WorldWideScience

Sample records for transmutation system performance

  1. The Physics of transmutation systems : system capabilities and performances

    International Nuclear Information System (INIS)

    Finck, P. J.

    2002-01-01

    This document is complementary to a document produced by Prof. Salvatores on ''The Physics of Transmutation in Critical or Subcritical Reactors and the Impact on the Fuel Cycle''. In that document, Salvatores describes the fundamental of transmutation, through basic physics properties and general parametric studies. In the present document we try to go one step further towards practical implementation (while recognizing that the practical issues such as technology development and demonstration, and economics, can only be mentioned in a very superficial manner). Section 1 briefly overviews the possible objectives of transmutation systems, and links these different objectives to possible technological paths. It also describes the overall constraints which have to be considered when developing and implementing transmutation systems. In section 2 we briefly overview the technological constraints which need to be accounted for when designing transmutation systems. In section 3 we attempt to provide a simplified classification of transmutation systems in order to clarify later comparisons. It compares heterogeneous and homogeneous recycle strategies, and single and multi-tier systems. Section 4 presents case analyses for assessing the transmutation performance of various individual systems, starting with LWR's ((1) generic results; (2) multirecycle of plutonium; (3) an alternative: transmutation based on a Thorium fuel cycle), followed by Gas-Cooled Reactors (with an emphasis on the ''deep burn'' approach), and followed by Fast Reactors and Accelerator Driven systems ((1) generic results; (2) homogeneous recycle of transuranics; (3) practical limit between Fast Reactors and Accelerator Driven Systems) Section 5 summarizes recent results on integrated system performances. It focuses first on interface effects between the two elements of a dual tier system, and then summarizes the major lessons learned from recent global physics studies

  2. A study for optimal transmutation system

    International Nuclear Information System (INIS)

    Park, W.S.; Song, T.Y.; Shin, H.S.; Park, C.K.

    1996-01-01

    Couple of transmutation systems are being under investigation to design the optimal transmutation device. Several basic studies were performed for that objectives: (1) select the radioactive nuclides to be transmuted: (2) investigate the physical characteristics of each nuclide; (3) study the most favorable neutron energy environment for the transmutation. The existing LWR and LMFBR cores were found to be not a satisfiable ones in terms of transmutation rate itself. (author). 5 refs, 2 figs, 3 tabs

  3. Analysis of Transmutation Performance in the Fast Spectrum Systems

    International Nuclear Information System (INIS)

    Zafar, Zafar Iqbal; Kim, Myung Hyun

    2015-01-01

    Nuclear energy, being the most appealing and nonpolluting source has a big issue left i.e. managing the spent nuclear fuel. There are many technological ideas in the design phase or under construction to come up with this limitation. Among the many strategies to incinerate transuranic isotopes (TRU), fission products (FP), and also produce electricity different types of critical and subcritical reactors are proposed. Two most widely studied subcritical reactor options being Accelerator Driven System and a Fusion Fission Hybrid System. In this study, we compare the amount of TRU burnt in different system spectra. To compare the performance, an identical model of a subcritical reactor is used for all the cases, with driving source taken from the potential candidates. A typical fast reactor spectrum is taken as a reference case. It is then compared with an accelerator driven subcritical reactor (ADSR) and a fusion spectrum i.e. 14.1 MeV mono-energetic neutrons. Both later types of driving sources are under extensive investigation but possess totally different pros and cons. Expected price tags for the latter two options are also very different from one another. We take net amount of TRU burnt as the criterion to judge these systems for their performance and worth. Although there is extensive research in progress to design and develop the accelerator or fusion driven systems with many targets in mind. In the current study it is concluded that the notion of TRU burning with accelerator driven systems as the most efficient and the best option to burn TRU has little base when employed in some real system. Presence of coolant and other necessary materials in the core cannot be eliminated

  4. Analysis of Transmutation Performance in the Fast Spectrum Systems

    Energy Technology Data Exchange (ETDEWEB)

    Zafar, Zafar Iqbal; Kim, Myung Hyun [Kyung Hee University, Yongin (Korea, Republic of)

    2015-10-15

    Nuclear energy, being the most appealing and nonpolluting source has a big issue left i.e. managing the spent nuclear fuel. There are many technological ideas in the design phase or under construction to come up with this limitation. Among the many strategies to incinerate transuranic isotopes (TRU), fission products (FP), and also produce electricity different types of critical and subcritical reactors are proposed. Two most widely studied subcritical reactor options being Accelerator Driven System and a Fusion Fission Hybrid System. In this study, we compare the amount of TRU burnt in different system spectra. To compare the performance, an identical model of a subcritical reactor is used for all the cases, with driving source taken from the potential candidates. A typical fast reactor spectrum is taken as a reference case. It is then compared with an accelerator driven subcritical reactor (ADSR) and a fusion spectrum i.e. 14.1 MeV mono-energetic neutrons. Both later types of driving sources are under extensive investigation but possess totally different pros and cons. Expected price tags for the latter two options are also very different from one another. We take net amount of TRU burnt as the criterion to judge these systems for their performance and worth. Although there is extensive research in progress to design and develop the accelerator or fusion driven systems with many targets in mind. In the current study it is concluded that the notion of TRU burning with accelerator driven systems as the most efficient and the best option to burn TRU has little base when employed in some real system. Presence of coolant and other necessary materials in the core cannot be eliminated.

  5. Minor actinide transmutation in accelerator driven systems

    Energy Technology Data Exchange (ETDEWEB)

    Friess, Friederike [IANUS, TU Darmstadt (Germany)

    2015-07-01

    Transmutation of radioactive waste, the legacy of nuclear energy use, gains rising interest. This includes the development of facilities able to transmute minor actinides (MA) into stable or short-lived isotopes before final disposal. The most common proposal is to use a double-strata approach with accelerator-driven-systems (ADS) for the efficient transmutation of MA and power reactors to dispose plutonium. An ADS consists of a sub-critical core that reaches criticality with neutrons supplied by a spallation target. An MCNP model of the ADS system Multi Purpose Research Reactor for Hightech Applications will be presented. Depletion calculations have been performed for both standard MOX fuel and transmutation fuel with an increased content of minor actinides. The resulting transmutation rates for MAs are compared to published values. Special attention is given to selected fission products such as Tc-99 and I-129, which impact the radiation from the spent fuel significantly.

  6. Transmutation performance analysis on coolant options in a hybrid reactor system design for high level waste incineration

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seong-Hee; Siddique, Muhammad Tariq; Kim, Myung Hyun, E-mail: mhkim@khu.ac.kr

    2015-11-15

    Highlights: • Waste transmutation performance was compared and analyzed for seven different coolant options. • Reactions of fission and capture showed big differences depending on coolant options. • Moderation effect significantly affects on energy multiplication, tritium breeding and waste transmutation. • Reduction of radio-toxicities of TRUs showed different trend to coolant choice from performance of waste transmutation. - Abstract: A fusion–fission hybrid reactor (FFHR) is one of the most attractive candidates for high level waste transmutation. The selection of coolant affects the transmutation performance of a FFHR. LiPb coolant, as a conventional coolant for a FFHR, has problems such as reduction in neutron economic and magneto-hydro dynamics (MHD) pressure drop. Therefore, in this work, transmutation performance is evaluated and compared for various coolant options such as LiPb, H{sub 2}O, D{sub 2}O, Na, PbBi, LiF-BeF{sub 2} and NaF-BeF{sub 2} applicable to a hybrid reactor for waste transmutation (Hyb-WT). Design parameters measuring performance of a hybrid reactor were evaluated by MCNPX. They are k{sub eff}, energy multiplication factor, neutron absorption ratio, tritium breeding ratio, waste transmutation ratio, support ratio and radiotoxicity reduction. Compared to LiPb, H{sub 2}O and D{sub 2}O are not suitable for waste transmutation because of neutron moderation effect. Waste transmutation performances with Na and PbBi are similar to each other and not different much from LiPb. Even though molten salt such as LiF-BeF{sub 2} and NaF-BeF{sub 2} is good for avoiding MHD pressure drop problem, waste transmutation performance is dropped compared with LiPb.

  7. Performances of actinide transmutation based accelerator-driven systems (ADS) at CIEMAT

    International Nuclear Information System (INIS)

    Embid, M.; Cano, D.; Gonzales, E.; Villamarin, D.

    2000-01-01

    The FACET group at CIEMAT is studying the properties and potentialities of several liquid metal-cooled ADS designs for actinide and fission product. transmutation. The main characteristics of these systems are the use of lead or lead-bismuth eutectic as primary coolant, moderator and fuels made by transuranics. The program has two main research lines. The first one is dedicated to the development of concepts, designs, operation models and computer simulation tools characteristics of this kind of systems. The second line includes tlte participation and tlte data analysis of the most advanced experiments in the field and international benchmarks. (authors)

  8. Performance of a transmutation advanced device for sustainable energy application

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, C.; Rosales, J.; Garcia, L. [Instituto Superior de Tecnologias y Ciencias Aplicadas (INSTEC), La Habana (Cuba); Perez-Navarro, A.; Escriva, A. [Universidad Politecnica de Valencia, Valencia (Spain). Inst. de Ingenieria Energetica; Abanades, A. [Universidad Politecnica de Madrid (Spain). Grupo de Modelizacion de Sistemas Termoenergeticos

    2009-07-01

    Preliminary studies have been performed to design a device for nuclear waste transmutation and hydrogen generation based on a gas cooled pebble bed accelerator driven system, TADSEA (transmutation advanced device for sustainable energy application). In previous studies we have addressed the viability of an ADS Transmutation device that uses as fuel wastes from the existing LWR power plants, encapsulated in graphite in the form of pebble beds, being cooled by helium which enables high temperatures, in the order of 1200 K, to facilitate hydrogen generation from water either by high temperature electrolysis or by thermo chemical cycles. To design this device several configurations were studied, including several reactors thickness, to achieve the desired parameters, the transmutation of nuclear waste and the production of 100 MW. of thermal power. In this paper we are presenting new studies performed on deep burn in-core fuel management strategy for LWR waste. We analyze the fuel cycle on TADSEA device based on driver and transmutation fuel that were proposed for the General Atomic design of a gas turbine-modular helium reactor. We compare the transmutation results of the three fuel management strategies, using driven and transmutation, and standard LWR spend fuel, and present several parameters that describe the neutron performance of TADSEA nuclear core as the fuel and moderator temperature reactivity coefficients and transmutation chain. (author)

  9. Performance of a transmutation advanced device for sustainable energy application

    International Nuclear Information System (INIS)

    Garcia, C.; Rosales, J.; Garcia, L.; Perez-Navarro, A.; Escriva, A.; Abanades, A.

    2009-01-01

    Preliminary studies have been performed to design a device for nuclear waste transmutation and hydrogen generation based on a gas cooled pebble bed accelerator driven system, TADSEA (transmutation advanced device for sustainable energy application). In previous studies we have addressed the viability of an ADS Transmutation device that uses as fuel wastes from the existing LWR power plants, encapsulated in graphite in the form of pebble beds, being cooled by helium which enables high temperatures, in the order of 1200 K, to facilitate hydrogen generation from water either by high temperature electrolysis or by thermo chemical cycles. To design this device several configurations were studied, including several reactors thickness, to achieve the desired parameters, the transmutation of nuclear waste and the production of 100 MW. of thermal power. In this paper we are presenting new studies performed on deep burn in-core fuel management strategy for LWR waste. We analyze the fuel cycle on TADSEA device based on driver and transmutation fuel that were proposed for the General Atomic design of a gas turbine-modular helium reactor. We compare the transmutation results of the three fuel management strategies, using driven and transmutation, and standard LWR spend fuel, and present several parameters that describe the neutron performance of TADSEA nuclear core as the fuel and moderator temperature reactivity coefficients and transmutation chain. (author)

  10. Transmutation and accelerator driven systems

    International Nuclear Information System (INIS)

    Shapira, J.P.

    2001-01-01

    Full text: Today, countries who are presently involved in nuclear energy are facing many challenges to maintain this option open for the next few decades. Among them, management of nuclear wastes produced in nuclear reactors and in fuel cycle operations has become a very strong environmental issue among the public. In most countries with sizeable commercial nuclear programs, deep geological disposal of ultimate highly active and long-lived nuclear wastes is considered as the reference long-term management scheme. But, many questions arise on the possibility to demonstrate that such wastes can be dealt in such a way as to protect the future generations and the environment. The characteristics of nuclear wastes, the various back end policies concerning spent fuels and the nuclear wastes long-term management options will be first described. Then recent proposals, based on transmutation, especially those using accelerator driven systems (ADS) and/or thorium will be presented. Finally, the possibility for the nuclear physics community to play a part in alleviating the nuclear wastes burden will be pointed out. (author)

  11. Transmutation of long-lived fission product (137Cs, 90Sr) by a reactor-accelerator system

    International Nuclear Information System (INIS)

    Toyama, Shin-ichi; Takashita, Hirofumi; Konashi, Kenji; Sasao, Nobuyuki; Sato, Isamu.

    1990-01-01

    The report discusses the transmutation of long-lived fission products by a reactor and accelerator. It is important to take some criteria into consideration in transmutation disposal. To satisfy the criteria, a combined system of a reactor and an accelerator is proposed for the transmutation. An outline of the transmutation reactor and the accelerator is presented. The transmutation reactor has the ability to transmute a large quantity of fission products. However, it is desirable to have a high transmutation rate as well as a large disposal ability. Besides the transmutation property, it is necessary to investigate the physics of the transmutation reactor such as nuclear characteristics and burnup properties in order to obtain the most suitable, high performance core concept. A study on those properties is also presented. A high power accelerator is required for the transmutation. So a test linac is developed to accelerate high intensity beams. (N.K.)

  12. On fusion driven systems (FDS) for transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Aagren, O (Uppsala Univ., Aangstroem laboratory, div. of electricity, Uppsala (Sweden)); Moiseenko, V.E. (Inst. of Plasma Physics, National Science Center, Kharkov Inst. of Physics and Technology, Kharkov (Ukraine)); Noack, K. (Forschungszentrum Dresden-Rossendorf (Germany))

    2008-10-15

    This report gives a brief description of ongoing activities on fusion driven systems (FDS) for transmutation of the long-lived radioactive isotopes in the spent nuclear waste from fission reactors. Driven subcritical systems appears to be the only option for efficient minor actinide burning. Driven systems offer a possibility to increase reactor safety margins. A comparatively simple fusion device could be sufficient for a fusion-fission machine, and transmutation may become the first industrial application of fusion. Some alternative schemes to create strong fusion neutron fluxes are presented

  13. On fusion driven systems (FDS) for transmutation

    International Nuclear Information System (INIS)

    Aagren, O; Moiseenko, V.E.; Noack, K.

    2008-10-01

    This report gives a brief description of ongoing activities on fusion driven systems (FDS) for transmutation of the long-lived radioactive isotopes in the spent nuclear waste from fission reactors. Driven subcritical systems appears to be the only option for efficient minor actinide burning. Driven systems offer a possibility to increase reactor safety margins. A comparatively simple fusion device could be sufficient for a fusion-fission machine, and transmutation may become the first industrial application of fusion. Some alternative schemes to create strong fusion neutron fluxes are presented

  14. Transmutation blanket design for a Tokamak system

    International Nuclear Information System (INIS)

    Velasquez, Carlos E.; Barros, Graiciany de P.; Pereira, Claubia; Veloso, Maria A. Fortini; Costa, Antonella L.

    2011-01-01

    Sub-critical advanced reactor with a D-T fusion neutron source based on Tokamak technology is an innovative type of nuclear system. Due to the high quantity of neutrons produced by fusion reactions, it could be well spent in the transmutation process of the transuranic elements. Nevertheless, to achieve a successful transmutation, it is necessary to know the neutron fluence along the radial axis and its characteristics. In this work, it evaluated the neutron flux and interaction frequency along the radial axis changing the material of the first wall. W-alloy, beryllium and the combination of both were studied and regions more suitable to transmutation were determined. The results demonstrated that the better zone to place a transmutation blanket is limited by the heat sink and the shield block. Material arrangements W-alloy/W-alloy and W-alloy/Beryllium would be able to hold the requirements of high fluence and hardening spectrum needed to transuranic transmutation. The system was simulated using the MCNP5 code, the ITER Final Design Report, 2001, and the FENDL/MC-2.1 nuclear data library. (author)

  15. Activities performed within the program of nuclear safety research on structural and cladding materials for innovative reactor system able to transmute nuclear waste

    International Nuclear Information System (INIS)

    Fazio, C.; Rieth, M.; Lindau, R.; Aktaa, J.; Schneider, H-C.; Konys, J.; Yurechko, M.; Mueller, G.; Weisenburger, A.

    2009-01-01

    The transmutation of nuclear waste to reduce the burden on a geological repository is a relevant topic within the Program of Nuclear Safety Research of the Research Centre Karlsruhe. Several studies have confirmed that a high efficiency of transmutation of actinides is reached in fast neutron spectrum reactor system. Therefore, an important effort is dedicated to the study of transmutation strategies with different fast reactors and their associated technologies. Moreover, in international contexts as Generation IV International Forum (GIF) and Sustainable Nuclear Energy Technology Platform (SNETP), fast reactors are considered in the frame of sustainable development of nuclear energy and reduction of waste. The systems that are currently under investigation, in the frame of the different fuel cycle scenarios, are liquid metal cooled and gas cooled fast reactors as well as Accelerator Driven Sub-critical Transmutation devices (ADS). These innovative reactor systems, call for structural and clad materials, which are able to perform in a safe manner under the envisaged operational and postulated transient conditions. In this context the European Commission supports the FP7 project GETMAT, with the objective to contribute to the development and selection of reference structure materials for core components and primary systems of fast neutron reactors. Several institutes of the Research Centre Karlsruhe are involved in this project with activities in the area of 9Cr ODS steel development and mechanical characterisation; optimisation and ranking of weld and joining techniques as Electron Beam, TIG and Diffusion Bonding; assessment of materials behaviour in corrosive environment and in neutron and neutron/proton irradiation field; and development of corrosion protection barriers for cladding and primary system components and their characterisation. The objective of this contribution is to describe the context in which the GETMAT activities are embedded in the Program

  16. System and safety studies of accelerator driven transmutation systems. Annual report 1999

    International Nuclear Information System (INIS)

    Gudowski, Waclaw; Wallenius, Jan; Eriksson, Marcus; Carlsson, Johan; Seltborg, Per; Tucek, Kamil

    2000-05-01

    In 1996, SKB commenced funding of the project 'System and safety studies of accelerator driven transmutation systems and development of a spallation target'. The aim of the project was stated as: Development of a complete code for simulation of transmutation processes in an accelerator driven system. Application of the code for analysis of neutron flux, transmutation rates, reactivity changes, toxicity and radiation damages in the transmutation core. Build up of competence regarding issues related to spallation targets, development of research activities regarding relevant material issues. Performing of basic experiments in order to investigate the adequacy of using the spallation. target as a neutron source for a transmutation system, and participation in the planning and implementation of an international demonstration experiment. In the present report, activities within and related to the framework of the project, performed at the department of Nuclear and Reactor Physics at the Royal Institute of Technology during 1999, are accounted for

  17. System and safety studies of accelerator driven transmutation systems. Annual report 1997

    International Nuclear Information System (INIS)

    Wallenius, J.; Carlsson, Johan; Gudowski, W.

    1997-12-01

    In November 1996, SKB started financing of the project ''System and safety studies of accelerator driven transmutation systems and development of a spallation target''. The aim of the project was stated as: 1) Development of a complete code for simulation of transmutation processes in an accelerator driven system. Application of the code for analysis of neutron flux, transmutation rates, reactivity changes, toxicity and radiation damages in the transmutation core. 2) Build up of competence regarding issues related to spallation targets development of research activities regarding relevant material issues. Performing of basic experiments in order to investigate the adequacy of using the spallation target as a neutron source for a transmutation system, and participation in the planning and implementation of an international demonstration-experiment. In the present report, activities within the framework of the project performed at the department of Nuclear and Reactor Physics at the Royal Institute of Technology during 1997, are accounted for

  18. System and safety studies of accelerator driven transmutation systems. Annual report 1997

    Energy Technology Data Exchange (ETDEWEB)

    Wallenius, J.; Carlsson, Johan; Gudowski, W. [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Nuclear and Reactor Physics

    1997-12-01

    In November 1996, SKB started financing of the project ``System and safety studies of accelerator driven transmutation systems and development of a spallation target``. The aim of the project was stated as: 1) Development of a complete code for simulation of transmutation processes in an accelerator driven system. Application of the code for analysis of neutron flux, transmutation rates, reactivity changes, toxicity and radiation damages in the transmutation core. 2) Build up of competence regarding issues related to spallation targets development of research activities regarding relevant material issues. Performing of basic experiments in order to investigate the adequacy of using the spallation target as a neutron source for a transmutation system, and participation in the planning and implementation of an international demonstration-experiment. In the present report, activities within the framework of the project performed at the department of Nuclear and Reactor Physics at the Royal Institute of Technology during 1997, are accounted for. 13 refs, 6 figs.

  19. System and safety studies of accelerator driven transmutation systems. Annual report 1999

    Energy Technology Data Exchange (ETDEWEB)

    Gudowski, Waclaw; Wallenius, Jan; Eriksson, Marcus; Carlsson, Johan; Seltborg, Per; Tucek, Kamil [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Nuclear and Reactor Physics

    2000-05-01

    In 1996, SKB commenced funding of the project 'System and safety studies of accelerator driven transmutation systems and development of a spallation target'. The aim of the project was stated as: Development of a complete code for simulation of transmutation processes in an accelerator driven system. Application of the code for analysis of neutron flux, transmutation rates, reactivity changes, toxicity and radiation damages in the transmutation core. Build up of competence regarding issues related to spallation targets, development of research activities regarding relevant material issues. Performing of basic experiments in order to investigate the adequacy of using the spallation. target as a neutron source for a transmutation system, and participation in the planning and implementation of an international demonstration experiment. In the present report, activities within and related to the framework of the project, performed at the department of Nuclear and Reactor Physics at the Royal Institute of Technology during 1999, are accounted for.

  20. Neutronics analysis of minor actinides transmutation in a fusion-driven subcritical system

    International Nuclear Information System (INIS)

    Yang, Chao; Cao, Liangzhi; Wu, Hongchun; Zheng, Youqi; Zu, Tiejun

    2013-01-01

    Highlights: • A fusion fission hybrid system for MA transmutation is proposed. • The analysis of neutronics effects on the transmutation is performed. • The transmutation rate of MA reaches 86.5% by 25 times of recycling. -- Abstract: The minor actinides (MAs) transmutation in a fusion-driven subcritical system is analyzed in this paper. The subcritical reactor is driven by a tokamak D-T fusion device with relatively easily achieved plasma parameters and tokamak technologies. The MAs discharged from the light water reactor (LWR) are loaded in transmutation zone. Sodium is used as the coolant. The mass percentage of the reprocessed plutonium (Pu) in the fuel is raised from 0 to 48% and stepped by 12% to determine its effect on the MAs transmutation. The lesser the Pu is loaded, the larger the MAs transmutation rate is, but the smaller the energy multiplication factor is. The neutronics analysis of two loading patterns is performed and compared. The loading pattern where the mass percentage of Pu in two regions is 15% and 32.9% respectively is conducive to the improvement of the transmutation fraction within the limits of burn-up. The final transmutation fraction of MAs can reach 17.8% after five years of irradiation. The multiple recycling is investigated. The transmutation fraction of MAs can reach about 61.8% after six times of recycling, and goes up to about 86.5% after 25

  1. Transmutation of 129I Using an Accelerator-Driven System

    International Nuclear Information System (INIS)

    Nishihara, Kenji; Takano, Hideki

    2002-01-01

    A conceptual blanket design for 129 I transmutation is proposed for an accelerator-driven system (ADS) that is designed to transmute minor actinides (MAs). In this ADS, 250 kg/yr of MA and 56 kg/yr of iodine are simultaneously transmuted, and they correspond to the quantities generated from ∼10 units of existing light water reactors. Furthermore, an introduction scenario and the benefit of iodine transmutation are studied for future introduction of fast breeder reactors. It is shown that the transmutation of iodine benefits the concept of underground disposal

  2. Conceptual study on high performance blanket in a spherical tokamak fusion-driven transmuter

    International Nuclear Information System (INIS)

    Chen Yixue; Wu Yican

    2000-01-01

    A preliminary conceptual design on high performance dual-cooled blanket of fusion-driven transmuter is presented based on neutronic calculation. The dual-cooled system has some attractive advantages when utilized in transmutation of HLW (High Level Wastes). The calculation results show that this kind of blanket could safely transmute about 6 ton minor actinides (produced by 170 GW(e) Year PWRs approximately) and 0.4 ton fission products per year, and output 12 GW thermal power. In addition, the variation of power and critical factor of this blanket is relatively little during its 1-year operation period. This blanket is also tritium self-sustainable

  3. A code system for ADS transmutation studies

    International Nuclear Information System (INIS)

    Brolly, A.; Vertes, P.

    2001-01-01

    An accelerator driven reactor physical system can be divided into two different subsystems. One is the neutron source the other is the subcritical reactor. Similarly, the modelling of such system is also split into two parts. The first step is the determination of the spatial distribution and angle-energy spectrum of neutron source in the target region; the second one is the calculation of neutron flux which is responsible for the transmutation process in the subcritical system. Accelerators can make neutrons from high energy protons by spallation or photoneutrons from accelerated electrons by Bremsstrahlung (e-n converter). The Monte Carlo approach is the only way of modelling such processes and it might be extended to the whole subcritical system as well. However, a subcritical reactor may be large, it may contain thermal regions and the lifetime of neutrons may be long. Therefore a comprehensive Monte Carlo modelling of such system is a very time consuming computational process. It is unprofitable as well when applied to system optimization that requires a comparative study of large number of system variants. An appropriate method of deterministic transport calculation may adequately satisfy these requirements. Thus, we have built up a coupled calculational model for ADS to be used for transmutation of nuclear waste which we refer further as M-c-T system. Flow chart is shown in Figure. (author)

  4. Feasibility of waste transmutation using accelerator-driven IRIS subcritical system

    International Nuclear Information System (INIS)

    Petroviae, B.; Carelli, M.; Paramonov, D.

    2001-01-01

    Waste transmutation is considered for reducing radio-toxicity of nuclear waste generated in power reactors. Accelerator driven subcritical systems (ADS) offer certain advantages over the use of nuclear reactors. Transmutation of fission products (e.g. 99 Tc) generally requires thermal neutron spectrum, while for actinides fast spectrum provides better performance. Proposed solutions to this problem include a multi-strata approach as well as a multi-zone (thermal/fast-spectrum) single systems. In this paper we examine the feasibility of employing a dual-spectrum two-zone accelerator-driven IRIS subcritical for waste transmutation. (author)

  5. A low power ADS for transmutation studies in fast systems

    Science.gov (United States)

    Panza, Fabio; Firpo, Gabriele; Lomonaco, Guglielmo; Osipenko, Mikhail; Ricco, Giovanni; Ripani, Marco; Saracco, Paolo; Viberti, Carlo Maria

    2017-12-01

    In this work, we report studies on a fast low power accelerator driven system model as a possible experimental facility, focusing on its capabilities in terms of measurement of relevant integral nuclear quantities. In particular, we performed Monte Carlo simulations of minor actinides and fission products irradiation and estimated the fission rate within fission chambers in the reactor core and the reflector, in order to evaluate the transmutation rates and the measurement sensitivity. We also performed a photo-peak analysis of available experimental data from a research reactor, in order to estimate the expected sensitivity of this analysis method on the irradiation of samples in the ADS considered.

  6. New infrastructure for studies of transmutation and fast systems concepts

    Science.gov (United States)

    Panza, Fabio; Firpo, Gabriele; Lomonaco, Guglielmo; Osipenko, Mikhail; Ricco, Giovanni; Ripani, Marco; Saracco, Paolo; Viberti, Carlo Maria

    2017-09-01

    In this work we report initial studies on a low power Accelerator-Driven System as a possible experimental facility for the measurement of relevant integral nuclear quantities. In particular, we performed Monte Carlo simulations of minor actinides and fission products irradiation and estimated the fission rate within fission chambers in the reactor core and the reflector, in order to evaluate the transmutation rates and the measurement sensitivity. We also performed a photo-peak analysis of available experimental data from a research reactor, in order to estimate the expected sensitivity of this analysis method on the irradiation of samples in the ADS considered.

  7. Evaluation of systems incorporating transmutation for the reduction of the long term toxicity of high-level waste

    International Nuclear Information System (INIS)

    Davidson, J.W.

    1979-01-01

    One of the alternative high-level nuclear waste (HLW) management/disposal concepts proposed involves the separation from HLW of the elements with isotopes which dominate the radiotoxicity and the transmutation of these nuclides to shortlived or stable products. The waste management system required for transmutation employs chemical processing of HLW to recover waste nuclides for irradiation with neutrons in a transmutation device. The transmuter periodically requires replenishment of the target nuclides and chemical processing to remove the transmutation products. The waste streams from HLW processing and product recovery together comprise the discharge from the system. An imploding liner fusion reactor (ILFR) is assumed for the transmuter with the waste nuclides dissolved in a molten lead-lithium alloy blanket. The potential transmutation candidates are defined as the elements with toxicities per unit volume (toxicity indexes) in solidified HLW at 1000 years which are greater than that for 0.2% uranium ore (carnotite). The candidates which require separation for transmutation are the actinides; Np, Pu, Am, and Cu and the fission products; I and Tc. Certain assumptions were made for the parameters for the ILFR and its operating conditions, and a system evaluation was done. System evaluations indicate that blanket waste loadings on the order of several percent of the total concentration result in attractive performance in terms of high transmutation capacities and low blanket processing requirments. It appears that transmutation system goals in terms of toxicity reduction are achievable with a modest number of transmuters. In addition, requirements for transmuter performance, chemical processing capacity and chemical separation efficiency appear to be within projected values for this technology

  8. The Molten Salt Fast Reactor as Highly Efficient Transmutation System

    International Nuclear Information System (INIS)

    Merk, B.; Rohde, U.; Scholl, S.

    2013-01-01

    Conclusion and future steps: • MSFR offers very attractive features for efficient transmutation; • significant advantages due to liquid fuel and online refuelling and reprocessing; • significant developments are required on the way to application; • system is very promising for transmutation; • development of a safety approach for liquid fuel reactors (RSWG); • investigation of possibilities to solve the “last transmuter” problem (ICAPP2013) – as future for countries envisaging nuclear phase out or no transition to fast reactor fleet for energy production; • establishing of a strong group “MSFR for transmutation”; • development of a transmutation optimized design

  9. Comparative study of accelerator driven system (ADS) of different transmutation scenarios for actinides in advanced nuclear fuel cycles

    International Nuclear Information System (INIS)

    Embid-Segura, M.; Gonzalez Romero, M.E.; Perez Parra, A.

    2001-01-01

    The full text follows. In recent years transmutation has raised as a complementary option to solve the problem of the long-lived radioactive waste produced in nuclear power plants. The main advantages expected from transmutation are the reduction in volume of the high level waste and a significant decrease in the long-term radiotoxicity inventory, with a probable impact in the final costs and potential risks of the geological repository. This paper will describe the evaluation of different systems proposed for actinide transmutation, their integration in the waste management process, their viability, performances and limitations. Particular attention is taking of comparing transmutation scenarios where the actinides are transmuted inside fertile (U, Th) or inert matrix. This study has been supported by ENRESA inside the CIEMAT-ENRESA collaboration for the study of long-lived isotope transmutation. (authors)

  10. Aspects of severe accidents in transmutation systems

    International Nuclear Information System (INIS)

    Wider, H.U.; Karlson, J.; Jones, A.V.

    2001-01-01

    The different types of transmutation systems under investigation include accelerator driven (ADS) and critical systems. To switch off an accelerator in case of an accident initiation is quite important for all accidents. For a fast ADS the grace times available for doing so depend strongly on the total heat capacity and the natural circulation capability of the primary coolant. Cooling with heavy metal Pb-Bi has considerable advantages in this regard compared to gas cooling. Moreover it allows passive ex-vessel cooling with natural air or water circulation. In the remote likelihood of fuel melting, oxide fuel appears to mix with the Pb-Bi coolant. Fast critical systems that are cooled by Pb-Bi will automatically shut off if the flow or heat sink is lost. Reactivity accidents can be limited by a low total control rod worth. High temperature reactors can achieve only incomplete burning of actinides. If an accelerator is added to increase burn-up, a fast spectrum region is needed, which has a low heat capacity. (author)

  11. Transmutation of 126Sn in spallation targets of accelerator-driven systems

    International Nuclear Information System (INIS)

    Han, Chi Young; Saito, Masaki; Sagara, Hiroshi

    2009-01-01

    The practical feasibility of 126 Sn transmutation in spallation targets of accelerator-driven systems was evaluated from the viewpoints of accumulation of radioactive spallation products and neutron production as well as transmutation amount of 126 Sn. A cylindrical liquid 126 Sn target whose length depends on proton beam energy was described, based on a Pb-Bi target design of accelerator-driven system being developed in JAEA. A proton beam of 1.5 GeV-20 mA was estimated to give the transmutation rate of 126 Sn 6.4 kg/yr, which corresponds to the amount of 126 Sn annually discharged in 27 LWRs of 1 GWt and 33 GWd/THM. The equilibrium radioactivity of spallation products would reach 9% of that of 126 Sn transmuted in the spallation target, and the equilibrium toxicity would be just 3%. Some parametric analyses showed that the effective half-life of 126 Sn could be reduced through a proper reduction of the target size. The 126 Sn target was calculated to produce 40 neutrons per proton of 1.5 GeV and give a neutron spectrum very similar to that of the reference Pb-Bi target. As a result, the transmutation of 126 Sn in the spallation target has a high feasibility in terms of better transmutation performance and comparable target performance. (author)

  12. Current Status of the Transmutation Reactor Technology and Preliminary Evaluation of Transmutation Performance of the KALIMER Core

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Ser Gi; Sim, Yoon Sub; Kim, Yeong Il; Kim, Young Gyum; Lee, Byung Woon; Song, Hoon; Lee, Ki Bog; Jang, Jin Wook; Lee, Dong Uk

    2005-08-15

    devised. It has been considered that the degradations of core performances resulting from increase of the transmutation rate are very important problems. From the analysis results of the state-of-art of the nuclear transmutation technology, the following technical research topics are determined as the technical solution ways for the future development and enhancement of the transmutation technology; 1) the improvement of core safety through the reduction of the coolant void reactivity worth by using the void duct assembly, 2) the design of a reference transmutation reactor for the future transmutation research through the change of the KALIMER-600 reactor core into the transmutation reactor and its core performance analysis, 3) the optimization study of the hybrid loading of uranium-free fuel and uranium fuel to improve the transmutation rate and the core safety parameters. Finally, the feasibility of the transmutation core suggested above where the void duct assemblies are devised to improve the sodium void reactivity worth and to achieve the power flattening under a single fuel enrichment and a single type of fuel assembly is analyzed and assessed. The results show that this core has its sodium coolant void reactivity less than 3$ and this core can transmutate the TRU nuclides discharged from two LWRs of the same thermal power.

  13. Safety characteristics of potential waste transmutation systems

    International Nuclear Information System (INIS)

    Van Tuyle, G.J.

    1993-01-01

    For nuclear waste transmutation to alter significantly the need for geologic disposal of spent fuel from US Light-water reactors (LWRs), about 1.4% of the spent fuel (by mass) must be separated and transmuted. This includes the plutonium, the minor actinides, and four fission products: iodine. technetium, cesium and strontium. Regarding the actinides, fissioning of the plutonium, neptunium, americium, and curium generates a great deal of heat, so much so that most of the plutonium should be used to produce power. However, these actinides have some undesirable neutronic characteristics, and their utilization in reactors or subcritical (proton-accelerator) targets requires either a fast neutronic spectrum or a very high thermal-neutron flux. Transmutation of the fission products is generally by neutron capture, although this is difficult in the case of cesium and strontium. In this paper, various proposed means of transmuting the actinides and fission products are discussed, with the main focus being on the safety characteristics of each approach

  14. Heterogeneous fuels for minor actinides transmutation: Fuel performance codes predictions in the EFIT case study

    Energy Technology Data Exchange (ETDEWEB)

    Calabrese, R., E-mail: rolando.calabrese@enea.i [ENEA, Innovative Nuclear Reactors and Fuel Cycle Closure Division, via Martiri di Monte Sole 4, 40129 Bologna (Italy); Vettraino, F.; Artioli, C. [ENEA, Innovative Nuclear Reactors and Fuel Cycle Closure Division, via Martiri di Monte Sole 4, 40129 Bologna (Italy); Sobolev, V. [SCK.CEN, Belgian Nuclear Research Centre, Boeretang 200, B-2400 Mol (Belgium); Thetford, R. [Serco Technical and Assurance Services, 150 Harwell Business Centre, Didcot OX11 0QB (United Kingdom)

    2010-06-15

    Plutonium recycling in new-generation fast reactors coupled with minor actinides (MA) transmutation in dedicated nuclear systems could achieve a decrease of nuclear waste long-term radiotoxicity by two orders of magnitude in comparison with current once-through strategy. In a double-strata scenario, purpose-built accelerator-driven systems (ADS) could transmute minor actinides. The innovative nuclear fuel conceived for such systems demands significant R and D efforts in order to meet the safety and technical performance of current fuel systems. The Integrated Project EUROTRANS (EUROpean research programme for the TRANSmutation of high level nuclear waste in ADS), part of the EURATOM Framework Programme 6 (FP6), undertook some of this research. EUROTRANS developed from the FP5 research programmes on ADS (PDS-XADS) and on fuels dedicated to MA transmutation (FUTURE, CONFIRM). One of its main objectives is the conceptual design of a small sub-critical nuclear system loaded with uranium-free fuel to provide high MA transmutation efficiency. These principles guided the design of EFIT (European Facility for Industrial Transmutation) in the domain DESIGN of IP EUROTRANS. The domain AFTRA (Advanced Fuels for TRAnsmutation system) identified two composite fuel systems: a ceramic-ceramic (CERCER) where fuel particles are dispersed in a magnesia matrix, and a ceramic-metallic (CERMET) with a molybdenum matrix in the place of MgO matrix to host a ceramic fissile phase. The EFIT fuel is composed of plutonium and MA oxides in solid solution with isotopic vectors typical of LWR spent fuel with 45 MWd/kg{sub HM} discharge burnup and 30 years interim storage before reprocessing. This paper is focused on the thermomechanical state of the hottest fuel pins of two EFIT cores of 400 MW{sub (th)} loaded with either CERCER or CERMET fuels. For calculations three fuel performance codes were used: FEMALE, TRAFIC and TRANSURANUS. The analysis was performed at the beginning of fuel life

  15. System and safety studies of accelerator driven transmutation systems

    International Nuclear Information System (INIS)

    Gudowski, W.; Wallenius, J.; Tucek, K.; Eriksson, Marcus; Carlsson, Johan; Seltborg, P.; Cetnar, J.

    2001-05-01

    The research on safety of Accelerator-Driven Transmutation Systems (ADS) at the department has been focused on: a) ADS core design and development of advanced nuclear fuel optimised for high transmutation rates and good safety features; b) analysis of ADS-dynamics c) computer code and nuclear data development relevant for simulation and optimization of ADS; d) participation in ADS experiments including 1 MW spallation target manufacturing, subcritical experiments MUSE (CEA-Cadarache). Moreover, during the reporting period the EU-project 'IABAT', co-ordinated by the department has been finished and 4 other projects have been initiated in the frame of the 5th European Framework Programme. Most of the research topics reported in this paper are referred to appendices, which have been published in the open literature. The topics, which are not yet published, are described here in more details

  16. System and safety studies of accelerator driven transmutation systems

    Energy Technology Data Exchange (ETDEWEB)

    Gudowski, W.; Wallenius, J.; Tucek, K.; Eriksson, Marcus; Carlsson, Johan; Seltborg, P.; Cetnar, J. [Royal Inst. of Technology, Stockholm (Sweden). Dept. of Nuclear and Reactor Physics

    2001-05-01

    The research on safety of Accelerator-Driven Transmutation Systems (ADS) at the department has been focused on: a) ADS core design and development of advanced nuclear fuel optimised for high transmutation rates and good safety features; b) analysis of ADS-dynamics c) computer code and nuclear data development relevant for simulation and optimization of ADS; d) participation in ADS experiments including 1 MW spallation target manufacturing, subcritical experiments MUSE (CEA-Cadarache). Moreover, during the reporting period the EU-project 'IABAT', co-ordinated by the department has been finished and 4 other projects have been initiated in the frame of the 5th European Framework Programme. Most of the research topics reported in this paper are referred to appendices, which have been published in the open literature. The topics, which are not yet published, are described here in more details.

  17. Transmutation Fuel Performance Code Thermal Model Verification

    Energy Technology Data Exchange (ETDEWEB)

    Gregory K. Miller; Pavel G. Medvedev

    2007-09-01

    FRAPCON fuel performance code is being modified to be able to model performance of the nuclear fuels of interest to the Global Nuclear Energy Partnership (GNEP). The present report documents the effort for verification of the FRAPCON thermal model. It was found that, with minor modifications, FRAPCON thermal model temperature calculation agrees with that of the commercial software ABAQUS (Version 6.4-4). This report outlines the methodology of the verification, code input, and calculation results.

  18. Accelerator driven nuclear energy and transmutation systems

    International Nuclear Information System (INIS)

    Boldeman, J.W.

    1999-01-01

    Nuclear power generation has been a mature industry for many years. However, despite the overall safety record and the great attractions of nuclear power, especially in times of concern about green house gases emissions, there continues to be some lack of public acceptance of this technology. This sensitivity to nuclear power has several elements in addition to the concern of a potential nuclear accident. These include the possible diversion of plutonium into nuclear weapon production and the concern about the long term storage of plutonium and other transuranic elements. A concept which seeks to allay these fears but still takes advantage of the nuclear fuel cycle and utilises decades of research and development in this technology, is the idea of using modern accelerators to transmute the long lived radio nuclides and simultaneously generate power. A review of the novel concepts for energy production and transmutation of isotopes will be presented. Of the various proposals, the most developed is the Energy Amplifier Concept promoted by Rubbia. The possibility of using high-energy, high-current accelerators to produce large fluxes of neutrons has been known since the earliest days of accelerator technology. E.O. Lawrence, for example, promoted the concept of producing nuclear material with such an accelerator. The Canadians in the early 50s considered using accelerators to produce fuel for their heavy water reactors and there were well advanced designs for a device called the Intense Neutron Generator. The speculative idea of using accelerator produced neutrons for the transmutation of transuranic elements (i.e. elements such as neptunium plutonium and other elements with higher Z atomic number) has also been studied extensively, notably at a number of laboratories in the US, Europe and Japan. However at this time, all facilities that have actually been constructed have been designed primarily for condensed matter studies i.e. studies of the structural properties

  19. Transmutations in Masquerade Costumes and Performances: An ...

    African Journals Online (AJOL)

    Masquerades or spirit manifests are uniquely ritualistic. Masquerade performances in African culture are symbolizations; they represent not only the physical and continuous presence of the ancestors but also their luminal sense of justice and equity. Masquerade, derived from mask presupposes that somebody's identity is ...

  20. Radioactive waste generated from JAERI partitioning-transmutation cycle system

    Energy Technology Data Exchange (ETDEWEB)

    Shinichi, Nakayama; Yasuji, Morita; Kenji, Nishihara [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan)

    2001-07-01

    Production of lower-level radioactive wastes, as well as the reduction in radioactivity of HLW, is an important performance indicator in assessing the viability of a partitioning-transmutation system. We have begun to identify the chemical compositions and to quantify the amounts of radioactive wastes that may be generated by JAERI processes. Long-lived radionuclides such as {sup 14}C and {sup 59}Ni and spallation products of Pb-Bi coolants are added to the existing inventory of these nuclides that are generated in the current fuel cycle. Spent salts of KCl-LiCl, which is not generated from the current fuel cycle, will be introduced as a waste. (author)

  1. Present status and issues for accelerator driven transmutation system

    International Nuclear Information System (INIS)

    Mizumoto, Motoharu

    2003-01-01

    Proper treatment of high-level nuclear wastes (HLW) that are produced in operation of nuclear power plants is one of the most important problems for further utilization of nuclear energy. The purpose of the accelerator driven nuclear waste transmutation system (ADS) is to transmute these nuclei to stable or short-lived nuclei by various radiation-induced nuclear reactions. When ADS for HLW can be realized, burden to deep geological disposal can be considerably reduced. In the paper, present status and issues for ADS will be discussed. (author)

  2. Transmutation potential of current and innovative nuclear power systems

    International Nuclear Information System (INIS)

    Slessarev, I.; Salvatores, M.; Uematsu, M.

    1993-01-01

    In the present paper we have investigated the transmutation potential of different nuclear systems from a physical point of view. Transuranium (TRU) elements have been considered, but also long lived fission products (LLFP). The potential for transmutation has to take into account not only the consumption of a specific nucleus (or of a specific 'family' of nuclei), but also the reproduction of other nuclei of higher masses. The present study allows an intercomparison taking into account both aspects. Technological, safety and design constraints were not considered at this stage. However strategic indications for future studies have been obtained. 3 refs., 3 tabs

  3. Research on transmutation and accelerator-driven systems at the Forschungszentrum Karlsruhe

    International Nuclear Information System (INIS)

    Knebel, J.U.; Heusener, G.

    2000-01-01

    Transmutation is considered a promising technology worldwide for significantly reducing the amount and, thereby, the long-term radiotoxicity of high active waste (HAW) produced by the operation of nuclear power plants such as light water reactors (LWR). The maximum reduction of radiotoxicity could be by a factor of about 100. Transmutation is thus an alternative to the direct deposition of large volumes of highly radioactive waste. Transmutation presents the possibility of closing the fuel cycle including the minor actinides. Plutonium, minor actinides and long-lived fission products can be transmuted in a so called Accelerator Driven Sub-critical System (ADS), which consists of an accelerator, a target module and a subcritical blanket. This paper describes the work performed at Forschungszentrum Karlsruhe which is critically evaluating an ADS mainly with respect to its potential for transmuting minor actinides, to its feasibility and to safety aspects. The work is being done in the area of core design, neutronics, safety, system analyses, materials and corrosion. (orig.) [de

  4. Neutronics-processing interface analyses for the Accelerator Transmutation of Waste (ATW) aqueous-based blanket system

    International Nuclear Information System (INIS)

    Davidson, J.W.; Battat, M.E.

    1993-01-01

    Neutronics-processing interface parameters have large impacts on the neutron economy and transmutation performance of an aqueous-based Accelerator Transmutation of Waste (ATW) system. A detailed assessment of the interdependence of these blanket neutronic and chemical processing parameters has been performed. Neutronic performance analyses require that neutron transport calculations for the ATW blanket systems be fully coupled with the blanket processing and include all neutron absorptions in candidate waste nuclides as well as in fission and transmutation products. The effects of processing rates, flux levels, flux spectra, and external-to-blanket inventories on blanket neutronic performance were determined. In addition, the inventories and isotopics in the various subsystems were also calculated for various actinide and long-lived fission product transmutation strategies

  5. Evaluation of transmutation performance of long-lived fission products with a super fast reactor

    International Nuclear Information System (INIS)

    Lu, Haoliang; Han, Chiyoung; Oka, Yoshiaki; Ikejiri, Satoshi; Ishiwatari, Yuki

    2009-01-01

    The performance of the Super Fast Reactor for transmutation treatment of long-lived fission products (LLFPs) was evaluated. Two regions with soft neutron spectrum, which is of great benefit to the LLFPs transmutation, can be utilized in the Super Fast Reactor. First is in the blanket assembly due to the ZrH 1.7 layer which can slow down the fast neutrons. Second is in the reflector region of core like other metal-cooled fast reactors. The LLFPs selected of transmutation analysis include 99 Tc, 129 I and 135 Cs discharged from LWR. Their isotopes, such as 127 I, 133 Cs, 134 Cs and 137 Cs were also considered. By loading the isotopes ( 99 Tc or 127 I and 129 I) in the blanket assembly and the reflector region simultaneously, the transmutation rates of 5.36%/GWe·y and 2.79%/GWe.y can be obtained for 99 Tc and 129 I, respectively. The transmuted amounts of 99 Tc and 129 I are equal to the outputs from 11.8 and 6.2 1000MWe-class PWRs. Because of the very low capture cross section of 135 Cs and the effect of other cesium isotopes, 135 Cs was loaded with three rings of assemblies in the reflector region to make the transmuted amount be larger than the yields of two 1000MWe-class PWRs. Based on these results, 99 Tc and 129 I can be transmuted conveniently and higher transmutation performance can be obtained by the Super Fast Reactor. However, the transmutation of 135 Cs is very difficult and the transmuted amount is less than that produced by the Super Fast Reactor. It turns out that the 135 Cs transmutation is a challenge not only for the Super Fast Reactor but also for other commercial fast reactors. (author)

  6. Neutronic Analysis on Coolant Options in a Hybrid Reactor System for High Level Waste Transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seong Hee; Kim, Myung Hyun [Kyung Hee University, Seoul (Korea, Republic of)

    2014-10-15

    A fusion-fission hybrid reactor (FFHR) which is a combination of plasma fusion tokamak as a fast neutron source and a fission reactor as of fusion blanket is another potential candidate. In FFHR, fusion plasma machine can supply high neutron-rich and energetic 14.1MeV (D, T) neutrons compared to other options. Therefore it has better capability in HLW incineration. While, it has lower requirements compared to pure fusion. Much smaller-sized tokamak can be achievable in a near term because it needs relatively low plasma condition. FFHR has also higher safety potential than fast reactors just as ADSR because it is subcritical reactor system. FFHR proposed up to this time has many design concepts depending on the design purpose. FFHR may also satisfy many design requirement such as energy multiplication, tritium production, radiation shielding for magnets, fissile breeding for self-sustain ability also waste transmutation. Many types of fuel compositions and coolant options have been studied. Effect of choices for fuel and coolant was studied for the transmutation purpose FFHR by our team. In this study LiPb coolant was better than pure Li coolant both for neutron multiplication and tritium breeding. However, performance of waste transmutation was reduced with increased neutron absorption at coolant caused by tritium breeding. Also, LiPb as metal coolant has a problem of massive MHD pressure drop in coolant channels. Therefore, in a previous study, waste transmutation performance was evaluated with light water coolant option which may be a realistic choice. In this study, a neutronic analysis was done for the various coolant options with a detailed computation. One of solutions suggested is to use the pressure tubes inside of first wall and second wall In this work, performance of radioactive waste transmutation was compared with various coolant options. On the whole, keff increases with all coolants except for FLiBe, therefore required fusion power is decreased. In

  7. Fuel design for the U.S. accelerator driven transmutation system

    International Nuclear Information System (INIS)

    Meyer, M. K.; Hayes, S. L.; Crawford, D. C.; Pahl, R. G.; Tsai, H.

    2002-01-01

    The U.S. concept for actinide transmutation is currently envisioned as a system to destroy plutonium as well as minor actinides in a single or two tier system. In order to maximize the actinide destruction rate, an inert matrix fuel is used. The effectiveness of transmutation in reducing the actinide inventory is linked to the development of a robust fuel system, capable of achieving very high burnup. Very little fuel performance data has been generated to date on inert matrix systems, and there are several issues specific to the behavior of higher actinides that do not allow extension of the existing uranium-plutonium fuel database to these new fuels. These issues include helium production, fuel-cladding-chemical-interaction, and americium migration. In the early 1990's, two U-Pu-Zr metal alloy fuel elements containing 1.2 wt.% Am and 1.3 wt.% Np were fabricated and irradiated to approximately 6 at.% burnup in the Experimental Breeder Reactor-II. Postirradiation examination results were not published; however the recent interest in fuel for actinide transmutation has prompted a reexamination of this data. The results of the postirradiation examination of this experiment, including gas sampling, metallography, and gamma scanning are discussed. Available data on inert matrix fuels and other fuels incorporating actinides are used to assess the implications of minor-actinide specific issues on transmuter fuel. Considerations for the design of nitride and oxide fuels, metallic fuels, and metal-matrix dispersion fuels are discussed

  8. Fuel Design for the U.S. Accelerator Driven Transmutation System

    International Nuclear Information System (INIS)

    Meyer, M.K.; Hayes, S.L.; Crawford, D.C.; Pahl, R.G.; Tsai, H.

    2002-01-01

    The U.S. concept for actinide transmutation is currently envisioned as a system to destroy plutonium as well as minor actinides in a single or two tier system. In order to maximize the actinide destruction rate, an inert matrix fuel is used. The effectiveness of transmutation in reducing the actinide inventory is linked to the development of a robust fuel system, capable of achieving very high burnup. Very little fuel performance data has been generated to date on inert matrix systems, and there are several issues specific to the behavior of higher actinides that do not allow extension of the existing uranium-plutonium fuel database to these new fuels. These issues include helium production, fuel-cladding-chemical-interaction, and americium migration. In the early 1990's, two U-Pu-Zr metal alloy fuel elements containing 1.2 wt.% Am and 1.3 wt.% Np were fabricated and irradiated to approximately 6 at.% burnup in the Experimental Breeder Reactor-II. Postirradiation examination results were not published; however the recent interest in fuel for actinide transmutation has prompted a reexamination of this data. The results of the postirradiation examination of this experiment, including gas sampling, metallography, and gamma scanning are discussed. Available data on inert matrix fuels and other fuels incorporating actinides are used to assess the implications of minor-actinide specific issues on transmuter fuel. Considerations for the design of nitride and oxide fuels, metallic fuels, and metal-matrix dispersion fuels are discussed. (authors)

  9. A Cost Benefit Analysis of an Accelerator Driven Transmutation System

    International Nuclear Information System (INIS)

    Westlen, D.; Gudowski, W.; Wallenius, J.; Tucek, K.

    2002-01-01

    This paper estimates the economical costs and benefits associated with a nuclear waste transmutation strategy. An 800 MWth, fast neutron spectrum, subcritical core design has been used in the study (the so called Sing-Sing Core). Three different fuel cycle scenarios have been compared. The main purpose of the paper has been to identify the cost drivers of a partitioning and transmutation strategy, and to estimate the cost of electricity generated in a nuclear park with operating accelerator driven systems. It has been found that directing all transuranic discharges from spent light water reactor (LWR) uranium oxide (UOX) fuel to accelerator driven systems leads to a cost increase for nuclear power of 50±15%, while introduction of a mixed oxide (MOX) burning step in the LWRs diminishes the cost penalty to 35±10%. (authors)

  10. Physics and safety of transmutation systems. A status report

    International Nuclear Information System (INIS)

    2006-01-01

    The safe and efficient management of spent fuel from the operation of commercial nuclear power plants is an important issue. Worldwide, more than 250 000 tons of spent fuel from currently operating reactors will require disposal. These numbers account for only high-level radioactive waste generated by present-day power reactors. Nearly all issues related to risks to future generations arising from the long-term disposal of such spent nuclear fuel is attributable to only about 1% of its content. This 1% is made up primarily of plutonium, neptunium, americium and curium (called transuranic elements) and the long-lived isotopes of iodine and technetium.When transuranics are removed from discharged fuel destined for disposal, the toxic nature of the spent fuel drops below that of natural uranium ore (that which was originally mined for the nuclear fuel) within a period of several hundred to a thousand years. This significantly reduces the burden on geological repositories and the problem of addressing the remaining long-term residues can thus de done in controlled environments having timescales of centuries rather than millennia stretching beyond 10 000 years. Transmutation is one of the means being explored to address the disposal of transuranic elements. To achieve this, advanced reactors systems, appropriate fuels, separation techniques and associated fuel cycle strategies are required. This status report begins by providing a clear definition of partitioning and transmutation (P and T), and then describes the state of the art concerning the challenges facing the implementation of P and T, scenario studies and specific issues related to accelerator-driven systems (ADS) dynamics and safety, long-lived fission product transmutation and the impact of nuclear data uncertainty on transmutation system design. The report will be of particular interest to nuclear scientists working on P and T issues as well as advanced fuel cycles in general. (author)

  11. Minor actinides transmutation performance in a fast reactor

    International Nuclear Information System (INIS)

    Takeda, Toshikazu

    2016-01-01

    Highlights: • A method for calculating MA transmutation for individual nuclides has been proposed by introducing two formulas of the MA transmutation. One corresponds to the difference of MA amounts, and the other corresponds to the sum of the fission amounts and the plutonium production amounts. • Using the method the MA transmutation was calculated for Np-237 and Am-241 in a fast reactor. The burnup period was changed from 1 year to 12 year. • For the 1 year burnup a large amount of Am-242m, Cm-242 are produced from Am-241. The total MA transmutation amount increases with burnup time, but its gradient with respect to burnup time decreases after 9 years, and the transmutation amount by overall fission increases almost linearly with burnup time. • However, after the 6 year burnup the fission contribution became large because of the large production of Pu isotopes from the original Am-241. • In addition to the homogeneous loading of the MA nuclides into the cores, a heterogeneous loading of Am-241 to the blanket region was considered. - Abstract: Results obtained in the project named “Study on Minor Actinides Transmutation using Monju Data”, which has been sponsored by the Ministry of Education, Culture, Sports, Science and Technology in Japan (MEXT) are described. In order to physically understand transmutation of individual MA nuclides in fast reactors, a new method was developed in which the MAs transmutation is interpreted by two formulas. One corresponds to the difference of individual MA nuclides amounts before and after a burnup period, and the other is the sum of amount of fission of a relevant MA nuclide and the net plutonium production from the MA nuclide during a burnup period. The method has been applied to two fast reactors with MA fuels loaded in cores homogeneously and in a blanket region heterogeneously. Numerical results of MA transmutation for the two reactors are shown.

  12. Criticality safety analysis of accelerator transmutation waste system

    International Nuclear Information System (INIS)

    Landeyro, P.A.; Cepraga, D.G.; Orazi, A.

    1993-01-01

    The Accelerator Transmutation Waste system (ATW) is under development at the Los Alamos National Laboratory. It consists of a particle accelerator producing a proton beam having an energy of 1.5 GeV. These particles are introduced into the upper part of a molten Pb-Bi column and they produce, by a spallation reaction, a high strength neutron flux, 1.0x10 16 n/(square centimeters sec). The neutrons enter a heavy water blanket where actinides and long-lived fission products circulate in vertical tubes. The goal of this research effort is to perform an independent verification of the feasibility of actinide burning in the ATW system. The work is divided into four tasks: a) production of an actinide and long-lived fission product cross section library from JEF 2.2; b) simulation, using MCNP and KENO IV Monte Carlo codes, of the ATW configurations existing in literature; c) validation of the cross sections by comparison of Keff and reaction rate results, calculated with MCNP and KENO IV, with experimental benchmarks and intercomparison between calculations of a PWR unit cell and the computations carried out with various codes and cross section libraries (NEACRF criticality working group data); d) simulation of the ATW configuration. The two first tasks are almost complete with excellent agreement between this study's results and those of Los Alamos

  13. Chemical separations schemes for partitioning and transmutation systems

    International Nuclear Information System (INIS)

    Laidler, J.

    2002-01-01

    In the initial phase of the U.S. Accelerator Transmutation of Waste (ATW) program, a single-tier system was foreseen in which the transuranics and long-lived fission products (specifically, 99 Tc and 129 I) recovered from spent LWR oxide fuel would be sent directly to an accelerator-driven transmuter reactor [1]. Because the quantity of fuel to be processed annually was so large (almost 1,500 tons per year), an aqueous solvent extraction process was chosen for LWR fuel processing. Without the need to separate transuranics from one another for feed to the transmuter, it became appropriate to develop an advanced aqueous separations method that became known as UREX. The UREX process employs an added reagent (acetohydroxamic acid) that suppresses the extraction of plutonium and promotes the extraction of technetium together with uranium. Technetium can then be efficiently removed from the uranium; the recovered uranium, being highly decontaminated, can be disposed of as a low-level waste or stored in an unshielded facility for future use. Plutonium and the other transuranic elements, plus the remaining fission products, are directed to the liquid waste stream. This stream is calcined, converting the transuranics and fission products to their oxides. The resulting oxide powder, now representing only about four percent of the original mass of the spent fuel, is reduced to metallic form by means of a pyrometallurgical process. Subsequently, the transuranics are separated from the fission products in another pyro-metallurgical step involving molten salt electrorefining

  14. Study of nuclear energy systems and double strata scenarios for minor actinides transmutation in ADS

    International Nuclear Information System (INIS)

    Clavel, J.B.

    2012-01-01

    The French law of 28 June 2006 regarding advanced nuclear waste management requires a scientific assessment to define future industrial strategies. The present PhD thesis was carried in this framework and concerns specifically the research axis of minor actinides transmutation. A high power Accelerator Driven System (ADS) concept is developed at SUBATECH for this purpose. A 1 GeV proton beam feeds three liquid lead-bismuth spallation targets. The Multiple Spallation Target (MUST) ADS reaches the thermal powers up to 1 GW with a high specific power. A nuclear reactor dimensioning method has been developed and applied to different double strata scenarios. In these scenarios, SFR (Sodium Fast Reactors) or PWR (Pressurized Water Reactors) power reactors produce minor actinides that will be transmuted into ADS. In each core (SFR and ADS), the plutonium multi-reprocessing strategy is performed while ADS subcritical core also multi-reprocesses minor actinides. To limit the core reactivity and improve the fuel thermal conductivity, the minor actinides fuel is mixed with MgO inert matrix. Nuclear branches with lead and sodium coolants for the ADS, have been studied for different irradiation times and two transmutation strategies have been assessed: whether whole minor actinides, whether americium only is transmuted. The thesis presents precisely the MUST ADS design methodology and the calculations to get a fuel composition at equilibrium. Then a one cycle evolution is performed and analysed for the fuel and the multiplication factor. Radiotoxicity and thermal power of the waste produced are then compared. Finally, the study of double strata scenarios is performed to analyse the plutonium and minor actinides inventories in cycle and also the waste produced according to the transmutation strategies applied and the first stratum evolution. (author)

  15. Gamma ray beam transmutation

    International Nuclear Information System (INIS)

    Imasaki, K.; Li, D.; Miyamoto, S.; Amano, S.; Motizuki, T.

    2007-01-01

    We have proposed a new approach to nuclear transmutation by a gamma ray beam of Compton scattered laser photon. We obtained 20 MeV gamma ray in this way to obtain transmutation rates with the giant resonance of 1 97Au and 1 29Iodine. The rate of the transmutation agreed with the theoretical calculation. Experiments on energy spectrum of positron, electron and neutron from targets were performed for the energy balance and design of the system scheme. The reaction rate was about 1.5∼4% for appropriate photon energies and neutron production rate was up to 4% in the measurements. We had stored laser photon more than 5000 times in a small cavity which implied for a significant improvement of system efficiency. Using these technologies, we have designed an actual transmutation system for 1 29Iodine which has a 16 million year's activity. In my presentation, I will address the properties of this scheme, experiments results and transmutation system for iodine transmutation

  16. Feasibility analysis of constant TRU feeding in waste transmutation system using accelerator-driven subcritical system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kun Jai; Cho, Nam Zin; Jo, Chang Keun; Park, Chang Je; Kim, Do Sam; Park, Jeong Hwan [Korea Advanced Institute of Science and Technology, Taejon (Korea)

    1999-03-01

    It is probable that the issue of nuclear spent fuel and high-level waste can have negative impact on the future expansion of nuclear power programs. Accelerator-driven nuclear waste transmutation with constant composition TRU feeding which satisfies non-proliferation condition will help establish the long-range nuclear waste disposal strategy. In this study, current status of accelerator-driven transmutation of waste technology, and feasibility analysis of constant composition TRU feeding system were investigated. We ascertained that solid system using constant composition TRU is feasible with the the capability of transmutation. (author). 13 refs., 53 figs., 20 tabs.

  17. Evaluation on transmutation performance of minor actinides with high-flux BWR

    International Nuclear Information System (INIS)

    Setiawan, M.B.; Kitamoto, A.; Taniguchi, A.

    2001-01-01

    The performance of high-flux BWR (HFBWR) for burning and/or transmutation (B/T) treatment of minor actinides (MA) and long-lived fission products (LLFP) was discussed herein for estimating an advanced waste disposal with partitioning and transmutation (P and T). The concept of high-flux B/T reactor was based on a current 33 GWt-BWR, to transmute the mass of long-lived transuranium (TRU) to short-lived fission products (SLFP). The nuclide selected for B/T treatment was MA (Np-237, Am-241, and Am-243) included in the discharged fuel of LWR. The performance of B/T treatment of MA was evaluated by a new function, i.e. [F/T ratio], defined by the ratio of the fission rate to the transmutation rate in the core, at an arbitrary burn-up, due to all MA nuclides. According to the results, HFBWR could burn and/or transmute MA nuclides with higher fission rate than BWR, but the fission rate did not increase proportionally to the flux increment, due to the higher rate of neutron adsorption. The higher B/T fraction of MA would result in the higher B/T capacity, and will reduce the units of HFBWR needed for the treatment of a constant mass of MA. In addition, HFBWR had a merit of higher mass transmutation compared to the reference BWR, under the same mass loading of MA

  18. Transmutation of DUPIC spent fuel in the hyper system

    International Nuclear Information System (INIS)

    Kim, Y.H.; Song, T.Y.

    2005-01-01

    In this paper, the transmutation of TRUs of the DUPIC (Direct Use of Spent PWR Fuel in CANDU) spent fuel has been studied with the HYPER system, which is an LBE-cooled ADS. The DUPIC concept is a synergistic combination of PWRs and CANDUs, in which PWR spent fuels are directly re-utilized in CANDU reactors after a very simple re-fabrication process. In the DUPIC-HYPER fuel cycle, TRUs are recovered by using a pyro-technology and they are incinerated in a metallic fuel form of U-TRU-Zr. The objective of this study is to investigate the TRU transmutation potential of the HYPER core for the DUPIC-HYPER fuel cycle. All the previously-developed HYPER core design concepts were retained except that fuel is composed of TRU from the DUPIC spent fuel. In order to reduce the burnup reactivity swing, a B 4 C burnable absorber is used. The HYPER core characteristics have been analyzed with the REBUS-3/DIF3D code system. (authors)

  19. Accelerator-driven transmutation reactor analysis code system (ATRAS)

    Energy Technology Data Exchange (ETDEWEB)

    Sasa, Toshinobu; Tsujimoto, Kazufumi; Takizuka, Takakazu; Takano, Hideki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1999-03-01

    JAERI is proceeding a design study of the hybrid type minor actinide transmutation system which mainly consist of an intense proton accelerator and a fast subcritical core. Neutronics and burnup characteristics of the accelerator-driven system is important from a view point of the maintenance of subcriticality and energy balance during the system operation. To determine those characteristics accurately, it is necessary to involve reactions at high-energy region, which are not treated on ordinary reactor analysis codes. The authors developed a code system named ATRAS to analyze the neutronics and burnup characteristics of accelerator-driven subcritical reactor systems. ATRAS has a function of burnup analysis taking account of the effect of spallation neutron source. ATRAS consists of a spallation analysis code, a neutron transport codes and a burnup analysis code. Utility programs for fuel exchange, pre-processing and post-processing are also incorporated. (author)

  20. Importance of delayed neutron data in transmutation system

    International Nuclear Information System (INIS)

    Tsujimoto, Kazufumi

    1999-01-01

    The accelerator-driven transmutation system has been studied at the Japan Atomic Energy Research Institute. This system is a hybrid system which consists of a high intensity accelerator, a spallation target and a subcritical core region. The subcritical core is driven by neutrons generated by spallation reaction in the target region. There is no control rod in this system, so the power is controlled only by proton beam current. The beam current to keep constant power change with effective multiplication factor of subcritical core. So, the evaluation of delayed neutron fraction which is strongly connected to the measurement of subcritical level is important factor in operation of accelerator-driven system. In this paper, important nuclides for the delayed neutron fraction of ADS will be discussed, moreover, present state of delayed neutron data in evaluated nuclear data library is presented. (author)

  1. Effects of actinide compositional variability in the US spent fuel inventory on partitioning-transmutation systems

    International Nuclear Information System (INIS)

    Ludwig, S.B.; Michaels, G.E.; Hanson, B.D.

    1992-01-01

    Partitioning and transmutation (P-T) is an advanced waste management concept by which certain undesirable nuclides in spent fuel are first isolated (partitioned) and later destroyed (transmuted) in a nuclear reactor or other transmutation device. There are wide variabilities in the nuclide composition of spent fuel. This implies that there will also be wide variabilities in the transmutation device feed. As a waste management system, P-T must be able to accept (all) spent fuel. Variability of nuclide composition (i.e., the feed material for transmutation devices) may be important because virtually all transmutation systems propose to configure transuranic (TRU) nuclides recovered from discharged lightwater reactor (LWR) spent fuel in critical or near-critical cores. To date, all transmutation system core analyses assume invariant nuclide concentrations for startup and recycle cores. Using the US Department of Energy's (DOE's) Characteristics Data Base (CDB) and the ORIGEN2 computer code, the current and projected spent fuel discharges until the year 2016 have been categorized according to combinations of fuel burnup, initial enrichment, fuel age (cooling time) and reactor type (boiling-water or pressurized-water reactors). The variability of the infinite multiplication factor (k ∞ ) is calculated for both fast (ALMR) and thermal (accelerator-based) transmuter systems

  2. Assessment of the transmutation capability an accelerator driven system cooled by lead bismuth eutectic alloy

    International Nuclear Information System (INIS)

    Bianchi, F.; Peluso, V.; Calabrese; Chen, X.; Maschek, W.

