segmentation algorithm based on fuzzy clustering with Gamma mixture model is proposed in this paper. First, initialize some generating points randomly on the image, the image domain is divided into many sub-regions using Voronoi tessellation technique. Each sub-region is regarded as a homogeneous area in which the pixels share the same cluster label. Then, assume the probability of the pixel to be a Gamma mixture model with the parameters respecting to the cluster which the pixel belongs to. The negative logarithm of the probability represents the dissimilarity measure between the pixel and the cluster. The regional dissimilarity measure of one sub-region is defined as the sum of the measures of pixels in the region. Furthermore, the Markov Random Field (MRF) model is extended from pixels level to Voronoi sub-regions, and then the regional objective function is established under the framework of fuzzy clustering. The optimal segmentation results can be obtained by the solution of model parameters and generating points. Finally, the effectiveness of the proposed algorithm can be proved by the qualitative and quantitative analysis from the segmentation results of the simulated and real SAR images.
Directory of Open Access Journals (Sweden)
Vipan K Sohpal
2014-06-01
Full Text Available Transesterification of Jatropha curcus for biodiesel production is a kinetic control process, which is complex in nature and controlled by temperature, the molar ratio, mixing intensity and catalyst process parameters. A precise choice of catalyst is required to improve the rate of transesterification and to simulate the kinetic study in a batch reactor. The present paper uses an Adaptive Neuro-Fuzzy Inference System (ANFIS approach to model and simulate the butyl ester production using alkaline catalyst (NaOH. The amounts of catalyst and time for reaction have been used as the model’s input parameters. The model is a combination of fuzzy inference and artificial neural network, including a set of fuzzy rules which have been developed directly from experimental data. The proposed modeling approach has been verified by comparing the expected results with the practical results which were observed and obtained through a batch reactor operation. The application of the ANFIS test shows which amount of catalyst predicted by the proposed model is suitable and in compliance with the experimental values at 0.5% level of significance.
Agent Based Fuzzy T-S Multi-Model System and Its Applications
Directory of Open Access Journals (Sweden)
Xiaopeng Zhao
2015-11-01
Full Text Available Based on the basic concepts of agent and fuzzy T-S model, an agent based fuzzy T-S multi-model (ABFT-SMM system is proposed in this paper. Different from the traditional method, the parameters and the membership value of the agent can be adjusted along with the process. In this system, each agent can be described as a dynamic equation, which can be seen as the local part of the multi-model, and it can execute the task alone or collaborate with other agents to accomplish a fixed goal. It is proved in this paper that the agent based fuzzy T-S multi-model system can approximate any linear or nonlinear system at arbitrary accuracy. The applications to the benchmark problem of chaotic time series prediction, water heater system and waste heat utilizing process illustrate the viability and the efficiency of the mentioned approach. At the same time, the method can be easily used to a number of engineering fields, including identification, nonlinear control, fault diagnostics and performance analysis.
International Nuclear Information System (INIS)
Na, Man Gyun; Kim, Jin Weon; Lim, Dong Hyuk
2007-01-01
A fuzzy neural network model is presented to predict residual stress for dissimilar metal welding under various welding conditions. The fuzzy neural network model, which consists of a fuzzy inference system and a neuronal training system, is optimized by a hybrid learning method that combines a genetic algorithm to optimize the membership function parameters and a least squares method to solve the consequent parameters. The data of finite element analysis are divided into four data groups, which are split according to two end-section constraints and two prediction paths. Four fuzzy neural network models were therefore applied to the numerical data obtained from the finite element analysis for the two end-section constraints and the two prediction paths. The fuzzy neural network models were trained with the aid of a data set prepared for training (training data), optimized by means of an optimization data set and verified by means of a test data set that was different (independent) from the training data and the optimization data. The accuracy of fuzzy neural network models is known to be sufficiently accurate for use in an integrity evaluation by predicting the residual stress of dissimilar metal welding zones
Collins, Gary S; Reitsma, Johannes B; Altman, Douglas G; Moons, Karel G M
2015-06-01
Prediction models are developed to aid health care providers in estimating the probability or risk that a specific disease or condition is present (diagnostic models) or that a specific event will occur in the future (prognostic models), to inform their decision making. However, the overwhelming evidence shows that the quality of reporting of prediction model studies is poor. Only with full and clear reporting of information on all aspects of a prediction model can risk of bias and potential usefulness of prediction models be adequately assessed. The Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) Initiative developed a set of recommendations for the reporting of studies developing, validating, or updating a prediction model, whether for diagnostic or prognostic purposes. This article describes how the TRIPOD Statement was developed. An extensive list of items based on a review of the literature was created, which was reduced after a Web-based survey and revised during a 3-day meeting in June 2011 with methodologists, health care professionals, and journal editors. The list was refined during several meetings of the steering group and in e-mail discussions with the wider group of TRIPOD contributors. The resulting TRIPOD Statement is a checklist of 22 items, deemed essential for transparent reporting of a prediction model study. The TRIPOD Statement aims to improve the transparency of the reporting of a prediction model study regardless of the study methods used. The TRIPOD Statement is best used in conjunction with the TRIPOD explanation and elaboration document. To aid the editorial process and readers of prediction model studies, it is recommended that authors include a completed checklist in their submission (also available at www.tripod-statement.org). The Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) Initiative developed a set of recommendations
Grouping, Overlap, and Generalized Bientropic Functions for Fuzzy Modeling of Pairwise Comparisons
Czech Academy of Sciences Publication Activity Database
Bustince, H.; Pagola, M.; Mesiar, Radko; Hullermeier, E.; Herrera, F.
2012-01-01
Roč. 20, č. 3 (2012), s. 405-415 ISSN 1063-6706 R&D Projects: GA ČR GAP402/11/0378 Institutional support: RVO:67985556 Keywords : decision making * grouping function * overlap function Subject RIV: BA - General Mathematics Impact factor: 5.484, year: 2012 http://library.utia.cas.cz/separaty/2012/E/mesiar-grouping overlap and general bientropic functions for fuzzy modelling of pairwise comparisons.pdf
Modeling entrepreneurial decision-making process using concepts from fuzzy set theory
Khefacha, Islem; Belkacem, Lotfi
2015-01-01
Entrepreneurship and entrepreneurial culture are receiving an increased amount of attention in both academic research and practice. The different fields of study have focused on the analysis of the characteristics of potential entrepreneurs and the firm-creation process. In this paper, we develop and test an economic-psychological model of factors that influence individuals' intentions to go into business. We introduce a new measure of entrepreneurial intention based on the logic fuzzy techni...
Matrix model approximations of fuzzy scalar field theories and their phase diagrams
Energy Technology Data Exchange (ETDEWEB)
Tekel, Juraj [Department of Theoretical Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynska Dolina, Bratislava, 842 48 (Slovakia)
2015-12-29
We present an analysis of two different approximations to the scalar field theory on the fuzzy sphere, a nonperturbative and a perturbative one, which are both multitrace matrix models. We show that the former reproduces a phase diagram with correct features in a qualitative agreement with the previous numerical studies and that the latter gives a phase diagram with features not expected in the phase diagram of the field theory.
The Feedback Control Strategy of the Takagi-Sugeno Fuzzy Car-Following Model with Two Delays
Directory of Open Access Journals (Sweden)
Cong Zhai
2016-01-01
Full Text Available Considering the driver’s sensing the headway and velocity the different time-varying delays exist, respectively, and the sensitivity of drivers changes with headway and speed. Introducing the fuzzy control theory, a new fuzzy car-following model with two delays is presented, and the feedback control strategy of the new fuzzy car-following model is studied. Based on the Lyapunov function theory and linear matrix inequality (LMI approach, the sufficient condition that the existence of the fuzzy controller is given making the closed-loop system is asymptotic, stable; namely, traffic congestion phenomenon can effectively be suppressed, and the controller gain matrix can be obtained via solving linear matrix inequality. Finally, the simulation examples verify that the method which suppresses traffic congestion and reduces fuel consumption and exhaust emissions is effective.
Efficient inhomogeneity compensation using fuzzy c-means clustering models.
Szilágyi, László; Szilágyi, Sándor M; Benyó, Balázs
2012-10-01
Intensity inhomogeneity or intensity non-uniformity (INU) is an undesired phenomenon that represents the main obstacle for magnetic resonance (MR) image segmentation and registration methods. Various techniques have been proposed to eliminate or compensate the INU, most of which are embedded into classification or clustering algorithms, they generally have difficulties when INU reaches high amplitudes and usually suffer from high computational load. This study reformulates the design of c-means clustering based INU compensation techniques by identifying and separating those globally working computationally costly operations that can be applied to gray intensity levels instead of individual pixels. The theoretical assumptions are demonstrated using the fuzzy c-means algorithm, but the proposed modification is compatible with a various range of c-means clustering based INU compensation and MR image segmentation algorithms. Experiments carried out using synthetic phantoms and real MR images indicate that the proposed approach produces practically the same segmentation accuracy as the conventional formulation, but 20-30 times faster. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
A Comparative Study of Neural Networks and Fuzzy Systems in Modeling of a Nonlinear Dynamic System
Directory of Open Access Journals (Sweden)
Metin Demirtas
2011-07-01
Full Text Available The aim of this paper is to compare the neural networks and fuzzy modeling approaches on a nonlinear system. We have taken Permanent Magnet Brushless Direct Current (PMBDC motor data and have generated models using both approaches. The predictive performance of both methods was compared on the data set for model configurations. The paper describes the results of these tests and discusses the effects of changing model parameters on predictive and practical performance. Modeling sensitivity was used to compare for two methods.
Directory of Open Access Journals (Sweden)
Sanping Rao
2013-01-01
Full Text Available This paper is an attempt to develop quantitative domain theory over frames. Firstly, we propose the notion of a fuzzy basis, and several equivalent characterizations of fuzzy bases are obtained. Furthermore, the concept of a fuzzy algebraic domain is introduced, and a relationship between fuzzy algebraic domains and fuzzy domains is discussed from the viewpoint of fuzzy basis. We finally give an application of fuzzy bases, where the image of a fuzzy domain can be preserved under some special kinds of fuzzy Galois connections.
Braak, ter C.J.F.; Kourmpetis, Y.I.A.; Kiers, H.A.L.; Bink, M.C.A.M.
2009-01-01
Let Q be a given n×n square symmetric matrix of nonnegative elements between 0 and 1, similarities. Fuzzy clustering results in fuzzy assignment of individuals to K clusters. In additive fuzzy clustering, the n×K fuzzy memberships matrix P is found by least-squares approximation of the off-diagonal
ter Braak, Cajo J. F.; Kourmpetis, Yiannis; Kiers, Henk A. L.; Bink, Marco C. A. M.
2009-01-01
Let Q be a given n x n square symmetric matrix of nonnegative elements between 0 and 1, e.g. similarities. Fuzzy clustering results in fuzzy assignment of individuals to K clusters. In additive fuzzy clustering, the n x K fuzzy memberships matrix P is found by least-squares approximation of the
Fuzzy knowledge management for the semantic web
Ma, Zongmin; Yan, Li; Cheng, Jingwei
2014-01-01
This book goes to great depth concerning the fast growing topic of technologies and approaches of fuzzy logic in the Semantic Web. The topics of this book include fuzzy description logics and fuzzy ontologies, queries of fuzzy description logics and fuzzy ontology knowledge bases, extraction of fuzzy description logics and ontologies from fuzzy data models, storage of fuzzy ontology knowledge bases in fuzzy databases, fuzzy Semantic Web ontology mapping, and fuzzy rules and their interchange in the Semantic Web. The book aims to provide a single record of current research in the fuzzy knowledge representation and reasoning for the Semantic Web. The objective of the book is to provide the state of the art information to researchers, practitioners and graduate students of the Web intelligence and at the same time serve the knowledge and data engineering professional faced with non-traditional applications that make the application of conventional approaches difficult or impossible.
