WorldWideScience

Sample records for transmutation technologies adtt

  1. A beamline systems model for Accelerator-Driven Transmutation Technology (ADTT) facilities

    Energy Technology Data Exchange (ETDEWEB)

    Todd, A.M.M.; Paulson, C.C.; Peacock, M.A. [Grumman Research and Development Center, Princeton, NJ (United States)] [and others

    1995-10-01

    A beamline systems code, that is being developed for Accelerator-Driven Transmutation Technology (ADTT) facility trade studies, is described. The overall program is a joint Grumman, G.H. Gillespie Associates (GHGA) and Los Alamos National Laboratory effort. The GHGA Accelerator Systems Model (ASM) has been adopted as the framework on which this effort is based. Relevant accelerator and beam transport models from earlier Grumman systems codes are being adapted to this framework. Preliminary physics and engineering models for each ADTT beamline component have been constructed. Examples noted include a Bridge Coupled Drift Tube Linac (BCDTL) and the accelerator thermal system. A decision has been made to confine the ASM framework principally to beamline modeling, while detailed target/blanket, balance-of-plant and facility costing analysis will be performed externally. An interfacing external balance-of-plant and facility costing model, which will permit the performance of iterative facility trade studies, is under separate development. An ABC (Accelerator Based Conversion) example is used to highlight the present models and capabilities.

  2. A beamline systems model for Accelerator-Driven Transmutation Technology (ADTT) facilities

    International Nuclear Information System (INIS)

    Todd, Alan M. M.; Paulson, C. C.; Peacock, M. A.; Reusch, M. F.

    1995-01-01

    A beamline systems code, that is being developed for Accelerator-Driven Transmutation Technology (ADTT) facility trade studies, is described. The overall program is a joint Grumman, G. H. Gillespie Associates (GHGA) and Los Alamos National Laboratory effort. The GHGA Accelerator Systems Model (ASM) has been adopted as the framework on which this effort is based. Relevant accelerator and beam transport models from earlier Grumman systems codes are being adapted to this framework. Preliminary physics and engineering models for each ADTT beamline component have been constructed. Examples noted include a Bridge Coupled Drift Tube Linac (BCDTL) and the accelerator thermal system. A decision has been made to confine the ASM framework principally to beamline modeling, while detailed target/blanket, balance-of-plant and facility costing analysis will be performed externally. An interfacing external balance-of-plant and facility costing model, which will permit the performance of iterative facility trade studies, is under separate development. An ABC (Accelerator Based Conversion) example is used to highlight the present models and capabilities

  3. Accelerator system model (ASM): A unique tool in exploring accelerator driven transmutation technologies (ADTT) system trade space

    Energy Technology Data Exchange (ETDEWEB)

    Myers, T.J.; Favale, A.J.; Berwald, D.H.; Burger, E.C.; Paulson, C.C.; Peacock, M.A.; Piaszczyk, C.M.; Piechowiak, E.M.; Rathke, J.W. [Northrop Grumman Corp., Bethpage, NY (United States). Advanced Technology and Development Center

    1997-09-01

    To aid in the development and optimization of emerging Accelerator Driven Transmutation Technology (ADTT) concepts, the Northrop Grumman Corporation, working together with G.H. Gillespie Associates and Los Alamos National Laboratory has developed a computational tool which combines both accelerator physics layout/analysis capabilities with engineering analysis capabilities to create a standardized platform to compare and contrast accelerator system configurations. In this context, the accelerator system configuration includes not only the accelerating structures, but also the major support systems such as the vacuum, thermal control, RF power, and cryogenic subsystem (if superconducting accelerator operation is investigated) as well as estimates of the costs for enclosures (accelerating tunnel and RF halls). This paper presents an overview of the Accelerator System Model (ASM) code flow, as well as a discussion of the data and analysis upon which it is based. Also presented is material which addresses the development of the evaluation criteria employed by this code including a presentation of the economic analysis methods, and a discussion of the cost database employed. The paper concludes with examples depicting completed and planned trade studies for both normal and superconducting accelerator applications. 8 figs.

  4. Important requirements for RF generators for Accelerator-Driven Transmutation Technologies (ADTT)

    International Nuclear Information System (INIS)

    Lynch, M.T.; Tallerico, P.J.; Lawrence, G.P.

    1994-01-01

    All Accelerator-Driven Transmutation applications require very large amounts of RF Power. For example, one version of a Plutonium burning system requires an 800-MeV, 80-mA, proton accelerator running at 100% duty factor. This accelerator requires approximately 110-MW of continuous RF power if one assumes only 10% reserve power for control of the accelerator fields. In fact, to minimize beam spill, the RF controls may need as much as 15 to 20% of reserve power. In addition, unlike an electron accelerator in which the beam is relativistic, a failed RF station can disturb the synchronism of the beam, possibly shutting down the entire accelerator. These issues and more lead to a set of requirements for the RF generators which are stringent, and in some cases, conflicting. In this paper, we will describe the issues and requirements, and outline a plan for RF generator development to meet the needs of the Accelerator-Driven Transmutation Technologies. The key issues which will be discussed include: operating efficiency, operating linearity, effect on the input power grid, bandwidth, gain, reliability, operating voltage, and operating current

  5. AIP conference on accelerator driven transmutation technologies and applications, Las Vegas, Nevada, July 25-29, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Schriber, S.O.; Arthur, E.; Rodriguez, A.A.

    1995-07-01

    This conference was the first to bring together US and foreign researchers to define Accelerator Driven Transmutation Technology (ADTT) concepts in several important national and international application areas - nuclear waste transmutation, minimizing of world plutonium inventories, and long-term energy production. The conference covered a number of diverse technological areas - accelerators, target/blankets, separations, materials - that make up ADTT systems. The meeting provided one of the first opportunities for specialists in these technologies to meet together and learn about system requirements, components, and interface issues. It was also an opportunity to formulate plans for future developments in ADTT. During the conference over one hundred technical presentations were made describing ADTT system and technology concepts as well as the impact of ADTT on issues related to global plutonium management and the high-level nuclear waste problem areas. Separate abstracts have been entered into the database for articles from this report.

  6. AIP conference on accelerator driven transmutation technologies and applications, Las Vegas, Nevada, July 25-29, 1994

    International Nuclear Information System (INIS)

    Schriber, S.O.; Arthur, E.; Rodriguez, A.A.

    1995-01-01

    This conference was the first to bring together US and foreign researchers to define Accelerator Driven Transmutation Technology (ADTT) concepts in several important national and international application areas - nuclear waste transmutation, minimizing of world plutonium inventories, and long-term energy production. The conference covered a number of diverse technological areas - accelerators, target/blankets, separations, materials - that make up ADTT systems. The meeting provided one of the first opportunities for specialists in these technologies to meet together and learn about system requirements, components, and interface issues. It was also an opportunity to formulate plans for future developments in ADTT. During the conference over one hundred technical presentations were made describing ADTT system and technology concepts as well as the impact of ADTT on issues related to global plutonium management and the high-level nuclear waste problem areas. Separate abstracts have been entered into the database for articles from this report

  7. Prompt nuclear analytical techniques for material research in accelerator driven transmutation technologies: Prospects and quantitative analyses

    International Nuclear Information System (INIS)

    Vacik, J.; Hnatowicz, V.; Cervena, J.; Perina, V.; Mach, R.

    1998-01-01

    Accelerator driven transmutation technology (ADTT) is a promising way toward liquidation of spent nuclear fuel, nuclear wastes and weapon grade Pu. The ADTT facility comprises a high current (proton) accelerator supplying a sub-critical reactor assembly with spallation neutrons. The reactor part is supposed to be cooled by molten fluorides or metals which serve, at the same time, as a carrier of nuclear fuel. Assumed high working temperature (400-600 C) and high radiation load in the subcritical reactor and spallation neutron source put forward the problem of optimal choice of ADTT construction materials, especially from the point of their radiation and corrosion resistance when in contact with liquid working media. The use of prompt nuclear analytical techniques in ADTT related material research is considered and examples of preliminary analytical results obtained using neutron depth profiling method are shown for illustration. (orig.)

  8. Separations technology development to support accelerator-driven transmutation concepts

    International Nuclear Information System (INIS)

    Venneri, F.; Arthur, E.; Bowman, C.

    1996-01-01

    This is the final report of a one-year Laboratory-Directed Research and Development (LDRD) Project at the Los Alamos National Laboratory (LANL). This project investigated separations technology development needed for accelerator-driven transmutation technology (ADTT) concepts, particularly those associated with plutonium disposition (accelerator-based conversion, ABC) and high-level radioactive waste transmutation (accelerator transmutation of waste, ATW). Specific focus areas included separations needed for preparation of feeds to ABC and ATW systems, for example from spent reactor fuel sources, those required within an ABC/ATW system for material recycle and recovery of key long-lived radionuclides for further transmutation, and those required for reuse and cleanup of molten fluoride salts. The project also featured beginning experimental development in areas associated with a small molten-salt test loop and exploratory centrifugal separations systems

  9. Transmutation Technology Development

    Energy Technology Data Exchange (ETDEWEB)

    Song, T. Y.; Park, W. S.; Kim, Y. H. (and others)

    2007-06-15

    The spent fuel coming from the PWR is one of the most difficult problems to be solved for the continuous use of nuclear power. It takes a few million years to be safe under the ground. Therefore, it is not easy to take care of the spent fuel for such a long time. Transmutation technology is the key technology which can solve the spent fuel problem basically. Transmutation is to transmute long-lived radioactive nuclides in the spent fuel into short-lived or stable nuclide through nuclear reactions. The long-lived radioactive nuclides can be TRU and fission products such as Tc-99 and I-129. Although the transmutation technology does not make the underground disposal totally unnecessary, the period to take care of the spent fuel can be reduced to the order of a few hundred years. In addition to the environmental benefit, transmutation can be considered to recycle the energy in the spent fuel since the transmutation is performed through nuclear fission reaction of the TRU in the spent fuel. Therefore, transmutation technology is worth being developed in economical aspect. The results of this work can be a basis for the next stage research. The objective of the third stage research was to complete the core conceptual design and verification of the key technologies. The final results will contribute to the establishment of Korean back end fuel cycle policy by providing technical guidelines.

  10. Experimental investigations of the accelerator-driven transmutation technologies at the subcritical facility ''Yalina''

    International Nuclear Information System (INIS)

    Chigrinov, S.E.; Kiyavitskaya, H.I.; Serafimovich, I.G.; Rakhno, I.L.; Rutkovskaia, Ch.K.; Fokov, Y.; Khilmanovich, A.M.; Marstinkevich, B.A.; Bournos, V.V.; Korneev, S.V.; Mazanik, S.E.; Kulikovskaya, A.V.; Korbut, T.P.; Voropaj, N.K.; Zhouk, I.V.; Kievec, M.K.

    2002-01-01

    The investigations on accelerator-driven transmutation technologies (ADTT) focus on the reduction of the amount of long-lived wastes and the physics of a subcritical system driven with an external neutron source. This paper presents the experimental facility 'Yalina' which was designed and created at the Radiation Physics and Chemistry Problems Institute of the National Academy of Sciences of Belarus in the framework of the ISTC project no. B-070 to study the peculiarities of ADTT in thermal spectrum. A detailed description of the assembly, neutron generator and a preliminary analysis of some calculated and experimental data (multiplication factor, neutron flux density distribution in the assembly, transmutation rates of some long-lived fission products and minor actinides) are presented. (authors)

  11. Summary of the Accelerator-Driven Transmutation Technologies and their applications

    Energy Technology Data Exchange (ETDEWEB)

    Wanger, T.P.

    1995-10-01

    During the past 15 years many advances have been made in the technology of high-power accelerators, and in the understanding of the beam-physics issues associated with their high-performance requirements. These developments have contributed significantly to the high level of confidence in the practicality of the applications that were the central point of the international Accelerator-Driven Transmutation Technologies (ADTT) Conference. Even so, there are many accelerator topics that needed to be addressed, and the Conference provided the opportunity to address these issues.

  12. Basis and objectives of the Los Alamos Accelerator-Driven Transmutation Technology Project

    International Nuclear Information System (INIS)

    Bowman, C.D.

    1995-01-01

    The Accelerator-Driven Transmutation Technology (ADTT) Project carries three approaches for dealing with waste from the defense and commercial nuclear energy enterprise. First, the problem of excess weapons plutonium in the US and Russia originating both from stockpile reductions and from defense production site clean-up is one of significant current and long-term concern. The ADTT technology offers the possibility of almost complete destruction of this plutonium by fission. The technology might be particularly effective for destruction of the low quality plutonium from defense site clean-up since the system does not require the fabrication of the waste into fuel assemblies, does not require reprocessing and refabrication, and can tolerate a high level of impurities in the feed stream. Second, the ADTT system also can destroy the plutonium, other higher actinide, and long-lived fission product from commercial nuclear waste which now can only be dealt with by geologic storage. And finally, and probably most importantly the system can be used for the production of virtually unlimited electric power from thorium with concurrent destruction of its long-lived waste components so that geologic containment for them is not required. In addition plutonium is not a significant byproduct of the power generation so that non-proliferation concerns about nuclear power are almost completely eliminated. All of the ADTT systems operate with an accelerator supplementing the neutrons which in reactors are provided only by the fission process, and therefore the system can be designed to eliminate the possibility for a runaway chain reaction. The means for integration of the accelerator into nuclear power technology in order to make these benefits possible is described including estimates of accelerator operating parameters required for the three objectives

  13. Basis and objectives of the Los Alamos Accelerator-Driven Transmutation technology project

    Science.gov (United States)

    Bowman, Charles D.

    1995-09-01

    The Accelerator-Driven Transmutation Technology (ADTT) Project carries three approaches for dealing with waste from the defense and commercial nuclear energy enterprise. First, the problem of excess weapons plutonium in the U.S. and Russia originating both from stockpile reductions and from defense production site clean-up is one of significant current and long-term concern. The ADTT technology offers the possibility of almost complete destruction of this plutonium by fission. The technology might be particularly effective for destruction of the low quality plutonium from defense site clean-up since the system does not require the fabrication of the waste into fuel assemblies, does not require reprocessing and refabrication, and can tolerate a high level of impurities in the feed stream. Second, the ADTT system also can destroy the plutonium, other higher actinide, and long-lived fission product from commercial nuclear waste which now can only be dealt with by geologic storage. And finally, and probably most importantly the system can be used for the production of virtually unlimited electric power from thorium with concurrent destruction of its long-lived waste components so that geologic containment for them is not required. In addition plutonium is not a significant byproduct of the power generation so that non-proliferation concerns about nuclear power are almost completely eliminated. All of the ADTT systems operate with an accelerator supplementing the neutrons which in reactors are provided only by the fission process, and therefore the system can be designed to eliminate the possibility for a runaway chain reaction. The means for integration of the accelerator into nuclear power technology in order to make these benefits possible is described including estimates of accelerator operating parameters required for the three objectives.

  14. Research and development of pyrochemical technologies for ADTT systems in NRI Rez plc

    International Nuclear Information System (INIS)

    Uhlir, J.

    1999-01-01

    The activities within the Czech national Partitioning and Transmutation program are oriented mainly toward the following areas: (i) ADS flowsheeting working out a proposal for a suitable technological flowsheet for treating spent fuel into a form fitted for transmutation reactor, including separation procedures before transmutation (Front-end) and separation processes after passage of fuel through the transmutor (Back-end). (ii) Technological research into the uranium component separation from spent fuel by the Fluoride Volatility Method semi-pilot-plant technological research based on the application of experience from spent fuel fluoride reprocessing. (iii) Laboratory research into electro-separation methods for the separation of fission products, plutonium and minor actinides from the fluoride melt. Selection of a suitable matrix composition of fluoride melts based on studies of their physicochemical properties and design of laboratory electro-separation facility. (iv) Development of materials and equipment for molten fluoride salts based ADS technologies, i.e. construction materials development, research into the corrosion resistance and development of equipment for molten fluoride salts technologies. The NRI Rez plc cooperates in this area with the SKODA Nuclear Machinery company

  15. Nuclear waste transmutation and related innovative technologies

    International Nuclear Information System (INIS)

    2002-01-01

    The main topics of the summer school meeting were 1. Motivation and programs for waste transmutation: The scientific perspective roadmaps; 2. The physics and scenarios of transmutation: The physics of transmutation and adapted reactor types. Impact on the fuel cycle and possible scenarios; 3. Accelerator driven systems and components: High intensity accelerators. Spallation targets and experiments. The sub critical core safety and simulation physics experiments; 4. Technologies and materials: Specific issues related to transmutation: Dedicated fuels for transmutation. Fuel processing - the role of pyrochemistry. Materials of irradiation. Lead/lead alloys. 5. Nuclear data: The N-TOF facility. Intermediate energy data and experiments. (orig./GL)

  16. Nuclear Wastes: Technologies for Separations and Transmutation

    National Research Council Canada - National Science Library

    .... The committee examines the currently used "once-through" fuel cycle versus different alternatives of separations and transmutation technology systems, by which hazardous radionuclides are converted...

  17. Partitioning and Transmutation - Physics, Technology and Politics

    International Nuclear Information System (INIS)

    Gudowski, W.

    2002-01-01

    Nuclear reactions can be effectively used to destroy radio toxic isotopes through transmutation processes transforming those isotopes into less radio toxic or stable ones Spent nuclear fuel, a mixture of many isotopes with some of them being highly radio toxic for many hundred thousands of years, may be effectively transmuted through nuclear reactions with neutrons. In a dedicated, well designed transmutation system one can, in principle, reduce the radiotoxicity of the spent nuclear fuel to a level, which will require isolation from the biosphere for the period of time for which engineered barriers can be constructed and licensed (not more than 1-2 thousands of years). En effective transmutation process can not be achieved without a suitable partitioning. Only partitioning of the spent nuclear fuel into predetermined groups of elements makes possible an effective use of neutrons to transmute long-lived radioactive isotopes into short-lived or stable one. However, most of the chemical separation/partitioning processes are element- not isotope-specific, therefore the transmutation of the elements with an existing isotope composition is a typical alternative for transmutation processes. Isotope-specific separation is possible but still very expensive and technologically not matured

  18. Impact of ADTT concepts on the management of global plutonium inventories

    International Nuclear Information System (INIS)

    Davidson, J.W.; Krakowski, R.A.; Arthur, E.D.

    1996-01-01

    The impact of a number of current and future nuclear systems on global plutonium inventories is assessed under realistic forecasts of nuclear power growth. Advanced systems, such as those employing Accelerator Driven Transmutation Technologies (ADTT) and liquid metal reactors, show significant promise for meeting future plutonium management needs. These analyses also indicate requirements for a higher level of detail in the nuclear fuel cycle model and for development of a metric to more quantitatively assess the proliferation risk of plutonium arising from the civilian fuel cycle

  19. ADTT safety aspects

    International Nuclear Information System (INIS)

    Thedeen, T.

    1997-01-01

    Beside the technical problems of ADTT which remain to be solved it is crucial for the ADTT progress that safety and economical aspects are considered already during the research and planning phases. Safety here stands for the converse of risk, negative consequences for human life and health and the environment together with the corresponding probabilities. The system to be considered includes all phases of an ADTT plant, a life cycle analysis (LCA). The risk analysis is useful for two purposes: comparison with other ways of handling nuclear waste, e.g. geological repository and for valuation of different construction designs. Due to lack of precise plans and adequate data the analysis will be more of a qualitative than quantitative type. The main risks appear in connection with repair and replacement work. 2 refs., 1 fig

  20. The Los Alamos accelerator driven transmutation of nuclear waste (ATW) concept development of the ATW target/blanket system

    International Nuclear Information System (INIS)

    Venneri, F.; Williamson, M.A.; Ning, L.

    1997-01-01

    The studies carried out in the frame of the Accelerator Driven Transmutation Technology (ADTT) program developed at Los Alamos in order to solve the nuclear waste problem and to build a new generation of safer and non-proliferant nuclear power plants, are presented

  1. Development of nuclear transmutation technology for transuranic elements

    International Nuclear Information System (INIS)

    Mukaiyama, Takehiko

    1996-01-01

    Partitioning and Transmutation (P-T) of long-lived radioactive nuclides is conceived as the technology to improve the high-level radioactive waste management. This report discusses the incentives of P-T, generation of long-lived nuclides in fission reactors, nuclear transmutation technologies, R and D activities of the partitioning and transmutation technology development programs at JAERI and in the world. (author)

  2. Specialized beam diagnostic measurements for an ADTT accelerator funnel

    Energy Technology Data Exchange (ETDEWEB)

    Gilpatrick, J.D.

    1995-10-01

    Los Alamos National Laboratory has proposed several CW-proton-beam facilities for accelerator-driven transmutation technologies (ADTT) with beam-current densities greater than 5 mA/mm{sup 2}. The primary beam-diagnostics-instrumentation requirement for these facilities is to provide sufficient beam information to understand and minimize beam-loss. To accomplish this task, the beam diagnostics instrumentation must measure beam parameters such as the projected centroids and profiles, total integrated current, and particle loss. Because of the high specific energy loss in materials at beam energies less than 20 MeV, interceptive measurements such as wire scanners or fluors cannot be used to determine beam profiles or centroids. Therefore, noninterceptive techniques must be used for on-line diagnosis of high-intensity CW beam at low energies. The beam funnel area of these proposed accelerator facilities provide a particular interesting beam measurement challenge. In this area of the accelerator, beam measurements must also sense how well the two funnel-input-beams are matched to each other in phase space. This paper will discuss some of the measurement requirements for these proposed accelerator facilities and the various noninterceptive techniques to measure dual-beam funnel operation.

  3. The physics design of accelerator-driven transmutation systems

    International Nuclear Information System (INIS)

    Venneri, F.

    1995-01-01

    Nuclear systems under study in the Los Alamos Accelerator-Driven Transmutation Technology program (ADTT) will allow the destruction of nuclear spent fuel and weapons-return plutonium, as well as the production of nuclear energy from the thorium cycle, without a long-lived radioactive waste stream. The subcritical systems proposed represent a radical departure from traditional nuclear concepts (reactors), yet the actual implementation of ADTT systems is based on modest extrapolations of existing technology. These systems strive to keep the best that the nuclear technology has developed over the years, within a sensible conservative design envelope and eventually manage to offer a safer, less expensive and more environmentally sound approach to nuclear power

  4. The physics design of accelerator-driven transmutation systems

    Energy Technology Data Exchange (ETDEWEB)

    Venneri, F. [Los Alamos National Laboratory, NM (United States)

    1995-10-01

    Nuclear systems under study in the Los Alamos Accelerator-Driven Transmutation Technology program (ADTT) will allow the destruction of nuclear spent fuel and weapons-return plutonium, as well as the production of nuclear energy from the thorium cycle, without a long-lived radioactive waste stream. The subcritical systems proposed represent a radical departure from traditional nuclear concepts (reactors), yet the actual implementation of ADTT systems is based on modest extrapolations of existing technology. These systems strive to keep the best that the nuclear technology has developed over the years, within a sensible conservative design envelope and eventually manage to offer a safe, less expensive and more environmentally sound approach to nuclear power.

  5. Future directions for ADTT concepts

    Energy Technology Data Exchange (ETDEWEB)

    Miliekowski, C. [Scandatronix Corporation, Las Vegas, NV (United States)

    1995-10-01

    This presentation is the collection of viewgraphs used by the author to summarize the future for accelerator based systems for transmutation technologies. The author also emphasizes points which need short term effort to provide critical information necessary for modeling, and planning for future work. The author points out how the value of this technology varies depending upon the political and economic factors which are driving the necessity of dealing with radioactive materials. The issues of feasibility, safety, proliferation, cost, and public perception are also addressed.

  6. Development of transmutation technologies of radioactive waste by actinoid hydride

    International Nuclear Information System (INIS)

    Konashi, Kenji; Matsui, Hideki; Yamawaki, Michio

    2001-01-01

    Two waste treatment methods, geological disposal and transmutation, have been studied. The transmutation method changes long-lived radioactive nuclides to short-lived one or stabilizes them by nuclear transformation. The transmutation by actinoid hydride is exactly alike that transformation method from actinoid disposal waste to Pu fuel. For this object, OMEGA project is processing now. The transmutation is difficult by two causes such as large amount of long-lived radioactive nuclides and not enough development of control technologies of nuclear reaction except atomic reactor. The transmutation using actinoid hydride has merits that the amount of actinoid charged in the target increases and the effect of thermal neutrons on fuel decreases depending on homogeneous transmutation velocity in the target. Development of stable actinoid hydride under the conditions of reactor temperature and irradiation environment is important. The experimental results of U-ZrH 1.6 are shown in this paper. The irradiation experiment using Th hydride has been proceeding. (S.Y.)

  7. Basic plan of partitioning and transmutation technology development

    International Nuclear Information System (INIS)

    Ikegami, Tetsuo; Ozawa, Masaki

    2003-04-01

    Basic plan of partitioning and transmutation technology development has been made in more detail and concrete manner in terms of development goal, nuclides to be portioned and to be transmuted, and development schedule, based on the pre-evaluation results of the Research Evaluation Committee on Research and development of partitioning and transmutation technology for long life nuclides' held in August 2000. A step by step approach, consists of three steps, to reach the goal of partitioning and transmutation technology has been adopted under the recognition that the partitioning and transmutation technology development should be progressed steadily as a long term them. The first step is supposed to be able to attain within about 5 years by the present technology and on the extension of it. Such researches as collective separation of TRU, MA/Ln effective separation, and irradiation experiment of iodine and technetium. The second step is such a goal that is expected to be able to realize the engineering feasibility, within about 15 years, through the progress of science technology in future, although the engineering feasibility is not sufficiently foreseen at present. It will need revolutionary technology or breakthrough. Nuclides to be partitioned and to be transmuted have been selected in view points of 'radioactivity and radio-toxicity', 'geological repository', and 'effective utilization', corresponding to the each step of the development goal. Collaboration with other research organizations and with universities in the world should be pursued. Especially, such collaborations with France, with which information exchange on JOYO/PHENIX irradiation experiments is progressing, and with USA, which has recently developed positive activities in this field, are strongly expected. (author)

  8. Definition of Technology Readiness Levels for Transmutation Fuel Development

    International Nuclear Information System (INIS)

    Jon Carmack; Kemal O. Pasamehmetoglu

    2008-01-01

    To quantitatively assess the maturity of a given technology, the Technology Readiness Level (TRL) process is used. The TRL process has been developed and successfully used by the Department of Defense (DOD) for development and deployment of new technology and systems for defense applications. In addition, NASA has also successfully used the TRL process to develop and deploy new systems for space applications. Transmutation fuel development is a critical technology needed for closing the nuclear fuel cycle. Because the deployment of a new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the transmutation fuel development program is very useful as a management and tracking tool. This report provides definition of the technology readiness level assessment process as defined for use in assessing nuclear fuel technology development for the Transuranic Fuel Development Campaign

  9. Development of long-lived radionuclide transmutation technology -Development of nuclear transmutation technology-

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myung Chan; Jung, Woo Tae; Koh, Duk Joon; Kim, Jung Doh; Kil, Choong Sub [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    Based on the performance assessment of current reactor nuclear design codes, CASMO-3, LEOPARD, CITATION could be used for the simulation of transmutation, but further improvements are required on the reliability of cross sections of MA or FP and the accuracy of burnup model. Our simulation results based on the calculation by using CASMO-3 and NEM-3D (developed at Seoul National University) showed that transmutation efficiency for Am was high but Np and Cm elements were found to be hard to transmute. In our calculation, micro depletion calculations with burnup variation were done separately. Possibility of MA and FP transmutation with hard and fast neutrons was reported to be greater but detail calculation will be done in next year. 44 figs, 31 tabs, 17 refs. (Author).

  10. Optimization of accelerator-driven technology for LWR waste transmutation

    International Nuclear Information System (INIS)

    Bowman, C.D.

    1996-01-01

    The role of accelerator-driven transmutation technology is examined in the context of the destruction of actinide waste from commercial light water reactors. It is pointed out that the commercial plutonium is much easier to use for entry-level nuclear weapons than weapons plutonium. Since commercial plutonium is easier to use, since there is very much more of it already, and since it is growing rapidly, the permanent disposition of commercial plutonium is an issue of greater importance than weapons plutonium. The minor actinides inventory, which may be influenced by transmutation, is compared in terms of nuclear properties with commercial and weapons plutonium and for possible utility as weapons material. Fast and thermal spectrum systems are compared as means for destruction of plutonium and the minor actinides. it is shown that the equilibrium fast spectrum actinide inventory is about 100 times larger than for thermal spectrum systems, and that there is about 100 times more weapons-usable material in the fast spectrum system inventory compared to the thermal spectrum system. Finally it is shown that the accelerator size for transmutation can be substantially reduced by design which uses the accelerator-produced neutrons only to initiate the unsustained fission chains characteristic of the subcritical system. The analysis argues for devoting primary attention to the development of thermal spectrum transmutation technology. A thermal spectrum transmuter operating at a fission power of 750-MWth fission power, which is sufficient to destroy the actinide waste from one 3,000-MWth light water reactor, may be driven by a proton beam of 1 GeV energy and a current of 7 mA. This accelerator is within the range of realizable cyclotron technology and is also near the size contemplated for the next generation spallation neutron source under consideration by the US, Europe, and Japan

  11. Current Status of the Transmutation Reactor Technology and Preliminary Evaluation of Transmutation Performance of the KALIMER Core

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Ser Gi; Sim, Yoon Sub; Kim, Yeong Il; Kim, Young Gyum; Lee, Byung Woon; Song, Hoon; Lee, Ki Bog; Jang, Jin Wook; Lee, Dong Uk

    2005-08-15

    Recently the most countries using the nuclear power plants for electricity generation have been faced with the problem of the preparation of the repository for the disposition of the nuclear waste generated from LWR. It was well-known that the issues related with long term risk of the radioactive wastes for the future generations are due only to 1% of the total waste. This small fraction of 1% consists of transuranic (TRU) nuclides such as Pu, Np, Am, Cm and the long lived fission products such as Tc and I. For the transuranic (TRU) nuclides, their half lives range from several years to several hundred thousands years and hence their radioactive toxicity can be lasted over very long time period. This has made the change of the rule of the fast spectrum reactor from the economical use of uranium resource through breeding to the reduction of the nuclear waste through the transmutation. The purpose of this study is to obtain the basic knowledge on the nuclear transmutation technology and to suggest the technical solution ways for the future technology development and enhancement through a survey of the state-of-art of the international research on the nuclear transmutation. The increase of the transmutation rate requires the reduction of the breeding ratio. In fact, the transmutation rate is determined by the breeding ratio. The reduction of the breeding ratio can be achieved by reducing the U-238 content in fuel or increasing the neutron leakage through core boundary or absorbing the neutrons by using some absorbers. However, the reduction of the U-238 content results in the degradation of the fuel Doppler coefficient that is one of the most important safety-related parameters and the reduction of the effective delayed neutron fraction that is related with the controllability of the reactor core. Also, the increase of the transmutation rate can lead to the increase of the coolant void reactivity worth unless some ways to reduce the coolant void reactivity are not

  12. U.S. advanced accelerator applications program: plans to develop and test waste transmutation technologies

    International Nuclear Information System (INIS)

    Van Tuyle, G.; Bennett, D.; Arthur, E.; Cappiello, M.; Finck, P.; Hill, D.; Herczeg, J.; Goldner, F.

    2001-01-01

    The primary mission of the U.S. Advanced Accelerator Applications (AAA) Program is to establish a national nuclear technology research capability that can demonstrate accelerator-based transmutation of waste and conduct transmutation research while at the same time providing a capability for the production of tritium if required. The AAA Program was created during fiscal year 2001 from the Accelerator Transmutation of Waste (ATW) Program and the Accelerator Production of Tritium (APT) Project. This paper describes the new AAA Program, as well as its two major components: development and testing of waste transmutation technologies and construction of an integrated accelerator-driven test facility (ADTF). (author)

  13. ECN contributions to ADTT `96

    Energy Technology Data Exchange (ETDEWEB)

    Koning, A.J.

    1996-07-01

    An outline is presented of the status of nuclear data evaluation for accelerator-driven systems. The international effort consists mainly of measuring, compiling and calculating nuclear data for elements and isotopes relevant for transmutation of radioactive waste (ATW), energy amplification and other accelerator-related nuclear applications. We argue that input for global, macroscopic calculation schemes for hybrid nuclear systems basically should consist of three types of nuclear data: (a) High-energy transport codes for energies above about 150 MeV, (b) neutron and proton transport data files for energies below about 150 MeV and (c) neutron and proton transmutation/activation libraries below about 150 MeV. Our specific contribution to the field concerns (b) and (c). The progress of the evaluation of high-energy nuclear data files for the most important materials and the related compilation of nuclear reaction information is reported. The evaluated data are calculated with the computer codes ECIS95, MINGUS and GNASH and are stored in ENDF6-format. We illustrate the library production with a short outline of the employed physical methods. Finally, we briefly discuss the application of the activation/transmutation library ECNAF96. (orig.).

  14. Accelerator-driven transmutation: a high-tech solution to some nuclear waste problems

    International Nuclear Information System (INIS)

    Hechanova, A.E.

    2000-01-01

    This paper discusses current technical and political issues regarding the innovative concept of using accelerator-driven transmutation processes for nuclear waste management. Two complex and related issues are addressed. First, the evolution and improvements of the design technologies are identified to indicate that there has been sufficient technological advancement with regard to a 1991 scientific peer review to warrant the advent of a large-scale national research and development program. Second, the economics and politics of the transmutation system are examined to identify non-technical barriers to the implementation of the program. Transmutation of waste has been historically viewed by nuclear engineers as one of those technologies that is too good to be true and probably too expensive to be feasible. The concept discussed in the present paper uses neutrons ( which result from protons accelerated into spallation targets)to transmute the major very long-lived hazardous materials such as the radioactive isotopes of technetium, iodine, neptunium, plutonium, americium, and curium. Although not a new concept, accelerator-driven transmutation technology (ADTT) lead by a team at Los Alamos National Laboratory (LANL) has made some significant advances which are discussed in the present paper. (authors)

  15. Development of nuclear transmutation technology - A study on accelerator-driven transmutation of long-lived radionuclide

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Chang Hyun; Chung, Kie Hyung; Hong, Sang Hee; Hwang, Il Soon; Park, Byung Gi; Yang, Hyung Lyeol; Kim, Duk Kyu; Huh, Chang Wook [Seoul National University, Seoul (Korea, Republic of)

    1996-07-01

    The objective of this study is to help establish the long-range nuclear waste disposal strategy through the investigations and comparisons of various= concepts of the accelerator-driven nuclear waste transmutation reactors, which have been suggested to replace the geological waste disposal due to the technical uncertainties in the long-time scale. Nuclear data, categorized in high -and low-energy neutron cross-sections, were investigated and the structures, principles, and recent progresses of proton linac were reviews, Also the accelerator power for transmutation and the economics were referred, The comparison of the transmutation concepts concentrated on two: Japanese OMEGA program of alloy fuelled system, Minor actinide molten salt system, and Eutectic alloy system and American ATW program of aqueous system and molten salt system. From the comparative study, a state-of-art of the technology has been identified as a concept employing proton-accelerate of 800 {approx} 1600 MeV with 100 mA capacity combined with liquid lead target, molten salt blanket and on-line chemical separation using centrifuge and electrowinning technology. 34 refs., 25 tabs., 64 figs. (author)

  16. Economic assessment of partitioning, transmutation and waste reduction technologies

    International Nuclear Information System (INIS)

    Lauferts, U.; Van Heek, A.; Hart, J.

    2007-01-01

    This nuclear system study focuses on a realistic evolution of Partitioning and Transmutation technologies, which can be deployed incrementally on an industrial scale as well as on future developments such as reactors of the third and fourth generation and Accelerated Driven Systems (ADS). A set of five different fuel cycles has been selected, representing the options proposed in different European countries. Two industrial scenarios as continuation of the open nuclear fuel cycles and mono-recycling of plutonium in PWRs have been chosen as a reference. In addition, 3 more innovative cycles are considered using Fast Generation IV reactors and double strata scenarios with advanced PWR, ADS and fast reactors. This study shows, first, that closing the nuclear fuel cycle would be a useful strategy to mitigate concerns about a rapid depletion of natural uranium resources in this century. Secondly, all the 3 advanced fuel cycle strategies proposed reduce effectively the total amount of nuclear waste out of pile and consequently the need for large capacities of deep geological repositories. Thirdly, the most efficient strategy towards the mitigation of waste production is the utilization of fast reactors technology to burn plutonium and ADS to burn minor actinides

  17. Chemico-technological support of transmutation objectives: Solid, molten salt and liquid blanket

    Energy Technology Data Exchange (ETDEWEB)

    Volk, V.I.; Zakharkin, B.S.; Vakhrushin, A.Y. [VNIINM, Moscow (Russian Federation)

    1995-10-01

    Chemical and technological provision for the transmutation process, independantly on the scheme of its conduction, includes: fuel composition separation for fractions of components, subjected to annihilation; their transition into chemical form, in which they are present in the reactor; discharge and return into the form, convenient for chemical reprocessing, providing for the transmutation products separation from the components being transmutated and transferring of short-lived isotopes into the form of their temporary storage. The authors discuss different chemical processes which can be used in these steps to either improve efficiency or minimize additional waste generation and expense associated with decontamination. They consider processes involving molten salts for circulation of wastes thru transmutation steps, and possible advantages in extraction processes.

  18. ACCELERATOR TRANSMUTATION OF WASTE TECHNOLOGY AND IMPLEMENTATION SCENARIOS

    International Nuclear Information System (INIS)

    Beller, D.; Tuyle, G. van

    2000-01-01

    During 1999, the U.S. Department of Energy, in conjunction with its nuclear laboratories, a national steering committee, and a panel of world experts, developed a roadmap for research, development, demonstration, and deployment of Accelerator-driven Transmutation of Waste (ATW). The ATW concept that was examined in this roadmap study was based on that developed at the Los Alamos National Laboratory (LANL) during the 1990s. The reference deployment scenario in the Roadmap was developed to treat 86,300 tn (metric tonnes initial heavy metal) of spent nuclear fuel that will accumulate through 2035 from existing U.S. nuclear power plants (without license extensions). The disposition of this spent nuclear reactor fuel is an issue of national importance, as is disposition of spent fuel in other nations. The U.S. program for the disposition of this once-through fuel is focused to characterize a candidate site at Yucca Mountain, Nevada for a geological repository for spent fuel and high-level waste. The ATW concept is being examined in the U.S. because removal of plutonium minor actinides, and two very long-lived isotopes from the spent fuel can achieve some important objectives. These objectives include near-elimination of plutonium, reduction of the inventory and mobility of long-lived radionuclides in the repository, and use of the remaining energy content of the spent fuel to produce power. The long-lived radionuclides iodine and technetium have roughly one million year half-lives, and they are candidates for transport into the environment via movement of ground water. The scientists and engineers who contributed to the Roadmap Study determined that the ATW is affordable, doable, and its deployment would support all the objectives. We report the status of the U.S. ATW program describe baseline and alternate technologies, and discuss deployment scenarios to support the existing U.S. nuclear capability and/or future growth with a variety of new fuel cycles

  19. Review of ORNL's MSR technology and status

    International Nuclear Information System (INIS)

    Toth, L.M.; Gat, U.; Del Cul, G.D.; Dai, S.; Williams, D.F.

    1996-01-01

    The current status of molten salt reactor development is discussed with reference to the experience from the Oak Ridge Molten Salt Reactor Experiment. Assessment of the future for this reactor system is reviewed with consideration of both advantages and disadvantages. Application of this concept to ADTT (accelerator driven transmutation technology) needs appears to be feasible by drawing on the MSRE experience. Key chemical considerations remain as: solubility, redox behavior, and chemical activity and their importance to ADTT planning is briefly explained. Priorities in the future development of molten salts for these applications are listed, with the foremost being the acceptance of the 2LiF-BeF 2 solvent system. 8 refs, 2 figs

  20. Transmutation technologies to solve the problem of long-term spent nuclear fuel storage

    International Nuclear Information System (INIS)

    Hosnedl, P.; Valenta, V.; Blahut, O.

    2000-01-01

    The paper gives a brief description of the transmutation process for actinides and long-lived fission products which are present in spent nuclear fuel. Transmutation technologies can solve the problem of long-term spent nuclear fuel storage and reduce the requirements for storage time and conditions. The basic data and requirements for the detailed design of the transmutor are summarized, and the views upon how to address the fuel purification and dry reprocessing issues are discussed. The results of activities of SKODA JS are highlighted; these include, for instance, the fluoride salt-resistant material MONICR, test loops, and electrowinners. The preliminary design of the transmutor is also outlined. Brief information regarding activities in the field of transmutation technologies in the Czech Republic and worldwide is also presented. The research and design activities to be developed for the whole design of the demonstration and basic units are summarized. It is emphasized that SKODA JS can join in international cooperation without constraints. The Attachment presents a simple assessment of how the radioactivity balance can be reduced, based on the actinide and long-lived fission product transmutation half-lives, is presented in the Attachment. (author)

  1. The development and application of silicon neutron transmutation doping (NTD) technology in china

    International Nuclear Information System (INIS)

    Qiao Chenyang; Sun Zhiyong; Ke Guotu, Lu Cungang; Shen Feng; Chen Huiqiang

    2009-01-01

    The research and development history of silicon Neutron Transmutation Doping (NTD) technology and its applications at home and abroad are introduced in this paper. The advantages of NTD, compared with conventional technology of doping, are narrated. The principle of NTD as well as the implementation of the main procedures related to Si NTD is explained. The market demand tendency is prospected, and the advanced measures on NTD quality control are described. (authors)

  2. Detailed study of transmutation scenarios involving present day reactor technologies

    International Nuclear Information System (INIS)

    2003-01-01

    This document makes a detailed technical evaluation of three families of separation-transmutation scenarios for the management of radioactive wastes. These scenarios are based on 2 parks of reactors which recycle plutonium and minor actinides in an homogeneous way. A first scenario considers the multi-recycling of Pu and Np and the mono-recycling of Am and Cm using both PWRs and FBRs. A second scenario is based on PWRs only, while a third one considers FBRs only. The mixed PWR+FBR scenario requires innovative options and gathers more technical difficulties due to the americium and curium management in a minimum flux of materials. A particular attention has been given to the different steps of the fuel cycle (fuels and targets fabrication, burnup, spent fuel processing, targets management). The feasibility of scenarios of homogeneous actinides recycling in PWRs-only and in FBRs-only has been evaluated according to the results of the first scenario: fluxes of materials, spent fuel reprocessing by advanced separation, impact of the presence of actinides on PWRs and FBRs operation. The efficiency of the different scenarios on the abatement of wastes radio-toxicity is presented in conclusion. (J.S.)

  3. Development of high level radwaste treatment and conversion technology. Transmutation technology development

    Energy Technology Data Exchange (ETDEWEB)

    Park, Won Suk; Song, T Y; Kim, Y H

    2001-03-01

    The final disposition of spent fuel has been, and continues to be, an important issue of nuclear industry. The conceptual design for the accelerator driven transmutation system HYPER is scheduled to be completed by the year of 2006. As the first step for the conceptual design, a study to determine 1. sub-critical core characteristics, 2. fuel concept, 3. coolant system concept, 4. spallation target concept for the HYPER was performed from 1997 to 2000. Most of concept studies were done on the literature basis. The major objectives of the study is to give a guid-line for the second stage research which will be performed during 2001-2003. In addition, the technologies related with TRU-Zr fuel and Pb-Bi coolant can be utilized for the future nuclear reactor development such as generation 4.

  4. Development of high level radwaste treatment and conversion technology. Transmutation technology development

    International Nuclear Information System (INIS)

    Park, Won Suk; Song, T. Y.; Kim, Y. H.

    2001-03-01

    The final disposition of spent fuel has been, and continues to be, an important issue of nuclear industry. The conceptual design for the accelerator driven transmutation system HYPER is scheduled to be completed by the year of 2006. As the first step for the conceptual design, a study to determine 1. sub-critical core characteristics, 2. fuel concept, 3. coolant system concept, 4. spallation target concept for the HYPER was performed from 1997 to 2000. Most of concept studies were done on the literature basis. The major objectives of the study is to give a guid-line for the second stage research which will be performed during 2001-2003. In addition, the technologies related with TRU-Zr fuel and Pb-Bi coolant can be utilized for the future nuclear reactor development such as generation 4

  5. Accelerator-driven transmutation technology: a high-tech solution to some nuclear waste problems

    International Nuclear Information System (INIS)

    Hechanova, A.E.

    2001-01-01

    This paper discusses current technical and non-technical issues regarding the innovative concept of using accelerator-driven transmutation processes for nuclear waste management. Two complex and related issues are addressed. First, the evolution of the current U.S. conceptual design is identified to indicate that there has been sufficient technological advancement with regard to a 1991 scientific peer review to warrant the advent of a large-scale national research and development program. Second, the economics and politics of the transmutation system are examined to identify non-technical barriers to the implementation of the program. Although a number of key challenges are identified in this paper, the benefits of the research and development effort and the potential paradigm shift in attitude toward resource stewardship could greatly enhance public confidence in nuclear waste management that will have rapid positive repercussions on nuclear technology research and commercial applications. (author)

  6. Accelerator technology for Los Alamos nuclear-waste-transmutation and energy-production concepts

    International Nuclear Information System (INIS)

    Lawrence, G.P.; Jameson, R.A.; Schriber, S.O.

    1991-01-01

    Powerful proton linacs are being studied at Los Alamos as drivers for high-flux neutron sources that can transmute long-lived fission products and actinides in defense nuclear waste, and also as drivers of advanced fission-energy systems that could generate electric power with no long-term waste legacy. A transmuter fed by an 800-MeV, 140-mA cw conventional copper linac could destroy the accumulated 99 Tc and 129 I at the DOE's Hanford site within 30 years. A high-efficiency 1200-MeV, 140-mA niobium superconducting linac could drive an energy-producing system generating 1-GWe electric power. Preliminary design concepts for these different high-power linacs are discussed, along with the principal technical issues and the status of the technology base. 9 refs., 5 figs., 4 tabs

  7. Technology readiness of partitioning and transmutation toward closed fuel cycle in Japan

    International Nuclear Information System (INIS)

    Ikeda, Kazumi; Kurata, Masaki; Morita, Yasuji; Tsujimoto, Kazufumi; Minato, Kazuo; Koyama, Shin-ichi

    2011-01-01

    This paper treats technology readiness level (TRL) assessment of Partitioning and Transmutation (P-T) toward closed fuel cycle in JAPAN. The purpose is providing clarified information related to the current maturity of the partitioning and transmutation technologies by applying the methodology of TRL, parallel to attempting to establish common indications among relating technology area. The methodology should be one of useful communication tools between specialists and management level, and also among countries interested in the P-T technologies. The generic TRL in this study is based on the GNEP (Global Nuclear Energy Partnership)'s definition: TRL 3 shows the status that critical function is proved and elemental technologies are identified, TRL 4 represents that relating technologies are validated at bench scale in laboratory environment, and TRL 5 achieves the completion of development related to the subsystem and elemental technologies. Detailed indications are established through discussion of the relating specialists. Reviewed technological area includes P-T and minor actinide (MA) cycle: Fast Breeder Reactor (FBR) and Accelerator driven system (ADS) for MA transmutation, partitioning processes, and MA-bearing fuels. The assessments reveal that TRL spreads around TRL 3 to TRL 4 because each system requires more the development of elemental technologies. Transmutation core of FBR is assessed to be TRL 4 in that MA bearing integral test is required additionally, and ADS becomes TRL 3 because the elemental technologies were identified and the requirements were specified. Consequently, the common key issue is how the nuclear calculation methodology will be validated for MA-bearing-fuelled core, since several percentages of MA changes the void reactivity and the Doppler Effect significantly, which are inherently important in reactor safety. It should be that critical experiments with several kg of americium or more are difficult in the existing experimental

  8. A repository released-dose model for the evaluation of long-lived fission product transmutation effectiveness

    International Nuclear Information System (INIS)

    Davidson, J.W.

    1995-01-01

    A methodology has been developed to quantify the total integrated dose due to a radionuclide species i emplaced in a geologic repository; the focus is on the seven long-lived fission products (LLFPs). The methodology assumes continuous exposure water contaminated with species i at the accessible environment (i.e., just beyond the geologic barrier afforded by the geologic repository). The dose integration is performed out to a reference post-release time. The integrated dose is a function of the total initial inventory of radionuclide i the repository, the time at which complete and instantaneous failure of the engineered barrier (e.g., waste canister) in, a geologic repository occurs, the fractional dissolution rate (from waste solid form) of radionuclide i in ground water, the ground water travel time to the accessible environment, the retardation factor (sorption on the geologic media) for radionuclide i, the time after radionuclide begins to enter the biosphere. In order to assess relative dose, the ratio of total integrated dose to that for a reference LLFP species j (e.g., 99 Tc) was defined. This ratio is a measure of the relative benefit of transmutation of other LLFPs compared to 99 Tc. This methodology was further developed in order to quantify the integrated dose reduction per neutron utilized for LLFP transmutation in accelerator-driven transmutation technologies (ADTT). This measure of effectiveness is a function of the integrated dose due to LLFP species i, the number of total captures in LLFP species i chain per LLFP nuclide fed to the chain at equilibrium, and the number of total captures in related transmutation product (TP) chains per capture in the LLFP species i chain. To assess relative transmutation effectiveness, the ratio of integrated dose reduction per neutron utilization to that for a reference LLFP species j (e.g., 99 Tc) was defined. This relative measure of effectiveness was evaluated LLFP transmutation strategy

  9. Development of advanced technological systems for accelerator transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Batskikh, G.I.; Bondarev, B.I.; Durkin, A.P. [Russian Academy of Sciences, Moscow (Russian Federation)] [and others

    1995-10-01

    A development concept of the accelerator nuclear energy reactors is considered for energy generation and nuclear power plant waste conversion into short-lived nuclides along with the requirements imposed on the technological systems necessary for implementation of such projects. The state of art in the field is discussed.

  10. Accelerator driven transmutation technologies conference wrap-up

    Energy Technology Data Exchange (ETDEWEB)

    Favale, A.J. [Grumman Aerospace Corporation, Las Vegas, NV (United States)

    1995-10-01

    This presentation is the viewgraphs used by the author to summarize the highlights of the presentations made at the conference. No article was available for this presentation. The author highlights what he felt were the major highlights of this conference. He looks at the conference in terms of five major areas which he encompases in terms of general questions: why are they needed?; what technologies are involved?; what countries have shown interest?; what are the issues?; and what are the underlying drivers?

  11. Design of rf-cavities in the funnel of accelerators for transmutation technologies

    International Nuclear Information System (INIS)

    Krawczyk, F.L.; Bultman, N.K.; Chan, K.D.C.; Martineau, R.L.; Nath, S.; Young, L.M.

    1994-01-01

    Funnels are a key component of accelerator structures proposed for transmutation technologies. In addition to conventional accelerator elements, specialized rf-cavities are needed for these structures. Simulations were done to obtain their electromagnetic field distribution and to minimize the rf-induced heat loads. Using these results a structural and thermal analysis of these cavities was performed to insure their reliability at high average power and to determine their cooling requirements. For one cavity the thermal expansion data in return was used to estimate the thermal detuning

  12. Development of fluoride reprocessing technology for molten salt transmutation reactor systems in the Czech Republic

    International Nuclear Information System (INIS)

    Uhlir, J.; Hosnedl, P.; Matal, O.

    2000-01-01

    At present, the transmutation of spent nuclear fuel is considered a prospective alternative conception with respect to the current conception based on the non-reprocessed spent fuel disposal into a deep geological repository. The Czech research and development programme in the area of partitioning is directed primarily on the development of the fuel cycle technology for the accelerator - driven subcritical reactor with a liquid fuel based on fluoride melts. The final objective of the research programme is the development of pyrochemical technologies suitable for a continuous or semi-continuous separation process which would allow practically perfect utilization of the transmutation potentialities of the reactor system. The present research is directed particularly on the development of suitable fluoride separation methods the target of which is the removal of the uranium component from spent nuclear fuel and on the research of the electro-separation procedures and further on the development of appropriate construction materials and equipment for the technology of fluoride salt melts. (authors)

  13. Development of long-lived radionuclide transmutation technology - Development of a code system for core analysis of the transmutation reactors

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Nam Zin; Kim, Yong Hee; Kim, Tae Hyung; Jo, Chang Keun; Park, Chang Je [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1996-07-01

    The objective of this study is to develop a code system for core analysis= of the critical transmutation reactors utilizing fast neutrons. Core characteristics of the transmutation reactors were identified and four codes, HANCELL for pincell calculation, PRISM and AFEN-H3D for core calculation, and MA{sub B}URN for depletion calculation, were developed. The pincell calculation code is based on one-dimensional collision probability method and may provide homogenized/condensed parameters of a pincell and also can homogenize the control assembly via a nonlinear iterative method. The core calculation codes, PRISM and AFEN-H3D, solve the multi-group, multi-dimensional neutron diffusion equations for a hexagonal geometry and they are based on the finite difference method and analytic function expansion nodal (AFEN) method, respectively. The MA{sub B}URN code san analyze the behavior of actinides and fission products in a reactor core. Through benchmarking, we confirmed that the newly developed codes provide accurate solutions. 30 refs., 10 tabs., 8 figs. (author)

  14. Advanced Reactor Technology Options for Utilization and Transmutation of Actinides in Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    2009-09-01

    Renewed interest in the potential of nuclear energy to contribute to a sustainable worldwide energy mix is strengthening the IAEA's statutory role in fostering the peaceful uses of nuclear energy, in particular the need for effective exchanges of information and collaborative research and technology development among Member States on advanced nuclear power technologies (Articles III-A.1 and III-A.3). The major challenges facing the long term development of nuclear energy as a part of the world's energy mix are improvement of the economic competitiveness, meeting increasingly stringent safety requirements, adhering to the criteria of sustainable development, and public acceptability. The concern linked to the long life of many of the radioisotopes generated from fission has led to increased R and D efforts to develop a technology aimed at reducing the amount of long lived radioactive waste through transmutation in fission reactors or accelerator driven hybrids. In recent years, in various countries and at an international level, more and more studies have been carried out on advanced and innovative waste management strategies (i.e. actinide separation and elimination). Within the framework of the Project on Technology Advances in Fast Reactors and Accelerator Driven Systems (http://www.iaea.org/inisnkm/nkm/aws/fnss/index.html), the IAEA initiated a number of activities on utilization of plutonium and transmutation of long lived radioactive waste, accelerator driven systems, thorium fuel options, innovative nuclear reactors and fuel cycles, non-conventional nuclear energy systems, and fusion/fission hybrids. These activities are implemented under the guidance and with the support of the IAEA Nuclear Energy Department's Technical Working Group on Fast Reactors (TWG-FR). This publication compiles the analyses and findings of the Coordinated Research Project (CRP) on Studies of Advanced Reactor Technology Options for Effective Incineration of Radioactive Waste (2002

  15. Neutron data for accelerator-driven transmutation technologies. Annual Report 2004/2005

    International Nuclear Information System (INIS)

    Blomgren, J.; Nilsson, L.; Mermod, P.; Olsson, N.; Pomp, S.; Oehrn, A.; Oesterlund, M.

    2005-09-01

    The project NATT, Neutron data for Accelerator-driven Transmutation Technology, is performed within the nuclear reactions group of the Dept. of Neutron Research, Uppsala univ. The activities of the group are directed towards experimental studies of nuclear reaction probabilities of importance for various applications, like transmutation of nuclear waste, biomedical effects and electronics reliability. The experimental work is primarily undertaken at the The Svedberg Laboratory (TSL) in Uppsala, where the group has previously developed two world-unique instruments, MEDLEY and SCANDAL. Highlights from the past year: An article on three-body force effects has been on the top-ten downloading list of Physics Letters B. Uppsala had the largest foreign delegation at the International Conference on Nuclear Data for Science and Technology in Santa Fe, NM, USA, and presented the largest number of papers of all experimental groups. A neutron flux monitor for the new FOI neutron beam facility has been developed, commissioned and taken into regular operation. Within the project, one licentiate exam has been awarded. The new neutron beam facility at TSL has been taken into commercial operation and is now having the largest commercial turnover of all European facilities in the field

  16. Neutron data for accelerator-driven transmutation technologies. Annual Report 2003/2004

    International Nuclear Information System (INIS)

    Blomgren, J.; Hildebrand, A.; Nilsson, L.; Mermod, P.; Olsson, N.; Pomp, S.; Oesterlund, M.

    2004-08-01

    The project NATT, Neutron data for Accelerator-driven Transmutation Technology, is performed within the nuclear reactions group of the Dept. of Neutron Research, Uppsala univ. The activities of the group are directed towards experimental studies of nuclear reaction probabilities of importance for various applications, like transmutation of nuclear waste, biomedical effects and electronics reliability. The experimental work is primarily undertaken at the The Svedberg Laboratory (TSL) in Uppsala, where the group has previously developed two world-unique instruments, MEDLEY and SCANDAL. Highlights from the past year: Analysis and documentation has been finalized of previously performed measurements of elastic neutron scattering from hydrogen at 96 MeV. The results corroborate the normalization of previously obtained data at TSL, which have been under debate. This is of importance since this reaction serves as reference for many other measurements. Compelling evidence of the existence of three-body forces in nuclei has been obtained. Within the project, one PhD exam and one licentiate exam has been awarded. One PhD exam and one licentiate exam has been awarded for work closely related to the project. A new neutron beam facility with significantly improved performance has been built and commissioned at TSL

  17. Neutron data for accelerator-driven transmutation technologies. Annual Report 2003/2004

    Energy Technology Data Exchange (ETDEWEB)

    Blomgren, J.; Hildebrand, A.; Nilsson, L.; Mermod, P.; Olsson, N.; Pomp, S.; Oesterlund, M. [Uppsala Univ. (Sweden). Dept. for Neutron Research

    2004-08-01

    The project NATT, Neutron data for Accelerator-driven Transmutation Technology, is performed within the nuclear reactions group of the Dept. of Neutron Research, Uppsala univ. The activities of the group are directed towards experimental studies of nuclear reaction probabilities of importance for various applications, like transmutation of nuclear waste, biomedical effects and electronics reliability. The experimental work is primarily undertaken at the The Svedberg Laboratory (TSL) in Uppsala, where the group has previously developed two world-unique instruments, MEDLEY and SCANDAL. Highlights from the past year: Analysis and documentation has been finalized of previously performed measurements of elastic neutron scattering from hydrogen at 96 MeV. The results corroborate the normalization of previously obtained data at TSL, which have been under debate. This is of importance since this reaction serves as reference for many other measurements. Compelling evidence of the existence of three-body forces in nuclei has been obtained. Within the project, one PhD exam and one licentiate exam has been awarded. One PhD exam and one licentiate exam has been awarded for work closely related to the project. A new neutron beam facility with significantly improved performance has been built and commissioned at TSL.

  18. Pyrochemical separations technologies envisioned for the U.S. accelerator transmutation of waste system

    International Nuclear Information System (INIS)

    Laidler, J. J.

    2000-01-01

    A program has been initiated for the purpose of developing the chemical separations technologies necessary to support a large Accelerator Transmutation of Waste (ATW) system capable of dealing with the projected inventory of spent fuel from the commercial nuclear power stations in the United States. The baseline process selected combines aqueous and pyrochemical processes to enable the efficient separation of uranium, technetium, iodine, and the transuranic elements from LWR spent fuel. The diversity of processing methods was chosen for both technical and economic factors. A six-year technology evaluation and development program is foreseen, by the end of which an informed decision can be made on proceeding with demonstration of the ATW system

  19. Partitioning-transmutation technology: a potential future nuclear waste management option

    International Nuclear Information System (INIS)

    Nakayama, S.; Morita, Y.; Nishihara, K.; Oigawa, H.

    2005-01-01

    Partitioning-transmutation technology (PT) will produce radioactive wastes of different physical and chemical properties and in different amounts from those generated in the current nuclear fuel cycle. To assess quantitatively the effects of PT on waste disposal, we first analyzed the amounts of the PT wastes, assumed conditioning for each type of the waste, and then made an attempt to estimate the repository area for disposal of the PT wastes. The properties of the hot Sr-Cs waste form are controlling factors in determining the size of the geologic repository. The disposal area could be reduced if the Sr-Cs fraction is disposed in a different subsurface repository or by long-term storage of the waste under institutional control. Disposal in a subsurface repository was found to comply with the Japanese law in terms of radioactivity constraint, through a performance assessment for disposal of the Sr-Cs fraction. (authors)

  20. Neutron data for accelerator-driven transmutation technologies. Annual Report 2002/2003

    Energy Technology Data Exchange (ETDEWEB)

    Blomgren, J.; Hildebrand, A.; Mermod, P.; Olsson, N.; Pomp, S.; Oesterlund, M. [Uppsala Univ. (Sweden). Dept. for Neutron Research

    2003-08-01

    The project NATT, Neutron data for Accelerator-driven Transmutation Technology, is performed within the nuclear reactions group of the Department for neutron research, Uppsala university. The activities of the group is directed towards experimental studies of nuclear reaction probabilities of importance for various applications, like transmutation of nuclear waste, biomedical effects and electronics reliability. The experimental work is primarily undertaken at the The Svedberg Laboratory (TSL) in Uppsala, where the group has previously developed two world-unique instruments, MEDLEY and SCANDAL. Highlights from the past year: Analysis and documentation has been finalized of previously performed measurements of elastic neutron scattering from carbon and lead at 96 MeV. The precision in the results surpasses all previous data by at least an order of magnitude. These measurements represent the highest energy in neutron scattering where the ground state has been resolved. The results show that all previous theory work has underestimated the probability for neutron scattering at the present energy by 0-30 %. A new method for measurements of absolute probabilities for neutron-induced nuclear reactions with experimental techniques only has been developed. Previously, only two such methods have been known. One student has reached his PhD exam. Two PhD students have been accepted. TSL has decided to build a new neutron beam facility with significantly improved performance for these, and similar, activities. A new instrument for measurements of inelastic neutron scattering has been built, tested and found to meet the specifications. This work has been performed in collaboration with two French research groups from Caen and Nantes. The instrument is intended to be used for a series of experiments during the coming years. Previous work by the group on nuclear data for assessment of electronics reliability has lead to a new industry standard in the USA.

  1. Neutron data for accelerator-driven transmutation technologies. Annual Report 2002/2003

    International Nuclear Information System (INIS)

    Blomgren, J.; Hildebrand, A.; Mermod, P.; Olsson, N.; Pomp, S.; Oesterlund, M.

    2003-08-01

    The project NATT, Neutron data for Accelerator-driven Transmutation Technology, is performed within the nuclear reactions group of the Department for neutron research, Uppsala university. The activities of the group is directed towards experimental studies of nuclear reaction probabilities of importance for various applications, like transmutation of nuclear waste, biomedical effects and electronics reliability. The experimental work is primarily undertaken at the The Svedberg Laboratory (TSL) in Uppsala, where the group has previously developed two world-unique instruments, MEDLEY and SCANDAL. Highlights from the past year: Analysis and documentation has been finalized of previously performed measurements of elastic neutron scattering from carbon and lead at 96 MeV. The precision in the results surpasses all previous data by at least an order of magnitude. These measurements represent the highest energy in neutron scattering where the ground state has been resolved. The results show that all previous theory work has underestimated the probability for neutron scattering at the present energy by 0-30 %. A new method for measurements of absolute probabilities for neutron-induced nuclear reactions with experimental techniques only has been developed. Previously, only two such methods have been known. One student has reached his PhD exam. Two PhD students have been accepted. TSL has decided to build a new neutron beam facility with significantly improved performance for these, and similar, activities. A new instrument for measurements of inelastic neutron scattering has been built, tested and found to meet the specifications. This work has been performed in collaboration with two French research groups from Caen and Nantes. The instrument is intended to be used for a series of experiments during the coming years. Previous work by the group on nuclear data for assessment of electronics reliability has lead to a new industry standard in the USA

  2. Nuclear transmutations

    International Nuclear Information System (INIS)

    Mikulaj, V.

    1992-01-01

    Two types of nuclear transmutations are outlined, namely the radioactive transmutations and nuclear reactions. The basic characteristics are given of radioactive transmutations (gamma transmutations and isomeric transitions, beta, alpha transmutations, spontaneous fission and spontaneous emission of nucleons), their kinetics and the influence of the physical and chemical state of the radionuclide on the transmutation rate. The basic characteristics are described of nuclear reactions (reactions of neutrons including fission, reactions induced by charged particles and photons), their kinetics, effective cross sections and their mechanism. Chemical reactions caused by nuclear transmutations are discussed (recoil energy, properties of hot atoms, Szilard-Chalmers effect). A brief information is given on the behavior of radionuclides in trace concentrations. (Z.S.) 2 tabs., 19 figs., 12 refs

  3. Transmutation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Viererbl, L., E-mail: vie@ujv.c [Research Centre Rez Ltd. (Czech Republic); Nuclear Research Institute Rez plc (Czech Republic); Lahodova, Z. [Research Centre Rez Ltd. (Czech Republic); Nuclear Research Institute Rez plc (Czech Republic); Klupak, V. [Nuclear Research Institute Rez plc (Czech Republic); Sus, F. [Research Centre Rez Ltd. (Czech Republic); Nuclear Research Institute Rez plc (Czech Republic); Kucera, J. [Research Centre Rez Ltd. (Czech Republic); Nuclear Physics Institute, Academy of Sciences of the Czech Republic (Czech Republic); Kus, P.; Marek, M. [Research Centre Rez Ltd. (Czech Republic); Nuclear Research Institute Rez plc (Czech Republic)

    2011-03-11

    We have designed a new type of detectors, called transmutation detectors, which can be used primarily for neutron fluence measurement. The transmutation detector method differs from the commonly used activation detector method in evaluation of detector response after irradiation. Instead of radionuclide activity measurement using radiometric methods, the concentration of stable non-gaseous nuclides generated by transmutation in the detector is measured using analytical methods like mass spectrometry. Prospective elements and nuclear reactions for transmutation detectors are listed and initial experimental results are given. The transmutation detector method could be used primarily for long-term measurement of neutron fluence in fission nuclear reactors, but in principle it could be used for any type of radiation that can cause transmutation of nuclides in detectors. This method could also be used for measurement in accelerators or fusion reactors.

  4. Transmutation detectors

    International Nuclear Information System (INIS)

    Viererbl, L.; Lahodova, Z.; Klupak, V.; Sus, F.; Kucera, J.; Kus, P.; Marek, M.

    2011-01-01

    We have designed a new type of detectors, called transmutation detectors, which can be used primarily for neutron fluence measurement. The transmutation detector method differs from the commonly used activation detector method in evaluation of detector response after irradiation. Instead of radionuclide activity measurement using radiometric methods, the concentration of stable non-gaseous nuclides generated by transmutation in the detector is measured using analytical methods like mass spectrometry. Prospective elements and nuclear reactions for transmutation detectors are listed and initial experimental results are given. The transmutation detector method could be used primarily for long-term measurement of neutron fluence in fission nuclear reactors, but in principle it could be used for any type of radiation that can cause transmutation of nuclides in detectors. This method could also be used for measurement in accelerators or fusion reactors.

