WorldWideScience

Sample records for transmission-cavity resonance phenomena

  1. Effects of cavity resonances on sound transmission into a thin cylindrical shell. [noise reduction in aircraft fuselage

    Science.gov (United States)

    Koval, L. R.

    1978-01-01

    In the context of the transmission of airborne noise into an aircraft fuselage, a mathematical model is presented for the effects of internal cavity resonances on sound transmission into a thin cylindrical shell. The 'noise reduction' of the cylinder is defined and computed, with and without including the effects of internal cavity resonances. As would be expected, the noise reduction in the absence of cavity resonances follows the same qualitative pattern as does transmission loss. Numerical results show that cavity resonances lead to wide fluctuations and a general decrease of noise reduction, especially at cavity resonances. Modest internal absorption is shown to greatly reduce the effect of cavity resonances. The effects of external airflow, internal cabin pressurization, and different acoustical properties inside and outside the cylinder are also included and briefly examined.

  2. A pulsated weak-resonant-cavity laser diode with transient wavelength scanning and tracking for injection-locked RZ transmission.

    Science.gov (United States)

    Lin, Gong-Ru; Chi, Yu-Chieh; Liao, Yu-Sheng; Kuo, Hao-Chung; Liao, Zhi-Wang; Wang, Hai-Lin; Lin, Gong-Cheng

    2012-06-18

    By spectrally slicing a single longitudinal-mode from a master weak-resonant-cavity Fabry-Perot laser diode with transient wavelength scanning and tracking functions, the broadened self-injection-locking of a slave weak-resonant-cavity Fabry-Perot laser diode is demonstrated to achieve bi-directional transmission in a 200-GHz array-waveguide-grating channelized dense-wavelength-division-multiplexing passive optical network system. Both the down- and up-stream slave weak-resonant-cavity Fabry-Perot laser diodes are non-return-to-zero modulated below threshold and coherently injection-locked to deliver the pulsed carrier for 25-km bi-directional 2.5 Gbits/s return-to-zero transmission. The master weak-resonant-cavity Fabry-Perot laser diode is gain-switched at near threshold condition and delivers an optical coherent pulse-train with its mode linewidth broadened from 0.2 to 0.8 nm by transient wavelength scanning, which facilitates the broadband injection-locking of the slave weak-resonant-cavity Fabry-Perot laser diodes with a threshold current reducing by 10 mA. Such a transient wavelength scanning induced spectral broadening greatly releases the limitation on wavelength injection-locking range required for the slave weak-resonant-cavity Fabry-Perot laser diode. The theoretical modeling and numerical simulation on the wavelength scanning and tracking effects of the master and slave weak-resonant-cavity Fabry-Perot laser diodes are performed. The receiving power sensitivity for back-to-back transmission at bit-error-rate transmission is less than 2 dB for all 16 channels.

  3. Normal mode splitting and ground state cooling in a Fabry—Perot optical cavity and transmission line resonator

    International Nuclear Information System (INIS)

    Chen Hua-Jun; Mi Xian-Wu

    2011-01-01

    Optomechanical dynamics in two systems which are a transmission line resonator and Fabrya—Perot optical cavity via radiation—pressure are investigated by linearized quantum Langevin equation. We work in the resolved sideband regime where the oscillator resonance frequency exceeds the cavity linewidth. Normal mode splittings of the mechanical resonator as a pure result of the coupling interaction in the two optomechanical systems is studied, and we make a comparison of normal mode splitting of mechanical resonator between the two systems. In the optical cavity, the normal mode splitting of the movable mirror approaches the latest experiment very well. In addition, an approximation scheme is introduced to demonstrate the ground state cooling, and we make a comparison of cooling between the two systems dominated by two key factors, which are the initial bath temperature and the mechanical quality factor. Since both the normal mode splitting and cooling require working in the resolved sideband regime, whether the normal mode splitting influences the cooling of the mirror is considered. Considering the size of the mechanical resonator and precooling the system, the mechanical resonator in the transmission line resonator system is easier to achieve the ground state cooling than in optical cavity. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  4. Coherence Phenomena in Coupled Optical Resonators

    Science.gov (United States)

    Smith, D. D.; Chang, H.

    2004-01-01

    We predict a variety of photonic coherence phenomena in passive and active coupled ring resonators. Specifically, the effective dispersive and absorptive steady-state response of coupled resonators is derived, and used to determine the conditions for coupled-resonator-induced transparency and absorption, lasing without gain, and cooperative cavity emission. These effects rely on coherent photon trapping, in direct analogy with coherent population trapping phenomena in atomic systems. We also demonstrate that the coupled-mode equations are formally identical to the two-level atom Schrodinger equation in the rotating-wave approximation, and use this result for the analysis of coupled-resonator photon dynamics. Notably, because these effects are predicted directly from coupled-mode theory, they are not unique to atoms, but rather are fundamental to systems of coherently coupled resonators.

  5. Alfvenic resonant cavities in the solar atmosphere

    International Nuclear Information System (INIS)

    Hollweg, J.V.

    1984-01-01

    We investigate the propagation of Alfven waves in a simple medium consisting of three uniform layers; each layer is characterized by a different value for the Alfven speed, νsub(A). We show how the central layer can act as a resonant cavity under quite general conditions. If the cavity is driven externally, by an incident wave in one of the outer layers, there result resonant transmission peaks, which allow large energy fluxes to enter the cavity from outside. The transmission peaks result from the destructive interference between a wave which leaks out of the cavity, and a directly reflected wave. We show that there are two types of resonances. The first type occurs when the cavity has the largest (or smallest) of the three Alfven speeds; this situation occurs on coronal loops. The second type occurs when the cavity Alfven speed is intermediate between the other two values of νsub(A); this situation may occur on solar spicules. Significant heating of the cavity can occur if the waves are damped. We show that if the energy lost to heat greatly exceeds the energy lost by leakage out of the cavity, then the cavity heating can be independent of the damping rate. This conclusion is shown to apply to coronal resonances and to the spicule resonances. This conclusion agrees with a point made by Ionson in connection with the coronal resonances. Except for a numerical factor of order unity, we recover Ionson's expression for the coronal heating rate. However, Ionson's qualities are much too large. For solar parameters, the maximum quality is of the order of 100, but the heating is independent of the damping rate only when dissipation reduces the quality to less than about 10. (WB)

  6. Wireless overhead line temperature sensor based on RF cavity resonance

    International Nuclear Information System (INIS)

    Ghafourian, Maryam; Nezhad, Abolghasem Zeidaabadi; Bridges, Greg E; Thomson, Douglas J

    2013-01-01

    The importance of maximizing power transfer through overhead transmission lines necessitates the use of dynamic power control to keep transmission line temperatures within acceptable limits. Excessive conductor operating temperatures lead to an increased sag of the transmission line conductor and may reduce their expected life. In this paper, a passive wireless sensor based on a resonant radio frequency (RF) cavity is presented which can be used to measure overhead transmission line temperature. The temperature sensor does not require a power supply and can be easily clamped to the power line with an antenna attached. Changing temperature causes a change of cavity dimensions and a shift in resonant frequency. The resonant frequency of the cavity can be interrogated wirelessly. This temperature sensor has a resolution of 0.07 °C and can be interrogated from distances greater than 4.5 m. The sensor has a deviation from linearity of less than 2 °C. (paper)

  7. Tunneling effect in cavity-resonator-coupled arrays

    International Nuclear Information System (INIS)

    Ma Hua; Xu Zhuo; Qu Shao-Bo; Zhang Jie-Qiu; Wang Jia-Fu; Liang Chang-Hong

    2013-01-01

    The quantum tunneling effect (QTE) in a cavity-resonator-coupled (CRC) array was analytically and numerically investigated. The underlying mechanism was interpreted by treating electromagnetic waves as photons, and then was generalized to acoustic waves and matter waves. It is indicated that for the three kinds of waves, the QTE can be excited by cavity resonance in a CRC array, resulting in sub-wavelength transparency through the narrow splits between cavities. This opens up opportunities for designing new types of crystals based on CRC arrays, which may find potential applications such as quantum devices, micro-optic transmission, and acoustic manipulation. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  8. Underwater sound transmission through arrays of disk cavities in a soft elastic medium.

    Science.gov (United States)

    Calvo, David C; Thangawng, Abel L; Layman, Christopher N; Casalini, Riccardo; Othman, Shadi F

    2015-10-01

    Scattering from a cavity in a soft elastic medium, such as silicone rubber, resembles scattering from an underwater bubble in that low-frequency monopole resonance is obtainable in both cases. Arrays of cavities can therefore be used to reduce underwater sound transmission using thin layers and low void fractions. This article examines the role of cavity shape by microfabricating arrays of disk-shaped air cavities into single and multiple layers of polydimethylsiloxane. Comparison is made with the case of equivalent volume cylinders which approximate spheres. Measurements of ultrasonic underwater sound transmission are compared with finite element modeling predictions. The disks provide a deeper transmission minimum at a lower frequency owing to the drum-type breathing resonance. The resonance of a single disk cavity in an unbounded medium is also calculated and compared with a derived estimate of the natural frequency of the drum mode. Variation of transmission is determined as a function of disk tilt angle, lattice constant, and layer thickness. A modeled transmission loss of 18 dB can be obtained at a wavelength about 20 times the three-layer thickness, and thinner results (wavelength/thickness ∼ 240) are possible for the same loss with a single layer depending on allowable hydrostatic pressure.

  9. Coupled superconducting resonant cavities for a heavy ion linac

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K W [Argonne National Lab., IL (United States); Roy, A [Nuclear Science Center, New Delhi (India)

    1992-11-01

    A design for a superconducting niobium slow-wave accelerating structure has been explored that may have performance and cost advantages over existing technology. The option considered is an array of pairs of quarter-wave coaxial-line resonant cavities, the two elements of each pair strongly coupled through a short superconducting transmission line. In the linac formed by such an array, each paired structure is independently phased. A disadvantage of two-gap slow wave structures is that each cavity is relatively short, so that a large number of independently-phased elements is required for a linac. Increasing the number of drift tubes per cavity reduces the number of independently-phased elements but at the cost of reducing the range of useful velocity acceptance for each element. Coupling two cavities splits the accelerating rf eigenmode into two resonant modes each of which covers a portion of the full velocity acceptance range of the original, single cavity mode. Using both of these resonant modes makes feasible the use of coupled cavity pairs for a linac with little loss in velocity acceptance. (Author) 2 figs., 8 refs.

  10. Coupled superconducting resonant cavities for a heavy ion linac

    International Nuclear Information System (INIS)

    Shepard, K.W.; Roy, A.

    1992-01-01

    A design for a superconducting niobium slow-wave accelerating structure has been explored that may have performance and cost advantages over existing technology. The option considered is an array of pairs of quarter-wave coaxial-line resonant cavities, the two elements of each pair strongly coupled through a short superconducting transmission line. In the linac formed by such an array, each paired structure is independently phased. A disadvantage of two-gap slow wave structures is that each cavity is relatively short, so that a large number of independently-phased elements is required for a linac. Increasing the number of drift tubes per cavity reduces the number of independently-phased elements but at the cost of reducing the range of useful velocity acceptance for each element. Coupling two cavities splits the accelerating rf eigenmode into two resonant modes each of which covers a portion of the full velocity acceptance range of the original, single cavity mode. Using both of these resonant modes makes feasible the use of coupled cavity pairs for a linac with little loss in velocity acceptance. (Author) 2 figs., 8 refs

  11. Boundary-Layer Effects on Acoustic Transmission Through Narrow Slit Cavities.

    Science.gov (United States)

    Ward, G P; Lovelock, R K; Murray, A R J; Hibbins, A P; Sambles, J R; Smith, J D

    2015-07-24

    We explore the slit-width dependence of the resonant transmission of sound in air through both a slit array formed of aluminum slats and a single open-ended slit cavity in an aluminum plate. Our experimental results accord well with Lord Rayleigh's theory concerning how thin viscous and thermal boundary layers at a slit's walls affect the acoustic wave across the whole slit cavity. By measuring accurately the frequencies of the Fabry-Perot-like cavity resonances, we find a significant 5% reduction in the effective speed of sound through the slits when an individual viscous boundary layer occupies only 5% of the total slit width. Importantly, this effect is true for any airborne slit cavity, with the reduction being achieved despite the slit width being on a far larger scale than an individual boundary layer's thickness. This work demonstrates that the recent prevalent loss-free treatment of narrow slit cavities within acoustic metamaterials is unrealistic.

  12. Shunt impedance of spiral loaded resonant rf cavities

    International Nuclear Information System (INIS)

    Peebles, P.Z. Jr.; Parvarandeh, M.

    1975-01-01

    Based upon a treatment of the spiral loaded resonant radio frequency cavity as a shorted quarter-wave transmission line, a model for shunt impedance is developed. The model is applicable to loosely wound spirals in large diameter containers. Theoretical shunt impedance is given for spirals wound from tubing of circular or rectangular cross section. The former produces higher shunt impedance. Measurements made at Oak Ridge National Laboratory on 17 copper cavities are described which support the theoretical results. Theoretical results are also compared to data from twenty-three additional cavities measured at Los Alamos Scientific Laboratory. It is shown that the theoretical function forms a useful means of interpreting the quality of constructed cavities. (author)

  13. Demonstration of acoustic resonances in a cylindrical cavity applying the photoacoustic technique

    Science.gov (United States)

    Barreiro, N. L.; Vallespi, A. S.; Zajarevich, N. M.; Peuriot, A. L.; Slezak, V. B.

    2017-09-01

    In this work we present some experiments which can be performed in college or on the first courses of university to acquire knowledge about resonant acoustical phenomena in closed cavities in a tangible way, through experiments based on the photoacoustic effect in gases. This phenomenon consists in the generation of acoustic waves after optical excitation of an absorbing gas and further local heating of the non-absorbing surrounding gas by energy exchange through collisions between molecules of both species. Simple experiments, performed with daily live elements, can be very useful for teachers and students to get in touch with the phenomenon of acoustic resonances with the addition of concepts about light-matter interaction. The setups consist of the resonant cavity, the illumination source and the signal detection-acquisition scheme. In this paper a closed glass test tube is used as the resonant cavity and is filled with a mixture of nitrogen dioxide and air. The illumination is performed by a pulsed power LED modulated at different resonant frequencies of the cavity. A microphone inside the tube is connected to an oscilloscope which displays the photoacoustic signal. The LED is moved along the tube showing how different resonant modes can be excited.

  14. Experimental realization of extraordinary acoustic transmission using Helmholtz resonators

    Directory of Open Access Journals (Sweden)

    Brian C. Crow

    2015-02-01

    Full Text Available The phenomenon of extraordinary acoustic transmission through a solid barrier with an embedded Helmholtz resonator (HR is demonstrated. The Helmholtz resonator consists of an embedded cavity and two necks that protrude, one on each side of the barrier. Extraordinary transmission occurs for a narrow spectral range encompassing the resonant frequency of the Helmholtz resonator. We show that an amplitude transmission of 97.5% is achieved through a resonator whose neck creates an open area of 6.25% of the total barrier area. In addition to the enhanced transmission, we show that there is a smooth, continuous phase transition in the transmitted sound as a function of frequency. The frequency dependent phase transition is used to experimentally realize slow wave propagation for a narrow-band Gaussian wave packet centered at the maximum transmission frequency. The use of parallel pairs of Helmholtz resonators tuned to different resonant frequencies is experimentally explored as a means of increasing the transmission bandwidth. These experiments show that because of the phase transition, there is always a frequency between the two Helmholtz resonant frequencies at which destructive interference occurs whether the resonances are close or far apart. Finally, we explain how the phase transition associated with Helmholtz-resonator-mediated extraordinary acoustic transmission can be exploited to produce diffractive acoustic components including sub-wavelength thickness acoustic lenses.

  15. Acoustic transmission resonance and suppression through double-layer subwavelength hole arrays

    International Nuclear Information System (INIS)

    Liu Zhifeng; Jin Guojun

    2010-01-01

    We present a theoretical study of acoustic waves passing through double-layer subwavelength hole arrays. The acoustic transmission resonance and suppression are observed. There are three mechanisms responsible for the transmission resonance: the excitation of geometrically induced acoustic surface waves, the Fabry-Perot resonance in a hole cavity (I-FP resonance) and the Fabry-Perot resonance between two plates (II-FP resonance). We can differentiate these mechanisms via the dispersion relation of acoustic modes supported by the double-layer structure. It is confirmed that the coupling between two single-layer perforated plates, associated with longitudinal interval and lateral displacement, plays a crucial role in modulating the transmission properties. The strong coupling between two plates can induce the splitting of the transmission peak, while the decoupling between plates leads to the appearance of transmission suppression. By analyzing the criterion derived for transmission suppression, we conclude that it is the destructive interference between the diffracted waves and the direct transmission waves assisted by the I-FP resonance of the first plate that leads to the decoupling between plates and then the transmission suppression.

  16. The fusion rate in the transmission resonance model

    International Nuclear Information System (INIS)

    Jaendel, M.

    1992-01-01

    Resonant transmission of deuterons through a chain of target deuterons in a metal matrix has been suggested as an explanation for the cold fusion phenomena. In this paper the fusion rate in such transmission resonance models is estimated, and the basic physical constraints are discussed. The dominating contribution to the fusion yield is found to come from metastable states. The fusion rate is well described by the Wentzel-Kramer-Brillouin approximation and appears to be much too small to explain the experimental anomalies

  17. Investigations of cavitation phenomena in pumps and pipes with resonance detectors

    International Nuclear Information System (INIS)

    Wesser, U.; Klockgethter, J.

    1977-01-01

    In fluid flows with high acoustic noise level resonance detectors are applied to measure cavitation phenomena for example in pumps. The analysis of the acoustic signals associated with the collapse of transient cavities leads to statistical parameters characterizing the cavitation state in the flow. The method is applicable even in the state of incipient cavitation. Some results for pumps and pipes are reported. (orig.) [de

  18. High Quality Plasmonic Sensors Based on Fano Resonances Created through Cascading Double Asymmetric Cavities

    OpenAIRE

    Zhang, Xiangao; Shao, Mingzhen; Zeng, Xiaoqi

    2016-01-01

    In this paper, a type of compact nanosensor based on a metal-insulator-metal structure is proposed and investigated through cascading double asymmetric cavities, in which their metal cores shift along different axis directions. The cascaded asymmetric structure exhibits high transmission and sharp Fano resonance peaks via strengthening the mutual coupling of the cavities. The research results show that with the increase of the symmetry breaking in the structure, the number of Fano resonances ...

  19. The use of acoustically tuned resonators to improve the sound transmission loss of double panel partitions

    Science.gov (United States)

    Mason, J. M.; Fahy, F. J.

    1986-10-01

    The effectiveness of tuned Helmholtz resonators connected to the partition cavity in double-leaf partitions utilized in situations requiring low weight structures with high transmission loss is investigated as a method of improving sound transmission loss. This is demonstrated by a simple theoretical model and then experimentally verified. Results show that substantial improvements may be obtained at and around the mass-air-mass frequency for a total resonator volume 15 percent of the cavity volume.

  20. Image transmission through a stable paraxial cavity

    International Nuclear Information System (INIS)

    Gigan, Sylvain; Lopez, Laurent; Treps, Nicolas; Maitre, Agnes; Fabre, Claude

    2005-01-01

    We study the transmission of a monochromatic 'image' through a paraxial cavity. Using the formalism of self-transform functions, we show that a transverse degenerate cavity transmits the self-transform part of the image, with respect to the field transformation over one round-trip of the cavity. This formalism gives insight into the understanding of the behavior of a transverse degenerate cavity, complementary to the transverse mode picture. An experiment of image transmission through a hemiconfocal cavity shows the interest of this approach

  1. Plasma diagnostics using laser-excited coupled and transmission ring resonators

    International Nuclear Information System (INIS)

    Haas, R.A.

    1976-01-01

    In this paper a simple two-level laser model is used to investigate the frequency response of coupled-cavity laser interferometers. It is found that under certain circumstances, often satisfied by molecular gas lasers, the frequency response exhibits a resonant behavior. This behavior severely complicates the interpretation of coupled-cavity laser interferometer measurements of rapidly varying plasmas. To circumvent this limitation a new type of laser interferometer plasma diagnostic with significantly improved time response was developed. In this interferometer the plasma is located in one arm of a transmission ring resonator cavity that is excited by an externally positioned laser. Thus, the laser is decoupled from the interferometer cavity and the time response of the interferometer is then limited by the Q of the ring resonator cavity. This improved time response is acquired without loss of spatial resolution, but requires a more sensitive signal detector since the laser is no longer used as a detector as it is in conventional coupled-cavity laser interferometers. Thus, the new technique incorporates the speed of the Mach--Zender interferometer and the sensitivity of the coupled-cavity laser interferometer. The basic operating principles of this type of interferometer have been verified using a CO 2 laser

  2. Resonant atom-field interaction in large-size coupled-cavity arrays

    International Nuclear Information System (INIS)

    Ciccarello, Francesco

    2011-01-01

    We consider an array of coupled cavities with staggered intercavity couplings, where each cavity mode interacts with an atom. In contrast to large-size arrays with uniform hopping rates where the atomic dynamics is known to be frozen in the strong-hopping regime, we show that resonant atom-field dynamics with significant energy exchange can occur in the case of staggered hopping rates even in the thermodynamic limit. This effect arises from the joint emergence of an energy gap in the free photonic dispersion relation and a discrete frequency at the gap's center. The latter corresponds to a bound normal mode stemming solely from the finiteness of the array length. Depending on which cavity is excited, either the atomic dynamics is frozen or a Jaynes-Cummings-like energy exchange is triggered between the bound photonic mode and its atomic analog. As these phenomena are effective with any number of cavities, they are prone to be experimentally observed even in small-size arrays.

  3. Extraordinary Effects in Quasi-Periodic Gold Nanocavities: Enhanced Transmission and Polarization Control of Cavity Modes.

    Science.gov (United States)

    Dhama, Rakesh; Caligiuri, Vincenzo; Petti, Lucia; Rashed, Alireza R; Rippa, Massimo; Lento, Raffaella; Termine, Roberto; Caglayan, Humeyra; De Luca, Antonio

    2018-01-23

    Plasmonic quasi-periodic structures are well-known to exhibit several surprising phenomena with respect to their periodic counterparts, due to their long-range order and higher rotational symmetry. Thanks to their specific geometrical arrangement, plasmonic quasi-crystals offer unique possibilities in tailoring the coupling and propagation of surface plasmons through their lattice, a scenario in which a plethora of fascinating phenomena can take place. In this paper we investigate the extraordinary transmission phenomenon occurring in specifically patterned Thue-Morse nanocavities, demonstrating noticeable enhanced transmission, directly revealed by near-field optical experiments, performed by means of a scanning near-field optical microscope (SNOM). SNOM further provides an intuitive picture of confined plasmon modes inside the nanocavities and confirms that localization of plasmon modes is based on size and depth of nanocavities, while cross talk between close cavities via propagating plasmons holds the polarization response of patterned quasi-crystals. Our performed numerical simulations are in good agreement with the experimental results. Thus, the control on cavity size and incident polarization can be used to alter the intensity and spatial properties of confined cavity modes in such structures, which can be exploited in order to design a plasmonic device with customized optical properties and desired functionalities, to be used for several applications in quantum plasmonics.

  4. Tunable cavity resonator including a plurality of MEMS beams

    Science.gov (United States)

    Peroulis, Dimitrios; Fruehling, Adam; Small, Joshua Azariah; Liu, Xiaoguang; Irshad, Wasim; Arif, Muhammad Shoaib

    2015-10-20

    A tunable cavity resonator includes a substrate, a cap structure, and a tuning assembly. The cap structure extends from the substrate, and at least one of the substrate and the cap structure defines a resonator cavity. The tuning assembly is positioned at least partially within the resonator cavity. The tuning assembly includes a plurality of fixed-fixed MEMS beams configured for controllable movement relative to the substrate between an activated position and a deactivated position in order to tune a resonant frequency of the tunable cavity resonator.

  5. Determination of the quasi-TE mode (in-plane) graphene linear absorption coefficient via integration with silicon-on-insulator racetrack cavity resonators.

    Science.gov (United States)

    Crowe, Iain F; Clark, Nicholas; Hussein, Siham; Towlson, Brian; Whittaker, Eric; Milosevic, Milan M; Gardes, Frederic Y; Mashanovich, Goran Z; Halsall, Matthew P; Vijayaraghaven, Aravind

    2014-07-28

    We examine the near-IR light-matter interaction for graphene integrated cavity ring resonators based on silicon-on-insulator (SOI) race-track waveguides. Fitting of the cavity resonances from quasi-TE mode transmission spectra reveal the real part of the effective refractive index for graphene, n(eff) = 2.23 ± 0.02 and linear absorption coefficient, α(gTE) = 0.11 ± 0.01dBμm(-1). The evanescent nature of the guided mode coupling to graphene at resonance depends strongly on the height of the graphene above the cavity, which places limits on the cavity length for optical sensing applications.

  6. Side-coupled cavity model for surface plasmon-polariton transmission across a groove

    International Nuclear Information System (INIS)

    Liu, J.S.Q.

    2010-01-01

    We demonstrate that the transmission properties of surface plasmon-polaritons (SPPs) across a rectangular groove in a metallic film can be described by an analytical model that treats the groove as a side-coupled cavity to propagating SPPs on the metal surface. The coupling efficiency to the groove is quantified by treating it as a truncated metal-dielectric-metal (MDM) waveguide. Finite-difference frequency-domain (FDFD) simulations and mode orthogonality relations are employed to derive the basic scattering coefficients that describe the interaction between the relevant modes in the system. The modeled SPP transmission and reflection intensities show excellent agreement with full-field simulations over a wide range of groove dimensions, validating this intuitive model. The model predicts the sharp transmission minima that occur whenever an incident SPP resonantly couples to the groove. We also for the first time show the importance of evanescent, reactive MDM SPP modes to the transmission behavior. SPPs that couple to this mode are resonantly enhanced upon reflection from the bottom of the groove, leading to high field intensities and sharp transmission minima across the groove. The resonant behavior exhibited by the grooves has a number of important device applications, including SPP mirrors, filters, and modulators.

  7. The CEBAF Separator Cavity Resonance Control System

    CERN Document Server

    Wissmann, Mark J; Hovater, Curt; Plawski, Tomasz

    2005-01-01

    The CEBAF energy upgrade from 6 GeV to 12GeV will increase the range of beam energies available to the experimental halls. RF deflection cavities (separators) are used to direct the electron beam to the three experimental halls. Consequently with the increase in RF separator cavity gradient needed for the higher energies, RF power will also increase requiring the cavities to have active resonance control. At the 6 GeV energy, the cavities are tuned mechanically and then stabilized with Low Conductivity Water (LCW), which is maintained at constant temperature of 95o Fahrenheit. This is no longer feasible and an active resonance control system, that controls both water temperature and flow has been built. The system uses a commercial PLC with embedded PID controls to control water temperature and flow to the cavities. The system allows the operator to remotely adjust temperature/flow and consequently cavity resonance for the full range of beam energies. Ultimately closed loop control will be maintained by monit...

  8. The CEBAF separator cavity resonance control system

    International Nuclear Information System (INIS)

    M. Wissmann; C. Hovater; A. Guerra; T. Plawski

    2005-01-01

    The CEBAF energy upgrade will increase the maximum beam energy from 6 GeV to 12 GeV available to the experimental halls. RF deflection cavities (separators) are used to direct the electron beam to the three halls. The resulting increase in RF separator cavity gradient and subsequent increase in RF power needed for these higher energies will require the cavities to have active resonance control. Currently, at the present 4 to 6 GeV energies, the cavities are tuned mechanically and then stabilized with Low Conductivity Water (LCW) which is maintained at a constant temperature of 95 Fahrenheit. This approach is no longer feasible and an active resonance control system that controls both water temperature and flow has been designed and built. The system uses a commercial PLC with embedded PID controls to regulate water temperature and flow to the cavities. The system allows the operator to remotely adjust temperature/flow and consequently cavity resonance for the full range of beam energies. Ultimately, closed loop control will be maintained by monitoring each cavity's reflected power. This paper describes this system

  9. Tunable Fano resonance in MDM stub waveguide coupled with a U-shaped cavity

    Science.gov (United States)

    Yi, Xingchun; Tian, Jinping; Yang, Rongcao

    2018-04-01

    A new compact metal-dielectric-metal waveguide system consisting of a stub coupled with a U-cavity is proposed to produce sharp and asymmetric Fano resonance. The transmission properties of the proposed structure are numerically studied by the finite element method and verified by the coupled mode theory. Simulation results reveal that the spectral profile can be easily tuned by adjusting the geometric parameters of the structure. One of the potential application of the proposed structure as a highly efficient plasmonic refractive index nanosensor was investigated with its sensitivity of more than 1000 nm/RIU and a figure of merit of up to 5500. Another application is integrated slow-light device whose group index can be greater than 6. In addition, multiple Fano resonances will occur in the broadband transmission spectrum by adding another U-cavity or (and) stub. The characteristics of the proposed structure are very promising for the highly performance filters, on-chip nanosensors, and slow-light devices.

  10. All-dielectric resonant cavity-enabled metals with broadband optical transparency

    Science.gov (United States)

    Liu, Zhengqi; Zhang, Houjiao; Liu, Xiaoshan; Pan, Pingping; Liu, Yi; Tang, Li; Liu, Guiqiang

    2017-06-01

    Metal films with broadband optical transparency are desirable in many optoelectronic devices, such as displays, smart windows, light-emitting diodes and infrared detectors. As bare metal is opaque to light, this issue of transparency attracts great scientific interest. In this work, we proposed and demonstrated a feasible and universal approach for achieving broadband optical transparent (BOT) metals by utilizing all-dielectric resonant cavities. Resonant dielectrics provide optical cavity modes and couple strongly with the surface plasmons of the metal film, and therefore produce a broadband near-unity optical transparent window. The relative enhancement factor (EF) of light transmission exceeds 3400% in comparison with that of pure metal film. Moreover, the transparent metal motif can be realized by other common metals including gold (Au), silver (Ag) and copper (Cu). These optical features together with the fully retained electric and mechanical properties of a natural metal suggest that it will have wide applications in optoelectronic devices.

  11. Superconducting qubit in a nonstationary transmission line cavity: Parametric excitation, periodic pumping, and energy dissipation

    Energy Technology Data Exchange (ETDEWEB)

    Zhukov, A.A. [N.L. Dukhov All-Russia Research Institute of Automatics, 127055 Moscow (Russian Federation); National Research Nuclear University (MEPhI), 115409 Moscow (Russian Federation); Shapiro, D.S., E-mail: shapiro.dima@gmail.com [N.L. Dukhov All-Russia Research Institute of Automatics, 127055 Moscow (Russian Federation); V.A. Kotel' nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 125009 Moscow (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700 (Russian Federation); National University of Science and Technology MISIS, 119049 Moscow (Russian Federation); Remizov, S.V. [N.L. Dukhov All-Russia Research Institute of Automatics, 127055 Moscow (Russian Federation); V.A. Kotel' nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 125009 Moscow (Russian Federation); Pogosov, W.V. [N.L. Dukhov All-Russia Research Institute of Automatics, 127055 Moscow (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700 (Russian Federation); Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, 125412 Moscow (Russian Federation); Lozovik, Yu.E. [N.L. Dukhov All-Russia Research Institute of Automatics, 127055 Moscow (Russian Federation); National Research Nuclear University (MEPhI), 115409 Moscow (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700 (Russian Federation); Institute of Spectroscopy, Russian Academy of Sciences, 142190 Moscow Region, Troitsk (Russian Federation)

    2017-02-12

    We consider a superconducting qubit coupled to the nonstationary transmission line cavity with modulated frequency taking into account energy dissipation. Previously, it was demonstrated that in the case of a single nonadiabatical modulation of a cavity frequency there are two channels of a two-level system excitation which are due to the absorption of Casimir photons and due to the counterrotating wave processes responsible for the dynamical Lamb effect. We show that the parametric periodical modulation of the resonator frequency can increase dramatically the excitation probability. Remarkably, counterrotating wave processes under such a modulation start to play an important role even in the resonant regime. Our predictions can be used to control qubit-resonator quantum states as well as to study experimentally different channels of a parametric qubit excitation. - Highlights: • Coupled qubit-resonator system under the modulation of a resonator frequency is considered. • Counterrotating terms of the Hamiltonian are of importance even in the resonance. • Qubit excited state population is highest if driving frequency matches dressed-state energy.

  12. High Quality Plasmonic Sensors Based on Fano Resonances Created through Cascading Double Asymmetric Cavities.

    Science.gov (United States)

    Zhang, Xiangao; Shao, Mingzhen; Zeng, Xiaoqi

    2016-10-18

    In this paper, a type of compact nanosensor based on a metal-insulator-metal structure is proposed and investigated through cascading double asymmetric cavities, in which their metal cores shift along different axis directions. The cascaded asymmetric structure exhibits high transmission and sharp Fano resonance peaks via strengthening the mutual coupling of the cavities. The research results show that with the increase of the symmetry breaking in the structure, the number of Fano resonances increase accordingly. Furthermore, by modulating the geometrical parameters appropriately, Fano resonances with high sensitivities to the changes in refractive index can be realized. A maximum figure of merit (FoM) value of 74.3 is obtained. Considerable applications for this work can be found in bio/chemical sensors with excellent performance and other nanophotonic integrated circuit devices such as optical filters, switches and modulators.

  13. High Quality Plasmonic Sensors Based on Fano Resonances Created through Cascading Double Asymmetric Cavities

    Directory of Open Access Journals (Sweden)

    Xiangao Zhang

    2016-10-01

    Full Text Available In this paper, a type of compact nanosensor based on a metal-insulator-metal structure is proposed and investigated through cascading double asymmetric cavities, in which their metal cores shift along different axis directions. The cascaded asymmetric structure exhibits high transmission and sharp Fano resonance peaks via strengthening the mutual coupling of the cavities. The research results show that with the increase of the symmetry breaking in the structure, the number of Fano resonances increase accordingly. Furthermore, by modulating the geometrical parameters appropriately, Fano resonances with high sensitivities to the changes in refractive index can be realized. A maximum figure of merit (FoM value of 74.3 is obtained. Considerable applications for this work can be found in bio/chemical sensors with excellent performance and other nanophotonic integrated circuit devices such as optical filters, switches and modulators.

  14. The use of acoustically tuned resonators to improve the sound transmission loss of double-panel partitions

    Science.gov (United States)

    Mason, J. M.; Fahy, F. J.

    1988-07-01

    Double-leaf partitions are often utilized in situations requiring low weight structures with high transmission loss, an example of current interest being the fuselage walls of propeller-driven aircraft. In this case, acoustic excitation is periodic and, if one of the frequencies of excitation lies in the region of the fundamental mass-air-mass frequency of the partition, insulation performance is considerably less than desired. The potential effectiveness of tuned Helmholtz resonators connected to the partition cavity is investigated as a method of improving transmission loss. This is demonstrated by a simple theoretical model and then experimentally verified. Results show that substantial improvements may be obtained at and around the mass-air-mass frequency for a total resonator volume 15 percent of the cavity volume.

  15. Resonant transmission and mode modulation of acoustic waves in H-shaped metallic gratings

    International Nuclear Information System (INIS)

    Deng, Yu-Qiang; Fan, Ren-Hao; Zhang, Kun; Peng, Ru-Wen; Qi, Dong-Xiang

    2015-01-01

    In this work, we demonstrate that resonant full transmission of acoustic waves exists in subwavelength H-shaped metallic gratings, and transmission peaks can be efficiently tuned by adjusting the grating geometry. We investigate this phenomenon through both numerical simulations and theoretical calculations based on rigorous-coupled wave analysis. The transmission peaks are originated from Fabry-Perot resonances together with the couplings between the diffractive wave on the surface and the multiple guided modes in the slits. Moreover, the transmission modes can be efficiently tuned by adjusting the cavity geometry, without changing the grating thickness. The mechanism is analyzed based on an equivalent circuit model and verified by both the theoretical calculations and the numerical simulations. This research has potential application in acoustic-device miniaturization over a wide range of wavelengths

  16. Hybrid III-V/SOI Resonant Cavity Photodetector

    DEFF Research Database (Denmark)

    Learkthanakhachon, Supannee; Taghizadeh, Alireza; Park, Gyeong Cheol

    2016-01-01

    A hybrid III-V/SOI resonant cavity photo detector has been demonstrated, which comprises an InP grating reflectorand a Si grating reflector. It can selectively detects an incident light with 1.54-µm wavelength and TM polarization.......A hybrid III-V/SOI resonant cavity photo detector has been demonstrated, which comprises an InP grating reflectorand a Si grating reflector. It can selectively detects an incident light with 1.54-µm wavelength and TM polarization....