Directory of Open Access Journals (Sweden)
Meriastuti - Ginting
2015-06-01
Full Text Available Abstract. Inventory is considered as the most expensive, yet important,to any companies. It representsapproximately 50% of the total investment. Inventory cost has become one of the majorcontributorsto inefficiency, therefore it should be managed effectively. This study aims to propose an alternative inventory model, by using ABC multi-criteria classification approach to minimize total cost. By combining FANP (Fuzzy Analytical Network Process and TOPSIS (Technique of Order Preferences by Similarity to the Ideal Solution, the ABC multi-criteria classification approach identified 12 items of 69 inventory items as “outstanding important class” that contributed to 80% total inventory cost. This finding is then used as the basis to determine the proposed continuous review inventory model.This study found that by using fuzzy trapezoidal cost, the inventory turnover ratio can be increased, and inventory cost can be decreased by 78% for each item in “class A” inventory. Keywords:ABC multi-criteria classification, FANP-TOPSIS, continuous review inventory model lead-time demand distribution, trapezoidal fuzzy number
Directory of Open Access Journals (Sweden)
Harun Akif Kabuk
2015-01-01
Full Text Available This study investigated the biological treatability of textile wastewater. For this purpose, a membrane bioreactor (MBR was utilized for biological treatment after the ozonation process. Due to the refractory organic contents of textile wastewater that has a low biodegradability capacity, ozonation was implemented as an advanced oxidation process prior to the MBR system to increase the biodegradability of the wastewater. Textile wastewater, oxidized by ozonation, was fed to the MBR at different hydraulic retention times (HRT. During the process, color, chemical oxygen demand (COD, and biochemical oxygen demand (BOD removal efficiencies were monitored for 24-hour, 12-hour, 6-hour, and 3-hour retention times. Under these conditions, 94% color, 65% COD, and 55% BOD removal efficiencies were obtained in the MBR system. The experimental outputs were modeled with multiple linear regressions (MLR and fuzzy logic. MLR results suggested that color removal is more related to COD removal relative to BOD removal. A surface map of this issue was prepared with a fuzzy logic model. Furthermore, fuzzy logic was employed to the whole modeling of the biological system treatment. Determination coefficients for COD, BOD, and color removal efficiencies were 0.96, 0.97, and 0.92, respectively.
Fuzzy virtual reference model sensorless tracking control for linear induction motors.
Hung, Cheng-Yao; Liu, Peter; Lian, Kuang-Yow
2013-06-01
This paper introduces a fuzzy virtual reference model (FVRM) synthesis method for linear induction motor (LIM) speed sensorless tracking control. First, we represent the LIM as a Takagi-Sugeno fuzzy model. Second, we estimate the immeasurable mover speed and secondary flux by a fuzzy observer. Third, to convert the speed tracking control into a stabilization problem, we define the internal desired states for state tracking via an FVRM. Finally, by solving a set of linear matrix inequalities (LMIs), we obtain the observer gains and the control gains where exponential convergence is guaranteed. The contributions of the approach in this paper are threefold: 1) simplified approach--speed tracking problem converted into stabilization problem; 2) omit need of actual reference model--FVRM generates internal desired states; and 3) unification of controller and observer design--control objectives are formulated into an LMI problem where powerful numerical toolboxes solve controller and observer gains. Finally, experiments are carried out to verify the theoretical results and show satisfactory performance both in transient response and robustness.
Directory of Open Access Journals (Sweden)
Meriastuti - Ginting
2015-07-01
Full Text Available Abstract. Inventory is considered as the most expensive, yet important,to any companies. It representsapproximately 50% of the total investment. Inventory cost has become one of the majorcontributorsto inefficiency, therefore it should be managed effectively. This study aims to propose an alternative inventory model, by using ABC multi-criteria classification approach to minimize total cost. By combining FANP (Fuzzy Analytical Network Process and TOPSIS (Technique of Order Preferences by Similarity to the Ideal Solution, the ABC multi-criteria classification approach identified 12 items of 69 inventory items as “outstanding important class” that contributed to 80% total inventory cost. This finding is then used as the basis to determine the proposed continuous review inventory model.This study found that by using fuzzy trapezoidal cost, the inventory turnover ratio can be increased, and inventory cost can be decreased by 78% for each item in “class A” inventory.Keywords:ABC multi-criteria classification, FANP-TOPSIS, continuous review inventory model lead-time demand distribution, trapezoidal fuzzy number
SAGBAS, Aysun; MAZMANOGLU, Adnan; ALP, Reyhan
2013-01-01
The purpose of this paper is to present an evaluation model for the prioritization of wind energy production sites, namely, Mersin, Silifke and Anamur, located in Mediterranean Sea region of Turkey. For this purpose, a fuzzy analytical hierarchy decision making approach based on multi-criteria decision making framework including economic, technical, and environmental criteria was performed. It is found that the results obtained from fuzzy analytical hierarchy process (FAHP) approach, Anamur d...
Qing Hu, Bao
2015-11-01
The fuzzy rough set model and interval-valued fuzzy rough set model have been introduced to handle databases with real values and interval values, respectively. Variable precision rough set was advanced by Ziarko to overcome the shortcomings of misclassification and/or perturbation in Pawlak rough sets. By combining fuzzy rough set and variable precision rough set, a variety of fuzzy variable precision rough sets were studied, which cannot only handle numerical data, but are also less sensitive to misclassification. However, fuzzy variable precision rough sets cannot effectively handle interval-valued data-sets. Research into interval-valued fuzzy rough sets for interval-valued fuzzy data-sets has commenced; however, variable precision problems have not been considered in interval-valued fuzzy rough sets and generalized interval-valued fuzzy rough sets based on fuzzy logical operators nor have interval-valued fuzzy sets been considered in variable precision rough sets and fuzzy variable precision rough sets. These current models are incapable of wide application, especially on misclassification and/or perturbation and on interval-valued fuzzy data-sets. In this paper, these models are generalized to a more integrative approach that not only considers interval-valued fuzzy sets, but also variable precision. First, we review generalized interval-valued fuzzy rough sets based on two fuzzy logical operators: interval-valued fuzzy triangular norms and interval-valued fuzzy residual implicators. Second, we propose generalized interval-valued fuzzy variable precision rough sets based on the above two fuzzy logical operators. Finally, we confirm that some existing models, including rough sets, fuzzy variable precision rough sets, interval-valued fuzzy rough sets, generalized fuzzy rough sets and generalized interval-valued fuzzy variable precision rough sets based on fuzzy logical operators, are special cases of the proposed models.
International Nuclear Information System (INIS)
Watanabe, K.
1990-01-01
Studies have been made on fuzzy diagnosis using inverse problem solutions of the fuzzy relational equation of ao R=b, where a is the failure vector, R the fuzzy relation matrix and b the sympton vector. Four phases of analyses were carried out in this study. First, fault tree analysis was undertaken to investigate what kind of causes produce fall of water level in a steam drum of ATR (Advanced Thermal Reactor), which is heavy-water-moderated boiling-water-cooled pressure-tube-type reactor. Next, simulation for 100 seconds was executed to determine how plant parameters respond to an occurrence of a transient induced by the cause. Third, the simulation data was analysed utilizing an autoregressive model. From this analysis, a total of 36 coherency functions up to 0.5 Hz in each transient were computed among nine important and detectable plant parameters, that is neutron flux, flow rate of coolant, steam and feed water, water level in the steam drum, pressure and opening area of control valve in a steam pipe, feed water temperature and electrical power. Last, the inverse problem of the fuzzy relational equation was solved. Relation matrices were adjusted from 0.00 to 1.00, after nine membership functions following the Gussian distribution for the symptom vector were estimated from correlation values of the coherency functions
Directory of Open Access Journals (Sweden)
SCHIPOR, O.-A.
2012-05-01
Full Text Available Affective computing � the ability of a system to recognize, understand and simulate human emotional intelligence � is one of the most dynamic fields of HCI � Human Computer Interaction. These characteristics find their applicability in those areas where it is necessary to extend traditional cognitive communication with emotional features. That is why, Computer Based Speech Therapy Systems (CBST, and especially those involving children with speech disorders, require this qualitative shift. So in this paper we propose an original emotional framework recognition as an extension for our previous developed system � Logomon. A fuzzy model is used in order to interpret the values of specific physiological parameters and to obtain the emotional state of the subject. Moreover, an experiment that indicates the emotion pattern (average fuzzy sets for each therapeutic sequence is also presented. The obtained results encourage us to continue working on automatic emotion recognition and provide important clues regarding the future development of our CBST.
Fuzzy-Skyhook Control for Active Suspension Systems Applied to a Full Vehicle Model
Directory of Open Access Journals (Sweden)
Aref M.A. Soliman
2012-04-01
Full Text Available Nowadays, most modern vehicles are equipped with controlled suspension systems for improving the vehicle ride comfort. Therefore, this paper is concerned with a theoretical study for the ride comfort performance of the vehicle. The theoretical investigation includes a suggestion of an active suspension system controller using fuzzy-skyhook control theory, which offers new opportunities for the improvement of vehicle ride performance. The ride comfort of the active suspension system has been evaluated using a 7 degree of freedom full vehicle mathematical model. The simulation results are presented in the time and frequency domain, also in terms of RMS values, and it’s shown that the proposed active suspension system with fuzzy-skyhook control improved the vehicle ride quality in terms of body acceleration, suspension working space and dynamic tyre load in comparison with the passive and skyhook suspension systems.
Rabies epidemic model with uncertainty in parameters: crisp and fuzzy approaches
Ndii, M. Z.; Amarti, Z.; Wiraningsih, E. D.; Supriatna, A. K.
2018-03-01
A deterministic mathematical model is formulated to investigate the transmission dynamics of rabies. In particular, we investigate the effects of vaccination, carrying capacity and the transmission rate on the rabies epidemics and allow for uncertainty in the parameters. We perform crisp and fuzzy approaches. We find that, in the case of crisp parameters, rabies epidemics may be interrupted when the carrying capacity and the transmission rate are not high. Our findings suggest that limiting the growth of dog population and reducing the potential contact between susceptible and infectious dogs may aid in interrupting rabies epidemics. We extend the work by considering a fuzzy carrying capacity and allow for low, medium, and high level of carrying capacity. The result confirms the results obtained by using crisp carrying capacity, that is, when the carrying capacity is not too high, the vaccination could confine the disease effectively.
Modeling Academic Performance Evaluation Using Soft Computing Techniques: A Fuzzy Logic Approach
Ramjeet Singh Yadav; Vijendra Pratap Singh
2011-01-01
We have proposed a Fuzzy Expert System (FES) for student academic performance evaluation based on fuzzy logic techniques. A suitable fuzzy inference mechanism and associated rule has been discussed. It introduces the principles behind fuzzy logic and illustrates how these principles could be applied by educators to evaluating student academic performance. Several approaches using fuzzy logic techniques have been proposed to provide a practical method for evaluating student academic performanc...
Hot metal temperature prediction in blast furnace using advanced model based on fuzzy logic tools
Energy Technology Data Exchange (ETDEWEB)
Martin, R.D.; Obeso, F.; Mochon, J.; Barea, R.; Jimenez, J.
2007-05-15
The present work presents a model based on fuzzy logic tools to predict and simulate the hot metal temperature in a blast furnace (BF). As input variables this model uses the control variables of a current BF such as moisture, pulverised coal injection, oxygen addition, mineral/coke ratio and blast volume, and it yields as a result of the hot metal temperature. The variables employed to develop the model have been obtained from data supplied by current sensors of a Spanish BF In the model training stage the adaptive neurofuzzy inference system and the subtractive clustering algorithms have been used.
A fuzzy model for processing and monitoring vital signs in ICU patients
Directory of Open Access Journals (Sweden)
Valentim Ricardo AM
2011-08-01
Full Text Available Abstract Background The area of the hospital automation has been the subject of much research, addressing relevant issues which can be automated, such as: management and control (electronic medical records, scheduling appointments, hospitalization, among others; communication (tracking patients, staff and materials, development of medical, hospital and laboratory equipment; monitoring (patients, staff and materials; and aid to medical diagnosis (according to each speciality. Methods In this context, this paper presents a Fuzzy model for helping medical diagnosis of Intensive Care Unit (ICU patients and their vital signs monitored through a multiparameter heart screen. Intelligent systems techniques were used in the data acquisition and processing (sorting, transforming, among others it into useful information, conducting pre-diagnosis and providing, when necessary, alert signs to the medical staff. Conclusions The use of fuzzy logic turned to the medical area can be very useful if seen as a tool to assist specialists in this area. This paper presented a fuzzy model able to monitor and classify the condition of the vital signs of hospitalized patients, sending alerts according to the pre-diagnosis done helping the medical diagnosis.