  5. Neutron transmutation doping technology of silicon and overview of trial irradiations at Cirus reactor

    International Nuclear Information System (INIS)

    Singh, Tej; Bhatnagar, Anil; Singh, Kanchhi; Raina, V.K.

    2007-12-01

    Neutron transmutation doped silicon (NTD-Si) has been used extensively in manufacturing of high power semiconductor devices. The quality of NTD-Si, both from view points of dopant concentration and homogeneity has been found superior to the quality of doped silicon produced by conventional methods. The technology of NTD-Si has been perfected to achieve more accurate resistivity and homogenous resistivity with complete elimination of hot spots. In addition, the greater spatial uniformity, as well as the precise control over the resistivity achievable by using the NTD process, has led to a substantial increase in the breakdown voltage capability of thyristors. The report describes the fundamentals of NTD-Si production and discusses various techniques used for control of dopant concentration and homogeneity. Various aspects like radiation damage, residual radio-activity, nuclear heating, surface contamination and annealing requirements of the silicon ingots after irradiation have also been discussed. Details of trail irradiation and characterization of NTD-Si samples have been provided. Future plans for production of NTD-Si in Cirus and Dhruva reactors have also been discussed. (author)

  6. Sensitivity analysis of minor actinides transmutation to physical and technological parameters

    International Nuclear Information System (INIS)

    Kooyman, T.; Buiron, L.

    2015-01-01

    Minor actinides transmutation is one of the 3 main axis defined by the 2006 French law for management of nuclear waste, along with long-term storage and use of a deep geological repository. Transmutation options for critical systems can be divided in two different approaches: (a) homogeneous transmutation, in which minor actinides are mixed with the fuel. This exhibits the drawback of 'polluting' the entire fuel cycle with minor actinides and also has an important impact on core reactivity coefficients such as Doppler Effect or sodium void worth for fast reactors when the minor actinides fraction increases above 3 to 5% depending on the core; (b) heterogeneous transmutation, in which minor actinides are inserted into transmutation targets which can be located in the center or in the periphery of the core. This presents the advantage of decoupling the management of the minor actinides from the conventional fuel and not impacting the core reactivity coefficients. In both cases, the design and analyses of potential transmutation systems have been carried out in the frame of Gen IV fast reactor using a 'perturbation' approach in which nominal power reactor parameters are modified to accommodate the loading of minor actinides. However, when designing such a transmutation strategy, parameters from all steps of the fuel cycle must be taken into account, such as spent fuel heat load, gamma or neutron sources or fabrication feasibility. Considering a multi-recycling strategy of minor actinides, an analysis of relevant estimators necessary to fully analyze a transmutation strategy has been performed in this work and a sensitivity analysis of these estimators to a broad choice of reactors and fuel cycle parameters has been carried out. No threshold or percolation effects were observed. Saturation of transmutation rate with regards to several parameters has been observed, namely the minor actinides volume fraction and the irradiation time. Estimators of interest that have been

  7. Transmutation Capability of a Once-Through Molten-Salt and Other Transmuting Reactors

    International Nuclear Information System (INIS)

    Greenspan, E.; Lowenthal, M.; Barnes, D.; Kawasaki, D.; Kimball, D.; Matsumoto, H.; Sagara, H.; Vietez, E.R.

    2002-01-01

    A preliminary assessment is done of the transmutation characteristics of three reactor technologies: a multi-batch liquid metal (LM) cooled transmuter, a once-through molten-salt (MS) transmuter and a pebble bed (PB) transmuter. It was found that for the same fractional transmutation and same k eff drop with burnup (Δk effBU ), lead-bismuth offers smaller peak-to-average core power density, and it requires a smaller pumping power but a larger and heavier core than a sodium cooled transmuter. 99 Tc cannot effectively serve as a burnable absorber to reduce Δk effBU of LM transmuters. However, addition of thorium can greatly flatten k eff and almost double the fractional transmutation of the LWR spent fuel from ∼20% to ∼40%. If the 'once-through' MS transmuter is operated with continuous complete removal of fission products, it can achieve ∼85% fractional transmutation provided that the equilibrium concentration of actinides in the MS can reach 4 mole %. If the fission products are not actively removed, the fractional transmutation is reduced to ∼75%. The fractional transmutation of a PB transmuter can exceed 40%. More thorough analysis is required to better quantify the transmutation capability of the different transmuter technologies. (authors)

  8. Gamma ray beam transmutation

    International Nuclear Information System (INIS)

    Imasaki, K.; Li, D.; Miyamoto, S.; Amano, S.; Motizuki, T.

    2007-01-01

    We have proposed a new approach to nuclear transmutation by a gamma ray beam of Compton scattered laser photon. We obtained 20 MeV gamma ray in this way to obtain transmutation rates with the giant resonance of 1 97Au and 1 29Iodine. The rate of the transmutation agreed with the theoretical calculation. Experiments on energy spectrum of positron, electron and neutron from targets were performed for the energy balance and design of the system scheme. The reaction rate was about 1.5∼4% for appropriate photon energies and neutron production rate was up to 4% in the measurements. We had stored laser photon more than 5000 times in a small cavity which implied for a significant improvement of system efficiency. Using these technologies, we have designed an actual transmutation system for 1 29Iodine which has a 16 million year's activity. In my presentation, I will address the properties of this scheme, experiments results and transmutation system for iodine transmutation

  9. Transmutation technology development; thermal hydraulic power analysis and structure analysis of the HYPER target beam window

    Energy Technology Data Exchange (ETDEWEB)

    Choi, J. H.; Ju, E. S.; Song, M. K.; Jeon, Y. Z. [Gyeongsang National University, Jinju (Korea)

    2002-03-01

    A thermal hydraulic power analysis, a structure analysis and optimization computation for some design factor for the design of spallation target suitable for HYPER with 1000 MW thermal power in this study was performed. Heat generation formula was used which was evaluated recently based on the LAHET code, mainly to find the maximum beam current under given computation conditions. Thermal hydraulic power of HYPER target system was calculated using FLUENT code, structure conducted by inputting the data into ANSYS. On the temp of beam windows and the pressure distribution calculated using FLUENT. Data transformation program was composed apply the data calculated using FLUENT being commercial CFD code and ANSYS being FEM code for CFX structure analysis. A basic study was conducted on various singular target to obtain fundamental data on the shape for optimum target design. A thermal hydraulic power analysis and structure analysis were conducted on the shapes of parabolic, uniform, scanning beams to choose the optimum shape of beam current analysis was done according to some turbulent model to simulate the real flow. To evaluate the reliability of numerical analysis result, benchmarking of FLUENT code reformed at SNU and Korea Advanced Institute of Science and Technology and it was compared to CFX in the possession of Korea Atomic Energy Research Institute and evaluated. Reliable deviation was observed in the results calculated using FLUENT code, but temperature deviation of about 200 .deg. C was observed in the result from CFX analysis at optimum design condition. Several benchmarking were performed on the basis of numerical analysis concerning conventional HYPER. It was possible to allow a beam arrests of 17.3 mA in the case of the {phi} 350 mm parabolic beam suggested to the optimum in nuclear transmutation when stress equivalent to VON-MISES was calculated to be 140 MPa. 29 refs., 109 figs. (Author)

  10. Detailed study of transmutation scenarios involving present day reactor technologies; Etude detaillee des scenarios de transmutation faisant appel aux technologies actuelles pour les reacteurs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This document makes a detailed technical evaluation of three families of separation-transmutation scenarios for the management of radioactive wastes. These scenarios are based on 2 parks of reactors which recycle plutonium and minor actinides in an homogeneous way. A first scenario considers the multi-recycling of Pu and Np and the mono-recycling of Am and Cm using both PWRs and FBRs. A second scenario is based on PWRs only, while a third one considers FBRs only. The mixed PWR+FBR scenario requires innovative options and gathers more technical difficulties due to the americium and curium management in a minimum flux of materials. A particular attention has been given to the different steps of the fuel cycle (fuels and targets fabrication, burnup, spent fuel processing, targets management). The feasibility of scenarios of homogeneous actinides recycling in PWRs-only and in FBRs-only has been evaluated according to the results of the first scenario: fluxes of materials, spent fuel reprocessing by advanced separation, impact of the presence of actinides on PWRs and FBRs operation. The efficiency of the different scenarios on the abatement of wastes radio-toxicity is presented in conclusion. (J.S.)

  11. ADTTA '99 - 3rd international conference on accelerator driven transmutation techniques and applications

    International Nuclear Information System (INIS)

    1999-01-01

    The conference dealt with the following topics: (A) Strategy for the back-end of the fuel cycle; (B) National and laboratory research and development programmes and existing collaborations. (C) Activities on collection and improvements of basic nuclear data. (D) Technical aspects of the accelerator part. (E) ADTT targets. (F) Technical aspects of the subcritical reactor part. (G) Reprocessing of fuel based on traditional and advanced technology. (H) Structural materials, developments and testing. (I) Safety aspects of ADTT. (J) Non-proliferation and political aspects. (K) Economic aspects of the closed fuel cycle. (L) Public relations. From among the contributions presented, 128 have been input to INIS. (P.A.)

  12. Development of long-lived radionuclide transmutation technology -Development of long-lived radionuclide handling technology-

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Hoh; Jung, Won Myung; Lee, Kyoo Il; Woo, Moon Sik; Cho, Kyung Tae [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    The final goals of this research are completion of design for construction of wet hot cell and auxiliary facilities, and development of main equipments and technologies for remote operation and near real time monitoring system of radioactivity of solution. This wet hot cell and technology will be used for active test of the radionuclide partitioning process and for fission Mo separation and purification process. And high level radioactive and toxic materials will be treated as the form of solution in this wet hot cell. In this R. and D., the important objectives are (1)to provide safe operation, and (2)to keep radiation exposure to staff as low as practicable, (3)to protect the environment. 34 figs, 22 tabs, 44 refs. (Author).

  13. Proceedings of the first topical meeting on Asian network for accelerator-driven systems and nuclear transmutation technology

    International Nuclear Information System (INIS)

    Sasa, Toshinobu

    2016-03-01

    The first topical meeting on Asian Network for Accelerator-driven System (ADS) and Nuclear Transmutation Technology (NTT) was held on 26-27 October 2015 at the J-PARC Center, Japan Atomic Energy Agency, Japan. The topical meeting was an optional one in-between the regular meeting, which is held in every two years. Instead of the regular meetings, which cover all research fields for ADS and NTT, such as accelerator, spallation target, subcritical reactor, fuel, and material, the topical meeting is focused on a specific topic to make technical discussions more deeply. In this meeting, the technology for lead-bismuth eutectic alloy was selected, as it was one of the hot issues in the world, and the topic was deeply discussed by specialists in Asian countries. This report summarizes all presentation materials discussed in the meeting. (author)

  14. Preparation of a technology development roadmap for the Accelerator Transmutation of Waste (ATW) System : report of the ATW separations technologies and waste forms technical working group

    International Nuclear Information System (INIS)

    Collins, E.; Duguid, J.; Henry, R.; Karell, E.J.; Laidler, J.J.; McDeavitt, S.M.; Thompson, M.; Toth, L.M.; Williamson, M.; Willit, J.L.

    1999-01-01

    In response to a Congressional mandate to prepare a roadmap for the development of Accelerator Transmutation of Waste (ATW) technology, a Technical Working Group comprised of members from various DOE laboratories was convened in March 1999 for the purpose of preparing that part of the technology development roadmap dealing with the separation of certain radionuclides for transmutation and the disposal of residual radioactive wastes from these partitioning operations. The Technical Working Group for ATW Separations Technologies and Waste Forms completed its work in June 1999, having carefully considered the technology options available. A baseline process flowsheet and backup process were identified for initial emphasis in a future research, development and demonstration program. The baseline process combines aqueous and pyrochemical processes to permit the efficient separation of the uranium, technetium, iodine and transuranic elements from the light water reactor (LWR) fuel in the head-end step. The backup process is an all- pyrochemical system. In conjunction with the aqueous process, the baseline flowsheet includes a pyrochemical process to prepare the transuranic material for fabrication of the ATW fuel assemblies. For the internal ATW fuel cycle the baseline process specifies another pyrochemical process to extract the transuranic elements, Tc and 1 from the ATW fuel. Fission products not separated for transmutation and trace amounts of actinide elements would be directed to two high-level waste forms, one a zirconium-based alloy and the other a glass/sodalite composite. Baseline cost and schedule estimates are provided for a RD and D program that would provide a full-scale demonstration of the complete separations and waste production flowsheet within 20 years

  15. Preparation of a technology development roadmap for the Accelerator Transmutation of Waste (ATW) System : report of the ATW separations technologies and waste forms technical working group.

    Energy Technology Data Exchange (ETDEWEB)

    Collins, E.; Duguid, J.; Henry, R.; Karell, E.; Laidler, J.; McDeavitt, S.; Thompson, M.; Toth, M.; Williamson, M.; Willit, J.

    1999-08-12

    In response to a Congressional mandate to prepare a roadmap for the development of Accelerator Transmutation of Waste (ATW) technology, a Technical Working Group comprised of members from various DOE laboratories was convened in March 1999 for the purpose of preparing that part of the technology development roadmap dealing with the separation of certain radionuclides for transmutation and the disposal of residual radioactive wastes from these partitioning operations. The Technical Working Group for ATW Separations Technologies and Waste Forms completed its work in June 1999, having carefully considered the technology options available. A baseline process flowsheet and backup process were identified for initial emphasis in a future research, development and demonstration program. The baseline process combines aqueous and pyrochemical processes to permit the efficient separation of the uranium, technetium, iodine and transuranic elements from the light water reactor (LWR) fuel in the head-end step. The backup process is an all- pyrochemical system. In conjunction with the aqueous process, the baseline flowsheet includes a pyrochemical process to prepare the transuranic material for fabrication of the ATW fuel assemblies. For the internal ATW fuel cycle the baseline process specifies another pyrochemical process to extract the transuranic elements, Tc and 1 from the ATW fuel. Fission products not separated for transmutation and trace amounts of actinide elements would be directed to two high-level waste forms, one a zirconium-based alloy and the other a glass/sodalite composite. Baseline cost and schedule estimates are provided for a RD&D program that would provide a full-scale demonstration of the complete separations and waste production flowsheet within 20 years.

  16. Current status on research and development of accelerator-driven system and nuclear transmutation technology in Asian countries

    International Nuclear Information System (INIS)

    Pyeon, Cheol Ho

    2013-01-01

    This status report describes the current status on research and development (R and D) of accelerator-driven system (ADS) and nuclear transmutation techniques (NTT), including nuclear data, accelerator techniques, Pb-Bi target, fuel technologies and reactor physics, in East Asian countries: Japan, Korea and China. The report also includes all presentation materials presented in 'the 10th International Workshop on Asian Network for ADS and NTT (ADS+NTT 2012)' held at the Kyoto University Research Reactor Institute, Osaka, Japan on 6th and 7th December, 2012. The objective of this workshop is to make actual progress of ADS R and D especially in East Asian countries, as well as in European countries, through sharing mutual interests and conducting the information exchange each other. The 5 of 27 papers presented at the entitled report and meeting are indexed individually. (J.P.N.)

  17. Vortex transmutation.

    Science.gov (United States)

    Ferrando, Albert; Zacarés, Mario; García-March, Miguel-Angel; Monsoriu, Juan A; de Córdoba, Pedro Fernández

    2005-09-16

    Using group theory arguments and numerical simulations, we demonstrate the possibility of changing the vorticity or topological charge of an individual vortex by means of the action of a system possessing a discrete rotational symmetry of finite order. We establish on theoretical grounds a "transmutation pass" determining the conditions for this phenomenon to occur and numerically analyze it in the context of two-dimensional optical lattices. An analogous approach is applicable to the problems of Bose-Einstein condensates in periodic potentials.

  18. Nuclear waste transmutation

    International Nuclear Information System (INIS)

    Salvatores, M.; Girard, C.; Delpech, M.; Slessarev, I.; Tommasi, J.

    1994-01-01

    Waste management strategies foresee the use of a deep geological repository either for final disposal of irradiated fuel or, after reprocessing and reuse of U and Pu for final disposal of long-lived radio-active materials. In the second case, partitioning and transmutation of these materials can be considered to reduce the impact of radiation on man due to the storage. On the basis of the SPIN programme developed by CEA in this field, the main features of transmutation is presented. The goal to achieve and the criteria to use are quite difficult to establish. The rights para-meters to characterize the risk are the potential radiotoxicity in the the repository and the residual radiotoxicity at the outlet. Transmutation studies in CEA used the potential radiotoxicity which is based on well-known parameters and less precise hazardous factors. The second point to appreciate the trans- mutation interest is to dispose of a criteria for the radio-radiotoxicity reduction. As there is no general agreement, we try to have a toxicity as low as possible within reasonable technical limits. To reduce the long term radio- toxicity, Pu, minor actinides and some long-lived fission products have to be transmuted. To assess the feasibility of such trans-mutation in reactors or advanced systems, one has to consider constraints on neutronic balance, safety, fuel cycle, technology , economy. Taking in account the main conclusions of this analysis, parametric studies of homogeneous and heterogenous transmutation permit a choice of promising solutions. Goals are to use every long-lived element with a minimized production of other long- lived elements in order to obtain an appreciable radiotoxicity reduction. It implies multi recycling of Pu which favours fast neutron reactors and different strategies of multi recycling for Np, Am, Cm. Multi recycling makes the results strongly dependant of losses. Researches to obtain the high partitioning efficiency needed are in progress. Calculations

  19. Vortex Transmutation

    International Nuclear Information System (INIS)

    Ferrando, Albert; Garcia-March, Miguel-Angel; Zacares, Mario; Monsoriu, Juan A.; Cordoba, Pedro Fernandez de

    2005-01-01

    Using group theory arguments and numerical simulations, we demonstrate the possibility of changing the vorticity or topological charge of an individual vortex by means of the action of a system possessing a discrete rotational symmetry of finite order. We establish on theoretical grounds a 'transmutation pass rule' determining the conditions for this phenomenon to occur and numerically analyze it in the context of two-dimensional optical lattices. An analogous approach is applicable to the problems of Bose-Einstein condensates in periodic potentials

  20. Research and Development of Technologies for Partitioning and Transmutation of Long-lived Nuclides in Japan - Status and Evaluation

    International Nuclear Information System (INIS)

    Sanae Aoki

    2003-01-01

    Japanese basic policy regarding disposal of high-level radioactive waste (HLW) is to solidify it into stabilized form, to store it for 30-50 years to be cooled, and to dispose of it deep to the underground (geological disposal). In Japan, reference to P and T technology for long-lived and other nuclides first appeared in the Long-term Programme for Nuclear Research, Development and Utilisation (or 'long-term nuclear programme') back in 1972. That programme noted the need for research and development in order to ensure effective processing of radioactive waste. The long-term nuclear programme issued in 1987 stated that P and T technology was very important from the viewpoint of recycling HLW and enhancing disposal efficiency. It also stated that systematic R and D would be carried out jointly by JAERI, the Power Reactor and Nuclear Fuel Development Corp. (PNC, now JNC) and others. The long-term nuclear programme issued in 1994 stated that each research institute would carry out basic studies on P and T technologies and evaluate each technology at some time in the mid- 1990's to determine how to proceed thereafter. Based on the evaluation schedule stated in this program, the AEC's Advisory Committee on Nuclear Fuel Cycle Back-end Policy investigated and considered matters concerning P and T technology for long-lived and other nuclides. In March 2000, the Committee issued a report entitled 'Research and Development of Technologies for Partitioning and Transmutation of Long-lived Nuclide Status and Evaluation Report'. A brief summary of this report is presented

  1. RED-IMPACT. Impact of partitioning, transmutation and waste reduction technologies on the final nuclear waste disposal. Synthesis report

    Energy Technology Data Exchange (ETDEWEB)

    Lensa, Werner von; Nabbi, Rahim; Rossbach, Matthias (eds.) [Forschungszentrum Juelich GmbH (Germany)

    2008-07-01

    The impact of partitioning and transmutation (P and T) and waste reduction technologies on the nuclear waste management and particularly on the final disposal has been analysed within the EU-funded RED-IMPACT project. Five representative scenarios, ranging from direct disposal of the spent fuel to fully closed cycles (including minor actinide (MA) recycling) with fast neutron reactors or accelerator-driven systems (ADS), were chosen in the project to cover a wide range of representative waste streams, fuel cycle facilities and process performances. High and intermediate level waste streams have been evaluated for all of these scenarios with the aim of analysing the impact on geological disposal in different host formations such as granite, clay and salt. For each scenario and waste stream, specific waste package forms have been proposed and their main characteristics identified. Both equilibrium and transition analyses have been applied to those scenarios. The performed assessments have addressed parameters such as the total radioactive and radiotoxic inventory, discharges during reprocessing, thermal power and radiation emission of the waste packages, corrosion of matrices, transport of radioisotopes through the engineered and geological barriers or the resulting doses from the repository. The major conclusions of include the fact, that deep geological repository to host the remaining high level waste (HLW) and possibly the long-lived intermediate level waste (ILW) is unavoidable whatever procedure is implemented to manage waste streams from different fuel cycle scenarios including P and T of long-lived transuranic actinides.

  2. Parametric survey for benefit of partitioning and transmutation technology in terms of high-level radioactive waste disposal

    International Nuclear Information System (INIS)

    Oigawa, Hiroyuki; Nishihara, Kenji; Morita, Yasuji; Yokoo, Takeshi; Ikeda, Takao; Takaki, Naoyuki

    2007-01-01

    Benefit of implementing Partitioning and Transmutation (P and T) technology was parametrically surveyed in terms of high-level radioactive waste (HLW) disposal by discussing possible reduction of the geological repository area. First, the amount and characteristics of HLWs caused from UO 2 and MOX spent fuels of light-water reactors (LWR) were evaluated for various reprocessing schemes and cooling periods. The emplacement area in the repository site required for the disposal of these HLWs was then estimated with considering the temperature constrain in the repository. The results showed that, by recycling minor actinides (MA), the emplacement area could be reduced by 17-29% in the case of UO 2 -LWR and by 63-85% in the case of MOX-LWR in comparison with the conventional PUREX reprocessing. This significant impact in MOX fuel was caused by the recycle of 241 Am which was a long-term heat source. Further 70-80% reduction of the emplacement area in comparison with the MA-recovery case could be expected by partitioning the fission products (FP) into several groups for both fuel types. To achieve this benefit of P and T, however, it is necessary to confirm the engineering feasibility of these unconventional disposal concepts. (author)

  3. RED-IMPACT. Impact of partitioning, transmutation and waste reduction technologies on the final nuclear waste disposal. Synthesis report

    International Nuclear Information System (INIS)

    Lensa, Werner von; Nabbi, Rahim; Rossbach, Matthias

    2008-01-01

    The impact of partitioning and transmutation (P and T) and waste reduction technologies on the nuclear waste management and particularly on the final disposal has been analysed within the EU-funded RED-IMPACT project. Five representative scenarios, ranging from direct disposal of the spent fuel to fully closed cycles (including minor actinide (MA) recycling) with fast neutron reactors or accelerator-driven systems (ADS), were chosen in the project to cover a wide range of representative waste streams, fuel cycle facilities and process performances. High and intermediate level waste streams have been evaluated for all of these scenarios with the aim of analysing the impact on geological disposal in different host formations such as granite, clay and salt. For each scenario and waste stream, specific waste package forms have been proposed and their main characteristics identified. Both equilibrium and transition analyses have been applied to those scenarios. The performed assessments have addressed parameters such as the total radioactive and radiotoxic inventory, discharges during reprocessing, thermal power and radiation emission of the waste packages, corrosion of matrices, transport of radioisotopes through the engineered and geological barriers or the resulting doses from the repository. The major conclusions of include the fact, that deep geological repository to host the remaining high level waste (HLW) and possibly the long-lived intermediate level waste (ILW) is unavoidable whatever procedure is implemented to manage waste streams from different fuel cycle scenarios including P and T of long-lived transuranic actinides

  4. Fabrication technology and characteristics of AmO2-MgO cercer materials for transmutation

    International Nuclear Information System (INIS)

    Croixmarie, Y.; Mocellin, A.; Warin, D.

    2000-01-01

    This paper deals with the fabrication technology and the physico-chemical properties of target materials prepared for the ECRIX experiment in the French PHENIX reactor. The ECRIX target materials consist of pellets made of a ceramic-ceramic type composite in which particles of americium oxide are microdispersed in an inert matrix of magnesium oxide

  5. Basis and objectives of the Los Alamos accelerator driven transmutation technology project

    International Nuclear Information System (INIS)

    Bowman, C.D.

    1997-01-01

    The paper describes a new accelerator-based nuclear technology developed at Los Alamos National Laboratory which offers total destruction of the weapons Plutonium inventory, a solution to the commercial nuclear waste problem which greatly reduces or eliminates the requirement for geologic waste storage, and a system which generates potentially unlimited energy from Thorium fuel while destroying its own waste and operating in a new regime of nuclear safety

  6. Comparative analysis of Pu spread resistance of chemico-technological (out of pile) complexes of electronuclear molten salt and heavy water blanket facilities for transmutation

    International Nuclear Information System (INIS)

    Volk, V.I.; Vakhrushin, A.Yu.; Gorbunov, V.F.; Kushnikov, V.V.

    1997-01-01

    Technological processes used for radiochemical reprocessing of molten salt and heavy water blankets of an electronuclear facility for Pu transmutation and Pu distribution in those processes are characterized. Below the major parameters are given that affect the resistance of the technological to Pu proliferation. Types of Pu migration: process losses, accident related losses, theft. Factors affecting migration are total inventory of Pu in a reprocessing complex, purity of Pu and its compounds, chemical condition of Pu, the feasibility of equipping technological processes with instruments of control. The comparative analysis carried out taking into account the above parameters established that the technological processes related to heavy water blanket reprocessing, specifically a homogeneous (solution) option, are much more resistant to Pu proliferation, including both Pu migration to the environment and the unsanctioned withdrawal of Pu from the technological process. 5 refs., 4 figs

  7. Developments of linacs for accelerator-driven transmutation technology in the USA. Revision

    International Nuclear Information System (INIS)

    Schriber, S.O.

    1997-03-01

    Interesting developments in linear accelerators have been attained over the past 45 years. The status of linear accelerators and future possibilities are described in context of demanding applications and technology maturity. Features of industrial or factory-type applications are high availability, economic operations, low investment cost and ease of running a facility. All features have been demonstrated in one manner or another at large operating facilities for the research community; within a different context that has been argued in the past to be not as demanding as for a factory installation. In addition, comments are made relative to intense beam power levels and choices that can be made for power levels below 10 MW, on the assumption that a cw beam is required

  8. Low-level RF control system issues for an ADTT accelerator

    International Nuclear Information System (INIS)

    Ziomek, C.D.; Regan, A.H.; Lynch, M.T.; Bowling, P.S.

    1994-01-01

    The RF control system for a charged-particle accelerator must maintain the correct amplitude and phase of RF field inside the accelerator cavity in the presence of perturbations, noises, and time varying system components. For an accelerator with heavy beam-loading, fluctuations in the beam current cause large perturbations to the RF field amplitude and phase that must be corrected by the RF control system. The ADTT applications require a high-current, heavily beam-loaded, continuous-wave (CW) accelerator. Additional concerns created by the CW operation include system start-up, beam interruption, and fault recovery. Also, the RF control system for an ADTT facility must include sophisticated automation to reduce the operator interaction and support. This paper describes an RF control system design that addresses these various issues by evaluation a combination of feedback and feed forward control techniques. Experience from the high-current Ground Test Accelerator (GTA) is drawn upon for this RF control system design. Comprehensive computer modeling with the Matrix x software has been used to predict the performance of this RF control system

  9. Impact of Transmutation Scenarios on Fuel Transportation

    International Nuclear Information System (INIS)

    Saturnin, A.; Duret, B.; Allou, A.; Jasserand, F.; Fillastre, E.; Giffard, F.X.; Chabert, C.; Caron-Charles, M.; Garzenne, C.; Laugier, F.

    2015-01-01

    Minor actinides transmutation scenarios have been studied in the frame of the French Sustainable Radioactive Waste Management Act of 28 June 2006. Transmutation scenarios supposed the introduction of a sodium-cooled fast reactor fleet using homogeneous or heterogeneous recycling modes for the minor actinides. Americium, neptunium and curium (MA) or americium alone (Am) can be transmuted together in a homogeneous way embedded in FR-MOX fuel or incorporated in MA or Am-Bearing radial Blankets (MABB or AmBB). MA transmutation in Accelerator Driven System has also been studied while plutonium is being recycled in SFR. Assessments and comparisons of these advanced cycles have been performed considering technical and economic criteria. Transportation needs for fresh and used transmutation fuels is one of these criteria. Transmutation fuels have specific characteristics in terms of thermal load and neutron emissions. Thermal, radiation and criticality constraints have been taken into account in this study to suggest cask concepts for routine conditions of transport, to estimate the number of assemblies to be transported in a cask and the number of annual transports. Comparison with the no transmutation option, i.e. management of uranium and plutonium in SFRs, is also presented. Regarding these matters, no high difficulties appear for assemblies with limited content of Am (homogeneous or heterogeneous recycling modes). When fuels contain curium, technical transport uncertainties increase because of the important heat release requiring dividing fresh fuels and technological innovations development (MABB and ADS). (authors)

  10. Developments of linacs for ADTT in the USA

    International Nuclear Information System (INIS)

    Schriber, S.O.

    1997-01-01

    Interesting developments in linear accelerators have been attained over the past 45 years. The status of linear accelerators and future possibilities will be described in context of demanding applications and technology maturity. Features of industrial or factory-type applications are high availability, economic operations, low investment cost and ease of running the facility. All have been demonstrated in one manner or another at large operating facilities for the research community within a different context that has been argued in the past to be not as demanding as for a factory installation. In addition, comments will be made relative to intense beam power levels and choices that can be made for power levels below 10 MW on the assumption that a cw beam is required

  11. Proceedings of 12th international workshop on Asian network for accelerator-driven system and nuclear transmutation technology (ADS+NTT 2014)

    International Nuclear Information System (INIS)

    Pyeon, Cheol Ho

    2015-01-01

    The proceedings describe the current status on research and development (R and D) of accelerator-driven system (ADS) and nuclear transmutation techniques (NTT), including nuclear data, accelerator techniques, Pb-Bi target, fuel technologies and reactor physics, in East Asian countries: China, Japan and Korea. The proceedings also include all presentation materials presented in 'the 12th International Workshop on Asian Network for ADS and NTT (ADS+NTT 2014)' held at the Institute of Nuclear Energy and Safety Technology, Chinese Academy of Sciences, Hefei, China on 15th and 16th December, 2014. The objective of this workshop is to make actual progress of ADS R and D especially in East Asian countries, as well as in European countries, through sharing mutual interests and conducting the information exchange each other. The report is composed of these following items: Presentation materials: ADS+NTT 2014. (author)

  12. TRANSMUTED EXPONENTIATED EXPONENTIAL DISTRIBUTION

    OpenAIRE

    MEROVCI, FATON

    2013-01-01

    In this article, we generalize the exponentiated exponential distribution using the quadratic rank transmutation map studied by Shaw etal. [6] to develop a transmuted exponentiated exponential distribution. Theproperties of this distribution are derived and the estimation of the model parameters is discussed. An application to real data set are finally presented forillustration

  13. Proceedings of 14th international workshop on Asian network for accelerator-driven system and nuclear transmutation technology (ADS-NTT 2016)

    International Nuclear Information System (INIS)

    Pyeon, Cheol Ho

    2016-09-01

    The proceedings describe the current status on research and development (R and D) of accelerator-driven system (ADS) and nuclear transmutation techniques (NTT), including nuclear data, accelerator techniques, Pb-Bi target, fuel technologies and reactor physics, in East Asian countries: China, Korea and Japan. The proceedings also include all presentation materials presented in 'the 14th International Workshop on Asian Network for ADS and NTT (ADS-NTT2016)' held at Mito, Japan on 5th September, 2016. The objective of this workshop is to make actual progress of ADS R and D especially in East Asian countries, as well as in European countries, through sharing mutual interests and conducting the information exchange each other. The report is composed of these following items: Presentation materials: ADS-NTT 2016. (author)

  14. Proceedings of 11th international workshop on Asian network for accelerator-driven system and nuclear transmutation technology (ADS+NTT 2013)

    International Nuclear Information System (INIS)

    Pyeon, Cheol Ho

    2014-01-01

    The proceedings describe the current status on research and development (R and D) of accelerator-driven system (ADS) and nuclear transmutation techniques (NTT), including nuclear data, accelerator techniques, Pb-Bi target, fuel technologies and reactor physics, in East Asian countries: Korea, China and Japan. The proceedings also include all presentation materials presented in 'the 11th International Workshop on Asian Network for ADS and NTT (ADS+NTT 2013)' held at the Seoul National University, Seoul, Korea on 12th and 13th December, 2013. The objective of this workshop is to make actual progress of ADS R and D especially in East Asian countries, as well as in European countries, through sharing mutual interests and conducting the information exchange each other. The report is composed of these following items: Presentation materials: ADS+NTT 2013. (author)

  15. Transmutation Scenarios Impacts on Advanced Nuclear Cycles. Fabrication, Reprocessing and Transportation

    International Nuclear Information System (INIS)

    Saturnin, A.; Sarrat, P.; Hancok, H.; Milot, J.-F.; Duret, B.; Jasserand, F.; Fillastre, E.; Giffard, F.-X.; Chabert, C.; Van Den Durpel, L.; Caron-Charles, M.; Lefevre, J.C.; Carlier, B.; Arslan, M.; Favet, D.; Garzenne, C.; Barbrault, P.

    2013-01-01

    Conclusions: First detailed assessment of plants and transportation in various transmutation scenarios. In case of curium transmutation: large difficulties and uncertainties requiring whole new technology development (more pronounced for ADS option). For Am transmutation: more feasible, still to be demonstrated on specific points for industrial extrapolation

  16. The Los Alamos accelerator-driven transmutation of nuclear waste (ATW) concept development of the ATW target/blanket system

    International Nuclear Information System (INIS)

    Venneri, F.; Williamson, M.A.; Ning, L.

    1997-01-01

    In the past several years, the Los Alamos ADTT program has conducted studies of an innovative technology for solving the nuclear waste problem and building a new generation of safer and non-proliferant nuclear power plants. The ATW concept destroys higher actinides, plutonium and selected fission products in a liquid-fuel subcritical assembly. In this paper special attention is given to the basic design of the ATW Molten Salt concept and the safety perspective. 40 refs., 11 figs

  17. Waste transmutation: perspectives

    International Nuclear Information System (INIS)

    Leray, S.

    1997-01-01

    After the introduction on the source and nature of nuclear waste, this lecture analyzes the different methods proposed to transmute long-lived isotopes into stable or short-lived isotopes. It is shown that direct methods (photonuclear reactions, spallation, muon catalyzed fusion) do not lead to a sufficient transmutation rate within a reasonable cost. Only the use of hybrid systems, fusion-fission or spallation-fission, can be foreseen. (author)

  18. HLW disposal by fission reactors; calculation of trans-mutation rate and recycle

    International Nuclear Information System (INIS)

    Mulyanto

    1997-01-01

    Transmutation of MA (Minor actinide) and LLFPS (long-lived fission products) into stable nuclide or short-lived isotopes by fission reactors seem to become an alternative technology for HLW disposal. in this study, transmutation rate and recycle calculation were developed in order to evaluate transmutation characteristics of MA and LLFPs in the fission reactors. inventory of MA and LLFPs in the transmutation reactors were determined by solving of criticality equation with 1-D cylindrical geometry of multigroup diffusion equations at the beginning of cycle (BOC). transmutation rate and burn-up was determined by solving of depletion equation. inventory of MA and LLFPs was calculated for 40 years recycle. From this study, it was concluded that characteristics of MA and LLFPs in the transmutation reactors can be evaluated by recycle calculation. by calculation of transmutation rate, performance of fission reactor for transmutation of MA or LLFPs can be discussed

  19. Transmutation potential of reactor WWER-440

    International Nuclear Information System (INIS)

    Darilek, P.; Sebian, V.; Necas, V.

    2001-01-01

    Theoretical evaluation of WWER-440 transmutation potential by HELIOS - code is presented. Transmutation method proposal comprising special transmutation pins, combined FA and simple reprocessing is described. Transmutation efficiency of the method is characterized (Authors)

  20. Neutron transmutation doping

    Energy Technology Data Exchange (ETDEWEB)

    Jun, Byung Jin

    2001-09-01

    HE OVERALL STATE OF THE ART RELATED WITH NEUTRON TRANSMUTATION DOPING(NCT) IS SURVEYED. ITEMS RELATED FOR THE REALIZATION OF NTD IN HANARO IS FOCUSED. IN ADDITION TO THE UNIFORM IRRADIATION AND ACHIEVING THE TARGET RESISTIVITY WHICH ARE THE MOST IMPORTANT TECHNICAL REQUIREMENTS FOR THE NTD, OTHER ITEMS SUCH AS THE FUNCTION AND ROLE OF NTD, MARKET TREND, QUALITY CONTROL ARE INCLUDED. MEANWHILE THE ONLY ADVANTAGE OF NTD IS ACHIEVING VERY HIGH UNIFORMITY OF DOPING, IT HAS SEVERAL DISADVANTAGES DUE TO THE USE OF NUCLEAR REACTOR. THEREFORE THE SEMICONDUCTOR INDUSTRY HAS CONTINUED DEVELOPMENT OF TECHNOLOGY TO REPLACE NTD, AND THE DEMAND OF NTD HAD BEEN DECREASED A LOT DURING 1990S. AS THE DEMAND FOR LARGE CRYSTAL INCREASES, HOWEVER, THE NTD DEMAND BEGAN TO INCREASE AGAIN FROM 2000. SINCE THE DEMAND FOR THE LARGER CRYSTAL WILL BE CONTINUED IN THE FUTURE, THE ROLE OF NTD WOULD BE NEEDED FOR THE LONGER TIME. IN ORDER TO MITIGATE THIS TREND OF DEMAND, THE REACTOR SHOULD BE CAPABLE OF ACCEPTING LARGE CRYSTAL AND THE EFFORT TO IMPROVE DOPING UNIFORMITY AND TO REDUCE THE COST SHOULD CONTINUED.

  1. Transmutation of nuclear waste in nuclear reactors

    International Nuclear Information System (INIS)

    Abrahams, K.; Kloosterman, J.L.; Pilate, S.; Wehmann, U.K.

    1996-03-01

    The objective of this joint study of ECN, Belgonucleaire, and Siemens is to investigate possibilities for transmutation of nuclear waste in regular nuclear reactors or in special transmutation devices. Studies of possibilities included the limits and technological development steps which would be needed. Burning plutonium in fast reactors, gas-cooled high-temperature reactors and light water reactors (LWR) have been considered. For minor actinides the transmutation rate mainly depends on the content of the minor actinides in the reactor and to a much less degree on the fact whether one uses a homogeneous system (with the actinides mixed into the fuel) or a heterogeneous system. If one wishes to stabilise the amount of actinides from the present LWRs, about 20% of all nuclear power would have to be generated in special burner reactors. It turned out that reactor transmutation of fission products would require considerable recycling efforts and that the time needed for a substantial transmutation would be rather long for the presently available levels of the neutron flux. If one would like to design burner systems which can serve more light water reactors, a large effort would be needed and other burners (possibly driven by accelerators) should be considered. (orig.)

  2. Transmutation blanket design for a Tokamak system

    International Nuclear Information System (INIS)

    Velasquez, Carlos E.; Barros, Graiciany de P.; Pereira, Claubia; Veloso, Maria A. Fortini; Costa, Antonella L.

    2011-01-01

    Sub-critical advanced reactor with a D-T fusion neutron source based on Tokamak technology is an innovative type of nuclear system. Due to the high quantity of neutrons produced by fusion reactions, it could be well spent in the transmutation process of the transuranic elements. Nevertheless, to achieve a successful transmutation, it is necessary to know the neutron fluence along the radial axis and its characteristics. In this work, it evaluated the neutron flux and interaction frequency along the radial axis changing the material of the first wall. W-alloy, beryllium and the combination of both were studied and regions more suitable to transmutation were determined. The results demonstrated that the better zone to place a transmutation blanket is limited by the heat sink and the shield block. Material arrangements W-alloy/W-alloy and W-alloy/Beryllium would be able to hold the requirements of high fluence and hardening spectrum needed to transuranic transmutation. The system was simulated using the MCNP5 code, the ITER Final Design Report, 2001, and the FENDL/MC-2.1 nuclear data library. (author)

  3. Status of nuclear transmutation study

    International Nuclear Information System (INIS)

    Takizuka, Takakazu

    1999-01-01

    JAERI is carrying out R and Ds on partitioning and transmutation under the OMEGA Program. The R and Ds include the design study of accelerator-driven transmutation systems and the development of transmutation experimental facilities. Accelerator-driven systems have received much interests due to their potential role as dedicated transmuters in the nuclear fuel cycle for minimizing long-lived waste. Principles of accelerator-driven system, its history, JAERI proposed system concepts, and the experimental program are overviewed. (author)

  4. Actinide partitioning-transmutation program final report. III. Transmutation studies

    International Nuclear Information System (INIS)

    Wachter, J.W.; Croff, A.G.

    1980-07-01

    Transmutation of the long-lived nuclides contained in fuel cycle wastes has been suggested as a means of reducing the long-term toxicity of the wastes. A comprehensive program to evaluate the feasibility and incentives for recovering the actinides from wastes (partitioning) and transmuting them to short-lived or stable nuclides has been in progress for 3 years under the direction of Oak Ridge National Laboratory (ORNL). This report constitutes the final assessment of transmutation in support of this program. Included are (1) a summary of recent transmutation literature, (2) a generic evaluation of actinide transmutation in thermal, fast, and other transmutation devices, (3) a preliminary evaluation of 99 Tc and 129 I transmutation, and (4) a characterization of a pressurized-water-reactor fuel cycle with and without provisions for actinide recovery and transmutation for use in other parts of the ORNL program. The principal conclusion of the report is that actinide transmutation is feasible in both thermal and fast reactors, subject to demonstrating satisfactory fuel performance, with relatively little impact on the reactor. It would also appear that additional transmutation studies are unwarranted until a firm decision to proceed with actinide transmutation has been made by the responsible authorities

  5. Transmutations for Strings

    Directory of Open Access Journals (Sweden)

    Amin Boumenir

    2008-07-01

    Full Text Available We investigate the existence and representation of transmutations, also known as transformation operators, for strings. Using measure theory and functional analytic methods we prove their existence and study their representation. We show that in general they are not close to unity since their representation does not involve a Volterra operator but rather the eigenvalue parameter. We also obtain conditions under which the transmutation is either a bounded or a compact operator. Explicit examples show that they cannot be reduced to Volterra type operators.  

  6. Actinide and Fission Product Partitioning and Transmutation

    International Nuclear Information System (INIS)

    2015-06-01

    The benefits of partitioning and transmutation (P and T) have now been established worldwide and, as a result, many countries are pursuing R and D programmes to advance the technologies associated with P and T. In this context, the OECD Nuclear Energy Agency (NEA) has organised a series of biennial information exchange meetings to provide experts with a forum to present and discuss state-of-the-art developments in the field of partitioning and transmutation since 1990. The OECD Nuclear Energy Agency Information Exchange Meeting on Actinides and Fission Products Partitioning and Transmutation is a forum for experts to present and discuss the state-of-the-art development in the field of P and T. Thirteen meetings have been organised so far and held in Japan, the United States, France, Belgium, Spain, the Republic of Korea and the Czech Republic. This 13. meeting was hosted by Seoul National University (Seoul, Republic of Korea) and was organised in co-operation with the International Atomic Energy Agency (IAEA) and the European Community (EC). The meeting covered strategic and scientific developments in the field of P and T such as: fuel cycle strategies and transition scenarios, the role of P and T in the potential evolution of nuclear energy as part of the future energy mix; radioactive waste management strategies; transmutation fuels and targets; advances in pyro and aqueous separation processes; P and T specific technology requirements (materials, spallation targets, coolants, etc.); transmutation systems: design, performance and safety; impact of P and T on the fuel cycle; fabrication, handling and transportation of transmutation fuels. A total of 103 presentations (39 oral and 64 posters) were discussed among the 110 participants from 19 countries and 2 international organisations. The meeting consisted of one plenary session where national and international programmes were presented followed by 5 technical sessions: - Fuel Cycle Strategies and Transition

  7. Partitioning and Transmutation: IAEA Activities

    International Nuclear Information System (INIS)

    Basak, U.; Monti, S.; )

    2015-01-01

    Full text of publication follows: The importance of partitioning and transmutation (P and T) processes for sustaining nuclear energy growth in the world has been realised in several countries across the world. P and T processes aim at separation and recycling of actinides including minor actinides (MAs) from the spent fuel or high-level liquid waste. The objective of these processes include reuse of separated fissile materials from spent nuclear fuels to obtain energy, enhance resource utilisation, reduce the disposal of toxic radio-nuclides and improve long-term performance of geological repositories. R and D programmes have been launched in many of the Member States to develop advanced partitioning process based on either aqueous or pyro to recover MAs along with other actinides as well as automated and remote techniques for manufacturing fuels containing MAs for the purpose of transmuting them either in fast reactors or accelerator driven hybrids. A number of Member States have been also developing such transmutation systems with the aim to construct and operate demo plants and prototypes in the next decade. The International Atomic Energy Agency has a high priority for the activities on partitioning and transmutation and regularly organises conferences, workshops, seminars and technical meetings in the areas of P and T as a part of information exchange and knowledge sharing at the international level. In the recent past, the Agency organised two technical meetings on advanced partitioning processes and actinide recycle technologies with the objective of providing a common platform for the scientists and engineers working in the areas of separation of actinides along with MAs from spent nuclear fuels and manufacturing of advanced fuels containing MAs in order to bridge the technological gap between them. In 2010, the Agency concluded a Coordinated Research Project (CRP) related to Assessment of Partitioning Processes. The Agency also conducted a first CRP on

  8. Enhancing TRU burning and Am transmutation in Advanced Recycling Reactor

    International Nuclear Information System (INIS)

    Ikeda, Kazumi; Kochendarfer, Richard A.; Moriwaki, Hiroyuki; Kunishima, Shigeru

    2011-01-01

    Research highlights: → This ARR is an oxide fueled sodium cooled reactor based on innovative technologies to destruct TRU. → TRU burning core is designed to burn TRU at 28 kg/TW th h, adding moderator pins of B 4 C (Enriched B-11). → Am transmutation core can transmute Am at 34 kg/TW th h, adding uranium free AmN blanket to TRU burning core. → The TRU burning core improves TRU burning by 40-50% than the previous core. → The Am transmutation core can transmute Am effectively, keeping the void reactivity acceptable. - Abstract: This paper presents about conceptual designs of Advanced Recycling Reactor (ARR) focusing on enhancement in transuranics (TRU) burning and americium (Am) transmutation. The design has been conducted in the context of the Global Nuclear Energy Partnership (GNEP) seeking to close nuclear fuel cycle in ways that reduce proliferation risks, reduce the nuclear waste in the US and further improve global energy security. This study strives to enhance the TRU burning and the Am transmutation, assuming the development of related technologies in this study, while the ARR based on mature technologies was designed in the previous study. It has followed that the provided TRU burning core is designed to burn TRU at 28 kg/TW th h, by adding moderator pins of B 4 C (Enriched B-11) and the Am transmutation core will be able to transmute Am at 34 kg/TW th h, by locating Am blanket of AmN around the TRU burning core. It indicates that these concepts improve TRU burning by 40-50% than the previous core and can transmute Am effectively, keeping the void reactivity acceptable.

  9. Accelerator for nuclear transmutation

    International Nuclear Information System (INIS)

    Schapira, J.P.

    1984-01-01

    A review on nuclear transmutation of radioactive wastes using particle accelerators is given. Technical feasibility, nuclear data, costs of various projects are discussed. It appears that one high energy accelerator (1500 MeV, 300 mA proton) could probably handle the amount of actinides generated by the actual French nuclear program [fr

  10. Status report on actinide and fission product transmutation studies

    International Nuclear Information System (INIS)

    1997-06-01

    The management of radioactive waste is one of the key issues in today's political and public discussions on nuclear energy. One of the fields that looks into the future possibilities of nuclear technology is the neutronic transmutation of actinides and of some most important fission products. Studies on transmutation of actinides are carried out in various countries and at an international level. This status report which gives an up-to-date general overview of current and planned research on transmutation of actinides and fission products in non-OECD countries, has been prepared by a Technical Committee meeting organized by the IAEA in September 1995. 168 refs, 16 figs, 34 tabs

  11. Partitioning and transmutation (P and T) 1997. Status report

    International Nuclear Information System (INIS)

    Enarsson, Aasa; Landgren, A.; Liljenzin, J.O.; Skaalberg, M.; Spjuth, L.; Gudowski, W.; Wallenius, J.

    1998-05-01

    Research on and the evaluation of partitioning and transmutation are currently in progress in many industrial countries due to its potential as a long-term, sustainable energy source with low environmental impact and due to its ability to destroy many long-lived nuclides. The cost of the research and development work on partitioning and transmutation is considered to be so great that international co-operation is required. With respect to Sweden, we recommend a balanced research work on both partitioning and transmutation technology. Within the area of partitioning, it is above all a question of locating new reagents which can be used to simplify the necessary partitioning processes and minimize the losses. The requirements with respect to high selectivity and minor losses will be significantly higher in a recirculating system based on transmutation than in the reprocessing facilities of today where only uranium and plutonium are recovered. If the utilized reagents can be easily destroyed, by dry or wet incineration and conversion into non-complex gaseous chemical compounds, this will open up good opportunities for the recovery of the radionuclides. From a purely technical standpoint, it would seem that a combination of different types of reactor systems would give the best possible transmutation efficiency. While existing light water reactors can be utilized for increased plutonium incineration, there is currently consensus about the view that reactors with high-energy neutrons are necessary to achieve a sufficiently high transmutation efficiency for neptunium, americium, curium and certain fission products. By allowing an accelerator-based neutron source to drive a subcritical heavy metal-cooled reactor, the potential for transmutation of fission products is increased, at the same time that satisfactory safety margins are achieved for certain fuel types with a low share of delayed neutrons and a high heat conductivity. Regardless of what types of systems are

  12. Partitioning and transmutation (P and T) 1997. Status report

    Energy Technology Data Exchange (ETDEWEB)

    Enarsson, Aasa; Landgren, A.; Liljenzin, J.O.; Skaalberg, M.; Spjuth, L. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Nuclear Chemistry; Gudowski, W.; Wallenius, J. [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Nuclear and Reactor Physics

    1998-05-01

    Research on and the evaluation of partitioning and transmutation are currently in progress in many industrial countries due to its potential as a long-term, sustainable energy source with low environmental impact and due to its ability to destroy many long-lived nuclides. The cost of the research and development work on partitioning and transmutation is considered to be so great that international co-operation is required. With respect to Sweden, we recommend a balanced research work on both partitioning and transmutation technology. Within the area of partitioning, it is above all a question of locating new reagents which can be used to simplify the necessary partitioning processes and minimize the losses. The requirements with respect to high selectivity and minor losses will be significantly higher in a recirculating system based on transmutation than in the reprocessing facilities of today where only uranium and plutonium are recovered. If the utilized reagents can be easily destroyed, by dry or wet incineration and conversion into non-complex gaseous chemical compounds, this will open up good opportunities for the recovery of the radionuclides. From a purely technical standpoint, it would seem that a combination of different types of reactor systems would give the best possible transmutation efficiency. While existing light water reactors can be utilized for increased plutonium incineration, there is currently consensus about the view that reactors with high-energy neutrons are necessary to achieve a sufficiently high transmutation efficiency for neptunium, americium, curium and certain fission products. By allowing an accelerator-based neutron source to drive a subcritical heavy metal-cooled reactor, the potential for transmutation of fission products is increased, at the same time that satisfactory safety margins are achieved for certain fuel types with a low share of delayed neutrons and a high heat conductivity. Regardless of what types of systems are

  13. R and D activities for partitioning and transmutation in Korea

    International Nuclear Information System (INIS)

    Jae-Hyung, Yoo; Won-Seok, Park

    2003-01-01

    According to the long-term plan of nuclear technology development, KAERI is conducting a research and development project of transmutation with the objective of key technology development in the areas of partitioning and transmutation system. The research and development activities for partitioning and transmutation of long-lived radionuclides are introduced in this work. The studies of partitioning are focused on the electrorefining and electrowinning, which are aimed at investigating the thermodynamic properties of electrodeposition behaviours as well as the separation efficiency. As for the transmutation system, the HYPER (HYbrid Power Extraction Reactor) combined by a proton accelerator and a sub-critical reactor is being studied in KAERI as a prominent candidate facility in the future. Some conceptual studies are being conducted to develop key elemental systems of the sub-critical reactor such as the core, TRU fuel, proton target, and the cooling system. The conceptual design of the HYPER system will be completed by 2006. (author)

  14. Efficiency Of Transuranium Nuclides Transmutation

    International Nuclear Information System (INIS)

    Kazansky, Yu.A.; Klinov, D.A.; Semenov, E.V.

    2002-01-01

    One of the ways to create a wasteless nuclear power is based on transmutation of spent fuel nuclides. In particular, it is considered that the radioactivity of the nuclear power wastes should be the same (or smaller), than radioactivity of the uranium and the thorium extracted from entrails of the Earth. The problem of fission fragments transmutation efficiency was considered in article, where, in particular, the concepts of transmutation factor and the ''generalised'' index of biological hazard of the radioactive nuclides were entered. The transmutation efficiency has appeared to be a function of time and, naturally, dependent on nuclear power activity scenario, from neutron flux, absorption cross-sections of the nuclides under transmutation and on the rate of their formation in reactors. In the present paper the efficiency of the transmutation of transuranium nuclides is considered

  15. Transmutations across hierarchical levels

    International Nuclear Information System (INIS)

    O'Neill, R.V.

    1977-01-01

    The development of large-scale ecological models depends implicitly on a concept known as hierarchy theory which views biological systems in a series of hierarchical levels (i.e., organism, population, trophic level, ecosystem). The theory states that an explanation of a biological phenomenon is provided when it is shown to be the consequence of the activities of the system's components, which are themselves systems in the next lower level of the hierarchy. Thus, the behavior of a population is explained by the behavior of the organisms in the population. The initial step in any modeling project is, therefore, to identify the system components and the interactions between them. A series of examples of transmutations in aquatic and terrestrial ecosystems are presented to show how and why changes occur. The types of changes are summarized and possible implications of transmutation for hierarchy theory, for the modeler, and for the ecological theoretician are discussed

  16. Transmutation in ASTRID

    International Nuclear Information System (INIS)

    Grouiller, Jean-Paul; Buiron, Laurent; Mignot, Gérard; Palhier, Raphael

    2013-01-01

    Summary and future prospects for incorporating Am in ASTRID: → Potential to demonstrate the minor actinide transmutation on an industrial scale in the CFV V1 core of ASTRID: • Homogeneous concept: 2% of Am in a standard fuel; • Heterogeneous concept: 10% on UO 2 in the radial blanket. • The objective of ensuring a balance in the Am (and total minor actinides) flow in the ASTRID fuel cycle may be obtained without any impact on the design of the core and handling systems for the management of the new and spent fuel subassemblies. • Several experimental phases in ASTRID to implement different transmutation scenarios using homogeneous and heterogeneous concepts. ⇒ the availability of facilities involved in the ASTRID material cycles

  17. Minor actinides transmutation performance in a fast reactor

    International Nuclear Information System (INIS)

    Takeda, Toshikazu

    2016-01-01

    Highlights: • A method for calculating MA transmutation for individual nuclides has been proposed by introducing two formulas of the MA transmutation. One corresponds to the difference of MA amounts, and the other corresponds to the sum of the fission amounts and the plutonium production amounts. • Using the method the MA transmutation was calculated for Np-237 and Am-241 in a fast reactor. The burnup period was changed from 1 year to 12 year. • For the 1 year burnup a large amount of Am-242m, Cm-242 are produced from Am-241. The total MA transmutation amount increases with burnup time, but its gradient with respect to burnup time decreases after 9 years, and the transmutation amount by overall fission increases almost linearly with burnup time. • However, after the 6 year burnup the fission contribution became large because of the large production of Pu isotopes from the original Am-241. • In addition to the homogeneous loading of the MA nuclides into the cores, a heterogeneous loading of Am-241 to the blanket region was considered. - Abstract: Results obtained in the project named “Study on Minor Actinides Transmutation using Monju Data”, which has been sponsored by the Ministry of Education, Culture, Sports, Science and Technology in Japan (MEXT) are described. In order to physically understand transmutation of individual MA nuclides in fast reactors, a new method was developed in which the MAs transmutation is interpreted by two formulas. One corresponds to the difference of individual MA nuclides amounts before and after a burnup period, and the other is the sum of amount of fission of a relevant MA nuclide and the net plutonium production from the MA nuclide during a burnup period. The method has been applied to two fast reactors with MA fuels loaded in cores homogeneously and in a blanket region heterogeneously. Numerical results of MA transmutation for the two reactors are shown.

  18. The Physics of transmutation systems : system capabilities and performances

    International Nuclear Information System (INIS)

    Finck, P. J.

    2002-01-01

    This document is complementary to a document produced by Prof. Salvatores on ''The Physics of Transmutation in Critical or Subcritical Reactors and the Impact on the Fuel Cycle''. In that document, Salvatores describes the fundamental of transmutation, through basic physics properties and general parametric studies. In the present document we try to go one step further towards practical implementation (while recognizing that the practical issues such as technology development and demonstration, and economics, can only be mentioned in a very superficial manner). Section 1 briefly overviews the possible objectives of transmutation systems, and links these different objectives to possible technological paths. It also describes the overall constraints which have to be considered when developing and implementing transmutation systems. In section 2 we briefly overview the technological constraints which need to be accounted for when designing transmutation systems. In section 3 we attempt to provide a simplified classification of transmutation systems in order to clarify later comparisons. It compares heterogeneous and homogeneous recycle strategies, and single and multi-tier systems. Section 4 presents case analyses for assessing the transmutation performance of various individual systems, starting with LWR's ((1) generic results; (2) multirecycle of plutonium; (3) an alternative: transmutation based on a Thorium fuel cycle), followed by Gas-Cooled Reactors (with an emphasis on the ''deep burn'' approach), and followed by Fast Reactors and Accelerator Driven systems ((1) generic results; (2) homogeneous recycle of transuranics; (3) practical limit between Fast Reactors and Accelerator Driven Systems) Section 5 summarizes recent results on integrated system performances. It focuses first on interface effects between the two elements of a dual tier system, and then summarizes the major lessons learned from recent global physics studies

  19. Development of a fast reactor for minor actinides transmutation - (1) Overview and method development - 5092

    International Nuclear Information System (INIS)

    Takeda, T.; Usami, S.; Fujimura, K.; Takakuwa, M.

    2015-01-01

    The Ministry of Education, Culture, Sports, Science and Technology in Japan has launched a national project entitled 'technology development for the environmental burden reduction' in 2013. The present study is one of the studies adopted as the national project. The objective of the study is the efficient and safe transmutation and volume reduction of minor actinides (MA) with long-lived radioactivity and high decay heat contained in high level radioactive wastes by using sodium cooled fast reactors. We are developing MA transmutation core concepts which harmonize efficient MA transmutation with core safety. To accurately design the core concepts we have improved calculation methods for estimating the transmutation rate of individual MA nuclides, and estimating and reducing uncertainty of MA transmutation. The overview of the present project is first described. Then the method improvement is presented with numerical results for a minor-actinide transmutation fast reactor. The analysis is based on Monju reactor data. (authors)

  20. Special scientific programme on use of high energy accelerators for transmutation of actinides and power production

    International Nuclear Information System (INIS)

    1994-09-01

    Various techniques for the transmutation of radioactive waste through the use of high energy accelerators are reviewed and discussed. In particular, the present publication contains presentations on (i) requirements and the technical possibilities for the transmutation of long-lived radionuclides (background paper); (ii) high energy particle accelerators for bulk transformation of elements and energy generation; (iii) the resolution of nuclear energy issues using accelerator-driven technology; (iv) the use of proton accelerators for the transmutation of actinides and power production; (v) the coupling of an accelerator to a subcritical fission reactor (with a view on its potential impact on waste transmutation); (vi) research and development of accelerator-based transmutation technology at JAERI (Japan); and (vii) questions and problems with regard to accelerator-driven nuclear power and transmutation facilities. Refs, figs and tabs

  1. Closed ThUOX Fuel Cycle for LWRs with ADTT (ATW) Backend for the 21st Century

    International Nuclear Information System (INIS)

    Beller, D.E.; Sailor, W.C.; Venneri, F.

    1998-01-01

    A future nuclear energy scenario with a closed, thorium-uranium-oxide (ThUOX) fuel cycle and new light water reactors (TULWRs) supported by Accelerator Transmutation of Waste (ATW) systems could provide several improvements beyond today's once-through, UO 2 -fueled nuclear technology. A deployment scenario with TULWRs plus ATWs to burn the actinides produced by these LWRs and to close the back-end of the ThUOX fuel cycle was modeled to satisfy a US demand that increases linearly from 80 GWe in 2020 to 200 GWe by 2100. During the first 20 years of the scenario (2000-2020), nuclear energy production in the US declines from today's 100 GWe to about 80 GWe, in accordance with forecasts of the US DOE's Energy Information Administration. No new nuclear systems are added during this declining nuclear energy period, and all existing LWRs are shut down by 2045. Beginning in 2020, ATWs that transmute the actinides from existing LWRs are deployed, along with TULWRs and additional ATWs with a support ratio of 1 ATW to 7 TULWRs to meet the energy demand scenario. A final mix of 174 GWe from TULWRs and 26 GWe from ATWs provides the 200 GWe demand in 2100. Compared to a once-through LWR scenario that meets the same energy demand, the TULWR/ATW concept could result in the following improvements: depletion of natural uranium resources would be reduced by 50%; inventories of Pu which may result in weapons proliferation will be reduced in quantity by more than 98% and in quality because of higher neutron emissions and 50 times the alpha-decay heating of weapons-grade plutonium; actinides (and possibly fission products) for final disposal in nuclear waste would be substantially reduced; and the cost of fuel and the fuel cycle may be 20-30% less than the once-through UO 2 fuel cycle

  2. Investigation of the feasibility of a small scale transmutation device

    Science.gov (United States)

    Sit, Roger Carson

    This dissertation presents the design and feasibility of a small-scale, fusion-based transmutation device incorporating a commercially available neutron generator. It also presents the design features necessary to optimize the device and render it practical for the transmutation of selected long-lived fission products and actinides. Four conceptual designs of a transmutation device were used to study the transformation of seven radionuclides: long-lived fission products (Tc-99 and I-129), short-lived fission products (Cs-137 and Sr-90), and selective actinides (Am-241, Pu-238, and Pu-239). These radionuclides were chosen because they are major components of spent nuclear fuel and also because they exist as legacy sources that are being stored pending a decision regarding their ultimate disposition. The four designs include the use of two different devices; a Deuterium-Deuterium (D-D) neutron generator (for one design) and a Deuterium-Tritium (D-T) neutron generator (for three designs) in configurations which provide different neutron energy spectra for targeting the radionuclide for transmutation. Key parameters analyzed include total fluence and flux requirements; transmutation effectiveness measured as irradiation effective half-life; and activation products generated along with their characteristics: activity, dose rate, decay, and ingestion and inhalation radiotoxicity. From this investigation, conclusions were drawn about the feasibility of the device, the design and technology enhancements that would be required to make transmutation practical, the most beneficial design for each radionuclide, the consequence of the transmutation, and radiation protection issues that are important for the conceptual design of the transmutation device. Key conclusions from this investigation include: (1) the transmutation of long-lived fission products and select actinides can be practical using a small-scale, fusion driven transmutation device; (2) the transmutation of long

  3. Transmutation of long-lived nuclides

    International Nuclear Information System (INIS)

    Liang Tongxiang; Tang Chunhe

    2003-01-01

    Partitioning and transmutation of long-lived nuclides have profound benefits for economic development, global political stability and the environment. This technology would reduce nuclear waste disposal requirements, prevent proliferation and eliminate a major hurdle to the development of nuclear power. This paper reviews the advanced fuel cycle process and development of ATW in the world, and some suggestions about the R and D of nuclear power in China are proposed

  4. Neutronics analysis of minor actinides transmutation in a fusion-driven subcritical system

    International Nuclear Information System (INIS)

    Yang, Chao; Cao, Liangzhi; Wu, Hongchun; Zheng, Youqi; Zu, Tiejun

    2013-01-01

    Highlights: • A fusion fission hybrid system for MA transmutation is proposed. • The analysis of neutronics effects on the transmutation is performed. • The transmutation rate of MA reaches 86.5% by 25 times of recycling. -- Abstract: The minor actinides (MAs) transmutation in a fusion-driven subcritical system is analyzed in this paper. The subcritical reactor is driven by a tokamak D-T fusion device with relatively easily achieved plasma parameters and tokamak technologies. The MAs discharged from the light water reactor (LWR) are loaded in transmutation zone. Sodium is used as the coolant. The mass percentage of the reprocessed plutonium (Pu) in the fuel is raised from 0 to 48% and stepped by 12% to determine its effect on the MAs transmutation. The lesser the Pu is loaded, the larger the MAs transmutation rate is, but the smaller the energy multiplication factor is. The neutronics analysis of two loading patterns is performed and compared. The loading pattern where the mass percentage of Pu in two regions is 15% and 32.9% respectively is conducive to the improvement of the transmutation fraction within the limits of burn-up. The final transmutation fraction of MAs can reach 17.8% after five years of irradiation. The multiple recycling is investigated. The transmutation fraction of MAs can reach about 61.8% after six times of recycling, and goes up to about 86.5% after 25

  5. Partitioning and transmutation: Radioactive waste management option

    International Nuclear Information System (INIS)

    Stanculescu, A.

    2005-01-01

    Growing world population with increasing energy needs, especially in the developing countries, Threat of global warming due to CO 2 emissions demands non-fossil electricity production. Nuclear will have to be part of a sustainable mix of energy production options Figures show that 350 GWe worldwide capacity is 'nuclear'. Present worldwide spent fuel (containing high Pu inventory) and HLW would need large repositories. In view of the previous facts this lecture deals Partitioning and transmutation as radioactive waste management option. Partitioning and transmutation (P and T) is a complex technology i.e. advanced reprocessing, and demand transuranics fuel fabrication plants, as well as innovative and/or dedicated transmutation reactors. In addition to U, Pu, and 129 I, 'partitioning' extracts from the liquid high level waste the minor actinides (MA) and the long-lived fission products (LLFP) 99-Tc, 93-Zr, 135-Cs, 107-Pd, and 79-Se). 'Transmutation' requires fully new fuel fabrication plants and reactor technologies to be developed and implemented on industrial scale. Present LWRs are not suited for MA and LLFP transmutation (safety consideration, plant operation, poor incineration capability). Only specially licensed LWRs can cope with MOX fuel; for increased Pu loadings (up to 100%), special reactor designs (e.g., ABB80+) are required; a combination of these reactor types could allow Pu inventory stabilization. Long-term waste radiotoxicity can be effectively reduced only if transuranics are 'incinerated' through fission with very hard neutron spectra. New reactor concepts (dedicated fast reactors, Accelerator Driven Systems (ADS), fusion/fission hybrid reactors) have been proposed as transmuters/incinerators. Significant Pu+MAs incineration rates can be achieved in symbiotic scenarios: LWR-MOX and dedicated fast reactors; fast neutron spectrum ADS mainly for MA incineration; very high thermal flux ADS concepts could also provide a significant transuranics

  6. Nuclear waste transmutation

    International Nuclear Information System (INIS)

    Leray, S.