  17. Resonant cavity enhanced multi-analyte sensing

    Science.gov (United States)

    Bergstein, David Alan

    Biological research and medicine increasingly depend on interrogating binding interactions among small segments of DNA, RNA, protein, and bio-specific small molecules. Microarray technology, which senses the affinity for target molecules in solution for a multiplicity of capturing agents fixed to a surface, has been used in biological research for gene expression profiling and in medicine for molecular biomarker detection. Label-free affinity sensing is preferable as it avoids fluorescent labeling of the target molecules, reducing test cost and variability. The Resonant Cavity Imaging Biosensor (RCIB) is a label-free optical inference based technique introduced that scales readily to high throughput and employs an optical resonant cavity to enhance sensitivity by a factor of 100 or more. Near-infrared light centered at 1512.5 nm couples resonantly through a cavity constructed from Si/SiO2 Bragg reflectors, one of which serves as the binding surface. As the wavelength is swept 5 nm, an Indium-Gallium-Arsenide digital camera monitors cavity transmittance at each pixel with resolution 128 x 128. A wavelength shift in the local resonant response of the optical cavity indicates binding. Positioning the sensing surface with respect to the standing wave pattern of the electric field within the cavity, one can control the sensitivity of the measurement to the presence of bound molecules thereby enhancing or suppressing sensitivity where appropriate. Transmitted intensity at thousands of pixel locations are recorded simultaneously in a 10 s, 5 nm scan. An initial proof-of-principle setup was constructed. A sample was fabricated with 25, 100 mum wide square regions, each with a different density of 1 mum square depressions etched 12 nm into the S1O 2 surface. The average depth of each etched region was found with 0.05 nm RMS precision when the sample remains loaded in the setup and 0.3 nm RMS precision when the sample is removed and replaced. Selective binding of the protein

  18. Simple classical approach to spin resonance phenomena

    DEFF Research Database (Denmark)

    Gordon, R A

    1977-01-01

    A simple classical method of describing spin resonance in terms of the average power absorbed by a spin system is discussed. The method has several advantages over more conventional treatments, and a number of important spin resonance phenomena, not normally considered at the introductory level...

  19. Cavity Resonator Wireless Power Transfer System for Freely Moving Animal Experiments.

    Science.gov (United States)

    Mei, Henry; Thackston, Kyle A; Bercich, Rebecca A; Jefferys, John G R; Irazoqui, Pedro P

    2017-04-01

    The goal of this paper is to create a large wireless powering arena for powering small devices implanted in freely behaving rodents. We design a cavity resonator based wireless power transfer (WPT) system and utilize our previously developed optimal impedance matching methodology to achieve effective WPT performance for operating sophisticated implantable devices, made with miniature receive coils (powering fidelity of 93.53% over nine recording sessions across nine weeks, indicating nearly continuous device operation for a freely behaving rat within the large cavity resonator space. We have developed and demonstrated a cavity resonator based WPT system for long term experiments involving freely behaving small animals. This cavity resonator based WPT system offers an effective and simple method for wirelessly powering miniaturized devices implanted in freely moving small animals within the largest space.

  20. Resonant-frequency discharge in a multi-cell radio frequency cavity

    International Nuclear Information System (INIS)

    Popović, S.; Upadhyay, J.; Nikolić, M.; Vušković, L.; Mammosser, J.

    2014-01-01

    We are reporting experimental results on a microwave discharge operating at resonant frequency in a multi-cell radio frequency (RF) accelerator cavity. Although the discharge operated at room temperature, the setup was constructed so that it could be used for plasma generation and processing in fully assembled active superconducting radio-frequency cryo-module. This discharge offers a mechanism for removal of a variety of contaminants, organic or oxide layers, and residual particulates from the interior surface of RF cavities through the interaction of plasma-generated radicals with the cavity walls. We describe resonant RF breakdown conditions and address the issues related to resonant detuning due to sustained multi-cell cavity plasma. We have determined breakdown conditions in the cavity, which was acting as a plasma vessel with distorted cylindrical geometry. We discuss the spectroscopic data taken during plasma removal of contaminants and use them to evaluate plasma parameters, characterize the process, and estimate the volatile contaminant product removal

  1. Resonant-frequency discharge in a multi-cell radio frequency cavity

    Energy Technology Data Exchange (ETDEWEB)

    Popovic, S; Upadhyay, J; Mammosser, J; Nikolic, M; Vuskovic, L

    2014-11-07

    We are reporting experimental results on microwave discharge operating at resonant frequency in a multi-cell radio frequency (RF) accelerator cavity. Although the discharge operated at room temperature, the setup was constructed so that it could be used for plasma generation and processing in fully assembled active superconducting radio-frequency (SRF) cryomodule (in situ operation). This discharge offers an efficient mechanism for removal of a variety of contaminants, organic or oxide layers, and residual particulates from the interior surface of RF cavities through the interaction of plasma-generated radicals with the cavity walls. We describe resonant RF breakdown conditions and address the problems related to generation and sustaining the multi-cell cavity plasma, which are breakdown and resonant detuning. We have determined breakdown conditions in the cavity, which was acting as a plasma vessel with distorted cylindrical geometry. We discuss the spectroscopic data taken during plasma removal of contaminants and use them to evaluate plasma parameters, characterize the process, and estimate the volatile contaminant product removal.

  2. Asymmetric light transmission based on coupling between photonic crystal waveguides and L1/L3 cavity

    Science.gov (United States)

    Zhang, Jinqiannan; Chai, Hongyu; Yu, Zhongyuan; Cheng, Xiang; Ye, Han; Liu, Yumin

    2017-09-01

    A compact design of all-optical diode with mode conversion function based on a two-dimensional photonic crystal waveguide and an L1 or L3 cavity is theoretically investigated. The proposed photonic crystal structures comprise a triangular arrangement of air holes embedded in a silicon substrate. Asymmetric light propagation is achieved via the spatial mode match/mismatch in the coupling region. The simulations show that at each cavity's resonance frequency, the transmission efficiency of the structure with the L1 and L3 cavities reach 79% and 73%, while the corresponding unidirectionalities are 46 and 37 dB, respectively. The functional frequency can be controlled by simply adjusting the radii of specific air holes in the L1 and L3 cavities. The proposed structure can be used as a frequency filter, a beam splitter and has potential applications in all-optical integrated circuits.

  3. Numerical investigation of the electric field distribution and the power deposition in the resonant cavity of a microwave electrothermal thruster

    Directory of Open Access Journals (Sweden)

    Mehmet Serhan Yildiz

    2017-04-01

    Full Text Available Microwave electrothermal thruster (MET, an in-space propulsion concept, uses an electromagnetic resonant cavity as a heating chamber. In a MET system, electromagnetic energy is converted to thermal energy via a free floating plasma inside a resonant cavity. To optimize the power deposition inside the cavity, the factors that affect the electric field distribution and the resonance conditions must be accounted for. For MET thrusters, the length of the cavity, the dielectric plate that separates the plasma zone from the antenna, the antenna length and the formation of a free floating plasma have direct effects on the electromagnetic wave transmission and thus the power deposition. MET systems can be tuned by adjusting the lengths of the cavity or the antenna. This study presents the results of a 2-D axis symmetric model for the investigation of the effects of cavity length, antenna length, separation plate thickness, as well as the presence of free floating plasma on the power absorption. Specifically, electric field distribution inside the resonant cavity is calculated for a prototype MET system developed at the Bogazici University Space Technologies Laboratory. Simulations are conducted for a cavity fed with a constant power input of 1 kW at 2.45 GHz using COMSOL Multiphysics commercial software. Calculations are performed for maximum plasma electron densities ranging from 1019 to 1021 #/m3. It is determined that the optimum antenna length changes with changing plasma density. The calculations show that over 95% of the delivered power can be deposited to the plasma when the system is tuned by adjusting the cavity length.

  4. Nonlinear phenomena at cyclotron resonance

    International Nuclear Information System (INIS)

    Subbarao, D.; Uma, R.

    1986-01-01

    Finite amplitude electromagnetic waves in a magnetoplasma which typically occur in situations as in present day wave heating, current drives and other schemes in magnetically confined fusion systems, can show qualitatively different absorption and emission characteristics around resonant frequencies of the plasma because of anharmonicity. Linear wave plasma coupling as well as weak nonlinear effects such as parametric instabilities generally overlook this important effect even though the thresholds for the two phenomena as shown here are comparable. Though the effects described here are relevant to a host of nonlinear resonance effects in fusion plasmas, the authors mainly limit themselves to ECRH

  5. Mid infrared resonant cavity detectors and lasers with epitaxial lead-chalcogenides

    Science.gov (United States)

    Zogg, H.; Rahim, M.; Khiar, A.; Fill, M.; Felder, F.; Quack, N.

    2010-09-01

    Wavelength tunable emitters and detectors in the mid-IR wavelength region allow applications including thermal imaging and gas spectroscopy. One way to realize such tunable devices is by using a resonant cavity. By mechanically changing the cavity length with MEMS mirror techniques, the wavelengths may be tuned over a considerable range. Resonant cavity enhanced detectors (RCED) are sensitive at the cavity resonance only. They may be applied for low resolution spectroscopy, and, when arrays of such detectors are realized, as multicolour IR-FPA or "IR-AFPA", adaptive focal plane arrays. We report the first room temperature mid-IR VECSEL (vertical external cavity surface emitting laser) with a wavelength above 3 μm. The active region is just 850 nm PbSe, followed by a 2.5 pair Bragg mirror. Output power is > 10 mW at RT.

  6. Cavity-enhanced surface-plasmon resonance sensing: modeling and performance

    International Nuclear Information System (INIS)

    Giorgini, A; Avino, S; Malara, P; Zullo, R; Gagliardi, G; Homola, J; De Natale, P

    2014-01-01

    We investigate the performance of a surface-plasmon-resonance refractive-index (RI) sensor based on an optical resonator. The resonator transforms RI changes of liquid samples, interacting with the surface plasmon excited by near-infrared light, into a variation of the intra-cavity optical loss. Cavity ring-down measurements are provided as a proof of concept of RI sensing on calibrated mixtures. A characterization of the overall sensor response and noise features as well as a discussion on possible improvements is carried out. A reproducibility analysis shows that a resolution of 10 −7 –10 −8  RIU is within reach over observation times of 1–30 s. The ultimate resolution is set only by intrinsic noise features of the cavity-based method, pointing to a potential limit below 10 −10  RIU/√Hz. (paper)

  7. Mid-Infrared Tunable Resonant Cavity Enhanced Detectors

    Directory of Open Access Journals (Sweden)

    Hans Zogg

    2008-09-01

    Full Text Available Mid-infrared detectors that are sensitive only in a tunable narrow spectral band are presented. They are based on the Resonant Cavity Enhanced Detector (RCED principle and employing a thin active region using IV-VI narrow gap semiconductor layers. A Fabry-Pérot cavity is formed by two mirrors. The active layer is grown onto one mirror, while the second mirror can be displaced. This changes the cavity length thus shifting the resonances where the detector is sensitive. Using electrostatically actuated MEMS micromirrors, a very compact tunable detector system has been fabricated. Mirror movements of more than 3 μm at 30V are obtained. With these mirrors, detectors with a wavelength tuning range of about 0.7 μm have been realized. Single detectors can be used in mid-infrared micro spectrometers, while a detector arrangement in an array makes it possible to realize Adaptive Focal Plane Arrays (AFPA.

  8. Wireless transmission of power

    International Nuclear Information System (INIS)

    Grotz, T.

    1991-01-01

    This paper reports that it has been proven by researchers that electrical energy can be propagated around the world between the surface of the Earth and the ionosphere at extremely low frequencies in what is known as the Schumann Cavity. Experiments to data have shown that electromagnetic waves with frequencies in the range of 8 Hz, the fundamental Schumann Resonance frequency, propagate with litter attenuation around the planet within the Schumann Cavity. It is the intent of this research to determine if the Schumann Cavity can be resonated, if the power that is delivered to the cavity propagated with very low losses, and if power can be extracted at other locations within the cavity. Experimental data collected and calculations made in recent years support the hypothesis that wireless power transmission is a viable and practical alternative to the present systems of power transmission

  9. Cavity-enhanced resonant tunneling photodetector at telecommunication wavelengths

    International Nuclear Information System (INIS)

    Pfenning, Andreas; Hartmann, Fabian; Langer, Fabian; Höfling, Sven; Kamp, Martin; Worschech, Lukas

    2014-01-01

    An AlGaAs/GaAs double barrier resonant tunneling diode (RTD) with a nearby lattice-matched GaInNAs absorption layer was integrated into an optical cavity consisting of five and seven GaAs/AlAs layers to demonstrate cavity enhanced photodetection at the telecommunication wavelength 1.3 μm. The samples were grown by molecular beam epitaxy and RTD-mesas with ring-shaped contacts were fabricated. Electrical and optical properties were investigated at room temperature. The detector shows maximum photocurrent for the optical resonance at a wavelength of 1.29 μm. At resonance a high sensitivity of 3.1×10 4 A/W and a response up to several pA per photon at room temperature were found

  10. Novel dielectric photonic-band-gap resonant cavity loaded in a gyrotron

    International Nuclear Information System (INIS)

    Chen Xiaoan; Liu Gaofeng; Tang Changjian

    2010-01-01

    A novel resonant cavity composed of a periodic, multilayer, dielectric photonic crystal is proposed. Using the transfer matrix method and the Bloch theorem for periodic systems, an analysis on the band-gap property of such a structure is made, and the basic electromagnetic property of the photonic-band-gap resonant cavity (PBGC) is preliminarily exhibited. The theoretical studies and the cold cavity simulation results obtained from a high-frequency structure simulator are presented. On the basis of the present research, such a PBGC is quite similar to the two-dimensional PBGC made of triangular lattices of metal rods with a defect at its centre, in which a frequency selectivity is similarly demonstrated. Because of its unique electromagnetic property, the cavity has many promising applications in active and passive devices operating in the millimetre, sub-millimetre, and even THz wave range. As a specific application, the feasibility of substituting the traditional cylindrical resonant cavity loaded in a gyrotron for a dielectric PBGC to achieve a transverse high-order operation is discussed under the consideration of the electromagnetic features of the cavity. The study shows the great potential value of such a cavity for gyrotron devices.

  11. The numerical simulation of plasma flow in cylindrical resonant cavity of microwave plasma thruster

    International Nuclear Information System (INIS)

    Tang, J.-L.; He, H.-Q; Mao, G.-W.

    2004-01-01

    Microwave Plasma Thruster (MPT) is an electro-thermal propulsive device. MPT consists of microwave generator, gas storing and supplying system, resonant cavity and accelerative nozzle. It generates free-floating plasma brought by the microwave discharge breakdown gas in the resonant cavity, and the plasma exhausted from nozzle produces thrust. MPT has prospective application in spacecraft because of its advantages of high thrust, moderate specific impulse and high efficiency. In this paper, the numerical simulation of the coupling flow field of microwave plasma in resonant cavity under different frequencies will be discussed. The results of numerical simulation are as follows: 1) When the resonant model TM 011 was used, the higher the microwave frequency was, the smaller the size of MPT. The distribution of the electromagnetic field in small cavity, however, remain unchanged. 2) When the resonant model was used, the distribution of the temperature, the pressure and the electronic density in the resonant cavity remained unchanged under different resonant frequencies. 3) When the resonant frequency was increased with a fixed pressure distribution in a small cavity, compare to the MPT with lower frequency, the gas flow rate, the microwave power and the nozzle throat diameter of MPT all decreased. 4) The electromagnetic field in the cylindrical resonant cavity for all MPT with different frequencies was disturbed by the plasma formation. The strong disturbance happened in the region close to the plasma. (author)

  12. Quality measurements of resonance cavities in behalf of investigation of microwave properties of superconducting materials

    International Nuclear Information System (INIS)

    Dekkers, G.; Ridder, M. de.

    1988-01-01

    A method for investigating conducting properties at microwave frequencies of superconducting materials by means of quality measurements of a resonance cavity is described. The method is based on the direct relationship of the quality factor of a resonance circuit, in this case a resonance cavity, with the losses in the circuit. In a resonance cavity these losses are caused by the material properties of the resonance cavity. Therefore quality measurements yield, essentially, a possibility for investigation of conducting properties of materials. The underlying theory of the subject, the design of a special resonance cavity, the measuring methods and the accuracy in the relation of the measured quality factor and the specific conductivity of the material is presented. refs.; figs.; tabs

  13. The imaging anatomical consideration of the resonance of the cranial cavity

    International Nuclear Information System (INIS)

    Lee, Dong Myoung

    2000-01-01

    Because vocal technique is the basis of singing a song beautifully, so this study was undertaken to use the scientific and correct technique in order to get much better musical expressions. Shimadzu X-ray remote control TV system was used for checking the supporting state of diaphragmatic respiration after 5, 10, 15, 20, 25 and 30 sec during phonation in the state of full inhalation between professional singer and non-professional singer. Shimadzu Magnet nex-α(SMT-50CX/H) was used for examining the scattering state from the resonance of nasal caity to that of cranial cavity on the basis of diaphragmatic respiration. The results obtained were summerized as follows: 1. The resonance of cranial cavity must be scattered by the energy of diaphragmatic respiration after gathering the foci of the fundamental 5 vowels. 2. While raising the epiglottis, the resonance of nasal cavity must be clearly in order to maintain the resonance of cranial cavity beautifully. 3. We can get musical expressions by maintaining the elasticity of diaphragmatic respiration.=20

  14. Extraordinary acoustic transmission mediated by Helmholtz resonators

    Directory of Open Access Journals (Sweden)

    Vijay Koju

    2014-07-01

    Full Text Available We demonstrate perfect transmission of sound through a rigid barrier embedded with Helmholtz resonators. The resonators are confined within a waveguide and they are oriented such that one neck protrudes onto each side of the barrier. Perfect sound transmission occurs even though the open area of the necks is less than 3% of the barrier area. Maximum transmission occurs at the resonant frequency of the Helmholtz resonator. Because the dimensions of the Helmholtz resonators are much smaller than the resonant wavelength, the transmission is independent of the direction of sound on the barrier and of the relative placement of the necks. Further, we show that the transmitted sound experiences a continuous phase transition of π radians as a function of frequency through resonance. In simulations of adjacent resonators with slightly offset resonance frequencies, the phase difference leads to destructive interference. By expanding the simulation to a linear array of tuned Helmholtz resonators we show that it is possible to create an acoustic lens. The ability of Helmholtz resonator arrays to manipulate the phase of a plane acoustic wave enables a new class of sonic beam-forming devices analogous to diffractive optics.

  15. Hybrid III-V/SOI resonant cavity enhanced photodetector

    DEFF Research Database (Denmark)

    Learkthanakhachon, Supannee; Taghizadeh, Alireza; Park, Gyeong Cheol

    2016-01-01

    A hybrid III–V/SOI resonant-cavity-enhanced photodetector (RCE-PD) structure comprising a high-contrast grating (HCG) reflector, a hybrid grating (HG) reflector, and an air cavity between them, has been proposed and investigated. In the proposed structure, a light absorbing material is integrated...... as part of the HG reflector, enabling a very compact vertical cavity. Numerical investigations show that a quantum efficiency close to 100 % and a detection linewidth of about 1 nm can be achieved, which are desirable for wavelength division multiplexing applications. Based on these results, a hybrid RCE...

  16. Transmission resonances in a semiconductor-superconductor junction quantum interference structure

    International Nuclear Information System (INIS)

    Takagaki, Y.; Tokura, Y.

    1996-01-01

    Transport properties in a quantum resonator structure of a normal-conductor endash superconductor (NS) junction are calculated. Quasiparticles in a cavity region undergo multiple reflections due to an abrupt change in the width of the wire and the NS interface. Quantum interference of the reflections modulates the nominal normal reflection probability at the NS boundary. We show that various NS structures can be regarded as the quantum resonator because of the absence of propagation along the NS interface. When the incident energy coincides with the quasibound state energy levels, the zero-voltage conductance exhibits peaks for small voltages applied to the NS junction. The transmission peaks change to dips of nearly perfect reflection when the applied voltage exceeds a critical value. Two branches of the resonance, which are roughly characterized by electron and hole wavelengths, emerge from the individual dip, and the energy difference between them increases with increasing voltage. The electronlike and holelike resonance dips originating from different quasibound states at zero-voltage cross one after another when the voltage approaches the superconducting gap. We find that both crossing and anticrossing can be produced. It is shown that the individual resonance state in the NS system is associated with two zeros and two poles in the complex energy plane. The behavior of the resonance is explained in terms of splitting and merging of the zero-pole pairs. We examine the Green close-quote s function of a one-dimensional NS system in order to find out how the transmission properties are influenced by the scattering from the NS interface. copyright 1996 The American Physical Society

  17. Transmission Line Resonator Segmented with Series Capacitors

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Boer, Vincent; Petersen, Esben Thade

    2016-01-01

    Transmission line resonators are often used as coils in high field MRI. Due to distributed nature of such resonators, coils based on them produce inhomogeneous field. This work investigates application of series capacitors to improve field homogeneity along the resonator. The equations for optimal...... values of evenly distributed capacitors are presented. The performances of the segmented resonator and a regular transmission line resonator are compared....

  18. Photoproduction of axions in a resonant electromagnetic cavity

    International Nuclear Information System (INIS)

    Dang Van Soa; Hoang Ngoc Long; Ha Huy Bang; Nguyen Mai Hung

    2000-09-01

    Photon-axion conversions in a resonant electromagnetic cavity with frequency equal to the axion mass are considered in detail by the Feynman diagram methods. The differential cross sections are presented and numerical evaluations are given. It is shown that there is a resonant conversion for the considered process. From our results, some estimates for experimental conditions are given. (author)

  19. Reflectivity and transmissivity of a cavity coupled to a nanoparticle

    Science.gov (United States)

    Khan, M. A.; Farooq, K.; Hou, S. C.; Niaz, Shanawer; Yi, X. X.

    2014-07-01

    Any dielectric nanoparticle moving inside an optical cavity generates an optomechanical interaction. In this paper, we theoretically analyze the light scattering of an optomechanical cavity which strongly interacts with a dielectric nanoparticle. The cavity is driven by an external laser field. This interaction gives rise to different dynamics that can be used to cool, trap and levitate nanoparticle. We analytically calculate reflection and transmission rate of the cavity field, and study the time evolution of the intracavity field, momentum and position of the nanoparticle. We find the nanoparticle occupies a discrete position inside the cavity. This effect can be exploited to separate nanoparticle and couplings between classical particles and quantized fields.

  20. Teleportation of two-atom entangled state in resonant cavity quantum electrodynamics

    Institute of Scientific and Technical Information of China (English)

    Yang Zhen-Biao

    2007-01-01

    An alternative scheme is presented for teleportation of a two-atom entangled state in cavity quantum electrodynamics (QED). It is based on the resonant atom-cavity field interaction. In the scheme, only one cavity is involved, and the number of the atoms needed to be detected is decreased compared with the previous scheme. Since the resonant atom-cavity field interaction greatly reduces the interaction time, the decoherence effect can be effectively suppressed during the teleportation process. The experimental feasibility of the scheme is discussed. The scheme can easily be generalized to the teleportation of N-atom Greeninger-Horne-Zeilinger (GHZ) entangled states. The number of atoms needed to be detected does not increase as the number of the atoms in the GHZ state increases.

  1. Numerical computations of interior transmission eigenvalues for scattering objects with cavities

    International Nuclear Information System (INIS)

    Peters, Stefan; Kleefeld, Andreas

    2016-01-01

    In this article we extend the inside-outside duality for acoustic transmission eigenvalue problems by allowing scattering objects that may contain cavities. In this context we provide the functional analytical framework necessary to transfer the techniques that have been used in Kirsch and Lechleiter (2013 Inverse Problems, 29 104011) to derive the inside-outside duality. Additionally, extensive numerical results are presented to show that we are able to successfully detect interior transmission eigenvalues with the inside-outside duality approach for a variety of obstacles with and without cavities in three dimensions. In this context, we also discuss the advantages and disadvantages of the inside-outside duality approach from a numerical point of view. Furthermore we derive the integral equations necessary to extend the algorithm in Kleefeld (2013 Inverse Problems, 29 104012) to compute highly accurate interior transmission eigenvalues for scattering objects with cavities, which we will then use as reference values to examine the accuracy of the inside-outside duality algorithm. (paper)

  2. Field-incidence noise transmission loss of general aviation aircraft double wall configurations

    Science.gov (United States)

    Grosveld, F. W.

    1984-01-01

    Theoretical formulations have been developed to describe the transmission of reverberant sound through an infinite, semi-infinite and a finite double panel structure. The model incorporates the fundamental resonance frequencies of each of the panels, the mass-air-mass resonances of the structure, the standing wave resonances in the cavity between the panels and finally the coincidence resonance regions, where the exciting sound pressure wave and flexural waves of each of the panels coincide. It is shown that phase cancellation effects of pressure waves reflected from the cavity boundaries back into the cavity allows the transmission loss of a finite double panel structure to be approximated by a finite double panel mounted in an infinite baffle having no cavity boundaries. Comparison of the theory with high quality transmission loss data yields good agreement in the mass-controlled frequency region. It is shown that the application of acoustic blankets to the double panel structure does not eliminate the mass-air-mass resonances if those occur at low frequencies. It is concluded that this frequency region of low noise transmission loss is a potential interior noise problem area for propeller driven aircraft having a double panel fuselage construction.

  3. Calculation, normalization and perturbation of quasinormal modes in coupled cavity-waveguide systems

    DEFF Research Database (Denmark)

    Kristensen, Philip Trøst; de Lasson, Jakob Rosenkrantz; Gregersen, Niels

    2014-01-01

    of divergent series to provide a framework for modeling of optical phenomena in such coupled cavity-waveguide systems. As an example, we apply the framework to study perturbative changes in the resonance frequency and Q value of a photonic crystal cavity coupled to a defect waveguide....

  4. Plasmon resonant cavities in vertical nanowire arrays

    Science.gov (United States)

    Bora, Mihail; Bond, Tiziana C.; Fasenfest, Benjamin J.; Behymer, Elaine M.

    2014-07-15

    Tunable plasmon resonant cavity arrays in paired parallel nanowire waveguides are presented. Resonances can be observed when the waveguide length is an odd multiple of quarter plasmon wavelengths, consistent with boundary conditions of node and antinode at the ends. Two nanowire waveguides can satisfy the dispersion relation of a planar metal-dielectric-metal waveguide of equivalent width equal to the square field average weighted gap. Confinement factors of over 10.sup.3 are possible due to plasmon focusing in the inter-wire space.

  5. Entangling a nanomechanical resonator and a superconducting microwave cavity

    International Nuclear Information System (INIS)

    Vitali, D.; Tombesi, P.; Woolley, M. J.; Doherty, A. C.; Milburn, G. J.

    2007-01-01

    We propose a scheme able to entangle at the steady state a nanomechanical resonator with a microwave cavity mode of a driven superconducting coplanar waveguide. The nanomechanical resonator is capacitively coupled with the central conductor of the waveguide and stationary entanglement is achievable up to temperatures of tens of milliKelvin

  6. Design of Transparent Anodes for Resonant Cavity Enhanced Light Harvesting in Organic Solar Cells

    KAUST Repository

    Sergeant, Nicholas P.

    2012-01-03

    The use of an ITO-free MoO 3/Ag/MoO 3 anode to control the photon harvesting in PCDTBT:PC 70BM solar cells is proposed. At first sight, the fact that these anodes possess reduced far-field transmission compared to ITO may seem to be a disadvantage. But, despite this, we show that by carefully tuning the resonant optical cavity we can enhance the external quantum efficiency close to the band edge of PCDTBT, resulting in high photocurrent and power conversion efficiency on par with ITO. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Tunable Fano Resonance in Asymmetric MIM Waveguide Structure.

    Science.gov (United States)

    Zhao, Xuefeng; Zhang, Zhidong; Yan, Shubin

    2017-06-25

    A plasmonic waveguide coupled system that uses a metal-insulator-metal (MIM) waveguide with two silver baffles and a coupled ring cavity is proposed in this study. The transmission properties of the plasmonic system were investigated using the finite element method. The simulation results show a Fano profile in the transmission spectrum, which was caused by the interaction of the broadband resonance of the Fabry-Perot (F-P) cavity and the narrow band resonance of the ring cavity. The Fabry-Perot (F-P) cavity in this case was formed by two silver baffles dividing the MIM waveguide. The maximum sensitivity of 718 nm/RIU and the maximum figure of merit of 4354 were achieved. Furthermore, the effects of the structural parameters of the F-P cavity and the ring cavity on the transmission properties of the plasmonic system were analyzed. The results can provide a guide for designing highly sensitive on-chip sensors based on surface plasmon polaritons.

  8. IV-VI mid-IR tunable lasers and detectors with external resonant cavities

    Science.gov (United States)

    Zogg, H.; Rahim, M.; Khiar, A.; Fill, M.; Felder, F.; Quack, N.; Blunier, S.; Dual, J.

    2009-08-01

    Wavelength tunable emitters and detectors in the mid-IR wavelength region allow applications including thermal imaging and spectroscopy. Such devices may be realized using a resonant cavity. By mechanically changing the cavity length with MEMS mirror techniques, the wavelengths may be tuned over a considerable range. Vertical external cavity surface emitting lasers (VECSEL) may be applied for gas spectroscopy. Resonant cavity enhanced detectors (RCED) are sensitive at the cavity resonance only. They may be applied for low resolution spectroscopy, and, when arrays of such detectors are realized, as multicolor IR-FPA or IR-AFPA (IR-adaptive focal plane arrays). We review mid-infrared RCEDs and VECSELs using narrow gap IV-VI (lead chalcogenide) materials like PbTe and PbSe as the active medium. IV-VIs are fault tolerant and allow easy wavelength tuning. The VECSELs operate up to above room temperature and emit in the 4 - 5 μm range with a PbSe active layer. RCEDs with PbTe absorbing layers above 200 K operating temperature have higher sensitivities than the theoretical limit for a similar broad-band detector coupled with a passive tunable band-filter.

  9. Bistable output from a coupled-resonator vertical-cavity laser diode

    International Nuclear Information System (INIS)

    Fischer, A. J.; Choquette, K. D.; Chow, W. W.; Allerman, A. A.; Geib, K.

    2000-01-01

    We report a monolithic coupled-resonator vertical-cavity laser with an ion-implanted top cavity and a selectively oxidized bottom cavity which exhibits bistable behavior in the light output versus injection current. Large bistability regions over current ranges as wide as 18 mA have been observed with on/off contrast ratios of greater than 20 dB. The position and width of the bistability region can be varied by changing the bias to the top cavity. Switching between on and off states can be accomplished with changes as small as 250 μW to the electrical power applied to the top cavity. The bistable behavior is the response of the nonlinear susceptibility in the top cavity to the changes in the bottom intracavity laser intensity as the bottom cavity reaches the thermal rollover point

  10. Efficient 525 nm laser generation in single or double resonant cavity

    Science.gov (United States)

    Liu, Shilong; Han, Zhenhai; Liu, Shikai; Li, Yinhai; Zhou, Zhiyuan; Shi, Baosen

    2018-03-01

    This paper reports the results of a study into highly efficient sum frequency generation from 792 and 1556 nm wavelength light to 525 nm wavelength light using either a single or double resonant ring cavity based on a periodically poled potassium titanyl phosphate crystal (PPKTP). By optimizing the cavity's parameters, the maximum power achieved for the resultant 525 nm laser was 263 and 373 mW for the single and double resonant cavity, respectively. The corresponding quantum conversion efficiencies were 8 and 77% for converting 1556 nm photons to 525 nm photons with the single and double resonant cavity, respectively. The measured intra-cavity single pass conversion efficiency for both configurations was about 5%. The performances of the sum frequency generation in these two configurations was studied and compared in detail. This work will provide guidelines for optimizing the generation of sum frequency generated laser light for a variety of configurations. The high conversion efficiency achieved in this work will help pave the way for frequency up-conversion of non-classical quantum states, such as the squeezed vacuum and single photon states. The proposed green laser source will be used in our future experiments, which includes a plan to generate two-color entangled photon pairs and achieve the frequency down-conversion of single photons carrying orbital angular momentum.

  11. Lithographic wavelength control of an external cavity laser with a silicon photonic crystal cavity-based resonant reflector.

    Science.gov (United States)

    Liles, Alexandros A; Debnath, Kapil; O'Faolain, Liam

    2016-03-01

    We report the experimental demonstration of a new design for external cavity hybrid lasers consisting of a III-V semiconductor optical amplifier (SOA) with fiber reflector and a photonic crystal (PhC)-based resonant reflector on SOI. The silicon reflector is composed of an SU8 polymer bus waveguide vertically coupled to a PhC cavity and provides a wavelength-selective optical feedback to the laser cavity. This device exhibits milliwatt-level output power and side-mode suppression ratios of more than 25 dB.

  12. Non-stationary and relaxation phenomena in cavity-assisted quantum memories

    Science.gov (United States)

    Veselkova, N. G.; Sokolov, I. V.

    2017-12-01

    We investigate the non-stationary and relaxation phenomena in cavity-assisted quantum memories for light. As a storage medium we consider an ensemble of cold atoms with standard Lambda-scheme of working levels. Some theoretical aspects of the problem were treated previously by many authors, and recent experiments stimulate more deep insight into the ultimate ability and limitations of the device. Since quantum memories can be used not only for the storage of quantum information, but also for a substantial manipulation of ensembles of quantum states, the speed of such manipulation and hence the ability to write and retrieve the signals of relatively short duration becomes important. In our research we do not apply the so-called bad cavity limit, and consider the memory operation of the signals whose duration is not much larger than the cavity field lifetime, accounting also for the finite lifetime of atomic coherence. In our paper we present an effective approach that makes it possible to find the non-stationary amplitude and phase behavior of strong classical control field, that matches the desirable time profile of both the envelope and the phase of the retrieved quantized signal. The phase properties of the retrieved quantized signals are of importance for the detection and manipulation of squeezing, entanglement, etc by means of optical mixing and homodyning.

  13. Development of 400- to 450-MHz RFQ resonator-cavity mechanical designs

    International Nuclear Information System (INIS)

    Hansborough, L.D.

    1982-01-01

    In the development of the radio-frequency quadrupole (RFQ) linac, the resonator cavity's mechanical design may be a challenge similar in magnitude to that of the development of the accelerator structure itself. Experience with the all-copper 425-MHz RFQ proof-of-principle linac has demonstrated that the resonator cavity must be structurally stiff and easily tunable. This experience has led to development of copper-plated steel structures having vanes that may be moved within a cylinder for tuning. Design of a flexible vane-to-cylinder radio-frequency (rf) joint, the vane, and the cylinder has many constraints dictated by the small-diameter cavities in the 400-MHz-frequency region. Two types of flexible, mechanical vane-to-cylinder rf joints are being developed at Los Alamos: the C-seal and the rf clamp-joint

  14. Quasistatic Cavity Resonance for Ubiquitous Wireless Power Transfer.

    Science.gov (United States)

    Chabalko, Matthew J; Shahmohammadi, Mohsen; Sample, Alanson P

    2017-01-01

    Wireless power delivery has the potential to seamlessly power our electrical devices as easily as data is transmitted through the air. However, existing solutions are limited to near contact distances and do not provide the geometric freedom to enable automatic and un-aided charging. We introduce quasistatic cavity resonance (QSCR), which can enable purpose-built structures, such as cabinets, rooms, and warehouses, to generate quasistatic magnetic fields that safely deliver kilowatts of power to mobile receivers contained nearly anywhere within. A theoretical model of a quasistatic cavity resonator is derived, and field distributions along with power transfer efficiency are validated against measured results. An experimental demonstration shows that a 54 m3 QSCR room can deliver power to small coil receivers in nearly any position with 40% to 95% efficiency. Finally, a detailed safety analysis shows that up to 1900 watts can be transmitted to a coil receiver enabling safe and ubiquitous wireless power.