    2007-01-01

    1. PURPOSE The reduction of long-lived fission products (LLFP) and minor actinides (MA) is a key point for the public acceptability and economy of nuclear energy. In principle, any nuclear fast reactor is able to burn and transmute MA, but the amount of MA content has to be limited a few percent, having unfavourable consequences on the coolant void reactivity, Doppler effect, and delayed neutron fraction, and therefore on the dynamic behaviour and control. Accelerator Driven Systems (ADS) are instead able to safely burn and/or transmute a large quantity of actinides and LLFP, as they do not rely on delayed neutrons for control or power change and the reactivity feedbacks have very little importance during accidents. Such systems are very innovative being based on the coupling of an accelerator with a subcritical system by means of a target system, where the neutronic source needed to maintain the neutron reaction chain is produced by spallation reactions. To this end the PDS-XADS (Preliminary Design Studies on an experimental Accelerator Driven System) project was funded by the European Community in the 5th Framework Program in order both to demonstrate the feasibility of the coupling between an accelerator and a sub-critical core loaded with standard MOX fuel and to investigate the transmutation capability in order to achieve values suitable for an Industrial Scale Transmuter. This paper summarizes and compares the results of neutronic calculations aimed at evaluating the transmutation capability of cores cooled by Lead-Bismuth Eutectic alloy and loaded with assemblies based on (Pu, Am, Cm) oxide dispersed in a molybdenum metal (CERMET) or magnesia (CERCER) matrices. It also describes the constraints considered in the design of such cores and describes the thermo-mechanical behaviour of these innovative fuels along the cycle. 2. DESCRIPTION OF THE WORK: The U-free composite fuels (CERMET and CERCER) were selected for this study, being considered at European level

  3. The physics design of accelerator-driven transmutation systems

    International Nuclear Information System (INIS)

    Venneri, F.

    1995-01-01

    Nuclear systems under study in the Los Alamos Accelerator-Driven Transmutation Technology program (ADTT) will allow the destruction of nuclear spent fuel and weapons-return plutonium, as well as the production of nuclear energy from the thorium cycle, without a long-lived radioactive waste stream. The subcritical systems proposed represent a radical departure from traditional nuclear concepts (reactors), yet the actual implementation of ADTT systems is based on modest extrapolations of existing technology. These systems strive to keep the best that the nuclear technology has developed over the years, within a sensible conservative design envelope and eventually manage to offer a safer, less expensive and more environmentally sound approach to nuclear power

  4. The physics design of accelerator-driven transmutation systems

    Energy Technology Data Exchange (ETDEWEB)

    Venneri, F. [Los Alamos National Laboratory, NM (United States)

    1995-10-01

    Nuclear systems under study in the Los Alamos Accelerator-Driven Transmutation Technology program (ADTT) will allow the destruction of nuclear spent fuel and weapons-return plutonium, as well as the production of nuclear energy from the thorium cycle, without a long-lived radioactive waste stream. The subcritical systems proposed represent a radical departure from traditional nuclear concepts (reactors), yet the actual implementation of ADTT systems is based on modest extrapolations of existing technology. These systems strive to keep the best that the nuclear technology has developed over the years, within a sensible conservative design envelope and eventually manage to offer a safe, less expensive and more environmentally sound approach to nuclear power.

  5. Neutronic design and analysis on dual-cooled waste transmutation blanket for the fusion driven sub-critical system

    International Nuclear Information System (INIS)

    Zheng Shanliang; Wu Yican; Gao Chunjing; Xu Dezheng; Li Jingjing; Zhu Xiaoxiang

    2004-01-01

    Neutronics design and analysis of dual-cooled multi-functional waste transmutation blanket (DWTB) for the fusion driven sub-critical system (FDS) are performed to ensure the system be able to meet the requirements of fuel-sufficiency and more waste transmutation ratio with low initial loading fuel inventory, which is based on 1-D burn-up calculations with home-developed code Visual BUS and the multi-group (175 neutron groups-42 Gamma groups coupled) data library HENDL1.0/MG (Hybrid Evaluated Nuclear Data Library). (authors)

  6. Transmutation of fission products in reactors and accelerator-driven systems

    International Nuclear Information System (INIS)

    Janssen, A.J.

    1994-01-01

    Energy flows and mass flows in several scenarios are considered. Economical and safety aspects of the transmutation scenarios are compared. It is difficult to find a sound motivation for the transmutation of fission products with accelerator-driven systems. If there would be any hesitation in transmuting fission products in nuclear reactors, there would be an even stronger hesitation to use accelerator-driven systems, mainly because of their lower energy efficiency and their poor cost effectiveness. The use of accelerator-driven systems could become a 'meaningful' option only if nuclear energy would be banished completely. (orig./HP)

  7. Description of Transmutation Library for Fuel Cycle System Analyses

    International Nuclear Information System (INIS)

    Piet, Steven J.; Bays, Samuel E.; Hoffman, Edward A.

    2010-01-01

    This report documents the Transmutation Library that is used in Fuel Cycle System Analyses. This version replaces the 2008 version.(Piet2008) The Transmutation Library has the following objectives: (1) Assemble past and future transmutation cases for system analyses. (2) For each case, assemble descriptive information such as where the case was documented, the purpose of the calculation, the codes used, source of feed material, transmutation parameters, and the name of files that contain raw or source data. (3) Group chemical elements so that masses in separation and waste processes as calculated in dynamic simulations or spreadsheets reflect current thinking of those processes. For example, the CsSr waste form option actually includes all Group 1A and 2A elements. (4) Provide mass fractions at input (charge) and output (discharge) for each case. (5) Eliminate the need for either ''fission product other'' or ''actinide other'' while conserving mass. Assessments of waste and separation cannot use ''fission product other'' or ''actinide other'' as their chemical behavior is undefined. (6) Catalog other isotope-specific information in one place, e.g., heat and dose conversion factors for individual isotopes. (7) Describe the correlations for how input and output compositions change as a function of UOX burnup (for LWR UOX fuel) or fast reactor (FR) transuranic (TRU) conversion ratio (CR) for either FR-metal or FR-oxide. This document therefore includes the following sections: (1) Explanation of the data set information, i.e., the data that describes each case. In no case are all of the data presented in the Library included in previous documents. In assembling the Library, we return to raw data files to extract the case and isotopic data, into the specified format. (2) Explanation of which isotopes and elements are tracked. For example, the transition metals are tracked via the following: two Zr isotopes, Zr-other, Tc99, Tc-other, two Mo-Ru-Rh-Pd isotopes, Mo

  8. System and safety studies of accelerator driven systems for transmutation. Annual report 2007

    International Nuclear Information System (INIS)

    Arzhanov, Vasily; Fokau, Andrei; Persson, Calle; Runevall, Odd; Sandberg, Nils; Tesinsky, Milan; Wallenius, Janne; Youpeng Zhang

    2008-05-01

    Within the project 'System and safety studies of accelerator driven systems for transmutation', research on design and safety of sub-critical reactors for recycling of minor actinides is performed. During 2007, the reactor physics division at KTH has calculated safety parameters for EFIT-400 with cermet fuel, permitting to start the transient safety analysis. The accuracy of different reactivity meters applied to the YALINA facility was assessed and neutron detection studies were performed. A model to address deviations from point kinetic behaviour was developed. Studies of basic radiation damage physics included calculations of vacancy formation and activation enthalpies in bcc niobium. In order to predict the oxygen potential of inert matrix fuels, a thermo-chemical model for mixed actinide oxides was implemented in a phase equilibrium code

  9. System and safety studies of accelerator driven systems for transmutation. Annual report 2007

    Energy Technology Data Exchange (ETDEWEB)

    Arzhanov, Vasily; Fokau, Andrei; Persson, Calle; Runevall, Odd; Sandberg, Nils; Tesinsky, Milan; Wallenius, Janne; Youpeng Zhang (Div. of Reactor Physics, Royal Institute of Technology, Stockholm (Sweden))

    2008-05-15

    Within the project 'System and safety studies of accelerator driven systems for transmutation', research on design and safety of sub-critical reactors for recycling of minor actinides is performed. During 2007, the reactor physics division at KTH has calculated safety parameters for EFIT-400 with cermet fuel, permitting to start the transient safety analysis. The accuracy of different reactivity meters applied to the YALINA facility was assessed and neutron detection studies were performed. A model to address deviations from point kinetic behaviour was developed. Studies of basic radiation damage physics included calculations of vacancy formation and activation enthalpies in bcc niobium. In order to predict the oxygen potential of inert matrix fuels, a thermo-chemical model for mixed actinide oxides was implemented in a phase equilibrium code

  10. HYPERFUSE: a hypervelocity inertial confinement system for fusion energy production and fission waste transmutation

    International Nuclear Information System (INIS)

    Makowitz, H.; Powell, J.R.; Wiswall, R.

    1980-01-01

    Parametric system studies of an inertial confinement fusion (ICF) reactor system to transmute fission products from a LWR economy have been carried out. The ICF reactors would produce net power in addition to transmuting fission products. The particular ICF concept examined is an impact fusion approach termed HYPERFUSE, in which hypervelocity pellets, traveling on the order of 100 to 300 km/sec, collide with each other or a target block in a reactor chamber and initiate a thermonuclear reaction. The DT fusion fuel is contained in a shell of the material to be transmuted, e.g., 137 Cs, 90 Sr, 129 I, 99 Tc, etc. The 14-MeV fusion neutrons released during the pellet burn cause transmutation reactions (e.g., (n,2n), (n,α), (n,γ), etc.) that convert the long-lived fission products (FP's) either to stable products or to species that decay with a short half-life to a stable product. The transmutation parametric studies conclude that the design of the hypervelocity projectiles should emphasize the achievement of high densities in the transmutation regions (greater than the DT fusion fuel density), as well as the DT ignition and burn criterion (rho R = 1.0 to 3.0) requirements. These studies also indicate that masses on the order of 1.0 g at densities of rho greater than or equal to 500.0 g/cm 3 are required for a practical fusion-based fission product transmutation system

  11. Microgamma Scan System for analyzing radial isotopic profiles of irradiated transmutation fuels

    International Nuclear Information System (INIS)

    Hilton, Bruce A.; McGrath, Christopher A.

    2008-01-01

    The U. S. Global Nuclear Energy Partnership / Advanced Fuel Cycle Initiative (GNEP/AFCI) is developing metallic transmutation alloys as a fuel form to transmute the long-lived transuranic actinide isotopes contained in spent nuclear fuel into shorter-lived fission products. A micro-gamma scan system is being developed to analyze the radial distribution of fission products, such as Cs-137, Cs-134, Ru-106, and Zr-95, in irradiated fuel cross-sections. The micro-gamma scan system consists of a precision linear stage with integrated sample holder and a tungsten alloy collimator, which interfaces with the Idaho National Laboratory (INL) Analytical Laboratory Hot Cell (ALHC) Gamma Scan System high purity germanium detector, multichannel analyzer, and removable collimators. A simplified model of the micro-gamma scan system was developed in MCNP (Monte-Carlo N-Particle Transport Code) and used to investigate the system performance and to interpret data from the scoping studies. Preliminary measurements of the micro-gamma scan system are discussed. (authors)

  12. Transmutation of nuclear waste in accelerator-driven systems

    CERN Document Server

    Herrera-Martínez, A

    2004-01-01

    Today more than ever energy is not only a cornerstone of human development, but also a key to the environmental sustainability of economic activity. In this context, the role of nuclear power may be emphasized in the years to come. Nevertheless, the problems of nuclear waste, safety and proliferation still remain to be solved. It is believed that the use of accelerator-driven systems (ADSs) for nuclear waste transmutation and energy production would address these problems in a simple, clean and economically viable, and therefore sustainable, manner. This thesis covers the major nuclear physics aspects of ADSs, in particular the spallation process and the core neutronics specific to this type of systems. The need for accurate nuclear data is described, together with a detailed analysis of the specific isotopes and energy ranges in which this data needs to be improved and the impact of their uncertainty. Preliminary experimental results for some of these isotopes, produced by the Neutron Time-of-Flight (n_TOF) ...

  13. Technical meeting on 'Review of solid and mobile fuels for partitioning and transmutation systems'. Working material

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The topics covered during the Meeting were divided into two Sessions. Session 1 - Qualification of Solid and Mobile Fuels delt with: Neutronic, fuel and material properties of a molten salt transmuter; and Preliminary analysis of transmutation fuels for KALIMER. Session 2 - Reactor Physics and Safety Characteristics of Transmutation Systems based on Solid and Mobile Fuel Types included the following: Activity in NEA for P and T area; IAEA activities in the area of partitioning and transmutation; The R and D activity in Brazil: A conceptual fast energy amplifier ADS cooled by helium double stata Th/U fuel cycle; Closed fuel cycle and contemporary tendencies of the nuclear facilities development; Current Russian activities in P and T area; Pyrochemical reprocessing and nuclear spent fuel disposal project; Fuel selection criteria specific for double stratum minor actinide burners.

  14. Transmutation of transuranium elements in a gas-cooled accelerator-driven system

    International Nuclear Information System (INIS)

    Biss, Klaus Hendrik

    2014-01-01

    The peaceful usage of nuclear energy by light and boiling water reactors is connected with a buildup of long-lived high-level radioactive waste. Compared to the direct disposal, partitioning and transmutation (P and T) is considered as an effective way to reduce this waste in its quantity by converting it into short-lived radio nuclides. By that the long term radiotoxicity is reduced compared to direct disposal. Subcritical systems, which are powered by spallation processes for free neutron production to maintain the nuclear chain reaction, allow a target-oriented transmutation. As a subcritical system a gas-cooled accelerator driven system (ADS) for transmutation of transuranic elements has been modeled in this thesis to evaluate the reduction of the radio toxicity by P and T. The simulation of neutron-physical processes is based on the Monte Carlo computer program MCNPX. The development of an equilibrium core made it possible to study the transmutation and operating behavior for several fuel variations in a magnesium oxide matrix and develop a simplified burnup method. Americium as part of the fuel has a stabilizing effect on the neutron multiplication due to its conversion into plutonium during the operation. Thorium was investigated as an alternative matrix for the fuel in order to replicate the stabilizing effect of americium by the conversion of thorium in 233 U. By that a consistent operating cycle in the later P and T-process is ensured. Calculation of the nuclide composition at the end of a P and T-process leads to an expansion of the mathematical description of the mass reduction (transmutation efficiency) by the material located in the reactor. The achieved transmutation efficiency with the investigated ADS is 98.8 %. The transmutation time was examined with different operating strategies regarding the number, size and thermal power of use of transmutation facilities to determine the effort for the P and T-process depending on efficiency. It turns out

  15. Accelerator driven systems. ADS benchmark calculations. Results of stage 2. Radiotoxic waste transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Freudenreich, W.E.; Gruppelaar, H

    1998-12-01

    This report contains the results of calculations made at ECN-Petten of a benchmark to study the neutronic potential of a modular fast spectrum ADS (Accelerator-Driven System) for radiotoxic waste transmutation. The study is focused on the incineration of TRans-Uranium elements (TRU), Minor Actinides (MA) and Long-Lived Fission Products (LLFP), in this case {sup 99}Tc. The benchmark exercise is made in the framework of an IAEA Co-ordinated Research Programme. A simplified description of an ADS, restricted to the reactor part, with TRU or MA fuel (k{sub eff}=0.96) has been analysed. All spectrum calculations have been performed with the Monte Carlo code MCNP-4A. The burnup calculations have been performed with the code FISPACT coupled to MCNP-4A by means of our OCTOPUS system. The cross sections are based upon JEF-2.2 for transport calculations and supplemented with EAF-4 data for inventory calculations. The determined quantities are: core dimensions, fuel inventories, system power, sensitivity on external source spectrum and waste transmutation rates. The main conclusions are: The MA-burner requires only a small accelerator current increase during burnup, in contrast to the TRU-burner. The {sup 99} Tc-burner has a large initial loading; a more effective design may be possible. 5 refs.

  16. Accelerator driven systems. ADS benchmark calculations. Results of stage 2. Radiotoxic waste transmutation

    International Nuclear Information System (INIS)

    Freudenreich, W.E.; Gruppelaar, H.

    1998-12-01

    This report contains the results of calculations made at ECN-Petten of a benchmark to study the neutronic potential of a modular fast spectrum ADS (Accelerator-Driven System) for radiotoxic waste transmutation. The study is focused on the incineration of TRans-Uranium elements (TRU), Minor Actinides (MA) and Long-Lived Fission Products (LLFP), in this case 99 Tc. The benchmark exercise is made in the framework of an IAEA Co-ordinated Research Programme. A simplified description of an ADS, restricted to the reactor part, with TRU or MA fuel (k eff =0.96) has been analysed. All spectrum calculations have been performed with the Monte Carlo code MCNP-4A. The burnup calculations have been performed with the code FISPACT coupled to MCNP-4A by means of our OCTOPUS system. The cross sections are based upon JEF-2.2 for transport calculations and supplemented with EAF-4 data for inventory calculations. The determined quantities are: core dimensions, fuel inventories, system power, sensitivity on external source spectrum and waste transmutation rates. The main conclusions are: The MA-burner requires only a small accelerator current increase during burnup, in contrast to the TRU-burner. The 99 Tc-burner has a large initial loading; a more effective design may be possible. 5 refs

  17. Planning the research and development necessary for accelerator transmutation of waste, leading to integrated proof of performance testing

    International Nuclear Information System (INIS)

    Bennett, D.R.; Pasamehmetoglu, K.; Finck, P.; Pitcher, E.; Khalil, H.; Todosow, M.; Hill, R.; Van Tuyle, G.; Laidler, J.; Crawford, D.; Thomas, K.

    2001-01-01

    The Research and Development (R and D) Plan for the Accelerator Transmutation of Waste (ATW) Program has been developed for the Department of Energy, Office of Nuclear Energy (DOE/NE) to serve as a focus and progressional guide in developing critical transmutation technologies. It is intended that the Plan will serve as a logical reference considering all elements of an integrated accelerator-driven transmutation system, and will maximize the use of resources by identifying and prioritizing research, design, development and trade activities. The R and D Plan provides a structured framework for identifying and prioritizing activities leading to technically-justifiable integrated Proof of Performance testing within ten years and ultimate demonstration of Accelerator Transmutation of Waste (ATW). The Plan builds from the decision objectives specified for ATW, utilizes informational input from the ATW Roadmap and programmatic System Point Design efforts, and employs the knowledge and expertise provided by professionals familiar with ATW technologies. With the firm intent of understanding what, why and when information is needed, including critical interfaces, the Plan then develops a progressional strategy for developing ATW technologies with the use of a Technology Readiness Level (TRL) scale. The TRL approach is first used to develop a comprehensive, yet generic, listing of experimental, analytical and trade study activities critical to developing ATW technologies. Technology-specific and concept-specific aspects are then laid over the generic mapping to gage readiness levels. Prioritization criteria for reducing technical uncertainty, providing information to decision points, and levering off of international collaborations are then applied to focus analytical, experimental and trade activities. (author)

  18. Development of long-lived radionuclide transmutation technology - Development of a code system for core analysis of the transmutation reactors

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Nam Zin; Kim, Yong Hee; Kim, Tae Hyung; Jo, Chang Keun; Park, Chang Je [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1996-07-01

    The objective of this study is to develop a code system for core analysis= of the critical transmutation reactors utilizing fast neutrons. Core characteristics of the transmutation reactors were identified and four codes, HANCELL for pincell calculation, PRISM and AFEN-H3D for core calculation, and MA{sub B}URN for depletion calculation, were developed. The pincell calculation code is based on one-dimensional collision probability method and may provide homogenized/condensed parameters of a pincell and also can homogenize the control assembly via a nonlinear iterative method. The core calculation codes, PRISM and AFEN-H3D, solve the multi-group, multi-dimensional neutron diffusion equations for a hexagonal geometry and they are based on the finite difference method and analytic function expansion nodal (AFEN) method, respectively. The MA{sub B}URN code san analyze the behavior of actinides and fission products in a reactor core. Through benchmarking, we confirmed that the newly developed codes provide accurate solutions. 30 refs., 10 tabs., 8 figs. (author)

  19. HYPERFUSE: a hypervelocity inertial confinement system for fusion energy production and fission waste transmutation

    International Nuclear Information System (INIS)

    Makowitz, H.; Powell, J.R.; Wiswall, R.

    1980-01-01

    Parametric system studies of an inertial confinement fusion (ICF) reactor system to transmute fission products from an LWR economy have been carried out. The ICF reactors would produce net power in addition to transmuting fission products. The particular ICF concept examined is an impact fusion approach termed HYPERFUSE, in which hypervelocity pellets, traveling on the order of 100 to 300 km/sec, collide with each other or a target block in a reactor chamber and initiate a thermonuclear reaction. The DT fusion fuel is contained in a shell of the material to be transmuted, e.g., 137 Cs, 90 Sr, 129 I, 99 Tc, etc. The 14-MeV fusion neutrons released during the pellet burn cause transmutation reactions (e.g., (n,2n), (n,α), (n,γ), etc.) that convert the long-lived fission products (FP's) either to stable products or to species that decay with a short half-life to a stable product. The transmutation parametric studies conclude that the design of the hypervelocity projectiles should emphasize the achievement of high densities in the transmutation regions (greater than the DT fusion fuel density), as well as the DT ignition and burn criterion (rho R=1.0 to 3.0) requirements

  20. System and safety studies of accelerator driven transmutation systems. Annual report 1998

    International Nuclear Information System (INIS)

    Wallenius, J.; Gudowski, W.; Carlsson, Johan; Eriksson, Marcus; Tucek, K.

    1998-12-01

    This annual report describes the accelerator-driven transmutation project conducted at the Department of Nuclear and Reactor Physics at the Royal Institute of Technology. The main results are: development of the simulation tools for accelerator-driven transmutation calculations including an integrated Monte-Carlo burnup module and improvements of neutron energy fission yield simulations, processing of the evacuated nuclear data files including preparation of the temperature dependent neutron cross-sections, development of nuclear data for a medium energy range for some isotopes, development of the models and codes for radiation damage simulations, system studies for the spent fuel transmuter, based on heavy metal coolant and advanced nuclear fuel, contribution to the spallation target design being manufactured in IPPE, Obninsk, and accelerator reliability studies. Moreover a lot of efforts were put to further develop existing international collaboration with the most active research groups in the world together with educational activities in Sweden including a number of meetings and workshops and a graduate course in transmutation. This project has been conducted in close collaboration with the EU-project 'Impact of the accelerator based technologies on nuclear fission safety' - IABAT and in bilateral cooperation with different foreign research groups

  1. System and safety studies of accelerator driven transmutation systems. Annual report 1998

    Energy Technology Data Exchange (ETDEWEB)

    Wallenius, J.; Gudowski, W.; Carlsson, Johan; Eriksson, Marcus; Tucek, K. [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Nuclear and Reactor Physics

    1998-12-01

    This annual report describes the accelerator-driven transmutation project conducted at the Department of Nuclear and Reactor Physics at the Royal Institute of Technology. The main results are: development of the simulation tools for accelerator-driven transmutation calculations including an integrated Monte-Carlo burnup module and improvements of neutron energy fission yield simulations, processing of the evacuated nuclear data files including preparation of the temperature dependent neutron cross-sections, development of nuclear data for a medium energy range for some isotopes, development of the models and codes for radiation damage simulations, system studies for the spent fuel transmuter, based on heavy metal coolant and advanced nuclear fuel, contribution to the spallation target design being manufactured in IPPE, Obninsk, and accelerator reliability studies. Moreover a lot of efforts were put to further develop existing international collaboration with the most active research groups in the world together with educational activities in Sweden including a number of meetings and workshops and a graduate course in transmutation. This project has been conducted in close collaboration with the EU-project `Impact of the accelerator based technologies on nuclear fission safety` - IABAT and in bilateral cooperation with different foreign research groups 31 refs, 23 figs

  2. Spatial power distribution in the SR-0 experimental module of the SPHINX nuclear transmutation system - 2006 and 2007 variants

    International Nuclear Information System (INIS)

    Rypar, Vojtech; Svadlenkova, Marie; Novak, Evzen; Viererbl, Ladislav; Lahodova, Zdena; Bily, Tomas

    2007-11-01

    Experiments were performed with various assemblies modelling the SPHINX transmutation system with the aim to investigate the effect of materials in the SR-0 modules, i.e. LiF, NaF, graphite, on the spatial power distribution of the reaction rates of the activation detectors, axial and radial distribution of the fission products of the fuel pins located in some points of the reactor core, and photon dose distribution by using thermoluminescent dosemeters

  3. Optimisation of composite metallic fuel for minor actinide transmutation in an accelerator-driven system

    Science.gov (United States)

    Uyttenhove, W.; Sobolev, V.; Maschek, W.

    2011-09-01

    A potential option for neutralization of minor actinides (MA) accumulated in spent nuclear fuel of light water reactors (LWRs) is their transmutation in dedicated accelerator-driven systems (ADS). A promising fuel candidate dedicated to MA transmutation is a CERMET composite with Mo metal matrix and (Pu, Np, Am, Cm)O 2-x fuel particles. Results of optimisation studies of the CERMET fuel targeting to increasing the MA transmutation efficiency of the EFIT (European Facility for Industrial Transmutation) core are presented. In the adopted strategy of MA burning the plutonium (Pu) balance of the core is minimized, allowing a reduction in the reactivity swing and the peak power form-factor deviation and an extension of the cycle duration. The MA/Pu ratio is used as a variable for the fuel optimisation studies. The efficiency of MA transmutation is close to the foreseen theoretical value of 42 kg TW -1 h -1 when level of Pu in the actinide mixture is about 40 wt.%. The obtained results are compared with the reference case of the EFIT core loaded with the composite CERCER fuel, where fuel particles are incorporated in a ceramic magnesia matrix. The results of this study offer additional information for the EFIT fuel selection.

  4. Optimisation of composite metallic fuel for minor actinide transmutation in an accelerator-driven system

    International Nuclear Information System (INIS)

    Uyttenhove, W.; Sobolev, V.; Maschek, W.

    2011-01-01

    A potential option for neutralization of minor actinides (MA) accumulated in spent nuclear fuel of light water reactors (LWRs) is their transmutation in dedicated accelerator-driven systems (ADS). A promising fuel candidate dedicated to MA transmutation is a CERMET composite with Mo metal matrix and (Pu, Np, Am, Cm)O 2-x fuel particles. Results of optimisation studies of the CERMET fuel targeting to increasing the MA transmutation efficiency of the EFIT (European Facility for Industrial Transmutation) core are presented. In the adopted strategy of MA burning the plutonium (Pu) balance of the core is minimized, allowing a reduction in the reactivity swing and the peak power form-factor deviation and an extension of the cycle duration. The MA/Pu ratio is used as a variable for the fuel optimisation studies. The efficiency of MA transmutation is close to the foreseen theoretical value of 42 kg TW -1 h -1 when level of Pu in the actinide mixture is about 40 wt.%. The obtained results are compared with the reference case of the EFIT core loaded with the composite CERCER fuel, where fuel particles are incorporated in a ceramic magnesia matrix. The results of this study offer additional information for the EFIT fuel selection.

  5. Prognosis and comparison of performances of composite CERCER and CERMET fuels dedicated to transmutation of TRU in an EFIT ADS

    Science.gov (United States)

    Sobolev, V.; Uyttenhove, W.; Thetford, R.; Maschek, W.

    2011-07-01

    The neutronic and thermomechanical performances of two composite fuel systems: CERCER with (Pu,Np,Am,Cm)O 2-x fuel particles in ceramic MgO matrix and CERMET with metallic Mo matrix, selected for transmutation of minor actinides in the European Facility for Industrial Transmutation (EFIT), were analysed aiming at their optimisation. The ALEPH burnup code system, based on MNCPX and ORIGEN codes and JEFF3.1 nuclear data library, and the modern version of the fuel rod performance code TRAFIC were used for this analysis. Because experimental data on the properties of the mixed minor-actinide oxides are scarce, and the in-reactor behaviour of the T91 steel chosen as cladding, as well as of the corrosion protective layer, is still not well-known, a set of "best estimates" provided the properties used in the code. The obtained results indicate that both fuel candidates, CERCER and CERMET, can satisfy the fuel design and safety criteria of EFIT. The residence time for both types of fuel elements can reach about 5 years with the reactivity swing within ±1000 pcm, and about 22% of the loaded MA is transmuted during this period. However, the fuel centreline temperature in the hottest CERCER fuel rod is close to the temperature above which MgO matrix becomes chemically instable. Moreover, a weak PCMI can appear in about 3 years of operation. The CERMET fuel can provide larger safety margins: the fuel temperature is more than 1000 K below the permitted level of 2380 K and the pellet-cladding gap remains open until the end of operation.

  6. Energy Production and Transmutation of Nuclear Waste by Accelerator Driven Systems

    Science.gov (United States)

    Zhivkov, P. K.

    2018-05-01

    There is a significant amount of highly radiotoxic long-life nuclear waste (NW) produced by NPP (Nuclear Power Plants). Transmutation is a process which transforms NW into less radiotoxic nuclides with a shorter period of half-life by spallation neutrons or radiative capture of neutrons produced by ADS (Accelerator Driven System). In the processes of transmutation new radioactive nuclides are produced. ADS is big energy consumer equipment. It is a method for production of a high-flux and high-energy neutron field. All these processes occur in ADS simultaneously. ADS is able to transmute actinides and produce energy simultaneously. The article considers the energy production problems in ADS. Several ideas are developed regarding the solution of the global energy supply.

  7. Status of nuclear transmutation study

    International Nuclear Information System (INIS)

    Takizuka, Takakazu

    1999-01-01

    JAERI is carrying out R and Ds on partitioning and transmutation under the OMEGA Program. The R and Ds include the design study of accelerator-driven transmutation systems and the development of transmutation experimental facilities. Accelerator-driven systems have received much interests due to their potential role as dedicated transmuters in the nuclear fuel cycle for minimizing long-lived waste. Principles of accelerator-driven system, its history, JAERI proposed system concepts, and the experimental program are overviewed. (author)

  8. Neutronic evaluation of insertion of a transmutation layer in a Tokamak system

    International Nuclear Information System (INIS)

    Cabrera, Carlos Eduardo Velasquez

    2013-01-01

    Using MCNP5 code were simulated different models representing the ITER system. It was evaluated the two alloys used by the first wall under high neutron flux. The neutron flux and the reaction rate along the different walls were obtained and evaluated. Based on the results, it was possible to conclude the best way to represent the fusion device evaluating; the different geometrical models, the best material to be used in the first wall taking into consideration the objective of transmutation and placed the transmutation layer. (author)

  9. Vortex transmutation.

    Science.gov (United States)

    Ferrando, Albert; Zacarés, Mario; García-March, Miguel-Angel; Monsoriu, Juan A; de Córdoba, Pedro Fernández

    2005-09-16

    Using group theory arguments and numerical simulations, we demonstrate the possibility of changing the vorticity or topological charge of an individual vortex by means of the action of a system possessing a discrete rotational symmetry of finite order. We establish on theoretical grounds a "transmutation pass" determining the conditions for this phenomenon to occur and numerically analyze it in the context of two-dimensional optical lattices. An analogous approach is applicable to the problems of Bose-Einstein condensates in periodic potentials.

  10. Retrieval system of nuclear data for transmutation of nuclear materials

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Mitsutane; Utsumi, Misako; Noda, Tetsuji [National Research Inst. for Metals, Tsukuba, Ibaraki (Japan)

    1997-03-01

    A database storing the data on nuclear reaction was built to calculate for simulating transmutation behaviours of materials /1/-/3/. In order to retrieve and maintain the database, the user interface for the data retrieval was developed where special knowledge on handling of the database or the machine structure is not required for end-user. It is indicated that using the database, the possibility of He formation and radioactivity in a material can be easily retrieved though the evaluation is qualitatively. (author)

  11. Transmutation and inventory analysis in an ATW molten salt system

    Energy Technology Data Exchange (ETDEWEB)

    Sisolak, J.E.; Truebenbach, M.T.; Henderson, D.L. [Univ. of Wisconsin, Madison, WI (United States)

    1995-10-01

    As an extension of earlier work to determine the equilibrium state of an ATW molten salt, power producing, reactor/transmuter, the WAIT code provides a time dependent view of material inventories and reactor parameters. By considering several cases, the authors infer that devices of this type do not reach equilibrium for dozens of years, and that equilibrium design calculations are inapplicable over most of the reactor life. Fissile inventory and k{sub eff} both vary by factors of 1.5 or more between reactor startup and ultimate convergence to equilibrium.

  12. Studies of Accelerator-Driven Systems for Transmutation of Nuclear Waste

    International Nuclear Information System (INIS)

    Dahlfors, Marcus

    2006-01-01

    Accelerator-driven systems for transmutation of nuclear waste have been suggested as a means for dealing with spent fuel components that pose potential radiological hazard for long periods of time. While not entirely removing the need for underground waste repositories, this nuclear waste incineration technology provides a viable method for reducing both waste volumes and storage times. Potentially, the time spans could be diminished from hundreds of thousand years to merely 1.000 years or even less. A central aspect for accelerator-driven systems design is the prediction of safety parameters and fuel economy. The simulations performed rely heavily on nuclear data and especially on the precision of the neutron cross section representations of essential nuclides over a wide energy range, from the thermal to the fast energy regime. In combination with a more demanding neutron flux distribution as compared with ordinary light-water reactors, the expanded nuclear data energy regime makes exploration of the cross section sensitivity for simulations of accelerator-driven systems a necessity. This fact was observed throughout the work and a significant portion of the study is devoted to investigations of nuclear data related effects. The computer code package EA-MC, based on 3-D Monte Carlo techniques, is the main computational tool employed for the analyses presented. Directly related to the development of the code is the extensive IAEA ADS Benchmark 3.2, and an account of the results of the benchmark exercises as implemented with EA-MC is given. CERN's Energy Amplifier prototype is studied from the perspectives of neutron source types, nuclear data sensitivity and transmutation. The commissioning of the n T OF experiment, which is a neutron cross section measurement project at CERN, is also described

  13. Application of variance reduction technique to nuclear transmutation system driven by accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Sasa, Toshinobu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    In Japan, it is the basic policy to dispose the high level radioactive waste arising from spent nuclear fuel in stable deep strata after glass solidification. If the useful elements in the waste can be separated and utilized, resources are effectively used, and it can be expected to guarantee high economical efficiency and safety in the disposal in strata. Japan Atomic Energy Research Institute proposed the hybrid type transmutation system, in which high intensity proton accelerator and subcritical fast core are combined, or the nuclear reactor which is optimized for the exclusive use for transmutation. The tungsten target, minor actinide nitride fuel transmutation system and the melted minor actinide chloride salt target fuel transmutation system are outlined. The conceptual figures of both systems are shown. As the method of analysis, Version 2.70 of Lahet Code System which was developed by Los Alamos National Laboratory in USA was adopted. In case of carrying out the analysis of accelerator-driven subcritical core in the energy range below 20 MeV, variance reduction technique must be applied. (K.I.)

  14. Accelerator Driven Sub-Critical System for the Radioactive Waste Transmutation

    International Nuclear Information System (INIS)

    Avramovic, I.; Pesic, M.

    2008-01-01

    Spent nuclear fuel discharged from nuclear power plants is the main problem during design of radioactive waste disposal. Most of the hazard stems from only a few chemical elements. The radiotoxicity of these elements can be efficiently reduced using partitioning and transmutation in fast reactors and accelerator driven subcritical systems. (author)

  15. Impact of Transmutation Scenarios on Fuel Transportation

    International Nuclear Information System (INIS)

    Saturnin, A.; Duret, B.; Allou, A.; Jasserand, F.; Fillastre, E.; Giffard, F.X.; Chabert, C.; Caron-Charles, M.; Garzenne, C.; Laugier, F.

    2015-01-01

    Minor actinides transmutation scenarios have been studied in the frame of the French Sustainable Radioactive Waste Management Act of 28 June 2006. Transmutation scenarios supposed the introduction of a sodium-cooled fast reactor fleet using homogeneous or heterogeneous recycling modes for the minor actinides. Americium, neptunium and curium (MA) or americium alone (Am) can be transmuted together in a homogeneous way embedded in FR-MOX fuel or incorporated in MA or Am-Bearing radial Blankets (MABB or AmBB). MA transmutation in Accelerator Driven System has also been studied while plutonium is being recycled in SFR. Assessments and comparisons of these advanced cycles have been performed considering technical and economic criteria. Transportation needs for fresh and used transmutation fuels is one of these criteria. Transmutation fuels have specific characteristics in terms of thermal load and neutron emissions. Thermal, radiation and criticality constraints have been taken into account in this study to suggest cask concepts for routine conditions of transport, to estimate the number of assemblies to be transported in a cask and the number of annual transports. Comparison with the no transmutation option, i.e. management of uranium and plutonium in SFRs, is also presented. Regarding these matters, no high difficulties appear for assemblies with limited content of Am (homogeneous or heterogeneous recycling modes). When fuels contain curium, technical transport uncertainties increase because of the important heat release requiring dividing fresh fuels and technological innovations development (MABB and ADS). (authors)

  16. A beamline systems model for Accelerator-Driven Transmutation Technology (ADTT) facilities

    Energy Technology Data Exchange (ETDEWEB)

    Todd, A.M.M.; Paulson, C.C.; Peacock, M.A. [Grumman Research and Development Center, Princeton, NJ (United States)] [and others

    1995-10-01

    A beamline systems code, that is being developed for Accelerator-Driven Transmutation Technology (ADTT) facility trade studies, is described. The overall program is a joint Grumman, G.H. Gillespie Associates (GHGA) and Los Alamos National Laboratory effort. The GHGA Accelerator Systems Model (ASM) has been adopted as the framework on which this effort is based. Relevant accelerator and beam transport models from earlier Grumman systems codes are being adapted to this framework. Preliminary physics and engineering models for each ADTT beamline component have been constructed. Examples noted include a Bridge Coupled Drift Tube Linac (BCDTL) and the accelerator thermal system. A decision has been made to confine the ASM framework principally to beamline modeling, while detailed target/blanket, balance-of-plant and facility costing analysis will be performed externally. An interfacing external balance-of-plant and facility costing model, which will permit the performance of iterative facility trade studies, is under separate development. An ABC (Accelerator Based Conversion) example is used to highlight the present models and capabilities.

  17. A beamline systems model for Accelerator-Driven Transmutation Technology (ADTT) facilities

    International Nuclear Information System (INIS)

    Todd, Alan M. M.; Paulson, C. C.; Peacock, M. A.; Reusch, M. F.

    1995-01-01

    A beamline systems code, that is being developed for Accelerator-Driven Transmutation Technology (ADTT) facility trade studies, is described. The overall program is a joint Grumman, G. H. Gillespie Associates (GHGA) and Los Alamos National Laboratory effort. The GHGA Accelerator Systems Model (ASM) has been adopted as the framework on which this effort is based. Relevant accelerator and beam transport models from earlier Grumman systems codes are being adapted to this framework. Preliminary physics and engineering models for each ADTT beamline component have been constructed. Examples noted include a Bridge Coupled Drift Tube Linac (BCDTL) and the accelerator thermal system. A decision has been made to confine the ASM framework principally to beamline modeling, while detailed target/blanket, balance-of-plant and facility costing analysis will be performed externally. An interfacing external balance-of-plant and facility costing model, which will permit the performance of iterative facility trade studies, is under separate development. An ABC (Accelerator Based Conversion) example is used to highlight the present models and capabilities

  18. Nuclear transmutations

    International Nuclear Information System (INIS)

    Mikulaj, V.

    1992-01-01

    Two types of nuclear transmutations are outlined, namely the radioactive transmutations and nuclear reactions. The basic characteristics are given of radioactive transmutations (gamma transmutations and isomeric transitions, beta, alpha transmutations, spontaneous fission and spontaneous emission of nucleons), their kinetics and the influence of the physical and chemical state of the radionuclide on the transmutation rate. The basic characteristics are described of nuclear reactions (reactions of neutrons including fission, reactions induced by charged particles and photons), their kinetics, effective cross sections and their mechanism. Chemical reactions caused by nuclear transmutations are discussed (recoil energy, properties of hot atoms, Szilard-Chalmers effect). A brief information is given on the behavior of radionuclides in trace concentrations. (Z.S.) 2 tabs., 19 figs., 12 refs

  19. Vortex Transmutation

    International Nuclear Information System (INIS)

    Ferrando, Albert; Garcia-March, Miguel-Angel; Zacares, Mario; Monsoriu, Juan A.; Cordoba, Pedro Fernandez de

    2005-01-01

    Using group theory arguments and numerical simulations, we demonstrate the possibility of changing the vorticity or topological charge of an individual vortex by means of the action of a system possessing a discrete rotational symmetry of finite order. We establish on theoretical grounds a 'transmutation pass rule' determining the conditions for this phenomenon to occur and numerically analyze it in the context of two-dimensional optical lattices. An analogous approach is applicable to the problems of Bose-Einstein condensates in periodic potentials

  20. Conceptual Design of Low Fusion Power Hybrid System for Waste Transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seong Hee; Kim, Myung Hyun [Kyung Hee University, Yongin (Korea, Republic of)

    2016-10-15

    DRUP (Direct Reuse of Used PWR) fuel has same process with DUPIC (Direct Use of spent PWR fuel Into CANDU reactor). There are 2 big benefits by using DRUP fuel in Hybrid system. One is fissile production during operating period. Required power is decreased by fissile production from DRUP fuel. When the fusion power is reduced, integrity of structure materials is not significantly weakened due to reduction of 14.1MeV high energy neutrons. In addition, required amount of tritium for self-sufficiency TBR (Tritium Breeding Ratio ≥ 1.1) is decreased. Therefore, it is possible to further loading the SNF as much as the amount of lithium decreased. It is effective in transmutation. The other one is that DRUP fuel is also SNF. Therefore, using DRUP fuel is reusing of SNF, as a result it makes reduction of SNF from PWR. However, thermal neutron system is suitable for using DRUP fuel compared to fast neutron system. Therefore, transmutation zone designed (U-TRU)Zr fuel and fissile production zone designed DRUP fuel are separated in this study. In this paper, using DRUP fuel for low fusion power in hybrid system is suggested. Fusion power is decreased by using DRUP fuel. As a result, TBR is satisfied design condition despite of using natural lithium. In addition, not only (U-TRU)Zr fuel but also DRUP fuel are transmuted.

  1. Ability of Accelerator-Driven Systems (ADS) to Transmute Long Lived Fission Fragments

    International Nuclear Information System (INIS)

    Nguyen Mong Giao; Nguyen Thi Ai Thu; Tu Thanh Danh; Tran Thanh Dung; Huynh, Thi Kim Chi

    2010-12-01

    This paper presents the research results of the possibility to transmute the long-lived radioactive isotopes into stable or short-lived, mainly the long-lived fission fragments as 99 Tc, 127 I, 129 I, 181 Ta, 107 Ag, 109 Ag by accelerator-driven systems. We use semi-empirical formulas to establish our calculating code with the support of computer programs. (author)

  2. HYPERFUSE: a novel inertial confinement system utilizing hypervelocity projectiles for fusion energy production and fission waste transmutation

    International Nuclear Information System (INIS)

    Makowitz, H.; Powell, J.R.; Wiswall, R.

    1980-01-01

    Parametric system studies of an inertial confinement fusion (ICF) reactor system to transmute fission products from an LWR economy have been carried out. The ICF reactors would produce net power in addition to transmuting fission products. The particular ICF concept examined is an impact fusion approach termed HYPERFUSE, in which hypervelocity pellets, traveling on the order of 100 to 300 km/sec, collide with each other or a target block in a reactor chamber and initiate a thermonuclear reaction. The DT fusion fuel is contained in a shell of the material to be transmuted, e.g., 137 Cs or 90 Sr. The 14-MeV fusion neutrons released during the pellet burn cause transmutation reactions (e.g., (n, 2n), (n, α), etc.) that convert the long lived fission products (FP's) either to stable products or to species that decay with a short half-life to a stable product

  3. Hyper fuse: a novel inertial confinement system utilizing hypervelocity projectiles for fusion energy production and fission waste transmutation

    International Nuclear Information System (INIS)

    Makowitz, H.; Powell, J.R.; Wiswall, R.

    1979-01-01

    Parametric system studies of an inertial confinement fusion (ICF) reactor system to transmute fission products from an LWR economy have been carried out. The ICF reactors would produce net power in addition to transmuting fission products. The particular ICF concept examined is an impact fusion approach termed HYPERFUSE, in which hypervelocity pellets, traveling on the order of 100 to 300 km/sec, collide with a target in a reactor chamber and initiate a thermonuclear reaction. The DT fusion fuel is contained in a shell of the material to be transmuted, e.g., 137 Cs or 90 Sr. The 14 MeV fusion neutrons released during the pellet burn cause transmutation reactions [e.g., (n, 2n), (n, α), etc.] that convert the long lived fission products (FP's) either to stable products or to species that decay with a short half-life to a stable product

  4. Modern g,d,p,n-induced activation-transmutation systems

    International Nuclear Information System (INIS)

    Sublet, J.Ch.

    2010-01-01

    Document available in abstract form only. Full text of publication follows: The European Activation System (EASY) includes as the source of nuclear data the European Activation File (EAF) and as its engine the FISPACT activation-transmutation code. The latest version of the EAF, EAF-2010, contains cross-section data for gamma-, deuteron- and proton-induced reactions in addition to the traditional neutron-induced data. The main reason for the addition of these data to EAF is to enable activation-transmutation calculations to be performed for even more nuclear facilities, including 'accelerator'-driven devices with incident upper energy limit of 60 or 200 MeV. EAF-2010 has benefited from the generation and maintenance of comprehensive activation files in the past and the development of the processing code SAFEPAQ-II and model code TALYS. TALYS is the source for all gamma-, proton- and deuteron-induced data and a fair share of the neutron-induced data. Cross-section validation exercises against both experimental data and systematic, which were started in 1995, enable a comprehensive assessment of the data. Although EAF-2010 is certainly the most-validated activation neutron cross-section library in the world, currently less than 3% of all the reactions can be compared with experimental information, and even then only for a very limited, and not always application-relevant, energy range. As with EAF-2010, -2003, -2005 and -2007 results of integral experiments have been used to correct, adjust and validate data. This can be done using SAFEPAQ II by inputting the measured effective cross-sections. Validation using integral data has been performed by means of direct comparison with measurements of various materials under relevant particle spectra. A tool has recently been developed which is important now that the libraries contain so much TALYS-calculated data. Statistical analysis of cross-sections (SACS) is used to look for trends in the library data for a particular

  5. System study on partitioning and transmutation of long-lived isotopes

    International Nuclear Information System (INIS)

    Szieberth, M.

    2001-01-01

    The management of long-lived isotopes - transuranium elements and fission products - produced in nuclear reactors is a problem that substantially affects the public acceptance of nuclear energy, and may influence the long-term hazard caused by energy production. Partitioning and transmutation of spent fuel materials offer a suitable solution to this problem. After the nuclear community had realised this fact, the number of publications on this topic significantly increased but there is still a lack of studies that include the analysis of not only one instrument but also the whole nuclear energy system. However, from the viewpoint of Partitioning and transmutation's implementation a substantial question is the cooperation of plants optimised for energy generation and others for partitioning or transmutation. In order to analyse this problem, the schemes of different systems are framed and their mathematical models are worked out. The systems are evaluated through the long-term risks caused by the waste deposited in final disposal, and the risks are described by a newly defined quantity, the residual hazard index. (author)

  6. Actinide partitioning-transmutation program final report. III. Transmutation studies

    International Nuclear Information System (INIS)

    Wachter, J.W.; Croff, A.G.

    1980-07-01

    Transmutation of the long-lived nuclides contained in fuel cycle wastes has been suggested as a means of reducing the long-term toxicity of the wastes. A comprehensive program to evaluate the feasibility and incentives for recovering the actinides from wastes (partitioning) and transmuting them to short-lived or stable nuclides has been in progress for 3 years under the direction of Oak Ridge National Laboratory (ORNL). This report constitutes the final assessment of transmutation in support of this program. Included are (1) a summary of recent transmutation literature, (2) a generic evaluation of actinide transmutation in thermal, fast, and other transmutation devices, (3) a preliminary evaluation of 99 Tc and 129 I transmutation, and (4) a characterization of a pressurized-water-reactor fuel cycle with and without provisions for actinide recovery and transmutation for use in other parts of the ORNL program. The principal conclusion of the report is that actinide transmutation is feasible in both thermal and fast reactors, subject to demonstrating satisfactory fuel performance, with relatively little impact on the reactor. It would also appear that additional transmutation studies are unwarranted until a firm decision to proceed with actinide transmutation has been made by the responsible authorities

  7. Transmutation of radioactive wastes: how and why?

    International Nuclear Information System (INIS)

    Patarin, L.

    2004-01-01

    After having evoked the natural or spontaneous transmutation of natural or artificial radioactive atoms, the author describes how this transmutation is technically obtained, indicates the two main families of atoms present in a used nuclear fuel and for which transmutation is to be investigated (long-lived fission residues or products, and transuranium elements) and of which the behaviour in neutron fluxes must be explored. He discusses the industrial means required for artificial transmutation. He discusses the interest of performing such a transmutation

  8. Concept and optimization of burning and transmutation reactor in nuclear fuel recycle system

    International Nuclear Information System (INIS)

    Marsodi; Mulyanto; Kitamoto, Asashi.

    1994-01-01

    Basic concept of B/T reactor, not only produces thermal energy but also performs burning and/or transmutation of MA and long-lived FPs, was introduced here based on numerical computation model. The advantage of nuclear reaction by thermal or fast neutron was combined conceptually with each other in order to maximize the overall B/T rate obtained by a composite system of fast and thermal reactor. According to the mass balance analysis of B/T reactors with P-T treatment, fast reactor hardened neutron energy may be effective for MA burning. Furthermore, a high flux reactor operated by fast or thermal neutron could be different from a reactor with high B/T rate or high capacity for loading of MA and/or long-lived FPs. The purpose of this study is to make clear the concept and the performance of fast and thermal B/T reactor designed under high neutron utilization for HLW disposal. (author)

  9. Neutronics design for lead-bismuth cooled accelerator-driven system for transmutation of minor actinide

    International Nuclear Information System (INIS)

    Tsujimoto, Kazufumi; Sasa, Toshinobu; Nishihara, Kenji; Oigawa, Hiroyuki; Takano, Hideki

    2004-01-01

    Neutronics design study was performed for lead-bismuth cooled accelerator-driven system (ADS) to transmute minor actinides. Early study for ADS indicated two problems: a large burnup reactivity swing and a significant peaking factor. To solve these problems, effect of design parameters on neutronics characteristics were searched. The design parameters were initial plutonium loading, buffer region between spallation target and core, and zone fuel loading. Parametric survey calculations were performed considering fuel cycle consisting of burnup and recycle. The results showed that burnup reactivity swing depends on the plutonium fraction in the initial fuel loading, and the lead-bismuth buffer region and the two-zone loading were effective for solving the problems. Moreover, an optimum value for the effective multiplication factor was also evaluated using reactivity coefficients. From the result, the maximum allowable value of the effective multiplication factor for a practical ADS can be set at 0.97. Consequently, a new core concept combining the buffer region and the two-zone loading was proposed base on the results of the parametric survey. (author)

  10. System and safety studies of accelerator driven transmutation. Annual Report 2001

    International Nuclear Information System (INIS)

    Gudowski, W.; Wallenius, J.; Tucek, K.; Eriksson, Marcus; Carlsson, Johan; Seltborg, P.; Cetnar, J.; Chakarova, R.; Westlen, D.

    2002-03-01

    The research on safety of Accelerator-Driven Transmutation Systems (ADS) at the Dept. of Nuclear and Reactor Physics has been focused in year 2001 on: a) ADS core design and development of advanced nuclear fuel optimised for high transmutation rates and good safety features; b) analysis of ADS-dynamics; c) computer code and nuclear data development relevant for simulation and optimization of ADS; d) participation in ADS experiments including 1 MW spallation target manufacturing, subcritical experiments MUSE (CEA-Cadarache) and YALINA experiment in Minsk. The Dept. is very actively participating in many European projects in the 5th Framework Programme of the European Community. Most of the research topics reported in this paper are referred to by appendices, which have been published in the open literature. The topics, which are not yet published, are described here in more details

  11. System and safety studies of accelerator driven transmutation. Annual Report 2001

    Energy Technology Data Exchange (ETDEWEB)

    Gudowski, W; Wallenius, J; Tucek, K; Eriksson, Marcus; Carlsson, Johan; Seltborg, P; Cetnar, J; Chakarova, R; Westlen, D [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Nuclear and Reactor Physics

    2002-03-01

    The research on safety of Accelerator-Driven Transmutation Systems (ADS) at the Dept. of Nuclear and Reactor Physics has been focused in year 2001 on: a) ADS core design and development of advanced nuclear fuel optimised for high transmutation rates and good safety features; b) analysis of ADS-dynamics; c) computer code and nuclear data development relevant for simulation and optimization of ADS; d) participation in ADS experiments including 1 MW spallation target manufacturing, subcritical experiments MUSE (CEA-Cadarache) and YALINA experiment in Minsk. The Dept. is very actively participating in many European projects in the 5th Framework Programme of the European Community. Most of the research topics reported in this paper are referred to by appendices, which have been published in the open literature. The topics, which are not yet published, are described here in more details.

  12. Transmutation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Viererbl, L., E-mail: vie@ujv.c [Research Centre Rez Ltd. (Czech Republic); Nuclear Research Institute Rez plc (Czech Republic); Lahodova, Z. [Research Centre Rez Ltd. (Czech Republic); Nuclear Research Institute Rez plc (Czech Republic); Klupak, V. [Nuclear Research Institute Rez plc (Czech Republic); Sus, F. [Research Centre Rez Ltd. (Czech Republic); Nuclear Research Institute Rez plc (Czech Republic); Kucera, J. [Research Centre Rez Ltd. (Czech Republic); Nuclear Physics Institute, Academy of Sciences of the Czech Republic (Czech Republic); Kus, P.; Marek, M. [Research Centre Rez Ltd. (Czech Republic); Nuclear Research Institute Rez plc (Czech Republic)

    2011-03-11

    We have designed a new type of detectors, called transmutation detectors, which can be used primarily for neutron fluence measurement. The transmutation detector method differs from the commonly used activation detector method in evaluation of detector response after irradiation. Instead of radionuclide activity measurement using radiometric methods, the concentration of stable non-gaseous nuclides generated by transmutation in the detector is measured using analytical methods like mass spectrometry. Prospective elements and nuclear reactions for transmutation detectors are listed and initial experimental results are given. The transmutation detector method could be used primarily for long-term measurement of neutron fluence in fission nuclear reactors, but in principle it could be used for any type of radiation that can cause transmutation of nuclides in detectors. This method could also be used for measurement in accelerators or fusion reactors.

  13. Transmutation detectors

    International Nuclear Information System (INIS)

    Viererbl, L.; Lahodova, Z.; Klupak, V.; Sus, F.; Kucera, J.; Kus, P.; Marek, M.

    2011-01-01

    We have designed a new type of detectors, called transmutation detectors, which can be used primarily for neutron fluence measurement. The transmutation detector method differs from the commonly used activation detector method in evaluation of detector response after irradiation. Instead of radionuclide activity measurement using radiometric methods, the concentration of stable non-gaseous nuclides generated by transmutation in the detector is measured using analytical methods like mass spectrometry. Prospective elements and nuclear reactions for transmutation detectors are listed and initial experimental results are given. The transmutation detector method could be used primarily for long-term measurement of neutron fluence in fission nuclear reactors, but in principle it could be used for any type of radiation that can cause transmutation of nuclides in detectors. This method could also be used for measurement in accelerators or fusion reactors.

  14. Study of potential of nuclear waste transmutation and safety characteristics of an hybrid system: sub critical accelerator reactor; Etude du potentiel de transmutation et des caracteristiques de surete d`un systeme hybride: accelerateur reacteur sous critique

    Energy Technology Data Exchange (ETDEWEB)

    Tchistiakov, A

    1998-04-01

    The study of potential of nuclear waste transmutation for the new reactor systems - hybrid reactors - was the object of this work. Global review of different projects is presented. The basic physical parameters definitions, as neutron surplus and relative importance of external source neutrons, are introduced and explained. For these parameters, numerical values are obtained. The advantage in neutron surplus of fast system is noted. Equilibrium model and corresponding toxicities of different isotopes nd nuclear cycles are presented. Numerical analysis for equilibrium model converge validation are performed also. The study of neutron consumption by `transmutable` Long-Lived Fission Products (Tc, I and Cs) show the possibility of their incineration in dedicated fast hybrid reactors. Equilibrium model shown the influence of reprocessing losses level to cycle toxicity level. Relations between specific fuel inventories (mass normalised by power unit) for thermal and fast spectra are examined. The differences are relatively small. Finally, few hybrid reactor concepts with different objects were analysed. These studies confirm that in frameworks of certain Nuclear Energy scenarios the fast hybrid systems can reduce significantly the radio-toxicity of fuel cycle. Preliminary analyses of sub-critical reactor behaviour show big potential of this reactor type in `Transient of Power` kind of accident, even if more detailed study is necessary. (author)

  15. Overview of EU research activities in transmutation and innovative reactor systems within the Euratom framework programmes

    International Nuclear Information System (INIS)

    Bhatnagar, V.

    2009-01-01

    European Community (EC) (currently 27 Member States) shared-cost research has been organised in Framework Programmes (FP) of durations of 4 - 5 years since 1984. The 6th European Atomic Energy Community (EURATOM) Framework Programme (2002 - 06) and the current 7th FP (2007 - 11) have been allocated a fission research budget respectively of 209 and 287 Million Euro from the EC. There are 10 projects (total budget 70 M Euro, EC contribution 38 M Euro) in all aspects of transmutation ranging from road-mapping exercise to large integrated projects on accelerator driven systems, lead-cooled fast critical systems for waste transmutation, technology, fuel, accelerator facilities for nuclear data etc. In Innovative Reactor concepts, there are about half-a-dozen projects (total budget 30 M Euro, EC contribution 16 M Euro) including High Temperature Reactors, Gas-cooled Fast reactors, road-mapping exercise on sodium fast reactors etc. The main research and training activities in FP7 are: management of radioactive waste, reactor systems, radiation protection, infrastructures, human resources and mobility and training. In the two call for proposals (2007 and 2008) in FP7, 8 projects have been accepted in transmutation and innovative reactor concepts (total budget 53 M Euro, EC contribution 32 M Euro). These research projects cover activities ranging from materials, fuels, treatment of irradiated graphite waste, European sodium fast reactor to the establishment of a Central Design Team of a fast-spectrum transmutation device in Europe. The third call for proposals is underway requesting proposals on nuclear data, thermal hydraulics, gas and lead-cooled fast reactor systems with a total EC budget of 20 M Euro. International collaboration is an important element of the EU research policy. This overview paper will present elements of the strategy of EURATOM research and training in waste management including accelerator driven transmutation systems and Innovative reactor concepts

  16. Fluoride partitioning R and D programme for molten salt transmutation reactor systems in the Czech Republic

    International Nuclear Information System (INIS)

    Uhlir, J.; Priman, V.; Vanicek, J.

    2001-01-01

    The transmutation of spent nuclear fuel is considered a prospective alternative conception to the current conception based on the non-reprocessed spent fuel disposal into underground repository. The Czech research and development programme in the field of partitioning and transmutation is founded on the Molten Salt Transmutation Reactor system concept with fluoride salts based liquid fuel, the fuel cycle of which is grounded on pyrochemical / pyrometallurgical fluoride partitioning of spent fuel. The main research activities in the field of fluoride partitioning are oriented mainly towards technological research of Fluoride Volatility Method and laboratory research on electro-separation methods from fluoride melts media. The Czech national conception in the area of P and T research issues from the national power industry programme and from the Czech Power Company intentions of the extensive utilization of nuclear power in our country. The experimental R and D work is concentrated mainly in the Nuclear Research Institute Rez plc that plays a role of main nuclear research workplace for the Czech Power Company. (author)

  17. Transmutation Technology Development

    Energy Technology Data Exchange (ETDEWEB)

    Song, T. Y.; Park, W. S.; Kim, Y. H. (and others)

    2007-06-15

    The spent fuel coming from the PWR is one of the most difficult problems to be solved for the continuous use of nuclear power. It takes a few million years to be safe under the ground. Therefore, it is not easy to take care of the spent fuel for such a long time. Transmutation technology is the key technology which can solve the spent fuel problem basically. Transmutation is to transmute long-lived radioactive nuclides in the spent fuel into short-lived or stable nuclide through nuclear reactions. The long-lived radioactive nuclides can be TRU and fission products such as Tc-99 and I-129. Although the transmutation technology does not make the underground disposal totally unnecessary, the period to take care of the spent fuel can be reduced to the order of a few hundred years. In addition to the environmental benefit, transmutation can be considered to recycle the energy in the spent fuel since the transmutation is performed through nuclear fission reaction of the TRU in the spent fuel. Therefore, transmutation technology is worth being developed in economical aspect. The results of this work can be a basis for the next stage research. The objective of the third stage research was to complete the core conceptual design and verification of the key technologies. The final results will contribute to the establishment of Korean back end fuel cycle policy by providing technical guidelines.

  18. Exhibit of ADS transmutation system to-Handle MA contained in Highly Radioactive Waste

    International Nuclear Information System (INIS)

    Marsodi; Lasman, A.N.; Nishihara, K.; Marsongkohadi; Su'ud, Z.

    2002-01-01

    This ADS transmutation system consists of a high intensity proton beam accelerator, spallation target, and sub-critical reactor core. The general approach was conducted using N-15 fuel to choose a strategy for destroying or minimizing the dangerously radioactive waste using a fast neutron spectrum. The fuel of this system was put surrounding the target with the some composition, i.e. the composition of MOX from PWR reactor spent-fuel with 5 year cooling time. Basic characteristics of this system have been conducted based on analysis of neutronics calculation results using ATRAS codes system

  19. System and safety studies of accelerator driven transmutation. Annual Report 2003

    Energy Technology Data Exchange (ETDEWEB)

    Gudowski, Waclaw; Wallenius, Jan; Tucek, Kamil [Royal Inst. of Technology, Stockholm (Sweden). Dept. of Nuclear and Reactor Physics] [and others

    2004-12-01

    The research on safety of Accelerator-Driven Transmutation Systems (ADS) at the Dept. of Nuclear and Reactor Physics reported here has been focused on different aspects of safety of the Accelerator-Driven Transmutation Systems and on Transmutation research in more general terms. An overview of the topics of our research is given in the Summary which is followed by detailed reports as separate chapters or subchapters. Some of the research topics reported in this report are referred to appendices, which have been published in the open literature. Topics, which are not yet published, are described with more details in the main part of this report. Main focus has been, as before, largely determined by the programme of the European projects of the 5th Framework Programme in which KTH is actively participating. In particular: a) ADS core design and development of advanced nuclear fuel optimised for high transmutation rates and good safety features. This activity includes even computer modeling of nuclear fuel production. Three different ADS-core concept are being investigated: Conceptual design of Pb-Bi cooled core with nitride fuel so called Sing-Sing Core developed at KTH; Pb-Bi cooled core with oxide fuel so called ANSALDO design for the European Project PDS-XADS; Gas cooled core with oxide fuel a design investigated for the European Project PDS-XADS. b) analysis of potential of advance fuels, in particular nitrides with high content of minor actinides; c) analysis of ADS-dynamics and assessment of major reactivity feedbacks; d) emergency heat removal from ADS; e) participation in ADS: MUSE (CEA-Cadarache), YALINA subcritical experiment in Minsk and designing of the subcritical experiment SAD in Dubna; f) theoretical and simulation studies of radiation damage in high neutron (and/or proton) fluxes; g) computer code and nuclear data development relevant for simulation and optimization of ADS, validation of the MCB code and sensitivity analysis; h) studies of

  20. System and safety studies of accelerator driven transmutation. Annual Report 2003

    International Nuclear Information System (INIS)

    Gudowski, Waclaw; Wallenius, Jan; Tucek, Kamil

    2004-12-01

    The research on safety of Accelerator-Driven Transmutation Systems (ADS) at the Dept. of Nuclear and Reactor Physics reported here has been focused on different aspects of safety of the Accelerator-Driven Transmutation Systems and on Transmutation research in more general terms. An overview of the topics of our research is given in the Summary which is followed by detailed reports as separate chapters or subchapters. Some of the research topics reported in this report are referred to appendices, which have been published in the open literature. Topics, which are not yet published, are described with more details in the main part of this report. Main focus has been, as before, largely determined by the programme of the European projects of the 5th Framework Programme in which KTH is actively participating. In particular: a) ADS core design and development of advanced nuclear fuel optimised for high transmutation rates and good safety features. This activity includes even computer modeling of nuclear fuel production. Three different ADS-core concept are being investigated: Conceptual design of Pb-Bi cooled core with nitride fuel so called Sing-Sing Core developed at KTH; Pb-Bi cooled core with oxide fuel so called ANSALDO design for the European Project PDS-XADS; Gas cooled core with oxide fuel a design investigated for the European Project PDS-XADS. b) analysis of potential of advance fuels, in particular nitrides with high content of minor actinides; c) analysis of ADS-dynamics and assessment of major reactivity feedbacks; d) emergency heat removal from ADS; e) participation in ADS: MUSE (CEA-Cadarache), YALINA subcritical experiment in Minsk and designing of the subcritical experiment SAD in Dubna; f) theoretical and simulation studies of radiation damage in high neutron (and/or proton) fluxes; g) computer code and nuclear data development relevant for simulation and optimization of ADS, validation of the MCB code and sensitivity analysis; h) studies of

  1. System and safety studies of accelerator driven transmutation. Annual Report 2002

    International Nuclear Information System (INIS)

    Gudowski, W.; Wallenius, J.; Tucek, K.; Eriksson, Marcus; Carlsson, Johan; Seltborg, P.; Cetnar, J.; Chakarova, R.; Jollkonen, Mikael; Westlen, D.

    2003-06-01

    The research on safety of Accelerator-Driven Transmutation Systems (ADS) at the Dept. of Nuclear and Reactor Physics has been largely determined by the program of the European projects of the the 5th Framework Programme. In particular: a) ADS core design and development of advanced nuclear fuel optimized for high transmutation rates and good safety features. This activity includes computer modeling of nuclear fuel production. Three different ADS-core concept are being investigated: Conceptual design of Pb-Bi cooled core with nitride fuel - so called Sing-Sing Core; Pb-Bi cooled core with oxide fuel; Gas cooled core with oxide fuel - both designs investigated for the European Project PDS-XADS; b) analysis of ADS-dynamics and assessment of major reactivity feedbacks; c) emergency heat removal from ADS; d) participation in ADS experiments including 1 MW spallation target manufacturing, subcritical experiments MUSE, YALINA subcritical experiment in Minsk and designing of the subcritical experiment SAD in Dubna; e) material studies for ADS, in particular theoretical and simulation studies of radiation damage in high neutron (or proton) fluxes; f) computer code and nuclear data development relevant for simulation and optimization of ADS, special efforts were put in the frame of the European Project PDS-XADS to perform sensitivity studies of the different nuclear data libraries; g) studies of transmutation potential of critical reactors in particular High Temp Gas Cooled Reactor. Most important finding and conclusions from our studies: A strong positive void coefficient was found for lead/bismuth cooled cores. This considerable void effect is attributed to a high fraction of americium (60%) in the fuel. It was found that void reactivity insertion rates increases with P/D; in response to the beam overpower accident the Pb/Bi-cooled core featured the twice longer grace time compared to the sodium-cooled core; an important safety issue is the high void worth that could

  2. System and safety studies of accelerator driven transmutation. Annual Report 2002

    Energy Technology Data Exchange (ETDEWEB)

    Gudowski, W.; Wallenius, J.; Tucek, K.; Eriksson, Marcus; Carlsson, Johan; Seltborg, P.; Cetnar, J.; Chakarova, R.; Jollkonen, Mikael; Westlen, D. [Royal Inst. of Technology, Stockholm (Sweden). Dept. of Nuclear and Reactor Physics

    2003-06-01

    The research on safety of Accelerator-Driven Transmutation Systems (ADS) at the Dept. of Nuclear and Reactor Physics has been largely determined by the program of the European projects of the the 5th Framework Programme. In particular: a) ADS core design and development of advanced nuclear fuel optimized for high transmutation rates and good safety features. This activity includes computer modeling of nuclear fuel production. Three different ADS-core concept are being investigated: Conceptual design of Pb-Bi cooled core with nitride fuel - so called Sing-Sing Core; Pb-Bi cooled core with oxide fuel; Gas cooled core with oxide fuel - both designs investigated for the European Project PDS-XADS; b) analysis of ADS-dynamics and assessment of major reactivity feedbacks; c) emergency heat removal from ADS; d) participation in ADS experiments including 1 MW spallation target manufacturing, subcritical experiments MUSE, YALINA subcritical experiment in Minsk and designing of the subcritical experiment SAD in Dubna; e) material studies for ADS, in particular theoretical and simulation studies of radiation damage in high neutron (or proton) fluxes; f) computer code and nuclear data development relevant for simulation and optimization of ADS, special efforts were put in the frame of the European Project PDS-XADS to perform sensitivity studies of the different nuclear data libraries; g) studies of transmutation potential of critical reactors in particular High Temp Gas Cooled Reactor. Most important finding and conclusions from our studies: A strong positive void coefficient was found for lead/bismuth cooled cores. This considerable void effect is attributed to a high fraction of americium (60%) in the fuel. It was found that void reactivity insertion rates increases with P/D; in response to the beam overpower accident the Pb/Bi-cooled core featured the twice longer grace time compared to the sodium-cooled core; an important safety issue is the high void worth that could

  3. Waste transmutation: perspectives

    International Nuclear Information System (INIS)

    Leray, S.