    1995-01-01

    Accelerators can play a role in the disposal of long-lived radioactive waste: an alternative to the storage in deep underground repositories might transmuting long-lived elements into stable or short-lived ones in subcritical systems driven by spallation neutrons. These neutrons would be produced by a high intensity, intermediate energy proton accelerator irradiating a heavy target. Similar systems have also been proposed to produce energy with a minimized waste inventory. Since a good knowledge of the spallation process is essential for designing and optimizing the target-blanket assembly, new programmes aimed at studying spallation reactions are in progress. (author). 6 figs

  7. New linkage of P and T (Partitioning and Transmutation) treatment with methodology of geologic disposal. A possible breakthrough for nuclear technology in tomorrow

    International Nuclear Information System (INIS)

    Kitamoto, Asashi

    1999-01-01

    A possibility of a safe, reliable, transparent and economical high-level radioactive waste disposal method is proposed by combining partitioning of waste materials and transmutation of long-life nuclides with geologic disposal. The paper first discusses the environment surrounding nuclear energy and the conditions for social acceptance of nuclear energy. Then, the paper talks about the soundness of geologic disposal as most extensively studied method of radioactive waste, including environment, safety assessment model, unpredictable uncertainty, and macro image and its problems. Thirdly, the paper describes partitioning and transmutation, the latter being reduction of the lives of long-life nuclides by nuclear fission and conversion and the former being methodology to achieve it by rational means. Radionuclides are separated into six groups by three selection rules of transmutation and two selection rules of geologic disposal. The separation can greatly reduce the decay-heat and weight of the waste materials. The paper last explains the new concept of fuel cycle with some comments on important points in developing the new process (M.M.)

  8. Transmutation Fuel Campaign Description and Status

    International Nuclear Information System (INIS)

    Jon Carmack; Kemal O. Pasamehmetoglu

    2008-01-01

    This report contains a technical summary package in response to a Level 2 milestone in the transmutation fuel campaign (TFC) management work-package calling for input to the Secretarial decision. At present, the form of the Secretarial decision package is not fully defined, and it is not clear exactly what will be required from the TFC as a final input. However, it is anticipated that a series of technical and programmatic documents will need to be provided in support of a wider encompassing document on GNEP technology development activities. The TFC technical leadership team provides this report as initial input to the secretarial decision package which is being developed by the Technical Integration Office (TIO) in support of Secretarial decision. This report contains a summary of the TFC execution plan with a work breakdown structure, high level schedule, major milestones, and summary description of critical activities in support of campaign objectives. Supporting documents referenced in this report but provided under separate cover include: (1) An updated review of the state-of-the art for transmutation fuel development activities considering national as well as international fuel research and development testing activities. (2) A definition of the Technology Readiness Level (TRL) used to systematically define and execute the transmutation fuel development activities

  9. Development of nuclear transmutation technology

    International Nuclear Information System (INIS)

    Park, Won Seok; Song, Tae Young; Yoo, Jae Kwon; Choi, Byung Ho; Shin, Hee Sung; Gil, Chung Sup; Kim, Jung Do.

    1997-08-01

    A basic characteristics and neutronic code development for accelerator driven subcritical reactor have been performed. In the field of basic characteristic study, the world-wide technical trends for a subcritical reactor has been investigated and some new directions for the subcritical system development were investigated. For the analysis of subcritical reactor core, a Montecarlo depletion code was developed by combining LAHET code with ORIGEN2 code. In addition, one-point kinetics equation for subcritical reactor programmed in order to analyze the dynamic behavior of subcritical core. (author). 26 tabs., 49 figs

  10. Accelerator driven nuclear energy and transmutation systems

    International Nuclear Information System (INIS)

    Boldeman, J.W.

    1999-01-01

    Nuclear power generation has been a mature industry for many years. However, despite the overall safety record and the great attractions of nuclear power, especially in times of concern about green house gases emissions, there continues to be some lack of public acceptance of this technology. This sensitivity to nuclear power has several elements in addition to the concern of a potential nuclear accident. These include the possible diversion of plutonium into nuclear weapon production and the concern about the long term storage of plutonium and other transuranic elements. A concept which seeks to allay these fears but still takes advantage of the nuclear fuel cycle and utilises decades of research and development in this technology, is the idea of using modern accelerators to transmute the long lived radio nuclides and simultaneously generate power. A review of the novel concepts for energy production and transmutation of isotopes will be presented. Of the various proposals, the most developed is the Energy Amplifier Concept promoted by Rubbia. The possibility of using high-energy, high-current accelerators to produce large fluxes of neutrons has been known since the earliest days of accelerator technology. E.O. Lawrence, for example, promoted the concept of producing nuclear material with such an accelerator. The Canadians in the early 50s considered using accelerators to produce fuel for their heavy water reactors and there were well advanced designs for a device called the Intense Neutron Generator. The speculative idea of using accelerator produced neutrons for the transmutation of transuranic elements (i.e. elements such as neptunium plutonium and other elements with higher Z atomic number) has also been studied extensively, notably at a number of laboratories in the US, Europe and Japan. However at this time, all facilities that have actually been constructed have been designed primarily for condensed matter studies i.e. studies of the structural properties

  11. Waste transmutation and public acceptance

    International Nuclear Information System (INIS)

    Pigford, T.H.

    1991-01-01

    The concept of transmuting radioactive wastes with reactors or accelerators is appealing. It has the potential of simplifying or eliminating problems of disposing of nuclear waste. The transmutation concept has been renewed vigorously at a time when national projects to dispose of high-level and transuranic waste are seriously delayed. In this period of tightening federal funds and program curtailments, skilled technical staffs are available at US Department of Energy (DOE) national laboratories and contractors to work on waste transmutation. If the claims of transmutation can be shown to be realistic, economically feasible, and capable of being implemented within the US institutional infrastructure, public acceptance of nuclear waste disposal may be enhanced. If the claims for transmutation are not substantiated, however, there will result a serious loss of credibility and an unjust exacerbation of public concerns about nuclear waste. The paper discusses the following topics: how public acceptance is achieved; the technical community and waste disposal; transmutation and technical communication; transmutation issues; technical fixes and public perception

  12. Transmutation of radioactive wastes: how and why?

    International Nuclear Information System (INIS)

    Patarin, L.

    2004-01-01

    After having evoked the natural or spontaneous transmutation of natural or artificial radioactive atoms, the author describes how this transmutation is technically obtained, indicates the two main families of atoms present in a used nuclear fuel and for which transmutation is to be investigated (long-lived fission residues or products, and transuranium elements) and of which the behaviour in neutron fluxes must be explored. He discusses the industrial means required for artificial transmutation. He discusses the interest of performing such a transmutation

  13. A study for optimal transmutation system

    International Nuclear Information System (INIS)

    Park, W.S.; Song, T.Y.; Shin, H.S.; Park, C.K.

    1996-01-01

    Couple of transmutation systems are being under investigation to design the optimal transmutation device. Several basic studies were performed for that objectives: (1) select the radioactive nuclides to be transmuted: (2) investigate the physical characteristics of each nuclide; (3) study the most favorable neutron energy environment for the transmutation. The existing LWR and LMFBR cores were found to be not a satisfiable ones in terms of transmutation rate itself. (author). 5 refs, 2 figs, 3 tabs

  14. Minor actinide transmutation - a waste management option

    International Nuclear Information System (INIS)

    Koch, L.

    1986-01-01

    The incentive to recycle minor actinides results from the reduction of the long-term α-radiological risk rather than from a better utilization of the uranium resources. Nevertheless, the gain in generated electricity by minor actinide transmutation in a fast breeder reactor can compensate for the costs of their recovery and make-up into fuel elements. Different recycling options of minor actinides are discussed: transmutation in liquid metal fast breeder reactors (LMFBRs) is possible as long as plutonium is not recycled in light water reactors (LWRs). In this case a minor actinide burner with fuel of different composition has to be introduced. The development of appropriate minor actinide fuels and their properties are described. The irradiation experiments underway or planned are summarized. A review of minor actinide partitioning from the PUREX waste stream is given. From the present constraints of LMFBR technology a reduction of the long-term α-radiological risk by a factor of 200 is deduced relative to that from the direct storage of spent LWR fuel. Though the present accumulation of minor actinides is low, nuclear transmutation may be needed when nuclear energy production has grown. (orig.)

  15. Use of fast reactors for actinide transmutation

    International Nuclear Information System (INIS)

    1993-03-01

    The management of radioactive waste is one of the key issues in today's discussions on nuclear energy, especially the long term disposal of high level radioactive wastes. The recycling of plutonium in liquid metal fast breeder reactors (LMFBRs) would allow 'burning' of the associated extremely long life transuranic waste, particularly actinides, thus reducing the required isolation time for high level waste from tens of thousands of years to hundreds of years for fission products only. The International Working Group on Fast Reactors (IWGFR) decided to include the topic of actinide transmutation in liquid metal fast breeder reactors in its programme. The IAEA organized the Specialists Meeting on Use of Fast Breeder Reactors for Actinide Transmutation in Obninsk, Russian Federation, from 22 to 24 September 1992. The specialists agree that future progress in solving transmutation problems could be achieved by improvements in: Radiochemical partitioning and extraction of the actinides from the spent fuel (at least 98% for Np and Cm and 99.9% for Pu and Am isotopes); technological research and development on the design, fabrication and irradiation of the minor actinides (MAs) containing fuels; nuclear constants measurement and evaluation (selective cross-sections, fission fragments yields, delayed neutron parameters) especially for MA burners; demonstration of the feasibility of the safe and economic MA burner cores; knowledge of the impact of maximum tolerable amount of rare earths in americium containing fuels. Refs, figs and tabs

  16. Nuclear Waste Separation and Transmutation Research with Special Focus on Russian Transmutation Projects Sponsored by ISTC

    International Nuclear Information System (INIS)

    Conde, Henri; Blomgren, Jan; Olsson, Nils

    2003-03-01

    for transmutation of long lived nuclear waste should be carried through on about the same level as present (5 MSEK/year). Support is also given for participation in international projects, primarily EU projects. The aim of the research is to provide knowledgeable experts in the field to assess the international research and development on transmutation. Swedish transmutation research, in general fundamental research, are performed at three universities CTH, KTH and Uppsala University with the essential support from SKB, SKI and Swedish Nuclear Technology Centre. The same university groups are also participating in a number of international transmutation related research projects, in particular, the projects under the 5th Framework Programme of the European Commission. One of the main issues of the International Science and Technology Center (ISTC) in Moscow, which is financially supported by USA, EU, Russia, Japan, South Korea and Norway, is to reduce the proliferation risk by engaging experts at the former Soviet Union nuclear weapon laboratories in civilian research. This issue has been more pronounced since the terrorist attacks on September 11, 2001 and the following threats from the same group of terrorists. At a workshop in Saltsjoebaden in 1991 on Accelerator Based Radioactive Waste Transmutation it was concluded that research on incineration and transmutation of reactor- and weapons grade plutonium was a civilian research area well suited to occupy the former USSR weapon experts with support from ISTC. The Expert Group on Transmutation/SKI Reference Group has chosen to initiate ISTC projects, which are dealing with fundamental technical issues for the accelerator driven transmutation concepts. The possibility of finding a Swedish research group as a counterpart to the Russian group has also played a role in the reference group's selection of projects. The Swedish research groups from CTH, KTH and UU are at present collaborating in 9 transmutation projects

  17. Nuclear transmutation by flux compression

    International Nuclear Information System (INIS)

    Seifritz, W.

    2001-01-01

    A new idea for the transmutation of minor actinides, long (and even short) lived fission products is presented. It is based an the property of neutron flux compression in nuclear (fast and/or thermal) reactors possessing spatially non-stationary critical masses. An advantage factor for the burn-up fluence of the elements to be transmuted in the order of magnitude of 100 and more is obtainable compared with the classical way of transmutation. Three typical examples of such transmuters (a subcritical ringreactor with a rotating reflector, a sub-critical ring reactor with a rotating spallation source, the socalled ''pulsed energy amplifier'', and a fast burn-wave reactor) are presented and analysed with regard to this purpose. (orig.) [de

  18. Transmuted Generalized Inverse Weibull Distribution

    OpenAIRE

    Merovci, Faton; Elbatal, Ibrahim; Ahmed, Alaa

    2013-01-01

    A generalization of the generalized inverse Weibull distribution so-called transmuted generalized inverse Weibull dis- tribution is proposed and studied. We will use the quadratic rank transmutation map (QRTM) in order to generate a flexible family of probability distributions taking generalized inverse Weibull distribution as the base value distribution by introducing a new parameter that would offer more distributional flexibility. Various structural properties including explicit expression...

  19. Role of accelerators in the Czech national transmuter project

    International Nuclear Information System (INIS)

    Bem, P.; Kugler, A.

    1999-01-01

    The problem of spent nuclear fuel from the so far operated PWRs has become a crucial issue in the Czech Republic. The first attempts to solve this problem by a final deposit of spent fuel into a suitable geological formation have been shown not to be fully acceptable. Therefore, the revival of nuclear transmutation technology application for nuclear incineration of nuclear waste and spent fuel in particular was welcomed. A realistic national project started to be developed in 1996. The four major nuclear research institutions of the country formed a consortium focused on an adoption of the world-wide experience and a development of a national project of a transmutation technology (experimental transmuter LA-0) or an efficient participation in the international effort in that field. Because the LA-0 transmuter concept of subcritical reactor with liquid fuel based on molten fluorides driven by an external neutron source has been adopted, the R and D effort has been focused on three regions. The first is devoted to the problem of a suitable neutron source, the second to a pre-conceptual design of a blanket for burning of actinides contained in spent fuel from PWRs. The third region is devoted to the utilisation of the experience from a specific field of dry (fluorine) reprocessing of spent fuel and a preparation of liquid fuel in the form of molten fluorides for the transmuter LA-0. (R.P.)

  20. Summary of the separations breakout group

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, R. [Los Alamos National Laboratory, NM (United States)

    1995-10-01

    The Separations Breakout Group reviewed the wide spectrum of separations technologies available for application to ADTT systems. Separations processes play a key role in areas associated with preparation of feed materials for introduction into ADTT, removal of fission products and other transmutation byproducts that build into the fuel during operation, and in the preparation of wastes ({open_quotes}polishing{close_quotes}) for discharge from ADTT systems so as to meet appropriate waste disposal criteria. General separations technologies addressed by the group included aqueous, fluoride salt, and chloride salt approaches.

  1. The French partitioning-transmutation programme, assets and prospects

    International Nuclear Information System (INIS)

    Viala, M.; Salvatores, M.; Mouney, H.

    1997-01-01

    Partitioning-transmutation studies are covered by the 1991 French law concerning radioactive waste management. The programme is progressing with a dual approach: - What can be done in partitioning-transmutation? At what cost? In what timescale? - How can long-term gains and short-term disadvantages be qualified and quantified? The first approach concerns technical know-how. The studies based on today's technologies are continuing (reactors, fuels and targets, separation of radionuclides by solvents). The second approach involves an assessment activity, based firstly on studies of scenarios. Pertinent assessment criteria must be brought out. (authors)

  2. Transmutation potential of current and innovative nuclear power systems

    International Nuclear Information System (INIS)

    Slessarev, I.; Salvatores, M.; Uematsu, M.

    1993-01-01

    In the present paper we have investigated the transmutation potential of different nuclear systems from a physical point of view. Transuranium (TRU) elements have been considered, but also long lived fission products (LLFP). The potential for transmutation has to take into account not only the consumption of a specific nucleus (or of a specific 'family' of nuclei), but also the reproduction of other nuclei of higher masses. The present study allows an intercomparison taking into account both aspects. Technological, safety and design constraints were not considered at this stage. However strategic indications for future studies have been obtained. 3 refs., 3 tabs

  3. Experience gained during 10 years transmutation experiments in Dubna

    Science.gov (United States)

    Zamani, M.; Fragopoulou, M.; Manolopoulou, M.; Stoulos, S.; Brandt, R.; Westmeier, W.; Krivopustov, M.; Sosnin, A.; Golovatyuk, S.

    2006-05-01

    Transmutation, the procedure of transforming long-lived radioactive isotopes into stable or short-lived, was proposed for reducing the amount of radioactive waste resulting from technological applications of nuclear fission. The Accelerator Driven Systems (ADS) provide the possibility to generate intense neutron spectrum yielding in an effective transmutation of unwanted isotopes. Such experiments are being carried out for the last 10 years in Synchrophasotron / Nuclotron accelerators at the Veksler-Baldin Laboratory of High Energies of the Joint Institute for Nuclear Research in Dubna, Russia. Thick Pb and Pb-U targets, surrounded by moderators, have been irradiated by protons in the energy range of 0.5-7.4 GeV. Neutron fluence measurements have been performed by different techniques of passive detectors (neutron activation detectors, solid state nuclear track detectors). Transmutation of 129I, 237Np, 239Pu was studied. The results of these experiments are presented and discussed.

  4. System and safety studies of accelerator driven transmutation systems. Annual report 1999

    International Nuclear Information System (INIS)

    Gudowski, Waclaw; Wallenius, Jan; Eriksson, Marcus; Carlsson, Johan; Seltborg, Per; Tucek, Kamil

    2000-05-01

    In 1996, SKB commenced funding of the project 'System and safety studies of accelerator driven transmutation systems and development of a spallation target'. The aim of the project was stated as: Development of a complete code for simulation of transmutation processes in an accelerator driven system. Application of the code for analysis of neutron flux, transmutation rates, reactivity changes, toxicity and radiation damages in the transmutation core. Build up of competence regarding issues related to spallation targets, development of research activities regarding relevant material issues. Performing of basic experiments in order to investigate the adequacy of using the spallation. target as a neutron source for a transmutation system, and participation in the planning and implementation of an international demonstration experiment. In the present report, activities within and related to the framework of the project, performed at the department of Nuclear and Reactor Physics at the Royal Institute of Technology during 1999, are accounted for

  5. System and safety studies of accelerator driven transmutation systems. Annual report 1997

    International Nuclear Information System (INIS)

    Wallenius, J.; Carlsson, Johan; Gudowski, W.

    1997-12-01

    In November 1996, SKB started financing of the project ''System and safety studies of accelerator driven transmutation systems and development of a spallation target''. The aim of the project was stated as: 1) Development of a complete code for simulation of transmutation processes in an accelerator driven system. Application of the code for analysis of neutron flux, transmutation rates, reactivity changes, toxicity and radiation damages in the transmutation core. 2) Build up of competence regarding issues related to spallation targets development of research activities regarding relevant material issues. Performing of basic experiments in order to investigate the adequacy of using the spallation target as a neutron source for a transmutation system, and participation in the planning and implementation of an international demonstration-experiment. In the present report, activities within the framework of the project performed at the department of Nuclear and Reactor Physics at the Royal Institute of Technology during 1997, are accounted for

  6. System and safety studies of accelerator driven transmutation systems. Annual report 1997

    Energy Technology Data Exchange (ETDEWEB)

    Wallenius, J.; Carlsson, Johan; Gudowski, W. [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Nuclear and Reactor Physics

    1997-12-01

    In November 1996, SKB started financing of the project ``System and safety studies of accelerator driven transmutation systems and development of a spallation target``. The aim of the project was stated as: 1) Development of a complete code for simulation of transmutation processes in an accelerator driven system. Application of the code for analysis of neutron flux, transmutation rates, reactivity changes, toxicity and radiation damages in the transmutation core. 2) Build up of competence regarding issues related to spallation targets development of research activities regarding relevant material issues. Performing of basic experiments in order to investigate the adequacy of using the spallation target as a neutron source for a transmutation system, and participation in the planning and implementation of an international demonstration-experiment. In the present report, activities within the framework of the project performed at the department of Nuclear and Reactor Physics at the Royal Institute of Technology during 1997, are accounted for. 13 refs, 6 figs.

  7. System and safety studies of accelerator driven transmutation systems. Annual report 1999

    Energy Technology Data Exchange (ETDEWEB)

    Gudowski, Waclaw; Wallenius, Jan; Eriksson, Marcus; Carlsson, Johan; Seltborg, Per; Tucek, Kamil [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Nuclear and Reactor Physics

    2000-05-01

    In 1996, SKB commenced funding of the project 'System and safety studies of accelerator driven transmutation systems and development of a spallation target'. The aim of the project was stated as: Development of a complete code for simulation of transmutation processes in an accelerator driven system. Application of the code for analysis of neutron flux, transmutation rates, reactivity changes, toxicity and radiation damages in the transmutation core. Build up of competence regarding issues related to spallation targets, development of research activities regarding relevant material issues. Performing of basic experiments in order to investigate the adequacy of using the spallation. target as a neutron source for a transmutation system, and participation in the planning and implementation of an international demonstration experiment. In the present report, activities within and related to the framework of the project, performed at the department of Nuclear and Reactor Physics at the Royal Institute of Technology during 1999, are accounted for.

  8. Transmutation of actinides in power reactors.

    Science.gov (United States)

    Bergelson, B R; Gerasimov, A S; Tikhomirov, G V

    2005-01-01

    Power reactors can be used for partial short-term transmutation of radwaste. This transmutation is beneficial in terms of subsequent storage conditions for spent fuel in long-term storage facilities. CANDU-type reactors can transmute the main minor actinides from two or three reactors of the VVER-1000 type. A VVER-1000-type reactor can operate in a self-service mode with transmutation of its own actinides.

  9. Separation and transmutation. A picture of the applications in Sweden; Separation och transmutation. Belysning av tillaempning i Sverige

    Energy Technology Data Exchange (ETDEWEB)

    Grundfelt, Bertil; Lindgren, Maria [Kemakta Konsult AB, Stockholm (Sweden)

    2006-11-15

    This report contains a review of the transmutation technology and an elucidation of the consequences of the use of transmutation in Sweden. Transmutation has often been mentioned in the public debate as a way of rendering harmless the high-level waste from nuclear power such that the final disposal of the waste can be substantially simplified or even completely avoided. However, it can be noted that even with an exploitation of transmutation, significant amounts of radioactive waste requiring qualified final disposal will be generated. The transmutation technology will make it possible to reduce the longevity of the high-level waste by converting primarily the transuranic elements to fission products with shorter half lives. The long-term radiotoxicity of the spent nuclear fuel is dominated by the transuranics. Hence, transmutation will lead to a substantial decrease of the long-term radiotoxicity of the spent fuel. The research on transmutation has been focussed on sub-critical so called ADS-reactors (Accelerator Driven System). In such a system protons are accelerated to very high energy levels (in the order of GeV) in an electromagnetic field. The accelerated protons are impacted on a spallation source consisting of heavy atoms, e.g. lead or a mixture of lead and bismuth. At the impact the heavy nuclei are spalled releasing a number of neutrons that can be used for fissioning the nuclei of the substances to be transmuted, primarily the transuranics. ADS-reactors are still at the research stage. It is a common view that it will take several decades before the technology has reached a maturity that allows the construction of a demonstration facility. Calculations performed at Royal Institute of Technology in Stockholm show that using the ADS-technology would allow a reduction of the inventory of transuranics in the spent fuel from Swedish reactors by 50-85% within a 50-100 years period. The goal to transmute 99% of the transuranics inventory has been achieved in

  10. Decay and Transmutation of Nuclides

    CERN Document Server

    Aarnio, Pertti A

    1999-01-01

    We present a computer code DeTra which solves analytically the Bateman equations governing the decay, build-up and transmutation of radionuclides. The complexity of the chains and the number of nuclides are not limited. The nuclide production terms considered include transmutation of the nuclides inside the chain, external production, and fission. Time dependent calculations are possible since all the production terms can be re-defined for each irradiation step. The number of irradiation steps and output times is unlimited. DeTra is thus able to solve any decay and transmutation problem as long as the nuclear data i.e. decay data and production rates, or cross sections, are known.

  11. Transmuted Complementary Weibull Geometric Distribution

    Directory of Open Access Journals (Sweden)

    Ahmed Z. A…fify

    2014-12-01

    Full Text Available This paper provides a new generalization of the complementary Weibull geometric distribution that introduced by Tojeiro et al. (2014, using the quadratic rank transmutation map studied by Shaw and Buckley (2007. The new distribution is referred to as transmuted complementary Weibull geometric distribution (TCWGD. The TCWG distribution includes as special cases the complementary Weibull geometric distribution (CWGD, complementary exponential geometric distribution(CEGD,Weibull distribution (WD and exponential distribution (ED. Various structural properties of the new distribution including moments, quantiles, moment generating function and RØnyi entropy of the subject distribution are derived. We proposed the method of maximum likelihood for estimating the model parameters and obtain the observed information matrix. A real data set are used to compare the ‡exibility of the transmuted version versus the complementary Weibull geometric distribution.

  12. Review of national accelerator driven system programmes for partitioning and transmutation. Proceedings of an advisory group meeting

    International Nuclear Information System (INIS)

    2003-08-01

    One of the current important issues of nuclear power is the long lived radioactive waste toxicity problem. The sharpness of this problem could be considerably reduced if, during energy production, there was the possibility to incinerate at least the most toxic radioactive isotopes (long lived fission products and minor actinides). The combination of external intensive neutron sources with facilities containing nuclear fuel, so-called hybrid systems, are under investigation in several countries. The surplus of neutrons in such systems may be used to convert most of the long lived radioactive nuclides into isotopes having a shorter lifetime. Currently, an increasing number of groups are entering this field of research. There is clearly a need for co-originated their efforts, and also for the exchange of information from nationally or internationally co-ordinated activities. Consideration of the advantages of hybrid systems, and the wide field of interdisciplinary areas of research involved, show the need for an international co-operation in this novel R and D area. The International Atomic Energy Agency has maintained an active interest in advanced nuclear technology related to accelerator driven systems (ADS), and related activities have been carried out within the framework of its programme on emerging nuclear energy systems. After thorough analyses of the outcomes of several international forums and recommendations of the IAEA Technical Committee Meeting on Feasibility and Motivation for Hybrid Concepts for Nuclear Energy Generation and Transmutation (Madrid, Spain, 1997), the IAEA conducted an Advisory Group Meeting on Review of National Accelerator Driven System Programmes in Taejon, Republic of Korea, from 1 to 4 November 1999. The scope of the meeting included review of the current R and D programmes in the Member States and the assessment of the progress in the development of hybrid concepts. The programme of the AGM included the following topics

  13. The Beta Transmuted Weibull Distribution

    Directory of Open Access Journals (Sweden)

    Manisha Pal

    2014-06-01

    Full Text Available The paper introduces a beta transmuted Weibull distribution, which contains a number ofdistributions as special cases. The properties of the distribution are discussed and explicit expressions are derived for the mean deviations, Bonferroni and Lorenz curves, and reliability. The distribution and moments of order statistics are also studied. Estimation of the model parameters by the method of maximum likelihood is discussed. The log beta transmuted Weibull model is introduced to analyze censored data. Finally, the usefulness of the new distribution in analyzing positive data is illustrated.

  14. Partitioning and Transmutation. Annual Report 2006

    Energy Technology Data Exchange (ETDEWEB)

    Dubois, Isabelle; Englund, Sofie; Fermvik, Anna; Liljenzin, Jan-Olov; Neumayer, Denis; Retegan, Teodora; Skarnemark, Gunnar [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Chemical and Biological Engineering

    2007-01-15

    The long-lived elements in the spent nuclear fuels are mostly actinides, some fission products ({sup 79}Se, {sup 87}Rb, {sup 99}Tc, {sup 107}Pd, {sup 126}Sn, {sup 129}I, {sup 135}Cs) and activation products ({sup 14}C, {sup 36}Cl, {sup 59}Ni, {sup 93} Zr, {sup 94} To be able to destroy the long-lived elements in a transmutation process they must be separated from the rest of the spent nuclear fuel. The most difficult separations to make are those between trivalent actinides and lanthanides, due to their relatively similar chemical properties, and those between different actinides themselves. These separations are necessary to obtain the desired efficiency of the transmutation process and in order not to create any unnecessary waste thus rendering the process useless. Solvent extraction is an efficient and well-known method that makes it possible to have separation factors that fulfil the highly set demands on purity of the separated phases and on small losses. Chalmers University of Technology is involved in research regarding the separation of actinides and lanthanides and between the actinides themselves as a partner in the EUROPART project within the European Union sixth framework program. This is a continuation of the projects we participated in within the fourth and fifth framework programmes, NEWPART and PARTNEW, respectively. The aims of the projects have now shifted from basic understanding to more applied research with focus on process development. However, since the basic understanding is still needed we have our main focus on the chemical processes and understanding of how they work. Work is progressing in relation to a proposal for the 7th framework programme. This proposal will be aiming at a pilot plant for separation for transmutation purposes.

  15. Transmutation Studies of Radioactive Nuclides

    Czech Academy of Sciences Publication Activity Database

    Adam, Jindřich

    2007-01-01

    Roč. 34, č. 1 (2007), s. 125-150 ISSN 1310-0157 R&D Projects: GA MŠk 1P04LA213 Institutional research plan: CEZ:AV0Z10480505 Keywords : transmutation Subject RIV: BG - Nuclear, Atomic and Molecular Physics , Colliders

  16. Neutron transmutation doped Ge bolometers

    Science.gov (United States)

    Haller, E. E.; Kreysa, E.; Palaio, N. P.; Richards, P. L.; Rodder, M.

    1983-01-01

    Some conclusions reached are as follow. Neutron Transmutation Doping (NTD) of high quality Ge single crystals provides perfect control of doping concentration and uniformity. The resistivity can be tailored to any given bolometer operating temperature down to 0.1 K and probably lower. The excellent uniformity is advantaged for detector array development.

  17. Promises and Challenges of Thorium Implementation for Transuranic Transmutation - 13550

    Energy Technology Data Exchange (ETDEWEB)

    Franceschini, F.; Lahoda, E.; Wenner, M. [Westinghouse Electric Company LLC, Cranberry Township, PA (United States); Lindley, B. [University of Cambridge (United Kingdom); Fiorina, C. [Polytechnic of Milan (Italy); Phillips, C. [Energy Solutions, Richland, WA (United States)

    2013-07-01

    This paper focuses on the challenges of implementing a thorium fuel cycle for recycle and transmutation of long-lived actinide components from used nuclear fuel. A multi-stage reactor system is proposed; the first stage consists of current UO{sub 2} once-through LWRs supplying transuranic isotopes that are continuously recycled and burned in second stage reactors in either a uranium (U) or thorium (Th) carrier. The second stage reactors considered for the analysis are Reduced Moderation Pressurized Water Reactors (RMPWRs), reconfigured from current PWR core designs, and Fast Reactors (FRs) with a burner core design. While both RMPWRs and FRs can in principle be employed, each reactor and associated technology has pros and cons. FRs have unmatched flexibility and transmutation efficiency. RMPWRs have higher fuel manufacturing and reprocessing requirements, but may represent a cheaper solution and the opportunity for a shorter time to licensing and deployment. All options require substantial developments in manufacturing, due to the high radiation field, and reprocessing, due to the very high actinide recovery ratio to elicit the claimed radiotoxicity reduction. Th reduces the number of transmutation reactors, and is required to enable a viable RMPWR design, but presents additional challenges on manufacturing and reprocessing. The tradeoff between the various options does not make the choice obvious. Moreover, without an overarching supporting policy in place, the costly and challenging technologies required inherently discourage industrialization of any transmutation scheme, regardless of the adoption of U or Th. (authors)

  18. An assessment of partition and transmutation against UK requirements for radioactive waste management: supporting studies

    International Nuclear Information System (INIS)

    Cummings, R.; Crookshanks, C.E.; McAdams, R.; Rogers, J.M.; Sims, H.E.; Smith-Briggs, J.L.

    1996-06-01

    A study of partition and transmutation (P and T) has recently been reported: An Assessment of Partition and Transmutation Against UK Requirements for Radioactive Waste Management (DOE/RAS/96.007). The prospects were assessed for real safety or financial gains being made through the future use of partition and transmutation within the United Kingdom in radioactive waste management. The assessment was made by AEA Technology, on behalf of the Department of the Environment. The assessment was partly based on the results of a number of studies described here. (Author)

  19. Feasibility analysis of constant TRU feeding in waste transmutation system using accelerator-driven subcritical system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kun Jai; Cho, Nam Zin; Jo, Chang Keun; Park, Chang Je; Kim, Do Sam; Park, Jeong Hwan [Korea Advanced Institute of Science and Technology, Taejon (Korea)

    1999-03-01

    It is probable that the issue of nuclear spent fuel and high-level waste can have negative impact on the future expansion of nuclear power programs. Accelerator-driven nuclear waste transmutation with constant composition TRU feeding which satisfies non-proliferation condition will help establish the long-range nuclear waste disposal strategy. In this study, current status of accelerator-driven transmutation of waste technology, and feasibility analysis of constant composition TRU feeding system were investigated. We ascertained that solid system using constant composition TRU is feasible with the the capability of transmutation. (author). 13 refs., 53 figs., 20 tabs.

  20. 4th Neutron Transmutation Doping Conference

    CERN Document Server

    1984-01-01

    viii The growing use of NTD silicon outside the U. S. A. motivated an interest in having the next NTD conference in Europe. Therefore, the Third International Conference on Neutron Transmutation-Doped Silicon was organized by Jens Guldberg and held in Copenhagen, Denmark on August 27-29, 1980. The papers presented at this conference reviewed the developments which occurred during the t'A'O years since the previous conference and included papers on irradiation technology, radiation-induced defects, characteriza­ tion of NTD silicon, and the use of NTD silicon for device appli­ cations. The proceedings of this conference were edited by Jens Guldberg and published by Plenum Press in 1981. Interest in, and commercial use of, NTD silicon continued to grow after the Third NTD Conference, and research into neutron trans­ mutation doping of nonsilicon semiconductors had begun to accel­ erate. The Fourth International Transmutation Doping Conference reported in this volume includes invited papers summarizing the p...

  1. Partitioning and Transmutation. Annual Report 2004

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Sofie; Drouet, Francois; Ekberg, Christian; Liljenzin, Jan-Olov; Magnusson, Daniel; Nilsson, Mikael; Retegan, Teodora; Skarnemark, Gunnar [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Materials and Surface Chemistry

    2005-01-01

    The long-lived elements in the spent nuclear fuels are mostly actinides, some fission products ({sup 129}I, {sup 99}Tc, {sup 135}Cs, {sup 93}Zr and {sup 126}Sn and activation products ({sup 14}C and {sup 36}Cl). To be able to destroy the long-lived elements in a transmutation process they must be separated from the rest of the spent nuclear fuel. The most difficult separations to make are those between trivalent actinides and lanthanides, due to their relatively similar chemical properties, and those between different actinides themselves. This separation is necessary to obtain the desired efficiency in the transmutation process in order not to create any unnecessary waste thus rendering the process useless. Solvent extraction is an efficient and well-known method that makes it possible to have separation factors that fulfil the highly set demands on purity of the separated phases and on small losses. Chalmers University of Technology is involved in research regarding the separation of actinides and lanthanides and between the actinides themselves as a partner in the European Union sixth framework program project EUROPART. This is a continuation of the projects we participated in within the fourth and fifth framework programmes NEWPART and PARTNEW respectively. The aims of the projects have now shifted from basic understanding to more applied research with focus on process development.

  2. Partitioning and Transmutation. Annual Report 2005

    International Nuclear Information System (INIS)

    Andersson, Sofie; Ekberg, Christian; Fermvik, Anna; Hervieux, Nadege; Liljenzin, Jan-Olov; Magnusson, Daniel; Nilsson, Mikael; Retegan, Teodora; Skarnemark, Gunnar

    2006-01-01

    The long-lived elements in the spent nuclear fuels are mostly actinides, some fission products ( 79 Se, 87 Rb, 99 Tc, 107 Pd, 126 Sn, 129 I, 135 Cs) and activation products ( 14 C, 36 Cl, 59 Ni, 93 Zr, 94 N To be able to destroy the long-lived elements in a transmutation process they must be separated from the rest of the spent nuclear fuel. The most difficult separations to make are those between trivalent actinides and lanthanides, due to their relatively similar chemical properties, and those between different actinides themselves. These separations are necessary to obtain the desired efficiency of the transmutation process and in order not to create any unnecessary waste thus rendering the process useless. Solvent extraction is an efficient and well-known method that makes it possible to have separation factors that fulfil the highly set demands on purity of the separated phases and on small losses. Chalmers Univ. of Technology is involved in research regarding the separation of actinides and lanthanides and between the actinides themselves as a partner in the EUROPART project within the European Union sixth framework program. This is a continuation of the projects we participated in within the fourth and fifth framework programmes, NEWPART and PARTNEW respectively. The aims of the projects have now shifted from basic understanding to more applied research with focus on process development. However, since the basic understanding is still needed we have our main focus on the chemical processes and understanding of how they work

  3. Evaluation of systems incorporating transmutation for the reduction of the long term toxicity of high-level waste

    International Nuclear Information System (INIS)

    Davidson, J.W.

    1979-01-01

    One of the alternative high-level nuclear waste (HLW) management/disposal concepts proposed involves the separation from HLW of the elements with isotopes which dominate the radiotoxicity and the transmutation of these nuclides to shortlived or stable products. The waste management system required for transmutation employs chemical processing of HLW to recover waste nuclides for irradiation with neutrons in a transmutation device. The transmuter periodically requires replenishment of the target nuclides and chemical processing to remove the transmutation products. The waste streams from HLW processing and product recovery together comprise the discharge from the system. An imploding liner fusion reactor (ILFR) is assumed for the transmuter with the waste nuclides dissolved in a molten lead-lithium alloy blanket. The potential transmutation candidates are defined as the elements with toxicities per unit volume (toxicity indexes) in solidified HLW at 1000 years which are greater than that for 0.2% uranium ore (carnotite). The candidates which require separation for transmutation are the actinides; Np, Pu, Am, and Cu and the fission products; I and Tc. Certain assumptions were made for the parameters for the ILFR and its operating conditions, and a system evaluation was done. System evaluations indicate that blanket waste loadings on the order of several percent of the total concentration result in attractive performance in terms of high transmutation capacities and low blanket processing requirments. It appears that transmutation system goals in terms of toxicity reduction are achievable with a modest number of transmuters. In addition, requirements for transmuter performance, chemical processing capacity and chemical separation efficiency appear to be within projected values for this technology

  4. Spallation neutron source target design for radioactive waste transmutation

    International Nuclear Information System (INIS)

    Beard, C.A.

    1992-01-01

    The disposal of high-level radioactive waste has long been one of the most serious problems facing the nuclear industry. Transmutation of this waste through particle bombardment has been suggested numerous times as a possible method of enhancing the waste management process. Due to advances in accelerator technology, the feasibility of an accelerator based transmutation system has increased enough to allow serious investigation of this process. Therefore, in pursuit of this goal, an accelerator target was designed for use in an accelerator based transmutation system. The target design consists of an array of tantalum rods, cooled by liquid sodium, which are arranged in a cylindrical configuration 40 cm in diameter and 125 cm in height. Tantalum was chosen as the target material over tungsten, lead, bismuth, and a lead-bismuth alloy (55 w/o bismuth) due to a large neutron yield, low activation, low chemical toxicity, and the fact that it does not produce significant amounts of long-lived isotopes through spallation or activation. The target yields a neutron source of 29.7 neutrons/proton when exposed to a 1600 MeV proton beam, and is suitable for use with both thermal or fast spectrum transmutation systems

  5. Actinide and fission product partitioning and transmutation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The fourth international information exchange meeting on actinide and fission product partitioning and transmutation, took place in Mito City in Japan, on 111-13 September 1996. The proceedings are presented in six sessions: the major programmes and international cooperation, the partitioning and transmutation programs, feasibility studies, particular separation processes, the accelerator driven transmutation, and the chemistry of the fuel cycle. (A.L.B.)

  6. A proposal for a Los Alamos international facility for transmutations (LIFT)

    International Nuclear Information System (INIS)

    Venneri, F.; Williamson, M.A.; Li, Ning; Doolen, G.

    1996-01-01

    The major groups engaged in transmutation research are converging towards a common objective and similar technology. It is now possible to envision an international program of research aimed at the destruction of reactor-generated (and other) nuclear waste using a series of multipurpose experimental facilities in the near future. Los Alamos National Laboratory, as the home of the highest power LINAC and a very active transmutation technology project, is the ideal host for the first of such facilities. The next step in the international program (a facility 10 times more powerful, for engineering-scale demonstrations) could be built in Europe, where there is substantial interest in the construction of such a device in the framework of international cooperation. A series of experiments at Las Alamos could explore the key transmutation technologies. Liquid lead loops, a liquid lead spallation target, and a large size liquid lead facility with provision for irradiation, cooling and diagnostics of several types of 'transmutation assemblies', where different transmutation concepts will be tested in different media and environments, from transmutation of fission products to destruction by fission of higher actinides, to other waste management applications. The engineering-scale facility, which will follow the initial testing phase, will extend the best concepts to full scale implementation

  7. Transmutation of fission products through accelerator

    International Nuclear Information System (INIS)

    Nakamura, H.; Tani, S.; Takahashi, T.; Yamamura, O.

    1995-01-01

    The transmutation of fission products through particle accelerators has been studied under the OMEGA program. The photonuclear reaction has also been investigated to be applied to transmuting long-lived fission products, such as Cesium and Strontium, which have difficulties on reaction with neutrons due to its so small cross section. It is applicable for the transmutation if the energy balance can be improved with a monochromatic gamma rays in the range of the Giant Dipole Resonance generated through an excellent high current electron linear accelerator. The feasibility studies are being conducted on the transmutation system using it through an electron accelerator. (authors)

  8. Requirements for an evaluated nuclear data file for accelerator-based transmutation

    International Nuclear Information System (INIS)

    Koning, A.J.

    1993-06-01

    The importance of intermediate-energy nuclear data files as part of a global calculation scheme for accelerator-based transmutation of radioactive waste systems (for instance with an accelerator-driven subcritical reactor) is discussed. A proposal for three intermediate-energy data libraries for incident neutrons and protons is presented: - a data library from 0 to about 100 MeV (first priority), - a reference data library from 20 to 1500 MeV, - an activation/transmutation library from 0 to about 100 MeV. Furthermore, the proposed ENDF-6 structure of each library is given. The data needs for accelerator-based transmutation are translated in terms of the aforementioned intermediate-energy data libraries. This could be a starting point for an ''International Evaluated Nuclear Data File for Transmutation''. This library could also be of interest for other applications in science and technology. Finally, some conclusions and recommendations concerning future evaluation work are given. (orig.)

  9. Enhancing MA transmutation by irradiation of (MA, Zr)Hx in FBR blanket region - 5383

    International Nuclear Information System (INIS)

    Konashi, K.; Ikeda, K.; Itoh, K.; Hirai, M.; Koyama, T.; Kurosaki, K.

    2015-01-01

    Minor actinide (MA) hydride is proposed as transmutation target in sodium-cooled mixed oxide fuelled fast reactor. Preliminarily calculations have been done to check the transmutation efficiency of MA hydride targets. Three different types of MA target, MA-Zr alloy, (MA, Zr)O 2 and (MA, Zr)H x , have been compared on MA transmutation rate. The targets are assumed to be loaded around an active core in a 280 MWe sodium-cooled reactor; 54 MA target assemblies are respectively arranged in a row in the radial blanket zone. They are supposed to be irradiated for one year and then be cooled for 60 days. The transmuted mass has been evaluated by three-dimensional diffusion calculation to be 25, 15, 61 kg/EFPY for the alloy, the oxide and the hydride respectively, where production of MA in the active core is taken into account. The transmutation mass by (MA, Zr)H x is much larger than those by the other types of targets, while the core characteristics remain sound by locating MA targets outside of the active core. On top of that, two kinds of (MA, Zr)O 2 targets which are combined with ZrH x (x=1.7) pins have been calculated. Major Research/Development items are selected to establish the MA hydride transmutation method by reviewing technologies applicable to the transmutation system. The practical use of the MA hydride transmutation method is not far ahead technically, since this method can be developed by the extension of existing technologies. (authors)

  10. Partitioning and transmutation. Annual report 2007

    Energy Technology Data Exchange (ETDEWEB)

    Aneheim, Emma; Ekberg, Christian; Englund, Sofie; Fermvik, Anna; Foreman, Mark St. J.; Liljenzin, Jan-Olov; Retegan, Teodora; Skarnemark, Gunnar; Wald, Karin (Nuclear Chemistry, Dept. of Chemical and Biological Engineering, Chalmers Univ. of Technology, Goeteborg (SE))

    2007-01-15

    The long-lived elements in the spent nuclear fuels are mostly actinides, some fission products (79Se, 87Rb, 99Tc, 107Pd, 126Sn, 129I, 135Cs) and activation products (14C, 36Cl, 59Ni, 93Zr, 94Nb). To be able to destroy the long-lived elements in a transmutation process they must be separated from the rest of the spent nuclear fuel. The most difficult separations to make are those between trivalent actinides and lanthanides, due to their relatively similar chemical properties, and those between different actinides themselves. These separations are necessary to obtain the desired efficiency of the transmutation process and in order not to create any unnecessary waste thus rendering the process useless. Solvent extraction is an efficient and well-known method that makes it possible to have separation factors that fulfil the highly set demands on purity of the separated phases and on small losses. Chalmers University of Technology is involved in research regarding the separation of actinides and lanthanides and between the actinides themselves as a partner in several European frame work programmes from NEWPART in the 4th framework via PARTNEW and EUROPART to ACSEPT now in the 7th programme. The aims of the projects have now shifted from basic understanding to more applied research with focus on process development. However, since a further investigation on basic understanding of the chemical behaviour is required, we have our main focus on the chemical processes and understanding of how they work. Due to new recruitments we will now also work on ligand design and development. This will decrease the response time between new ligands and their evaluation.

  11. Partitioning and Transmutation. Annual Report 2005

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Sofie; Ekberg, Christian; Fermvik, Anna; Hervieux, Nadege; Liljenzin, Jan-Olov; Magnusson, Daniel; Nilsson, Mikael; Retegan, Teodora; Skarnemark, Gunnar [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Chemical and Biological Engineering

    2006-01-15

    The long-lived elements in the spent nuclear fuels are mostly actinides, some fission products ({sup 79}Se, {sup 87}Rb, {sup 99}Tc, {sup 107}Pd, {sup 126}Sn, {sup 129}I, {sup 135}Cs) and activation products ({sup 14}C, {sup 36}Cl, {sup 59}Ni, {sup 93}Zr, {sup 94}N To be able to destroy the long-lived elements in a transmutation process they must be separated from the rest of the spent nuclear fuel. The most difficult separations to make are those between trivalent actinides and lanthanides, due to their relatively similar chemical properties, and those between different actinides themselves. These separations are necessary to obtain the desired efficiency of the transmutation process and in order not to create any unnecessary waste thus rendering the process useless. Solvent extraction is an efficient and well-known method that makes it possible to have separation factors that fulfil the highly set demands on purity of the separated phases and on small losses. Chalmers Univ. of Technology is involved in research regarding the separation of actinides and lanthanides and between the actinides themselves as a partner in the EUROPART project within the European Union sixth framework program. This is a continuation of the projects we participated in within the fourth and fifth framework programmes, NEWPART and PARTNEW respectively. The aims of the projects have now shifted from basic understanding to more applied research with focus on process development. However, since the basic understanding is still needed we have our main focus on the chemical processes and understanding of how they work.

  12. Minor actinide transmutation in accelerator driven systems

    Energy Technology Data Exchange (ETDEWEB)

    Friess, Friederike [IANUS, TU Darmstadt (Germany)

    2015-07-01

    Transmutation of radioactive waste, the legacy of nuclear energy use, gains rising interest. This includes the development of facilities able to transmute minor actinides (MA) into stable or short-lived isotopes before final disposal. The most common proposal is to use a double-strata approach with accelerator-driven-systems (ADS) for the efficient transmutation of MA and power reactors to dispose plutonium. An ADS consists of a sub-critical core that reaches criticality with neutrons supplied by a spallation target. An MCNP model of the ADS system Multi Purpose Research Reactor for Hightech Applications will be presented. Depletion calculations have been performed for both standard MOX fuel and transmutation fuel with an increased content of minor actinides. The resulting transmutation rates for MAs are compared to published values. Special attention is given to selected fission products such as Tc-99 and I-129, which impact the radiation from the spent fuel significantly.

  13. The JAERI-KEK joint project on high intensity proton accelerator and overview of nuclear transmutation experimental facilities

    International Nuclear Information System (INIS)

    Ikeda, Yujiro

    2001-01-01

    A status of the JAERI/KEK joint project on High Intensity Proton Accelerator is overviewed. It is highlighted that Experimental facilities for development of the accelerator driven system (ADS) for nuclear transmutation technology is proposed under the project. (author)

  14. Neutron transmutation doping of silicon

    International Nuclear Information System (INIS)

    Mireshghi, A.

    1989-01-01

    After a brief review of the theoretical bases for Neutron Transmutation Doping (NTD) process, the equations necessary for calculation of doped crystal resistivity (p) in terms of parameters of irradiation, such as time and neutron flux, are derived. The procedure for production of NTD-Si is described, important considerations are outlined and the advantages and applications are introduced. Also, an assessment is made of the practicality of using AEOI Research Reactor thermal neutron irradiation facilities for production of NTD-Si, which is concluded to be possible at reactor nominal operation conditions

  15. The development of the market for neutron transmutation doped silicon

    International Nuclear Information System (INIS)

    Herzer, H.; Vieweg-Gutberlet, G.

    1984-01-01

    Neutron transmutation doped silicon was introduced to the electronic device market in the 1975-1976 time period. Today, neutron transmutation doping is definitely a mature technology applied mainly to semiconductor power devices. There is no doubt that the power device sector will remain the major consumer of NTD silicon in the near future. This paper examines the possible application of NTD silicon to other areas of the semiconductor market, and concludes that the need for NTD silicon will continue to grow and will expand into other applications. Consequently, unless new reactor capacities become available by the end of the decade, NTD silicon applications will probably be limited mainly to power and sensor devices

  16. Analysis of advanced european nuclear fuel cycle scenarios including transmutation and economical estimates

    International Nuclear Information System (INIS)

    Merino Rodriguez, I.; Alvarez-Velarde, F.; Martin-Fuertes, F.

    2013-01-01

    In this work the transition from the existing Light Water Reactors (LWR) to the advanced reactors is analyzed, including Generation III+ reactors in a European framework. Four European fuel cycle scenarios involving transmutation options have been addressed. The first scenario (i.e., reference) is the current fleet using LWR technology and open fuel cycle. The second scenario assumes a full replacement of the initial fleet with Fast Reactors (FR) burning U-Pu MOX fuel. The third scenario is a modification of the second one introducing Minor Actinide (MA) transmutation in a fraction of the FR fleet. Finally, in the fourth scenario, the LWR fleet is replaced using FR with MOX fuel as well as Accelerator Driven Systems (ADS) for MA transmutation. All scenarios consider an intermediate period of GEN-III+ LWR deployment and they extend for a period of 200 years looking for equilibrium mass flows. The simulations were made using the TR-EVOL code, a tool for fuel cycle studies developed by CIEMAT. The results reveal that all scenarios are feasible according to nuclear resources demand (U and Pu). Concerning to no transmutation cases, the second scenario reduces considerably the Pu inventory in repositories compared to the reference scenario, although the MA inventory increases. The transmutation scenarios show that elimination of the LWR MA legacy requires on one hand a maximum of 33% fraction (i.e., a peak value of 26 FR units) of the FR fleet dedicated to transmutation (MA in MOX fuel, homogeneous transmutation). On the other hand a maximum number of ADS plants accounting for 5% of electricity generation are predicted in the fourth scenario (i.e., 35 ADS units). Regarding the economic analysis, the estimations show an increase of LCOE (Levelized cost of electricity) - averaged over the whole period - with respect to the reference scenario of 21% and 29% for FR and FR with transmutation scenarios respectively, and 34% for the fourth scenario. (authors)

  17. Transmutation of radioactive nuclear waste

    International Nuclear Information System (INIS)

    Toor, A; Buck, R

    2000-01-01

    Lack of a safe disposal method for radioactive nuclear waste (RNW) is a problem of staggering proportion and impact. A typical LWR fission reactor will produce the following RNW in one year: minor actinides (i.e. 237 Np, 242-243 Am, 243-245 Cm) ∼40 kg, long-lived fission products (i.e, 99 Tc, 93 Zr, 129 I, 135 Cs) ∼80 kg, short lived fission products (e.g. 137 Cs, 90 Sr) ∼50kg and plutonium ∼280 kg. The total RNW produced by France and Canada amounts to hundreds of metric tonnes per year. Obtaining a uniform policy dealing with RNW has been blocked by the desire on one hand to harvest the energy stored in plutonium to benefit society and on the other hand the need to assure that the stockpile of plutonium will not be channeled into future nuclear weapons. In the meantime, the quantity and handling of these materials represents a potential health hazard to the world's population and particularly to people in the vicinity of temporary storage facilities. In the U.S., societal awareness of the hazards associated with RNW has effectively delayed development of U.S. nuclear fission reactors during the past decade. As a result the U.S. does not benefit from the large investment of resources in this industry. Reluctance to employ nuclear energy has compelled our society to rely increasingly on non-reusable alternative energy sources; coal, oil, and natural gas. That decision has compounded other unresolved global problems such as air pollution, acid rain, and global warming. Relying on these energy sources to meet our increasing energy demands has led the U.S. to increase its reliance on foreign oil; a policy that is disadvantageous to our economy and our national security. RNW can be simplistically thought of as being composed of two principal components: (1) actinides with half lives up to 10 6 years and (2) the broad class of fission fragments with typical half lives of a few hundred years. One approach to the RNW storage problem has been to transmute the

  18. Partitioning and transmutation. Annual Report 1997

    Energy Technology Data Exchange (ETDEWEB)

    Enarsson, Aa; Landgren, A; Liljenzin, J O; Skaalberg, M; Spjuth, L [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Nuclear Chemistry

    1997-12-01

    The current research project on partitioning and transmutation at the Dept. of Nuclear Chemistry, CTH, has the primary objective to investigate separation processes useful in connection with transmutation of long-lived radionuclides in high level nuclear waste. Partitioning is necessary in order to recover and purify the elements before and after each irradiation in a P and T treatment. In order to achieve a high transmutation efficiency the chemical separation process used must have small losses to various waste streams. At present, only aqueous based separation processes are known to be able to achieve the high recovery and separation efficiencies necessary for a useful P and T process. Refs, figs, tabs.

  19. Transmutation doping of silicon solar cells

    Science.gov (United States)

    Wood, R. F.; Westbrook, R. D.; Young, R. T.; Cleland, J. W.

    1977-01-01

    Normal isotopic silicon contains 3.05% of Si-30 which transmutes to P-31 after thermal neutron absorption, with a half-life of 2.6 hours. This reaction is used to introduce extremely uniform concentrations of phosphorus into silicon, thus eliminating the areal and spatial inhomogeneities characteristic of chemical doping. Annealing of the lattice damage in the irradiated silicon does not alter the uniformity of dopant distribution. Transmutation doping also makes it possible to introduce phosphorus into polycrystalline silicon without segregation of the dopant at the grain boundaries. The use of neutron transmutation doped (NTD) silicon in solar cell research and development is discussed.

  20. Actinide and fission product separation and transmutation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-07-01

    The second international information exchange meeting on actinide and fission product separation and transmutation, took place in Argonne National Laboratory in Illinois United States, on 11-13 November 1992. The proceedings are presented in four sessions: Current strategic system of actinide and fission product separation and transmutation, progress in R and D on partitioning processes wet and dry, progress in R and D on transmutation and refinements of neutronic and other data, development of the fuel cycle processes fuel types and targets. (A.L.B.)

  1. Transmutation of long-lived fission products

    International Nuclear Information System (INIS)

    Abrahams, K.

    1994-01-01

    The time-accumulated dose related to technetium dominates the leakage doses in most scenarios for imperturbed geological disposal. If human intrusion into geologically stable repositories or other disturbances is taken into account, the actinides determine the maximum value of the expected individual dose rates of shorter storage times. Therefore actinides dominate the discussion on transmutation of nuclear waste. In principle current LWRs could be used for a massive transmutation of Tc and perhaps I. Fast reactors and HWRs have attractive potential with respect to transmutation in moderated assemblies. HWRs like CANDU have easy refuelling possibilities. (orig.)

  2. Partitioning and transmutation of transuranium elements under nuclear phase-out conditions. Technically reliable?; Transmutation von Transuranen unter den Randbedingungen des Kernenergieausstiegs. Technisch machbar?

    Energy Technology Data Exchange (ETDEWEB)

    Merk, Bruno; Rohde, Ulrich [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany)

    2016-04-15

    The German government has decided for the nuclear phase out, but a decision on a strategy for the management of the highly radioactive waste is not defined yet. Partitioning and Transmutation (P and T) could be considered as a technological option in the process of management of highly radioactive waste management, therefore a wide study has been conducted. In this group objectives for P and T and the boundary conditions of the phase out have been discussed. The fulfillment of the given objectives is analyzed using simulations of molten salt reactors with fast neutron spectrum. It is shown that the efficient transmutation of all existing transuranium isotopes would be possible in 3 to 4 reactors in a time frame of 45 to 60 years. Further on a detailed balance of different isotopic inventories is given to allow a deeper understanding of the processes during transmutation.

  3. Transmutation studies in France, R and D programme on fuels and targets

    International Nuclear Information System (INIS)

    Boidron, M.; Chauvin, N.; Garnier, J.C.; PIllon, S.; Vambenepe, G.

    2001-01-01

    For the management of high level and long-lived radioactive waste, a large and continuous research and development effort is carried out in France, to provide a wide range of scientific and technical alternatives along three lines, partitioning and transmutation, disposal in deep geological formations and long term interim surface or subsurface storage. For the line one, and in close link with the partitioning studies, research is carried out to evaluate the transmutation potential of long-lived waste in appropriate reactors configurations (scenarios) relying on current technologies as well as innovative reactors. Performed to evaluate the theoretical feasibility of the Pu consumption and waste transmutation from the point of view of the reactor cores physics to reach the equilibrium of the material fluxes (i.e. consumption = production) and of the isotopic compositions of the fuels, these studies insure the 'scientific' part of the transmutation feasibility. For the technological part of the feasibility of waste transmutation in reactors, a large programme on fuel development is underway. This includes solutions based on the advanced concepts for plutonium fuels in PWR and the development of specific fuels and targets for transmutation in fast reactors in the critical or sub-critical state. For the waste transmutation in fast reactors, an important programme has been launched to develop specific fuels and targets with experiments at various stages of preparation in different experimental reactors including Phenix. Composite fuels as well as particle fuels are considered. This programme is presented and recent results concerning the preparation of the experiments, the characterisation of the compounds properties, the thermal and mechanical modelling and the behaviour of U free fuels are given. (author)

  4. Program on fuels for transmutation: present status and prospects

    Energy Technology Data Exchange (ETDEWEB)

    Rouault, J.; Garnier, J.C.; Chauvin, N.; Pillon, S. [CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. d' Etudes des Combustibles

    2001-07-01

    The performance calculations of appropriate fuel cycle facilities and reactor configurations (scenarios) relying on current reactor technologies (Pressurized Water Reactor and Fast neutrons Reactors) or innovative reactors (Accelerator Driven Systems) have proved the scientific feasibility of some P and T strategies. To insure the technological feasibility, a large program on fuels and materials is underway, including advanced concepts for PWRs and the development of specific targets (dispersed fuels) for transmutation in Fast Reactors. Experiments in different reactors including Phenix are being prepared. The program is presented and recent results are given. (author)

  5. Program on fuels for transmutation: present status and prospects

    International Nuclear Information System (INIS)

    Rouault, J.; Garnier, J.C.; Chauvin, N.; Pillon, S.

    2001-01-01

    The performance calculations of appropriate fuel cycle facilities and reactor configurations (scenarios) relying on current reactor technologies (Pressurized Water Reactor and Fast neutrons Reactors) or innovative reactors (Accelerator Driven Systems) have proved the scientific feasibility of some P and T strategies. To insure the technological feasibility, a large program on fuels and materials is underway, including advanced concepts for PWRs and the development of specific targets (dispersed fuels) for transmutation in Fast Reactors. Experiments in different reactors including Phenix are being prepared. The program is presented and recent results are given. (author)

  6. Classical Dimensional Transmutation and Confinement

    CERN Document Server

    Dvali, Gia; Mukhanov, Slava

    2011-01-01

    We observe that probing certain classical field theories by external sources uncovers the underlying renormalization group structure, including the phenomenon of dimensional transmutation, at purely-classical level. We perform this study on an example of $\\lambda\\phi^{4}$ theory and unravel asymptotic freedom and triviality for negative and positives signs of $\\lambda$ respectively. We derive exact classical $\\beta$ function equation. Solving this equation we find that an isolated source has an infinite energy and therefore cannot exist as an asymptotic state. On the other hand a dipole, built out of two opposite charges, has finite positive energy. At large separation the interaction potential between these two charges grows indefinitely as a distance in power one third.

  7. FCRD Transmutation Fuels Handbook 2015

    Energy Technology Data Exchange (ETDEWEB)

    Janney, Dawn Elizabeth [Idaho National Lab. (INL), Idaho Falls, ID (United States); Papesch, Cynthia Ann [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    Transmutation of minor actinides such as Np, Am, and Cm in spent nuclear fuel is of international interest because of its potential for reducing the long-term health and safety hazards caused by the radioactivity of the spent fuel. One important approach to transmutation (currently being pursued by the DOE Fuel Cycle Research & Development Advanced Fuels Campaign) involves incorporating the minor actinides into U-Pu-Zr alloys, which can be used as fuel in fast reactors. It is, therefore, important to understand the properties of U-Pu-Zr alloys, both with and without minor actinide additions. In addition to requiring extensive safety precautions, alloys containing U and Pu are difficult to study for numerous reasons, including their complex phase transformations, characteristically sluggish phase-transformation kinetics, tendency to produce experimental results that vary depending on the histories of individual samples, and sensitivity to contaminants such as oxygen in concentrations below a hundred parts per million. Many of the experimental measurements were made before 1980, and the level of documentation for experimental methods and results varies widely. It is, therefore, not surprising that little is known with certainty about U-Pu-Zr alloys, and that general acceptance of results sometimes indicates that there is only a single measurement for a particular property. This handbook summarizes currently available information about U, Pu, Zr, and alloys of two or three of these elements. It contains information about phase diagrams and related information (including phases and phase transformations); heat capacity, entropy, and enthalpy; thermal expansion; and thermal conductivity and diffusivity. In addition to presenting information about materials properties, it attempts to provide information about how well the property is known and how much variation exists between measurements. Although the handbook includes some references to publications about modeling

  8. Actinide and fission product partitioning and transmutation. Status and assessment report

    International Nuclear Information System (INIS)

    1999-01-01

    Implementation and partitioning technology is intended to reduce the inventory of actinides and long-lived fission products in nuclear waste. Such technology can decrease hazards of pre-disposal waste management and of physical disturbance of a waste repository. An authoritative analysis is given of the technical, radiological and economic consequences of the proposed partitioning and transmutation operations on the present and future fuel cycle options. The report is subdivided to a general part for non-specialist readers, and to a technical systems analysis discussing issues on partitioning, transmutation and long-term waste management. (R.P.)

  9. Transmutation: The Roots of the Dream.

    Science.gov (United States)

    Karpenko, Vladimir

    1995-01-01

    Examines the history of alchemical attempts at transmutation and classifies them by differing approaches and techniques. Traces the development of alchemy in Asia, Europe, and the Middle East, and compares alchemy with craftsmanship. (18 references) (DDR)

  10. Transmutation of Tc-99 in fission reactors

    International Nuclear Information System (INIS)

    Kloosterman, J.L.; Li, J.M.

    1994-12-01

    Transmutation of Tc-99 in three different types of fission reactors is considered: A heavy water reactor, a fast reactor and a light water reactor. For the first type a CANDU reactor was chosen, for the second one the Superphenix reactor, and for the third one a PWR. The three most promising Tc-99 transmuters are the fast reactor with a moderated subassembly in the inner core, a fast reactor with a non-moderated subassembly in the inner core, and a heavy water reactor with Tc-99 target pins in the moderator between the fuel bundles. Transmutation half lives of 15 to 25 years can be achieved, with yearly transmuted Tc-99 masses of about 100 kg at a thermal reactor power of about 3000 MW. (orig.)

  11. Separation of actinides and their transmutation

    International Nuclear Information System (INIS)

    Bouchard, M.; Bathelier, M.; Cousin, M.

    1978-08-01

    Neutron irradiation of long-half-life actinides for transmutation into elements with shorter half-life is investigated as a means to reduce the long-term hazards of these actinides. The effectiveness of the method is analysed by applying it to fission product solutions from the first extraction cycle of fuel reprocessing plants. Basic principles, separation techniques and transmutation efficiencies are studied and discussed in detail

  12. Reduction and resource recycling of high-level radioactive wastes through nuclear transmutation with PHITS code

    International Nuclear Information System (INIS)

    Fujita, Reiko

    2017-01-01

    In the ImPACT program of the Cabinet Office, programs are underway to reduce long-lived fission products (LLFP) contained in high-level radioactive waste through nuclear transmutation, or to recycle/utilize useful nuclear species. This paper outlines this program and describes recent achievements. This program consists of five projects: (1) separation/recovery technology, (2) acquisition of nuclear transmutation data, (3) nuclear reaction theory model and simulation, (4) novel nuclear reaction control and development of elemental technology, and (5) discussions on process concept. The project (1) develops a technology for dissolving vitrified solid, a technology for recovering LLFP from high-level waste liquid, and a technology for separating odd and even lasers. Project (2) acquires the new nuclear reaction data of Pd-107, Zr-93, Se-79, and Cs-135 using RIKEN's RIBF or JAEA's J-PARC. Project (3) improves new nuclear reaction theory and structural model using the nuclear reaction data measured in (2), improves/upgrades nuclear reaction simulation code PHITS, and proposes a promising nuclear transmutation pathway. Project (4) develops an accelerator that realizes the proposed transmutation route and its elemental technology. Project (5) performs the conceptual design of the process to realize (1) to (4), and constructs the scenario of reducing/utilizing high-level radioactive waste to realize this design. (A.O.)