  15. Quasistatic Cavity Resonance for Ubiquitous Wireless Power Transfer.

    Directory of Open Access Journals (Sweden)

    Matthew J Chabalko

    Full Text Available Wireless power delivery has the potential to seamlessly power our electrical devices as easily as data is transmitted through the air. However, existing solutions are limited to near contact distances and do not provide the geometric freedom to enable automatic and un-aided charging. We introduce quasistatic cavity resonance (QSCR, which can enable purpose-built structures, such as cabinets, rooms, and warehouses, to generate quasistatic magnetic fields that safely deliver kilowatts of power to mobile receivers contained nearly anywhere within. A theoretical model of a quasistatic cavity resonator is derived, and field distributions along with power transfer efficiency are validated against measured results. An experimental demonstration shows that a 54 m3 QSCR room can deliver power to small coil receivers in nearly any position with 40% to 95% efficiency. Finally, a detailed safety analysis shows that up to 1900 watts can be transmitted to a coil receiver enabling safe and ubiquitous wireless power.

  16. Quasistatic Cavity Resonance for Ubiquitous Wireless Power Transfer

    Science.gov (United States)

    Shahmohammadi, Mohsen; Sample, Alanson P.

    2017-01-01

    Wireless power delivery has the potential to seamlessly power our electrical devices as easily as data is transmitted through the air. However, existing solutions are limited to near contact distances and do not provide the geometric freedom to enable automatic and un-aided charging. We introduce quasistatic cavity resonance (QSCR), which can enable purpose-built structures, such as cabinets, rooms, and warehouses, to generate quasistatic magnetic fields that safely deliver kilowatts of power to mobile receivers contained nearly anywhere within. A theoretical model of a quasistatic cavity resonator is derived, and field distributions along with power transfer efficiency are validated against measured results. An experimental demonstration shows that a 54 m3 QSCR room can deliver power to small coil receivers in nearly any position with 40% to 95% efficiency. Finally, a detailed safety analysis shows that up to 1900 watts can be transmitted to a coil receiver enabling safe and ubiquitous wireless power. PMID:28199321

  17. Shear Layer Dynamics in Resonating Cavity Flows

    National Research Council Canada - National Science Library

    Ukeiley, Lawrence

    2004-01-01

    .... The PIV data was also combined with the surface pressure measurements through the application of the Quadratic Stochastic Estimation procedure to provide time resolved snapshots of the flow field. Examination of these results indicate the strong pumping action of the cavity regardless of whether resonance existed and was used to visualize the large scale structures interacting with the aft wall.

  18. Cavity-enhanced surface-plasmon resonance sensing: Modeling and performance

    Czech Academy of Sciences Publication Activity Database

    Giorgini, A.; Avino, S.; Malara, P.; Zullo, R.; Gaglio, G.; Homola, Jiří; De Natale, P.

    2014-01-01

    Roč. 25, č. 1 (2014), 015205 ISSN 0957-0233 Institutional support: RVO:67985882 Keywords : optical resonators * optical sensors * cavity ring-down spectroscopy Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.433, year: 2014

  19. Noise Reduction in Double‿Panel Structures by Cavity and Panel Resonance Control

    OpenAIRE

    Ho, J.; Berkhoff, Arthur P.

    2011-01-01

    This paper presents an investigation of the cavity and the panel resonance control in a double‿panel structure. The double‿panel structure, which consists of two panels with air in the gap, is widely adopted in many applications such as aerospace due to its light weight and effective transmission‿loss at high frequency. However, the resonance of the cavity and the poor transmission‿loss at low frequency limit its noise control performance. Applying active control forces on the panels or utili...

  20. Voltage control of cavity magnon polariton

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, S., E-mail: kaurs3@myumanitoba.ca; Rao, J. W.; Gui, Y. S.; Hu, C.-M., E-mail: hu@physics.umanitoba.ca [Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Canada); Yao, B. M. [Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Canada); National Laboratory for Infrared Physics, Chinese Academy of Sciences, Shanghai 200083 (China)

    2016-07-18

    We have experimentally investigated the microwave transmission of the cavity-magnon-polariton (CMP) generated by integrating a low damping magnetic insulator onto a 2D microwave cavity. The high tunability of our planar cavity allows the cavity resonance frequency to be precisely controlled using a DC voltage. By appropriately tuning the voltage and magnetic bias, we can observe the cavity photon magnon coupling and the magnetic coupling between a magnetostatic mode and the generated CMP. The dispersion of the generated CMP was measured by either tuning the magnetic field or the applied voltage. This electrical control of CMP may open up avenues for designing advanced on-chip microwave devices that utilize light-matter interaction.

  1. Rotational cooling of polar molecules by Stark-tuned cavity resonance

    International Nuclear Information System (INIS)

    Ooi, C. H. Raymond

    2003-01-01

    A general scheme for rotational cooling of diatomic heteronuclear molecules is proposed. It uses a superconducting microwave cavity to enhance the spontaneous decay via Purcell effect. Rotational cooling can be induced by sequentially tuning each rotational transition to cavity resonance, starting from the highest transition level to the lowest one using an electric field. Electrostatic multipoles can be used to provide large confinement volume with essentially homogeneous background electric field

  2. Resonator modes and mode dynamics for an external cavity-coupled laser array

    Science.gov (United States)

    Nair, Niketh; Bochove, Erik J.; Aceves, Alejandro B.; Zunoubi, Mohammad R.; Braiman, Yehuda

    2015-03-01

    Employing a Fox-Li approach, we derived the cold-cavity mode structure and a coupled mode theory for a phased array of N single-transverse-mode active waveguides with feedback from an external cavity. We applied the analysis to a system with arbitrary laser lengths, external cavity design and coupling strengths to the external cavity. The entire system was treated as a single resonator. The effect of the external cavity was modeled by a set of boundary conditions expressed by an N-by-N frequency-dependent matrix relation between incident and reflected fields at the interface with the external cavity. The coupled mode theory can be adapted to various types of gain media and internal and external cavity designs.

  3. Improved method for measuring the electric fields in microwave cavity resonators

    International Nuclear Information System (INIS)

    Amato, J.C.; Herrmann, H.

    1985-01-01

    The electric field distribution in microwave cavities is commonly measured by frequency perturbation techniques. For many cavity modes which are important in accelerator applications, the standard bead-pulling technique cannot provide adequate discrimination between fields parallel and perpendicular to the particle trajectory, leading to inaccurate and ambiguous results. A method is described which substantially increases the directivity of the measurements. The method has been successfully used to determine the accelerator-related cavity parameters at frequencies up to three times the fundamental resonant frequency

  4. The Friedrichs model and its use in resonance phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Gadella, M. [Departamento de Fisica Teorica, Atomica y Optica, Facultad de Ciencias, 47071 Valladolid (Spain); Pronko, G.P. [Institute for High Energy Physics, Protvino 142284, Moscow Region (Russian Federation)

    2011-09-15

    We present here a relation of different types of Friedrichs models and their use in the description and comprehension of resonance phenomena. We first discuss the basic Friedrichs model and obtain its resonance in the case that this is simple or doubly degenerated. Next, we discuss the model with N levels and show how the probability amplitude has an oscillatory behavior. Two generalizations of the Friedrichs model are suitable to introduce resonance behavior in quantum field theory. We also discuss a discrete version of the Friedrichs model and also a resonant interaction between two systems both with continuous spectrum. In an appendix, we review the mathematics of rigged Hilbert spaces. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Theory of RF superconductivity for resonant cavities

    Science.gov (United States)

    Gurevich, Alex

    2017-03-01

    An overview of a theory of electromagnetic response of superconductors in strong radio-frequency (RF) electromagnetic fields is given with the emphasis on applications to superconducting resonant cavities for particle accelerators. The paper addresses fundamentals of the BCS surface resistance, the effect of subgap states and trapped vortices on the residual surface resistance at low RF fields, and a nonlinear surface resistance at strong fields, particularly the effect of the RF field suppression of the surface resistance. These issues are essential for the understanding of the field dependence of high quality factors Q({B}a)˜ {10}10{--}{10}11 achieved on the Nb cavities at 1.3-2 K in strong RF fields B a close to the depairing limit, and the extended Q({B}a) rise which has been observed on Ti and N-treated Nb cavities. Possible ways of further increase of Q({B}a) and the breakdown field by optimizing impurity concentration at the surface and by multilayer nanostructuring with materials other than Nb are discussed.

  6. Shielding Effectiveness Analysis and Modification of the Coupling Effect Transmission Line Method on Cavities with Multi-Sided Apertures

    Directory of Open Access Journals (Sweden)

    Tao Hu

    2018-04-01

    Full Text Available Because the traditional transmission line method treats electromagnetic waves as excitation sources and the cavity as a rectangular waveguide whose terminal is shorted, the transmission line method can only calculate shielding effectiveness in the center line of the cavity with apertures on one side. In this paper, the aperture coupling effect of different sides was analyzed based on vector analysis. According to the field intensity distribution of different transport modes in the rectangular waveguide, the calculation model of cavity shielding effectiveness in any position is proposed, which can solve the question of the calculation model of shielding effectiveness in any position in the traditional method of equivalent transmission methods. Further expansion of the equivalent transmission lines model is adopted to study the shielding effectiveness of different aperture cavities, and the coupling effect rule of the incident angle, the number of apertures, and the size of the cavity is obtained, which can provide the technical support for the design of electromagnetic shielding cavities for electronic equipment.

  7. MFTF-B quasi-optical ECRH transmission system

    International Nuclear Information System (INIS)

    Yugo, J.J.; Shearer, J.W.; Ziolkowski, R.W.

    1983-01-01

    The microwave transmission system for ERCH on MFTF-B will utilize quasi-optical transmission techniques. The system consists of ten gyrotron oscillators: two gyrotrons at 28 GHz, two at 35 GHz, and six at 56 GHz. The 28 and 35 GHz gyrotrons both heat the electrons in the end plug (potential peak) while the 56 GHz sources heat the minimum-B anchor region (potential minimum). Microwaves are launched into a pair of cylindrical mirrors that form a pseudo-cavity which directs the microwaves through the plasma numerous times before they are lost out of the cavity. The cavity allows the microwave beam to reach the resonance zone over a wide range of plasma densities and temperatures. The fundamental electron cyclotron resonance moves to higher axial positions as a result of beta-depression of the magnetic field, doppler shifting of the resonance, and relativistic mass corrections for the electrons. With this system the microwave beam will reach the resonance surface at the correct angle of incidence for any density or temperature without active aiming of the antennas. The cavity also allows the beam to make multiple passes through the plasma to increase the heating efficiency at low temperatures and densities when the single pass absorption is low. In addition, neutral beams and diagnostics have an unobstructed view of the plasma

  8. Wavelength-controlled external-cavity laser with a silicon photonic crystal resonant reflector

    Science.gov (United States)

    Gonzalez-Fernandez, A. A.; Liles, Alexandros A.; Persheyev, Saydulla; Debnath, Kapil; O'Faolain, Liam

    2016-03-01

    We report the experimental demonstration of an alternative design of external-cavity hybrid lasers consisting of a III-V Semiconductor Optical Amplifier with fiber reflector and a Photonic Crystal (PhC) based resonant reflector on SOI. The Silicon reflector comprises a polymer (SU8) bus waveguide vertically coupled to a PhC cavity and provides a wavelength-selective optical feedback to the laser cavity. This device exhibits milliwatt-level output power and sidemode suppression ratio of more than 25 dB.

  9. Parameters optimization for magnetic resonance coupling wireless power transmission.

    Science.gov (United States)

    Li, Changsheng; Zhang, He; Jiang, Xiaohua

    2014-01-01

    Taking maximum power transmission and power stable transmission as research objectives, optimal design for the wireless power transmission system based on magnetic resonance coupling is carried out in this paper. Firstly, based on the mutual coupling model, mathematical expressions of optimal coupling coefficients for the maximum power transmission target are deduced. Whereafter, methods of enhancing power transmission stability based on parameters optimal design are investigated. It is found that the sensitivity of the load power to the transmission parameters can be reduced and the power transmission stability can be enhanced by improving the system resonance frequency or coupling coefficient between the driving/pick-up coil and the transmission/receiving coil. Experiment results are well conformed to the theoretical analysis conclusions.

  10. Lead salt resonant cavity enhanced detector with MEMS mirror

    Science.gov (United States)

    Felder, F.; Fill, M.; Rahim, M.; Zogg, H.; Quack, N.; Blunier, S.; Dual, J.

    2010-01-01

    We describe a tunable resonant cavity enhanced detector (RCED) for the mid-infrared employing narrow gap lead-chalcogenide (IV-VI) layers on a Si substrate. The device consists of an epitaxial Bragg reflector layer, a thin p-n+ heterojunction with PbSrTe as detecting layer and a micro-electro-mechanical system (MEMS) micromirror as second mirror. Despite the thin absorber layer the sensitivity is even higher than for a conventional detector. Tunability is achieved by changing the cavity length with a vertically movable MEMS mirror. The device may be used as miniature infrared spectrometer to cover the spectral range from 30 μm.

  11. Coupling ultracold atoms to a superconducting coplanar waveguide resonator

    OpenAIRE

    Hattermann, H.; Bothner, D.; Ley, L. Y.; Ferdinand, B.; Wiedmaier, D.; Sárkány, L.; Kleiner, R.; Koelle, D.; Fortágh, J.

    2017-01-01

    We demonstrate coupling of magnetically trapped ultracold $^87$Rb ground state atoms to a coherently driven superconducting coplanar resonator on an integrated atom chip. We measure the microwave field strength in the cavity through observation of the AC shift of the hyperfine transition frequency when the cavity is driven off-resonance from the atomic transition. The measured shifts are used to reconstruct the field in the resonator, in close agreement with transmission measurements of the c...

  12. Transmission-enabled fiber Fabry-Perot cavity based on a deeply etched slotted micromirror.

    Science.gov (United States)

    Othman, Muhammad A; Sabry, Yasser M; Sadek, Mohamed; Nassar, Ismail M; Khalil, Diaa A

    2018-06-01

    In this work, we report the analysis, fabrication, and characterization of an optical cavity built using a Bragg-coated fiber (BCF) mirror and a metal-coated microelectromechanical systems (MEMS) slotted micromirror, where the latter allows transmission output from the cavity. Theoretical modeling, using Fourier optics analysis for the cavity response based on tracing the propagation of light back and forth between the mirrors, is presented. Detailed simulation analysis is carried out for the spectral response of the cavity under different design conditions. MEMS chips of the slotted micromirror are fabricated using deep reactive ion etching of a silicon-on-insulator substrate with different device-etching depths of 150 μm and 80 μm with aluminum and gold metal coating, respectively. The cavity is characterized as an optical filter using a BCF with reflectivity that is larger than 95% in a 300 nm range across the E-band and the L-band. Versatile filter characteristics were obtained for different values of the MEMS micromirror slit width and cavity length. A free spectral range (FSR) of about 33 nm and a quality factor of about 196 were obtained for a 5.5 μm width aluminum slit, while an FSR of about 148 nm and a quality factor of about 148 were obtained for a 1.5 μm width gold slit. The presented structure opens the door for wide spectral response transmission-type MEMS filters.

  13. Comparison of various decentralised structural and cavity feedback control strategies for transmitted noise reduction through a double panel structure

    Science.gov (United States)

    Ho, Jen-Hsuan; Berkhoff, Arthur

    2014-03-01

    This paper compares various decentralised control strategies, including structural and acoustic actuator-sensor configuration designs, to reduce noise transmission through a double panel structure. The comparison is based on identical control stability indexes. The double panel structure consists of two panels with air in between and offers the advantages of low sound transmission at high frequencies, low heat transmission, and low weight. The double panel structure is widely used, such as in the aerospace and automotive industries. Nevertheless, the resonance of the cavity and the poor sound transmission loss at low frequencies limit the double panel's noise control performance. Applying active structural acoustic control to the panels or active noise control to the cavity has been discussed in many papers. In this paper, the resonances of the panels and the cavity are considered simultaneously to further reduce the transmitted noise through an existing double panel structure. A structural-acoustic coupled model is developed to investigate and compare various structural control and cavity control methods. Numerical analysis and real-time control results show that structural control should be applied to both panels. Three types of cavity control sources are presented and compared. The results indicate that the largest noise reduction is obtained with cavity control by loudspeakers modified to operate as incident pressure sources.

  14. Transition of lasing modes in polymeric opal photonic crystal resonating cavity.

    Science.gov (United States)

    Shi, Lan-Ting; Zheng, Mei-Ling; Jin, Feng; Dong, Xian-Zi; Chen, Wei-Qiang; Zhao, Zhen-Sheng; Duan, Xuan-Ming

    2016-06-10

    We demonstrate the transition of lasing modes in the resonating cavity constructed by polystyrene opal photonic crystals and 7 wt. % tert-butyl Rhodamine B doped polymer film. Both single mode and multiple mode lasing emission are observed from the resonating cavity. The lasing threshold is determined to be 0.81  μJ/pulse for single mode lasing emission and 2.25  μJ/pulse for multiple mode lasing emission. The single mode lasing emission is attributed to photonic lasing resulting from the photonic bandgap effect of the opal photonic crystals, while the multiple mode lasing emission is assigned to random lasing due to the defects in the photonic crystals. The result would benefit the development of low threshold polymeric solid state photonic crystal lasers.

  15. Electromagnetic Wave Chaos in Gradient Refractive Index Optical Cavities

    International Nuclear Information System (INIS)

    Wilkinson, P. B.; Fromhold, T. M.; Taylor, R. P.; Micolich, A. P.

    2001-01-01

    Electromagnetic wave chaos is investigated using two-dimensional optical cavities formed in a cylindrical gradient refractive index lens with reflective surfaces. When the planar ends of the lens are cut at an angle to its axis, the geometrical ray paths are chaotic. In this regime, the electromagnetic mode spectrum of the cavity is modulated by both real and ghost periodic ray paths, which also 'scar' the electric field intensity distributions of many modes. When the cavity is coupled to waveguides, the eigenmodes generate complex series of resonant peaks in the electromagnetic transmission spectrum

  16. Regularized quasinormal modes for plasmonic resonators and open cavities

    Science.gov (United States)

    Kamandar Dezfouli, Mohsen; Hughes, Stephen

    2018-03-01

    Optical mode theory and analysis of open cavities and plasmonic particles is an essential component of optical resonator physics, offering considerable insight and efficiency for connecting to classical and quantum optical properties such as the Purcell effect. However, obtaining the dissipative modes in normalized form for arbitrarily shaped open-cavity systems is notoriously difficult, often involving complex spatial integrations, even after performing the necessary full space solutions to Maxwell's equations. The formal solutions are termed quasinormal modes, which are known to diverge in space, and additional techniques are frequently required to obtain more accurate field representations in the far field. In this work, we introduce a finite-difference time-domain technique that can be used to obtain normalized quasinormal modes using a simple dipole-excitation source, and an inverse Green function technique, in real frequency space, without having to perform any spatial integrations. Moreover, we show how these modes are naturally regularized to ensure the correct field decay behavior in the far field, and thus can be used at any position within and outside the resonator. We term these modes "regularized quasinormal modes" and show the reliability and generality of the theory by studying the generalized Purcell factor of dipole emitters near metallic nanoresonators, hybrid devices with metal nanoparticles coupled to dielectric waveguides, as well as coupled cavity-waveguides in photonic crystals slabs. We also directly compare our results with full-dipole simulations of Maxwell's equations without any approximations, and show excellent agreement.

  17. Spiral loaded cavities for heavy ion acceleration

    International Nuclear Information System (INIS)

    Schempp, A.; Klein, H.

    1976-01-01

    A transmission line theory of the spiral resonator has been performed and the calculated and measured properties will be compared. Shunt impedances up to 50 MΩ/m have been measured. In a number of high power tests the structure has been tested and its electrical and mechanical stability has been investigated. The static frequency shift due to ponderomotoric forces was between 0.2 and 50 kHz/kW dependent on the geometrical parameters of the spirals. The maximum field strength obtained on the axis was 16 MV/m in pulsed operation and 9.2 MV/m in cw, corresponding to a voltage gain per cavity of up to 0.96 MV. The results show that spiral resonators are well suited as heavy ion accelerator cavities. (author)

  18. Longitudinal and transverse electric field measurements in resonant cavities

    International Nuclear Information System (INIS)

    Tong Dechun; Chen Linfeng; Zheng Xiaoyue

    1994-01-01

    The paper presents a measuring technique for the electric field distribution of high order modes in resonant cavities. A perturbing bead-like cage made with metallic wires are developed for S-band field measurements, which can be used to detect a small electric field component in the presence of other strong electric or magnetic field components (That means high sensitivity and high directivity). In order to avoid orientation error for the cage with very high directivity, two parallel threads were used for supporting the perturbing cage. A simple mechanical set-up is described. The cage can be driven into the cavity on-axis or off-axis in any azimuth for the longitudinal and transverse electric field measurements

  19. Field stabilization in superconducting cavities under pulsed operating

    International Nuclear Information System (INIS)

    Tessier, J.M.

    1996-01-01

    Within the framework of Tesla linear accelerator project, superconducting cavity battery is used to accelerate electrons and positrons. These cavities require pulsed running and must reach very high accelerating gradients. Under the action of the Lorentz force, the resonance frequency shifts and leaves the band-pass width, which hinders the field from taking its maximal value inside the cavity. The setting of an auto-oscillating loop allows to bring the generator frequency under the control of the cavity frequency. A feedback system is needed to reduce the energy dispersion inside the particle packets. The effects of the mechanical vibrations that disturb the accelerating voltage phase between two impulses are also compensated by a feedback loop. This thesis describes all these phenomena and computes their effects on the energy dispersion of the beam in both cases of relativistic and non-relativistic particles. (A.C.)

  20. Resonant cavity enhanced light harvesting in flexible thin-film organic solar cells

    KAUST Repository

    Sergeant, Nicholas P.

    2013-04-24

    Dielectric/metal/dielectric (DMD) electrodes have the potential to significantly increase the absorption efficiency and photocurrent in flexible organic solar cells. We demonstrate that this enhancement is attributed to a broadband cavity resonance. Silver-based semitransparent DMD electrodes with sheet resistances below 10 ohm/sq. are fabricated on flexible polyethylene terephthalate (PET) substrates in a high-throughput roll-to-roll sputtering tool. We carefully study the effect of the semitransparent DMD electrode (here composed of ZnxSnyOz/Ag/InxSn yOz) on the optical device performance of a copper phthalocyanine (CuPc)/fullerene (C60) bilayer cell and illustrate that a resonant cavity enhanced light trapping effect dominates the optical behavior of the device. © 2013 Optical Society of America.

  1. Panels with low-Q-factor resonators with theoretically infinite sound-proofing ability at a single frequency

    Science.gov (United States)

    Lazarev, L. A.

    2015-07-01

    An infinite panel with two types of resonators regularly installed on it is theoretically considered. Each resonator is an air-filled cavity hermetically closed by a plate, which executes piston vibrations. The plate and air inside the cavity play the roles of mass and elasticity, respectively. Every other resonator is reversed. At a certain ratio between the parameters of the resonators at the tuning frequency of the entire system, the acoustic-pressure force that directly affects the panel can be fully compensated by the action forces of the resonators. In this case, the sound-proofing ability (transmission loss) tends to infinity. The presented calculations show that a complete transmission-loss effect can be achieved even with low- Q resonators.

  2. Computer program for calculating the resonant frequency, shunt impedance and quality factor of a pill-box cavity in a storage ring

    International Nuclear Information System (INIS)

    Aguero, V.M.; Ng, K.Y.

    1983-10-01

    Keil and Zotter have analyzed the electromagnetic fields excited by the longitudinal density fluctuations of an unbunched relativistic particle beam drifting in a corrugated vacuum chamber of circular cross section. At higher frequencies, these corrugations become resonant cavities. Zotter has written a computer program known as KN7C to compute the resonant frequencies. However, in the actual use of KN7C, some difficulties are encountered. To surmount these difficulties, the program known as CAVITY was written to analyze this pill-box shaped resonant cavity. Although there are many input variables to this program, only two are essential and need to be specified. They are BD = b/d = the ratio of the circular beampipe radius to that of the pill-box cavity and GD = g/d where g is the length of the cavity. When they are specified, CAVITY will print out the dimensionless normalized fundamental resonant frequency FD, shunt impedance Z and figure of merit Q. From these, the actual resonant frequency, shunt impedance and figure of merit can be deduced. The program is described and a listing is provided

  3. Entangling optical and microwave cavity modes by means of a nanomechanical resonator

    Energy Technology Data Exchange (ETDEWEB)

    Barzanjeh, Sh. [Department of Physics, Faculty of Science, University of Isfahan, Hezar Jerib, 81746-73441 Isfahan (Iran, Islamic Republic of); School of Science and Technology, Physics Division, Universita di Camerino, I-62032 Camerino, Macerata (Italy); Vitali, D.; Tombesi, P. [School of Science and Technology, Physics Division, Universita di Camerino, I-62032 Camerino, Macerata (Italy); Milburn, G. J. [Centre for Engineered Quantum Systems, School of Physical Sciences, University of Queensland, Saint Lucia, Queensland 4072 (Australia)

    2011-10-15

    We propose a scheme that is able to generate stationary continuous-variable entanglement between an optical and a microwave cavity mode by means of their common interaction with a nanomechanical resonator. We show that when both cavities are intensely driven, one can generate bipartite entanglement between any pair of the tripartite system, and that, due to entanglement sharing, optical-microwave entanglement is efficiently generated at the expense of microwave-mechanical and optomechanical entanglement.

  4. Entangling optical and microwave cavity modes by means of a nanomechanical resonator

    International Nuclear Information System (INIS)

    Barzanjeh, Sh.; Vitali, D.; Tombesi, P.; Milburn, G. J.

    2011-01-01

    We propose a scheme that is able to generate stationary continuous-variable entanglement between an optical and a microwave cavity mode by means of their common interaction with a nanomechanical resonator. We show that when both cavities are intensely driven, one can generate bipartite entanglement between any pair of the tripartite system, and that, due to entanglement sharing, optical-microwave entanglement is efficiently generated at the expense of microwave-mechanical and optomechanical entanglement.

  5. Characterization of superconducting transmission line resonators

    Energy Technology Data Exchange (ETDEWEB)

    Goetz, Jan; Summer, Philipp; Meier, Sebastian; Haeberlein, Max; Wulschner, Karl Friedrich; Eder, Peter; Fischer, Michael; Schwarz, Manuel; Deppe, Frank; Fedorov, Kirill; Huebl, Hans; Menzel, Edwin [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Krawczyk, Marta; Marx, Achim [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Baust, Alexander; Xie, Edwar; Zhong, Ling; Gross, Rudolf [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Nanosystems Initiative Munich (NIM), Muenchen (Germany)

    2015-07-01

    Superconducting transmission line resonators are widely used in circuit quantum electrodynamics experiments as quantum bus or storage devices. For these applications, long coherence times, which can be linked to the internal quality factor of the resonators, are crucial. Here, we show a systematic study of the internal quality factor of niobium thin film resonators. We analyze different cleaning methods and substrate parameters for coplanar waveguide as well as microstrip geometries. In addition, we investigate the impact of a niobium-aluminum interface which is necessary for galvanically coupled flux qubits made from aluminum. This interface can be avoided by fabricating the complete resonator-qubit structure using Al/AlO{sub x}/Al technology during fabrication.

  6. Malignant tumors of the nasal cavity: computed tomography and magnetic resonance imaging

    International Nuclear Information System (INIS)

    Souza, Ricardo Pires de; Paes Junior, Ademar Jose de Oliveira; Gonzalez, Fabio Mota; Cordeiro, Flamarion de Barros; Yamashiro, Ilka; Lenh, Carlos Neutzling; Rapoport, Abrao

    2004-01-01

    The aim of this study is to evaluate the role of computed tomography and magnetic resonance imaging in the characterization of deep tissue extension of malignant tumors of the nasal cavity. Twelve patients diagnosed with malignant tumors of the nasal cavity were retrospectively evaluated at the Departments of Diagnostic Imaging and Head and Neck Surgery of the 'Complexo Hospitalar Heliopolis', Sao Paulo, Brazil, between 1990 and 2000. All cases were confirmed by histopathologic examination. The results were: extension to the maxillary and ethmoid sinuses was identified in six patients, extension to contralateral nasal cavity, orbit and lamina cribosa in five patients, extension to nasal pharynx and masticator space in two patients, extension to cavernous sinus, anterior/middle cranial fossa, pterygomaxillary fossa, inferior/superior orbital fissure, frontal sinus, contralateral ethmoid sinus, contralateral lamina cribosa, hard palate and pterygopalatine fossa in one patient. Conclusion: It is important to precisely assess the local extension and spread of tumor by computed tomography and magnetic resonance imaging in order to plan the approach to treatment, which will influence the prognosis. (author)

  7. Magnetic resonance and antiresonance in microwave transmission through nanocomposites with Fe{sub 3}Ni{sub 2} and FeNi{sub 3} particles

    Energy Technology Data Exchange (ETDEWEB)

    Rinkevich, A.B. [M.N. Miheev Institute of Metal Physics Ural Branch of RAS, 18 S.Kovalevskaya St, Ekaterinburg 620990 (Russian Federation); Samoylovich, M.I. [OAO TsNITI “TEKHNOMASH”, 4 Ivana Franko St, Moscow 121108 (Russian Federation); Nemytova, O.V., E-mail: mif-83@mail.ru [M.N. Miheev Institute of Metal Physics Ural Branch of RAS, 18 S.Kovalevskaya St, Ekaterinburg 620990 (Russian Federation); Kuznetsov, E.A. [Nizhny Tagil branch of the Ekaterinburg state social-pedagogical university, 57 Krasnogvardeyskaya St, Nizhny Tagil 622031 (Russian Federation)

    2017-06-15

    Investigation of magnetic properties and microwave resonance phenomena in nanocomposites based on opal matrices containing the particles of intermetallide of Fe{sub 3}Ni{sub 2} and FeNi{sub 3} is carried out. The interactions which lead to the resonance changes of transmission and reflection coefficients are determined. Electromagnetic properties are measured in the millimeter frequency range. Special attention is paid to comparison between static and dynamic magnetic properties of nanocomposites. Frequency dependences of magnitude of lines of resonance features are obtained. Spectra of resonance and antiresonance are studied. The conditions when the magnetic antiresonance is observed are clarified. The X-ray phase analysis of the nanocomposites is performed and their structure is studied.

  8. Nuclear disarmament verification via resonant phenomena.

    Science.gov (United States)

    Hecla, Jake J; Danagoulian, Areg

    2018-03-28

    Nuclear disarmament treaties are not sufficient in and of themselves to neutralize the existential threat of the nuclear weapons. Technologies are necessary for verifying the authenticity of the nuclear warheads undergoing dismantlement before counting them toward a treaty partner's obligation. Here we present a concept that leverages isotope-specific nuclear resonance phenomena to authenticate a warhead's fissile components by comparing them to a previously authenticated template. All information is encrypted in the physical domain in a manner that amounts to a physical zero-knowledge proof system. Using Monte Carlo simulations, the system is shown to reveal no isotopic or geometric information about the weapon, while readily detecting hoaxing attempts. This nuclear technique can dramatically increase the reach and trustworthiness of future nuclear disarmament treaties.

  9. Large field-of-view transmission line resonator for high field MRI

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Johannesson, Kristjan Sundgaard; Boer, Vincent

    2016-01-01

    Transmission line resonators is often a preferable choice for coils in high field magnetic resonance imaging (MRI), because they provide a number of advantages over traditional loop coils. The size of such resonators, however, is limited to shorter than half a wavelength due to high standing wave....... Achieved magnetic field distribution is compared to the conventional transmission line resonator. Imaging experiments are performed using 7 Tesla MRI system. The developed resonator is useful for building coils with large field-of-view....

  10. Characteristics of the λ/4 transmission line resonator

    International Nuclear Information System (INIS)

    Hashimoto, Y.; Masuda, H.; Yoshida, K.; Arai, S.; Niki, K.

    1994-01-01

    Though the spiral cavity is adequate for low frequency operation, mechanical instability becomes serious for such a low frequency as 20 MHz. We have then studied how to shorten the spiral length by using λ/4 transmission line models. Four models with reduced spiral length are presented. (author)

  11. Study of Low Work Function Materials for Hot Cavity Resonance Ionization Laser Ion Sources

    CERN Document Server

    Catherall, R; Fedosseev, V; Marsh, B; Mattolat, C; Menna, Mariano; Österdahl, F; Raeder, S; Schwellnus, F; Stora, T; Wendt, K; CERN. Geneva. AB Department

    2008-01-01

    The selectivity of a hot cavity resonance ionization laser ion source (RILIS) is most often limited by contributions from competing surface ionization on the hot walls of the ionization cavity. In this article we present investigations on the properties of designated high-temperature, low-work function materials regarding their performance and suitability as cavity material for RILIS. Tungsten test cavities, impregnated with a mixture of barium oxide and strontium oxide (BaOSrO on W), or alternatively gadolinium hexaboride (GdB6) were studied in comparison to a standard tungsten RILIS cavity as being routinely used for hot cavity laser ionization at ISOLDE. Measurement campaigns took place at the off-line mass separators at ISOLDE / CERN, Geneva and RISIKO / University of Mainz.

  12. Study of low work function materials for hot cavity resonance ionization laser ion sources

    CERN Document Server

    Schwellnus, F; Crepieux, B; Fedosseev, V N; Marsh, B A; Mattolat, Ch; Menna, M; Österdahl, F K; Raeder, S; Stora, T; Wendta, K

    2009-01-01

    The selectivity of a hot cavity resonance ionization laser ion source (RILIS) is most often limited by contributions from competing surface ionization of the hot walls of the ionization cavity. In this article we present investigations on the properties of designated high temperature, low work function materials regarding their performance and suitability as cavity material for RILIS. Tungsten test cavities, impregnated with a mixture of barium oxide and strontium oxide (BaOSrO on W), or alternatively gadolinium hexaboride (GdB6) were studied in comparison to a standard tungsten RILIS cavity as being routinely used for hot cavity laser ionization at ISOLDE. Measurement campaigns took place at the off-line mass separators at ISOLDE/CERN, Geneva and RISIKO/University of Mainz.

  13. A high-resolution EPR-CT microscope using cavity-resonators equipped with small field gradient coils

    International Nuclear Information System (INIS)

    Miki, T.; Murata, T.; Kumai, H.; Yamashiro, A.

    1996-01-01

    Cylindrical cavity resonators equipped with field gradient coils were developed for two-dimensional EPR-CT microscope systems. The field gradient coils lie in four (or six) thin metal tubes placed along the direction of the microwave magnetic field in the cavity to minimize impact on the resonator's quality factor. Two pairs of the tubes carry a 100 kHz current for magnetic field modulation. This cavity has high spin-detection sensitivity and can provide EPR images with submillimeter resolution. In order to reconstruct better images from fewer projections, we used an algebraic reconstruction technique (ART) for the two-dimensional image reconstruction. The ART method may be suitable for not only spectral-spatial two-dimensional EPR imaging, but also spatio-temporal EPR imaging in dynamic spin systems. (author)

  14. Modeling and Simulation of a Resonant-Cavity-Enhanced InGaAs/GaAs Quantum Dot Photodetector

    Directory of Open Access Journals (Sweden)

    W. W. Wang

    2015-01-01

    Full Text Available We simulated and analyzed a resonant-cavity-enhancedd InGaAs/GaAs quantum dot n-i-n photodiode using Crosslight Apsys package. The resonant cavity has a distributed Bragg reflector (DBR at one side. Comparing with the conventional photodetectors, the resonant-cavity-enhanced photodiode (RCE-PD showed higher detection efficiency, faster response speed, and better wavelength selectivity and spatial orientation selectivity. Our simulation results also showed that when an AlAs layer is inserted into the device structure as a blocking layer, ultralow dark current can be achieved, with dark current densities 0.0034 A/cm at 0 V and 0.026 A/cm at a reverse bias of 2 V. We discussed the mechanism producing the photocurrent at various reverse bias. A high quantum efficiency of 87.9% was achieved at resonant wavelength of 1030 nm with a FWHM of about 3 nm. We also simulated InAs QD RCE-PD to compare with InGaAs QD. At last, the photocapacitance characteristic of the model has been discussed under different frequencies.

  15. Cavity QED experiments with a whispering-gallery-mode bottle resonator

    International Nuclear Information System (INIS)

    O'Shea, D.