Automatic segmentation of corpus callosum using Gaussian mixture modeling and Fuzzy C means methods.
İçer, Semra
2013-10-01
This paper presents a comparative study of the success and performance of the Gaussian mixture modeling and Fuzzy C means methods to determine the volume and cross-sectionals areas of the corpus callosum (CC) using simulated and real MR brain images. The Gaussian mixture model (GMM) utilizes weighted sum of Gaussian distributions by applying statistical decision procedures to define image classes. In the Fuzzy C means (FCM), the image classes are represented by certain membership function according to fuzziness information expressing the distance from the cluster centers. In this study, automatic segmentation for midsagittal section of the CC was achieved from simulated and real brain images. The volume of CC was obtained using sagittal sections areas. To compare the success of the methods, segmentation accuracy, Jaccard similarity and time consuming for segmentation were calculated. The results show that the GMM method resulted by a small margin in more accurate segmentation (midsagittal section segmentation accuracy 98.3% and 97.01% for GMM and FCM); however the FCM method resulted in faster segmentation than GMM. With this study, an accurate and automatic segmentation system that allows opportunity for quantitative comparison to doctors in the planning of treatment and the diagnosis of diseases affecting the size of the CC was developed. This study can be adapted to perform segmentation on other regions of the brain, thus, it can be operated as practical use in the clinic. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Renewable Generation (Wind/Solar and Load Modeling through Modified Fuzzy Prediction Interval
Directory of Open Access Journals (Sweden)
Syed Furqan Rafique
2018-01-01
Full Text Available The accuracy of energy management system for renewable microgrid, either grid-connected or isolated, is heavily dependent on the forecasting precision such as wind, solar, and load. In this paper, an improved fuzzy prediction horizon forecasting method is developed to address the issue of intermittence and uncertainty problem related to renewable generation and load forecast. In the first phase, a Takagi-Sugeno type fuzzy system is trained with many evolutionary optimization algorithms and established coverage grade indicator to check the accuracy of interval forecast. Secondly, a wind, solar, and load forecaster is developed for renewable microgrid test bed which is located in Beijing, China. One day and one step ahead results for the proposed forecaster are expressed with lowest RMSE and training time. In order to check the efficiency of the proposed method, a comparison is carried out with the existing models. The fuzzy interval-based model for the microgrid test bed will help to formulate the energy management problem with more accuracy and robustness.
FUZZY MODELING APPLIED TO THE WELFARE OF POULTRY FARMS WORKERS
Directory of Open Access Journals (Sweden)
LEONARDO SCHIASSI
2012-01-01
Full Text Available El objetivo de este trabajo fue desarrollar un modelo fuzzy para evaluar y clasificar el ambiente de trabajo de las granjas de pollos de engorde. Para ello datos de temperatura del aire, humedad relativa, nivel de ruido y la concentración de amoníaco fueron colectados en un galpón avícola con ventilación positiva lateral. Un esquema de trabajo de ocho horas al día fue simulado y los resultados dieron un soporte para la clasificación del nivel de confort bajo las diferentes condiciones térmicas, acústicas y de concentración de gas. Por lo tanto, fueron utilizadas tres variables de entrada, índice de temperatura y humedad (ITU, nivel de ruido (dB y concentración de amoníaco (ppm, y la de salida fue la clasificación del entorno de trabajo (CET. Fueron definidas sesenta (60 reglas con base en las combinaciones de ITU, nivel del ruido y concentración de amoníaco, donde cada resultado es una función de combinación de los datos de entrada. Los datos de campo fueron usados para validar el sistema propuesto. Los resultados indican que la metodología propuesta es viable para determinar el nivel de bienestar de los trabajadores pudiendo ayudar en la toma de decisiones relacionadas con el control climático y se puede utilizar con el fin de reducir o eliminar las fuentes que son consideradas como causantes de estrés en el hombre.
Brown, Robert B.
1994-01-01
A software pilot model for Space Shuttle proximity operations is developed, utilizing fuzzy logic. The model is designed to emulate a human pilot during the terminal phase of a Space Shuttle approach to the Space Station. The model uses the same sensory information available to a human pilot and is based upon existing piloting rules and techniques determined from analysis of human pilot performance. Such a model is needed to generate numerous rendezvous simulations to various Space Station assembly stages for analysis of current NASA procedures and plume impingement loads on the Space Station. The advantages of a fuzzy logic pilot model are demonstrated by comparing its performance with NASA's man-in-the-loop simulations and with a similar model based upon traditional Boolean logic. The fuzzy model is shown to respond well from a number of initial conditions, with results typical of an average human. In addition, the ability to model different individual piloting techniques and new piloting rules is demonstrated.
Berenji, Hamid R.
1992-01-01
Fuzzy logic and neural networks provide new methods for designing control systems. Fuzzy logic controllers do not require a complete analytical model of a dynamic system and can provide knowledge-based heuristic controllers for ill-defined and complex systems. Neural networks can be used for learning control. In this chapter, we discuss hybrid methods using fuzzy logic and neural networks which can start with an approximate control knowledge base and refine it through reinforcement learning.
Sun, Kaiqiong; Udupa, Jayaram K; Odhner, Dewey; Tong, Yubing; Zhao, Liming; Torigian, Drew A
2016-03-01
In an attempt to overcome several hurdles that exist in organ segmentation approaches, the authors previously described a general automatic anatomy recognition (AAR) methodology for segmenting all major organs in multiple body regions body-wide [J. K. Udupa et al., "Body-wide hierarchical fuzzy modeling, recognition, and delineation of anatomy in medical images," Med. Image Anal. 18(5), 752-771 (2014)]. That approach utilized fuzzy modeling strategies, a hierarchical organization of organs, and divided the segmentation task into a recognition step to localize organs which was then followed by a delineation step to demarcate the boundary of organs. It achieved speed and accuracy without employing image/object registration which is commonly utilized in many reported methods, particularly atlas-based. In this paper, our aim is to study how registration may influence performance of the AAR approach. By tightly coupling the recognition and delineation steps, by performing registration in the hierarchical order of the organs, and through several object-specific refinements, the authors demonstrate that improved accuracy for recognition and delineation can be achieved by judicial use of image/object registration. The presented approach consists of three processes: model building, hierarchical recognition, and delineation. Labeled binary images for each organ are registered and aligned into a 3D fuzzy set representing the fuzzy shape model for the organ. The hierarchical relation and mean location relation between different organs are captured in the model. The gray intensity distributions of the corresponding regions of the organ in the original image are also recorded in the model. Following the hierarchical structure and location relation, the fuzzy shape model of different organs is registered to the given target image to achieve object recognition. A fuzzy connectedness delineation method is then employed to obtain the final segmentation result of organs with seed
Directory of Open Access Journals (Sweden)
Danladi Ali
2018-03-01
Full Text Available Long-term load forecasting provides vital information about future load and it helps the power industries to make decision regarding electrical energy generation and delivery. In this work, fuzzy – neuro model is developed to forecast a year ahead load in relation to weather parameter (temperature and humidity in Mubi, Adamawa State. It is observed that: electrical load increased with increase in temperature and relative humidity does not show notable effect on electrical load. The accuracy of the prediction is obtained at 98.78% with the corresponding mean absolute percentage error (MAPE of 1.22%. This confirms that fuzzy – neuro is a good tool for load forecasting. Keywords: Electrical load, Load forecasting, Fuzzy logic, Back propagation, Neuro-fuzzy, Weather parameter
Directory of Open Access Journals (Sweden)
Nina Bočková
2012-01-01
Full Text Available The objective of this article is to study the relations among financial indicators, competitiveness and business ethics of comparable small and medium-sized enterprises. A sample of 59 SMEs from the South Moravia region was chosen. All selected companies either produce or service electronics. This research is based on the application of scientific analysis, synthesis, induction, fuzzy logic and modeling. Information for this research was obtained from secondary information sources – Amadeus database, accounting statements and information from the register of companies. Each company is described by a set of 10 variables. Fuzzy sets and reasoning are ideal tools to cope with vague, ill-structured and uncertain scenarios which can be found frequently in business and economics. This is the main reason why fuzzy logic was used in this research. The paper is self-explanatory and no a prior knowledge of fuzzy reasoning is required.
DEFF Research Database (Denmark)
Jantzen, Jan
The objective of this textbook is to acquire an understanding of the behaviour of fuzzy logic controllers. Under certain conditions a fuzzy controller is equivalent to a proportional-integral-derivative (PID) controller. Using that equivalence as a link, the book applies analysis methods from...... linear and nonlinear control theory. In the linear domain, PID tuning methods and stability analyses are transferred to linear fuzzy controllers. The Nyquist plot shows the robustness of different settings of the fuzzy gain parameters. As a result, a fuzzy controller is guaranteed to perform as well...... as any PID controller. In the nonlinear domain, the stability of four standard control surfaces is analysed by means of describing functions and Nyquist plots. The self-organizing controller (SOC) is shown to be a model reference adaptive controller. There is a possibility that a nonlinear fuzzy PID...
Uncertainty modeling in vibration, control and fuzzy analysis of structural systems
Halder, Achintya; Ayyub, Bilal M
1997-01-01
This book gives an overview of the current state of uncertainty modeling in vibration, control, and fuzzy analysis of structural and mechanical systems. It is a coherent compendium written by leading experts and offers the reader a sampling of exciting research areas in several fast-growing branches in this field. Uncertainty modeling and analysis are becoming an integral part of system definition and modeling in many fields. The book consists of ten chapters that report the work of researchers, scientists and engineers on theoretical developments and diversified applications in engineering sy
New fuzzy approximate model for indirect adaptive control of distributed solar collectors
Elmetennani, Shahrazed
2014-06-01
This paper studies the problem of controlling a parabolic solar collectors, which consists of forcing the outlet oil temperature to track a set reference despite possible environmental disturbances. An approximate model is proposed to simplify the controller design. The presented controller is an indirect adaptive law designed on the fuzzy model with soft-sensing of the solar irradiance intensity. The proposed approximate model allows the achievement of a simple low dimensional set of nonlinear ordinary differential equations that reproduces the dynamical behavior of the system taking into account its infinite dimension. Stability of the closed loop system is ensured by resorting to Lyapunov Control functions for an indirect adaptive controller.
Stability and stabilization of nonlinear systems and Takagi-Sugeno's fuzzy models
Directory of Open Access Journals (Sweden)
Blanco Yann
2001-01-01
Full Text Available This paper outlines a methodology to study the stability of Takagi-Sugeno's (TS fuzzy models. The stability analysis of the TS model is performed using a quadratic Liapunov candidate function. This paper proposes a relaxation of Tanaka's stability condition: unlike related works, the equations to be solved are not Liapunov equations for each rule matrix, but a convex combination of them. The coefficients of this sums depend on the membership functions. This method is applied to the design of continuous controllers for the TS model. Three different control structures are investigated, among which the Parallel Distributed Compensation (PDC. An application to the inverted pendulum is proposed here.
Directory of Open Access Journals (Sweden)
Şaban YURTÇU
2006-02-01
Full Text Available In this study, modeling of the effect of rainfall, flow and evaporation as independent variables on the change of underground water levels as dependent variables were investigated by fuzzy logic (FL. In the study, total 396 values taken from six observation stations belong to Afyon inferior basin in Akarçay from 1977 to 1989 years were used. Using the monthly average values of stations, the change of underground water level was modeled by FL. It is observed that the results obtained from FL and the observations are compatible with each other. This shows FL modeling can be used to estimate groundwater levels from the appropriate meteorological value.