    1997-01-01

    After the introduction on the source and nature of nuclear waste, this lecture analyzes the different methods proposed to transmute long-lived isotopes into stable or short-lived isotopes. It is shown that direct methods (photonuclear reactions, spallation, muon catalyzed fusion) do not lead to a sufficient transmutation rate within a reasonable cost. Only the use of hybrid systems, fusion-fission or spallation-fission, can be foreseen. (author)

  4. RF system considerations for accelerator production of tritium and the transmutation of nuclear waste

    International Nuclear Information System (INIS)

    Tallerico, P.J.; Lynch, M.T.

    1993-01-01

    RF driven proton accelerators for the transmutation of nuclear waste (ATW) or for the production of tritium (APT) require unprecedented amounts of CW RF power at UHF frequencies. For both systems, the baseline design is for 246 MW at 700 MHz and 8,5 MW at 350 MHz. The main technical challenges are how to design and build such a large system so that it has excellent reliability, high efficiency, and reasonable capital cost. The issues associated with the selection of the RF amplifier and the sizes of the power supplies are emphasized in this paper

  5. Effects of actinide compositional variability in the U.S. spent fuel inventory on partitioning-transmutation systems

    International Nuclear Information System (INIS)

    Ludwig, S.B.; Michaels, G.E.; Hanson, B.D.

    1993-01-01

    The partitioning and transmutation concept (P-T) has as a mission the reduction by many orders of magnitude of certain undesirable nuclides in the waste streams. Given that only a very small fiction of spent fuel can be rejected by a P-T enterprise, a P-T system must therefore be capable of accommodating a wide range of spent fuel characteristics. Variability of nuclide composition (i.e. the feed material for transmutation devices) may be important because virtually all transmutation systems propose to configure TRU nuclides recovered from discharged LWR fuel in critical or near-critical cores. To date, all transmutation system core analyses assume nonvariable nuclide concentrations for startup and recycle cores. Using the Department of Energy (DOES) Characteristic Data Base (CDB) and the ORIGEN2 computer code, the current and projected spent fuel discharges until the year 2016 have been categorized according to combinations of fuel burnup, initial enrichment, fuel age (cooling time) and reactor type (boiling-water or pressurized-water reactor). In addition to quantifying the variability of nuclide composition in current and projected LWR fuel discharge, the variability of the infinite multiplication factor (K ∞ ) is calculated for both fast (ALMR) and thermal (accelerator-based) transmuter systems. It is shown that actinide compositional variations are potentially significant and warrant further investigation. (authors)

  6. Collaboration between SCK·CEN and JAEA for partitioning and transmutation through accelerator-driven system

    International Nuclear Information System (INIS)

    2017-03-01

    This technical report reviews Research and Development (R and D) programs for the Partitioning and Transmutation (P and T) technology through Accelerator-Driven System (ADS) at Studiecentrum voor Kernenergie/Centre d'Etude de l'Énergie Nucléaire (SCK·CEN) and Japan Atomic Energy Agency (JAEA). The results obtained in the present Collaboration Arrangement between the two organizations for the ADS are also summarized, and possible further collaborations and mutual realizations in the future are sketched. (author)

  7. A conceptual study of actinide transmutation system with proton accelerator, (2)

    International Nuclear Information System (INIS)

    Takizuka, T.; Takada, H.; Kanno, I.; Ogawa, T.; Nishida, T.; Kaneko, Y.

    1990-01-01

    This paper describes the thermal hydraulics of the accelerator-driven actinide incineration target system based on power distribution profiles to assess the maximum attainable power. In the case of Na cooling, the reference target operates at a thermal power of 404 MW and a beam current of 18.2 mA. The system transmutes 114 kg actinides per year, which implies that the annual actinide products from about 4.3 units of 3000 MWt pressurized water reactor (PWR) can be incinerated. The Pb-Bi cooled reference target operates at a thermal power of 163 MW and beam current of 5.4 mA. The system transmutes 42 kg actinides annually, and can serve about 1.8 units of PWR. The maximum thermal power can be increased by a factor of about 2 by introducing tungsten pins in the high flux region to flatten the power distribution. The Na cooled tungsten-loaded target operates at a thermal power of 691 MW and beam current of 22.6 mA. The system can serve about 7.6 PWRs. The tungsten-loaded target cooled by Pb-Bi operates at a thermal power of 343 MW at a 9.8 mA beam current. The system can process the actinide from about 3.8 PWRs. (N.K.)

  8. Transmutation of high level nuclear waste in an accelerator driven system: towards a demonstration device of industrial interest (EUROTRANS)

    International Nuclear Information System (INIS)

    Knebel, Joachim U.; Ait Abderrahim, Hamid; Caron-Carles, Marylise

    2010-01-01

    The Integrated Project EUROTRANS (EURopean Research Programme for the TRANSmutation of High Level Nuclear Waste in an Accelerator Driven System) within the ongoing EURATOM 6th Framework Programme (FP6) is devoted to the study of transmutation of high-level waste from nuclear power plants. The work is focused on transmutation in an Accelerator Driven System (ADS). The objective of EUROTRANS is the assessment of the design and the feasibility of an industrial ADS prototype dedicated to transmutation. The necessary R and D results in the areas of accelerator components, fuel development, structural materials, thermal-hydraulics, heavy liquid metal technology and nuclear data will be made available, together with the experimental demonstration of the ADS component coupling. The outcome of this work will allow to provide a reasonably reliable assessment of technological feasibility and a cost estimate for ADS based transmutation, and to possibly decide on the detailed design of an experimental ADS and its construction in the future. EUROTRANS is integrating activities of 51 participants from 16 countries, within the industry (10 participants), the national research centres (20) and 17 universities. 16 universities are collectively represented by ENEN (European Nuclear Education Network). EUROTRANS is the continuation of the three FP5 Clusters FUETRA, BASTRA and TESTRA together with the PDS-XADS Project. It is a five-year project which started in April 2005

  9. Tokamak transmutation of (nuclear) waste (TTW): Parametric studies

    International Nuclear Information System (INIS)

    Cheng, E.T.; Krakowski, R.A.; Peng, Y.K.M.

    1994-01-01

    Radioactive waste generated as part of the commercial-power and defense nuclear programs can be either stored or transmuted. The latter treatment requires a capital-intensive neutron source and is reserved for particularly hazardous and long-lived actinide and fission-product waste. A comparative description of fusion-based transmutation is made on the basis of rudimentary estimates of ergonic performance and transmutation capacities versus inventories for both ultra-low-aspect-ratio (spherical torus, ST) and conversional (aspect-ratio) tokamak fusion-power-core drivers. The parametric systems studies reported herein provides a preamble to more-detailed, cost-based systems analyses

  10. Development of advanced technological systems for accelerator transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Batskikh, G.I.; Bondarev, B.I.; Durkin, A.P. [Russian Academy of Sciences, Moscow (Russian Federation)] [and others

    1995-10-01

    A development concept of the accelerator nuclear energy reactors is considered for energy generation and nuclear power plant waste conversion into short-lived nuclides along with the requirements imposed on the technological systems necessary for implementation of such projects. The state of art in the field is discussed.

  11. Accelerator driven systems (ADS): A principal neutronics and transmutation potential

    International Nuclear Information System (INIS)

    Slessarev, I.

    1997-01-01

    An accelerator-based system using a beam of high energy protons to produce supplementary neutrons as a result of spallation processes in a target is investigated. The spallation neutrons are successively used to feed a subcritical blanket where they create a neutron surplus available for incineration of those long-lived toxic nuclei which require neutrons (long-lived fission products and minor actinides), and enhance the deterministic safety features for reactivity-type of accidents

  12. Application of gas-cooled Accelerator Driven System (ADS) transmutation devices to sustainable nuclear energy development

    Energy Technology Data Exchange (ETDEWEB)

    Abanades, A., E-mail: abanades@etsii.upm.es [ETSII/Universidad Politecnica de Madrid, J.Gutierrez Abascal, 2-28006 Madrid (Spain); Garcia, C.; Garcia, L. [Instituto Superior de Tecnologia y Ciencias Aplicadas. Quinta de los, Molinos, Ave. Salvador Allende y Luaces, Ciudad de la Habana, CP 10400, Apartado Postal 6163 (Cuba); Escriva, A.; Perez-Navarro, A. [Instituto de Ingenieria Energetica, Universidad Politecnica de Valencia, C.P. 46022 Valencia (Spain); Rosales, J. [Instituto Superior de Tecnologia y Ciencias Aplicadas. Quinta de los, Molinos, Ave. Salvador Allende y Luaces, Ciudad de la Habana, CP 10400, Apartado Postal 6163 (Cuba)

    2011-06-15

    Highlights: > Utilization of Accelerator Driven System (ADS) for Hydrogen production. > Evaluation of the potential use of gas-cooled ADS for a sustainable use of Uranium resources by transmutation of nuclear wastes, electricity and Hydrogen production. > Application of the Sulfur-Iodine thermochemical process to subcritical systems. > Application of CINDER90 to calculate burn-up in subcritical systems. - Abstract: The conceptual design of a pebble bed gas-cooled transmutation device is shown with the aim to evaluate its potential for its deployment in the context of the sustainable nuclear energy development, which considers high temperature reactors for their operation in cogeneration mode, producing electricity, heat and Hydrogen. As differential characteristics our device operates in subcritical mode, driven by a neutron source activated by an accelerator that adds clear safety advantages and fuel flexibility opening the possibility to reduce the nuclear stockpile producing energy from actual LWR irradiated fuel with an efficiency of 45-46%, either in the form of Hydrogen, electricity, or both.

  13. Study on MAs transmutation of accelerator-driven system sodium-cooled fast reactor loaded with metallic fuel

    International Nuclear Information System (INIS)

    Han Song; Yang Yongwei

    2007-01-01

    Through the analysis of the effect of heavy metal actinides on the effective multiplication constant (k eff ) of the core in accelerator-driven system (ADS) sodium-cooled fast reactor loaded with metallic fuel, we gave the method for determining fuel components. the characteristics of minor actinides (MAs) transmutation was analyzed in detail. 3D burn-up code COUPLE, which couples MCNP4c3 and ORIGEN2, was applied to the neutron simulation and burn up calculation. The results of optimized scheme shows that adjusting the proportion of 239 Pu and maintaining the value during the burn-up cycle is an efficient method of designing k eff and keeping stable during the burn-up cycle. Spallation neutrons lead to the neutron spectrum harder at inner core than that at outer core. It is in favor of improving MA's fission cross sections and the capture-to-fission ratio. The total MAs transmutation support ratio 8.3 achieves excellent transmutation effect. For higher flux at inner core leads to obvious differences on transmutation efficiency,only disposing MAs at inner core is in favor of decreasing the loading mass and improving MAs transmutation effect. (authors)

  14. A study on transmutation of LLFPs using various types of HTGRs

    Energy Technology Data Exchange (ETDEWEB)

    Kora, Kazuki, E-mail: kora_k@nucl.kyushu-u.ac.jp [Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka-shi, Fukuoka-ken (Japan); Nakaya, Hiroyuki; Matsuura, Hideaki [Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka-shi, Fukuoka-ken (Japan); Goto, Minoru; Nakagawa, Shigeaki; Shimakawa, Satoshi [Japan Atomic Energy Agency, 4002 Narita-cho, Oarai-machi, Higashiibaraki-gun, Ibaraki, Ibaraki-ken (Japan)

    2016-04-15

    Highlights: • We propose utilization of a variety of HTGRs for LLFP transmutation and storage. • The transmutation performance of four types of HTGRs was examined and compared. • Some types of HTGRs show preferable characteristics for LLFP transmutation. - Abstract: In order to investigate the potential of high temperature gas-cooled reactors (HTGRs) for transmutation of long-lived fission products (LLFPs), numerical simulation of four types of HTGRs were carried out. In addition to the gas-turbine high temperature reactor system “GTHTR300”, which is the subject of our previous research, a small modular HTGR plant “HTR50S” and two types of plutonium burner HTGRs “Clean Burn with MA” and “Clean Burn without MA” were considered. The simulation results show that an early realization of LLFP transmutation using a compact HTGR may be possible since the HTR50S can transmute fair amount of LLFPs for its thermal output. The Clean Burn with MA can transmute a limited amount of LLFPs. However, an efficient LLFP transmutation using the Clean Burn without MA seems to be convincing as it is able to achieve very high burn-ups and produce LLFP transmutation more than GTHTR300. Based on these results, we propose utilization of variety of HTGRs for LLFP transmutation and storage.

  15. System and safety studies of accelerator driven transmutation Annual Report 2005

    Energy Technology Data Exchange (ETDEWEB)

    Gudowski, Waclaw; Wallenius, Jan; Arzhanov, Vasily; Jolkkonen, Mikael; Eriksson, Marcus; Seltborg, Per; Westlen, Daniel; Lagerstedt, Christina; Isaksson, Patrick; Persson, Carl-Magnus; Aalander, Alexandra [Royal Inst. of Technology, Stockholm (Sweden). Dept. of Nuclear and Reactor Physics

    2006-11-15

    The results of the research activities on System and Safety of Accelerator-Driven Transmutation (ADS) at the Department of Nuclear and Reactor Physics are described in this report followed by the Appendices of the relevant scientific papers published in 2005. PhD and Licentiate dissertations of Marcus Ericsson, Per Seltborg, Christina Lagerstedt and Daniel Westlen (see Appendices) reflect the research mainstream of 2005. Year 2005 was also very rich in international activities with ADS in focus. Summary of conferences, seminars and lecturing activities is given in Chapter 9 Research activities of 2005 have been focused on several areas: system and safety studies of ADS; subcritical experiments; ADS source efficiency studies; nuclear fuel cycle analysis; potential of reactor based transmutation; ADS fuel development; simulation of radiation damage; and development of codes and methods. Large part of the research activities has been well integrated with the European projects of the 5th and 6th Framework Programmes of the European Commission in which KTH is actively participating. In particular European projects: RED-IMPACT, CONFIRM, FUTURE, EUROTRANS and NURESIM.

  16. Reprocessing of gas-cooled reactor particulate graphite fuel in a multi-strata transmutation system

    International Nuclear Information System (INIS)

    Laidler, J.J.

    2001-01-01

    Spent nuclear fuel discharged for light water reactors (LWRs) contains significant quantities of plutonium and other transuranic elements. Recent practice in Europe and Japan has been to recover the plutonium from spent fuel and recycle it to LWRs in the form of mixed uranium-plutonium oxide (MOX) fuel. Irradiation of the recycle fuel results in the generation of further plutonium and an increase in the isotopic concentration of the higher isotopes of plutonium, those having much lover fission cross sections than 239 Pu. This restricts plutonium recycle to one or two cycles, after which use of the plutonium becomes economically unfavorable. Recycle of the highly-transmuted plutonium in fast spectrum reactors can be an efficient method of fissioning this plutonium as well as other minor transuranics such as neptunium, americium and perhaps even curium. Those minor transuranics that are not conveniently burned in a fast reactor can be sent to an accelerator driven subcritical transmutation device for ultimate destruction. The preceding describes what has become known as a 'dual strata' or 'multi-strata' system. It is driven by the incentives to realize the maximum amount of energy from nuclear fuel and to eliminate the discharge of radio-toxic transuranic elements to the environment. Its implementation will be dependent in the long run upon the economic viability of the system and on the value placed by society on the elimination of radio-toxic materials that can conceivably be used in the manufacture of weapons of mass destruction. (author)

  17. System and safety studies of accelerator driven transmutation. Annual Report 2005

    International Nuclear Information System (INIS)

    Gudowski, Waclaw; Wallenius, Jan; Arzhanov, Vasily; Jolkkonen, Mikael; Eriksson, Marcus; Seltborg, Per; Westlen, Daniel; Lagerstedt, Christina; Isaksson, Patrick; Persson, Carl-Magnus; Aalander, Alexandra

    2006-11-01

    The results of the research activities on System and Safety of Accelerator-Driven Transmutation (ADS) at the Department of Nuclear and Reactor Physics are described in this report followed by the Appendices of the relevant scientific papers published in 2005. PhD and Licentiate dissertations of Marcus Ericsson, Per Seltborg, Christina Lagerstedt and Daniel Westlen (see Appendices) reflect the research mainstream of 2005. Year 2005 was also very rich in international activities with ADS in focus. Summary of conferences, seminars and lecturing activities is given in Chapter 9 Research activities of 2005 have been focused on several areas: system and safety studies of ADS; subcritical experiments; ADS source efficiency studies; nuclear fuel cycle analysis; potential of reactor based transmutation; ADS fuel development; simulation of radiation damage; and development of codes and methods. Large part of the research activities has been well integrated with the European projects of the 5th and 6th Framework Programmes of the European Commission in which KTH is actively participating. In particular European projects: RED-IMPACT, CONFIRM, FUTURE, EUROTRANS and NURESIM

  18. Development of fluoride reprocessing technology for molten salt transmutation reactor systems in the Czech Republic

    International Nuclear Information System (INIS)

    Uhlir, J.; Hosnedl, P.; Matal, O.

    2000-01-01

    At present, the transmutation of spent nuclear fuel is considered a prospective alternative conception with respect to the current conception based on the non-reprocessed spent fuel disposal into a deep geological repository. The Czech research and development programme in the area of partitioning is directed primarily on the development of the fuel cycle technology for the accelerator - driven subcritical reactor with a liquid fuel based on fluoride melts. The final objective of the research programme is the development of pyrochemical technologies suitable for a continuous or semi-continuous separation process which would allow practically perfect utilization of the transmutation potentialities of the reactor system. The present research is directed particularly on the development of suitable fluoride separation methods the target of which is the removal of the uranium component from spent nuclear fuel and on the research of the electro-separation procedures and further on the development of appropriate construction materials and equipment for the technology of fluoride salt melts. (authors)

  19. Pyrochemical separations technologies envisioned for the U.S. accelerator transmutation of waste system

    International Nuclear Information System (INIS)

    Laidler, J. J.

    2000-01-01

    A program has been initiated for the purpose of developing the chemical separations technologies necessary to support a large Accelerator Transmutation of Waste (ATW) system capable of dealing with the projected inventory of spent fuel from the commercial nuclear power stations in the United States. The baseline process selected combines aqueous and pyrochemical processes to enable the efficient separation of uranium, technetium, iodine, and the transuranic elements from LWR spent fuel. The diversity of processing methods was chosen for both technical and economic factors. A six-year technology evaluation and development program is foreseen, by the end of which an informed decision can be made on proceeding with demonstration of the ATW system

  20. Nuclear waste transmutation and related innovative technologies

    International Nuclear Information System (INIS)

    2002-01-01

    The main topics of the summer school meeting were 1. Motivation and programs for waste transmutation: The scientific perspective roadmaps; 2. The physics and scenarios of transmutation: The physics of transmutation and adapted reactor types. Impact on the fuel cycle and possible scenarios; 3. Accelerator driven systems and components: High intensity accelerators. Spallation targets and experiments. The sub critical core safety and simulation physics experiments; 4. Technologies and materials: Specific issues related to transmutation: Dedicated fuels for transmutation. Fuel processing - the role of pyrochemistry. Materials of irradiation. Lead/lead alloys. 5. Nuclear data: The N-TOF facility. Intermediate energy data and experiments. (orig./GL)

  1. Actinide and Fission Product Partitioning and Transmutation

    International Nuclear Information System (INIS)

    2015-06-01

    The benefits of partitioning and transmutation (P and T) have now been established worldwide and, as a result, many countries are pursuing R and D programmes to advance the technologies associated with P and T. In this context, the OECD Nuclear Energy Agency (NEA) has organised a series of biennial information exchange meetings to provide experts with a forum to present and discuss state-of-the-art developments in the field of partitioning and transmutation since 1990. The OECD Nuclear Energy Agency Information Exchange Meeting on Actinides and Fission Products Partitioning and Transmutation is a forum for experts to present and discuss the state-of-the-art development in the field of P and T. Thirteen meetings have been organised so far and held in Japan, the United States, France, Belgium, Spain, the Republic of Korea and the Czech Republic. This 13. meeting was hosted by Seoul National University (Seoul, Republic of Korea) and was organised in co-operation with the International Atomic Energy Agency (IAEA) and the European Community (EC). The meeting covered strategic and scientific developments in the field of P and T such as: fuel cycle strategies and transition scenarios, the role of P and T in the potential evolution of nuclear energy as part of the future energy mix; radioactive waste management strategies; transmutation fuels and targets; advances in pyro and aqueous separation processes; P and T specific technology requirements (materials, spallation targets, coolants, etc.); transmutation systems: design, performance and safety; impact of P and T on the fuel cycle; fabrication, handling and transportation of transmutation fuels. A total of 103 presentations (39 oral and 64 posters) were discussed among the 110 participants from 19 countries and 2 international organisations. The meeting consisted of one plenary session where national and international programmes were presented followed by 5 technical sessions: - Fuel Cycle Strategies and Transition

  2. Concept of a subcritical transmutation system with fast neutron spectrum and liquid fuel

    International Nuclear Information System (INIS)

    Tittelbach, S.

    2002-11-01

    The annual amount of nearly 9500 t of spent fuel from worldwide industrial nuclear energy utilization has to be disposed as high level waste. The retention of nuclear waste from the biosphere has to be assured until the radiological risk decreases to tolerable levels. The long-term radiological risk of spent fuel is dominated by actinide elements, i.e. plutonium, americium and curium. It is intended to reduce this amount of high level waste by Partitioning and Transmutation, so that the radiotoxicity of the disposed waste falls short of the reference value of fresh fuel decaying naturally after about thousand years. For this time period the retention of high level waste can be assured by technical means. The scope of this work is the design of a subcritical fast transmutation system with liquid metal cooling and liquid metal fuel. The lead bismuth eutectic has been choosen as the liquid metal coolant and fuel carrier. To dissolve at least 3 at% of transuran elements, a minimum fuel temperature of 600 C is required. The calculations were carried out with a fuel composition, which results from two plutonium recycling steps in a thorium fuel cycle. Two homogeneous and two heterogeneous blankets have been designed and evaluated leading to one preferred heterogeneous blanket design, which has been investigated in more detail. This blanket design merges the positive properties of a solid fuel system (better control of fuel and reactivity because of smaller and closed fuel volumina) and a liquid fuel system (continous charge and discharge or extraction of fission products). The blanket design is based on the core design of fast breeder liquid metal reactors. It consists of hexagonal fuel elements housing up to six annular shaped fuel cylinders. The hexagonal shape of the fuel elements leads to three fuel zones positioned concentrically around the central spallation target. There is a strong heterogeneous distribution of power and heat flux in this blanket design. Besides

  3. Main Experimental Results of ISTC-1606 for Recycling and Transmutation in Molten Salt Systems

    International Nuclear Information System (INIS)

    Ignatiev, Victor; Feynberg, Olga; Merzlyakov, Aleksandr; Surenkov, Aleksandr; Subbotin, Vladimir; Zakirov, Raul; Toropov, Andrey; Panov, Aleksandr; Afonichkin, Valery

    2008-01-01

    To examine and demonstrate the feasibility of molten salt reactors (MSR) to reduce long lived waste toxicity and to produce efficiently electricity in closed fuel cycle, some national and international studies were initiated last years. In this paper main focus is placed on experimental evaluation of single stream Molten Salt Actinide Recycler and Transmuter (MOSART) system fuelled with different compositions of plutonium plus minor actinide trifluoride (AnF 3 ) from LWR spent nuclear fuel without U-Th support. This paper summarizes main experimental results of ISTC-1606 related to physical and chemical properties of fuel salt, container materials for fuel circuit, and fuel salt clean up of MOSART system. As result of ISTC-1606 studies claim is made, that the 7 Li,Na,Be/F and 7 Li,Be/F solvents selected for primary system appear to resolve main reactor physics, thermal hydraulics, materials compatibility, fuel salt clean up and safety problems as applied to the MOSART concept development. The created experimental facilities and the database on properties of fuel salt mixtures and container materials are used for a choice and improvement fuel salts and coolants for new applications of this high temperature technology for sustainable nuclear power development. (authors)

  4. Main Experimental Results of ISTC-1606 for Recycling and Transmutation in Molten Salt Systems

    Energy Technology Data Exchange (ETDEWEB)

    Ignatiev, Victor; Feynberg, Olga; Merzlyakov, Aleksandr; Surenkov, Aleksandr [Russian Research Center - Kurchatov Institute, Kurchatov sq. 1, Moscow, RF, 123182 (Russian Federation); Subbotin, Vladimir; Zakirov, Raul; Toropov, Andrey; Panov, Aleksandr [Russian Federal Nuclear Center - Institute of Technical Physics, Snezhinsk (Russian Federation); Afonichkin, Valery [Institute of High-Temperature Electrochemistry, Ekaterinburg (Russian Federation)

    2008-07-01

    To examine and demonstrate the feasibility of molten salt reactors (MSR) to reduce long lived waste toxicity and to produce efficiently electricity in closed fuel cycle, some national and international studies were initiated last years. In this paper main focus is placed on experimental evaluation of single stream Molten Salt Actinide Recycler and Transmuter (MOSART) system fuelled with different compositions of plutonium plus minor actinide trifluoride (AnF{sub 3}) from LWR spent nuclear fuel without U-Th support. This paper summarizes main experimental results of ISTC-1606 related to physical and chemical properties of fuel salt, container materials for fuel circuit, and fuel salt clean up of MOSART system. As result of ISTC-1606 studies claim is made, that the {sup 7}Li,Na,Be/F and {sup 7}Li,Be/F solvents selected for primary system appear to resolve main reactor physics, thermal hydraulics, materials compatibility, fuel salt clean up and safety problems as applied to the MOSART concept development. The created experimental facilities and the database on properties of fuel salt mixtures and container materials are used for a choice and improvement fuel salts and coolants for new applications of this high temperature technology for sustainable nuclear power development. (authors)

  5. Innovative materials for GEN IV systems and transmutation facilities (cross-cutting research project GETMAT)

    International Nuclear Information System (INIS)

    Fazio, Concetta; Rieth, Michael; Gomez Briceno, Dolores; Gessi, Alessandro; Henry, Jean; Malerba, Lorenzo

    2010-01-01

    The objectives of the 'Generation IV and Transmutation Materials' (GETMAT) project is to contribute to the development, qualification and ranking of different types of ODS steels and to qualify Ferritic/Martensitic steels in a wide irradiation condition range. The experimental approach is complemented by the development of physical models with the aim to understand and improve the predictability of the materials performance. The GETMAT consortium is composed of fourteen Research centres, nine Universities and one Utility, from eleven European countries. The R and D tasks address (i) the materials availability, fabricability, weldability and their fundamental mechanical properties, (ii) their compatibility with aggressive coolants and development of corrosion protection methods; (iii) their performance under neutron irradiation, and (iv) starting from model alloys relevant for the two classes of alloys, the development and validation of physical models. The exploitation of results to potential end-users will occur through the 'GETMAT User Group', where exchange of information with the nuclear and steel industries, international (outside Europe) Research Organisations and engineers involved in the design of the new reactors, will occur. The exploitation of results to potential end-users will occur through the G ETMAT User Group , where exchange of information with the nuclear and steel industries, international (outside Europe) Research Organisations and engineers involved in the design of the new reactors, will occur

  6. Transmutation of stable isotopes and deactivation of radioactive waste in growing biological systems

    International Nuclear Information System (INIS)

    Vysotskii, Vladimir I.; Kornilova, Alla A.

    2013-01-01

    Highlights: ► The phenomena of isotope transmutation in growing microbiological cultures were investigated. ► Transmutation in microbiological associations is 20 times more effective than in pure cultures. ► Transmutation of radioactive nuclei to stable isotopes in such associations was investigated. ► The most accelerated rate of Cs 137 to stable Ba 138 isotope transmutation was 310 days. ► “Microbiological deactivation” may be used for deactivation of Chernobyl and Fukushima areas. - Abstract: The report presents the results of qualifying examinations of stable and radioactive isotopes transmutation processes in growing microbiological cultures. It is shown that transmutation of stable isotopes during the process of growth of microbiological cultures, at optimal conditions in microbiological associations, is 20 times more effective than the same transmutation process in the form of “one-line” (pure) microbiological cultures. In the work, the process of direct, controlled decontamination of highly active intermediate lifetime and long-lived reactor isotopes (reactor waste) through the process of growing microbiological associations has been studied. In the control experiment (flask with active water but without microbiological associations), the “usual” law of nuclear decay applies, and the life-time of Cs 137 isotope was about 30 years. The most rapidly increasing decay rate, which occurred with a lifetime τ * ≈ 310 days (involving an increase in rate, and decrease in lifetime by a factor of 35 times) was observed in the presence of Ca salt in closed flask with active water contained Cs 137 solution and optimal microbiological association

  7. Nuclear waste transmutation

    International Nuclear Information System (INIS)

    Salvatores, M.; Girard, C.; Delpech, M.; Slessarev, I.; Tommasi, J.

    1994-01-01

    Waste management strategies foresee the use of a deep geological repository either for final disposal of irradiated fuel or, after reprocessing and reuse of U and Pu for final disposal of long-lived radio-active materials. In the second case, partitioning and transmutation of these materials can be considered to reduce the impact of radiation on man due to the storage. On the basis of the SPIN programme developed by CEA in this field, the main features of transmutation is presented. The goal to achieve and the criteria to use are quite difficult to establish. The rights para-meters to characterize the risk are the potential radiotoxicity in the the repository and the residual radiotoxicity at the outlet. Transmutation studies in CEA used the potential radiotoxicity which is based on well-known parameters and less precise hazardous factors. The second point to appreciate the trans- mutation interest is to dispose of a criteria for the radio-radiotoxicity reduction. As there is no general agreement, we try to have a toxicity as low as possible within reasonable technical limits. To reduce the long term radio- toxicity, Pu, minor actinides and some long-lived fission products have to be transmuted. To assess the feasibility of such trans-mutation in reactors or advanced systems, one has to consider constraints on neutronic balance, safety, fuel cycle, technology , economy. Taking in account the main conclusions of this analysis, parametric studies of homogeneous and heterogenous transmutation permit a choice of promising solutions. Goals are to use every long-lived element with a minimized production of other long- lived elements in order to obtain an appreciable radiotoxicity reduction. It implies multi recycling of Pu which favours fast neutron reactors and different strategies of multi recycling for Np, Am, Cm. Multi recycling makes the results strongly dependant of losses. Researches to obtain the high partitioning efficiency needed are in progress. Calculations

  8. Towards standardized calculation tools for the Accelerator-Driven Systems and their application to various scenarios for nuclear waste transmutation

    International Nuclear Information System (INIS)

    Cometto, M.

    2003-01-01

    This thesis discusses the question of partitioning and transmutation of actinides and some long-lived fission products as a way of reducing the mass and radio-toxicity of wastes from nuclear power facilities. Numerical benchmarking and computational exercises carried out in related projects are discussed and the quantitative assessment of the advantages and drawbacks of various transmutation strategies are discussed, as is the role of Accelerator-Driven Systems (ADS) and Advanced Fast Reactors (FR) in advanced nuclear fuel cycles. According to the author, the study allows three main options in nuclear waste management - open cycle, plutonium recycling and the recycling of all actinides - to be compared. The last part of the dissertation is dedicated to two phase-out schemes employing either ASDs or critical reactors

  9. Proceedings of the international symposium on acceleration-driven transmutation systems and Asia ADS network initiative

    International Nuclear Information System (INIS)

    Oigawa, Hiroyuki

    2003-09-01

    An International Symposium on 'Accelerator-Driven Transmutation Systems and Asia ADS Network Initiative' was held on March 24 and 25, 2003 at Gakushi-Kaikan, Tokyo, hosted by Japan Atomic Energy Research Institute, Kyoto University, Osaka University, High Energy Accelerator Research Organization and Tokyo Institute of Technology. The objectives of this symposium are to make participants acquainted with the current status and future plans for research and development (R and D) of ADS in the world and to enhance the initiation of an international collaborative network for ADS in Asia. This report records the papers and the materials of 15 presentations in the symposium. On the first day of the symposium, current activities for R and D of ADS were presented from United States, Europe, Japan, Korea, and China. On the second day, R and D activities in the fields of accelerator and nuclear physics were presented. After these presentations, a panel discussion was organized with regard to the prospective international collaboration and multidisciplinary synergy effect, which are essential to manage various technological issues encountered in R and D stage of ADS. Through the discussion, common understanding was promoted concerning the importance of establishing international network. It was agreed to establish the international network for scientific information exchange among Asian countries including Japan, Korea, China, and Vietnam in view of the future international collaboration in R and D of ADS. (author)

  10. Nuclear Wastes: Technologies for Separations and Transmutation

    National Research Council Canada - National Science Library

    .... The committee examines the currently used "once-through" fuel cycle versus different alternatives of separations and transmutation technology systems, by which hazardous radionuclides are converted...

  11. Transmutations across hierarchical levels

    International Nuclear Information System (INIS)

    O'Neill, R.V.

    1977-01-01

    The development of large-scale ecological models depends implicitly on a concept known as hierarchy theory which views biological systems in a series of hierarchical levels (i.e., organism, population, trophic level, ecosystem). The theory states that an explanation of a biological phenomenon is provided when it is shown to be the consequence of the activities of the system's components, which are themselves systems in the next lower level of the hierarchy. Thus, the behavior of a population is explained by the behavior of the organisms in the population. The initial step in any modeling project is, therefore, to identify the system components and the interactions between them. A series of examples of transmutations in aquatic and terrestrial ecosystems are presented to show how and why changes occur. The types of changes are summarized and possible implications of transmutation for hierarchy theory, for the modeler, and for the ecological theoretician are discussed

  12. Accelerator driven systems: Energy generation and transmutation of nuclear waste. Status report

    International Nuclear Information System (INIS)

    1997-11-01

    The report includes 31 individual contributions by experts from six countries and two international organizations in different areas of the accelerator driven transmutation technology intended to be applied for the treatment of highly radioactive waste and power generation. A separate abstract was prepared for each paper

  13. Accelerator Driven Systems (ADS) and transmutation of nuclear waste: Options and trends

    International Nuclear Information System (INIS)

    Stanculescu, A.

    2001-01-01

    The scope of the lecture is to present: 1) the rationale for transmutation, 2) the principle of ADS (spallation source, sub-critical blanket), 3) an overview of the main concepts being investigated and the ongoing R and D activities in this area, 4) development trends for this technology. (author)

  14. Accelerator driven systems: Energy generation and transmutation of nuclear waste. Status report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    The report includes 31 individual contributions by experts from six countries and two international organizations in different areas of the accelerator driven transmutation technology intended to be applied for the treatment of highly radioactive waste and power generation. A separate abstract was prepared for each paper. Refs, figs, tabs.

  15. Transmutation in ASTRID

    International Nuclear Information System (INIS)

    Grouiller, Jean-Paul; Buiron, Laurent; Mignot, Gérard; Palhier, Raphael

    2013-01-01

    Summary and future prospects for incorporating Am in ASTRID: → Potential to demonstrate the minor actinide transmutation on an industrial scale in the CFV V1 core of ASTRID: • Homogeneous concept: 2% of Am in a standard fuel; • Heterogeneous concept: 10% on UO 2 in the radial blanket. • The objective of ensuring a balance in the Am (and total minor actinides) flow in the ASTRID fuel cycle may be obtained without any impact on the design of the core and handling systems for the management of the new and spent fuel subassemblies. • Several experimental phases in ASTRID to implement different transmutation scenarios using homogeneous and heterogeneous concepts. ⇒ the availability of facilities involved in the ASTRID material cycles

  16. Transmutation of fission products through accelerator

    International Nuclear Information System (INIS)

    Nakamura, H.; Tani, S.; Takahashi, T.; Yamamura, O.

    1995-01-01

    The transmutation of fission products through particle accelerators has been studied under the OMEGA program. The photonuclear reaction has also been investigated to be applied to transmuting long-lived fission products, such as Cesium and Strontium, which have difficulties on reaction with neutrons due to its so small cross section. It is applicable for the transmutation if the energy balance can be improved with a monochromatic gamma rays in the range of the Giant Dipole Resonance generated through an excellent high current electron linear accelerator. The feasibility studies are being conducted on the transmutation system using it through an electron accelerator. (authors)

  17. Front-end and back-end electrochemistry of molten salt in accelerator-driven transmutation systems

    International Nuclear Information System (INIS)

    Williamson, M.A.; Venneri, F.

    1995-01-01

    The objective of this work is to develop preparation and clean-up processes for the fuel and carrier salt in the Los Alamos Accelerator-Driven Transmutation Technology molten salt nuclear system. The front-end or fuel preparation process focuses on the removal of fission products, uranium, and zirconium from spent nuclear fuel by utilizing electrochemical methods (i.e., electrowinning). The same method provides the separation of the so-called noble metal fission products at the back-end of the fuel cycle. Both implementations would have important diversion safeguards. The proposed separation processes and a thermodynamic analysis of the electrochemical separation method are presented

  18. Study of particle transport in a high power spallation target for an accelerator-driven transmutation system

    International Nuclear Information System (INIS)

    Shetty, Nikhil Vittal

    2013-01-01

    AGATE is a project envisaged to demonstrate the feasibility of transmutation in a gas (helium) cooled accelerator-driven system using solid spallation target. Development of the spallation target module and assessing its safety aspects are studied in this work. According to the AGATE concept parameters, 600 MeV protons are delivered on to the segmented tungsten spallation target. The Monte Carlo toolkit Geant4 has been used in the simulation of particle transport. Binary cascade is used to simulate intra-nuclear cascades, along with the G4NDL neutron data library for low energy neutrons (<20 MeV).

  19. Study of particle transport in a high power spallation target for an accelerator-driven transmutation system

    Energy Technology Data Exchange (ETDEWEB)

    Shetty, Nikhil Vittal

    2013-01-31

    AGATE is a project envisaged to demonstrate the feasibility of transmutation in a gas (helium) cooled accelerator-driven system using solid spallation target. Development of the spallation target module and assessing its safety aspects are studied in this work. According to the AGATE concept parameters, 600 MeV protons are delivered on to the segmented tungsten spallation target. The Monte Carlo toolkit Geant4 has been used in the simulation of particle transport. Binary cascade is used to simulate intra-nuclear cascades, along with the G4NDL neutron data library for low energy neutrons (<20 MeV).

  20. Microbial transmutation of 137Cs and LENR in growing biological systems

    International Nuclear Information System (INIS)

    Vysotskii, V.I.; Kornilova, A.A.

    2015-01-01

    This article presents the results of long-term investigations of stable and radioactive isotopes transmutation in growing microbiological cultures. It is shown that transmutation during growth of microbiological associations is 20 times more effective than the same process in the form of 'clean' microbiological culture. In this work, the process of controlled decontamination of highly active reactor isotopes (reactor waste) through the process of growing microbiological associations has been studied. The most rapidly increasing decay rate of 137 Cs isotope, which occurred with the 'effective' half life τ* ≈ 310 days (involving an increase in rate and decrease in half life by a factor of 35) was observed in the presence of Ca salt in closed flask with active water containing 137 Cs solution and optimal microbiological association. (author)

  1. Thermal-hydraulic analysis of graphite tubes for the non-aqueous system of accelerator transmutation of nuclear waste

    International Nuclear Information System (INIS)

    Potter, R.C.; Venneri, F.; Trujillo, D.A.

    1993-01-01

    Accelerator transmutation of nuclear waste offers exciting possibilities for the disposal of nuclear waste by converting it into more benign Species. The non-aqueous system discussed here contains the materials to be transmuted within a lithium-fluoride salt. The system consists of bundles of graphite tubes containing the salt Solution. The tubes are cooled as lithium flows across their exterior. These circular graphite tubes have an inner circular passage and an outer annulus. Natural convection within the tubes causes the salt to circulate. This paper deals with the thermal-hydraulics of the system; it does not consider the neutronics in detail. Heat transfer and fluid flow were modeled using a custom computer program the system behavior of an graphite tube. Different geometries were tried, while keeping the system volume the same, to determine an optimize graphite tube geometry. I considered both the parallel flow and the counterflow of the lithium coolant, and allowed limited boiling to occur to facilitate circulation. I achieved power densities as high as 200 W/cm 3 for the overall blanket

  2. FISPACT-II: An Advanced Simulation System for Activation, Transmutation and Material Modelling

    Energy Technology Data Exchange (ETDEWEB)

    Sublet, J.-Ch., E-mail: jean-christophe.sublet@ukaea.uk [United Kingdom Atomic Energy Authority, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Eastwood, J.W.; Morgan, J.G. [Culham Electromagnetics Ltd, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Gilbert, M.R.; Fleming, M.; Arter, W. [United Kingdom Atomic Energy Authority, Culham Science Centre, Abingdon OX14 3DB (United Kingdom)

    2017-01-15

    Fispact-II is a code system and library database for modelling activation-transmutation processes, depletion-burn-up, time dependent inventory and radiation damage source terms caused by nuclear reactions and decays. The Fispact-II code, written in object-style Fortran, follows the evolution of material irradiated by neutrons, alphas, gammas, protons, or deuterons, and provides a wide range of derived radiological output quantities to satisfy most needs for nuclear applications. It can be used with any ENDF-compliant group library data for nuclear reactions, particle-induced and spontaneous fission yields, and radioactive decay (including but not limited to TENDL-2015, ENDF/B-VII.1, JEFF-3.2, JENDL-4.0u, CENDL-3.1 processed into fine-group-structure files, GEFY-5.2 and UKDD-16), as well as resolved and unresolved resonance range probability tables for self-shielding corrections and updated radiological hazard indices. The code has many novel features including: extension of the energy range up to 1 GeV; additional neutron physics including self-shielding effects, temperature dependence, thin and thick target yields; pathway analysis; and sensitivity and uncertainty quantification and propagation using full covariance data. The latest ENDF libraries such as TENDL encompass thousands of target isotopes. Nuclear data libraries for Fispact-II are prepared from these using processing codes PREPRO, NJOY and CALENDF. These data include resonance parameters, cross sections with covariances, probability tables in the resonance ranges, PKA spectra, kerma, dpa, gas and radionuclide production and energy-dependent fission yields, supplemented with all 27 decay types. All such data for the five most important incident particles are provided in evaluated data tables. The Fispact-II simulation software is described in detail in this paper, together with the nuclear data libraries. The Fispact-II system also includes several utility programs for code-use optimisation

  3. Transmutation of Americium in Fast Neutron Facilities

    International Nuclear Information System (INIS)

    Zhang, Youpeng

    2011-01-01

    In this thesis, the feasibility to use a medium sized sodium cooled fast reactor fully loaded with MOX fuel for efficient transmutation of americium is investigated by simulating the safety performance of a BN600-type fast reactor loaded with different fractions of americium in the fuel, using the safety parameters obtained with the SERPENT Monte Carlo code. The focus is on americium mainly due to its long-term contribution to the radiotoxicity of spent nuclear fuel and its deterioration on core's safety parameters. Applying the SAS4A/SASSYS transient analysis code, it is demonstrated that the power rating needs to be reduced by 6% for each percent additional americium introduction into the reference MOX fuel, maintaining 100 K margin to fuel melting, which is the most limiting failure mechanism. Safety analysis of a new Accelerator Driven System design with a smaller pin pitch-to-diameter ratio comparing to the reference EFIT-400 design, aiming at improving neutron source efficiency, was also performed by simulating performance for unprotected loss of flow, unprotected transient overpower, and protected loss-of-heat-sink transients, using neutronic parameters obtained from MCNP calculations. Thanks to the introduction of the austenitic 15/15Ti stainless steel with enhanced creep rupture resistance and acceptable irradiation swelling rate, the suggested ADS design loaded with nitride fuel and cooled by lead-bismuth eutectic could survive the full set of transients, preserving a margin of 130 K to cladding rupture during the most limiting transient. The thesis concludes that efficient transmutation of americium in a medium sized sodium cooled fast reactor loaded with MOX fuel is possible but leads to a severe power penalty. Instead, preserving transmutation rates of minor actinides up to 42 kg/TWh th , the suggested ADS design with enhanced proton source efficiency appears like a better option for americium transmutation

  4. Experience gained during 10 years transmutation experiments in Dubna

    Science.gov (United States)

    Zamani, M.; Fragopoulou, M.; Manolopoulou, M.; Stoulos, S.; Brandt, R.; Westmeier, W.; Krivopustov, M.; Sosnin, A.; Golovatyuk, S.

    2006-05-01

    Transmutation, the procedure of transforming long-lived radioactive isotopes into stable or short-lived, was proposed for reducing the amount of radioactive waste resulting from technological applications of nuclear fission. The Accelerator Driven Systems (ADS) provide the possibility to generate intense neutron spectrum yielding in an effective transmutation of unwanted isotopes. Such experiments are being carried out for the last 10 years in Synchrophasotron / Nuclotron accelerators at the Veksler-Baldin Laboratory of High Energies of the Joint Institute for Nuclear Research in Dubna, Russia. Thick Pb and Pb-U targets, surrounded by moderators, have been irradiated by protons in the energy range of 0.5-7.4 GeV. Neutron fluence measurements have been performed by different techniques of passive detectors (neutron activation detectors, solid state nuclear track detectors). Transmutation of 129I, 237Np, 239Pu was studied. The results of these experiments are presented and discussed.

  5. Accelerator system model (ASM): A unique tool in exploring accelerator driven transmutation technologies (ADTT) system trade space

    Energy Technology Data Exchange (ETDEWEB)

    Myers, T.J.; Favale, A.J.; Berwald, D.H.; Burger, E.C.; Paulson, C.C.; Peacock, M.A.; Piaszczyk, C.M.; Piechowiak, E.M.; Rathke, J.W. [Northrop Grumman Corp., Bethpage, NY (United States). Advanced Technology and Development Center

    1997-09-01

    To aid in the development and optimization of emerging Accelerator Driven Transmutation Technology (ADTT) concepts, the Northrop Grumman Corporation, working together with G.H. Gillespie Associates and Los Alamos National Laboratory has developed a computational tool which combines both accelerator physics layout/analysis capabilities with engineering analysis capabilities to create a standardized platform to compare and contrast accelerator system configurations. In this context, the accelerator system configuration includes not only the accelerating structures, but also the major support systems such as the vacuum, thermal control, RF power, and cryogenic subsystem (if superconducting accelerator operation is investigated) as well as estimates of the costs for enclosures (accelerating tunnel and RF halls). This paper presents an overview of the Accelerator System Model (ASM) code flow, as well as a discussion of the data and analysis upon which it is based. Also presented is material which addresses the development of the evaluation criteria employed by this code including a presentation of the economic analysis methods, and a discussion of the cost database employed. The paper concludes with examples depicting completed and planned trade studies for both normal and superconducting accelerator applications. 8 figs.

  6. Nuclear waste transmutation

    International Nuclear Information System (INIS)

    Leray, S.

    1995-01-01

    Accelerators can play a role in the disposal of long-lived radioactive waste: an alternative to the storage in deep underground repositories might transmuting long-lived elements into stable or short-lived ones in subcritical systems driven by spallation neutrons. These neutrons would be produced by a high intensity, intermediate energy proton accelerator irradiating a heavy target. Similar systems have also been proposed to produce energy with a minimized waste inventory. Since a good knowledge of the spallation process is essential for designing and optimizing the target-blanket assembly, new programmes aimed at studying spallation reactions are in progress. (author). 6 figs

  7. Partitioning and Transmutation: IAEA Activities

    International Nuclear Information System (INIS)

    Basak, U.; Monti, S.; )

    2015-01-01

    Full text of publication follows: The importance of partitioning and transmutation (P and T) processes for sustaining nuclear energy growth in the world has been realised in several countries across the world. P and T processes aim at separation and recycling of actinides including minor actinides (MAs) from the spent fuel or high-level liquid waste. The objective of these processes include reuse of separated fissile materials from spent nuclear fuels to obtain energy, enhance resource utilisation, reduce the disposal of toxic radio-nuclides and improve long-term performance of geological repositories. R and D programmes have been launched in many of the Member States to develop advanced partitioning process based on either aqueous or pyro to recover MAs along with other actinides as well as automated and remote techniques for manufacturing fuels containing MAs for the purpose of transmuting them either in fast reactors or accelerator driven hybrids. A number of Member States have been also developing such transmutation systems with the aim to construct and operate demo plants and prototypes in the next decade. The International Atomic Energy Agency has a high priority for the activities on partitioning and transmutation and regularly organises conferences, workshops, seminars and technical meetings in the areas of P and T as a part of information exchange and knowledge sharing at the international level. In the recent past, the Agency organised two technical meetings on advanced partitioning processes and actinide recycle technologies with the objective of providing a common platform for the scientists and engineers working in the areas of separation of actinides along with MAs from spent nuclear fuels and manufacturing of advanced fuels containing MAs in order to bridge the technological gap between them. In 2010, the Agency concluded a Coordinated Research Project (CRP) related to Assessment of Partitioning Processes. The Agency also conducted a first CRP on

  8. High flux Particle Bed Reactor systems for rapid transmutation of actinides and long lived fission products

    International Nuclear Information System (INIS)

    Powell, J.; Ludewig, H.; Maise, G.; Steinberg, M.; Todosow, M.

    1993-01-01

    An initial assessment of several actinide/LLFP burner concepts based on the Particle Bed Reactor (PBR) is described. The high power density/flux level achievable with the PBR make it an attractive candidate for this application. The PBR based actinide burner concept also possesses a number of safety and economic benefits relative to other reactor based transmutation approaches including a low inventory of radionuclides, and high integrity, coated fuel particles which can withstand extremely high in temperatures while retaining virtually all fission products. In addition the reactor also posesses a number of ''engineered safety features,'' which, along with the use of high temperature capable materials further enhance its safety characteristics

  9. Separation and transmutation. A picture of the applications in Sweden; Separation och transmutation. Belysning av tillaempning i Sverige

    Energy Technology Data Exchange (ETDEWEB)

    Grundfelt, Bertil; Lindgren, Maria [Kemakta Konsult AB, Stockholm (Sweden)

    2006-11-15

    This report contains a review of the transmutation technology and an elucidation of the consequences of the use of transmutation in Sweden. Transmutation has often been mentioned in the public debate as a way of rendering harmless the high-level waste from nuclear power such that the final disposal of the waste can be substantially simplified or even completely avoided. However, it can be noted that even with an exploitation of transmutation, significant amounts of radioactive waste requiring qualified final disposal will be generated. The transmutation technology will make it possible to reduce the longevity of the high-level waste by converting primarily the transuranic elements to fission products with shorter half lives. The long-term radiotoxicity of the spent nuclear fuel is dominated by the transuranics. Hence, transmutation will lead to a substantial decrease of the long-term radiotoxicity of the spent fuel. The research on transmutation has been focussed on sub-critical so called ADS-reactors (Accelerator Driven System). In such a system protons are accelerated to very high energy levels (in the order of GeV) in an electromagnetic field. The accelerated protons are impacted on a spallation source consisting of heavy atoms, e.g. lead or a mixture of lead and bismuth. At the impact the heavy nuclei are spalled releasing a number of neutrons that can be used for fissioning the nuclei of the substances to be transmuted, primarily the transuranics. ADS-reactors are still at the research stage. It is a common view that it will take several decades before the technology has reached a maturity that allows the construction of a demonstration facility. Calculations performed at Royal Institute of Technology in Stockholm show that using the ADS-technology would allow a reduction of the inventory of transuranics in the spent fuel from Swedish reactors by 50-85% within a 50-100 years period. The goal to transmute 99% of the transuranics inventory has been achieved in

  10. Proceedings of the first topical meeting on Asian network for accelerator-driven systems and nuclear transmutation technology

    International Nuclear Information System (INIS)

    Sasa, Toshinobu

    2016-03-01

    The first topical meeting on Asian Network for Accelerator-driven System (ADS) and Nuclear Transmutation Technology (NTT) was held on 26-27 October 2015 at the J-PARC Center, Japan Atomic Energy Agency, Japan. The topical meeting was an optional one in-between the regular meeting, which is held in every two years. Instead of the regular meetings, which cover all research fields for ADS and NTT, such as accelerator, spallation target, subcritical reactor, fuel, and material, the topical meeting is focused on a specific topic to make technical discussions more deeply. In this meeting, the technology for lead-bismuth eutectic alloy was selected, as it was one of the hot issues in the world, and the topic was deeply discussed by specialists in Asian countries. This report summarizes all presentation materials discussed in the meeting. (author)

  11. Current status on research and development of accelerator-driven system and nuclear transmutation technology in Asian countries

    International Nuclear Information System (INIS)

    Pyeon, Cheol Ho

    2013-01-01

    This status report describes the current status on research and development (R and D) of accelerator-driven system (ADS) and nuclear transmutation techniques (NTT), including nuclear data, accelerator techniques, Pb-Bi target, fuel technologies and reactor physics, in East Asian countries: Japan, Korea and China. The report also includes all presentation materials presented in 'the 10th International Workshop on Asian Network for ADS and NTT (ADS+NTT 2012)' held at the Kyoto University Research Reactor Institute, Osaka, Japan on 6th and 7th December, 2012. The objective of this workshop is to make actual progress of ADS R and D especially in East Asian countries, as well as in European countries, through sharing mutual interests and conducting the information exchange each other. The 5 of 27 papers presented at the entitled report and meeting are indexed individually. (J.P.N.)

  12. Effects of an LMR-based partitioning-transmutation system on US nuclear fuel cycle health risk

    International Nuclear Information System (INIS)

    Michaels, G.E.; Reich, W.J.

    1992-01-01

    Health risks for the current US nuclear fuel cycle and for an illustrative partitioning and transmutation (P-T) fuel cycle based on Liquid Metal Reactor (LMR) technology are calculated and compared. Health risks are calculated for all non-reactor fuel cycle steps, including reprocessing, transportation, and high-level waste (HLW) disposal. Uranium mining and milling health risks have been updated to include recent occupational injury and death statistics, and the radiological health risk to the general public posed by the uranium mining overburden. In addition, the radiological health risks for transportation have been updated to include latent cancer fatalities associated with both normal transport and accidents. Given the assumptions of the study, it is shown that the deployment of an LMR-based P-T system is expected to reduce overall nuclear fuel cycle health risk

  13. Advances in conceptual design of a gas-cooled accelerator driven system (ADS) transmutation devices to sustainable nuclear energy development

    International Nuclear Information System (INIS)

    Garcia, Rosales; Fajardo, Garcia; Curbelo, Perez; Oliva, Munoz; Hernandez, Garcia; Castells, Escriva; Abanades

    2011-01-01

    The possibilities of a nuclear energy development are considerably increasing with the world energetic demand increment. However, the management of nuclear waste from conventional nuclear power plants and its inventory minimization are the most important issues that should be addressed. Fast reactors and Accelerator Driven Systems (ADS) are the main options to reduce the long-lived radioactive waste inventory. Pebble Bed Very High Temperature advanced systems have great perspectives to assume the future nuclear energy development challenges. The conceptual design of a Transmutation Advanced Device for Sustainable Energy Applications (TADSEA) has been made in preliminary studies. The TADSEA is an ADS cooled by helium and moderated by graphite that uses as fuel small amounts of transuranic elements in the form of TRISO particles, confined in 3 cm radius graphite pebbles forming a pebble bed configuration. It would be used for nuclear waste transmutation and energy production. In this paper, the results of a method for calculating the number of whole pebbles fitting in a volume according to its size are showed. From these results, the packing fraction influence on the TADSEAs main work parameters is studied. In addition, a redesign of the previous configuration, according to the established conditions in the preliminary design, i.e. the exit thermal power, is made. On the other hand, the heterogeneity of the TRISO particles inside the pebbles can not be negligible. In this paper, a study of the power density distribution inside the pebbles by means of a detailed simulation of the TRISO fuel particles and using an homogeneous composition of the fuel is addressed. (author)

  14. Actinide and fission product separation and transmutation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-07-01

    The second international information exchange meeting on actinide and fission product separation and transmutation, took place in Argonne National Laboratory in Illinois United States, on 11-13 November 1992. The proceedings are presented in four sessions: Current strategic system of actinide and fission product separation and transmutation, progress in R and D on partitioning processes wet and dry, progress in R and D on transmutation and refinements of neutronic and other data, development of the fuel cycle processes fuel types and targets. (A.L.B.)

  15. Partitioning and Transmutation - Physics, Technology and Politics

    International Nuclear Information System (INIS)

    Gudowski, W.

    2002-01-01

    Nuclear reactions can be effectively used to destroy radio toxic isotopes through transmutation processes transforming those isotopes into less radio toxic or stable ones Spent nuclear fuel, a mixture of many isotopes with some of them being highly radio toxic for many hundred thousands of years, may be effectively transmuted through nuclear reactions with neutrons. In a dedicated, well designed transmutation system one can, in principle, reduce the radiotoxicity of the spent nuclear fuel to a level, which will require isolation from the biosphere for the period of time for which engineered barriers can be constructed and licensed (not more than 1-2 thousands of years). En effective transmutation process can not be achieved without a suitable partitioning. Only partitioning of the spent nuclear fuel into predetermined groups of elements makes possible an effective use of neutrons to transmute long-lived radioactive isotopes into short-lived or stable one. However, most of the chemical separation/partitioning processes are element- not isotope-specific, therefore the transmutation of the elements with an existing isotope composition is a typical alternative for transmutation processes. Isotope-specific separation is possible but still very expensive and technologically not matured

  16. Accelerator-based systems for plutonium destruction and nuclear waste transmutation

    International Nuclear Information System (INIS)

    Arthur, E.D.

    1994-01-01

    Accelerator-base systems are described that can eliminate long-lived nuclear materials. The impact of these systems on global issues relating to plutonium minimization and nuclear waste disposal can be significant. An overview of the components that comprise these systems is given, along with discussion of technology development status and needs. A technology development plan is presented with emphasis on first steps that would demonstrate technical performance

  17. Thermalhydraulic and material specific investigations into the realization of an Accelerator Driven System (ADS) to transmute minor actinides. 1999 Status report

    International Nuclear Information System (INIS)

    Knebel, J.U.; Cheng, X.; Mueller, G.; Schumacher, G.; Konys, J.; Wedemeyer, O.; Groetzbach, G.; Carteciano, L.

    2000-10-01

    At Forschungszentrum Karlsruhe an HGF Strategy Fund Project entitled ''Thermalhydraulic and Material Specific Investigations into the Realization of an accelerator-driven system (ADS) to Transmute Minor Actinides'' is performed which is funded by the Hermann von Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF) in the section ''Energy Research and Energy Technology'' over a time period from 07/1999 to 06/2002 with a financial support of 7.0 million DM (35 man years). The objective of this HGF Strategy Fund Project is the development of new methods and technologies to design and manufacture thin-walled thermally highly-loaded surfaces (e.g. beam window) which are cooled by a corrosive heavy liquid metal (lead-bismuth eutectic). The beam window is a vital component of an ADS spallation target. The results of this project will provide the scientific-technical basis which allows the conception and the design of an ADS spallation target and later on a European Demonstrator of an ADS system. The work performed at Forschungszentrum Karlsruhe is embedded in a broad European research and development programme on ADS systems. (orig.)

  18. Preliminary investigation of actinide and xenon reactivity effects in accelerator transmutation of waste high-flux systems

    International Nuclear Information System (INIS)

    Olson, K.R.; Henderson, D.L.

    1995-01-01

    The possibility of an unstable positive reactivity growth in an accelerator transmutation of waste (ATW)-type high-flux system is investigated. While it has always been clear that xenon is an important actor in the reactivity response of a system to flux changes, it has been suggested that in very high thermal flux transuranic burning systems, a positive, unstable reactivity growth could be caused by the actinides alone. Initial system reactivity response to flux changes caused by the actinides and xenon are investigated separately. The maximum change in reactivity after a flux change caused by the effect of the changing quantities of actinides is generally at least two orders of magnitude smaller than either the positive or negative reactivity effect associated with xenon after a shutdown or startup. In any transient flux event, the reactivity response of the system to xenon will generally occlude the response caused by the actinides. The capabilities and applications of both the current actinide model and the xenon model are discussed. Finally, the need for a complete dynamic model for the high-flux fluid-fueled ATW system is addressed

  19. TRANSMUTED EXPONENTIATED EXPONENTIAL DISTRIBUTION

    OpenAIRE

    MEROVCI, FATON

    2013-01-01

    In this article, we generalize the exponentiated exponential distribution using the quadratic rank transmutation map studied by Shaw etal. [6] to develop a transmuted exponentiated exponential distribution. Theproperties of this distribution are derived and the estimation of the model parameters is discussed. An application to real data set are finally presented forillustration

  20. A Fast Numerical Method for the Calculation of the Equilibrium Isotopic Composition of a Transmutation System in an Advanced Fuel Cycle

    Directory of Open Access Journals (Sweden)

    F. Álvarez-Velarde

    2012-01-01

    Full Text Available A fast numerical method for the calculation in a zero-dimensional approach of the equilibrium isotopic composition of an iteratively used transmutation system in an advanced fuel cycle, based on the Banach fixed point theorem, is described in this paper. The method divides the fuel cycle in successive stages: fuel fabrication, storage, irradiation inside the transmutation system, cooling, reprocessing, and incorporation of the external material into the new fresh fuel. The change of the fuel isotopic composition, represented by an isotope vector, is described in a matrix formulation. The resulting matrix equations are solved using direct methods with arbitrary precision arithmetic. The method has been successfully applied to a double-strata fuel cycle with light water reactors and accelerator-driven subcritical systems. After comparison to the results of the EVOLCODE 2.0 burn-up code, the observed differences are about a few percents in the mass estimations of the main actinides.

  1. System and safety studies of accelerator driven systems for transmutation. Annual report 2008

    International Nuclear Information System (INIS)

    Arzhanov, Vasily; Bergloef, Calle; Fokau, Andrei; Jolkkonen, Mikael; Runevall, Odd; Sandberg, Nils; Tesinsky, Milan; Wallenius, Janne; Youpeng Zhang

    2009-07-01

    Within this project, research on design and safety of subcritical reactors for recycling of minor actinides is performed. During 2008, the reactor physics division at KTH has made a design study of a source efficient ADS with nitride fuel, based on the EFIT design made within the EUROTRANS project. Transient analysis for EFIT-400 ADS with cercer and cermet fuels was made with SAS4A, taking into account flow reversal phenomena. Using Pulsed Neutron Source techniques, reference reactivity values for detectors in the sub-critical YALINA booster facility were obtained and it was observed that the results carry strong spatial effects. It was shown that the beam trip technique can be used to obtain the reactivity at beam trips and the values can be used for calibration of a current-to-flux reactivity indicator. Multi-scale modelling of helium desorption from molybdenum was performed, with the final aim to predict the in-pile behaviour of Mo based CERMET fuel. Good agreement with experimental data was obtained, except at the highest temperatures

  2. System and safety studies of accelerator driven systems for transmutation. Annual report 2008

    Energy Technology Data Exchange (ETDEWEB)

    Arzhanov, Vasily; Bergloef, Calle; Fokau, Andrei; Jolkkonen, Mikael; Runevall, Odd; Sandberg, Nils; Tesinsky, Milan; Wallenius, Janne; Youpeng Zhang (Div. of Reactor Physics, Royal Institute of Technology, Stockholm (Sweden))

    2009-07-15

    Within this project, research on design and safety of subcritical reactors for recycling of minor actinides is performed. During 2008, the reactor physics division at KTH has made a design study of a source efficient ADS with nitride fuel, based on the EFIT design made within the EUROTRANS project. Transient analysis for EFIT-400 ADS with cercer and cermet fuels was made with SAS4A, taking into account flow reversal phenomena. Using Pulsed Neutron Source techniques, reference reactivity values for detectors in the sub-critical YALINA booster facility were obtained and it was observed that the results carry strong spatial effects. It was shown that the beam trip technique can be used to obtain the reactivity at beam trips and the values can be used for calibration of a current-to-flux reactivity indicator. Multi-scale modelling of helium desorption from molybdenum was performed, with the final aim to predict the in-pile behaviour of Mo based CERMET fuel. Good agreement with experimental data was obtained, except at the highest temperatures

  3. Multiple Tier Fuel Cycle Studies for Waste Transmutation

    International Nuclear Information System (INIS)

    Hill, R.N.; Taiwo, T.A.; Stillman, J.A.; Graziano, D.J.; Bennett, D.R.; Trellue, H.; Todosow, M.; Halsey, W.G.; Baxter, A.

    2002-01-01

    As part of the U.S. Department of Energy Advanced Accelerator Applications Program, a systems study was conducted to evaluate the transmutation performance of advanced fuel cycle strategies. Three primary fuel cycle strategies were evaluated: dual-tier systems with plutonium separation, dual-tier systems without plutonium separation, and single-tier systems without plutonium separation. For each case, the system mass flow and TRU consumption were evaluated in detail. Furthermore, the loss of materials in fuel processing was tracked including the generation of new waste streams. Based on these results, the system performance was evaluated with respect to several key transmutation parameters including TRU inventory reduction, radiotoxicity, and support ratio. The importance of clean fuel processing (∼0.1% losses) and inclusion of a final tier fast spectrum system are demonstrated. With these two features, all scenarios capably reduce the TRU and plutonium waste content, significantly reducing the radiotoxicity; however, a significant infrastructure (at least 1/10 the total nuclear capacity) is required for the dedicated transmutation system. (authors)

  4. Multiple tier fuel cycle studies for waste transmutation

    International Nuclear Information System (INIS)

    Hill, R.N.; Taiwo, T.A.; Stillman, J.A.; Graziano, D.J.; Bennett, D.R.; Trellue, H.; Todosow, M.; Halsey, W.G.; Baxter, A.

    2002-01-01

    As part of the U.S. Department of Energy Advanced Accelerator Applications Program, a systems study was conducted to evaluate the transmutation performance of advanced fuel cycle strategies. Three primary fuel cycle strategies were evaluated: dual-tier systems with plutonium separation, dual-tier systems without plutonium separation, and single-tier systems without plutonium separation. For each case, the system mass flow and TRU consumption were evaluated in detail. Furthermore, the loss of materials in fuel processing was tracked including the generation of new waste streams. Based on these results, the system performance was evaluated with respect to several key transmutation parameters including TRU inventory reduction, radiotoxicity, and support ratio. The importance of clean fuel processing (∼0.1% losses) and inclusion of a final tier fast spectrum system are demonstrated. With these two features, all scenarios capably reduce the TRU and plutonium waste content, significantly reducing the radiotoxicity; however, a significant infrastructure (at least 1/10 the total nuclear capacity) is required for the dedicated transmutation system

  5. Conceptual design study of Hyb-WT as fusion–fission hybrid reactor for waste transmutation

    International Nuclear Information System (INIS)

    Siddique, Muhammad Tariq; Kim, Myung Hyun

    2014-01-01

    Highlights: • Conceptual design study of fusion-fission hybrid reactor for waste transmutation. • MCNPX and MONTEBURNS are compared for transmutation performance of WT-Hyb. • Detailed neutronic performance of final optimized Hyb-WT design is analyzed. • A new tube-in-duct core design is implemented and compared with pin type design. • Study shows many aspects of hybrid reactor even though scope was limited to neutronic analysis. - Abstract: This study proposes a conceptual design of a hybrid reactor for waste transmutation (Hyb-WT). The design of Hyb-WT is based on a low-power tokamak (less than 150 MWt) and an annular ring-shaped reactor core with metal fuel (TRU 60 w/o, Zr 40 w/o) and a fission product (FP) zone. The computational code systems MONTEBURNS and MCNPX2.6 are investigated for their suitability in evaluating the performance of Hyb-WT. The overall design performance of the proposed reactor is determined by considering pin-type and tube-in-duct core designs. The objective of such consideration is to explore the possibilities for enhanced transmutation with reduced wall loading from fusion neutrons and reduced transuranic (TRU) inventory. TRU and FP depletion is analyzed by calculating waste transmutation ratio, mass burned per full power year (in units of kg/fpy), and support ratio. The radio toxicity analysis of TRUs and FPs is performed by calculating the percentage of toxicity reduction in TRU and FP over a burn cycle

  6. Sensitivity analysis of minor actinides transmutation to physical and technological parameters

    International Nuclear Information System (INIS)

    Kooyman, T.; Buiron, L.