    2013-01-01

    The interaction of a two-level atom with a single mode of the quantized electromagnetic field constitutes one of the most fundamental systems investigated in quantum optics. We have pursued such an investigation where rubidium atoms are strongly coupled to the modes of a whispering-gallery-mode (WGM) resonator that is itself interfaced with an optical fiber. In order to facilitate studies of this atom-light interaction, an experimental apparatus was constructed around a novel type of WGM resonator developed in our group. The spectral and spatial mode structure of this resonator yield an intriguing atom-light response arising principally from the existence of two frequency-degenerate modes. This thesis reports on high resolution experiments studying the transmission and reflection spectra of modes with a high quality factor (Q=10 7 -10 8 ) in our WGM resonator. Light is coupled into and out of WGMs by frustrated total internal reflection using an optical nanofiber. The atom-light interaction is facilitated by an atomic fountain that delivers a cloud of atoms to the location of the resonator. At random moments, single-atoms are clearly observed transiting the evanescent field of the resonator modes with a transit time of a few microseconds. A high-speed experimental control system was developed to firstly detect the coupling of individual atoms to the resonator and secondly to perform time-resolved spectroscopy on the strongly coupled atom-resonator system. Spectral measurements clearly resolve an atom-induced change in the resonant transmission of the coupled system (65% absolute change) that is much larger than predicted in the standard Jaynes-Cummings model (25% absolute change) and that has thus far not been observed. To gain further insight, we experimentally explored the properties of the interaction and performed supporting simulations. Spectroscopy was performed on the atom-resonator system using two nanofibers to in- and out-couple light for probing

  16. Misalignment sensitivity in an intra-cavity coherently combined crossed-Porro resonator configuration

    Science.gov (United States)

    Alperovich, Z.; Buchinsky, O.; Greenstein, S.; Ishaaya, A. A.

    2017-08-01

    We investigate the misalignment sensitivity in a crossed-Porro resonator configuration when coherently combining two pulsed multimode Nd:YAG laser channels. To the best of our knowledge, this is the first reported study of this configuration. The configuration is based on a passive intra-cavity interferometric combiner that promotes self-phase locking and coherent combining. Detailed misalignment sensitivity measurements are presented, examining both translation and angular deviations of the end prisms and combiner, and are compared to the results for standard flat end-mirror configurations. The results show that the most sensitive parameter in the crossed-Porro resonator configuration is the angular tuning of the intra-cavity interferometric combiner, which is ~±54 µrad. In comparison, with the flat end mirror configuration, the most sensitive parameter in the resonator is the angular tuning of the output coupler, which is ~±11 µrad. Thus, with the crossed-Porro configuration, we obtain significantly reduced sensitivity. This ability to reduce the misalignment sensitivity in coherently combined solid-state configurations may be beneficial in paving their way into practical use in a variety of demanding applications.

  17. Controlled release of cavity states into propagating modes induced via a single qubit

    Science.gov (United States)

    Pfaff, Wolfgang; Constantin, Marius; Reagor, Matthew; Axline, Christopher; Blumoff, Jacob; Chou, Kevin; Leghtas, Zaki; Touzard, Steven; Heeres, Reinier; Reinhold, Philip; Ofek, Nissim; Sliwa, Katrina; Frunzio, Luigi; Mirrahimi, Mazyar; Lehnert, Konrad; Jiang, Liang; Devoret, Michel; Schoelkopf, Robert

    Photonic states stored in long-lived cavities are a promising platform for scalable quantum computing and for the realization of quantum networks. An important aspect in such a cavity-based architecture will be the controlled conversion of stored photonic states into propagating ones. This will allow, for instance, quantum state transfer between remote cavities. We demonstrate the controlled release of quantum states from a microwave resonator with millisecond lifetime in a 3D circuit QED system. Dispersive coupling of the cavity to a transmon qubit allows us to enable a four-wave mixing process that transfers the stored state into a second resonator from which it can leave the system through a transmission line. This permits us to evacuate the cavity on time scales that are orders of magnitude faster than the intrinsic lifetime. This Q-switching process can in principle be fully coherent, making our system highly promising for quantum state transfer between nodes in a quantum network of high-Q cavities.

  18. Multilevel resonance analysis of sup 59 Co neutron transmission measurements

    Energy Technology Data Exchange (ETDEWEB)

    De Saussure, G.; Larson, N.M.; Harvey, J.A.; Hill, N.W. (Oak Ridge National Lab., TN (United States))

    1992-07-01

    Large discrepancies exist between the recent high-resolution neutron transmission data of {sup 59}Co measured at the Oak Ridge Electron Linear Accelerator (ORELA) and transmissions computed from the resolved resonance parameters of the nuclear data collection ENDF/B-VI. In order to provide new resonance parameters consistent with these data, the transmission measurements have been analyzed with the computer code SAMMY in the energy range 200 eV to 100 keV. The resonance parameters reported in this paper provide an accurate total cross section from 10{sup -5} eV to 100 keV and correctly reproduce the thermal capture cross section. Thermal cross-section values and related quantities are also reviewed here. (author).

  19. Investigation of Fano resonances induced by higher order plasmon modes on a circular nano-disk with an elongated cavity

    KAUST Repository

    Amin, Muhammad Ruhul

    2012-08-10

    In this paper, a planar metallic nanostructure design, which supports two distinct Fano resonances in its extinction cross-section spectrum under normally incident and linearly polarized electromagnetic field, is proposed. The proposed design involves a circular disk embedding an elongated cavity; shifting and rotating the cavity break the symmetry of the structure with respect to the incident field and induce higher order plasmon modes. As a result, Fano resonances are generated in the visible spectrum due to the destructive interference between the sub-radiant higher order modes and super-radiant the dipolar mode. The Fano resonances can be tuned by varying the cavity\\'s width and the rotation angle. An RLC circuit, which is mathematically equivalent to a mass-spring oscillator, is proposed to model the optical response of the nanostructure design.

  20. Resonant spin wave excitations in a magnonic crystal cavity

    Science.gov (United States)

    Kumar, N.; Prabhakar, A.

    2018-03-01

    Spin polarized electric current, injected into permalloy (Py) through a nano contact, exerts a torque on the magnetization. The spin waves (SWs) thus excited propagate radially outward. We propose an antidot magnonic crystal (MC) with a three-hole defect (L3) around the nano contact, designed so that the frequency of the excited SWs, lies in the band gap of the MC. L3 thus acts as a resonant SW cavity. The energy in this magnonic crystal cavity can be tapped by an adjacent MC waveguide (MCW). An analysis of the simulated micromagnetic power spectrum, at the output port of the MCW reveals stable SW oscillations. The quality factor of the device, calculated using the decay method, was estimated as Q > 105 for an injected spin current density of 7 ×1012 A/m2.

  1. Condensed matter view of giant resonance phenomena

    International Nuclear Information System (INIS)

    Zangwill, A.

    1987-01-01

    The intent of this article is to present a view of giant resonance phenomena (an essentially atomic phenomenon) from the perspective of a condensed matter physicist with an interest in the optical properties of matter. As we shall see, this amounts to a particular prejudice about how one should think about many-body effects in a system of interacting electrons. Some of these effects are special to condensed matter systems and will be dealt with in the second half of this paper. However, it turns out that the authors view of the main ingredient to a giant resonance differs significantly from that normally taken by scientists trained in the traditional methods of atomic physics. Therefore, in the first section the author will take advantage of the fact that his contribution to this volume was composed and delivered to the publishers somewhat after the conclusion of the School (rather than before as requested by the organizers) and try to clearly distinguish the differences of opinion presented by the lecturers from the unalterable experimental facts. 46 references, 9 figures

  2. Investigations of a voltage-biased microwave cavity for quantum measurements of nanomechanical resonators

    Science.gov (United States)

    Rouxinol, Francisco; Hao, Hugo; Lahaye, Matt

    2015-03-01

    Quantum electromechanical systems incorporating superconducting qubits have received extensive interest in recent years due to their promising prospects for studying fundamental topics of quantum mechanics such as quantum measurement, entanglement and decoherence in new macroscopic limits, also for their potential as elements in technological applications in quantum information network and weak force detector, to name a few. In this presentation we will discuss ours efforts toward to devise an electromechanical circuit to strongly couple a nanomechanical resonator to a superconductor qubit, where a high voltage dc-bias is required, to study quantum behavior of a mechanical resonator. Preliminary results of our latest generation of devices integrating a superconductor qubit into a high-Q voltage biased microwave cavities are presented. Developments in the circuit design to couple a mechanical resonator to a qubit in the high-Q voltage bias CPW cavity is discussed as well prospects of achieving single-phonon measurement resolution. National Science Foundation under Grant No. DMR-1056423 and Grant No. DMR-1312421.

  3. Transmission loss of double wall panels containing Helmholtz resonators

    Science.gov (United States)

    Prydz, R. A.; Kuntz, H. L.; Morrow, D. L.; Wirt, L. S.

    Data and an analysis are presented on the use of Helholtz resonators in double wall panels (i.e., aircraft sidewalls). Several wall materials and resonator configurations were tested, and the resonators were found to substantially increase the transmission loss of the double wall system at the tuning frequency.

  4. Coupled modes, frequencies and fields of a dielectric resonator and a cavity using coupled mode theory

    Science.gov (United States)

    Elnaggar, Sameh Y.; Tervo, Richard; Mattar, Saba M.

    2014-01-01

    Probes consisting of a dielectric resonator (DR) inserted in a cavity are important integral components of electron paramagnetic resonance (EPR) spectrometers because of their high signal-to-noise ratio. This article studies the behavior of this system, based on the coupling between its dielectric and cavity modes. Coupled-mode theory (CMT) is used to determine the frequencies and electromagnetic fields of this coupled system. General expressions for the frequencies and field distributions are derived for both the resulting symmetric and anti-symmetric modes. These expressions are applicable to a wide range of frequencies (from MHz to THz). The coupling of cavities and DRs of various sizes and their resonant frequencies are studied in detail. Since the DR is situated within the cavity then the coupling between them is strong. In some cases the coupling coefficient, κ, is found to be as high as 0.4 even though the frequency difference between the uncoupled modes is large. This is directly attributed to the strong overlap between the fields of the uncoupled DR and cavity modes. In most cases, this improves the signal to noise ratio of the spectrometer. When the DR and the cavity have the same frequency, the coupled electromagnetic fields are found to contain equal contributions from the fields of the two uncoupled modes. This situation is ideal for the excitation of the probe through an iris on the cavity wall. To verify and validate the results, finite element simulations are carried out. This is achieved by simulating the coupling between a cylindrical cavity's TE011 and the dielectric insert's TE01δ modes. Coupling between the modes of higher order is also investigated and discussed. Based on CMT, closed form expressions for the fields of the coupled system are proposed. These expressions are crucial in the analysis of the probe's performance.

  5. Study on the dependence of the resonance frequency of accelerators on the cavities internal diameter

    International Nuclear Information System (INIS)

    Serrao, V.A.; Franco, M.A.R.; Fuhrmann, C.

    1988-05-01

    The resonance frequencies of individual cavities and of a six cell disk-loaded prototype of an accelerating structure were measured as a function of cavity inner diameter. A linear relationship between the indidual cavity frequency and the six cell stack 2Π/3 mode frequency was obtained that will be very useful during the final tuning of the accelerating strutures of the IEAV linac. The dispersion diagrams were also obtained for various internal cavity diameters; these diagrams were utilized to estimate the group velocity and the RF filling time of the accelerating structure. (author) [pt

  6. Cavity quantum electrodynamics

    International Nuclear Information System (INIS)

    Walther, Herbert; Varcoe, Benjamin T H; Englert, Berthold-Georg; Becker, Thomas

    2006-01-01

    This paper reviews the work on cavity quantum electrodynamics of free atoms. In recent years, cavity experiments have also been conducted on a variety of solid-state systems resulting in many interesting applications, of which microlasers, photon bandgap structures and quantum dot structures in cavities are outstanding examples. Although these phenomena and systems are very interesting, discussion is limited here to free atoms and mostly single atoms because these systems exhibit clean quantum phenomena and are not disturbed by a variety of other effects. At the centre of our review is the work on the one-atom maser, but we also give a survey of the entire field, using free atoms in order to show the large variety of problems dealt with. The cavity interaction can be separated into two main regimes: the weak coupling in cavity or cavity-like structures with low quality factors Q and the strong coupling when high-Q cavities are involved. The weak coupling leads to modification of spontaneous transitions and level shifts, whereas the strong coupling enables one to observe a periodic exchange of photons between atoms and the radiation field. In this case, atoms and photons are entangled, this being the basis for a variety of phenomena observed, some of them leading to interesting applications in quantum information processing. The cavity experiments with free atoms reached a new domain with the advent of experiments in the visible spectral region. A review on recent achievements in this area is also given

  7. Study of a cylindrical cavity gyrotron, influence of power reflection and of the oscillation of a travelling mode

    International Nuclear Information System (INIS)

    Muggli, P.

    1991-11-01

    The quality factor and oscillating mode of a gyrotron cavity are essential parameters to consider when trying to obtain a high power (>500 kW), high efficiency (∼50%) microwave source, which oscillates in a stable manner in the principal mode of the cavity. The study and development of an 8 GHz gyrotron whose resonant cavity is formed by a cylindrical waveguide of slowly varying radius, is undertaken. The study is principally concerned with the phenomena associated with the low quality factor of the TE o 011 mode of the cavity. (author) figs., tabs., 102 refs

  8. Method for analysis of averages over transmission energy of resonance neutrons

    International Nuclear Information System (INIS)

    Komarov, A.V.; Luk'yanov, A.A.

    1981-01-01

    Experimental data on transmissions on iron specimens in different energy groups have been analyzed on the basis of an earlier developed theoretical model for the description of resonance neutron averages in transmission energy, as the functions of specimen thickness and mean resonance parameters. The parameter values obtained agree with the corresponding data evaluated in the theory of mean neutron cross sections. The method suggested for the transmission description permits to reproduce experimental results for any thicknesses of specimens [ru

  9. Active control of turbulent boundary layer-induced sound transmission through the cavity-backed double panels

    Science.gov (United States)

    Caiazzo, A.; Alujević, N.; Pluymers, B.; Desmet, W.

    2018-05-01

    This paper presents a theoretical study of active control of turbulent boundary layer (TBL) induced sound transmission through the cavity-backed double panels. The aerodynamic model used is based on the Corcos wall pressure distribution. The structural-acoustic model encompasses a source panel (skin panel), coupled through an acoustic cavity to the radiating panel (trim panel). The radiating panel is backed by a larger acoustic enclosure (the back cavity). A feedback control unit is located inside the acoustic cavity between the two panels. It consists of a control force actuator and a sensor mounted at the actuator footprint on the radiating panel. The control actuator can react off the source panel. It is driven by an amplified velocity signal measured by the sensor. A fully coupled analytical structural-acoustic model is developed to study the effects of the active control on the sound transmission into the back cavity. The stability and performance of the active control system are firstly studied on a reduced order model. In the reduced order model only two fundamental modes of the fully coupled system are assumed. Secondly, a full order model is considered with a number of modes large enough to yield accurate simulation results up to 1000 Hz. It is shown that convincing reductions of the TBL-induced vibrations of the radiating panel and the sound pressure inside the back cavity can be expected. The reductions are more pronounced for a certain class of systems, which is characterised by the fundamental natural frequency of the skin panel larger than the fundamental natural frequency of the trim panel.

  10. Ultra-wide-band accumulation of coherent undulator synchrotron radiation in a resonating cavity

    Directory of Open Access Journals (Sweden)

    Y. H. Seo

    2011-06-01

    Full Text Available Cavity accumulation of coherent undulator synchrotron radiation emitted by a train of periodic electron bunches is investigated. Phase-matching conditions for accumulation of radiation emitted by successive bunches are analyzed and numerically confirmed. While the coherent emission of a single bunch is optimal at grazing resonance, the accumulated radiation targeted at the upper resonant frequency of the waveguide mode is found to have much broader bandwidth and higher efficiency as the resonance steps away from the grazing condition. Numerical results confirm that stimulated superradiance is responsible for the accumulated radiation.

  11. Single atoms on demand for cavity QED experiments

    International Nuclear Information System (INIS)

    Dotsenko, I.

    2007-01-01

    Cavity quantum electrodynamics (cavity QED) describes electromagnetic fields in a confined space and the radiative properties of atoms in such fields. The simplest example of such system is a single atom interacting with one mode of a high-finesse resonator. Besides observation and exploration of fundamental quantum mechanical effects, this system bears a high potential for applications quantum information science such as, e.g., quantum logic gates, quantum communication and quantum teleportation. In this thesis I present an experiment on the deterministic coupling of a single neutral atom to the mode of a high-finesse optical resonator. In Chapter 1 I describe our basic techniques for trapping and observing single cesium atoms. As a source of single atoms we use a high-gradient magneto-optical trap, which captures the atoms from background gas in a vacuum chamber and cools them down to millikelvin temperatures. The atoms are then transferred without loss into a standing-wave dipole trap, which provides a conservative potential required for experiments on atomic coherence such as quantum information processing and metrology on trapped atoms. Moreover, shifting the standing-wave pattern allows us to deterministically transport the atoms (Chapter 2). In combination with nondestructive fluorescence imaging of individual trapped atoms, this enables us to control their position with submicrometer precision over several millimeters along the dipole trap. The cavity QED system can distinctly display quantum behaviour in the so-called strong coupling regime, i.e., when the coherent atom-cavity coupling rate dominates dissipation in the system. This sets the main requirements on the resonator's properties: small mode volume and high finesse. Chapter 3 is devoted to the manufacturing, assembling, and testing of an ultra-high finesse optical Fabry-Perot resonator, stabilized to the atomic transition. In Chapter 4 I present the transportation of single atoms into the cavity

  12. Single atoms on demand for cavity QED experiments

    Energy Technology Data Exchange (ETDEWEB)

    Dotsenko, I.

    2007-09-06

    Cavity quantum electrodynamics (cavity QED) describes electromagnetic fields in a confined space and the radiative properties of atoms in such fields. The simplest example of such system is a single atom interacting with one mode of a high-finesse resonator. Besides observation and exploration of fundamental quantum mechanical effects, this system bears a high potential for applications quantum information science such as, e.g., quantum logic gates, quantum communication and quantum teleportation. In this thesis I present an experiment on the deterministic coupling of a single neutral atom to the mode of a high-finesse optical resonator. In Chapter 1 I describe our basic techniques for trapping and observing single cesium atoms. As a source of single atoms we use a high-gradient magneto-optical trap, which captures the atoms from background gas in a vacuum chamber and cools them down to millikelvin temperatures. The atoms are then transferred without loss into a standing-wave dipole trap, which provides a conservative potential required for experiments on atomic coherence such as quantum information processing and metrology on trapped atoms. Moreover, shifting the standing-wave pattern allows us to deterministically transport the atoms (Chapter 2). In combination with nondestructive fluorescence imaging of individual trapped atoms, this enables us to control their position with submicrometer precision over several millimeters along the dipole trap. The cavity QED system can distinctly display quantum behaviour in the so-called strong coupling regime, i.e., when the coherent atom-cavity coupling rate dominates dissipation in the system. This sets the main requirements on the resonator's properties: small mode volume and high finesse. Chapter 3 is devoted to the manufacturing, assembling, and testing of an ultra-high finesse optical Fabry-Perot resonator, stabilized to the atomic transition. In Chapter 4 I present the transportation of single atoms into the

  13. Tunable Resonant-Cavity-Enhanced Photodetector with Double High-Index-Contrast Grating Mirrors

    DEFF Research Database (Denmark)

    Learkthanakhachon, Supannee; Yvind, Kresten; Chung, Il-Sug

    2013-01-01

    In this paper, we propose a broadband-tunable resonant-cavity-enhanced photodetector (RCE-PD) structure with double high-index-contrast grating (HCG) mirrors and numerically investigate its characteristics. The detector is designed to operate at 1550-nm wavelength. The detector structure consists....... Furthermore, the fact that it can be fabricated on a silicon platform offers us a possibility of integration with electronics.......In this paper, we propose a broadband-tunable resonant-cavity-enhanced photodetector (RCE-PD) structure with double high-index-contrast grating (HCG) mirrors and numerically investigate its characteristics. The detector is designed to operate at 1550-nm wavelength. The detector structure consists...... of a top InP HCG mirror, a p-i-n photodiode embedding multiple quantum wells, and a Si HCG mirror formed in the Si layer of a silicon-on-insulator wafer. The detection wavelength can be changed by moving the top InP HCG mirror suspended in the air. High reflectivity and small penetration length of HCGs...

  14. Bistable laser device with multiple coupled active vertical-cavity resonators

    Science.gov (United States)

    Fischer, Arthur J.; Choquette, Kent D.; Chow, Weng W.

    2003-08-19

    A new class of bistable coupled-resonator vertical-cavity semiconductor laser devices has been developed. These bistable laser devices can be switched, either electrically or optically, between lasing and non-lasing states. A switching signal with a power of a fraction of a milliwatt can change the laser output of such a device by a factor of a hundred, thereby enabling a range of optical switching and data encoding applications.

  15. Compact 400-Mhz Half-Wave Spoke Resonator Crab Cavity for the LHC Update

    International Nuclear Information System (INIS)

    Li, Zenghai

    2010-01-01

    Crab cavities are proposed for the LHC upgrade to improve the luminosity. There are two possible crab cavity installations for the LHC upgrade: the global scheme at Interaction Region (IR) 4 where the beam-beam separation is about 420-mm, and the local scheme at the IR5 where the beam-beam separation is only 194-mm. One of the design requirements as the result of a recent LHC-Crab cavity workshop is to develop a 400-MHz cavity design that can be utilized for either the global or local schemes at IR4 or IR5. Such a design would offer more flexibility for the final upgrade installation, as the final crabbing scheme is yet to be determined, and save R and D cost. The cavity size of such a design, however, is limited by the beam-beam separation at IR5 which can only accommodate a cavity with a horizontal size of about 145-mm, which is a design challenge for a 400-MHz cavity. To meet the new design requirements, we have developed a compact 400-MHz half-wave spoke resonator (HWSR) crab cavity that can fit into the tight spaces available at either IR4 or IR5. In this paper, we present the optimization of the HWSR cavity shape and the design of HOM, LOM, and SOM couplers for wakefield damping.

  16. Noise Reduction in Double‿Panel Structures by Cavity and Panel Resonance Control

    NARCIS (Netherlands)

    Ho, J.; Berkhoff, Arthur P.

    2011-01-01

    This paper presents an investigation of the cavity and the panel resonance control in a double‿panel structure. The double‿panel structure, which consists of two panels with air in the gap, is widely adopted in many applications such as aerospace due to its light weight and effective

  17. Noise reduction in double-panel structures by cavity and panel resonance control

    NARCIS (Netherlands)

    Ho, J.-H.; Berkhoff, A.P

    2011-01-01

    This paper presents an investigation of the cavity and the panel resonance control in a double‐panel structure. The double‐panel structure, which consists of two panels with air in the gap, is widely adopted in many applications such as aerospace due to its light weight and effective

  18. Design of a Novel Polarized Beam Splitter Based on a Two-Dimensional Photonic Crystal Resonator Cavity

    International Nuclear Information System (INIS)

    Zhang Xuan; Chen Shu-Wen; Liao Qing-Hua; Yu Tian-Bao; Liu Nian-Hua; Huang Yong-Zhen

    2011-01-01

    We propose and analyze a novel ultra-compact polarization beam splitter based on a resonator cavity in a two-dimensional photonic crystal. The two polarizations can be separated efficiently by the strong coupling between the microcavities and the waveguides occurring around the resonant frequency of the cavities. The transmittance of two polarized light around 1.55 μm can be more than 98.6%, and the size of the device is less than 15 μm×13 μm, so these features will play an important role in future integrated optical circuits. (fundamental areas of phenomenology(including applications))

  19. Effect of magnetization boundary condition on cavity magnon polariton of YIG thin film

    Science.gov (United States)

    Jiang, H. H.; Xiao, Y.; Hu, C. M.; Guo, H.; Xia, K.

    2018-06-01

    Motivated by recent studies of cavity magnon polariton (CMP), we extended a previous theoretical work to generalize microwave transmission calculation with various magnetization boundary condition of YIG thin film embedded in cavity. It is found that numerical implementation given in this paper can be easily applied to other magnetization boundary condition and extended to magnetic multilayers. Numerical results show that ferromagnetic resonance mode of microwave transmission spectrum, which is absent in previous calculation, can be recovered by altering the pinning condition of surface spins. The demonstrated reliability of our theory opens attractive perspectives for studying CMP of thin film with complicated surface magnetization distribution and magnetic multilayers.

  20. Investigation of various cavity configurations for metamaterial-enhanced field-localizing wireless power transfer

    Science.gov (United States)

    Bui, Huu Nguyen; Pham, Thanh Son; Ngo, Viet; Lee, Jong-Wook

    2017-09-01

    Controlling power to an unintended area is an important issue for enabling wireless power transfer (WPT) systems. The control allows us to enhance efficiency as well as suppress unnecessary flux leakage. The flux leakage from WPT can be reduced effectively via selective field localization. To realize field localization, we propose the use of cavities formed on a single metamaterial slab that acts as a defected metasurface. The cavity is formed by strong field confinement using a hybridization bandgap (HBG), which is created by wave interaction with a two-dimensional array of local resonators on the metasurface. This approach using an HBG demonstrates strong field localization around the cavity regions. Motivated by this result, we further investigate various cavity configurations for different sizes of the transmitter (Tx) and receiver (Rx) resonators. Experiments show that the area of field localization increases with the number of cavities, confirming the successful control of different cavity configurations on the metasurface. Transmission measurements of different cavities show that the number of cavities is an important parameter for efficiency, and excess cavities do not enhance the efficiency but increase unnecessary power leakage. Thus, there exists an optimum number of cavities for a given size ratio between the Tx and Rx resonators. For a 6:1 size ratio, this approach achieves efficiency improvements of 3.69× and 1.59× compared to free space and a uniform metasurface, respectively. For 10:1 and 10:2 size ratios, the efficiency improvements are 3.26× and 1.98× compared to free space and a uniform metasurface, respectively.

  1. Performance test of a vertically-directed electric-field cavity resonator made for the rapid gelation apparatus with microwave heating

    International Nuclear Information System (INIS)

    Yamagishi, Shigeru; Ogawa, Toru; Hasegawa, Atsushi.

    1996-06-01

    A cavity resonator with vertically-directed electric field was produced and attached to 'the rapid gelation apparatus with microwave heating' previously reported. Using the rapid gelation apparatus, drops of a simulated solution and of U-containing solutions for internal gelation were heated. The results indicated that the heating required for gelation of the U-containing solutions was possible. However, the electric field strength in the cavity resonator at that time was comparable to that causing the discharge due to the gaseous ammonia released from the heated drops. As a result, gel microspheres were not obtained in a stable state. The discussion suggests that the stable gelation would be realized by improving the cavity resonator shape and/or by modifying the power supply accompanied with using a power stabilizer. (author)

  2. Modeling of mode-locked coupled-resonator optical waveguide lasers

    DEFF Research Database (Denmark)

    Agger, Christian; Skovgård, Troels Suhr; Gregersen, Niels

    2010-01-01

    Coupled-resonator optical waveguides made from coupled high-Q photonic crystal nanocavities are investigated for use as cavities in mode-locked lasers. Such devices show great potential in slowing down light and can serve to reduce the cavity length of a mode-locked laser. An explicit expression...... of the emerging pulse train. A range of tuning around this frequency allows for effective mode locking. Finally, noise is added to the generalized single-cavity eigenfrequencies in order to evaluate the effects of fabrication imperfections on the cold-cavity transmission properties and consequently on the locking...

  3. Resonant cavity operation of a virtual cathode oscillator

    International Nuclear Information System (INIS)

    Fazio, M.V.; Hoeberling, R.F.

    1986-01-01

    Gigawatt level virtual cathode sources have been proposed for several applications. These include microwave weapons and drivers for high-energy particle accelerators. Both of these require a microwave source with very high power output that is controllable in frequency and phase. A conventional virtual cathode oscillator will not meet these requirements. The addition of a resonant cavity surrounding the oscillating virtual cathode either alone or pumped with a low-power injection signal, causing it to operate as an amplifier, could greatly influence the performance of this type of source making it more practical for accelerator and weapon applications. The progress on an experiment to test these concepts will be discussed

  4. Comparisons between various cavity and panel noise reduction control in double-panel structures

    NARCIS (Netherlands)

    Ho, J.H.; Kalverboer, J.; Berkhoff, A.P.

    2012-01-01

    This paper presents comparisons between various panel and cavity resonance control methods to reduce the transmitted sound in a double-panel structure. The double-panel, which consists of two panels with air in the gap, has the advantages of low weight and effective transmission-loss at high

  5. Higher order mode damping in Kaon factory RF cavities

    International Nuclear Information System (INIS)

    Enegren, T.; Poirier, R.; Griffin, J.; Walling, L.; Thiessen, H.A.; Smythe, W.R.

    1989-05-01

    Proposed designs for Kaon factory accelerators require that the rf cavities support beam currents on the order of several amperes. The beam current has Fourier components at all multiples of the rf frequency. Empty rf buckets produce additional components at all multiples of the revolution frequency. If a Fourier component of the beam coincides with the resonant frequency of a higher order mode of the cavity, which is inevitable if the cavity has a large frequency swing, significant excitation of this mode can occur. The induced voltage may then excite coupled bunch mode instabilities. Effective means are required to damp higher order modes without significantly affecting the fundamental mode. A mode damping scheme based on coupled transmission lines has been investigated and is report

  6. Ultrasonic transducers with resonant cavities as emitters for air-borne applications

    Directory of Open Access Journals (Sweden)

    Montero De Espinosa Freijo, F.

    2009-08-01

    Full Text Available In this work a new proposal to improve the emission efficiency of air-borne ultrasonic transducers is introduced. A theoretical ultrasonic transducer design is studied using a piezoelectric membrane and a Helmholtz resonator with two acoustic ports. The resonator provides radiation in the acoustic ports in phase with that of the membrane. Several finite element simulations and experimental results are used to study the device. The finite element models were used to compare its behaviour with that of conventional vacuum-cavity transducers. These results show an improvement in the bandwidth reaching a quality factor value of 19. Furthermore, the experimental measurements were used to study the effects of the resonant cavity in the response. Several measurements for different cavity depths were performed. The results show an improvement of 25 dB in the emitted pressure through tuning the transducer.

    En este trabajo se presenta una nueva propuesta para mejorar la eficiencia de transductores ultrasónicos acoplados a aire. Para este estudio se ha empleado un diseño teórico de transductor ultrasónico que utiliza una membrana piezoeléctrica y un resonador de Helmholtz con dos puertos acústicos. El resonador hace que la radiación en los puertos acústicos se encuentre en fase con la producida por la membrana. Para estudiar el dispositivo se utilizaron resultados obtenidos mediante programas de elementos finitos y resultados experimentales. Por un lado, los modelos de elementos finitos se utilizaron para comparar el comportamiento del dispositivo con el de transductores convencionales con cavidades al vacío. Estos resultados indican una mejora en el ancho de banda alcanzando valores de factor de calidad de 19. Por otro lado, los resultados experimentales se emplearon para identificar los efectos de la cavidad resonante en el funcionamiento del dispositivo. Para ello se realizaron varias medidas utilizando ciertas profundidades de cavidad

  7. Effective length of short Fabry-Perot cavity formed by uniform fiber Bragg gratings.

    Science.gov (United States)

    Barmenkov, Yuri O; Zalvidea, Dobryna; Torres-Peiró, Salvador; Cruz, Jose L; Andrés, Miguel V

    2006-07-10

    In this paper, we describe the properties of Fabry-Perot fiber cavity formed by two fiber Bragg gratings in terms of the grating effective length. We show that the grating effective length is determined by the group delay of the grating, which depends on its diffraction efficiency and physical length. We present a simple analytical formula for calculation of the effective length of the uniform fiber Bragg grating and the frequency separation between consecutive resonances of a Fabry-Perot cavity. Experimental results on the cavity transmission spectra for different values of the gratings' reflectivity support the presented theory.

  8. Strong reflection and periodic resonant transmission of helical edge states in topological-insulator stub-like resonators

    International Nuclear Information System (INIS)

    Takagaki, Y.

    2015-01-01

    The helical edge states of two-dimensional topological insulators (TIs) experience appreciable quantum mechanical scattering in narrow channels when the width changes abruptly. The interference of the geometry scattering in narrow-wide-narrow waveguide structures is shown to give rise to the strong suppression of transmission when the incident energy is barely above the propagation threshold. Periodic resonant transmission takes place in this high reflection regime while the length of the wide section is varied. The resonance condition is governed by the transverse confinement in the wide section, where the form of quantization is manifested to differ for the two orthogonal directions. The confined energy levels in TI quantum dots are derived based on this observation. In addition, the off-diagonal spin-orbit term is found to produce an anomalous resonance state, which merges with the bottom ordinary resonance state to annihilate

  9. Sensitive detection of individual neutral atoms in a strong coupling cavity QED system

    International Nuclear Information System (INIS)

    Zhang Pengfei; Zhang Yuchi; Li Gang; Du Jinjin; Zhang Yanfeng; Guo Yanqiang; Wang Junmin; Zhang Tiancai; Li Weidong

    2011-01-01

    We experimentally demonstrate real-time detection of individual cesium atoms by using a high-finesse optical micro-cavity in a strong coupling regime. A cloud of cesium atoms is trapped in a magneto-optical trap positioned at 5 mm above the micro-cavity center. The atoms fall down freely in gravitation after shutting off the magneto-optical trap and pass through the cavity. The cavity transmission is strongly affected by the atoms in the cavity, which enables the micro-cavity to sense the atoms individually. We detect the single atom transits either in the resonance or various detunings. The single atom vacuum-Rabi splitting is directly measured to be Ω = 2π × 23.9 MHz. The average duration of atom-cavity coupling of about 110 μs is obtained according to the probability distribution of the atom transits. (authors)

  10. Analysis of transmission lines loaded with pairs of coupled resonant elements and application to sensors

    International Nuclear Information System (INIS)

    Naqui, J.; Su, L.; Mata, J.; Martín, F.

    2015-01-01

    This paper is focused on the analysis of transmission lines loaded with pairs of magnetically coupled resonators. We have considered two different structures: (i) a microstrip line loaded with pairs of stepped impedance resonators (SIRs), and (ii) a coplanar waveguide (CPW) transmission line loaded with pairs of split ring resonators (SRRs). In both cases, the line exhibits a single resonance frequency (transmission zero) if the resonators are identical (symmetric structure with regard to the line axis), and this resonance is different to the one of the line loaded with a single resonator due to inter-resonator coupling. If the structures are asymmetric, inter-resonator coupling enhances the distance between the two split resonance frequencies that arise. In spite that the considered lines and loading resonators are very different and are described by different lumped element equivalent circuit models, the phenomenology associated to the effects of coupling is exactly the same, and the resonance frequencies are given by identical expressions. The reported lumped element circuit models of both structures are validated by comparing the circuit simulations with extracted parameters with both electromagnetic simulations and experimental data. These structures can be useful for the implementation of microwave sensors based on symmetry properties. - Highlights: • Magnetic-coupling between resonant elements affects transmission properties. • Inter-resonant coupling enhances the distance of two resonant frequencies. • The structures are useful for sensors and comparators, etc

  11. Extraordinary optical transmission with tapered slits: effect of higher diffraction and slit resonance orders

    DEFF Research Database (Denmark)

    Sondergaard, T.; Bozhevolnyi, S. I.; Beermann, J.

    2012-01-01

    Transmission through thin metal films with a periodic arrangement of tapered slits is considered. Transmission maps covering a wide range of periods, film thicknesses, and taper angles are presented. The maps show resonant transmission when fundamental and higher-order slit resonances are excited...... to be in the range of 6 degrees-10 degrees. Both theory and experiments show split-peak spectra and shifted-peak spectra due to interference between a slit resonance and Rayleigh-Wood anomalies. (C) 2011 Optical Society of America...