Modeling of a HTPEM fuel cell using Adaptive Neuro-Fuzzy Inference Systems
DEFF Research Database (Denmark)
Justesen, Kristian Kjær; Andreasen, Søren Juhl; Sahlin, Simon Lennart
2015-01-01
In this work an Adaptive Neuro-Fuzzy Inference System (ANFIS) model of the voltage of a fuel cell is developed. The inputs of this model are the fuel cell temperature, current density and the carbon monoxide concentration of the anode supply gas. First an identification experiment which spans the...... between performance and fast model evaluation. This model has a mean absolute error of 0.70%. It is concluded that the developed ANFIS model is suitable for optimization of fuel cell systems and as the steady state component in larger dynamic system models.......In this work an Adaptive Neuro-Fuzzy Inference System (ANFIS) model of the voltage of a fuel cell is developed. The inputs of this model are the fuel cell temperature, current density and the carbon monoxide concentration of the anode supply gas. First an identification experiment which spans...... the expected operating range of the fuel cell is performed in a test station. The data from this experiment is then used to train ANFIS models with 2, 3, 4 and 5 membership functions. The performance of these models is then compared and it is found that using 3 membership functions provides the best compromise...
A Two-Factor Autoregressive Moving Average Model Based on Fuzzy Fluctuation Logical Relationships
Directory of Open Access Journals (Sweden)
Shuang Guan
2017-10-01
Full Text Available Many of the existing autoregressive moving average (ARMA forecast models are based on one main factor. In this paper, we proposed a new two-factor first-order ARMA forecast model based on fuzzy fluctuation logical relationships of both a main factor and a secondary factor of a historical training time series. Firstly, we generated a fluctuation time series (FTS for two factors by calculating the difference of each data point with its previous day, then finding the absolute means of the two FTSs. We then constructed a fuzzy fluctuation time series (FFTS according to the defined linguistic sets. The next step was establishing fuzzy fluctuation logical relation groups (FFLRGs for a two-factor first-order autoregressive (AR(1 model and forecasting the training data with the AR(1 model. Then we built FFLRGs for a two-factor first-order autoregressive moving average (ARMA(1,m model. Lastly, we forecasted test data with the ARMA(1,m model. To illustrate the performance of our model, we used real Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX and Dow Jones datasets as a secondary factor to forecast TAIEX. The experiment results indicate that the proposed two-factor fluctuation ARMA method outperformed the one-factor method based on real historic data. The secondary factor may have some effects on the main factor and thereby impact the forecasting results. Using fuzzified fluctuations rather than fuzzified real data could avoid the influence of extreme values in historic data, which performs negatively while forecasting. To verify the accuracy and effectiveness of the model, we also employed our method to forecast the Shanghai Stock Exchange Composite Index (SHSECI from 2001 to 2015 and the international gold price from 2000 to 2010.
An adaptive neuro fuzzy model for estimating the reliability of component-based software systems
Directory of Open Access Journals (Sweden)
Kirti Tyagi
2014-01-01
Full Text Available Although many algorithms and techniques have been developed for estimating the reliability of component-based software systems (CBSSs, much more research is needed. Accurate estimation of the reliability of a CBSS is difficult because it depends on two factors: component reliability and glue code reliability. Moreover, reliability is a real-world phenomenon with many associated real-time problems. Soft computing techniques can help to solve problems whose solutions are uncertain or unpredictable. A number of soft computing approaches for estimating CBSS reliability have been proposed. These techniques learn from the past and capture existing patterns in data. The two basic elements of soft computing are neural networks and fuzzy logic. In this paper, we propose a model for estimating CBSS reliability, known as an adaptive neuro fuzzy inference system (ANFIS, that is based on these two basic elements of soft computing, and we compare its performance with that of a plain FIS (fuzzy inference system for different data sets.
A mathematical model of neuro-fuzzy approximation in image classification
Gopalan, Sasi; Pinto, Linu; Sheela, C.; Arun Kumar M., N.
2016-06-01
Image digitization and explosion of World Wide Web has made traditional search for image, an inefficient method for retrieval of required grassland image data from large database. For a given input query image Content-Based Image Retrieval (CBIR) system retrieves the similar images from a large database. Advances in technology has increased the use of grassland image data in diverse areas such has agriculture, art galleries, education, industry etc. In all the above mentioned diverse areas it is necessary to retrieve grassland image data efficiently from a large database to perform an assigned task and to make a suitable decision. A CBIR system based on grassland image properties and it uses the aid of a feed-forward back propagation neural network for an effective image retrieval is proposed in this paper. Fuzzy Memberships plays an important role in the input space of the proposed system which leads to a combined neural fuzzy approximation in image classification. The CBIR system with mathematical model in the proposed work gives more clarity about fuzzy-neuro approximation and the convergence of the image features in a grassland image.
Energy Technology Data Exchange (ETDEWEB)
Alasha' ary, Haitham; Moghtaderi, Behdad; Page, Adrian; Sugo, Heber [Priority Research Centre for Energy, Chemical Engineering, School of Engineering, Faculty of Engineering and Built Environment, the University of Newcastle, Callaghan, Newcastle, NSW 2308 (Australia)
2009-07-15
The Masonry Research Group at The University of Newcastle, Australia has embarked on an extensive research program to study the thermal performance of common walling systems in Australian residential buildings by studying the thermal behaviour of four representative purpose-built thermal test buildings (referred to as 'test modules' or simply 'modules' hereafter). The modules are situated on the university campus and are constructed from brick veneer (BV), cavity brick (CB) and lightweight (LW) constructions. The program of study has both experimental and analytical strands, including the use of a neuro-fuzzy approach to predict the thermal behaviour. The latter approach employs an experimental adaptive neuro-fuzzy inference system (ANFIS) which is used in this study to predict the room (indoor) temperatures of the modules under a range of climatic conditions pertinent to Newcastle (NSW, Australia). The study shows that this neuro-fuzzy model is capable of accurately predicting the room temperature of such buildings; thus providing a potential computationally efficient and inexpensive predictive tool for the more effective thermal design of housing. (author)
Prediction of Pathological Stage in Patients with Prostate Cancer: A Neuro-Fuzzy Model.
Directory of Open Access Journals (Sweden)
Georgina Cosma
Full Text Available The prediction of cancer staging in prostate cancer is a process for estimating the likelihood that the cancer has spread before treatment is given to the patient. Although important for determining the most suitable treatment and optimal management strategy for patients, staging continues to present significant challenges to clinicians. Clinical test results such as the pre-treatment Prostate-Specific Antigen (PSA level, the biopsy most common tumor pattern (Primary Gleason pattern and the second most common tumor pattern (Secondary Gleason pattern in tissue biopsies, and the clinical T stage can be used by clinicians to predict the pathological stage of cancer. However, not every patient will return abnormal results in all tests. This significantly influences the capacity to effectively predict the stage of prostate cancer. Herein we have developed a neuro-fuzzy computational intelligence model for classifying and predicting the likelihood of a patient having Organ-Confined Disease (OCD or Extra-Prostatic Disease (ED using a prostate cancer patient dataset obtained from The Cancer Genome Atlas (TCGA Research Network. The system input consisted of the following variables: Primary and Secondary Gleason biopsy patterns, PSA levels, age at diagnosis, and clinical T stage. The performance of the neuro-fuzzy system was compared to other computational intelligence based approaches, namely the Artificial Neural Network, Fuzzy C-Means, Support Vector Machine, the Naive Bayes classifiers, and also the AJCC pTNM Staging Nomogram which is commonly used by clinicians. A comparison of the optimal Receiver Operating Characteristic (ROC points that were identified using these approaches, revealed that the neuro-fuzzy system, at its optimal point, returns the largest Area Under the ROC Curve (AUC, with a low number of false positives (FPR = 0.274, TPR = 0.789, AUC = 0.812. The proposed approach is also an improvement over the AJCC pTNM Staging Nomogram (FPR
Prediction of Pathological Stage in Patients with Prostate Cancer: A Neuro-Fuzzy Model
Acampora, Giovanni; Brown, David; Rees, Robert C.
2016-01-01
The prediction of cancer staging in prostate cancer is a process for estimating the likelihood that the cancer has spread before treatment is given to the patient. Although important for determining the most suitable treatment and optimal management strategy for patients, staging continues to present significant challenges to clinicians. Clinical test results such as the pre-treatment Prostate-Specific Antigen (PSA) level, the biopsy most common tumor pattern (Primary Gleason pattern) and the second most common tumor pattern (Secondary Gleason pattern) in tissue biopsies, and the clinical T stage can be used by clinicians to predict the pathological stage of cancer. However, not every patient will return abnormal results in all tests. This significantly influences the capacity to effectively predict the stage of prostate cancer. Herein we have developed a neuro-fuzzy computational intelligence model for classifying and predicting the likelihood of a patient having Organ-Confined Disease (OCD) or Extra-Prostatic Disease (ED) using a prostate cancer patient dataset obtained from The Cancer Genome Atlas (TCGA) Research Network. The system input consisted of the following variables: Primary and Secondary Gleason biopsy patterns, PSA levels, age at diagnosis, and clinical T stage. The performance of the neuro-fuzzy system was compared to other computational intelligence based approaches, namely the Artificial Neural Network, Fuzzy C-Means, Support Vector Machine, the Naive Bayes classifiers, and also the AJCC pTNM Staging Nomogram which is commonly used by clinicians. A comparison of the optimal Receiver Operating Characteristic (ROC) points that were identified using these approaches, revealed that the neuro-fuzzy system, at its optimal point, returns the largest Area Under the ROC Curve (AUC), with a low number of false positives (FPR = 0.274, TPR = 0.789, AUC = 0.812). The proposed approach is also an improvement over the AJCC pTNM Staging Nomogram (FPR = 0.032, TPR
Neuro-fuzzy model for estimating race and gender from geometric distances of human face across pose
Nanaa, K.; Rahman, M. N. A.; Rizon, M.; Mohamad, F. S.; Mamat, M.
2018-03-01
Classifying human face based on race and gender is a vital process in face recognition. It contributes to an index database and eases 3D synthesis of the human face. Identifying race and gender based on intrinsic factor is problematic, which is more fitting to utilizing nonlinear model for estimating process. In this paper, we aim to estimate race and gender in varied head pose. For this purpose, we collect dataset from PICS and CAS-PEAL databases, detect the landmarks and rotate them to the frontal pose. After geometric distances are calculated, all of distance values will be normalized. Implementation is carried out by using Neural Network Model and Fuzzy Logic Model. These models are combined by using Adaptive Neuro-Fuzzy Model. The experimental results showed that the optimization of address fuzzy membership. Model gives a better assessment rate and found that estimating race contributing to a more accurate gender assessment.
Directory of Open Access Journals (Sweden)
Jahedul Islam Chowdhury
2018-04-01
Full Text Available The organic Rankine cycle (ORC-based waste heat recovery (WHR system operating under a supercritical condition has a higher potential of thermal efficiency and work output than a traditional subcritical cycle. However, the operation of supercritical cycles is more challenging due to the high pressure in the system and transient behavior of waste heat sources from industrial and automotive engines that affect the performance of the system and the evaporator, which is the most crucial component of the ORC. To take the transient behavior into account, the dynamic model of the evaporator using renowned finite volume (FV technique is developed in this paper. Although the FV model can capture the transient effects accurately, the model has a limitation for real-time control applications due to its time-intensive computation. To capture the transient effects and reduce the simulation time, a novel fuzzy-based nonlinear dynamic evaporator model is also developed and presented in this paper. The results show that the fuzzy-based model was able to capture the transient effects at a data fitness of over 90%, while it has potential to complete the simulation 700 times faster than the FV model. By integrating with other subcomponent models of the system, such as pump, expander, and condenser, the predicted system output and pressure have a mean average percentage error of 3.11% and 0.001%, respectively. These results suggest that the developed fuzzy-based evaporator and the overall ORC-WHR system can be used for transient simulations and to develop control strategies for real-time applications.
Supply chain management under fuzziness recent developments and techniques
Öztayşi, Başar
2014-01-01
Supply Chain Management Under Fuzziness presents recently developed fuzzy models and techniques for supply chain management. These include: fuzzy PROMETHEE, fuzzy AHP, fuzzy ANP, fuzzy VIKOR, fuzzy DEMATEL, fuzzy clustering, fuzzy linear programming, and fuzzy inference systems. The book covers both practical applications and new developments concerning these methods. This book offers an excellent resource for researchers and practitioners in supply chain management and logistics, and will provide them with new suggestions and directions for future research. Moreover, it will support graduate students in their university courses, such as specialized courses on supply chains and logistics, as well as related courses in the fields of industrial engineering, engineering management and business administration.