    2015-01-01

    Minor actinides transmutation is one of the 3 main axis defined by the 2006 French law for management of nuclear waste, along with long-term storage and use of a deep geological repository. Transmutation options for critical systems can be divided in two different approaches: (a) homogeneous transmutation, in which minor actinides are mixed with the fuel. This exhibits the drawback of 'polluting' the entire fuel cycle with minor actinides and also has an important impact on core reactivity coefficients such as Doppler Effect or sodium void worth for fast reactors when the minor actinides fraction increases above 3 to 5% depending on the core; (b) heterogeneous transmutation, in which minor actinides are inserted into transmutation targets which can be located in the center or in the periphery of the core. This presents the advantage of decoupling the management of the minor actinides from the conventional fuel and not impacting the core reactivity coefficients. In both cases, the design and analyses of potential transmutation systems have been carried out in the frame of Gen IV fast reactor using a 'perturbation' approach in which nominal power reactor parameters are modified to accommodate the loading of minor actinides. However, when designing such a transmutation strategy, parameters from all steps of the fuel cycle must be taken into account, such as spent fuel heat load, gamma or neutron sources or fabrication feasibility. Considering a multi-recycling strategy of minor actinides, an analysis of relevant estimators necessary to fully analyze a transmutation strategy has been performed in this work and a sensitivity analysis of these estimators to a broad choice of reactors and fuel cycle parameters has been carried out. No threshold or percolation effects were observed. Saturation of transmutation rate with regards to several parameters has been observed, namely the minor actinides volume fraction and the irradiation time. Estimators of interest that have been

  7. High intensity proton linear accelerator development for nuclear waste transmutation

    International Nuclear Information System (INIS)

    Mizumoto, M.; Hasegawa, K.; Oguri, H.; Ito, N.; Kusano, J.; Okumura, Y.; Murata, H.; Sakogawa, K.

    1997-01-01

    A high-intensity proton linear accelerator with an energy of 1.5 GeV and an average current of 10 mA has been proposed for various engineering tests for the transmutation system of nuclear waste by JAERI. The conceptual and optimization studies for this accelerator performed for a proper choice of operating frequency, high b structure, mechanical engineering considerations and RF source aspects are briefly described

  8. Transmutation potential of reactor WWER-440

    International Nuclear Information System (INIS)

    Darilek, P.; Sebian, V.; Necas, V.

    2001-01-01

    Theoretical evaluation of WWER-440 transmutation potential by HELIOS - code is presented. Transmutation method proposal comprising special transmutation pins, combined FA and simple reprocessing is described. Transmutation efficiency of the method is characterized (Authors)

  9. Multi-faceted evaluation for nuclear fuel cycles with transmutation

    International Nuclear Information System (INIS)

    Nishihara, Kenji

    2015-03-01

    Environment impact, economy and proliferation resistance were estimated for nuclear fuel cycles involving transmutation by fast reactor and accelerator-driven system in equilibrium state. As a result, the transmutation scenario using only fast reactor was superior to the scenarios combined with accelerator-driven system in all estimation, but the differences were insignificant. (author)

  10. The Los Alamos accelerator driven transmutation of nuclear waste (ATW) concept development of the ATW target/blanket system

    International Nuclear Information System (INIS)

    Venneri, F.; Williamson, M.A.; Ning, L.

    1997-01-01

    The studies carried out in the frame of the Accelerator Driven Transmutation Technology (ADTT) program developed at Los Alamos in order to solve the nuclear waste problem and to build a new generation of safer and non-proliferant nuclear power plants, are presented

  11. Development of long-lived radionuclide transmutation technology -Development of nuclear transmutation technology-

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myung Chan; Jung, Woo Tae; Koh, Duk Joon; Kim, Jung Doh; Kil, Choong Sub [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    Based on the performance assessment of current reactor nuclear design codes, CASMO-3, LEOPARD, CITATION could be used for the simulation of transmutation, but further improvements are required on the reliability of cross sections of MA or FP and the accuracy of burnup model. Our simulation results based on the calculation by using CASMO-3 and NEM-3D (developed at Seoul National University) showed that transmutation efficiency for Am was high but Np and Cm elements were found to be hard to transmute. In our calculation, micro depletion calculations with burnup variation were done separately. Possibility of MA and FP transmutation with hard and fast neutrons was reported to be greater but detail calculation will be done in next year. 44 figs, 31 tabs, 17 refs. (Author).

  12. Transmutation of nuclear waste in nuclear reactors

    International Nuclear Information System (INIS)

    Abrahams, K.; Kloosterman, J.L.; Pilate, S.; Wehmann, U.K.

    1996-03-01

    The objective of this joint study of ECN, Belgonucleaire, and Siemens is to investigate possibilities for transmutation of nuclear waste in regular nuclear reactors or in special transmutation devices. Studies of possibilities included the limits and technological development steps which would be needed. Burning plutonium in fast reactors, gas-cooled high-temperature reactors and light water reactors (LWR) have been considered. For minor actinides the transmutation rate mainly depends on the content of the minor actinides in the reactor and to a much less degree on the fact whether one uses a homogeneous system (with the actinides mixed into the fuel) or a heterogeneous system. If one wishes to stabilise the amount of actinides from the present LWRs, about 20% of all nuclear power would have to be generated in special burner reactors. It turned out that reactor transmutation of fission products would require considerable recycling efforts and that the time needed for a substantial transmutation would be rather long for the presently available levels of the neutron flux. If one would like to design burner systems which can serve more light water reactors, a large effort would be needed and other burners (possibly driven by accelerators) should be considered. (orig.)

  13. Preliminary analyses of neutronics schemes for three kinds waste transmutation blankets of fusion-fission hybrid

    International Nuclear Information System (INIS)

    Zhang Mingchun; Feng Kaiming; Li Zaixin; Zhao Fengchao

    2012-01-01

    The neutronics schemes of the helium-cooled waste transmutation blanket, sodium-cooled waste transmutation blanket and FLiBe-cooled waste transmutation blanket were preliminarily calculated and analysed by using the spheroidal tokamak (ST) plasma configuration. The neutronics properties of these blankets' were compared and analyzed. The results show that for the transmutation of "2"3"7Np, FLiBe-cooled waste transmutation blanket has the most superior transmutation performance. The calculation results of the helium-cooled waste transmutation blanket show that this transmutation blanket can run on a steady effective multiplication factor (k_e_f_f), steady power (P), and steady tritium production rate (TBR) state for a long operating time (9.62 years) by change "2"3"7Np's initial loading rate of the minor actinides (MA). (authors)

  14. HLW disposal by fission reactors; calculation of trans-mutation rate and recycle

    International Nuclear Information System (INIS)

    Mulyanto

    1997-01-01

    Transmutation of MA (Minor actinide) and LLFPS (long-lived fission products) into stable nuclide or short-lived isotopes by fission reactors seem to become an alternative technology for HLW disposal. in this study, transmutation rate and recycle calculation were developed in order to evaluate transmutation characteristics of MA and LLFPs in the fission reactors. inventory of MA and LLFPs in the transmutation reactors were determined by solving of criticality equation with 1-D cylindrical geometry of multigroup diffusion equations at the beginning of cycle (BOC). transmutation rate and burn-up was determined by solving of depletion equation. inventory of MA and LLFPs was calculated for 40 years recycle. From this study, it was concluded that characteristics of MA and LLFPs in the transmutation reactors can be evaluated by recycle calculation. by calculation of transmutation rate, performance of fission reactor for transmutation of MA or LLFPs can be discussed

  15. Research activities related to accelerator-based transmutation at PSI

    International Nuclear Information System (INIS)

    Wydler, P.

    1993-01-01

    Transmutation of actinides and fission products using reactors and other types of nuclear systems may play a role in future waste management schemes. Possible advantages of separation and transmutation are: volume reductions, the re-use of materials, the avoidance of a cumulative risk, and limiting the duration of the risk. With its experience in reactor physics, accelerator-based physics, and the development of the SINQ spallation neutron source, PSI is in a good position to perform basic theoretical and experimental studies relating to the accelerator-based transmutation of actinides. Theoretical studies at PSI have been concentrated, so far, on systems in which protons are used directly to transmute actinides. With such systems and appropriate recycling schemes, the studies showed that considerable reduction factors for long-term toxicity can be obtained. With the aim of solving some specific data and method problems related to these types of systems, a programme of differential and integral measurements at the PSI ring accelerator has been initiated. In a first phase of this programme, thin samples of actinides will be irradiated with 590 MeV protons, using an existing irradiation facility. The generated spallation and fission products will be analysed using different experimental techniques, and the results will be compared with theoretical predictions based on high-energy nucleon-meson transport calculations. The principal motivation for these experiments is to resolve discrepancies observed between calculations based on different high-energy fission models. In a second phase of the programme, it is proposed to study the neutronic behaviour of multiplying target-blanket assemblies with the help of zero-power experiments set up at a separate, dedicated beam line of the accelerator. (author) 3 figs., 2 tabs., 8 refs

  16. Redesign of a pilot international online course on accelerator driven systems for nuclear transmutation to implement a massive open online course

    Energy Technology Data Exchange (ETDEWEB)

    Alonso-Ramos, M.; Fernandez-Luna, A. J.; Gonzalez-Romero, E. M.; Sanchez-Elvira, A.; Castro, M.; Ogando, F.; Sanz, J.; Martin, S.

    2014-07-01

    In April 2013, a full-distance international pilot course on ADS (Accelerator Driven Systems) for advanced nuclear waste transmutation was taught by UNED-CIEMAT within FP7 ENEN-III project. The experience ran with 10 trainees from the project, using UNED virtual learning platform a LF. Video classes, web-conferences and recorded simulations of case studies were the main learning materials. Asynchronous and synchronous communication tools were used for tutoring purposes, and a final examination for online submission and a final survey were included. (Author)

  17. Redesign of a pilot international online course on accelerator driven systems for nuclear transmutation to implement a massive open online course

    International Nuclear Information System (INIS)

    Alonso-Ramos, M.; Fernandez-Luna, A. J.; Gonzalez-Romero, E. M.; Sanchez-Elvira, A.; Castro, M.; Ogando, F.; Sanz, J.; Martin, S.

    2014-01-01

    In April 2013, a full-distance international pilot course on ADS (Accelerator Driven Systems) for advanced nuclear waste transmutation was taught by UNED-CIEMAT within FP7 ENEN-III project. The experience ran with 10 trainees from the project, using UNED virtual learning platform a LF. Video classes, web-conferences and recorded simulations of case studies were the main learning materials. Asynchronous and synchronous communication tools were used for tutoring purposes, and a final examination for online submission and a final survey were included. (Author)

  18. Scenarios for minor actinides transmutation in the framework of the French Act on Waste Management

    International Nuclear Information System (INIS)

    Coquelet-Pascal, C.; Meyer, M.; Tiphine, M.; Girieud, R.; Eschbach, R.; Chabert, C.; Garzenne, C.; Barbrault, P.; Van Den Durpel, L.; Caron-Charles, M.; Favet, D.; Arslan, M.; Caron-Charles, M.; Carlier, B.; Lefevre, J.C.

    2013-01-01

    In the framework of the French Act on Waste Management, options of minor actinides (MA) transmutation are studied, based on several scenarios of sodium fast reactor deployment. Basically, one of these scenarios considers the deployment of a 60 GWe SFR fleet in two steps (20 GWe from 2040 to 2050 and 40 GWe, as well as, from 2080 to 2100). For this scenario, the advantages and drawbacks of different transmutation options are evaluated: - transmutation of all minor actinides or only of americium; - transmutation in homogeneous mode (MA bearing fuel in all the core or just in the outer core) or in heterogeneous mode (MA bearing radial blankets). Scenarios have been optimised to limit the impacts of MA transmutation on the cycle: - reduction of the initial MA content in the core in the case of transmutation in homogeneous mode to reduce the impact on reactivity coefficients; - reduction of the number of rows of blankets and fuel decay heat in the case of transmutation in heterogeneous mode. The sensitivity of transmutation options to cycle parameters such as the fuel cooling time before transportation is also assessed. Thus, the transmutation of only americium in one row of radial blankets containing initially 10 pc % Am and irradiated during the same duration as the standard fuel assemblies appears to be a suitable solution to limit the transmutation impacts on fuel cycle and facilities. A comparison of results obtained with MA transmutation in dedicated systems is also presented with a symbiotic scenario considering ADS (accelerator-driven system) deployment to transmute MA together with a SFR fleet to produce energy. The MA inventory within the cycle is higher in the case of transmutation in ADS than in the case of transmutation in SFR. Considering the industrial feasibility of MA transmutation, it appears important to study 'independently' SFR deployment and MA transmutation. Consequently, scenarios of progressive introduction of MA options are assessed

  19. Study of deep subcritical electronuclear systems and feasibility of their application for energy production and radioactive waste transmutation

    International Nuclear Information System (INIS)

    Adam, J.; Baldin, A.; Vladimirova, N.

    2010-01-01

    Physical substantiation for investigation of new schemes of electronuclear power production and transmutation of long-lived radioactive wastes based on nuclear relativistic technologies is presented. 'E and T RAW' ('Energy and Transmutation of Radioactive Wastes') is aimed at complex study of interaction of relativistic beams of the Nuclotron-M with energies up to 10 GeV in quasi-infinite targets. Feasibility of application of natural/depleted uranium or thorium without the use of uranium-235, as well as utilization of spent fuel elements of atomic power plants is demonstrated based on analysis of results of known experiments, numerical, and theoretical works. The 'E and T RAW' project will provide fundamentally new data and numerical methods necessary for design of demonstration experimental-industrial setups based on the proposed scheme

  20. Transmutations for Strings

    Directory of Open Access Journals (Sweden)

    Amin Boumenir

    2008-07-01

    Full Text Available We investigate the existence and representation of transmutations, also known as transformation operators, for strings. Using measure theory and functional analytic methods we prove their existence and study their representation. We show that in general they are not close to unity since their representation does not involve a Volterra operator but rather the eigenvalue parameter. We also obtain conditions under which the transmutation is either a bounded or a compact operator. Explicit examples show that they cannot be reduced to Volterra type operators.  

  1. A review of research and development on accelerator-driven system for transmutation of long-lived nuclear waste at JAERI

    International Nuclear Information System (INIS)

    Oigawa, H.

    2004-01-01

    The dedicated transmutation system using the accelerator driven subcritical system (ADS) has been studied in the Japan Atomic Energy Research Institute (JAERI) to reduce the burden of the final disposal of the nuclear waste. A subcritical reactor with the thermal power of 800 MW is proposed, where 250 kg of minor actinide (MA) can be transmuted annually. A superconducting linear accelerator (LINAC) with the beam power of 20-30 MW is necessary for this ADS. Lead-bismuth eutectic (LBE) is used for both the spallation target and the core coolant. Many research and development activities including the design study are under way and planned at JAERI to examine the feasibility of the ADS. In the design study, optimization of the ADS design is under way in terms of neutronics and structural feasibility. In the field of the proton accelerator, a superconducting LINAC is being developed. In the field of the LBE technology, material compatibility, thermal-hydraulics and polonium behavior are being studied. The irradiation effect of structural material to be used for the beam window is also being studied. In the field of the reactor physics of the subcritical core fueled with MA, the reliability of nuclear data is examined and the subcriticality monitoring technique is being investigated. Moreover, in the framework of J-PARC project (Japan Proton Accelerator Research Complex), JAERI plans to construct the Transmutation Experimental Facility (TEF) to demonstrate the feasibility of the ADS with using high-energy proton beam, to accumulate valuable knowledge about reactor physics and operation of ADS, and to establish a database for LBE spallation target and relevant materials. (author)

  2. J-PARC Transmutation Experimental Facility Programme

    International Nuclear Information System (INIS)

    Sasa, T.; Takei, H.; Saito, S.; Obayashi, H.; Nishihara, K.; Sugawara, T.; Iwamoto, H.; Yamaguchi, K.; Tsujimoto, K.; Oigawa, H.

    2015-01-01

    Since the Fukushima accident, nuclear transmutation is considered as an option for waste management. Japan Atomic Energy Agency proposes the transmutation of minor actinides (MA) in accelerator-driven system (ADS) using lead-bismuth eutectic alloy (LBE) as a spallation target and a coolant of subcritical core. To obtain the data required for ADS design, we plan the building of a transmutation experimental facility (TEF) is planned within the J-PARC project. TEF consists of an ADS target test facility (TEF-T), which will be installed 400 MeV-250 kW LBE spallation target for material irradiations, and a transmutation physics experimental facility (TEF-P), which set up a fast critical/subcritical assembly driven by low power proton beam with MA fuel to study ADS neutronics. At TEF-T, various research plans to use emitted neutrons from LBE target are discussed. The paper summarises a road-map to establish the ADS transmuter and latest design activities for TEF construction. (authors)

  3. A feasibility study on FP transmutation for Self-Consistent Nuclear Energy System (SCNES)

    International Nuclear Information System (INIS)

    Fujita, Reiko; Kawashima, Masatoshi; Ueda, Hiroaki; Takagi, Ryuzo; Matsuura, Haruaki; Fujii-e, Yoichi

    1997-01-01

    A fast reactor core/fuel cycle concept is discussed for the future 'Self-Consistent Nuclear Energy System (SCNES)' concept. The present study mainly discussed long-lived fission products (LLFPs) burning capability and recycle scheme in the framework of metallic fuel fast reactor cycle, aiming at the goals for fuel breeding capability and confinement for TRU and radio-active FPs within the system. In present paper, burning capability for Cs135 and Zr93 is mainly discussed from neutronic and chemical view points, assuming metallic fuel cycle system. The recent experimental results indicate that Cs can be separable along with the pyroprocess for metal fuel recycle system, as previously designed for a candidate fuel cycle system. Combining neutron spectrum-shift for target sub-assemblies and isotope separation using tunable laser, LLFP burning capability is enhanced. This result indicates that major LLFPs can be treated in the additional recycle schemes to avoid LLFP accumulation along with energy production. In total, the proposed fuel cycle is an candidate for realizing SCNES concept. (author)

  4. High flux transmutation of fission products and actinides

    International Nuclear Information System (INIS)

    Gerasimov, A.; Kiselev, G.; Myrtsymova, L.

    2001-01-01

    Long-lived fission products and minor actinides accumulated in spent nuclear fuel of power reactors comprise the major part of high level radwaste. Their incineration is important from the point of view of radwaste management. Transmutation of these nuclides by means of neutron irradiation can be performed either in conventional nuclear reactors, or in specialized transmutation reactors, or in ADS facilities with subcritical reactor and neutron source with application of proton accelerator. Different types of transmutation nuclear facilities can be used in order to insure optimal incineration conditions for radwaste. The choice of facility type for optimal transmutation should be based on the fundamental data in the physics of nuclide transformations. Transmutation of minor actinides leads to the increase of radiotoxicity during irradiation. It takes significant time compared to the lifetime of reactor facility to achieve equilibrium without effective transmutation. High flux nuclear facilities allow to minimize these draw-backs of conventional facilities with both thermal and fast neutron spectrum. They provide fast approach to equilibrium and low level of equilibrium mass and radiotoxicity of transmuted actinides. High flux facilities are advantageous also for transmutation of long-lived fission products as they provide short incineration time

  5. Preparation of a technology development roadmap for the Accelerator Transmutation of Waste (ATW) System : report of the ATW separations technologies and waste forms technical working group

    International Nuclear Information System (INIS)

    Collins, E.; Duguid, J.; Henry, R.; Karell, E.J.; Laidler, J.J.; McDeavitt, S.M.; Thompson, M.; Toth, L.M.; Williamson, M.; Willit, J.L.

    1999-01-01

    In response to a Congressional mandate to prepare a roadmap for the development of Accelerator Transmutation of Waste (ATW) technology, a Technical Working Group comprised of members from various DOE laboratories was convened in March 1999 for the purpose of preparing that part of the technology development roadmap dealing with the separation of certain radionuclides for transmutation and the disposal of residual radioactive wastes from these partitioning operations. The Technical Working Group for ATW Separations Technologies and Waste Forms completed its work in June 1999, having carefully considered the technology options available. A baseline process flowsheet and backup process were identified for initial emphasis in a future research, development and demonstration program. The baseline process combines aqueous and pyrochemical processes to permit the efficient separation of the uranium, technetium, iodine and transuranic elements from the light water reactor (LWR) fuel in the head-end step. The backup process is an all- pyrochemical system. In conjunction with the aqueous process, the baseline flowsheet includes a pyrochemical process to prepare the transuranic material for fabrication of the ATW fuel assemblies. For the internal ATW fuel cycle the baseline process specifies another pyrochemical process to extract the transuranic elements, Tc and 1 from the ATW fuel. Fission products not separated for transmutation and trace amounts of actinide elements would be directed to two high-level waste forms, one a zirconium-based alloy and the other a glass/sodalite composite. Baseline cost and schedule estimates are provided for a RD and D program that would provide a full-scale demonstration of the complete separations and waste production flowsheet within 20 years

  6. Preparation of a technology development roadmap for the Accelerator Transmutation of Waste (ATW) System : report of the ATW separations technologies and waste forms technical working group.

    Energy Technology Data Exchange (ETDEWEB)

    Collins, E.; Duguid, J.; Henry, R.; Karell, E.; Laidler, J.; McDeavitt, S.; Thompson, M.; Toth, M.; Williamson, M.; Willit, J.

    1999-08-12

    In response to a Congressional mandate to prepare a roadmap for the development of Accelerator Transmutation of Waste (ATW) technology, a Technical Working Group comprised of members from various DOE laboratories was convened in March 1999 for the purpose of preparing that part of the technology development roadmap dealing with the separation of certain radionuclides for transmutation and the disposal of residual radioactive wastes from these partitioning operations. The Technical Working Group for ATW Separations Technologies and Waste Forms completed its work in June 1999, having carefully considered the technology options available. A baseline process flowsheet and backup process were identified for initial emphasis in a future research, development and demonstration program. The baseline process combines aqueous and pyrochemical processes to permit the efficient separation of the uranium, technetium, iodine and transuranic elements from the light water reactor (LWR) fuel in the head-end step. The backup process is an all- pyrochemical system. In conjunction with the aqueous process, the baseline flowsheet includes a pyrochemical process to prepare the transuranic material for fabrication of the ATW fuel assemblies. For the internal ATW fuel cycle the baseline process specifies another pyrochemical process to extract the transuranic elements, Tc and 1 from the ATW fuel. Fission products not separated for transmutation and trace amounts of actinide elements would be directed to two high-level waste forms, one a zirconium-based alloy and the other a glass/sodalite composite. Baseline cost and schedule estimates are provided for a RD&D program that would provide a full-scale demonstration of the complete separations and waste production flowsheet within 20 years.

  7. Measurement with SR-0 experimental modules of the SPHINX nuclear transmutation system. Variants 2008

    International Nuclear Information System (INIS)

    Rypar, Vojtech; Juricek, Vlastimil; Svadlenkova, Marie; Heraltova, Lenka; Viererbl, Ladislav; Lahodova, Zdena

    2008-12-01

    Experiments were performed with two LR-0 rector core arrangements and 3 variants of SR-0 insertion modules with a view to establishing the critical parameters of the reactor cores for the 3 module variants comprising different materials and different numbers of LR-0 fuel pins. The effect of the materials on the photon dose distribution and, on the axial and radial neutron field distributions (via 140 Ba and 140 La activities) was examined and the reaction rate distribution of activation foils inside the experimental module was measured

  8. A Study on the Kinetic Characteristics of Transmutation Process Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Chang Hyun; You, Young Woo; Cho, Jae seon; Huh, Chang Wook; Kim, Doh Hyung [Seoul National University, Seoul (Korea, Republic of)

    1997-07-01

    The purpose of this study is to examine the transient heat transfer characteristics of liquid mental as the coolant used in accelerator-driven transmutation process reactor which is related the disposal of high-level radioactive nuclide. At current stage, the accelerator-driven transmutation process is investigated as the most appropriate method among many transmutation process methods. In this study, previous research works are investigated especially about the thermal hydraulics and kinetic behavior of coolant material including heat transfer of coolant in transmutation process reactor. A study on the heat transfer characteristics of liquid metal is performed based on the thermal hydraulic kinetic characteristics of liquid metal reactor which uses liquid metal coolant. Based on this study, the most appropriate material for the coolant of transmutation reactor will be recommended. 53 refs., 15 tabs., 33 figs. (author)

  9. Accelerator for nuclear transmutation

    International Nuclear Information System (INIS)

    Schapira, J.P.

    1984-01-01

    A review on nuclear transmutation of radioactive wastes using particle accelerators is given. Technical feasibility, nuclear data, costs of various projects are discussed. It appears that one high energy accelerator (1500 MeV, 300 mA proton) could probably handle the amount of actinides generated by the actual French nuclear program [fr

  10. Analysis on Radioactive Waste Transmutation in Light Water cooled Hyb-WT

    International Nuclear Information System (INIS)

    Hong, Seonghee; Kim, Myung Hyun

    2014-01-01

    A feasibility of realization is much higher in FFHR compared with pure fusion. A combination of plasma fusion source for neutrons with a subcritical reactor at the blanket side has much higher capability in transmutation of waste as well as reactor safety compared with fission reactor options. Fusion-Fission Hybrid Reactor (FFHR) uses various coolants depending on the purpose. It is important that coolant being used should be suitable to reactor purpose, because reactor performance and the design constraints may change depending on the coolant. There are basically two major groups of coolants for FFHR. One group of coolant does not contain Li. They are Na, Pb-Bi, H 2 O and D 2 O. The other group contains Li for tritium breeding. They are Li, LiPb, LiSN, FLIBE and FLiNaBe. Currently, the issue in FFHR is its implication for radioactive waste transmutation (FFHR for WT). Because radioactive wastes of spent nuclear fuel (SNF) are transmuted using fusion neutron source. Therefore a suitable coolant should be used for effective waste transmutation. . In FFHR for WT, LiPb coolant is being used mainly because of tritium production in Li and high neutron economic through reaction in Pb. However different coolants use such as Na, Pb-Bi are used in fast reactors and accelerator driven systems (ADS) having same purpose. In this study, radioactive waste transmutation performance of various coolants mentioned above will be compared and analyzed. Through this study, the coolants are judged primarily for their support to waste transmutation disregarding their limitation to reactor design and tritium breeding capability. First, performance of the light water coolant regarding radioactive waste transmutation was analyzed among various coolants mentioned above. In this paper, performance of radioactive waste transmutation can be known depending on different volume fractions (54.53, 60.27, 97.94vol.%) of the light water. Light water dose required fusion power lower than LiPb due to

  11. Monte Carlo analysis of the long-lived fission product neutron capture rates at the Transmutation by Adiabatic Resonance Crossing (TARC) experiment

    International Nuclear Information System (INIS)

    Abánades, A.; Álvarez-Velarde, F.; González-Romero, E.M.; Ismailov, K.; Lafuente, A.; Nishihara, K.; Saito, M.; Stanculescu, A.; Sugawara, T.

    2013-01-01

    Highlights: ► TARC experiment benchmark capture rates results. ► Utilization of updated databases, included ADSLib. ► Self-shielding effect in reactor design for transmutation. ► Effect of Lead nuclear data. - Abstract: The design of Accelerator Driven Systems (ADS) requires the development of simulation tools that are able to describe in a realistic way their nuclear performance and transmutation rate capability. In this publication, we present an evaluation of state of the art Monte Carlo design tools to assess their performance concerning transmutation of long-lived fission products. This work, performed under the umbrella of the International Atomic Energy Agency, analyses two important aspects for transmutation systems: moderation on Lead and neutron captures of 99 Tc, 127 I and 129 I. The analysis of the results shows how shielding effects due to the resonances at epithermal energies of these nuclides affects strongly their transmutation rate. The results suggest that some research effort should be undertaken to improve the quality of Iodine nuclear data at epithermal and fast neutron energy to obtain a reliable transmutation estimation.

  12. Monte Carlo analysis of the long-lived fission product neutron capture rates at the Transmutation by Adiabatic Resonance Crossing (TARC) experiment

    Energy Technology Data Exchange (ETDEWEB)

    Abanades, A., E-mail: abanades@etsii.upm.es [Grupo de Modelizacion de Sistemas Termoenergeticos, ETSII, Universidad Politecnica de Madrid, c/Ramiro de Maeztu, 7, 28040 Madrid (Spain); Alvarez-Velarde, F.; Gonzalez-Romero, E.M. [Centro de Investigaciones Medioambientales y Tecnologicas (CIEMAT), Avda. Complutense, 40, Ed. 17, 28040 Madrid (Spain); Ismailov, K. [Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8550 (Japan); Lafuente, A. [Grupo de Modelizacion de Sistemas Termoenergeticos, ETSII, Universidad Politecnica de Madrid, c/Ramiro de Maeztu, 7, 28040 Madrid (Spain); Nishihara, K. [Transmutation Section, J-PARC Center, JAEA, Tokai-mura, Ibaraki-ken 319-1195 (Japan); Saito, M. [Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8550 (Japan); Stanculescu, A. [International Atomic Energy Agency (IAEA), Vienna (Austria); Sugawara, T. [Transmutation Section, J-PARC Center, JAEA, Tokai-mura, Ibaraki-ken 319-1195 (Japan)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer TARC experiment benchmark capture rates results. Black-Right-Pointing-Pointer Utilization of updated databases, included ADSLib. Black-Right-Pointing-Pointer Self-shielding effect in reactor design for transmutation. Black-Right-Pointing-Pointer Effect of Lead nuclear data. - Abstract: The design of Accelerator Driven Systems (ADS) requires the development of simulation tools that are able to describe in a realistic way their nuclear performance and transmutation rate capability. In this publication, we present an evaluation of state of the art Monte Carlo design tools to assess their performance concerning transmutation of long-lived fission products. This work, performed under the umbrella of the International Atomic Energy Agency, analyses two important aspects for transmutation systems: moderation on Lead and neutron captures of {sup 99}Tc, {sup 127}I and {sup 129}I. The analysis of the results shows how shielding effects due to the resonances at epithermal energies of these nuclides affects strongly their transmutation rate. The results suggest that some research effort should be undertaken to improve the quality of Iodine nuclear data at epithermal and fast neutron energy to obtain a reliable transmutation estimation.

  13. Partitioning and transmutation (P and T) 1997. Status report

    International Nuclear Information System (INIS)

    Enarsson, Aasa; Landgren, A.; Liljenzin, J.O.; Skaalberg, M.; Spjuth, L.; Gudowski, W.; Wallenius, J.

    1998-05-01

    Research on and the evaluation of partitioning and transmutation are currently in progress in many industrial countries due to its potential as a long-term, sustainable energy source with low environmental impact and due to its ability to destroy many long-lived nuclides. The cost of the research and development work on partitioning and transmutation is considered to be so great that international co-operation is required. With respect to Sweden, we recommend a balanced research work on both partitioning and transmutation technology. Within the area of partitioning, it is above all a question of locating new reagents which can be used to simplify the necessary partitioning processes and minimize the losses. The requirements with respect to high selectivity and minor losses will be significantly higher in a recirculating system based on transmutation than in the reprocessing facilities of today where only uranium and plutonium are recovered. If the utilized reagents can be easily destroyed, by dry or wet incineration and conversion into non-complex gaseous chemical compounds, this will open up good opportunities for the recovery of the radionuclides. From a purely technical standpoint, it would seem that a combination of different types of reactor systems would give the best possible transmutation efficiency. While existing light water reactors can be utilized for increased plutonium incineration, there is currently consensus about the view that reactors with high-energy neutrons are necessary to achieve a sufficiently high transmutation efficiency for neptunium, americium, curium and certain fission products. By allowing an accelerator-based neutron source to drive a subcritical heavy metal-cooled reactor, the potential for transmutation of fission products is increased, at the same time that satisfactory safety margins are achieved for certain fuel types with a low share of delayed neutrons and a high heat conductivity. Regardless of what types of systems are

  14. Partitioning and transmutation (P and T) 1997. Status report

    Energy Technology Data Exchange (ETDEWEB)

    Enarsson, Aasa; Landgren, A.; Liljenzin, J.O.; Skaalberg, M.; Spjuth, L. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Nuclear Chemistry; Gudowski, W.; Wallenius, J. [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Nuclear and Reactor Physics

    1998-05-01

    Research on and the evaluation of partitioning and transmutation are currently in progress in many industrial countries due to its potential as a long-term, sustainable energy source with low environmental impact and due to its ability to destroy many long-lived nuclides. The cost of the research and development work on partitioning and transmutation is considered to be so great that international co-operation is required. With respect to Sweden, we recommend a balanced research work on both partitioning and transmutation technology. Within the area of partitioning, it is above all a question of locating new reagents which can be used to simplify the necessary partitioning processes and minimize the losses. The requirements with respect to high selectivity and minor losses will be significantly higher in a recirculating system based on transmutation than in the reprocessing facilities of today where only uranium and plutonium are recovered. If the utilized reagents can be easily destroyed, by dry or wet incineration and conversion into non-complex gaseous chemical compounds, this will open up good opportunities for the recovery of the radionuclides. From a purely technical standpoint, it would seem that a combination of different types of reactor systems would give the best possible transmutation efficiency. While existing light water reactors can be utilized for increased plutonium incineration, there is currently consensus about the view that reactors with high-energy neutrons are necessary to achieve a sufficiently high transmutation efficiency for neptunium, americium, curium and certain fission products. By allowing an accelerator-based neutron source to drive a subcritical heavy metal-cooled reactor, the potential for transmutation of fission products is increased, at the same time that satisfactory safety margins are achieved for certain fuel types with a low share of delayed neutrons and a high heat conductivity. Regardless of what types of systems are

  15. Comparative study for minor actinide transmutation in various fast reactor core concepts

    International Nuclear Information System (INIS)

    Ohki, S.

    2001-01-01

    A comparative evaluation of minor actinide (MA) transmutation property was performed for various fast reactor core concepts. The differences of MA transmutation property were classified by the variations of fuel type (oxide, nitride, metal), coolant type (sodium, lead, carbon dioxide) and design philosophy. Both nitride and metal fuels bring about 10% larger MA transmutation amount compared with oxide fuel. The MA transmutation amount is almost unchanged by the difference between sodium and lead coolants, while carbon dioxide causes a reduction by about 10% compared with those. The changes of MA transmutation property by fuel and coolant types are comparatively small. The effects caused by the difference of core design are rather significant. (author)

  16. Review of national accelerator driven system programmes for partitioning and transmutation. Proceedings of an advisory group meeting

    International Nuclear Information System (INIS)

    2003-08-01

    One of the current important issues of nuclear power is the long lived radioactive waste toxicity problem. The sharpness of this problem could be considerably reduced if, during energy production, there was the possibility to incinerate at least the most toxic radioactive isotopes (long lived fission products and minor actinides). The combination of external intensive neutron sources with facilities containing nuclear fuel, so-called hybrid systems, are under investigation in several countries. The surplus of neutrons in such systems may be used to convert most of the long lived radioactive nuclides into isotopes having a shorter lifetime. Currently, an increasing number of groups are entering this field of research. There is clearly a need for co-originated their efforts, and also for the exchange of information from nationally or internationally co-ordinated activities. Consideration of the advantages of hybrid systems, and the wide field of interdisciplinary areas of research involved, show the need for an international co-operation in this novel R and D area. The International Atomic Energy Agency has maintained an active interest in advanced nuclear technology related to accelerator driven systems (ADS), and related activities have been carried out within the framework of its programme on emerging nuclear energy systems. After thorough analyses of the outcomes of several international forums and recommendations of the IAEA Technical Committee Meeting on Feasibility and Motivation for Hybrid Concepts for Nuclear Energy Generation and Transmutation (Madrid, Spain, 1997), the IAEA conducted an Advisory Group Meeting on Review of National Accelerator Driven System Programmes in Taejon, Republic of Korea, from 1 to 4 November 1999. The scope of the meeting included review of the current R and D programmes in the Member States and the assessment of the progress in the development of hybrid concepts. The programme of the AGM included the following topics

  17. Consultancy on the potential of fusion/fission sub-critical neutron systems for energy production and transmutation. Working material

    International Nuclear Information System (INIS)

    2005-01-01

    possible activities to be implemented under IAEA aegis. The Consultancy examined existing experimental facilities and devices that could produce 14 MeV neutrons in the near future to permit the first concrete steps toward fusion-fission systems and how such a facility can become an integral part of the effort to develop sub-critical reactors, presently spearheaded by accelerator driven systems. In support of this effort, the Consultancy discussed and proposed a set of studies that permit future inter-comparison between various utilization and/or transmutation technologies, including accelerator driven systems and possible DT-plasma fusion devices for such application in the near future. The Consultancy recommended enhanced coordinated efforts for developing DT-plasma fusion driven sub-critical core designs. The main areas requiring enhanced research and technology development are nuclear data, forms and preparation of fuel, chemistry control, sub-critical core design, and systems integration

  18. Actinide and fission product partitioning and transmutation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    The third international information exchange meeting on actinide and fission product partitioning and transmutation, took place in Cadarache France, on 12-14 December 1994. The proceedings are presented in six sessions : an introduction session, the major programmes and international cooperation, the systems studies, the reactors fuels and targets, the chemistry and a last discussions session. (A.L.B.)

  19. Efficiency Of Transuranium Nuclides Transmutation

    International Nuclear Information System (INIS)

    Kazansky, Yu.A.; Klinov, D.A.; Semenov, E.V.

    2002-01-01

    One of the ways to create a wasteless nuclear power is based on transmutation of spent fuel nuclides. In particular, it is considered that the radioactivity of the nuclear power wastes should be the same (or smaller), than radioactivity of the uranium and the thorium extracted from entrails of the Earth. The problem of fission fragments transmutation efficiency was considered in article, where, in particular, the concepts of transmutation factor and the ''generalised'' index of biological hazard of the radioactive nuclides were entered. The transmutation efficiency has appeared to be a function of time and, naturally, dependent on nuclear power activity scenario, from neutron flux, absorption cross-sections of the nuclides under transmutation and on the rate of their formation in reactors. In the present paper the efficiency of the transmutation of transuranium nuclides is considered

  20. Transmutation of radioactive nuclear waste – present status and ...

    Indian Academy of Sciences (India)

    Transmutation of long-lived actinides and fission products becomes an im- ... Similar approach was performed for sub critical fast reactor core with Pu/MA .... The same might be addressed to masses of nuclei (the use of experimental values.

  1. Safety techniques in the change of nuclear systems. Radiation protection at spallation neutron sources and transmutation facilities

    International Nuclear Information System (INIS)

    Nuenighoff, Kay

    2009-01-01

    To push the boundary towards higher neutron fluxes concepts based on spallation reactions have been discussed. Here neutrons are produced by bombarding a heavy metal target (e.g. mercury, tungsten, or tantalum) with high energetic protons. Up to now such facilities could not be realised because of the high power particle accelerators needed. Recent developments of the accelerator technology open the possibility of construction and operating proton accelerators in the MW region. This is demonstrated by construction and commissioning of two MW spallation neutron sources, namely SNS (Oak Ridge, Tennessee, USA) with a power of 1.4 MW and J-PARC (Japan) with 1 MW. The realisation of proton accelerators at this power level will open the way towards energy amplifiers, as proposed e.g. by Carlo Rubbia. Such a facility will not only produce electric power. Furthermore longliving radionuclides can be transmutated into shortlived or even stable nuclides by neutron induced nuclear reactions. A mitigation of the problem of nuclear waste disposal. The above discussed developments prove that accelerators are not only constructed for research, moreover application of these technology became state of the art. With the emergence of particle accelerators in the MW region, radiation protection is confronted with new kind of problems to be solved. Especially the higher kinetic energies of the primary beam particles requires modification and expansion of computer programs well known in nuclear engineering. In contrast to nuclear reactors with kinetic energies up to 2-3 MeV, in spallation reaction secondary particles up to the incident energy in the GeV region will be produced. Problems related to radiation protection have to be considered in an energy range three orders of magnitude higher than known from nuclear reactors. In this thesis existing computer codes are compared and validated with data from selected experiments. Questions concerning radiation protection covers a broad range

  2. R and D activities for partitioning and transmutation in Korea

    International Nuclear Information System (INIS)

    Jae-Hyung, Yoo; Won-Seok, Park

    2003-01-01

    According to the long-term plan of nuclear technology development, KAERI is conducting a research and development project of transmutation with the objective of key technology development in the areas of partitioning and transmutation system. The research and development activities for partitioning and transmutation of long-lived radionuclides are introduced in this work. The studies of partitioning are focused on the electrorefining and electrowinning, which are aimed at investigating the thermodynamic properties of electrodeposition behaviours as well as the separation efficiency. As for the transmutation system, the HYPER (HYbrid Power Extraction Reactor) combined by a proton accelerator and a sub-critical reactor is being studied in KAERI as a prominent candidate facility in the future. Some conceptual studies are being conducted to develop key elemental systems of the sub-critical reactor such as the core, TRU fuel, proton target, and the cooling system. The conceptual design of the HYPER system will be completed by 2006. (author)

  3. The transmutation of americium: the Ecrix experiments in Phenix

    International Nuclear Information System (INIS)

    Garnier, J.C.; Schmidt, N.; Croixmarie, Y.; Ottaviani, J.P.; Varaine, F.; Saint Jean, C. de

    1999-01-01

    The first americium transmutation experiment in a specific target in PHENIX will occur with the ECRIX-B and ECRIX-H experiments. Beside material testing, the objective is also to represent a concept of transmutation whose specificity is to enhance the kinetics of transmutation by using a moderated spectrum. The moderator materials will be 11 B 4 C and CaH 2 for ECRIX-B and ECRIXH respectively, the irradiation conditions have been predicted for both the neutronics and thermal. The targets (MgO-AmO X pellets) are manufactured in the ATALANTE laboratory and the design is performed according to the PHENIX operating conditions. (authors)

  4. Fast reactor core concepts to improve transmutation efficiency

    International Nuclear Information System (INIS)

    Fujimura, Koji; Kawashima, Katsuyuki; Itooka, Satoshi

    2015-01-01

    Fast Reactor (FR) core concepts to improve transmutation efficiency were conducted. A heterogeneous MA loaded core was designed based on the 1000MWe-ABR breakeven core. The heterogeneous MA loaded core with Zr-H loaded moderated targets had a better transmutation performance than the MA homogeneous loaded core. The annular pellet rod design was proposed as one of the possible design options for the MA target. It was shown that using annular pellet MA rods mitigates the self-shielding effect in the moderated target so as to enhance the transmutation rate

  5. A new concept for accelerator driven transmutation of nuclear wastes

    International Nuclear Information System (INIS)

    Arthur, E.D.

    1991-01-01

    A new concept for an accelerator-driven transmutation system is described. The central feature of the concept is generation of intense fluxes of thermal neutrons. In the system all long-lived radionuclides comprising high-level nuclear waste can be transmuted efficiently. Transmutation takes place in a unique, low material inventory environment. Presently two principal areas are being investigated for application of the concept. The first is associated with cleanup of defense high-level waste at DOE sites such as Hanford. The second, longer term area involves production of electric power using a coupled accelerator-multiplying blanket system. This system would utilize natural thorium or uranium and would transmute long-lived components of high-level waste concurrently during operation. 5 refs., 5 figs

  6. Evaluation of alternative partitioning/transmutation scenarios using transmutation in light-water reactors (LWRs)

    International Nuclear Information System (INIS)

    Collins, E.D.; Renier, J.P.; Del Cul, B.; Spencer, B.

    2005-01-01

    Previous Advanced Fuel Cycle Initiative (AFCI) studies were made to assess the effects of the existing accumulation of LWR spent fuel in the United States on the capability to partition/transmute actinides using existing and advanced LWR. The concept of treating the oldest fuel first indicated that significant advantages could be gained in both partitioning, transmutation, and in overall cost reduction. The processing scenarios previously evaluated assumed that (1) 2000 MT/year of spent fuel, irradiated to 45 GWd/MT and decayed for 30 years is processed; (2) recovered plutonium and 90% of the neptunium are transmuted in LWR MOX fuel; and (3) minor actinides, consisting of americium, curium, and 10% of the neptunium are transmuted in burnable poison type targets. Results of the previous study showed that significant benefits could be obtained, including (1) lower costs for partitioning and transmutation and for storage of spent fuel, (2) maintenance of proliferation resistance for the fissile plutonium in spent fuels, and (3) extended lifetime for the repository. The lower costs would be achieved primarily because no capital investment for a special transmuter reactor (fast reactor, accelerator-driven system, etc.) would be required. Instead, only existing and new LWRs would be utilized. Moreover, no new storage capacity could be needed for spent fuels and irradiated targets because the number of spent fuel assemblies would remain the same after the scenario is begun. Even though the total inventory of plutonium would rise during the early cycles, ∼98% of the plutonium would be contained in stored spent fuel and would be protected by high radiation (the Spent Fuel Standard). This is because the spent fuel would be reprocessed and re-irradiated at intervals within which the fission products, 137 Cs and 90 Sr, both with half-lives of ∼ 30 years, exist in significantly high concentrations.The lifetime of the repository would be extended significantly because all of

  7. Calculation and Analysis of B/T (Burning and/or Transmutation Rate of Minor Actinides and Plutonium Performed by Fast B/T Reactor

    Directory of Open Access Journals (Sweden)

    Marsodi

    2006-01-01

    Full Text Available Calculation and analysis of B/T (Burning and/or Transmutation rate of MA (minor actinides and Pu (Plutonium has been performed in fast B/T reactor. The study was based on the assumption that the spectrum shift of neutron flux to higher side of neutron energy had a potential significance for designing the fast B/T reactor and a remarkable effect for increasing the B/T rate of MA and/or Pu. The spectrum shifts of neutron have been performed by change MOX to metallic fuel. Blending fraction of MA and or Pu in B/T fuel and the volume ratio of fuel to coolant in the reactor core were also considered. Here, the performance of fast B/T reactor was evaluated theoretically based on the calculation results of the neutronics and burn-up analysis. In this study, the B/T rate of MA and/or Pu increased by increasing the blending fraction of MA and or Pu and by changing the F/C ratio. According to the results, the total B/T rate, i.e. [B/T rate]MA + [B/T rate]Pu, could be kept nearly constant under the critical condition, if the sum of the MA and Pu inventory in the core is nearly constant. The effect of loading structure was examined for inner or outer loading of concentric geometry and for homogeneous loading. Homogeneous loading of B/T fuel was the good structure for obtaining the higher B/T rate, rather than inner or outer loading

  8. Program on fuels for transmutation: present status and prospects

    Energy Technology Data Exchange (ETDEWEB)

    Rouault, J.; Garnier, J.C.; Chauvin, N.; Pillon, S. [CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. d' Etudes des Combustibles

    2001-07-01

    The performance calculations of appropriate fuel cycle facilities and reactor configurations (scenarios) relying on current reactor technologies (Pressurized Water Reactor and Fast neutrons Reactors) or innovative reactors (Accelerator Driven Systems) have proved the scientific feasibility of some P and T strategies. To insure the technological feasibility, a large program on fuels and materials is underway, including advanced concepts for PWRs and the development of specific targets (dispersed fuels) for transmutation in Fast Reactors. Experiments in different reactors including Phenix are being prepared. The program is presented and recent results are given. (author)

  9. Program on fuels for transmutation: present status and prospects

    International Nuclear Information System (INIS)

    Rouault, J.; Garnier, J.C.; Chauvin, N.; Pillon, S.

    2001-01-01

    The performance calculations of appropriate fuel cycle facilities and reactor configurations (scenarios) relying on current reactor technologies (Pressurized Water Reactor and Fast neutrons Reactors) or innovative reactors (Accelerator Driven Systems) have proved the scientific feasibility of some P and T strategies. To insure the technological feasibility, a large program on fuels and materials is underway, including advanced concepts for PWRs and the development of specific targets (dispersed fuels) for transmutation in Fast Reactors. Experiments in different reactors including Phenix are being prepared. The program is presented and recent results are given. (author)

  10. Spent Nuclear Fuel Option Study on Hybrid Reactor for Waste Transmutation

    International Nuclear Information System (INIS)

    Hong, Seong Hee; Kim, Myung Hyun

    2016-01-01

    DUPIC nuclear fuel can be used in hybrid reactor by compensation of subcritical level through (U-10Zr) fuel. Energy production performance of Hyb-WT with DUPIC is grateful because it has high EM factor and performs waste transmutation at the same time. However, waste transmutation performance should be improved by different fissile fuel instead of (U-10Zr) fuel. SNF (Spent Nuclear Fuel) disposal is one of the problems in the nuclear industry. FFHR (Fusion-Fission Hybrid Reactor) is one of the most attractive option on reuse of SNF as a waste transmutation system. Because subcritical system like FFHR has some advantages compared to critical system. Subcritical systems have higher safety potential than critical system. Also, there is suppressed excess reactivity at BOC (Beginning of Cycle) in critical system, on the other hand there is no suppressed reactivity in subcritical system. Our research team could have designed FFHR for waste transmutation; Hyb-WT. Various researches have been conducted on fuel and coolant option for optimization of transmutation performance. However, Hyb-WT has technical disadvantage. It is required fusion power (Pfus) which is the key design parameter in FFHR is increased for compensation of decreasing subcritical level. As a result, structure material integrity is damaged under high irradiation condition by increasing Pfus. Also, deep burn of reprocessed SNF is limited by weakened integrity of structure material. Therefore, in this research, SNF option study will be conducted on DUPIC (Direct Use of Spent PWR Fuel in CANDU Reactor) fuel, TRU fuel and DUPIC + TRU mixed fuel for optimization of Hyb-WT performance. Goal of this research is design check for low required fusion power and high waste transmutation. In this paper, neutronic analysis is conducted on Hyb-WT with DUPIC nuclear fuel. When DUPIC nuclear fuel is loaded in fast neutron system, supplement fissile materials need to be loaded together for compensation of low criticality

  11. Spent Nuclear Fuel Option Study on Hybrid Reactor for Waste Transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seong Hee; Kim, Myung Hyun [Kyung Hee University, Yongin (Korea, Republic of)

    2016-05-15

    DUPIC nuclear fuel can be used in hybrid reactor by compensation of subcritical level through (U-10Zr) fuel. Energy production performance of Hyb-WT with DUPIC is grateful because it has high EM factor and performs waste transmutation at the same time. However, waste transmutation performance should be improved by different fissile fuel instead of (U-10Zr) fuel. SNF (Spent Nuclear Fuel) disposal is one of the problems in the nuclear industry. FFHR (Fusion-Fission Hybrid Reactor) is one of the most attractive option on reuse of SNF as a waste transmutation system. Because subcritical system like FFHR has some advantages compared to critical system. Subcritical systems have higher safety potential than critical system. Also, there is suppressed excess reactivity at BOC (Beginning of Cycle) in critical system, on the other hand there is no suppressed reactivity in subcritical system. Our research team could have designed FFHR for waste transmutation; Hyb-WT. Various researches have been conducted on fuel and coolant option for optimization of transmutation performance. However, Hyb-WT has technical disadvantage. It is required fusion power (Pfus) which is the key design parameter in FFHR is increased for compensation of decreasing subcritical level. As a result, structure material integrity is damaged under high irradiation condition by increasing Pfus. Also, deep burn of reprocessed SNF is limited by weakened integrity of structure material. Therefore, in this research, SNF option study will be conducted on DUPIC (Direct Use of Spent PWR Fuel in CANDU Reactor) fuel, TRU fuel and DUPIC + TRU mixed fuel for optimization of Hyb-WT performance. Goal of this research is design check for low required fusion power and high waste transmutation. In this paper, neutronic analysis is conducted on Hyb-WT with DUPIC nuclear fuel. When DUPIC nuclear fuel is loaded in fast neutron system, supplement fissile materials need to be loaded together for compensation of low criticality

  12. Proceedings of 14th international workshop on Asian network for accelerator-driven system and nuclear transmutation technology (ADS-NTT 2016)

    International Nuclear Information System (INIS)

    Pyeon, Cheol Ho

    2016-09-01

    The proceedings describe the current status on research and development (R and D) of accelerator-driven system (ADS) and nuclear transmutation techniques (NTT), including nuclear data, accelerator techniques, Pb-Bi target, fuel technologies and reactor physics, in East Asian countries: China, Korea and Japan. The proceedings also include all presentation materials presented in 'the 14th International Workshop on Asian Network for ADS and NTT (ADS-NTT2016)' held at Mito, Japan on 5th September, 2016. The objective of this workshop is to make actual progress of ADS R and D especially in East Asian countries, as well as in European countries, through sharing mutual interests and conducting the information exchange each other. The report is composed of these following items: Presentation materials: ADS-NTT 2016. (author)

  13. Proceedings of 12th international workshop on Asian network for accelerator-driven system and nuclear transmutation technology (ADS+NTT 2014)

    International Nuclear Information System (INIS)

    Pyeon, Cheol Ho

    2015-01-01

    The proceedings describe the current status on research and development (R and D) of accelerator-driven system (ADS) and nuclear transmutation techniques (NTT), including nuclear data, accelerator techniques, Pb-Bi target, fuel technologies and reactor physics, in East Asian countries: China, Japan and Korea. The proceedings also include all presentation materials presented in 'the 12th International Workshop on Asian Network for ADS and NTT (ADS+NTT 2014)' held at the Institute of Nuclear Energy and Safety Technology, Chinese Academy of Sciences, Hefei, China on 15th and 16th December, 2014. The objective of this workshop is to make actual progress of ADS R and D especially in East Asian countries, as well as in European countries, through sharing mutual interests and conducting the information exchange each other. The report is composed of these following items: Presentation materials: ADS+NTT 2014. (author)

  14. Study of the properties of the Am-O system in view of the transmutation of Am 241 in fast reactors

    International Nuclear Information System (INIS)

    Casalta, S.

    1996-04-01

    To reduce the long term toxicity of Am 241 it was considered to transmute this isotope in fast reactor. The first part of this thesis is an introduction at this problem. In the second part we give the experimental techniques used for the realisation of an AmO 2 -MgO target (powder metallurgy under inert, oxidizing or reducing atmosphere). The properties of the Am-O system has been analyzed by X diffraction, thermodynamic and ceramography, in the Am 2 O 3 -AmO 2 field. In the third part we study the external exposure risk created by the manufacturing of this target and in the last part the behavior of this target in a fast reactor. 66 refs., 28 figs., 25 tabs., 1 append

  15. Proceedings of 11th international workshop on Asian network for accelerator-driven system and nuclear transmutation technology (ADS+NTT 2013)

    International Nuclear Information System (INIS)

    Pyeon, Cheol Ho

    2014-01-01

    The proceedings describe the current status on research and development (R and D) of accelerator-driven system (ADS) and nuclear transmutation techniques (NTT), including nuclear data, accelerator techniques, Pb-Bi target, fuel technologies and reactor physics, in East Asian countries: Korea, China and Japan. The proceedings also include all presentation materials presented in 'the 11th International Workshop on Asian Network for ADS and NTT (ADS+NTT 2013)' held at the Seoul National University, Seoul, Korea on 12th and 13th December, 2013. The objective of this workshop is to make actual progress of ADS R and D especially in East Asian countries, as well as in European countries, through sharing mutual interests and conducting the information exchange each other. The report is composed of these following items: Presentation materials: ADS+NTT 2013. (author)

  16. Separations technology development to support accelerator-driven transmutation concepts

    International Nuclear Information System (INIS)

    Venneri, F.; Arthur, E.; Bowman, C.

    1996-01-01

    This is the final report of a one-year Laboratory-Directed Research and Development (LDRD) Project at the Los Alamos National Laboratory (LANL). This project investigated separations technology development needed for accelerator-driven transmutation technology (ADTT) concepts, particularly those associated with plutonium disposition (accelerator-based conversion, ABC) and high-level radioactive waste transmutation (accelerator transmutation of waste, ATW). Specific focus areas included separations needed for preparation of feeds to ABC and ATW systems, for example from spent reactor fuel sources, those required within an ABC/ATW system for material recycle and recovery of key long-lived radionuclides for further transmutation, and those required for reuse and cleanup of molten fluoride salts. The project also featured beginning experimental development in areas associated with a small molten-salt test loop and exploratory centrifugal separations systems

  17. Transmutation of planar media singularities in a conformal cloak.

    Science.gov (United States)

    Liu, Yichao; Mukhtar, Musawwadah; Ma, Yungui; Ong, C K

    2013-11-01

    Invisibility cloaking based on optical transformation involves materials singularity at the branch cut points. Many interesting optical devices, such as the Eaton lens, also require planar media index singularities in their implementation. We show a method to transmute two singularities simultaneously into harmless topological defects formed by anisotropic permittivity and permeability tensors. Numerical simulation is performed to verify the functionality of the transmuted conformal cloak consisting of two kissing Maxwell fish eyes.

  18. Classical Dimensional Transmutation and Confinement

    CERN Document Server

    Dvali, Gia; Mukhanov, Slava

    2011-01-01

    We observe that probing certain classical field theories by external sources uncovers the underlying renormalization group structure, including the phenomenon of dimensional transmutation, at purely-classical level. We perform this study on an example of $\\lambda\\phi^{4}$ theory and unravel asymptotic freedom and triviality for negative and positives signs of $\\lambda$ respectively. We derive exact classical $\\beta$ function equation. Solving this equation we find that an isolated source has an infinite energy and therefore cannot exist as an asymptotic state. On the other hand a dipole, built out of two opposite charges, has finite positive energy. At large separation the interaction potential between these two charges grows indefinitely as a distance in power one third.

  19. Neutron and proton transmutation-activation cross section libraries to 150 MeV for application in accelerator-driven systems and radioactive ion beam target-design studies

    International Nuclear Information System (INIS)

    Koning, A.J.; Chadwick, M.B.; MacFarlane, R.E.; Mashnik, S.; Wilson, W.B.

    1998-05-01

    New transmutation-activation nuclear data libraries for neutrons and protons up to 150 MeV have been created. These data are important for simulation calculations of radioactivity, and transmutation, in accelerator-driven systems such as the production of tritium (APT) and the transmutation of waste (ATW). They can also be used to obtain cross section predictions for the production of proton-rich isotopes in (p,xn) reactions, for radioactive ion beam (RIB) target-design studies. The nuclear data in these libraries stem from two sources: for neutrons below 20 MeV, we use data from the European activation and transmutation file, EAF97; For neutrons above 20 MeV and for protons at all energies we have isotope production cross sections with the nuclear model code HMS-ALICE. This code applies the Monte Carlo Hybrid Simulation theory, and the Weisskopf-Ewing theory, to calculate cross sections. In a few cases, the HMS-ALICE results were replaced by those calculated using the GNASH code for the Los Alamos LA150 transport library. The resulting two libraries, AF150.N and AF150.P, consist of 766 nuclides each and are represented in the ENDF6-format. An outline is given of the new representation of the data. The libraries have been checked with ENDF6 preprocessing tools and have been processed with NJOY into libraries for the Los Alamos transmutation/radioactivity code CINDER. Numerous benchmark figures are presented for proton-induced excitation functions of various isotopes compared with measurements. Such comparisons are useful for validation purposes, and for assessing the accuracy of the evaluated data. These evaluated libraries are available on the WWW at: http://t2.lanl.gov/. 21 refs

  20. A Study on thermal-hydraulic characteristics of the coolant materials for the transmutation reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Chang Hyun; You, Young Woo; Cho, Jae Seon; Kim, Ju Youl; Kim, Do Hyoung; Kim, Yoon Ik; Yang, Hui Chang [Seoul National University, Taejon (Korea)

    1998-03-01

    The objective of this study is to provide the direction of transmutation reactor design in terms of thermal hydraulics especially through the analysis of thermal hydraulic characteristics of various candidate materials for the transmutation reactor coolant. In this study, the characteristics of coolant materials used in current nuclear power plants and candidate materials for transmutation reactor are analyzed and compared. To evaluate the thermal hydraulic characteristics, the preliminary thermal-hydraulic calculation is performed for the candidate coolant materials of transmutation reactor. An analysis of thermal-hydraulic characteristics of transmutation reactor. An analysis of thermal-hydraulic characteristics of Sodium, Lead, Lead-Bismuth, and Lead-Lithium among the liquid metals considered as the coolant of transmutation reactor is performed by using computational fluid dynamics code FLUENT, and SIMPLER algorithm. (author). 50 refs., 40 figs., 30 tabs.

  1. Waste transmutation and public acceptance

    International Nuclear Information System (INIS)

    Pigford, T.H.

    1991-01-01

    The concept of transmuting radioactive wastes with reactors or accelerators is appealing. It has the potential of simplifying or eliminating problems of disposing of nuclear waste. The transmutation concept has been renewed vigorously at a time when national projects to dispose of high-level and transuranic waste are seriously delayed. In this period of tightening federal funds and program curtailments, skilled technical staffs are available at US Department of Energy (DOE) national laboratories and contractors to work on waste transmutation. If the claims of transmutation can be shown to be realistic, economically feasible, and capable of being implemented within the US institutional infrastructure, public acceptance of nuclear waste disposal may be enhanced. If the claims for transmutation are not substantiated, however, there will result a serious loss of credibility and an unjust exacerbation of public concerns about nuclear waste. The paper discusses the following topics: how public acceptance is achieved; the technical community and waste disposal; transmutation and technical communication; transmutation issues; technical fixes and public perception

  2. Oxide fuels and targets for transmutation

    International Nuclear Information System (INIS)

    Sudreau, F.; Bonnerot, J.M.; Warin, D.; Gaillard-Groleas, G.; Ferroud-Plattet, M.P.

    2007-01-01

    Full text of publication follows. Direction 1 of the French Act dated 30 December 1991 on the management of high-level, long-lived radioactive waste involves exploring solutions designed to separate long-lived radionuclides from the spent fuel and to transmute them under neutron flux into shorter half-lives or stable elements. In the French research programme conducted by CEA, these radionuclides are mainly minor actinides (americium, neptunium and curium) and fission products (particularly caesium, iodine and technetium). Within this context, this paper aims at illustrating the vast programme that CEA has performed in order to demonstrate the scientific and technical feasibility of minor actinide transmutation. An important part of the research was carried out in collaboration with French research (CNRS) and industrial (EDF, AREVA) organisations, and also in the framework of international co-operation programmes with the European Institute for Transuranium Elements in Karlsruhe (ITU), the US Department of Energy (DOE), the Japanese Atomic Energy Research Institute (now JAEA) and Central Research Institute of Electric Power Industry (CRIEPI) and the Russian Ministry for Atomic Energy (ROSATOM). Such research made it possible to evaluate the capacity of MOX fuels to be used as a support for minor actinide transmutation (homogeneous method). Simulations of pressurised water reactor (PWR) fuels have revealed the limits of this transmutation method, which are mainly related to the pressurization of the fuel rods and the formation of high active californium. On the contrary, for sodium-cooled fast reactor fuels possibly designed with large expansion plenums a first experimental demonstration of the transmutation of americium and neptunium has been successful in the Phenix reactor. Various studies designed to demonstrate the theoretical and experimental feasibility of transmutation using an inert support (heterogeneous method) have been carried out in HFR (EFTTRA

  3. Transmutation of minor actinides in a spherical torus tokamak fusion reactor, FDTR

    International Nuclear Information System (INIS)

    Feng, K.M.; Zhang, G.S.; Deng, M.G.

    2003-01-01

    In this paper, a concept for the transmutation of minor actinide (MA) nuclear wastes based on a spherical torus (ST) tokamak reactor, FDTR, is put forward. A set of plasma parameters suitable for the transmutation blanket was chosen. The 2-D neutron transport code TWODANT, the 3-D Monte Carlo code MCNP/4B, the 1-D neutron transport and burn-up calculation code BISON3.0 and their associated data libraries were used to calculate the transmutation rate, the energy multiplication factor and the tritium breeding ratio of the transmutation blanket. The calculation results for the system parameters and the actinide series isotopes for different operation times are presented. The engineering feasibility of the center-post (CP) of FDTR has been investigated and the results are also given. A preliminary neutronics calculation based on an ST transmutation blanket shows that the proposed system has a high transmutation capability for MA wastes. (author)

  4. Transmutation of Americium in Fast Neutron Facilities

    OpenAIRE

    Zhang, Youpeng

    2011-01-01

    In this thesis, the feasibility to use a medium sized sodium cooled fast reactor fully loaded with MOX fuel for efficient transmutation of americium is investigated by simulating the safety performance of a BN600-type fast reactor loaded with different fractions of americium in the fuel, using the safety parameters obtained with the SERPENT Monte Carlo code. The focus is on americium mainly due to its long-term contribution to the radiotoxicity of spent nuclear fuel and its deterioration on c...

  5. Capabilities of a DT tokamak fusion neutron source for driving a spent nuclear fuel transmutation reactor

    International Nuclear Information System (INIS)

    Stacey, W.M.

    2001-01-01

    The capabilities of a DT fusion neutron source for driving a spent nuclear fuel transmutation reactor are characterized by identifying limits on transmutation rates that would be imposed by tokamak physics and engineering limitations on fusion neutron source performance. The need for spent nuclear fuel transmutation and the need for a neutron source to drive subcritical fission transmutation reactors are reviewed. The likely parameter ranges for tokamak neutron sources that could produce an interesting transmutation rate of 100s to 1000s of kg/FPY (where FPY stands for full power year) are identified (P fus ∼ 10-100 MW, β N ∼ 2-3, Q p ∼ 2-5, R ∼ 3-5 m, I ∼ 6-10 MA). The electrical and thermal power characteristics of transmutation reactors driven by fusion and accelerator spallation neutron sources are compared. The status of fusion development vis-a-vis a neutron source is reviewed. (author)

  6. Transmutations of nuclear waste. Progress report RAS programme 1995: Recycling and transmutation of actinides and fission products

    International Nuclear Information System (INIS)

    Gruppelaar, H.; Cordfunke, E.H.P.; Konings, R.J.M.; Bultman, J.H.; Dodd, D.H.; Franken, W.M.P.; Kloosterman, J.L.; Koning, A.J.; Wichers, V.A.

    1996-04-01

    This report describes the progress of the Dutch RAS programme on 'Recycling and Transmutation of Actinides and Fission Products' over the year 1995, which is the second year of the 4-year programme 1994-1997. An extensive listing of reports and publications from 1991 to 1995 is given. Highlights in 1995 were: -The completion of the European Strategy Study on Nuclear Waste Transmutation as a result of which the understanding of transmutation of plutonium, minor actinides and long-lived fission products in thermal and fast reactors has been increased significantly. Important ECN contributions were given on Am, 99 Tc and 129 I transmutation options. Follow-up contracts have been obtained for the study of 100% MOX cores and accelerator-based transmutation. - Important progress in the evaluation of CANDU reactors for burning very large amounts of transuranium mixtures in inert matrices. - The first RAS irradiation experiment in the HFR, in which the transmutation of technetium and iodine was examined, has been completed and post-irradiation examination has been started. - A joint proposal of the EFTTRA cooperation for the 4 th Framework Programme of the EU, to demonstrate the feasibility of the transmutation of americium in an inert matrix by an irradiation in the HFR, has been granted. - A bilateral contract with CEA has been signed to participate in the CAPRA programme, and the work in this field has been started. - The thesis work on Actinide Transmutation in Nuclear Reactor Systems was succesfully defended. New PhD studies on Pu burning in HTGR, on nuclear data for accelerator-based systems, and on the SLM-technique for separation of actinides were started. - A review study of the use of the thorium cycle as a means for nuclear waste reduction, has been completed. A follow-up of this work is embedded in an international project for the 4th Framework Programme of the EU. (orig./DG)

  7. Code development and analyses within the area of transmutation and safety

    International Nuclear Information System (INIS)

    Maschek, W.

    2002-01-01

    A strong code development is going on to meet various demands resulting from the development of dedicated reactors for transmutation and incineration. Code development is concerned with safety codes and general codes needed for assessing scenarios and transmutation strategies. Analyses concentrate on various ADS systems with solid and liquid molten salt fuels. Analyses deal with ADS Demo Plant (5th FP EU) and transmuters with advanced fuels

  8. Actinide partitioning and transmutation program progress report, October 1, 1976--March 31, 1977

    International Nuclear Information System (INIS)

    Blomeke, J.O.; Tedder, D.W.

    1977-01-01

    Experimental work on the 16 tasks comprising the Actinide Partitioning and Transmutation Program was initiated at the various sites. This work included the development of conceptual material balance flowsheets which define integrated waste systems supporting an LWR fuel reprocessing plant and a mixed (U-Pu) oxide fuel refabrication plant. In addition, waste subsystems were defined for experimental evaluation. Computer analysis of partitioning-transmutation, utilizing an LMFBR for transmutation, was completed for both constant and variable waste actinide generation rates

  9. Method for the transmutation of nuclides

    International Nuclear Information System (INIS)

    1984-01-01

    The invention relates to a method for the systematic and optimal manufacture of nuclides with beneficial properties as well as for the transmutation of noxious nuclides into innocuous ones, e.g. radioactive wastes. For that purpose, use is made of the periodic system of atoms and of the so-called twin-subshell model of nuclear structure, in order to trace the possible transformations of the nuclide through irradiation with appropriate particles or radiation. (G.J.P.)