  12. Cavity-enhanced spectroscopies

    CERN Document Server

    van Zee, Roger

    2003-01-01

    ""Cavity-Enhanced Spectroscopy"" discusses the use of optical resonators and lasers to make sensitive spectroscopic measurements. This volume is written by the researcchers who pioneered these methods. The book reviews both the theory and practice behind these spectroscopic tools and discusses the scientific discoveries uncovered by these techniques. It begins with a chapter on the use of optical resonators for frequency stabilization of lasers, which is followed by in-depth chapters discussing cavity ring-down spectroscopy, frequency-modulated, cavity-enhanced spectroscopy, intracavity spectr

  13. Manipulating the wavelength-drift of a Tm laser for resonance enhancement in an intra-cavity pumped Ho laser.

    Science.gov (United States)

    Huang, Haizhou; Huang, Jianhong; Liu, Huagang; Li, Jinhui; Lin, Zixiong; Ge, Yan; Dai, Shutao; Deng, Jing; Lin, Wenxiong

    2018-03-05

    We demonstrate an enhancement mechanism and thermal model for intra-cavity pumped lasers, where resonance enhancement in intra-cavity pumped Ho laser was achieved by manipulating the wavelength-drift nature of the Tm laser for the first time. Optical conversion efficiency of 37.5% from an absorbed 785 nm diode laser to a Ho laser was obtained with a maximum output power of 7.51 W at 2122 nm, which is comparable to the conversion efficiency in 1.9 μm LD pumped Ho lasers. Meanwhile, more severe thermal effects in the Ho-doped gain medium than the Tm-doped one at high power operation were verified based on the built thermal model. This work benefits the design or evaluation of intra-cavity pumped lasers, and the resonance enhancement originated from the difference in reabsorption loss between stark levels at the lasing manifolds of quasi-three-level rare-earth ions has great interest to improve the existing intra-cavity pumped lasers or explore novel lasers.

  14. Strong Coupling Cavity QED with Gate-Defined Double Quantum Dots Enabled by a High Impedance Resonator

    Directory of Open Access Journals (Sweden)

    A. Stockklauser

    2017-03-01

    Full Text Available The strong coupling limit of cavity quantum electrodynamics (QED implies the capability of a matterlike quantum system to coherently transform an individual excitation into a single photon within a resonant structure. This not only enables essential processes required for quantum information processing but also allows for fundamental studies of matter-light interaction. In this work, we demonstrate strong coupling between the charge degree of freedom in a gate-defined GaAs double quantum dot (DQD and a frequency-tunable high impedance resonator realized using an array of superconducting quantum interference devices. In the resonant regime, we resolve the vacuum Rabi mode splitting of size 2g/2π=238  MHz at a resonator linewidth κ/2π=12  MHz and a DQD charge qubit decoherence rate of γ_{2}/2π=40  MHz extracted independently from microwave spectroscopy in the dispersive regime. Our measurements indicate a viable path towards using circuit-based cavity QED for quantum information processing in semiconductor nanostructures.

  15. A resonance shift prediction based on the Boltzmann-Ehrenfest principle for cylindrical cavities with a rigid sphere.

    Science.gov (United States)

    Santillan, Arturo O; Cutanda-Henríquez, Vicente

    2008-11-01

    An investigation on the resonance frequency shift for a plane-wave mode in a cylindrical cavity produced by a rigid sphere is reported in this paper. This change of the resonance frequency has been previously considered as a cause of oscillational instabilities in single-mode acoustic levitation devices. It is shown that the use of the Boltzmann-Ehrenfest principle of adiabatic invariance allows the derivation of an expression for the resonance frequency shift in a simpler and more direct way than a method based on a Green's function reported in literature. The position of the sphere can be any point along the axis of the cavity. Obtained predictions of the resonance frequency shift with the deduced equation agree quite well with numerical simulations based on the boundary element method. The results are also confirmed by experiments. The equation derived from the Boltzmann-Ehrenfest principle appears to be more general, and for large spheres, it gives a better approximation than the equation previously reported.

  16. Neutron Capture and Transmission Measurements and Resonance Parameter Analysis of Niobium

    International Nuclear Information System (INIS)

    NJ Drindak; JA Burke; G Leinweber; JA Helm; JG Hoole; RC Block; Y Danon; RE Slovacek; BE Moretti; CJ Werner; ME Overberg; SA Kolda; MJ Trbovich; DP Barry

    2005-01-01

    Epithermal neutron capture and transmission measurements were performed using the time-of-flight method at the RPI linac using metallic Nb samples. The capture measurements were made at the 25-meter flight station with a 16-section sodium iodide multiplicity detector and the transmission measurements at the 25-meter flight station with a Li-6 glass scintillation detector. Resonance parameters were determined for all resonances up to 500eV with a combined analysis of capture and transmission data using the multi-level R-matrix Bayesian code SAMMY. The present results are compared to those presented in ENDF/B-VI, updated through Release 3

  17. Heralded quantum controlled-phase gates with dissipative dynamics in macroscopically distant resonators

    Science.gov (United States)

    Qin, Wei; Wang, Xin; Miranowicz, Adam; Zhong, Zhirong; Nori, Franco

    2017-07-01

    Heralded near-deterministic multiqubit controlled-phase gates with integrated error detection have recently been proposed by Borregaard et al. [Phys. Rev. Lett. 114, 110502 (2015), 10.1103/PhysRevLett.114.110502]. This protocol is based on a single four-level atom (a heralding quartit) and N three-level atoms (operational qutrits) coupled to a single-resonator mode acting as a cavity bus. Here we generalize this method for two distant resonators without the cavity bus between the heralding and operational atoms. Specifically, we analyze the two-qubit controlled-Z gate and its multiqubit-controlled generalization (i.e., a Toffoli-like gate) acting on the two-lowest levels of N qutrits inside one resonator, with their successful actions being heralded by an auxiliary microwave-driven quartit inside the other resonator. Moreover, we propose a circuit-quantum-electrodynamics realization of the protocol with flux and phase qudits in linearly coupled transmission-line resonators with dissipation. These methods offer a quadratic fidelity improvement compared to cavity-assisted deterministic gates.

  18. Resonant cavity light-emitting diodes based on dielectric passive cavity structures

    Science.gov (United States)

    Ledentsov, N.; Shchukin, V. A.; Kropp, J.-R.; Zschiedrich, L.; Schmidt, F.; Ledentsov, N. N.

    2017-02-01

    A novel design for high brightness planar technology light-emitting diodes (LEDs) and LED on-wafer arrays on absorbing substrates is proposed. The design integrates features of passive dielectric cavity deposited on top of an oxide- semiconductor distributed Bragg reflector (DBR), the p-n junction with a light emitting region is introduced into the top semiconductor λ/4 DBR period. A multilayer dielectric structure containing a cavity layer and dielectric DBRs is further processed by etching into a micrometer-scale pattern. An oxide-confined aperture is further amended for current and light confinement. We study the impact of the placement of the active region into the maximum or minimum of the optical field intensity and study an impact of the active region positioning on light extraction efficiency. We also study an etching profile composed of symmetric rings in the etched passive cavity over the light emitting area. The bottom semiconductor is an AlGaAs-AlAs multilayer DBR selectively oxidized with the conversion of the AlAs layers into AlOx to increase the stopband width preventing the light from entering the semiconductor substrate. The approach allows to achieve very high light extraction efficiency in a narrow vertical angle keeping the reasonable thermal and current conductivity properties. As an example, a micro-LED structure has been modeled with AlGaAs-AlAs or AlGaAs-AlOx DBRs and an active region based on InGaAlP quantum well(s) emitting in the orange spectral range at 610 nm. A passive dielectric SiO2 cavity is confined by dielectric Ta2O5/SiO2 and AlGaAs-AlOx DBRs. Cylindrically-symmetric structures with multiple ring patterns are modeled. It is demonstrated that the extraction coefficient of light to the air can be increased from 1.3% up to above 90% in a narrow vertical angle (full width at half maximum (FWHM) below 20°). For very small oxide-confined apertures 100nm the narrowing of the FWHM for light extraction can be reduced down to 5

  19. Transmission loss of orthogonally rib-stiffened double-panel structures with cavity absorption.

    Science.gov (United States)

    Xin, F X; Lu, T J

    2011-04-01

    The transmission loss of sound through infinite orthogonally rib-stiffened double-panel structures having cavity-filling fibrous sound absorptive materials is theoretically investigated. The propagation of sound across the fibrous material is characterized using an equivalent fluid model, and the motions of the rib-stiffeners are described by including all possible vibrations, i.e., flexural displacements, bending, and torsional rotations. The effects of fluid-structure coupling are account for by enforcing velocity continuity conditions at fluid-panel interfaces. By taking full advantage of the periodic nature of the double-panel, the space-harmonic approach and virtual work principle are applied to solve the sets of resultant governing equations, which are eventually truncated as a finite system of simultaneous algebraic equations and numerically solved insofar as the solution converges. To validate the proposed model, a comparison between the present model predictions and existing numerical and experimental results for a simplified version of the double-panel structure is carried out, with overall agreement achieved. The model is subsequently employed to explore the influence of the fluid-structure coupling between fluid in the cavity and the two panels on sound transmission across the orthogonally rib-stiffened double-panel structure. Obtained results demonstrate that this fluid-structure coupling affects significantly sound transmission loss (STL) at low frequencies and cannot be ignored when the rib-stiffeners are sparsely distributed. As a highlight of this research, an integrated optimal algorithm toward lightweight, high-stiffness and superior sound insulation capability is proposed, based on which a preliminary optimal design of the double-panel structure is performed.

  20. Fabrication, measurement and tuning of a photonic crystal H1-cavity in deeply etched InP/InGaAsP/InP

    NARCIS (Netherlands)

    Kicken, H.H.J.E.; Barbu, I.; Gabriels, J.; Heijden, van der R.W.; Nötzel, R.; Karouta, F.; Salemink, H.W.M.; Drift, van der E.W.J.M.

    2008-01-01

    A point defect cavity (H1) was fabricated by deep etching in the InP/InGaAsP/InP system. The optical properties of the devices were experimentally investigated by transmission spectroscopy yielding a Q-factor of ~65. The resonance frequency of the defect cavity was shifted, by infiltrating the

  1. Activities on superconductivity cavities at the IPN Orsay, in collaboration with: LAL-CNRS/IN2P3, Orsay; CEA-DAPNIA/SEA, Gif-sur-Yvette; DESY, Hamburg

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    Different topics concerning superconducting cavity resonators are overviewed. Field emission phenomena and surface effects are discussed in detail. Thermometers, cryostats and radiation mapping instruments are also concerned. 6 items are indexed separately for INIS database. (K.A.).

  2. Activities on superconductivity cavities at the IPN Orsay, in collaboration with: LAL-CNRS/IN2P3, Orsay; CEA-DAPNIA/SEA, Gif-sur-Yvette; DESY, Hamburg

    International Nuclear Information System (INIS)

    1995-01-01

    Different topics concerning superconducting cavity resonators are overviewed. Field emission phenomena and surface effects are discussed in detail. Thermometers, cryostats and radiation mapping instruments are also concerned. 6 items are indexed separately for INIS database. (K.A.)

  3. Measurement of the magnetic material properties for ferrite-loaded cavities

    Directory of Open Access Journals (Sweden)

    Klaus Klopfer

    2015-01-01

    Full Text Available Measurements of the magnetic characteristics of the Ferroxcube 8C12m ferrite material in the parameter range where the GSI heavy-ion synchrotron SIS 18 cavity resonator is operated are presented. At first, the permeability is determined as a function of frequency and bias magnetic field strength for low radio-frequency power levels. For this purpose, both reflection and transmission measurements are carried out in a test setup with two toroids. The values for the real and imaginary part obtained from the data analysis of both approaches are fully in agreement with each other, albeit the range of application of the latter setup is limited to moderate frequencies due to parasitic resonances. An empirical analytical expression is formulated which approximates the complex permeability reasonably well in the whole investigated bias and frequency range. Moreover, the B-H curve is recorded for a reduced bias current range of the cavity. The gained material characteristics are well suited for numerical eigenmode simulations for the GSI SIS 18 cavity.

  4. An asymmetric resonant coupling wireless power transmission link for Micro-Ball Endoscopy.

    Science.gov (United States)

    Sun, Tianjia; Xie, Xiang; Li, Guolin; Gu, Yingke; Deng, Yangdong; Wang, Ziqiang; Wang, Zhihua

    2010-01-01

    This paper investigates the design and optimization of a wireless power transmission link targeting Micro-Ball Endoscopy applications. A novel asymmetric resonant coupling structure is proposed to deliver power to an endoscopic Micro-Ball system for image read-out after it is excreted. Such a technology enables many key medical applications with stringent requirements for small system volume and high power delivery efficiency. A prototyping power transmission sub-system of the Micro-Ball system was implemented. It consists of primary coil, middle resonant coil, and cube-like full-direction secondary receiving coils. Our experimental results proved that 200mW of power can be successfully delivered. Such a wireless power transmission capability could satisfy the requirements of the Micro-Ball based endoscopy application. The transmission efficiency is in the range of 41% (worst working condition) to 53% (best working condition). Comparing to conventional structures, Asymmetric Resonant Coupling Structure improves power efficiency by 13%.

  5. Transmission gaps, trapped modes and Fano resonances in Aharonov-Bohm connected mesoscopic loops

    Science.gov (United States)

    Mrabti, T.; Labdouti, Z.; El Abouti, O.; El Boudouti, E. H.; Fethi, F.; Djafari-Rouhani, B.

    2018-03-01

    A simple mesoscopic structure consisting of a double symmetric loops coupled by a segment of length d0 in the presence of an Aharonov-Bohm flux is designed to obtain transmission band gaps and Fano resonances. A general analytical expression for the transmission coefficient and the density of states (DOS) are obtained for various systems of this kind within the framework of the Green's function method in the presence of the magnetic flux. In this work, the amplitude of the transmission and DOS are discussed as a function of the wave vector. We show that the transmission spectrum of the whole structure may exhibit a band gap and a resonance of Fano type without introducing any impurity in one arm of the loop. In particular, we show that for specific values of the magnetic flux and the lengths of the arms constituting the loops, the Fano resonance collapses giving rise to the so-called trapped states or bound in continuum (BIC) states. These states appear when the width of the Fano resonance vanishes in the transmission coefficient as well as in the density of states. Also, we show that the shape of the Fano resonances and the width of the band gaps are very sensitive to the value of the magnetic flux and the geometry of the structure. These results may have important applications for electronic transport in mesoscopic systems.

  6. Hafnium Resonance Parameter Analysis Using Neutron Capture and Transmission Experiments

    International Nuclear Information System (INIS)

    MJ Trbovich; DP Barry; RE Slovacck; Y Danon; RC Block; JA Burke; NJ Drindak; G Leinweber; RV Ballad

    2004-01-01

    The focus of this work is to determine resonance parameters for stable hafnium isotopes in the 0.005-200 eV region, with special emphasis on the overlapping 176 Hf and 178 Hf resonances near 8 eV. The large neutron cross section of hafnium, combined with its corrosion resistance and excellent mechanical properties, make it a useful material for controlling nuclear reactions. Experiments measuring neutron capture and transmission were performed at the Rensselaer Polytechnic Institute (RPI) electron linear accelerator (LINAC) using the time of flight method. 6 Li glass scintillation detectors were used for transmission experiments at flight path lengths of 15 and 25 m. Capture experiments were done using a sixteen section NaI(Tl) multiplicity detector at a flight path length of 25 m. These experiments utilized various thicknesses of metallic and isotopically-enriched liquid samples. The liquid samples were designed to provide information on the 176 Hf and 178 Hf contributions to the 8 eV doublet without saturation. Data analysis was done using the R-matrix Bayesian code SAMMY version M6 beta. SAMMY is able to account for experimental resolution effects for each of the experimental setups at the RPI LINAC, and also can correct for multiple scattering effects in neutron capture yield data. The combined capture and transmission data analysis yielded resonance parameters for all hafnium isotopes from 0.005-200 eV. Resonance integrals were calculated along with errors for each hafnium isotope using the NJOY [1] and INTER [2] codes. The isotopic resonance integrals calculated were significantly different than previously published values; however the calculated elemental hafnium resonance integral changed very little

  7. Characterization of etch pits found on a large-grain bulk niobium superconducting radio-frequency resonant cavity

    OpenAIRE

    Xin Zhao; G. Ciovati; T. R. Bieler

    2010-01-01

    The performance of superconducting radio-frequency (SRF) resonant cavities made of bulk niobium is limited by nonlinear localized effects. Surface analysis of regions of higher power dissipation is thus of intense interest. Such areas (referred to as “hotspots”) were identified in a large-grain single-cell cavity that had been buffered-chemical polished and dissected for examination by high resolution electron microscopy, electron backscattered diffraction microscopy (EBSD), and optical micro...

  8. Sound Transmission Loss Through a Corrugated-Core Sandwich Panel with Integrated Acoustic Resonators

    Science.gov (United States)

    Schiller, Noah H.; Allen, Albert R.; Zalewski, Bart F; Beck, Benjamin S.

    2014-01-01

    The goal of this study is to better understand the effect of structurally integrated resonators on the transmission loss of a sandwich panel. The sandwich panel has facesheets over a corrugated core, which creates long aligned chambers that run parallel to the facesheets. When ports are introduced through the facesheet, the long chambers within the core can be used as low-frequency acoustic resonators. By integrating the resonators within the structure they contribute to the static load bearing capability of the panel while also attenuating noise. An analytical model of a panel with embedded resonators is derived and compared with numerical simulations. Predictions show that acoustic resonators can significantly improve the transmission loss of the sandwich panel around the natural frequency of the resonators. In one configuration with 0.813 m long internal chambers, the diffuse field transmission loss is improved by more than 22 dB around 104 Hz. The benefit is achieved with no added mass or volume relative to the baseline structure. The embedded resonators are effective because they radiate sound out-of-phase with the structure. This results in destructive interference, which leads to less transmitted sound power.

  9. A study of nasal cavity volume in patients with cleft lip and palate by magnetic resonance imaging

    International Nuclear Information System (INIS)

    Nakano, Kenichi

    1996-01-01

    Nasal cavity volume was studied in 11 patients with cleft lip and palate by magnetic resonance imaging. The areas of horizontal sections of the nasal cavity on the cleft and non-cleft sides were measured with the help of a personal computer and image analyzing software. Nasal cavity volume was determined by integrated volume calculation. The volume of each side was measured before and after cleft lip repair. Before cleft lip repair nasal cavity volume on the non-cleft side was larger than on the cleft side. However there was no significant difference in the volume of the cleft and non-cleft sides after cleft lip repair. (author)

  10. A study of nasal cavity volume in patients with cleft lip and palate by magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, Kenichi [Showa Univ., Tokyo (Japan). School of Medicine

    1996-02-01

    Nasal cavity volume was studied in 11 patients with cleft lip and palate by magnetic resonance imaging. The areas of horizontal sections of the nasal cavity on the cleft and non-cleft sides were measured with the help of a personal computer and image analyzing software. Nasal cavity volume was determined by integrated volume calculation. The volume of each side was measured before and after cleft lip repair. Before cleft lip repair nasal cavity volume on the non-cleft side was larger than on the cleft side. However there was no significant difference in the volume of the cleft and non-cleft sides after cleft lip repair. (author)

  11. Demonstration of superconducting micromachined cavities

    Energy Technology Data Exchange (ETDEWEB)

    Brecht, T., E-mail: teresa.brecht@yale.edu; Reagor, M.; Chu, Y.; Pfaff, W.; Wang, C.; Frunzio, L.; Devoret, M. H.; Schoelkopf, R. J. [Department of Applied Physics, Yale University, New Haven, Connecticut 06511 (United States)

    2015-11-09

    Superconducting enclosures will be key components of scalable quantum computing devices based on circuit quantum electrodynamics. Within a densely integrated device, they can protect qubits from noise and serve as quantum memory units. Whether constructed by machining bulk pieces of metal or microfabricating wafers, 3D enclosures are typically assembled from two or more parts. The resulting seams potentially dissipate crossing currents and limit performance. In this letter, we present measured quality factors of superconducting cavity resonators of several materials, dimensions, and seam locations. We observe that superconducting indium can be a low-loss RF conductor and form low-loss seams. Leveraging this, we create a superconducting micromachined resonator with indium that has a quality factor of two million, despite a greatly reduced mode volume. Inter-layer coupling to this type of resonator is achieved by an aperture located under a planar transmission line. The described techniques demonstrate a proof-of-principle for multilayer microwave integrated quantum circuits for scalable quantum computing.

  12. Multi-cavity locally resonant structure with the low frequency and broad band-gaps

    Directory of Open Access Journals (Sweden)

    Jiulong Jiang

    2016-11-01

    Full Text Available A multi-cavity periodic structure with the characteristic of local resonance was proposed in the paper. The low frequency band-gap structure was comparatively analyzed by the finite element method (FEM and electric circuit analogy (ECA. Low frequency band-gap can be opened through the dual influence of the coupling’s resonance in the cavity and the interaction among the couplings between structures. Finally, the influence of the structural factors on the band-gap was analyzed. The results show that the structure, which is divided into three parts equally, has a broader effective band-gap below the frequency of 200 Hz. It is also proved that reducing the interval between unit structures can increase the intensity of the couplings among the structures. And in this way, the width of band-gap would be expanded significantly. Through the parameters adjustment, the structure enjoys a satisfied sound insulation effect below the frequency of 500Hz. In the area of low frequency noise reduction, the structure has a lot of potential applications.

  13. Cavity-enhanced resonant photoacoustic spectroscopy with optical feedback cw diode lasers: A novel technique for ultratrace gas analysis and high-resolution spectroscopy.

    Science.gov (United States)

    Hippler, Michael; Mohr, Christian; Keen, Katherine A; McNaghten, Edward D

    2010-07-28

    Cavity-enhanced resonant photoacoustic spectroscopy with optical feedback cw diode lasers (OF-CERPAS) is introduced as a novel technique for ultratrace gas analysis and high-resolution spectroscopy. In the scheme, a single-mode cw diode laser (3 mW, 635 nm) is coupled into a high-finesse linear cavity and stabilized to the cavity by optical feedback. Inside the cavity, a build-up of laser power to at least 2.5 W occurs. Absorbing gas phase species inside the cavity are detected with high sensitivity by the photoacoustic effect using a microphone embedded in the cavity. To increase sensitivity further, coupling into the cavity is modulated at a frequency corresponding to a longitudinal resonance of an organ pipe acoustic resonator (f=1.35 kHz and Q approximately 10). The technique has been characterized by measuring very weak water overtone transitions near 635 nm. Normalized noise-equivalent absorption coefficients are determined as alpha approximately 4.4x10(-9) cm(-1) s(1/2) (1 s integration time) and 2.6x10(-11) cm(-1) s(1/2) W (1 s integration time and 1 W laser power). These sensitivities compare favorably with existing state-of-the-art techniques. As an advantage, OF-CERPAS is a "zero-background" method which increases selectivity and sensitivity, and its sensitivity scales with laser power.

  14. Explanation of the quantum phenomenon of off-resonant cavity-mode emission

    Science.gov (United States)

    Echeverri-Arteaga, Santiago; Vinck-Posada, Herbert; Gómez, Edgar A.

    2018-04-01

    We theoretically investigate the unexpected occurrence of an extra emission peak that has been experimentally observed in off-resonant studies of cavity QED systems. Our results within the Markovian master equation approach successfully explain why the central peak arises, and how it reveals that the system is suffering a dynamical phase transition induced by the phonon-mediated coupling. Our findings are in qualitative agreement with previous reported experimental results, and the fundamental physics behind this quantum phenomenon is understood.

  15. Wirebond crosstalk and cavity modes in large chip mounts for superconducting qubits

    Energy Technology Data Exchange (ETDEWEB)

    Wenner, J; Neeley, M; Bialczak, Radoslaw C; Lenander, M; Lucero, Erik; O' Connell, A D; Sank, D; Wang, H; Weides, M; Cleland, A N; Martinis, John M, E-mail: martinis@physics.ucsb.edu [Department of Physics, University of California, Santa Barbara, CA 93106 (United States)

    2011-06-15

    We analyze the performance of a microwave chip mount that uses wirebonds to connect the chip and mount grounds. A simple impedance ladder model predicts that transmission crosstalk between two feedlines falls off exponentially with distance at low frequencies, but rises to near unity above a resonance frequency set by the chip to ground capacitance. Using SPICE simulations and experimental measurements of a scale model, the basic predictions of the ladder model were verified. In particular, by decreasing the capacitance between the chip and box grounds, the resonance frequency increased and transmission decreased. This model then influenced the design of a new mount that improved the isolation to - 65 dB at 6 GHz, even though the chip dimensions were increased to 1 cm x 1 cm, three times as large as our previous devices. We measured a coplanar resonator in this mount as preparation for larger qubit chips, and were able to identify cavity, slotline, and resonator modes.

  16. Wirebond crosstalk and cavity modes in large chip mounts for superconducting qubits

    International Nuclear Information System (INIS)

    Wenner, J; Neeley, M; Bialczak, Radoslaw C; Lenander, M; Lucero, Erik; O'Connell, A D; Sank, D; Wang, H; Weides, M; Cleland, A N; Martinis, John M

    2011-01-01

    We analyze the performance of a microwave chip mount that uses wirebonds to connect the chip and mount grounds. A simple impedance ladder model predicts that transmission crosstalk between two feedlines falls off exponentially with distance at low frequencies, but rises to near unity above a resonance frequency set by the chip to ground capacitance. Using SPICE simulations and experimental measurements of a scale model, the basic predictions of the ladder model were verified. In particular, by decreasing the capacitance between the chip and box grounds, the resonance frequency increased and transmission decreased. This model then influenced the design of a new mount that improved the isolation to - 65 dB at 6 GHz, even though the chip dimensions were increased to 1 cm x 1 cm, three times as large as our previous devices. We measured a coplanar resonator in this mount as preparation for larger qubit chips, and were able to identify cavity, slotline, and resonator modes.

  17. A study on utility of magnetic resonance imaging for female pelvic cavity using enteral MRI contrast media

    International Nuclear Information System (INIS)

    Kim, Ham Gyum

    1997-01-01

    For radiological test in soft tissue or neighboring part with same signal intensity, proper test method and equipment shall be selected as needed. In case of female pelvic cavity, ultrasonography or computed tomography alternatively used, but MRI can be more usefully applied to design treatment method or operation plan by improving the diagnostic accuracy and careful observation of lesion characteristics. Magnetic Resonance Imaging using recently developed Enteral MRI contrast media can acquire more diagnostic information than using only intravenous contrast media. Thus this study attempted to examine the utility of anatomic structure and diagnostic acquisition by imaging the female pelvic cavity using Enteral MRI contrast media. As a result of analyzing magnetic resonance imaging after administering Enteral MRI contrast media to pelvic cavity suspect patients, more diagnostic information media could be acquired than only using intravenous contrast. Especially, in the diagnosis of lesion position, shape, distinction from neighboring tissues it is thought that external Enteral MRI contrast media should be used

  18. Bifurcation phenomena in internal dynamics of gear systems

    Directory of Open Access Journals (Sweden)

    Hortel M.

    2007-10-01

    Full Text Available The impact effects in gear mesh represent specific phenomena in the dynamic investigation of highspeed light transmission systems with kinematic couplings. They are caused of greater dynamic than static elastic deformations in meshing gear profiles. In term of internal dynamics they are influenced among others by time heteronomous stiffness functions in gear mesh and resonance tuning of stiffness level. The damping in gear mesh and in gear system is concerned significantly in the amplitude progress, greatness and phase shift of relative motion towards stiffness function alternatively towards its modify form in gear mesh. In consequence of these and another actions rise above resonance characteristics certain singular locations with jump amplitude course.

  19. Panel Resonance Control and Cavity Control in Double-Panel Structures for Active Noise Reduction

    NARCIS (Netherlands)

    Ho, J.; Berkhoff, Arthur P.

    2011-01-01

    An analytical and experimental investigation of panel resonance control and cavity control in a double-panel structure is presented in this paper. The double-panel structure, which consists of two panels with air in the gap, is widely adopted in many applications such as aerospace due to its low

  20. Improvement in transmission loss of aircraft double wall with resonators

    Science.gov (United States)

    Sun, Jincai; Shi, Liming; Ye, Xining

    1991-08-01

    A little volume low frequency resonator applicable to double-wall configuration of propeller-driven aircraft was designed on the basis of the principle of Helmholtz resonator. The normal incidence absorption coefficient of the various single resonator has been measured. The agreement between theoretical and experimental results is encouraging. An array of resonators whose resonant frequency at 85 Hz and 160 Hz, respectively, are installed between aircraft double-panel, and it has been shown that transmission loss of the double wall structure with resonators improve 4 dB and 6.5 dB in 1/3rd octave bandwidth at 80 Hz and 160 Hz center frequency, respectively, and 5 dB and 7 dB at resonant frequencies, compared with that of the double wall configuration without resonators.

  1. Polariton condensation, superradiance and difference combination parametric resonance in mode-locked laser

    Science.gov (United States)

    Bagayev, S. N.; Arkhipov, R. M.; Arkhipov, M. V.; Egorov, V. S.; Chekhonin, I. A.; Chekhonin, M. A.

    2017-11-01

    The generation of the ring mode-locked laser containing resonant absorption medium in the cavity was investigated. It is shown that near the strong resonant absorption lines a condensation of polaritons arises. Intensive radiation looks like as superradiance in a medium without population inversion. We studied theoretically the microscopic mechanism of these phenomena. It was shown that in this system in absorbing medium a strong self-induced difference combination parametric resonance exists. Superradiance on polaritonic modes in the absorbing medium are due to the emergence of light-induced resonant polarization as a result of fast periodic nonadiabatic quantum jumps in the absorber.

  2. Suppression of multipacting in high power RF couplers operating with superconducting cavities

    Energy Technology Data Exchange (ETDEWEB)

    Ostroumov, P.N., E-mail: ostroumov@frib.msu.edu [Facility for Rare Isotope Beams (FRIB), Michigan State University, East Lansing, MI 48824 (United States); Kazakov, S. [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Morris, D.; Larter, T.; Plastun, A.S.; Popielarski, J.; Wei, J.; Xu, T. [Facility for Rare Isotope Beams (FRIB), Michigan State University, East Lansing, MI 48824 (United States)

    2017-06-01

    Capacitive input couplers based on a 50 Ω coaxial transmission line are frequently used to transmit RF power to superconducting (SC) resonators operating in CW mode. It is well known that coaxial transmission lines are prone to multipacting phenomenon in a wide range of RF power level and operating frequency. The Facility for Rare Isotope Beams (FRIB) being constructed at Michigan State University includes two types of quarter wave SC resonators (QWR) operating at 80.5 MHz and two types of half wave SC resonators (HWR) operating at 322 MHz. As was reported in ref. [1] a capacitive input coupler used with HWRs was experiencing strong multipacting that resulted in a long conditioning time prior the cavity testing at design levels of accelerating fields. We have developed an insert into 50 Ω coaxial transmission line that provides opportunity to bias the RF coupler antenna and protect the amplifier from the bias potential in the case of breakdown in DC isolation. Two of such devices have been built and are currently used for the off-line testing of 8 HWRs installed in the cryomodule.

  3. Study on frequency characteristics of wireless power transmission system based on magnetic coupling resonance

    Science.gov (United States)

    Liang, L. H.; Liu, Z. Z.; Hou, Y. J.; Zeng, H.; Yue, Z. K.; Cui, S.

    2017-11-01

    In order to study the frequency characteristics of the wireless energy transmission system based on the magnetic coupling resonance, a circuit model based on the magnetic coupling resonant wireless energy transmission system is established. The influence of the load on the frequency characteristics of the wireless power transmission system is analysed. The circuit coupling theory is used to derive the minimum load required to suppress frequency splitting. Simulation and experimental results verify that when the load size is lower than a certain value, the system will appear frequency splitting, increasing the load size can effectively suppress the frequency splitting phenomenon. The power regulation scheme of the wireless charging system based on magnetic coupling resonance is given. This study provides a theoretical basis for load selection and power regulation of wireless power transmission systems.

  4. Cavity-type hypersonic phononic crystals

    International Nuclear Information System (INIS)

    Sato, A; Fytas, G; Pennec, Y; Djafari-Rouhani, B; Yanagishita, T; Masuda, H; Knoll, W

    2012-01-01

    We report on the engineering of the phonon dispersion diagram in monodomain anodic porous alumina (APA) films through the porosity and physical state of the material residing in the nanopores. Lattice symmetry and inclusion materials are theoretically identified to be the main factors which control the hypersonic acoustic wave propagation. This involves the interaction between the longitudinal and the transverse modes in the effective medium and a flat band characteristic of the material residing in the cavities. Air and filled nanopores, therefore, display markedly different dispersion relations and the inclusion materials lead to a locally resonant structural behavior uniquely determining their properties under confinement. APA films emerge as a new platform to investigate the rich acoustic phenomena of structured composite matter. (paper)

  5. Neutron Capture and Transmission Measurements and Resonance Parameter Analysis of Samarium

    International Nuclear Information System (INIS)

    Leinweber, G.; Burke, J.A.; Knox, H.D.; Drindak, N.J.; Mesh, D.W.; Haines, W.T.; Ballad, R.V.; Block, R.C.; Slovacek, R.E.; Werner, C.J.; Trbovich, M.J.; Barry, D.P.; Sato, T.

    2001-01-01

    The purpose of the present work is to accurately measure the neutron cross sections of samarium. The most significant isotope is 149 Sm, which has a large neutron absorption cross section at thermal energies and is a 235 U fission product with a 1% yield. Its cross sections are thus of concern to reactor neutronics. Neutron capture and transmission measurements were performed by the time-of-flight technique at the Rensselaer Polytechnic institute (RPI) LINAC facility using metallic and liquid Sm samples. The capture measurements were made at the 25 meter flight station with a multiplicity-type capture detector, and the transmission total cross-section measurements were performed at 15- and 25-meter flight stations with 6 Li glass scintillation detectors. Resonance parameters were determined by a combined analysis of six experiments (three capture and three transmission) using the multi-level R-matrix Bayesian code SAMMY version M2. The significant features of this work are as follows. Dilute samples of samarium nitrate in deuterated water (D 2 O) were prepared to measure the strong resonances at 0.1 and 8 eV without saturation. Disk-shaped spectroscopic quartz cells were obtained with parallel inner surfaces to provide a uniform thickness of solution. The diluent feature of the SAMMY program was used to analyze these data. The SAMMY program also includes multiple scattering corrections to capture yield data and resolution functions specific to the RPI facility. Resonance parameters for all stable isotopes of samarium were deduced for all resonances up to 30 eV. Thermal capture cross-section and capture resonance integral calculations were made using the resultant resonance parameters and were compared to results obtained using resonance parameters from ENDF/B-VI updated through release 3. Extending the definition of the capture resonance integral to include the strong 0.1 eV resonance in 149 Sm, present measurements agree within estimated uncertainties with En

  6. Transmission properties of terahertz waves through asymmetric rectangular aperture arrays on carbon nanotube films

    Directory of Open Access Journals (Sweden)

    Yue Wang

    2016-04-01

    Full Text Available Transmission spectra of terahertz waves through a two-dimensional array of asymmetric rectangular apertures on super-aligned multi-walled carbon nanotube films were obtained experimentally. In this way, the anisotropic transmission phenomena of carbon nanotube films were observed. For a terahertz wave polarization parallel to the orientation of the carbon nanotubes and along the aperture short axis, sharp resonances were observed and the resonance frequencies coincided well with the surface plasmon polariton theory. In addition, the minima of the transmission spectra were in agreement with the location predicted by the theory of Wood’s anomalies. Furthermore, it was found that the resonance profiles through the carbon nanotube films could be well described by the Fano model.