Zhang, Jian-Hua; Xia, Jia-Jun; Garibaldi, Jonathan M; Groumpos, Petros P; Wang, Ru-Bin
2017-06-01
In human-machine (HM) hybrid control systems, human operator and machine cooperate to achieve the control objectives. To enhance the overall HM system performance, the discrete manual control task-load by the operator must be dynamically allocated in accordance with continuous-time fluctuation of psychophysiological functional status of the operator, so-called operator functional state (OFS). The behavior of the HM system is hybrid in nature due to the co-existence of discrete task-load (control) variable and continuous operator performance (system output) variable. Petri net is an effective tool for modeling discrete event systems, but for hybrid system involving discrete dynamics, generally Petri net model has to be extended. Instead of using different tools to represent continuous and discrete components of a hybrid system, this paper proposed a method of fuzzy inference Petri nets (FIPN) to represent the HM hybrid system comprising a Mamdani-type fuzzy model of OFS and a logical switching controller in a unified framework, in which the task-load level is dynamically reallocated between the operator and machine based on the model-predicted OFS. Furthermore, this paper used a multi-model approach to predict the operator performance based on three electroencephalographic (EEG) input variables (features) via the Wang-Mendel (WM) fuzzy modeling method. The membership function parameters of fuzzy OFS model for each experimental participant were optimized using artificial bee colony (ABC) evolutionary algorithm. Three performance indices, RMSE, MRE, and EPR, were computed to evaluate the overall modeling accuracy. Experiment data from six participants are analyzed. The results show that the proposed method (FIPN with adaptive task allocation) yields lower breakdown rate (from 14.8% to 3.27%) and higher human performance (from 90.30% to 91.99%). The simulation results of the FIPN-based adaptive HM (AHM) system on six experimental participants demonstrate that the FIPN
Simulation of neuro-fuzzy model for optimization of combine header setting
Directory of Open Access Journals (Sweden)
S Zareei
2016-09-01
Full Text Available Introduction The noticeable proportion of producing wheat losses occur during production and consumption steps and the loss due to harvesting with combine harvester is regarded as one of the main factors. A grain combines harvester consists of different sets of equipment and one of the most important parts is the header which comprises more than 50% of the entire harvesting losses. Some researchers have presented regression equation to estimate grain loss of combine harvester. The results of their study indicated that grain moisture content, reel index, cutter bar speed, service life of cutter bar, tine spacing, tine clearance over cutter bar, stem length were the major parameters affecting the losses. On the other hand, there are several researchswhich have used the variety of artificial intelligence methods in the different aspects of combine harvester. In neuro-fuzzy control systems, membership functions and if-then rules were defined through neural networks. Sugeno- type fuzzy inference model was applied to generate fuzzy rules from a given input-output data set due to its less time-consuming and mathematically tractable defuzzification operation for sample data-based fuzzy modeling. In this study, neuro-fuzzy model was applied to develop forecasting models which can predict the combine header loss for each set of the header parameter adjustments related to site-specific information and therefore can minimize the header loss. Materials and Methods The field experiment was conducted during the harvesting season of 2011 at the research station of the Faulty of Agriculture, Shiraz University, Shiraz, Iran. The wheat field (CV. Shiraz was harvested with a Claas Lexion-510 combine harvester. The factors which were selected as main factors influenced the header performance were three levels of reel index (RI (forward speed of combine harvester divided by peripheral speed of reel (1, 1.2, 1.5, three levels of cutting height (CH(25, 30, 35 cm, three
Mehri, M
2013-04-01
Application of appropriate models to approximate the performance function warrants more precise prediction and helps to make the best decisions in the poultry industry. This study reevaluated the factors affecting hatchability in laying hens from 29 to 56 wk of age. Twenty-eight data lines representing 4 inputs consisting of egg weight, eggshell thickness, egg sphericity, and yolk/albumin ratio and 1 output, hatchability, were obtained from the literature and used to train an artificial neural network (ANN). The prediction ability of ANN was compared with that of fuzzy logic to evaluate the fitness of these 2 methods. The models were compared using R(2), mean absolute deviation (MAD), mean squared error (MSE), mean absolute percentage error (MAPE), and bias. The developed model was used to assess the relative importance of each variable on the hatchability by calculating the variable sensitivity ratio. The statistical evaluations showed that the ANN-based model predicted hatchability more accurately than fuzzy logic. The ANN-based model had a higher determination of coefficient (R(2) = 0.99) and lower residual distribution (MAD = 0.005; MSE = 0.00004; MAPE = 0.732; bias = 0.0012) than fuzzy logic (R(2) = 0.87; MAD = 0.014; MSE = 0.0004; MAPE = 2.095; bias = 0.0046). The sensitivity analysis revealed that the most important variable in the ANN-based model of hatchability was egg weight (variable sensitivity ratio, VSR = 283.11), followed by yolk/albumin ratio (VSR = 113.16), eggshell thickness (VSR = 16.23), and egg sphericity (VSR = 3.63). The results of this research showed that the universal approximation capability of ANN made it a powerful tool to approximate complex functions such as hatchability in the incubation process.
Design and synthesis of model transparent aqueous colloids with optimal scattering properties.
Perro, Adeline; Meng, Guangnan; Fung, Jerome; Manoharan, Vinothan N
2009-10-06
We demonstrate the synthesis and self-assembly of colloidal particles with independently controlled diameter and scattering cross section. We show that it is possible to prepare bulk colloidal suspensions that are nearly transparent in water, while the particles themselves can be individually resolved using optical microscopy. These particles may be ideal model colloids for real-space studies of self-assembly in aqueous media. Moreover, they illustrate the degree to which the optical properties of colloids can be engineered through straightforward chemistry.
Directory of Open Access Journals (Sweden)
Dipak Kumar Jana
2013-01-01
Full Text Available An inventory model for deteriorating item is considered in a random planning horizon under inflation and time value money. The model is described in two different environments: random and fuzzy random. The proposed model allows stock-dependent consumption rate and shortages with partial backlogging. In the fuzzy stochastic model, possibility chance constraints are used for defuzzification of imprecise expected total profit. Finally, genetic algorithm (GA and fuzzy simulation-based genetic algorithm (FSGA are used to make decisions for the above inventory models. The models are illustrated with some numerical data. Sensitivity analysis on expected profit function is also presented. Scope and Purpose. The traditional inventory model considers the ideal case in which depletion of inventory is caused by a constant demand rate. However, to keep sales higher, the inventory level would need to remain high. Of course, this would also result in higher holding or procurement cost. Also, in many real situations, during a longer-shortage period some of the customers may refuse the management. For instance, for fashionable commodities and high-tech products with short product life cycle, the willingness for a customer to wait for backlogging is diminishing with the length of the waiting time. Most of the classical inventory models did not take into account the effects of inflation and time value of money. But in the past, the economic situation of most of the countries has changed to such an extent due to large-scale inflation and consequent sharp decline in the purchasing power of money. So, it has not been possible to ignore the effects of inflation and time value of money any more. The purpose of this paper is to maximize the expected profit in the random planning horizon.
International Nuclear Information System (INIS)
Xin Jing; Tang Huaqing; Zhang Yinghua; Zhang Limin
2009-01-01
A risk assessment model of nuclear accident emergency protection countermeasure based on fuzzy matter-element analysis and Euclid approach degree is proposed in the paper. The weight of assessed index is determined by information entropy and the scoring by experts, which could not only make full use of the inherent information of the indexes adequately, but reduce subjective assumption in the course of assessment effectively. The applied result shows that it is reasonable that the model is adopted to make risk assessment for nuclear accident emergency protective countermeasure,and it could be a kind of effective analytical method and decision making basis to choose the optimum protection countermeasure. (authors)
Fuzzy Logic-Based Model That Incorporates Personality Traits for Heterogeneous Pedestrians
Directory of Open Access Journals (Sweden)
Zhuxin Xue
2017-10-01
Full Text Available Most models designed to simulate pedestrian dynamical behavior are based on the assumption that human decision-making can be described using precise values. This study proposes a new pedestrian model that incorporates fuzzy logic theory into a multi-agent system to address cognitive behavior that introduces uncertainty and imprecision during decision-making. We present a concept of decision preferences to represent the intrinsic control factors of decision-making. To realize the different decision preferences of heterogeneous pedestrians, the Five-Factor (OCEAN personality model is introduced to model the psychological characteristics of individuals. Then, a fuzzy logic-based approach is adopted for mapping the relationships between the personality traits and the decision preferences. Finally, we have developed an application using our model to simulate pedestrian dynamical behavior in several normal or non-panic scenarios, including a single-exit room, a hallway with obstacles, and a narrowing passage. The effectiveness of the proposed model is validated with a user study. The results show that the proposed model can generate more reasonable and heterogeneous behavior in the simulation and indicate that individual personality has a noticeable effect on pedestrian dynamical behavior.
Huang, Mingzhi; Zhang, Tao; Ruan, Jujun; Chen, Xiaohong
2017-01-01
A new efficient hybrid intelligent approach based on fuzzy wavelet neural network (FWNN) was proposed for effectively modeling and simulating biodegradation process of Dimethyl phthalate (DMP) in an anaerobic/anoxic/oxic (AAO) wastewater treatment process. With the self learning and memory abilities of neural networks (NN), handling uncertainty capacity of fuzzy logic (FL), analyzing local details superiority of wavelet transform (WT) and global search of genetic algorithm (GA), the proposed hybrid intelligent model can extract the dynamic behavior and complex interrelationships from various water quality variables. For finding the optimal values for parameters of the proposed FWNN, a hybrid learning algorithm integrating an improved genetic optimization and gradient descent algorithm is employed. The results show, compared with NN model (optimized by GA) and kinetic model, the proposed FWNN model have the quicker convergence speed, the higher prediction performance, and smaller RMSE (0.080), MSE (0.0064), MAPE (1.8158) and higher R2 (0.9851) values. which illustrates FWNN model simulates effluent DMP more accurately than the mechanism model.
Economou, J. T.; Knowles, K.; Tsourdos, A.; White, B. A.
2011-02-01
In this article, the fuzzy-hybrid modelling (FHM) approach is used and compared to the input-output system Takagi-Sugeno (TS) modelling approach which correlates the drivetrain power flow equations with the vehicle dynamics. The output power relations were related to the drivetrain bounded efficiencies and also to the wheel slips. The model relates also to the wheel and ground interactions via suitable friction coefficient models relative to the wheel slip profiles. The wheel slip had a significant efficiency contribution to the overall driveline system efficiency. The peak friction slip and peak coefficient of friction values are known a priori during the analysis. Lastly, the rigid body dynamical power has been verified through both simulation and experimental results. The mathematical analysis has been supported throughout the paper via experimental data for a specific electric robotic vehicle. The identification of the localised and input-output TS models for the fuzzy hybrid and the experimental data were obtained utilising the subtractive clustering (SC) methodology. These results were also compared to a real-time TS SC approach operating on periodic time windows. This article concludes with the benefits of the real-time FHM method for the vehicle electric driveline due to the advantage of both the analytical TS sub-model and the physical system modelling for the remaining process which can be clearly utilised for control purposes.
Förner, K.; Polifke, W.