  13. Partitioning and Transmutation. Annual Report 2003

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, S.; Ekberg, C.; Liljenzin, J.O.; Nilsson, M.; Skarnemark, G. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Materials and Surface Chemistry

    2004-02-01

    The long-lived elements in the spent nuclear fuels are mostly actinides, some fission products and activation products. To be able to destroy the long-lived elements in a transmutation process they must be separated from the rest of the spent nuclear fuel. The most difficult separations to obtain are the one between trivalent actinides and lanthanides, due to their relatively similar chemical properties, and the one between different actinides themselves. Solvent extraction is an efficient and well-known method that makes it possible to obtain separation factors that fulfil the highly set demands on purity of the separated phases and on small losses. Chalmers Univ. of Technology is involved in research regarding the separation of actinides and lanthanides and between the actinides themselves as a partner in the European Union project PARTNEW. This project was a part of the fifth framework programme and was concluded in September 2003, but the work is continued in the sixth framework programme under the acronym EUROPART (start January 2004). We mainly cooperate with the Univ. of Reading, which send us new nitrogen containing ligands for evaluation of their extraction properties. The main focus is to understand the basic chemistry of these systems but also to study some process behaviour for future full-scale plants.

  14. Partitioning and Transmutation. Annual Report 2003

    International Nuclear Information System (INIS)

    Andersson, S.; Ekberg, C.; Liljenzin, J.O.; Nilsson, M.; Skarnemark, G.

    2004-02-01

    The long-lived elements in the spent nuclear fuels are mostly actinides, some fission products and activation products. To be able to destroy the long-lived elements in a transmutation process they must be separated from the rest of the spent nuclear fuel. The most difficult separations to obtain are the one between trivalent actinides and lanthanides, due to their relatively similar chemical properties, and the one between different actinides themselves. Solvent extraction is an efficient and well-known method that makes it possible to obtain separation factors that fulfil the highly set demands on purity of the separated phases and on small losses. Chalmers Univ. of Technology is involved in research regarding the separation of actinides and lanthanides and between the actinides themselves as a partner in the European Union project PARTNEW. This project was a part of the fifth framework programme and was concluded in September 2003, but the work is continued in the sixth framework programme under the acronym EUROPART (start January 2004). We mainly cooperate with the Univ. of Reading, which send us new nitrogen containing ligands for evaluation of their extraction properties. The main focus is to understand the basic chemistry of these systems but also to study some process behaviour for future full-scale plants

  15. Partitioning and transmutation. Annual Report 2001

    International Nuclear Information System (INIS)

    Andersson, S.; Ekberg, C.; Enarsson, Aa.; Liljenzin, J.O.; Mesmin, C.; Nilsson, M.; Skarnemark, G.

    2002-01-01

    The project Partition and Transmutation (PandT) at the department of Nuclear Chemistry, Chalmers University of Technology, is aimed at investigating new solvent extraction reagents and new processes for the separation of different chemical elements needed in a possible future PandT process. During the year 2001, the work has mainly been in five areas: 1) method development and testing of means to determine protonation constants of two model reagents (2,2':6',2''-terpyridine and 2,4,6-tri-(2-pyridyl)-1,3,5-triazine), 2) modelling the influence of organic phase composition on the extraction of trivalent metals (Pm, Am, Cm), 3) determination of the density and refractive index of 2,2':6',2''-terpyridine, 4) the extraction behaviour of four new nitrogen based reagents (2,6-bis-(benzoxazolyl)-4- dodecyloxylpyridine, 2,6-bis-(benzimidazol-2-yl)-4-dodecyloxylpyridine, 2,6-bis-( benzimidazolyl)-pyridine, 2,4-bis-(3,5-dimethylpyrazol-1-yl)-6-methoxy-1,3,5-triazine), and 5) a study of the effect of temperature on the synergistic extraction of Eu and Am with 2,2':6',2''-terpyridine or 2,4,6-tri-(2-pyridyl)-1,3,5-triazine in the presence of 2 -bromodecanoic acid dissolved in a series of organic diluents

  16. Partitioning and transmutation. Annual Report 2001

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, S.; Ekberg, C.; Enarsson, Aa.; Liljenzin, J.O.; Mesmin, C.; Nilsson, M.; Skarnemark, G. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Nuclear Chemistry

    2002-01-01

    The project Partition and Transmutation (PandT) at the department of Nuclear Chemistry, Chalmers University of Technology, is aimed at investigating new solvent extraction reagents and new processes for the separation of different chemical elements needed in a possible future PandT process. During the year 2001, the work has mainly been in five areas: 1) method development and testing of means to determine protonation constants of two model reagents (2,2':6',2''-terpyridine and 2,4,6-tri-(2-pyridyl)-1,3,5-triazine), 2) modelling the influence of organic phase composition on the extraction of trivalent metals (Pm, Am, Cm), 3) determination of the density and refractive index of 2,2':6',2''-terpyridine, 4) the extraction behaviour of four new nitrogen based reagents (2,6-bis-(benzoxazolyl)-4- dodecyloxylpyridine, 2,6-bis-(benzimidazol-2-yl)-4-dodecyloxylpyridine, 2,6-bis-( benzimidazolyl)-pyridine, 2,4-bis-(3,5-dimethylpyrazol-1-yl)-6-methoxy-1,3,5-triazine), and 5) a study of the effect of temperature on the synergistic extraction of Eu and Am with 2,2':6',2''-terpyridine or 2,4,6-tri-(2-pyridyl)-1,3,5-triazine in the presence of 2 -bromodecanoic acid dissolved in a series of organic diluents.

  17. Accelerator transmutation of wastes (ATW) - Prospects and safety

    International Nuclear Information System (INIS)

    Gudowski, W.; Pettersson, Kjell; Thedeen, T.

    1993-11-01

    Accelerator transmutation of nuclear waste (ATW) has during last years gained interest as a technologically possible method to transform radioactive wastes into short-lived or stable isotopes. Different ATW-projects are described from the physical and technical point of view. The principal sketch of the safety analysis of the ATW-idea is given. Due to the very limited technical data for existing ATW-projects the safety analysis can cause some risks for the health and environmental safety for the closest environment. General public should not be affected. 35 refs, 22 figs, 4 tabs

  18. Impact of partitioning and transmutation on repository design

    International Nuclear Information System (INIS)

    Carter, D. 'Buzz' Savage

    2004-01-01

    The U.S. Department of Energy's Advanced Fuel Cycle Initiative (AFCI) program is investigating spent nuclear fuel treatment technologies that have the potential to improve the performance of the proposed geologic repository at Yucca Mountain. Separating actinides and selected fission products from spent fuel, storing some of them as low level waste and transmuting them in thermal and/or fast reactors has the potential to reduce the volume, short and long-term heat load and radiotoxicity of the high level waste destined for the repository, effectively increasing its capacity by a factor of 50 or more above the current legislative limit. (author)

  19. Neutron Transmutation Doping of Silicon at Research Reactors

    International Nuclear Information System (INIS)

    2012-05-01

    This publication details the processes and history of neutron transmutation doping of silicon, particularly its commercial pathway, followed by the requirements for a technologically modern and economically viable production scheme and the current trends in the global market for semiconductor products. It should serve as guidelines on the technical requirements, involved processes and required quality standards for the transmission of sound practices and advice for research reactor managers and operators planning commercial scale production of silicon. Furthermore, a detailed and specific database of most of the world's research reactor facilities in this domain is included, featuring their characteristics for irradiation capabilities, associated production capacities and processing.

  20. First results and future trends for the transmutation of long-lived radioactive wastes

    International Nuclear Information System (INIS)

    Prunier, C.; Salvatores, M.; Guerin, Y.; Zaetta, A.

    1993-01-01

    In the frame of the CEA SPIN program, a project has been set-up at the Direction of Nuclear Reactors of CEA, to study the transmutation of long-lived radioactive products (both minor actinides and fission products) resulting from the operation of current nuclear power plants. The program is focused on: transmutation in minor actinides (Np, Am) in fission reactors of known technology (both of the PWR or the fast reactor type), using the so-called ''homogeneous'' (mixed with Uranium or Uranium-Plutonium), and ''heterogeneous'' (mixed with inert matrices) recycling modes for both type of reactors. Transmutation studies in dedicated devices (both fission reactors with actinide/plutonium fuel or with high thermal flux, and particle accelerator-based systems). Fuel studies related to both homogeneous and heterogeneous recycling modes in fission reactors. For the homogeneous recycling mode, some experimental irradiations results are available from past PHENIX programs. For the heterogeneous mode, very limited experimental results are available, and new theoretical and experimental work is underway on the use of appropriate inert matrices. Basic data studies to assess the quality of existing nuclear data for fission reactor transmutation studies, future data needs of relevance, and model/data developments needed for accelerator-based systems. Strategy studies, to evaluate the consequences of the different transmutation options on the fuel cycle, according to different scenarios of nuclear power development. 7 refs., 3 figs., 5 tabs

  1. Incentives and recent proposals for partitioning and transmutation in the United States

    International Nuclear Information System (INIS)

    Donovan, T.J.

    1995-05-01

    Partitioning and transmutation (P-T) is perhaps the most elegant means of high level waste disposal. Currently, the cost of fuel obtained from reprocessing spent fuel exceeds the cost of fuel obtained by mining. This has resulted in the once through fuel cycle dominating the US nuclear industry. Despite this fact P-T continues to be examined and debated by the US as well as abroad. The US first seriously considered P-T between approximately 1976 and 1982 but rejected the concept in favor of reprocessing. More recently, since about 1989, as a result of the once through fuel cycle and the growing problems of waste disposal, studies concerning P-T have resumed. This essay will seek to outline the incentives and goals of partitioning and transmutation as it would apply to the disposal of spent fuel in the US. Recent proposals by various US national laboratories for implementing partitioning and transmutation as a high level waste management and disposal device will also be discussed. The review will seek to examine the technical concepts utilized in each of the proposals and their feasibility. The major focus of this essay will be the transmutation methods themselves, while the partitioning methods will be discussed only briefly. This is because of the fact that partitioning methods fall under reprocessing as an already fairly well established and accepted technology while feasible methods for transmutation are still being advanced

  2. Method to Reduce Long-lived Fission Products by Nuclear Transmutations with Fast Spectrum Reactors.

    Science.gov (United States)

    Chiba, Satoshi; Wakabayashi, Toshio; Tachi, Yoshiaki; Takaki, Naoyuki; Terashima, Atsunori; Okumura, Shin; Yoshida, Tadashi

    2017-10-24

    Transmutation of long-lived fission products (LLFPs: 79 Se, 93 Zr, 99 Tc, 107 Pd, 129 I, and 135 Cs) into short-lived or non-radioactive nuclides by fast neutron spectrum reactors without isotope separation has been proposed as a solution to the problem of radioactive wastes disposal. Despite investigation of many methods, such transmutation remains technologically difficult. To establish an effective and efficient transmutation system, we propose a novel neutron moderator material, yttrium deuteride (YD 2 ), to soften the neutron spectrum leaking from the reactor core. Neutron energy spectra and effective half-lives of LLFPs, transmutation rates, and support ratios were evaluated with the continuous-energy Monte Carlo code MVP-II/MVP-BURN and the JENDL-4.0 cross section library. With the YD 2 moderator in the radial blanket and shield regions, effective half-lives drastically decreased from 106 to 102 years and the support ratios reached 1.0 for all six LLFPs. This successful development and implementation of a transmutation system for LLFPs without isotope separation contributes to a the ability of fast spectrum reactors to reduce radioactive waste by consuming their own LLFPs.

  3. Research on transmutation and accelerator-driven systems at the Forschungszentrum Karlsruhe

    International Nuclear Information System (INIS)

    Knebel, J.U.; Heusener, G.

    2000-01-01

    Transmutation is considered a promising technology worldwide for significantly reducing the amount and, thereby, the long-term radiotoxicity of high active waste (HAW) produced by the operation of nuclear power plants such as light water reactors (LWR). The maximum reduction of radiotoxicity could be by a factor of about 100. Transmutation is thus an alternative to the direct deposition of large volumes of highly radioactive waste. Transmutation presents the possibility of closing the fuel cycle including the minor actinides. Plutonium, minor actinides and long-lived fission products can be transmuted in a so called Accelerator Driven Sub-critical System (ADS), which consists of an accelerator, a target module and a subcritical blanket. This paper describes the work performed at Forschungszentrum Karlsruhe which is critically evaluating an ADS mainly with respect to its potential for transmuting minor actinides, to its feasibility and to safety aspects. The work is being done in the area of core design, neutronics, safety, system analyses, materials and corrosion. (orig.) [de

  4. Establishment of bases for joint study and cooperation on long-lived radionuclides transmutation between Korea and Russia

    International Nuclear Information System (INIS)

    Yoo, Jae Hyung; Lee, Byung Jik; Shim, Joon Bo; Choi, Chang Joo; Park, Won Seok; Song, Tae Young; Kim, Chang Kyu; Kil, Choong Sup

    2003-02-01

    The most important technical fields related to transmutation are partitioning of long-lived radionuclides and transmutation system to be used for converting them into short-lived or stable radionuclides. Technical cooperation between Korea and Russia is needed because Russia has an unequalled position in the fields of development of the fast reactors and pyrochemical processes around the world. The aim of this project is an establishment of bases for coordination on transmutation technology between Korea and Russia. State of the art of domestic and foreign countries upon partitioning of long-lived radionuclides, transmutation system and Gen IV development was summarized. Also, the 7th Korea-Russia joint coordination committee meeting and the 1st joint workshop were held as a result of this project. Technical fields and scheme on future cooperation between Korea and Russia were discussed and agreed in the course of the meetings

  5. Actinide transmutation in nuclear reactors

    International Nuclear Information System (INIS)

    Bultman, J.H.

    1995-01-01

    An optimization method is developed to maximize the burning capability of the ALMR while complying with all constraints imposed on the design for reliability and safety. This method leads to a maximal transuranics enrichment, which is being limited by constraints on reactivity. The enrichment can be raised by using the neutrons less efficiently by increasing leakage from the fuel. With the developed optimization method, a metallic and an oxide fueled ALMR were optimized. Both reactors perform equally well considering the burning of transuranics. However, metallic fuel has a much higher heat conductivity coefficient, which in general leads to better safety characteristics. In search of a more effective waste transmuter, a modified Molten Salt Reactor was designed. A MSR operates on a liquid fuel salt which makes continuous refueling possible, eliminating the issue of the burnup reactivity loss. Also, a prompt negative reactivity feedback is possible for an overmoderated reactor design, even when the Doppler coefficient is positive, due to the fuel expansion with fuel temperature increase. Furthermore, the molten salt fuel can be reprocessed based on a reduction process which is not sensitive to the short-lived spontaneously fissioning actinides. (orig./HP)

  6. Actinide transmutation in nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Bultman, J H

    1995-01-17

    An optimization method is developed to maximize the burning capability of the ALMR while complying with all constraints imposed on the design for reliability and safety. This method leads to a maximal transuranics enrichment, which is being limited by constraints on reactivity. The enrichment can be raised by using the neutrons less efficiently by increasing leakage from the fuel. With the developed optimization method, a metallic and an oxide fueled ALMR were optimized. Both reactors perform equally well considering the burning of transuranics. However, metallic fuel has a much higher heat conductivity coefficient, which in general leads to better safety characteristics. In search of a more effective waste transmuter, a modified Molten Salt Reactor was designed. A MSR operates on a liquid fuel salt which makes continuous refueling possible, eliminating the issue of the burnup reactivity loss. Also, a prompt negative reactivity feedback is possible for an overmoderated reactor design, even when the Doppler coefficient is positive, due to the fuel expansion with fuel temperature increase. Furthermore, the molten salt fuel can be reprocessed based on a reduction process which is not sensitive to the short-lived spontaneously fissioning actinides. (orig./HP).

  7. Transmutation and accelerator driven systems

    International Nuclear Information System (INIS)

    Shapira, J.P.

    2001-01-01

    Full text: Today, countries who are presently involved in nuclear energy are facing many challenges to maintain this option open for the next few decades. Among them, management of nuclear wastes produced in nuclear reactors and in fuel cycle operations has become a very strong environmental issue among the public. In most countries with sizeable commercial nuclear programs, deep geological disposal of ultimate highly active and long-lived nuclear wastes is considered as the reference long-term management scheme. But, many questions arise on the possibility to demonstrate that such wastes can be dealt in such a way as to protect the future generations and the environment. The characteristics of nuclear wastes, the various back end policies concerning spent fuels and the nuclear wastes long-term management options will be first described. Then recent proposals, based on transmutation, especially those using accelerator driven systems (ADS) and/or thorium will be presented. Finally, the possibility for the nuclear physics community to play a part in alleviating the nuclear wastes burden will be pointed out. (author)

  8. A review of reprocessing, partitioning, and transmutation of spent nuclear fuel and the implications for Canada

    International Nuclear Information System (INIS)

    Jackson, D.P.

    2006-01-01

    The current status of the reprocessing, partitioning, and transmutation of used nuclear fuel are reviewed in the context of assessing the possible application of these technologies to used CANDU fuel. The status of commercial reprocessing is briefly surveyed and recent progress in world R and D programs on the transmutation of FP's and actinides using Accelerator Driven Systems is summarized. The implications of reprocessing for Canada are explored from the point of view of a long strategy for managing used CANDU fuel in terms of the costs of initiating reprocessing domestically at some time in the future including public and occupational radiation doses, and the wastes generated. (author)

  9. Research on accelerator-driven transmutation and studies of experimental facilities

    Energy Technology Data Exchange (ETDEWEB)

    Takizuka, Takakazu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-11-01

    JAERI is carrying out R and Ds on accelerator-driven transmutation systems under the national OMEGA Program that aims at development of the technology to improve efficiency and safety in the final disposal of radioactive waste. Research facilities for accelerator-driven transmutation experiments are proposed to construct within the framework of the planned JAERI Neutron Science Project. This paper describes the features of the proposed accelerator-driven transmutation systems and their technical issues to be solved. A research facility plan under examination is presented. The plan is divided in two phases. In the second phase, technical feasibility of accelerator-driven systems will be demonstrated with a 30-60 MW experimental integrated system and with a 7 MW high-power target facility. (author)

  10. Analysis of advanced European nuclear fuel cycle scenarios including transmutation and economical estimates

    International Nuclear Information System (INIS)

    Merino Rodriguez, I.; Alvarez-Velarde, F.; Martin-Fuertes, F.

    2013-01-01

    Four European fuel cycle scenarios involving transmutation options have been addressed from a point of view of resources utilization and economics. Scenarios include the current fleet using Light Water Reactor (LWR) technology and open fuel cycle (as a reference scenario), a full replacement of the initial fleet with Fast Reactors (FR) burning U-Pu MOX fuel and two fuel cycles with Minor Actinide (MA) transmutation in a fraction of the FR fleet or in dedicated Accelerator Driven Systems (ADS).Results reveal that all scenarios are feasible according to nuclear resources demand. Regarding the economic analysis, the estimations show an increase of LCOE - averaged over the whole period - with respect to the reference scenario of 20% for Pu management scenario and around 35% for both transmutation scenarios respectively.

  11. Analysis of advanced European nuclear fuel cycle scenarios including transmutation and economical estimates

    Energy Technology Data Exchange (ETDEWEB)

    Merino Rodriguez, I.; Alvarez-Velarde, F.; Martin-Fuertes, F.

    2013-07-01

    Four European fuel cycle scenarios involving transmutation options have been addressed from a point of view of resources utilization and economics. Scenarios include the current fleet using Light Water Reactor (LWR) technology and open fuel cycle (as a reference scenario), a full replacement of the initial fleet with Fast Reactors (FR) burning U-Pu MOX fuel and two fuel cycles with Minor Actinide (MA) transmutation in a fraction of the FR fleet or in dedicated Accelerator Driven Systems (ADS).Results reveal that all scenarios are feasible according to nuclear resources demand. Regarding the economic analysis, the estimations show an increase of LCOE - averaged over the whole period - with respect to the reference scenario of 20% for Pu management scenario and around 35% for both transmutation scenarios respectively.

  12. An assessment of partition and transmutation against UK requirements for radioactive waste management

    International Nuclear Information System (INIS)

    Cummings, R.; Bush, R.P.; Crookshanks, C.E.

    1996-06-01

    A review of partition and transmutation is made with the objective of assessing the prospects for real financial of safety gains being made from the future use of partition and transmutation within the UK. The assessment covers all the civil high-level waste (HLW) from reprocessing spent fuel, civil spent fuels where there are currently no plans or contracts for reprocessing, and intermediate-level waste (ILW). Both existing stocks and future arisings are included. The impact is also analysed of considering all the non-military uranium and plutonium extant in the UK as candidates for transmutation. The assessment takes full account of advances in technology since the earlier UK studies and changes in the UK situation. (Author)

  13. Transmutation Theory in the Greek Alchemical Corpus.

    Science.gov (United States)

    Dufault, Olivier

    2015-08-01

    This paper studies transmutation theory as found in the texts attributed to Zosimus of Panopolis, "the philosopher Synesius," and "the philosopher Olympiodorus of Alexandria." It shows that transmutation theory (i.e. a theory explaining the complete transformation of substances) is mostly absent from the work attributed to these three authors. The text attributed to Synesius describes a gilding process, which is similar to those described by Pliny and Vitruvius. The commentary attributed to Olympiodorus is the only text studied here that describes something similar to a transmutation theory. It is unclear, however, if this was a theory of transmutation or if the writer meant something more like the literal meaning of the word "ekstrophē," a term used to describe the transformation of metals, as the "turning inside-out" of what is hidden in a substance. A similar conception of ekstrophē can be found in the works of Zosimus, who discussed transmutation to make an analogy with self-purification processes, which, from the perspective of his own anthropogony, consisted in the "turning inside-out" of the "inner human" (esō anthrōpos).

  14. J-PARC Transmutation Experimental Facility Programme

    International Nuclear Information System (INIS)

    Sasa, T.; Takei, H.; Saito, S.; Obayashi, H.; Nishihara, K.; Sugawara, T.; Iwamoto, H.; Yamaguchi, K.; Tsujimoto, K.; Oigawa, H.

    2015-01-01

    Since the Fukushima accident, nuclear transmutation is considered as an option for waste management. Japan Atomic Energy Agency proposes the transmutation of minor actinides (MA) in accelerator-driven system (ADS) using lead-bismuth eutectic alloy (LBE) as a spallation target and a coolant of subcritical core. To obtain the data required for ADS design, we plan the building of a transmutation experimental facility (TEF) is planned within the J-PARC project. TEF consists of an ADS target test facility (TEF-T), which will be installed 400 MeV-250 kW LBE spallation target for material irradiations, and a transmutation physics experimental facility (TEF-P), which set up a fast critical/subcritical assembly driven by low power proton beam with MA fuel to study ADS neutronics. At TEF-T, various research plans to use emitted neutrons from LBE target are discussed. The paper summarises a road-map to establish the ADS transmuter and latest design activities for TEF construction. (authors)

  15. Accelerator driven systems: Energy generation and transmutation of nuclear waste. Status report

    International Nuclear Information System (INIS)

    1997-11-01

    The report includes 31 individual contributions by experts from six countries and two international organizations in different areas of the accelerator driven transmutation technology intended to be applied for the treatment of highly radioactive waste and power generation. A separate abstract was prepared for each paper

  16. Accelerator Driven Systems (ADS) and transmutation of nuclear waste: Options and trends

    International Nuclear Information System (INIS)

    Stanculescu, A.

    2001-01-01

    The scope of the lecture is to present: 1) the rationale for transmutation, 2) the principle of ADS (spallation source, sub-critical blanket), 3) an overview of the main concepts being investigated and the ongoing R and D activities in this area, 4) development trends for this technology. (author)

  17. Accelerator driven systems: Energy generation and transmutation of nuclear waste. Status report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    The report includes 31 individual contributions by experts from six countries and two international organizations in different areas of the accelerator driven transmutation technology intended to be applied for the treatment of highly radioactive waste and power generation. A separate abstract was prepared for each paper. Refs, figs, tabs.

  18. Project EROS development of a new reactor concept with liquid fuel based on molten fluorides for reducing the amount and hazard of nuclear waste. Demonstration of promising P and T technology at small scale

    International Nuclear Information System (INIS)

    Hron, Miloslav J.

    2005-01-01

    There have been new tendencies of significant decreasing of amount and potential danger of nuclear waste getting up in the world of nuclear power during the last decade. The development of a convenient for those purposes technology has been in fact a rehabilitation of the so called nuclear transmutation technologies well known since the beginning of the first nuclear era, however, having been evaluated in those times as technologically and therefore even economically demanding to a non-acceptable level. Therefore, an attempt to develop new modifications of those technologies under different conditions at the end of the first nuclear era has been supposed to be promising and acceptable for an efficient closing of nuclear fuel cycle. These new modified transmutation technologies should make it possible to return a fuel component contained in nuclear fuel burned up in conventional nuclear reactors back to nuclear fuel cycle and to turn a significant part of long-lived nuclear waste (heavy metals from the transuranium region) to useful energy without rests and by an irreversible way. This could be, besides other positive features, a way, which according to our contemporary knowledge could exclude or at least minimize a non-desirable misusing of those nuclear materials. A series of national projects started at the end of 80s and beginning of 90s of the last century. For all of them, at least two should be mentioned: The Japanese project OMEGA and the ADTT project of LANL, USA. There has been such a project, which follows namely the tendencies established by Charles Bowman in LANL, started also in the Czech Republic in the middle of 90s. The project, latter on called SPHINX (SPent Hot fuel Incinerator by Neutron fluX), has focused on the development of a burner for spent fuel from PWRs having been operated in this and some other central European countries. The principle feature of the adopted transmuter concept has been, since the very beginning of the project, the

  19. The Transmuted Generalized Inverse Weibull Distribution

    Directory of Open Access Journals (Sweden)

    Faton Merovci

    2014-05-01

    Full Text Available A generalization of the generalized inverse Weibull distribution the so-called transmuted generalized inverse Weibull distribution is proposed and studied. We will use the quadratic rank transmutation map (QRTM in order to generate a flexible family of probability distributions taking the generalized inverseWeibull distribution as the base value distribution by introducing a new parameter that would offer more distributional flexibility. Various structural properties including explicit expressions for the moments, quantiles, and moment generating function of the new distribution are derived. We propose the method of maximum likelihood for estimating the model parameters and obtain the observed information matrix. A real data set are used to compare the flexibility of the transmuted version versus the generalized inverse Weibull distribution.

  20. Actinide and fission product separation and transmutation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-07-01

    The first international information exchange meeting on actinide and fission product separation and transmutation, took place in Mito in Japan, on 6-8 November 1990. It starts with a number of general overview papers to give us some broad perspectives. Following that it takes a look at some basic facts about physics and about the quantities of materials it is talking about. Then it proceeds to some specific aspects of partitioning, starting with evolution from today commercially applied processes and going on to other possibilities. At the end of the third session it takes a look at the significance of partitioning and transmutation of actinides before it embarks on two sessions on transmutation, first in reactors and second in accelerators. The last session is designed to throw back into the discussion the main points which need to be looked at when considering future work in this area. (A.L.B.)

  1. Actinide and fission product separation and transmutation

    International Nuclear Information System (INIS)

    1991-01-01

    The first international information exchange meeting on actinide and fission product separation and transmutation, took place in Mito in Japan, on 6-8 November 1990. It starts with a number of general overview papers to give us some broad perspectives. Following that it takes a look at some basic facts about physics and about the quantities of materials it is talking about. Then it proceeds to some specific aspects of partitioning, starting with evolution from today commercially applied processes and going on to other possibilities. At the end of the third session it takes a look at the significance of partitioning and transmutation of actinides before it embarks on two sessions on transmutation, first in reactors and second in accelerators. The last session is designed to throw back into the discussion the main points which need to be looked at when considering future work in this area. (A.L.B.)

  2. Partitioning and transmutation. Annual Report 1999

    Energy Technology Data Exchange (ETDEWEB)

    Ekberg, C.; Enarsson, Aa.; Gustavsson, C.; Landgren, A.; Liljenzin, J.O.; Spjuth, L. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Nuclear Chemistry

    2000-05-01

    The current research project on partitioning and transmutation at the Dept. of Nuclear Chemistry, CTH, has the primary objective to investigate separation processes useful in connection with transmutation of long-lived radionuclides in high level nuclear waste. Partitioning is necessary in order to recover and purify the elements before and after each irradiation in a P and T treatment. In order to achieve a high transmutation efficiency the chemical separation process used must have small losses to various waste streams. At present, only aqueous based separation processes are known to be able to achieve the high recovery and separation efficiencies necessary for a useful P and T process. During 1999 two of the three PhD students in this project have finalised their dissertations. Lena Spjuth has been working with oligo pyridines, triazines and malonamides; Anders Landgren has studied Aliquat-336 and redox kinetics. Two papers, included as appendices in the report, have been separately indexed.

  3. Partitioning and transmutation. Annual Report 1999

    International Nuclear Information System (INIS)

    Ekberg, C.; Enarsson, Aa.; Gustavsson, C.; Landgren, A.; Liljenzin, J.O.; Spjuth, L.

    2000-05-01

    The current research project on partitioning and transmutation at the Dept. of Nuclear Chemistry, CTH, has the primary objective to investigate separation processes useful in connection with transmutation of long-lived radionuclides in high level nuclear waste. Partitioning is necessary in order to recover and purify the elements before and after each irradiation in a P and T treatment. In order to achieve a high transmutation efficiency the chemical separation process used must have small losses to various waste streams. At present, only aqueous based separation processes are known to be able to achieve the high recovery and separation efficiencies necessary for a useful P and T process. During 1999 two of the three PhD students in this project have finalised their dissertations. Lena Spjuth has been working with oligo pyridines, triazines and malonamides; Anders Landgren has studied Aliquat-336 and redox kinetics. Two papers, included as appendices in the report, have been separately indexed

  4. Accelerator transmutation of waste economics

    International Nuclear Information System (INIS)

    Krakowski, R.A.

    1995-01-01

    A parametric systems model of the accelerator transmutation of (nuclear) waste (ATW) is used to examine key system trade-offs and design drivers on the basis of unit costs. This model is applied primarily to a fluid-fuel blanket concept for an ATW that generates net electric power from the fissioning of spent commercial reactor fuel. An important goal of this study is the development of essential parametric trade-offs to aid in any future conceptual engineering design of an ATW that would burn spent commercial fuel and generate net electric power. As such, costing procedures and methodologies used to estimate and compare advanced nuclear power generation systems are applied. The cost of electricity required by an electrical power-generating ATW fueled with spent commercial fuels is generally found to be above that projected for other advanced fission power plants. The accelerator and the chemical plant equipment cost accounts are quantitatively identified as main cost drivers, with the capital cost of radio-frequency power dominating the former. Significant reductions of this cost differential are possible by increased blanket neutron multiplication, increased plant capacity, or increased thermal-to-electric conversion efficiency. The benefits of reduced long-lived fission products and spent commercial fuel actinides provided by the ATW approach translate into a less tangible source of revenue to be provided by a charge that must be levied on the client fission power plants being serviced. The main goal of this study, however, is not a direct cost comparison but is instead a quantitative determination of cost-based sensitivity of key cost drivers and operational modes for an ATW concept that would address the growing spent commercial fuel problem; parametric results presented focus on this goal, and a specific ATW ''straw man'' is given to achieve this main objective

  5. Ma and LLFP transmutation in MTPs and ADSs: the typical SCK.CEN case of transmutations in BR2 and Myrrha. Position with respect to the global needs

    International Nuclear Information System (INIS)

    Raedt, Ch. de; Verboomen, B.; Aoust, Th.; Malambu, E.; Beeckmans de West-Meerbeeck, A.; Kupschus, P.; Benoit, Ph.; Ait Abderrahim, H.; Baetsle, L.H.

    2001-01-01

    The proposed paper indicates the performances, in the domain of the transmutation of MAs and LLFPs, of the high flux materials testing reactor BR2 located at SCK-CEN, and compares them with those of the multipurpose ADS MYRRHA, the pre-design of which is at the present time being finalized at SCK-CEN. With thermal neutron fluxes reaching 9.10 14 n/cm 2 s in thermal positions and 4.10 14 n/cm 2 s in the reactor core and, in the latter position, a fast flux (E>0.1 MeV) of 7.10 14 n/cm 2 s, BR2 has a transmutation throughput of the order of 1.5 kg Np+Am per 200 EFPD. This capacity can be used for investigating at the technological scale the transmutation of MAs and LLFPs in a thermal neutron spectrum with a high contribution of epithermal and fast neutrons. The metallurgical behaviour of the targets can hence be studied. In MYRRHA, higher fast fluxes are expected to be attained in irradiation positions near the spallation source, viz fast fluxes (E>0.75 MeV) up to 10. 15 n/cm 2 s. One of the purposes of MYRRHA is therefore its utilisation for the investigation of actinide transmutation feasibility with ADSs. (author)

  6. On fusion driven systems (FDS) for transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Aagren, O (Uppsala Univ., Aangstroem laboratory, div. of electricity, Uppsala (Sweden)); Moiseenko, V.E. (Inst. of Plasma Physics, National Science Center, Kharkov Inst. of Physics and Technology, Kharkov (Ukraine)); Noack, K. (Forschungszentrum Dresden-Rossendorf (Germany))

    2008-10-15

    This report gives a brief description of ongoing activities on fusion driven systems (FDS) for transmutation of the long-lived radioactive isotopes in the spent nuclear waste from fission reactors. Driven subcritical systems appears to be the only option for efficient minor actinide burning. Driven systems offer a possibility to increase reactor safety margins. A comparatively simple fusion device could be sufficient for a fusion-fission machine, and transmutation may become the first industrial application of fusion. Some alternative schemes to create strong fusion neutron fluxes are presented

  7. On fusion driven systems (FDS) for transmutation

    International Nuclear Information System (INIS)

    Aagren, O; Moiseenko, V.E.; Noack, K.

    2008-10-01

    This report gives a brief description of ongoing activities on fusion driven systems (FDS) for transmutation of the long-lived radioactive isotopes in the spent nuclear waste from fission reactors. Driven subcritical systems appears to be the only option for efficient minor actinide burning. Driven systems offer a possibility to increase reactor safety margins. A comparatively simple fusion device could be sufficient for a fusion-fission machine, and transmutation may become the first industrial application of fusion. Some alternative schemes to create strong fusion neutron fluxes are presented

  8. Transmuted New Generalized Inverse Weibull Distribution

    Directory of Open Access Journals (Sweden)

    Muhammad Shuaib Khan

    2017-06-01

    Full Text Available This paper introduces the transmuted new generalized inverse Weibull distribution by using the quadratic rank transmutation map (QRTM scheme studied by Shaw et al. (2007. The proposed model contains the twenty three lifetime distributions as special sub-models. Some mathematical properties of the new distribution are formulated, such as quantile function, Rényi entropy, mean deviations, moments, moment generating function and order statistics. The method of maximum likelihood is used for estimating the model parameters. We illustrate the flexibility and potential usefulness of the new distribution by using reliability data.

  9. Fuels and materials for transmutation. A status report

    International Nuclear Information System (INIS)

    2005-01-01

    The safe and efficient management of spent fuel from the operation of commercial nuclear power plants is an important issue. Worldwide, more than 250 000 tons of spent fuel from reactors currently operating will require disposal. These numbers account for only high-level radioactive waste generated by present-day power reactors. Nearly all issues related to risks to future generations arising from the long-term disposal of such spent nuclear fuel is attributable to only about 1% of its content. This 1% is made up primarily of plutonium, neptunium, americium and curium (called transuranic elements) and the long-lived isotopes of iodine and technetium. When transuranics are removed from discharged fuel destined for disposal, the toxic nature of the spent fuel drops below that of natural uranium ore (that which was originally mined for the nuclear fuel) within a period of several hundred to a thousand years. This significantly reduces the burden on geological repositories and the problem of addressing the remaining long-term residues can thus be done in controlled environments having timescales of centuries rather than millennia stretching beyond 10 000 years. Transmutation is one of the means being explored to address the disposal of transuranic elements. To achieve this, advanced reactor systems, appropriate fuels, separation techniques and associated fuel cycle strategies are required. This report describes the current status of fuel and material technologies for transmutation and suggests technical R and D issues that need to be resolved. It will be of particular interest to nuclear fuel and material scientists involved in the field of partitioning and transmutation (P and T), and in advanced fuel cycles in general. (author)

  10. Transmutation of 129I Using an Accelerator-Driven System

    International Nuclear Information System (INIS)

    Nishihara, Kenji; Takano, Hideki

    2002-01-01

    A conceptual blanket design for 129 I transmutation is proposed for an accelerator-driven system (ADS) that is designed to transmute minor actinides (MAs). In this ADS, 250 kg/yr of MA and 56 kg/yr of iodine are simultaneously transmuted, and they correspond to the quantities generated from ∼10 units of existing light water reactors. Furthermore, an introduction scenario and the benefit of iodine transmutation are studied for future introduction of fast breeder reactors. It is shown that the transmutation of iodine benefits the concept of underground disposal

  11. Transmutation of Thermocouples in Thermal and Fast Nuclear Reactors

    International Nuclear Information System (INIS)

    Scervini, M.; Rae, C.; Lindley, B.

    2013-06-01

    Thermocouples are the most commonly used sensors for temperature measurement in nuclear reactors. Their role is fundamental for the control of current nuclear reactors and for the development of the nuclear technology needed for the implementation of GEN IV nuclear reactors. When used for in-core measurements thermocouples are strongly affected not only by high temperatures, but also by intense neutron fluxes. As a result of the interaction with neutrons, the thermoelements of the thermocouples undergo transmutation, which produces a time dependent change in composition in the thermoelements and, as a consequence, a time dependent drift in the thermocouple signal. Thermocouple drift can be very significant for in-pile temperature measurements and may render the temperature sensors unreliable after exposure to nuclear radiation for relatively short times compared to the life required for temperature sensors in nuclear applications. In this work, undertaken as part of the European project METROFISSION, the change in composition occurring in irradiated thermocouples has been calculated using the software ORIGEN 2.2. Several thermocouples have been considered, including Nickel based thermocouples (type K and type N), Tungsten based thermocouples (W-5%Re vs W-26%Re and W- 3%Re vs W-25%Re), Platinum based thermocouples (type S and Platinum vs Palladium) and Molybdenum vs Niobium thermocouples. The transmutation induced by both thermal flux and fast flux has been calculated. Thermocouples undergo more pronounced transmutation in thermal fluxes rather than in fast fluxes, as the neutron cross section of an element is higher for thermal energies. Nickel based thermocouples have a minimal change in composition, while Platinum based and Tungsten based thermocouples experience a very significant transmutation. The use of coatings deposited on the sheath of a thermocouple has been considered as a mean to reduce the neutron flux the thermoelements inside the thermocouple sheath

  12. Transmutation Fuels Campaign FY-09 Accomplishments Report

    Energy Technology Data Exchange (ETDEWEB)

    Lori Braase

    2009-09-01

    This report summarizes the fiscal year 2009 (FY-08) accomplishments for the Transmutation Fuels Campaign (TFC). The emphasis is on the accomplishments and relevance of the work. Detailed description of the methods used to achieve the highlighted results and the associated support tasks are not included in this report.

  13. Actinide and fission product partitioning and transmutation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    The third international information exchange meeting on actinide and fission product partitioning and transmutation, took place in Cadarache France, on 12-14 December 1994. The proceedings are presented in six sessions : an introduction session, the major programmes and international cooperation, the systems studies, the reactors fuels and targets, the chemistry and a last discussions session. (A.L.B.)

  14. Composite gauge bosons of transmuted gauge symmetry

    International Nuclear Information System (INIS)

    Terazawa, Hidezumi.

    1987-10-01

    It is shown that effective gauge theories of composite gauge bosons describing the dynamics of composite quarks and leptons can be transmuted from the subcolor gauge theory describing that of subquarks due to the condensation of subquarks and that the equality of effective gauge coupling constants can result as in a grand unified gauge theory. (author)

  15. Safety characteristics of potential waste transmutation systems

    International Nuclear Information System (INIS)

    Van Tuyle, G.J.

    1993-01-01

    For nuclear waste transmutation to alter significantly the need for geologic disposal of spent fuel from US Light-water reactors (LWRs), about 1.4% of the spent fuel (by mass) must be separated and transmuted. This includes the plutonium, the minor actinides, and four fission products: iodine. technetium, cesium and strontium. Regarding the actinides, fissioning of the plutonium, neptunium, americium, and curium generates a great deal of heat, so much so that most of the plutonium should be used to produce power. However, these actinides have some undesirable neutronic characteristics, and their utilization in reactors or subcritical (proton-accelerator) targets requires either a fast neutronic spectrum or a very high thermal-neutron flux. Transmutation of the fission products is generally by neutron capture, although this is difficult in the case of cesium and strontium. In this paper, various proposed means of transmuting the actinides and fission products are discussed, with the main focus being on the safety characteristics of each approach

  16. Waste partitioning and transmutation as a means towards long-term risk reduction

    International Nuclear Information System (INIS)

    Merz, E.R.

    1993-09-01

    It has been an idea for some time to reduce the long-term potential hazard of the waste by chemical removal of the actinides as well as some long-lived fission products and their subsequent transmutation in an intense neutron flux. Transmutation would thus shorten the required containment period of radioactive material in a repository. It is estimated, that development of such technology would take at least 40 years because facilities would be required to perform a clean actinide and fission product isolation and to fabricate the fuel elements that contained the separated nuclides. This latter requirements would involve a major expansion of new chemical process steps which are not available as yet. Development of new equipment to maintain occupational exposures as low as reasonably achievable and to minimize releases of radioactivity to the environment would also be necessary. Partitioning and transmutation should be introduced, if at all, as a long-term decision about new nuclear power technology as a future energy source. With regard to this, R and D work dealing with basic questions seems to be worthwhile, However, the introduction of partitioning and transmutation will not eliminate the need for radioactive waste disposal. (orig./HP) [de

  17. System and safety studies of accelerator driven transmutation systems. Annual report 1998

    International Nuclear Information System (INIS)

    Wallenius, J.; Gudowski, W.; Carlsson, Johan; Eriksson, Marcus; Tucek, K.

    1998-12-01

    This annual report describes the accelerator-driven transmutation project conducted at the Department of Nuclear and Reactor Physics at the Royal Institute of Technology. The main results are: development of the simulation tools for accelerator-driven transmutation calculations including an integrated Monte-Carlo burnup module and improvements of neutron energy fission yield simulations, processing of the evacuated nuclear data files including preparation of the temperature dependent neutron cross-sections, development of nuclear data for a medium energy range for some isotopes, development of the models and codes for radiation damage simulations, system studies for the spent fuel transmuter, based on heavy metal coolant and advanced nuclear fuel, contribution to the spallation target design being manufactured in IPPE, Obninsk, and accelerator reliability studies. Moreover a lot of efforts were put to further develop existing international collaboration with the most active research groups in the world together with educational activities in Sweden including a number of meetings and workshops and a graduate course in transmutation. This project has been conducted in close collaboration with the EU-project 'Impact of the accelerator based technologies on nuclear fission safety' - IABAT and in bilateral cooperation with different foreign research groups

  18. System and safety studies of accelerator driven transmutation systems. Annual report 1998

    Energy Technology Data Exchange (ETDEWEB)

    Wallenius, J.; Gudowski, W.; Carlsson, Johan; Eriksson, Marcus; Tucek, K. [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Nuclear and Reactor Physics

    1998-12-01

    This annual report describes the accelerator-driven transmutation project conducted at the Department of Nuclear and Reactor Physics at the Royal Institute of Technology. The main results are: development of the simulation tools for accelerator-driven transmutation calculations including an integrated Monte-Carlo burnup module and improvements of neutron energy fission yield simulations, processing of the evacuated nuclear data files including preparation of the temperature dependent neutron cross-sections, development of nuclear data for a medium energy range for some isotopes, development of the models and codes for radiation damage simulations, system studies for the spent fuel transmuter, based on heavy metal coolant and advanced nuclear fuel, contribution to the spallation target design being manufactured in IPPE, Obninsk, and accelerator reliability studies. Moreover a lot of efforts were put to further develop existing international collaboration with the most active research groups in the world together with educational activities in Sweden including a number of meetings and workshops and a graduate course in transmutation. This project has been conducted in close collaboration with the EU-project `Impact of the accelerator based technologies on nuclear fission safety` - IABAT and in bilateral cooperation with different foreign research groups 31 refs, 23 figs

  19. Waste management in future. Partitioning and transmutation (P and T)

    International Nuclear Information System (INIS)

    Calic, D.

    2005-01-01

    Current research and development (R and D) in radioactive waste management is mainly associated with the quantities and toxicity of high level waste and spent fuel. One of the solutions that already exists, but has not yet reached scientific and technological maturity, is the process of partitioning and transmutation (P and T). Partitioning is the selective separation of radiotoxic isotopes from reprocessing streams. After the successive partitioning has been done, the long-lived radionuclides are converted into shorter-lived or stable nuclides by process called transmutation. P and T can reduce the radiotoxic inventory of spent fuel by a factor of 100 to 1000 and can achieve the reduction of time needed to reach the radioactivity level of the uranium ore from 100,000 to 5000 years. To achieve this, the separation of plutonium, minor actinides and long-lived fission products has to be implemented as early as possible in the fuel cycle strategy. Currently, P and T is still at the research and development stage and it needs to be scaled up, before it can be introduced on an industrial scale, therefore the paper will present the current status of the development of P and T and plans for the future. (author)

  20. Overview of the French program in chemical separations and transmutation

    International Nuclear Information System (INIS)

    Baudin, G.

    1993-01-01

    A long-range effort has begun in France that is aimed at the reduction of the volume and activity level of wastes containing long half-life radionuclides. This effort constitutes the SPIN (SeParations-INcineration) Program which investigates separations techniques that can improve current reprocessing technologies coupled with destruction of long-lived species through transmutation. Removal and destruction of specific radionuclides (e.g., neptunium, americium, technetium, iodine, cesium, and strontium) will be emphasized. Advanced solvent extraction chemistry focusing, for example, on development and implementation of diamides for actinide-lanthanide separations constitutes an important component of the SPIN program. The second component of the program focuses on inventory reductions through transmutation of such long-lived nuclides in fast reactor systems (Super Phenix). Accelerator-based systems are also being evaluated as a possible long-term option. Both of these components of the SPIN program are aimed at further reduction of the potential radiotoxicity and radiological impact of high-level wastes destined for geological storage. In this presentation, major activities of the SPIN Program will be described with emphasis on activities related to advanced chemical separations

  1. Transmutation of DUPIC spent fuel in the hyper system

    International Nuclear Information System (INIS)

    Kim, Y.H.; Song, T.Y.

    2005-01-01

    In this paper, the transmutation of TRUs of the DUPIC (Direct Use of Spent PWR Fuel in CANDU) spent fuel has been studied with the HYPER system, which is an LBE-cooled ADS. The DUPIC concept is a synergistic combination of PWRs and CANDUs, in which PWR spent fuels are directly re-utilized in CANDU reactors after a very simple re-fabrication process. In the DUPIC-HYPER fuel cycle, TRUs are recovered by using a pyro-technology and they are incinerated in a metallic fuel form of U-TRU-Zr. The objective of this study is to investigate the TRU transmutation potential of the HYPER core for the DUPIC-HYPER fuel cycle. All the previously-developed HYPER core design concepts were retained except that fuel is composed of TRU from the DUPIC spent fuel. In order to reduce the burnup reactivity swing, a B 4 C burnable absorber is used. The HYPER core characteristics have been analyzed with the REBUS-3/DIF3D code system. (authors)

  2. Neutron data experiments for transmutation. Annual Report 2006/2007

    International Nuclear Information System (INIS)

    Blomgren, J.; Andersson, P.; Bevilacqua, R.; Nilsson, L.; Pomp, S.; Simutkin, V.; Oehrn, A.; Oesterlund, M.

    2007-10-01

    The project NEXT, Neutron data Experiments for Transmutation, is performed within the nuclear reactions group of the Department of Neutron Research, Uppsala University. The activities of the group are directed towards experimental studies of nuclear reaction probabilities of importance for various applications, like transmutation of nuclear waste, biomedical effects and electronics reliability. The experimental work is primarily undertaken at the The Svedberg Laboratory (TSL) in Uppsala, where the group is operating two world-unique instruments, MEDLEY and SCANDAL. Highlights from the past year: The TSL neutron beam facility and the MEDLEY detector system have been upgraded. Funding for a major upgrade of the SCANDAL facility has been approved, and practical work has been initiated. Three new PhD students have been accepted. The Uppsala group contributed twelve accepted publications at the International Conference on Nuclear Data for Science and Technology, Nice, France, April 22-27, 2007. The EU project CANDIDE (Coordination Action on Nuclear Data for Industrial Development in Europe), coordinated by Jan Blomgren, started January 1, 2007. The EU project EFNUDAT (European Facilities for Nuclear Data research), partly coordinated by Jan Blomgren, started November 1, 2006. Nuclear power education has reached all-time high at Uppsala University. A contract with KSU (Nuclear Training and Safety Centre) on financing the increased volume of teaching for industry needs has been signed

  3. Neutron data experiments for transmutation. Annual Report 2006/2007

    Energy Technology Data Exchange (ETDEWEB)

    Blomgren, J.; Andersson, P.; Bevilacqua, R.; Nilsson, L.; Pomp, S.; Simutkin, V.; Oehrn, A.; Oesterlund, M. (Uppsala Univ. (SE). Dept. of Neutron Research)

    2007-10-15

    The project NEXT, Neutron data Experiments for Transmutation, is performed within the nuclear reactions group of the Department of Neutron Research, Uppsala University. The activities of the group are directed towards experimental studies of nuclear reaction probabilities of importance for various applications, like transmutation of nuclear waste, biomedical effects and electronics reliability. The experimental work is primarily undertaken at the The Svedberg Laboratory (TSL) in Uppsala, where the group is operating two world-unique instruments, MEDLEY and SCANDAL. Highlights from the past year: The TSL neutron beam facility and the MEDLEY detector system have been upgraded. Funding for a major upgrade of the SCANDAL facility has been approved, and practical work has been initiated. Three new PhD students have been accepted. The Uppsala group contributed twelve accepted publications at the International Conference on Nuclear Data for Science and Technology, Nice, France, April 22-27, 2007. The EU project CANDIDE (Coordination Action on Nuclear Data for Industrial Development in Europe), coordinated by Jan Blomgren, started January 1, 2007. The EU project EFNUDAT (European Facilities for Nuclear Data research), partly coordinated by Jan Blomgren, started November 1, 2006. Nuclear power education has reached all-time high at Uppsala University. A contract with KSU (Nuclear Training and Safety Centre) on financing the increased volume of teaching for industry needs has been signed

  4. Advances in Metallic Fuels for High Burnup and Actinide Transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, S. L.; Harp, J. M.; Chichester, H. J. M.; Fielding, R. S.; Mariani, R. D.; Carmack, W. J.

    2016-10-01

    Research and development activities on metallic fuels in the US are focused on their potential use for actinide transmutation in future sodium fast reactors. As part of this application, there is a desire to demonstrate a multifold increase in burnup potential. A number of metallic fuel design innovations are under investigation with a view toward significantly increasing the burnup potential of metallic fuels, since higher discharge burnups equate to lower potential actinide losses during recycle. Promising innovations under investigation include: 1) lowering the fuel smeared density in order to accommodate the additional swelling expected as burnups increase, 2) utilizing an annular fuel geometry for better geometrical stability at low smeared densities, as well as the potential to eliminate the need for a sodium bond, and 3) minor alloy additions to immobilize lanthanide fission products inside the metallic fuel matrix and prevent their transport to the cladding resulting in fuel-cladding chemical interaction. This paper presents results from these efforts to advance metallic fuel technology in support of high burnup and actinide transmutation objectives. Highlights include examples of fabrication of low smeared density annular metallic fuels, experiments to identify alloy additions effective in immobilizing lanthanide fission products, and early postirradiation examinations of annular metallic fuels having low smeared densities and palladium additions for fission product immobilization.

  5. Analysis of advanced European nuclear fuel cycle scenarios including transmutation and economic estimates

    International Nuclear Information System (INIS)

    Rodríguez, Iván Merino; Álvarez-Velarde, Francisco; Martín-Fuertes, Francisco

    2014-01-01

    Highlights: • Four fuel cycle scenarios have been analyzed in resources and economic terms. • Scenarios involve Once-Through, Pu burning, and MA transmutation strategies. • No restrictions were found in terms of uranium and plutonium availability. • The best case cost and the impact of their uncertainties to the LCOE were analyzed. - Abstract: Four European fuel cycle scenarios involving transmutation options (in coherence with PATEROS and CP-ESFR EU projects) have been addressed from a point of view of resources utilization and economic estimates. Scenarios include: (i) the current fleet using Light Water Reactor (LWR) technology and open fuel cycle, (ii) full replacement of the initial fleet with Fast Reactors (FR) burning U–Pu MOX fuel, (iii) closed fuel cycle with Minor Actinide (MA) transmutation in a fraction of the FR fleet, and (iv) closed fuel cycle with MA transmutation in dedicated Accelerator Driven Systems (ADS). All scenarios consider an intermediate period of GEN-III+ LWR deployment and they extend for 200 years, looking for long term equilibrium mass flow achievement. The simulations were made using the TR E VOL code, capable to assess the management of the nuclear mass streams in the scenario as well as economics for the estimation of the levelized cost of electricity (LCOE) and other costs. Results reveal that all scenarios are feasible according to nuclear resources demand (natural and depleted U, and Pu). Additionally, we have found as expected that the FR scenario reduces considerably the Pu inventory in repositories compared to the reference scenario. The elimination of the LWR MA legacy requires a maximum of 55% fraction (i.e., a peak value of 44 FR units) of the FR fleet dedicated to transmutation (MA in MOX fuel, homogeneous transmutation) or an average of 28 units of ADS plants (i.e., a peak value of 51 ADS units). Regarding the economic analysis, the main usefulness of the provided economic results is for relative comparison of

  6. Importance of All-in-one (MCNPX2.7.0+CINDER2008) Code for Rigorous Transmutation Study

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Oyeon [Institute for Modeling and Simulation Convergence, Daegu (Korea, Republic of); Kim, Kwanghyun [RadTek Co. Ltd., Daejeon (Korea, Republic of)

    2015-10-15

    It can be utilized as a possible mechanism for reducing the volume and hazard of radioactive waste by transforming hazardous radioactive elements with long half-life into less hazardous elements with short halflife. Thus, the understanding of the transmutation mechanism and beneficial machinery design technologies are important and useful. Although the terminology transmutation was rooted back to alchemy which transforms the base metals into gold in the middle ages, Rutherford and Soddy were the first observers by discovering the natural transmutation as a part of radioactive decay of the alpha decay type in early 20th century. Along with the development of computing technology, analysis software, for example, CINDER was developed for rigorous atomic transmutation study. The code has a long history of development from the original work of T. England at Bettis Atomic Power Laboratory (BAPL) in the early 1960s. It has been used to calculate the inventory of nuclides in an irradiated material. CINDER'90 which is recently released involved an upgrade of the code to allow the spontaneous tracking of chains based upon the significant density or pass-by of a nuclide, where pass-by represents the density of a nuclide transforming to other nuclides. Nuclear transmutation process is governed by highly non-linear differential equation. Chaotic nature of the non-linear equation bespeaks the importance of the accurate input data (i.e. number of significant digits). Thus, reducing the human interrogation is very important for the rigorous transmutation study and 'allin- one' code structure is desired. Note that non-linear characteristic of the transmutation equation caused by the flux changes due to the number density change during a given time interval (intrinsic physical phenomena) is not considered in this study. In this study, we only emphasized the effects of human interrogation in the computing process solving nonlinear differential equations, as shown in

  7. Oxide fuels and targets for transmutation

    International Nuclear Information System (INIS)

    Sudreau, F.; Bonnerot, J.M.; Warin, D.; Gaillard-Groleas, G.; Ferroud-Plattet, M.P.

    2007-01-01

    Full text of publication follows. Direction 1 of the French Act dated 30 December 1991 on the management of high-level, long-lived radioactive waste involves exploring solutions designed to separate long-lived radionuclides from the spent fuel and to transmute them under neutron flux into shorter half-lives or stable elements. In the French research programme conducted by CEA, these radionuclides are mainly minor actinides (americium, neptunium and curium) and fission products (particularly caesium, iodine and technetium). Within this context, this paper aims at illustrating the vast programme that CEA has performed in order to demonstrate the scientific and technical feasibility of minor actinide transmutation. An important part of the research was carried out in collaboration with French research (CNRS) and industrial (EDF, AREVA) organisations, and also in the framework of international co-operation programmes with the European Institute for Transuranium Elements in Karlsruhe (ITU), the US Department of Energy (DOE), the Japanese Atomic Energy Research Institute (now JAEA) and Central Research Institute of Electric Power Industry (CRIEPI) and the Russian Ministry for Atomic Energy (ROSATOM). Such research made it possible to evaluate the capacity of MOX fuels to be used as a support for minor actinide transmutation (homogeneous method). Simulations of pressurised water reactor (PWR) fuels have revealed the limits of this transmutation method, which are mainly related to the pressurization of the fuel rods and the formation of high active californium. On the contrary, for sodium-cooled fast reactor fuels possibly designed with large expansion plenums a first experimental demonstration of the transmutation of americium and neptunium has been successful in the Phenix reactor. Various studies designed to demonstrate the theoretical and experimental feasibility of transmutation using an inert support (heterogeneous method) have been carried out in HFR (EFTTRA

  8. Status of the French research programme for actinides and fission products partitioning and transmutation

    International Nuclear Information System (INIS)

    Warin, D.

    2003-01-01

    The paper focus on separation and transmutation research and development programme and main results over these ten last years. The massive research programme on enhanced separation, conducted by CEA and supported by broad international cooperation, has recently achieved some vital progress. Based on real solutions derived from the La Hague process, the CEA demonstrated the lab-scale feasibility of extracting minor actinides and some fission products (I, Cs and Tc) using an hydrometallurgical process that can be extrapolated on the industrial scale. The CEA also conducted programmes proving the technical feasibility of the elimination of minor actinides and fission products by transmutation: fabrication of specific targets and fuels for transmutation tests in the HFR and Phenix reactors, neutronics and technology studies for ADS developments in order to support the MEGAPIE, TRADE and MYRRHA experiments and the future 100 MW international ADS demonstrator. Scenarios studies aimed at stabilizing the inventory with long-lived radionuclides, plutonium, minor actinides and certain long-lived fission products in different nuclear power plant parks and to verify the feasibility at the level of the cycle facilities and fuels involved in those scenarios. Three French Research Groups CEA-CNRS carry out partitioning (PRACTIS) and transmutation (NOMADE and GEDEON) more basic studies. (author)

  9. Transmutation of high level nuclear waste in an accelerator driven system: towards a demonstration device of industrial interest (EUROTRANS)

    International Nuclear Information System (INIS)

    Knebel, Joachim U.; Ait Abderrahim, Hamid; Caron-Carles, Marylise

    2010-01-01

    The Integrated Project EUROTRANS (EURopean Research Programme for the TRANSmutation of High Level Nuclear Waste in an Accelerator Driven System) within the ongoing EURATOM 6th Framework Programme (FP6) is devoted to the study of transmutation of high-level waste from nuclear power plants. The work is focused on transmutation in an Accelerator Driven System (ADS). The objective of EUROTRANS is the assessment of the design and the feasibility of an industrial ADS prototype dedicated to transmutation. The necessary R and D results in the areas of accelerator components, fuel development, structural materials, thermal-hydraulics, heavy liquid metal technology and nuclear data will be made available, together with the experimental demonstration of the ADS component coupling. The outcome of this work will allow to provide a reasonably reliable assessment of technological feasibility and a cost estimate for ADS based transmutation, and to possibly decide on the detailed design of an experimental ADS and its construction in the future. EUROTRANS is integrating activities of 51 participants from 16 countries, within the industry (10 participants), the national research centres (20) and 17 universities. 16 universities are collectively represented by ENEN (European Nuclear Education Network). EUROTRANS is the continuation of the three FP5 Clusters FUETRA, BASTRA and TESTRA together with the PDS-XADS Project. It is a five-year project which started in April 2005

  10. Evaluation of alternative partitioning/transmutation scenarios using transmutation in light-water reactors (LWRs)

    International Nuclear Information System (INIS)

    Collins, E.D.; Renier, J.P.; Del Cul, B.; Spencer, B.

    2005-01-01

    Previous Advanced Fuel Cycle Initiative (AFCI) studies were made to assess the effects of the existing accumulation of LWR spent fuel in the United States on the capability to partition/transmute actinides using existing and advanced LWR. The concept of treating the oldest fuel first indicated that significant advantages could be gained in both partitioning, transmutation, and in overall cost reduction. The processing scenarios previously evaluated assumed that (1) 2000 MT/year of spent fuel, irradiated to 45 GWd/MT and decayed for 30 years is processed; (2) recovered plutonium and 90% of the neptunium are transmuted in LWR MOX fuel; and (3) minor actinides, consisting of americium, curium, and 10% of the neptunium are transmuted in burnable poison type targets. Results of the previous study showed that significant benefits could be obtained, including (1) lower costs for partitioning and transmutation and for storage of spent fuel, (2) maintenance of proliferation resistance for the fissile plutonium in spent fuels, and (3) extended lifetime for the repository. The lower costs would be achieved primarily because no capital investment for a special transmuter reactor (fast reactor, accelerator-driven system, etc.) would be required. Instead, only existing and new LWRs would be utilized. Moreover, no new storage capacity could be needed for spent fuels and irradiated targets because the number of spent fuel assemblies would remain the same after the scenario is begun. Even though the total inventory of plutonium would rise during the early cycles, ∼98% of the plutonium would be contained in stored spent fuel and would be protected by high radiation (the Spent Fuel Standard). This is because the spent fuel would be reprocessed and re-irradiated at intervals within which the fission products, 137 Cs and 90 Sr, both with half-lives of ∼ 30 years, exist in significantly high concentrations.The lifetime of the repository would be extended significantly because all of

  11. Partitioning and transmutation. Annual report 2009

    International Nuclear Information System (INIS)

    Aneheim, Emma; Ekberg, Christian; Fermvik, Anna; Foreman, Mark; Loefstroem-Engdahl, Elin; Retegan, Teodora; Skarnemark, Gunnar; Spendlikova, Irena

    2010-01-01

    The long-lived elements in the spent nuclear fuels are mostly actinides, some fission products ( 79 Se, 87 Rb, 99 Tc, 107 Pd, 126 Sn, 129 I and 135 Cs) and activation products ( 14 C, 36 Cl, 59 Ni, 93 Zr, 94 Nb). To be able to destroy the long-lived elements in a transmutation process they must be separated from the rest of the spent nuclear fuel for different reasons. One being high neutron capture cross sections for some elements, like the lanthanides. Other reasons may be the unintentional production of other long lived isotopes. The most difficult separations to make are those between different actinides but also between trivalent actinides and lanthanides, due to their relatively similar chemical properties. Solvent extraction is an efficient and well-known method that makes it possible to have separation factors that fulfil the highly set demands on purity of the separated phases and on small losses. In the case of a fuel with a higher burnup or possible future fuels, pyro processing may be of higher advantage due to the limited risk of criticality during the process. Chalmers University of Technology is involved in research regarding the separation of actinides and lanthanides and between the actinides themselves as a partner in several European frame work programmes. These projects range from NEWPART in the 4th framework via PARTNEW and EUROPART to ACSEPT in the present 7th programme. The aims of the projects have now shifted from basic understanding to more applied research with focus on process development. One process, the SANEX (Selective ActiNide EXtraction) is now considered to be working on a basic scale and focus has moved on to more process oriented areas. However, since further investigations on basic understanding of the chemical behaviour are required, we have our main focus on the chemical processes and understanding of how they work. Our work is now manly focussed on the so called GANEX (Group ActiNide EXtraction) process. We have proposed a

  12. Partitioning and transmutation. Annual report 2009

    Energy Technology Data Exchange (ETDEWEB)

    Aneheim, Emma; Ekberg, Christian; Fermvik, Anna; Foreman, Mark; Loefstroem-Engdahl, Elin; Retegan, Teodora; Skarnemark, Gunnar; Spendlikova, Irena (Nuclear Chemistry, Department of Chemical and Biological Engineering, Chalmers Univ. of Technology, Goeteborg (Sweden))

    2010-01-15

    The long-lived elements in the spent nuclear fuels are mostly actinides, some fission products (79Se, 87Rb, 99Tc, 107Pd, 126Sn, 129I and 135Cs) and activation products (14C, 36Cl, 59Ni, 93Zr, 94Nb). To be able to destroy the long-lived elements in a transmutation process they must be separated from the rest of the spent nuclear fuel for different reasons. One being high neutron capture cross sections for some elements, like the lanthanides. Other reasons may be the unintentional production of other long lived isotopes. The most difficult separations to make are those between different actinides but also between trivalent actinides and lanthanides, due to their relatively similar chemical properties. Solvent extraction is an efficient and well-known method that makes it possible to have separation factors that fulfil the highly set demands on purity of the separated phases and on small losses. In the case of a fuel with a higher burnup or possible future fuels, pyro processing may be of higher advantage due to the limited risk of criticality during the process. Chalmers University of Technology is involved in research regarding the separation of actinides and lanthanides and between the actinides themselves as a partner in several European frame work programmes. These projects range from NEWPART in the 4th framework via PARTNEW and EUROPART to ACSEPT in the present 7th programme. The aims of the projects have now shifted from basic understanding to more applied research with focus on process development. One process, the SANEX (Selective ActiNide EXtraction) is now considered to be working on a basic scale and focus has moved on to more process oriented areas. However, since further investigations on basic understanding of the chemical behaviour are required, we have our main focus on the chemical processes and understanding of how they work. Our work is now manly focussed on the so called GANEX (Group ActiNide EXtraction) process. We have proposed a novel process

  13. Partitioning and transmutation. Annual report 2008

    Energy Technology Data Exchange (ETDEWEB)

    Aneheim, Emma; Ekberg, Christian; Fermvik, Anna; Foreman, Mark; Naestren, Catharina; Retegan, Teodora; Skarnemark, Gunnar (Nuclear Chemistry, Dept. of Chemical and Biological Engineering, Chalmers Univ. of Technology, Goeteborg (Sweden))

    2009-01-15

    The long-lived elements in the spent nuclear fuels are mostly actinides, some fission products (79Se, 87Rb, 99Tc, 107Pd, 126Sn, 129I, 135Cs) and activation products (14C, 36Cl, 59Ni, 93Zr, 94Nb). To be able to destroy the long-lived elements in a transmutation process they must be separated from the rest of the spent nuclear fuel for different reasons. One being high cross sections for neutron capture of some elements, like the lanthanides. Other reasons may be the unintentional making of other long lived isotopes. The most difficult separations to make are those between trivalent actinides and lanthanides, due to their relatively similar chemical properties, and those between different actinides themselves. Solvent extraction is an efficient and well-known method that makes it possible to have separation factors that fulfil the highly set demands on purity of the separated phases and on small losses. In the case of a fuel with a higher burnup or possible future fuels, pyro processing may be of higher advantage due to the limited risk of criticality during the process. Chalmers University of Technology is involved in research regarding the separation of actinides and lanthanides and between the actinides themselves as a partner in several European frame work programmes from NEWPART in the 4th framework via PARTNEW and EUROPART to ACSEPT in the present 7th programme. The aims of the projects have now shifted from basic understanding to more applied research with focus on process development. One process, the SANEX (Selective ActiNide EXtraction) is now considered to be working on a basic scale and focus has moved on to more process oriented areas. However, since further investigations on basic understanding of the chemical behaviour are required, we have our main focus on the chemical processes and understanding of how they work. Our work is now manly focussed on the so called GANEX (Group ActiNide EXtraction) process. Due to new recruitments we will now also work

  14. Fuel and target programs for the transmutation at Phenix and other reactors; Programmes combustibles et cibles pour la transmutation dans Phenix et autres reacteurs

    Energy Technology Data Exchange (ETDEWEB)

    Gaillard-Groleas, G

    2002-07-01

    The fuels and targets program for transmutation, performed in the framework of the axis 1 of the December 1991 law about the researches on the management of long-lived radioactive wastes, is in perfect consistency with the transmutation scenario studies carried out in the same framework. These studies put forward the advantage of fast breeder reactors (FBR) in the incineration of minor actinides and long-lived fission products. The program includes exploratory and technological demonstration studies covering the different design options. It aims at enhancing our knowledge of the behaviour of materials under irradiation and at ensuring the mastery of processes. The goals of the different experiments foreseen at Phenix reactor are presented. The main goal is to supply a set of results allowing to precise the conditions of the technical feasibility of minor actinides and long-lived fission products incineration in FBRs. (J.S.)