  7. Percutaneous vertebroplasty for osteoporotic vertebral compression fractures with intraosseous cystic cavity phenomena

    International Nuclear Information System (INIS)

    He Shicheng; Teng Gaojun; Deng Gang; Fang Wen; Guo Jinhe; Zhu Guangyu; Li Guozao; Shen Zhiping; Ding Huijuan

    2005-01-01

    Objective: To evaluate the key technique, short term clinical efficacy and degree of changes in vertebral body height for percutaneous vertebroplasty in treating patients with osteoporotic vertebral compression fractures containing intraosseous cystic cavity phenomena. Methods: Thirty two vertebrae of painful compression fractures with intraosseous vacuum sign occurring in 27 patients were identified from 326 percutaneous vertebroplasties performed in 207 patients during 4 years. PVP was performed under C-arm fluoroscopy guidance only with local anesthesia. Intaosseous venography was performed on each vertebra by hand injection with non-ionic contrast agent, with CT monitoring after PMMA injection for the PMMA distribution in the vertebrae and looking for leakage. The heights of 32 vertebral bodies were measured before and after the vertebroplasty. The efficacy of PVP was evaluated during the follow-up. Results: The successful rate of PVP was 100%. Main appearance of vertebral venography showed cystic cavity-like, stasis of contrast medium within the marrow space of the fractured vertebra. 6.8 ml of PMMA in average was injected into each vertebra. CR, PR and NR were obtained respectively 66.7%, 18.5%, 14.8% mm centrally and 0.06 mm posteriorly. The heights restoration of vertebrae anteriorly and centrally were significantly different (P 0.05). No serious complications related to the technique occurred, except 3 cases with asymptomatic PMMA leakage around vertebrae demonstrated by CT. Conclusions: Significant pain relief and vertebral height restoration by PVP in the treatment of patients with painful vertebral compression fractures accompanied by intraosseous cysticavitary change, are promising with low-rate of PMMA leakage. The basic successful mechanism lies on the proper complete PMMA filling predicting through venography. (authors)

  8. Analysis of a four-mirror-cavity enhanced Michelson interferometer.

    Science.gov (United States)

    Thüring, André; Lück, Harald; Danzmann, Karsten

    2005-12-01

    We investigate the shot-noise-limited sensitivity of a four-mirror-cavity enhanced Michelson interferometer. The intention of this interferometer topology is the reduction of thermal lensing and the impact of the interferometers contrast although transmissive optics are used with high circulating powers. The analytical expressions describing the light fields and the frequency response are derived. Although the parameter space has 11 dimensions, a detailed analysis of the resonance feature gives boundary conditions allowing systematic parameter studies.

  9. HOM identification by bead pulling in the Brookhaven ERL cavity

    CERN Document Server

    Hahn, H; Jain, Puneet; Johnson, Elliott C; Xu, Wencan

    2014-01-01

    Exploratory measurements of the Brookhaven Energy Recovery Linac (ERL) cavity at superconducting temperature produced a long list of high order modes (HOMs). The niobium 5-cell cavity is terminated at each end with HOM ferrite dampers that successfully reduce the Q-factors to levels required to avoid beam break up (BBU) instabilities. However, a number of un-damped resonances with Q≥106 were found at 4 K and their mode identification forms the focus of this paper. The approach taken here consists of bead pulling on a copper (Cu) replica of the ERL cavity with dampers involving various network analyzer measurements. Several different S21 transmission measurements are used, including those taken from the fundamental input coupler to the pick-up probe across the cavity, others between beam-position monitor probes in the beam tubes, and also between probes placed into the cells. The bead pull technique suitable for HOM identification with a metallic needle or dielectric bead is detailed. This paper presents the...

  10. Mechanical design of 56 MHz superconducting RF cavity for RHIC collider

    Energy Technology Data Exchange (ETDEWEB)

    Pai, C.; Ben-Zvi, I.; Burrill, A.; Chang, X.; McIntyre, G.; Than, Y.; Tuozzolo, J.; Wu, Q.

    2011-03-28

    A 56 MHz Superconducting RF Cavity operating at 4.4K is being constructed for the RHIC collider. This cavity is a quarter wave resonator with beam transmission along the centerline. This cavity will increase collision luminosity by providing a large longitudinal bucket for stored bunches of RHIC ion beam. The major components of this assembly are the niobium cavity with the mechanical tuner, its titanium helium vessel and vacuum cryostat, the support system, and the ports for HOM and fundamental dampers. The cavity and its helium vessel must meet equivalent safety with the ASME pressure vessel code and it must not be sensitive to frequency shift due to pressure fluctuations from the helium supply system. Frequency tuning achieved by a two stage mechanical tuner is required to meet performance parameters. This tuner mechanism pushes and pulls the tuning plate in the gap of niobium cavity. The tuner mechanism has two separate drive systems to provide both coarse and fine tuning capabilities. This paper discusses the design detail and how the design requirements are met.

  11. Searches for non-resonant new phenomena in final states with leptons and photons

    CERN Document Server

    Gonzalez Lopez, Oscar

    2017-01-01

    Some recent searches for hints of processes beyond the standard model performed by the CMS collaboration are presented. These focused on the detection of new phenomena more indirectly than the direct observation of a resonance indicating the presence of a new particle. No significant deviation from the standard model expectations have been observed and constraints for new physics have been set in several well-motivated scenarios.

  12. Low-Cost Resonant Cavity Raman Gas Probe for Multi-Gas Detection

    Science.gov (United States)

    Thorstensen, J.; Haugholt, K. H.; Ferber, A.; Bakke, K. A. H.; Tschudi, J.

    2014-12-01

    Raman based gas sensing can be attractive in several industrial applications, due to its multi-gas sensing capabilities and its ability to detect O_2 and N_2. In this article, we have built a Raman gas probe, based on low-cost components, which has shown an estimated detection limit of 0.5 % for 30 second measurements of N_2 and O_2. While this detection limit is higher than that of commercially available equipment, our estimated component cost is approximately one tenth of the price of commercially available equipment. The use of a resonant Fabry-Pérot cavity increases the scattered signal, and hence the sensitivity, by a factor of 50. The cavity is kept in resonance using a piezo-actuated mirror and a photodiode in a feedback loop. The system described in this article was made with minimum-cost components to demonstrate the low-cost principle. However, it is possible to decrease the detection limit using a higher-powered (but still low-cost) laser and improving the collection optics. By applying these improvements, the detection limit and estimated measurement precision will be sufficient for e.g. the monitoring of input gases in combustion processes, such as e.g. (bio-)gas power plants. In these processes, knowledge about gas compositions with 0.1 % (absolute) precision can help regulate and optimize process conditions. The system has the potential to provide a low-cost, industrial Raman sensor that is optimized for specific gas-detection applications.

  13. Study on electromagnetic characteristics of the magnetic coupling resonant coil for the wireless power transmission system.

    Science.gov (United States)

    Wang, Zhongxian; Liu, Yiping; Wei, Yonggeng; Song, Yilin

    2018-01-01

    The resonant coil design is taken as the core technology in the magnetic coupling resonant wireless power transmission system, which achieves energy transmission by the coupling of the resonant coil. This paper studies the effect of the resonant coil on energy transmission and the efficiency of the system. Combining a two-coil with a three-coil system, the optimum design method for the resonant coil is given to propose a novel coil structure. First, the co-simulation methods of Pspice and Maxwell are used. When the coupling coefficient of the resonant coil is different, the relationship between system transmission efficiency, output power, and frequency is analyzed. When the self-inductance of the resonant coil is different, the relationship between the performance and frequency of the system transmission is analyzed. Then, two-coil and three-coil structure models are built, and the parameters of the magnetic field of the coils are calculated and analyzed using the finite element method. In the end, a dual E-type simulation circuit model is used to optimize the design of the novel resonance coil. The co-simulation results show that the coupling coefficients of the two-coil, three-coil, and novel coil systems are 0.017, 0.17 and 0.0126, respectively. The power loss of the novel coil is 16.4 mW. There is an obvious improvement in the three-coil system, which shows that the magnetic leakage of the field and the energy coupling are relatively small. The new structure coil has better performance, and the load loss is lower; it can improve the system output power and transmission efficiency.

  14. A study of nasal cavity volume by magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Tosa, Yasuyoshi [Showa Univ., Tokyo (Japan). School of Medicine

    1992-04-01

    The nasal cavity volume in 69 healthy volunteers from 8 to 23 years old (17 males and 52 females) was studied using magnetic resonance imaging (MRI). Merits of MRI such as no radiation exposure, less artifact due to bone and air and measurement of intravascular blood flow; and demerits such as contraindication in users of heart pace-makers or magnetic clips, contraindication in people with claustrophobia and influence of environmental magnetic fields must be considered. A Magunetom M10 (Siemens), a superconduction device with 1.0 Tesla magnetic flux density was used. Enhanced patterns of T[sub 1], and pulse lines were photographed at 600 msec TR (repetition time) and 19 msec TE (echo time) using SE (spin echo) and short SE (spin echo), and 3 or 4 mm slices. Photographs were made of the piriform aperture, choana, superior-middle-inferior concha including the nasal meatus, the frontal sinus, maxillary sinus, cribriform plate, and upper surface of the palate. The line connecting the maximum depression point in the nasal root and the pontomedullary junction was selected by sagittal median section, because this corresponds well with the CM (canthomeatal) line which is useful in CT (computed tomography). The transverse section of the nasal cavity volume was traced by display console with an accessory MRI device and calculated by integration of the slice width. The increase of height and body weight neared a plateau at almost 16 years, whereas increase of nasal cavity volume continued until about 20 years. Pearson's coefficient of correlation and regression line were significant. There were no significant differences in these parameters between male and female groups. Comparatively strong correlation between nasal cavity volume, and age, height and body weight was statistically evident. (author).

  15. Half collision resonance phenomena in molecules

    International Nuclear Information System (INIS)

    Maximo Garcia-Sucre; Raseev, G.; Ross, S.C.

    1991-01-01

    The Escuela Latinoamericana de Fisica (ELAF) is a series of meeting s that for 28 years has played an important role in research-level teaching of physics in Latin America. This book contains the proceedings of ELAF 90 which was held at the Instituto Venezolano de Investigaciones Cientificas (IVIC) in Caracas, Venezuela from July 23 to August 3, 1990, as part of the commemoration of the 30th anniversary of IVIC. In contrast to previous ELAF's that were of general scope, ELAF 90 centered on a particular subject matter: '' Half Collisional Resonance Phenomena in Molecules, Experimental and Theoretical Approaches. ''The term ''Half Collision'' refers to the fragmentation of a molecular system following is excitation by light. The lack of an incident fragmentation of a molecular system following is excitation by light. The lack of an incident particle (other than the photon) in the fragmentation process is what leads to the term. The purpose of this volume is to present current results in the experimental and theoretical study of half collisions and also to include pedagogical papers at an introductory or intermediate level. The contributions are grouped into several sections; light sources; ionization; dissociation-experimental; dissociation-theory; competition between ionization and dissociation; and particle-molecule collisions

  16. Efficient second harmonic generation of a diode-laser-pumped CW Nd:YAG laser using monolithic MgO:LiNbO3 external resonant cavities

    Science.gov (United States)

    Kozlovsky, William J.; Nabors, C. D.; Byer, Robert L.

    1988-01-01

    56-percent efficient external-cavity-resonant second-harmonic generation of a diode-laser pumped, CW single-axial-mode Nd:YAG laser is reported. A theory of external doubling with a resonant fundamental is presented and compared to experimental results for three monolithic cavities of nonlinear MgO:LiNbO3. The best conversion efficiency was obtained with a 12.5-mm-long monolithic ring cavity doubler, which produced 29.7 mW of CW, single-axial model 532-nm radiation from an input of 52.5 mW.

  17. Temperature dependence of the hydrated electron's excited-state relaxation. I. Simulation predictions of resonance Raman and pump-probe transient absorption spectra of cavity and non-cavity models

    Science.gov (United States)

    Zho, Chen-Chen; Farr, Erik P.; Glover, William J.; Schwartz, Benjamin J.

    2017-08-01

    We use one-electron non-adiabatic mixed quantum/classical simulations to explore the temperature dependence of both the ground-state structure and the excited-state relaxation dynamics of the hydrated electron. We compare the results for both the traditional cavity picture and a more recent non-cavity model of the hydrated electron and make definite predictions for distinguishing between the different possible structural models in future experiments. We find that the traditional cavity model shows no temperature-dependent change in structure at constant density, leading to a predicted resonance Raman spectrum that is essentially temperature-independent. In contrast, the non-cavity model predicts a blue-shift in the hydrated electron's resonance Raman O-H stretch with increasing temperature. The lack of a temperature-dependent ground-state structural change of the cavity model also leads to a prediction of little change with temperature of both the excited-state lifetime and hot ground-state cooling time of the hydrated electron following photoexcitation. This is in sharp contrast to the predictions of the non-cavity model, where both the excited-state lifetime and hot ground-state cooling time are expected to decrease significantly with increasing temperature. These simulation-based predictions should be directly testable by the results of future time-resolved photoelectron spectroscopy experiments. Finally, the temperature-dependent differences in predicted excited-state lifetime and hot ground-state cooling time of the two models also lead to different predicted pump-probe transient absorption spectroscopy of the hydrated electron as a function of temperature. We perform such experiments and describe them in Paper II [E. P. Farr et al., J. Chem. Phys. 147, 074504 (2017)], and find changes in the excited-state lifetime and hot ground-state cooling time with temperature that match well with the predictions of the non-cavity model. In particular, the experiments

  18. Seismic wave interaction with underground cavities

    Science.gov (United States)

    Schneider, Felix M.; Esterhazy, Sofi; Perugia, Ilaria; Bokelmann, Götz

    2016-04-01

    Realization of the future Comprehensive Nuclear Test Ban Treaty (CTBT) will require ensuring its compliance, making the CTBT a prime example of forensic seismology. Following indications of a nuclear explosion obtained on the basis of the (IMS) monitoring network further evidence needs to be sought at the location of the suspicious event. For such an On-Site Inspection (OSI) at a possible nuclear test site the treaty lists several techniques that can be carried out by the inspection team, including aftershock monitoring and the conduction of active seismic surveys. While those techniques are already well established, a third group of methods labeled as "resonance seismometry" is less well defined and needs further elaboration. A prime structural target that is expected to be present as a remnant of an underground nuclear explosion is a cavity at the location and depth the bomb was fired. Originally "resonance seismometry" referred to resonant seismic emission of the cavity within the medium that could be stimulated by an incident seismic wave of the right frequency and observed as peaks in the spectrum of seismic stations in the vicinity of the cavity. However, it is not yet clear which are the conditions for which resonant emissions of the cavity could be observed. In order to define distance-, frequency- and amplitude ranges at which resonant emissions could be observed we study the interaction of seismic waves with underground cavities. As a generic model for possible resonances we use a spherical acoustic cavity in an elastic full-space. To solve the forward problem for the full elastic wave field around acoustic spherical inclusions, we implemented an analytical solution (Korneev, 1993). This yields the possibility of generating scattering cross-sections, amplitude spectrums and synthetic seismograms for plane incident waves. Here, we focus on the questions whether or not we can expect resonant responses in the wave field scattered from the cavity. We show

  19. Earth-ionosphere cavity

    International Nuclear Information System (INIS)

    Tran, A.; Polk, C.

    1976-01-01

    To analyze ELF wave propagation in the earth-ionosphere cavity, a flat earth approximation may be derived from the exact equations, which are applicable to the spherical cavity, by introducing a second-order or Debye approximation for the spherical Hankel functions. In the frequency range 3 to 30 Hz, however, the assumed conditions for the Debye approximation are not satisfied. For this reason an exact evaluation of the spherical Hankel functions is used to study the effects of the flat earth approximation on various propagation and resonance parameters. By comparing the resonance equation for a spherical cavity with its flat earth counterpart and by assuming that the surface impedance Z/sub i/ at the upper cavity boundary is known, the relation between the eigenvalue ν and S/sub v/, the sine of the complex angle of incidence at the lower ionosphere boundary, is established as ν(ν + 1) = (kaS/sub v/) 2 . It is also shown that the approximation ν(ν + 1) approximately equals (ν + 1/2) 2 which was used by some authors is not adequate below 30 Hz. Numerical results for both spherical and planar stratification show that (1) planar stratification is adequate for the computation of the lowest three ELF resonance frequencies to within 0.1 Hz; (2) planar stratification will lead to errors in cavity Q and wave attenuation which increase with frequency; (3) computation of resonance frequencies to within 0.1 Hz requires the extension of the lower boundary of the ionosphere to a height where the ratio of conduction current to displacement current, (sigma/ωepsilon 0 ), is less than 0.3; (4) atmospheric conductivity should be considered down to ground level in computing cavity Q and wave attenuation

  20. Electron transmission through coupled quantum dots in an Aharonov-Bohm ring

    International Nuclear Information System (INIS)

    Joe, Y. S.; Kim, Y. D.

    2006-01-01

    Stimulated by recent intriguing experiments with a quantum dot in an Aharonov-Bohm (AB) ring, we investigate novel resonant phenomena by studying the total transmission probability of nanoscale AB ring with embedded double quantum dots in one arm and a magnetic flux passing through the rings' center. In this system, we show an overlapping and merging of Fano resonances as the interaction parameter between the dots changes. In the strong overlapping region of Fano resonances, the transmission zeros leave the real-energy axis and move away in opposite directions in the complex-energy plane. The behavior of the Fano zero-pole resonances in the complex-energy plane as a function of the external magnetic flux is also investigated for various coupling integrals between the quantum dots in the ring.

  1. Excitation of terahertz modes localized on a layered superconductor: Anomalous dispersion and resonant transmission

    Science.gov (United States)

    Apostolov, S. S.; Makarov, N. M.; Yampol'skii, V. A.

    2018-01-01

    We study theoretically the optic transmission through a slab of layered superconductor separated from two dielectric leads by spatial gaps. Based on the transfer matrix formalism along with the Josephson plasma electrodynamic approach, we derive analytic expressions for the transmittance and identify the conditions for the perfect transmission. The special interest of the study is focused on the resonant transmission, which occurs when the wave does not propagate in the spatial gaps. Far from the resonance, the transmittance is exponentially small due to the total internal reflection from the lead-gap interface. However, the excitation of electromagnetic modes localized on the layered superconductor gives rise to a remarkable resonant enhancement of the transmission. Moreover, this phenomenon is significantly modified for the layered superconductors in comparison with usual dielectrics or conductors. The dispersion curves for the modes localized on the layered superconductor are proved to be nonmonotonic, thus resulting in the specific dependence of the transmittance T on the incidence angle θ . In particular, we predict the onset of two resonant peaks in the T (θ ) dependence and their subsequent merge into the broadened single peak with increasing of the wave frequency. Our analytical results are demonstrated by numerical data.

  2. Pathologies of the uterine endometrial cavity: usual and unusual manifestations and pitfalls on magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, Mayumi; Matsuzaki, Kenji; Yoshida, Shusaku; Nishitani, Hiromu [University of Tokushima, Department of Radiology, Tokushima (Japan); Uehara, Hisanori [University of Tokushima, Department of Molecular and Environmental Pathology, Tokushima (Japan); Shimazu, Hideki [Oe Kyoudo Hospital, Department of Radiology (Japan)

    2005-11-01

    The endometrial cavity may demonstrate various imaging manifestations such as normal, reactive, inflammatory, and benign and malignant neoplasms. We evaluated usual and unusual magnetic resonance imaging (MRI) findings of the uterine endometrial cavity, and described the diagnostic clues to differential diagnoses. Surgically proven pathologies of the uterine endometrial cavity were evaluated retrospectively with pathologic correlation. The pathologies included benign endometrial neoplasms such as endometrial hyperplasia and polyp, malignant endometrial neoplasms such as endometrial carcinoma and carcinosarcoma, endometrial-myometrial neoplasm such as endometrial stromal sarcoma, pregnancy-related lesions in the endometrial cavity such as gestational trophoblastic diseases (hydatidiform mole, invasive mole and choriocarcinoma) and placental polyp, myometrial lesions simulating endometrial lesions such as submucosal leiomyoma and some adenomyosis, endometrial neoplasms simulating myometrial lesions such as adenomyomatous polyp and endometrial lesions arising in the hemicavity of a septate/bicornate uterus, and fluid collections in the uterine cavity (hydro/hemato/pyometra). It is important to recognize various imaging findings in these diseases, in order to make a correct preoperative diagnosis. (orig.)

  3. Sound absorption and transmission through flexible micro-perforated panels backed by an air layer and a thin plate.

    Science.gov (United States)

    Bravo, Teresa; Maury, Cédric; Pinhède, Cédric

    2012-05-01

    This paper describes theoretical and experimental investigations into the sound absorption and transmission properties of micro-perforated panels (MPP) backed by an air cavity and a thin plate. A fully coupled modal approach is proposed to calculate the absorption coefficient and the transmission loss of finite-sized micro-perforated panels-cavity-panel (MPPCP) partitions with conservative boundary conditions. It is validated against infinite partition models and experimental data. A practical methodology is proposed using collocated pressure-velocity sensors to evaluate in an anechoic environment the transmission and absorption properties of conventional MPPCPs. Results show under which conditions edge scattering effects should be accounted for at low frequencies. Coupled mode analysis is also performed and analytical approximations are derived from the resonance frequencies and mode shapes of a flexible MPPCP. It is found that the Helmholtz-type resonance frequency is deduced from the one associated to the rigidly backed MPPCP absorber shifted up by the mass-air mass resonance of the flexible non-perforated double-panel. Moreover, it is shown analytically and experimentally that the absorption mechanisms at the resonances are governed by a large air-frame relative velocity over the MPP surface, with either in-phase or out-of-phase relationships, depending on the MPPCP parameters.

  4. Exact results for emission from one and two atoms in an ideal cavity at multiphoton resonance

    International Nuclear Information System (INIS)

    Fam Le Kien; Shumovskij, A.S.; Tran Quang.

    1987-01-01

    The emission from the system of one or two two-level atoms in an ideal cavity with one mode at mutiphoton resonance is examined. Exact results for the two-time dipole correlation function and the time-dependent spectra of multiphoton-induced fluorescence are presented

  5. Comparison of four computational methods for computing Q factors and resonance wavelengths in photonic crystal membrane cavities

    DEFF Research Database (Denmark)

    de Lasson, Jakob Rosenkrantz; Frandsen, Lars Hagedorn; Burger, Sven

    2016-01-01

    We benchmark four state-of-the-art computational methods by computing quality factors and resonance wavelengths in photonic crystal membrane L5 and L9 line defect cavities.The convergence of the methods with respect to resolution, degrees of freedom and number ofmodes is investigated. Special att...... attention is paid to the influence of the size of the computational domain. Convergence is not obtained for some of the methods, indicating that some are moresuitable than others for analyzing line defect cavities....

  6. Optimal resonance configuration for ultrasonic wireless power transmission to millimeter-sized biomedical implants.

    Science.gov (United States)

    Miao Meng; Kiani, Mehdi

    2016-08-01

    In order to achieve efficient wireless power transmission (WPT) to biomedical implants with millimeter (mm) dimensions, ultrasonic WPT links have recently been proposed. Operating both transmitter (Tx) and receiver (Rx) ultrasonic transducers at their resonance frequency (fr) is key in improving power transmission efficiency (PTE). In this paper, different resonance configurations for Tx and Rx transducers, including series and parallel resonance, have been studied to help the designers of ultrasonic WPT links to choose the optimal resonance configuration for Tx and Rx that maximizes PTE. The geometries for disk-shaped transducers of four different sets of links, operating at series-series, series-parallel, parallel-series, and parallel-parallel resonance configurations in Tx and Rx, have been found through finite-element method (FEM) simulation tools for operation at fr of 1.4 MHz. Our simulation results suggest that operating the Tx transducer with parallel resonance increases PTE, while the resonance configuration of the mm-sized Rx transducer highly depends on the load resistance, Rl. For applications that involve large Rl in the order of tens of kΩ, a parallel resonance for a mm-sized Rx leads to higher PTE, while series resonance is preferred for Rl in the order of several kΩ and below.

  7. Superconducting cavity driving with FPGA controller

    Energy Technology Data Exchange (ETDEWEB)

    Czarski, T.; Koprek, W.; Pozniak, K.T.; Romaniuk, R.S. [Warsaw Univ. of Technology (Poland); Simrock, S.; Brand, A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Chase, B.; Carcagno, R.; Cancelo, G. [Fermi National Accelerator Lab., Batavia, IL (United States); Koeth, T.W. [Rutgers - the State Univ. of New Jersey, NJ (United States)

    2006-07-01

    The digital control of several superconducting cavities for a linear accelerator is presented. The laboratory setup of the CHECHIA cavity and ACC1 module of the VU-FEL TTF in DESY-Hamburg have both been driven by a Field Programmable Gate Array (FPGA) based system. Additionally, a single 9-cell TESLA Superconducting cavity of the FNPL Photo Injector at FERMILAB has been remotely controlled from WUT-ISE laboratory with the support of the DESY team using the same FPGA control system. These experiments focused attention on the general recognition of the cavity features and projected control methods. An electrical model of the resonator was taken as a starting point. Calibration of the signal path is considered key in preparation for the efficient driving of a cavity. Identification of the resonator parameters has been proven to be a successful approach in achieving required performance; i.e. driving on resonance during filling and field stabilization during flattop time while requiring reasonable levels of power consumption. Feed-forward and feedback modes were successfully applied in operating the cavities. Representative results of the experiments are presented for different levels of the cavity field gradient. (orig.)

  8. Superconducting cavity driving with FPGA controller

    International Nuclear Information System (INIS)

    Czarski, T.; Koprek, W.; Pozniak, K.T.; Romaniuk, R.S.; Simrock, S.; Brand, A.; Chase, B.; Carcagno, R.; Cancelo, G.; Koeth, T.W.

    2006-01-01

    The digital control of several superconducting cavities for a linear accelerator is presented. The laboratory setup of the CHECHIA cavity and ACC1 module of the VU-FEL TTF in DESY-Hamburg have both been driven by a Field Programmable Gate Array (FPGA) based system. Additionally, a single 9-cell TESLA Superconducting cavity of the FNPL Photo Injector at FERMILAB has been remotely controlled from WUT-ISE laboratory with the support of the DESY team using the same FPGA control system. These experiments focused attention on the general recognition of the cavity features and projected control methods. An electrical model of the resonator was taken as a starting point. Calibration of the signal path is considered key in preparation for the efficient driving of a cavity. Identification of the resonator parameters has been proven to be a successful approach in achieving required performance; i.e. driving on resonance during filling and field stabilization during flattop time while requiring reasonable levels of power consumption. Feed-forward and feedback modes were successfully applied in operating the cavities. Representative results of the experiments are presented for different levels of the cavity field gradient. (orig.)

  9. Resonance phenomena near thresholds

    International Nuclear Information System (INIS)

    Persson, E.; Mueller, M.; Rotter, I.; Technische Univ. Dresden

    1995-12-01

    The trapping effect is investigated close to the elastic threshold. The nucleus is described as an open quantum mechanical many-body system embedded in the continuum of decay channels. An ensemble of compound nucleus states with both discrete and resonance states is investigated in an energy-dependent formalism. It is shown that the discrete states can trap the resonance ones and also that the discrete states can directly influence the scattering cross section. (orig.)

  10. Three-dimensional FDTD Modeling of Earth-ionosphere Cavity Resonances

    Science.gov (United States)

    Yang, H.; Pasko, V. P.

    2003-12-01

    Resonance properties of the earth-ionosphere cavity were first predicted by W. O. Schumann in 1952 [Schumann, Z. Naturforsch. A, 7, 149, 1952]. Since then observations of extremely low frequency (ELF) signals in the frequency range 1-500 Hz have become a powerful tool for monitoring of global lightning activity and planetary scale variability of the lower ionosphere, as well as, in recent years, for location and remote sensing of sprites, jets and elves and associated lightning discharges [e.g., Sato et al., JASTP, 65, 607, 2003; Su et al., Nature, 423, 974, 2003; and references cited therein]. The simplicity and flexibility of finite difference time domain (FDTD) technique for finding first principles solutions of electromagnetic problems in a medium with arbitrary inhomogeneities and ever-increasing computer power make FDTD an excellent candidate to be the technique of the future in development of realistic numerical models of VLF/ELF propagation in Earth-ionosphere waveguide [Cummer, IEEE Trans. Antennas Propagat., 48, 1420, 2000], and several reports about successful application of the FDTD technique for solution of related problems have recently appeared in the literature [e.g., Thevenot et al., Ann. Telecommun., 54, 297, 1999; Cummer, 2000; Berenger, Ann. Telecommun., 57, 1059, 2002, Simpson and Taflove, IEEE Antennas Wireless Propagat. Lett., 1, 53, 2002]. In this talk we will present results from a new three-dimensional spherical FDTD model, which is designed for studies of ELF electromagnetic signals under 100 Hz in the earth-ionosphere cavity. The model accounts for a realistic latitudinal and longitudinal variation of ground conductivity (i.e., for the boundaries between oceans and continents) by employing a broadband surface impedance technique proposed in [Breggs et al., IEEE Trans. Antenna Propagat., 41, 118, 1993]. The realistic distributions of atmospheric/lower ionospheric conductivity are derived from the international reference ionosphere model

  11. Theory of threshold phenomena

    International Nuclear Information System (INIS)

    Hategan, Cornel

    2002-01-01

    Theory of Threshold Phenomena in Quantum Scattering is developed in terms of Reduced Scattering Matrix. Relationships of different types of threshold anomalies both to nuclear reaction mechanisms and to nuclear reaction models are established. Magnitude of threshold effect is related to spectroscopic factor of zero-energy neutron state. The Theory of Threshold Phenomena, based on Reduced Scattering Matrix, does establish relationships between different types of threshold effects and nuclear reaction mechanisms: the cusp and non-resonant potential scattering, s-wave threshold anomaly and compound nucleus resonant scattering, p-wave anomaly and quasi-resonant scattering. A threshold anomaly related to resonant or quasi resonant scattering is enhanced provided the neutron threshold state has large spectroscopic amplitude. The Theory contains, as limit cases, Cusp Theories and also results of different nuclear reactions models as Charge Exchange, Weak Coupling, Bohr and Hauser-Feshbach models. (author)

  12. Tuner Design for PEFP Superconducting RF Cavities

    International Nuclear Information System (INIS)

    Tang, Yazhe; An, Sun; Zhang, Liping; Cho, Yong Sub

    2009-01-01

    A superconducting radio frequency (SRF) cavity will be used to accelerate a proton beam after 100 MeV at 700 MHz in a linac of the Proton Engineering Frontier Project (PEFP) and its extended project. In order to control the SRF cavity's operating frequency at a low temperature, a new tuner has been developed for the PEFP SRF cavities. Each PEFP superconducting RF cavity has one tuner to match the cavity resonance frequency with the desired accelerator operating frequency; or to detune a cavity frequency a few bandwidths away from a resonance, so that the beam will not excite the fundamental mode, when the cavity is not being used for an acceleration. The PEFP cavity tuning is achieved by varying the total length of the cavity. The length of the cavity is controlled differentially by tuner acting with respect to the cavity body. The PEFP tuner is attached to the helium vessel and drives the cavity Field Probe (FP) side to change the frequency of the cavity

  13. Circuit QED with 3D cavities

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Edwar; Baust, Alexander; Zhong, Ling; Gross, Rudolf [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Nanosystems Initiative Munich (NIM), Muenchen (Germany); Anderson, Gustav; Wang, Lujun; Eder, Peter; Fischer, Michael; Goetz, Jan; Haeberlein, Max; Schwarz, Manuel; Wulschner, Karl Friedrich; Deppe, Frank; Fedorov, Kirill; Huebl, Hans; Menzel, Edwin [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Marx, Achim [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany)

    2015-07-01

    In typical circuit QED systems on-chip superconducting qubits are coupled to integrated coplanar microwave resonators. Due to the planar geometry, the resonators are often a limiting factor regarding the total coherence of the system. Alternatively, similar hybrid systems can be realized using 3D microwave cavities. Here, we present design considerations for the 3D microwave cavity as well as the superconducting transmon qubit. Moreover, we show experimental data of a high purity aluminum cavity demonstrating quality factors above 1.4 .10{sup 6} at the single photon level and a temperature of 50 mK. Our experiments also demonstrate that the quality factor is less dependent on the power compared to planar resonator geometries. Furthermore, we present strategies for tuning both the cavity and the qubit individually.

  14. The combined effect of side-coupled gain cavity and lossy cavity on the plasmonic response of metal-dielectric-metal surface plasmon polariton waveguide

    International Nuclear Information System (INIS)

    Zhu, Qiong-gan; Wang, Zhi-guo; Tan, Wei

    2014-01-01

    The combined effect of side-coupled gain cavity and lossy cavity on the plasmonic response of metal-dielectric-metal (MDM) surface plasmon polariton (SPP) waveguide is investigated theoretically using Green's function method. Our result suggests that the gain and loss parameters influence the amplitude and phase of the fields localized in the two cavities. For the case of balanced gain and loss, the fields of the two cavities are always of equi-amplitude but out of phase. A plasmon induced transparency (PIT)-like transmission peak can be achieved by the destructive interference of two fields with anti-phase. For the case of unbalanced gain and loss, some unexpected responses of structure are generated. When the gain is more than the loss, the system response is dissipative at around the resonant frequency of the two cavities, where the sum of reflectance and transmittance becomes less than one. This is because the lossy cavity, with a stronger localized field, makes the main contribution to the system response. When the gain is less than the loss, the reverse is true. It is found that the metal loss dissipates the system energy but facilitates the gain cavity to make a dominant effect on the system response. This mechanism may have a potential application for optical amplification and for a plasmonic waveguide switch. (paper)

  15. A Plasmonic Temperature-Sensing Structure Based on Dual Laterally Side-Coupled Hexagonal Cavities

    Directory of Open Access Journals (Sweden)

    Yiyuan Xie

    2016-05-01

    Full Text Available A plasmonic temperature-sensing structure, based on a metal-insulator-metal (MIM waveguide with dual side-coupled hexagonal cavities, is proposed and numerically investigated by using the finite-difference time-domain (FDTD method in this paper. The numerical simulation results show that a resonance dip appears in the transmission spectrum. Moreover, the full width of half maximum (FWHM of the resonance dip can be narrowed down, and the extinction ratio can reach a maximum value by tuning the coupling distance between the waveguide and two cavities. Based on a linear relationship between the resonance dip and environment temperature, the temperature-sensing characteristics are discussed. The temperature sensitivity is influenced by the side length and the coupling distance. Furthermore, for the first time, two concepts—optical spectrum interference (OSI and misjudge rate (MR—are introduced to study the temperature-sensing resolution based on spectral interrogation. This work has some significance in the design of nanoscale optical sensors with high temperature sensitivity and a high sensing resolution.

  16. Results on the interaction of an intense bunched electron beam with resonant cavities at 35 GHz

    CERN Document Server

    Gardelle, J; Rullier, J L; Vermare, C; Wuensch, Walter; Lidia, S M; Westenskow, G A; Donohue, J T; Meurdesoif, Y; Lekston, J M; MacKay, W W

    1999-01-01

    The Two-Beam Accelerator (TBA) concept is currently being investigated both at Lawrence Berkeley National Laboratory (LBNL) and at CERN. As part of this program, a 7 MeV, 1-kA electron beam produced by the PIVAIR accelerator at CESTA has been used to power a free electron laser (FEL) amplifier at 35 GHz. At the FEL exit, the bunched electron beam is transported and focused into a resonant cavity built by the CLIC group at CERN. The power and frequency of the microwave output generated when the bunched beam traverses two different cavities are measured. (7 refs).

  17. Nanoscale resonant-cavity-enhanced germanium photodetectors with lithographically defined spectral response for improved performance at telecommunications wavelengths.

    Science.gov (United States)

    Balram, Krishna C; Audet, Ross M; Miller, David A B

    2013-04-22

    We demonstrate the use of a subwavelength planar metal-dielectric resonant cavity to enhance the absorption of germanium photodetectors at wavelengths beyond the material's direct absorption edge, enabling high responsivity across the entire telecommunications C and L bands. The resonant wavelength of the detectors can be tuned linearly by varying the width of the Ge fin, allowing multiple detectors, each resonant at a different wavelength, to be fabricated in a single-step process. This approach is promising for the development of CMOS-compatible devices suitable for integrated, high-speed, and energy-efficient photodetection at telecommunications wavelengths.

  18. High-Q Fabry–Pérot Micro-Cavities for High-Sensitivity Volume Refractometry

    Directory of Open Access Journals (Sweden)

    Noha Gaber

    2018-01-01

    Full Text Available This work reports a novel structure for a Fabry–Pérot micro cavity that combines the highest reported quality factor for an on-chip Fabry–Pérot resonator that exceeds 9800, and a very high sensitivity for an on-chip volume refractometer based on a Fabry–Pérot cavity that is about 1000 nm/refractive index unit (RIU. The structure consists of two cylindrical Bragg micromirrors that achieve confinement of the Gaussian beam in the plan parallel to the chip substrate, while for the perpendicular plan, external fiber rod lenses (FRLs are placed in the optical path of the input and the output of the cavity. This novel structure overcomes number of the drawbacks presented in previous designs. The analyte is passed between the mirrors, enabling its detection from the resonance peak wavelengths of the transmission spectra. Mixtures of ethanol and deionized (DI-water with different ratios are used as analytes with different refractive indices to exploit the device as a micro-opto-fluidic refractometer. The design criteria are detailed and the modeling is based on Gaussian-optics equations, which depicts a scenario closer to reality than the usually used ray-optics modeling.