  10. Investigation of the feasibility of a small scale transmutation device

    Science.gov (United States)

    Sit, Roger Carson

    -lived fission products could result in an irradiation effective half-life of a few years with a three order magnitude increase in the on-target neutron flux accomplishable through a combination of technological enhancements to the source and system design optimization; (3) the transmutation of long-lived fission products requires a thermal-slow energy spectrum to prevent the generation of activation products with half-lives even longer than the original radionuclide; (4) there is no benefit in trying to transmute short-lived fission products due to the ineffectiveness of the transmutation process and the generation of a multiplicity of counterproductive activation products; (5) for actinides, irradiation effective half-lives of fuel management applications, such technology will not be viable for a couple of decades. This dissertation investigated the concept of a small-scale transmutation device using present technology. The results of this research show that with reasonable enhancements, transmutation of specific radionuclides can be practical in the near term.

  11. Partitioning and transmutation: Radioactive waste management option

    International Nuclear Information System (INIS)

    Stanculescu, A.

    2005-01-01

    Growing world population with increasing energy needs, especially in the developing countries, Threat of global warming due to CO 2 emissions demands non-fossil electricity production. Nuclear will have to be part of a sustainable mix of energy production options Figures show that 350 GWe worldwide capacity is 'nuclear'. Present worldwide spent fuel (containing high Pu inventory) and HLW would need large repositories. In view of the previous facts this lecture deals Partitioning and transmutation as radioactive waste management option. Partitioning and transmutation (P and T) is a complex technology i.e. advanced reprocessing, and demand transuranics fuel fabrication plants, as well as innovative and/or dedicated transmutation reactors. In addition to U, Pu, and 129 I, 'partitioning' extracts from the liquid high level waste the minor actinides (MA) and the long-lived fission products (LLFP) 99-Tc, 93-Zr, 135-Cs, 107-Pd, and 79-Se). 'Transmutation' requires fully new fuel fabrication plants and reactor technologies to be developed and implemented on industrial scale. Present LWRs are not suited for MA and LLFP transmutation (safety consideration, plant operation, poor incineration capability). Only specially licensed LWRs can cope with MOX fuel; for increased Pu loadings (up to 100%), special reactor designs (e.g., ABB80+) are required; a combination of these reactor types could allow Pu inventory stabilization. Long-term waste radiotoxicity can be effectively reduced only if transuranics are 'incinerated' through fission with very hard neutron spectra. New reactor concepts (dedicated fast reactors, Accelerator Driven Systems (ADS), fusion/fission hybrid reactors) have been proposed as transmuters/incinerators. Significant Pu+MAs incineration rates can be achieved in symbiotic scenarios: LWR-MOX and dedicated fast reactors; fast neutron spectrum ADS mainly for MA incineration; very high thermal flux ADS concepts could also provide a significant transuranics

  12. Nuclear transmutation by flux compression

    International Nuclear Information System (INIS)

    Seifritz, W.

    2001-01-01

    A new idea for the transmutation of minor actinides, long (and even short) lived fission products is presented. It is based an the property of neutron flux compression in nuclear (fast and/or thermal) reactors possessing spatially non-stationary critical masses. An advantage factor for the burn-up fluence of the elements to be transmuted in the order of magnitude of 100 and more is obtainable compared with the classical way of transmutation. Three typical examples of such transmuters (a subcritical ringreactor with a rotating reflector, a sub-critical ring reactor with a rotating spallation source, the socalled ''pulsed energy amplifier'', and a fast burn-wave reactor) are presented and analysed with regard to this purpose. (orig.) [de

  13. Radiotoxicity of Actinides During Transmutation in Final Stage of Atomic Power

    International Nuclear Information System (INIS)

    Gerasimov, Aleksander S.; Bergelson, Boris R.; Myrtsymova, Lidia A.; Tikhomirov, Georgy V.

    2002-01-01

    Characteristics of a transmutation mode in final stage of atomic power are analyzed. In this stage, transmutation of actinides accumulated in transmutation reactors is performed without feed by actinides from other reactors. The radiotoxicity during first 20 years of transmutation is caused mainly by 244 Cm. During following period of time, 252 Cf is main nuclide. Contribution of 246 Cm and 250 Cf is 5-7 times less than that of 252 Cf. During 50 years of a transmutation, the total radiotoxicity falls by 50 times. Long-lived radiotoxicity decreases slowly. During the period between T=50 years and T=100 years, long-lived radiotoxicity falls by 3.7 times. For each following 50 years after this period, long-lived radiotoxicity falls by 3.2 times. These results corresponding to neutron flux density 10 14 neutr/(cm 2 s) in transmutation reactor demonstrate that the final stage of a transmutation should be performed with use of high flux transmutation facilities which provide shorter time of transmutation. (authors)

  14. Transmuted Generalized Inverse Weibull Distribution

    OpenAIRE

    Merovci, Faton; Elbatal, Ibrahim; Ahmed, Alaa

    2013-01-01

    A generalization of the generalized inverse Weibull distribution so-called transmuted generalized inverse Weibull dis- tribution is proposed and studied. We will use the quadratic rank transmutation map (QRTM) in order to generate a flexible family of probability distributions taking generalized inverse Weibull distribution as the base value distribution by introducing a new parameter that would offer more distributional flexibility. Various structural properties including explicit expression...

  15. Impact of partitioning and transmutation on the high level waste management

    International Nuclear Information System (INIS)

    Gonzalez-Romero, Enrique-Miguel

    2010-01-01

    The contribution is structured as follows: (i) Background on partitioning and transmutation; (ii) FP6 projects: RED-IMPACT; (iii) Advanced fuel cycle scenarios; (iv) Partitioning and transmutation expected performance; (v) Impact on the HLW thermal load; (vi) Impact on the deep geological disposal; and (vii) Impact on the performance assessment of deep geological disposal. (P.A.)

  16. Fuels and targets for the transmutation of high activity long lived radioactive wastes

    International Nuclear Information System (INIS)

    Pillon, S.; Warin, D.

    2010-01-01

    The authors present and comment the different strategies which can be adopted to transmute minor actinides (concerned reactors, in fast breeder reactors, in accelerator driven systems or ADS), and the chemical composition of transmutation fuels (actinide compounds, inert matrices, fuels and targets). They describe the behaviour of refractory ceramic fuels during their service life under irradiation with their different damage origins (neutrons, fission by-products, alpha particles), the fabrication of transmutation fuels and targets through different processes (metallurgical, co-precipitate, sol-gel, wax, infiltration of radioactive materials, VIPAC/SPHEREPAC) and the reprocessing or recycling of these transmutation fuels and targets

  17. Recycling and transmutation of spent fuel as a sustainable option for the nuclear energy development

    International Nuclear Information System (INIS)

    Maiorino, Jose R.; Moreira, Joao M.L.

    2013-01-01

    The objective of this paper is to discuss the option of recycling and transmutation of radioactive waste against Once-through Fuel Cycle (OTC) based on uranium feed under the perspective of sustainability. We use a qualitative analysis to compare OTC with closed fuel cycles based on studies already performed such as the Red Impact Project and the comparative study on accelerator driven systems and fast reactors for advanced fuel cycles performed by the Nuclear Energy Agency. The results show that recycling and transmutation fuel cycles are more attractive than the OTC from the point of view of sustainability. The main conclusion is that the decision about the construction of a deep geological repository for spent fuel disposal must be reevaluated. (author)

  18. System and safety studies of accelerator driven systems and generation IV reactors for transmutation of minor actinides. Annual report 2009

    International Nuclear Information System (INIS)

    Bergloef, Calle; Fokau, Andrei; Jolkkonen, Mikael; Tesinsky, Milan; Wallenius, Janne; Youpeng Zhang

    2010-03-01

    During 2009, the reactor physics division has made a design study of a source efficient ADS with nitride fuel and 15/15Ti cladding, based on the EFIT design made within the EUROTRANS project. It was shown that the source efficiency may be doubled as compared to the reference design with oxide fuel and T91 cladding. Transient analysis of a medium sized sodium cooled reactor with MOX fuel allowed to define criteria in terms of power penalty for americium introduction. It was shown that for each percent of americium added to the fuel, the linear rating must be reduced by 6% in order for the fuel to survive postulated unprotected transients. The Sjoestrand area ratio method for reactivity determination has been evaluated experimentally in the strongly heterogeneous subcritical facility YALINA-Booster. Surprisingly, it has been found that the area ratio reactivity estimates may differ by a factor of two depending on detector position. It is shown that this strong spatial dependence can be explained based on a two-region point kinetics model and rectified by means of correction factors obtained through Monte Carlo simulations. For the purpose of measuring high energy neutron cross sections at the SCANDAL facility in Uppsala, Monte Carlo simulations of neutron to proton conversion efficiencies in CsI detectors have been performed. A uranium fuel fabrication laboratory has been taken into operation at KTH in 2009. Uranium and zirconium nitride powders have been fabricated by hydridation/nitridation of metallic source materials. Sample pellets have been pressed and ZrN discs have been sintered to 93% density by means of spark plasma sintering methods

  19. System and safety studies of accelerator driven systems and generation IV reactors for transmutation of minor actinides. Annual report 2009

    Energy Technology Data Exchange (ETDEWEB)

    Bergloef, Calle; Fokau, Andrei; Jolkkonen, Mikael; Tesinsky, Milan; Wallenius, Janne; Youpeng Zhang (Div. of Reactor Physics, Royal Institute of Technology, Stockholm (Sweden))

    2010-03-15

    During 2009, the reactor physics division has made a design study of a source efficient ADS with nitride fuel and 15/15Ti cladding, based on the EFIT design made within the EUROTRANS project. It was shown that the source efficiency may be doubled as compared to the reference design with oxide fuel and T91 cladding. Transient analysis of a medium sized sodium cooled reactor with MOX fuel allowed to define criteria in terms of power penalty for americium introduction. It was shown that for each percent of americium added to the fuel, the linear rating must be reduced by 6% in order for the fuel to survive postulated unprotected transients. The Sjoestrand area ratio method for reactivity determination has been evaluated experimentally in the strongly heterogeneous subcritical facility YALINA-Booster. Surprisingly, it has been found that the area ratio reactivity estimates may differ by a factor of two depending on detector position. It is shown that this strong spatial dependence can be explained based on a two-region point kinetics model and rectified by means of correction factors obtained through Monte Carlo simulations. For the purpose of measuring high energy neutron cross sections at the SCANDAL facility in Uppsala, Monte Carlo simulations of neutron to proton conversion efficiencies in CsI detectors have been performed. A uranium fuel fabrication laboratory has been taken into operation at KTH in 2009. Uranium and zirconium nitride powders have been fabricated by hydridation/nitridation of metallic source materials. Sample pellets have been pressed and ZrN discs have been sintered to 93% density by means of spark plasma sintering methods

  20. Nuclear Waste Separation and Transmutation Research with Special Focus on Russian Transmutation Projects Sponsored by ISTC

    International Nuclear Information System (INIS)

    Conde, Henri; Blomgren, Jan; Olsson, Nils

    2003-03-01

    for transmutation of long lived nuclear waste should be carried through on about the same level as present (5 MSEK/year). Support is also given for participation in international projects, primarily EU projects. The aim of the research is to provide knowledgeable experts in the field to assess the international research and development on transmutation. Swedish transmutation research, in general fundamental research, are performed at three universities CTH, KTH and Uppsala University with the essential support from SKB, SKI and Swedish Nuclear Technology Centre. The same university groups are also participating in a number of international transmutation related research projects, in particular, the projects under the 5th Framework Programme of the European Commission. One of the main issues of the International Science and Technology Center (ISTC) in Moscow, which is financially supported by USA, EU, Russia, Japan, South Korea and Norway, is to reduce the proliferation risk by engaging experts at the former Soviet Union nuclear weapon laboratories in civilian research. This issue has been more pronounced since the terrorist attacks on September 11, 2001 and the following threats from the same group of terrorists. At a workshop in Saltsjoebaden in 1991 on Accelerator Based Radioactive Waste Transmutation it was concluded that research on incineration and transmutation of reactor- and weapons grade plutonium was a civilian research area well suited to occupy the former USSR weapon experts with support from ISTC. The Expert Group on Transmutation/SKI Reference Group has chosen to initiate ISTC projects, which are dealing with fundamental technical issues for the accelerator driven transmutation concepts. The possibility of finding a Swedish research group as a counterpart to the Russian group has also played a role in the reference group's selection of projects. The Swedish research groups from CTH, KTH and UU are at present collaborating in 9 transmutation projects

  1. Partitioning and Transmutation. Annual Report 2002

    International Nuclear Information System (INIS)

    Andersson, S.; Ekberg, C.; Liljenzin, J.O.; Nilsson, M.; Rogues, N.; Skarnemark, G.; Oestberg, J.

    2003-01-01

    How to deal with the spent fuel from nuclear power plants is an issue that much research is attracted to in many countries around the world. Several different strategies exist for treating the waste ranging from direct disposal to reprocessing and recycling of plutonium and other long-lived nuclides. In either case the remains have to be stored for a long time to render it radio-toxically safe. One method to deal with this long-lived waste is to separate (separation) out the most long lived components and then transform them into shorter-lived ones (transmutation). Several methods exist for performing the separation for example via molten salts and through solvent extraction. The work presented here has been focused on solvent extraction. This technique is well known since many years and process scale plants have been operating for decades. The new demand is to separate chemically very similar elements from each other. Within this project this is done by new extracting agents developed for this purpose alone within the EU fifth framework programme, the PARTNEW project, particularly from the University of Reading. In this work we investigate different extraction systems for the separation of trivalent actinides from trivalent lanthanides using extraction agents following the so-called CHON (Carbon, Hydrogen, Oxygen and Nitrogen) principle. The main focus is to understand the basic chemistry involved but also some processing behaviour for use in future full scale plants

  2. Study of the properties of the Am-O system in view of the transmutation of Am 241 in fast reactors; Etude des proprietes du systeme Am-O en vue de la transmutation de l`americium 241 en reacteur a neutrons rapides

    Energy Technology Data Exchange (ETDEWEB)

    Casalta, S

    1996-04-01

    To reduce the long term toxicity of Am 241 it was considered to transmute this isotope in fast reactor. The first part of this thesis is an introduction at this problem. In the second part we give the experimental techniques used for the realisation of an AmO{sub 2}-MgO target (powder metallurgy under inert, oxidizing or reducing atmosphere). The properties of the Am-O system has been analyzed by X diffraction, thermodynamic and ceramography, in the Am{sub 2}O{sub 3}-AmO{sub 2} field. In the third part we study the external exposure risk created by the manufacturing of this target and in the last part the behavior of this target in a fast reactor. 66 refs., 28 figs., 25 tabs., 1 append.

  3. Neutron data experiments for transmutation. Annual Report 2006/2007

    International Nuclear Information System (INIS)

    Blomgren, J.; Andersson, P.; Bevilacqua, R.; Nilsson, L.; Pomp, S.; Simutkin, V.; Oehrn, A.; Oesterlund, M.

    2007-10-01

    The project NEXT, Neutron data Experiments for Transmutation, is performed within the nuclear reactions group of the Department of Neutron Research, Uppsala University. The activities of the group are directed towards experimental studies of nuclear reaction probabilities of importance for various applications, like transmutation of nuclear waste, biomedical effects and electronics reliability. The experimental work is primarily undertaken at the The Svedberg Laboratory (TSL) in Uppsala, where the group is operating two world-unique instruments, MEDLEY and SCANDAL. Highlights from the past year: The TSL neutron beam facility and the MEDLEY detector system have been upgraded. Funding for a major upgrade of the SCANDAL facility has been approved, and practical work has been initiated. Three new PhD students have been accepted. The Uppsala group contributed twelve accepted publications at the International Conference on Nuclear Data for Science and Technology, Nice, France, April 22-27, 2007. The EU project CANDIDE (Coordination Action on Nuclear Data for Industrial Development in Europe), coordinated by Jan Blomgren, started January 1, 2007. The EU project EFNUDAT (European Facilities for Nuclear Data research), partly coordinated by Jan Blomgren, started November 1, 2006. Nuclear power education has reached all-time high at Uppsala University. A contract with KSU (Nuclear Training and Safety Centre) on financing the increased volume of teaching for industry needs has been signed

  4. Neutron data experiments for transmutation. Annual Report 2006/2007

    Energy Technology Data Exchange (ETDEWEB)

    Blomgren, J.; Andersson, P.; Bevilacqua, R.; Nilsson, L.; Pomp, S.; Simutkin, V.; Oehrn, A.; Oesterlund, M. (Uppsala Univ. (SE). Dept. of Neutron Research)

    2007-10-15

    The project NEXT, Neutron data Experiments for Transmutation, is performed within the nuclear reactions group of the Department of Neutron Research, Uppsala University. The activities of the group are directed towards experimental studies of nuclear reaction probabilities of importance for various applications, like transmutation of nuclear waste, biomedical effects and electronics reliability. The experimental work is primarily undertaken at the The Svedberg Laboratory (TSL) in Uppsala, where the group is operating two world-unique instruments, MEDLEY and SCANDAL. Highlights from the past year: The TSL neutron beam facility and the MEDLEY detector system have been upgraded. Funding for a major upgrade of the SCANDAL facility has been approved, and practical work has been initiated. Three new PhD students have been accepted. The Uppsala group contributed twelve accepted publications at the International Conference on Nuclear Data for Science and Technology, Nice, France, April 22-27, 2007. The EU project CANDIDE (Coordination Action on Nuclear Data for Industrial Development in Europe), coordinated by Jan Blomgren, started January 1, 2007. The EU project EFNUDAT (European Facilities for Nuclear Data research), partly coordinated by Jan Blomgren, started November 1, 2006. Nuclear power education has reached all-time high at Uppsala University. A contract with KSU (Nuclear Training and Safety Centre) on financing the increased volume of teaching for industry needs has been signed

  5. Transmutation of radioactive waste: Effect on the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Rasmussen, N.C.; Pigford, T.H.

    1997-01-01

    A committee of the National Research Council reviewed three concepts for transmuting radionuclides recovered from the chemical reprocessing of commercial light-water-reactor (LWR) fuel: LWR transmutation reactors fueled with recycled actinides, advanced liquid-metal reactors (ALMRs), and accelerator-driven subcritical reactors for transmutation of waste (ATW). The concepts were evaluated in terms of: (1) the extent to which waste disposal would benefit from transmutation, (2) time required to reduce the total inventory of radionuclides in the waste and fuel cycle, (3) the complexity of the overall transmutation system, (4) the extent of new development required, and (5) institutional and economic problems of operating such systems. Transmutation could affect geologic disposal of waste by reducing the inventory of transuranics (TRUs), fission products, and other radionuclides in the waste. Reducing the inventory of transuranics does not necessarily affect radiation doses to people who use contaminated ground water if the dissolution rate of transuranics in waste is controlled by elemental solubilities. However, reducing inventories of Am and Pu would decrease potential hazards from human intrusion. The likelihood for underground nuclear criticality would also be reduced. The long-lived fission products Tc-99, I-129, Cs-135 and others typically contribute most to the long-term radiation doses to future populations who use contaminated water from the repository. Their transmutation requires thermal or epithermal neutrons, readily available in LWR and ATW transmutors. ALMR and LWR transmutors would require several hundred years to reduce the total transuranic inventory by even a factor of 10 at constant electric power, and thousands of years for a hundred-fold reduction. For the same electrical power, the ATW could reduce total transuranic inventory about tenfold more rapidly, because of its very high thermal-neutron flux. However, extremely low process losses would be

  6. Helium and fission gas behaviour in magnesium aluminate spinel and zirconia for actinide transmutation

    NARCIS (Netherlands)

    Damen, P.M.G.

    2003-01-01

    In order to reduce the long-term radiotoxicity of spent nuclear fuel, many studies are performed on partitioning and transmutation of actinides. In such a scenario, the long-lived radio-isotopes (mostly actinides) are partitioned from the nuclear waste, and subsequently transmuted or fissioned in a

  7. Neutron transmutation doping

    Energy Technology Data Exchange (ETDEWEB)

    Jun, Byung Jin

    2001-09-01

    HE OVERALL STATE OF THE ART RELATED WITH NEUTRON TRANSMUTATION DOPING(NCT) IS SURVEYED. ITEMS RELATED FOR THE REALIZATION OF NTD IN HANARO IS FOCUSED. IN ADDITION TO THE UNIFORM IRRADIATION AND ACHIEVING THE TARGET RESISTIVITY WHICH ARE THE MOST IMPORTANT TECHNICAL REQUIREMENTS FOR THE NTD, OTHER ITEMS SUCH AS THE FUNCTION AND ROLE OF NTD, MARKET TREND, QUALITY CONTROL ARE INCLUDED. MEANWHILE THE ONLY ADVANTAGE OF NTD IS ACHIEVING VERY HIGH UNIFORMITY OF DOPING, IT HAS SEVERAL DISADVANTAGES DUE TO THE USE OF NUCLEAR REACTOR. THEREFORE THE SEMICONDUCTOR INDUSTRY HAS CONTINUED DEVELOPMENT OF TECHNOLOGY TO REPLACE NTD, AND THE DEMAND OF NTD HAD BEEN DECREASED A LOT DURING 1990S. AS THE DEMAND FOR LARGE CRYSTAL INCREASES, HOWEVER, THE NTD DEMAND BEGAN TO INCREASE AGAIN FROM 2000. SINCE THE DEMAND FOR THE LARGER CRYSTAL WILL BE CONTINUED IN THE FUTURE, THE ROLE OF NTD WOULD BE NEEDED FOR THE LONGER TIME. IN ORDER TO MITIGATE THIS TREND OF DEMAND, THE REACTOR SHOULD BE CAPABLE OF ACCEPTING LARGE CRYSTAL AND THE EFFORT TO IMPROVE DOPING UNIFORMITY AND TO REDUCE THE COST SHOULD CONTINUED.

  8. Dual neutral particle induced transmutation in CINDER2008

    Energy Technology Data Exchange (ETDEWEB)

    Martin, W.J., E-mail: wjmarti@sandia.gov [Sandia National Laboratories, Albuquerque, NM 87185 (United States); University of New Mexico, Albuquerque, NM 87131 (United States); Oliveira, C.R.E. de; Hecht, A.A. [University of New Mexico, Albuquerque, NM 87131 (United States)

    2014-12-11

    Although nuclear transmutation methods for fission have existed for decades, the focus has been on neutron-induced reactions. Recent novel concepts have sought to use both neutrons and photons for purposes such as active interrogation of cargo to detect the smuggling of highly enriched uranium, a concept that would require modeling the transmutation caused by both incident particles. As photonuclear transmutation has yet to be modeled alongside neutron-induced transmutation in a production code, new methods need to be developed. The CINDER2008 nuclear transmutation code from Los Alamos National Laboratory is extended from neutron applications to dual neutral particle applications, allowing both neutron- and photon-induced reactions for this modeling with a focus on fission. Following standard reaction modeling, the induced fission reaction is understood as a two-part reaction, with an entrance channel to the excited compound nucleus, and an exit channel from the excited compound nucleus to the fission fragmentation. Because photofission yield data—the exit channel from the compound nucleus—are sparse, neutron fission yield data are used in this work. With a different compound nucleus and excitation, the translation to the excited compound state is modified, as appropriate. A verification and validation of these methods and data has been performed. This has shown that the translation of neutron-induced fission product yield sets, and their use in photonuclear applications, is appropriate, and that the code has been extended correctly. - Highlights: • The CINDER2008 transmutation code was modified to include photon-induced transmutation tracking. • A photonuclear interaction library was created to allow CINDER2008 to track photonuclear interactions. • Photofission product yield data sets were created using fission physics similarities with neutron-induced fission.

  9. Actinide transmutation in nuclear reactors

    International Nuclear Information System (INIS)

    Bultman, J.H.

    1995-01-01

    An optimization method is developed to maximize the burning capability of the ALMR while complying with all constraints imposed on the design for reliability and safety. This method leads to a maximal transuranics enrichment, which is being limited by constraints on reactivity. The enrichment can be raised by using the neutrons less efficiently by increasing leakage from the fuel. With the developed optimization method, a metallic and an oxide fueled ALMR were optimized. Both reactors perform equally well considering the burning of transuranics. However, metallic fuel has a much higher heat conductivity coefficient, which in general leads to better safety characteristics. In search of a more effective waste transmuter, a modified Molten Salt Reactor was designed. A MSR operates on a liquid fuel salt which makes continuous refueling possible, eliminating the issue of the burnup reactivity loss. Also, a prompt negative reactivity feedback is possible for an overmoderated reactor design, even when the Doppler coefficient is positive, due to the fuel expansion with fuel temperature increase. Furthermore, the molten salt fuel can be reprocessed based on a reduction process which is not sensitive to the short-lived spontaneously fissioning actinides. (orig./HP)

  10. Actinide transmutation in nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Bultman, J H

    1995-01-17

    An optimization method is developed to maximize the burning capability of the ALMR while complying with all constraints imposed on the design for reliability and safety. This method leads to a maximal transuranics enrichment, which is being limited by constraints on reactivity. The enrichment can be raised by using the neutrons less efficiently by increasing leakage from the fuel. With the developed optimization method, a metallic and an oxide fueled ALMR were optimized. Both reactors perform equally well considering the burning of transuranics. However, metallic fuel has a much higher heat conductivity coefficient, which in general leads to better safety characteristics. In search of a more effective waste transmuter, a modified Molten Salt Reactor was designed. A MSR operates on a liquid fuel salt which makes continuous refueling possible, eliminating the issue of the burnup reactivity loss. Also, a prompt negative reactivity feedback is possible for an overmoderated reactor design, even when the Doppler coefficient is positive, due to the fuel expansion with fuel temperature increase. Furthermore, the molten salt fuel can be reprocessed based on a reduction process which is not sensitive to the short-lived spontaneously fissioning actinides. (orig./HP).

  11. Transmutation of actinides in power reactors.

    Science.gov (United States)

    Bergelson, B R; Gerasimov, A S; Tikhomirov, G V

    2005-01-01

    Power reactors can be used for partial short-term transmutation of radwaste. This transmutation is beneficial in terms of subsequent storage conditions for spent fuel in long-term storage facilities. CANDU-type reactors can transmute the main minor actinides from two or three reactors of the VVER-1000 type. A VVER-1000-type reactor can operate in a self-service mode with transmutation of its own actinides.

  12. Reliability studies of a high-power proton accelerator for accelerator-driven system applications for nuclear waste transmutation

    International Nuclear Information System (INIS)

    Burgazzi, Luciano; Pierini, Paolo

    2007-01-01

    The main effort of the present study is to analyze the availability and reliability of a high-performance linac (linear accelerator) conceived for Accelerator-Driven Systems (ADS) purpose and to suggest recommendations, in order both to meet the high operability goals and to satisfy the safety requirements dictated by the reactor system. Reliability Block Diagrams (RBD) approach has been considered for system modelling, according to the present level of definition of the design: component failure modes are assessed in terms of Mean Time Between Failure (MTBF) and Mean Time To Repair (MTTR), reliability and availability figures are derived, applying the current reliability algorithms. The lack of a well-established component database has been pointed out as the main issue related to the accelerator reliability assessment. The results, affected by the conservative character of the study, show a high margin for the improvement in terms of accelerator reliability and availability figures prediction. The paper outlines the viable path towards the accelerator reliability and availability enhancement process and delineates the most proper strategies. The improvement in the reliability characteristics along this path is shown as well

  13. Reliability studies of a high-power proton accelerator for accelerator-driven system applications for nuclear waste transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Burgazzi, Luciano [ENEA-Centro Ricerche ' Ezio Clementel' , Advanced Physics Technology Division, Via Martiri di Monte Sole, 4, 40129 Bologna (Italy)]. E-mail: burgazzi@bologna.enea.it; Pierini, Paolo [INFN-Sezione di Milano, Laboratorio Acceleratori e Superconduttivita Applicata, Via Fratelli Cervi 201, I-20090 Segrate (MI) (Italy)

    2007-04-15

    The main effort of the present study is to analyze the availability and reliability of a high-performance linac (linear accelerator) conceived for Accelerator-Driven Systems (ADS) purpose and to suggest recommendations, in order both to meet the high operability goals and to satisfy the safety requirements dictated by the reactor system. Reliability Block Diagrams (RBD) approach has been considered for system modelling, according to the present level of definition of the design: component failure modes are assessed in terms of Mean Time Between Failure (MTBF) and Mean Time To Repair (MTTR), reliability and availability figures are derived, applying the current reliability algorithms. The lack of a well-established component database has been pointed out as the main issue related to the accelerator reliability assessment. The results, affected by the conservative character of the study, show a high margin for the improvement in terms of accelerator reliability and availability figures prediction. The paper outlines the viable path towards the accelerator reliability and availability enhancement process and delineates the most proper strategies. The improvement in the reliability characteristics along this path is shown as well.

  14. Performance comparison of liquid metal and gas cooled ATW system point designs

    International Nuclear Information System (INIS)

    Yang, W.S.; Taiwo, T.A.; Hill, R.N.; Khalil, H.S.; Wade, D.C.

    2001-01-01

    As part of the Advanced Accelerator Application (AAA) program in the U.S., preliminary design studies have been performed at Argonne National Laboratory (ANL) and Los Alamos National Laboratory (LANL) to define and compare candidate Accelerator Transmutation of Waste (ATW) systems. The studies at ANL have focused primarily on the transmutation blanket component of the overall system. Lead-bismuth eutectic (LBE), sodium, and gas cooled systems are among the blanket technology options currently under consideration. This paper summarizes the results from neutronics trade studies performed at ANL. Core designs have been developed for LBE and sodium cooled 840 MWt fast spectrum accelerator driven systems employing re-cycle. Additionally, neutronics analyses have been performed for a helium-cooled 600 MWt hybrid thermal and fast spectrum system proposed by General Atomics (GA), which is operated in the critical mode for three cycles and in a subcritical accelerator driven mode for a subsequent single cycle. For these three point designs, isotopic inventories, consumption rates, and annual burnup rates are compared. The mass flows and the ultimate loss of transuranic (TRU) isotopes to the waste stream per unit of heat generated during transmutation are also compared on a consistent basis. (author)

  15. ORIGEN-S: scale system module to calculate fuel depletion, actinide transmutation, fission product buildup and decay, and associated radiation source terms

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    ORIGEN-S computes time-dependent concentrations and source terms of a large number of isotopes, which are simultaneously generated or depleted through neutronic transmutation, fission, radioactive decay, input feet rates and physical or chemical removal rates. The calculations may pertain to fuel irradiation within nuclear reactors, or the storage, management, transportation or subsequent chemical processing of removed fuel elements. The matrix exponential expansion model of the ORIGIN code is unaltered in ORIGEN-S. Essentially all features of ORIGEN were retained, expanded or supplemented within new computations. The primary objective of ORIGEN-S, as requested by the Nuclear Regulatory Commission, is that the calculations may utilize the multi-energy group cross sections from any currently processed standardized ENDF/B data base. This purpose has been implemented through the prior execution of codes within either the SCALE System or the AMPX System, developed at the Oak Ridge National Laboratory. These codes compute flux-weighted cross sections, simulating conditions within any given reactor fuel assembly, and convert the data into a library that can be input to ORIGEN-S. Time-dependent libraries may be produced, reflecting fuel composition variations during irradiation. Presented in the document are: detailed and condensed input instructions, model theory, features available, range of applicability, brief subroutine descriptions, sample input, and I/O requirements. Presently the code is operable on IBM 360/370 computers and may be converted for CDC computers. ORIGEN-S is a functional module in the SCALE System and will be one of the modules invoked in the SAS2 Control Module, presently being developed, or may be applied as a stand alone program. It can be used in nuclear reactor and processing plant design studies, radiation safety analyses, and environmental assessments

  16. Decay and Transmutation of Nuclides

    CERN Document Server

    Aarnio, Pertti A

    1999-01-01

    We present a computer code DeTra which solves analytically the Bateman equations governing the decay, build-up and transmutation of radionuclides. The complexity of the chains and the number of nuclides are not limited. The nuclide production terms considered include transmutation of the nuclides inside the chain, external production, and fission. Time dependent calculations are possible since all the production terms can be re-defined for each irradiation step. The number of irradiation steps and output times is unlimited. DeTra is thus able to solve any decay and transmutation problem as long as the nuclear data i.e. decay data and production rates, or cross sections, are known.

  17. Transmuted Complementary Weibull Geometric Distribution

    Directory of Open Access Journals (Sweden)

    Ahmed Z. A…fify

    2014-12-01

    Full Text Available This paper provides a new generalization of the complementary Weibull geometric distribution that introduced by Tojeiro et al. (2014, using the quadratic rank transmutation map studied by Shaw and Buckley (2007. The new distribution is referred to as transmuted complementary Weibull geometric distribution (TCWGD. The TCWG distribution includes as special cases the complementary Weibull geometric distribution (CWGD, complementary exponential geometric distribution(CEGD,Weibull distribution (WD and exponential distribution (ED. Various structural properties of the new distribution including moments, quantiles, moment generating function and RØnyi entropy of the subject distribution are derived. We proposed the method of maximum likelihood for estimating the model parameters and obtain the observed information matrix. A real data set are used to compare the ‡exibility of the transmuted version versus the complementary Weibull geometric distribution.

  18. Proceedings of the Eleventh Information Exchange Meeting on Actinide and Fission Product Partitioning and Transmutation

    International Nuclear Information System (INIS)

    2012-01-01

    Partitioning and transmutation (P and T) is one of the key technologies for reducing the radiotoxicity and volume of radioactive waste arisings. Recent developments indicate the need for embedding P and T strategies in advanced fuel cycles considering both waste management and economic issues. In order to provide experts a forum to present and discuss state-of-the-art developments in the P and T field, the OECD/NEA has been organising biennial information exchange meetings on actinide and fission product partitioning and transmutation since 1990. The previous meetings were held in Mito (Japan) in 1990, at Argonne (United States) in 1992, in Cadarache (France) in 1994, in Mito (Japan) in 1996, in Mol (Belgium) in 1998, in Madrid (Spain) in 2000, in Jeju (Korea) in 2002, in Las Vegas (United States) in 2004, in Nimes (France) in 2006 and in Mito (Japan) in 2008. They have often been co-sponsored by the European Commission (EC) and the International Atomic Energy Agency (IAEA). The 11. Information Exchange Meeting was held in San Francisco, California, United States on 1-4 November 2010, comprising a plenary session on national P and T programmes and six technical sessions covering various fields of P and T. The meeting was hosted by the Idaho National Laboratory (INL), United States. The information exchange meetings on P and T form an integral part of NEA activities on advanced nuclear fuel cycles. The meeting covered scientific as well as strategic/policy developments in the field of P and T, such as: fuel cycle strategies and transition scenarios; radioactive waste forms; the impact of P and T on geological disposal; radioactive waste management strategies (including secondary wastes); transmutation fuels and targets; pyro and aqueous separation processes; materials, spallation targets and coolants; transmutation physics, experiments and nuclear data; transmutation systems (design, performance and safety); handling and transportation of transmutation fuels; and

  19. Transmutation Capability of a Once-Through Molten-Salt and Other Transmuting Reactors

    International Nuclear Information System (INIS)

    Greenspan, E.; Lowenthal, M.; Barnes, D.; Kawasaki, D.; Kimball, D.; Matsumoto, H.; Sagara, H.; Vietez, E.R.

    2002-01-01

    A preliminary assessment is done of the transmutation characteristics of three reactor technologies: a multi-batch liquid metal (LM) cooled transmuter, a once-through molten-salt (MS) transmuter and a pebble bed (PB) transmuter. It was found that for the same fractional transmutation and same k eff drop with burnup (Δk effBU ), lead-bismuth offers smaller peak-to-average core power density, and it requires a smaller pumping power but a larger and heavier core than a sodium cooled transmuter. 99 Tc cannot effectively serve as a burnable absorber to reduce Δk effBU of LM transmuters. However, addition of thorium can greatly flatten k eff and almost double the fractional transmutation of the LWR spent fuel from ∼20% to ∼40%. If the 'once-through' MS transmuter is operated with continuous complete removal of fission products, it can achieve ∼85% fractional transmutation provided that the equilibrium concentration of actinides in the MS can reach 4 mole %. If the fission products are not actively removed, the fractional transmutation is reduced to ∼75%. The fractional transmutation of a PB transmuter can exceed 40%. More thorough analysis is required to better quantify the transmutation capability of the different transmuter technologies. (authors)

  20. Minor actinides transmutation potential: state of art for GEN IV sodium cooled fast reactors

    International Nuclear Information System (INIS)

    Buiron, Laurent

    2015-01-01

    In the frame of the R and D program relative to the 1991 French act on nuclear waste management, fast neutron systems have shown relevant characteristics that meet both requirements on sustainable resources management and waste minimization. They also offer flexibility by mean of burner or breeder configurations allowing mastering plutonium inventory without significant impact on core safety. From the technological point of view, sodium cooled fast reactor are considered in order to achieve mean term industrial deployment. The present document summaries the main results of R and D program on minor actinides transmutation in sodium fast reactor since 2006 following recommendation of the first part of the 1991 French act. Both homogeneous and heterogeneous management achievable performances are presented for 'evolutionary' SFR V2B core as well as low void worth CFV core for industrial scale configurations (1500 MWe). Minor actinides transmutation could be demonstrated in the ASTRID reactor with the following configurations: - a 2%vol Americium content for the homogeneous mode, - a 10%vol Americium content for the heterogeneous mode, without any substantial modification of the main core safety parameters and only limited impacts on the associated fuel cycle (manufacturing issues are not considered here). In order to achieve such goal, a wide range of experimental irradiations driven by transmutation scenarios have to be performed for both homogeneous and heterogeneous minor actinides management. (author) [fr

  1. Calculations of different transmutation concepts. An international benchmark exercise

    International Nuclear Information System (INIS)

    2000-01-01

    In April 1996, the NEA Nuclear Science Committee (NSC) Expert Group on Physics Aspects of Different Transmutation Concepts launched a benchmark exercise to compare different transmutation concepts based on pressurised water reactors (PWRs), fast reactors, and an accelerator-driven system. The aim was to investigate the physics of complex fuel cycles involving reprocessing of spent PWR reactor fuel and its subsequent reuse in different reactor types. The objective was also to compare the calculated activities for individual isotopes as a function of time for different plutonium and minor actinide transmutation scenarios in different reactor systems. This report gives the analysis of results of the 15 solutions provided by the participants: six for the PWRs, six for the fast reactor and three for the accelerator case. Various computer codes and nuclear data libraries were applied. (author)

  2. Transmutation of fission products and actinide waste at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Daemen, L.L.; Pitcher, E.J.; Russell, G.J. [Los Alamos National Laboratory, NM (United States)

    1995-10-01

    The authors studied the neutronics of an ATW system for the transmutation of the fission products ({sup 99}Tc in particular) and the type of actinide waste stored in several tanks at Hanford. The heart of the system is a highly-efficient neutron production target. It is surrounded by a blanket containing a moderator/reflector material, as well as the products to be transmuted. The fission products are injected into the blanket in the form of an aqueous solution in heavy water, whereas an aqueous actinides slurry is circulated in the outer part of the blanket. For the sake of definiteness, the authors focussed on {sup 99}Tc (the most difficult fission product to transmute), and {sup 239}Pu, {sup 237}Np, and {sup 241}Am. Because of the low thermal neutron absorption cross-section of {sup 99}Tc, considerable care and effort must be devoted to the design of a very efficient neutron source.

  3. Transmutation studies of minor actinides in high intensity neutron fluxes

    International Nuclear Information System (INIS)

    Fioni, G.; Bolognese, T.; Cribier, M.; Marie, F.; Roettger, S.; Faust, H.; Leconte, Ph.

    1999-01-01

    Integral measurements of nuclear data and of the transmutation potential in specific neutron fluxes, constitute the fastest and essential way to overcome to the large uncertainties present in the nuclear data libraries. In the frame of the activities of the Directorate for Science of Matter (DSM) of the French Atomic Energy Authority (CEA), a new project is proposed so as to carry out integral measurements relevant for nuclear waste transmutation systems. A new beam tube will be installed to irradiate actinides and fission fragment samples at different distances from the fuel element of the ILL reactor. Variable neutron energy spectra could then be obtained by choosing the distance between the sample and the fuel element, opening the way to the determination of the ideal physical conditions to incinerate nuclear waste in hybrid transmutation systems. (author)

  4. The Beta Transmuted Weibull Distribution

    Directory of Open Access Journals (Sweden)

    Manisha Pal

    2014-06-01

    Full Text Available The paper introduces a beta transmuted Weibull distribution, which contains a number ofdistributions as special cases. The properties of the distribution are discussed and explicit expressions are derived for the mean deviations, Bonferroni and Lorenz curves, and reliability. The distribution and moments of order statistics are also studied. Estimation of the model parameters by the method of maximum likelihood is discussed. The log beta transmuted Weibull model is introduced to analyze censored data. Finally, the usefulness of the new distribution in analyzing positive data is illustrated.

  5. Specific contributions of the Dutch progamme ''RAS'' towards accelerator-based transmutation

    International Nuclear Information System (INIS)

    Abrahams, K.; Franken, W.M.P.; Bultman, J.H.; Heil, J.A.; Koning, A.J.

    1994-09-01

    Accelerator-based transmutation is being studied by ECN within its general nuclear waste transmutation programme RAS. In this paper the following contributions are presented: (1) Evaluation of cross sections at intermediate energies, within an international frame given by NEA, (2) Cell calculations on the equilibration of transuranium actinides in thermal molten-salt transmuters, (3) Irradiation facilities at the European research reactor HFR in Petten, which have been constructed with the purpose to demonstrate and investigate the transmutation of waste in a high neutron flux, (4) Studies of accelerator-based neutron generating systems to transmute neptunium and technetium, (5) Comparison of several systems on the basis of criteria for successful nuclear waste-management. (orig.)

  6. The technical and economic impact of minor actinide transmutation in a sodium fast reactor

    International Nuclear Information System (INIS)

    Gautier, G. M.; Morin, F.; Dechelette, F.; Sanseigne, E.; Chabert, C.

    2012-01-01

    Within the frame work of the French National Act of June 28, 2006 pertaining to the management of high activity, long-lived radioactive waste, one of the proposed processes consists in transmuting the Minor Actinides (MA) in the radial blankets of a Sodium Fast Reactor (SFR). With this option, we may assess the additional cost of the reactor by comparing two SFR designs, one with no Minor Actinides, and the other involving their transmutation. To perform this exercise, we define a reference design called SFRref, of 1500 MWe that is considered to be representative of the Reactor System. The SFRref mainly features a pool architecture with three pumps, six loops with one steam generator per loop. The reference core is the V2B core that was defined by the CEA a few years ago for the Reactor System. This architecture is designed to meet current safety requirements. In the case of transmutation, for this exercise we consider that the fertile blanket is replaced by two rows of assemblies having either 20% of Minor Actinides or 20% of Americium. The assessment work is performed in two phases. - The first consists in identifying and quantifying the technical differences between the two designs: the reference design without Minor Actinides and the design with Minor Actinides. The main differences are located in the reactor vessel, in the fuel handling system and in the intermediate storage area for spent fuel. An assessment of the availability is also performed so that the impact of the transmutation can be known. - The second consists in making an economic appraisal of the two designs. This work is performed using the CEA's SEMER code. The economic results are shown in relative values. For a transmutation of 20% of MA in the assemblies (S/As) and a hypothesis of 4 kW allowable for the washing device, there is a large external storage demanding a very long cooling time of the S/As. In this case, the economic impact may reach 5% on the capital part of the Levelized Unit

  7. Safety techniques in the change of nuclear systems. Radiation protection at spallation neutron sources and transmutation facilities; Sicherheitstechnik im Wandel Nuklearer Systeme. Strahlenschutz bei Spallationsneutronenquellen und Transmutationsanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Nuenighoff, Kay

    2009-07-01

    To push the boundary towards higher neutron fluxes concepts based on spallation reactions have been discussed. Here neutrons are produced by bombarding a heavy metal target (e.g. mercury, tungsten, or tantalum) with high energetic protons. Up to now such facilities could not be realised because of the high power particle accelerators needed. Recent developments of the accelerator technology open the possibility of construction and operating proton accelerators in the MW region. This is demonstrated by construction and commissioning of two MW spallation neutron sources, namely SNS (Oak Ridge, Tennessee, USA) with a power of 1.4 MW and J-PARC (Japan) with 1 MW. The realisation of proton accelerators at this power level will open the way towards energy amplifiers, as proposed e.g. by Carlo Rubbia. Such a facility will not only produce electric power. Furthermore longliving radionuclides can be transmutated into shortlived or even stable nuclides by neutron induced nuclear reactions. A mitigation of the problem of nuclear waste disposal. The above discussed developments prove that accelerators are not only constructed for research, moreover application of these technology became state of the art. With the emergence of particle accelerators in the MW region, radiation protection is confronted with new kind of problems to be solved. Especially the higher kinetic energies of the primary beam particles requires modification and expansion of computer programs well known in nuclear engineering. In contrast to nuclear reactors with kinetic energies up to 2-3 MeV, in spallation reaction secondary particles up to the incident energy in the GeV region will be produced. Problems related to radiation protection have to be considered in an energy range three orders of magnitude higher than known from nuclear reactors. In this thesis existing computer codes are compared and validated with data from selected experiments. Questions concerning radiation protection covers a broad range

  8. Neutron-transmutation-doped germanium bolometers

    International Nuclear Information System (INIS)

    Palaio, N.P.; Rodder, M.; Haller, E.E.; Kreysa, E.

    1983-02-01

    Six slices of ultra-pure germanium were irradiated with thermal neutron fluences between 7.5 x 10 16 and 1.88 x 10 18 cm - 2 . After thermal annealing the resistivity was measured down to low temperatures ( 0 exp(δ/T) in the hopping conduction regime. Also, several junction FETs were tested for noise performance at room temperature and in an insulating housing in a 4.2K cryostat. These FETs will be used as first stage amplifiers for neutron-transmutation-doped germanium bolometers

  9. Neutron-transmutation-doped germanium bolometers

    Science.gov (United States)

    Palaio, N. P.; Rodder, M.; Haller, E. E.; Kreysa, E.

    1983-01-01

    Six slices of ultra-pure germanium were irradiated with thermal neutron fluences between 7.5 x 10 to the 16th and 1.88 x 10 to the 18th per sq cm. After thermal annealing the resistivity was measured down to low temperatures (less than 4.2 K) and found to follow the relationship rho = rho sub 0 exp(Delta/T) in the hopping conduction regime. Also, several junction FETs were tested for noise performance at room temperature and in an insulating housing in a 4.2 K cryostat. These FETs will be used as first stage amplifiers for neutron-transmutation-doped germanium bolometers.

  10. Accelerator transmutation of waste economics

    International Nuclear Information System (INIS)

    Krakowski, R.A.

    1995-01-01

    A parametric systems model of the accelerator transmutation of (nuclear) waste (ATW) is used to examine key system trade-offs and design drivers on the basis of unit costs. This model is applied primarily to a fluid-fuel blanket concept for an ATW that generates net electric power from the fissioning of spent commercial reactor fuel. An important goal of this study is the development of essential parametric trade-offs to aid in any future conceptual engineering design of an ATW that would burn spent commercial fuel and generate net electric power. As such, costing procedures and methodologies used to estimate and compare advanced nuclear power generation systems are applied. The cost of electricity required by an electrical power-generating ATW fueled with spent commercial fuels is generally found to be above that projected for other advanced fission power plants. The accelerator and the chemical plant equipment cost accounts are quantitatively identified as main cost drivers, with the capital cost of radio-frequency power dominating the former. Significant reductions of this cost differential are possible by increased blanket neutron multiplication, increased plant capacity, or increased thermal-to-electric conversion efficiency. The benefits of reduced long-lived fission products and spent commercial fuel actinides provided by the ATW approach translate into a less tangible source of revenue to be provided by a charge that must be levied on the client fission power plants being serviced. The main goal of this study, however, is not a direct cost comparison but is instead a quantitative determination of cost-based sensitivity of key cost drivers and operational modes for an ATW concept that would address the growing spent commercial fuel problem; parametric results presented focus on this goal, and a specific ATW ''straw man'' is given to achieve this main objective

  11. Transmutation of nuclear waste. Status report RAS programme 1994: Recycling and transmutation of actinides and fission products

    International Nuclear Information System (INIS)

    Cordfunke, E.H.P.; Gruppelaar, H.; Franken, W.M.P.

    1995-07-01

    This report describes the status and progress of the Dutch RAS programme on 'Recycling and Transmutation of Actinides and Fission Products' over the year 1994, which is the first year of the second 4-year programme. This programme is outlined and a short progress report is given over 1994, including a listing of 23 reports and publications over the year 1994. Highlights of 1994 were: The completion of long-lived fission-product transmutation studies, the initiation of small-scale demonstration experiments in the HFR on Tc and I, the issue of reports on the potential of the ALMR (Advanced Liquid Metal Reactor) for transmutation adn the participation and international cooperation on irradiation experiments with actinides in inert matrices. The remaining chapters contain more extended contributions on recent developments and selected topics, under the headings: Benefits and risks of partitioning and transmutation, Perspective of chemical partitioning, Inert matrices, Evolutionary options (MOX), Perspective of heavy water reactors, Perspective of fast burners, Perspective of accelerator-based systems, Thorium cycle, Fission-product transmutation, End scenarios, and Executive summary and recommendations. (orig.)

  12. Transmutation of nuclear waste. Status report RAS programme 1994: Recycling and transmutation of actinides and fission products

    Energy Technology Data Exchange (ETDEWEB)

    Cordfunke, E H.P.; Gruppelaar, H; Franken, W M.P.

    1995-07-01

    This report describes the status and progress of the Dutch RAS programme on `Recycling and Transmutation of Actinides and Fission Products` over the year 1994, which is the first year of the second 4-year programme. This programme is outlined and a short progress report is given over 1994, including a listing of 23 reports and publications over the year 1994. Highlights of 1994 were: The completion of long-lived fission-product transmutation studies, the initiation of small-scale demonstration experiments in the HFR on Tc and I, the issue of reports on the potential of the ALMR (Advanced Liquid Metal Reactor) for transmutation adn the participation and international cooperation on irradiation experiments with actinides in inert matrices. The remaining chapters contain more extended contributions on recent developments and selected topics, under the headings: Benefits and risks of partitioning and transmutation, Perspective of chemical partitioning, Inert matrices, Evolutionary options (MOX), Perspective of heavy water reactors, Perspective of fast burners, Perspective of accelerator-based systems, Thorium cycle, Fission-product transmutation, End scenarios, and Executive summary and recommendations. (orig.).

  13. Transmutation of technetium into stable ruthenium in high flux conceptual research reactor

    International Nuclear Information System (INIS)

    Amrani, N.; Boucenna, A.

    2007-01-01

    The effectiveness of transmutation for the long lived fission product technetium-99 in high flux research reactor, considering its large capture cross section in thermal and epithermal region is evaluated. The calculation of Ruthenium concentration evolution under irradiation was performed using Chain Solver 2.20 code. The approximation used for the transmutation calculation is the assumption that the influence of change in irradiated materials structures on the reactor operator mode characteristics is insignificant. The results on Technetium transmutation in high flux research reactor suggested an effective use of this kind of research reactors. The evaluation brings a new concept of multi-recycle Technetium transmutation using HFR T RAN (High Flux Research Reactor for Transmutation)

  14. Minor actinide transmutation using minor actinide burner reactors

    International Nuclear Information System (INIS)

    Mukaiyama, T.; Yoshida, H.; Gunji, Y.

    1991-01-01

    The concept of minor actinide burner reactor is proposed as an efficient way to transmute long-lived minor actinides in order to ease the burden of high-level radioactive waste disposal problem. Conceptual design study of minor actinide burner reactors was performed to obtain a reactor model with very hard neutron spectrum and very high neutron flux in which minor actinides can be fissioned efficiently. Two models of burner reactors were obtained, one with metal fuel core and the other with particle fuel core. Minor actinide transmutation by the actinide burner reactors is compared with that by power reactors from both the reactor physics and fuel cycle facilities view point. (author)

  15. Transmutation of high-level radioactive waste - Perspectives

    CERN Document Server

    Junghans, Arnd; Grosse, Eckart; Hannaske, Roland; Kögler, Toni; Massarczyk, Ralf; Schwengner, Ronald; Wagner, Andreas

    2014-01-01

    In a fast neutron spectrum essentially all long-lived actinides (e.g. Plutonium) undergo fission and thus can be transmuted into generally short lived fission products. Innovative nuclear reactor concepts e.g. accelerator driven systems (ADS) are currently in development that foresee a closed fuel cycle. The majority of the fissile nuclides (uranium, plutonium) shall be used for power generation and only fission products will be put into final disposal that needs to last for a historical time scale of only 1000 years. For the transmutation of high-level radioactive waste a lot of research and development is still required. One aspect is the precise knowledge of nuclear data for reactions with fast neutrons. Nuclear reactions relevant for transmutation are being investigated in the framework of the european project ERINDA. First results from the new neutron time-of-flight facility nELBE at Helmholtz-Zentrum Dresden-Rossendorf will be presented.

  16. Study on the LLFPs transmutation in a super-critical water-cooled fast reactor

    International Nuclear Information System (INIS)

    Lu Haoliang; Ishiwatari, Yuki; Oka, Yoshiaki

    2011-01-01

    Research highlights: → Transmutation of LLFPs with a super-criticial water cooled fast reactor. → Transmutation of iodine and cesium without the isotopic separation. → The transmuted isotope was mixed with UO 2 to reduce the effect of self-shielding. → A weak neutron moderator Al 2 O 3 was used to suppress the creation of 135 Cs from 133 Cs. - Abstract: The performance of the super-critical water-cooled fast reactor (Super FR) for the transmutation treatment of long-lived fission products (LLFPs) was evaluated. Two regions with the soft neutron spectrum, which is of great benefit to the LLFPs transmutation, can be utilized in the Super FR. First region is in the blanket assembly due to the ZrH 1.7 layer which was utilized to slow down the fast neutrons to achieve a negative void reactivity. Second region is in the reflector region of core like other metal-cooled fast reactors. The LLFPs selected in the transmutation analysis include 99 Tc, 129 I and 135 Cs discharged from LWR or fast reactor. Their isotopes, such as 127 I, 133 Cs, 134 Cs and 137 Cs were also considered to avoid the separation. By loading the isotopes ( 99 Tc or 127 I and 129 I) in the blanket assembly and the reflector region simultaneously, the transmutation rates of 5.36%/GWe year and 2.79%/GWe year can be obtained for 99 Tc and 129 I, respectively. The transmuted amounts of 99 Tc and 129 I are equal to the yields from 11.8 and 6.2 1000 MWe-class PWRs. Because of the very low capture cross section of 135 Cs and the effect of other cesium isotopes, 135 Cs was loaded with three rings of assemblies in the reflector region to make the transmuted amount be larger than the yields of two 1000 MWe-class PWRs. Based on these results, 99 Tc and 129 I can be transmuted conveniently and higher transmutation performance can be obtained in the Super FR. However, the transmutation of 135 Cs is very difficult and the transmuted amount is less than that produced by the Super FR. It turns out that the

  17. Transmutation Studies of Radioactive Nuclides

    Czech Academy of Sciences Publication Activity Database

    Adam, Jindřich

    2007-01-01

    Roč. 34, č. 1 (2007), s. 125-150 ISSN 1310-0157 R&D Projects: GA MŠk 1P04LA213 Institutional research plan: CEZ:AV0Z10480505 Keywords : transmutation Subject RIV: BG - Nuclear, Atomic and Molecular Physics , Colliders

  18. Neutron transmutation doped Ge bolometers

    Science.gov (United States)

    Haller, E. E.; Kreysa, E.; Palaio, N. P.; Richards, P. L.; Rodder, M.

    1983-01-01

    Some conclusions reached are as follow. Neutron Transmutation Doping (NTD) of high quality Ge single crystals provides perfect control of doping concentration and uniformity. The resistivity can be tailored to any given bolometer operating temperature down to 0.1 K and probably lower. The excellent uniformity is advantaged for detector array development.

  19. Transmutation of actinide 237Np with a fusion reactor and a hybrid reactor

    International Nuclear Information System (INIS)

    Feng, K.M.; Huang, J.H.

    1994-01-01

    The use of fusion reactors to transmute fission reactor wastes to stable species is an attractive concept. In this paper, the feasibility of transmutation of the long-lived actinide radioactive waste Np-237 with a fusion reactor and a hybrid reactor has been investigated. A new waste management concept of burning HLW (High Level Waste), utilizing released energy and converting Np-237 into fissile fuel Pu-239 through transmutation has been adopted. The detailed neutronics and depletion calculation of waste inventories was carried out with a modified version of one-dimensional neutron transport and burnup calculation code system BISON1.5 in this study. The transmutation rate of Np with relationship to neutron wall loading, Pu and Np with relationship to neutron wall load, Pu and Np concentration in the transmutation zone have been explored as well as relevant results are also given

  20. The transmutation of americium: the Ecrix experiments in Phenix; Transmutation de l'americium: les experiences ecrix dans Phenix

    Energy Technology Data Exchange (ETDEWEB)

    Garnier, J.C.; Schmidt, N. [CEA Cadarache, Dept. d' Etudes des Combustibles (DEC/SESC), 13 - Saint-Paul-lez-Durance (France); Croixmarie, Y.; Ottaviani, J.P. [CEA Cadarache, Dept. d' Etudes des Combustibles (DEC/SPUA), 13 - Saint-Paul-lez-Durance (France); Varaine, F.; Saint Jean, C. de [CEA Cadarache, Dept. d' Etudes des Reacteurs (DER/SPRC), 13 - Saint-Paul-lez-Durance (France)

    1999-07-01

    The first americium transmutation experiment in a specific target in PHENIX will occur with the ECRIX-B and ECRIX-H experiments. Beside material testing, the objective is also to represent a concept of transmutation whose specificity is to enhance the kinetics of transmutation by using a moderated spectrum. The moderator materials will be {sup 11}B{sub 4}C and CaH{sub 2} for ECRIX-B and ECRIXH respectively, the irradiation conditions have been predicted for both the neutronics and thermal. The targets (MgO-AmO{sub X} pellets) are manufactured in the ATALANTE laboratory and the design is performed according to the PHENIX operating conditions. (authors)

  1. The transmutation of americium: the Ecrix experiments in Phenix; Transmutation de l'americium: les experiences ecrix dans Phenix

    Energy Technology Data Exchange (ETDEWEB)

    Garnier, J C; Schmidt, N [CEA Cadarache, Dept. d' Etudes des Combustibles (DEC/SESC), 13 - Saint-Paul-lez-Durance (France); Croixmarie, Y; Ottaviani, J P [CEA Cadarache, Dept. d' Etudes des Combustibles (DEC/SPUA), 13 - Saint-Paul-lez-Durance (France); Varaine, F; Saint Jean, C de [CEA Cadarache, Dept. d' Etudes des Reacteurs (DER/SPRC), 13 - Saint-Paul-lez-Durance (France)

    1999-07-01

    The first americium transmutation experiment in a specific target in PHENIX will occur with the ECRIX-B and ECRIX-H experiments. Beside material testing, the objective is also to represent a concept of transmutation whose specificity is to enhance the kinetics of transmutation by using a moderated spectrum. The moderator materials will be {sup 11}B{sub 4}C and CaH{sub 2} for ECRIX-B and ECRIXH respectively, the irradiation conditions have been predicted for both the neutronics and thermal. The targets (MgO-AmO{sub X} pellets) are manufactured in the ATALANTE laboratory and the design is performed according to the PHENIX operating conditions. (authors)

  2. Radioactive Wastes Generated From JAERI Partitioning-Transmutation Fuel Cycle

    International Nuclear Information System (INIS)

    Nakayama, Shinichi; Morita, Yasuji; Nishihara, Kenji

    2003-01-01

    Production of lower-level radioactive wastes, as well as the reduction in radioactivity of HLW, is an important performance indicator in assessing the viability of a partitioning-transmutation system. We have begun to identify the chemical compositions and to quantify the amounts of radioactive wastes that may be generated by JAERI's processes. Long-lived radionuclides such as 14 C and 59 Ni and spallation products of Pb-Bi coolants are added to the existing inventory of these nuclides that are generated in the current fuel cycle. Spent salts of KCl-LiCl, which is not generated from the current fuel cycle, will be introduced as a waste. (authors)

  3. A study of γ-ray source for the transmutation

    International Nuclear Information System (INIS)

    Nomura, Masahiro; Takahashi, Hiroshi.

    1996-07-01

    PNC is developing high power CW electron linac for various applications, those are the transmutation of the fission products, Free Electron Laser (FEL), the positron source and so on. Especially, the transmutation by the electron linac has been studied for several years. As the results, high flux and high energy γ-ray (∼15 MeV) is required, one of the big problems is that plenty of transmutation energy is needed and the narrow γ-ray energy spectrum can reduce the transmutation energy. The γ-rays can be produced by synchrotron radiation, FEL and laser compton scattering. Those methods were described briefly and compared. As a result, the laser compton scattering is one of the good methods to produce high energy γ-ray. However the cross section between electron and photon is small and the scattered photon energy spectrum is not so narrow that the transmutation energy is reduced drastically. To enhance the interaction between electron and photon, the super cavity is proposed. And some experiments are in progress. To reduce the transmutation energy, scattered electron must be reused by the storage ring. If the scattered electrons are not used for producing γ-ray, the efficiency is less than 1%. In our system, the efficiency can be increased to 20% by reusing scattered electrons. But this efficiency is still low. To increase the efficiency, the RF bucket must be enlarged. If the momentans compaction factor α can be reduced, the RF bucket can be enlarged. And the storage ring must be designed to have small value of the α. The electron energy dependency of efficiency is investigated, too. In short word, it is difficult to increase the efficiency drastically by changing electron energy. This work was conducted as a part of the collaboration work between PNC and BNL. (author)

  4. Transmutation of radioactive nuclear waste – present status and ...

    Indian Academy of Sciences (India)

    Transmutation of long-lived actinides and fission products becomes an important issue of the overall nuclear fuel cycle assessment, both for existing and future reactor systems. Reliable nuclear data are required for analysis of associated neutronics. The present paper gives a review of the status of nuclear data analysis ...

  5. Introduction to isotopic shifts and transmutations observed in LENR experiments

    International Nuclear Information System (INIS)

    Srinivasan, Mahadeva

    2015-01-01

    This article presents a brief introduction to the topic of transmutation reactions which occur in a variety of LENR configurations wherein the 'host metal' nuclei (Pd, Ni, Ti, etc.) interact with the loaded deuterium or hydrogen nuclei, resulting in the formation of new stable elements or isotopes not present in the system prior to the experimental run. (author)

  6. Comparative analysis of sub-critical transmutation reactor concepts

    International Nuclear Information System (INIS)

    Chang, S. H.

    1997-01-01

    The long-lived nuclear wastes have been substantially generated from the light water reactor for a few decades. The toxicity of these spent fuels will be higher than that of the uranium ore, even if those will be stored in the repository more than ten thousands. Hence the means of transmuting the key long-lived nuclear wastes, primarily the minor actinides, using a hybrid proton accelerator and subcritical transmutation reactor, are proposed. Until now, the representative concepts for a subcritical transmutation reactor are the Energy Amplifier, the OMEGA project, the ATW and the MSBR. The detailed concepts and the specifications are illustrated in Table 1. The design requirements for the subcritical transmutation reactor are the high transmutation rate of long-lived nuclear wastes, safety and economics. And to propose the subcritical transmutation reactor concepts, the coolant, the target material and fuel type are carefully considered. In these aspects, the representative concepts for a subcritical transmutation reactor in Table 1 have been surveyed. The requirements for a target and a coolant are the reliable, low maintenance operation and safe operation to minimize the wastes. The reliable, low maintenance operation and safe operation to minimize the wastes. The reliable coolant must have the low melting point, high heat capacity and excellent physical properties. And the target material must have high neutron yield for a given proton condition and easy heat removal capability. Therefore in respect with the above requirements, Pb-Bi is proposed as the coolant and the target material for the subcritical reactor. Because the neutron yield for a given proton energy increases linearly with mass number up to bismuth but in heavier elements spallation events sharply increase both the neutron and heat outputs, Pb-Bi meets not only such the requirements as the above for the coolant but also those for the coolant and target, the simplification of system can be achieved

  7. Connected motorcycle system performance.

    Science.gov (United States)

    2016-01-15

    This project characterized the performance of Connected Vehicle Systems (CVS) on motorcycles based on two key components: global positioning and wireless communication systems. Considering that Global Positioning System (GPS) and 5.9 GHz Dedicated Sh...

  8. Power reactors and sub-critical blanket systems with lead and lead-bismuth as coolant and/or target material. Utilization and transmutation of actinides and long lived fission products

    International Nuclear Information System (INIS)

    2003-05-01

    High level radioactive waste disposal is an issue of great importance in the discussion of the sustainability of nuclear power generation. The main contributors to the high radioactivity are the fission products and the minor actinides. The long lived fission products and minor actinides set severe demands on the arrangements for safe waste disposal. Fast reactors and accelerator driven systems (ADS) are under development in Member States to reduce the long term hazard of spent fuel and radioactive waste, taking advantage of their incineration and transmutation capability. Important R and D programmes are being undertaken in many Member States to substantiate this option and advance the basic knowledge in this innovative area of nuclear energy development. The conceptual design of the lead cooled fast reactor concept BREST-OD-300, as well as various other conceptual designs of lead/lead-bismuth cooled fast reactors have been developed to meet enhanced safety and non-proliferation requirements, aiming at both energy production and transmutation of nuclear waste. Some R and D studies indicate that the use of lead and lead-bismuth coolant has some advantages in comparison with existing sodium cooled fast reactor systems, e.g.: simplified design of fast reactor core and BOP, enhanced inherent safety, and easier radwaste management in related fuel cycles. Moreover, various ADS conceptual designs with lead and lead-bismuth as target material and coolant also have been pursued. The results to date are encouraging, indicating that the ADS has the potential to offer an option for meeting the challenges of the back end fuel cycle. During the last decade, there have been substantial advances in several countries with their own R and D programme in the fields of lead/lead-bismuth cooled critical and sub-critical concepts. coolant technology, and experimental validation. In this context, international exchange of information and experience, as well as international

  9. Hybrid systems for transuranic waste transmutation in nuclear power reactors: state of the art and future prospects

    Science.gov (United States)

    Yurov, D. V.; Prikhod'ko, V. V.

    2014-11-01

    The features of subcritical hybrid systems (HSs) are discussed in the context of burning up transuranic wastes from the U-Pu nuclear fuel cycle. The advantages of HSs over conventional atomic reactors are considered, and fuel cycle closure alternatives using HSs and fast neutron reactors are comparatively evaluated. The advantages and disadvantages of two HS types with neutron sources (NSs) of widely different natures -- nuclear spallation in a heavy target by protons and nuclear fusion in magnetically confined plasma -- are discussed in detail. The strengths and weaknesses of HSs are examined, and demand for them for closing the U-Pu nuclear fuel cycle is assessed.

  10. Spallation neutron source target design for radioactive waste transmutation

    International Nuclear Information System (INIS)

    Beard, C.A.

    1992-01-01

    The disposal of high-level radioactive waste has long been one of the most serious problems facing the nuclear industry. Transmutation of this waste through particle bombardment has been suggested numerous times as a possible method of enhancing the waste management process. Due to advances in accelerator technology, the feasibility of an accelerator based transmutation system has increased enough to allow serious investigation of this process. Therefore, in pursuit of this goal, an accelerator target was designed for use in an accelerator based transmutation system. The target design consists of an array of tantalum rods, cooled by liquid sodium, which are arranged in a cylindrical configuration 40 cm in diameter and 125 cm in height. Tantalum was chosen as the target material over tungsten, lead, bismuth, and a lead-bismuth alloy (55 w/o bismuth) due to a large neutron yield, low activation, low chemical toxicity, and the fact that it does not produce significant amounts of long-lived isotopes through spallation or activation. The target yields a neutron source of 29.7 neutrons/proton when exposed to a 1600 MeV proton beam, and is suitable for use with both thermal or fast spectrum transmutation systems

  11. Proceedings of the specialists' meeting on accelerator-based transmutation

    International Nuclear Information System (INIS)

    Wenger, H.U.