2017-10-01
The nonlinear acoustic behavior of Helmholtz resonators is characterized by a data-based reduced-order model, which is obtained by a combination of high-resolution CFD simulation and system identification. It is shown that even in the nonlinear regime, a linear model is capable of describing the reflection behavior at a particular amplitude with quantitative accuracy. This observation motivates to choose a local-linear model structure for this study, which consists of a network of parallel linear submodels. A so-called fuzzy-neuron layer distributes the input signal over the linear submodels, depending on the root mean square of the particle velocity at the resonator surface. The resulting model structure is referred to as an local-linear neuro-fuzzy network. System identification techniques are used to estimate the free parameters of this model from training data. The training data are generated by CFD simulations of the resonator, with persistent acoustic excitation over a wide range of frequencies and sound pressure levels. The estimated nonlinear, reduced-order models show good agreement with CFD and experimental data over a wide range of amplitudes for several test cases.
de Brito, Maria José Azevedo; Nahas, Fábio Xerfan; Ortega, Neli Regina Siqueira; Cordás, Táki Athanássios; Dini, Gal Moreira; Neto, Miguel Sabino; Ferreira, Lydia Masako
2013-09-01
To develop a fuzzy linguistic model to quantify the level of distress of patients seeking cosmetic surgery. Body dysmorphic disorder (BDD) is a mental condition related to body image relatively common among cosmetic surgery patients; it is difficult to diagnose and is a significant cause of morbidity and mortality. Fuzzy cognitive maps are an efficient tool based on human knowledge and experience that can handle uncertainty in identifying or grading BDD symptoms and the degree of body image dissatisfaction. Individuals who seek cosmetic procedures suffer from some degree of dissatisfaction with appearance. A fuzzy model was developed to measure distress levels in cosmetic surgery patients based on the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV), diagnostic criterion B for BDD. We studied 288 patients of both sexes seeking abdominoplasty, rhinoplasty, or rhytidoplasty in a university hospital. Patient distress ranged from "none" to "severe" (range=7.5-31.6; cutoff point=18; area under the ROC curve=0.923). There was a significant agreement between the fuzzy model and DSM-IV criterion B (kappa=0.805; p<0.001). The fuzzy model measured distress levels with good accuracy, indicating that it can be used as a screening tool in cosmetic surgery and psychiatric practice. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Wilson, Cian R.; Spiegelman, Marc; van Keken, Peter E.
2017-02-01
We introduce and describe a new software infrastructure TerraFERMA, the Transparent Finite Element Rapid Model Assembler, for the rapid and reproducible description and solution of coupled multiphysics problems. The design of TerraFERMA is driven by two computational needs in Earth sciences. The first is the need for increased flexibility in both problem description and solution strategies for coupled problems where small changes in model assumptions can lead to dramatic changes in physical behavior. The second is the need for software and models that are more transparent so that results can be verified, reproduced, and modified in a manner such that the best ideas in computation and Earth science can be more easily shared and reused. TerraFERMA leverages three advanced open-source libraries for scientific computation that provide high-level problem description (FEniCS), composable solvers for coupled multiphysics problems (PETSc), and an options handling system (SPuD) that allows the hierarchical management of all model options. TerraFERMA integrates these libraries into an interface that organizes the scientific and computational choices required in a model into a single options file from which a custom compiled application is generated and run. Because all models share the same infrastructure, models become more reusable and reproducible, while still permitting the individual researcher considerable latitude in model construction. TerraFERMA solves partial differential equations using the finite element method. It is particularly well suited for nonlinear problems with complex coupling between components. TerraFERMA is open-source and available at http://terraferma.github.io, which includes links to documentation and example input files.
Directory of Open Access Journals (Sweden)
Baranov A. O.
2016-06-01
Full Text Available The purpose of this study is to adapt methods of fuzzy sets to analyze the effectiveness of multistage investment projects. The problem solved by the study is as follows. Some innovative projects are characterized by the lack of profitability in the early stages of implementation and high risk associated with high uncertainty of assessment of expected future cash flows generated by the project. In this situation, the use of standard methods of analysis of economic efficiency of investment projects in high-tech industries, does not provide a comprehensive assessment of the appropriateness of investing, as well as to quantify the accuracy of the dynamics of the projected figures. All this requires the development of theory and methods of analysis of economic efficiency of innovation. Application of real options, as well as the fuzzy sets is, in our view, the direction of improving these methods. The fuzzy random pairs approach is developed in order to study fuzzy set properties of random pointwise set mappings. The articles proposes generalization of the fuzzy random pairs approach for research of stochastic processes. The generalization is initiated by an approach to exploration of uncertainty in research project supported with an RFBR grant no. 15-06-06914, which is based on application of the Geske model modification. Mathematical description of the generalization is carried out for an example of a real venture-backed investment project aimed at organization of methyl chloride to ethylene processing. The generalization essence is in the following: 1 time variable t in a random process ξ ( t is replaced with a random value u , distributed uniformly within a segment [0; T ], which turns the process ξ ( t into a bidimensional random value V = u ,ξ( 0;( u , defined on [ T ]× R ; 2 the random value V value is translated into a random pointwise set mapping using the interval translation; 3 in order to translate the random pointwise set mapping
Extended Fuzzy Clustering Algorithms
U. Kaymak (Uzay); M. Setnes
2000-01-01
textabstractFuzzy clustering is a widely applied method for obtaining fuzzy models from data. It has been applied successfully in various fields including finance and marketing. Despite the successful applications, there are a number of issues that must be dealt with in practical applications of
International Nuclear Information System (INIS)
Datta, D.; Joshi, M.L.
2006-01-01
Environmental modeling with a satisfaction levels of the end user in relation to a defined parameter coupled with imprecision that stems from the field data is a key issue. In the context of this issue success of possibility theory based on fuzzy sets has high visibility in comparison with conventional probability theory. Environmental impact assessments of a high level waste repository is focused using the new approach because the problems under consideration includes a number of qualitative uncertainties at different levels, apart from being quite complex; decision-maker's need to have a transparent assessment result that will enable him to understand underlying assumptions and to judge resulting doses. Fuzzy distributions have been tried to resolve the issues related to the safety of environment from the waste repository. Paper describes the details of fuzzy distribution, fuzzy logic and its possible application to deal the qualitative and quantitative uncertainty in connection with waste repository. (author)
Güyer, Tolga; Aydogdu, Seyhmus
2016-01-01
This study suggests a classification model and an e-learning system based on this model for all instructional theories, approaches, models, strategies, methods, and technics being used in the process of instructional design that constitutes a direct or indirect resource for educational technology based on the theory of intuitionistic fuzzy sets…
Fuzzy Set Field and Fuzzy Metric
Gebray, Gebru; Reddy, B. Krishna
2014-01-01
The notation of fuzzy set field is introduced. A fuzzy metric is redefined on fuzzy set field and on arbitrary fuzzy set in a field. The metric redefined is between fuzzy points and constitutes both fuzziness and crisp property of vector. In addition, a fuzzy magnitude of a fuzzy point in a field is defined.
A novel grey-fuzzy-Markov and pattern recognition model for industrial accident forecasting
Edem, Inyeneobong Ekoi; Oke, Sunday Ayoola; Adebiyi, Kazeem Adekunle
2017-10-01
Industrial forecasting is a top-echelon research domain, which has over the past several years experienced highly provocative research discussions. The scope of this research domain continues to expand due to the continuous knowledge ignition motivated by scholars in the area. So, more intelligent and intellectual contributions on current research issues in the accident domain will potentially spark more lively academic, value-added discussions that will be of practical significance to members of the safety community. In this communication, a new grey-fuzzy-Markov time series model, developed from nondifferential grey interval analytical framework has been presented for the first time. This instrument forecasts future accident occurrences under time-invariance assumption. The actual contribution made in the article is to recognise accident occurrence patterns and decompose them into grey state principal pattern components. The architectural framework of the developed grey-fuzzy-Markov pattern recognition (GFMAPR) model has four stages: fuzzification, smoothening, defuzzification and whitenisation. The results of application of the developed novel model signify that forecasting could be effectively carried out under uncertain conditions and hence, positions the model as a distinctly superior tool for accident forecasting investigations. The novelty of the work lies in the capability of the model in making highly accurate predictions and forecasts based on the availability of small or incomplete accident data.
Takagi-Sugeno Fuzzy Model of a One-Half Semiactive Vehicle Suspension: Lateral Approach
Directory of Open Access Journals (Sweden)
L. C. Félix-Herrán
2015-01-01
Full Text Available This work presents a novel semiactive model of a one-half lateral vehicle suspension. The contribution of this research is the inclusion of actuator dynamics (two magnetorheological nonlinear dampers in the modelling, which means that more realistic outcomes will be obtained, because, in real life, actuators have physical limitations. Takagi-Sugeno (T-S fuzzy approach is applied to a four-degree-of-freedom (4-DOF lateral one-half vehicle suspension. The system has two magnetorheological (MR dampers, whose numerical values come from a real characterization. T-S allows handling suspension’s components and actuator’s nonlinearities (hysteresis, saturation, and viscoplasticity by means of a set of linear subsystems interconnected via fuzzy membership functions. Due to their linearity, each subsystem can be handled with the very well-known control theory, for example, stability and performance indexes (this is an advantage of the T-S approach. To the best of authors’ knowledge, reported work does not include the aforementioned nonlinearities in the modelling. The generated model is validated via a case of study with simulation results. This research is paramount because it introduces a more accurate (the actuator dynamics, a complex nonlinear subsystem model that could be applied to one-half vehicle suspension control purposes. Suspension systems are extremely important for passenger comfort and stability in ground vehicles.
A soft-sensing model for feedwater flow rate using fuzzy support vector regression
Energy Technology Data Exchange (ETDEWEB)
Na, Man Gyun; Yang, Heon Young; Lim, Dong Hyuk [Chosun University, Gwangju (Korea, Republic of)
2008-02-15
Most pressurized water reactors use Venturi flow meters to measure the feedwater flow rate. However, fouling phenomena, which allow corrosion products to accumulate and increase the differential pressure across the Venturi flow meter, can result in an overestimation of the flow rate. In this study, a soft-sensing model based on fuzzy support vector regression was developed to enable accurate on-line prediction of the feedwater flow rate. The available data was divided into two groups by fuzzy c-means clustering in order to reduce the training time. The data for training the soft-sensing model was selected from each data group with the aid of a subtractive clustering scheme because informative data increases the learning effect. The proposed soft-sensing model was confirmed with the real plant data of Yonggwang Nuclear Power Plant Unit 3. The root mean square error and relative maximum error of the model were quite small. Hence, this model can be used to validate and monitor existing hardware feedwater flow meters.
A Heuristic Force Model for Haptic Simulation of Nasogastric Tube Insertion Using Fuzzy Logic.
Choi, Kup-Sze; He, Xue-Jian; Chiang, Vico C L; Deng, Zhaohong; Qin, Jing
2016-01-01
Nasogastric tube (NGT) placement is an essential clinical skill. The training is conventionally performed on rubber mannequins albeit practical limitations. Computer simulation with haptic feedback can potentially offer a more realistic and accessible training method. However, the complex interactions between the tube and the nasogastric passage make it difficult to model the haptic feedback during NGT placement. In this paper, a fuzzy-logic-based approach is proposed to directly transfer the experience of clinicians in NGT placement into the simulation system. Based on their perception of the varying tactile sensation and the conditions during NGT placement, the membership functions and fuzzy rules are defined to develop the force model. Forces created using the model are then combined with friction forces to drive the haptic device and render the insertion forces in real time. A prototype simulator is developed based on the proposed force model and the implementation details are presented. The usability of the prototype is also evaluated by clinical teachers. The proposed methodology has the potential for developing computerized NGT placement training methods for clinical education. It is also applicable for simulation systems involving complicated force interactions or computation-expensive models.
A manufacturing quality assessment model based-on two stages interval type-2 fuzzy logic
Purnomo, Muhammad Ridwan Andi; Helmi Shintya Dewi, Intan
2016-01-01
This paper presents the development of an assessment models for manufacturing quality using Interval Type-2 Fuzzy Logic (IT2-FL). The proposed model is developed based on one of building block in sustainable supply chain management (SSCM), which is benefit of SCM, and focuses more on quality. The proposed model can be used to predict the quality level of production chain in a company. The quality of production will affect to the quality of product. Practically, quality of production is unique for every type of production system. Hence, experts opinion will play major role in developing the assessment model. The model will become more complicated when the data contains ambiguity and uncertainty. In this study, IT2-FL is used to model the ambiguity and uncertainty. A case study taken from a company in Yogyakarta shows that the proposed manufacturing quality assessment model can work well in determining the quality level of production.
基於XML之分散式模糊知識管理系統模式 An XML-based Distributed System Model of Fuzzy Knowledge Management
Directory of Open Access Journals (Sweden)
Sinn-cheng Lin
2000-06-01
Full Text Available 無This paper focuses the attention on some issues of Web-based fuzzy knowledge management system. In the recent years, fuzzy theory has been an important research field of knowledge engineering. It provides a fundamental theory to deal with the linguistic information of human intelligence mathematically. On the other hand, the second-generation Web that based on XML technology is expected to extend the Internet beyond information delivery to knowledge management. To join together the advantages of both technologies, three major works are accomplished in this paper. First a distributed system model of fuzzy knowledge management based on XML technology is proposed. secondly, the structure of the fuzzy knowledge base is deeply analyzed for defining a fuzzy DTD. Finally, a prototype of DTD for creating fuzzy knowledge base by XML is developed.