  15. On the use of a molten salt fast reactor to apply an idealized transmutation scenario for the nuclear phase out.

    Directory of Open Access Journals (Sweden)

    Bruno Merk

    Full Text Available In the view of transmutation of transuranium (TRU elements, molten salt fast reactors (MSFRs offer certain advantages compared to solid fuelled reactor types like sodium cooled fast reactors (SFRs. In the first part these advantages are discussed in comparison with the SFR technology, and the research challenges are analyzed. In the second part cycle studies for the MSFR are given for different configurations--a core with U-238 fertile, a fertile free core, and a core with Th-232 as fertile material. For all cases, the transmutation potential is determined and efficient transmutation performance for the case with thorium as a fertile material as well as for the fertile free case is demonstrated and the individual advantages are discussed. The time evolution of different important isotopes is analyzed. In the third part a strategy for the optimization of the transmutation efficiency is developed. The final aim is dictated by the phase out decision of the German government, which requests to put the focus on the determination of the maximal transmutation efficiency and on an as much as possible reduced leftover of transuranium elements at the end of the reactor life. This minimal leftover is achieved by a two step procedure of a first transmuter operation phase followed by a second deep burning phase. There the U-233, which is bred in the blanket of the core consisting of thorium containing salt, is used as feed. It is demonstrated, that transmutation rates up to more than 90% can be achieved for all transuranium isotopes, while the production of undesired high elements like californium is very limited. Additionally, the adaptations needed for the simulation of a MSFR, and the used tool HELIOS 1.10 is described.

  16. On the use of a molten salt fast reactor to apply an idealized transmutation scenario for the nuclear phase out.

    Science.gov (United States)

    Merk, Bruno; Rohde, Ulrich; Glivici-Cotruţă, Varvara; Litskevich, Dzianis; Scholl, Susanne

    2014-01-01

    In the view of transmutation of transuranium (TRU) elements, molten salt fast reactors (MSFRs) offer certain advantages compared to solid fuelled reactor types like sodium cooled fast reactors (SFRs). In the first part these advantages are discussed in comparison with the SFR technology, and the research challenges are analyzed. In the second part cycle studies for the MSFR are given for different configurations--a core with U-238 fertile, a fertile free core, and a core with Th-232 as fertile material. For all cases, the transmutation potential is determined and efficient transmutation performance for the case with thorium as a fertile material as well as for the fertile free case is demonstrated and the individual advantages are discussed. The time evolution of different important isotopes is analyzed. In the third part a strategy for the optimization of the transmutation efficiency is developed. The final aim is dictated by the phase out decision of the German government, which requests to put the focus on the determination of the maximal transmutation efficiency and on an as much as possible reduced leftover of transuranium elements at the end of the reactor life. This minimal leftover is achieved by a two step procedure of a first transmuter operation phase followed by a second deep burning phase. There the U-233, which is bred in the blanket of the core consisting of thorium containing salt, is used as feed. It is demonstrated, that transmutation rates up to more than 90% can be achieved for all transuranium isotopes, while the production of undesired high elements like californium is very limited. Additionally, the adaptations needed for the simulation of a MSFR, and the used tool HELIOS 1.10 is described.

  17. Neutron transmutation doping of polycrystalline silicon

    International Nuclear Information System (INIS)

    Cleland, J.W.; Westbrook, R.D.; Wood, R.F.; Young, R.T.

    1976-04-01

    Chemical vapor deposition (CVD) of doped silane has been used by others to deposit a polycrytalline silicon film (polysil) on metal or graphite substrates, but dopant migration to grain boundaries during deposition apparently prohibits attaining a uniform or desired dopant concentration. In contrast, we have used neutron transmutation doping to introduce a uniform phosphorus dopant concentration in commercially available undoped CVD polysil at doping concentrations greater than or equal to 2 x 10 15 cm -3 . Radiation damage annealing to 800 0 C did not indicate dopant migration. Carrier mobility increased with doping concentration and the minority carrier lifetime (MCL) appears to be comparable to that of neutron transmutation doped (NTD) single crystal Si. Application of this technique to photovoltaic solar cell fabrication is discussed

  18. Statistical transmutation in doped quantum dimer models.

    Science.gov (United States)

    Lamas, C A; Ralko, A; Cabra, D C; Poilblanc, D; Pujol, P

    2012-07-06

    We prove a "statistical transmutation" symmetry of doped quantum dimer models on the square, triangular, and kagome lattices: the energy spectrum is invariant under a simultaneous change of statistics (i.e., bosonic into fermionic or vice versa) of the holes and of the signs of all the dimer resonance loops. This exact transformation enables us to define the duality equivalence between doped quantum dimer Hamiltonians and provides the analytic framework to analyze dynamical statistical transmutations. We investigate numerically the doping of the triangular quantum dimer model with special focus on the topological Z(2) dimer liquid. Doping leads to four (instead of two for the square lattice) inequivalent families of Hamiltonians. Competition between phase separation, superfluidity, supersolidity, and fermionic phases is investigated in the four families.

  19. French fuel cycle strategy and partitioning and transmutation programme

    International Nuclear Information System (INIS)

    Pradel, Ph.

    2007-01-01

    The global energy context pleads in favour of a sustainable development of nuclear energy since the demand for energy will likely increase, whereas resources will tend to get scarcer and the prospect of global warming will drive down the consumption of fossil fuel sources. How we deal with radioactive waste is crucial in this context. The production of nuclear energy in France has been associated, since its inception, with the optimisation of radioactive waste management, including the partitioning and the recycling of recoverable energetic materials. The public's concern regarding long-term waste management led the French government to prepare and pass the Law of December 1991, requesting in particular the study for fifteen years of solutions to minimising even further the quantity and the hazardousness of final waste, via partitioning and transmutation. At the end of these fifteen years of research, it is considered that partitioning techniques which have been validated on real solutions are at disposal. Indeed, aqueous process for separation of minor actinides from the PUREX raffinate has been brought to a point where there is reasonable assurance that industrial deployment can be successful. A key experiment has been the kilogram-scale successful trials in the CEA-Marcoule Atalante facility in 2005 and this result, together with the results obtained in the frame of the successive European projects, constitutes a considerable step forward. For transmutation, CEA has conducted programmes proving the feasibility of the elimination of minor actinides and fission products: fabrication of specific targets and fuels for transmutation tests in the HFR and Phenix reactors, neutronics and technology studies for critical reactors and ADS developments. Scenario studies have also allowed assessing the feasibility, at the level of cycle and fuel facilities, and the efficiency of transmutation in terms of the quantitative reduction of the final waste inventory depending of

  20. Status of the French Research on Partitioning and Transmutation

    International Nuclear Information System (INIS)

    Warin, Dominique

    2007-01-01

    The global energy context pleads in favor of a sustainable development of nuclear energy since the demand for energy will likely increase, whereas resources will tend to get scarcer and the prospect of global warming will drive down the consumption of fossil fuel sources. How we deal with radioactive waste is crucial in this context. The production of nuclear energy in France has been associated, since its inception, with the optimization of radioactive waste management, including the partitioning and the recycling of recoverable energetic materials. The public's concern regarding the long-term waste management made the French Government prepare and pass the December 1991 Law, requesting in particular, the study for fifteen years of solutions for still minimizing the quantity and the hazardousness of final waste, via partitioning and transmutation. At the end of these fifteen years of research, it is considered that partitioning techniques, which have been validated on real solutions, are at disposal. Indeed, aqueous process for separation of minor actinides from the PUREX raffinate has been brought to a point where there is reasonable assurance that industrial deployment can be successful. A key experiment has been the successful kilogram scale trials in the CEA-Marcoule Atalante facility in 2005 and this result, together with the results obtained in the frame of the successive European projects, constitutes a considerable step forward. For transmutation, CEA has conducted programs proving the feasibility of the elimination of minor actinides and fission products: fabrication of specific targets and fuels for transmutation tests in the HFR and Phenix reactors, neutronics and technology studies for critical reactors and ADS developments. Scenario studies have also allowed assessing the feasibility, at the level of cycle and fuel facilities, and the efficiency of transmutation in terms of the quantitative reduction of the final waste inventory depending of the

  1. Copper Doping of Zinc Oxide by Nuclear Transmutation

    Science.gov (United States)

    2014-03-27

    Copper Doping of Zinc Oxide by Nuclear Transmutation THESIS Matthew C. Recker, Captain, USAF AFIT-ENP-14-M-30 DEPARTMENT OF THE AIR FORCE AIR...NUCLEAR TRANSMUTATION THESIS Presented to the Faculty Department of Engineering Physics Graduate School of Engineering and Management Air Force...COPPER DOPING OF ZINC OXIDE BY NUCLEAR TRANSMUTATION Matthew C. Recker, BS Captain, USAF Approved: //signed// 27 February 2014 John W. McClory, PhD

  2. Transmutation of Americium in Fast Neutron Facilities

    International Nuclear Information System (INIS)

    Zhang, Youpeng

    2011-01-01

    In this thesis, the feasibility to use a medium sized sodium cooled fast reactor fully loaded with MOX fuel for efficient transmutation of americium is investigated by simulating the safety performance of a BN600-type fast reactor loaded with different fractions of americium in the fuel, using the safety parameters obtained with the SERPENT Monte Carlo code. The focus is on americium mainly due to its long-term contribution to the radiotoxicity of spent nuclear fuel and its deterioration on core's safety parameters. Applying the SAS4A/SASSYS transient analysis code, it is demonstrated that the power rating needs to be reduced by 6% for each percent additional americium introduction into the reference MOX fuel, maintaining 100 K margin to fuel melting, which is the most limiting failure mechanism. Safety analysis of a new Accelerator Driven System design with a smaller pin pitch-to-diameter ratio comparing to the reference EFIT-400 design, aiming at improving neutron source efficiency, was also performed by simulating performance for unprotected loss of flow, unprotected transient overpower, and protected loss-of-heat-sink transients, using neutronic parameters obtained from MCNP calculations. Thanks to the introduction of the austenitic 15/15Ti stainless steel with enhanced creep rupture resistance and acceptable irradiation swelling rate, the suggested ADS design loaded with nitride fuel and cooled by lead-bismuth eutectic could survive the full set of transients, preserving a margin of 130 K to cladding rupture during the most limiting transient. The thesis concludes that efficient transmutation of americium in a medium sized sodium cooled fast reactor loaded with MOX fuel is possible but leads to a severe power penalty. Instead, preserving transmutation rates of minor actinides up to 42 kg/TWh th , the suggested ADS design with enhanced proton source efficiency appears like a better option for americium transmutation

  3. Transmutation of Americium in Fast Neutron Facilities

    OpenAIRE

    Zhang, Youpeng

    2011-01-01

    In this thesis, the feasibility to use a medium sized sodium cooled fast reactor fully loaded with MOX fuel for efficient transmutation of americium is investigated by simulating the safety performance of a BN600-type fast reactor loaded with different fractions of americium in the fuel, using the safety parameters obtained with the SERPENT Monte Carlo code. The focus is on americium mainly due to its long-term contribution to the radiotoxicity of spent nuclear fuel and its deterioration on c...

  4. Method for the transmutation of nuclides

    International Nuclear Information System (INIS)

    1984-01-01

    The invention relates to a method for the systematic and optimal manufacture of nuclides with beneficial properties as well as for the transmutation of noxious nuclides into innocuous ones, e.g. radioactive wastes. For that purpose, use is made of the periodic system of atoms and of the so-called twin-subshell model of nuclear structure, in order to trace the possible transformations of the nuclide through irradiation with appropriate particles or radiation. (G.J.P.)

  5. Neutron transmutation doping of gallium arsenide

    International Nuclear Information System (INIS)

    Alexiev, D.

    1987-12-01

    Neutron transmutation doping (NTD) was studied as a means of compensating p-type Cd-doped GaAs. By introducing specific donor concentrations, the net acceptor level was measured and showed a progressive reduction. The NTD constant K = 0.32 donor atoms.cm 3 per cm 2 was also measured. Radiation damage caused by neutron bombardment was annealed and no additional traps were generated

  6. Partitioning and Transmutation of minor actinides

    International Nuclear Information System (INIS)

    Koch, L.; Wellum, R.

    1991-01-01

    The partitioning of minor actinides from spent fuels and their transmutation into short-lived fission products has been the topic of two dedicated meetings organized jointly by the European Commission and the OECD. The conclusion of the last meeting in 1980, in short, was that partitioning and transmutation of minor actinides, especially in fast reactors, seemed possible. However, the incentive, which would be a reduction of the radiological hazard to the public, was too small if long-lived fission products were not included. Furthermore this meeting showed that minor actinide targets or possible nuclear fuels containing minor actinides for transmutation had not yet been developed. The European Institute for Transuranium Elements took up this task and has carried it out as a small activity for several years. Interests expressed recently by an expert meeting of the OECD/NEA (Paris, 25 April 1989), which was initiated by the proposed Japanese project Omega, led us to the conclusion that the present state of knowledge should be looked at in a workshop environment. Since the Japanese proposal within the project Omega is based on a broader approach we needed this evaluation to assess the relevance of our present activity and wanted to identifiy additional studies which might be needed to cover possible future demands from the public. This workshop was therefore organized, and participants active in the field from EC countries, the USA and Japan were invited

  7. Log live high activity radioactive wastes / Researches and results law of the 30 December 1991. Separation and transmutation of long lived radionuclides; Les dechets radioactifs a haute activite et a vie longue / recherches et resultats Loi du 30 decembre 1991. Separation et transmutation des radionucleides a vie longue

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-12-15

    The law of the 30 December 1991 on the high activity long lived radioactive wastes reached the end. This synthesis final document presents the scientific and technological results, obtained still the end of 2005, on the separation and the transmutation of long lived radionuclides of high activity long lived radioactive wastes. It is organized in five chapters: a presentation of the context and the historical aspects, the researches, the objectives and the strategy of the axis 1, the researches results on the advanced separation, the researches results on the transmutation, the scenario of separation-transmutation and their environmental, technical and economical impacts. (A.L.B.)

  8. R and D on Transmutation at CEA: Recent Results

    International Nuclear Information System (INIS)

    Royet, V.; Delahaye, T.; Lebreton, F.; Picart, S.; Caisso, M.; Gauthe, A.; Ode, D.; Tronche, E.; Bayle, J.P; Warin, D.; Bejaoui, S.; Delage, F.

    2015-01-01

    In the field of minor actinide transmutation in future Generation IV SFR reactor, CEA investigates in priority the recycling of Americium (Am) in the radial blankets located in the outer core area (AmBB: Americium Bearing Blankets). This paper gives an overview of the recent outcomes of the R and D programme carried out at CEA in the different fields of research: from powder elaboration to experimental irradiation. Concerning the powder elaboration, several batches have been produced by the oxalic co-conversion route as well as by the Calcined Resin Microsphere Pelletizing. Different tests have been then performed for the fabrication of pellets according to the current specifications of AmBB. For these two processes, different additional developments of innovative technologies have been achieved well adapted with the processes constraints and hot cell operating. Information on irradiation programmes (MARIOS in HFR and ongoing DIAMINO in Osiris) are presented. The next steps of the programme will then be tackled. (authors)

  9. Development and application of new parameters for TRU transmutation effectiveness

    International Nuclear Information System (INIS)

    Han, Chi Young

    2005-02-01

    Four new parameters (incineration branching ratio, incineration rate, incineration time, and incineration buckling) have been developed to evaluate quantitatively the TRU transmutation effectiveness and applied to transmutation of uranium and TRU. From the incineration branching ratio, it is possible to analyze the main contributors to fission reaction for transmutation of a target nuclide. From the incineration rate, it is available to evaluate the transmutation effectiveness in the viewpoint of a relative incineration rate to incineration potential of a target nuclide and its family. This parameter is also used to calculate the incineration time and incineration buckling together with the incineration branching ratio. The incineration time makes it possible to discuss more practically the transmutation speed instead of the existing other parameters. The incineration buckling can be used to evaluate the time behavior of the incineration rate and also employed to support the results from the incineration time. Taking into account the transmutation effectiveness and potential of uranium and TRU derived by using the parameters and an existing neutron economy parameter, it was noted that the thermal neutron energy is very preferable from the transmutation effectiveness point of view, on the other hand the fast neutron energy is effective from the transmutation potential. Applying them to the typical critical and subcritical TRU burners, it is indicated that the critical reactor containing fertile uranium undergoes effectively the selective TRU transmutation on the present fast spectrum. It was also noted that the uranium-free subcritical reactor could be operated effectively on a little softer spectrum due to the larger neutron excess in the present spectrum. It is expected that the new parameters developed in this study and the results are directly applicable to practical transmutation reactor design, in particular accelerator-driven transmutation reactor

  10. Transmutation in ADS and needs for nuclear data, with an introduction to the n-TOF at CERN

    CERN Document Server

    González, E; Fernández, R; García, J; Villamarín, D

    1999-01-01

    Transmutation can help in the nuclear waste problem by reducing seriously the life and amount of the most dangerous isotopes (radiotoxicity, heat, packing volume and neutron multiplication reductions). ADS are one of the best technologies for nuclear waste transmutation at large scale. Although enough information is available to prepare conceptual designs and make assessments on their performance, a large R&D campaign is required to obtain the precision data required to optimize the detailed engineering design and refine our expectations calculations on waste reduction by the different transmutation strategies being proposed. In particular a large R&D effort is required in nuclear physics, where fundamental differential measurements and integral verification experiments are required. In this sense, the PS213 n-TOF at CERN PS (at Switzerland) will become one of the largest installations to perform the fundamental differential measurements and a wide international collaboration has been setup to perform...

  11. Monte Carlo method in ADS transmutation reactor coolant and the research of optimal placement of the fuel

    International Nuclear Information System (INIS)

    Niu Yunlong; Wei Qianglin; Liu Yibao; Wang Aixing; Zhang Peng

    2014-01-01

    This paper calculated the effects of different coolants to neutron energy spectrum in different position of the transmutation reactor by Monte Carlo N-Particle Transport Code (MCNP5). After having chosen the coolant and particular parameters, different nuclides in fuel rods of the transmutation reactor were calculated and compared. According to the actual situation, nuclides of 99 Tc and 241 Am were chosen and compared. Then the nonuniform-arrangement scheme of different spent fuels were proposed. By comparison of the diagram, it is found that it is more effective to promote the neutron utilization in the reactor by the non-uniform arrangement scheme, which is more reasonable than traditional uniform one. Thus, it would be helpful for transmutation technology by the application of the scheme. (authors)

  12. Flexibility of ADS for minor actinides transmutation in different two-stage PWR-ADS fuel cycle scenarios

    International Nuclear Information System (INIS)

    Zhou, Shengcheng; Wu, Hongchun; Zheng, Youqi

    2018-01-01

    Highlights: •ADS reloading scheme is optimized to raise discharge burnup and lower reactivity loss. •ADS is flexible to be combined with various pyro-chemical reprocessing technologies. •ADS is flexible to transmute MAs from different spent PWR fuels. -- Abstract: A two-stage Pressurized Water Reactor (PWR)-Accelerator Driven System (ADS) fuel cycle is proposed as an option to transmute minor actinides (MAs) recovered from the spent PWR fuels in the ADS system. At the second stage, the spent fuels discharged from ADS are reprocessed by the pyro-chemical process and the recovered actinides are mixed with the top-up MAs recovered from the spent PWR fuels to fabricate the new fuels used in ADS. In order to lower the amount of nuclear wastes sent to the geological repository, an optimized scattered reloading scheme for ADS is proposed to maximize the discharge burnup and lower the burnup reactivity loss. Then the flexibility of ADS for MA transmutation is evaluated in this research. Three aspects are discussed, including: different cooling time of spent ADS fuels before reprocessing, different reprocessing loss of spent ADS fuels, and different top-up MAs recovered from different kinds of spent PWR fuels. The ADS system is flexible to be combined with various pyro-chemical reprocessing technologies with specific spent fuels cooling time and unique reprocessing loss. The reduction magnitudes of the long-term decay heat and radiotoxicity of MAs by transmutation depend on the reprocessing loss. The ADS system is flexible to transmute MAs recovered from different kinds of spent PWR fuels, regardless of UOX or MOX fuels. The reduction magnitudes of the long-term decay heat and radiotoxicity of different MAs by transmutation stay on the same order.

  13. Performance of a transmutation advanced device for sustainable energy application

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, C.; Rosales, J.; Garcia, L. [Instituto Superior de Tecnologias y Ciencias Aplicadas (INSTEC), La Habana (Cuba); Perez-Navarro, A.; Escriva, A. [Universidad Politecnica de Valencia, Valencia (Spain). Inst. de Ingenieria Energetica; Abanades, A. [Universidad Politecnica de Madrid (Spain). Grupo de Modelizacion de Sistemas Termoenergeticos

    2009-07-01

    Preliminary studies have been performed to design a device for nuclear waste transmutation and hydrogen generation based on a gas cooled pebble bed accelerator driven system, TADSEA (transmutation advanced device for sustainable energy application). In previous studies we have addressed the viability of an ADS Transmutation device that uses as fuel wastes from the existing LWR power plants, encapsulated in graphite in the form of pebble beds, being cooled by helium which enables high temperatures, in the order of 1200 K, to facilitate hydrogen generation from water either by high temperature electrolysis or by thermo chemical cycles. To design this device several configurations were studied, including several reactors thickness, to achieve the desired parameters, the transmutation of nuclear waste and the production of 100 MW. of thermal power. In this paper we are presenting new studies performed on deep burn in-core fuel management strategy for LWR waste. We analyze the fuel cycle on TADSEA device based on driver and transmutation fuel that were proposed for the General Atomic design of a gas turbine-modular helium reactor. We compare the transmutation results of the three fuel management strategies, using driven and transmutation, and standard LWR spend fuel, and present several parameters that describe the neutron performance of TADSEA nuclear core as the fuel and moderator temperature reactivity coefficients and transmutation chain. (author)

  14. Performance of a transmutation advanced device for sustainable energy application

    International Nuclear Information System (INIS)

    Garcia, C.; Rosales, J.; Garcia, L.; Perez-Navarro, A.; Escriva, A.; Abanades, A.

    2009-01-01

    Preliminary studies have been performed to design a device for nuclear waste transmutation and hydrogen generation based on a gas cooled pebble bed accelerator driven system, TADSEA (transmutation advanced device for sustainable energy application). In previous studies we have addressed the viability of an ADS Transmutation device that uses as fuel wastes from the existing LWR power plants, encapsulated in graphite in the form of pebble beds, being cooled by helium which enables high temperatures, in the order of 1200 K, to facilitate hydrogen generation from water either by high temperature electrolysis or by thermo chemical cycles. To design this device several configurations were studied, including several reactors thickness, to achieve the desired parameters, the transmutation of nuclear waste and the production of 100 MW. of thermal power. In this paper we are presenting new studies performed on deep burn in-core fuel management strategy for LWR waste. We analyze the fuel cycle on TADSEA device based on driver and transmutation fuel that were proposed for the General Atomic design of a gas turbine-modular helium reactor. We compare the transmutation results of the three fuel management strategies, using driven and transmutation, and standard LWR spend fuel, and present several parameters that describe the neutron performance of TADSEA nuclear core as the fuel and moderator temperature reactivity coefficients and transmutation chain. (author)

  15. High flux transmutation of fission products and actinides

    International Nuclear Information System (INIS)

    Gerasimov, A.; Kiselev, G.; Myrtsymova, L.

    2001-01-01

    Long-lived fission products and minor actinides accumulated in spent nuclear fuel of power reactors comprise the major part of high level radwaste. Their incineration is important from the point of view of radwaste management. Transmutation of these nuclides by means of neutron irradiation can be performed either in conventional nuclear reactors, or in specialized transmutation reactors, or in ADS facilities with subcritical reactor and neutron source with application of proton accelerator. Different types of transmutation nuclear facilities can be used in order to insure optimal incineration conditions for radwaste. The choice of facility type for optimal transmutation should be based on the fundamental data in the physics of nuclide transformations. Transmutation of minor actinides leads to the increase of radiotoxicity during irradiation. It takes significant time compared to the lifetime of reactor facility to achieve equilibrium without effective transmutation. High flux nuclear facilities allow to minimize these draw-backs of conventional facilities with both thermal and fast neutron spectrum. They provide fast approach to equilibrium and low level of equilibrium mass and radiotoxicity of transmuted actinides. High flux facilities are advantageous also for transmutation of long-lived fission products as they provide short incineration time

  16. Multi-faceted evaluation for nuclear fuel cycles with transmutation

    International Nuclear Information System (INIS)

    Nishihara, Kenji

    2015-03-01

    Environment impact, economy and proliferation resistance were estimated for nuclear fuel cycles involving transmutation by fast reactor and accelerator-driven system in equilibrium state. As a result, the transmutation scenario using only fast reactor was superior to the scenarios combined with accelerator-driven system in all estimation, but the differences were insignificant. (author)

  17. General solution of Bateman equations for nuclear transmutations

    International Nuclear Information System (INIS)

    Cetnar, Jerzy

    2006-01-01

    The paper concerns the linear chain method of solving Bateman equations for nuclear transmutation in derivation of the general solution for linear chain with repeated transitions and thus elimination of existing numerical problems. In addition, applications of derived equations for transmutation trajectory analysis method is presented

  18. A Study on the Kinetic Characteristics of Transmutation Process Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Chang Hyun; You, Young Woo; Cho, Jae seon; Huh, Chang Wook; Kim, Doh Hyung [Seoul National University, Seoul (Korea, Republic of)

    1997-07-01

    The purpose of this study is to examine the transient heat transfer characteristics of liquid mental as the coolant used in accelerator-driven transmutation process reactor which is related the disposal of high-level radioactive nuclide. At current stage, the accelerator-driven transmutation process is investigated as the most appropriate method among many transmutation process methods. In this study, previous research works are investigated especially about the thermal hydraulics and kinetic behavior of coolant material including heat transfer of coolant in transmutation process reactor. A study on the heat transfer characteristics of liquid metal is performed based on the thermal hydraulic kinetic characteristics of liquid metal reactor which uses liquid metal coolant. Based on this study, the most appropriate material for the coolant of transmutation reactor will be recommended. 53 refs., 15 tabs., 33 figs. (author)

  19. Transmutation of fission products with the use of an accelarator

    International Nuclear Information System (INIS)

    Kase, T.; Harada, H.; Takahashi, T.

    1995-01-01

    The three transmutation methods with the use of an accelerator, the proton method, the spallation neutron method and the μCF method, are employed for the transmutation of long-lived nuclides in high level radioactive wastes. The transmutation energies and the effective half-lives of 99 Tc and 137 Cs for these transmutation methods are calculated by the Monte Carlo simulation codes for particle transport. The transmutation energies of the proton method are larger than those of the spallation neutron method and the μCF method under the condition of the same effective half life. The proton method is difficult to meet energy balance criterion. On the other hand, the spallation neutron method and the μCF method have possibility to meet the energy balance criterion. (author)

  20. Progress in transmutation targets from Efttra

    International Nuclear Information System (INIS)

    Haas, D.; Fernandez, A.; Warin, D.; Bonnerot, J.M.; Garzenne, C.; Scaffidi-Argentina, F.; Maschek, W.; Schram, R.; Klaassen, F.

    2007-01-01

    Since 15 years, the EFTTRA partners have organised programmes to demonstrate the feasibility of the transmutation of americium in uranium-free targets. In the related transmutation scenario, the targets are introduced in a thermal neutron zone of a fast reactor, to maximize the efficiency of transmutation. Amongst these programmes, those carried out in the HFR reactor in Petten have led to important conclusions and are still at the core of the research in that field. The analysis of the EFTTRA T4 and T4bis irradiation experiments, carried out with targets of MgAl 2 O 4 +11 wt% 241 Am, showed that the release/trapping of helium is the key issue for target design, and also demonstrated a lack of technical benefits of this material, due to a unsatisfactory in-pile behaviour in terms of irradiation damage and chemical stability. A new irradiation experiment called HELIOS is currently under fabrication and will be carried out in HFR. The in-pile behaviour of U-free fuels and targets such as (Am,Zr)O 2 , (Pu,Am,Zr)O 2 , CERCER (MgO) or CERMET (Mo) will be examined. The irradiation temperature will be high enough in some of the pins to be able to tune the release of a significant fraction of helium produced so that the material swelling can be minimized as much as reasonably possible. The HELIOS irradiation experiment is planned to be carried out in the HFR core and shall last 300 full power days starting in 2007. (authors)

  1. New data libraries for transmutation studies

    Energy Technology Data Exchange (ETDEWEB)

    Kloosterman, J.L. [Netherlands Energy Research Foundation (ECN), Petten (Netherlands); Hoogenboom, J.E. [Interfaculty Reactor Inst., Delft (Netherlands)

    1995-06-01

    The fuel depletion code ORIGEN-S is often used for transmutation studies. It uses three different working libraries for actinides, fission products, and light elements, which contain decay data, cross-section data and fission product yields. These data have been renewed with data based on the JEF2.2 and the EAF3 evaluated files. Furthermore, data for 201 fission products have been added to the libraries. The new data libraries are particular suitable for parameter studies and other introductory calculations. For more accurate calculations, it is advised to regularly update the cross sections of the most important actinides and fission products during the burnup sequence. (orig.).

  2. New data libraries for transmutation studies

    Energy Technology Data Exchange (ETDEWEB)

    Kloosterman, J.L. [Netherlands Energy Research Foundation (ECN), Petten (Netherlands); Hoogenboom, J.E. [Interfaculty Reactor Inst., Delft (Netherlands)

    1995-12-31

    The fuel depletion code ORIGEN-S is often used for transmutations studies. It uses three different working libraries for actinides, fission products, and light elements, which contain decay data, cross-section data and fission product yields. These data have renewed with data based on the JEF2.2 and the EAF3 evaluated files. Furthermore, data for 201 fission products have been added to the libraries. The new data libraries are particular suitable for parameter studies and other introductory calculations. For more accurate calculations, it is advised to regularly update the cross sections of the most important actinides and fission products during the burnup sequence. (author) 9 refs.

  3. Neutron-transmutation-doped germanium bolometers

    International Nuclear Information System (INIS)

    Palaio, N.P.; Rodder, M.; Haller, E.E.; Kreysa, E.

    1983-02-01

    Six slices of ultra-pure germanium were irradiated with thermal neutron fluences between 7.5 x 10 16 and 1.88 x 10 18 cm - 2 . After thermal annealing the resistivity was measured down to low temperatures ( 0 exp(δ/T) in the hopping conduction regime. Also, several junction FETs were tested for noise performance at room temperature and in an insulating housing in a 4.2K cryostat. These FETs will be used as first stage amplifiers for neutron-transmutation-doped germanium bolometers

  4. Statistical Transmutation in Floquet Driven Optical Lattices.

    Science.gov (United States)

    Sedrakyan, Tigran A; Galitski, Victor M; Kamenev, Alex

    2015-11-06

    We show that interacting bosons in a periodically driven two dimensional (2D) optical lattice may effectively exhibit fermionic statistics. The phenomenon is similar to the celebrated Tonks-Girardeau regime in 1D. The Floquet band of a driven lattice develops the moat shape, i.e., a minimum along a closed contour in the Brillouin zone. Such degeneracy of the kinetic energy favors fermionic quasiparticles. The statistical transmutation is achieved by the Chern-Simons flux attachment similar to the fractional quantum Hall case. We show that the velocity distribution of the released bosons is a sensitive probe of the fermionic nature of their stationary Floquet state.

  5. Neutron-transmutation-doped germanium bolometers

    Science.gov (United States)

    Palaio, N. P.; Rodder, M.; Haller, E. E.; Kreysa, E.

    1983-01-01

    Six slices of ultra-pure germanium were irradiated with thermal neutron fluences between 7.5 x 10 to the 16th and 1.88 x 10 to the 18th per sq cm. After thermal annealing the resistivity was measured down to low temperatures (less than 4.2 K) and found to follow the relationship rho = rho sub 0 exp(Delta/T) in the hopping conduction regime. Also, several junction FETs were tested for noise performance at room temperature and in an insulating housing in a 4.2 K cryostat. These FETs will be used as first stage amplifiers for neutron-transmutation-doped germanium bolometers.

  6. Transmutation of singularities in optical instruments

    Energy Technology Data Exchange (ETDEWEB)

    Tyc, Tomas [Institute of Theoretical Physics and Astrophysics, Masaryk University, Kotlarska 2, 61137 Brno (Czech Republic); Leonhardt, Ulf [School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews KY16 9SS (United Kingdom)], E-mail: tomtyc@physics.muni.cz

    2008-11-15

    We propose a method for eliminating a class of singularities in optical media where the refractive index goes to zero or infinity at one or more isolated points. Employing transformation optics, we find a refractive index distribution equivalent to the original one that is nonsingular but shows a slight anisotropy. In this way, the original singularity is 'transmuted' into another, weaker type of singularity where the permittivity and permeability tensors are discontinuous at one point. The method is likely to find applications in designing and improving optical devices by making them easier to implement or to operate in a broad band of the spectrum.

  7. Strong coupling transmutation of Yukawa theory

    International Nuclear Information System (INIS)

    Chiang, C.C.; Chiu, C.B.; Sudarshan, E.C.G.

    1981-01-01

    In the strong coupling limit, it is shown that the Yukawa-type theory can be made to undergo a transmutation into an attractive separable potential theory, provided a single state is removed from the spectrum in the lowest nontrivial sector and the states at infinity which include a continuum in the next sector. If these states are not removed, the two theories are distinct. It is suggested that the full equivalence and the renormalization of four-fermion theories need further examination. (orig.)

  8. II. Inhibited Diffusion Driven Surface Transmutations

    Science.gov (United States)

    Chubb, Talbot A.

    2006-02-01

    This paper is the second of a set of three papers dealing with the role of coherent partitioning as a common element in Low Energy Nuclear Reactions (LENR), by which is meant cold-fusion related processes. This paper discusses the first step in a sequence of four steps that seem to be necessary to explain Iwamura 2-α-addition surface transmutations. Three concepts are examined: salt-metal interface states, sequential tunneling that transitions D+ ions from localized interstitial to Bloch form, and the general applicability of 2-dimensional vs. 3-dimensional symmetry hosting networks.

  9. The DD Cold Fusion-Transmutation Connection

    Science.gov (United States)

    Chubb, Talbot A.

    2005-12-01

    LENR theory must explain dd fusion, alpha-addition transmutations, radiationless nuclear reactions, and three-body nuclear particle reactions. Reaction without radiation requires many-body D Bloch+ periodicity in both location and internal structure dependencies. Electron scattering leads to mixed quantum states. The radiationless dd fusion reaction is 2-D Bloch+ -> {}4 He Bloch2+. Overlap between {}4 He Bloch2+ and surface Cs leads to alpha absorption. In the Iwamura et al. studies active deuterium is created by scattering at diffusion barriers.

  10. II. Inhibited diffusion driven surface transmutations

    International Nuclear Information System (INIS)

    Cubb, Talbot A.

    2006-01-01

    This paper is the second of a set of three papers dealing with the role of coherent partitioning as a common element in Low Energy Nuclear Reactions (LENR), by which is meant cold-fusion related processes. This paper discusses the first step in a sequence of four steps that seem to be necessary to explain lwamura 2-α-addition surface transmutations. Three concepts are examined: salt metal interface states, sequential tunneling that transitions D + ions from localized interstitial to Bloch form, and the general applicability of 2-dimensional vs. 3-dimensional symmetry hosting networks. (author)

  11. II. Inhibited diffusion driven surface transmutations

    Energy Technology Data Exchange (ETDEWEB)

    Cubb, Talbot A. [Greenwich Corp., 5023 N. 38th St., Arlington, VA 22207 (United States)

    2006-07-01

    This paper is the second of a set of three papers dealing with the role of coherent partitioning as a common element in Low Energy Nuclear Reactions (LENR), by which is meant cold-fusion related processes. This paper discusses the first step in a sequence of four steps that seem to be necessary to explain lwamura 2-{alpha}-addition surface transmutations. Three concepts are examined: salt metal interface states, sequential tunneling that transitions D{sup +} ions from localized interstitial to Bloch form, and the general applicability of 2-dimensional vs. 3-dimensional symmetry hosting networks. (author)

  12. Fuel and target programs for the transmutation at Phenix and other reactors

    International Nuclear Information System (INIS)

    Gaillard-Groleas, G.

    2002-01-01

    The fuels and targets program for transmutation, performed in the framework of the axis 1 of the December 1991 law about the researches on the management of long-lived radioactive wastes, is in perfect consistency with the transmutation scenario studies carried out in the same framework. These studies put forward the advantage of fast breeder reactors (FBR) in the incineration of minor actinides and long-lived fission products. The program includes exploratory and technological demonstration studies covering the different design options. It aims at enhancing our knowledge of the behaviour of materials under irradiation and at ensuring the mastery of processes. The goals of the different experiments foreseen at Phenix reactor are presented. The main goal is to supply a set of results allowing to precise the conditions of the technical feasibility of minor actinides and long-lived fission products incineration in FBRs. (J.S.)

  13. APEX accelerator cycle for transmutation of long-lived fission wastes

    International Nuclear Information System (INIS)

    Powell, J.; Steinberg, M.; Takahashi, H.; Grand, P.; Botts, T.; Kouts, H.J.C.

    1980-01-01

    Based on preliminary studies, some conclusions can be drawn concerning the Accelerator Fuel Enricher and Fission Product Exterminator (APEX). APEX-1 and APEX-2 systems can destroy TU's, 137 Cs, and 90 Sr at acceptable cost and efficiency. The principal difference between APEX-1 and APEX-2 is the in-reactor and in-circuit inventory of 137 Cs and 90 Sr. Stable and low hazard wastes can be disposed of by burial. Accelerator breeders can effectively sustain a fission reactor economy indefinitely. Military waste can be blended into commercial fuel cycle for transmutation. Accelerator and target technologies appear practical and could be developed in a few years. More detailed studies are needed to better define the technical and economic features of the LAFER and APEX cycles, so that comparative assessments can be made between these cycles, as well as with other transmutation and waste disposal concepts

  14. The role of Z-pinch fusion transmutation of waste in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Smith, James Dean; Drennen, Thomas E.; Rochau, Gary Eugene; Martin, William Joseph; Kamery, William; Phruksarojanakun, Phiphat; Grady, Ryan; Cipiti, Benjamin B.; Wilson, Paul Philip Hood; Mehlhorn, Thomas Alan; Guild-Bingham, Avery; Tsvetkov, Pavel Valeryevich

    2007-01-01

    The resurgence of interest in reprocessing in the United States with the Global Nuclear Energy Partnership has led to a renewed look at technologies for transmuting nuclear waste. Sandia National Laboratories has been investigating the use of a Z-Pinch fusion driver to burn actinide waste in a sub-critical reactor. The baseline design has been modified to solve some of the engineering issues that were identified in the first year of work, including neutron damage and fuel heating. An on-line control feature was added to the reactor to maintain a constant neutron multiplication with time. The transmutation modeling effort has been optimized to produce more accurate results. In addition, more attention was focused on the integration of this burner option within the fuel cycle including an investigation of overall costs. This report presents the updated reactor design, which is able to burn 1320 kg of actinides per year while producing 3,000 MWth

  15. Partitioning and transmutation - Technical feasibility, proliferation resistance and safeguardability

    International Nuclear Information System (INIS)

    Schenkel, R.; Glatz, J.-P.; Magill, J.; Mayer, K.

    2001-01-01

    Full text: The advantages of partitioning and transmutation (P and T) of minor actinides and selected fission products are largely discussed and described in literature. The advantages of separation of the long-lived alpha-emitters for the long-term storage of highly radioactive waste have been highlighted. After separation, these nuclides shall be transmuted by means of a dedicated reactor or accelerator driven system into shorter-lived fission products that are less hazardous. This, however, requires the development and implementation of a P and T fuel cycle, involving chemical separation of the minor actinides and the fabrication of MA containing fuels or targets. Concepts for P and T fuel cycles have been developed and technical issues are being addressed in various research programs. With the recognition of the proliferation potential associated with the minor actinides by the IAEA, also the proliferation and safeguards aspects need to be addressed. It is important to raise these points at an early stage of process development, in order to identify potential problems and to develop appropriate solutions. The oxide fuels used worldwide in thermal reactor systems for energy production are reprocessed by aqueous techniques. Therefore these systems, primarily the PUREX process, are fully developed and implemented commercially. Furthermore, the safeguards approach is fully implemented in existing facilities, covering uranium and plutonium. Pyroprocess systems have largely been associated with fast reactors and metallic fuels and their development has therefore only reached the pilot-scale stage and the feasibility of minor actinide (MA) separation still needs to be demonstrated. Hydrometallurgical and pyrochemical reprocessing should however not be considered as competing but rather as complementary technologies. For instance in a so-called double strata concept (foreseen for instance in the Japanese OMEGA project), the PUREX process (first stratum) would be

  16. Actinide Partitioning and Transmutation Program. Progress report, April 1--June 30, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Tedder, D. W.; Blomeke, J. O. [comps.

    1977-10-01

    Experimental work on the 16 tasks comprising the Actinide Partitioning and Transmutation Program was continued. Summaries of work are given on Purex Process modifications, actinide recovery, Am-Cm recovery, radiation effects on ion exchangers, LMFBR transmutation studies, thermal reactor transmutation studies, fuel cycle studies, and partitioning-transmutation evaluation. (JRD)

  17. Evaluation of actinide partitioning and transmutation

    International Nuclear Information System (INIS)

    1982-01-01

    After a few centuries of radioactive decay the long-lived actinides, the elements of atomic numbers 89-103, may constitute the main potential radiological health hazard in nuclear wastes. This is because all but a very few fission products (principally technetium-99 and iodine-129) have by then undergone radioactive decay to insignificant levels, leaving the actinides as the principal radionuclides remaining. It was therefore at first sight an attractive concept to recycle the actinides to nuclear reactors, so as to eliminate them by nuclear fission. Thus, investigations of the feasibility and potential benefits and hazards of the concept of 'actinide partitioning and transmutation' were started in numerous countries in the mid-1970s. This final report summarizes the results and conclusions of technical studies performed in connection with a four-year IAEA Co-ordinated Research Programme, started in 1976, on the ''Environmental Evaluation and Hazard Assessment of the Separation of Actinides from Nuclear Wastes followed by either Transmutation or Separate Disposal''. Although many related studies are still continuing, e.g. on waste disposal, long-term safety assessments, and waste actinide management (particularly for low and intermediate-level wastes), some firm conclusions on the overall concept were drawn by the programme participants, which are reflected in this report

  18. Deep burn transmutation of nuclear waste

    International Nuclear Information System (INIS)

    Rodriguez, C.; Baxter, A.; McEachern, D.; Venneri, F.; Williams, D.

    2002-01-01

    Helium-cooled, graphite-moderated reactors with ceramic-coated fuel particles offer unique advantages for the destruction of transuranic materials discharged in Light Water Reactor spent fuel. This is accomplished by fission, and capture-followed-by-fission processes. Three major features make it practical: (1) ceramic-coated particles accommodate high levels of burnup in one pass, thus reducing the need for repeated reprocessing; (2) graphite moderation produces valuable opportunities for thermal and epithermal neutrons to interact with fissionable and non-fissionable materials respectively; and (3) ceramic-coated particle kernel sizes can be adjusted to control the rate of such interactions. In the transmutation scheme proposed here, virtually complete destruction of weapons-usable materials, and 95% destruction of all transuranic waste is achieved. Higher levels of destruction are possible by repeated reprocessing and recycling, but there is little incentive to do so since each reprocessing step generates new secondary waste. After transmutation, the impervious ceramic-coated fuel particles provide an ideal residual waste form. (author)

  19. A code system for ADS transmutation studies

    International Nuclear Information System (INIS)

    Brolly, A.; Vertes, P.

    2001-01-01

    An accelerator driven reactor physical system can be divided into two different subsystems. One is the neutron source the other is the subcritical reactor. Similarly, the modelling of such system is also split into two parts. The first step is the determination of the spatial distribution and angle-energy spectrum of neutron source in the target region; the second one is the calculation of neutron flux which is responsible for the transmutation process in the subcritical system. Accelerators can make neutrons from high energy protons by spallation or photoneutrons from accelerated electrons by Bremsstrahlung (e-n converter). The Monte Carlo approach is the only way of modelling such processes and it might be extended to the whole subcritical system as well. However, a subcritical reactor may be large, it may contain thermal regions and the lifetime of neutrons may be long. Therefore a comprehensive Monte Carlo modelling of such system is a very time consuming computational process. It is unprofitable as well when applied to system optimization that requires a comparative study of large number of system variants. An appropriate method of deterministic transport calculation may adequately satisfy these requirements. Thus, we have built up a coupled calculational model for ADS to be used for transmutation of nuclear waste which we refer further as M-c-T system. Flow chart is shown in Figure. (author)

  20. Proceedings of the Eleventh Information Exchange Meeting on Actinide and Fission Product Partitioning and Transmutation

    International Nuclear Information System (INIS)

    2012-01-01

    Partitioning and transmutation (P and T) is one of the key technologies for reducing the radiotoxicity and volume of radioactive waste arisings. Recent developments indicate the need for embedding P and T strategies in advanced fuel cycles considering both waste management and economic issues. In order to provide experts a forum to present and discuss state-of-the-art developments in the P and T field, the OECD/NEA has been organising biennial information exchange meetings on actinide and fission product partitioning and transmutation since 1990. The previous meetings were held in Mito (Japan) in 1990, at Argonne (United States) in 1992, in Cadarache (France) in 1994, in Mito (Japan) in 1996, in Mol (Belgium) in 1998, in Madrid (Spain) in 2000, in Jeju (Korea) in 2002, in Las Vegas (United States) in 2004, in Nimes (France) in 2006 and in Mito (Japan) in 2008. They have often been co-sponsored by the European Commission (EC) and the International Atomic Energy Agency (IAEA). The 11. Information Exchange Meeting was held in San Francisco, California, United States on 1-4 November 2010, comprising a plenary session on national P and T programmes and six technical sessions covering various fields of P and T. The meeting was hosted by the Idaho National Laboratory (INL), United States. The information exchange meetings on P and T form an integral part of NEA activities on advanced nuclear fuel cycles. The meeting covered scientific as well as strategic/policy developments in the field of P and T, such as: fuel cycle strategies and transition scenarios; radioactive waste forms; the impact of P and T on geological disposal; radioactive waste management strategies (including secondary wastes); transmutation fuels and targets; pyro and aqueous separation processes; materials, spallation targets and coolants; transmutation physics, experiments and nuclear data; transmutation systems (design, performance and safety); handling and transportation of transmutation fuels; and

  1. Transmutation of minor actinide using thorium fueled BWR core

    International Nuclear Information System (INIS)

    Susilo, Jati

    2002-01-01

    One of the methods to conduct transmutation of minor actinide is the use of BWR with thorium fuel. Thorium fuel has a specific behaviour of producing a little secondary minor actinides. Transmutation of minor actinide is done by loading it in the BWR with thorium fuel through two methods, namely close recycle and accumulation recycle. The calculation of minor actinide composition produced, weigh of minor actinide transmuted, and percentage of reminder transmutation was carried SRAC. The calculations were done to equivalent cell modeling from one fuel rod of BWR. The results show that minor actinide transmutation is more effective using thorium fuel than uranium fuel, through both close recycle and accumulation recycle. Minor actinide transmutation weight show that the same value for those recycle for 5th recycle. And most of all minor actinide produced from 5 unit BWR uranium fuel can transmuted in the 6 t h of close recycle. And, the minimal value of excess reactivity of the core is 12,15 % Δk/k, that is possible value for core operation

  2. Transmutation of All German Transuranium under Nuclear Phase Out Conditions - Is This Feasible from Neutronic Point of View?

    Science.gov (United States)

    Merk, Bruno; Litskevich, Dzianis

    2015-01-01

    The German government has decided for the nuclear phase out, but a decision on a strategy for the management of the highly radioactive waste is not defined yet. Partitioning and Transmutation (P&T) could be considered as a technological option for the management of highly radioactive waste, therefore a wide study has been conducted. In the study group objectives for P&T and the boundary conditions of the phase out have been discussed. The fulfillment of the given objectives is analyzed from neutronics point of view using simulations of a molten salt reactor with fast neutron spectrum. It is shown that the efficient transmutation of all existing transuranium isotopes would be possible from neutronic point of view in a time frame of about 60 years. For this task three reactors of a mostly new technology would have to be developed and a twofold life cycle consisting of a transmuter operation and a deep burn phase would be required. A basic insight for the optimization of the time duration of the deep burn phase is given. Further on, a detailed balance of different isotopic inventories is given to allow a deeper understanding of the processes during transmutation in the molten salt fast reactor. The effect of modeling and simulation is investigated based on three different modeling strategies and two different code versions.

  3. Transmutation of All German Transuranium under Nuclear Phase Out Conditions – Is This Feasible from Neutronic Point of View?

    Science.gov (United States)

    Merk, Bruno; Litskevich, Dzianis

    2015-01-01

    The German government has decided for the nuclear phase out, but a decision on a strategy for the management of the highly radioactive waste is not defined yet. Partitioning and Transmutation (P&T) could be considered as a technological option for the management of highly radioactive waste, therefore a wide study has been conducted. In the study group objectives for P&T and the boundary conditions of the phase out have been discussed. The fulfillment of the given objectives is analyzed from neutronics point of view using simulations of a molten salt reactor with fast neutron spectrum. It is shown that the efficient transmutation of all existing transuranium isotopes would be possible from neutronic point of view in a time frame of about 60 years. For this task three reactors of a mostly new technology would have to be developed and a twofold life cycle consisting of a transmuter operation and a deep burn phase would be required. A basic insight for the optimization of the time duration of the deep burn phase is given. Further on, a detailed balance of different isotopic inventories is given to allow a deeper understanding of the processes during transmutation in the molten salt fast reactor. The effect of modeling and simulation is investigated based on three different modeling strategies and two different code versions. PMID:26717509

  4. Transmutation of All German Transuranium under Nuclear Phase Out Conditions - Is This Feasible from Neutronic Point of View?

    Directory of Open Access Journals (Sweden)

    Bruno Merk

    Full Text Available The German government has decided for the nuclear phase out, but a decision on a strategy for the management of the highly radioactive waste is not defined yet. Partitioning and Transmutation (P&T could be considered as a technological option for the management of highly radioactive waste, therefore a wide study has been conducted. In the study group objectives for P&T and the boundary conditions of the phase out have been discussed. The fulfillment of the given objectives is analyzed from neutronics point of view using simulations of a molten salt reactor with fast neutron spectrum. It is shown that the efficient transmutation of all existing transuranium isotopes would be possible from neutronic point of view in a time frame of about 60 years. For this task three reactors of a mostly new technology would have to be developed and a twofold life cycle consisting of a transmuter operation and a deep burn phase would be required. A basic insight for the optimization of the time duration of the deep burn phase is given. Further on, a detailed balance of different isotopic inventories is given to allow a deeper understanding of the processes during transmutation in the molten salt fast reactor. The effect of modeling and simulation is investigated based on three different modeling strategies and two different code versions.

  5. The transmutation of americium: the Ecrix experiments in Phenix

    International Nuclear Information System (INIS)

    Garnier, J.C.; Schmidt, N.; Croixmarie, Y.; Ottaviani, J.P.; Varaine, F.; Saint Jean, C. de

    1999-01-01

    The first americium transmutation experiment in a specific target in PHENIX will occur with the ECRIX-B and ECRIX-H experiments. Beside material testing, the objective is also to represent a concept of transmutation whose specificity is to enhance the kinetics of transmutation by using a moderated spectrum. The moderator materials will be 11 B 4 C and CaH 2 for ECRIX-B and ECRIXH respectively, the irradiation conditions have been predicted for both the neutronics and thermal. The targets (MgO-AmO X pellets) are manufactured in the ATALANTE laboratory and the design is performed according to the PHENIX operating conditions. (authors)

  6. The Molten Salt Fast Reactor as Highly Efficient Transmutation System

    International Nuclear Information System (INIS)

    Merk, B.; Rohde, U.; Scholl, S.

    2013-01-01

    Conclusion and future steps: • MSFR offers very attractive features for efficient transmutation; • significant advantages due to liquid fuel and online refuelling and reprocessing; • significant developments are required on the way to application; • system is very promising for transmutation; • development of a safety approach for liquid fuel reactors (RSWG); • investigation of possibilities to solve the “last transmuter” problem (ICAPP2013) – as future for countries envisaging nuclear phase out or no transition to fast reactor fleet for energy production; • establishing of a strong group “MSFR for transmutation”; • development of a transmutation optimized design

  7. Proposed partitioning and transmutation of long-lived nuclear wastes

    International Nuclear Information System (INIS)

    Van Tuyle, G.J.; Rawlins, J.A.

    1991-01-01

    A means of transmuting key long-lived nuclear wastes, primarily the minor actinides (Np, Am, Cm) and iodine, using a hybrid proton accelerator and sub-critical lattice, is proposed. By partitioning light water reactor (LWR) spent fuel and by transmuting key elements, such as the plutonium, the minor actinides, and a few of the long-lived fission products, some of the most significant challenges in building a waste repository can be substantially reduced. The proposed machine would transmute the minor actinides and the iodine produced by 75 LWRs, and would generate usable electricity (beyond that required to run the large accelerator) of 850 MW e . 14 refs., 10 figs

  8. Tokamak transmutation of (nuclear) waste (TTW): Parametric studies

    International Nuclear Information System (INIS)

    Cheng, E.T.; Krakowski, R.A.; Peng, Y.K.M.

    1994-01-01

    Radioactive waste generated as part of the commercial-power and defense nuclear programs can be either stored or transmuted. The latter treatment requires a capital-intensive neutron source and is reserved for particularly hazardous and long-lived actinide and fission-product waste. A comparative description of fusion-based transmutation is made on the basis of rudimentary estimates of ergonic performance and transmutation capacities versus inventories for both ultra-low-aspect-ratio (spherical torus, ST) and conversional (aspect-ratio) tokamak fusion-power-core drivers. The parametric systems studies reported herein provides a preamble to more-detailed, cost-based systems analyses

  9. Critique of rationale for transmutation of nuclear waste

    International Nuclear Information System (INIS)

    Smith, C.F.; Cohen, J.J.

    1980-07-01

    It has been suggested that nuclear transmutation could be used in the elimination or reduction of hazards from radioactive wastes. The rationale for this suggestion is the subject of this paper. The objectives of partitioning-transmutation are described. The benefits are evaluated. The author concludes that transmutation would appear at best to offer the opportunity of reducing an already low risk. This would not seem to be justifiable considering the cost. If non-radiological risks are considered, there is a negative total benefit

  10. Fast reactor core concepts to improve transmutation efficiency

    International Nuclear Information System (INIS)

    Fujimura, Koji; Kawashima, Katsuyuki; Itooka, Satoshi

    2015-01-01

    Fast Reactor (FR) core concepts to improve transmutation efficiency were conducted. A heterogeneous MA loaded core was designed based on the 1000MWe-ABR breakeven core. The heterogeneous MA loaded core with Zr-H loaded moderated targets had a better transmutation performance than the MA homogeneous loaded core. The annular pellet rod design was proposed as one of the possible design options for the MA target. It was shown that using annular pellet MA rods mitigates the self-shielding effect in the moderated target so as to enhance the transmutation rate

  11. Overall assessment of actinide partitioning and transmutation for waste management purposes

    International Nuclear Information System (INIS)

    Blomeke, J.O.; Croff, A.G.; Finney, B.C.; Tedder, D.W.

    1980-01-01

    A program to establish the technical feasibility and incentives for partitioning (i.e., recovering) actinides from fuel cycle wastes and then transmuting them in power reactors to shorter-lived or stable nuclides has recently been concluded at the Oak Ridge National Laboratory. The feasibility was established by experimentally investigating the reduction that can be practicably achieved in the actinide content of the wastes sent to a geologic repository, and the incentives for implementing this concept were defined by determining the incremental costs, risks, and benefits. Eight US Department of Energy laboratories and three private companies participated in the program over its 3-year duration. A reference fuel cycle was chosen based on a self-generated plutonium recycle PWR, and chemical flowsheets based on solvent extraction and ion-exchange techniques were generated that have the potential to reduce actinides in fuel fabrication and reprocessing plant wastes to less than 0.25% of those in the spent fuel. Waste treatment facilities utilizing these flowsheets were designed conceptually, and their costs were estimated. Finally, the short-term (contemporary) risks from fuel cycle operations and long-term (future) risks from deep geologic disposal of the wastes were estimated for cases with and without partitioning and transmutation. It was concluded that, while both actinide partitioning from wastes and transmutation in power reactors appear to be feasible using currently identified and studied technology, implementation of this concept cannot be justified because of the small long-term benefits and substantially increased costs of the concept

  12. Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux

    Science.gov (United States)

    Bowman, Charles D.

    1992-01-01

    Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.

  13. Fluoride partitioning R and D programme for molten salt transmutation reactor systems in the Czech Republic

    International Nuclear Information System (INIS)

    Uhlir, J.; Priman, V.; Vanicek, J.

    2001-01-01

    The transmutation of spent nuclear fuel is considered a prospective alternative conception to the current conception based on the non-reprocessed spent fuel disposal into underground repository. The Czech research and development programme in the field of partitioning and transmutation is founded on the Molten Salt Transmutation Reactor system concept with fluoride salts based liquid fuel, the fuel cycle of which is grounded on pyrochemical / pyrometallurgical fluoride partitioning of spent fuel. The main research activities in the field of fluoride partitioning are oriented mainly towards technological research of Fluoride Volatility Method and laboratory research on electro-separation methods from fluoride melts media. The Czech national conception in the area of P and T research issues from the national power industry programme and from the Czech Power Company intentions of the extensive utilization of nuclear power in our country. The experimental R and D work is concentrated mainly in the Nuclear Research Institute Rez plc that plays a role of main nuclear research workplace for the Czech Power Company. (author)

  14. Minor actinides transmutation potential: state of art for GEN IV sodium cooled fast reactors

    International Nuclear Information System (INIS)

    Buiron, Laurent

    2015-01-01

    In the frame of the R and D program relative to the 1991 French act on nuclear waste management, fast neutron systems have shown relevant characteristics that meet both requirements on sustainable resources management and waste minimization. They also offer flexibility by mean of burner or breeder configurations allowing mastering plutonium inventory without significant impact on core safety. From the technological point of view, sodium cooled fast reactor are considered in order to achieve mean term industrial deployment. The present document summaries the main results of R and D program on minor actinides transmutation in sodium fast reactor since 2006 following recommendation of the first part of the 1991 French act. Both homogeneous and heterogeneous management achievable performances are presented for 'evolutionary' SFR V2B core as well as low void worth CFV core for industrial scale configurations (1500 MWe). Minor actinides transmutation could be demonstrated in the ASTRID reactor with the following configurations: - a 2%vol Americium content for the homogeneous mode, - a 10%vol Americium content for the heterogeneous mode, without any substantial modification of the main core safety parameters and only limited impacts on the associated fuel cycle (manufacturing issues are not considered here). In order to achieve such goal, a wide range of experimental irradiations driven by transmutation scenarios have to be performed for both homogeneous and heterogeneous minor actinides management. (author) [fr

  15. Gas core reactors for actinide transmutation and breeder applications. Annual report

    International Nuclear Information System (INIS)

    Clement, J.D.; Rust, J.H.

    1978-01-01

    This work consists of design power plant studies for four types of reactor systems: uranium plasma core breeder, uranium plasma core actinide transmuter, UF6 breeder and UF6 actinide transmuter. The plasma core systems can be coupled to MHD generators to obtain high efficiency electrical power generation. A 1074 MWt UF6 breeder reactor was designed with a breeding ratio of 1.002 to guard against diversion of fuel. Using molten salt technology and a superheated steam cycle, an efficiency of 39.2% was obtained for the plant and the U233 inventory in the core and heat exchangers was limited to 105 Kg. It was found that the UF6 reactor can produce high fluxes (10 to the 14th power n/sq cm-sec) necessary for efficient burnup of actinide. However, the buildup of fissile isotopes posed severe heat transfer problems. Therefore, the flux in the actinide region must be decreased with time. Consequently, only beginning-of-life conditions were considered for the power plant design. A 577 MWt UF6 actinide transmutation reactor power plant was designed to operate with 39.3% efficiency and 102 Kg of U233 in the core and heat exchanger for beginning-of-life conditions

  16. Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux

    Science.gov (United States)

    Bowman, C.D.

    1992-11-03

    Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.

  17. A Los Alamos concept for accelerator transmutation of waste and energy production (ATW)

    International Nuclear Information System (INIS)

    1990-01-01

    This document contains the diagrams presented at the ATW (Accelerator Transmutation of Waste and Energy Production) External Review, December 10-12, 1990, held at Los Alamos National Laboratory. Included are the charge to the committee and the presentations for the committee's review. Topics of the presentations included an overview of the concept, LINAC technology, near-term application -- high-level defense wastes (intense thermal neutron source, chemistry and materials), advanced application of the ATW concept -- fission energy without a high-level waste stream (overview, advanced technology, and advanced chemistry), and a summary of the research issues

  18. Transmutation of Isotopes --- Ecological and Energy Production Aspects

    Science.gov (United States)

    Gudowski, Waclaw

    2000-01-01

    This paper describes principles of Accelerator-Driven Transmutation of Nuclear Wastes (ATW) and gives some flavour of the most important topics which are today under investigations in many countries. An assessment of the potential impact of ATW on a future of nuclear energy is also given. Nuclear reactors based on self-sustained fission reactions --- after spectacular development in fifties and sixties, that resulted in deployment of over 400 power reactors --- are wrestling today more with public acceptance than with irresolvable technological problems. In a whole spectrum of reasons which resulted in today's opposition against nuclear power few of them are very relevant for the nuclear physics community and they arose from the fact that development of nuclear power had been handed over to the nuclear engineers and technicians with some generically unresolved problems, which should have been solved properly by nuclear scientists. In a certain degree of simplification one can say, that most of the problems originate from very specific features of a fission phenomenon: self-sustained chain reaction in fissile materials and very strong radioactivity of fission products and very long half-life of some of the fission and activation products. And just this enormous concentration of radioactive fission products in the reactor core is the main problem of managing nuclear reactors: it requires unconditional guarantee for the reactor core integrity in order to avoid radioactive contamination of the environment; it creates problems to handle decay heat in the reactor core and finally it makes handling and/or disposal of spent fuel almost a philosophical issue, due to unimaginable long time scales of radioactive decay of some isotopes. A lot can be done to improve the design of conventional nuclear reactors (like Light Water Reactors); new, better reactors can be designed but it seems today very improbable to expect any radical change in the public perception of conventional

  19. Some Aspects of Transmutation Studies in Drosophila

    Energy Technology Data Exchange (ETDEWEB)

    Oftedal, P.; Kaplan, W. D. [Norsk Hydro Institute for Cancer Research, Oslo (Norway); City of Hope Medical Research Center, Duarte, CA (United States)

    1968-06-15

    The experimental data pertaining to the mutagenic efficiency of {sup 32}P in Drosophila are discussed. It is estimated that the efficiency of the transmutation phenomena is of the order of 10{sup -9} to 10{sup -3} for the induction of recessive lethals. It is thus orders of magnitude lower than that found in bacteria and fungi. The efficiency would be lower - in comparison with the radiation effects - in organisms of greater dimensions than Drosophila, where a smaller fraction of dose is lost through the escape from the organism of high-energy {beta}-particles. Data are also reported on the genetic effects of {sup 3}H-thymidine, {sup 3}H-lysine and {sup 3}H-arginine. It appears that in all probability the effects may be interpreted as caused by radiation alone, if due regard is given to variations in radiation sensitivity and cellular dimensions during spermiogenesis. (author)

  20. ZZ REAC-2, Nuclide Activation and Transmutation

    International Nuclear Information System (INIS)

    Mann, F.M.

    2002-01-01

    1 - Description of program or function: Flux library: Format: special format, Number Of Groups: 63 group fluxes, Nuclides: H, He, Li, Be, B, C, N, O, F, Ne, Na, Mg, Al, Si, P, S, Cl, Ar, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Br, Kr, Rb, Sr, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Te, I, Xe, Cs, Ba, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg, Tl, Pb, Bi, Po. Origin: Fred Mann (Westinghouse, Hanford). Cross Section library: Format: special format, Number Of Groups: 63 group cross section, Nuclides: H, He, Li, Be, B, C, N, O, F, Ne, Na, Mg, Al, Si, P, S, Cl, Ar, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Br, Kr, Rb, Sr, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Te, I, Xe, Cs, Ba, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg, Tl, Pb, Bi, Po. Origin: Fred Mann (Westinghouse, Hanford). Decay Data library: Format: special format, Nuclides: H, He, Li, Be, B, C, N, O, F, Ne, Na, Mg, Al, Si, P, S, Cl, Ar, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Br, Kr, Rb, Sr, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Te, I, Xe, Cs, Ba, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg, Tl, Pb, Bi, Po. Origin: Fred Mann (Westinghouse, Hanford). REAC2 calculates the change in composition of materials in a radiation field and related activation quantities. It is best suited to problems where many variables (e.g. materials, facilities or locations within facilities, power histories) are to be investigated. Where very accurate results are needed, the user must access the accuracy of the cross section base (e.g. source, flux weighting) as in the use of any neutronics code. REAC2 consists of three programs - SREAC, SLSTCOM, and SLIB. SREAC calculates the transmutation of nuclides in a radiation field. SLSTCOM reads the output file produced by SREAC and produces listings of

  1. Assessment of the transmutation capability an accelerator driven system cooled by lead bismuth eutectic alloy

    International Nuclear Information System (INIS)

    Bianchi, F.; Peluso, V.; Calabrese; Chen, X.; Maschek, W.