  19. Electromagnetically induced transparency (EIT)-like transmission in side-coupled complementary split-ring resonators.

    Science.gov (United States)

    Guo, Yinghui; Yan, Lianshan; Pan, Wei; Luo, Bin; Wen, Kunhua; Guo, Zhen; Luo, Xiangang

    2012-10-22

    We investigate a plasmonic waveguide system based on side-coupled complementary split-ring resonators (CSRR), which exhibits electromagnetically induced transparency (EIT)-like transmission. LC resonance model is utilized to explain the electromagnetic responses of CSRR, which is verified by simulation results of finite difference time domain method. The electromagnetic responses of CSRR can be flexible handled by changing the asymmetry degree of the structure and the width of the metallic baffles. Cascaded CSRRs also have been studied to obtain EIT-like transmission at visible and near-infrared region, simultaneously.

  20. Effects of Freestream Turbulence on Cavity Tone and Sound Source

    Directory of Open Access Journals (Sweden)

    Hiroshi Yokoyama

    2016-01-01

    Full Text Available To clarify the effects of freestream turbulence on cavity tones, flow and acoustic fields were directly predicted for cavity flows with various intensities of freestream turbulence. The freestream Mach number was 0.09 and the Reynolds number based on the cavity length was 4.0 × 104. The depth-to-length ratio of the cavity, D/L, was 0.5 and 2.5, where the acoustic resonance of a depth-mode occurs for D/L = 2.5. The incoming boundary layer was laminar. The results for the intensity of freestream turbulence of Tu = 2.3% revealed that the reduced level of cavity tones in a cavity flow with acoustic resonance (D/L=2.5 was greater than that without acoustic resonance (D/L=0.5. To clarify the reason for this, the sound source based on Lighthill’s acoustic analogy was computed, and the contributions of the intensity and spanwise coherence of the sound source to the reduction of the cavity tone were estimated. As a result, the effects of the reduction of spanwise coherence on the cavity tone were greater in the cavity flow with acoustic resonance than in that without resonance, while the effects of the intensity were comparable for both flows.

  1. Study of the effect of loop inductance on the RF transmission line to cavity coupling coefficient

    International Nuclear Information System (INIS)

    Lal, Shankar; Pant, K. K.

    2016-01-01

    Coupling of RF power is an important aspect in the design and development of RF accelerating structures. RF power coupling employing coupler loops has the advantage of tunability of β, the transmission line to cavity coupling coefficient. Analytical expressions available in literature for determination of size of the coupler loop using Faraday’s law of induction show reasonably good agreement with experimentally measured values of β below critical coupling (β ≤ 1) but show large deviation with experimentally measured values and predictions by simulations for higher values of β. In actual accelerator application, many RF cavities need to be over-coupled with β > 1 for reasons of beam loading compensation, reduction of cavity filling time, etc. This paper discusses a modified analytical formulation by including the effect of loop inductance in the determination of loop size for any desired coupling coefficient. The analytical formulation shows good agreement with 3D simulations and with experimentally measured values. It has been successfully qualified by the design and development of power coupler loops for two 476 MHz pre-buncher RF cavities, which have successfully been conditioned at rated power levels using these coupler loops.

  2. Investigation on computation of elliptical microwave plasma cavity

    Science.gov (United States)

    Liao, Xiaoli; Liu, Hua; Zhang, Kai

    2008-12-01

    In recent years, the advance of the elliptical resonant cavity and focus cavity is known by many people. There are homogeneous and multipatternal virtues in the focus dimensional microwave field of the elliptical resonant cavity. It is very suitable for applying the low power microwave biological effect equipment. However, when designing the elliptical resonant cavity may meet the problems of complex and huge computation need to be solved. This paper proposed the simple way of approximate processing the Mathieu function. It can greatly simplify the difficulty and decrease the scale of computation. This method can satisfy the requirements of research and development within project permitted precision.

  3. Reflectance distribution in optimal transmittance cavities: The remains of a higher dimensional space

    International Nuclear Information System (INIS)

    Naumis, Gerardo G.; Bazan, A.; Torres, M.; Aragon, J.L.; Quintero-Torres, R.

    2008-01-01

    One of the few examples in which the physical properties of an incommensurable system reflect an underlying higher dimensionality is presented. Specifically, we show that the reflectivity distribution of an incommensurable one-dimensional cavity is given by the density of states of a tight-binding Hamiltonian in a two-dimensional triangular lattice. Such effect is due to an independent phase decoupling of the scattered waves, produced by the incommensurable nature of the system, which mimics a random noise generator. This principle can be applied to design a cavity that avoids resonant reflections for almost any incident wave. An optical analogy, by using three mirrors with incommensurable distances between them, is also presented. Such array produces a countable infinite fractal set of reflections, a phenomena which is opposite to the effect of optical invisibility

  4. Stochastic Resonance-Like and Resonance Suppression-Like Phenomena in a Bistable System with Time Delay and Additive Noise

    International Nuclear Information System (INIS)

    Shu Chang-Zheng; Nie Lin-Ru; Zhou Zhong-Rao

    2012-01-01

    Stochastic resonance (SR)-like and resonance suppression (RS)-like phenomena in a time-delayed bistable system driven by additive white noise are investigated by means of stochastic simulations of the power spectrum, the quality factor of the power spectrum, and the mean first-passage time (MFPT) of the system. The calculative results indicate that: (i) as the system is driven by a small periodic signal, the quality factor as a function delay time exhibits a maximal value at smaller noise intensities, i.e., an SR-like phenomenon. With the increment in additive noise intensity, the extremum gradually disappears and the quality factor decreases monotonously with delay time. (ii) As the additive noise intensity is smaller, the curve of the MFPT with respect to delay time displays a peak, i.e., an RS-like phenomenon. At higher levels of noise, however, the non-monotonic behavior is lost. (general)

  5. Optimization of three-dimensional micropost microcavities for cavity quantum electrodynamics

    International Nuclear Information System (INIS)

    Vuckovic, Jelena; Pelton, Matthew; Scherer, Axel; Yamamoto, Yoshihisa

    2002-01-01

    This paper presents a detailed analysis, based on the first-principles finite-difference time-domain method, of the resonant frequency, quality factor (Q), mode volume (V), and radiation pattern of the fundamental (HE 11 ) mode in a three-dimensional distributed-Bragg-reflector (DBR) micropost microcavity. By treating this structure as a one-dimensional cylindrical photonic crystal containing a single defect, we are able to push the limits of Q/V beyond those achievable by standard micropost designs, based on the simple rules established for planar DBR microcavities. We show that some of the rules that work well for designing large-diameter microposts (e.g., high-refractive-index contrast) fail to provide high-quality cavities with small diameters. By tuning the thicknesses of mirror layers and the spacer, the number of mirror pairs, the refractive indices of high- and low-refractive index regions, and the cavity diameter, we are able to achieve Q as high as 10 4 , together with a mode volume of 1.6 cubic wavelengths of light in the high-refractive-index material. The combination of high Q and small V makes these structures promising candidates for the observation of such cavity-quantum-electrodynamics phenomena as strong coupling between a quantum dot and the cavity field, and single-quantum-dot lasing

  6. 150 Mb/s wifi transmission over 50m large core diameter step index POF

    NARCIS (Netherlands)

    Shi, Y.; Nieto Munoz, M.; Okonkwo, C.M.; Boom, van den H.P.A.; Tangdiongga, E.; Koonen, A.M.J.

    2011-01-01

    We demonstrate successful transmission of WiFi signals over 50m step-index plastic optical fibre with 1mm core diameter employing an eye-safe resonant cavity light emitting diode and an avalanche photodetector. The EVM performance of 4.1% at signal data rate of 150Mb/s is achieved.

  7. Transmission-line resonators for the study of individual two-level tunneling systems

    Science.gov (United States)

    Brehm, Jan David; Bilmes, Alexander; Weiss, Georg; Ustinov, Alexey V.; Lisenfeld, Jürgen

    2017-09-01

    Parasitic two-level tunneling systems (TLS) emerge in amorphous dielectrics and constitute a serious nuisance for various microfabricated devices, where they act as a source of noise and decoherence. Here, we demonstrate a new test bed for the study of TLS in various materials which provides access to properties of individual TLS as well as their ensemble response. We terminate a superconducting transmission-line resonator with a capacitor that hosts TLS in its dielectric. By tuning TLS via applied mechanical strain, we observe the signatures of individual TLS strongly coupled to the resonator in its transmission characteristics and extract the coupling components of their dipole moments and energy relaxation rates. The strong and well-defined coupling to the TLS bath results in pronounced resonator frequency fluctuations and excess phase noise, through which we can study TLS ensemble effects such as spectral diffusion, and probe theoretical models of TLS interactions.

  8. Superconducting cavity driving with FPGA controller

    International Nuclear Information System (INIS)

    Czarski, Tomasz; Koprek, Waldemar; Pozniak, Krzysztof T.; Romaniuk, Ryszard S.; Simrock, Stefan; Brandt, Alexander; Chase, Brian; Carcagno, Ruben; Cancelo, Gustavo; Koeth, Timothy W.

    2006-01-01

    A digital control of superconducting cavities for a linear accelerator is presented. FPGA-based controller, supported by Matlab system, was applied. Electrical model of a resonator was used for design of a control system. Calibration of the signal path is considered. Identification of cavity parameters has been carried out for adaptive control algorithm. Feed-forward and feedback modes were applied in operating the cavities. Required performance has been achieved; i.e. driving on resonance during filling and field stabilization during flattop time, while keeping reasonable level of the power consumption. Representative results of the experiments are presented for different levels of the cavity field gradient

  9. Deterministic quantum state transfer between remote qubits in cavities

    Science.gov (United States)

    Vogell, B.; Vermersch, B.; Northup, T. E.; Lanyon, B. P.; Muschik, C. A.

    2017-12-01

    Performing a faithful transfer of an unknown quantum state is a key challenge for enabling quantum networks. The realization of networks with a small number of quantum links is now actively pursued, which calls for an assessment of different state transfer methods to guide future design decisions. Here, we theoretically investigate quantum state transfer between two distant qubits, each in a cavity, connected by a waveguide, e.g., an optical fiber. We evaluate the achievable success probabilities of state transfer for two different protocols: standard wave packet shaping and adiabatic passage. The main loss sources are transmission losses in the waveguide and absorption losses in the cavities. While special cases studied in the literature indicate that adiabatic passages may be beneficial in this context, it remained an open question under which conditions this is the case and whether their use will be advantageous in practice. We answer these questions by providing a full analysis, showing that state transfer by adiabatic passage—in contrast to wave packet shaping—can mitigate the effects of undesired cavity losses, far beyond the regime of coupling to a single waveguide mode and the regime of lossless waveguides, as was proposed so far. Furthermore, we show that the photon arrival probability is in fact bounded in a trade-off between losses due to non-adiabaticity and due to coupling to off-resonant waveguide modes. We clarify that neither protocol can avoid transmission losses and discuss how the cavity parameters should be chosen to achieve an optimal state transfer.

  10. Plasmonic nano-sensor based on metal-dielectric-metal waveguide with the octagonal cavity ring

    Science.gov (United States)

    Ghorbani, Saeed; Dashti, Mohammad Ali; Jabbari, Masoud

    2018-06-01

    In this paper, a refractive index plasmonic sensor including a waveguide of metal–insulator–metal with side coupled octagonal cavity ring has been suggested. The sensory and transmission feature of the structure has been analyzed numerically using Finite Element Method numerical solution. The effect of coupling distance and changing the width of metal–insulator–metal waveguide and refractive index of the dielectric located inside octagonal cavity—which are the effective factors in determining the sensory feature—have been examined so completely that the results of the numerical simulation show a linear relation between the resonance wavelength and refractive index of the liquid/gas dielectric material inside the octagonal cavity ring. High sensitivity of the sensor in the resonance wavelength, simplicity and a compact geometry are the advantages of the refractive plasmonic sensor advised which make that possible to use it for designing high performance nano-sensor and bio-sensing devices.

  11. Optical transmission properties of an anisotropic defect cavity in one-dimensional photonic crystal

    Science.gov (United States)

    Ouchani, Noama; El Moussaouy, Abdelaziz; Aynaou, Hassan; El Hassouani, Youssef; El Boudouti, El Houssaine; Djafari-Rouhani, Bahram

    2018-01-01

    We investigate theoretically the possibility to control the optical transmission in the visible and infrared regions by a defective one dimensional photonic crystal formed by a combination of a finite isotropic superlattice and an anisotropic defect layer. The Green's function approach has been used to derive the reflection and the transmission coefficients, as well as the densities of states of the optical modes. We evaluate the delay times of the localized modes and we compare their behavior with the total densities of states. We show that the birefringence of an anisotropic defect layer has a significant impact on the behavior of the optical modes in the electromagnetic forbidden bands of the structure. The amplitudes of the defect modes in the transmission and the delay time spectrum, depend strongly on the position of the cavity layer within the photonic crystal. The anisotropic defect layer induces transmission zeros in one of the two components of the transmission as a consequence of a destructive interference of the two polarized waves within this layer, giving rise to negative delay times for some wavelengths in the visible and infrared light ranges. This property is a typical characteristic of the anisotropic photonic layer and is without analogue in their counterpart isotropic defect layers. This structure offers several possibilities for controlling the frequencies, transmitted intensities and the delay times of the optical modes in the visible and infrared regions. It can be a good candidate for realizing high-precision optical filters.

  12. Measurement and resonance analysis of neutron transmissions through four samples of 238U

    International Nuclear Information System (INIS)

    Olsen, D.K.; de Saussure, G.; Perez, R.B.; Difilippo, F.C.; Ingle, R.W.

    1977-01-01

    Accurate total and partial cross sections for 238 U are important for nuclear reactor design. In the resolved resonance region, energies below 4.0 keV, these cross sections are described in terms of individual resonance parameters of which the neutron widths in the 1.5 to 4.0 keV region from various workers appear discrepant. In order to determine these widths, (0.880 to 100.0 keV) neutron transmissions through 0.076, 0.254, 1.080, and 3.620 cm thick enriched 238 U samples were measured, and (0.880 to 100.0 keV) range transmissions were analyzed

  13. Low loss mid-IR transmission bands using silica hollow-core anisotropic anti-resonant fibers

    DEFF Research Database (Denmark)

    Habib, Selim; Bang, Ole; Bache, Morten

    2016-01-01

    In this paper, a node-free anisotropic hollow-core anti-resonant fiber has been proposed to give low transmission loss in the near-IR to mid-IR spectral regime. The proposed silica-based fiber design shows transmission loss below 10 dB/km at 2.94 μm with multiple low loss transmission bands. Tran...

  14. Analysis of the resonance frequency shift in cylindrical cavities containing a sphere and its prediction based on the Boltzmann-Ehrenfest principle

    DEFF Research Database (Denmark)

    Orozco Santillán, Arturo; Cutanda Henriquez, Vicente

    2008-01-01

    of the cavity due to the presence of the levitated object. The Boltzmann-Ehrenfest principle has been used to obtain an analytical expression for the resonance frequency shift in a cylindrical cavity produced by a small sphere, with kR .... The validity of the Boltzmann-Ehrenfest method has been investigated by means of the Boundary Element Method (BEM) and confirmed with experiments....

  15. Superconducting rf and beam-cavity interactions

    International Nuclear Information System (INIS)

    Bisognano, J.J.

    1987-01-01

    Beam-cavity interactions can limit the beam quality and current handling capability of linear and circular accelerators. These collective effects include cumulative and regenerative transverse beam breakup (BBU) in linacs, transverse multipass beam breakup in recirculating linacs and microtrons, longitudinal and transverse coupled-bunch instabilities in storage rings, and a variety of transverse and longitudinal single-bunch phenomena (instabilities, beam breakup, and energy deposition). The superconducting radio frequency (SRF) environment has a number of features which distinguish it from room temperature configuration with regard to these beam-cavity interactions. Typically the unloaded Qs of the lower higher order modes (HOM) are at the 10 9 level and require significant damping through couplers. High gradient CW operation, which is a principal advantage of SRF, allows for better control of beam quality, which for its preservation requires added care which respect to collective phenomena. Gradients are significantly higher than those attainable with copper in CW operation but remain significantly lower than those obtainable with pulsed copper cavities. Finally, energy deposition by the beam into the cavity can occur in a cryogenic environment. In this note those characteristics of beam-cavity interactions which are of particular importance for superconducting RF cavities are highlighted. 6 refs., 4 figs

  16. A Review of Low Frequency Electromagnetic Wave Phenomena Related to Tropospheric-Ionospheric Coupling Mechanisms

    Science.gov (United States)

    Simoes, Fernando; Pfaff, Robert; Berthelier, Jean-Jacques; Klenzing, Jeffrey

    2012-01-01

    Investigation of coupling mechanisms between the troposphere and the ionosphere requires a multidisciplinary approach involving several branches of atmospheric sciences, from meteorology, atmospheric chemistry, and fulminology to aeronomy, plasma physics, and space weather. In this work, we review low frequency electromagnetic wave propagation in the Earth-ionosphere cavity from a troposphere-ionosphere coupling perspective. We discuss electromagnetic wave generation, propagation, and resonance phenomena, considering atmospheric, ionospheric and magnetospheric sources, from lightning and transient luminous events at low altitude to Alfven waves and particle precipitation related to solar and magnetospheric processes. We review in situ ionospheric processes as well as surface and space weather phenomena that drive troposphere-ionosphere dynamics. Effects of aerosols, water vapor distribution, thermodynamic parameters, and cloud charge separation and electrification processes on atmospheric electricity and electromagnetic waves are reviewed. We also briefly revisit ionospheric irregularities such as spread-F and explosive spread-F, sporadic-E, traveling ionospheric disturbances, Trimpi effect, and hiss and plasma turbulence. Regarding the role of the lower boundary of the cavity, we review transient surface phenomena, including seismic activity, earthquakes, volcanic processes and dust electrification. The role of surface and atmospheric gravity waves in ionospheric dynamics is also briefly addressed. We summarize analytical and numerical tools and techniques to model low frequency electromagnetic wave propagation and solving inverse problems and summarize in a final section a few challenging subjects that are important for a better understanding of tropospheric-ionospheric coupling mechanisms.

  17. Basic principles of RF superconductivity and superconducting cavities

    OpenAIRE

    Schmüser, P

    2006-01-01

    The basics of superconductivity are outlined with special emphasis on the features which are relevant for the application of superconductors in radio frequency cavities for particle acceleration. For a cylindrical resonator (“pill box cavity”) the electromagnetic field in the cavity and important parameters such as resonance frequency, quality factor and shunt impedance are calculated analytically. The design and performance of practical cavities is shortly addressed.

  18. Upper Hybrid Resonance of Microwaves with a Large Magnetized Plasma Sheet

    International Nuclear Information System (INIS)

    Huo Wenqing; Guo Shijie; Ding Liang; Xu Yuemin

    2013-01-01

    A large magnetized plasma sheet with size of 60 cm × 60 cm × 2 cm was generated by a linear hollow cathode discharge under the confinement of a uniform magnetic field generated by a Helmholtz Coil. The microwave transmission characteristic of the plasma sheet was measured for different incident frequencies, in cases with the electric field polarization of the incident microwave either perpendicular or parallel to the magnetic field. In this measurement, parameters of the plasma sheet were changed by varying the discharge current and magnetic field intensity. In the experiment, upper hybrid resonance phenomena were observed when the electric field polarization of the incident wave was perpendicular to the magnetic field. These resonance phenomena cannot be found in the case of parallel polarization incidence. This result is consistent with theoretical consideration. According to the resonance condition, the electron density values at the resonance points are calculated under various experimental conditions. This kind of resonance phenomena can be used to develop a specific method to diagnose the electron density of this magnetized plasma sheet apparatus. Moreover, it is pointed out that the operating parameters of the large plasma sheet in practical applications should be selected to keep away from the upper hybrid resonance point to prevent signals from polarization distortion

  19. Analysis of transmission efficiency of the superconducting resonance coil according the materials of cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yu Kyeong; Hwang, Jun Won; Choi, Hyo Sang [Chosun University, Gwangju (Korea, Republic of)

    2016-03-15

    The wireless power transfer (WPT) system using a magnetic resonance was based on magnetic resonance coupling of the transmission and the receiver coils. In these system, it is important to maintain a high quality-factor (Q-factor) to increase the transmission efficiency of WPT system. Our research team used a superconducting coil to increase the Q-factor of the magnetic resonance coil in WPT system. When the superconductor is applied in these system, we confirmed that transmission efficiency of WPT system was higher than normal conductor coil through a preceding study. The efficiency of the transmission and the receiver coil is affected by the magnetic shielding effect of materials around the coils. The magnetic shielding effect is dependent on the type, thickness, frequency, distance, shape of materials. Therefore, it is necessary to study the WPT system on the basis of these conditions. In this paper, the magnetic shield properties of the cooling system were analyzed using the High-Frequency Structure Simulation (HFSS, Ansys) program. We have used the shielding materials such as plastic, aluminum and iron, etc. As a result, when we applied the fiber reinforced polymer (FRP), the transmission efficiency of WPT was not affected because electromagnetic waves went through the FRP. On the other hand, in case of a iron and aluminum, transmission efficiency was decreased because of their electromagnetic shielding effect. Based on these results, the research to improve the transmission efficiency and reliability of WPT system is continuously necessary.

  20. Design and Analysis of Enhanced Modulation Response in Integrated Coupled Cavities DBR Lasers Using Photon-Photon Resonance

    Directory of Open Access Journals (Sweden)

    Paolo Bardella

    2016-01-01

    Full Text Available In the last few decades, various solutions have been proposed to increase the modulation bandwidth and, consequently, the transmission bit-rate of semiconductor lasers. In this manuscript, we discuss a design procedure for a recently proposed laser cavity realized with the monolithic integration of two distributed Bragg reflector (DBR lasers allowing one to extend the modulation bandwidth. Such an extension is obtained introducing in the dynamic response a photon-photon resonance (PPR at a frequency higher than the modulation bandwidth of the corresponding single-section laser. Design guidelines will be proposed, and dynamic small and large signal simulations results, calculated using a finite difference traveling wave (FDTW numerical simulator, will be discussed to confirm the design results. The effectiveness of the design procedure is verified in a structure with PPR frequency at 35 GHz allowing one to obtain an open eye diagram for a non-return-to-zero (NRZ digital signal up to 80 GHz . Furthermore, the investigation of the rich dynamics of this structure shows that with proper bias conditions, it is possible to obtain also a tunable self-pulsating signal in a frequency range related to the PPR design.

  1. Resonance phenomena at high level density

    International Nuclear Information System (INIS)

    Sobeslavsky, E.; Dittes, F.M.; Rotter, I.; Technische Univ. Dresden

    1994-11-01

    We investigate the behaviour of resonances as a function of the coupling strength between bound and unbound states on the basis of a simple S-matrix model. Resonance energies and widths are calculated for well isolated, overlapping and strongly overlapping resonance states. The formation of shorter and longer time scales (trapping effect) is traced. We illustrate that the cross section results from an interference of all resonance states in spite of the fact that their lifetimes may be very different. (orig.)

  2. Determination of Activated Carbon Residual Life using a Microwave Cavity Resonator

    International Nuclear Information System (INIS)

    Mason, A; Wylie, S; Shaw, A; Al-Shamma'a, A I; Thomas, A; Keele, H

    2011-01-01

    This paper presents the continuation of work conducted jointly between Dstl and LJMU. This unique body of work has been, largely, concerned with detecting the residual life of high performance filter materials using electromagnetic (EM) waves within a resonant cavity. Past work has considered both HEPA [1] and ASZM-TEDA[2] activated carbon filter materials. This paper continues the later work, considering the response of ASZM-TEDA activated carbon through the co-ageing of two distinct batches of the material. The paper briefly introduces activated carbon, discusses theory relevant to the work and the methodology used for investigation. A comprehensive set of results is included which seek to validate this technique for determining the residual lifespan of activated carbon.

  3. Prediction of the Lorentz Force Detuning and Pressure Sensitivity for a Pillbox Cavity

    Energy Technology Data Exchange (ETDEWEB)

    Parise, M. [Fermilab

    2018-04-23

    The Lorentz Force Detuning (LFD) and the pressure sensitivity are two critical concerns during the design of a Superconducting Radio Frequency (SRF) cavity resonator. The mechanical deformation of the bare Niobium cavity walls, due to the electromagnetic fields and fluctuation of the external pressure in the Helium bath, can dynamically and statically detune the frequency of the cavity and can cause beam phase errors. The frequency shift can be compensated by additional RF power, that is required to maintain the accelerating gradient, or by sophisticated tuning mechanisms and control-compensation algorithms. Passive stiffening is one of the simplest and most effective tools that can be used during the early design phase, capable of satisfying the Radio Frequency (RF) requisites. This approach requires several multiphysics simulations as well as a deep mechanical and RF knowledge of the phenomena involved. In this paper, is presented a new numerical model for a pillbox cavity that can predict the frequency shifts caused by the LFD and external pressure. This method allows to greatly reduce the computational effort, which is necessary to meet the RF requirements and to keep track of the frequency shifts without using the time consuming multiphysics simulations.

  4. Superconducting radio frequency cavities: design, development and results

    International Nuclear Information System (INIS)

    Prakash, P.N.; Mistri, K.K.; Sonti, S.S.K.; Sacharias, J.; Raiand, A.; Kanjilal, D.

    2013-01-01

    In recent years, the development of superconducting niobium cavities has evoked a lot of interest among the accelerator physics community of India. Many laboratories are planning to develop superconducting niobium cavities for new accelerators and applications. Inter-University Accelerator Centre (IUAC) has been engaged in the indigenous development of niobium resonators for over a decade. During this period, several quarter wave resonators have been successfully built, tested and installed in the superconducting linac at IUAC. A new niobium low beta resonator for the High Current Injector (HCI) project has been designed, prototyped and tested. In addition to the in-house projects, IUAC is nearing completion of two niobium single spoke resonators (SSR1) for Fermi Lab, USA. Under the Indian Institutions and Fermi Lab Collaboration (IIFC), Raja Ramanna Centre for Advanced Technology, Indore and Inter-University Accelerator Centre have jointly developed TESLA-type 1.3 GHz single cell cavities which have achieved very high accelerating gradients. Buoyed by the success of this work, a 5-cell 1.3 GHz cavity with simple end tubes has been successfully built. This cavity is presently at Fermi Lab for 2 K tests. Recently, a 650 MHz, β=0.9 single cell cavity has also been successfully completed and is ready for cold tests. There are plans to develop a 650 MHz, β=0.6 single cell cavity in collaboration with VECC, Kolkata. This paper presents the status of the niobium cavities developed at Inter-University Accelerator Centre. (author)

  5. Photonic crystal Fano resonances for realizing optical switches, lasers and non-reciprocal elements

    DEFF Research Database (Denmark)

    Bekele, Dagmawi Alemayehu; Yu, Yi; Hu, Hao

    2017-01-01

    structure in combination with cavity-enhanced nonlinearity can be used to realize non-reciprocal transmission at ultra-low power and with large bandwidth. A novel type of laser structure, denoted a Fano laser, is discussed in which one of the mirrors is based on a Fano resonance. Finally, the design...

  6. Efficient continuous-wave eye-safe region signal output from intra-cavity singly resonant optical parametric oscillator

    International Nuclear Information System (INIS)

    Li Bin; Ding Xin; Sheng Quan; Yin Su-Jia; Shi Chun-Peng; Li Xue; Wen Wu-Qi; Yao Jian-Quan; Yu Xuan-Yi

    2012-01-01

    We report an efficient continuous-wave (CW) tunable intra-cavity singly resonant optical parametric oscillator based on the multi-period periodically poled lithium niobate and using a laser diode (LD) end-pumped CW 1064 nm Nd:YVO 4 laser as the pump source. A highly efficiency CW operation is realized through a careful cavity design for mode matching and thermal stability. The signal tuning range is 1401–1500 nm obtained by varying the domain period. The maximum output power of 2.2 W at 1500 nm is obtained with a 17.1 W 808 nm LD power and the corresponding conversion efficiency is 12.9%. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  7. Optimization of output power and transmission efficiency of magnetically coupled resonance wireless power transfer system

    Science.gov (United States)

    Yan, Rongge; Guo, Xiaoting; Cao, Shaoqing; Zhang, Changgeng

    2018-05-01

    Magnetically coupled resonance (MCR) wireless power transfer (WPT) system is a promising technology in electric energy transmission. But, if its system parameters are designed unreasonably, output power and transmission efficiency will be low. Therefore, optimized parameters design of MCR WPT has important research value. In the MCR WPT system with designated coil structure, the main parameters affecting output power and transmission efficiency are the distance between the coils, the resonance frequency and the resistance of the load. Based on the established mathematical model and the differential evolution algorithm, the change of output power and transmission efficiency with parameters can be simulated. From the simulation results, it can be seen that output power and transmission efficiency of the two-coil MCR WPT system and four-coil one with designated coil structure are improved. The simulation results confirm the validity of the optimization method for MCR WPT system with designated coil structure.

  8. Regenerative feedback resonant circuit

    Science.gov (United States)

    Jones, A. Mark; Kelly, James F.; McCloy, John S.; McMakin, Douglas L.

    2014-09-02

    A regenerative feedback resonant circuit for measuring a transient response in a loop is disclosed. The circuit includes an amplifier for generating a signal in the loop. The circuit further includes a resonator having a resonant cavity and a material located within the cavity. The signal sent into the resonator produces a resonant frequency. A variation of the resonant frequency due to perturbations in electromagnetic properties of the material is measured.

  9. Investigation of ultra-high sensitivity Klystron cavity transducers for broadband resonant-mass gravitational wave detectors

    International Nuclear Information System (INIS)

    Pimentel, Guilherme Leite

    2008-01-01

    We show that, with a suitable choice of the parameters of the gravitational wave detector Mario Schoenberg, with technological accessible parameters (using state-of-art electronics), its sensitivity curve can be improved over the current project curve to become competitive with interferometric detectors in a frequency band of 1500 Hz, in the region from 1000 to 10000 Hz (these competitive bands are centered at the sphere's quadrupole modes). The sensitivity curve of an array of 100 identical spheres identical to the Schoenberg one is also analyzed, and is competitive against advanced LIGO in the entire band. A detailed study of the project's viability is conducted, with an emphasis on the project of the klystron resonant cavity, which will have a center post with a 1 nm gap, which represents a great technological challenge. This challenge is analyzed in terms of the cavity project as well as with a focus on the Casimir effect on the cavity. This could open an opportunity for precise measurements of this effect on a new distance scale compared to current measurements (in the μm scale). (author)

  10. Digital Measurement System for the HIE-Isolde Superconducting Accelerating Cavities

    CERN Document Server

    Elias, Michal

    Extensive R&D efforts are being invested at CERN into the fundamental science of the RF superconductivity, cavity design, niobium sputtering, coating and RF properties of superconducting cavities. Fast and precise characterization and measurements of RF parameters of the newly produced cavities is essential for advances with the cavity production. The currently deployed analogue measurement system based on an analogue phase discriminators and tracking RF generators is not optimal for efficient work at the SM18 superconducting cavity test stand. If exact properties of the cavity under test are not known a traditional feedback loop will not be able to find resonant frequency in a reasonable time or even at all. This is mainly due to a very high Q factor. The resonance peak is very narrow (fraction of a Hz at 100 MHz). If the resonant frequency is off by several bandwidths, small changes of the cavity field during the tuning will not be measureable. Also cavity field will react only very slowly to any change...

  11. Metallic metasurfaces for high efficient polarization conversion control in transmission mode.

    Science.gov (United States)

    Li, Tong; Hu, Xiaobin; Chen, Huamin; Zhao, Chen; Xu, Yun; Wei, Xin; Song, Guofeng

    2017-10-02

    A high efficient broadband polarization converter is an important component in integrated miniaturized optical systems, but its performances is often restricted by the material structures, metallic metasurfaces for polarization control in transmission mode never achieved efficiency above 0.5. Herein, we theoretically demonstrate that metallic metasurfaces constructed by thick cross-shaped particles can realize a high efficient polarization transformation over a broadband. We investigated the resonant properties of designed matesurfaces and found that the interaction between double FP cavity resonances and double bulk magnetic resonances is the main reason to generate a high transmissivity over a broadband. In addition, through using four resonances effect and tuning the anisotropic optical response, we realized a high efficient (> 0.85) quarter-wave plate at the wavelength range from 1175nm to 1310nm and a high efficient (> 0.9) half-wave plate at the wavelength range from 1130nm to 1230nm. The proposed polarization converters may have many potential applications in integrated polarization conversion devices and optical data storage systems.

  12. Longitudinal detection of ferromagnetic resonance using x-ray transmission measurements

    International Nuclear Information System (INIS)

    Boero, G.; Rusponi, S.; Kavich, J.; Rizzini, A. Lodi; Piamonteze, C.; Nolting, F.; Tieg, C.; Thiele, J.-U.; Gambardella, P.

    2009-01-01

    We describe a setup for the x-ray detection of ferromagnetic resonance in the longitudinal geometry using element-specific transmission measurements. Thin magnetic film samples are placed in a static magnetic field collinear with the propagation direction of a polarized soft x-ray beam and driven to ferromagnetic resonance by a continuous wave microwave magnetic field perpendicular to it. The transmitted photon flux is measured both as a function of the x-ray photon energy and as a function of the applied static magnetic field. We report experiments performed on a 15 nm film of doped Permalloy (Ni 73 Fe 18 Gd 7 Co 2 ) at the L 3 /L 2 -edges of Fe, Co, and Ni. The achieved ferromagnetic resonance sensitivity is about 0.1 monolayers/√(Hz). The obtained results are interpreted in the framework of a conductivity tensor based formalism. The factors limiting the sensitivity as well as different approaches for the x-ray detection of ferromagnetic resonance are discussed.

  13. Phase locking and quantum statistics in a parametrically driven nonlinear resonator

    OpenAIRE

    Hovsepyan, G. H.; Shahinyan, A. R.; Chew, Lock Yue; Kryuchkyan, G. Yu.

    2016-01-01

    We discuss phase-locking phenomena at low-level of quanta for parametrically driven nonlinear Kerr resonator (PDNR) in strong quantum regime. Oscillatory mode of PDNR is created in the process of a degenerate down-conversion of photons under interaction with a train of external Gaussian pulses. We calculate the Wigner functions of cavity mode showing two-fold symmetry in phase space and analyse formation of phase-locked states in the regular as well as the quantum chaotic regime.

  14. Back-action evasion and squeezing of a mechanical resonator using a cavity detector

    Energy Technology Data Exchange (ETDEWEB)

    Clerk, A A [Department of Physics, McGill University, Montreal, Quebec, H3A 2T8 (Canada); Marquardt, F [Department of Physics, Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universitaet Muenchen, Theresienstrasse 37, 80333 Munich (Germany); Jacobs, K [Department of Physics, University of Massachussets at Boston, Boston, MA 02125 (United States)], E-mail: aashish.clerk@mcgill.ca, E-mail: florian.marquardt@physik.uni-muenchen.de, E-mail: kjacobs@cs.umb.edu

    2008-09-15

    We study the quantum measurement of a cantilever using a parametrically coupled electromagnetic cavity which is driven at the two sidebands corresponding to the mechanical motion. This scheme, originally due to Braginsky et al (Braginsky V, Vorontsov Y I and Thorne K P 1980 Science 209 547), allows a back-action free measurement of one quadrature of the cantilever's motion, and hence the possibility of generating a squeezed state. We present a complete quantum theory of this system, and derive simple conditions on when the quantum limit on the added noise can be surpassed. We also study the conditional dynamics of the measurement, and discuss how such a scheme (when coupled with feedback) can be used to generate and detect squeezed states of the oscillator. Our results are relevant to experiments in optomechanics, and to experiments in quantum electromechanics employing stripline resonators coupled to mechanical resonators.

  15. Single and Coupled Nanobeam Cavities

    DEFF Research Database (Denmark)

    Ivinskaya, Aliaksandra; Lavrinenko, Andrei; Shyroki, Dzmitry M.

    2013-01-01

    for analysis and design of photonic crystal devices, such as 2D ring resonators for filters, single and coupled nanobeam cavities, birefringence in photonic crystal cavities, threshold analysis in photonic crystal lasers, gap solitons in photonic crystals, novel photonic atolls, dynamic characteristics...