Proposal of fuzzy object oriented model in extended JAVA
Pereira, Wilmer
2006-01-01
The knowledge imperfections should be considered when modeling complex problems. A solution is to develop a model that reduces the complexity and another option is to represent the imperfections: uncertainty, vagueness and incompleteness in the knowledge base. This paper proposes to extend the classical object oriented architecture in order to allow modeling of problems with intrinsic imperfections. The aim is to use the JAVA object oriented architecture to carry out this objective. In conseq...
Cheap diagnosis using structural modelling and fuzzy-logic based detection
DEFF Research Database (Denmark)
Izadi-Zamanabadi, Roozbeh; Blanke, Mogens; Katebi, Serajeddin
2003-01-01
relations for linear or non-linear dynamic behaviour, and combine this with fuzzy output observer design to provide an effective diagnostic approach. An adaptive neuro-fuzzy inference method is used. A fuzzy adaptive threshold is employed to cope with practical uncertainty. The methods are demonstrated...... using measurements on a ship propulsion system subject to simulated faults....
Jiang, Yingni
2018-03-01
Due to the high energy consumption of communication, energy saving of data centers must be enforced. But the lack of evaluation mechanisms has restrained the process on energy saving construction of data centers. In this paper, energy saving evaluation index system of data centers was constructed on the basis of clarifying the influence factors. Based on the evaluation index system, analytical hierarchy process was used to determine the weights of the evaluation indexes. Subsequently, a three-grade fuzzy comprehensive evaluation model was constructed to evaluate the energy saving system of data centers.
Location-Allocation model for food industrial using fuzzy criteria: A case study of dairy industry
Directory of Open Access Journals (Sweden)
Zahra Esfandiyari
2011-07-01
Full Text Available A good facility layout plays an important role on increasing the profitability of a production unit. A good location needs to meet different criteria such as the distance between the plants and the places to reach raw materials, customers, etc. In this paper, we proposed a multi criteria decision making problem to locate a suitable dairy plant. We assume that all factors influencing the plant involves uncertainty and proposed fuzzy numbers to handle the uncertainty associated with all input parameters. We apply the method for a real-world case study of dairy production unit and analyze the results of our proposed model.
Panoiu, M.; Panoiu, C.; Lihaciu, I. L.
2018-01-01
This research presents an adaptive neuro-fuzzy system which is used in the prediction of the distance between the pantograph and contact line of the electrical locomotives used in railway transportation. In railway transportation any incident that occurs in the electrical system can have major negative effects: traffic interrupts, equipment destroying. Therefore, a prediction as good as possible of such situations is very useful. In the paper was analyzing the possibility of modeling and prediction the variation of the distance between the pantograph and the contact line using intelligent techniques
Zoraghi, Nima; Amiri, Maghsoud; Talebi, Golnaz; Zowghi, Mahdi
2013-12-01
This paper presents a fuzzy multi-criteria decision-making (FMCDM) model by integrating both subjective and objective weights for ranking and evaluating the service quality in hotels. The objective method selects weights of criteria through mathematical calculation, while the subjective method uses judgments of decision makers. In this paper, we use a combination of weights obtained by both approaches in evaluating service quality in hotel industries. A real case study that considered ranking five hotels is illustrated. Examples are shown to indicate capabilities of the proposed method.
Models in cooperative game theory crisp, fuzzy, and multi-choice games
Branzei, Rodica; Tijs, Stef
2005-01-01
This book investigates models in cooperative game theory in which the players have the possibility to cooperate partially. In a crisp game the agents are either fully involved or not involved at all in coperation with some other agents, while in a fuzzy game players are allowed to cooperate with infinite many different participation levels, varying from non-cooperation to full cooperation. A multi-choice game describes the intermediate case in which each player may have a fixed number of activity levels. Different set and one-point solution concepts for these games are presented. The propertie
3D CMM strain-gauge triggering probe error characteristics modeling using fuzzy logic
DEFF Research Database (Denmark)
Achiche, Sofiane; Wozniak, A; Fan, Zhun
2008-01-01
FKBs based on two optimization paradigms are used for the reconstruction of the direction- dependent probe error w. The angles beta and gamma are used as input variables of the FKBs; they describe the spatial direction of probe triggering. The learning algorithm used to generate the FKBs is a real......The error values of CMMs depends on the probing direction; hence its spatial variation is a key part of the probe inaccuracy. This paper presents genetically-generated fuzzy knowledge bases (FKBs) to model the spatial error characteristics of a CMM module-changing probe. Two automatically generated...
1 RESEARCH ARTICLE Neuro-Fuzzy Model of Homocysteine ...
Indian Academy of Sciences (India)
2017-03-10
Mar 10, 2017 ... The FIS optimization for the training of the model was based on 'hybrid' method with error tolerance of 0.0001 and epochs of 3000. The training of the model was stopped when the mean absolute error .... Health of Patients with Cardiovascular Disease Risk. Curr Pharm Des. 20(39), 6078-. 88. Mohammad ...
An agent-based dialogical model with fuzzy attitudes
Dykstra, Piter; Jager, Wander; Elsenbroich, Corinna; Verbrugge, Rineke; De Lavalette, Gerard Renardel
2015-01-01
We present DIAL, a model of group dynamics and opinion dynamics. It features dialogues, in which agents gamble about reputation points. Intra-group radicalisation of opinions appears to be an emergent phenomenon. We position this model within the theoretical literature on opinion dynamics and social
A fuzzy multi-criteria decision-making model for trigeneration system
International Nuclear Information System (INIS)
Wang Jiangjiang; Jing Youyin; Zhang Chunfa; Shi Guohua; Zhang Xutao
2008-01-01
The decision making for trigeneration systems is a compositive project and it should be evaluated and compared in a multi-criteria analysis method. This paper presents a fuzzy multi-criteria decision-making model (FMCDM) for trigeneration systems selection and evaluation. The multi-criteria decision-making methods are briefly reviewed combining the general decision-making process. Then the fuzzy set theory, weighting method and the FMCDM model are presented. Finally, several kinds of trigeneration systems, whose dynamical sources are, respectively stirling engine, gas turbine, gas engine and solid oxide fuel cell, are compared and evaluated with a separate generation system. The case for selecting the optimal trigeneration system applied to a residential building is assessed from the technical, economical, environmental and social aspects, and the FMCDM model combining analytic hierarchical process is applied to the trigeneration case to demonstrate the decision-making process and effectiveness of proposed model. The results show that the gas engine plus lithium bromide absorption water heater/chiller unit for the residential building is the best scheme in the five options
A new fuzzy mathematical model for green supply chain network design
Directory of Open Access Journals (Sweden)
Mohsen Sadegh Amalnick
2017-01-01
Full Text Available The environmental changes caused by industrial activities have spurred a significant interest in designing supply chain networks by considering environmental issues such as CO2 emission. The pivotal role of taking uncertainty and risk into account in closed-loop supply chain networks has induced numerous researchers and practitioners to develop appropriate decision making tools to cope with these issues in such networks. To design a supply chain regarding environmental impacts under uncertainty of the input data and to cope with the operational risks, this paper proposes a multi objective possibilistic optimization model. The proposed model minimizes traditional costs such as cost of products shipment, purchasing machines and so on, as well as minimizing the environmental impact, and as a results strikes a balance between the two objective functions. Furthermore, in order to solve the proposed multi objective fuzzy mathematical programming model, an interactive fuzzy solution approach is applied. Numerical experiments are used to prove the applicability and feasibility of the developed possibilistic programming model and the usefulness of the applied hybrid solution approach.
Song, Qun; Kasabov, Nikola
2006-12-01
This paper introduces a novel transductive neuro-fuzzy inference model with weighted data normalization (TWNFI). In transductive systems a local model is developed for every new input vector, based on a certain number of data that are selected from the training data set and the closest to this vector. The weighted data normalization method (WDN) optimizes the data normalization ranges of the input variables for the model. A steepest descent algorithm is used for training the TWNFI models. The TWNFI is compared with some other widely used connectionist systems on two case study problems: Mackey-Glass time series prediction and a real medical decision support problem of estimating the level of renal function of a patient. The TWNFI method not only results in a "personalized" model with a better accuracy of prediction for a single new sample, but also depicts the most significant input variables (features) for the model that may be used for a personalized medicine.
Fuzzy decision-making: a new method in model selection via various validity criteria
International Nuclear Information System (INIS)
Shakouri Ganjavi, H.; Nikravesh, K.
2001-01-01
Modeling is considered as the first step in scientific investigations. Several alternative models may be candida ted to express a phenomenon. Scientists use various criteria to select one model between the competing models. Based on the solution of a Fuzzy Decision-Making problem, this paper proposes a new method in model selection. The method enables the scientist to apply all desired validity criteria, systematically by defining a proper Possibility Distribution Function due to each criterion. Finally, minimization of a utility function composed of the Possibility Distribution Functions will determine the best selection. The method is illustrated through a modeling example for the A verage Daily Time Duration of Electrical Energy Consumption in Iran
Directory of Open Access Journals (Sweden)
Luiz Fernando C. Nascimento
2009-09-01
Full Text Available The objective of this study was to develop a fuzzy model to estimate the possibility of neonatal mortality. A computing model was built, based on the fuzziness of the following variables: newborn birth weight, gestational age at delivery, Apgar score, and previous report of stillbirth. The inference used was Mamdani's method and the output was the risk of neonatal death given as a percentage. 24 rules were created according to the inputs. The validation model used a real data file with records from a Brazilian city. The receiver operating characteristic (ROC curve was used to estimate the accuracy of the model, while average risks were compared using the Student t test. MATLAB 6.5 software was used to build the model. The average risks were smaller in survivor newborn (p O objetivo do artigo foi avaliar o uso da lógica fuzzy para estimar possibilidade de óbito neonatal. Desenvolveu-se um modelo computacional com base na teoria dos conjuntos fuzzy, tendo como variáveis peso ao nascer, idade gestacional, escore de Apgar e relato de natimorto. Empregou-se o método de inferência de Mamdani, e a variável de saída foi o risco de morte neonatal. Criaram-se 24 regras de acordo com as variáveis de entrada, e a validação do modelo utilizou um banco de dados real de uma cidade brasileira. A acurácia foi estimada pela curva ROC; os riscos foram comparados pelo teste t de Student. O programa MATLAB 6.5 foi usado para construir o modelo. Os riscos médios foram menores para os que sobreviveram (p < 0,001. A acurácia do modelo foi 0,90. A maior acurácia foi com possibilidade de risco igual ou menor que 25% (sensibilidade = 0,70, especificidade = 0,98, valor preditivo negativo = 0,99 e valor preditivo positivo = 0,22. O modelo mostrou acurácia e valor preditivo negativo bons, podendo ser utilizado em hospitais gerais.
Effect of diabetic neuropathy severity classified by a fuzzy model in muscle dynamics during gait.