    2007-01-01

    the most promising among the various technologies foreseen for designing ADS core with enhanced waste transmutation. The neutronic calculations were performed with a special ERANOS Procedure (MECONG) that utilizes a RZ core models for the description of the core geometry and represents the various regions in homogeneous manner. A multi-recycling scenario was hypothesized and a proper amount of plutonium and minor actinides was supplied at the beginning of each cycle in order to ensure the same operating reactivity (k e ff=0.97). Moreover some core design parameters were changed in order to investigate the capability of such cores to burn/transmute MA with acceptable safety features. The behaviour of fuels pin during the cycle in terms of fuel temperature, internal pressure, stresses and strains was investigated by using TRANSURANUS code. 3. RESULTS AND CONCLUSIONS: The preliminary analysis shows that a good compromise between transmutation and core performance can be achieved for both fuels increasing the core power. Of course the increase of the core size has a significant implication on the overall plant architecture, in particular on accelerator and spallation module

  2. Keynote address at the international conference on nuclear waste transmutation

    International Nuclear Information System (INIS)

    Steinberg, M.

    1980-07-01

    Most of the US research effort on radioactive waste management is concentrated on its solidification and storage in geologic formations. Transmutation is an alternative. It can be applied to weapons plutonium as well to spent fuel

  3. A new concept for accelerator driven transmutation of nuclear wastes

    International Nuclear Information System (INIS)

    Arthur, E.D.

    1991-01-01

    A new concept for an accelerator-driven transmutation system is described. The central feature of the concept is generation of intense fluxes of thermal neutrons. In the system all long-lived radionuclides comprising high-level nuclear waste can be transmuted efficiently. Transmutation takes place in a unique, low material inventory environment. Presently two principal areas are being investigated for application of the concept. The first is associated with cleanup of defense high-level waste at DOE sites such as Hanford. The second, longer term area involves production of electric power using a coupled accelerator-multiplying blanket system. This system would utilize natural thorium or uranium and would transmute long-lived components of high-level waste concurrently during operation. 5 refs., 5 figs

  4. Transmutation of radioactive nuclear waste – present status and ...

    Indian Academy of Sciences (India)

    Transmutation of long-lived actinides and fission products becomes an im- ... Similar approach was performed for sub critical fast reactor core with Pu/MA .... The same might be addressed to masses of nuclei (the use of experimental values.

  5. Study of a neutronic potential of a modular fast spectrum ADS for radiotoxic waste transmutation

    International Nuclear Information System (INIS)

    Slessarev, I.; Arkhipov, V.

    1999-01-01

    The IAEA has maintained an active interest in advanced nuclear technology related to Accelerator Driven Systems (ADS). The activities carried out by the IAEA within its Programme on Emerging Nuclear Energy Systems for Energy Generation and Transmutation include preparation of status reports on advanced technologies development, conduct of technical information exchange meetings and co-operative Co-ordinated Research Programmes (CRPs). Consultancy on Accelerator Driven Systems and Related Fuel Cycles held from 1-2 February 1996 in Cadarache, France reviewed the recent progress in studies on feasibility of Accelerator Driven Systems and participants recommended the IAEA to organize a CRP to investigate the accelerator driven systems potential. In 1996 the CRP: 'Use of Th-based Fuel Cycle in Accelerator Driven Systems (ADS) to Incinerate Pu and to Reduce Long-term Waste Toxicities' was established and the first Research Coordination Meeting was convened in March 1997 at the ENEA Research Center in Bologna, Italy. Results of the first stage 'Accelerator Driven Systems (ADS)-Neutronic Benchmark' were reported to the IAEA Technical Committee Meeting on Feasibility and Motivation for Hybrid Concepts for Nuclear Energy Generation and Transmutation in Madrid, Spain, in September 1997. Results obtained during the second stage of the CRP were presented and analysed at the RCM in December 1998 in Petten, Netherlands. The meeting was attended by 21 representatives and observers from IAEA, Belarus, Czech Republic, France, Germany, Italy, the Netherlands, the Russian Federation, Spain, Sweden and USA. This paper was prepared on recommendation of the participants of the meeting in Petten, Netherlands. Accelerator Driven System (ADS) neutronic potential, i.e. capability to burnout transuranic elements (TRU) or minor actinides (MA) and Long-Lived Fission Products (LLFP) with minimum ADS park as well as the rate of LLFP transmutation (mass/energy production) for nuclear waste

  6. Minor actinide transmutation on PWR burnable poison rods

    International Nuclear Information System (INIS)

    Hu, Wenchao; Liu, Bin; Ouyang, Xiaoping; Tu, Jing; Liu, Fang; Huang, Liming; Fu, Juan; Meng, Haiyan

    2015-01-01

    Highlights: • Key issues associated with MA transmutation are the appropriate loading pattern. • Commercial PWRs are the only choice to transmute MAs in large scale currently. • Considerable amount of MA can be loaded to PWR without disturbing k eff markedly. • Loading MA to PWR burnable poison rods for transmutation is an optimal loading pattern. - Abstract: Minor actinides are the primary contributors to long term radiotoxicity in spent fuel. The majority of commercial reactors in operation in the world are PWRs, so to study the minor actinide transmutation characteristics in the PWRs and ultimately realize the successful minor actinide transmutation in PWRs are crucial problem in the area of the nuclear waste disposal. The key issues associated with the minor actinide transmutation are the appropriate loading patterns when introducing minor actinides to the PWR core. We study two different minor actinide transmutation materials loading patterns on the PWR burnable poison rods, one is to coat a thin layer of minor actinide in the water gap between the zircaloy cladding and the stainless steel which is filled with water, another one is that minor actinides substitute for burnable poison directly within burnable poison rods. Simulation calculation indicates that the two loading patterns can load approximately equivalent to 5–6 PWR annual minor actinide yields without disturbing the PWR k eff markedly. The PWR k eff can return criticality again by slightly reducing the boric acid concentration in the coolant of PWR or removing some burnable poison rods without coating the minor actinide transmutation materials from PWR core. In other words, loading minor actinide transmutation material to PWR does not consume extra neutron, minor actinide just consumes the neutrons which absorbed by the removed control poisons. Both minor actinide loading patterns are technically feasible; most importantly do not need to modify the configuration of the PWR core and

  7. Transmuted Lindley-Geometric Distribution and its applications

    OpenAIRE

    Merovci, Faton; Elbatal, Ibrahim

    2013-01-01

    A functional composition of the cumulative distribution function of one probability distribution with the inverse cumulative distribution function of another is called the transmutation map. In this article, we will use the quadratic rank transmutation map (QRTM) in order to generate a flexible family of probability distributions taking Lindley geometric distribution as the base value distribution by introducing a new parameter that would offer more distributional flexibility. It will be show...

  8. Nuclei transmutation by collisions with fast hadrons and nuclei

    International Nuclear Information System (INIS)

    Strugalski, Z.; Strugalska-Gola, E.; Drzymala, A.

    1998-01-01

    Atomic nuclei change their mass- and charge-numbers if bombarded by fast hadrons and nuclei; the transmutation appears as a complicated process. It proceeds in a definite way - through a few stages or phases. Adequate identification of the nucleons and light nuclear fragments emitted and evaporated in a hadron-nucleus or nucleus-nucleus collisions and in the collision-induced intranuclear reactions allows one to estimate quantitatively the nuclei transmutations in the various stages (phases) of the process

  9. Transmutation of planar media singularities in a conformal cloak.

    Science.gov (United States)

    Liu, Yichao; Mukhtar, Musawwadah; Ma, Yungui; Ong, C K

    2013-11-01

    Invisibility cloaking based on optical transformation involves materials singularity at the branch cut points. Many interesting optical devices, such as the Eaton lens, also require planar media index singularities in their implementation. We show a method to transmute two singularities simultaneously into harmless topological defects formed by anisotropic permittivity and permeability tensors. Numerical simulation is performed to verify the functionality of the transmuted conformal cloak consisting of two kissing Maxwell fish eyes.

  10. Study on neutron spectrum for effective transmutation of minor actinides in thermal reactors

    International Nuclear Information System (INIS)

    Takeda, Toshikazu; Yokoyama, Kenji

    1997-01-01

    The transmutation of minor actinides (MAs) has been investigated in thermal reactor cells using mixed oxide fuel with MAs. The effect of neutron spectra on transmutation is studied by changing the neutron spectra. Five transmutation rates are compared: direct fission incineration rate, capture transmutation rate, consumption rate, overall fission incineration rate and inventory difference transmutation rate. The relations between these transmutation rates and their dependence on the neutron spectrum were investigated. To effectively incinerate MAs it is necessary to maximize the overall fission incineration rate and the inventory difference transmutation rate. These transmutation rates become maximum when the fraction of neutrons below 1 eV is about 8% for the case where the MA addition is 1-3%. When the MA addition is over 5%, the transmutation rates become maximum for very hard neutron spectrum. (Author)

  11. Neutronic assessment of strontium-90 transmutation in fusion reactors

    International Nuclear Information System (INIS)

    Parish, T.A.

    1979-01-01

    Transmutation of 90 Sr using fusion neutrons has been suggested as a possible technique for disposing of this waste nuclide. For transmutation to be attractive, high transmutation rates relative to natural decay are required. Effective half-lives for 90 Sr were computed for fusion reactor blankets constructed of various materials. To obtain satisfactory transmutation rates, fusion reactors with high first wall neutron currents and with highly moderating blankets were found to be necessary. An effective half-life for 90 Sr of 90 Sr inventory and the number of burners required for various fission usage scenarios. Efficient and fast chemical separations were needed to reap the benefits of a short effective half-life. For the fusion burners considered, it was found that the 90 Sr inventory could not be reduced to less than one-fourth of the inventory without transmutation if fission usage continued at a constant rate. Such a reduction is not sufficient to justify the transmutation disposal of 90 Sr

  12. Planning the research and development necessary for accelerator transmutation of waste, leading to integrated proof of performance testing

    International Nuclear Information System (INIS)

    Bennett, D.R.; Pasamehmetoglu, K.; Finck, P.; Pitcher, E.; Khalil, H.; Todosow, M.; Hill, R.; Van Tuyle, G.; Laidler, J.; Crawford, D.; Thomas, K.

    2001-01-01

    The Research and Development (R and D) Plan for the Accelerator Transmutation of Waste (ATW) Program has been developed for the Department of Energy, Office of Nuclear Energy (DOE/NE) to serve as a focus and progressional guide in developing critical transmutation technologies. It is intended that the Plan will serve as a logical reference considering all elements of an integrated accelerator-driven transmutation system, and will maximize the use of resources by identifying and prioritizing research, design, development and trade activities. The R and D Plan provides a structured framework for identifying and prioritizing activities leading to technically-justifiable integrated Proof of Performance testing within ten years and ultimate demonstration of Accelerator Transmutation of Waste (ATW). The Plan builds from the decision objectives specified for ATW, utilizes informational input from the ATW Roadmap and programmatic System Point Design efforts, and employs the knowledge and expertise provided by professionals familiar with ATW technologies. With the firm intent of understanding what, why and when information is needed, including critical interfaces, the Plan then develops a progressional strategy for developing ATW technologies with the use of a Technology Readiness Level (TRL) scale. The TRL approach is first used to develop a comprehensive, yet generic, listing of experimental, analytical and trade study activities critical to developing ATW technologies. Technology-specific and concept-specific aspects are then laid over the generic mapping to gage readiness levels. Prioritization criteria for reducing technical uncertainty, providing information to decision points, and levering off of international collaborations are then applied to focus analytical, experimental and trade activities. (author)

  13. Transmutations of nuclear waste. Progress report RAS programme 1995: Recycling and transmutation of actinides and fission products

    International Nuclear Information System (INIS)

    Gruppelaar, H.; Cordfunke, E.H.P.; Konings, R.J.M.; Bultman, J.H.; Dodd, D.H.; Franken, W.M.P.; Kloosterman, J.L.; Koning, A.J.; Wichers, V.A.

    1996-04-01

    This report describes the progress of the Dutch RAS programme on 'Recycling and Transmutation of Actinides and Fission Products' over the year 1995, which is the second year of the 4-year programme 1994-1997. An extensive listing of reports and publications from 1991 to 1995 is given. Highlights in 1995 were: -The completion of the European Strategy Study on Nuclear Waste Transmutation as a result of which the understanding of transmutation of plutonium, minor actinides and long-lived fission products in thermal and fast reactors has been increased significantly. Important ECN contributions were given on Am, 99 Tc and 129 I transmutation options. Follow-up contracts have been obtained for the study of 100% MOX cores and accelerator-based transmutation. - Important progress in the evaluation of CANDU reactors for burning very large amounts of transuranium mixtures in inert matrices. - The first RAS irradiation experiment in the HFR, in which the transmutation of technetium and iodine was examined, has been completed and post-irradiation examination has been started. - A joint proposal of the EFTTRA cooperation for the 4 th Framework Programme of the EU, to demonstrate the feasibility of the transmutation of americium in an inert matrix by an irradiation in the HFR, has been granted. - A bilateral contract with CEA has been signed to participate in the CAPRA programme, and the work in this field has been started. - The thesis work on Actinide Transmutation in Nuclear Reactor Systems was succesfully defended. New PhD studies on Pu burning in HTGR, on nuclear data for accelerator-based systems, and on the SLM-technique for separation of actinides were started. - A review study of the use of the thorium cycle as a means for nuclear waste reduction, has been completed. A follow-up of this work is embedded in an international project for the 4th Framework Programme of the EU. (orig./DG)

  14. Second International Conference on Neutron Transmutation Doping in Semiconductors

    CERN Document Server

    Neutron Transmutation Doping in Semiconductors

    1979-01-01

    This volume contains the invited and contributed papers presented at the Second International Conference on Neutron Transmutation Doping in Semiconductors held April 23-26, 1978 at the University of Missouri-Columbia. The first "testing of the waters" symposium on this subject was organized by John Cleland and Dick Wood of the Solid-State Division of Oak Ridge National Laboratory in April of 1976, just one year after NTD-silicon appeared on the marketplace. Since this first meeting, NTD-silicon has become established as the starting material for the power device industry and reactor irradiations are now measured in tens of tons of material per annum making NTD processing the largest radiation effects technology in the semiconductor industry. Since the first conference at Oak Ridge, new applications and irradiation techniques have developed. Interest in a second con­ ference and in publishing the proceedings has been extremely high. The second conference at the University of Missouri was attended by 114 perso...

  15. Recycling and transmutation of nuclear waste. ECN-Petten and Belgonucleaire contributions in the framework of 'Partitioning and transmutation studies of the 4th CEC programme on rad waste management and disposal'

    International Nuclear Information System (INIS)

    Abrahams, K.; Kloosterman, J.L.; Gruppelaar, H.; Brusselaers, P.; Evrard, G.; La Fuente, A.; Maldague, T.; Pilate, S.; Renard, A.

    1995-12-01

    A 'Strategy study on nuclear waste transmutation' by Netherlands Energy Research Foundation (ECN) and Belgonucleaire (BN) in the frame of the EU R and D Programme 1990/1994 on management and storage of radioactive waste has been executed in collaboration with AEA Technology, CEA and Siemens. First of all the motivation for transmuting long-lived radioactive products has been formulated, next transmutation of Tc-99 and I-129 in fission reactors has been studied for the PWR, HFR, Superphenix, and the CANDU reactor. Cross section libraries have been improved for ORIGEN-S on the basis of JEF2.2 and EAF3. This study has been amended by a graphical representation of important reactions for activation of cladding and inert matrix materials. By means of the derived new data libraries, some sample calculations on transmutation of americium in thermal reactors have been performed. Implications of recycling plutonium and americium in the form of MOX fuel in light water reactors have been investigated. It became clear from the present study that trasmutation of the existing plutonium has the highest priority and that reduction of minor-actinides is next on the priority list. Thirdly, the (difficult) large-scale transmutation of Tc-99 and of I-129 could reduce the leakage dose risks. It also seems most worthwhile to be careful with naturally occurring U-234 in the waste, as this will in the long run lead to a substantial increase of the 'natural' radon dose in the neighbourhood of the storage facility. (orig.)

  16. Recycling and transmutation of nuclear waste. ECN-Petten and Belgonucleaire contributions in the framework of `Partitioning and transmutation studies of the 4th CEC programme on rad waste management and disposal`

    Energy Technology Data Exchange (ETDEWEB)

    Abrahams, K. [Netherlands Energy Research Foundation (ECN), Petten (Netherlands); Kloosterman, J.L. [Netherlands Energy Research Foundation (ECN), Petten (Netherlands); Gruppelaar, H. [Netherlands Energy Research Foundation (ECN), Petten (Netherlands); Brusselaers, P. [Belgonucleaire S.A., Brussels (Belgium); Evrard, G. [Belgonucleaire S.A., Brussels (Belgium); La Fuente, A. [Belgonucleaire S.A., Brussels (Belgium); Maldague, T. [Belgonucleaire S.A., Brussels (Belgium); Pilate, S. [Belgonucleaire S.A., Brussels (Belgium); Renard, A. [Belgonucleaire S.A., Brussels (Belgium)

    1995-12-01

    A `Strategy study on nuclear waste transmutation` by Netherlands Energy Research Foundation (ECN) and Belgonucleaire (BN) in the frame of the EU R and D Programme 1990/1994 on management and storage of radioactive waste has been executed in collaboration with AEA Technology, CEA and Siemens. First of all the motivation for transmuting long-lived radioactive products has been formulated, next transmutation of Tc-99 and I-129 in fission reactors has been studied for the PWR, HFR, Superphenix, and the CANDU reactor. Cross section libraries have been improved for ORIGEN-S on the basis of JEF2.2 and EAF3. This study has been amended by a graphical representation of important reactions for activation of cladding and inert matrix materials. By means of the derived new data libraries, some sample calculations on transmutation of americium in thermal reactors have been performed. Implications of recycling plutonium and americium in the form of MOX fuel in light water reactors have been investigated. It became clear from the present study that trasmutation of the existing plutonium has the highest priority and that reduction of minor-actinides is next on the priority list. Thirdly, the (difficult) large-scale transmutation of Tc-99 and of I-129 could reduce the leakage dose risks. It also seems most worthwhile to be careful with naturally occurring U-234 in the waste, as this will in the long run lead to a substantial increase of the `natural` radon dose in the neighbourhood of the storage facility. (orig.).

  17. Overview of EU research activities in transmutation and innovative reactor systems within the Euratom framework programmes

    International Nuclear Information System (INIS)

    Bhatnagar, V.

    2009-01-01

    European Community (EC) (currently 27 Member States) shared-cost research has been organised in Framework Programmes (FP) of durations of 4 - 5 years since 1984. The 6th European Atomic Energy Community (EURATOM) Framework Programme (2002 - 06) and the current 7th FP (2007 - 11) have been allocated a fission research budget respectively of 209 and 287 Million Euro from the EC. There are 10 projects (total budget 70 M Euro, EC contribution 38 M Euro) in all aspects of transmutation ranging from road-mapping exercise to large integrated projects on accelerator driven systems, lead-cooled fast critical systems for waste transmutation, technology, fuel, accelerator facilities for nuclear data etc. In Innovative Reactor concepts, there are about half-a-dozen projects (total budget 30 M Euro, EC contribution 16 M Euro) including High Temperature Reactors, Gas-cooled Fast reactors, road-mapping exercise on sodium fast reactors etc. The main research and training activities in FP7 are: management of radioactive waste, reactor systems, radiation protection, infrastructures, human resources and mobility and training. In the two call for proposals (2007 and 2008) in FP7, 8 projects have been accepted in transmutation and innovative reactor concepts (total budget 53 M Euro, EC contribution 32 M Euro). These research projects cover activities ranging from materials, fuels, treatment of irradiated graphite waste, European sodium fast reactor to the establishment of a Central Design Team of a fast-spectrum transmutation device in Europe. The third call for proposals is underway requesting proposals on nuclear data, thermal hydraulics, gas and lead-cooled fast reactor systems with a total EC budget of 20 M Euro. International collaboration is an important element of the EU research policy. This overview paper will present elements of the strategy of EURATOM research and training in waste management including accelerator driven transmutation systems and Innovative reactor concepts

  18. FCRD Advanced Reactor (Transmutation) Fuels Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Janney, Dawn Elizabeth [Idaho National Lab. (INL), Idaho Falls, ID (United States); Papesch, Cynthia Ann [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    Transmutation of minor actinides such as Np, Am, and Cm in spent nuclear fuel is of international interest because of its potential for reducing the long-term health and safety hazards caused by the radioactivity of the spent fuel. One important approach to transmutation (currently being pursued by the DOE Fuel Cycle Research & Development Advanced Fuels Campaign) involves incorporating the minor actinides into U-Pu-Zr alloys, which can be used as fuel in fast reactors. U-Pu-Zr alloys are well suited for electrolytic refining, which leads to incorporation rare-earth fission products such as La, Ce, Pr, and Nd. It is, therefore, important to understand not only the properties of U-Pu-Zr alloys but also those of U-Pu-Zr alloys with concentrations of minor actinides (Np, Am) and rare-earth elements (La, Ce, Pr, and Nd) similar to those in reprocessed fuel. In addition to requiring extensive safety precautions, alloys containing U, Pu, and minor actinides (Np and Am) are difficult to study for numerous reasons, including their complex phase transformations, characteristically sluggish phasetransformation kinetics, tendency to produce experimental results that vary depending on the histories of individual samples, rapid oxidation, and sensitivity to contaminants such as oxygen in concentrations below a hundred parts per million. Although less toxic, rare-earth elements such as La, Ce, Pr, and Nd are also difficult to study for similar reasons. Many of the experimental measurements were made before 1980, and the level of documentation for experimental methods and results varies widely. It is, therefore, not surprising that little is known with certainty about U-Pu-Zr alloys, particularly those that also contain minor actinides and rare-earth elements. General acceptance of results commonly indicates that there is only a single measurement for a particular property. This handbook summarizes currently available information about U, Pu, Zr, Np, Am, La, Ce, Pr, and Nd and

  19. Transmutation and the Global Nuclear Energy Partnership

    International Nuclear Information System (INIS)

    Bresee, James

    2007-01-01

    In the January 2006 State of the Union address, President Bush announced a new Advanced Energy Initiative, a significant part of which is the Global Nuclear Energy Initiative. Its details were described on February 6, 2006 by the U.S. Secretary of Energy. In summary, it has three parts: (1) a program to expand nuclear energy use domestically and in foreign countries to support economic growth while reducing the release of greenhouse gases such as carbon dioxide. (2) an expansion of the U.S. nuclear infrastructure that will lead to the recycling of spent fuel and a closed fuel cycle and, through transmutation, a reduction in the quantity and radiotoxicity of nuclear waste and its proliferation concerns, and (3) a partnership with other fuel cycle nations to support nuclear power in additional nations by providing small nuclear power plants and leased fuel with the provision that the resulting spent fuel would be returned by the lessee to the lessor. The final part would have the effect of stabilizing the number of fuel cycle countries with attendant non-proliferation value. Details will be given later in the paper. Commercial spent fuel recycling, pioneered in the U.S., has not been carried out since the nineteen seventies following a decision by President Carter to forego fuel reprocessing and to recommend similar practices by other countries. However, many nations have continued spent fuel reprocessing, generally using the U.S.-developed PUREX process. The latest to do so are Japan, which began operations of an 800 metric tons (tonnes) per year PUREX reprocessing plant at Rokkasho-mura in northern Honshu in 2006 and China, which recently began operations of a separations pilot plant, also using PUREX. Countries using the PUREX process, recycle the separated plutonium to light water reactors (LWRs) in a mixed plutonium/uranium oxide fuel called MOX. Plutonium recycling in LWRs, which are used for electricity production in all nuclear power nations, reduces

  20. 12th Symposium on Space Nuclear Power and Propulsion. Conference on Alternative Power from Space (APFS),Conference on Accelerator-Driven Transmutation Technologies and Applications (A-DTTA)

    International Nuclear Information System (INIS)

    Mohamed, S.E.

    1995-01-01

    These proceedings represent papers presented at the 12th symposium on Space Nuclear Power and Propulsion held in Albuquerque, New Mexico. The symposium theme was ''commercialization and technology transfer''. The topics discussed include: wireless power transmission, solar power from space next generation spacecraft, space power electronics and power management, flight testing of components, manufacturing and processing of materials, nuclear propulsion, reactors and shielding and many others of interest to the scientific community representing industry, government and academic institutions. There were 163 papers presented at the conference and 60 have been abstracted for the Energy Science and Technology database

  1. Dual neutral particle induced transmutation in CINDER2008

    Energy Technology Data Exchange (ETDEWEB)

    Martin, W.J., E-mail: wjmarti@sandia.gov [Sandia National Laboratories, Albuquerque, NM 87185 (United States); University of New Mexico, Albuquerque, NM 87131 (United States); Oliveira, C.R.E. de; Hecht, A.A. [University of New Mexico, Albuquerque, NM 87131 (United States)

    2014-12-11

    Although nuclear transmutation methods for fission have existed for decades, the focus has been on neutron-induced reactions. Recent novel concepts have sought to use both neutrons and photons for purposes such as active interrogation of cargo to detect the smuggling of highly enriched uranium, a concept that would require modeling the transmutation caused by both incident particles. As photonuclear transmutation has yet to be modeled alongside neutron-induced transmutation in a production code, new methods need to be developed. The CINDER2008 nuclear transmutation code from Los Alamos National Laboratory is extended from neutron applications to dual neutral particle applications, allowing both neutron- and photon-induced reactions for this modeling with a focus on fission. Following standard reaction modeling, the induced fission reaction is understood as a two-part reaction, with an entrance channel to the excited compound nucleus, and an exit channel from the excited compound nucleus to the fission fragmentation. Because photofission yield data—the exit channel from the compound nucleus—are sparse, neutron fission yield data are used in this work. With a different compound nucleus and excitation, the translation to the excited compound state is modified, as appropriate. A verification and validation of these methods and data has been performed. This has shown that the translation of neutron-induced fission product yield sets, and their use in photonuclear applications, is appropriate, and that the code has been extended correctly. - Highlights: • The CINDER2008 transmutation code was modified to include photon-induced transmutation tracking. • A photonuclear interaction library was created to allow CINDER2008 to track photonuclear interactions. • Photofission product yield data sets were created using fission physics similarities with neutron-induced fission.

  2. Transmutation of radioactive waste: Effect on the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Rasmussen, N.C.; Pigford, T.H.

    1997-01-01

    A committee of the National Research Council reviewed three concepts for transmuting radionuclides recovered from the chemical reprocessing of commercial light-water-reactor (LWR) fuel: LWR transmutation reactors fueled with recycled actinides, advanced liquid-metal reactors (ALMRs), and accelerator-driven subcritical reactors for transmutation of waste (ATW). The concepts were evaluated in terms of: (1) the extent to which waste disposal would benefit from transmutation, (2) time required to reduce the total inventory of radionuclides in the waste and fuel cycle, (3) the complexity of the overall transmutation system, (4) the extent of new development required, and (5) institutional and economic problems of operating such systems. Transmutation could affect geologic disposal of waste by reducing the inventory of transuranics (TRUs), fission products, and other radionuclides in the waste. Reducing the inventory of transuranics does not necessarily affect radiation doses to people who use contaminated ground water if the dissolution rate of transuranics in waste is controlled by elemental solubilities. However, reducing inventories of Am and Pu would decrease potential hazards from human intrusion. The likelihood for underground nuclear criticality would also be reduced. The long-lived fission products Tc-99, I-129, Cs-135 and others typically contribute most to the long-term radiation doses to future populations who use contaminated water from the repository. Their transmutation requires thermal or epithermal neutrons, readily available in LWR and ATW transmutors. ALMR and LWR transmutors would require several hundred years to reduce the total transuranic inventory by even a factor of 10 at constant electric power, and thousands of years for a hundred-fold reduction. For the same electrical power, the ATW could reduce total transuranic inventory about tenfold more rapidly, because of its very high thermal-neutron flux. However, extremely low process losses would be

  3. Molten Salt Demonstration Transmuter (comparison of new technical problems with old US MSR plans)

    International Nuclear Information System (INIS)

    Lelek, V.

    2001-01-01

    A Molten Salt Demonstration Transmuter (MSDT) is required to show the operation and design performance for closing the nuclear spent fuel (NSF) cycle for PWR or WWER reactors operated in the once-through cycle (OTC) mode. The remnant waste (fission products only) would be either permanently stored or held for secondary use. The purpose of this proposal is to establish the design basis for the MSDT and compare contemporary knowledge and demands with that from US plans for MS reactors from 1974, because both technologies are very near (Authors)

  4. Collaboration between SCK·CEN and JAEA for partitioning and transmutation through accelerator-driven system

    International Nuclear Information System (INIS)

    2017-03-01

    This technical report reviews Research and Development (R and D) programs for the Partitioning and Transmutation (P and T) technology through Accelerator-Driven System (ADS) at Studiecentrum voor Kernenergie/Centre d'Etude de l'Énergie Nucléaire (SCK·CEN) and Japan Atomic Energy Agency (JAEA). The results obtained in the present Collaboration Arrangement between the two organizations for the ADS are also summarized, and possible further collaborations and mutual realizations in the future are sketched. (author)

  5. Accelerator-driven transmutation projects in Sweden in a European perspective

    International Nuclear Information System (INIS)

    Gudowski, Waclaw; Wallenius, J.; Tucek, K.; Ericsson, M.; Carlsson, J.; Cetnar, J.

    2001-01-01

    Accelerator driven transmutation projects in Sweden are dealt with within the country's energy policy and energy plans as well as in relation to European perspectives. ADS activities at Royal Institute of Technology (RIT) and Sweden are concerned with: Conceptual design nitride fueled ADS) of Sing-Sing core (heavily 'poisoned'; Development of nitride fuel (in a EU-frame); transients of ADS; Managing nuclear data and stimulating development dedicated data libraries; Development of Monte-Carlo burnup; Design of RVACS for ADS. Besides the mentioned, this paper describes projects in fourth Framework Programme of European Union, fifth Framework Programme of EU and Experiments related to ADS

  6. Dynamic criteria for partitioning and transmutation

    International Nuclear Information System (INIS)

    Lu, A.H.

    1991-11-01

    This paper addresses dynamic criteria intended to optimize partitioning and transmutation (P-T) concept development supporting improved nuclear waste management. Six criteria are proposed initially and the rationale for each is briefly explained. Each criterion is used as a measure (or dimension) on which the developed concepts can be evaluated. The criteria allow the P-T concepts to be evaluated in an integral system including long-term energy needs, fuel cycle, and waste management. New criteria will be identified along with the P-T concept development, and each criterion will be realistically weighted so that it is comparable in an overall criteria evaluation. The weights are subject to change as a result of technical advancements and public perception on various issues. Incomplete criteria will result in a poor choice because important factors may not be considered when the decision is made. A successful decision on the optimal P-T system depends on the completeness of criteria (dimensions) as well as realistic weights assigned to each criterion

  7. Partitioning and Transmutation. Annual Report 2002

    International Nuclear Information System (INIS)

    Andersson, S.; Ekberg, C.; Liljenzin, J.O.; Nilsson, M.; Rogues, N.; Skarnemark, G.; Oestberg, J.

    2003-01-01

    How to deal with the spent fuel from nuclear power plants is an issue that much research is attracted to in many countries around the world. Several different strategies exist for treating the waste ranging from direct disposal to reprocessing and recycling of plutonium and other long-lived nuclides. In either case the remains have to be stored for a long time to render it radio-toxically safe. One method to deal with this long-lived waste is to separate (separation) out the most long lived components and then transform them into shorter-lived ones (transmutation). Several methods exist for performing the separation for example via molten salts and through solvent extraction. The work presented here has been focused on solvent extraction. This technique is well known since many years and process scale plants have been operating for decades. The new demand is to separate chemically very similar elements from each other. Within this project this is done by new extracting agents developed for this purpose alone within the EU fifth framework programme, the PARTNEW project, particularly from the University of Reading. In this work we investigate different extraction systems for the separation of trivalent actinides from trivalent lanthanides using extraction agents following the so-called CHON (Carbon, Hydrogen, Oxygen and Nitrogen) principle. The main focus is to understand the basic chemistry involved but also some processing behaviour for use in future full scale plants

  8. Aspects of severe accidents in transmutation systems

    International Nuclear Information System (INIS)

    Wider, H.U.; Karlson, J.; Jones, A.V.

    2001-01-01

    The different types of transmutation systems under investigation include accelerator driven (ADS) and critical systems. To switch off an accelerator in case of an accident initiation is quite important for all accidents. For a fast ADS the grace times available for doing so depend strongly on the total heat capacity and the natural circulation capability of the primary coolant. Cooling with heavy metal Pb-Bi has considerable advantages in this regard compared to gas cooling. Moreover it allows passive ex-vessel cooling with natural air or water circulation. In the remote likelihood of fuel melting, oxide fuel appears to mix with the Pb-Bi coolant. Fast critical systems that are cooled by Pb-Bi will automatically shut off if the flow or heat sink is lost. Reactivity accidents can be limited by a low total control rod worth. High temperature reactors can achieve only incomplete burning of actinides. If an accelerator is added to increase burn-up, a fast spectrum region is needed, which has a low heat capacity. (author)

  9. Two-step B/T (burning and/or transmutation) method for self-completed nuclear fuel cycle with thermal and fast B/T reactors

    International Nuclear Information System (INIS)

    Kitamoto, A.; Mulyanto, M.R.; Marsodi, M.R.

    1995-01-01

    The total cost minimization for P and T (partitioning and transmutation) treatment with appropriate recycle period through out-core optimization was examined in order to find the possibility of P and T treatment of minor actinides (MA) and/or long lived fission products (LLFP) and the technology to be improved and/or developed in self-completed nuclear fuel cycle. The P and T should be done for B/T (burning and/or transmutation) treatment based on three criteria, and the grouping was closely related to the effectiveness of Two-Step B/T Method in B/T treatment. (authors)

  10. Impact of partitioning and transmutation on high-level waste disposal for the fast breeder reactor fuel cycle

    International Nuclear Information System (INIS)

    Nishihara, Kenji; Oigawa, Hiroyuki; Nakayama, Shinichi; Ono, Kiyoshi; Shiotani, Hiroki

    2010-01-01

    The impact of partitioning and/or transmutation (PT) technology on high-level waste management was investigated for the equilibrium state of several potential fast breeder reactor (FBR) fuel cycles. Three different fuel cycle scenarios involving PT technology were analyzed: 1) partitioning process only (separation of some fission products), 2) transmutation process only (separation and transmutation of minor actinides), and 3) both partitioning and transmutation processes. The conventional light water reactor (LWR) fuel cycle without PT technology, on which the current repository design is based, was also included for comparison. We focused on the thermal constraints in a geological repository and determined the necessary predisposal storage quantities and time periods (by defining a storage capacity index) for several predefined emplacement configurations through transient thermal analysis. The relation between this storage capacity index and the required repository emplacement area was obtained. We found that the introduction of the FBR fuel cycle without PT can yield a 35% smaller repository per unit electricity generation than the LWR fuel cycle, although the predisposal storage period is prolonged from 50 years for the LWR fuel cycle to 65 years for the FBR fuel cycle without PT. The introduction of the partitioning-only process does not result in a significant reduction of the repository emplacement area from that for the FBR fuel cycle without PT, but the introduction of the transmutation-only process can reduce the emplacement area by a factor of 5 when the storage period is extended from 65 to 95 years. When a coupled partitioning and transmutation system is introduced, the repository emplacement area can be reduced by up to two orders of magnitude by assuming a predisposal storage of 60 years for glass waste and 295 years for calcined waste containing the Sr and Cs fraction. The storage period of 295 years for the calcined waste does not require a large

  11. Preliminary analyses of neutronics schemes for three kinds waste transmutation blankets of fusion-fission hybrid

    International Nuclear Information System (INIS)

    Zhang Mingchun; Feng Kaiming; Li Zaixin; Zhao Fengchao

    2012-01-01

    The neutronics schemes of the helium-cooled waste transmutation blanket, sodium-cooled waste transmutation blanket and FLiBe-cooled waste transmutation blanket were preliminarily calculated and analysed by using the spheroidal tokamak (ST) plasma configuration. The neutronics properties of these blankets' were compared and analyzed. The results show that for the transmutation of "2"3"7Np, FLiBe-cooled waste transmutation blanket has the most superior transmutation performance. The calculation results of the helium-cooled waste transmutation blanket show that this transmutation blanket can run on a steady effective multiplication factor (k_e_f_f), steady power (P), and steady tritium production rate (TBR) state for a long operating time (9.62 years) by change "2"3"7Np's initial loading rate of the minor actinides (MA). (authors)

  12. Transmutation of sup 2 sup 0 sup 4 Pb in an intensive gamma-ray flux

    CERN Document Server

    Ishkhanov, B S

    2001-01-01

    Transmutation chain formation during irradiation with various intensities of bremsstrahlung photon beam is analysed. The main features of transmutation chain formation by photons with energies corresponding to the giant dipole resonance are discussed.

  13. Scenarios for minor actinides transmutation in the framework of the French Act on Waste Management

    International Nuclear Information System (INIS)

    Coquelet-Pascal, C.; Meyer, M.; Tiphine, M.; Girieud, R.; Eschbach, R.; Chabert, C.; Garzenne, C.; Barbrault, P.; Van Den Durpel, L.; Caron-Charles, M.; Favet, D.; Arslan, M.; Caron-Charles, M.; Carlier, B.; Lefevre, J.C.

    2013-01-01

    In the framework of the French Act on Waste Management, options of minor actinides (MA) transmutation are studied, based on several scenarios of sodium fast reactor deployment. Basically, one of these scenarios considers the deployment of a 60 GWe SFR fleet in two steps (20 GWe from 2040 to 2050 and 40 GWe, as well as, from 2080 to 2100). For this scenario, the advantages and drawbacks of different transmutation options are evaluated: - transmutation of all minor actinides or only of americium; - transmutation in homogeneous mode (MA bearing fuel in all the core or just in the outer core) or in heterogeneous mode (MA bearing radial blankets). Scenarios have been optimised to limit the impacts of MA transmutation on the cycle: - reduction of the initial MA content in the core in the case of transmutation in homogeneous mode to reduce the impact on reactivity coefficients; - reduction of the number of rows of blankets and fuel decay heat in the case of transmutation in heterogeneous mode. The sensitivity of transmutation options to cycle parameters such as the fuel cooling time before transportation is also assessed. Thus, the transmutation of only americium in one row of radial blankets containing initially 10 pc % Am and irradiated during the same duration as the standard fuel assemblies appears to be a suitable solution to limit the transmutation impacts on fuel cycle and facilities. A comparison of results obtained with MA transmutation in dedicated systems is also presented with a symbiotic scenario considering ADS (accelerator-driven system) deployment to transmute MA together with a SFR fleet to produce energy. The MA inventory within the cycle is higher in the case of transmutation in ADS than in the case of transmutation in SFR. Considering the industrial feasibility of MA transmutation, it appears important to study 'independently' SFR deployment and MA transmutation. Consequently, scenarios of progressive introduction of MA options are assessed

  14. Transmutation of Minor Actinide in well thermalized neutron field and application of advanced neutron source (ANS)

    International Nuclear Information System (INIS)

    Iwasaki, Tomohiko; Hirakawa, Naohiro

    1995-01-01

    Transmutation of Minor Actinide (MA) in a well thermalized neutron field was studied. Since MA nuclides have large effective cross sections in the well thermalized neutron field, the transmutation in the well thermalized neutron field has an advantage of high transmutation rate. However, the transmutation rate largely decreases by accumulation of 246 Cm when MA is transmuted only in the well thermalized neutron field for a long period. An acceleration method of burn-up of 246 Cm was studied. High transmutation rate can be obtained by providing a neutron field with high flux in the energy region between 1 and 100 eV. Two stage transmutation using the well thermalized neutron field and this field can transmute MA rapidly. The applicability of the Advanced Neutron Source (ANS) to the transmutation of MA was examined for a typical MA with the composition in the high-level waste generated in the conventional PWR. If the ANS is applied without changing the fuel inventory, the amount of MA which corresponds to that produced by a conventional 1,175 MWe PWR in one year can be transmuted by the ANS in one year. Furthermore, the amount of the residual can be reduced to about 1g (10 -5 of the initial MA weight) by continuing the transmutation for 5 years owing to the two stage transmutation. (author)

  15. Transmutation of nuclear waste. Status report RAS programme 1994: Recycling and transmutation of actinides and fission products

    International Nuclear Information System (INIS)

    Cordfunke, E.H.P.; Gruppelaar, H.; Franken, W.M.P.

    1995-07-01

    This report describes the status and progress of the Dutch RAS programme on 'Recycling and Transmutation of Actinides and Fission Products' over the year 1994, which is the first year of the second 4-year programme. This programme is outlined and a short progress report is given over 1994, including a listing of 23 reports and publications over the year 1994. Highlights of 1994 were: The completion of long-lived fission-product transmutation studies, the initiation of small-scale demonstration experiments in the HFR on Tc and I, the issue of reports on the potential of the ALMR (Advanced Liquid Metal Reactor) for transmutation adn the participation and international cooperation on irradiation experiments with actinides in inert matrices. The remaining chapters contain more extended contributions on recent developments and selected topics, under the headings: Benefits and risks of partitioning and transmutation, Perspective of chemical partitioning, Inert matrices, Evolutionary options (MOX), Perspective of heavy water reactors, Perspective of fast burners, Perspective of accelerator-based systems, Thorium cycle, Fission-product transmutation, End scenarios, and Executive summary and recommendations. (orig.)

  16. Transmutation of nuclear waste. Status report RAS programme 1994: Recycling and transmutation of actinides and fission products

    Energy Technology Data Exchange (ETDEWEB)

    Cordfunke, E H.P.; Gruppelaar, H; Franken, W M.P.

    1995-07-01

    This report describes the status and progress of the Dutch RAS programme on `Recycling and Transmutation of Actinides and Fission Products` over the year 1994, which is the first year of the second 4-year programme. This programme is outlined and a short progress report is given over 1994, including a listing of 23 reports and publications over the year 1994. Highlights of 1994 were: The completion of long-lived fission-product transmutation studies, the initiation of small-scale demonstration experiments in the HFR on Tc and I, the issue of reports on the potential of the ALMR (Advanced Liquid Metal Reactor) for transmutation adn the participation and international cooperation on irradiation experiments with actinides in inert matrices. The remaining chapters contain more extended contributions on recent developments and selected topics, under the headings: Benefits and risks of partitioning and transmutation, Perspective of chemical partitioning, Inert matrices, Evolutionary options (MOX), Perspective of heavy water reactors, Perspective of fast burners, Perspective of accelerator-based systems, Thorium cycle, Fission-product transmutation, End scenarios, and Executive summary and recommendations. (orig.).

  17. Electronic Transmutation (ET): Chemically Turning One Element into Another.

    Science.gov (United States)

    Zhang, Xinxing; Lundell, Katie A; Olson, Jared K; Bowen, Kit H; Boldyrev, Alexander I

    2018-03-08

    The concept of electronic transmutation (ET) depicts the processes that by acquiring an extra electron, an element with the atomic number Z begins to have properties that were known to only belong to its neighboring element with the atomic number Z+1. Based on ET, signature compounds and chemical bonds that are composed of certain elements can now be designed and formed by other electronically transmutated elements. This Minireview summarizes the recent developments and applications of ET on both the theoretical and experimental fronts. Examples on the ET of Group 13 elements into Group 14 elements, Group 14 elements into Group 15 elements, and Group 15 elements into Group 16 elements are discussed. Compounds and chemical bonding composed of carbon, silicon, germanium, phosphorous, oxygen and sulfur now have analogues using transmutated boron, aluminum, gallium, silicon, nitrogen, and phosphorous. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Transmutation of high-level radioactive waste - Perspectives

    CERN Document Server

    Junghans, Arnd; Grosse, Eckart; Hannaske, Roland; Kögler, Toni; Massarczyk, Ralf; Schwengner, Ronald; Wagner, Andreas

    2014-01-01

    In a fast neutron spectrum essentially all long-lived actinides (e.g. Plutonium) undergo fission and thus can be transmuted into generally short lived fission products. Innovative nuclear reactor concepts e.g. accelerator driven systems (ADS) are currently in development that foresee a closed fuel cycle. The majority of the fissile nuclides (uranium, plutonium) shall be used for power generation and only fission products will be put into final disposal that needs to last for a historical time scale of only 1000 years. For the transmutation of high-level radioactive waste a lot of research and development is still required. One aspect is the precise knowledge of nuclear data for reactions with fast neutrons. Nuclear reactions relevant for transmutation are being investigated in the framework of the european project ERINDA. First results from the new neutron time-of-flight facility nELBE at Helmholtz-Zentrum Dresden-Rossendorf will be presented.

  19. Resolving and quantifying overlapped chromatographic bands by transmutation

    Science.gov (United States)

    Malinowski

    2000-09-15

    A new chemometric technique called "transmutation" is developed for the purpose of sharpening overlapped chromatographic bands in order to quantify the components. The "transmutation function" is created from the chromatogram of the pure component of interest, obtained from the same instrument, operating under the same experimental conditions used to record the unresolved chromatogram of the sample mixture. The method is used to quantify mixtures containing toluene, ethylbenzene, m-xylene, naphthalene, and biphenyl from unresolved chromatograms previously reported. The results are compared to those obtained using window factor analysis, rank annihilation factor analysis, and matrix regression analysis. Unlike the latter methods, the transmutation method is not restricted to two-dimensional arrays of data, such as those obtained from HPLC/DAD, but is also applicable to chromatograms obtained from single detector experiments. Limitations of the method are discussed.

  20. PKA distributions: Contributions from transmutation products and from radioactive decay

    Directory of Open Access Journals (Sweden)

    M.R. Gilbert

    2016-12-01

    Full Text Available The neutrons generated in fusion plasmas interact with materials via nuclear reactions. The resulting transmutations and atomic displacements have life-limiting consequences for fusion reactor components. A detailed understanding of the production, evolution and material consequences of the damage created by cascades of atomic displacements requires, as a vital primary input, a complete description of the energy-spectrum of initial (prompt atomic displacement events (the primary knock on atoms or PKAs produced by direct neutron nuclear interactions. There is also the possibility that the radionuclides produced under transmutation will create further PKAs as they decay, and so the rate of these must also be quantified. This paper presents the latest results from the analysis of PKA spectra under neutron irradiation, focussing particularly on the variation in PKA distributions due to changes in composition under transmutation, but also on the PKA contributions from radioactive decay of materials that become activated under irradiation.

  1. Calculations of different transmutation concepts. An international benchmark exercise

    International Nuclear Information System (INIS)

    2000-01-01

    In April 1996, the NEA Nuclear Science Committee (NSC) Expert Group on Physics Aspects of Different Transmutation Concepts launched a benchmark exercise to compare different transmutation concepts based on pressurised water reactors (PWRs), fast reactors, and an accelerator-driven system. The aim was to investigate the physics of complex fuel cycles involving reprocessing of spent PWR reactor fuel and its subsequent reuse in different reactor types. The objective was also to compare the calculated activities for individual isotopes as a function of time for different plutonium and minor actinide transmutation scenarios in different reactor systems. This report gives the analysis of results of the 15 solutions provided by the participants: six for the PWRs, six for the fast reactor and three for the accelerator case. Various computer codes and nuclear data libraries were applied. (author)

  2. Transmutation of fission products and actinide waste at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Daemen, L.L.; Pitcher, E.J.; Russell, G.J. [Los Alamos National Laboratory, NM (United States)

    1995-10-01

    The authors studied the neutronics of an ATW system for the transmutation of the fission products ({sup 99}Tc in particular) and the type of actinide waste stored in several tanks at Hanford. The heart of the system is a highly-efficient neutron production target. It is surrounded by a blanket containing a moderator/reflector material, as well as the products to be transmuted. The fission products are injected into the blanket in the form of an aqueous solution in heavy water, whereas an aqueous actinides slurry is circulated in the outer part of the blanket. For the sake of definiteness, the authors focussed on {sup 99}Tc (the most difficult fission product to transmute), and {sup 239}Pu, {sup 237}Np, and {sup 241}Am. Because of the low thermal neutron absorption cross-section of {sup 99}Tc, considerable care and effort must be devoted to the design of a very efficient neutron source.

  3. Transmutation studies of minor actinides in high intensity neutron fluxes

    International Nuclear Information System (INIS)

    Fioni, G.; Bolognese, T.; Cribier, M.; Marie, F.; Roettger, S.; Faust, H.; Leconte, Ph.

    1999-01-01

    Integral measurements of nuclear data and of the transmutation potential in specific neutron fluxes, constitute the fastest and essential way to overcome to the large uncertainties present in the nuclear data libraries. In the frame of the activities of the Directorate for Science of Matter (DSM) of the French Atomic Energy Authority (CEA), a new project is proposed so as to carry out integral measurements relevant for nuclear waste transmutation systems. A new beam tube will be installed to irradiate actinides and fission fragment samples at different distances from the fuel element of the ILL reactor. Variable neutron energy spectra could then be obtained by choosing the distance between the sample and the fuel element, opening the way to the determination of the ideal physical conditions to incinerate nuclear waste in hybrid transmutation systems. (author)

  4. Development of Metallic Fuels for Actinide Transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, Steven Lowe [Idaho National Laboratory; Fielding, Randall Sidney [Idaho National Laboratory; Benson, Michael Timothy [Idaho National Laboratory; Chichester, Heather Jean MacLean [Idaho National Laboratory; Carmack, William Jonathan [Idaho National Laboratory

    2015-09-01

    Research and development activities on metallic fuels are focused on their potential use for actinide transmutation in future sodium fast reactors. As part of this application, there is also a need for a near zero-loss fabrication process and a desire to demonstrate a multifold increase in burnup potential. The incorporation of Am and Np into the traditional U-20Pu-10Zr metallic fuel alloy was demonstrated in the US during the Integral Fast Reactor Program of the 1980’s and early 1990’s. However, the conventional counter gravity injection casting method performed under vacuum, previously used to fabricate these metallic fuel alloys, was not optimized for mitigating loss of the volatile Am constituent in the casting charge; as a result, approximately 40% of the Am casting charge failed to be incorporated into the as-cast fuel alloys. Fabrication development efforts of the past few years have pursued an optimized bottom-pour casting method to increase utilization of the melted charge to near 100%, and a differential pressure casting approach, performed under an argon overpressure, has been demonstrated to result in essentially no loss of Am due to volatilization during fabrication. In short, a path toward zero-loss fabrication of metallic fuels including minor actinides has been shown to be feasible. Irradiation testing of advanced metallic fuel alloys in the Advanced Test Reactor (ATR) has been underway since 2003. Testing in the ATR is performed inside of cadmium-shrouded positions to remove >99% of the thermal flux incident on the test fuels, resulting in an epi-thermal driven fuel test that is free from gross flux depression and producing an essentially prototypic radial temperature profile inside the fuel rodlets. To date, three irradiation test series (AFC-1,2,3) have been completed. Over 20 different metallic fuel alloys have been tested to burnups as high as 30% with constituent compositions of Pu up to 30%, Am up to 12%, Np up to 10%, and Zr between 10

  5. Nuclear transmutation. The reality of cold fusion

    International Nuclear Information System (INIS)

    Mizuno, Tadahiko

    1997-01-01

    The book is introducing the quest on the way to reality of cold fusion. Another point of author is interaction between the quest and social impacts. After the first report on cold fusion by M. Fleischmann and S. Pons on March 1989, the inspired author started a series of following experiments based on his own characteristic background of electrochemistry. The first experiment from March 25 to April 7, 1989 did not show any indications on neutrons, gamma rays, tritium, and heat. The second experiment was initiated at the underground experimental hall of the linear accelerator facilities. This means the shielding of noises coming from outsides. The neutron of about 2.45 MeV was observed after the 1-month continuation of the experiment. The intensity of neutron was nearly 10 to 20 times of the background noise. Furthermore, there were no changes of signals on heat and tritium before and after the experiments. The closed cell experiment was conducted to keep reliability of the experiment. The experiment started on June 1990. In this case, Tritium signals of 100 times of background noise were observed, however, no meaningful signal on neutrons. Anomalous heat was observed after March 24, 1991, where the electric current was increased up to 6 A. On the other hand, there were no appreciable change in neutron and tritium signals. The solid electrolysis was used in the experiment after May 1992, for its high temperature characteristics, where anomalous heat was observed with a certain probability. The experimental system was upgraded in diagnostic methods after 1994. As a result, particular isotopes related to fission reaction were detected. This fact indicates some kinds of transmutations at very local area of the solid surfaces. The author has also pointed out many reactions for a series of this scientific results responded by, for example, well known professors, scientific societies, mass media, and international conferences. Consequently the reactions had almost smeared

  6. A study of γ-ray source for the transmutation

    International Nuclear Information System (INIS)

    Nomura, Masahiro; Takahashi, Hiroshi.

    1996-07-01

    PNC is developing high power CW electron linac for various applications, those are the transmutation of the fission products, Free Electron Laser (FEL), the positron source and so on. Especially, the transmutation by the electron linac has been studied for several years. As the results, high flux and high energy γ-ray (∼15 MeV) is required, one of the big problems is that plenty of transmutation energy is needed and the narrow γ-ray energy spectrum can reduce the transmutation energy. The γ-rays can be produced by synchrotron radiation, FEL and laser compton scattering. Those methods were described briefly and compared. As a result, the laser compton scattering is one of the good methods to produce high energy γ-ray. However the cross section between electron and photon is small and the scattered photon energy spectrum is not so narrow that the transmutation energy is reduced drastically. To enhance the interaction between electron and photon, the super cavity is proposed. And some experiments are in progress. To reduce the transmutation energy, scattered electron must be reused by the storage ring. If the scattered electrons are not used for producing γ-ray, the efficiency is less than 1%. In our system, the efficiency can be increased to 20% by reusing scattered electrons. But this efficiency is still low. To increase the efficiency, the RF bucket must be enlarged. If the momentans compaction factor α can be reduced, the RF bucket can be enlarged. And the storage ring must be designed to have small value of the α. The electron energy dependency of efficiency is investigated, too. In short word, it is difficult to increase the efficiency drastically by changing electron energy. This work was conducted as a part of the collaboration work between PNC and BNL. (author)

  7. Fast molten salt reactor-transmuter for closing nuclear fuel cycle on minor actinides

    International Nuclear Information System (INIS)

    Dudnikov, A. A.; Alekseev, P. N.; Subbotin, S. A.

    2007-01-01

    Creation fast critical molten salt reactor for burning-out minor actinides and separate long-living fission products in the closed nuclear fuel cycle is the most perspective and actual direction. The reactor on melts salts - molten salt homogeneous reactor with the circulating fuel, working as burner and transmuter long-living radioactive nuclides in closed nuclear fuel cycle, can serve as an effective ecological cordon from contamination of the nature long-living radiotoxic nuclides. High-flux fast critical molten-salt nuclear reactors in structure of the closed nuclear fuel cycle of the future nuclear power can effectively burning-out / transmute dangerous long-living radioactive nuclides, make radioisotopes, partially utilize plutonium and produce thermal and electric energy. Such reactor allows solving the problems constraining development of large-scale nuclear power, including fueling, minimization of radioactive waste and non-proliferation. Burning minor actinides in molten salt reactor is capable to facilitate work solid fuel power reactors in system NP with the closed nuclear fuel cycle and to reduce transient losses at processing and fabrications fuel pins. At substantiation MSR-transmuter/burner as solvents fuel nuclides for molten-salt reactors various salts were examined, for example: LiF - BeF2; NaF - LiF - BeF2; NaF-LiF ; NaF-ZrF4 ; LiF-NaF -KF; NaCl. RRC 'Kurchatov institute' together with other employees have developed the basic design reactor installations with molten salt reactor - burner long-living nuclides for fluoride fuel composition with the limited solubility minor actinides (MAF3 10 mol %) allows to develop in some times more effective molten salt reactor with fast neutron spectrum - burner/ transmuter of the long-living radioactive waste. In high-flux fast reactors on melts salts within a year it is possible to burn ∼300 kg minor actinides per 1 GW thermal power of reactor. The technical and economic estimation given power-technological

  8. Transmutation and activation of fusion reactor wall and structural materials

    International Nuclear Information System (INIS)

    Jarvis, O.N.

    1979-01-01

    This report details the extent of the nuclear data needed for inclusion in a data library to be used for general assessments of fusion reactor structure activation and transmutation, describes the sources of data available, reviews the literature and explores the reliability of current calculations by providing an independent assessment of the activity inventory to be expected from five structural materials in a simple blanket design for comparison with the results of other workers. An indication of the nuclear reactions which make important contributions to the activity, transmutation and gas production rates for these structural materials is also presented. (author)

  9. Electron trap annealing in neutron transmutation doped silicon

    DEFF Research Database (Denmark)

    Guldberg, J.

    1977-01-01

    Silicon doped by neutron transmutation to 1.2×1014 phosphorus atoms/cm3 was investigated with deep level transient spectroscopy using evaporated Au/n-Si diodes. Seven bulk electron traps were identified which appear after 30 min N2 anneal at temperatures between 425 and 725 °C. Five of these anne......Silicon doped by neutron transmutation to 1.2×1014 phosphorus atoms/cm3 was investigated with deep level transient spectroscopy using evaporated Au/n-Si diodes. Seven bulk electron traps were identified which appear after 30 min N2 anneal at temperatures between 425 and 725 °C. Five...

  10. Nickel Foil as Transmutation Detector for Neutron Fluence Measurements

    Directory of Open Access Journals (Sweden)

    Klupák Vít

    2016-01-01

    Full Text Available Activation detectors are very often used for determination of the neutron fluence in reactor dosimetry. However, there are few disadvantages concerning these detectors; it is the demand of the knowledge of the irradiation history and a loss of information due to a radioactive decay in time. Transmutation detectors TMD could be a solution in this case. The transmutation detectors are materials in which stable or long-lived nuclides are produced by nuclear reactions with neutrons. From a measurement of concentration of these nuclides, neutron fluence can be evaluated regardless of the cooling time.

  11. Comparative analysis of sub-critical transmutation reactor concepts

    International Nuclear Information System (INIS)

    Chang, S. H.

    1997-01-01

    The long-lived nuclear wastes have been substantially generated from the light water reactor for a few decades. The toxicity of these spent fuels will be higher than that of the uranium ore, even if those will be stored in the repository more than ten thousands. Hence the means of transmuting the key long-lived nuclear wastes, primarily the minor actinides, using a hybrid proton accelerator and subcritical transmutation reactor, are proposed. Until now, the representative concepts for a subcritical transmutation reactor are the Energy Amplifier, the OMEGA project, the ATW and the MSBR. The detailed concepts and the specifications are illustrated in Table 1. The design requirements for the subcritical transmutation reactor are the high transmutation rate of long-lived nuclear wastes, safety and economics. And to propose the subcritical transmutation reactor concepts, the coolant, the target material and fuel type are carefully considered. In these aspects, the representative concepts for a subcritical transmutation reactor in Table 1 have been surveyed. The requirements for a target and a coolant are the reliable, low maintenance operation and safe operation to minimize the wastes. The reliable, low maintenance operation and safe operation to minimize the wastes. The reliable coolant must have the low melting point, high heat capacity and excellent physical properties. And the target material must have high neutron yield for a given proton condition and easy heat removal capability. Therefore in respect with the above requirements, Pb-Bi is proposed as the coolant and the target material for the subcritical reactor. Because the neutron yield for a given proton energy increases linearly with mass number up to bismuth but in heavier elements spallation events sharply increase both the neutron and heat outputs, Pb-Bi meets not only such the requirements as the above for the coolant but also those for the coolant and target, the simplification of system can be achieved

  12. Minor actinide transmutation using minor actinide burner reactors

    International Nuclear Information System (INIS)

    Mukaiyama, T.; Yoshida, H.; Gunji, Y.

    1991-01-01

    The concept of minor actinide burner reactor is proposed as an efficient way to transmute long-lived minor actinides in order to ease the burden of high-level radioactive waste disposal problem. Conceptual design study of minor actinide burner reactors was performed to obtain a reactor model with very hard neutron spectrum and very high neutron flux in which minor actinides can be fissioned efficiently. Two models of burner reactors were obtained, one with metal fuel core and the other with particle fuel core. Minor actinide transmutation by the actinide burner reactors is compared with that by power reactors from both the reactor physics and fuel cycle facilities view point. (author)

  13. Present status and issues for accelerator driven transmutation system

    International Nuclear Information System (INIS)

    Mizumoto, Motoharu

    2003-01-01

    Proper treatment of high-level nuclear wastes (HLW) that are produced in operation of nuclear power plants is one of the most important problems for further utilization of nuclear energy. The purpose of the accelerator driven nuclear waste transmutation system (ADS) is to transmute these nuclei to stable or short-lived nuclei by various radiation-induced nuclear reactions. When ADS for HLW can be realized, burden to deep geological disposal can be considerably reduced. In the paper, present status and issues for ADS will be discussed. (author)

  14. Transmutation of LWR waste actinides in thermal reactors

    International Nuclear Information System (INIS)

    Gorrell, T.C.

    1979-01-01

    Recycle of actinides to a reactor for transmutation to fission products is being considered as a possible means of waste disposal. Actinide transmutation calculations were made for two irradiation options in a thermal (LWR) reactor. The cases considered were: all actinides recycled in regular uranium fuel assemblies, and transuranic actinides recycled in separate mixed oxide (MOX) assemblies. When all actinides were recycled in a uranium lattice, a reduction of 62% in the transuranic inventory was achieved after 10 recycles, compared to the inventory accumulated without recycle. When the transuranics from 2 regular uranium assemblies were combined with those recycled from a MOX assembly, the transuranic inventory was reduced 50% after 5 recycles

  15. Study of deep subcritical electronuclear systems and feasibility of their application for energy production and radioactive waste transmutation

    International Nuclear Information System (INIS)

    Adam, J.; Baldin, A.; Vladimirova, N.

    2010-01-01

    Physical substantiation for investigation of new schemes of electronuclear power production and transmutation of long-lived radioactive wastes based on nuclear relativistic technologies is presented. 'E and T RAW' ('Energy and Transmutation of Radioactive Wastes') is aimed at complex study of interaction of relativistic beams of the Nuclotron-M with energies up to 10 GeV in quasi-infinite targets. Feasibility of application of natural/depleted uranium or thorium without the use of uranium-235, as well as utilization of spent fuel elements of atomic power plants is demonstrated based on analysis of results of known experiments, numerical, and theoretical works. The 'E and T RAW' project will provide fundamentally new data and numerical methods necessary for design of demonstration experimental-industrial setups based on the proposed scheme

  16. Sensitivity to Nuclear Data and Neutron Source Type in Calculations of Transmutation Capabilities of the Energy Amplifier Demonstration Facility

    International Nuclear Information System (INIS)

    Dahlfors, Marcus

    2003-05-01

    This text is a summary of two studies the author has performed within the field of 3-D Monte Carlo calculations of Accelerator Driven Systems (ADS) for transmutation of nuclear waste. The simulations were carried out with the state-of-the-art computer code package EA-MC, developed by C. Rubbia and his group at CERN. The concept studied is ANSALDOs 80 MWth Energy Amplifier Demonstration Facility based on classical MOX-fuel technology and on molten Lead-Bismuth Eutectic cooling. A review of neutron cross section sensitivity in numerical calculations of an ADS and a comparative assessment relevant to the transmutation efficiency of plutonium and minor actinides in fusion/fission hybrids and ADS are presented

  17. Sensitivity to Nuclear Data and Neutron Source Type in Calculations of Transmutation Capabilities of the Energy Amplifier Demonstration Facility

    Energy Technology Data Exchange (ETDEWEB)

    Dahlfors, Marcus

    2003-05-01

    This text is a summary of two studies the author has performed within the field of 3-D Monte Carlo calculations of Accelerator Driven Systems (ADS) for transmutation of nuclear waste. The simulations were carried out with the state-of-the-art computer code package EA-MC, developed by C. Rubbia and his group at CERN. The concept studied is ANSALDOs 80 MWth Energy Amplifier Demonstration Facility based on classical MOX-fuel technology and on molten Lead-Bismuth Eutectic cooling. A review of neutron cross section sensitivity in numerical calculations of an ADS and a comparative assessment relevant to the transmutation efficiency of plutonium and minor actinides in fusion/fission hybrids and ADS are presented.

  18. Pu Denaturing by Transmutation of MA in FBR Multi-cycle

    Energy Technology Data Exchange (ETDEWEB)

    Meiliza, Yoshitalia; Saito, Masaki; Sagara, Hiroshi [Tokyo Institute of Technology, 2-12-1-N1-1 Ookayama, Meguro-ku, Tokyo, 1528550 (Japan)

    2009-06-15

    Pu accumulation and its recycling is important in the term of energy resources, however one of the most sensitive issues is non-proliferation in the future fuel cycle based on fast breeder reactor (FBR). The present paper utilizes Protected Pu Production (P{sup 3}) concept for the production of {sup 238}Pu and {sup 242}Pu by Minor Actinides (MA) transmutation to enhance the proliferation resistance of Pu in the fuel. Increase in the {sup 238}Pu and {sup 242}Pu isotopic fraction creates a high rate of internal heat generation by alpha decay (DH) and/or a high neutron source of spontaneous fission (SFN) in Pu that would be encountered during manufacturing and maintaining of nuclear explosive device. The feasibility of denaturing of Pu by MA transmutation in medium size FBR has been studied from the viewpoint of even-mass number Pu accumulation during multi-cycle of Pu and MA. The proliferation resistance property of Pu is also evaluated based on the specific decay heat and spontaneous fission neutron, compared with the reference criteria. In present paper, the P{sup 3} technology based on multi-recycled Pu and MA is compared with the conventional technology based on multi-recycled Pu only. The detail of mass balance behavior is, however, beyond the scope of the present paper. (authors)

  19. Accelerator-driven transmutation of high-level waste from the defense and commercial sectors

    International Nuclear Information System (INIS)

    Bowman, C.; Arthur, E.; Beard, C.

    1996-01-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The major goal has been to develop accelerator transmutation of waste (ATW) system designs that will thoroughly and rapidly transmute nuclear waste, including plutonium from dismantled weapons and spent reactor fuel, while generating useful electrical power and without producing a long-lived radioactive waste stream. We have identified and quantified the unique qualities of subcritical nuclear systems and their capabilities in bringing about the complete destruction of plutonium. Although the 1191 subcritical systems involved in our most effective designs radically depart from traditional nuclear reactor concepts, they are based on extrapolations of existing technologies. Overall, care was taken to retain the highly desired features that nuclear technology has developed over the years within a conservative design envelope. We believe that the ATW systems designed in this project will enable almost complete destruction of nuclear waste (conversion to stable species) at a faster rate and without many of the safety concerns associated with the possible reactor approaches

  20. Recent research and development activities on partitioning and transmutation of radioactive nuclides in Japan

    International Nuclear Information System (INIS)

    Minato, K.; Ikegami, T.; Inoue, T.