    1992-09-01

    The meeting was organised under the auspices of OECD Nuclear Agency's International Information Exchange Programme on Actinide and Fission Product Partitioning and Transmutation. In the original announcement for the meeting the following sessions were proposed: 1) Concepts of accelerator-based transmutation systems, 2) Nuclear design problems of accelerator-based transmutation systems with emphasis on target facilities and their interfaces with accelerators, 3) Data and methods for nuclear design of accelerator-based transmutation systems, 4) Related cross-section measurements and integral experiments, 5) Identification of discrepancies and gaps and discussion of desirable R+D and benchmark activities. Due to the large number of papers submitted it was necessary to split session 2 into two parts and to reassign some papers in order to balance the sessions more evenly. No papers were submitted for session 5 and this was replaced by a summary and general discussion session. These proceedings contain all 30 papers in the order they were presented at the meeting. They are copies of the duplication-ready versions given to us during or shortly after the meeting. In the Table of Contents, the papers are listed together with the name of the presenter. (author) figs., tabs., refs

  12. Evaluation of actinide partitioning and transmutation

    International Nuclear Information System (INIS)

    1982-01-01

    After a few centuries of radioactive decay the long-lived actinides, the elements of atomic numbers 89-103, may constitute the main potential radiological health hazard in nuclear wastes. This is because all but a very few fission products (principally technetium-99 and iodine-129) have by then undergone radioactive decay to insignificant levels, leaving the actinides as the principal radionuclides remaining. It was therefore at first sight an attractive concept to recycle the actinides to nuclear reactors, so as to eliminate them by nuclear fission. Thus, investigations of the feasibility and potential benefits and hazards of the concept of 'actinide partitioning and transmutation' were started in numerous countries in the mid-1970s. This final report summarizes the results and conclusions of technical studies performed in connection with a four-year IAEA Co-ordinated Research Programme, started in 1976, on the ''Environmental Evaluation and Hazard Assessment of the Separation of Actinides from Nuclear Wastes followed by either Transmutation or Separate Disposal''. Although many related studies are still continuing, e.g. on waste disposal, long-term safety assessments, and waste actinide management (particularly for low and intermediate-level wastes), some firm conclusions on the overall concept were drawn by the programme participants, which are reflected in this report

  13. Actinide and fission product partitioning and transmutation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The fourth international information exchange meeting on actinide and fission product partitioning and transmutation, took place in Mito City in Japan, on 111-13 September 1996. The proceedings are presented in six sessions: the major programmes and international cooperation, the partitioning and transmutation programs, feasibility studies, particular separation processes, the accelerator driven transmutation, and the chemistry of the fuel cycle. (A.L.B.)

  14. Transmutation analysis considering and explicit fission product treatment based on a coupled Hammer-Technion and Cinder-2 system

    International Nuclear Information System (INIS)

    Abe, A.Y.

    1989-01-01

    This work presents a study about neutron absorption in a typical PWR cell by considering an explicit treatment for the fission products. The proposed methodology to treat fission product neutron absorption in a lattice calculation combines the HAMMER-TECHNION and CINDER-2 codes. The fission product chain treatment considers nearly 99% of all original CINDER-2 neutron absorption chain treatment. Parallel to the explicit treatment, a cross section library in the HAMMER-TECHNION code multigroup structure for the fission products was generated using the ENDF/B-V fission product library and processed by NJOY and AMPX-II processing codes. The methodology validation was investigated against two available benchmarks and it was obtained excellent results for the K-Infinity (IAEA-TECDOC-233) as function of burnup and enrichment and for the aggregate quantity sup(σ)2200 in units of barns/fission cross sections (OKAZAKI and SOKOLOWSKI). This work contributed for a better understanding of the fission product neutron absorption in a typical PWR cell and showed that the explicit fission product treatment can be successfully achieved. Besides that the performance of the ENDF/B-V fission product library was accessed. (author)

  15. Optimization of accelerator-driven technology for LWR waste transmutation

    International Nuclear Information System (INIS)

    Bowman, C.D.

    1996-01-01

    The role of accelerator-driven transmutation technology is examined in the context of the destruction of actinide waste from commercial light water reactors. It is pointed out that the commercial plutonium is much easier to use for entry-level nuclear weapons than weapons plutonium. Since commercial plutonium is easier to use, since there is very much more of it already, and since it is growing rapidly, the permanent disposition of commercial plutonium is an issue of greater importance than weapons plutonium. The minor actinides inventory, which may be influenced by transmutation, is compared in terms of nuclear properties with commercial and weapons plutonium and for possible utility as weapons material. Fast and thermal spectrum systems are compared as means for destruction of plutonium and the minor actinides. it is shown that the equilibrium fast spectrum actinide inventory is about 100 times larger than for thermal spectrum systems, and that there is about 100 times more weapons-usable material in the fast spectrum system inventory compared to the thermal spectrum system. Finally it is shown that the accelerator size for transmutation can be substantially reduced by design which uses the accelerator-produced neutrons only to initiate the unsustained fission chains characteristic of the subcritical system. The analysis argues for devoting primary attention to the development of thermal spectrum transmutation technology. A thermal spectrum transmuter operating at a fission power of 750-MWth fission power, which is sufficient to destroy the actinide waste from one 3,000-MWth light water reactor, may be driven by a proton beam of 1 GeV energy and a current of 7 mA. This accelerator is within the range of realizable cyclotron technology and is also near the size contemplated for the next generation spallation neutron source under consideration by the US, Europe, and Japan

  16. Partitioning and transmutation (P and D) 1995. A review of the current state of the art

    International Nuclear Information System (INIS)

    Skaalberg, M.; Landgren, A.; Spjuth, L.; Liljenzin, J.O.; Gudowski, W.

    1995-12-01

    The recent development in the field of partitioning and transmutation (P/T) is reviewed and evaluated. Current national and international R and D efforts are summarized. Nuclear transmutation with energy production is feasible in nuclear reactors where fast and thermal breeders are the most efficient for transmutation purposes. The operation of subcritical nuclear reactors by high current proton accelerators that generate neutrons in a spallation target is also an interesting option for transmutation and energy production, that has to be more carefully evaluated. These accelerator-driven systems are probably the only solution for the transmutation of long-lived fission products with small neutron capture cross sections and actinide isotopes with small fission cross sections. The requirements on the separation chemistry in the partitioning process depends on the transmutation strategy chosen. Recent developments in aqueous based separation chemistry opens some interesting possibilities to meet some of the requirements, such as separation of different actinides and some fission products and reduction of secondary waste streams. In the advanced accelerator-driven transmutation systems proposed, liquid fuels such as molten salts are considered. The partitioning processes that can be used for these types of fuel will, however, require a long term research program. The possibility to use centrifuge separation is an interesting partitioning option that recently has been proposed. 51 refs, 7 figs, 3 tabs

  17. Progress on the Application of Metallic Fuels for Actinide Transmutation

    International Nuclear Information System (INIS)

    Kennedy, J. Rory; Fielding, Randall; Janney, Dawn; Mariani, Robert; Teague, Melissa; Egeland, Gerald

    2015-01-01

    Full text of publication follows: Idaho National Laboratory (INL) is developing actinide bearing alloy metallic fuels intended for effecting the transmutation of long-lived isotopes in fast reactor application as part of a partitioning and transmutation strategy. This presentation will report on progress in three areas of this effort: demonstration of the fabrication of fuels under remote (hot cell) conditions directly coupled to the product from the Pyro-processing of spent fuel as part of the Joint Fuel Cycle Studies (JFCS) collaboration with the Korean Atomic Energy Research Institute (KAERI); the chemical sequestration of lanthanide fission products to mitigate fuel-cladding-chemical-interaction (FCCI); and transmission electron microscopy (TEM) and atom probe tomography (APT) studies on the as-cast microstructure of the metallic fuel alloy. For the JFCS efforts, we report on the implementation of the Glove-box Advanced Casting System (GACS) as a prototype casting furnace for eventual installation into the INL Hot Fuel Examination Facility (HFEF) where the recycled fuel will be cast. Results from optimising process parameters with respect to fuel characteristics, americium volatility, materials interaction, and lanthanide fission product carry over distribution will be discussed. With respect to the lanthanide carry over from the Pyro-processing product, encouraging studies on concepts to chemically sequester the FCCI promoting lanthanides within the fuel matrix thus inhibiting migration and interaction with the cladding will be presented. Finally, in relation to advanced modelling and simulation efforts, detailed investigations and interpretation on the nano-scale as cast microstructure of possible recycle fuel composition containing U, Pu, Am, Np as well as carry-over lanthanide species will be discussed. These studies are important for establishing the initial conditions from which advanced physics based fuel performance codes will run. (authors)

  18. System performance optimization

    International Nuclear Information System (INIS)

    Bednarz, R.J.

    1978-01-01

    The System Performance Optimization has become an important and difficult field for large scientific computer centres. Important because the centres must satisfy increasing user demands at the lowest possible cost. Difficult because the System Performance Optimization requires a deep understanding of hardware, software and workload. The optimization is a dynamic process depending on the changes in hardware configuration, current level of the operating system and user generated workload. With the increasing complication of the computer system and software, the field for the optimization manoeuvres broadens. The hardware of two manufacturers IBM and CDC is discussed. Four IBM and two CDC operating systems are described. The description concentrates on the organization of the operating systems, the job scheduling and I/O handling. The performance definitions, workload specification and tools for the system stimulation are given. The measurement tools for the System Performance Optimization are described. The results of the measurement and various methods used for the operating system tuning are discussed. (Auth.)

  19. Accelerator-driven transmutation of spent fuel elements

    Science.gov (United States)

    Venneri, Francesco; Williamson, Mark A.; Li, Ning

    2002-01-01

    An apparatus and method is described for transmuting higher actinides, plutonium and selected fission products in a liquid-fuel subcritical assembly. Uranium may also be enriched, thereby providing new fuel for use in conventional nuclear power plants. An accelerator provides the additional neutrons required to perform the processes. The size of the accelerator needed to complete fuel cycle closure depends on the neutron efficiency of the supported reactors and on the neutron spectrum of the actinide transmutation apparatus. Treatment of spent fuel from light water reactors (LWRs) using uranium-based fuel will require the largest accelerator power, whereas neutron-efficient high temperature gas reactors (HTGRs) or CANDU reactors will require the smallest accelerator power, especially if thorium is introduced into the newly generated fuel according to the teachings of the present invention. Fast spectrum actinide transmutation apparatus (based on liquid-metal fuel) will take full advantage of the accelerator-produced source neutrons and provide maximum utilization of the actinide-generated fission neutrons. However, near-thermal transmutation apparatus will require lower standing

  20. Experimental demonstration of free-space optical vortex transmutation with polygonal lenses.

    Science.gov (United States)

    Gao, Nan; Xie, Changqing

    2012-08-01

    Vortex transmutation was predicted to take place when vortices interact with systems possessing discrete rotational symmetries of finite order [Phys. Rev. Lett.95, 123901 (2005)]. Here we report what is believed to be the first experimental demonstration of vortex transmutation. We show that in free space, by simply inserting polygonal lenses into the optical path, the central vorticity of a coaxially incident optical vortex can be changed following the modular transmutation rule. We generate the wavefront at the exit face of the lenses with computer generated holograms and measure the output vorticity using the interference patterns at the focal plane. The results agree well with theoretical predictions.

  1. Role of (n,2n) reactions in transmutation of long-lived fission products

    Energy Technology Data Exchange (ETDEWEB)

    Apse, V. A.; Kulikov, G. G., E-mail: ggkulikov@mephi.ru; Kulikov, E. G. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation)

    2016-12-15

    The conditions under which (n,γ) and (n,2n) reactions can help or hinder each other in neutron transmutation of long-lived fission products (LLFPs) are considered. Isotopic and elemental transmutation for the main long-lived fission products, {sup 79}Se, {sup 93}Zr, {sup 99}Tc, {sup 107}Pd, {sup 126}Sn, {sup 129}I, and {sup 135}Cs, are considered. The effect of (n,2n) reactions on the equilibrium amount of nuclei of the transmuted isotope and the neutron consumption required for the isotope processing is estimated. The aim of the study is to estimate the influence of (n,2n) reactions on efficiency of neutron LLFP transmutation. The code TIME26 and the libraries of evaluated nuclear data ABBN-93, JEF-PC, and JANIS system are applied. The following results are obtained: (1) The effect of (n,2n) reactions on the minimum number of neutrons required for transmutation and the equilibrium amount of LLFP nuclei is estimated. (2) It is demonstrated that, for three LLFP isotopes ({sup 126}Sn, {sup 129}I, and {sup 135}Cs), (n,γ) and (n,2n) reactions are partners facilitating neutron transmutation. The strongest effect of (n,2n) reaction is found for {sup 126}Sn transmutation (reduction of the neutron consumption by 49% and the equilibrium amount of nuclei by 19%).

  2. System Performance and Testing

    NARCIS (Netherlands)

    Frei, U.; Oversloot, H.

    2004-01-01

    This chapter compares and contrasts the system performance of two widely used solar thermal systems using testing and simulation programs. Solar thermal systems are used in many countries for heating domestically used water. In addition to the simple thermosiphon systems, better designed pumped

  3. Promises and Challenges of Thorium Implementation for Transuranic Transmutation - 13550

    Energy Technology Data Exchange (ETDEWEB)

    Franceschini, F.; Lahoda, E.; Wenner, M. [Westinghouse Electric Company LLC, Cranberry Township, PA (United States); Lindley, B. [University of Cambridge (United Kingdom); Fiorina, C. [Polytechnic of Milan (Italy); Phillips, C. [Energy Solutions, Richland, WA (United States)

    2013-07-01

    This paper focuses on the challenges of implementing a thorium fuel cycle for recycle and transmutation of long-lived actinide components from used nuclear fuel. A multi-stage reactor system is proposed; the first stage consists of current UO{sub 2} once-through LWRs supplying transuranic isotopes that are continuously recycled and burned in second stage reactors in either a uranium (U) or thorium (Th) carrier. The second stage reactors considered for the analysis are Reduced Moderation Pressurized Water Reactors (RMPWRs), reconfigured from current PWR core designs, and Fast Reactors (FRs) with a burner core design. While both RMPWRs and FRs can in principle be employed, each reactor and associated technology has pros and cons. FRs have unmatched flexibility and transmutation efficiency. RMPWRs have higher fuel manufacturing and reprocessing requirements, but may represent a cheaper solution and the opportunity for a shorter time to licensing and deployment. All options require substantial developments in manufacturing, due to the high radiation field, and reprocessing, due to the very high actinide recovery ratio to elicit the claimed radiotoxicity reduction. Th reduces the number of transmutation reactors, and is required to enable a viable RMPWR design, but presents additional challenges on manufacturing and reprocessing. The tradeoff between the various options does not make the choice obvious. Moreover, without an overarching supporting policy in place, the costly and challenging technologies required inherently discourage industrialization of any transmutation scheme, regardless of the adoption of U or Th. (authors)

  4. Sensitivity to Nuclear Data and Neutron Source Type in Calculations of Transmutation Capabilities of the Energy Amplifier Demonstration Facility

    International Nuclear Information System (INIS)

    Dahlfors, Marcus

    2003-05-01

    This text is a summary of two studies the author has performed within the field of 3-D Monte Carlo calculations of Accelerator Driven Systems (ADS) for transmutation of nuclear waste. The simulations were carried out with the state-of-the-art computer code package EA-MC, developed by C. Rubbia and his group at CERN. The concept studied is ANSALDOs 80 MWth Energy Amplifier Demonstration Facility based on classical MOX-fuel technology and on molten Lead-Bismuth Eutectic cooling. A review of neutron cross section sensitivity in numerical calculations of an ADS and a comparative assessment relevant to the transmutation efficiency of plutonium and minor actinides in fusion/fission hybrids and ADS are presented

  5. Sensitivity to Nuclear Data and Neutron Source Type in Calculations of Transmutation Capabilities of the Energy Amplifier Demonstration Facility

    Energy Technology Data Exchange (ETDEWEB)

    Dahlfors, Marcus

    2003-05-01

    This text is a summary of two studies the author has performed within the field of 3-D Monte Carlo calculations of Accelerator Driven Systems (ADS) for transmutation of nuclear waste. The simulations were carried out with the state-of-the-art computer code package EA-MC, developed by C. Rubbia and his group at CERN. The concept studied is ANSALDOs 80 MWth Energy Amplifier Demonstration Facility based on classical MOX-fuel technology and on molten Lead-Bismuth Eutectic cooling. A review of neutron cross section sensitivity in numerical calculations of an ADS and a comparative assessment relevant to the transmutation efficiency of plutonium and minor actinides in fusion/fission hybrids and ADS are presented.

  6. Use of a multi-attribute utility theory for evaluating the best coolant material in transmutation reactors

    International Nuclear Information System (INIS)

    Yu, Dong Han; Han, Suk Joong; Kim, Do Hyung; Park, Won Suk

    1998-12-01

    In order to develop and design a good transmutation system, it is necessary first to select the best available coolant material for a reactor coolant system. Choosing the best coolant material may not be easy since there are several criteria associated with thermal performance, safety problem, cost problem, neutronic aspects. etc. The best option should be chosen based on the maximization of our needs in this situation. It is a challenging task. Decision theory can be employed to solve this type of problem. This report presents the feasibility study for evaluating the best coolant material in transmutation reactors based on the multi=attribute utility theory. The main problem presented here is how to logically evaluate candidate coolant materials under multiple criteria such as thermal performance, safety problem, cost problem, cost problem, neutronic aspects, etc. Since the current problem involves multiple criteria or attributes, first of all, the multi-attribute utility theory (MAUT) such as SMART and AHP has been extensively reviewed. Then, many candidate coolant material for transmutation reactors have been identified. The next step is to construct a value tree that express to reflect the relative importance of the attributes for overall evaluation. Finally, given these assignments, the final goal were obtained by manipulating these ranks through the value tree. The proposed approach is intended to help people be rational and logical in making decisions such complex tasks. (author). 8 refs., 7 tabs., 22 figs

  7. Experimental verification of neutron phenomenology in lead and of transmutation by adiabatic resonance crossing in accelerator driven systems a summary of the TARC project at CERN

    CERN Document Server

    Abánades, A; Andriamonje, Samuel A; Angelopoulos, Angelos; Apostolakis, Alcibiades J; Arnould, H; Belle, E; Bompas, C A; Brozzi, Delecurgo; Bueno, J; Buono, S; Carminati, F; Casagrande, Federico; Cennini, P; Collar, J I; Cerro, E; Del Moral, R; Díez, S; Dumps, Ludwig; Eleftheriadis, C; Embid, M; Fernández, R; Gálvez, J; García, J; Gelès, C; Giorni, A; González, E; González, O; Goulas, I; Heuer, R D; Hussonnois, M; Kadi, Y; Karaiskos, P; Kitis, G; Klapisch, Robert; Kokkas, P; Lacoste, V; Le Naour, C; López, C; Loiseaux, J M; Martínez-Val, J M; Méplan, O; Nifnecker, H; Oropesa, J; Papadopoulos, I M; Pavlopoulos, P; Pérez-Enciso, E; Pérez-Navarro, A; Perlado, M; Placci, Alfredo; Poza, M; Revol, Jean Pierre Charles; Rubbia, Carlo; Rubio, Juan Antonio; Sakelliou, L; Saldaña, F; Savvidis, E; Schussler, F; Sirvent, C; Tamarit, J; Trubert, D; Tzima, A; Viano, J B; Vieira, S L; Vlachoudis, V; Zioutas, Konstantin

    2001-01-01

    The Transmutation by Adiabatic Resonance Crossing (TARC) experiment was carried out as PS211 at the CERN PS from 1996 to 1999. Energy and space distributions of spallation neutrons (produced by 2.5 and 3.57 GeV/c CERN proton beams) slowing down in a 3.3*3.3*3 m/sup 3/ lead volume and neutron capture rates on long-lived fission fragments /sup 99/Tc and /sup 129/I demonstrate that Adiabatic Resonance Crossing (ARC) can be used to eliminate efficiently such nuclear waste and validate innovative simulation. (9 refs).

  8. Study of minor actinides transmutation in heavy water cooled tight-pitch lattice

    International Nuclear Information System (INIS)

    Xu Xiaoqin; Shiroya, S.

    2002-01-01

    Minor actinides inhere long half-life and high toxicity. It is an alternative technical pathway and helpful for reducing environmental impact to incinerate minor actinides in spent fuel of nuclear power plants. Because of its high neutron, γ and β emitting rates and heat generation rate, it is necessary to imply more severe control and shielding techniques in the chemical treatment and fabrication. From economic view-point, it is suitable to transmute minor actinides in concentrated way. A technique for MA transmutation by heavy water cooled tight-pitch lattice system is proposed, and calculated with SRAC95 code system. It is shown that tight-pitch heavy water lattice can transmute MA effectively. The accelerator-driven subcritical system is practical for MA transmutation because of its low fraction of effective delay neutrons

  9. Neutron transmutation doping of silicon

    International Nuclear Information System (INIS)

    Mireshghi, A.

    1989-01-01

    After a brief review of the theoretical bases for Neutron Transmutation Doping (NTD) process, the equations necessary for calculation of doped crystal resistivity (p) in terms of parameters of irradiation, such as time and neutron flux, are derived. The procedure for production of NTD-Si is described, important considerations are outlined and the advantages and applications are introduced. Also, an assessment is made of the practicality of using AEOI Research Reactor thermal neutron irradiation facilities for production of NTD-Si, which is concluded to be possible at reactor nominal operation conditions

  10. Specific contributions of the Dutch programme {open_quotes}RAS{close_quotes} towards accelerator-based transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Abrahams, K.; Franken, W.M.P.; Bultman, J.H. [Netherlands Energy Research Foundation (ECN), Petten (Netherlands)] [and others

    1995-10-01

    Accelerator-based transmutation is being studied by ECN within its general nuclear waste transmutation programme RAS. In this paper the following contributions are presented: (1) Evaluation of cross sections at intermediate energies, within an international frame given by NEA, (2) Cell calculations on the equilibration of transuranium actinides in thermal molten-salt transmuters, (3) Irradiation facilities at the European research reactor HFR in Petten, which have been constructed with the purpose to demonstrate and investigate the transmutation of waste in a high neutron flux, (4) Studies of accelerator-based neutron generating systems to transmute neptunium and technetium, (5) Comparison of several systems on the basis of criteria for successful nuclear waste-management.

  11. Transmutation of radioactive nuclear waste

    International Nuclear Information System (INIS)

    Toor, A; Buck, R

    2000-01-01

    Lack of a safe disposal method for radioactive nuclear waste (RNW) is a problem of staggering proportion and impact. A typical LWR fission reactor will produce the following RNW in one year: minor actinides (i.e. 237 Np, 242-243 Am, 243-245 Cm) ∼40 kg, long-lived fission products (i.e, 99 Tc, 93 Zr, 129 I, 135 Cs) ∼80 kg, short lived fission products (e.g. 137 Cs, 90 Sr) ∼50kg and plutonium ∼280 kg. The total RNW produced by France and Canada amounts to hundreds of metric tonnes per year. Obtaining a uniform policy dealing with RNW has been blocked by the desire on one hand to harvest the energy stored in plutonium to benefit society and on the other hand the need to assure that the stockpile of plutonium will not be channeled into future nuclear weapons. In the meantime, the quantity and handling of these materials represents a potential health hazard to the world's population and particularly to people in the vicinity of temporary storage facilities. In the U.S., societal awareness of the hazards associated with RNW has effectively delayed development of U.S. nuclear fission reactors during the past decade. As a result the U.S. does not benefit from the large investment of resources in this industry. Reluctance to employ nuclear energy has compelled our society to rely increasingly on non-reusable alternative energy sources; coal, oil, and natural gas. That decision has compounded other unresolved global problems such as air pollution, acid rain, and global warming. Relying on these energy sources to meet our increasing energy demands has led the U.S. to increase its reliance on foreign oil; a policy that is disadvantageous to our economy and our national security. RNW can be simplistically thought of as being composed of two principal components: (1) actinides with half lives up to 10 6 years and (2) the broad class of fission fragments with typical half lives of a few hundred years. One approach to the RNW storage problem has been to transmute the

  12. Requirements for an evaluated nuclear data file for accelerator-based transmutation

    International Nuclear Information System (INIS)

    Koning, A.J.

    1993-06-01

    The importance of intermediate-energy nuclear data files as part of a global calculation scheme for accelerator-based transmutation of radioactive waste systems (for instance with an accelerator-driven subcritical reactor) is discussed. A proposal for three intermediate-energy data libraries for incident neutrons and protons is presented: - a data library from 0 to about 100 MeV (first priority), - a reference data library from 20 to 1500 MeV, - an activation/transmutation library from 0 to about 100 MeV. Furthermore, the proposed ENDF-6 structure of each library is given. The data needs for accelerator-based transmutation are translated in terms of the aforementioned intermediate-energy data libraries. This could be a starting point for an ''International Evaluated Nuclear Data File for Transmutation''. This library could also be of interest for other applications in science and technology. Finally, some conclusions and recommendations concerning future evaluation work are given. (orig.)

  13. Definition of Technology Readiness Levels for Transmutation Fuel Development

    International Nuclear Information System (INIS)

    Jon Carmack; Kemal O. Pasamehmetoglu

    2008-01-01

    To quantitatively assess the maturity of a given technology, the Technology Readiness Level (TRL) process is used. The TRL process has been developed and successfully used by the Department of Defense (DOD) for development and deployment of new technology and systems for defense applications. In addition, NASA has also successfully used the TRL process to develop and deploy new systems for space applications. Transmutation fuel development is a critical technology needed for closing the nuclear fuel cycle. Because the deployment of a new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the transmutation fuel development program is very useful as a management and tracking tool. This report provides definition of the technology readiness level assessment process as defined for use in assessing nuclear fuel technology development for the Transuranic Fuel Development Campaign

  14. Partitioning and transmutation. Annual Report 1997

    Energy Technology Data Exchange (ETDEWEB)

    Enarsson, Aa; Landgren, A; Liljenzin, J O; Skaalberg, M; Spjuth, L [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Nuclear Chemistry

    1997-12-01

    The current research project on partitioning and transmutation at the Dept. of Nuclear Chemistry, CTH, has the primary objective to investigate separation processes useful in connection with transmutation of long-lived radionuclides in high level nuclear waste. Partitioning is necessary in order to recover and purify the elements before and after each irradiation in a P and T treatment. In order to achieve a high transmutation efficiency the chemical separation process used must have small losses to various waste streams. At present, only aqueous based separation processes are known to be able to achieve the high recovery and separation efficiencies necessary for a useful P and T process. Refs, figs, tabs.

  15. Transmutation doping of silicon solar cells

    Science.gov (United States)

    Wood, R. F.; Westbrook, R. D.; Young, R. T.; Cleland, J. W.

    1977-01-01

    Normal isotopic silicon contains 3.05% of Si-30 which transmutes to P-31 after thermal neutron absorption, with a half-life of 2.6 hours. This reaction is used to introduce extremely uniform concentrations of phosphorus into silicon, thus eliminating the areal and spatial inhomogeneities characteristic of chemical doping. Annealing of the lattice damage in the irradiated silicon does not alter the uniformity of dopant distribution. Transmutation doping also makes it possible to introduce phosphorus into polycrystalline silicon without segregation of the dopant at the grain boundaries. The use of neutron transmutation doped (NTD) silicon in solar cell research and development is discussed.

  16. Transmutation of long-lived fission products

    International Nuclear Information System (INIS)

    Abrahams, K.

    1994-01-01

    The time-accumulated dose related to technetium dominates the leakage doses in most scenarios for imperturbed geological disposal. If human intrusion into geologically stable repositories or other disturbances is taken into account, the actinides determine the maximum value of the expected individual dose rates of shorter storage times. Therefore actinides dominate the discussion on transmutation of nuclear waste. In principle current LWRs could be used for a massive transmutation of Tc and perhaps I. Fast reactors and HWRs have attractive potential with respect to transmutation in moderated assemblies. HWRs like CANDU have easy refuelling possibilities. (orig.)

  17. Human Performance Evaluation System

    International Nuclear Information System (INIS)

    Hardwick, R.J. Jr.

    1985-01-01

    Operating nuclear power plants requires high standards of performance, extensive training and responsive management. Despite our best efforts inappropriate human actions do occur, but they can be managed. An extensive review of License Event Reports (LERs) was conducted which indicated continual inadequacy in human performance and in evaluation of root causes. Of some 31,000 LERs, about 5,000 or 16% were directly attributable to inappropriate actions. A recent analysis of 87 Significant Event Reports (issued by INPO in 1983) identified inappropriate actions as being the most frequent root cause (44% of the total). A more recent analysis of SERs issued in 1983 and 1984 indicate that 52% of the root causes were attributed to human performance. The Human Performance Evaluation System (HPES) is a comprehensive, coordinated utility/industry system for evaluating and reporting human performance situtations. HPES is a result of the realization that current reporting system provide limited treatment of human performance and rarely provide adequate information about root causes of inappropriate actions by individuals. The HPES was implemented to identify and eliminate root causes of inappropriate actions

  18. Analysis of advanced european nuclear fuel cycle scenarios including transmutation and economical estimates

    International Nuclear Information System (INIS)

    Merino Rodriguez, I.; Alvarez-Velarde, F.; Martin-Fuertes, F.

    2013-01-01

    In this work the transition from the existing Light Water Reactors (LWR) to the advanced reactors is analyzed, including Generation III+ reactors in a European framework. Four European fuel cycle scenarios involving transmutation options have been addressed. The first scenario (i.e., reference) is the current fleet using LWR technology and open fuel cycle. The second scenario assumes a full replacement of the initial fleet with Fast Reactors (FR) burning U-Pu MOX fuel. The third scenario is a modification of the second one introducing Minor Actinide (MA) transmutation in a fraction of the FR fleet. Finally, in the fourth scenario, the LWR fleet is replaced using FR with MOX fuel as well as Accelerator Driven Systems (ADS) for MA transmutation. All scenarios consider an intermediate period of GEN-III+ LWR deployment and they extend for a period of 200 years looking for equilibrium mass flows. The simulations were made using the TR-EVOL code, a tool for fuel cycle studies developed by CIEMAT. The results reveal that all scenarios are feasible according to nuclear resources demand (U and Pu). Concerning to no transmutation cases, the second scenario reduces considerably the Pu inventory in repositories compared to the reference scenario, although the MA inventory increases. The transmutation scenarios show that elimination of the LWR MA legacy requires on one hand a maximum of 33% fraction (i.e., a peak value of 26 FR units) of the FR fleet dedicated to transmutation (MA in MOX fuel, homogeneous transmutation). On the other hand a maximum number of ADS plants accounting for 5% of electricity generation are predicted in the fourth scenario (i.e., 35 ADS units). Regarding the economic analysis, the estimations show an increase of LCOE (Levelized cost of electricity) - averaged over the whole period - with respect to the reference scenario of 21% and 29% for FR and FR with transmutation scenarios respectively, and 34% for the fourth scenario. (authors)

  19. Enhancing MA transmutation by irradiation of (MA, Zr)Hx in FBR blanket region - 5383

    International Nuclear Information System (INIS)

    Konashi, K.; Ikeda, K.; Itoh, K.; Hirai, M.; Koyama, T.; Kurosaki, K.

    2015-01-01

    Minor actinide (MA) hydride is proposed as transmutation target in sodium-cooled mixed oxide fuelled fast reactor. Preliminarily calculations have been done to check the transmutation efficiency of MA hydride targets. Three different types of MA target, MA-Zr alloy, (MA, Zr)O 2 and (MA, Zr)H x , have been compared on MA transmutation rate. The targets are assumed to be loaded around an active core in a 280 MWe sodium-cooled reactor; 54 MA target assemblies are respectively arranged in a row in the radial blanket zone. They are supposed to be irradiated for one year and then be cooled for 60 days. The transmuted mass has been evaluated by three-dimensional diffusion calculation to be 25, 15, 61 kg/EFPY for the alloy, the oxide and the hydride respectively, where production of MA in the active core is taken into account. The transmutation mass by (MA, Zr)H x is much larger than those by the other types of targets, while the core characteristics remain sound by locating MA targets outside of the active core. On top of that, two kinds of (MA, Zr)O 2 targets which are combined with ZrH x (x=1.7) pins have been calculated. Major Research/Development items are selected to establish the MA hydride transmutation method by reviewing technologies applicable to the transmutation system. The practical use of the MA hydride transmutation method is not far ahead technically, since this method can be developed by the extension of existing technologies. (authors)

  20. Development of nuclear transmutation technology - A study on accelerator-driven transmutation of long-lived radionuclide

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Chang Hyun; Chung, Kie Hyung; Hong, Sang Hee; Hwang, Il Soon; Park, Byung Gi; Yang, Hyung Lyeol; Kim, Duk Kyu; Huh, Chang Wook [Seoul National University, Seoul (Korea, Republic of)

    1996-07-01

    The objective of this study is to help establish the long-range nuclear waste disposal strategy through the investigations and comparisons of various= concepts of the accelerator-driven nuclear waste transmutation reactors, which have been suggested to replace the geological waste disposal due to the technical uncertainties in the long-time scale. Nuclear data, categorized in high -and low-energy neutron cross-sections, were investigated and the structures, principles, and recent progresses of proton linac were reviews, Also the accelerator power for transmutation and the economics were referred, The comparison of the transmutation concepts concentrated on two: Japanese OMEGA program of alloy fuelled system, Minor actinide molten salt system, and Eutectic alloy system and American ATW program of aqueous system and molten salt system. From the comparative study, a state-of-art of the technology has been identified as a concept employing proton-accelerate of 800 {approx} 1600 MeV with 100 mA capacity combined with liquid lead target, molten salt blanket and on-line chemical separation using centrifuge and electrowinning technology. 34 refs., 25 tabs., 64 figs. (author)

  1. Transmutation research and fuel cycle (report on discussion at Research Reactor Institute, Kyoto University)

    International Nuclear Information System (INIS)

    Yamana, Hajimu

    1999-01-01

    A symposium was held on a topic of 'Transmutation Research' on Dec. 21 and 22, 1999 at Research Reactor Institute, Kyoto University. This meeting was held as a joint-meeting of KUR's specialist meeting and Tokyo University's activity supported by the Grant-in-Aid for Scientific Research of Ministry of Education, Sport and Culture of Japan. This paper describes the overview of the discussions of this joint-meeting, and interprets their significance. Major themes discussed are, needed discussions on the transmutation research, policy and concepts of the organizations doing transmutation researches, a view from university side, transmutation researches in the oversea countries, opinions from various standpoints of the nuclear fuel cycle, conclusive discussions. 'the meanings of the transmutation research should be discussed together with the geological disposal and fast reactor system', 'transmutation may be a cooperative option for the disposal, thus, they should not be in a independent relation', and Balance evaluation will be needed' are the examples of the conclusive remarks of this meeting. (author)

  2. High performance systems

    Energy Technology Data Exchange (ETDEWEB)

    Vigil, M.B. [comp.

    1995-03-01

    This document provides a written compilation of the presentations and viewgraphs from the 1994 Conference on High Speed Computing given at the High Speed Computing Conference, {open_quotes}High Performance Systems,{close_quotes} held at Gleneden Beach, Oregon, on April 18 through 21, 1994.

  3. Atmospheric detritiation system performance

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Jalbert, R.A.; Rossmassler, R.L.

    1989-01-01

    An investigation of the performance of atmospheric detritiation systems and of possible ways for improving their performance was undertaken. Small-scale experiments demonstrated that system performance is strongly dependent on catalyst bed temperature. That may be helped by addition of protium to the process gas stream, but added protium at constant temperature does not increase conversion to HTO. Collection of the HTO on dry sieve with residual HTO fraction of less than one part in 10/sup 7/ was observed. Ways suggested for improvement in collection of HTO on molecular sieve beds include adding H/sub 2/O to the stream entering the molecular sieve and premoistening of the sieve with H/sub 2/O. While these improvement schemes may reduce HTO emissions they increase the amount of tritiated waste that must be handled

  4. Atmospheric detritiation system performance

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Jalbert, R.A.; Rossmassler, R.L.; Los Alamos National Lab., NM; Princeton Univ., NJ

    1988-01-01

    An investigation of the performance of atmospheric detritiation systems and of possible ways for improving their performance was undertaken. Small-scale experiments demonstrated that system performance is strongly dependent on catalyst bed temperature. That may be helped by addition of protium to the process gas stream, but added protium at constant temperature does not increase conversion to HTO. Collection of the HTO on dry sieve with residual HTO fraction of less than one part in 10 7 was observed. Ways suggested for improvement in collection of HTO on molecular sieve beds include adding H 2 O to the stream entering the molecular sieve and premoistening of the sieve with H 2 O. While these improvement schemes may reduce HTO emissions they increase the amount of tritiated waste that must be handled. 13 refs., 4 figs

  5. FCRD Transmutation Fuels Handbook 2015

    Energy Technology Data Exchange (ETDEWEB)

    Janney, Dawn Elizabeth [Idaho National Lab. (INL), Idaho Falls, ID (United States); Papesch, Cynthia Ann [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    Transmutation of minor actinides such as Np, Am, and Cm in spent nuclear fuel is of international interest because of its potential for reducing the long-term health and safety hazards caused by the radioactivity of the spent fuel. One important approach to transmutation (currently being pursued by the DOE Fuel Cycle Research & Development Advanced Fuels Campaign) involves incorporating the minor actinides into U-Pu-Zr alloys, which can be used as fuel in fast reactors. It is, therefore, important to understand the properties of U-Pu-Zr alloys, both with and without minor actinide additions. In addition to requiring extensive safety precautions, alloys containing U and Pu are difficult to study for numerous reasons, including their complex phase transformations, characteristically sluggish phase-transformation kinetics, tendency to produce experimental results that vary depending on the histories of individual samples, and sensitivity to contaminants such as oxygen in concentrations below a hundred parts per million. Many of the experimental measurements were made before 1980, and the level of documentation for experimental methods and results varies widely. It is, therefore, not surprising that little is known with certainty about U-Pu-Zr alloys, and that general acceptance of results sometimes indicates that there is only a single measurement for a particular property. This handbook summarizes currently available information about U, Pu, Zr, and alloys of two or three of these elements. It contains information about phase diagrams and related information (including phases and phase transformations); heat capacity, entropy, and enthalpy; thermal expansion; and thermal conductivity and diffusivity. In addition to presenting information about materials properties, it attempts to provide information about how well the property is known and how much variation exists between measurements. Although the handbook includes some references to publications about modeling

  6. An optimization methodology for heterogeneous minor actinides transmutation

    Science.gov (United States)

    Kooyman, Timothée; Buiron, Laurent; Rimpault, Gérald

    2018-04-01

    In the case of a closed fuel cycle, minor actinides transmutation can lead to a strong reduction in spent fuel radiotoxicity and decay heat. In the heterogeneous approach, minor actinides are loaded in dedicated targets located at the core periphery so that long-lived minor actinides undergo fission and are turned in shorter-lived fission products. However, such targets require a specific design process due to high helium production in the fuel, high flux gradient at the core periphery and low power production. Additionally, the targets are generally manufactured with a high content in minor actinides in order to compensate for the low flux level at the core periphery. This leads to negative impacts on the fuel cycle in terms of neutron source and decay heat of the irradiated targets, which penalize their handling and reprocessing. In this paper, a simplified methodology for the design of targets is coupled with a method for the optimization of transmutation which takes into account both transmutation performances and fuel cycle impacts. The uncertainties and performances of this methodology are evaluated and shown to be sufficient to carry out scoping studies. An illustration is then made by considering the use of moderating material in the targets, which has a positive impact on the minor actinides consumption but a negative impact both on fuel cycle constraints (higher decay heat and neutron) and on assembly design (higher helium production and lower fuel volume fraction). It is shown that the use of moderating material is an optimal solution of the transmutation problem with regards to consumption and fuel cycle impacts, even when taking geometrical design considerations into account.

  7. Transmutation: The Roots of the Dream.

    Science.gov (United States)

    Karpenko, Vladimir

    1995-01-01

    Examines the history of alchemical attempts at transmutation and classifies them by differing approaches and techniques. Traces the development of alchemy in Asia, Europe, and the Middle East, and compares alchemy with craftsmanship. (18 references) (DDR)

  8. Transmutation of Tc-99 in fission reactors

    International Nuclear Information System (INIS)

    Kloosterman, J.L.; Li, J.M.

    1994-12-01

    Transmutation of Tc-99 in three different types of fission reactors is considered: A heavy water reactor, a fast reactor and a light water reactor. For the first type a CANDU reactor was chosen, for the second one the Superphenix reactor, and for the third one a PWR. The three most promising Tc-99 transmuters are the fast reactor with a moderated subassembly in the inner core, a fast reactor with a non-moderated subassembly in the inner core, and a heavy water reactor with Tc-99 target pins in the moderator between the fuel bundles. Transmutation half lives of 15 to 25 years can be achieved, with yearly transmuted Tc-99 masses of about 100 kg at a thermal reactor power of about 3000 MW. (orig.)

  9. Separation of actinides and their transmutation

    International Nuclear Information System (INIS)

    Bouchard, M.; Bathelier, M.; Cousin, M.

    1978-08-01

    Neutron irradiation of long-half-life actinides for transmutation into elements with shorter half-life is investigated as a means to reduce the long-term hazards of these actinides. The effectiveness of the method is analysed by applying it to fission product solutions from the first extraction cycle of fuel reprocessing plants. Basic principles, separation techniques and transmutation efficiencies are studied and discussed in detail

  10. Generation IV and transmutation materials (GETMAT) project: First assessment of selected results

    International Nuclear Information System (INIS)

    Fazio, Concetta; Serrano, Marta; Gessi, Alessandro; Henry, Jean; Malerba, Lorenzo

    2015-01-01

    The Generation IV and Transmutation Material (GETMAT) project has been initiated within the 7. EURATOM framework programme with the objective to support the development of innovative reactor designs. Emphasis has been put on the investigation, both in the theoretical and experimental domains, of selected material properties that are cross-cutting among the various Generation IV and Transmutation systems. The selection of the properties to be investigated has been performed by identifying relevant conditions of key components as cores and primary systems. Moreover, taking into account the envisaged conditions of these components it turned out that innovative materials might be a better choice with respect to conventional nuclear grade steels. Therefore, ODS alloys and 9-12 Cr Ferritic/Martensitic (F/M) steels have been selected as reference for the GETMAT project. The R and D activities have been focused on basic characterisation of ODS alloys produced ad hoc for the project and on an extensive PIE programme of F/M steels irradiated in previous programmes. Finally, first principle modelling studies to explain irradiation hardening and embrittlement of F/M alloys were an additional important task. The objective of this manuscript is to make a first assessment of the results obtained within GETMAT. (authors)

  11. Enterprise performance measurement systems

    Directory of Open Access Journals (Sweden)

    Milija Bogavac

    2014-10-01

    Full Text Available Performance measurement systems are an extremely important part of the control and management actions, because in this way a company can determine its business potential, its market power, potential and current level of business efficiency. The significance of measurement consists in influencing the relationship between the results of reproduction (total volume of production, value of production, total revenue and profit and investments to achieve these results (factors of production spending and hiring capital in order to achieve the highest possible quality of the economy. (The relationship between the results of reproduction and investment to achieve them quantitatively determines economic success as the quality of the economy. Measuring performance allows the identification of the economic resources the company has, so looking at the key factors that affect its performance can help to determine the appropriate course of action.

  12. Spatial heterogeneity of tungsten transmutation in a fusion device

    Science.gov (United States)

    Gilbert, M. R.; Sublet, J.-Ch.; Dudarev, S. L.

    2017-04-01

    Accurately quantifying the transmutation rate of tungsten (W) under neutron irradiation is a necessary requirement in the assessment of its performance as an armour material in a fusion power plant. The usual approach of calculating average responses, assuming large, homogenised material volumes, is insufficient to capture the full complexity of the transmutation picture in the context of a realistic fusion power plant design, particularly for rhenium (Re) production from W. Combined neutron transport and inventory simulations for representative spatially heterogeneous high-resolution models of a fusion power plant show that the production rate of Re is strongly influenced by the surrounding local spatial environment. Localised variation in neutron moderation (slowing down) due to structural steel and coolant, particularly water, can dramatically increase Re production because of the huge cross sections of giant resolved resonances in the neutron-capture reaction of 186W at low neutron energies. Calculations using cross section data corrected for temperature (Doppler) effects suggest that temperature may have a relatively lesser influence on transmutation rates.

  13. Nudatra: nuclear data for transmutation in IP-Eurotrans

    International Nuclear Information System (INIS)

    Gonzalez, E.M.; Koning, A.; Leray, S.; Plompen, A.; Sanz, J.

    2007-01-01

    The objective of NUDATRA, Domain 5 of the EU Integrated Project EUROTRANS (FI6W-CT-2004- 516520), is to improve and validate the nuclear data and simulation tools required for the development and optimisation of nuclear waste transmutation, ADS dedicated transmutation systems and the associated fuel cycle. Activities are essentially aimed at supplementing the evaluated nuclear data libraries and improving the reaction models for materials in transmutation fuels, coolants, spallation targets, internal structures, and reactor and accelerator shielding, relevant for the design and optimisation of the ETD and XT-ADS. These activities are distributed over four Work Packages: Sensitivity Analysis and Validation of Nuclear Data and Simulation Tools; Low- and Intermediate-energy Nuclear Data Measurements; Nuclear Data Libraries Evaluation and Low-intermediate Energy Models; and High-energy Experiments and Modelling.The main accomplishments expected from NUDATRA are: 1) new measurements and evaluations of Pb-Bi cross-sections, i.e. inelastic, (n,xn) and isomer branching ratios (Po production); 2) new measurements and evaluations for minor actinides particularly the capture in 243 Am and fission on 244 Cm; 3) improvement of TALYS as an evaluation tool and as an a priori model for the estimation of low- and intermediate-energy reaction cross-section; 4) high-energy model improvement based on measurements, particularly for the prediction of the spallation products, and gas (H, He) production cross-sections; 5) sensitivity and uncertainty analysis of ETD fuel cycle and related covariance issues. (authors)

  14. The status of nuclear data for transmutation calculations

    International Nuclear Information System (INIS)

    Wilson, W.B.; England, T.R.; MacFarlane, R.E.; Muir, D.W.; Young, P.G.

    1995-01-01

    At this point, the accurate description of transmutation products in a radiation environment is more a nuclear data problem than a code development effort. We have used versions of the CINDER code for over three decades to describe the transmutation of nuclear reactor fuels in radiation environments. The need for the accurate description of reactor neutron-absorption, decay-power, and decay-spectra properties have driven many AEC, ERDA, and DOE supported nuclear data development efforts in this period. The level of cross-section, decay, and fission-yield data has evolved from rudimentary to a comprehensive ENDF/B-VI library permitting great precision in reactor calculations. The precision of the data supporting reactor simulations provides a sturdy foundation for the data base required for the wide range of transmutation problems currently studied. However, such reactor problems are typically limited to neutron energies below 10 MeV or so; reaction and decay data are required for actinides of, say, 90 ≤ Z ≤ 96 neutron-rich fission products of 22 ≤ Z ≤ 72. The expansion into reactor structural materials and fusion systems extends these ranges in energy and Z somewhat. The library of nuclear data, constantly growing in breadth and quality with international cooperation, is now described in the following table

  15. Analysis of minor actinides transmutation for a Molten Salt Fast Reactor

    International Nuclear Information System (INIS)

    Yu, Chenggang; Li, Xiaoxiao; Cai, Xiangzhou; Zou, Chunyan; Ma, Yuwen; Han, Jianlong; Chen, Jingen

    2015-01-01

    Highlights: • The transmutation of MA in a 500 MWth MSFR is analyzed. • A larger MA loading can enhance the MA transmutation and deepen the burnup. • The MA transmutation efficiency can reach 95%. • The FTC can satisfy the safe operating requirement during the entire operating. - Abstract: As one of the six candidate reactors chosen by the Generation IV International Forum (GIF), Molten Salt Fast Reactor (MSFR) has many outstanding advantages and features for advanced nuclear fuel utilization. Effective transmutation of minor actinides (MA) could be attained in this kind of fast reactor, which is of importance in the future closed nuclear fuel cycle scenario. In this work, we attempt to study the MA transmutation capability in a MSFR with power of 500 MWth by analyzing the neutronics characteristics for different MA loadings. The calculated results show that MA loading plays an important role in the reactivity evolution of the MSFR. A larger MA loading is favorable to improving the MA transmutation performance and simultaneously to reducing the fissile consumption. When MA = 18.17 mol%, the transmutation fraction can achieve to about 95% on iso-breeding. We also find that although the fuel temperature coefficient (FTC) decreases with the increasing MA loading, it is still negative enough to keep the safety of the MSFR during the whole operation time. The MA contribution to the effective delayed neutron fraction (EDNF) and the intensity of spontaneous fission neutron (ISFN) are also analyzed. Also MA loading can affect the EDNF during the operation and the ISFN of the MSFR is dominated by 244 Cm. Finally, we analyze the effect of the core power on MA transmutation capability. The result shows that for all the operating powers the depletion ratio of MA to HN increases with time and reaches a maximum value. And additional MA should be fed into the fuel salt before the MA depletion ratio reaches the peak value to improve its transmutation capability. The net

  16. Advanced Reactor Technology Options for Utilization and Transmutation of Actinides in Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    2009-09-01

    -2007). The overall objective of the CRP, performed within the framework of the TWG-FR) was to increase the capability of interested Member States in developing and applying advanced technologies in the area of long lived radioactive waste utilization and transmutation. The final goal of the CRP was to deepen the understanding of the dynamics of transmutation systems, to qualify the available methods, specify their range of validity, and formulate requirements for future theoretical developments. Twenty institutions from 15 Member States and three international organizations have actively participated in this CRP. The comparative investigations cover burner reactors and transmuters both containing fertile and fertile-free fuels. The systems are designed either as neutronically critical or sub-critical (hybrid) driven by an external neutron source. The neutron spectra of the reactors extend from low thermal to fusion neutron energy levels. Further, systems with solid fuels and with molten salt fuels are compared. The solid fuel systems investigated also cover the impact of various coolants from sodium to heavy liquid metals and gas

  17. FCRD Advanced Reactor (Transmutation) Fuels Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Janney, Dawn Elizabeth [Idaho National Lab. (INL), Idaho Falls, ID (United States); Papesch, Cynthia Ann [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    alloys of two or three of these elements. It contains information about phase diagrams and related information (including phases and phase transformations); heat capacity, entropy, and enthalpy; thermal expansion; and thermal conductivity and diffusivity. In addition to presenting information about materials properties, the handbook attempts to provide information about how well the property is known and how much variation exists between measurements. Although it includes some results from models, its primary focus is experimental data. The Handbook is organized in two sections: one with information about the U-Pu-Zr ternary and one with information about other elements and binary and vi ternary alloys in the U-Np-Pu-Am-La-Ce-Pr-Nd-Zr system. Within each section, information about elements is presented first, followed by information about binary alloys, then information about ternary alloys. The order in which the elements in each alloy are mentioned follows the order in the first sentence of this paragraph. Much of the information on the U-Pu-Zr system repeats information from the FCRD Transmutation Fuels Handbook 2015. Most of the other data has been published elsewhere (although scattered throughout numerous references, some quite obscure); however, some data from Idaho National Laboratory is presented here for the first time. As the FCRD programmatic mission evolves, future editions of this handbook will begin to include other advanced reactor fuel designs and compositions. Hence, the title of the handbook will transition to the Advanced Reactor Fuels Handbook.

  18. Development of high level radwaste treatment and conversion technology. Transmutation technology development

    Energy Technology Data Exchange (ETDEWEB)

    Park, Won Suk; Song, T Y; Kim, Y H

    2001-03-01

    The final disposition of spent fuel has been, and continues to be, an important issue of nuclear industry. The conceptual design for the accelerator driven transmutation system HYPER is scheduled to be completed by the year of 2006. As the first step for the conceptual design, a study to determine 1. sub-critical core characteristics, 2. fuel concept, 3. coolant system concept, 4. spallation target concept for the HYPER was performed from 1997 to 2000. Most of concept studies were done on the literature basis. The major objectives of the study is to give a guid-line for the second stage research which will be performed during 2001-2003. In addition, the technologies related with TRU-Zr fuel and Pb-Bi coolant can be utilized for the future nuclear reactor development such as generation 4.

  19. Development of high level radwaste treatment and conversion technology. Transmutation technology development

    International Nuclear Information System (INIS)

    Park, Won Suk; Song, T. Y.; Kim, Y. H.

    2001-03-01

    The final disposition of spent fuel has been, and continues to be, an important issue of nuclear industry. The conceptual design for the accelerator driven transmutation system HYPER is scheduled to be completed by the year of 2006. As the first step for the conceptual design, a study to determine 1. sub-critical core characteristics, 2. fuel concept, 3. coolant system concept, 4. spallation target concept for the HYPER was performed from 1997 to 2000. Most of concept studies were done on the literature basis. The major objectives of the study is to give a guid-line for the second stage research which will be performed during 2001-2003. In addition, the technologies related with TRU-Zr fuel and Pb-Bi coolant can be utilized for the future nuclear reactor development such as generation 4

  20. The JAERI-KEK joint project on high intensity proton accelerator and overview of nuclear transmutation experimental facilities

    International Nuclear Information System (INIS)

    Ikeda, Yujiro

    2001-01-01

    A status of the JAERI/KEK joint project on High Intensity Proton Accelerator is overviewed. It is highlighted that Experimental facilities for development of the accelerator driven system (ADS) for nuclear transmutation technology is proposed under the project. (author)

  1. Dynamic criteria for partitioning and transmutation

    International Nuclear Information System (INIS)

    Lu, A.H.

    1991-11-01

    This paper addresses dynamic criteria intended to optimize partitioning and transmutation (P-T) concept development supporting improved nuclear waste management. Six criteria are proposed initially and the rationale for each is briefly explained. Each criterion is used as a measure (or dimension) on which the developed concepts can be evaluated. The criteria allow the P-T concepts to be evaluated in an integral system including long-term energy needs, fuel cycle, and waste management. New criteria will be identified along with the P-T concept development, and each criterion will be realistically weighted so that it is comparable in an overall criteria evaluation. The weights are subject to change as a result of technical advancements and public perception on various issues. Incomplete criteria will result in a poor choice because important factors may not be considered when the decision is made. A successful decision on the optimal P-T system depends on the completeness of criteria (dimensions) as well as realistic weights assigned to each criterion

  2. LANSCE target system performance

    International Nuclear Information System (INIS)

    Russell, G.J.; Gilmore, J.S.; Robinson, H.; Legate, G.L.; Bridge, A.; Sanchez, R.J.; Brewton, R.J.; Woods, R.; Hughes, H.G. III

    1989-01-01

    We measured neutron beam fluxes at LANSCE using gold foil activation techniques. We did an extensive computer simulation of the as-built LANSCE Target/Moderator/Reflector/Shield geometry. We used this mockup in a Monte Carlo calculation to predict LANSCE neutronic performance for comparison with measured results. For neutron beam fluxes at 1 eV, the ratio of measured data to calculated varies from ∼0.6-0.9. The computed 1 eV neutron leakage at the moderator surface is 3.9 x 10 10 n/eV-sr-s-μA for LANSCE high-intensity water moderators. The corresponding values for the LANSCE high-resolution water moderator and the liquid hydrogen moderator are 3.3 and 2.9 x 10 10 , respectively. LANSCE predicted moderator intensities (per proton) for a tungsten target are essentially the same as ISIS predicted moderator intensities for a depleted uranium target. The calculated LANSCE steady state unperturbed thermal (E 13 n/cm 2 -s. The unique LANSCE split-target/flux-trap-moderator system is performing exceedingly well. The system has operated without a target or moderator change for over three years at nominal proton currents of ∼25 μA of 800-MeV protons. (author)

  3. Transmutation studies in France, R and D programme on fuels and targets

    International Nuclear Information System (INIS)

    Boidron, M.; Chauvin, N.; Garnier, J.C.; PIllon, S.; Vambenepe, G.

    2001-01-01

    For the management of high level and long-lived radioactive waste, a large and continuous research and development effort is carried out in France, to provide a wide range of scientific and technical alternatives along three lines, partitioning and transmutation, disposal in deep geological formations and long term interim surface or subsurface storage. For the line one, and in close link with the partitioning studies, research is carried out to evaluate the transmutation potential of long-lived waste in appropriate reactors configurations (scenarios) relying on current technologies as well as innovative reactors. Performed to evaluate the theoretical feasibility of the Pu consumption and waste transmutation from the point of view of the reactor cores physics to reach the equilibrium of the material fluxes (i.e. consumption = production) and of the isotopic compositions of the fuels, these studies insure the 'scientific' part of the transmutation feasibility. For the technological part of the feasibility of waste transmutation in reactors, a large programme on fuel development is underway. This includes solutions based on the advanced concepts for plutonium fuels in PWR and the development of specific fuels and targets for transmutation in fast reactors in the critical or sub-critical state. For the waste transmutation in fast reactors, an important programme has been launched to develop specific fuels and targets with experiments at various stages of preparation in different experimental reactors including Phenix. Composite fuels as well as particle fuels are considered. This programme is presented and recent results concerning the preparation of the experiments, the characterisation of the compounds properties, the thermal and mechanical modelling and the behaviour of U free fuels are given. (author)

  4. Research on accelerator-driven transmutation and studies of experimental facilities

    Energy Technology Data Exchange (ETDEWEB)

    Takizuka, Takakazu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-11-01

    JAERI is carrying out R and Ds on accelerator-driven transmutation systems under the national OMEGA Program that aims at development of the technology to improve efficiency and safety in the final disposal of radioactive waste. Research facilities for accelerator-driven transmutation experiments are proposed to construct within the framework of the planned JAERI Neutron Science Project. This paper describes the features of the proposed accelerator-driven transmutation systems and their technical issues to be solved. A research facility plan under examination is presented. The plan is divided in two phases. In the second phase, technical feasibility of accelerator-driven systems will be demonstrated with a 30-60 MW experimental integrated system and with a 7 MW high-power target facility. (author)

  5. Conceptual design of a fusion-fission hybrid reactor for transmutation of high level nuclear waste

    International Nuclear Information System (INIS)

    Qiu, L.J.; Wu, Y.C.; Yang, Y.W.; Wu, Y.; Luan, G.S.; Xu, Q.; Guo, Z.J.; Xiao, B.J.

    1994-01-01

    To assess the feasibility of the transmutation of long-lived radioactive waste using fusion-fission hybrid reactors, we are studying all the possible types of blanket, including a comparison of the thermal and fast neutron spectrum blankets. Conceptual designs of a small tokamak hybrid blanket with small inventory of actinides and fission products are presented. The small inventory of wastes makes the system safer. The small hybrid reactor system based on a fusion core with experimental parameters to be realized in the near future can effectively transmute actinides and fission products at a neutron wall loading of 1MWm -2 . An innovative energy system is also presented, including a fusion driver, fuel breeder, high level waste transmuter, fission reactor and so on. An optimal combination of all types of reactor is proposed in the system. ((orig.))

  6. Transmutation Theory in the Greek Alchemical Corpus.

    Science.gov (United States)

    Dufault, Olivier

    2015-08-01

    This paper studies transmutation theory as found in the texts attributed to Zosimus of Panopolis, "the philosopher Synesius," and "the philosopher Olympiodorus of Alexandria." It shows that transmutation theory (i.e. a theory explaining the complete transformation of substances) is mostly absent from the work attributed to these three authors. The text attributed to Synesius describes a gilding process, which is similar to those described by Pliny and Vitruvius. The commentary attributed to Olympiodorus is the only text studied here that describes something similar to a transmutation theory. It is unclear, however, if this was a theory of transmutation or if the writer meant something more like the literal meaning of the word "ekstrophē," a term used to describe the transformation of metals, as the "turning inside-out" of what is hidden in a substance. A similar conception of ekstrophē can be found in the works of Zosimus, who discussed transmutation to make an analogy with self-purification processes, which, from the perspective of his own anthropogony, consisted in the "turning inside-out" of the "inner human" (esō anthrōpos).

  7. Simulations for the transmutation of nuclear wastes with hybrid reactors

    International Nuclear Information System (INIS)

    Vuillier, St.

    1998-06-01

    A Monte Carlo simulation, devoted to the spallation, has been built in the framework of the hybrid systems proposed for the nuclear wastes incineration. This system GSPARTE, described the reactions evolution. It takes into account and improves the nuclear codes and the low and high energy particles transport in the GEANT code environment, adapted to the geometry of the hybrid reactors. Many applications and abacus useful for the wastes transmutation, have been realized with this system: production of thick target neutrons, source definition, material damages. (A.L.B.)

  8. Partitioning and Transmutation. Annual Report 2003

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, S.; Ekberg, C.; Liljenzin, J.O.; Nilsson, M.; Skarnemark, G. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Materials and Surface Chemistry

    2004-02-01

    The long-lived elements in the spent nuclear fuels are mostly actinides, some fission products and activation products. To be able to destroy the long-lived elements in a transmutation process they must be separated from the rest of the spent nuclear fuel. The most difficult separations to obtain are the one between trivalent actinides and lanthanides, due to their relatively similar chemical properties, and the one between different actinides themselves. Solvent extraction is an efficient and well-known method that makes it possible to obtain separation factors that fulfil the highly set demands on purity of the separated phases and on small losses. Chalmers Univ. of Technology is involved in research regarding the separation of actinides and lanthanides and between the actinides themselves as a partner in the European Union project PARTNEW. This project was a part of the fifth framework programme and was concluded in September 2003, but the work is continued in the sixth framework programme under the acronym EUROPART (start January 2004). We mainly cooperate with the Univ. of Reading, which send us new nitrogen containing ligands for evaluation of their extraction properties. The main focus is to understand the basic chemistry of these systems but also to study some process behaviour for future full-scale plants.

  9. Partitioning and Transmutation. Annual Report 2003

    International Nuclear Information System (INIS)

    Andersson, S.; Ekberg, C.; Liljenzin, J.O.; Nilsson, M.; Skarnemark, G.

    2004-02-01

    The long-lived elements in the spent nuclear fuels are mostly actinides, some fission products and activation products. To be able to destroy the long-lived elements in a transmutation process they must be separated from the rest of the spent nuclear fuel. The most difficult separations to obtain are the one between trivalent actinides and lanthanides, due to their relatively similar chemical properties, and the one between different actinides themselves. Solvent extraction is an efficient and well-known method that makes it possible to obtain separation factors that fulfil the highly set demands on purity of the separated phases and on small losses. Chalmers Univ. of Technology is involved in research regarding the separation of actinides and lanthanides and between the actinides themselves as a partner in the European Union project PARTNEW. This project was a part of the fifth framework programme and was concluded in September 2003, but the work is continued in the sixth framework programme under the acronym EUROPART (start January 2004). We mainly cooperate with the Univ. of Reading, which send us new nitrogen containing ligands for evaluation of their extraction properties. The main focus is to understand the basic chemistry of these systems but also to study some process behaviour for future full-scale plants

  10. First results and future trends for the transmutation of long-lived radioactive wastes

    International Nuclear Information System (INIS)

    Prunier, C.; Salvatores, M.; Guerin, Y.; Zaetta, A.

    1993-01-01

    In the frame of the CEA SPIN program, a project has been set-up at the Direction of Nuclear Reactors of CEA, to study the transmutation of long-lived radioactive products (both minor actinides and fission products) resulting from the operation of current nuclear power plants. The program is focused on: transmutation in minor actinides (Np, Am) in fission reactors of known technology (both of the PWR or the fast reactor type), using the so-called ''homogeneous'' (mixed with Uranium or Uranium-Plutonium), and ''heterogeneous'' (mixed with inert matrices) recycling modes for both type of reactors. Transmutation studies in dedicated devices (both fission reactors with actinide/plutonium fuel or with high thermal flux, and particle accelerator-based systems). Fuel studies related to both homogeneous and heterogeneous recycling modes in fission reactors. For the homogeneous recycling mode, some experimental irradiations results are available from past PHENIX programs. For the heterogeneous mode, very limited experimental results are available, and new theoretical and experimental work is underway on the use of appropriate inert matrices. Basic data studies to assess the quality of existing nuclear data for fission reactor transmutation studies, future data needs of relevance, and model/data developments needed for accelerator-based systems. Strategy studies, to evaluate the consequences of the different transmutation options on the fuel cycle, according to different scenarios of nuclear power development. 7 refs., 3 figs., 5 tabs

  11. Method to Reduce Long-lived Fission Products by Nuclear Transmutations with Fast Spectrum Reactors.

    Science.gov (United States)

    Chiba, Satoshi; Wakabayashi, Toshio; Tachi, Yoshiaki; Takaki, Naoyuki; Terashima, Atsunori; Okumura, Shin; Yoshida, Tadashi

    2017-10-24

    Transmutation of long-lived fission products (LLFPs: 79 Se, 93 Zr, 99 Tc, 107 Pd, 129 I, and 135 Cs) into short-lived or non-radioactive nuclides by fast neutron spectrum reactors without isotope separation has been proposed as a solution to the problem of radioactive wastes disposal. Despite investigation of many methods, such transmutation remains technologically difficult. To establish an effective and efficient transmutation system, we propose a novel neutron moderator material, yttrium deuteride (YD 2 ), to soften the neutron spectrum leaking from the reactor core. Neutron energy spectra and effective half-lives of LLFPs, transmutation rates, and support ratios were evaluated with the continuous-energy Monte Carlo code MVP-II/MVP-BURN and the JENDL-4.0 cross section library. With the YD 2 moderator in the radial blanket and shield regions, effective half-lives drastically decreased from 106 to 102 years and the support ratios reached 1.0 for all six LLFPs. This successful development and implementation of a transmutation system for LLFPs without isotope separation contributes to a the ability of fast spectrum reactors to reduce radioactive waste by consuming their own LLFPs.

  12. Target fuels for plutonium and minor actinide transmutation in pressurized water reactors

    International Nuclear Information System (INIS)

    Washington, J.; King, J.; Shayer, Z.

    2017-01-01

    Highlights: • We evaluate transmutation fuels for plutonium and minor actinide destruction in LWRs. • We model a modified AP1000 fuel assembly in SCALE6.1. • We evaluate spectral shift absorber coatings to improve transmutation performance. - Abstract: The average nuclear power plant produces twenty metric tons of used nuclear fuel per year, containing approximately 95 wt% uranium, 1 wt% plutonium, and 4 wt% fission products and transuranic elements. Fast reactors are a preferred option for the transmutation of plutonium and minor actinides; however, an optimistic deployment time of at least 20 years indicates a need for a nearer-term solution. This study considers a method for plutonium and minor actinide transmutation in existing light water reactors and evaluates a variety of transmutation fuels to provide a common basis for comparison and to determine if any single target fuel provides superior transmutation properties. A model developed using the NEWT module in the SCALE 6.1 code package provided performance data for the burnup of the target fuel rods in the present study. The target fuels (MOX, PuO_2, Pu_3Si_2, PuN, PuUZrH, PuZrH, PuZrHTh, and PuZrO_2) are evaluated over a 1400 Effective Full Power Days (EFPD) interval to ensure each assembly remained critical over the entire burnup period. The MOX (5 wt% PuO_2), Pu_0_._3_1ZrH_1_._6Th_1_._0_8, and PuZrO_2MgO (8 wt% Pu) fuels result in the highest rate of plutonium transmutation with the lowest rate of curium-244 production. This study selected eleven different burnable absorbers (B_4C, CdO, Dy_2O_3, Er_2O_3, Eu_2O_3, Gd_2O_3, HfO_2, In_2O_3, Lu_2O_3, Sm_2O_3, and TaC) for evaluation as spectral shift absorber coatings on the outside of the fuel pellets to determine if an absorber coating can improve the transmutation properties of the target fuels. The PuZrO_2MgO (8 wt% Pu) target fuel with a coating of Lu_2O_3 resulted in the highest rate of plutonium transmutation with the greatest reduction in curium

  13. Target fuels for plutonium and minor actinide transmutation in pressurized water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Washington, J., E-mail: jwashing@gmail.com [Nuclear Science and Engineering Program, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401 (United States); King, J., E-mail: kingjc@mines.edu [Nuclear Science and Engineering Program, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401 (United States); Shayer, Z., E-mail: zshayer@mines.edu [Department of Physics, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401 (United States)

    2017-03-15

    Highlights: • We evaluate transmutation fuels for plutonium and minor actinide destruction in LWRs. • We model a modified AP1000 fuel assembly in SCALE6.1. • We evaluate spectral shift absorber coatings to improve transmutation performance. - Abstract: The average nuclear power plant produces twenty metric tons of used nuclear fuel per year, containing approximately 95 wt% uranium, 1 wt% plutonium, and 4 wt% fission products and transuranic elements. Fast reactors are a preferred option for the transmutation of plutonium and minor actinides; however, an optimistic deployment time of at least 20 years indicates a need for a nearer-term solution. This study considers a method for plutonium and minor actinide transmutation in existing light water reactors and evaluates a variety of transmutation fuels to provide a common basis for comparison and to determine if any single target fuel provides superior transmutation properties. A model developed using the NEWT module in the SCALE 6.1 code package provided performance data for the burnup of the target fuel rods in the present study. The target fuels (MOX, PuO{sub 2}, Pu{sub 3}Si{sub 2}, PuN, PuUZrH, PuZrH, PuZrHTh, and PuZrO{sub 2}) are evaluated over a 1400 Effective Full Power Days (EFPD) interval to ensure each assembly remained critical over the entire burnup period. The MOX (5 wt% PuO{sub 2}), Pu{sub 0.31}ZrH{sub 1.6}Th{sub 1.08}, and PuZrO{sub 2}MgO (8 wt% Pu) fuels result in the highest rate of plutonium transmutation with the lowest rate of curium-244 production. This study selected eleven different burnable absorbers (B{sub 4}C, CdO, Dy{sub 2}O{sub 3}, Er{sub 2}O{sub 3}, Eu{sub 2}O{sub 3}, Gd{sub 2}O{sub 3}, HfO{sub 2}, In{sub 2}O{sub 3}, Lu{sub 2}O{sub 3}, Sm{sub 2}O{sub 3}, and TaC) for evaluation as spectral shift absorber coatings on the outside of the fuel pellets to determine if an absorber coating can improve the transmutation properties of the target fuels. The PuZrO{sub 2}MgO (8 wt% Pu) target

  14. The Transmuted Generalized Inverse Weibull Distribution

    Directory of Open Access Journals (Sweden)

    Faton Merovci

    2014-05-01

    Full Text Available A generalization of the generalized inverse Weibull distribution the so-called transmuted generalized inverse Weibull distribution is proposed and studied. We will use the quadratic rank transmutation map (QRTM in order to generate a flexible family of probability distributions taking the generalized inverseWeibull distribution as the base value distribution by introducing a new parameter that would offer more distributional flexibility. Various structural properties including explicit expressions for the moments, quantiles, and moment generating function of the new distribution are derived. We propose the method of maximum likelihood for estimating the model parameters and obtain the observed information matrix. A real data set are used to compare the flexibility of the transmuted version versus the generalized inverse Weibull distribution.