Watari, Ricky; Sartor, Cristina D; Picon, Andreja P; Butugan, Marco K; Amorim, Cesar F; Ortega, Neli R S; Sacco, Isabel C N
2014-02-08
Electromyography (EMG) alterations during gait, supposedly caused by diabetic sensorimotor polyneuropathy, are subtle and still inconsistent, due to difficulties in defining homogeneous experimental groups with a clear definition of disease stages. Since evaluating these patients involve many uncertainties, the use of a fuzzy model could enable a better discrimination among different stages of diabetic polyneuropathy and lead to a clarification of when changes in muscle activation start occurring. The aim of this study was to investigate EMG patterns during gait in diabetic individuals with different stages of DSP severity, classified by a fuzzy system. 147 subjects were divided into a control group (n = 30) and four diabetic groups: absent (n = 43), mild (n = 30), moderate (n = 16), and severe (n = 28) neuropathy, classified by a fuzzy model. The EMG activity of the vastus lateralis, tibialis anterior, and gastrocnemius medialis were measured during gait. Temporal and relative magnitude variables were compared among groups using ANOVA tests. Muscle activity changes are present even before an established neural involvement, with delay in vastus lateralis peak and lower tibialis anterior relative magnitude. These alterations suggest an impaired ankle shock absorption mechanism, with compensation at the knee. This condition seems to be more pronounced in higher degrees of neuropathy, as there is an increased vastus lateralis activity in the mild and severe neuropathy groups. Tibialis anterior onset at terminal stance was anticipated in all diabetic groups; at higher degrees of neuropathy, the gastrocnemius medialis exhibited activity reduction and peak delay. EMG alterations in the vastus lateralis and tibialis anterior occur even in the absence of diabetic neuropathy and in mild neuropathic subjects, seemingly causing changes in the shock absorption mechanisms at the heel strike. These changes increase with the onset of neural impairments, and the gastrocnemius
Effect of diabetic neuropathy severity classified by a fuzzy model in muscle dynamics during gait
2014-01-01
Background Electromyography (EMG) alterations during gait, supposedly caused by diabetic sensorimotor polyneuropathy, are subtle and still inconsistent, due to difficulties in defining homogeneous experimental groups with a clear definition of disease stages. Since evaluating these patients involve many uncertainties, the use of a fuzzy model could enable a better discrimination among different stages of diabetic polyneuropathy and lead to a clarification of when changes in muscle activation start occurring. The aim of this study was to investigate EMG patterns during gait in diabetic individuals with different stages of DSP severity, classified by a fuzzy system. Methods 147 subjects were divided into a control group (n = 30) and four diabetic groups: absent (n = 43), mild (n = 30), moderate (n = 16), and severe (n = 28) neuropathy, classified by a fuzzy model. The EMG activity of the vastus lateralis, tibialis anterior, and gastrocnemius medialis were measured during gait. Temporal and relative magnitude variables were compared among groups using ANOVA tests. Results Muscle activity changes are present even before an established neural involvement, with delay in vastus lateralis peak and lower tibialis anterior relative magnitude. These alterations suggest an impaired ankle shock absorption mechanism, with compensation at the knee. This condition seems to be more pronounced in higher degrees of neuropathy, as there is an increased vastus lateralis activity in the mild and severe neuropathy groups. Tibialis anterior onset at terminal stance was anticipated in all diabetic groups; at higher degrees of neuropathy, the gastrocnemius medialis exhibited activity reduction and peak delay. Conclusion EMG alterations in the vastus lateralis and tibialis anterior occur even in the absence of diabetic neuropathy and in mild neuropathic subjects, seemingly causing changes in the shock absorption mechanisms at the heel strike. These changes increase with the onset of neural
International Nuclear Information System (INIS)
Kosterev, V.V.; Boliatko, V.V.; Gusev, S.M.; Panin, M.P.; Averkin, A.N.
1998-01-01
Computer software for risk assessment of transportation of important freight has been developed. It incorporates models of transport accidents, including terrorist attacks. These models use, among the others, input data of cartographic character. Geographic information system technology and electronic maps of a geographic area are involved as an instrument for handling this kind of data. Fuzzy set theory methods as well as standard methods of probability theory have been used for quantitative risk assessment. Fuzzy algebraic operations and their computer realization are discussed. Risk assessment for one particular route of railway transportation is given as an example. (author)
Earthquake hazard assessment in the Zagros Orogenic Belt of Iran using a fuzzy rule-based model
Farahi Ghasre Aboonasr, Sedigheh; Zamani, Ahmad; Razavipour, Fatemeh; Boostani, Reza
2017-08-01
Producing accurate seismic hazard map and predicting hazardous areas is necessary for risk mitigation strategies. In this paper, a fuzzy logic inference system is utilized to estimate the earthquake potential and seismic zoning of Zagros Orogenic Belt. In addition to the interpretability, fuzzy predictors can capture both nonlinearity and chaotic behavior of data, where the number of data is limited. In this paper, earthquake pattern in the Zagros has been assessed for the intervals of 10 and 50 years using fuzzy rule-based model. The Molchan statistical procedure has been used to show that our forecasting model is reliable. The earthquake hazard maps for this area reveal some remarkable features that cannot be observed on the conventional maps. Regarding our achievements, some areas in the southern (Bandar Abbas), southwestern (Bandar Kangan) and western (Kermanshah) parts of Iran display high earthquake severity even though they are geographically far apart.
Fuzzy risk stratification and risk assessment model for clinical monitoring in the ICU.
Dervishi, Albion
2017-08-01
The decisions that clinicians make in intensive care units (ICUs) based on monitored parameters reflecting physiological deterioration are of major medical and biomedical engineering interest. These parameters have been investigated and assessed for their usefulness in risk assessment. Totally, 127 ICU adult patients were studied. They were selected from a MIMIC II Waveform Database Matched Subset and had continuous monitoring of heart rate, invasive blood pressure, and oxygen saturation. The monitored data were dimension reduced using deep learning autoencoders and then used to train a support vector machine model (SVM). A combination of methods including fuzzy c-means clustering (FCM), and a random forest (RF) was used to determine the risk levels. When classifying patients into stable or deteriorating groups the main performance parameter was the receiver operating characteristics (ROC). The area under the ROC (AUROC) was 93.2 (95% CI (92.9-93.4)) with sensitivity and specificity values of 0.80 and 0.89, respectively. The suggested fuzzy risk levels using the combined method of the FCM clustering and RF achieved an accuracy of 1 (0.9999, 1), with both sensitivity and specificity values equal to 1. The potential for using models in risk assessment to estimate a patient's physiological status, stable or deteriorating, within 4 h has been demonstrated. The study was based on retrospective analysis and further studies are needed to evaluate the impact on clinical outcomes using this model. Copyright © 2017 Elsevier Ltd. All rights reserved.
Research on the support model of large equipment emergency spare parts under fuzzy demand
Directory of Open Access Journals (Sweden)
JianHua Yang
2015-05-01
Full Text Available Purpose: Aim at making a scheme for emergency spare parts the support problem when large equipment spare parts supply network faced with large-scale emergency events. Design/methodology/approach: In order to analyze the model, we establish the spare parts security model under network supply conditions to respond emergency in case of fuzzy demand. And in end of the paper, we adopt an improved genetic algorithms to solve the problem. Findings: Considering emergency spare parts support problem from three aspects including satisfaction of time, satisfaction of demand and emergency cost constraints, which makes decision-making process more accord with reality condition, we can get a more realistic solution for the decision makers. Originality/value: Considering the occurrence of emergency and adopting information entropy theory to order the weight of emergency maintenance station in priority sequence, this paper presented emergency response time and demand satisfaction function, which uses the time, demand satisfaction and the cost restrictor as main objective, we have constructed the spare parts support model under fuzzy demand to solve emergency events, having expanded the scope of solution.
A Fuzzy Cognitive Model of aeolian instability across the South Texas Sandsheet
Houser, C.; Bishop, M. P.; Barrineau, C. P.
2014-12-01
Characterization of aeolian systems is complicated by rapidly changing surface-process regimes, spatio-temporal scale dependencies, and subjective interpretation of imagery and spatial data. This paper describes the development and application of analytical reasoning to quantify instability of an aeolian environment using scale-dependent information coupled with conceptual knowledge of process and feedback mechanisms. Specifically, a simple Fuzzy Cognitive Model (FCM) for aeolian landscape instability was developed that represents conceptual knowledge of key biophysical processes and feedbacks. Model inputs include satellite-derived surface biophysical and geomorphometric parameters. FCMs are a knowledge-based Artificial Intelligence (AI) technique that merges fuzzy logic and neural computing in which knowledge or concepts are structured as a web of relationships that is similar to both human reasoning and the human decision-making process. Given simple process-form relationships, the analytical reasoning model is able to map the influence of land management practices and the geomorphology of the inherited surface on aeolian instability within the South Texas Sandsheet. Results suggest that FCMs can be used to formalize process-form relationships and information integration analogous to human cognition with future iterations accounting for the spatial interactions and temporal lags across the sand sheets.
Directory of Open Access Journals (Sweden)
Mona Ahani
2013-02-01
Full Text Available The 20th century was the age of an industry-based as well as knowledge-based economy. In a knowledge-based economy, knowledge plays an essential role to produce wealth compared with other tangible and physical assets. The purpose of this research is to identify and rank different aspects of knowledge management based on the Hicks model using the fuzzy TOPSIS technique for one of the most prestigious universities in Iran. The proposed model considers four main criteria of knowledge including creation, distribution, storage, and application along with 17 sub-criteria. The Chi-square correlation test indicates a positive and meaningful correlation between four mentioned criteria and knowledge management implementation. Using the fuzzy TOPSIS technique, the results also indicate that “Need for new and updated information and knowledge” was selected as the most important sub-criterion and “Sharing or distribution of knowledge” was selected as the most important main criterion on Hicks model.
Modeling and Control of 5DOF Robot Arm Using Fuzzy Logic Supervisory Control
Directory of Open Access Journals (Sweden)
Mohammad Amin Rashidifar
2013-01-01
Full Text Available Modeling and control of 5 degree of freedom (DOF robot arm is the subject of this article. The modeling problem is necessary before applying control techniques to guarantee the execution of any task according to a desired input with minimum error. Deriving both forward and inverse kinematics is an important step in robot modeling based on the Denavit Hartenberg (DH representation. Proportional integral derivative (PID controller is used as a reference benchmark to compare its results with fuzzy logic controller (FLC and fuzzy supervisory controller (FSC results. FLC is applied as a second controller because of the nonlinearity in the robot manipulators. We compare the result of the PID controller and FLC results in terms of time response specifications. FSC is a hybrid between the previous two controllers. The FSC is used for tuning PID gains since PID alone performs not satisfactory in nonlinear systems. Hence, comparison of tuning of PID parameters is utilized using classical method and FSC method. Based on simulation results, FLC gives better results than classical PID controller in terms of time response and FSC is better than classical methods such as Ziegler-Nichols (ZN in tuning PID parameters in terms of time response.
Modelling of Evaporator in Waste Heat Recovery System using Finite Volume Method and Fuzzy Technique
Directory of Open Access Journals (Sweden)
Jahedul Islam Chowdhury
2015-12-01
Full Text Available The evaporator is an important component in the Organic Rankine Cycle (ORC-based Waste Heat Recovery (WHR system since the effective heat transfer of this device reflects on the efficiency of the system. When the WHR system operates under supercritical conditions, the heat transfer mechanism in the evaporator is unpredictable due to the change of thermo-physical properties of the fluid with temperature. Although the conventional finite volume model can successfully capture those changes in the evaporator of the WHR process, the computation time for this method is high. To reduce the computation time, this paper develops a new fuzzy based evaporator model and compares its performance with the finite volume method. The results show that the fuzzy technique can be applied to predict the output of the supercritical evaporator in the waste heat recovery system and can significantly reduce the required computation time. The proposed model, therefore, has the potential to be used in real time control applications.
Application of multi-model control with fuzzy switching to a micro hydro-electrical power plant
Energy Technology Data Exchange (ETDEWEB)
Salhi, Issam; Doubabi, Said [Laboratory of Electric Systems and Telecommunications (LEST), Faculty of Sciences and Technologies of Marrakesh, Cadi Ayyad University, BP 549, Av Abdelkarim Elkhattabi, Gueliz, Marrakesh (Morocco); Essounbouli, Najib; Hamzaoui, Abdelaziz [CReSTIC, Reims University, 9, rue de Quebec B.P. 396, F-10026 Troyes cedex (France)
2010-09-15
Modelling hydraulic turbine generating systems is not an easy task because they are non-linear and uncertain where the operating points are time varying. One way to overcome this problem is to use Takagi-Sugeno (TS) models, which offer the possibility to apply some tools from linear control theory, whereas those models are composed of linear models connected by a fuzzy activation function. This paper presents an approach to model and control a micro hydro power plant considered as a non-linear system using TS fuzzy systems. A TS fuzzy system with local models is used to obtain a global model of the studied plant. Then, to combine efficiency and simplicity of design, PI controllers are synthesised for each considered operating point to be used as conclusion of an electrical load TS Fuzzy controller. The latter ensures the global stability and desired performance despite the change of operating point. The proposed approach (model and controller) is tested on a laboratory prototype, where the obtained results show their efficiency and their capability to ensure good performance despite the non-linear nature of the plant. (author)