    2005-01-01

    In Japan, research and development activities for partitioning and transmutation (P and T) have been promoted under the OMEGA programme for more than 15 years. These activities were reviewed by the Atomic Energy Commission in Japan in 2000. In accordance with the results of the review, three institutes, the Japan Atomic Energy Research Institute (JAERI), the Japan Nuclear Cycle Development Institute (JNC) and the Central Research Institute of Electric Power Industry (CRIEPI), are continuing the research and development on the P and T technology. This report summarises the recent activities in Japan by these institutes. JAERI is engaging in the research and development on the Double-strata Fuel Cycle concept consisting of the partitioning process of the high-level waste and the dedicated transmutation cycle using the accelerator driven system (ADS) fuelled with the minor actinide (MA) nitride fuel. JNC and CRIEPI are engaging in the research and development on the P and T technology using commercialized fast reactors (FR), where JNC is mainly in charge of the MOX fuel and the aqueous reprocessing, while CRIEPI is mainly in charge of the metallic fuel and the dry reprocessing. The research and development activities on FR are organised under the Feasibility Study on Commercialized Fast Reactor Cycle Systems. (authors)

  1. Topics under Debate - Transmutation of commercial waste should precede geological storage

    International Nuclear Information System (INIS)

    Bowman, C.D.; Thorson, I.M.; McDonald, J.C.

    2004-01-01

    Technology has provided solutions for many of our problems. The generation and distribution of electricity to our homes and businesses has made possible our comfortable modern lifestyle. Of course, nothing comes without a price, and one of the prices we pay for our electrically powered world is the difficulty of managing the wastes resulting from power production. The basic methods used to deal with many types of waste are generally rather primitive. Waste products may be diluted, dispersed or buried in approved places. Rather few waste products resulting from the production of electric power are biodegradable. However, when it comes to nuclear waste, transmutation may offer a solution to a problem that has existed in many countries for many years, if it proves to be technologically and economically feasible. Recently, there have been severe electric power problems in the US. These problems have stimulated renewed interest in developing additional sources of power, with nuclear power being one of those sources. The prospect of increasing the number of nuclear power reactors, while the US capabilities for long-term geological storage of spent fuel are still unclear, is daunting. Transmutation of long-lived isotopes in spent fuel to shorter-lived or more benign isotopes may be necessary, if the process can be performed economically. (author)

  2. The transmutation of americium: the Ecrix experiments in Phenix; Transmutation de l'americium: les experiences ecrix dans Phenix

    Energy Technology Data Exchange (ETDEWEB)

    Garnier, J.C.; Schmidt, N. [CEA Cadarache, Dept. d' Etudes des Combustibles (DEC/SESC), 13 - Saint-Paul-lez-Durance (France); Croixmarie, Y.; Ottaviani, J.P. [CEA Cadarache, Dept. d' Etudes des Combustibles (DEC/SPUA), 13 - Saint-Paul-lez-Durance (France); Varaine, F.; Saint Jean, C. de [CEA Cadarache, Dept. d' Etudes des Reacteurs (DER/SPRC), 13 - Saint-Paul-lez-Durance (France)

    1999-07-01

    The first americium transmutation experiment in a specific target in PHENIX will occur with the ECRIX-B and ECRIX-H experiments. Beside material testing, the objective is also to represent a concept of transmutation whose specificity is to enhance the kinetics of transmutation by using a moderated spectrum. The moderator materials will be {sup 11}B{sub 4}C and CaH{sub 2} for ECRIX-B and ECRIXH respectively, the irradiation conditions have been predicted for both the neutronics and thermal. The targets (MgO-AmO{sub X} pellets) are manufactured in the ATALANTE laboratory and the design is performed according to the PHENIX operating conditions. (authors)

  3. The transmutation of americium: the Ecrix experiments in Phenix; Transmutation de l'americium: les experiences ecrix dans Phenix

    Energy Technology Data Exchange (ETDEWEB)

    Garnier, J C; Schmidt, N [CEA Cadarache, Dept. d' Etudes des Combustibles (DEC/SESC), 13 - Saint-Paul-lez-Durance (France); Croixmarie, Y; Ottaviani, J P [CEA Cadarache, Dept. d' Etudes des Combustibles (DEC/SPUA), 13 - Saint-Paul-lez-Durance (France); Varaine, F; Saint Jean, C de [CEA Cadarache, Dept. d' Etudes des Reacteurs (DER/SPRC), 13 - Saint-Paul-lez-Durance (France)

    1999-07-01

    The first americium transmutation experiment in a specific target in PHENIX will occur with the ECRIX-B and ECRIX-H experiments. Beside material testing, the objective is also to represent a concept of transmutation whose specificity is to enhance the kinetics of transmutation by using a moderated spectrum. The moderator materials will be {sup 11}B{sub 4}C and CaH{sub 2} for ECRIX-B and ECRIXH respectively, the irradiation conditions have been predicted for both the neutronics and thermal. The targets (MgO-AmO{sub X} pellets) are manufactured in the ATALANTE laboratory and the design is performed according to the PHENIX operating conditions. (authors)

  4. Preliminary assessment of partitioning and transmutation as a radioactive waste management concept

    International Nuclear Information System (INIS)

    Croff, A.G.; Tedder, D.W.; Drago, J.P.; Blomeke, J.O.; Perona, J.J.

    1977-09-01

    Partitioning (separating) the actinide elements from nuclear fuel cycle wastes and transmuting (burning) them to fission products in power reactors represents a potentially advanced concept of radioactive waste management which could reduce the long-term (greater than 1000 years) risk associated with geologic isolation of wastes. The greatest uncertainties lie in the chemical separations technology needed to recover greater than 99 percent of the actinides during the reprocessing of spent fuels and their refabrication as fresh fuels or target elements. Preliminary integrated flowsheets based on modifications of the Purex process and supplementary treatment by oxalate precipitation and ion exchange indicate that losses of plutonium in reprocessing wastes might be reduced from about 2.0 percent to 0.1 percent, uranium losses from about 1.7 percent to 0.1 percent, neptunium losses from 100 percent to about 1.2 percent, and americium and curium from 100 percent to about 0.5 percent. Mixed oxide fuel fabrication losses may be reduced from about 0.5 percent to 0.06 percent for plutonium and from 0.5 percent to 0.04 percent for uranium. Americium losses would be about 5.5 percent for the reference system. Transmutation of the partitioned actinides at a rate of 5 to 7 percent per year is feasible in both fast and thermal reactors, but additional studies are needed to determine the most suitable strategy for recycling them to reactors and to assess the major impacts of implementing the concept on fuel cycle operations and costs. It is recommended that the ongoing program to evaluate the feasibility, impacts, costs, and incentives of implementing partitioning-transmutation be continued until a firm assessment of its potentialities can be made. At the present level of effort, achievement of this objective should be possible by 1980. 27 tables, 50 figures

  5. Comparative study for minor actinide transmutation in various fast reactor core concepts

    International Nuclear Information System (INIS)

    Ohki, S.

    2001-01-01

    A comparative evaluation of minor actinide (MA) transmutation property was performed for various fast reactor core concepts. The differences of MA transmutation property were classified by the variations of fuel type (oxide, nitride, metal), coolant type (sodium, lead, carbon dioxide) and design philosophy. Both nitride and metal fuels bring about 10% larger MA transmutation amount compared with oxide fuel. The MA transmutation amount is almost unchanged by the difference between sodium and lead coolants, while carbon dioxide causes a reduction by about 10% compared with those. The changes of MA transmutation property by fuel and coolant types are comparatively small. The effects caused by the difference of core design are rather significant. (author)

  6. Transmutation of long-lived fission product (137Cs, 90Sr) by a reactor-accelerator system

    International Nuclear Information System (INIS)

    Toyama, Shin-ichi; Takashita, Hirofumi; Konashi, Kenji; Sasao, Nobuyuki; Sato, Isamu.

    1990-01-01

    The report discusses the transmutation of long-lived fission products by a reactor and accelerator. It is important to take some criteria into consideration in transmutation disposal. To satisfy the criteria, a combined system of a reactor and an accelerator is proposed for the transmutation. An outline of the transmutation reactor and the accelerator is presented. The transmutation reactor has the ability to transmute a large quantity of fission products. However, it is desirable to have a high transmutation rate as well as a large disposal ability. Besides the transmutation property, it is necessary to investigate the physics of the transmutation reactor such as nuclear characteristics and burnup properties in order to obtain the most suitable, high performance core concept. A study on those properties is also presented. A high power accelerator is required for the transmutation. So a test linac is developed to accelerate high intensity beams. (N.K.)

  7. Study on multi-recycle transmutation of LLFP in light water reactor

    International Nuclear Information System (INIS)

    Setiawan, M.B.; Kitamoto, A.

    2001-01-01

    The effectiveness of transmutation for long-lived fission products (LLFP) in light water reactors (LWR), i.e. both BWR and PWR, considering the large capture cross-section of FPs in thermal region was evaluated. Calculation results of iodine and technetium transmutation in BWR and PWR suggested an effective use of BWR as compared to PWR. To obtain transmutation fraction [TF] of 30 to 40%, the irradiation period needed for 99 Tc transmutation was estimated as 10 to 15 years, and the period for 129 I transmutation was estimated as 30 to 40 years, respectively. The evaluations bring a new concept of multi-recycle LLFP transmutation using LWR TR (LWR for transmutation)

  8. Proceedings of the specialists' meeting on accelerator-based transmutation

    International Nuclear Information System (INIS)

    Wenger, H.U.

    1992-09-01

    The meeting was organised under the auspices of OECD Nuclear Agency's International Information Exchange Programme on Actinide and Fission Product Partitioning and Transmutation. In the original announcement for the meeting the following sessions were proposed: 1) Concepts of accelerator-based transmutation systems, 2) Nuclear design problems of accelerator-based transmutation systems with emphasis on target facilities and their interfaces with accelerators, 3) Data and methods for nuclear design of accelerator-based transmutation systems, 4) Related cross-section measurements and integral experiments, 5) Identification of discrepancies and gaps and discussion of desirable R+D and benchmark activities. Due to the large number of papers submitted it was necessary to split session 2 into two parts and to reassign some papers in order to balance the sessions more evenly. No papers were submitted for session 5 and this was replaced by a summary and general discussion session. These proceedings contain all 30 papers in the order they were presented at the meeting. They are copies of the duplication-ready versions given to us during or shortly after the meeting. In the Table of Contents, the papers are listed together with the name of the presenter. (author) figs., tabs., refs

  9. Accelerator-driven transmutation of spent fuel elements

    Science.gov (United States)

    Venneri, Francesco; Williamson, Mark A.; Li, Ning

    2002-01-01

    An apparatus and method is described for transmuting higher actinides, plutonium and selected fission products in a liquid-fuel subcritical assembly. Uranium may also be enriched, thereby providing new fuel for use in conventional nuclear power plants. An accelerator provides the additional neutrons required to perform the processes. The size of the accelerator needed to complete fuel cycle closure depends on the neutron efficiency of the supported reactors and on the neutron spectrum of the actinide transmutation apparatus. Treatment of spent fuel from light water reactors (LWRs) using uranium-based fuel will require the largest accelerator power, whereas neutron-efficient high temperature gas reactors (HTGRs) or CANDU reactors will require the smallest accelerator power, especially if thorium is introduced into the newly generated fuel according to the teachings of the present invention. Fast spectrum actinide transmutation apparatus (based on liquid-metal fuel) will take full advantage of the accelerator-produced source neutrons and provide maximum utilization of the actinide-generated fission neutrons. However, near-thermal transmutation apparatus will require lower standing

  10. Application of gaseous core reactors for transmutation of nuclear waste

    Science.gov (United States)

    Schnitzler, B. G.; Paternoster, R. R.; Schneider, R. T.

    1976-01-01

    An acceptable management scheme for high-level radioactive waste is vital to the nuclear industry. The hazard potential of the trans-uranic actinides and of key fission products is high due to their nuclear activity and/or chemical toxicity. Of particular concern are the very long-lived nuclides whose hazard potential remains high for hundreds of thousands of years. Neutron induced transmutation offers a promising technique for the treatment of problem wastes. Transmutation is unique as a waste management scheme in that it offers the potential for "destruction" of the hazardous nuclides by conversion to non-hazardous or more manageable nuclides. The transmutation potential of a thermal spectrum uranium hexafluoride fueled cavity reactor was examined. Initial studies focused on a heavy water moderated cavity reactor fueled with 5% enriched U-235-F6 and operating with an average thermal flux of 6 times 10 to the 14th power neutrons/sq cm-sec. The isotopes considered for transmutation were I-129, Am-241, Am-242m, Am-243, Cm-243, Cm-244, Cm-245, and Cm-246.

  11. Transmutation of radioactive nuclear waste – present status and ...

    Indian Academy of Sciences (India)

    Transmutation of long-lived actinides and fission products becomes an important issue of the overall nuclear fuel cycle assessment, both for existing and future reactor systems. Reliable nuclear data are required for analysis of associated neutronics. The present paper gives a review of the status of nuclear data analysis ...

  12. Analysis of the Gas Core Actinide Transmutation Reactor (GCATR)

    Science.gov (United States)

    Clement, J. D.; Rust, J. H.

    1977-01-01

    Design power plant studies were carried out for two applications of the plasma core reactor: (1) As a breeder reactor, (2) As a reactor able to transmute actinides effectively. In addition to the above applications the reactor produced electrical power with a high efficiency. A reactor subsystem was designed for each of the two applications. For the breeder reactor, neutronics calculations were carried out for a U-233 plasma core with a molten salt breeding blanket. A reactor was designed with a low critical mass (less than a few hundred kilograms U-233) and a breeding ratio of 1.01. The plasma core actinide transmutation reactor was designed to transmute the nuclear waste from conventional LWR's. The spent fuel is reprocessed during which 100% of Np, Am, Cm, and higher actinides are separated from the other components. These actinides are then manufactured as oxides into zirconium clad fuel rods and charged as fuel assemblies in the reflector region of the plasma core actinide transmutation reactor. In the equilibrium cycle, about 7% of the actinides are directly fissioned away, while about 31% are removed by reprocessing.

  13. Introduction to isotopic shifts and transmutations observed in LENR experiments

    International Nuclear Information System (INIS)

    Srinivasan, Mahadeva

    2015-01-01

    This article presents a brief introduction to the topic of transmutation reactions which occur in a variety of LENR configurations wherein the 'host metal' nuclei (Pd, Ni, Ti, etc.) interact with the loaded deuterium or hydrogen nuclei, resulting in the formation of new stable elements or isotopes not present in the system prior to the experimental run. (author)

  14. Transmutation: a decade of revival issues, relevant experiments and perspectives

    International Nuclear Information System (INIS)

    Salvatores, M.

    2001-01-01

    For more than a decade, transmutation studies have been again a topic of wide interest and have triggered numerous international activities, like bilateral/multilateral collaborations, information exchanges, state-of-the-art reports, conferences, but also some co-ordinated programmes and experiments. It is legitimate to ask at this point, whether transmutation studies are still 'fashionable' and why; what is known, what has been done and what should be done. Since the motivations of national programmes are often different, due to a different context, we will take for granted that transmutation is generally seen as an option for the back-end of the fuel cycle in order to reduce the burden of potential geological storages of radioactive wastes (whatever their nature). Finally, we also acknowledge the fact that some highly respected scientists have at several occasions during this decade expressed their doubts about the value of the transmutation option. A typical example is the position expressed by Pigford and Rasmussen, reporting the results of a study for the US National Research Council. (author)

  15. The possible transmutation of radioactive waste from nuclear reactors

    International Nuclear Information System (INIS)

    Harries, J.R.

    1974-01-01

    A nuclear reactor power program produces high level and long lived radioactive wastes. The high level activity is associated with fission products, but beyond 400 years the principal waste hazard is from transuranic elements produced in the reactor. Several schemes have been proposed for the transmutation of the problem isotopes into more easily handled isotopes. The neutron flux in a thermal reactor is not high enough to significantly reduce the longer lived fission product isotopes 90 Sr and 132 Gs, but the transuranic elements can be reduced by recycling through power reactors. The limitation on recycling of the transuranic elements is the separation process to remove trace quantities from the waste stream. In fast reactors the transuranic elements are the principal fuel and fast reactor waste contains only half as much 90 Sr as thermal reactors. However, the overall waste hazard is similar to thermal reactors. A sufficiently intense neutron flux for fission product transmutation could perhaps be produced by a spallation reactor driven by a proton linear accelerator or a controlled thermonuclear reactor. However, both concepts are still some years in the future. Transmutation by accelerator sources of protons, electrons of gammas tend to require more energy than neutron transmutation. (author)

  16. Study on partitioning and transmutation (P and T) of high-level waste. Status of R and D. Final report; Studie zur Partitionierung und Transmutation (P and T) hochradioaktiver Abfaelle. Stand der Grundlagen- und technologischen Forschung. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Merk, Bruno; Glivici-Cotruta, Varvara

    2014-07-01

    The main project, where this sub project contributed to, has been structured into two modules: module A (funded by the federal ministry of economics, managed by KIT) and module B (funded by the federal ministry of education and research, managed by acatech). Partners in module A were DBE TECHNOLOGY GmbH, the Gesellschaft fuer Anlagen- und Reaktorsicherheit mbH (GRS), the Helmholtz-Zentrum Dresden-Rossendorf (HZDR), the Karlsruher Institute of Technology (KIT) and the Rheinisch-Westfaelische Technische Hochschule (RWTH) Aachen, in co-operation with the Forschungszentrum Juelich (FZJ). Modul B has been executed by the Zentrum fuer Interdisziplinaere Risiko- und Innovationsforschung der Universitaet Stuttgart (ZIRIUS). The overall coordination has been carried out by the Deutsche Akademie der Technikwissenschaften (acatech). The social implications have been evaluated in module B based on the analysis of the scientific and technological aspects in module A. Recommendations for communication and actions to be taken for the future positioning of P and T have been developed. In the project part, coordinated by HZDR - status of R and D - an overview on the whole topic P and T is given. The topic is opened by a short description of reactor systems possible for transmutation. In the following the R and D status of separation technologies, safety technology, accelerator technology, liquid metal technology, spallation target development, transmutation fuel and structural material development, as well as waste conditioning is described. The topic is completed by the specifics of transmutation systems, the basic physics and core designs, the reactor physics, the simulation tools and the development of Safety Approaches. Additionally, the status of existing irradiation facilities with fast neutron spectrum is described. Based on the current R and D status, the research and technology gaps in the topics: separation and conditioning, accelerator and spallation target, and reactor

  17. Sensitivity of Transmutation Capability to Recycling Scenarios in KALIMER-600 TRU Burner

    International Nuclear Information System (INIS)

    Lee, Yong Kyo; Kim, Myung Hyun

    2013-01-01

    The purpose of this study is to test transmutation and design feasibility of KALIMER burner caused from many limitations in recycling options; such as low recovery factors and external feed. Design impact from many recycling options will be tested as a sensitivity to various recycling process parameters under many recycling scenarios. Through this study, possibilities when Pyro-processing is realized with SFR can be expected in the recycling scenarios. For the development of sodium-cooled fast reactor(SFR) technology, prototype KALIMER plant is now under R and D stage in Korea. For the future application of SFR for waste transmutation, KALIMER core was designed for TRU burner by KAERI. Feasibility of TRU burner cannot be evaluated exactly because overall functional parameters in pyro-processing recycling process has not been verified yet. There is great possibility to accept undesirable process functions in pyro-processing. Only TRU nuclides composition a little differs between PWR SF and CANDU SF so first scenario has no problem operating SFR. In second scenario, the radiotoxicity of waste at 99% of TRU RF have to be confirmed whether it is proper level to reposit as Low and Intermediate Level Wastes or not. And the reactor safety at high RF of RE must be inspected. Not only third scenario but also several scenarios for good measure are being calculated and will be evaluated

  18. Fusion transmutation of waste: design and analysis of the in-zinerator concept.

    Energy Technology Data Exchange (ETDEWEB)

    Durbin, S. M.; Cipiti, Benjamin B.; Olson, Craig Lee; Guild-Bingham, Avery (Texas A& M University, College Station, TX); Venneri, Francesco (General Atomics, San Diego, CA); Meier, Wayne (LLNL, Livermore, CA); Alajo, A.B. (Texas A& M University, College Station, TX); Johnson, T. R. (Argonne Mational Laboratory, Argonne, IL); El-Guebaly, L. A. (University of Wisconsin, Madison, WI); Youssef, M. E. (University of California, Los Angeles, CA); Young, Michael F.; Drennen, Thomas E. (Hobart & William Smith College, Geneva, NY); Tsvetkov, Pavel Valeryevich (Texas A& M University, College Station, TX); Morrow, Charles W.; Turgeon, Matthew C.; Wilson, Paul (University of Wisconsin, Madison, WI); Phruksarojanakun, Phiphat (University of Wisconsin, Madison, WI); Grady, Ryan (University of Wisconsin, Madison, WI); Keith, Rodney L.; Smith, James Dean; Cook, Jason T.; Sviatoslavsky, Igor N. (University of Wisconsin, Madison, WI); Willit, J. L. (Argonne Mational Laboratory, Argonne, IL); Cleary, Virginia D.; Kamery, William (Hobart & William Smith College, Geneva, NY); Mehlhorn, Thomas Alan; Rochau, Gary Eugene

    2006-11-01

    Due to increasing concerns over the buildup of long-lived transuranic isotopes in spent nuclear fuel waste, attention has been given in recent years to technologies that can burn up these species. The separation and transmutation of transuranics is part of a solution to decreasing the volume and heat load of nuclear waste significantly to increase the repository capacity. A fusion neutron source can be used for transmutation as an alternative to fast reactor systems. Sandia National Laboratories is investigating the use of a Z-Pinch fusion driver for this application. This report summarizes the initial design and engineering issues of this ''In-Zinerator'' concept. Relatively modest fusion requirements on the order of 20 MW can be used to drive a sub-critical, actinide-bearing, fluid blanket. The fluid fuel eliminates the need for expensive fuel fabrication and allows for continuous refueling and removal of fission products. This reactor has the capability of burning up 1,280 kg of actinides per year while at the same time producing 3,000 MWth. The report discusses the baseline design, engineering issues, modeling results, safety issues, and fuel cycle impact.

  19. Fusion transmutation of waste: design and analysis of the In-Zinerator concept

    International Nuclear Information System (INIS)

    Durbin, S. M.; Cipiti, Benjamin B.; Olson, Craig Lee; Guild-Bingham, Avery; Venneri, Francesco; Meier, Wayne; Alajo, A.B.; Johnson, T. R.; El-Guebaly, L. A.; Youssef, M. E.; Young, Michael F.; Drennen, Thomas E.; Tsvetkov, Pavel Valeryevich; Morrow, Charles W.; Turgeon, Matthew C.; Wilson, Paul; Phruksarojanakun, Phiphat; Grady, Ryan; Keith, Rodney L.; Smith, James Dean; Cook, Jason T.; Sviatoslavsky, Igor N.; Willit, J. L.; Cleary, Virginia D.; Kamery, William; Mehlhorn, Thomas Alan; Rochau, Gary Eugene

    2006-01-01

    Due to increasing concerns over the buildup of long-lived transuranic isotopes in spent nuclear fuel waste, attention has been given in recent years to technologies that can burn up these species. The separation and transmutation of transuranics is part of a solution to decreasing the volume and heat load of nuclear waste significantly to increase the repository capacity. A fusion neutron source can be used for transmutation as an alternative to fast reactor systems. Sandia National Laboratories is investigating the use of a Z-Pinch fusion driver for this application. This report summarizes the initial design and engineering issues of this ''In-Zinerator'' concept. Relatively modest fusion requirements on the order of 20 MW can be used to drive a sub-critical, actinide-bearing, fluid blanket. The fluid fuel eliminates the need for expensive fuel fabrication and allows for continuous refueling and removal of fission products. This reactor has the capability of burning up 1,280 kg of actinides per year while at the same time producing 3,000 MWth. The report discusses the baseline design, engineering issues, modeling results, safety issues, and fuel cycle impact

  20. Transmutation in ADS and Needs for Nuclear Data, with an introduction to the n-TOF at CERN

    International Nuclear Information System (INIS)

    Gonzalez, E.; Embid, M.; Fernandez, R.; Garcia, J.; Villamarin, D.

    1999-01-01

    Transmutation can help in the nuclear waste problem by reducing seriously the life and amount of the most dangerous isotopes (radiotoxicity, heat, packing volume and neutron multiplication reductions). ADS are one of the best technologies for nuclear waste transmutation at large scale. Although enough information is available to prepare conceptual designs and make assessments on their performance, a large R and D campaign is required to obtain the precision data required to optimize the detailed engineering design and refine our expectations calculations on waste reduction by the different transmutation strategies being proposed. In particular a large R and D effort is required in nuclear physics, where fundamental differential measurements and integral verification experiments are required. In this sense, the PS213 n-TOF at CERN PS (At Switzerland) will become one of the largest installations to perform the fundamental differential measurements and a wide international collaboration has been setup to perform the cross section measuring campaign. Similarly, the MUSE and several other experiments taking place and in preparation in Europe, USA and Japan will provide the integral verification

  1. Effective application of partitioning and transmutation technologies to geologic disposal

    International Nuclear Information System (INIS)

    Ahn, J.; Ikegami, T.

    2005-01-01

    The present study proposes the total toxicity index of radionuclides that have accumulated in the region exterior to the repository as the environmental impact measure. The measure is quantitatively evaluated by a radionuclide transport model that incorporates the effects of canister-array configuration and the initial mass loading in the waste canister. With the measure, it is demonstrated that the environmental impact of the repository can be effectively reduced by reduction of the initial mass loading and change in the canister-array configuration in the repository. The rate of increase in the environmental impact with the increase in the repository size can be reduced by reducing the initial mass loading of Np and its precursors. Environmental impacts of the mill tailings and the depleted uranium are as important as those from the HLW repository. For a fair comparison of various fuel cycles, the sum of these impacts should be compared. (authors)

  2. Technological aspects of transmutation of technetium and iodine

    International Nuclear Information System (INIS)

    Konings, R.J.M.; Abrahams, K.; Franken, W.M.P.; Gruppelaar, H.; Kloosterman, J.L.; Thijssen, P.J.M.; Conrad, R.

    1993-06-01

    Pre-test calculations on the effect of self-shielding, experimental studies for sample chacterization and sample selection and the design of an irradiation facility for use in the HFR are discussed. (orig./HP)

  3. Minor actinides transmutation scenario studies with PWRs, FRs and moderated targets

    International Nuclear Information System (INIS)

    Grouiller, J.P.; Pillon, S.; Saint Jean, C. de; Varaine, F.; Leyval, L.; Vambenepe, G.; Carlier, B.

    2003-01-01

    Using current technologies, we have demonstrated in this study that it is theoretically possible to obtain different minor actinide transmutation scenarios with a significant gain on the waste radiotoxicity inventory. The handling of objects with Am+Cm entails the significant increase of penetrating radiation sources (neutron and γ) whatever mixed scenario is envisioned; the PWR and FR scenario involving the recycling of Am + Cm in the form of targets results in the lowest flow. In the light of these outcomes, the detailed studies has allowed to design a target sub assembly with a high fission rate (90%) and define a drawing up of reprocessing diagram with the plant head, the minor actinide separation processes (PUREX, DIAMEX and SANEX). Some technological difficulties appear in manipulating curium, principally in manufacturing where the wet process ('sol-gel') is not acquired for (Am+Cm). (author)

  4. Emerging applications of advanced fuels for energy generation and transmutation. Overview of IAEA activities

    International Nuclear Information System (INIS)

    Pong Eil Juhn; Arkhipov, V.

    1996-01-01

    Nuclear power generation is an established part of the world's electricity mix. However, the highly radioactive waste generated during power production is of great concern of public perception of nuclear energy. In order for nuclear power to realize its full potential as a major energy source for the entire world, there must be a safe and effective way to deal with this waste. Therefore, science must come to the rescue in the form of new, more effective technology aimed at reducing the amount of long-lived radioactive waste and eliminating nuclear weapons' grade material through transmutation of these isotopes in fission reactors or accelerators. In the framework of IAEA activities on the use of this new technologies the Agency has periodically review and assess the current status of the new fuel cycles, its applications worldwide, its economic benefits, and its perceived advantages vis-a-vis other nuclear fuel cycles. (author)

  5. Study on partitioning and transmutation (P and T) of high-level waste. Status of R and D. Final report

    International Nuclear Information System (INIS)

    Merk, Bruno; Glivici-Cotruta, Varvara

    2014-01-01

    The main project, where this sub project contributed to, has been structured into two modules: module A (funded by the federal ministry of economics, managed by KIT) and module B (funded by the federal ministry of education and research, managed by acatech). Partners in module A were DBE TECHNOLOGY GmbH, the Gesellschaft fuer Anlagen- und Reaktorsicherheit mbH (GRS), the Helmholtz-Zentrum Dresden-Rossendorf (HZDR), the Karlsruher Institute of Technology (KIT) and the Rheinisch-Westfaelische Technische Hochschule (RWTH) Aachen, in co-operation with the Forschungszentrum Juelich (FZJ). Modul B has been executed by the Zentrum fuer Interdisziplinaere Risiko- und Innovationsforschung der Universitaet Stuttgart (ZIRIUS). The overall coordination has been carried out by the Deutsche Akademie der Technikwissenschaften (acatech). The social implications have been evaluated in module B based on the analysis of the scientific and technological aspects in module A. Recommendations for communication and actions to be taken for the future positioning of P and T have been developed. In the project part, coordinated by HZDR - status of R and D - an overview on the whole topic P and T is given. The topic is opened by a short description of reactor systems possible for transmutation. In the following the R and D status of separation technologies, safety technology, accelerator technology, liquid metal technology, spallation target development, transmutation fuel and structural material development, as well as waste conditioning is described. The topic is completed by the specifics of transmutation systems, the basic physics and core designs, the reactor physics, the simulation tools and the development of Safety Approaches. Additionally, the status of existing irradiation facilities with fast neutron spectrum is described. Based on the current R and D status, the research and technology gaps in the topics: separation and conditioning, accelerator and spallation target, and reactor

  6. State-of-art technology of fuels for burning minor actinides. An OECD/NEA study

    International Nuclear Information System (INIS)

    Ogawa, Toru; Konings, R.J.M.; Pillon, S.; Schram, R.P.C.; Verwerft, M.; Wallenius, J.

    2005-01-01

    At OECD/NEA, Working Party on Scientific Issues in Partitioning and Transmutation was formed for 2000-2004, which studied the status and trends of scientific issues in Partitioning and Transmutation (P and T). The study included the scientific and technical issues of fuels and materials, which are related to dedicated systems for transmutation. This paper summarizes the state-of-art technology of the fuels for burning minor actinides (neptunium, americium and curium). (author)

  7. A study on transmutation of LLFPs using various types of HTGRs

    Energy Technology Data Exchange (ETDEWEB)

    Kora, Kazuki, E-mail: kora_k@nucl.kyushu-u.ac.jp [Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka-shi, Fukuoka-ken (Japan); Nakaya, Hiroyuki; Matsuura, Hideaki [Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka-shi, Fukuoka-ken (Japan); Goto, Minoru; Nakagawa, Shigeaki; Shimakawa, Satoshi [Japan Atomic Energy Agency, 4002 Narita-cho, Oarai-machi, Higashiibaraki-gun, Ibaraki, Ibaraki-ken (Japan)

    2016-04-15

    Highlights: • We propose utilization of a variety of HTGRs for LLFP transmutation and storage. • The transmutation performance of four types of HTGRs was examined and compared. • Some types of HTGRs show preferable characteristics for LLFP transmutation. - Abstract: In order to investigate the potential of high temperature gas-cooled reactors (HTGRs) for transmutation of long-lived fission products (LLFPs), numerical simulation of four types of HTGRs were carried out. In addition to the gas-turbine high temperature reactor system “GTHTR300”, which is the subject of our previous research, a small modular HTGR plant “HTR50S” and two types of plutonium burner HTGRs “Clean Burn with MA” and “Clean Burn without MA” were considered. The simulation results show that an early realization of LLFP transmutation using a compact HTGR may be possible since the HTR50S can transmute fair amount of LLFPs for its thermal output. The Clean Burn with MA can transmute a limited amount of LLFPs. However, an efficient LLFP transmutation using the Clean Burn without MA seems to be convincing as it is able to achieve very high burn-ups and produce LLFP transmutation more than GTHTR300. Based on these results, we propose utilization of variety of HTGRs for LLFP transmutation and storage.

  8. Designing a gas cooled ADS for enhanced waste transmutation. The PDS-XADS European Project contribution

    International Nuclear Information System (INIS)

    Rimpault, G.; Sunderland, R.; Mueller, A.C.

    2006-01-01

    objective of accelerator driven systems (ADS) is for nuclear waste transmutation in order to reduce the radio-toxicity of the spent fuel in final storage disposal. Achieving this goal requires other technologies associated with an advanced fuel cycle with uranium-free fuel heavily loaded with minor actinides and associated fabrication and reprocessing capabilities. The primary or reference option for the advanced fuels for the ADS is based on the (Pu,MA)-O 2 material: a composite with Mo92 (CERMET) or MgO (CERCER). The size of the plant for a given fuel technology is of significant importance to achieve net MA consumption. The larger the size, the smaller amount of Plutonium is needed to achieve the requested reactivity level, and the greater amount of Minor Actinide (MA) can be provided and will, in the end, be burnt. A good compromise for a Helium cooled ADT core with roughened steel pin cladding leads to a volume power of 44 W/cm 3 and an installed power of 400 MWth. The design of this core takes advantage of previous studies by keeping the pressure drop over the core height below 0.5 bar hence preserving the decay removal capabilities and decreasing the pin diameter (7.71 mm) in order to keep the linear power below 152 W/cm. The 6. EUROTRANS Integrated Project will be targeting an European Transmutation Demonstrator (ETD) primarily with lead coolant but also with helium coolant (ETD/EFIT of several hundred MWth, EFIT for European Facility on Industrial scale Transmuter) able to transmute Nuclear Waste on a industrial scale with the full set of constraints taken into account. (authors)

  9. Assessment of Partitioning Processes for Transmutation of Actinides

    International Nuclear Information System (INIS)

    2010-04-01

    To obtain public acceptance of future nuclear fuel cycle technology, new and innovative concepts must overcome the present concerns with respect to both environmental compliance and proliferation of fissile materials. Both these concerns can be addressed through the multiple recycling of all transuranic elements (TRUs) in fast neutron reactor. This is only possible through a process known as partitioning and transmutation scheme (P and T) as this scheme is expected to reduce the long term radio-toxicity as well as the radiogenic heat production of the nuclear waste. Proliferation resistance of separated plutonium could further be enhanced by mixing with self-generated minor actinides. In addition, P and T scheme is expected to extend the nuclear fuel resources on earth about 100 times because of the recycle and reuse of fissile actinides. Several Member States are actively pursuing the research in the field of P and T and consequently several IAEA publications have addressed this topic. The present coordinated research project (CRP) focuses on the potentials in minimizing the residual TRU inventories of the discharged nuclear waste and in enhancing the proliferation resistance of the future civil nuclear fuel cycle. Partitioning approaches can be grouped into aqueous- (hydrometallurgical) and pyroprocesses. Several aqueous processes based on sequential separation of actinides from spent nuclear fuel have been developed and tested at pilot plant scale. In view of the proliferation resistance of the intermediate and final products of a P and T scheme, a group separation of all actinides together is preferable. The present CRP has gathered experts from different organisations and institutes actively involved in developing P and T scheme as mentioned in the list of contributors and also taken into consideration the studies underway in France and the UK. The scientific objectives of the CRP are: To minimize the environmental impact of actinides in the waste stream; To

  10. Partitioning and Transmutation - Annual Report 2010 and 2011

    Energy Technology Data Exchange (ETDEWEB)

    Aneheim, Emma; Ekberg, Christian; Fermvik, Anna; Foreman, Mark; Littley, Alexander; Loefstroem-Engdahl, Elin; Mabile, Nathalie; Skarnemark, Gunnar [Nuclear Chemistry, Dept. of Chemical and Biological Engineering, Chalmers Univ. of Technology, Goeteborg (Sweden)

    2013-01-15

    The long-lived elements in the spent nuclear fuels are mostly actinides, some fission products ({sup 79}Se, {sup 87}Rb, {sup 99}Tc, {sup 107}Pd, {sup 126}Sn, {sup 129}I and {sup 135}Cs) and activation products ({sup 14}C, {sup 36}Cl, {sup 59}Ni, {sup 93}Zr, {sup 94}Nb). To be able to destroy the long-lived elements in a transmutation process they must be separated from the rest of the spent nuclear fuel for different reasons. One being high neutron capture cross-sections for some elements, like the lanthanides. Other reasons may be the unintentional production of other long lived isotopes. The most difficult separations to make are those between different actinides but also between trivalent actinides and lanthanides, due to their relatively similar chemical properties. Solvent extraction is an efficient and well-known method that makes it possible to have separation factors that fulfil the highly set demands on purity of the separated phases and on small losses. In the case of a fuel with a higher burnup or possible future fuels, pyro processing may be of higher advantage due to the limited risk of criticality during the process. Chalmers University of Technology is involved in research regarding the separation of actinides and lanthanides and between the actinides themselves as a partner in several European frame work programmes. These projects have ranged from NEWPART in the 4th framework via PARTNEW and EUROPART to ACSEPT in the present 7th programme. The aims of the projects have now shifted from basic understanding to more applied research with focus on process development. One recycling route, called DIAMEX (DIAmide EXtracton) / SANEX (Selective ActiNide EXtraction) is now considered to be working on a basic scale and has been proven in hot tests and focus has moved on to more process oriented areas. However, since further investigations on basic understanding of the chemical behavior are required, we have our main focus on the chemical processes and

  11. Transmutation of minor actinides in a spherical torus tokamak fusion reactor, FDTR

    International Nuclear Information System (INIS)

    Feng, K.M.; Zhang, G.S.; Deng, M.G.

    2003-01-01

    In this paper, a concept for the transmutation of minor actinide (MA) nuclear wastes based on a spherical torus (ST) tokamak reactor, FDTR, is put forward. A set of plasma parameters suitable for the transmutation blanket was chosen. The 2-D neutron transport code TWODANT, the 3-D Monte Carlo code MCNP/4B, the 1-D neutron transport and burn-up calculation code BISON3.0 and their associated data libraries were used to calculate the transmutation rate, the energy multiplication factor and the tritium breeding ratio of the transmutation blanket. The calculation results for the system parameters and the actinide series isotopes for different operation times are presented. The engineering feasibility of the center-post (CP) of FDTR has been investigated and the results are also given. A preliminary neutronics calculation based on an ST transmutation blanket shows that the proposed system has a high transmutation capability for MA wastes. (author)

  12. Capabilities of a DT tokamak fusion neutron source for driving a spent nuclear fuel transmutation reactor

    International Nuclear Information System (INIS)

    Stacey, W.M.

    2001-01-01

    The capabilities of a DT fusion neutron source for driving a spent nuclear fuel transmutation reactor are characterized by identifying limits on transmutation rates that would be imposed by tokamak physics and engineering limitations on fusion neutron source performance. The need for spent nuclear fuel transmutation and the need for a neutron source to drive subcritical fission transmutation reactors are reviewed. The likely parameter ranges for tokamak neutron sources that could produce an interesting transmutation rate of 100s to 1000s of kg/FPY (where FPY stands for full power year) are identified (P fus ∼ 10-100 MW, β N ∼ 2-3, Q p ∼ 2-5, R ∼ 3-5 m, I ∼ 6-10 MA). The electrical and thermal power characteristics of transmutation reactors driven by fusion and accelerator spallation neutron sources are compared. The status of fusion development vis-a-vis a neutron source is reviewed. (author)

  13. A Study on thermal-hydraulic characteristics of the coolant materials for the transmutation reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Chang Hyun; You, Young Woo; Cho, Jae Seon; Kim, Ju Youl; Kim, Do Hyoung; Kim, Yoon Ik; Yang, Hui Chang [Seoul National University, Taejon (Korea)

    1998-03-01

    The objective of this study is to provide the direction of transmutation reactor design in terms of thermal hydraulics especially through the analysis of thermal hydraulic characteristics of various candidate materials for the transmutation reactor coolant. In this study, the characteristics of coolant materials used in current nuclear power plants and candidate materials for transmutation reactor are analyzed and compared. To evaluate the thermal hydraulic characteristics, the preliminary thermal-hydraulic calculation is performed for the candidate coolant materials of transmutation reactor. An analysis of thermal-hydraulic characteristics of transmutation reactor. An analysis of thermal-hydraulic characteristics of Sodium, Lead, Lead-Bismuth, and Lead-Lithium among the liquid metals considered as the coolant of transmutation reactor is performed by using computational fluid dynamics code FLUENT, and SIMPLER algorithm. (author). 50 refs., 40 figs., 30 tabs.

  14. Development of neutron-transmutation-doped germanium bolometer material

    International Nuclear Information System (INIS)

    Palaio, N.P.

    1983-08-01

    The behavior of lattice defects generated as a result of the neutron-transmutation-doping of germanium was studied as a function of annealing conditions using deep level transient spectroscopy (DLTS) and mobility measurements. DLTS and variable temperature Hall effect were also used to measure the activation of dopant impurities formed during the transmutation process. In additioon, a semi-automated method of attaching wires on to small chips of germanium ( 3 ) for the fabrication of infrared detecting bolometers was developed. Finally, several different types of junction field effect transistors were tested for noise at room and low temperature (approx. 80 K) in order to find the optimum device available for first stage electronics in the bolometer signal amplification circuit

  15. System and safety studies of accelerator driven transmutation systems

    International Nuclear Information System (INIS)

    Gudowski, W.; Wallenius, J.; Tucek, K.; Eriksson, Marcus; Carlsson, Johan; Seltborg, P.; Cetnar, J.

    2001-05-01

    The research on safety of Accelerator-Driven Transmutation Systems (ADS) at the department has been focused on: a) ADS core design and development of advanced nuclear fuel optimised for high transmutation rates and good safety features; b) analysis of ADS-dynamics c) computer code and nuclear data development relevant for simulation and optimization of ADS; d) participation in ADS experiments including 1 MW spallation target manufacturing, subcritical experiments MUSE (CEA-Cadarache). Moreover, during the reporting period the EU-project 'IABAT', co-ordinated by the department has been finished and 4 other projects have been initiated in the frame of the 5th European Framework Programme. Most of the research topics reported in this paper are referred to appendices, which have been published in the open literature. The topics, which are not yet published, are described here in more details

  16. System and safety studies of accelerator driven transmutation systems

    Energy Technology Data Exchange (ETDEWEB)

    Gudowski, W.; Wallenius, J.; Tucek, K.; Eriksson, Marcus; Carlsson, Johan; Seltborg, P.; Cetnar, J. [Royal Inst. of Technology, Stockholm (Sweden). Dept. of Nuclear and Reactor Physics

    2001-05-01

    The research on safety of Accelerator-Driven Transmutation Systems (ADS) at the department has been focused on: a) ADS core design and development of advanced nuclear fuel optimised for high transmutation rates and good safety features; b) analysis of ADS-dynamics c) computer code and nuclear data development relevant for simulation and optimization of ADS; d) participation in ADS experiments including 1 MW spallation target manufacturing, subcritical experiments MUSE (CEA-Cadarache). Moreover, during the reporting period the EU-project 'IABAT', co-ordinated by the department has been finished and 4 other projects have been initiated in the frame of the 5th European Framework Programme. Most of the research topics reported in this paper are referred to appendices, which have been published in the open literature. The topics, which are not yet published, are described here in more details.

  17. A Cost Benefit Analysis of an Accelerator Driven Transmutation System

    International Nuclear Information System (INIS)

    Westlen, D.; Gudowski, W.; Wallenius, J.; Tucek, K.

    2002-01-01

    This paper estimates the economical costs and benefits associated with a nuclear waste transmutation strategy. An 800 MWth, fast neutron spectrum, subcritical core design has been used in the study (the so called Sing-Sing Core). Three different fuel cycle scenarios have been compared. The main purpose of the paper has been to identify the cost drivers of a partitioning and transmutation strategy, and to estimate the cost of electricity generated in a nuclear park with operating accelerator driven systems. It has been found that directing all transuranic discharges from spent light water reactor (LWR) uranium oxide (UOX) fuel to accelerator driven systems leads to a cost increase for nuclear power of 50±15%, while introduction of a mixed oxide (MOX) burning step in the LWRs diminishes the cost penalty to 35±10%. (authors)

  18. Neutronics design for a spherical tokamak fusion-transmutation reactor

    International Nuclear Information System (INIS)

    Deng Meigen; Feng Kaiming; Yang Bangchao

    2002-01-01

    Based on studies of the spherical tokamak fusion reactors, a concept of fusion-transmutation reactor is put forward. By using the one-dimension transport and burn-up code BISON3.0 to process optimized design, a set of plasma parameters and blanket configuration suitable for the transmutation of MA (Minor Actinides) nuclear waste is selected. Based on the one-dimension calculation, two-dimension calculation has been carried out by using two-dimension neutronics code TWODANT. Combined with the neutron flux given by TWODANT calculation, burn-up calculation has been processed by using the one-dimension radioactivity calculation code FDKR and some useful and reasonable results are obtained

  19. Code development and analyses within the area of transmutation and safety

    International Nuclear Information System (INIS)

    Maschek, W.

    2002-01-01

    A strong code development is going on to meet various demands resulting from the development of dedicated reactors for transmutation and incineration. Code development is concerned with safety codes and general codes needed for assessing scenarios and transmutation strategies. Analyses concentrate on various ADS systems with solid and liquid molten salt fuels. Analyses deal with ADS Demo Plant (5th FP EU) and transmuters with advanced fuels

  20. Some basic advantages of accelerator-driven transmutation of minor actinides and iodine-129

    Energy Technology Data Exchange (ETDEWEB)

    Shmelev, A.N.; Apse, V.A.; Kulikov, G.G. [Moscow Engineering Physics Institute (Russian Federation)

    1995-10-01

    The blanket of accelerator-driven facility designed for I-129 transmutation doesn`t contain fissile and fertile materials. So the overheating of iodine compounds transmuted is practically excluded. The efficacy of I-129 transmutation is estimated. Curium being accumulated in nuclear reactors can be incinerated in blanket of accelerator-driven facility. The deep depletion of curium diluted with inert material can be achieved.

  1. Actinide partitioning and transmutation program progress report, October 1, 1976--March 31, 1977

    International Nuclear Information System (INIS)

    Blomeke, J.O.; Tedder, D.W.

    1977-01-01

    Experimental work on the 16 tasks comprising the Actinide Partitioning and Transmutation Program was initiated at the various sites. This work included the development of conceptual material balance flowsheets which define integrated waste systems supporting an LWR fuel reprocessing plant and a mixed (U-Pu) oxide fuel refabrication plant. In addition, waste subsystems were defined for experimental evaluation. Computer analysis of partitioning-transmutation, utilizing an LMFBR for transmutation, was completed for both constant and variable waste actinide generation rates

  2. Analytical approach to the evaluation of nuclide transmutations

    International Nuclear Information System (INIS)

    Vukadin, Z.; Osmokrovic, P.

    1995-01-01

    Analytical approach to the evaluation of nuclide concentrations in a transmutation chain is presented. Non singular Bateman coefficients and depletion functions are used to overcome numerical difficulties when applying well-known Bateman solution of a simple radioactive decay. Method enables evaluation of complete decay chains without elimination of short lived radionuclides. It is efficient and accurate. Practical application of the method is demonstrated by computing the neptunium series inventory in used Candu TM fuel. (author)

  3. Actinide partitioning-transmutation program final report. I. Overall assessment

    International Nuclear Information System (INIS)

    Croff, A.G.; Blomeke, J.O.; Finney, B.C.

    1980-06-01

    This report is concerned with an overall assessment of the feasibility of and incentives for partitioning (recovering) long-lived nuclides from fuel reprocessing and fuel refabrication plant radioactive wastes and transmuting them to shorter-lived or stable nuclides by neutron irradiation. The principal class of nuclides considered is the actinides, although a brief analysis is given of the partitioning and transmutation (P-T) of 99 Tc and 129 I. The results obtained in this program permit us to make a comparison of the impacts of waste management with and without actinide recovery and transmutation. Three major conclusions concerning technical feasibility can be drawn from the assessment: (1) actinide P-T is feasible, subject to the acceptability of fuels containing recycle actinides; (2) technetium P-T is feasible if satisfactory partitioning processes can be developed and satisfactory fuels identified (no studies have been made in this area); and (3) iodine P-T is marginally feasible at best because of the low transmutation rates, the high volatility, and the corrosiveness of iodine and iodine compounds. It was concluded on the basis of a very conservative repository risk analysis that there are no safety or cost incentives for actinide P-T. In fact, if nonradiological risks are included, the short-term risks of P-T exceed the long-term benefits integrated over a period of 1 million years. Incentives for technetium and iodine P-T exist only if extremely conservative long-term risk analyses are used. Further RD and D in support of P-T is not warranted

  4. Physics and safety of transmutation systems. A status report

    International Nuclear Information System (INIS)

    2006-01-01

    The safe and efficient management of spent fuel from the operation of commercial nuclear power plants is an important issue. Worldwide, more than 250 000 tons of spent fuel from currently operating reactors will require disposal. These numbers account for only high-level radioactive waste generated by present-day power reactors. Nearly all issues related to risks to future generations arising from the long-term disposal of such spent nuclear fuel is attributable to only about 1% of its content. This 1% is made up primarily of plutonium, neptunium, americium and curium (called transuranic elements) and the long-lived isotopes of iodine and technetium.When transuranics are removed from discharged fuel destined for disposal, the toxic nature of the spent fuel drops below that of natural uranium ore (that which was originally mined for the nuclear fuel) within a period of several hundred to a thousand years. This significantly reduces the burden on geological repositories and the problem of addressing the remaining long-term residues can thus de done in controlled environments having timescales of centuries rather than millennia stretching beyond 10 000 years. Transmutation is one of the means being explored to address the disposal of transuranic elements. To achieve this, advanced reactors systems, appropriate fuels, separation techniques and associated fuel cycle strategies are required. This status report begins by providing a clear definition of partitioning and transmutation (P and T), and then describes the state of the art concerning the challenges facing the implementation of P and T, scenario studies and specific issues related to accelerator-driven systems (ADS) dynamics and safety, long-lived fission product transmutation and the impact of nuclear data uncertainty on transmutation system design. The report will be of particular interest to nuclear scientists working on P and T issues as well as advanced fuel cycles in general. (author)

  5. Diffusion of transmutation isotope in YBaCuO ceramics

    International Nuclear Information System (INIS)

    Malkovich, R.Sh.

    2005-01-01

    The diffusion of a transmutation isotope generated in YBaCuO ceramics irradiated by high-energy charged particles is mathematically analyzed. The model is based on the assumption that copper isotope atoms created in subsurface layers of ceramic grains segregate at the grain boundaries in the course of subsequent annealing and then rapidly diffuse via intergranular regions in depth of the material and penetrate into the bulk of grains [ru

  6. Research activities related to accelerator-based transmutation at PSI

    International Nuclear Information System (INIS)

    Wydler, P.

    1993-01-01

    Transmutation of actinides and fission products using reactors and other types of nuclear systems may play a role in future waste management schemes. Possible advantages of separation and transmutation are: volume reductions, the re-use of materials, the avoidance of a cumulative risk, and limiting the duration of the risk. With its experience in reactor physics, accelerator-based physics, and the development of the SINQ spallation neutron source, PSI is in a good position to perform basic theoretical and experimental studies relating to the accelerator-based transmutation of actinides. Theoretical studies at PSI have been concentrated, so far, on systems in which protons are used directly to transmute actinides. With such systems and appropriate recycling schemes, the studies showed that considerable reduction factors for long-term toxicity can be obtained. With the aim of solving some specific data and method problems related to these types of systems, a programme of differential and integral measurements at the PSI ring accelerator has been initiated. In a first phase of this programme, thin samples of actinides will be irradiated with 590 MeV protons, using an existing irradiation facility. The generated spallation and fission products will be analysed using different experimental techniques, and the results will be compared with theoretical predictions based on high-energy nucleon-meson transport calculations. The principal motivation for these experiments is to resolve discrepancies observed between calculations based on different high-energy fission models. In a second phase of the programme, it is proposed to study the neutronic behaviour of multiplying target-blanket assemblies with the help of zero-power experiments set up at a separate, dedicated beam line of the accelerator. (author) 3 figs., 2 tabs., 8 refs

  7. Transmutation of Americium in Light and Heavy Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hyland, B.; Dyck, G.R.; Edwards, G.W.R. [Chalk River Laboratories, Atomic Energy of Canada Limited (Canada); Ellis, R.J.; Gehin, J.C. [Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee (United States); Maldonado, G.I. [University of Tennessee (Knoxville)/ORNL, Tennessee (United States)

    2009-06-15

    There is interest worldwide in reducing the burden on geological nuclear fuel disposal sites. In most disposal scenarios the decay heat loading of the surrounding rock limits the capacity of these sites. On the long term, this decay heat is generated primarily by actinides, and a major contributor 100 to 1000 years after discharge from the reactor is {sup 241}Am. One possible approach to reducing the decay-heat burden is to reprocess spent reactor fuel and use thermal spectrum reactors to 'burn' the Am nuclides. The viability of this approach is dependent upon the detailed changes in chemical and isotopic composition of actinide-bearing fuels after irradiation in thermal reactor spectra. The currently available thermal spectrum reactor options include light water-reactors (LWRs) and heavy-water reactors (HWRs) such as the CANDU{sup R} designs. In addition, as a result of the recycle of spent LWR fuel, there would be a considerable amount of potential recycled uranium (RU). One proposed solution for the recycled uranium is to use it as fuel in Candu reactors. This paper investigates the possibilities of transmuting americium in 'spiked' bundles in pressurized water reactors (PWRs) and in boiling water reactors (BWRs). Transmutation of Am in Candu reactors is also examined. One scenario studies a full core fuelled with homogeneous bundles of Am mixed with recycled uranium, while a second scenario places Am in an inert matrix in target channels in a Candu reactor, with the rest of the reactor fuelled with RU. A comparison of the transmutation in LWRs and HWRs is made, in terms of the fraction of Am that is transmuted and the impact on the decay heat of the spent nuclear fuel. CANDU{sup R} is a registered trademark of Atomic Energy of Canada Limited (AECL). (authors)

  8. High intensity proton linear accelerator development for nuclear waste transmutation

    International Nuclear Information System (INIS)

    Mizumoto, M.; Hasegawa, K.; Oguri, H.; Ito, N.; Kusano, J.; Okumura, Y.; Murata, H.; Sakogawa, K.

    1997-01-01

    A high-intensity proton linear accelerator with an energy of 1.5 GeV and an average current of 10 mA has been proposed for various engineering tests for the transmutation system of nuclear waste by JAERI. The conceptual and optimization studies for this accelerator performed for a proper choice of operating frequency, high b structure, mechanical engineering considerations and RF source aspects are briefly described

  9. An optimization methodology for heterogeneous minor actinides transmutation

    Science.gov (United States)

    Kooyman, Timothée; Buiron, Laurent; Rimpault, Gérald

    2018-04-01

    In the case of a closed fuel cycle, minor actinides transmutation can lead to a strong reduction in spent fuel radiotoxicity and decay heat. In the heterogeneous approach, minor actinides are loaded in dedicated targets located at the core periphery so that long-lived minor actinides undergo fission and are turned in shorter-lived fission products. However, such targets require a specific design process due to high helium production in the fuel, high flux gradient at the core periphery and low power production. Additionally, the targets are generally manufactured with a high content in minor actinides in order to compensate for the low flux level at the core periphery. This leads to negative impacts on the fuel cycle in terms of neutron source and decay heat of the irradiated targets, which penalize their handling and reprocessing. In this paper, a simplified methodology for the design of targets is coupled with a method for the optimization of transmutation which takes into account both transmutation performances and fuel cycle impacts. The uncertainties and performances of this methodology are evaluated and shown to be sufficient to carry out scoping studies. An illustration is then made by considering the use of moderating material in the targets, which has a positive impact on the minor actinides consumption but a negative impact both on fuel cycle constraints (higher decay heat and neutron) and on assembly design (higher helium production and lower fuel volume fraction). It is shown that the use of moderating material is an optimal solution of the transmutation problem with regards to consumption and fuel cycle impacts, even when taking geometrical design considerations into account.

  10. Nudatra: nuclear data for transmutation in IP-Eurotrans

    International Nuclear Information System (INIS)

    Gonzalez, E.M.; Koning, A.; Leray, S.; Plompen, A.; Sanz, J.

    2007-01-01

    The objective of NUDATRA, Domain 5 of the EU Integrated Project EUROTRANS (FI6W-CT-2004- 516520), is to improve and validate the nuclear data and simulation tools required for the development and optimisation of nuclear waste transmutation, ADS dedicated transmutation systems and the associated fuel cycle. Activities are essentially aimed at supplementing the evaluated nuclear data libraries and improving the reaction models for materials in transmutation fuels, coolants, spallation targets, internal structures, and reactor and accelerator shielding, relevant for the design and optimisation of the ETD and XT-ADS. These activities are distributed over four Work Packages: Sensitivity Analysis and Validation of Nuclear Data and Simulation Tools; Low- and Intermediate-energy Nuclear Data Measurements; Nuclear Data Libraries Evaluation and Low-intermediate Energy Models; and High-energy Experiments and Modelling.The main accomplishments expected from NUDATRA are: 1) new measurements and evaluations of Pb-Bi cross-sections, i.e. inelastic, (n,xn) and isomer branching ratios (Po production); 2) new measurements and evaluations for minor actinides particularly the capture in 243 Am and fission on 244 Cm; 3) improvement of TALYS as an evaluation tool and as an a priori model for the estimation of low- and intermediate-energy reaction cross-section; 4) high-energy model improvement based on measurements, particularly for the prediction of the spallation products, and gas (H, He) production cross-sections; 5) sensitivity and uncertainty analysis of ETD fuel cycle and related covariance issues. (authors)

  11. Chemical separations schemes for partitioning and transmutation systems

    International Nuclear Information System (INIS)

    Laidler, J.

    2002-01-01

    In the initial phase of the U.S. Accelerator Transmutation of Waste (ATW) program, a single-tier system was foreseen in which the transuranics and long-lived fission products (specifically, 99 Tc and 129 I) recovered from spent LWR oxide fuel would be sent directly to an accelerator-driven transmuter reactor [1]. Because the quantity of fuel to be processed annually was so large (almost 1,500 tons per year), an aqueous solvent extraction process was chosen for LWR fuel processing. Without the need to separate transuranics from one another for feed to the transmuter, it became appropriate to develop an advanced aqueous separations method that became known as UREX. The UREX process employs an added reagent (acetohydroxamic acid) that suppresses the extraction of plutonium and promotes the extraction of technetium together with uranium. Technetium can then be efficiently removed from the uranium; the recovered uranium, being highly decontaminated, can be disposed of as a low-level waste or stored in an unshielded facility for future use. Plutonium and the other transuranic elements, plus the remaining fission products, are directed to the liquid waste stream. This stream is calcined, converting the transuranics and fission products to their oxides. The resulting oxide powder, now representing only about four percent of the original mass of the spent fuel, is reduced to metallic form by means of a pyrometallurgical process. Subsequently, the transuranics are separated from the fission products in another pyro-metallurgical step involving molten salt electrorefining

  12. Spatial heterogeneity of tungsten transmutation in a fusion device

    Science.gov (United States)

    Gilbert, M. R.; Sublet, J.-Ch.; Dudarev, S. L.

    2017-04-01

    Accurately quantifying the transmutation rate of tungsten (W) under neutron irradiation is a necessary requirement in the assessment of its performance as an armour material in a fusion power plant. The usual approach of calculating average responses, assuming large, homogenised material volumes, is insufficient to capture the full complexity of the transmutation picture in the context of a realistic fusion power plant design, particularly for rhenium (Re) production from W. Combined neutron transport and inventory simulations for representative spatially heterogeneous high-resolution models of a fusion power plant show that the production rate of Re is strongly influenced by the surrounding local spatial environment. Localised variation in neutron moderation (slowing down) due to structural steel and coolant, particularly water, can dramatically increase Re production because of the huge cross sections of giant resolved resonances in the neutron-capture reaction of 186W at low neutron energies. Calculations using cross section data corrected for temperature (Doppler) effects suggest that temperature may have a relatively lesser influence on transmutation rates.

  13. Transmutation of minor actinide using BWR fueled mixed oxide

    International Nuclear Information System (INIS)

    Susilo, Jati

    2000-01-01

    Nuclear spent fuel recycle has a strategic importance in the aspect of nuclear fuel economy and prevention of its spread-out. One among other application of recycle is to produce mixed oxide fuel (Mo) namely mixed Plutonium and uranium oxide. As for decreasing the burden of nuclear high level waste (HLW) treatment, transmutation of minor actinide (MA) that has very long half life will be carried out by conversion technique in nuclear reactor. The purpose of this study was to know influence of transition fuel cell regarding the percent weight of transmutation MA in the BWR fueled MOX. Calculation of cell BWR was used SRAC computer code, with assume that the reactor in equilibrium. The percent weight of transmutation MA to be optimum by increasing the discharge burn-up of nuclear fuel, raising ratio of moderator to fuel volume (Vm/Vf), and loading MA with percent weight about 3%-6% and also reducing amount of percent weight Pu in MOX fuel. For mixed fuel standard reactor, reactivity value were obtained between about -50pcm ∼ -230pcm for void coefficient and -1.8pcm ∼ -2.6pcm for fuel temperature coefficient

  14. Multiple Tier Fuel Cycle Studies for Waste Transmutation

    International Nuclear Information System (INIS)

    Hill, R.N.; Taiwo, T.A.; Stillman, J.A.; Graziano, D.J.; Bennett, D.R.; Trellue, H.; Todosow, M.; Halsey, W.G.; Baxter, A.

    2002-01-01

    As part of the U.S. Department of Energy Advanced Accelerator Applications Program, a systems study was conducted to evaluate the transmutation performance of advanced fuel cycle strategies. Three primary fuel cycle strategies were evaluated: dual-tier systems with plutonium separation, dual-tier systems without plutonium separation, and single-tier systems without plutonium separation. For each case, the system mass flow and TRU consumption were evaluated in detail. Furthermore, the loss of materials in fuel processing was tracked including the generation of new waste streams. Based on these results, the system performance was evaluated with respect to several key transmutation parameters including TRU inventory reduction, radiotoxicity, and support ratio. The importance of clean fuel processing (∼0.1% losses) and inclusion of a final tier fast spectrum system are demonstrated. With these two features, all scenarios capably reduce the TRU and plutonium waste content, significantly reducing the radiotoxicity; however, a significant infrastructure (at least 1/10 the total nuclear capacity) is required for the dedicated transmutation system. (authors)

  15. Multiple tier fuel cycle studies for waste transmutation

    International Nuclear Information System (INIS)

    Hill, R.N.; Taiwo, T.A.; Stillman, J.A.; Graziano, D.J.; Bennett, D.R.; Trellue, H.; Todosow, M.; Halsey, W.G.; Baxter, A.

    2002-01-01

    As part of the U.S. Department of Energy Advanced Accelerator Applications Program, a systems study was conducted to evaluate the transmutation performance of advanced fuel cycle strategies. Three primary fuel cycle strategies were evaluated: dual-tier systems with plutonium separation, dual-tier systems without plutonium separation, and single-tier systems without plutonium separation. For each case, the system mass flow and TRU consumption were evaluated in detail. Furthermore, the loss of materials in fuel processing was tracked including the generation of new waste streams. Based on these results, the system performance was evaluated with respect to several key transmutation parameters including TRU inventory reduction, radiotoxicity, and support ratio. The importance of clean fuel processing (∼0.1% losses) and inclusion of a final tier fast spectrum system are demonstrated. With these two features, all scenarios capably reduce the TRU and plutonium waste content, significantly reducing the radiotoxicity; however, a significant infrastructure (at least 1/10 the total nuclear capacity) is required for the dedicated transmutation system

  16. The status of nuclear data for transmutation calculations

    International Nuclear Information System (INIS)

    Wilson, W.B.; England, T.R.; MacFarlane, R.E.; Muir, D.W.; Young, P.G.

    1995-01-01

    At this point, the accurate description of transmutation products in a radiation environment is more a nuclear data problem than a code development effort. We have used versions of the CINDER code for over three decades to describe the transmutation of nuclear reactor fuels in radiation environments. The need for the accurate description of reactor neutron-absorption, decay-power, and decay-spectra properties have driven many AEC, ERDA, and DOE supported nuclear data development efforts in this period. The level of cross-section, decay, and fission-yield data has evolved from rudimentary to a comprehensive ENDF/B-VI library permitting great precision in reactor calculations. The precision of the data supporting reactor simulations provides a sturdy foundation for the data base required for the wide range of transmutation problems currently studied. However, such reactor problems are typically limited to neutron energies below 10 MeV or so; reaction and decay data are required for actinides of, say, 90 ≤ Z ≤ 96 neutron-rich fission products of 22 ≤ Z ≤ 72. The expansion into reactor structural materials and fusion systems extends these ranges in energy and Z somewhat. The library of nuclear data, constantly growing in breadth and quality with international cooperation, is now described in the following table

  17. Actinides transmutation - a comparison of results for PWR benchmark

    International Nuclear Information System (INIS)

    Claro, Luiz H.

    2009-01-01

    The physical aspects involved in the Partitioning and Transmutation (P and T) of minor actinides (MA) and fission products (FP) generated by reactors PWR are of great interest in the nuclear industry. Besides these the reduction in the storage of radioactive wastes are related with the acceptability of the nuclear electric power. From the several concepts for partitioning and transmutation suggested in literature, one of them involves PWR reactors to burn the fuel containing plutonium and minor actinides reprocessed of UO 2 used in previous stages. In this work are presented the results of the calculations of a benchmark in P and T carried with WIMSD5B program using its new cross sections library generated from the ENDF-B-VII and the comparison with the results published in literature by other calculations. For comparison, was used the benchmark transmutation concept based in a typical PWR cell and the analyzed results were the k∞ and the atomic density of the isotopes Np-239, Pu-241, Pu-242 and Am-242m, as function of burnup considering discharge of 50 GWd/tHM. (author)

  18. Comparison of different options for minor actinide transmutation in the frame of the French law for waste management

    International Nuclear Information System (INIS)

    Chabert, Christine; Leudet, Alain; Saturnin, Anne

    2011-01-01

    In the frame of the French Act for waste management which has been passed by French Parliament on June 28th, 2006, it is requested to obtain in 2012 an assessment of industrial perspectives of partitioning and transmutation of long-lived elements. These studies must be carried out in tight connection with GENIV systems development. The expected results must include the evaluation of technical and economic scenarios taking into account the optimization options between the minor actinide transmutation processes, their interim storage and geological disposal, including an analysis of several criteria. In this perspective, the CEA has established a working group named 'GT TES' (Working Group on Technical and Economic Scenarios) involving EDF and AREVA to define scenarios, the various criteria to evaluate them, to conduct these evaluations and then to highlight the key results. The group also relied on ANDRA for the geological storage studies. The scenarios evaluations take place in the French context. The nuclear energy production is supposed to remain constant during the scenarios and equal to 430 TWhe/year in accordance with the current French nuclear power installed capacity of 60 GW(e). The deployment of the first Sodium-cooled Fast Reactor (SFR) starts in 2040, considering that at this date the SFR technology should be mature. Several management schemes of minor actinides have been studied: Plutonium recycling in SFR (minor actinides are sent to the waste). Plutonium recycling and minor actinide (or Am alone) transmutation in SFR and in homogeneous mode ('Hom.'). Plutonium recycling and minor actinide (or Am alone) transmutation in SFR and in heterogeneous mode ('Het.'). Plutonium recycling in SFR and minor actinide transmutation in Accelerator-Driven-System (ADS). The criteria used to analyze these different scenarios, should take into account the viewpoint of scientists, industrials, administrations, and the general public. They are listed below: Inventories and

  19. Radiotoxicity of Actinides During Transmutation in Final Stage of Atomic Power

    International Nuclear Information System (INIS)

    Gerasimov, Aleksander S.; Bergelson, Boris R.; Myrtsymova, Lidia A.; Tikhomirov, Georgy V.