  15. Actinide and fission product separation and transmutation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-07-01

    The first international information exchange meeting on actinide and fission product separation and transmutation, took place in Mito in Japan, on 6-8 November 1990. It starts with a number of general overview papers to give us some broad perspectives. Following that it takes a look at some basic facts about physics and about the quantities of materials it is talking about. Then it proceeds to some specific aspects of partitioning, starting with evolution from today commercially applied processes and going on to other possibilities. At the end of the third session it takes a look at the significance of partitioning and transmutation of actinides before it embarks on two sessions on transmutation, first in reactors and second in accelerators. The last session is designed to throw back into the discussion the main points which need to be looked at when considering future work in this area. (A.L.B.)

  16. Actinide and fission product separation and transmutation

    International Nuclear Information System (INIS)

    1991-01-01

    The first international information exchange meeting on actinide and fission product separation and transmutation, took place in Mito in Japan, on 6-8 November 1990. It starts with a number of general overview papers to give us some broad perspectives. Following that it takes a look at some basic facts about physics and about the quantities of materials it is talking about. Then it proceeds to some specific aspects of partitioning, starting with evolution from today commercially applied processes and going on to other possibilities. At the end of the third session it takes a look at the significance of partitioning and transmutation of actinides before it embarks on two sessions on transmutation, first in reactors and second in accelerators. The last session is designed to throw back into the discussion the main points which need to be looked at when considering future work in this area. (A.L.B.)

  17. Partitioning and transmutation. Annual Report 1999

    Energy Technology Data Exchange (ETDEWEB)

    Ekberg, C.; Enarsson, Aa.; Gustavsson, C.; Landgren, A.; Liljenzin, J.O.; Spjuth, L. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Nuclear Chemistry

    2000-05-01

    The current research project on partitioning and transmutation at the Dept. of Nuclear Chemistry, CTH, has the primary objective to investigate separation processes useful in connection with transmutation of long-lived radionuclides in high level nuclear waste. Partitioning is necessary in order to recover and purify the elements before and after each irradiation in a P and T treatment. In order to achieve a high transmutation efficiency the chemical separation process used must have small losses to various waste streams. At present, only aqueous based separation processes are known to be able to achieve the high recovery and separation efficiencies necessary for a useful P and T process. During 1999 two of the three PhD students in this project have finalised their dissertations. Lena Spjuth has been working with oligo pyridines, triazines and malonamides; Anders Landgren has studied Aliquat-336 and redox kinetics. Two papers, included as appendices in the report, have been separately indexed.

  18. Partitioning and transmutation. Annual Report 1999

    International Nuclear Information System (INIS)

    Ekberg, C.; Enarsson, Aa.; Gustavsson, C.; Landgren, A.; Liljenzin, J.O.; Spjuth, L.

    2000-05-01

    The current research project on partitioning and transmutation at the Dept. of Nuclear Chemistry, CTH, has the primary objective to investigate separation processes useful in connection with transmutation of long-lived radionuclides in high level nuclear waste. Partitioning is necessary in order to recover and purify the elements before and after each irradiation in a P and T treatment. In order to achieve a high transmutation efficiency the chemical separation process used must have small losses to various waste streams. At present, only aqueous based separation processes are known to be able to achieve the high recovery and separation efficiencies necessary for a useful P and T process. During 1999 two of the three PhD students in this project have finalised their dissertations. Lena Spjuth has been working with oligo pyridines, triazines and malonamides; Anders Landgren has studied Aliquat-336 and redox kinetics. Two papers, included as appendices in the report, have been separately indexed

  19. Establishment of bases for joint study and cooperation on long-lived radionuclides transmutation between Korea and Russia

    International Nuclear Information System (INIS)

    Yoo, Jae Hyung; Lee, Byung Jik; Shim, Joon Bo; Choi, Chang Joo; Park, Won Seok; Song, Tae Young; Kim, Chang Kyu; Kil, Choong Sup

    2003-02-01

    The most important technical fields related to transmutation are partitioning of long-lived radionuclides and transmutation system to be used for converting them into short-lived or stable radionuclides. Technical cooperation between Korea and Russia is needed because Russia has an unequalled position in the fields of development of the fast reactors and pyrochemical processes around the world. The aim of this project is an establishment of bases for coordination on transmutation technology between Korea and Russia. State of the art of domestic and foreign countries upon partitioning of long-lived radionuclides, transmutation system and Gen IV development was summarized. Also, the 7th Korea-Russia joint coordination committee meeting and the 1st joint workshop were held as a result of this project. Technical fields and scheme on future cooperation between Korea and Russia were discussed and agreed in the course of the meetings

  20. Probabilistic safety assessment of the dual-cooled waste transmutation blanket for the FDS-I

    International Nuclear Information System (INIS)

    Hu, L.; Wu, Y.

    2006-01-01

    The subcritical dual-cooled waste transmutation (DWT) blanket is one of the key components of fusion-driven subcritical system (FDS-I). The probabilistic safety assessment (PSA) can provide valuable information on safety characteristics of FDS-I to give recommendations for the optimization of the blanket concepts and the improvement of the design. Event tree method has been adopted to probabilistically analyze the safety of the DWT blanket for FDS-I using the home-developed PSA code RiskA. The blanket melting frequency has been calculated and compared with the core melting frequencies of PWRs and a fast reactor. Sensitivity analysis of the safety systems has been performed. The results show that the current preliminary design of the FDS-I is very attractive in safety

  1. Actinides compounds for the transmutation: scientific contributions of american and japanese collaborations; Composes d'actinides pour la transmutation: apports scientifiques de collaborations americaines et japonaises

    Energy Technology Data Exchange (ETDEWEB)

    Raison, Ph.; Albiot, T

    2000-07-01

    This paper deals with the minor actinides transmutation and the scientific contribution of the ORNL and the JAERI. It presents researches on the Am-Zr-Y-O system in the framework of the heterogeneous reprocessing, the curium and pyrochlore structures, with the ORNL contribution and phase diagrams, data of Thermodynamics, actinides nitrides, with the JAERI. (A.L.B.)

  2. Monte Carlo calculations on transmutation of trans-uranic nuclear waste isotopes using spallation neutrons difference of lead and graphite moderators

    CERN Document Server

    Hashemi-Nezhad, S R; Brandt, R; Krivopustov, M I; Kulakov, B A; Odoj, R; Sosnin, A N; Wan, J S; Westmeier, W

    2002-01-01

    Transmutation rates of sup 2 sup 3 sup 9 Pu and some minor actinides ( sup 2 sup 3 sup 7 Np, sup 2 sup 4 sup 1 Am, sup 2 sup 4 sup 5 Cm and sup 2 sup 4 sup 6 Cm), in two accelerator-driven systems (ADS) with lead or graphite moderating environments, were calculated using the LAHET code system. The ADS that were used had a large volume (approx 32 m sup 3) and contained no fissile material, except for a small amount of fissionable waste nuclei that existed in some cases. Calculations were performed at an incident proton energy of 1.5 GeV and the spallation target was lead. Also breeding rates of sup 2 sup 3 sup 9 Pu and sup 2 sup 3 sup 3 U as well as the transmutation rates of two long-lived fission products sup 9 sup 9 Tc and sup 1 sup 2 sup 9 I were calculated at different locations in the moderator. It is shown that an ADS with graphite moderator is a much more effective transmuter than that with lead moderator.

  3. Transmuted New Generalized Inverse Weibull Distribution

    Directory of Open Access Journals (Sweden)

    Muhammad Shuaib Khan

    2017-06-01

    Full Text Available This paper introduces the transmuted new generalized inverse Weibull distribution by using the quadratic rank transmutation map (QRTM scheme studied by Shaw et al. (2007. The proposed model contains the twenty three lifetime distributions as special sub-models. Some mathematical properties of the new distribution are formulated, such as quantile function, Rényi entropy, mean deviations, moments, moment generating function and order statistics. The method of maximum likelihood is used for estimating the model parameters. We illustrate the flexibility and potential usefulness of the new distribution by using reliability data.

  4. Impact of Blanket Configuration on the Design of a Fusion-Driven Transmutation Reactor

    Directory of Open Access Journals (Sweden)

    Bong Guen Hong

    2018-02-01

    Full Text Available A configuration of a fusion-driven transmutation reactor with a low aspect ratio tokamak-type neutron source was determined in a self-consistent manner by using coupled analysis of tokamak systems and neutron transport. We investigated the impact of blanket configuration on the characteristics of a fusion-driven transmutation reactor. It was shown that by merging the TRU burning blanket and tritium breeding blanket, which uses PbLi as the tritium breeding material and as coolant, effective transmutation is possible. The TRU transmutation capability can be improved with a reduced blanket thickness, and fast fluence at the first wall can be reduced.  Article History: Received: July 10th 2017; Received: Dec 17th 2017; Accepted: February 2nd 2018; Available online How to Cite This Article: Hong, B.G. (2018 Impact of Blanket Configuration on the Design of a Fusion-Driven Transmutation Reactor. International Journal of Renewable Energy Development, 7(1, 65-70. https://doi.org/10.14710/ijred.7.1.65-70

  5. Accelerator-driven transmutation: a high-tech solution to some nuclear waste problems

    International Nuclear Information System (INIS)

    Hechanova, A.E.

    2000-01-01

    This paper discusses current technical and political issues regarding the innovative concept of using accelerator-driven transmutation processes for nuclear waste management. Two complex and related issues are addressed. First, the evolution and improvements of the design technologies are identified to indicate that there has been sufficient technological advancement with regard to a 1991 scientific peer review to warrant the advent of a large-scale national research and development program. Second, the economics and politics of the transmutation system are examined to identify non-technical barriers to the implementation of the program. Transmutation of waste has been historically viewed by nuclear engineers as one of those technologies that is too good to be true and probably too expensive to be feasible. The concept discussed in the present paper uses neutrons ( which result from protons accelerated into spallation targets)to transmute the major very long-lived hazardous materials such as the radioactive isotopes of technetium, iodine, neptunium, plutonium, americium, and curium. Although not a new concept, accelerator-driven transmutation technology (ADTT) lead by a team at Los Alamos National Laboratory (LANL) has made some significant advances which are discussed in the present paper. (authors)

  6. Impact of partitioning and transmutation on repository design

    International Nuclear Information System (INIS)

    Carter, D. 'Buzz' Savage

    2004-01-01

    The U.S. Department of Energy's Advanced Fuel Cycle Initiative (AFCI) program is investigating spent nuclear fuel treatment technologies that have the potential to improve the performance of the proposed geologic repository at Yucca Mountain. Separating actinides and selected fission products from spent fuel, storing some of them as low level waste and transmuting them in thermal and/or fast reactors has the potential to reduce the volume, short and long-term heat load and radiotoxicity of the high level waste destined for the repository, effectively increasing its capacity by a factor of 50 or more above the current legislative limit. (author)

  7. Development of Metallic Fuels for Actinide Transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, Steven Lowe [Idaho National Laboratory; Fielding, Randall Sidney [Idaho National Laboratory; Benson, Michael Timothy [Idaho National Laboratory; Chichester, Heather Jean MacLean [Idaho National Laboratory; Carmack, William Jonathan [Idaho National Laboratory

    2015-09-01

    Research and development activities on metallic fuels are focused on their potential use for actinide transmutation in future sodium fast reactors. As part of this application, there is also a need for a near zero-loss fabrication process and a desire to demonstrate a multifold increase in burnup potential. The incorporation of Am and Np into the traditional U-20Pu-10Zr metallic fuel alloy was demonstrated in the US during the Integral Fast Reactor Program of the 1980’s and early 1990’s. However, the conventional counter gravity injection casting method performed under vacuum, previously used to fabricate these metallic fuel alloys, was not optimized for mitigating loss of the volatile Am constituent in the casting charge; as a result, approximately 40% of the Am casting charge failed to be incorporated into the as-cast fuel alloys. Fabrication development efforts of the past few years have pursued an optimized bottom-pour casting method to increase utilization of the melted charge to near 100%, and a differential pressure casting approach, performed under an argon overpressure, has been demonstrated to result in essentially no loss of Am due to volatilization during fabrication. In short, a path toward zero-loss fabrication of metallic fuels including minor actinides has been shown to be feasible. Irradiation testing of advanced metallic fuel alloys in the Advanced Test Reactor (ATR) has been underway since 2003. Testing in the ATR is performed inside of cadmium-shrouded positions to remove >99% of the thermal flux incident on the test fuels, resulting in an epi-thermal driven fuel test that is free from gross flux depression and producing an essentially prototypic radial temperature profile inside the fuel rodlets. To date, three irradiation test series (AFC-1,2,3) have been completed. Over 20 different metallic fuel alloys have been tested to burnups as high as 30% with constituent compositions of Pu up to 30%, Am up to 12%, Np up to 10%, and Zr between 10

  8. High-Performance Operating Systems

    DEFF Research Database (Denmark)

    Sharp, Robin

    1999-01-01

    Notes prepared for the DTU course 49421 "High Performance Operating Systems". The notes deal with quantitative and qualitative techniques for use in the design and evaluation of operating systems in computer systems for which performance is an important parameter, such as real-time applications......, communication systems and multimedia systems....

  9. Conceptual design of multi-purpose accelerator-driven transmutation test facility

    International Nuclear Information System (INIS)

    Hirota, Koichi; Hida, Kenzo; Yokobori, Hitoshi; Kamishima, Yoshio

    1999-01-01

    The Japan Atomic Energy Research Institute (JAERI) has been developing a concept of accelerator-driven transmutation system using a high-power proton linac. To demonstrate the technical feasibility of this concept, accelerator-driven spallation experiments will be necessary. We believe our proposal of a multi-purpose test facility is a promising concept to clarify its feasibility from the basic neutronics and engineering standpoint. The main feature of our initial proposal is using an inclined beam injection. It enables to simplify the head of the test vessel as well as to facilitate easy replacing of the beam window and the testing device containing the test specimen, and also this system will minimize the complexity of the vessel head and surrounding structures. Next proposal is using an ordinary overhead beam injection system and is modified to be simple structural concept of the test vessel from inclined beam injection. At the first step, the basic neutronics experiments will be performed. At this step, the test device and the cooling device are simpler ones, due to only small heat will be generated. Then we plan using a gas cooling. At the following steps, the test device and the vessel internal structures will be remodeled or remade to adjust to the test purposes, if necessary. At these steps, target material tests and thermal hydraulic tests using some liquid metal coolants will be done. In this case, the natural circulation cooling will be done. To verify the transmutation technology, a larger heat will be generated, so a forced coolant circulation system will be installed in the test vessel. This system consists of a heat exchanger and a circulation pump. The vessel internal structure will be remade. Doing such step-wise remaking, initial construction cost of the proposed test facility will be expected to be reasonable. (author)

  10. Application of activation methods on the Dubna experimental transmutation set-ups.

    Science.gov (United States)

    Stoulos, S; Fragopoulou, M; Adloff, J C; Debeauvais, M; Brandt, R; Westmeier, W; Krivopustov, M; Sosnin, A; Papastefanou, C; Zamani, M; Manolopoulou, M

    2003-02-01

    High spallation neutron fluxes were produced by irradiating massive heavy targets with proton beams in the GeV range. The experiments were performed at the Dubna High Energy Laboratory using the nuclotron accelerator. Two different experimental set-ups were used to produce neutron spectra convenient for transmutation of radioactive waste by (n,x) reactions. By a theoretical analysis neutron spectra can be reproduced from activation measurements. Thermal-epithermal and fast-super-fast neutron fluxes were estimated using the 197Au, 238U (n,gamma) and (n,2n) reactions, respectively. Depleted uranium transmutation rates were also studied in both experiments.

  11. Transmutation studies using SSNTD and radiochemistry and the associated production of secondary neutrons

    CERN Document Server

    Brandt, R; Wan, J S; Schmidt, T; Langrock, E J; Vater, P; Adam, J; Bamblevski, V P; Bradnova, V; Gelovani, L K; Kalinnikov, V K; Krivopustov, M I; Kulakov, B A; Sosnin, A N; Perelygin, V P; Pronskikh, V S; Stegailov, V I; Tsoupko-Sitnikov, V M; Modolo, G; Odoj, R; Philippen, P W; Adloff, J C; Pape, F; Debeauvais, M; Zamani-Valassiadou, M; Hashemi-Nezhad, S R; Dwivedi, K K; Guo Shi Lun; Li, L; Wang, Y L; Wilson, B

    1999-01-01

    Experiments using 1.5 GeV, 3.7 GeV and 7.4 GeV protons from the Synchrophasotron, LHE, JINR, Dubna, Russia, on extended Pb- and U- targets were carried out using SSNTD and radiochemical sensors for the study of secondary neutron $9 fluences. We also carried out first transmutation studies on the long-lived radwaste nuclei /sup 129/I and /sup 237/Np. In addition, we carried out computer code simulation studies on these systems using LAHET and DCM/CEM codes. We $9 have difficulties to understand rather large transmutation rates observed experimentally when they are compared with computer simulations. There seems to be a rather fundamental problem understanding the large transmutation rates as $9 observed experimentally in Dubna and CERN, as compared to those theoretical computer simulations mentioned above. (10 refs).

  12. Analysis of advanced European nuclear fuel cycle scenarios including transmutation and economical estimates

    International Nuclear Information System (INIS)

    Merino Rodriguez, I.; Alvarez-Velarde, F.; Martin-Fuertes, F.

    2013-01-01

    Four European fuel cycle scenarios involving transmutation options have been addressed from a point of view of resources utilization and economics. Scenarios include the current fleet using Light Water Reactor (LWR) technology and open fuel cycle (as a reference scenario), a full replacement of the initial fleet with Fast Reactors (FR) burning U-Pu MOX fuel and two fuel cycles with Minor Actinide (MA) transmutation in a fraction of the FR fleet or in dedicated Accelerator Driven Systems (ADS).Results reveal that all scenarios are feasible according to nuclear resources demand. Regarding the economic analysis, the estimations show an increase of LCOE - averaged over the whole period - with respect to the reference scenario of 20% for Pu management scenario and around 35% for both transmutation scenarios respectively.

  13. Analysis of advanced European nuclear fuel cycle scenarios including transmutation and economical estimates

    Energy Technology Data Exchange (ETDEWEB)

    Merino Rodriguez, I.; Alvarez-Velarde, F.; Martin-Fuertes, F.

    2013-07-01

    Four European fuel cycle scenarios involving transmutation options have been addressed from a point of view of resources utilization and economics. Scenarios include the current fleet using Light Water Reactor (LWR) technology and open fuel cycle (as a reference scenario), a full replacement of the initial fleet with Fast Reactors (FR) burning U-Pu MOX fuel and two fuel cycles with Minor Actinide (MA) transmutation in a fraction of the FR fleet or in dedicated Accelerator Driven Systems (ADS).Results reveal that all scenarios are feasible according to nuclear resources demand. Regarding the economic analysis, the estimations show an increase of LCOE - averaged over the whole period - with respect to the reference scenario of 20% for Pu management scenario and around 35% for both transmutation scenarios respectively.

  14. The EU research activities on partitioning and transmutation. From the 4. to the 5. framework programme

    International Nuclear Information System (INIS)

    Hugon, M.

    1999-01-01

    The European Commission is partly supporting research work on partitioning and transmutation of radioactive waste under the Fourth Framework Programme (1994-1998). This work includes nine research projects. Five strategy studies are evaluating the capabilities of various burners and fuel cycles to limit the production and even destroy the stock of actinides (plutonium and minor actinides). Two experimental projects are aiming at developing techniques for the chemical separation of actinides and two others are dealing with the investigation of transmutation of americium and long-lived fission products. The objectives of these studies are described together with the main results already obtained. The European Union should adopt the 5. Framework Programme (1998-2002) at the end of 1998. The broad lines of the research activities foreseen in partitioning and transmutation and future system under the 5. Framework Programme are briefly presented. (author)

  15. Performance systems and social capital

    DEFF Research Database (Denmark)

    Rasmussen, Grane Mikael Gregaard; Edwards, Kasper

    2014-01-01

    Performance systems and social capital are considered mutually exclusive. Contemporary studies show that social capital is essential in generating performance improvement. This raises an important question: “How do performance systems and social capital correspond?” This study draws on findings...... from a study on implementation of a performance system in Danish construction. The results show causalities between implementing the performance system and the emergence of social capital in construction projects. Results indicate that performance systems and social capital is not mutually exclusive...

  16. Transmutation Fuels Campaign FY-09 Accomplishments Report

    Energy Technology Data Exchange (ETDEWEB)

    Lori Braase

    2009-09-01

    This report summarizes the fiscal year 2009 (FY-08) accomplishments for the Transmutation Fuels Campaign (TFC). The emphasis is on the accomplishments and relevance of the work. Detailed description of the methods used to achieve the highlighted results and the associated support tasks are not included in this report.

  17. Composite gauge bosons of transmuted gauge symmetry

    International Nuclear Information System (INIS)

    Terazawa, Hidezumi.

    1987-10-01

    It is shown that effective gauge theories of composite gauge bosons describing the dynamics of composite quarks and leptons can be transmuted from the subcolor gauge theory describing that of subquarks due to the condensation of subquarks and that the equality of effective gauge coupling constants can result as in a grand unified gauge theory. (author)

  18. Advances in thermal-hydraulic studies of a transmutation advanced device for sustainable energy applications

    International Nuclear Information System (INIS)

    Fajardo, Laura Garcia; Castells, Facundo Alberto Escriva; Lira, Carlos Brayner de Olivera

    2013-01-01

    The Transmutation Advanced Device for Sustainable Energy Applications (TADSEA) is a pebble-bed Accelerator Driven System (ADS) with a graphite-gas configuration, designed for nuclear waste trans- mutation and for obtaining heat at very high temperatures to produce hydrogen. In previous work, the TADSEA's nuclear core was considered as a porous medium performed with a CFD code and thermal-hydraulic studies of the nuclear core were presented. In this paper, the heat transfer from the fuel to the coolant was analyzed for three core states during normal operation. The heat transfer inside the spherical fuel elements was also studied. Three critical fuel elements groups were defined regarding their position inside the core. Results were compared with a realistic CFD model of the critical fuel elements groups. During the steady state, no critical elements reached the limit temperature of this type of fuel. (author)

  19. Inspection system performance test procedure

    International Nuclear Information System (INIS)

    Jensen, C.E.

    1995-01-01

    This procedure establishes requirements to administer a performance demonstration test. The test is to demonstrate that the double-shell tank inspection system (DSTIS) supplied by the contractor performs in accordance with the WHC-S-4108, Double-Shell Tank Ultrasonic Inspection Performance Specification, Rev. 2-A, January, 1995. The inspection system is intended to provide ultrasonic (UT) and visual data to determine integrity of the Westinghouse Hanford Company (WHC) site underground waste tanks. The robotic inspection system consists of the following major sub-systems (modules) and components: Mobile control center; Deployment module; Cable management assembly; Robot mechanism; Ultrasonic testing system; Visual testing system; Pneumatic system; Electrical system; and Control system

  20. Ma and LLFP transmutation in MTPs and ADSs: the typical SCK.CEN case of transmutations in BR2 and Myrrha. Position with respect to the global needs

    International Nuclear Information System (INIS)

    Raedt, Ch. de; Verboomen, B.; Aoust, Th.; Malambu, E.; Beeckmans de West-Meerbeeck, A.; Kupschus, P.; Benoit, Ph.; Ait Abderrahim, H.; Baetsle, L.H.

    2001-01-01

    The proposed paper indicates the performances, in the domain of the transmutation of MAs and LLFPs, of the high flux materials testing reactor BR2 located at SCK-CEN, and compares them with those of the multipurpose ADS MYRRHA, the pre-design of which is at the present time being finalized at SCK-CEN. With thermal neutron fluxes reaching 9.10 14 n/cm 2 s in thermal positions and 4.10 14 n/cm 2 s in the reactor core and, in the latter position, a fast flux (E>0.1 MeV) of 7.10 14 n/cm 2 s, BR2 has a transmutation throughput of the order of 1.5 kg Np+Am per 200 EFPD. This capacity can be used for investigating at the technological scale the transmutation of MAs and LLFPs in a thermal neutron spectrum with a high contribution of epithermal and fast neutrons. The metallurgical behaviour of the targets can hence be studied. In MYRRHA, higher fast fluxes are expected to be attained in irradiation positions near the spallation source, viz fast fluxes (E>0.75 MeV) up to 10. 15 n/cm 2 s. One of the purposes of MYRRHA is therefore its utilisation for the investigation of actinide transmutation feasibility with ADSs. (author)

  1. Concept of the demonstration molten salt unit for the transuranium elements transmutations

    International Nuclear Information System (INIS)

    Alekseev, P.; Dudnikov, A.; Prusakov, V.; Subbotin, S.; Zakirov, R.; Lelek, V.; Peka, I.

    1999-01-01

    Fluorine reprocessing is discussed of spent fuel and of fluoride molten salt reactor in critical and subcritical modes for plutonium and minor actinides burning. International collaboration for creation of such system is proposed. Additional neutron source in the core will have positive influence on the transmutation processes in the reactor. Demonstration critical molten salt reactor of small power capacity will permit to decide the most part of problems inherent to large critical reactors and subcritical drivers. It could be expected that fluoride molten salt transmuter can work without accelerator as a critical reactor. (author)

  2. A review of reprocessing, partitioning, and transmutation of spent nuclear fuel and the implications for Canada

    International Nuclear Information System (INIS)

    Jackson, D.P.

    2006-01-01

    The current status of the reprocessing, partitioning, and transmutation of used nuclear fuel are reviewed in the context of assessing the possible application of these technologies to used CANDU fuel. The status of commercial reprocessing is briefly surveyed and recent progress in world R and D programs on the transmutation of FP's and actinides using Accelerator Driven Systems is summarized. The implications of reprocessing for Canada are explored from the point of view of a long strategy for managing used CANDU fuel in terms of the costs of initiating reprocessing domestically at some time in the future including public and occupational radiation doses, and the wastes generated. (author)

  3. Actinide and fission product partitioning and transmutation. Status and assessment report

    International Nuclear Information System (INIS)

    1999-01-01

    Implementation and partitioning technology is intended to reduce the inventory of actinides and long-lived fission products in nuclear waste. Such technology can decrease hazards of pre-disposal waste management and of physical disturbance of a waste repository. An authoritative analysis is given of the technical, radiological and economic consequences of the proposed partitioning and transmutation operations on the present and future fuel cycle options. The report is subdivided to a general part for non-specialist readers, and to a technical systems analysis discussing issues on partitioning, transmutation and long-term waste management. (R.P.)

  4. Transmutation of nuclear waste. Status report RAS programme 1993: Recycling and transmutation of actinides and fission products

    International Nuclear Information System (INIS)

    Abrahams, K.; Bultman, J.H.; Cordfunke, E.H.P.; Gruppelaar, H.; Janssen, A.J.; Franken, W.M.P.; Klippel, K.T.; Kloosterman, J.L.; Konings, R.J.M.; Smit, J.

    1994-11-01

    The term ''nuclear transmutation'' means a conversion of long-lived radioactive nuclides into short-lived or stable nuclides and ''recycling'' means re-use of fissile material to generate energy in power reactors. With these two processes a reduction of the radiotoxicity and of its duration may be achieved, thus reducing the potential hazard to future generations. Firstly, the report gives a survey of the present situation regarding nuclear waste: its components, how the waste is produced in current LWR and possible options for interim and final storage. Then the objective of the RAS programme, the working methods and the state of the art of the research are considered. Two chapters deal with preliminary results of national and international research. A rather tentative prediction for the future is formulated. Some conclusions are drawn: It seems to be in the best interests of the Netherlands to continue the established line of reprocessing nuclear waste, should new reactors be introduced. It may be advisable to make international agreements so that in the future fission products will contain as few traces of transuranic actinides and long-lived components as possible. Consequently, nuclear waste would become cleaner in terms of long-lived components. For the transmutation of products separated in foreign countries, the Netherlands could pursue an active policy, perform research and also consider the use of MOX fuel in future Dutch reactors. Further contributions towards the solution of these problems can only be made by the Netherlands on an international level. As such, the research and study performed within the framework of the RAS-programme represents a useful international contribution. The possibilities offered by the HFR are particularly of great value. Finally, the choice of a new generation of nuclear reactors should be made not based only on the safety aspects, but also on the extent of waste production and on the transmutation possibilities (application

  5. Transmutation of nuclear waste. Status report RAS programme 1993: Recycling and transmutation of actinides and fission products

    Energy Technology Data Exchange (ETDEWEB)

    Abrahams, K; Bultman, J H; Cordfunke, E H.P.; Gruppelaar, H; Janssen, A J; Franken, W M.P.; Klippel, K T; Kloosterman, J L; Konings, R J.M.; Smit, J

    1994-11-01

    The term ``nuclear transmutation`` means a conversion of long-lived radioactive nuclides into short-lived or stable nuclides and ``recycling`` means re-use of fissile material to generate energy in power reactors. With these two processes a reduction of the radiotoxicity and of its duration may be achieved, thus reducing the potential hazard to future generations. Firstly, the report gives a survey of the present situation regarding nuclear waste: its components, how the waste is produced in current LWR and possible options for interim and final storage. Then the objective of the RAS programme, the working methods and the state of the art of the research are considered. Two chapters deal with preliminary results of national and international research. A rather tentative prediction for the future is formulated. Some conclusions are drawn: It seems to be in the best interests of the Netherlands to continue the established line of reprocessing nuclear waste, should new reactors be introduced. It may be advisable to make international agreements so that in the future fission products will contain as few traces of transuranic actinides and long-lived components as possible. Consequently, nuclear waste would become cleaner in terms of long-lived components. For the transmutation of products separated in foreign countries, the Netherlands could pursue an active policy, perform research and also consider the use of MOX fuel in future Dutch reactors. Further contributions towards the solution of these problems can only be made by the Netherlands on an international level. As such, the research and study performed within the framework of the RAS-programme represents a useful international contribution. Finally, the choice of a new generation of nuclear reactors should be made not based only on the safety aspects, but also on the extent of waste production and on the transmutation possibilities (application of MOX, etc.). (orig./HP).

  6. Recycling option search for a 600 MWE sodium-cooled transmutation fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Kyo; Kim, Myung Hyun [Dept. of Nuclear Engineering, Kyung Hee University, Yongin (Korea, Republic of)

    2015-02-15

    Four recycling scenarios involving pyroprocessing of spent fuel (SF) have been investigated for a 600-MWe transmutation sodium-cooled fast reactor (SFR), KALIMER. Performance evaluation was done with code system REBUS connected with TRANSX and TWODANT. Scenario Number 1 is the pyroprocessing of Canada deuterium uranium (CANDU) SF. Because the recycling of CANDU SF does not have any safety problems, the CANDU-Pyro- SFR system will be possible if the pyroprocessing capacity is large enough. Scenario Number 2 is a feasibility test of feed SF from a pressurized water reactor PWR. The sensitivity of cooling time before prior to pyro-processing was studied. As the cooling time increases, excess reactivity at the beginning of the equilibrium cycle (BOEC) decreases, thereby creating advantageous reactivity control and improving the transmutation performance of minor actinides. Scenario Number 3 is a case study for various levels of recovery factors of transuranic isotopes (TRUs). If long-lived fission products can be separated during pyroprocessing, the waste that is not recovered is classified as low- and intermediate-level waste, and it is sufficient to be disposed of in an underground site due to very low-heat-generation rate when the waste cooling time becomes >300 years at a TRU recovery factor of 99.9%. Scenario Number 4 is a case study for the recovery factor of rare earth (RE) isotopes. The RE isotope recovery factor should be lowered to 20% in order to make sodium void reactivity less than <7$, which is the design limit of a metal fuel.

  7. Recycling option search for a 600-MWe sodium-cooled transmutation fast reactor

    Directory of Open Access Journals (Sweden)

    Yong Kyo Lee

    2015-02-01

    Full Text Available Four recycling scenarios involving pyroprocessing of spent fuel (SF have been investigated for a 600-MWe transmutation sodium-cooled fast reactor (SFR, KALIMER. Performance evaluation was done with code system REBUS connected with TRANSX and TWODANT. Scenario Number 1 is the pyroprocessing of Canada deuterium uranium (CANDU SF. Because the recycling of CANDU SF does not have any safety problems, the CANDU-Pyro-SFR system will be possible if the pyroprocessing capacity is large enough. Scenario Number 2 is a feasibility test of feed SF from a pressurized water reactor PWR. The sensitivity of cooling time before prior to pyro-processing was studied. As the cooling time increases, excess reactivity at the beginning of the equilibrium cycle (BOEC decreases, thereby creating advantageous reactivity control and improving the transmutation performance of minor actinides. Scenario Number 3 is a case study for various levels of recovery factors of transuranic isotopes (TRUs. If long-lived fission products can be separated during pyroprocessing, the waste that is not recovered is classified as low- and intermediate-level waste, and it is sufficient to be disposed of in an underground site due to very low-heat-generation rate when the waste cooling time becomes >300 years at a TRU recovery factor of 99.9%. Scenario Number 4 is a case study for the recovery factor of rare earth (RE isotopes. The RE isotope recovery factor should be lowered to ≤20% in order to make sodium void reactivity less than <7$, which is the design limit of a metal fuel.

  8. LIGO sensing system performance

    CERN Document Server

    Landry, M

    2002-01-01

    The optical sensing subsystem of a LIGO interferometer is described. The system includes two complex interferometric sensing schemes to control test masses in length and alignment. The length sensing system is currently employed on all LIGO interferometers to lock coupled cavities on resonance. Auto-alignment is to be accomplished by a wavefront-sensing scheme which automatically corrects for angular fluctuations of the test masses. Improvements in lock stability and duration are noted when the wavefront auto-alignment system is employed. Preliminary results from the commissioning of the 2 km detector in Washington are shown.

  9. Fuels and materials for transmutation. A status report

    International Nuclear Information System (INIS)

    2005-01-01

    The safe and efficient management of spent fuel from the operation of commercial nuclear power plants is an important issue. Worldwide, more than 250 000 tons of spent fuel from reactors currently operating will require disposal. These numbers account for only high-level radioactive waste generated by present-day power reactors. Nearly all issues related to risks to future generations arising from the long-term disposal of such spent nuclear fuel is attributable to only about 1% of its content. This 1% is made up primarily of plutonium, neptunium, americium and curium (called transuranic elements) and the long-lived isotopes of iodine and technetium. When transuranics are removed from discharged fuel destined for disposal, the toxic nature of the spent fuel drops below that of natural uranium ore (that which was originally mined for the nuclear fuel) within a period of several hundred to a thousand years. This significantly reduces the burden on geological repositories and the problem of addressing the remaining long-term residues can thus be done in controlled environments having timescales of centuries rather than millennia stretching beyond 10 000 years. Transmutation is one of the means being explored to address the disposal of transuranic elements. To achieve this, advanced reactor systems, appropriate fuels, separation techniques and associated fuel cycle strategies are required. This report describes the current status of fuel and material technologies for transmutation and suggests technical R and D issues that need to be resolved. It will be of particular interest to nuclear fuel and material scientists involved in the field of partitioning and transmutation (P and T), and in advanced fuel cycles in general. (author)

  10. Nuclear transmutation. The reality of cold fusion

    International Nuclear Information System (INIS)

    Mizuno, Tadahiko

    1997-01-01

    The book is introducing the quest on the way to reality of cold fusion. Another point of author is interaction between the quest and social impacts. After the first report on cold fusion by M. Fleischmann and S. Pons on March 1989, the inspired author started a series of following experiments based on his own characteristic background of electrochemistry. The first experiment from March 25 to April 7, 1989 did not show any indications on neutrons, gamma rays, tritium, and heat. The second experiment was initiated at the underground experimental hall of the linear accelerator facilities. This means the shielding of noises coming from outsides. The neutron of about 2.45 MeV was observed after the 1-month continuation of the experiment. The intensity of neutron was nearly 10 to 20 times of the background noise. Furthermore, there were no changes of signals on heat and tritium before and after the experiments. The closed cell experiment was conducted to keep reliability of the experiment. The experiment started on June 1990. In this case, Tritium signals of 100 times of background noise were observed, however, no meaningful signal on neutrons. Anomalous heat was observed after March 24, 1991, where the electric current was increased up to 6 A. On the other hand, there were no appreciable change in neutron and tritium signals. The solid electrolysis was used in the experiment after May 1992, for its high temperature characteristics, where anomalous heat was observed with a certain probability. The experimental system was upgraded in diagnostic methods after 1994. As a result, particular isotopes related to fission reaction were detected. This fact indicates some kinds of transmutations at very local area of the solid surfaces. The author has also pointed out many reactions for a series of this scientific results responded by, for example, well known professors, scientific societies, mass media, and international conferences. Consequently the reactions had almost smeared

  11. Development of nuclear transmutation technology

    International Nuclear Information System (INIS)

    Park, Won Seok; Song, Tae Young; Yoo, Jae Kwon; Choi, Byung Ho; Shin, Hee Sung; Gil, Chung Sup; Kim, Jung Do.

    1997-08-01

    A basic characteristics and neutronic code development for accelerator driven subcritical reactor have been performed. In the field of basic characteristic study, the world-wide technical trends for a subcritical reactor has been investigated and some new directions for the subcritical system development were investigated. For the analysis of subcritical reactor core, a Montecarlo depletion code was developed by combining LAHET code with ORIGEN2 code. In addition, one-point kinetics equation for subcritical reactor programmed in order to analyze the dynamic behavior of subcritical core. (author). 26 tabs., 49 figs

  12. A neutron amplifier: prospects for reactor-based waste transmutation

    International Nuclear Information System (INIS)

    Blanovsky, A.

    2004-01-01

    A design concept and characteristics for an epithermal breeder controlled by variable feedback and external neutron source intensity are presented. By replacing the control rods with neutron sources, we could maintain good power distribution and perform radioactive waste burning in high flux subcritical reactors (HFSR) that have primary system size, power density and cost comparable to a pressurized water reactor (PWR). Another approach for actinide transmutation is a molten salt subcritical reactor proposed by Russian scientists. To increase neutron source intensity the HFSR is divided into two zones: a booster and a blanket with solid and liquid fuels. A neutron gate (absorber and moderator) imposed between two zones permits fast neutrons from the booster to flow to the blanket. Neutrons moving in the reverse direction are moderated and absorbed in the absorber zone. In the HFSR, neptunium-plutonium fuel is circulated in the booster and blanket, and americium-curium in the absorber zone and outer reflector. Use of a liquid actinide fuel permits transport of the delayed-neutron emitters from the blanket to the booster, where they can provide additional neutrons (source-dominated mode) or all the necessary excitation without an external neutron source (self-amplifying mode). With a blanket neutron multiplication gain of 20 and a booster gain of 50, an external neutron source rate of at least 10 15 n/s (0.7 MW D-T or 2.5 MW electron beam power) is needed to control the HFSR that produces 300 MWt. Most of the power could be generated in the blanket that burns about 100 kg of actinides a year. The analysis takes into consideration a wide range of HFSR design aspects including the wave model of observed relativistic phenomena, plant seismic diagnostics, fission electric cells (FEC) with a multistage collector (anode) and layered cathode. (author)

  13. Conceptual design for accelerator-driven sodium-cooled sub-critical transmutation reactors using scale laws

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kwang Gu; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1998-12-31

    The feasibility study on conceptual design methodology for accelerator-driven sodium-cooled sub-critical transmutation reactors has been conducted to optimize the design parameters from the scale laws and validates the reactor performance with the integrated code system. A 1000 MWth sodium-cooled sub-critical transmutation reactor has been scaled and verified through the methodology in this paper, which is referred to Advanced Liquid Metal Reactor (ALMR). A Pb-Bi target material and a partitioned fuel are the liquid phases, and they are cooled by the circulation of secondary Pb-Bi coolant and by primary sodium coolant, respectively. Overall key design parameters are generated from the scale laws and they are improved and validated by the integrated code system. Integrated Code System (ICS) consists of LAHET, HMCNP, ORIGEN2, and COMMIX codes and some files. Through ICS the target region, the core region, and thermal-hydraulic related regions are analyzed once-through Results of conceptual design are attached in this paper. 5 refs., 4 figs., 1 tab. (Author)

  14. Study of an optimal configuration of a transmutation reactor based on a low-aspect-ratio tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Bong Guen, E-mail: bghong@jbnu.ac.kr [Department of Quantum System Engineering, Chonbuk National University, 567 Baekje-daero, Jeonju, Jeonbuk 54896 (Korea, Republic of); Kim, Hoseok [Department of Applied Plasma Engineering, Chonbuk National University, 567 Baekje-daero, Jeonju, Jeonbuk 54896 (Korea, Republic of)

    2016-11-15

    Highlights: • Optimum configuration of a transmutation reactor based on a low aspect ratio tokamak was found. • Inboard and outboard radial build are determined by plasma physics, engineering and neutronics constraints. • Radial build and equilibrium fuel cycle play a major role in determining the transmutation characteristics. - Abstract: We determine the optimal configuration of a transmutation reactor based on a low-aspect-ratio tokamak. For self-consistent determination of the radial build of the reactor components, we couple a tokamak systems analysis with a radiation transport calculation. The inboard radial build of the reactor components is obtained from plasma physics and engineering constraints, while outboard radial builds are mainly determined by constraints on neutron multiplication, the tritium-breeding ratio, and the power density. We show that the breeding blanket model has an effect on the radial build of a transmutation blanket. A burn cycle has to be determined to keep the fast neutron fluence plasma-facing material below its radiation damage limit. We show that the radial build of the transmutation reactor components and the equilibrium fuel cycle play a major role in determining the transmutation characteristics.

  15. JAERI R & D on accelerator-based transmutation under OMEGA program

    Energy Technology Data Exchange (ETDEWEB)

    Takizuka, T.; Nishida, T.; Mizumoto, M. [Japan Atomic Energy Research Institute, Ibaraki-ken (Japan)] [and others

    1995-10-01

    The overview of the Japanese long-term research and development program on nuclide partitioning and transmutation, called {open_quotes}OMEGA,{close_quotes} is presented. Under this national program, major R&D activities are being carried out at JAERI, PNC, and CRIEPI. Accelerator-based transmutation study at JAERI is focused on a dedicated transmutor with a subcritical actinide-fueled subcritical core coupled with a spallation target driven by a high intensity proton accelerator. Two types of system concept, solid system and molten-salt system, are discussed. The solid system consists of sodium-cooled tungsten target and metallic actinide fuel. The molten-salt system is fueled with molten actinide chloride that acts also as a target material. The proposed plant transmutes about 250 kg of minor actinide per year, and generates enough electricity to power its own accelerator. JAERI is proposing the development of an intense proton linear accelerator ETA with 1.5 GeV-10 mA beam for engineering tests of accelerator-based transmutation. Recent achievements in the accelerator development are described.

  16. Shiva laser system performance

    International Nuclear Information System (INIS)

    Glaze, J.; Godwin, R.O.; Holzrichter, J.F.

    1978-01-01

    On November 18, 1977, after four years of experimentation, innovation, and construction, the Shiva High Energy Laser facility produced 10.2 kJ of focusable laser energy delivered in a 0.95 ns pulse. The Shiva laser, with its computer control system and delta amplifiers, demonstrated its versatility on May 18, 1978, when the first 20-beam target shot with delta amplifiers focused 26 TW on a target and produced a yield of 7.5 x 10 9 neutrons

  17. Performance analysis of switching systems

    NARCIS (Netherlands)

    Berg, van den R.A.

    2008-01-01

    Performance analysis is an important aspect in the design of dynamic (control) systems. Without a proper analysis of the behavior of a system, it is impossible to guarantee that a certain design satisfies the system’s requirements. For linear time-invariant systems, accurate performance analyses are

  18. Actinides compounds for the transmutation: scientific contributions of american and japanese collaborations

    International Nuclear Information System (INIS)

    Raison, Ph.; Albiot, T.

    2000-01-01

    This paper deals with the minor actinides transmutation and the scientific contribution of the ORNL and the JAERI. It presents researches on the Am-Zr-Y-O system in the framework of the heterogeneous reprocessing, the curium and pyrochlore structures, with the ORNL contribution and phase diagrams, data of Thermodynamics, actinides nitrides, with the JAERI. (A.L.B.)

  19. Overview of the French program in chemical separations and transmutation

    International Nuclear Information System (INIS)

    Baudin, G.

    1993-01-01

    A long-range effort has begun in France that is aimed at the reduction of the volume and activity level of wastes containing long half-life radionuclides. This effort constitutes the SPIN (SeParations-INcineration) Program which investigates separations techniques that can improve current reprocessing technologies coupled with destruction of long-lived species through transmutation. Removal and destruction of specific radionuclides (e.g., neptunium, americium, technetium, iodine, cesium, and strontium) will be emphasized. Advanced solvent extraction chemistry focusing, for example, on development and implementation of diamides for actinide-lanthanide separations constitutes an important component of the SPIN program. The second component of the program focuses on inventory reductions through transmutation of such long-lived nuclides in fast reactor systems (Super Phenix). Accelerator-based systems are also being evaluated as a possible long-term option. Both of these components of the SPIN program are aimed at further reduction of the potential radiotoxicity and radiological impact of high-level wastes destined for geological storage. In this presentation, major activities of the SPIN Program will be described with emphasis on activities related to advanced chemical separations

  20. Designing a gas cooled ADS for enhanced waste transmutation. The PDS-XADS European Project contribution

    International Nuclear Information System (INIS)

    Rimpault, G.; Sunderland, R.; Mueller, A.C.

    2006-01-01

    Accelerator driven system (ADS) are complex in their conception. It is the reason why studies proceed step by step. At the moment, one can take advantage of the work performed within the PDS-XADS project (Preliminary Design Studies of an eXperimental ADS) of the 5. European programme. The PDS-XADS project has been the first one to define rather detailed plants for a demonstration of the ADS technology, making a full use of European expertise from different research organizations, industries and universities. This first step was using MOX fuel technology with a design mostly devoted to the technology demonstration. Elaborated designs are sufficiently advanced to confirm the good prospects in the feasibility of such ADS plants. Also weak points have been identified and it is not a surprise that the open issues appear in the most unusual parts of reactor design i.e. in the spallation module. For what concerns the accelerator, the high reliability/availability requirements remain an important issue. The strategy to overcome these difficulties is a standard practice in reliability engineering, a technical discipline for risk estimation and management that is followed for many industrial applications or products in various fields. The gas technology exhibits clear interests in terms of coolant chemical inertness, overall simplicity of the reactor (internals, components) that can be based on proven helium cooled reactor experience but the chosen volume power (56 W/cm 3 ) for this concept is an upper limit due to constraints to the mechanical behaviour of the steel of the cladding. On the other hand, the removal of the decay heat is very much associated to the use of active systems even in protected transients i.e. with proton beam interruption. The statistical safety analysis has demonstrated however that the heat exchangers are the less reliable part of the DHR system. A solution to overcome this difficulty is the use of redundant and diversified systems. The final

  1. Total System Performance Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Yong Soo; Kang, Chul Hyung; Lee, Youn Myoung; Han, Ji Woong; Choi, Jong Won; Hahn, Pil Soo; Park, Jeong Hwa; Jeong, Mi Seon

    2007-06-15

    Based on the KAERI FEP list developed through the previous studies, the KAERI FEP Encyclopedia has been developed. Current version is 1.0 which includes all relevant FEPs to compose of two references and all alternative scenarios. Many interaction FEPs between scenario defining FEP(SDF) are created throughout the study. FEPs are classified into many Integrated FEP(IFEP) which eventually become the elements of the RES matrix. The FEAS program one of the component of the KAERI's CYPRUS information system is added to develop the FEP, RES, AC, AMF and finally scenarios. It assists to create transparent way to deal with assessment from the stage of the planning of the R and D to the final stage of the external audit and regulatory body review. Even though MASCOT-K and compartment analysis codes such as AMBER, GoldSim and Ecolego are excellent for TSPA they by in heritage possess a certain limitation especially to identify a proper migration cross sectional area when a relatively big component intersects with a tiny one such as a fracture. It is truly 3D phenomena in nature. MDPSA code is developed which is expected to overcome limitations in compartment models while successfully deals with natural disruptive events. The R and D target for the TSPA is to develop the sufficient scenarios and their variation cases to understand the safety of KRS in every possible aspect. For this, reference scenarios, alternative scenarios covering engineered barrier failure and natural events are developed and assessed respectively for around 100 cases. The stylized template to assess the Korean reference biosphere is developed using the AMBER. Three critical groups, agricultural, freshwater and marine water fishing groups are identified to assess the DCF following the guidelines of ICRP. Based on the QA principles of T2R3, the web based QA system is developed using the procedures in the USNRC 10CFR50 Appendix B. The QA system is combined with the PAID and FEAS to create the comprehensive

  2. Total System Performance Assessment

    International Nuclear Information System (INIS)

    Hwang, Yong Soo; Kang, Chul Hyung; Lee, Youn Myoung; Han, Ji Woong; Choi, Jong Won; Hahn, Pil Soo; Park, Jeong Hwa; Jeong, Mi Seon

    2007-06-01

    Based on the KAERI FEP list developed through the previous studies, the KAERI FEP Encyclopedia has been developed. Current version is 1.0 which includes all relevant FEPs to compose of two references and all alternative scenarios. Many interaction FEPs between scenario defining FEP(SDF) are created throughout the study. FEPs are classified into many Integrated FEP(IFEP) which eventually become the elements of the RES matrix. The FEAS program one of the component of the KAERI's CYPRUS information system is added to develop the FEP, RES, AC, AMF and finally scenarios. It assists to create transparent way to deal with assessment from the stage of the planning of the R and D to the final stage of the external audit and regulatory body review. Even though MASCOT-K and compartment analysis codes such as AMBER, GoldSim and Ecolego are excellent for TSPA they by in heritage possess a certain limitation especially to identify a proper migration cross sectional area when a relatively big component intersects with a tiny one such as a fracture. It is truly 3D phenomena in nature. MDPSA code is developed which is expected to overcome limitations in compartment models while successfully deals with natural disruptive events. The R and D target for the TSPA is to develop the sufficient scenarios and their variation cases to understand the safety of KRS in every possible aspect. For this, reference scenarios, alternative scenarios covering engineered barrier failure and natural events are developed and assessed respectively for around 100 cases. The stylized template to assess the Korean reference biosphere is developed using the AMBER. Three critical groups, agricultural, freshwater and marine water fishing groups are identified to assess the DCF following the guidelines of ICRP. Based on the QA principles of T2R3, the web based QA system is developed using the procedures in the USNRC 10CFR50 Appendix B. The QA system is combined with the PAID and FEAS to create the comprehensive

  3. Total System Performance Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Yong Soo; Kang, Chul Hyung; Lee, Youn Myoung; Han, Ji Woong; Choi, Jong Won; Hahn, Pil Soo; Park, Jeong Hwa; Jeong, Mi Seon

    2007-06-15

    Based on the KAERI FEP list developed through the previous studies, the KAERI FEP Encyclopedia has been developed. Current version is 1.0 which includes all relevant FEPs to compose of two references and all alternative scenarios. Many interaction FEPs between scenario defining FEP(SDF) are created throughout the study. FEPs are classified into many Integrated FEP(IFEP) which eventually become the elements of the RES matrix. The FEAS program one of the component of the KAERI's CYPRUS information system is added to develop the FEP, RES, AC, AMF and finally scenarios. It assists to create transparent way to deal with assessment from the stage of the planning of the R and D to the final stage of the external audit and regulatory body review. Even though MASCOT-K and compartment analysis codes such as AMBER, GoldSim and Ecolego are excellent for TSPA they by in heritage possess a certain limitation especially to identify a proper migration cross sectional area when a relatively big component intersects with a tiny one such as a fracture. It is truly 3D phenomena in nature. MDPSA code is developed which is expected to overcome limitations in compartment models while successfully deals with natural disruptive events. The R and D target for the TSPA is to develop the sufficient scenarios and their variation cases to understand the safety of KRS in every possible aspect. For this, reference scenarios, alternative scenarios covering engineered barrier failure and natural events are developed and assessed respectively for around 100 cases. The stylized template to assess the Korean reference biosphere is developed using the AMBER. Three critical groups, agricultural, freshwater and marine water fishing groups are identified to assess the DCF following the guidelines of ICRP. Based on the QA principles of T2R3, the web based QA system is developed using the procedures in the USNRC 10CFR50 Appendix B. The QA system is combined with the PAID and FEAS to create the

  4. Analysis of the transmutational characteristics of a novel molten salt reactor concept

    International Nuclear Information System (INIS)

    Csom, Gy.; Feher, S.; Szieberth, M.

    2001-01-01

    One of the arguments most frequently brought up by the opponents of the utilization of nuclear energy is the requirement that the radioactive waste and the long-lived radioisotopes accumulated in the spent fuel should be isolated for a very long time from the biosphere. The solution is the elimination of long-lived actinides (plutonium isotopes and minor actinides) and long-lived fission products by transforming (transmuting) them into short-lived or stable nuclei. The high neutron flux required for transmutation can be realized in nuclear installations. these may be conventional therma; and fast reactors, furthermore dedicated devices, namely thermal and fast reactors and accelerator driven subcritical systems (ADSs), which are specifically designed for this purpose. Some of the most promising systems are the molten salt reactors and subcritical systems, in which the fuel and material to be transmuted circulate dissolved in some molten salt. In the present paper this transmutational device, as well as recommendations for the improvement are discussed in detail (Authors)

  5. Contractor Performance Assessment Reporting System

    Data.gov (United States)

    US Agency for International Development — CPARS is a web-based system used to input data on contractor performance. Reports from the system are used as an aid in awarding contracts to contractors that...

  6. Neutron transmutation doping of polycrystalline silicon

    International Nuclear Information System (INIS)

    Cleland, J.W.; Westbrook, R.D.; Wood, R.F.; Young, R.T.

    1976-04-01

    Chemical vapor deposition (CVD) of doped silane has been used by others to deposit a polycrytalline silicon film (polysil) on metal or graphite substrates, but dopant migration to grain boundaries during deposition apparently prohibits attaining a uniform or desired dopant concentration. In contrast, we have used neutron transmutation doping to introduce a uniform phosphorus dopant concentration in commercially available undoped CVD polysil at doping concentrations greater than or equal to 2 x 10 15 cm -3 . Radiation damage annealing to 800 0 C did not indicate dopant migration. Carrier mobility increased with doping concentration and the minority carrier lifetime (MCL) appears to be comparable to that of neutron transmutation doped (NTD) single crystal Si. Application of this technique to photovoltaic solar cell fabrication is discussed

  7. Statistical transmutation in doped quantum dimer models.

    Science.gov (United States)

    Lamas, C A; Ralko, A; Cabra, D C; Poilblanc, D; Pujol, P

    2012-07-06

    We prove a "statistical transmutation" symmetry of doped quantum dimer models on the square, triangular, and kagome lattices: the energy spectrum is invariant under a simultaneous change of statistics (i.e., bosonic into fermionic or vice versa) of the holes and of the signs of all the dimer resonance loops. This exact transformation enables us to define the duality equivalence between doped quantum dimer Hamiltonians and provides the analytic framework to analyze dynamical statistical transmutations. We investigate numerically the doping of the triangular quantum dimer model with special focus on the topological Z(2) dimer liquid. Doping leads to four (instead of two for the square lattice) inequivalent families of Hamiltonians. Competition between phase separation, superfluidity, supersolidity, and fermionic phases is investigated in the four families.

  8. The nuclear design optimization of a Pb-Bi alloy cooled transmuter, PEACER-300

    International Nuclear Information System (INIS)

    Lim, Jae-Yong; Kim, Myung-Hyun

    2006-01-01

    A core design of lead-bismuth cooled fast reactor, PEACER-300 has been investigated to maximize its transmutation capability within safety criteria. Transmutation of minor actinide under a closed recycling was analyzed with assumption on decontamination factors in pyro-reprocessing plant data at reasonably high values. To acquire high transmutation performance, feed fuel composition, P/D ratio, active core height and fuel cycle strategy were changed. For preventing the fuel meting and guaranteeing long plant life-time, the number of fuel assembly array and normal operation temperature were decided. The optimized design parameter were chosen as of a flat core shape with 50 cm of active core height and 5 m core diameter, loaded with 17 x 17 arrayed fuel assemblies. A pitch to diameter ratio is 2.2, operating coolant temperature range is 300 deg. C to 400 deg. C, and core consists of 3 different enrichment zones with one year cycle length. Performance of designed core showed a high transmutation capability with support ratio of 2.085, large negative temperature feedback coefficients, and sufficient shutdown margin with 28 B 4 C control assemblies. (authors)

  9. Design Concept of the Thermal Flux Island in MYRRHA for LLFP Transmutation. Present Status

    International Nuclear Information System (INIS)

    Aoust, Th.; De Raedt, Ch.; Malambu, E.; Ait Abderrahim, H.

    2002-01-01

    MYRRHA is an ADS aimed at providing protons and neutrons for various R and D applications. It consists of a proton accelerator coupled to a sub-critical fast core. While the fast neutron spectrum, obtaining in the MYRRHA core, allows the transmutation of minor actinides (MAs), the transmutation of long lived fission products (LLFPs) in MYRRHA requires the utilisation of a thermal spectrum in order to take profit of the fact that the capture cross-sections of the LLFPs are much larger in the thermal-energy domain than in the high-energy domain. A high thermal flux island inside MYRRHA is therefore being developed, consisting of an irradiation device for LLFPs (or other irradiation target material needing a thermal neutron spectrum), surrounded by assemblies filled with a lattice of ZrH 2 moderator pins, cooled by the same coolant (Pb-Bi) as the MYRRHA fuel assemblies. Thermal neutron absorbers at the periphery of the neutron island are used to minimise the influence of the thermal flux on the fast core. The study of the performances of MYRRHA, including the transmutation of the LLFPs in such a thermal island, is carried out with the aid of the code MCNPX. The transmutation performances of LLFPs are assessed by coupling the code MCNPX to an evolution calculation. The LLFPs studied are Tc-99 and I-129. (authors)

  10. French fuel cycle strategy and partitioning and transmutation programme

    International Nuclear Information System (INIS)

    Pradel, Ph.

    2007-01-01

    the reactor fleet (PWR-FR-ADS). Important results are now available concerning the possibility of significantly reducing the quantity and the radiotoxicity of long-lived waste in association with a sustainable development of nuclear energy. As France has confirmed its long-term approach to nuclear energy, the most effective implementation of P and T of minor actinides relies on the fast neutron Gen IV systems which are designed to recycle and manage their own actinides. The perspective to deploy a first series of such systems around 2040 supports the idea that progress is being made: the long-term waste would only be made up of fission products, with very low amounts of minor actinides. In this sense, the new waste management law passed by the French parliament on 28 June 2006, demands that P and T research continue in strong connection with Gen IV systems and ADS development, allowing to assess the industrial perspectives of such systems in 2012 and to put into operation a transmutation demo facility in 2020. (author)

  11. Status of the French Research on Partitioning and Transmutation

    International Nuclear Information System (INIS)

    Warin, Dominique

    2007-01-01

    reactor fleet (PWR-FR-ADS). Important results are now available concerning the possibility of significantly reducing the quantity and the radiotoxicity of long-lived waste in association with a sustainable development of nuclear energy. As France has confirmed its long-term approach to nuclear energy, the most effective implementation of P and T of minor actinides relies on the fast neutron GEN IV systems, which are designed to recycle and manage their own actinides. The perspective to deploy a first series of such systems around 2040 supports the idea that progress is being made: the long-term waste would only be made up of fission products, with very low amounts of minor actinides. In this sense, the new waste management law passed by the French Parliament on June 28, 2006, demands that P and T research continues in strong connection to GEN IV systems and ADS development and allowing the assessment of the industrial perspectives of such systems in 2012 and to put into operation a transmutation demo facility in 2020. (author)

  12. Copper Doping of Zinc Oxide by Nuclear Transmutation

    Science.gov (United States)

    2014-03-27

    Copper Doping of Zinc Oxide by Nuclear Transmutation THESIS Matthew C. Recker, Captain, USAF AFIT-ENP-14-M-30 DEPARTMENT OF THE AIR FORCE AIR...NUCLEAR TRANSMUTATION THESIS Presented to the Faculty Department of Engineering Physics Graduate School of Engineering and Management Air Force...COPPER DOPING OF ZINC OXIDE BY NUCLEAR TRANSMUTATION Matthew C. Recker, BS Captain, USAF Approved: //signed// 27 February 2014 John W. McClory, PhD

  13. Development of nuclear transmutation technology for transuranic elements

    International Nuclear Information System (INIS)

    Mukaiyama, Takehiko

    1996-01-01

    Partitioning and Transmutation (P-T) of long-lived radioactive nuclides is conceived as the technology to improve the high-level radioactive waste management. This report discusses the incentives of P-T, generation of long-lived nuclides in fission reactors, nuclear transmutation technologies, R and D activities of the partitioning and transmutation technology development programs at JAERI and in the world. (author)

  14. Radioactive waste partitioning and transmutation within advanced fuel cycles: Achievements and Challenges

    International Nuclear Information System (INIS)

    Salvatores, M.; Palmiotti, G.

    2011-01-01

    able to be loaded with fuels with potentially very different mixtures of Pu and minor actinides (MA), according to the chosen approach and the objective of the P and T strategy, and this without affecting its safety or penalizing its operability. A major issue of any P and T implementation strategy is a detailed evaluation of the impact of each strategy on the different features and installations of the fuel cycle, and a discussion of this issue will be provided in chapter 6. Chapter 7 will tackle the problem of nuclear data uncertainties and their impact on the nominal performances of the different transmutation systems. Finally, in chapter 8 it will be discussed in more detail the role of the different types of fast reactors described in the previous chapters, according to the different P and T objectives and implementation scenarios.

  15. Neutron transmutation doping of gallium arsenide

    International Nuclear Information System (INIS)

    Alexiev, D.

    1987-12-01

    Neutron transmutation doping (NTD) was studied as a means of compensating p-type Cd-doped GaAs. By introducing specific donor concentrations, the net acceptor level was measured and showed a progressive reduction. The NTD constant K = 0.32 donor atoms.cm 3 per cm 2 was also measured. Radiation damage caused by neutron bombardment was annealed and no additional traps were generated

  16. Transmutation of long-lived nuclides

    International Nuclear Information System (INIS)

    Liang Tongxiang; Tang Chunhe

    2003-01-01

    Partitioning and transmutation of long-lived nuclides have profound benefits for economic development, global political stability and the environment. This technology would reduce nuclear waste disposal requirements, prevent proliferation and eliminate a major hurdle to the development of nuclear power. This paper reviews the advanced fuel cycle process and development of ATW in the world, and some suggestions about the R and D of nuclear power in China are proposed

  17. Processing flowsheet for the accelerator transmutation of waste (ATW) program

    International Nuclear Information System (INIS)

    Dewey, H.; Walker, R.; Yarbro, S.

    1992-01-01

    At Los Alamos, an innovative approach to transmuting long-lived radioactive waste is under investigation. The concept is to use a linear proton accelerator coupled to a solid target to produce an intense neutron flux. The intense stream of neutrons can then be used to fission or transmute long-lived radionuclides to either stable or shorter-lived isotopes. For the program to be successful, robust chemical separations with high efficiencies (>10 5 ) are required. The actual mission, either defense or commercial, will determine what suite of unit operations will be needed. If the mission is to process commercial spent fuel, there are several options available for feed preparation and blanket processing. The baseline option would be an improved PUREX system with the main alternative being the current ATW actinide blanket processing flowsheet. 99 Tc and 129 I are more likely to reach the biosphere than the actinides. Many models have been developed for predicting how the radionuclides will behave in a repository over long time periods. The general conclusion is that the actinides will be sorbed by the soil. Therefore, over a long time period, e.g., a million years their hazard will be lessened because of radioactive decay and dispersion. However, some of the long-lived fission products are not sorbed and could potentially reach the environment over a few thousand year period. Hence, they could present a significant safety hazard. Because of limited resources, most of the priority has been focused on the actinide and technetium blanket assemblies

  18. Transmutation Fuel Campaign Description and Status

    International Nuclear Information System (INIS)

    Jon Carmack; Kemal O. Pasamehmetoglu

    2008-01-01

    This report contains a technical summary package in response to a Level 2 milestone in the transmutation fuel campaign (TFC) management work-package calling for input to the Secretarial decision. At present, the form of the Secretarial decision package is not fully defined, and it is not clear exactly what will be required from the TFC as a final input. However, it is anticipated that a series of technical and programmatic documents will need to be provided in support of a wider encompassing document on GNEP technology development activities. The TFC technical leadership team provides this report as initial input to the secretarial decision package which is being developed by the Technical Integration Office (TIO) in support of Secretarial decision. This report contains a summary of the TFC execution plan with a work breakdown structure, high level schedule, major milestones, and summary description of critical activities in support of campaign objectives. Supporting documents referenced in this report but provided under separate cover include: (1) An updated review of the state-of-the art for transmutation fuel development activities considering national as well as international fuel research and development testing activities. (2) A definition of the Technology Readiness Level (TRL) used to systematically define and execute the transmutation fuel development activities

  19. Minor actinide transmutation - a waste management option

    International Nuclear Information System (INIS)

    Koch, L.

    1986-01-01

    The incentive to recycle minor actinides results from the reduction of the long-term α-radiological risk rather than from a better utilization of the uranium resources. Nevertheless, the gain in generated electricity by minor actinide transmutation in a fast breeder reactor can compensate for the costs of their recovery and make-up into fuel elements. Different recycling options of minor actinides are discussed: transmutation in liquid metal fast breeder reactors (LMFBRs) is possible as long as plutonium is not recycled in light water reactors (LWRs). In this case a minor actinide burner with fuel of different composition has to be introduced. The development of appropriate minor actinide fuels and their properties are described. The irradiation experiments underway or planned are summarized. A review of minor actinide partitioning from the PUREX waste stream is given. From the present constraints of LMFBR technology a reduction of the long-term α-radiological risk by a factor of 200 is deduced relative to that from the direct storage of spent LWR fuel. Though the present accumulation of minor actinides is low, nuclear transmutation may be needed when nuclear energy production has grown. (orig.)

  20. Use of fast reactors for actinide transmutation

    International Nuclear Information System (INIS)

    1993-03-01

    The management of radioactive waste is one of the key issues in today's discussions on nuclear energy, especially the long term disposal of high level radioactive wastes. The recycling of plutonium in liquid metal fast breeder reactors (LMFBRs) would allow 'burning' of the associated extremely long life transuranic waste, particularly actinides, thus reducing the required isolation time for high level waste from tens of thousands of years to hundreds of years for fission products only. The International Working Group on Fast Reactors (IWGFR) decided to include the topic of actinide transmutation in liquid metal fast breeder reactors in its programme. The IAEA organized the Specialists Meeting on Use of Fast Breeder Reactors for Actinide Transmutation in Obninsk, Russian Federation, from 22 to 24 September 1992. The specialists agree that future progress in solving transmutation problems could be achieved by improvements in: Radiochemical partitioning and extraction of the actinides from the spent fuel (at least 98% for Np and Cm and 99.9% for Pu and Am isotopes); technological research and development on the design, fabrication and irradiation of the minor actinides (MAs) containing fuels; nuclear constants measurement and evaluation (selective cross-sections, fission fragments yields, delayed neutron parameters) especially for MA burners; demonstration of the feasibility of the safe and economic MA burner cores; knowledge of the impact of maximum tolerable amount of rare earths in americium containing fuels. Refs, figs and tabs

  1. Partitioning and Transmutation of minor actinides

    International Nuclear Information System (INIS)

    Koch, L.; Wellum, R.