    2002-01-01

    Characteristics of a transmutation mode in final stage of atomic power are analyzed. In this stage, transmutation of actinides accumulated in transmutation reactors is performed without feed by actinides from other reactors. The radiotoxicity during first 20 years of transmutation is caused mainly by 244 Cm. During following period of time, 252 Cf is main nuclide. Contribution of 246 Cm and 250 Cf is 5-7 times less than that of 252 Cf. During 50 years of a transmutation, the total radiotoxicity falls by 50 times. Long-lived radiotoxicity decreases slowly. During the period between T=50 years and T=100 years, long-lived radiotoxicity falls by 3.7 times. For each following 50 years after this period, long-lived radiotoxicity falls by 3.2 times. These results corresponding to neutron flux density 10 14 neutr/(cm 2 s) in transmutation reactor demonstrate that the final stage of a transmutation should be performed with use of high flux transmutation facilities which provide shorter time of transmutation. (authors)

  20. Fuels and targets for the transmutation of high activity long lived radioactive wastes

    International Nuclear Information System (INIS)

    Pillon, S.; Warin, D.

    2010-01-01

    The authors present and comment the different strategies which can be adopted to transmute minor actinides (concerned reactors, in fast breeder reactors, in accelerator driven systems or ADS), and the chemical composition of transmutation fuels (actinide compounds, inert matrices, fuels and targets). They describe the behaviour of refractory ceramic fuels during their service life under irradiation with their different damage origins (neutrons, fission by-products, alpha particles), the fabrication of transmutation fuels and targets through different processes (metallurgical, co-precipitate, sol-gel, wax, infiltration of radioactive materials, VIPAC/SPHEREPAC) and the reprocessing or recycling of these transmutation fuels and targets

  1. Graphical representation of transmutation and decay chain data, transmutation cross section and delayed gamma ray emission data

    International Nuclear Information System (INIS)

    Seki, Yasushi; Iida, Hiromasa; Kawasaki, Hiromitsu.

    1982-09-01

    In a D-T burning fusion reactor, the neutron induced activity severely limits personnel access to the reactor. Accurate evaluation of the induced activity and dose rate is necessary to conduct effective biological shield design. In order to evaluate the dose rate accurately, considerable amount of activation data is required. This report gives graphical representation of transmutation and decay chain data, transmutation cross section data and delayed gamma ray emission data for 116 nuclides of interest in terms of fusion reactor design. This graphical representation was made with hope of producing a reference for examining activation problems. It has already been shown to be effective in correcting inappropriate data. A computer code AMOEBA developed for the checking and plotting of the activation data is also described in this report. (author)

  2. Front-end and back-end electrochemistry of molten salt in accelerator-driven transmutation systems

    International Nuclear Information System (INIS)

    Williamson, M.A.; Venneri, F.

    1995-01-01

    The objective of this work is to develop preparation and clean-up processes for the fuel and carrier salt in the Los Alamos Accelerator-Driven Transmutation Technology molten salt nuclear system. The front-end or fuel preparation process focuses on the removal of fission products, uranium, and zirconium from spent nuclear fuel by utilizing electrochemical methods (i.e., electrowinning). The same method provides the separation of the so-called noble metal fission products at the back-end of the fuel cycle. Both implementations would have important diversion safeguards. The proposed separation processes and a thermodynamic analysis of the electrochemical separation method are presented

  3. Researches on the management of high activity and long-lived radioactive wastes. Axis 1 - separation-transmutation; Recherches sur la gestion des dechets radioactifs a haute activite et a vie longue. Axe 1 - separation-transmutation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-11-15

    This document gathers the transparencies of seven presentations given at a technical workshop of the French nuclear energy society (SFEN) about the researches on separation-transmutation of high activity and long-lived radioactive wastes. The presentations deal with: inventory and radiotoxicity of the rad-wastes in concern; industrial experience; experience on chemical separation: molecules and processes; reactors physics and transmutation - reactors for transmutation; fuels and targets; scenarios that include transmutation; environmental impacts of these different scenarios. (J.S.)

  4. Synthesis of the studies on fuels and transmutation targets (fabrication, design, irradiation damage and dissolution) realized in the framework of the Bataille law

    International Nuclear Information System (INIS)

    Pillon, S.

    2004-12-01

    This document presents the different studied fuels and targets for the transmutation of the minor actinides and of the long life fission products for PWR/EPR and Fast neutron Reactor/EFR of today technology; the results of studies on the behavior under ions irradiation and in experimental nuclear reactor; the knowledge in terms of design, simulation and sizing; the development in terms of fabrication; the knowledge on the dissolution aptitude of these fuels and targets. (A.L.B.)

  5. Transmutation of Tc-99 and I-129 in fission reactors. A calculational study

    International Nuclear Information System (INIS)

    Kloosterman, J.L.; Li, J.M.

    1995-03-01

    The HWR is a better candidate for large-scale transmutation of long-lived fission products. When target pins containing either Tc-99 or I-129 are positioned in the centre of each fuel bundle of a 935 MW e CANDU reactor, the transmutation half lives are 44 and 20 years, respectively, and the gross transmutation rates 60 and 48 kg/a. The positive coolant void coefficient is reduced in both cases with about 30%. When Tc-99 target pins are positioned in the moderator between the fuel bundles, the transmutation half life becomes 25 years and the gross transmutation rate 106 kg/a. This means that one HWR can serve four PWRs with equal power. The fast reactor seems most promising. When Tc-99 target pins are irradiated in moderated subassemblies in the inner core of Superphenix (∼1240 MW e ), a transmutation half life of 15 years is obtained with a gross transmutation rate of 122 kg/a. These values become 18 years and 101 kg/a when non-moderated subassemblies are used for the irradiation. This implies that one fast reactor can serve four to five PWRs with equal power. The PWR seems not very effective for transmutation of Tc-99. Large inventories are needed to obtain a Tc-99 transmutation rate equal to the production rate (18 kg/a for a 900 MW e PWR). When all guide tubes of an UO 2 fuelled PWR are filled with Tc-99 with density of 5 g cm -3 , the transmutation half life is 39 years and the gross transmutation rate 64 kg/a. (orig./GL)

  6. Evaluation of transmutation performance of long-lived fission products with a super fast reactor

    International Nuclear Information System (INIS)

    Lu, Haoliang; Han, Chiyoung; Oka, Yoshiaki; Ikejiri, Satoshi; Ishiwatari, Yuki

    2009-01-01

    The performance of the Super Fast Reactor for transmutation treatment of long-lived fission products (LLFPs) was evaluated. Two regions with soft neutron spectrum, which is of great benefit to the LLFPs transmutation, can be utilized in the Super Fast Reactor. First is in the blanket assembly due to the ZrH 1.7 layer which can slow down the fast neutrons. Second is in the reflector region of core like other metal-cooled fast reactors. The LLFPs selected of transmutation analysis include 99 Tc, 129 I and 135 Cs discharged from LWR. Their isotopes, such as 127 I, 133 Cs, 134 Cs and 137 Cs were also considered. By loading the isotopes ( 99 Tc or 127 I and 129 I) in the blanket assembly and the reflector region simultaneously, the transmutation rates of 5.36%/GWe·y and 2.79%/GWe.y can be obtained for 99 Tc and 129 I, respectively. The transmuted amounts of 99 Tc and 129 I are equal to the outputs from 11.8 and 6.2 1000MWe-class PWRs. Because of the very low capture cross section of 135 Cs and the effect of other cesium isotopes, 135 Cs was loaded with three rings of assemblies in the reflector region to make the transmuted amount be larger than the yields of two 1000MWe-class PWRs. Based on these results, 99 Tc and 129 I can be transmuted conveniently and higher transmutation performance can be obtained by the Super Fast Reactor. However, the transmutation of 135 Cs is very difficult and the transmuted amount is less than that produced by the Super Fast Reactor. It turns out that the 135 Cs transmutation is a challenge not only for the Super Fast Reactor but also for other commercial fast reactors. (author)

  7. Researches on the management of high activity and long-lived radioactive wastes. Axis 1 - separation-transmutation

    International Nuclear Information System (INIS)

    2005-11-01

    This document gathers the transparencies of seven presentations given at a technical workshop of the French nuclear energy society (SFEN) about the researches on separation-transmutation of high activity and long-lived radioactive wastes. The presentations deal with: inventory and radiotoxicity of the rad-wastes in concern; industrial experience; experience on chemical separation: molecules and processes; reactors physics and transmutation - reactors for transmutation; fuels and targets; scenarios that include transmutation; environmental impacts of these different scenarios. (J.S.)

  8. Radioactive waste partitioning and transmutation within advanced fuel cycles: Achievements and Challenges

    International Nuclear Information System (INIS)

    Salvatores, M.; Palmiotti, G.

    2011-01-01

    In the last decades, numerous studies have been performed in order to identify appropriate 'Partitioning and Transmutation' (P and T) strategies, aiming to the reduction of the burden on a geological storage (see, among many others, Salvatores, 2005). P and T strategies are very powerful and unique tools to reduce drastically the radiotoxicity level of the wastes and to reduce the time needed to reach the reference level (from ∼100,000 years to few hundred years, i.e. comparable to the period in which technological and engineering means allow reasonably to control the radioactivity confinement). Moreover, P and T allows, in principle, also the reduction of the residual heat in a geological repository, with a potential significant impact on the repository size and characteristics. The first requirement of P and T strategies is the deployment of spent fuel reprocessing techniques (aqueous or dry), which are both in the continuity of today technologies (e.g. as implemented at La Hague in France, where Pu is separated up to 99.9%) or which represent innovative, adapted approaches (e.g. pyrochemistry). The requirement is to extend the performance of Pu separation to 99.9% also to Np, Am and Cm kept together or separated and in any case decontaminated from the lanthanides as much as possible. The separated TRU should then be 'transmuted' (or 'burned') in a neutron field. The essential mechanism is to fission them, transforming them into much shorter lived or stable fission products. However, the fission process is always in competition with other processes, and, in particular, with neutron capture, which does eliminate isotope A, but transforms it into isotope A+1, which can still be radioactive. Isotope A+1 can in turn be fissioned or transmuted into isotope A+2, and so on. The neutron field has to be provided by a fission reactor. The requirement for this (dedicated) reactor is to be able to privilege the fission process with respect to the capture process and to be

  9. Present status of research activities on transmutation of actinides in Japan

    International Nuclear Information System (INIS)

    Amano, Hiroshi

    1978-01-01

    In Japan, the idea to make use of transmutation for the final disposal method of HLW was first examined by Ichimiya, Amano, Hamada et al., when the Japan Atomic Industry forum had organized a study committee for HLW treatment in 1973. This article has the scope to outline the present research activities on transmutation of actinides in Japan

  10. Subcritical molten salt reactor with fast/intermediate spectrum for minor actinides transmutation

    International Nuclear Information System (INIS)

    Degtyarev, Alexey M.; Feinberg, Olga S.; Kolyaskin, Oleg E.; Myasnikov, Andrey A.; Karmanov, Fedor I.; Kuznetsov, Andrey Yu.; Ponomarev, Leonid I.; Seregin, Mikhail B.; Sidorkin, Stanislav F.

    2011-01-01

    The subcritical molten-salt reactor for transmutation of Am and Cm with the fast-intermediate neutron spectrum is suggested. It is shown that ∼10 such reactor-burners is enough to support the future nuclear power based on the fast reactors as well as for the transmutation of Am and Cm accumulated in the spent fuel storages. (author)

  11. MA-burners efficiency parameters allowing for the duration of transmutation process

    International Nuclear Information System (INIS)

    Gulevich, A.; Zemskov, E.; Kalugin, A.; Ponomarev, L.; Seliverstov, V.; Seregin, M.

    2010-01-01

    Transmutation of minor actinides (MA) means their transforming into the fission products. Usually, MA-burner's transmutation efficiency is characterized by the static parameters only, such as the number of neutrons absorbed and the rate of MA feeding. However, the proper characterization of MA-burner's efficiency additionally requires the consideration of parameters allowing for the duration of the MA transmutation process. Two parameters of that kind are proposed: a) transmutation time τ - mean time period from the moment a mass of MA is loaded into the burner's fuel cycle to be transmuted to the moment this mass is completely transmuted; b) number of reprocessing cycles n rep - effective number of reprocessing cycles a mass of loaded MA has to undergo before being completely transmuted. Some of MA-burners' types have been analyzed from the point of view of these parameters. It turned out that all of them have the value of parameters too high from the practical point of view. It appears that some new approaches to MA-burner's design have to be used to significantly reduce the value of these parameters in order to make the large-scale MA transmutation process practically reasonable. Some of such approaches are proposed and their potential efficiency is discussed. (authors)

  12. Helium and fission gas behaviour in magnesium aluminate spinel and zirconia for actinide transmutation

    NARCIS (Netherlands)

    Damen, P.M.G.

    2003-01-01

    In order to reduce the long-term radiotoxicity of spent nuclear fuel, many studies are performed on partitioning and transmutation of actinides. In such a scenario, the long-lived radio-isotopes (mostly actinides) are partitioned from the nuclear waste, and subsequently transmuted or fissioned in a

  13. Effects of actinide compositional variability in the US spent fuel inventory on partitioning-transmutation systems

    International Nuclear Information System (INIS)

    Ludwig, S.B.; Michaels, G.E.; Hanson, B.D.

    1992-01-01

    Partitioning and transmutation (P-T) is an advanced waste management concept by which certain undesirable nuclides in spent fuel are first isolated (partitioned) and later destroyed (transmuted) in a nuclear reactor or other transmutation device. There are wide variabilities in the nuclide composition of spent fuel. This implies that there will also be wide variabilities in the transmutation device feed. As a waste management system, P-T must be able to accept (all) spent fuel. Variability of nuclide composition (i.e., the feed material for transmutation devices) may be important because virtually all transmutation systems propose to configure transuranic (TRU) nuclides recovered from discharged lightwater reactor (LWR) spent fuel in critical or near-critical cores. To date, all transmutation system core analyses assume invariant nuclide concentrations for startup and recycle cores. Using the US Department of Energy's (DOE's) Characteristics Data Base (CDB) and the ORIGEN2 computer code, the current and projected spent fuel discharges until the year 2016 have been categorized according to combinations of fuel burnup, initial enrichment, fuel age (cooling time) and reactor type (boiling-water or pressurized-water reactors). The variability of the infinite multiplication factor (k ∞ ) is calculated for both fast (ALMR) and thermal (accelerator-based) transmuter systems

  14. MA-burners efficiency parameters allowing for the duration of transmutation process

    Energy Technology Data Exchange (ETDEWEB)

    Gulevich, A.; Zemskov, E. [Institute of Physics and Power Engineering, Bondarenko Square 1, Obninsk, Kaluga Region 249020 (Russian Federation); Kalugin, A.; Ponomarev, L. [Russian Research Center ' ' Kurchatov Institute' ' Kurchatov Square 1, Moscow 123182 (Russian Federation); Seliverstov, V. [Institute of Theoretical and Experimental Physics ul.B. Cheremushkinskaya 25, Moscow 117259 (Russian Federation); Seregin, M. [Russian Research Institute of Chemical Technology Kashirskoe Shosse 33, Moscow 115230 (Russian Federation)

    2010-07-01

    Transmutation of minor actinides (MA) means their transforming into the fission products. Usually, MA-burner's transmutation efficiency is characterized by the static parameters only, such as the number of neutrons absorbed and the rate of MA feeding. However, the proper characterization of MA-burner's efficiency additionally requires the consideration of parameters allowing for the duration of the MA transmutation process. Two parameters of that kind are proposed: a) transmutation time {tau} - mean time period from the moment a mass of MA is loaded into the burner's fuel cycle to be transmuted to the moment this mass is completely transmuted; b) number of reprocessing cycles n{sub rep} - effective number of reprocessing cycles a mass of loaded MA has to undergo before being completely transmuted. Some of MA-burners' types have been analyzed from the point of view of these parameters. It turned out that all of them have the value of parameters too high from the practical point of view. It appears that some new approaches to MA-burner's design have to be used to significantly reduce the value of these parameters in order to make the large-scale MA transmutation process practically reasonable. Some of such approaches are proposed and their potential efficiency is discussed. (authors)

  15. On the use of spinel-based nuclear fuels for the transmutation of actinides

    International Nuclear Information System (INIS)

    Konings, R.J.M.; Bakker, K.; Boshoven, J.G.; Hein, H.; Huntelaar, M.E.; Zhang, H.; Meeldijk, J.D.; Woensdregt, C.F.

    1997-01-01

    The properties of spinel-based nuclear fuels for the transmutation of actinides are investigated. The results of laboratory experiments, thermodynamic calculations and irradiations in the High Flux Reactor (HFR) at Petten are presented, and allow us to evaluate the potential of spinel as an inert matrix for fuels and targets for transmutation. (author)

  16. Impact of partitioning and transmutation on the high level waste management

    International Nuclear Information System (INIS)

    Gonzalez-Romero, Enrique-Miguel

    2010-01-01

    The contribution is structured as follows: (i) Background on partitioning and transmutation; (ii) FP6 projects: RED-IMPACT; (iii) Advanced fuel cycle scenarios; (iv) Partitioning and transmutation expected performance; (v) Impact on the HLW thermal load; (vi) Impact on the deep geological disposal; and (vii) Impact on the performance assessment of deep geological disposal. (P.A.)

  17. Application of the pyrochemical DOS, developed by the CEA, within reprocessing of CERCER transmutation fuel targets

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, E.; Ducasse, T.; Bertrand, M. [CEA, Centre de Marcoule, Nuclear Energy Division, Radiochemistry and Processes Department, SMCS, LDPS, F-30207 Bagnols-sur-Ceze (France); Miguirditchian, M. [CEA, Centre de Marcoule, Nuclear Energy Division, Radiochemistry and Processes Department, SMCS, LCPE, F-30207 Bagnols-sur-Ceze (France)

    2016-07-01

    Pyrochemical technology using high-temperature molten salts and molten metal media presents a potential interest for an overall separation and transmutation strategy for long-lived radionuclides. Within the frame of the two French acts on radioactive waste management, a pyrochemical research/development program was launched at the CEA Marcoule in the late 90's. The second step is the actinides back-extraction, which consists in a liquid/liquid oxidative stripping of the An from aluminium matrix into molten chloride media. The DOS process has been successfully demonstrated for treatment of oxide type fuels within the last years: the core of the process has been already assessed and the studies have shown high selectivity and a quantitative recovery of actinides. Within the framework of the SACSESS European research program, the pyrochemical activities focused on applications of the DOS process to reprocess CERCER transmutation targets. These particular types of fuels consist of a mixture of minor actinides (MA) oxides diluted in an inert (oxide MgO) matrices. The behaviour of matrices material was first investigated regarding the solubility in the fluoride salt, starting from both oxide powders or sintered pellets. The saturation of Mg in the salt could be estimated at ∼ 3 wt%. Regarding the reductive extraction, as expected no Mg was reduced by the metallic phase. The present work also highlights that Mg has low impact on the extraction efficiency of U as long as the salt is not saturated. Once the saturation occurs, the efficiency starts to decrease. So we recommend recycling the salt when Mg saturation is reached.

  18. Conceptual design of multi-purpose accelerator-driven transmutation test facility

    International Nuclear Information System (INIS)

    Hirota, Koichi; Hida, Kenzo; Yokobori, Hitoshi; Kamishima, Yoshio

    1999-01-01

    The Japan Atomic Energy Research Institute (JAERI) has been developing a concept of accelerator-driven transmutation system using a high-power proton linac. To demonstrate the technical feasibility of this concept, accelerator-driven spallation experiments will be necessary. We believe our proposal of a multi-purpose test facility is a promising concept to clarify its feasibility from the basic neutronics and engineering standpoint. The main feature of our initial proposal is using an inclined beam injection. It enables to simplify the head of the test vessel as well as to facilitate easy replacing of the beam window and the testing device containing the test specimen, and also this system will minimize the complexity of the vessel head and surrounding structures. Next proposal is using an ordinary overhead beam injection system and is modified to be simple structural concept of the test vessel from inclined beam injection. At the first step, the basic neutronics experiments will be performed. At this step, the test device and the cooling device are simpler ones, due to only small heat will be generated. Then we plan using a gas cooling. At the following steps, the test device and the vessel internal structures will be remodeled or remade to adjust to the test purposes, if necessary. At these steps, target material tests and thermal hydraulic tests using some liquid metal coolants will be done. In this case, the natural circulation cooling will be done. To verify the transmutation technology, a larger heat will be generated, so a forced coolant circulation system will be installed in the test vessel. This system consists of a heat exchanger and a circulation pump. The vessel internal structure will be remade. Doing such step-wise remaking, initial construction cost of the proposed test facility will be expected to be reasonable. (author)

  19. Studies of Accelerator-Driven Systems for Transmutation of Nuclear Waste

    International Nuclear Information System (INIS)

    Dahlfors, Marcus

    2006-01-01

    Accelerator-driven systems for transmutation of nuclear waste have been suggested as a means for dealing with spent fuel components that pose potential radiological hazard for long periods of time. While not entirely removing the need for underground waste repositories, this nuclear waste incineration technology provides a viable method for reducing both waste volumes and storage times. Potentially, the time spans could be diminished from hundreds of thousand years to merely 1.000 years or even less. A central aspect for accelerator-driven systems design is the prediction of safety parameters and fuel economy. The simulations performed rely heavily on nuclear data and especially on the precision of the neutron cross section representations of essential nuclides over a wide energy range, from the thermal to the fast energy regime. In combination with a more demanding neutron flux distribution as compared with ordinary light-water reactors, the expanded nuclear data energy regime makes exploration of the cross section sensitivity for simulations of accelerator-driven systems a necessity. This fact was observed throughout the work and a significant portion of the study is devoted to investigations of nuclear data related effects. The computer code package EA-MC, based on 3-D Monte Carlo techniques, is the main computational tool employed for the analyses presented. Directly related to the development of the code is the extensive IAEA ADS Benchmark 3.2, and an account of the results of the benchmark exercises as implemented with EA-MC is given. CERN's Energy Amplifier prototype is studied from the perspectives of neutron source types, nuclear data sensitivity and transmutation. The commissioning of the n T OF experiment, which is a neutron cross section measurement project at CERN, is also described

  20. Study on the LLFPs transmutation in a super-critical water-cooled fast reactor

    International Nuclear Information System (INIS)

    Lu Haoliang; Ishiwatari, Yuki; Oka, Yoshiaki

    2011-01-01

    Research highlights: → Transmutation of LLFPs with a super-criticial water cooled fast reactor. → Transmutation of iodine and cesium without the isotopic separation. → The transmuted isotope was mixed with UO 2 to reduce the effect of self-shielding. → A weak neutron moderator Al 2 O 3 was used to suppress the creation of 135 Cs from 133 Cs. - Abstract: The performance of the super-critical water-cooled fast reactor (Super FR) for the transmutation treatment of long-lived fission products (LLFPs) was evaluated. Two regions with the soft neutron spectrum, which is of great benefit to the LLFPs transmutation, can be utilized in the Super FR. First region is in the blanket assembly due to the ZrH 1.7 layer which was utilized to slow down the fast neutrons to achieve a negative void reactivity. Second region is in the reflector region of core like other metal-cooled fast reactors. The LLFPs selected in the transmutation analysis include 99 Tc, 129 I and 135 Cs discharged from LWR or fast reactor. Their isotopes, such as 127 I, 133 Cs, 134 Cs and 137 Cs were also considered to avoid the separation. By loading the isotopes ( 99 Tc or 127 I and 129 I) in the blanket assembly and the reflector region simultaneously, the transmutation rates of 5.36%/GWe year and 2.79%/GWe year can be obtained for 99 Tc and 129 I, respectively. The transmuted amounts of 99 Tc and 129 I are equal to the yields from 11.8 and 6.2 1000 MWe-class PWRs. Because of the very low capture cross section of 135 Cs and the effect of other cesium isotopes, 135 Cs was loaded with three rings of assemblies in the reflector region to make the transmuted amount be larger than the yields of two 1000 MWe-class PWRs. Based on these results, 99 Tc and 129 I can be transmuted conveniently and higher transmutation performance can be obtained in the Super FR. However, the transmutation of 135 Cs is very difficult and the transmuted amount is less than that produced by the Super FR. It turns out that the

  1. Transmutation of actinide 237Np with a fusion reactor and a hybrid reactor

    International Nuclear Information System (INIS)

    Feng, K.M.; Huang, J.H.

    1994-01-01

    The use of fusion reactors to transmute fission reactor wastes to stable species is an attractive concept. In this paper, the feasibility of transmutation of the long-lived actinide radioactive waste Np-237 with a fusion reactor and a hybrid reactor has been investigated. A new waste management concept of burning HLW (High Level Waste), utilizing released energy and converting Np-237 into fissile fuel Pu-239 through transmutation has been adopted. The detailed neutronics and depletion calculation of waste inventories was carried out with a modified version of one-dimensional neutron transport and burnup calculation code system BISON1.5 in this study. The transmutation rate of Np with relationship to neutron wall loading, Pu and Np with relationship to neutron wall load, Pu and Np concentration in the transmutation zone have been explored as well as relevant results are also given

  2. Transmutation of technetium into stable ruthenium in high flux conceptual research reactor

    International Nuclear Information System (INIS)

    Amrani, N.; Boucenna, A.

    2007-01-01

    The effectiveness of transmutation for the long lived fission product technetium-99 in high flux research reactor, considering its large capture cross section in thermal and epithermal region is evaluated. The calculation of Ruthenium concentration evolution under irradiation was performed using Chain Solver 2.20 code. The approximation used for the transmutation calculation is the assumption that the influence of change in irradiated materials structures on the reactor operator mode characteristics is insignificant. The results on Technetium transmutation in high flux research reactor suggested an effective use of this kind of research reactors. The evaluation brings a new concept of multi-recycle Technetium transmutation using HFR T RAN (High Flux Research Reactor for Transmutation)

  3. Specific contributions of the Dutch progamme ''RAS'' towards accelerator-based transmutation

    International Nuclear Information System (INIS)

    Abrahams, K.; Franken, W.M.P.; Bultman, J.H.; Heil, J.A.; Koning, A.J.

    1994-09-01

    Accelerator-based transmutation is being studied by ECN within its general nuclear waste transmutation programme RAS. In this paper the following contributions are presented: (1) Evaluation of cross sections at intermediate energies, within an international frame given by NEA, (2) Cell calculations on the equilibration of transuranium actinides in thermal molten-salt transmuters, (3) Irradiation facilities at the European research reactor HFR in Petten, which have been constructed with the purpose to demonstrate and investigate the transmutation of waste in a high neutron flux, (4) Studies of accelerator-based neutron generating systems to transmute neptunium and technetium, (5) Comparison of several systems on the basis of criteria for successful nuclear waste-management. (orig.)

  4. Retrieval system of nuclear data for transmutation of nuclear materials

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Mitsutane; Utsumi, Misako; Noda, Tetsuji [National Research Inst. for Metals, Tsukuba, Ibaraki (Japan)

    1997-03-01

    A database storing the data on nuclear reaction was built to calculate for simulating transmutation behaviours of materials /1/-/3/. In order to retrieve and maintain the database, the user interface for the data retrieval was developed where special knowledge on handling of the database or the machine structure is not required for end-user. It is indicated that using the database, the possibility of He formation and radioactivity in a material can be easily retrieved though the evaluation is qualitatively. (author)

  5. Transmutation of waste actinides in light water reactors

    International Nuclear Information System (INIS)

    Gorrell, T.C.

    1979-04-01

    Actinide recycle and transmutation calculations were made for three irradiation options of a light water reactor (LWR). The cases considered were: all actinides recycled in regular uranium fuel assemblies; transuranic actinides recycled in separate MOX assemblies with 235 U enrichment of uranium; and transuranic actinides recycled in separate MOX assemblies with plutonium enrichment of natural uranium. When all actinides were recycled in a uniform lattice, the transuranic inventory after ten recycles was 38% of the inventory accumulated without recycle. When the transuranics from two regular uranium assemblies were combined with those recycled from a MOX assembly, the transuranic inventory was reduced 50% after five recycles

  6. Electrical property studies of neutron-transmutation-doped silicon

    International Nuclear Information System (INIS)

    Cleland, J.W.; Fleming, P.H.; Westbrook, R.D.; Wood, R.F.; Young, R.T.

    1978-01-01

    Results of studies of electrical properties of neutron-transmutation-doped (NTD) silicon are presented. Annealing requirements to remove lattice damage were obtained. The electrical role of clustered oxygen and defect-oxygen complex was investigated. An NTD epitaxial layer on a heavily doped n- or p- type substrate can be produced. There is no evident interaction between lithium introduced by diffusion and phosphorous 31 introduced by irradiation. There may be some type of pairing reaction between lithium 7 introduced by boron 10 fission and any remaining boron

  7. A low power ADS for transmutation studies in fast systems

    Science.gov (United States)

    Panza, Fabio; Firpo, Gabriele; Lomonaco, Guglielmo; Osipenko, Mikhail; Ricco, Giovanni; Ripani, Marco; Saracco, Paolo; Viberti, Carlo Maria

    2017-12-01

    In this work, we report studies on a fast low power accelerator driven system model as a possible experimental facility, focusing on its capabilities in terms of measurement of relevant integral nuclear quantities. In particular, we performed Monte Carlo simulations of minor actinides and fission products irradiation and estimated the fission rate within fission chambers in the reactor core and the reflector, in order to evaluate the transmutation rates and the measurement sensitivity. We also performed a photo-peak analysis of available experimental data from a research reactor, in order to estimate the expected sensitivity of this analysis method on the irradiation of samples in the ADS considered.

  8. New infrastructure for studies of transmutation and fast systems concepts

    Science.gov (United States)

    Panza, Fabio; Firpo, Gabriele; Lomonaco, Guglielmo; Osipenko, Mikhail; Ricco, Giovanni; Ripani, Marco; Saracco, Paolo; Viberti, Carlo Maria

    2017-09-01

    In this work we report initial studies on a low power Accelerator-Driven System as a possible experimental facility for the measurement of relevant integral nuclear quantities. In particular, we performed Monte Carlo simulations of minor actinides and fission products irradiation and estimated the fission rate within fission chambers in the reactor core and the reflector, in order to evaluate the transmutation rates and the measurement sensitivity. We also performed a photo-peak analysis of available experimental data from a research reactor, in order to estimate the expected sensitivity of this analysis method on the irradiation of samples in the ADS considered.

  9. Calculated investigation of actinide transmutation in the BOR-60 reactor

    International Nuclear Information System (INIS)

    Zhemkov, I.Yu.; Ishunina, O.V.; Yakovleva, I.V.

    2001-01-01

    In the course of reactor operation the formation of fission products and accumulation of minor-actinides and plutonium take place in the nuclear fuel. These materials define the radiation hazard to a great extent. Of one possible ways lowering the activity of irradiated nuclear fuel is transmutation of long-lived radioactive isotopes in the stable or short-lived ones, that allows to facilitate the problem of the high-level waste and to improve the efficiency of nuclear fuel use at the expense of its recycling and burnup increasing. (authors)

  10. Simulations for the transmutation of nuclear wastes with hybrid reactors

    International Nuclear Information System (INIS)

    Vuillier, St.

    1998-06-01

    A Monte Carlo simulation, devoted to the spallation, has been built in the framework of the hybrid systems proposed for the nuclear wastes incineration. This system GSPARTE, described the reactions evolution. It takes into account and improves the nuclear codes and the low and high energy particles transport in the GEANT code environment, adapted to the geometry of the hybrid reactors. Many applications and abacus useful for the wastes transmutation, have been realized with this system: production of thick target neutrons, source definition, material damages. (A.L.B.)

  11. Transmutation and inventory analysis in an ATW molten salt system

    Energy Technology Data Exchange (ETDEWEB)

    Sisolak, J.E.; Truebenbach, M.T.; Henderson, D.L. [Univ. of Wisconsin, Madison, WI (United States)

    1995-10-01

    As an extension of earlier work to determine the equilibrium state of an ATW molten salt, power producing, reactor/transmuter, the WAIT code provides a time dependent view of material inventories and reactor parameters. By considering several cases, the authors infer that devices of this type do not reach equilibrium for dozens of years, and that equilibrium design calculations are inapplicable over most of the reactor life. Fissile inventory and k{sub eff} both vary by factors of 1.5 or more between reactor startup and ultimate convergence to equilibrium.

  12. The advanced fuel cycle initiative: the future path for advanced spent fuel treatment and transmutation research in the United States

    International Nuclear Information System (INIS)

    Herczeg, J.W.

    2003-01-01

    The U. S. Department of Energy (DOE) has invested over USD 100 million in transmutation research and development over the past three years. The programme has evolved from an accelerator based transmutation programme to a multi-tier reactor and accelerator based programme. These changes have resulted in a significant re-focus of the research and development programme as well as a name change to reflect the new direction. The Advanced Accelerator Application (AAA) programme is now renamed the Advanced Fuel Cycle Initiative (AFCI). Research completed by the AAA programme in Fiscal Year 2002 points to a multi-phased AFCI Programme consisting of two elements that would be conducted in parallel as part of an integrated research effort: an intermediate-term technology element (AFCI Series One), which emphasises advanced technical enhancements to the current commercial nuclear power infrastructure; and a long term technology element (AFCI Series Two), which will require the introduction of next-generation nuclear energy systems to reduce the toxicity of nuclear waste. (author)

  13. Transmutation of nuclear waste. Status report RAS programme 1993: Recycling and transmutation of actinides and fission products

    International Nuclear Information System (INIS)

    Abrahams, K.; Bultman, J.H.; Cordfunke, E.H.P.; Gruppelaar, H.; Janssen, A.J.; Franken, W.M.P.; Klippel, K.T.; Kloosterman, J.L.; Konings, R.J.M.; Smit, J.

    1994-11-01

    The term ''nuclear transmutation'' means a conversion of long-lived radioactive nuclides into short-lived or stable nuclides and ''recycling'' means re-use of fissile material to generate energy in power reactors. With these two processes a reduction of the radiotoxicity and of its duration may be achieved, thus reducing the potential hazard to future generations. Firstly, the report gives a survey of the present situation regarding nuclear waste: its components, how the waste is produced in current LWR and possible options for interim and final storage. Then the objective of the RAS programme, the working methods and the state of the art of the research are considered. Two chapters deal with preliminary results of national and international research. A rather tentative prediction for the future is formulated. Some conclusions are drawn: It seems to be in the best interests of the Netherlands to continue the established line of reprocessing nuclear waste, should new reactors be introduced. It may be advisable to make international agreements so that in the future fission products will contain as few traces of transuranic actinides and long-lived components as possible. Consequently, nuclear waste would become cleaner in terms of long-lived components. For the transmutation of products separated in foreign countries, the Netherlands could pursue an active policy, perform research and also consider the use of MOX fuel in future Dutch reactors. Further contributions towards the solution of these problems can only be made by the Netherlands on an international level. As such, the research and study performed within the framework of the RAS-programme represents a useful international contribution. The possibilities offered by the HFR are particularly of great value. Finally, the choice of a new generation of nuclear reactors should be made not based only on the safety aspects, but also on the extent of waste production and on the transmutation possibilities (application

  14. Transmutation of nuclear waste. Status report RAS programme 1993: Recycling and transmutation of actinides and fission products

    Energy Technology Data Exchange (ETDEWEB)

    Abrahams, K; Bultman, J H; Cordfunke, E H.P.; Gruppelaar, H; Janssen, A J; Franken, W M.P.; Klippel, K T; Kloosterman, J L; Konings, R J.M.; Smit, J

    1994-11-01

    The term ``nuclear transmutation`` means a conversion of long-lived radioactive nuclides into short-lived or stable nuclides and ``recycling`` means re-use of fissile material to generate energy in power reactors. With these two processes a reduction of the radiotoxicity and of its duration may be achieved, thus reducing the potential hazard to future generations. Firstly, the report gives a survey of the present situation regarding nuclear waste: its components, how the waste is produced in current LWR and possible options for interim and final storage. Then the objective of the RAS programme, the working methods and the state of the art of the research are considered. Two chapters deal with preliminary results of national and international research. A rather tentative prediction for the future is formulated. Some conclusions are drawn: It seems to be in the best interests of the Netherlands to continue the established line of reprocessing nuclear waste, should new reactors be introduced. It may be advisable to make international agreements so that in the future fission products will contain as few traces of transuranic actinides and long-lived components as possible. Consequently, nuclear waste would become cleaner in terms of long-lived components. For the transmutation of products separated in foreign countries, the Netherlands could pursue an active policy, perform research and also consider the use of MOX fuel in future Dutch reactors. Further contributions towards the solution of these problems can only be made by the Netherlands on an international level. As such, the research and study performed within the framework of the RAS-programme represents a useful international contribution. Finally, the choice of a new generation of nuclear reactors should be made not based only on the safety aspects, but also on the extent of waste production and on the transmutation possibilities (application of MOX, etc.). (orig./HP).

  15. Activities performed within the program of nuclear safety research on structural and cladding materials for innovative reactor system able to transmute nuclear waste

    International Nuclear Information System (INIS)

    Fazio, C.; Rieth, M.; Lindau, R.; Aktaa, J.; Schneider, H-C.; Konys, J.; Yurechko, M.; Mueller, G.; Weisenburger, A.

    2009-01-01

    The transmutation of nuclear waste to reduce the burden on a geological repository is a relevant topic within the Program of Nuclear Safety Research of the Research Centre Karlsruhe. Several studies have confirmed that a high efficiency of transmutation of actinides is reached in fast neutron spectrum reactor system. Therefore, an important effort is dedicated to the study of transmutation strategies with different fast reactors and their associated technologies. Moreover, in international contexts as Generation IV International Forum (GIF) and Sustainable Nuclear Energy Technology Platform (SNETP), fast reactors are considered in the frame of sustainable development of nuclear energy and reduction of waste. The systems that are currently under investigation, in the frame of the different fuel cycle scenarios, are liquid metal cooled and gas cooled fast reactors as well as Accelerator Driven Sub-critical Transmutation devices (ADS). These innovative reactor systems, call for structural and clad materials, which are able to perform in a safe manner under the envisaged operational and postulated transient conditions. In this context the European Commission supports the FP7 project GETMAT, with the objective to contribute to the development and selection of reference structure materials for core components and primary systems of fast neutron reactors. Several institutes of the Research Centre Karlsruhe are involved in this project with activities in the area of 9Cr ODS steel development and mechanical characterisation; optimisation and ranking of weld and joining techniques as Electron Beam, TIG and Diffusion Bonding; assessment of materials behaviour in corrosive environment and in neutron and neutron/proton irradiation field; and development of corrosion protection barriers for cladding and primary system components and their characterisation. The objective of this contribution is to describe the context in which the GETMAT activities are embedded in the Program

  16. Processing flowsheet for the accelerator transmutation of waste (ATW) program

    International Nuclear Information System (INIS)

    Dewey, H.; Walker, R.; Yarbro, S.

    1992-01-01

    At Los Alamos, an innovative approach to transmuting long-lived radioactive waste is under investigation. The concept is to use a linear proton accelerator coupled to a solid target to produce an intense neutron flux. The intense stream of neutrons can then be used to fission or transmute long-lived radionuclides to either stable or shorter-lived isotopes. For the program to be successful, robust chemical separations with high efficiencies (>10 5 ) are required. The actual mission, either defense or commercial, will determine what suite of unit operations will be needed. If the mission is to process commercial spent fuel, there are several options available for feed preparation and blanket processing. The baseline option would be an improved PUREX system with the main alternative being the current ATW actinide blanket processing flowsheet. 99 Tc and 129 I are more likely to reach the biosphere than the actinides. Many models have been developed for predicting how the radionuclides will behave in a repository over long time periods. The general conclusion is that the actinides will be sorbed by the soil. Therefore, over a long time period, e.g., a million years their hazard will be lessened because of radioactive decay and dispersion. However, some of the long-lived fission products are not sorbed and could potentially reach the environment over a few thousand year period. Hence, they could present a significant safety hazard. Because of limited resources, most of the priority has been focused on the actinide and technetium blanket assemblies

  17. Practising alchemy: the transmutation of evidence into best health care.

    Science.gov (United States)

    Goodyear-Smith, Felicity

    2011-04-01

    Alchemy was the synthesis or transmutation of all elements in perfect balance to obtain the philosopher's stone, the key to health. Just as alchemists sought this, so health practitioners always seek the best possible practice for optimal health outcomes for our patients. Best practice requires full knowledge--a little information can be dangerous. We need to serve our apprenticeship before we master our profession. Our profession is about improving health care. While the journey may start at medical school, the learning never ceases. It is not only about practising medicine, it is about the development of the practitioner. Professional practice requires systematic thinking combined with capacity to deal morally and creatively in areas of complexity and uncertainty appropriate to a specific context. It requires exemplary communication skills to interact with patients to facilitate collaborative decision making resulting in best practice. The synthesis of scientific and contextual evidence is a concept which applies to all disciplines where theoretical knowledge needs to be transferred to action to inform best practice. Decisions need to be made which take into account a complex array of factors, such as social and legal issues and resource constraints. Therefore, journey towards best practice involves transmutation of these three elements: scientific knowledge, the context in which it is applied and phronesis, the practical wisdom of the practitioner. All science has its limitations and we can never know all possible contextual information. Hence, like the philosopher's stone, best practice is a goal to which we aspire but never quite attain.

  18. Laser enhanced radioactive decay and selective transmutation of nuclear waste

    International Nuclear Information System (INIS)

    Saloman, R.; Aarnio, P.; Ala-Heikkila, J.; Hakola, A.; Santala, M.

    2007-01-01

    We have investigated narrow-band coherent laser radiation - ranging from visible to X- and to gamma-ray wave length region - and their interactions both directly with photon-nuclear couplings and indirectly through the photon-electron and electron-nucleus interactions. In particular we discuss various means of selective excitation of nuclear resonance states by narrowband lasers. During the relaxation process the active nucleus may return to its initial ground-state or find another final state. In the latter case the nucleus is transmuted into a state which may have beneficial properties for instance concerning radioactivity. One ideal case would be the destruction of long-lived nuclear waste isotopes into faster decaying ones. The essential presumption is that the excitation process is selective and efficient as regards background processes due to unwanted excitation channels of the primary isotope and due to other surrounding nuclides. The paper consists of 1) a short review of generating short-wave length coherent light sources, 2) a survey of potential photon-induced nuclear states and their decay channels, and 3) a determination of the selectivity of the transmutation process

  19. Studies on separation, conversion and transmutation of long-living radionuclides. A contribution to advanced disposal of high-level radioactive wastes

    International Nuclear Information System (INIS)

    Modolo, Giuseppe

    2014-01-01

    The future role and acceptance of nuclear energy will be decisively determined by the safe operation of existing and future facilities and by convincing solutions for nuclear waste management. With respect to the long half-lives of some radionuclides (actinides and fission products) and the related question as to whether the release of radionuclides from a repository can be prevented over very long periods of time, alternatives to the direct disposal of spent nuclear fuels are discussed internationally. As a potential complementary solution, the technological option with partitioning and transmutation (P and T) is considered. This method separates and converts the long-lived radionuclides into stable, short-lived nuclides via neutron reactions in dedicated facilities. Against this background, the first main chapter of the present work looks at the chemical separation of actinides from high-level reprocessing wastes. In order to achieve a better understanding of the processes at the molecular level, basic investigations were also performed on separating actinides(III) via liquid-liquid or liquid-solid extraction. At the same time, reversible processes were developed and tested on the laboratory scale with the aid of mixer-settlers and centrifugal extractors. The subsequent chapter focuses on separating the long-lived fission product iodine-129 from radioactive wastes as well as from process effluents arising from reprocessing. As part of this work, different simple chemical and physical techniques were developed for complete recovery with respect to transmutation or conditioning in host matrices that are sufficiently stable for final storage. Its high mobility and radiological properties make iodine-129 relevant for the long-term safety assessment of final repositories. In addition, transmutation experiments on iodine-127/129 targets were performed using high-energy protons (145-2600 MeV). Due to the expected low cross sections (<100 mb), transmutation with protons

  20. Partitioning and transmutation (P and D) 1995. A review of the current state of the art

    International Nuclear Information System (INIS)

    Skaalberg, M.; Landgren, A.; Spjuth, L.; Liljenzin, J.O.; Gudowski, W.

    1995-12-01

    The recent development in the field of partitioning and transmutation (P/T) is reviewed and evaluated. Current national and international R and D efforts are summarized. Nuclear transmutation with energy production is feasible in nuclear reactors where fast and thermal breeders are the most efficient for transmutation purposes. The operation of subcritical nuclear reactors by high current proton accelerators that generate neutrons in a spallation target is also an interesting option for transmutation and energy production, that has to be more carefully evaluated. These accelerator-driven systems are probably the only solution for the transmutation of long-lived fission products with small neutron capture cross sections and actinide isotopes with small fission cross sections. The requirements on the separation chemistry in the partitioning process depends on the transmutation strategy chosen. Recent developments in aqueous based separation chemistry opens some interesting possibilities to meet some of the requirements, such as separation of different actinides and some fission products and reduction of secondary waste streams. In the advanced accelerator-driven transmutation systems proposed, liquid fuels such as molten salts are considered. The partitioning processes that can be used for these types of fuel will, however, require a long term research program. The possibility to use centrifuge separation is an interesting partitioning option that recently has been proposed. 51 refs, 7 figs, 3 tabs

  1. HYPERFUSE: a hypervelocity inertial confinement system for fusion energy production and fission waste transmutation

    International Nuclear Information System (INIS)

    Makowitz, H.; Powell, J.R.; Wiswall, R.

    1980-01-01

    Parametric system studies of an inertial confinement fusion (ICF) reactor system to transmute fission products from a LWR economy have been carried out. The ICF reactors would produce net power in addition to transmuting fission products. The particular ICF concept examined is an impact fusion approach termed HYPERFUSE, in which hypervelocity pellets, traveling on the order of 100 to 300 km/sec, collide with each other or a target block in a reactor chamber and initiate a thermonuclear reaction. The DT fusion fuel is contained in a shell of the material to be transmuted, e.g., 137 Cs, 90 Sr, 129 I, 99 Tc, etc. The 14-MeV fusion neutrons released during the pellet burn cause transmutation reactions (e.g., (n,2n), (n,α), (n,γ), etc.) that convert the long-lived fission products (FP's) either to stable products or to species that decay with a short half-life to a stable product. The transmutation parametric studies conclude that the design of the hypervelocity projectiles should emphasize the achievement of high densities in the transmutation regions (greater than the DT fusion fuel density), as well as the DT ignition and burn criterion (rho R = 1.0 to 3.0) requirements. These studies also indicate that masses on the order of 1.0 g at densities of rho greater than or equal to 500.0 g/cm 3 are required for a practical fusion-based fission product transmutation system

  2. Role of (n,2n) reactions in transmutation of long-lived fission products

    Energy Technology Data Exchange (ETDEWEB)

    Apse, V. A.; Kulikov, G. G., E-mail: ggkulikov@mephi.ru; Kulikov, E. G. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation)

    2016-12-15

    The conditions under which (n,γ) and (n,2n) reactions can help or hinder each other in neutron transmutation of long-lived fission products (LLFPs) are considered. Isotopic and elemental transmutation for the main long-lived fission products, {sup 79}Se, {sup 93}Zr, {sup 99}Tc, {sup 107}Pd, {sup 126}Sn, {sup 129}I, and {sup 135}Cs, are considered. The effect of (n,2n) reactions on the equilibrium amount of nuclei of the transmuted isotope and the neutron consumption required for the isotope processing is estimated. The aim of the study is to estimate the influence of (n,2n) reactions on efficiency of neutron LLFP transmutation. The code TIME26 and the libraries of evaluated nuclear data ABBN-93, JEF-PC, and JANIS system are applied. The following results are obtained: (1) The effect of (n,2n) reactions on the minimum number of neutrons required for transmutation and the equilibrium amount of LLFP nuclei is estimated. (2) It is demonstrated that, for three LLFP isotopes ({sup 126}Sn, {sup 129}I, and {sup 135}Cs), (n,γ) and (n,2n) reactions are partners facilitating neutron transmutation. The strongest effect of (n,2n) reaction is found for {sup 126}Sn transmutation (reduction of the neutron consumption by 49% and the equilibrium amount of nuclei by 19%).

  3. Scenarios for Minor Actinides Transmutation in the Frame of the French Act for Waste Management

    International Nuclear Information System (INIS)

    Meyer, M.; Coquelet-Pascal, C.; Girieud, R.; Tiphine, M.; Eschbach, R.; Chabert, C.; Garzenne, C.; Barbrault, P.; Gannaz, B.; Van Den Durpel, L.; Favet, D.; Arslan, M.; Carlier, B.; Caron-Charles, M.; Lefèvre, J.C.

    2013-01-01

    Conclusion: • Different transmutation scenarios have been evaluated: homogeneous transmutation, AmBB, MABB. • Homogeneous transmutation: – The MA content peak at the beginning of the transmutation can be reduced from 3,9% to 2,5% thanks to a reprocessing optimization. – Delaying the SFR deployment to 2080 increases this peak from 3,9% to 4,7%. Due to the constraints on reprocessing, the optimization may be less efficient in this case. • Heterogeneous transmutation: – Shorting the AmBB irradiation time from 10 cycles to 5 cycles and reducing their Am content from 20% to 10%: - reduces AmBB decay heat (-45% at the cooling beginning); - leads to an increase in the Am mass in cycle (+20% in 2150). • Impact of the CFV core: – In heterogeneous mode, the CFV transmutation rate being better than the SFRV2B one, the MA inventory is reduced by 22% in 2150. – In homogeneous mode, the reduction of the fissile mass in core leads to an increase of the MA peak at the beginning of the transmutation (3,9% → 5,6%). There’s no impact on the MA inventory

  4. The sphinx project: experimental verification of design inputs for a transmuter with liquid fuel based on molten fluorides

    International Nuclear Information System (INIS)

    Hron, M.; Uhlir, J.; Vanicek, J.

    2002-01-01

    The current proposals for high-active long-lived (more then 10 4 years) waste from spent nuclear fuel disposal calls forth an increasing societal mistrust towards nuclear power. These problems are highly topical in the Czech Republic, a country which is operating nuclear power and accumulating spent fuel from PWRs and is further located on an inland and heavily populous Central European region. The proposed project, known under the acronym SPHINX (SPent Hot fuel Incineration by Neutron flux) deals with a solution to some of the principle problems through a very promising means of radioactive waste treatment. In particular, high-level wastes from spent nuclear fuel could be treated using this method, which is based on the transmutation of radionuclides through the use of a nuclear reactor with liquid fuel based on molten fluorides (Molten Salt Transmutation Reactor - MSTR) which might be a subcritical system driven by a suitable neutron source. Its superiority also lies in the fact that it makes possible to utilize actinides contained, by others, in spent nuclear fuel and so to reach a positive energy effect. After the first three-year stage of Research and Development which has been focused mostly on computer analyses of neutronics and corresponding physical characteristics, the next three-year stage of this programme will be devoted to experimental verification of inputs for the design of a demonstration transmuter using molten fluoride fuel. The Research and Development part of the SPHINX project in the area of fuel cycle of the MSTR is focused in the first place on the development of suitable technology for the preparation of an introductory liquid fluoride fuel for MSTR and subsequently on the development of suitable fluoride pyrometallurgical technology for the separation of the transmuted elements from the non-transmuted ones. The idea of the introductory fuel preparation is based on the reprocessing of PWR spent fuel using the Fluoride Volatility Method

  5. About the first experiment on investigation of 129I, 237Np, 238Pu and 239Pu transmutation at the nuclotron 2.52 GeV deuteron beam in neutron field generated in U/Pb-assembly 'Energy plus transmutation'

    International Nuclear Information System (INIS)

    Krivopustov, M.I.; Pavliouk, A.V.; Malakhov, A.I.

    2008-01-01

    Preliminary results of the first experiment with energy 2.52 GeV at the electronuclear setup which consists of Pb-target (diameter 8.4 cm, length 45.6 cm) and nat U-blanket (206.4 kg), transmutation samples of 129 I, 237 Np, 238 Pu and 239 Pu (radioecological aspect) are described. Hermetically sealed samples in notable amounts are gathered in atomic reactors and setups of industries which use nuclear materials and nuclear technologies were irradiated in the field of neutrons produced in the Pb-target and propagated in the nat U-blanket. Estimates of transmutations were obtained as a result of measurements of gamma activities of the samples. The information about the space and energy distribution of neutrons in the volume of the lead target and the uranium blanket was obtained with the help of sets of activation threshold detectors (Al, Co, Y, I, Au, Bi and others), solid-state nuclear track detectors, 3 He neutron detectors and nuclear emulsion. Comparison of the experimental data with the results of simulation with the MCNPX program was performed

  6. Transmutation of fission products in reactors and accelerator-driven systems

    International Nuclear Information System (INIS)

    Janssen, A.J.

    1994-01-01

    Energy flows and mass flows in several scenarios are considered. Economical and safety aspects of the transmutation scenarios are compared. It is difficult to find a sound motivation for the transmutation of fission products with accelerator-driven systems. If there would be any hesitation in transmuting fission products in nuclear reactors, there would be an even stronger hesitation to use accelerator-driven systems, mainly because of their lower energy efficiency and their poor cost effectiveness. The use of accelerator-driven systems could become a 'meaningful' option only if nuclear energy would be banished completely. (orig./HP)

  7. Feasibility of waste transmutation using accelerator-driven IRIS subcritical system

    International Nuclear Information System (INIS)

    Petroviae, B.; Carelli, M.; Paramonov, D.

    2001-01-01

    Waste transmutation is considered for reducing radio-toxicity of nuclear waste generated in power reactors. Accelerator driven subcritical systems (ADS) offer certain advantages over the use of nuclear reactors. Transmutation of fission products (e.g. 99 Tc) generally requires thermal neutron spectrum, while for actinides fast spectrum provides better performance. Proposed solutions to this problem include a multi-strata approach as well as a multi-zone (thermal/fast-spectrum) single systems. In this paper we examine the feasibility of employing a dual-spectrum two-zone accelerator-driven IRIS subcritical for waste transmutation. (author)

  8. Experimental demonstration of free-space optical vortex transmutation with polygonal lenses.

    Science.gov (United States)

    Gao, Nan; Xie, Changqing

    2012-08-01

    Vortex transmutation was predicted to take place when vortices interact with systems possessing discrete rotational symmetries of finite order [Phys. Rev. Lett.95, 123901 (2005)]. Here we report what is believed to be the first experimental demonstration of vortex transmutation. We show that in free space, by simply inserting polygonal lenses into the optical path, the central vorticity of a coaxially incident optical vortex can be changed following the modular transmutation rule. We generate the wavefront at the exit face of the lenses with computer generated holograms and measure the output vorticity using the interference patterns at the focal plane. The results agree well with theoretical predictions.

  9. An improved transmutation method for quantitative determination of the components in multicomponent overlapping chromatograms.

    Science.gov (United States)

    Shao, Xueguang; Yu, Zhengliang; Ma, Chaoxiong

    2004-06-01

    An improved method is proposed for the quantitative determination of multicomponent overlapping chromatograms based on a known transmutation method. To overcome the main limitation of the transmutation method caused by the oscillation generated in the transmutation process, two techniques--wavelet transform smoothing and the cubic spline interpolation for reducing data points--were adopted, and a new criterion was also developed. By using the proposed algorithm, the oscillation can be suppressed effectively, and quantitative determination of the components in both the simulated and experimental overlapping chromatograms is successfully obtained.

  10. World-wide trend of long-lived radionuclides transmutation studies

    International Nuclear Information System (INIS)

    Kim, Young Hwan; Lee, Il Hee; Yoo, Jae Hyung

    1997-01-01

    The objective of this study is to review the concepts of partitioning and transmutation studies which are being conducted in several countries. This review was focused on the analysis of such areas as radiotoxicities of radwaste containing long-lived radionuclides, transmutation by reactors or accelerators, and separation of minor actinides. The world-wide trend of partitioning and transmutation studies was also investigated on the basis of each country's R and D activities in this area. (author). 5 refs., 4 tabs., 3 figs

  11. Conceptual study on high performance blanket in a spherical tokamak fusion-driven transmuter

    International Nuclear Information System (INIS)

    Chen Yixue; Wu Yican

    2000-01-01

    A preliminary conceptual design on high performance dual-cooled blanket of fusion-driven transmuter is presented based on neutronic calculation. The dual-cooled system has some attractive advantages when utilized in transmutation of HLW (High Level Wastes). The calculation results show that this kind of blanket could safely transmute about 6 ton minor actinides (produced by 170 GW(e) Year PWRs approximately) and 0.4 ton fission products per year, and output 12 GW thermal power. In addition, the variation of power and critical factor of this blanket is relatively little during its 1-year operation period. This blanket is also tritium self-sustainable

  12. Use of fast reactors for actinide transmutation. Proceedings of a specialists meeting held in Obninsk, Russian Federation, 22-24 September 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-03-15

    The management of radioactive waste is one of the key issues in today`s discussions on nuclear energy, especially the long term disposal of high level radioactive wastes. The recycling of plutonium in liquid metal fast breeder reactors (LMFBRs) would allow `burning` of the associated extremely long life transuranic waste, particularly actinides, thus reducing the required isolation time for high level waste from tens of thousands of years to hundreds of years for fission products only. The International Working Group on Fast Reactors (IWGFR) decided to include the topic of actinide transmutation in liquid metal fast breeder reactors in its programme. The IAEA organized the Specialists Meeting on Use of Fast Breeder Reactors for Actinide Transmutation in Obninsk, Russian Federation, from 22 to 24 September 1992. The specialists agree that future progress in solving transmutation problems could be achieved by improvements in: Radiochemical partitioning and extraction of the actinides from the spent fuel (at least 98% for Np and Cm and 99.9% for Pu and Am isotopes); technological research and development on the design, fabrication and irradiation of the minor actinides (MAs) containing fuels; nuclear constants measurement and evaluation (selective cross-sections, fission fragments yields, delayed neutron parameters) especially for MA burners; demonstration of the feasibility of the safe and economic MA burner cores; knowledge of the impact of maximum tolerable amount of rare earths in americium containing fuels. Refs, figs and tabs.

  13. Proceedings of the international symposium on acceleration-driven transmutation systems and Asia ADS network initiative

    International Nuclear Information System (INIS)

    Oigawa, Hiroyuki

    2003-09-01

    An International Symposium on 'Accelerator-Driven Transmutation Systems and Asia ADS Network Initiative' was held on March 24 and 25, 2003 at Gakushi-Kaikan, Tokyo, hosted by Japan Atomic Energy Research Institute, Kyoto University, Osaka University, High Energy Accelerator Research Organization and Tokyo Institute of Technology. The objectives of this symposium are to make participants acquainted with the current status and future plans for research and development (R and D) of ADS in the world and to enhance the initiation of an international collaborative network for ADS in Asia. This report records the papers and the materials of 15 presentations in the symposium. On the first day of the symposium, current activities for R and D of ADS were presented from United States, Europe, Japan, Korea, and China. On the second day, R and D activities in the fields of accelerator and nuclear physics were presented. After these presentations, a panel discussion was organized with regard to the prospective international collaboration and multidisciplinary synergy effect, which are essential to manage various technological issues encountered in R and D stage of ADS. Through the discussion, common understanding was promoted concerning the importance of establishing international network. It was agreed to establish the international network for scientific information exchange among Asian countries including Japan, Korea, China, and Vietnam in view of the future international collaboration in R and D of ADS. (author)

  14. An analytical approach to the assessment of transuranics transmutation

    International Nuclear Information System (INIS)

    Piera, M.; Sanz, J.; Perlado, M.; Minguez, E.; Martinez-Val, J.M.

    1999-01-01

    An analytical study of Pu isotopes burnup in different transmutator prototypes is presented in this paper. Each prototype has been identified by a set of averaged cross sections, i.e., they are characterized by the neutron spectrum. Three types of systems have been considered: a fast spectrum reactor, which can be associated to molten lead systems; a fully thermalized reactor; and an epithermal reactor with a strong contribution to resonance reactions. The study has been focused on the burnup of Pu-239, Pu-240 and Pu-241 because they account (directly or indirectly) for the highest contribution to long-term radiotoxicity, as already pointed out. Pu-239 also conveys significant concerns on long-term proliferation risks. Therefore, elimination of these nuclei is the most important priority in the framework of reducing the nuclear waste risk in the long-term scenario. (author)

  15. Reactor physics experiments related to transmutation in the KUCA

    Energy Technology Data Exchange (ETDEWEB)

    Shiroya, Seiji [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.

    1997-11-01

    At the Kyoto University Critical Assembly (KUCA), {sup 237}Np/{sup 235}U fission rate ratios are being measured using the back-to-back type double fission chamber to examine the nuclear data and the computational method for the transmutation of minor actinides (MA) in light water reactors (LWRs). The neutron spectra of cores are systematically being varied by changing the moderator-to-fuel volume ratio (V{sub m}/V{sub f}). The measured data are being compared with the calculated results by SRAC with three different nuclear data files. It has been indicated that the calculated results with JENDL-3.2 agreed better with the measured ones than those with JENDL-3.1 and ENDF/B-VI, although the calculated results underestimated the measured ones by around 10%. (author)

  16. Development of CERMET fuels for minor actinides transmutation

    International Nuclear Information System (INIS)

    Haas, D.; Fernandez, A.; Naestren, C.; Staicu, D.; Somers, J.; Maschek, W.; Chen, X.

    2006-01-01

    The sub-critical Accelerator Driven System (ADS) is now being considered as a potential means to burn long-lived transuranium nuclides. The preferred fuel for such a fast neutron reactor is uranium-free, highly enriched with plutonium and minor actinides. Requirements for ADS transmutation fuels are linked with the core design and safety parameters, the fuel properties and the ease of reprocessing. This study concerns the properties of metals as matrices, with the particular case of Mo. To improve the neutronic characteristics, enriched molybdenum (Mo-92) is required. To overcome the high enrichment cost, it is proposed to recover the matrix by pellet dissolution, and to recycle it for further use. Irradiation programmes are also planned to examine the in-reactor properties of the material. Based on the current status of the research, the results are promising, but irradiation results are still missing. (authors)

  17. Electron teleportation and statistical transmutation in multiterminal Majorana islands

    Science.gov (United States)

    Michaeli, Karen; Landau, L. Aviad; Sela, Eran; Fu, Liang

    2017-11-01

    We study a topological superconductor island with spatially separated Majorana modes coupled to multiple normal-metal leads by single-electron tunneling in the Coulomb blockade regime. We show that low-temperature transport in such a Majorana island is carried by an emergent charge-e boson composed of a Majorana mode and an electronic excitation in leads. This transmutation from Fermi to Bose statistics has remarkable consequences. For noninteracting leads, the system flows to a non-Fermi-liquid fixed point, which is stable against tunnel couplings anisotropy or detuning away from the charge-degeneracy point. As a result, the system exhibits a universal conductance at zero temperature, which is a fraction of the conductance quantum, and low-temperature corrections with a universal power-law exponent. In addition, we consider Majorana islands connected to interacting one-dimensional leads, and find different stable fixed points near and far from the charge-degeneracy point.

  18. Description of Transmutation Library for Fuel Cycle System Analyses

    International Nuclear Information System (INIS)

    Piet, Steven J.; Bays, Samuel E.; Hoffman, Edward A.

    2010-01-01

    This report documents the Transmutation Library that is used in Fuel Cycle System Analyses. This version replaces the 2008 version.(Piet2008) The Transmutation Library has the following objectives: (1) Assemble past and future transmutation cases for system analyses. (2) For each case, assemble descriptive information such as where the case was documented, the purpose of the calculation, the codes used, source of feed material, transmutation parameters, and the name of files that contain raw or source data. (3) Group chemical elements so that masses in separation and waste processes as calculated in dynamic simulations or spreadsheets reflect current thinking of those processes. For example, the CsSr waste form option actually includes all Group 1A and 2A elements. (4) Provide mass fractions at input (charge) and output (discharge) for each case. (5) Eliminate the need for either ''fission product other'' or ''actinide other'' while conserving mass. Assessments of waste and separation cannot use ''fission product other'' or ''actinide other'' as their chemical behavior is undefined. (6) Catalog other isotope-specific information in one place, e.g., heat and dose conversion factors for individual isotopes. (7) Describe the correlations for how input and output compositions change as a function of UOX burnup (for LWR UOX fuel) or fast reactor (FR) transuranic (TRU) conversion ratio (CR) for either FR-metal or FR-oxide. This document therefore includes the following sections: (1) Explanation of the data set information, i.e., the data that describes each case. In no case are all of the data presented in the Library included in previous documents. In assembling the Library, we return to raw data files to extract the case and isotopic data, into the specified format. (2) Explanation of which isotopes and elements are tracked. For example, the transition metals are tracked via the following: two Zr isotopes, Zr-other, Tc99, Tc-other, two Mo-Ru-Rh-Pd isotopes, Mo

  19. Radioactive waste generated from JAERI partitioning-transmutation cycle system

    Energy Technology Data Exchange (ETDEWEB)

    Shinichi, Nakayama; Yasuji, Morita; Kenji, Nishihara [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan)

    2001-07-01

    Production of lower-level radioactive wastes, as well as the reduction in radioactivity of HLW, is an important performance indicator in assessing the viability of a partitioning-transmutation system. We have begun to identify the chemical compositions and to quantify the amounts of radioactive wastes that may be generated by JAERI processes. Long-lived radionuclides such as {sup 14}C and {sup 59}Ni and spallation products of Pb-Bi coolants are added to the existing inventory of these nuclides that are generated in the current fuel cycle. Spent salts of KCl-LiCl, which is not generated from the current fuel cycle, will be introduced as a waste. (author)

  20. Accelerator-driven transmutation reactor analysis code system (ATRAS)

    Energy Technology Data Exchange (ETDEWEB)

    Sasa, Toshinobu; Tsujimoto, Kazufumi; Takizuka, Takakazu; Takano, Hideki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1999-03-01

    JAERI is proceeding a design study of the hybrid type minor actinide transmutation system which mainly consist of an intense proton accelerator and a fast subcritical core. Neutronics and burnup characteristics of the accelerator-driven system is important from a view point of the maintenance of subcriticality and energy balance during the system operation. To determine those characteristics accurately, it is necessary to involve reactions at high-energy region, which are not treated on ordinary reactor analysis codes. The authors developed a code system named ATRAS to analyze the neutronics and burnup characteristics of accelerator-driven subcritical reactor systems. ATRAS has a function of burnup analysis taking account of the effect of spallation neutron source. ATRAS consists of a spallation analysis code, a neutron transport codes and a burnup analysis code. Utility programs for fuel exchange, pre-processing and post-processing are also incorporated. (author)