    1991-01-01

    The partitioning of minor actinides from spent fuels and their transmutation into short-lived fission products has been the topic of two dedicated meetings organized jointly by the European Commission and the OECD. The conclusion of the last meeting in 1980, in short, was that partitioning and transmutation of minor actinides, especially in fast reactors, seemed possible. However, the incentive, which would be a reduction of the radiological hazard to the public, was too small if long-lived fission products were not included. Furthermore this meeting showed that minor actinide targets or possible nuclear fuels containing minor actinides for transmutation had not yet been developed. The European Institute for Transuranium Elements took up this task and has carried it out as a small activity for several years. Interests expressed recently by an expert meeting of the OECD/NEA (Paris, 25 April 1989), which was initiated by the proposed Japanese project Omega, led us to the conclusion that the present state of knowledge should be looked at in a workshop environment. Since the Japanese proposal within the project Omega is based on a broader approach we needed this evaluation to assess the relevance of our present activity and wanted to identifiy additional studies which might be needed to cover possible future demands from the public. This workshop was therefore organized, and participants active in the field from EC countries, the USA and Japan were invited

  2. Evaluation of the transmutation of transuranic using neutrons spectrum from the spallation reaction

    Energy Technology Data Exchange (ETDEWEB)

    Gilberti, Mauricio; Pereira, Claubia, E-mail: mgilber@eletronuclear.gov.br [Eletrobras Termonuclear S.A. (ELETRONUCLEAR), Angra dos Reis, RJ (Brazil); Veloso, Maria A. Fortini, E-mail: claubia@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizante, MG (Brazil). Dept. de Engenharia Nuclear

    2013-07-01

    The transmutation of transuranic was analyzed by simulating the neutron flux from different spallation sources across arrays of fissile material with isotopic composition PWR reprocessing. A simplified model of Accelerator-Driven Systems (ADS) containing target, moderator graphite, lead-bismuth coolant or sodium coolant, is used. The simulation was made using the particles transport code MCNPX 2.6.0 which allowed to evaluate the rate of transmutation of actinides (Np, Pu, Am, and Cm) at different locations in the system. The objective of the study is to evaluate which the behavior and influences the spectrum of the spallation in the transmutation without the contribution or interference of multiplier, medium subcritical, which would add the contribution of fission neutrons generated, thus interfering in the analysis. The arrangement enable to infer the influence of hardened neutron flux from the spallation reaction in the transmutation, the results show that this is independent of the target material chosen, and the spectrum of spallation has a negligible importance compared to the influence of moderation and scattering generated by the coolant or moderator used. (author)

  3. Evaluation of the transmutation of transuranic using neutrons spectrum from the spallation reaction

    International Nuclear Information System (INIS)

    Gilberti, Mauricio; Pereira, Claubia; Veloso, Maria A. Fortini

    2013-01-01

    The transmutation of transuranic was analyzed by simulating the neutron flux from different spallation sources across arrays of fissile material with isotopic composition PWR reprocessing. A simplified model of Accelerator-Driven Systems (ADS) containing target, moderator graphite, lead-bismuth coolant or sodium coolant, is used. The simulation was made using the particles transport code MCNPX 2.6.0 which allowed to evaluate the rate of transmutation of actinides (Np, Pu, Am, and Cm) at different locations in the system. The objective of the study is to evaluate which the behavior and influences the spectrum of the spallation in the transmutation without the contribution or interference of multiplier, medium subcritical, which would add the contribution of fission neutrons generated, thus interfering in the analysis. The arrangement enable to infer the influence of hardened neutron flux from the spallation reaction in the transmutation, the results show that this is independent of the target material chosen, and the spectrum of spallation has a negligible importance compared to the influence of moderation and scattering generated by the coolant or moderator used. (author)

  4. Waste transmutation with minimal fuel cycle long-term risk

    Energy Technology Data Exchange (ETDEWEB)

    Slessarev, I.; Salvatores, M.; Uematsu, M. [Direction des Reacteurs Nucleaires, Cadarache (France)

    1995-10-01

    Hybrid systems (source-driven subcritical reactors), are investigated at CEA, mainly from a conceptual point of view, in order to assess their potential to transmute radioactive wastes (mainly long-lived fission products, LLFP) and their potential to insure a minimal long-term radiological risk related both to the fuel inventory inside the system and to the full fuel cycle (mass flows, reprocessing transport, waste disposal). The physics of these systems has been explored and work is in progress both in the field of basic data and INC code validation, in the frame of international collaborations and in the field of conceptual design studies. The most interesting feature of subcritical source-driven system is related to the possibility to obtain an {open_quotes}excess{close_quotes} of neutrons per fission, which can be used to reduce the long-term radiological risk. A specific example will be discussed here.

  5. EC-FP7 ARCAS: technical and economical comparison of Fast Reactors and Accelerator Driven Systems for transmutation of Minor Actinides

    International Nuclear Information System (INIS)

    Van den Eynde, G.; Romanello, V.; Heek, A. van; Martin-Fuertes, F.; Zimmerman, C.; Lewin, B.

    2015-01-01

    The ARCAS project aims to compare, on a technological and economical basis, Accelerator Driven Systems and Fast Reactors as Minor Actinide burners. It is split in five work packages: the reference scenario definition, the fast reactor system definition, the accelerator driven system definition, the fuel reprocessing and fabrication facilities definition and the economical comparison. This paper summarizes the status of the project and its five work packages. (author)

  6. Waste partitioning and transmutation as a means towards long-term risk reduction

    International Nuclear Information System (INIS)

    Merz, E.R.

    1993-09-01

    It has been an idea for some time to reduce the long-term potential hazard of the waste by chemical removal of the actinides as well as some long-lived fission products and their subsequent transmutation in an intense neutron flux. Transmutation would thus shorten the required containment period of radioactive material in a repository. It is estimated, that development of such technology would take at least 40 years because facilities would be required to perform a clean actinide and fission product isolation and to fabricate the fuel elements that contained the separated nuclides. This latter requirements would involve a major expansion of new chemical process steps which are not available as yet. Development of new equipment to maintain occupational exposures as low as reasonably achievable and to minimize releases of radioactivity to the environment would also be necessary. Partitioning and transmutation should be introduced, if at all, as a long-term decision about new nuclear power technology as a future energy source. With regard to this, R and D work dealing with basic questions seems to be worthwhile, However, the introduction of partitioning and transmutation will not eliminate the need for radioactive waste disposal. (orig./HP) [de

  7. Reduction and resource recycling of high-level radioactive wastes through nuclear transmutation with PHITS code

    International Nuclear Information System (INIS)

    Fujita, Reiko

    2017-01-01

    In the ImPACT program of the Cabinet Office, programs are underway to reduce long-lived fission products (LLFP) contained in high-level radioactive waste through nuclear transmutation, or to recycle/utilize useful nuclear species. This paper outlines this program and describes recent achievements. This program consists of five projects: (1) separation/recovery technology, (2) acquisition of nuclear transmutation data, (3) nuclear reaction theory model and simulation, (4) novel nuclear reaction control and development of elemental technology, and (5) discussions on process concept. The project (1) develops a technology for dissolving vitrified solid, a technology for recovering LLFP from high-level waste liquid, and a technology for separating odd and even lasers. Project (2) acquires the new nuclear reaction data of Pd-107, Zr-93, Se-79, and Cs-135 using RIKEN's RIBF or JAEA's J-PARC. Project (3) improves new nuclear reaction theory and structural model using the nuclear reaction data measured in (2), improves/upgrades nuclear reaction simulation code PHITS, and proposes a promising nuclear transmutation pathway. Project (4) develops an accelerator that realizes the proposed transmutation route and its elemental technology. Project (5) performs the conceptual design of the process to realize (1) to (4), and constructs the scenario of reducing/utilizing high-level radioactive waste to realize this design. (A.O.)

  8. On the use of a molten salt fast reactor to apply an idealized transmutation scenario for the nuclear phase out.

    Directory of Open Access Journals (Sweden)

    Bruno Merk

    Full Text Available In the view of transmutation of transuranium (TRU elements, molten salt fast reactors (MSFRs offer certain advantages compared to solid fuelled reactor types like sodium cooled fast reactors (SFRs. In the first part these advantages are discussed in comparison with the SFR technology, and the research challenges are analyzed. In the second part cycle studies for the MSFR are given for different configurations--a core with U-238 fertile, a fertile free core, and a core with Th-232 as fertile material. For all cases, the transmutation potential is determined and efficient transmutation performance for the case with thorium as a fertile material as well as for the fertile free case is demonstrated and the individual advantages are discussed. The time evolution of different important isotopes is analyzed. In the third part a strategy for the optimization of the transmutation efficiency is developed. The final aim is dictated by the phase out decision of the German government, which requests to put the focus on the determination of the maximal transmutation efficiency and on an as much as possible reduced leftover of transuranium elements at the end of the reactor life. This minimal leftover is achieved by a two step procedure of a first transmuter operation phase followed by a second deep burning phase. There the U-233, which is bred in the blanket of the core consisting of thorium containing salt, is used as feed. It is demonstrated, that transmutation rates up to more than 90% can be achieved for all transuranium isotopes, while the production of undesired high elements like californium is very limited. Additionally, the adaptations needed for the simulation of a MSFR, and the used tool HELIOS 1.10 is described.

  9. On the use of a molten salt fast reactor to apply an idealized transmutation scenario for the nuclear phase out.

    Science.gov (United States)

    Merk, Bruno; Rohde, Ulrich; Glivici-Cotruţă, Varvara; Litskevich, Dzianis; Scholl, Susanne

    2014-01-01

    In the view of transmutation of transuranium (TRU) elements, molten salt fast reactors (MSFRs) offer certain advantages compared to solid fuelled reactor types like sodium cooled fast reactors (SFRs). In the first part these advantages are discussed in comparison with the SFR technology, and the research challenges are analyzed. In the second part cycle studies for the MSFR are given for different configurations--a core with U-238 fertile, a fertile free core, and a core with Th-232 as fertile material. For all cases, the transmutation potential is determined and efficient transmutation performance for the case with thorium as a fertile material as well as for the fertile free case is demonstrated and the individual advantages are discussed. The time evolution of different important isotopes is analyzed. In the third part a strategy for the optimization of the transmutation efficiency is developed. The final aim is dictated by the phase out decision of the German government, which requests to put the focus on the determination of the maximal transmutation efficiency and on an as much as possible reduced leftover of transuranium elements at the end of the reactor life. This minimal leftover is achieved by a two step procedure of a first transmuter operation phase followed by a second deep burning phase. There the U-233, which is bred in the blanket of the core consisting of thorium containing salt, is used as feed. It is demonstrated, that transmutation rates up to more than 90% can be achieved for all transuranium isotopes, while the production of undesired high elements like californium is very limited. Additionally, the adaptations needed for the simulation of a MSFR, and the used tool HELIOS 1.10 is described.

  10. Transmutation in ADS and needs for nuclear data, with an introduction to the n-TOF at CERN

    CERN Document Server

    González, E; Fernández, R; García, J; Villamarín, D

    1999-01-01

    Transmutation can help in the nuclear waste problem by reducing seriously the life and amount of the most dangerous isotopes (radiotoxicity, heat, packing volume and neutron multiplication reductions). ADS are one of the best technologies for nuclear waste transmutation at large scale. Although enough information is available to prepare conceptual designs and make assessments on their performance, a large R&D campaign is required to obtain the precision data required to optimize the detailed engineering design and refine our expectations calculations on waste reduction by the different transmutation strategies being proposed. In particular a large R&D effort is required in nuclear physics, where fundamental differential measurements and integral verification experiments are required. In this sense, the PS213 n-TOF at CERN PS (at Switzerland) will become one of the largest installations to perform the fundamental differential measurements and a wide international collaboration has been setup to perform...

  11. Development and application of new parameters for TRU transmutation effectiveness

    International Nuclear Information System (INIS)

    Han, Chi Young

    2005-02-01

    Four new parameters (incineration branching ratio, incineration rate, incineration time, and incineration buckling) have been developed to evaluate quantitatively the TRU transmutation effectiveness and applied to transmutation of uranium and TRU. From the incineration branching ratio, it is possible to analyze the main contributors to fission reaction for transmutation of a target nuclide. From the incineration rate, it is available to evaluate the transmutation effectiveness in the viewpoint of a relative incineration rate to incineration potential of a target nuclide and its family. This parameter is also used to calculate the incineration time and incineration buckling together with the incineration branching ratio. The incineration time makes it possible to discuss more practically the transmutation speed instead of the existing other parameters. The incineration buckling can be used to evaluate the time behavior of the incineration rate and also employed to support the results from the incineration time. Taking into account the transmutation effectiveness and potential of uranium and TRU derived by using the parameters and an existing neutron economy parameter, it was noted that the thermal neutron energy is very preferable from the transmutation effectiveness point of view, on the other hand the fast neutron energy is effective from the transmutation potential. Applying them to the typical critical and subcritical TRU burners, it is indicated that the critical reactor containing fertile uranium undergoes effectively the selective TRU transmutation on the present fast spectrum. It was also noted that the uranium-free subcritical reactor could be operated effectively on a little softer spectrum due to the larger neutron excess in the present spectrum. It is expected that the new parameters developed in this study and the results are directly applicable to practical transmutation reactor design, in particular accelerator-driven transmutation reactor

  12. Resonance self-shielding effect analysis of neutron data libraries applied for the dual-cooled waste transmutation blanket of the fusion-driven subcritical system

    International Nuclear Information System (INIS)

    Liu Haibo; Wu Yican; Zheng Shanliang; Zhang Chunzao

    2004-01-01

    Based on the Fusion-Driven Subcritical System (FDS-I), the 25 groups, 175 groups and 620 groups neutron nuclear data libraries with/without resonance self-shielding correction are made with the Njoy and Transx codes, and the K eff and reaction rates are calculated with the Anisn code. The conclusion indicates that the resonance self-shielding effect affects the reaction rates strongly. (authors)

  13. Fuel and target programs for the transmutation at Phenix and other reactors; Programmes combustibles et cibles pour la transmutation dans Phenix et autres reacteurs

    Energy Technology Data Exchange (ETDEWEB)

    Gaillard-Groleas, G

    2002-07-01

    The fuels and targets program for transmutation, performed in the framework of the axis 1 of the December 1991 law about the researches on the management of long-lived radioactive wastes, is in perfect consistency with the transmutation scenario studies carried out in the same framework. These studies put forward the advantage of fast breeder reactors (FBR) in the incineration of minor actinides and long-lived fission products. The program includes exploratory and technological demonstration studies covering the different design options. It aims at enhancing our knowledge of the behaviour of materials under irradiation and at ensuring the mastery of processes. The goals of the different experiments foreseen at Phenix reactor are presented. The main goal is to supply a set of results allowing to precise the conditions of the technical feasibility of minor actinides and long-lived fission products incineration in FBRs. (J.S.)

  14. Facilities projects performance measurement system

    International Nuclear Information System (INIS)

    Erben, J.F.

    1979-01-01

    The two DOE-owned facilities at Hanford, the Fuels and Materials Examination Facility (FMEF), and the Fusion Materials Irradiation Test Facility (FMIT), are described. The performance measurement systems used at these two facilities are next described

  15. Joint Performance and Planning System

    Data.gov (United States)

    US Agency for International Development — A joint State/USAID system hosted by State that integrates resource and performance information at the program level and enables more flexible and frequent entry of...

  16. Influence of liquid lead and lead-bismuth eutectic on tensile, fatigue and creep properties of ferritic/martensitic and austenitic steels for transmutation systems

    Energy Technology Data Exchange (ETDEWEB)

    Gorse, D., E-mail: dominique.gorse-pomonti@polytechnique.edu [CNRS-LSI, Ecole Polytechnique, route de Saclay, 91128, Palaiseau Cedex (France); Auger, T. [CNRS-MSSMAT, Ecole Centrale Paris, Grande Voie des Vignes, 92290, Chatenay-Malabry Cedex (France); Vogt, J.-B.; Serre, I. [CNRS-LMPGM, 59655, Villeneuve d' Ascq Cedex (France); Weisenburger, A. [ForschungszentrumKarlsruheGmbH, P.O. Box 3640, 76021 Karlsruhe (Germany); Gessi, A.; Agostini, P. [ENEA, CR Brasimone, 40032 Camugnano, Bologna (Italy); Fazio, C. [ForschungszentrumKarlsruheGmbH, P.O. Box 3640, 76021 Karlsruhe (Germany); Hojna, A.; Di Gabriele, F. [Ustav jaderneho vyzkumu Rez a.s., Husinec 130, Rez 25068 (Czech Republic); Van Den Bosch, J.; Coen, G.; Almazouzi, A. [SCK-CEN (Belgian Nuclear Research Centre), Boeretang 200, 2400 Mol (Belgium); Serrano, M. [CIEMAT, Avda. Complutense, 22, 28040 Madrid (Spain)

    2011-08-31

    In this paper, the tensile, fatigue and creep properties of the Ferritic/Martensitic (F/M) steel T91 and of the Austenitic Stainless (AS) Steel 316L in lead-bismuth eutectic (LBE) or lead, obtained in the different organizations participating to the EUROTRANS-DEMETRA project are reviewed. The results show a remarkable consistency, referring to the variety of metallurgical and surface state conditions studied. Liquid Metal Embrittlement (LME) effects are shown, remarkable on heat-treated hardened T91 and also on corroded T91 after long-term exposure to low oxygen containing Liquid Metal (LM), but hardly visible on passive or oxidized smooth T91 specimens. For T91, the ductility trough was estimated, starting just above the melting point of the embrittler (T{sub M,E} = 123.5 deg. C for LBE, 327 deg. C for lead) with the ductility recovery found at 425 deg. C. LME effects are weaker on 316L AS steel. Liquid Metal Assisted Creep (LMAC) effects are reported for the T91/LBE system at 550 deg. C, and for the T91/lead system at 525 deg. C. Today, if the study of the LME effects on T91 and 316L in LBE or lead can be considered well documented, in contrast, complementary investigations are necessary in order to quantify the LMAC effects in these systems, and determine rigorously the threshold creep conditions.

  17. An analytical approach to the assessment of transuranics transmutation

    International Nuclear Information System (INIS)

    Piera, M.; Sanz, J.; Perlado, M.; Minguez, E.; Martinez-Val, J.M.

    1999-01-01

    An analytical study of Pu isotopes burnup in different transmutator prototypes is presented in this paper. Each prototype has been identified by a set of averaged cross sections, i.e., they are characterized by the neutron spectrum. Three types of systems have been considered: a fast spectrum reactor, which can be associated to molten lead systems; a fully thermalized reactor; and an epithermal reactor with a strong contribution to resonance reactions. The study has been focused on the burnup of Pu-239, Pu-240 and Pu-241 because they account (directly or indirectly) for the highest contribution to long-term radiotoxicity, as already pointed out. Pu-239 also conveys significant concerns on long-term proliferation risks. Therefore, elimination of these nuclei is the most important priority in the framework of reducing the nuclear waste risk in the long-term scenario. (author)

  18. Electron teleportation and statistical transmutation in multiterminal Majorana islands

    Science.gov (United States)

    Michaeli, Karen; Landau, L. Aviad; Sela, Eran; Fu, Liang

    2017-11-01

    We study a topological superconductor island with spatially separated Majorana modes coupled to multiple normal-metal leads by single-electron tunneling in the Coulomb blockade regime. We show that low-temperature transport in such a Majorana island is carried by an emergent charge-e boson composed of a Majorana mode and an electronic excitation in leads. This transmutation from Fermi to Bose statistics has remarkable consequences. For noninteracting leads, the system flows to a non-Fermi-liquid fixed point, which is stable against tunnel couplings anisotropy or detuning away from the charge-degeneracy point. As a result, the system exhibits a universal conductance at zero temperature, which is a fraction of the conductance quantum, and low-temperature corrections with a universal power-law exponent. In addition, we consider Majorana islands connected to interacting one-dimensional leads, and find different stable fixed points near and far from the charge-degeneracy point.

  19. Analysis of advanced European nuclear fuel cycle scenarios including transmutation and economic estimates

    International Nuclear Information System (INIS)

    Rodríguez, Iván Merino; Álvarez-Velarde, Francisco; Martín-Fuertes, Francisco

    2014-01-01

    Highlights: • Four fuel cycle scenarios have been analyzed in resources and economic terms. • Scenarios involve Once-Through, Pu burning, and MA transmutation strategies. • No restrictions were found in terms of uranium and plutonium availability. • The best case cost and the impact of their uncertainties to the LCOE were analyzed. - Abstract: Four European fuel cycle scenarios involving transmutation options (in coherence with PATEROS and CP-ESFR EU projects) have been addressed from a point of view of resources utilization and economic estimates. Scenarios include: (i) the current fleet using Light Water Reactor (LWR) technology and open fuel cycle, (ii) full replacement of the initial fleet with Fast Reactors (FR) burning U–Pu MOX fuel, (iii) closed fuel cycle with Minor Actinide (MA) transmutation in a fraction of the FR fleet, and (iv) closed fuel cycle with MA transmutation in dedicated Accelerator Driven Systems (ADS). All scenarios consider an intermediate period of GEN-III+ LWR deployment and they extend for 200 years, looking for long term equilibrium mass flow achievement. The simulations were made using the TR E VOL code, capable to assess the management of the nuclear mass streams in the scenario as well as economics for the estimation of the levelized cost of electricity (LCOE) and other costs. Results reveal that all scenarios are feasible according to nuclear resources demand (natural and depleted U, and Pu). Additionally, we have found as expected that the FR scenario reduces considerably the Pu inventory in repositories compared to the reference scenario. The elimination of the LWR MA legacy requires a maximum of 55% fraction (i.e., a peak value of 44 FR units) of the FR fleet dedicated to transmutation (MA in MOX fuel, homogeneous transmutation) or an average of 28 units of ADS plants (i.e., a peak value of 51 ADS units). Regarding the economic analysis, the main usefulness of the provided economic results is for relative comparison of

  20. General solution of Bateman equations for nuclear transmutations

    International Nuclear Information System (INIS)

    Cetnar, Jerzy

    2006-01-01

    The paper concerns the linear chain method of solving Bateman equations for nuclear transmutation in derivation of the general solution for linear chain with repeated transitions and thus elimination of existing numerical problems. In addition, applications of derived equations for transmutation trajectory analysis method is presented

  1. Project 'Installation of a stand at the horizontal channel of the MARIA Research Reactor, Otwock-Swierk, Poland, for the research of transmutation of minor actinides and fission products'

    International Nuclear Information System (INIS)

    Szuta, M.

    2006-01-01

    As a long range objective we would like to focus on management of the fuel economy in the sub-critical assembly of the accelerator driven system (ADS) in terms of long lived fission products (LLFP) and minor actinides (MA) transmutation. Transmutation of the radioactive waste (RW) is an important element within the technical objective of the optimal management of the fuel economy in the sub-critical assembly of the accelerator driven system (ADS). Analysis of possible ways of reduction of radioactive wastes by transmutation of radioactive long-lived fission products such as 99 Tc, 129 I and 135 Cs and by burning up of transuranic nuclides implies that the sub-critical assembly of the accelerator driven system should consist of three zones. The requirement of three zones comes out of the fact that each radioactive isotope to be reduced is to be located in a different spectrum of thermal, epithermal and high energy neutron fluxes. High flux thermal neutron environment (≥10 16 n/cm 3 ·s) is expected as the best way for the transmutation of most of the radioactive waste to stable or short-lived nuclides and for increasing the probability for fission such actinides as 237 Np and 238 Np. The concept of ADS system for energy production and for transmutation is quite new to some extent and from this reason it requires many theoretical and experimental studies. The research of transmutation is a very large area of study requiring a significant experimental and financial support, so it can be performed only within the international cooperation. Specifically, the proposed research within this CRP requires important means, in terms of high-energy proton beams, spallation targets, sub-critical assembly, measurement instrumentation, post-irradiation characterisation and its testing and, of course, manpower for the interpretation of results, modelling observed phenomena, and programme management. The personal involved in the research is to be a skilled personal of

  2. Transmutation of fission products with the use of an accelarator

    International Nuclear Information System (INIS)

    Kase, T.; Harada, H.; Takahashi, T.

    1995-01-01

    The three transmutation methods with the use of an accelerator, the proton method, the spallation neutron method and the μCF method, are employed for the transmutation of long-lived nuclides in high level radioactive wastes. The transmutation energies and the effective half-lives of 99 Tc and 137 Cs for these transmutation methods are calculated by the Monte Carlo simulation codes for particle transport. The transmutation energies of the proton method are larger than those of the spallation neutron method and the μCF method under the condition of the same effective half life. The proton method is difficult to meet energy balance criterion. On the other hand, the spallation neutron method and the μCF method have possibility to meet the energy balance criterion. (author)

  3. Progress in transmutation targets from Efttra

    International Nuclear Information System (INIS)

    Haas, D.; Fernandez, A.; Warin, D.; Bonnerot, J.M.; Garzenne, C.; Scaffidi-Argentina, F.; Maschek, W.; Schram, R.; Klaassen, F.

    2007-01-01

    Since 15 years, the EFTTRA partners have organised programmes to demonstrate the feasibility of the transmutation of americium in uranium-free targets. In the related transmutation scenario, the targets are introduced in a thermal neutron zone of a fast reactor, to maximize the efficiency of transmutation. Amongst these programmes, those carried out in the HFR reactor in Petten have led to important conclusions and are still at the core of the research in that field. The analysis of the EFTTRA T4 and T4bis irradiation experiments, carried out with targets of MgAl 2 O 4 +11 wt% 241 Am, showed that the release/trapping of helium is the key issue for target design, and also demonstrated a lack of technical benefits of this material, due to a unsatisfactory in-pile behaviour in terms of irradiation damage and chemical stability. A new irradiation experiment called HELIOS is currently under fabrication and will be carried out in HFR. The in-pile behaviour of U-free fuels and targets such as (Am,Zr)O 2 , (Pu,Am,Zr)O 2 , CERCER (MgO) or CERMET (Mo) will be examined. The irradiation temperature will be high enough in some of the pins to be able to tune the release of a significant fraction of helium produced so that the material swelling can be minimized as much as reasonably possible. The HELIOS irradiation experiment is planned to be carried out in the HFR core and shall last 300 full power days starting in 2007. (authors)

  4. Partitioning and Transmutation. Annual Report 2006

    Energy Technology Data Exchange (ETDEWEB)

    Dubois, Isabelle; Englund, Sofie; Fermvik, Anna; Liljenzin, Jan-Olov; Neumayer, Denis; Retegan, Teodora; Skarnemark, Gunnar [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Chemical and Biological Engineering

    2007-01-15

    The long-lived elements in the spent nuclear fuels are mostly actinides, some fission products ({sup 79}Se, {sup 87}Rb, {sup 99}Tc, {sup 107}Pd, {sup 126}Sn, {sup 129}I, {sup 135}Cs) and activation products ({sup 14}C, {sup 36}Cl, {sup 59}Ni, {sup 93} Zr, {sup 94} To be able to destroy the long-lived elements in a transmutation process they must be separated from the rest of the spent nuclear fuel. The most difficult separations to make are those between trivalent actinides and lanthanides, due to their relatively similar chemical properties, and those between different actinides themselves. These separations are necessary to obtain the desired efficiency of the transmutation process and in order not to create any unnecessary waste thus rendering the process useless. Solvent extraction is an efficient and well-known method that makes it possible to have separation factors that fulfil the highly set demands on purity of the separated phases and on small losses. Chalmers University of Technology is involved in research regarding the separation of actinides and lanthanides and between the actinides themselves as a partner in the EUROPART project within the European Union sixth framework program. This is a continuation of the projects we participated in within the fourth and fifth framework programmes, NEWPART and PARTNEW, respectively. The aims of the projects have now shifted from basic understanding to more applied research with focus on process development. However, since the basic understanding is still needed we have our main focus on the chemical processes and understanding of how they work. Work is progressing in relation to a proposal for the 7th framework programme. This proposal will be aiming at a pilot plant for separation for transmutation purposes.

  5. Evaluation of subcritical hybrid systems loaded with reprocessed fuel

    International Nuclear Information System (INIS)

    Velasquez, Carlos E.; Barros, Graiciany de P.; Pereira, Claubia; Veloso, Maria Auxiliadora F.; Costa, Antonella L.

    2015-01-01

    Highlights: • Accelerator driven systems (ADS) and fusion–fission systems are investigated for transmutation and fuel regeneration. • The calculations were performed using Monteburns code. • The results indicate the most suitable system for achieve transmutation. - Abstract: Two subcritical hybrid systems containing spent fuel reprocessed by Ganex technique and spiked with thorium were submitted to neutron irradiation of two different sources: ADS (Accelerator-driven subcritical) and Fusion. The aim is to investigate the nuclear fuel evolution using reprocessed fuel and the neutronic parameters under neutron irradiation. The source multiplication factor and fuel depletion for both systems were analysed during 10 years. The simulations were performed using MONTEBURNS code (MCNP/ORIGEN). The results indicate the main differences when irradiating the fuel with different neutron sources as well as the most suitable system for achieving transmutation

  6. R and D on Transmutation at CEA: Recent Results

    International Nuclear Information System (INIS)

    Royet, V.; Delahaye, T.; Lebreton, F.; Picart, S.; Caisso, M.; Gauthe, A.; Ode, D.; Tronche, E.; Bayle, J.P; Warin, D.; Bejaoui, S.; Delage, F.

    2015-01-01

    In the field of minor actinide transmutation in future Generation IV SFR reactor, CEA investigates in priority the recycling of Americium (Am) in the radial blankets located in the outer core area (AmBB: Americium Bearing Blankets). This paper gives an overview of the recent outcomes of the R and D programme carried out at CEA in the different fields of research: from powder elaboration to experimental irradiation. Concerning the powder elaboration, several batches have been produced by the oxalic co-conversion route as well as by the Calcined Resin Microsphere Pelletizing. Different tests have been then performed for the fabrication of pellets according to the current specifications of AmBB. For these two processes, different additional developments of innovative technologies have been achieved well adapted with the processes constraints and hot cell operating. Information on irradiation programmes (MARIOS in HFR and ongoing DIAMINO in Osiris) are presented. The next steps of the programme will then be tackled. (authors)

  7. New data libraries for transmutation studies

    Energy Technology Data Exchange (ETDEWEB)

    Kloosterman, J.L. [Netherlands Energy Research Foundation (ECN), Petten (Netherlands); Hoogenboom, J.E. [Interfaculty Reactor Inst., Delft (Netherlands)

    1995-06-01

    The fuel depletion code ORIGEN-S is often used for transmutation studies. It uses three different working libraries for actinides, fission products, and light elements, which contain decay data, cross-section data and fission product yields. These data have been renewed with data based on the JEF2.2 and the EAF3 evaluated files. Furthermore, data for 201 fission products have been added to the libraries. The new data libraries are particular suitable for parameter studies and other introductory calculations. For more accurate calculations, it is advised to regularly update the cross sections of the most important actinides and fission products during the burnup sequence. (orig.).

  8. New data libraries for transmutation studies

    Energy Technology Data Exchange (ETDEWEB)

    Kloosterman, J.L. [Netherlands Energy Research Foundation (ECN), Petten (Netherlands); Hoogenboom, J.E. [Interfaculty Reactor Inst., Delft (Netherlands)

    1995-12-31

    The fuel depletion code ORIGEN-S is often used for transmutations studies. It uses three different working libraries for actinides, fission products, and light elements, which contain decay data, cross-section data and fission product yields. These data have renewed with data based on the JEF2.2 and the EAF3 evaluated files. Furthermore, data for 201 fission products have been added to the libraries. The new data libraries are particular suitable for parameter studies and other introductory calculations. For more accurate calculations, it is advised to regularly update the cross sections of the most important actinides and fission products during the burnup sequence. (author) 9 refs.

  9. Statistical Transmutation in Floquet Driven Optical Lattices.

    Science.gov (United States)

    Sedrakyan, Tigran A; Galitski, Victor M; Kamenev, Alex

    2015-11-06

    We show that interacting bosons in a periodically driven two dimensional (2D) optical lattice may effectively exhibit fermionic statistics. The phenomenon is similar to the celebrated Tonks-Girardeau regime in 1D. The Floquet band of a driven lattice develops the moat shape, i.e., a minimum along a closed contour in the Brillouin zone. Such degeneracy of the kinetic energy favors fermionic quasiparticles. The statistical transmutation is achieved by the Chern-Simons flux attachment similar to the fractional quantum Hall case. We show that the velocity distribution of the released bosons is a sensitive probe of the fermionic nature of their stationary Floquet state.

  10. Transmutation of singularities in optical instruments

    Energy Technology Data Exchange (ETDEWEB)

    Tyc, Tomas [Institute of Theoretical Physics and Astrophysics, Masaryk University, Kotlarska 2, 61137 Brno (Czech Republic); Leonhardt, Ulf [School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews KY16 9SS (United Kingdom)], E-mail: tomtyc@physics.muni.cz

    2008-11-15

    We propose a method for eliminating a class of singularities in optical media where the refractive index goes to zero or infinity at one or more isolated points. Employing transformation optics, we find a refractive index distribution equivalent to the original one that is nonsingular but shows a slight anisotropy. In this way, the original singularity is 'transmuted' into another, weaker type of singularity where the permittivity and permeability tensors are discontinuous at one point. The method is likely to find applications in designing and improving optical devices by making them easier to implement or to operate in a broad band of the spectrum.

  11. Strong coupling transmutation of Yukawa theory

    International Nuclear Information System (INIS)

    Chiang, C.C.; Chiu, C.B.; Sudarshan, E.C.G.

    1981-01-01

    In the strong coupling limit, it is shown that the Yukawa-type theory can be made to undergo a transmutation into an attractive separable potential theory, provided a single state is removed from the spectrum in the lowest nontrivial sector and the states at infinity which include a continuum in the next sector. If these states are not removed, the two theories are distinct. It is suggested that the full equivalence and the renormalization of four-fermion theories need further examination. (orig.)

  12. II. Inhibited Diffusion Driven Surface Transmutations

    Science.gov (United States)

    Chubb, Talbot A.

    2006-02-01

    This paper is the second of a set of three papers dealing with the role of coherent partitioning as a common element in Low Energy Nuclear Reactions (LENR), by which is meant cold-fusion related processes. This paper discusses the first step in a sequence of four steps that seem to be necessary to explain Iwamura 2-α-addition surface transmutations. Three concepts are examined: salt-metal interface states, sequential tunneling that transitions D+ ions from localized interstitial to Bloch form, and the general applicability of 2-dimensional vs. 3-dimensional symmetry hosting networks.

  13. The DD Cold Fusion-Transmutation Connection

    Science.gov (United States)

    Chubb, Talbot A.

    2005-12-01

    LENR theory must explain dd fusion, alpha-addition transmutations, radiationless nuclear reactions, and three-body nuclear particle reactions. Reaction without radiation requires many-body D Bloch+ periodicity in both location and internal structure dependencies. Electron scattering leads to mixed quantum states. The radiationless dd fusion reaction is 2-D Bloch+ -> {}4 He Bloch2+. Overlap between {}4 He Bloch2+ and surface Cs leads to alpha absorption. In the Iwamura et al. studies active deuterium is created by scattering at diffusion barriers.

  14. II. Inhibited diffusion driven surface transmutations

    International Nuclear Information System (INIS)

    Cubb, Talbot A.

    2006-01-01

    This paper is the second of a set of three papers dealing with the role of coherent partitioning as a common element in Low Energy Nuclear Reactions (LENR), by which is meant cold-fusion related processes. This paper discusses the first step in a sequence of four steps that seem to be necessary to explain lwamura 2-α-addition surface transmutations. Three concepts are examined: salt metal interface states, sequential tunneling that transitions D + ions from localized interstitial to Bloch form, and the general applicability of 2-dimensional vs. 3-dimensional symmetry hosting networks. (author)

  15. II. Inhibited diffusion driven surface transmutations

    Energy Technology Data Exchange (ETDEWEB)

    Cubb, Talbot A. [Greenwich Corp., 5023 N. 38th St., Arlington, VA 22207 (United States)

    2006-07-01

    This paper is the second of a set of three papers dealing with the role of coherent partitioning as a common element in Low Energy Nuclear Reactions (LENR), by which is meant cold-fusion related processes. This paper discusses the first step in a sequence of four steps that seem to be necessary to explain lwamura 2-{alpha}-addition surface transmutations. Three concepts are examined: salt metal interface states, sequential tunneling that transitions D{sup +} ions from localized interstitial to Bloch form, and the general applicability of 2-dimensional vs. 3-dimensional symmetry hosting networks. (author)

  16. Partitioning and transmutation - Technical feasibility, proliferation resistance and safeguardability

    International Nuclear Information System (INIS)

    Schenkel, R.; Glatz, J.-P.; Magill, J.; Mayer, K.

    2001-01-01

    Full text: The advantages of partitioning and transmutation (P and T) of minor actinides and selected fission products are largely discussed and described in literature. The advantages of separation of the long-lived alpha-emitters for the long-term storage of highly radioactive waste have been highlighted. After separation, these nuclides shall be transmuted by means of a dedicated reactor or accelerator driven system into shorter-lived fission products that are less hazardous. This, however, requires the development and implementation of a P and T fuel cycle, involving chemical separation of the minor actinides and the fabrication of MA containing fuels or targets. Concepts for P and T fuel cycles have been developed and technical issues are being addressed in various research programs. With the recognition of the proliferation potential associated with the minor actinides by the IAEA, also the proliferation and safeguards aspects need to be addressed. It is important to raise these points at an early stage of process development, in order to identify potential problems and to develop appropriate solutions. The oxide fuels used worldwide in thermal reactor systems for energy production are reprocessed by aqueous techniques. Therefore these systems, primarily the PUREX process, are fully developed and implemented commercially. Furthermore, the safeguards approach is fully implemented in existing facilities, covering uranium and plutonium. Pyroprocess systems have largely been associated with fast reactors and metallic fuels and their development has therefore only reached the pilot-scale stage and the feasibility of minor actinide (MA) separation still needs to be demonstrated. Hydrometallurgical and pyrochemical reprocessing should however not be considered as competing but rather as complementary technologies. For instance in a so-called double strata concept (foreseen for instance in the Japanese OMEGA project), the PUREX process (first stratum) would be

  17. Neutron data experiments for transmutation. Annual Report 2007/2008

    International Nuclear Information System (INIS)

    Blomgren, J.; Al-Adili, A.; Andersson, P.; Bevilacqua, R.; Nilsson, L.; Pomp, S.; Simutkin, V.; Oehrn, A.; Oesterlund, M.

    2008-08-01

    The project NEXT, Neutron data Experiments for Transmutation, is performed within the nuclear reactions group of the Dept. of Physics and Astronomy. The activities of the group are directed towards experimental studies of nuclear reaction probabilities of importance for various applications, like transmutation of nuclear waste, biomedical effects and electronics reliability. The experimental work is primarily undertaken at the The Svedberg Laboratory (TSL) in Uppsala, where the group is operating two world-unique instruments, MEDLEY and SCANDAL. Highlights from the past year: - The SCANDAL facility has been upgraded. - One PhD student has successfully defended her thesis. - Two PhD students have been accepted. - Vasily Simutkin has been selected as one of the top 12 PhD students within the European Nuclear Education Network. He has accordingly been invited to present his work at the ENEN PhD event held in connection with the PHYSOR conference in Interlaken, Switzerland, September 2008. - A research collaboration with the dedicated EU laboratory for nuclear data research has been established. - A well-attended workshop on nuclear data for ADS and Gen-IV has been organized as part of the EU project CANDIDE (Coordination Action on Nuclear Data for Industrial Development in Europe), coordinated by Jan Blomgren. - Several experiments have been performed at TSL, with beamtime funded through the EU project EFNUDAT (European Facilities for Nuclear Data research), partly coordinated by Jan Blomgren. - Nuclear power education has reached all-time high at Uppsala University. In particular, industry education has increased significantly. - IAEA has visited Uppsala University to investigate the industry-related nuclear power education, as part of a safety culture review of the Forsmark nuclear power plant

  18. Neutron data experiments for transmutation. Annual Report 2007/2008

    Energy Technology Data Exchange (ETDEWEB)

    Blomgren, J.; al-Adili, A.; Andersson, P.; Bevilacqua, R.; Nilsson, L.; Pomp, S.; Simutkin, V.; Oehrn, A.; Oesterlund, M. (Uppsala Univ. (Sweden). Div. of Applied Nuclear Physics)

    2008-08-15

    The project NEXT, Neutron data Experiments for Transmutation, is performed within the nuclear reactions group of the Dept. of Physics and Astronomy. The activities of the group are directed towards experimental studies of nuclear reaction probabilities of importance for various applications, like transmutation of nuclear waste, biomedical effects and electronics reliability. The experimental work is primarily undertaken at the The Svedberg Laboratory (TSL) in Uppsala, where the group is operating two world-unique instruments, MEDLEY and SCANDAL. Highlights from the past year: - The SCANDAL facility has been upgraded. - One PhD student has successfully defended her thesis. - Two PhD students have been accepted. - Vasily Simutkin has been selected as one of the top 12 PhD students within the European Nuclear Education Network. He has accordingly been invited to present his work at the ENEN PhD event held in connection with the PHYSOR conference in Interlaken, Switzerland, September 2008. - A research collaboration with the dedicated EU laboratory for nuclear data research has been established. - A well-attended workshop on nuclear data for ADS and Gen-IV has been organized as part of the EU project CANDIDE (Coordination Action on Nuclear Data for Industrial Development in Europe), coordinated by Jan Blomgren. - Several experiments have been performed at TSL, with beamtime funded through the EU project EFNUDAT (European Facilities for Nuclear Data research), partly coordinated by Jan Blomgren. - Nuclear power education has reached all-time high at Uppsala University. In particular, industry education has increased significantly. - IAEA has visited Uppsala University to investigate the industry-related nuclear power education, as part of a safety culture review of the Forsmark nuclear power plant

  19. Development of CERMET fuels for minor actinides transmutation

    International Nuclear Information System (INIS)

    Haas, D.; Fernandez, A.; Naestren, C.; Staicu, D.; Somers, J.; Maschek, W.; Chen, X.

    2006-01-01

    The sub-critical Accelerator Driven System (ADS) is now being considered as a potential means to burn long-lived transuranium nuclides. The preferred fuel for such a fast neutron reactor is uranium-free, highly enriched with plutonium and minor actinides. Requirements for ADS transmutation fuels are linked with the core design and safety parameters, the fuel properties and the ease of reprocessing. This study concerns the properties of metals as matrices, with the particular case of Mo. To improve the neutronic characteristics, enriched molybdenum (Mo-92) is required. To overcome the high enrichment cost, it is proposed to recover the matrix by pellet dissolution, and to recycle it for further use. Irradiation programmes are also planned to examine the in-reactor properties of the material. Based on the current status of the research, the results are promising, but irradiation results are still missing. (authors)

  20. Data management system performance modeling

    Science.gov (United States)

    Kiser, Larry M.

    1993-01-01

    This paper discusses analytical techniques that have been used to gain a better understanding of the Space Station Freedom's (SSF's) Data Management System (DMS). The DMS is a complex, distributed, real-time computer system that has been redesigned numerous times. The implications of these redesigns have not been fully analyzed. This paper discusses the advantages and disadvantages for static analytical techniques such as Rate Monotonic Analysis (RMA) and also provides a rationale for dynamic modeling. Factors such as system architecture, processor utilization, bus architecture, queuing, etc. are well suited for analysis with a dynamic model. The significance of performance measures for a real-time system are discussed.

  1. Actinide Partitioning and Transmutation Program. Progress report, April 1--June 30, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Tedder, D. W.; Blomeke, J. O. [comps.

    1977-10-01

    Experimental work on the 16 tasks comprising the Actinide Partitioning and Transmutation Program was continued. Summaries of work are given on Purex Process modifications, actinide recovery, Am-Cm recovery, radiation effects on ion exchangers, LMFBR transmutation studies, thermal reactor transmutation studies, fuel cycle studies, and partitioning-transmutation evaluation. (JRD)

  2. Flexibility of ADS for minor actinides transmutation in different two-stage PWR-ADS fuel cycle scenarios

    International Nuclear Information System (INIS)

    Zhou, Shengcheng; Wu, Hongchun; Zheng, Youqi

    2018-01-01

    Highlights: •ADS reloading scheme is optimized to raise discharge burnup and lower reactivity loss. •ADS is flexible to be combined with various pyro-chemical reprocessing technologies. •ADS is flexible to transmute MAs from different spent PWR fuels. -- Abstract: A two-stage Pressurized Water Reactor (PWR)-Accelerator Driven System (ADS) fuel cycle is proposed as an option to transmute minor actinides (MAs) recovered from the spent PWR fuels in the ADS system. At the second stage, the spent fuels discharged from ADS are reprocessed by the pyro-chemical process and the recovered actinides are mixed with the top-up MAs recovered from the spent PWR fuels to fabricate the new fuels used in ADS. In order to lower the amount of nuclear wastes sent to the geological repository, an optimized scattered reloading scheme for ADS is proposed to maximize the discharge burnup and lower the burnup reactivity loss. Then the flexibility of ADS for MA transmutation is evaluated in this research. Three aspects are discussed, including: different cooling time of spent ADS fuels before reprocessing, different reprocessing loss of spent ADS fuels, and different top-up MAs recovered from different kinds of spent PWR fuels. The ADS system is flexible to be combined with various pyro-chemical reprocessing technologies with specific spent fuels cooling time and unique reprocessing loss. The reduction magnitudes of the long-term decay heat and radiotoxicity of MAs by transmutation depend on the reprocessing loss. The ADS system is flexible to transmute MAs recovered from different kinds of spent PWR fuels, regardless of UOX or MOX fuels. The reduction magnitudes of the long-term decay heat and radiotoxicity of different MAs by transmutation stay on the same order.

  3. Evaluation of EIT system performance.

    Science.gov (United States)

    Yasin, Mamatjan; Böhm, Stephan; Gaggero, Pascal O; Adler, Andy

    2011-07-01

    An electrical impedance tomography (EIT) system images internal conductivity from surface electrical stimulation and measurement. Such systems necessarily comprise multiple design choices from cables and hardware design to calibration and image reconstruction. In order to compare EIT systems and study the consequences of changes in system performance, this paper describes a systematic approach to evaluate the performance of the EIT systems. The system to be tested is connected to a saline phantom in which calibrated contrasting test objects are systematically positioned using a position controller. A set of evaluation parameters are proposed which characterize (i) data and image noise, (ii) data accuracy, (iii) detectability of single contrasts and distinguishability of multiple contrasts, and (iv) accuracy of reconstructed image (amplitude, resolution, position and ringing). Using this approach, we evaluate three different EIT systems and illustrate the use of these tools to evaluate and compare performance. In order to facilitate the use of this approach, all details of the phantom, test objects and position controller design are made publicly available including the source code of the evaluation and reporting software.

  4. Minor actinide transmutation in a board type sodium cooled breed and burn reactor core

    International Nuclear Information System (INIS)

    Zheng, Meiyin; Tian, Wenxi; Zhang, Dalin; Qiu, Suizheng; Su, Guanghui

    2015-01-01

    Highlights: • A 1250 MWt board type sodium cooled breed and burn reactor core is further designed. • MCNP–ORIGEN coupled code MCORE is applied to perform neutronics and depletion calculation. • Transmutation efficiency and neutronic safety parameters are compared under different MA weight fraction. - Abstract: In this paper, a board type sodium cooled breed and burn reactor core is further designed and applied to perform minor actinide (MA) transmutation. MA is homogeneously loaded in all the fuel sub-assemblies with a weight fraction of 2.0 wt.%, 4.0 wt.%, 6.0 wt.%, 8.0 wt.%, 10.0 wt.% and 12.0 wt.%, respectively. The transmutation efficiency, transmutation amount, power density distribution, neutron fluence distribution and neutronic safety parameters, such as reactivity, Doppler feedback, void worth and delayed neutron fraction, are compared under different MA weight fraction. Neutronics and depletion calculations are performed based on the self-developed MCNP–ORIGEN coupled code with the ENDF/B-VII data library. In the breed and burn reactor core, a number of breeding sub-assemblies are arranged in the inner core in a board type way (scatter load) to breed, and a number of absorbing sub-assemblies are arranged in the inner side of the outer core to absorb neutrons and reduce power density in this area. All the fuel sub-assemblies (ignition and breeding sub-assemblies) are shuffled from outside in. The core reached asymptotically steady state after about 22 years, and the average and maximum discharged burn-up were about 17.0% and 35.3%, respectively. The transmutation amount increased linearly with the MA weight fraction, while the transmutation rate parabolically varied with the MA weight fraction. Power density in ignition sub-assembly positions increased with the MA weight fraction, while decreased in breeding sub-assembly positions. Neutron fluence decreased with the increase of MA weight fraction. Generally speaking, the core reactivity and void

  5. Deep burn transmutation of nuclear waste

    International Nuclear Information System (INIS)

    Rodriguez, C.; Baxter, A.; McEachern, D.; Venneri, F.; Williams, D.

    2002-01-01

    Helium-cooled, graphite-moderated reactors with ceramic-coated fuel particles offer unique advantages for the destruction of transuranic materials discharged in Light Water Reactor spent fuel. This is accomplished by fission, and capture-followed-by-fission processes. Three major features make it practical: (1) ceramic-coated particles accommodate high levels of burnup in one pass, thus reducing the need for repeated reprocessing; (2) graphite moderation produces valuable opportunities for thermal and epithermal neutrons to interact with fissionable and non-fissionable materials respectively; and (3) ceramic-coated particle kernel sizes can be adjusted to control the rate of such interactions. In the transmutation scheme proposed here, virtually complete destruction of weapons-usable materials, and 95% destruction of all transuranic waste is achieved. Higher levels of destruction are possible by repeated reprocessing and recycling, but there is little incentive to do so since each reprocessing step generates new secondary waste. After transmutation, the impervious ceramic-coated fuel particles provide an ideal residual waste form. (author)

  6. 4th Neutron Transmutation Doping Conference

    CERN Document Server

    1984-01-01

    viii The growing use of NTD silicon outside the U. S. A. motivated an interest in having the next NTD conference in Europe. Therefore, the Third International Conference on Neutron Transmutation-Doped Silicon was organized by Jens Guldberg and held in Copenhagen, Denmark on August 27-29, 1980. The papers presented at this conference reviewed the developments which occurred during the t'A'O years since the previous conference and included papers on irradiation technology, radiation-induced defects, characteriza­ tion of NTD silicon, and the use of NTD silicon for device appli­ cations. The proceedings of this conference were edited by Jens Guldberg and published by Plenum Press in 1981. Interest in, and commercial use of, NTD silicon continued to grow after the Third NTD Conference, and research into neutron trans­ mutation doping of nonsilicon semiconductors had begun to accel­ erate. The Fourth International Transmutation Doping Conference reported in this volume includes invited papers summarizing the p...

  7. Partitioning and Transmutation. Annual Report 2004

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Sofie; Drouet, Francois; Ekberg, Christian; Liljenzin, Jan-Olov; Magnusson, Daniel; Nilsson, Mikael; Retegan, Teodora; Skarnemark, Gunnar [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Materials and Surface Chemistry

    2005-01-01

    The long-lived elements in the spent nuclear fuels are mostly actinides, some fission products ({sup 129}I, {sup 99}Tc, {sup 135}Cs, {sup 93}Zr and {sup 126}Sn and activation products ({sup 14}C and {sup 36}Cl). To be able to destroy the long-lived elements in a transmutation process they must be separated from the rest of the spent nuclear fuel. The most difficult separations to make are those between trivalent actinides and lanthanides, due to their relatively similar chemical properties, and those between different actinides themselves. This separation is necessary to obtain the desired efficiency in the transmutation process in order not to create any unnecessary waste thus rendering the process useless. Solvent extraction is an efficient and well-known method that makes it possible to have separation factors that fulfil the highly set demands on purity of the separated phases and on small losses. Chalmers University of Technology is involved in research regarding the separation of actinides and lanthanides and between the actinides themselves as a partner in the European Union sixth framework program project EUROPART. This is a continuation of the projects we participated in within the fourth and fifth framework programmes NEWPART and PARTNEW respectively. The aims of the projects have now shifted from basic understanding to more applied research with focus on process development.

  8. Partitioning and Transmutation. Annual Report 2005

    International Nuclear Information System (INIS)

    Andersson, Sofie; Ekberg, Christian; Fermvik, Anna; Hervieux, Nadege; Liljenzin, Jan-Olov; Magnusson, Daniel; Nilsson, Mikael; Retegan, Teodora; Skarnemark, Gunnar

    2006-01-01

    The long-lived elements in the spent nuclear fuels are mostly actinides, some fission products ( 79 Se, 87 Rb, 99 Tc, 107 Pd, 126 Sn, 129 I, 135 Cs) and activation products ( 14 C, 36 Cl, 59 Ni, 93 Zr, 94 N To be able to destroy the long-lived elements in a transmutation process they must be separated from the rest of the spent nuclear fuel. The most difficult separations to make are those between trivalent actinides and lanthanides, due to their relatively similar chemical properties, and those between different actinides themselves. These separations are necessary to obtain the desired efficiency of the transmutation process and in order not to create any unnecessary waste thus rendering the process useless. Solvent extraction is an efficient and well-known method that makes it possible to have separation factors that fulfil the highly set demands on purity of the separated phases and on small losses. Chalmers Univ. of Technology is involved in research regarding the separation of actinides and lanthanides and between the actinides themselves as a partner in the EUROPART project within the European Union sixth framework program. This is a continuation of the projects we participated in within the fourth and fifth framework programmes, NEWPART and PARTNEW respectively. The aims of the projects have now shifted from basic understanding to more applied research with focus on process development. However, since the basic understanding is still needed we have our main focus on the chemical processes and understanding of how they work

  9. Partitioning and transmutation. Current developments - 2010. A report from the Swedish reference group for PT-research

    Energy Technology Data Exchange (ETDEWEB)

    Blomgren, Jan (ed.) (Swedish Centre for Nuclear Technology, SKC, Stockholm (Sweden)); Karlsson, Fred (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)); Pomp, Stephan (Uppsala Univ., Uppsala, Dept. of Physics and Astronomy, Div. of Applied Nuclear Physics (Sweden)); Aneheim, Emma; Ekberg, Christian; Fermvik, Anna; Skarnemark, Gunnar (Nuclear Chemistry, Dept. of Chemical and Biological Engineering, Chalmers Univ. of Technology, Goeteborg (Sweden)); Wallenius, Janne; Zakova, Jitka (Reactor Physics Div., Physics Dept., Royal Inst. of Technology, Stockholm (Sweden)); Grenthe, Ingemar; Szabo, Zoltan (School of Chemical Science and Engineering, Royal Inst. of Technology, Stockholm (Sweden))

    2010-01-15

    reprocessing of transmutation fuel require considerable development that cannot be conducted in full until the fuel has been better specified. Such development for an advanced fuel cycle will thus need additional time. PT is no longer seen as a method to 'clean up' as part of a nuclear phase-out; it is rather viewed as an integral part of a sustainable nuclear energy system, in which fast reactors play the major role in handling plutonium, and incineration of minor actinides by ADS is performed to reduce the radiotoxicity of the wastes from fast reactors. If ADS should be used at all, it seems today as there is close to global consensus that a double-strata concept is the most likely option. From a Swedish perspective it is important to participate in the international development and maintain a reasonable level of competence within the country. The competence developed by research on P and T is valuable not only for evaluating the progress potential within this field but also for development of safety and fuel supply at existing nuclear facilities. Recently, a generation change has taken place at the Swedish university research groups active in nuclear-power related research, and presently the activities grow rapidly, both due to increased interest in research and a larger need for education. The leading scientists in the new generation have all of them worked in projects supported by SKB and SKC,most of them have been involved in P and T research. Thereby, the P and T research has already played a crucial role in the Swedish nuclear competence management

  10. Partitioning and transmutation. Current developments - 2010. A report from the Swedish reference group for PT-research

    International Nuclear Information System (INIS)

    Blomgren, Jan; Karlsson, Fred; Pomp, Stephan; Aneheim, Emma; Ekberg, Christian; Fermvik, Anna; Skarnemark, Gunnar; Wallenius, Janne; Zakova, Jitka; Grenthe, Ingemar; Szabo, Zoltan

    2010-01-01

    reprocessing of transmutation fuel require considerable development that cannot be conducted in full until the fuel has been better specified. Such development for an advanced fuel cycle will thus need additional time. PT is no longer seen as a method to 'clean up' as part of a nuclear phase-out; it is rather viewed as an integral part of a sustainable nuclear energy system, in which fast reactors play the major role in handling plutonium, and incineration of minor actinides by ADS is performed to reduce the radiotoxicity of the wastes from fast reactors. If ADS should be used at all, it seems today as there is close to global consensus that a double-strata concept is the most likely option. From a Swedish perspective it is important to participate in the international development and maintain a reasonable level of competence within the country. The competence developed by research on P and T is valuable not only for evaluating the progress potential within this field but also for development of safety and fuel supply at existing nuclear facilities. Recently, a generation change has taken place at the Swedish university research groups active in nuclear-power related research, and presently the activities grow rapidly, both due to increased interest in research and a larger need for education. The leading scientists in the new generation have all of them worked in projects supported by SKB and SKC,most of them have been involved in P and T research. Thereby, the P and T research has already played a crucial role in the Swedish nuclear competence management

  11. Separation of technetium from ruthenium after the accelerator transmutation of technetium

    International Nuclear Information System (INIS)

    Abney, K.D.; Schroeder, N.C.; Kinkead, S.A.; Attrep, M. Jr.

    1992-01-01

    Both civilian and defense related waste must be processed with a strategy for dealing with Tc. One solution is to remove the Tc from the waste steam and transmute the Tc to stable Ru in either a reactor or an accelerator. Before any processing of waste streams can be performed (even if transmutation is not performed) the separations chemistry from the spent fuels or the stored wastes containing Tc must be developed. This report details some of the separation schemes possible for the separation of Tc and Ru, which include the baseline ion exchange process of Roberts, Smith and Wheelwright, ozonolysis, filtration, magnetic separation, solvent extraction, electrodeposition, fluorination, and pyrolysis. 5 figs, 4 refs

  12. Transmutation of minor actinide using thorium fueled BWR core

    International Nuclear Information System (INIS)

    Susilo, Jati

    2002-01-01

    One of the methods to conduct transmutation of minor actinide is the use of BWR with thorium fuel. Thorium fuel has a specific behaviour of producing a little secondary minor actinides. Transmutation of minor actinide is done by loading it in the BWR with thorium fuel through two methods, namely close recycle and accumulation recycle. The calculation of minor actinide composition produced, weigh of minor actinide transmuted, and percentage of reminder transmutation was carried SRAC. The calculations were done to equivalent cell modeling from one fuel rod of BWR. The results show that minor actinide transmutation is more effective using thorium fuel than uranium fuel, through both close recycle and accumulation recycle. Minor actinide transmutation weight show that the same value for those recycle for 5th recycle. And most of all minor actinide produced from 5 unit BWR uranium fuel can transmuted in the 6 t h of close recycle. And, the minimal value of excess reactivity of the core is 12,15 % Δk/k, that is possible value for core operation

  13. Enhancing TRU burning and Am transmutation in Advanced Recycling Reactor

    International Nuclear Information System (INIS)

    Ikeda, Kazumi; Kochendarfer, Richard A.; Moriwaki, Hiroyuki; Kunishima, Shigeru

    2011-01-01

    Research highlights: → This ARR is an oxide fueled sodium cooled reactor based on innovative technologies to destruct TRU. → TRU burning core is designed to burn TRU at 28 kg/TW th h, adding moderator pins of B 4 C (Enriched B-11). → Am transmutation core can transmute Am at 34 kg/TW th h, adding uranium free AmN blanket to TRU burning core. → The TRU burning core improves TRU burning by 40-50% than the previous core. → The Am transmutation core can transmute Am effectively, keeping the void reactivity acceptable. - Abstract: This paper presents about conceptual designs of Advanced Recycling Reactor (ARR) focusing on enhancement in transuranics (TRU) burning and americium (Am) transmutation. The design has been conducted in the context of the Global Nuclear Energy Partnership (GNEP) seeking to close nuclear fuel cycle in ways that reduce proliferation risks, reduce the nuclear waste in the US and further improve global energy security. This study strives to enhance the TRU burning and the Am transmutation, assuming the development of related technologies in this study, while the ARR based on mature technologies was designed in the previous study. It has followed that the provided TRU burning core is designed to burn TRU at 28 kg/TW th h, by adding moderator pins of B 4 C (Enriched B-11) and the Am transmutation core will be able to transmute Am at 34 kg/TW th h, by locating Am blanket of AmN around the TRU burning core. It indicates that these concepts improve TRU burning by 40-50% than the previous core and can transmute Am effectively, keeping the void reactivity acceptable.

  14. Performance Confirmation Data Acquisition System

    International Nuclear Information System (INIS)

    D.W. Markman

    2000-01-01

    The purpose of this analysis is to identify and analyze concepts for the acquisition of data in support of the Performance Confirmation (PC) program at the potential subsurface nuclear waste repository at Yucca Mountain. The scope and primary objectives of this analysis are to: (1) Review the criteria for design as presented in the Performance Confirmation Data Acquisition/Monitoring System Description Document, by way of the Input Transmittal, Performance Confirmation Input Criteria (CRWMS M and O 1999c). (2) Identify and describe existing and potential new trends in data acquisition system software and hardware that would support the PC plan. The data acquisition software and hardware will support the field instruments and equipment that will be installed for the observation and perimeter drift borehole monitoring, and in-situ monitoring within the emplacement drifts. The exhaust air monitoring requirements will be supported by a data communication network interface with the ventilation monitoring system database. (3) Identify the concepts and features that a data acquisition system should have in order to support the PC process and its activities. (4) Based on PC monitoring needs and available technologies, further develop concepts of a potential data acquisition system network in support of the PC program and the Site Recommendation and License Application

  15. Neutron Transmutation Doped (NTD) germanium thermistors for sub-mm bolometer applications

    Science.gov (United States)

    Haller, E. E.; Itoh, K. M.; Beeman, J. W.

    1996-01-01

    Recent advances in the development of neutron transmutation doped (NTD) semiconductor thermistors fabricated from natural and controlled isotopic composition germanium are reported. The near ideal doping uniformity that can be achieved with the NTD process, the device simplicity of NTD Ge thermistors and the high performance of cooled junction field effect transistor preamplifiers led to the widespread acceptance of these thermal sensors in ground-based, airborne and spaceborne radio telescopes. These features made possible the development of efficient bolometer arrays.

  16. Computed radiography systems performance evaluation

    International Nuclear Information System (INIS)

    Xavier, Clarice C.; Nersissian, Denise Y.; Furquim, Tania A.C.

    2009-01-01

    The performance of a computed radiography system was evaluated, according to the AAPM Report No. 93. Evaluation tests proposed by the publication were performed, and the following nonconformities were found: imaging p/ate (lP) dark noise, which compromises the clinical image acquired using the IP; exposure indicator uncalibrated, which can cause underexposure to the IP; nonlinearity of the system response, which causes overexposure; resolution limit under the declared by the manufacturer and erasure thoroughness uncalibrated, impairing structures visualization; Moire pattern visualized at the grid response, and IP Throughput over the specified by the manufacturer. These non-conformities indicate that digital imaging systems' lack of calibration can cause an increase in dose in order that image prob/ems can be so/ved. (author)

  17. Evidence for the occurrence of LENR-type processes in alchemic transmutations

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Pariente, Joaquin [Instituto de Catalisis y Petroleoquimica, CSIC, Marie Curie 2, 28049 Cantoblanco, Madrid (Spain)

    2006-07-01

    The relevance of experimental aspects of alchemy have been neglected for too long in the academic milieu, but in recent years more thoughtful studies of texts from the middle ages and early modern European alchemy evidence the presence of coherent and relevant laboratory practices. However, the central core of western alchemy, the quest for the Philosophers' Stone, the substance claimed to transmute base metals into gold, remains, needless to say, elusive. While no book will ever tell us how to prepare such substance, it is nevertheless also true that detailed reports on alchemic transmutations, often authored by witnesses of such events, can be found profusely in alchemic literature. These reports usually contain valuable information regarding quantitative aspects of the transmutation processes. Taking into account numerical parameters of alchemic transmutations such as the weights of starting base metal, gold and Philosophers' Stone, and the duration of the transmutation experiences, it has been found that the transmutation processes follow a specific pattern similar to that generally observed in conventional catalytic reactions. In the present work, several examples of alchemic practices and objects are reported that, taken as a whole, challenge our actual view on the constitution of matter. First, new data are presented which support the catalytic-like performance of the Philosophers' Stone. Indeed, such behaviour is consistent with the alchemic view on the evolution of metals, which conceives the transmutation as an acceleration of the ripening of base metals towards the more perfect gold which takes place in Nature by means of a slow maturation process inside the Earth's womb. Second, differences between the weight of the starting base metal and the weight of the gold (or silver) obtained at the end of the transmutation process are often noticed in the texts, but no satisfactory explanation for such observation has been given so far

  18. Evidence for the occurrence of LENR-type processes in alchemic transmutations

    International Nuclear Information System (INIS)

    Perez-Pariente, Joaquin

    2006-01-01

    The relevance of experimental aspects of alchemy have been neglected for too long in the academic milieu, but in recent years more thoughtful studies of texts from the middle ages and early modern European alchemy evidence the presence of coherent and relevant laboratory practices. However, the central core of western alchemy, the quest for the Philosophers' Stone, the substance claimed to transmute base metals into gold, remains, needless to say, elusive. While no book will ever tell us how to prepare such substance, it is nevertheless also true that detailed reports on alchemic transmutations, often authored by witnesses of such events, can be found profusely in alchemic literature. These reports usually contain valuable information regarding quantitative aspects of the transmutation processes. Taking into account numerical parameters of alchemic transmutations such as the weights of starting base metal, gold and Philosophers' Stone, and the duration of the transmutation experiences, it has been found that the transmutation processes follow a specific pattern similar to that generally observed in conventional catalytic reactions. In the present work, several examples of alchemic practices and objects are reported that, taken as a whole, challenge our actual view on the constitution of matter. First, new data are presented which support the catalytic-like performance of the Philosophers' Stone. Indeed, such behaviour is consistent with the alchemic view on the evolution of metals, which conceives the transmutation as an acceleration of the ripening of base metals towards the more perfect gold which takes place in Nature by means of a slow maturation process inside the Earth's womb. Second, differences between the weight of the starting base metal and the weight of the gold (or silver) obtained at the end of the transmutation process are often noticed in the texts, but no satisfactory explanation for such observation has been given so far. Weight decreases are

  19. A Novel Molten Salt Reactor Concept to Implement the Multi-Step Time-Scheduled Transmutation Strategy

    International Nuclear Information System (INIS)

    Csom, Gyula; Feher, Sandor; Szieberthj, Mate

    2002-01-01

    Nowadays the molten salt reactor (MSR) concept seems to revive as one of the most promising systems for the realization of transmutation. In the molten salt reactors and subcritical systems the fuel and material to be transmuted circulate dissolved in some molten salt. The main advantage of this reactor type is the possibility of the continuous feed and reprocessing of the fuel. In the present paper a novel molten salt reactor concept is introduced and its transmutation capabilities are studied. The goal is the development of a transmutation technique along with a device implementing it, which yield higher transmutation efficiencies than that of the known procedures and thus results in radioactive waste whose load on the environment is reduced both in magnitude and time length. The procedure is the multi-step time-scheduled transmutation, in which transformation is done in several consecutive steps of different neutron flux and spectrum. In the new MSR concept, named 'multi-region' MSR (MRMSR), the primary circuit is made up of a few separate loops, in which salt-fuel mixtures of different compositions are circulated. The loop sections constituting the core region are only neutronically and thermally coupled. This new concept makes possible the utilization of the spatial dependence of spectrum as well as the advantageous features of liquid fuel such as the possibility of continuous chemical processing etc. In order to compare a 'conventional' MSR and a proposed MRMSR in terms of efficiency, preliminary calculational results are shown. Further calculations in order to find the optimal implementation of this new concept and to emphasize its other advantageous features are going on. (authors)

  20. Accelerator technology for Los Alamos nuclear-waste-transmutation and energy-production concepts

    International Nuclear Information System (INIS)

    Lawrence, G.P.; Jameson, R.A.; Schriber, S.O.

    1991-01-01

    Powerful proton linacs are being studied at Los Alamos as drivers for high-flux neutron sources that can transmute long-lived fission products and actinides in defense nuclear waste, and also as drivers of advanced fission-energy systems that could generate electric power with no long-term waste legacy. A transmuter fed by an 800-MeV, 140-mA cw conventional copper linac could destroy the accumulated 99 Tc and 129 I at the DOE's Hanford site within 30 years. A high-efficiency 1200-MeV, 140-mA niobium superconducting linac could drive an energy-producing system generating 1-GWe electric power. Preliminary design concepts for these different high-power linacs are discussed, along with the principal technical issues and the status of the technology base. 9 refs., 5 figs., 4 tabs