  16. Continuous-wave cavity ringdown spectroscopy based on the control of cavity reflection.

    Science.gov (United States)

    Li, Zhixin; Ma, Weiguang; Fu, Xiaofang; Tan, Wei; Zhao, Gang; Dong, Lei; Zhang, Lei; Yin, Wangbao; Jia, Suotang

    2013-07-29

    A new type of continuous-wave cavity ringdown spectrometer based on the control of cavity reflection for trace gas detection was designed and evaluated. The technique separated the acquisitions of the ringdown event and the trigger signal to optical switch by detecting the cavity reflection and transmission, respectively. A detailed description of the time sequence of the measurement process was presented. In order to avoid the wrong extraction of ringdown time encountered accidentally in fitting procedure, the laser frequency and cavity length were scanned synchronously. Based on the statistical analysis of measured ringdown times, the frequency normalized minimum detectable absorption in the reflection control mode was 1.7 × 10(-9)cm(-1)Hz(-1/2), which was 5.4 times smaller than that in the transmission control mode. However the signal-to-noise ratio of the absorption spectrum was only 3 times improved since the etalon effect existed. Finally, the peak absorption coefficients of the C(2)H(2) transition near 1530.9nm under different pressures showed a good agreement with the theoretical values.

  17. Parametric resonance in quantum electrodynamics vacuum birefringence

    Science.gov (United States)

    Arza, Ariel; Elias, Ricardo Gabriel

    2018-05-01

    Vacuum magnetic birefringence is one of the most interesting nonlinear phenomena in quantum electrodynamics because it is a pure photon-photon result of the theory and it directly signalizes the violation of the classical superposition principle of electromagnetic fields in the full quantum theory. We perform analytical and numerical calculations when an electromagnetic wave interacts with an oscillating external magnetic field. We find that in an ideal cavity, when the external field frequency is around the electromagnetic wave frequency, the normal and parallel components of the wave suffer parametric resonance at different rates, producing a vacuum birefringence effect growing in time. We also study the case where there is no cavity and the oscillating magnetic field is spatially localized in a region of length L . In both cases we find also a rotation of the elliptical axis.

  18. Faraday-Active Fabry-Perot Resonator: Transmission, Reflection, and Emissivity

    Science.gov (United States)

    Liptuga, Anatoliy; Morozhenko, Vasyl; Pipa, Viktor; Venger, Evgen; Kostiuk, Theodor

    2011-01-01

    The propagation of light within a semiconductor Faraday-active Fabry-Perot resonator (FAFR) is investigated theoretically and experimentally. It is shown that an external magnetic field radically changes the angular and spectral characteristics of transmission, reflection and emissivity of the resonator not only for polarized, but also for unpolarized light. Suppression of interference patterns and phase inversion of the interference extrema were observed in both monochromatic and polychromatic light. The investigations were carried out for the plane-parallel plates of n-InAs in the spectral range of free charge carrier absorption. The results can be used to create new controllable optical and spectroscopic devices for investigation of Faraday-active material properties and for control of parameters of plane-parallel layers and structures.

  19. Dynamic evolution of double Λ five-level atom interacting with one-mode electromagnetic cavity field

    Science.gov (United States)

    Abdel-Wahab, N. H.; Salah, Ahmed

    2017-12-01

    In this paper, the model describing a double Λ five-level atom interacting with a single mode electromagnetic cavity field in the (off) non-resonate case is studied. We obtained the constants of motion for the considered model. Also, the state vector of the wave function is given by using the Schrödinger equation when the atom is initially prepared in its excited state. The dynamical evolutions for the collapse revivals, the antibunching of photons and the field squeezing phenomena are investigated when the field is considered in a coherent state. The influence of detuning parameters on these phenomena is investigated. We noticed that the atom-field properties are influenced by changing the detuning parameters. The investigation of these aspects by numerical simulations is carried out using the Quantum Toolbox in Python (QuTip).

  20. Transmission coefficient, resonant tunneling lifetime and traversal time in multibarrier semiconductor heterostructure

    Energy Technology Data Exchange (ETDEWEB)

    Nanda, Jyotirmayee [Department of Physics, National Institute of Technology, Rourkela, 769008 (India)]. E-mail: jnanda_b9@rediffmail.com; Mahapatra, P.K. [Department of Physics and Technophysics, Vidyasagar University, Midnapore, 721102 (India)]. E-mail: pkmahapatra@vidyasagar.ac.in; Roy, C.L. [Department of Physics and Meterology, Indian Institute of Technology, Kharagpur, 721302 (India)

    2006-09-01

    A computational model based on non-relativistic approach is proposed for the determination of transmission coefficient, resonant tunneling energies, group velocity, resonant tunneling lifetime and traversal time in multibarrier systems (GaAs/Al {sub y} Ga{sub 1-} {sub y} As) for the entire energy range {epsilon}V {sub 0}, V {sub 0}, being the potential barrier height. The resonant energy states were found to group into allowed tunneling bands separated by forbidden gaps. The tunneling lifetime and the traversal time are found to have minimum values at the middle of each allowed band. Further, It is observed that the electrons with energies in the higher tunneling band could tunnel out faster than those with energies in the lower band. Moreover, an additional resonant peak in resonant energy spectrum indicated the presence of a surface state where resonant tunneling occurs.

  1. Magnetic resonance of rubidium atoms passing through a multi-layered transmission magnetic grating

    International Nuclear Information System (INIS)

    Nagata, Y; Kurokawa, S; Hatakeyama, A

    2017-01-01

    We measured the magnetic resonance of rubidium atoms passing through periodic magnetic fields generated by two types of multi-layered transmission magnetic grating. One of the gratings reported here was assembled by stacking four layers of magnetic films so that the direction of magnetization alternated at each level. The other grating was assembled so that the magnetization at each level was aligned. For both types of grating, the experimental results were in good agreement with our calculations. We studied the feasibility of extending the frequency band of the grating and narrowing its resonance linewidth by performing calculations. For magnetic resonance precision spectroscopy, we conclude that the multi-layered transmission magnetic grating can generate periodic fields with narrower linewidths at higher frequencies when a larger number of layers are assembled at a shorter period length. Moreover, the frequency band of this type of grating can potentially achieve frequencies of up to hundreds of PHz. (paper)

  2. Different optical properties in different periodic slot cavity geometrical morphologies

    Science.gov (United States)

    Zhou, Jing; Shen, Meng; Du, Lan; Deng, Caisong; Ni, Haibin; Wang, Ming

    2016-09-01

    In this paper, optical properties of two-dimensional periodic annular slot cavity arrays in hexagonal close-packing on a silica substrate are theoretically characterized by finite difference time domain (FDTD) simulation method. By simulating reflectance spectra, electric field distribution, and charge distribution, we confirm that multiple cylindrical surface plasmon resonances can be excited in annular inclined slot cavities by linearly polarized light, in which the four reflectance dips are attributed to Fabry-Perot cavity resonances in the coaxial cavity. A coaxial waveguide mode TE11 will exist in these annular cavities, and the wavelengths of these reflectance dips are effectively tailored by changing the geometrical pattern of slot cavity and the dielectric materials filled in the cavities. These resonant wavelengths are localized in annular cavities with large electric field enhancement and dissipate gradually due to metal loss. The formation of an absorption peak can be explained from the aspect of phase matching conditions. We observed that the proposed structure can be tuned over the broad spectral range of 600-4000 nm by changing the outer and inner radii of the annular gaps, gap surface topography. Meanwhile, different lengths of the cavity may cause the shift of resonance dips. Also, we study the field enhancement at different vertical locations of the slit. In addition, dielectric materials filling in the annular gaps will result in a shift of the resonance wavelengths, which make the annular cavities good candidates for refractive index sensors. The refractive index sensitivity of annular cavities can also be tuned by the geometry size and the media around the cavity. Annular cavities with novel applications can be implied as surface enhanced Raman spectra substrates, refractive index sensors, nano-lasers, and optical trappers. Project supported by the National Natural Science Foundation of China (Grant No. 61178044), the Natural Science Foundation

  3. Time-dependent current into and through multilevel parallel quantum dots in a photon cavity

    Science.gov (United States)

    Gudmundsson, Vidar; Abdullah, Nzar Rauf; Sitek, Anna; Goan, Hsi-Sheng; Tang, Chi-Shung; Manolescu, Andrei

    2017-05-01

    We analyze theoretically the charging current into, and the transport current through, a nanoscale two-dimensional electron system with two parallel quantum dots embedded in a short wire placed in a photon cavity. A plunger gate is used to place specific many-body states of the interacting system in the bias window defined by the external leads. We show how the transport phenomena active in the many-level complex central system strongly depend on the gate voltage. We identify a resonant transport through the central system as the two spin components of the one-electron ground state are in the bias window. This resonant transport through the lowest energy electron states seems to a large extent independent of the detuned photon field when judged from the transport current. This could be expected in the small bias regime, but an observation of the occupancy of the states of the system reveals that this picture is not entirely true. The current does not reflect slower photon-active internal transitions bringing the system into the steady state. The number of initially present photons determines when the system reaches the real steady state. With two-electron states in the bias window we observe a more complex situation with intermediate radiative and nonradiative relaxation channels leading to a steady state with a weak nonresonant current caused by inelastic tunneling through the two-electron ground state of the system. The presence of the radiative channels makes this phenomena dependent on the number of photons initially in the cavity.

  4. Radiation-pressure-mediated control of an optomechanical cavity

    Science.gov (United States)

    Cripe, Jonathan; Aggarwal, Nancy; Singh, Robinjeet; Lanza, Robert; Libson, Adam; Yap, Min Jet; Cole, Garrett D.; McClelland, David E.; Mavalvala, Nergis; Corbitt, Thomas

    2018-01-01

    We describe and demonstrate a method to control a detuned movable-mirror Fabry-Pérot cavity using radiation pressure in the presence of a strong optical spring. At frequencies below the optical spring resonance, self-locking of the cavity is achieved intrinsically by the optomechanical (OM) interaction between the cavity field and the movable end mirror. The OM interaction results in a high rigidity and reduced susceptibility of the mirror to external forces. However, due to a finite delay time in the cavity, this enhanced rigidity is accompanied by an antidamping force, which destabilizes the cavity. The cavity is stabilized by applying external feedback in a frequency band around the optical spring resonance. The error signal is sensed in the amplitude quadrature of the transmitted beam with a photodetector. An amplitude modulator in the input path to the cavity modulates the light intensity to provide the stabilizing radiation pressure force.

  5. Influence of tensile stress on cavity growth in nickel under helium irradiation

    International Nuclear Information System (INIS)

    Kusanagi, Hideo; Hide, Koichiro; Takaku, Hiroshi

    1989-01-01

    The influence of tensile stress on cavity behavior in pure nickel under helium irradiation was investigated by in-situ observation using the transmission electron microscope (TEM) in which an ion gun is installed. Specimens were irradiated at 500 0 C with 20 keV helium in the TEM. The dose rate was about 10 14 He/cm 2 s, and the angle between the helium beam and the normal direction of the specimens was about 60 0 . The damage rate estimated by the E-DEP-1 code was about 0.6x10 -3 dpa/s at its peak position. The main results are as follows: (1) cavity nucleation was accelerated by applying tensile stress, and cavity size in stressed specimens was several times larger than that in stress-free specimens; (2) cavity density in the stressed specimen increased more rapidly than in the stress-free specimen, and then decreased by cavity coalescences; (3) depth of cavity nucleation in the stress-free specimen was about 160 nm, while that in the stressed specimen was about 320 nm; that is, cavities nucleated in deeper regions in the stressed specimen than in the stress-free specimen. This result indicates that helium atoms and vacancies can migrate into the deeper region by applying tensile stress. (4) The experimental results obtained in this study can be explained qualitatively by the mechanism that mobile dislocations drag He-V complexes to the deeper region. This implies that there are similar phenomena in the case of compressive stress. (orig.)

  6. Calibrated high-precision 17O-excess measurements using cavity ring-down spectroscopy with laser-current-tuned cavity resonance

    Directory of Open Access Journals (Sweden)

    E. J. Steig

    2014-08-01

    Full Text Available High-precision analysis of the 17O / 16O isotope ratio in water and water vapor is of interest in hydrological, paleoclimate, and atmospheric science applications. Of specific interest is the parameter 17O excess (Δ17O, a measure of the deviation from a~linear relationship between 17O / 16O and 18O / 16O ratios. Conventional analyses of Δ17O of water are obtained by fluorination of H2O to O2 that is analyzed by dual-inlet isotope ratio mass spectrometry (IRMS. We describe a new laser spectroscopy instrument for high-precision Δ17O measurements. The new instrument uses cavity ring-down spectroscopy (CRDS with laser-current-tuned cavity resonance to achieve reduced measurement drift compared with previous-generation instruments. Liquid water and water-vapor samples can be analyzed with a better than 8 per meg precision for Δ17O using integration times of less than 30 min. Calibration with respect to accepted water standards demonstrates that both the precision and the accuracy of Δ17O are competitive with conventional IRMS methods. The new instrument also achieves simultaneous analysis of δ18O, Δ17O and δD with precision of < 0.03‰, < 0.02 and < 0.2‰, respectively, based on repeated calibrated measurements.

  7. Microcontroller based resonance tracking unit for time resolved continuous wave cavity-ringdown spectroscopy measurements.

    Science.gov (United States)

    Votava, Ondrej; Mašát, Milan; Parker, Alexander E; Jain, Chaithania; Fittschen, Christa

    2012-04-01

    We present in this work a new tracking servoloop electronics for continuous wave cavity-ringdown absorption spectroscopy (cw-CRDS) and its application to time resolved cw-CRDS measurements by coupling the system with a pulsed laser photolysis set-up. The tracking unit significantly increases the repetition rate of the CRDS events and thus improves effective time resolution (and/or the signal-to-noise ratio) in kinetics studies with cw-CRDS in given data acquisition time. The tracking servoloop uses novel strategy to track the cavity resonances that result in a fast relocking (few ms) after the loss of tracking due to an external disturbance. The microcontroller based design is highly flexible and thus advanced tracking strategies are easy to implement by the firmware modification without the need to modify the hardware. We believe that the performance of many existing cw-CRDS experiments, not only time-resolved, can be improved with such tracking unit without any additional modification to the experiment. © 2012 American Institute of Physics

  8. Maintenance of the resonance in a cavity filled with a variable density plasma; Entretien de la resonance d'une cavite chargee par un plasma de densite variable

    Energy Technology Data Exchange (ETDEWEB)

    Melin, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-07-01

    A study has been made of the possibility of keeping in resonance a cavity filled with a plasma of variable density; only the low HF power zone has been examined (less than a few dozen W). A calculation is first made, for the chosen experimental conditions, of the slipping of the resonance frequency of a cavity as a function of the plasma parameters (density, temperature), with a view to obtaining an idea of its importance. A description is then given of the experimental set-up: the S band cavity (3000 Mc/sec) is supplied by a carcinotron type generator; use is made of the plasma of a positive column whose density ({approx}10{sup 11} cm{sup -3}) can easily be controlled so as to obtain slipping of the cavity frequency ({delta}F{sub max} {approx} 50 Mc/s). The zone of automatic agreement thus obtained for the S band is 3 per cent continuously ({approx}100 Mc/s) and 1 per cent ({approx}30 Mc/s) with a response time of 10 {mu}s (sudden changes in density, {delta}n {approx} 5.10{sup 10} cm{sup 3}). These characteristics already compare very favorably with existing systems, and can easily be improved. (author) [French] On etudie une possibilite de maintenir a la resonance une cavite chargee par un plasma dont la densite varie; on se limite au domaine des puissances HF faibles (< quelques dizaines de W). On calcule tout d'abord, pour les conditions experimentales choisies, le glissement de la frequence de resonance d'une cavite en fonction des parametres du plasma, densite, temperature, pour en evaluer les ordres de grandeur. On decrit ensuite la realisation experimentale: la cavite bande S (3000 Mc/s) est alimentee par un generateur du type carcinotron; on utilise le plasma d'une colonne positive, dont on controle facilement la densite ({approx}10{sup 11} cm{sup -3}) pour faire glisser en frequence la cavite ({delta}F{sub max} {approx} 50 Mc/s). La zone d'accord automatique obtenue ainsi pour la bande S est de 3 pour cent en continu ({approx}100 Mc/s), de 1 pour cent

  9. Cavity-enhanced spectroscopy and sensing

    Energy Technology Data Exchange (ETDEWEB)

    Gagliardi, Gianluca [CNR-Istituto Nazionale di Ottica (INO), Pozzuoli (Italy); Loock, Hans-Peter (ed.) [Queen' s Univ., Kingston, ON (Canada). Dept. of Chemistry

    2014-07-01

    The book reviews the dramatic recent advances in the use of optical resonators for high sensitivity and high resolution molecular spectroscopy as well as for chemical, mechanical and physical sensing. It encompasses a variety of cavities including those made of two or more mirrors, optical fiber loops, fiber gratings and spherical cavities. The book focuses on novel techniques and their applications. Each chapter is written by an expert and/or pioneer in the field. These experts also provide the theoretical background in optics and molecular physics where needed. Examples of recent breakthroughs include the use of frequency combs (Nobel prize 2005) for cavity enhanced sensing and spectroscopy, the use of novel cavity materials and geometries, the development of optical heterodyne detection techniques combined to active frequency-locking schemes. These methods allow the use and interrogation of optical resonators with a variety of coherent light sources for trace gas detection and sensing of strain, temperature and pressure.

  10. Cavity-enhanced spectroscopy and sensing

    CERN Document Server

    Loock, Hans-Peter

    2014-01-01

    The book reviews the dramatic recent advances in the use of optical resonators for high sensitivity and high resolution molecular spectroscopy as well as for chemical, mechanical and physical sensing.  It encompasses a variety of cavities including those made of two or more mirrors, optical fiber loops, fiber gratings and spherical cavities. The book focuses on novel techniques and their applications. Each chapter is written by an expert and/or pioneer in the field. These experts also provide the theoretical background in optics and molecular physics where needed. Examples of recent breakthroughs include the use of frequency combs (Nobel prize 2005) for cavity enhanced sensing and spectroscopy, the use of novel cavity materials and geometries, the development of optical heterodyne detection techniques combined to active frequency-locking schemes. These methods allow the use and interrogation of optical resonators with a variety of coherent light sources for trace gas detection and sensing of strain, temperat...

  11. CEBAF's SRF cavity manufacturing experience

    International Nuclear Information System (INIS)

    Benesch, J.F.; Reece, C.E.

    1994-01-01

    Construction of the Continuous Electron Beam Accelerator Facility (CEBAF) recirculating linac represents the largest scale application of superconducting rf (SRF) technology to date. The accelerating structures in CEBAF are 169 pairs of 1.5 GHz superconducting rf cavities -- 9 pairs in an injector and 80 pairs each in two linacs. The beam is to be recirculated up to five passes through each linac. Data is presented on mechanical tolerances achieved by the industrial fabricator of the rf cavities (Siemens). Liquid helium leak rates integrated over 22 vacuum seals have been measured on over 110 cavity pairs. A roughly normal distribution of the log 10 (leak rate) is seen, centered about a rate of 10 -10.4 torr-l/s. Over 140 pairs of the cavities have been assembled and have completed rf testing at 2.0 K. Among these, 54% demonstrated usable accelerating gradients greater than 10 MV/m. Although the rf performance characteristics well exceed the CEBAF baseline requirements of 5 MV/m at Q 0 = 2.4x10 9 , the usual limiting phenomena are encountered: field emission, quenching, and occasional multipacting. A discussion of the occurrence conditions and severity of these phenomena during production cavity testing is presented. The frequency with which performance is limited by quenching suggests that additional material advances may be required for applications which require the reliable achievement of accelerating gradients of more than 15 MV/m

  12. A split-cavity design for the incorporation of a DC bias in a 3D microwave cavity

    NARCIS (Netherlands)

    Cohen, M.A.; Yuan, M.; de Jong, B.W.A.; Beukers, Ewout; Bosman, S.J.; Steele, G.A.

    2017-01-01

    We report on a technique for applying a DC bias in a 3D microwave cavity. We achieve this by isolating the two halves of the cavity with a dielectric and directly using them as DC electrodes. As a proof of concept, we embed a variable capacitance diode in the cavity and tune the resonant

  13. Harmonic Resonance in Power Transmission Systems due to the Addition of Shunt Capacitors

    Science.gov (United States)

    Patil, Hardik U.

    Shunt capacitors are often added in transmission networks at suitable locations to improve the voltage profile. In this thesis, the transmission system in Arizona is considered as a test bed. Many shunt capacitors already exist in the Arizona transmission system and more are planned to be added. Addition of these shunt capacitors may create resonance conditions in response to harmonic voltages and currents. Such resonance, if it occurs, may create problematic issues in the system. It is main objective of this thesis to identify potential problematic effects that could occur after placing new shunt capacitors at selected buses in the Arizona network. Part of the objective is to create a systematic plan for avoidance of resonance issues. For this study, a method of capacitance scan is proposed. The bus admittance matrix is used as a model of the networked transmission system. The calculations on the admittance matrix were done using Matlab. The test bed is the actual transmission system in Arizona; however, for proprietary reasons, bus names are masked in the thesis copy intended for the public domain. The admittance matrix was obtained from data using the PowerWorld Simulator after equivalencing the 2016 summer peak load (planning case). The full Western Electricity Coordinating Council (WECC) system data were used. The equivalencing procedure retains only the Arizona portion of the WECC. The capacitor scan results for single capacitor placement and multiple capacitor placement cases are presented. Problematic cases are identified in the form of 'forbidden response. The harmonic voltage impact of known sources of harmonics, mainly large scale HVDC sources, is also presented. Specific key results for the study indicated include: (1) The forbidden zones obtained as per the IEEE 519 standard indicates the bus 10 to be the most problematic bus. (2) The forbidden zones also indicate that switching values for the switched shunt capacitor (if used) at bus 3 should be

  14. A cavity-Cooper pair transistor scheme for investigating quantum optomechanics in the ultra-strong coupling regime

    International Nuclear Information System (INIS)

    Rimberg, A J; Blencowe, M P; Armour, A D; Nation, P D

    2014-01-01

    We propose a scheme involving a Cooper pair transistor (CPT) embedded in a superconducting microwave cavity, where the CPT serves as a charge tunable quantum inductor to facilitate ultra-strong coupling between photons in the cavity and a nano- to meso-scale mechanical resonator. The mechanical resonator is capacitively coupled to the CPT, such that mechanical displacements of the resonator cause a shift in the CPT inductance and hence the cavity's resonant frequency. The amplification provided by the CPT is sufficient for the zero point motion of the mechanical resonator alone to cause a significant change in the cavity resonance. Conversely, a single photon in the cavity causes a shift in the mechanical resonator position on the order of its zero point motion. As a result, the cavity-Cooper pair transistor coupled to a mechanical resonator will be able to access a regime in which single photons can affect single phonons and vice versa. Realizing this ultra-strong coupling regime will facilitate the creation of non-classical states of the mechanical resonator, as well as the means to accurately characterize such states by measuring the cavity photon field. (paper)

  15. TEM observations of crack tip: cavity interactions

    International Nuclear Information System (INIS)

    Horton, J.A.; Ohr, S.M.; Jesser, W.A.

    1981-01-01

    Crack tip-cavity interactions have been studied by performing room temperature deformation experiments in a transmission electron microscope on ion-irradiated type 316 stainless steel with small helium containing cavities. Slip dislocations emitted from a crack tip cut, sheared, and thereby elongated cavities without a volume enlargement. As the crack tip approached, a cavity volume enlargement occurred. Instead of the cavities continuing to enlarge until they touch, the walls between the cavities fractured. Fracture surface dimples do not correlate in size or density with these enlarged cavities

  16. Magnetic resonance imaging of syrinx cavity

    International Nuclear Information System (INIS)

    Fukuda, Teruo; Inoue, Yuichi; Nemoto, Yutaka

    1987-01-01

    Syrinx cavity may result from a number of intramedullary tumors or non-neoplastic conditions such as Chiari malformation, trauma and meningitis. The surgical procedure to repair the syrinx is quite different between the cases with spinal cord tumor and without tumor. Therefore, it is important to determine whether syrinx is associated with tumor or not before surgery. We reviewed MR images of 26 cases with syrinx cavity; 20 of which were not associated with tumor (12 Chiari malformation, 5 trauma, 1 meningitis, 1 hydrocephalus, 1 idiopathic) and 6 of which were associated with intramedullary tumor (3 ependymoma, 2 astrocytoma, 1 hemangioendothelioma). The syrinx showed low signal in all 26 cases on T1 weighted images (SE 600/40). All 6 cases with syrinx associated with intramedullary tumor showed high intensity on T2 weighted images (SE 2000/120). On the other hand, the syrinx of 19 of 20 cases with no tumor condition showed reduced intensity on T2 weighted images. Only one post-traumatic small syrinx showed high signal. This was quite different between the cases with spinal cord tumor and without tumor. Therefore, when the syrinx cavity shows high signal on T2 weighted images, an intramedullary tumor is strongly suggested. (author)

  17. The use of microperforated plates to attenuate cavity resonances

    DEFF Research Database (Denmark)

    Fenech, Benjamin; Keith, Graeme; Jacobsen, Finn

    2006-01-01

    The use of microperforated plates to introduce damping in a closed cavity is examined. By placing a microperforated plate well inside the cavity instead of near a wall as traditionally done in room acoustics, high attenuation can be obtained for specific acoustic modes, compared with the lower...... attenuation that can be obtained in a broad frequency range with the conventional position of the plate. An analytical method for predicting the attenuation is presented. The method involves finding complex eigenvalues and eigenfunctions for the modified cavity and makes it possible to predict Green......'s functions. The results, which are validated experimentally, show that a microperforated plate can provide substantial attenuation of modes in a cavity. One possible application of these findings is the treatment of boiler tones in heat-exchanger cavities....

  18. Resonance control in SRF cavities at FNAL

    Energy Technology Data Exchange (ETDEWEB)

    Schappert, W.; Pischalnikov, Y.; /Fermilab; Scorrano, M.; /INFN, Pisa

    2011-03-01

    The Lorentz force can dynamically detune pulsed Superconducting RF cavities. Considerable additional RF power can be required to maintain the accelerating gradient if no effort is made to compensate for this detuning. Compensation systems using piezo actuators have been used successfully at DESY and elsewhere to control Lorentz Force Detuning (LFD). Recently, Fermilab has developed an adaptive compensation system for cavities in the Horizontal Test Stand, in the SRF Accelerator Test Facility, and for the proposed Project X.

  19. SPS accelerating cavity

    CERN Multimedia

    CERN PhotoLab

    1976-01-01

    The SPS started up with 2 accelerating cavities (each consisting of 5 tank sections) in LSS3. They have a 200 MHz travelling wave structure (see 7411032 and 7802190) and 750 kW of power is fed to each of the cavities from a 1 MW tetrode power amplifier, located in a surface building above, via a coaxial transmission line. Clemens Zettler, builder of the SPS RF system, is standing at the side of one of the cavities. In 1978 and 1979 another 2 cavities were added and entered service in 1980. These were part of the intensity improvement programme and served well for the new role of the SPS as proton-antiproton collider. See also 7411032, 8011289, 8104138, 8302397.

  20. Niobium coaxial quarter-wave cavities for the New Delhi booster linac

    International Nuclear Information System (INIS)

    Shepard, K.W.; Roy, A.; Potukuchi, P.N.

    1993-01-01

    This paper reports the design and construction status of a prototype superconducting niobium accelerating structure consisting of a pair of quarter-wave coaxial-line cavities which are strongly coupled with a superconducting loop. Quarter-wave resonators are two-gap accelerating structures and are relatively short, so that a large number of independently-phased cavities is required for a linac. Strongly coupling several cavities can reduce the number of independently-phased elements, but at the cost of reducing the range of useful velocity acceptance for each element. Coupling two cavities splits the accelerating rf eigenmode into two resonant modes each of which covers a portion of the full velocity acceptance range of the original single cavity mode. Using both of these resonant modes makes feasible the use of coupled cavity pairs for a linac with little loss m velocity acceptance. Design details for the niobium cavity pair and the results of preliminary tests of multipacting behavior are discussed

  1. Niobium coaxial quarter-wave cavities for the New Delhi booster linac

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K.W. [Argonne National Lab., IL (United States); Roy, A.; Potukuchi, P.N. [Nuclear Science Centre, New Delhi (India)

    1993-07-01

    This paper reports the design and construction status of a prototype superconducting niobium accelerating structure consisting of a pair of quarter-wave coaxial-line cavities which are strongly coupled with a superconducting loop. Quarter-wave resonators are two-gap accelerating structures and are relatively short, so that a large number of independently-phased cavities is required for a linac. Strongly coupling several cavities can reduce the number of independently-phased elements, but at the cost of reducing the range of useful velocity acceptance for each element. Coupling two cavities splits the accelerating rf eigenmode into two resonant modes each of which covers a portion of the full velocity acceptance range of the original single cavity mode. Using both of these resonant modes makes feasible the use of coupled cavity pairs for a linac with little loss m velocity acceptance. Design details for the niobium cavity pair and the results of preliminary tests of multipacting behavior are discussed.

  2. Determination of the resonance parameters for 232Th from high resolution transmission and capture measurements at GELINA

    International Nuclear Information System (INIS)

    Brusegan, A.; Schillebeeckx, P.; Lobo, G.; Borella, A.; Volev, K.; Janeva, N.

    2003-01-01

    To deduce the resonance parameters for 232 Th in the resolved resonance region, high resolution transmission and capture measurements are being performed. The measurements are performed at the Time-Of-Flight facility GELINA. A comparison of experimental data resulting from capture (top) and transmission (bottom) are shown. The transmission measurements are performed at a 50 m flight path. The neutron are detected with a 0.25' thick lithium glass (NE912) placed in an Al sphere and viewed by a 5' EMI KQB photomultiplier orthogonal to the neutron beam axis. The injection of a stabilised light pulse in the detector during the measurements provided an efficient tool to control to better than 1% the gain of the entire electronics. The experimental set-up includes a sample-changer, placed at 23 m from the neutron source, which is driven by the acquisition system. The determination of the flight path length, was based on transmission of the 6.673 eV resonance of 238 U. We summarise, for the different energy regions of interest, the scheduled measurement conditions: the operation frequency of the accelerator and the target thickness. A simultaneous analysis of the data using REFIT will result in the resonance parameters from 0 to 4 keV. We show the result of a resonance shape analysis for the resonances at 21.8 and 23.5 eV. The resulting resonance parameters are important for the energy calibration and normalisation of the capture measurements in both the resolved and unresolved resonance region. The capture measurements are completed and were performed at a 60 m flight path. The sample consisted of a metallic natural thorium disc of 8 cm diameter and 1.0 mm thick, corresponding to a thickness of 3.176 10 -3 at/b. The neutron flux was measured with an ionisation chamber loaded with three back-to-back layers of about 40 μg/cm 2 10 B. The gamma rays, originating from the 232 Th(n,γ) reaction, were detected by four C 6 D 6 -based liquid scintillators (NE230) placed

  3. Calculation of the resonance frequency change for a cavity charged by a plasma with or without a static magnetic field

    International Nuclear Information System (INIS)

    Melin, G.

    1967-03-01

    In the mere case of a cold plasma with or without static magnetic field, are given two methods of calculation of resonance frequency shift and absorption in a cylindrical cavity crossed by a plasma column: 1. A perturbation method, already known and used for electronic density measurements is restated and its application is used for several high frequency cavity modes. 2. An exact method employing Maxwell's equations, which however necessitates a computer, is compared with the first one; it permits a determination of the validity limits of the perturbation method and to draw conclusions, [fr

  4. Resonances of coherent population trapping in samarium vapours

    International Nuclear Information System (INIS)

    Kolachevsky, Nikolai N; Akimov, A V; Kiselev, N A; Papchenko, A A; Sorokin, Vadim N; Kanorskii, S I

    2001-01-01

    Resonances of coherent population trapping were detected in atomic vapours of the rare-earth element samarium. The coherent population trapping was produced by two external-cavity diode lasers (672 and 686 nm) in a Λ-system formed by the three levels of 154 Sm: the 4f 6 6s 2 ( 7 F 0 ) ground state, the first fine-structure 4f 6 6s 2 ( 7 F 1 ) sublevel of the ground state and the 4f 6 ( 7 F)6s6p( 3 P o ) 9 F o 1 upper level. The dependence of the spectral shapes and resonance contrasts on the polarisation of the laser beams and the direction of the applied magnetic field was studied. The obtained results were analysed. (nonlinear optical phenomena)

  5. Numerical analysis of resonances induced by s wave neutrons in transmission time-of-flight experiments with a computer IBM 7094 II

    International Nuclear Information System (INIS)

    Corge, Ch.

    1969-01-01

    Numerical analysis of transmission resonances induced by s wave neutrons in time-of-flight experiments can be achieved in a fairly automatic way on an IBM 7094/II computer. The involved computations are carried out following a four step scheme: 1 - experimental raw data are processed to obtain the resonant transmissions, 2 - values of experimental quantities for each resonance are derived from the above transmissions, 3 - resonance parameters are determined using a least square method to solve the over determined system obtained by equalling theoretical functions to the correspondent experimental values. Four analysis methods are gathered in the same code, 4 - graphical control of the results is performed. (author) [fr

  6. High field tests of 1.3 GHz niobium superconducting cavities

    International Nuclear Information System (INIS)

    Kako, Eiji; Noguchi, Shuichi; Ono, Masaaki

    1993-01-01

    Four single-cell cavities prepared by various surface treatments have been tested repeatedly since 1991. A maximum accelerating gradient of 25.1 MV/m with a high Q 0 value of ∼10 10 was successfully achieved after heat treatment at 1400degC. A temperature mapping system with a high thermal sensitivity under superfluid helium was developed to understand phenomena limiting a maximum accelerating gradient. The cavity performances and the phenomena at high fields are reported in this paper. (author)

  7. Efficient Characterization of Protein Cavities within Molecular Simulation Trajectories: trj_cavity.

    Science.gov (United States)

    Paramo, Teresa; East, Alexandra; Garzón, Diana; Ulmschneider, Martin B; Bond, Peter J

    2014-05-13

    Protein cavities and tunnels are critical in determining phenomena such as ligand binding, molecular transport, and enzyme catalysis. Molecular dynamics (MD) simulations enable the exploration of the flexibility and conformational plasticity of protein cavities, extending the information available from static experimental structures relevant to, for example, drug design. Here, we present a new tool (trj_cavity) implemented within the GROMACS ( www.gromacs.org ) framework for the rapid identification and characterization of cavities detected within MD trajectories. trj_cavity is optimized for usability and computational efficiency and is applicable to the time-dependent analysis of any cavity topology, and optional specialized descriptors can be used to characterize, for example, protein channels. Its novel grid-based algorithm performs an efficient neighbor search whose calculation time is linear with system size, and a comparison of performance with other widely used cavity analysis programs reveals an orders-of-magnitude improvement in the computational cost. To demonstrate its potential for revealing novel mechanistic insights, trj_cavity has been used to analyze long-time scale simulation trajectories for three diverse protein cavity systems. This has helped to reveal, respectively, the lipid binding mechanism in the deep hydrophobic cavity of a soluble mite-allergen protein, Der p 2; a means for shuttling carbohydrates between the surface-exposed substrate-binding and catalytic pockets of a multidomain, membrane-proximal pullulanase, PulA; and the structural basis for selectivity in the transmembrane pore of a voltage-gated sodium channel (NavMs), embedded within a lipid bilayer environment. trj_cavity is available for download under an open-source license ( http://sourceforge.net/projects/trjcavity ). A simplified, GROMACS-independent version may also be compiled.

  8. Generation of strong electromagnetic power at 35 GHz from the interaction of a resonant cavity with a relativistic electron beam generated by a free electron laser

    International Nuclear Information System (INIS)

    Lefevre, Thibaut

    2000-01-01

    The next generation of electron-positron linear colliders must reach the TeV energy range. For this, one requires an adequate RF power source to feed the accelerating cavities of the collider. One way to generate this source is to use the Two Beam Accelerator concept in which the RF power is produced in resonant cavities driven by an intense bunched beam. In this thesis, I present the experimental results obtained at the CEA/CESTA using an electron beam generated by an induction linac. First, some studies were performed with the LELIA induction linac (2.2 MeV, 1 kA, 80 ns) using a Free Electron Laser (FEL) as a buncher at 35 GHz. A second part relates the experiment made with the PIVAIR induction linac (7 MeV, 1 kA, 80 ns) in order to measure the RF power extracted from a resonant cavity at 35 GHz, which is driven by the bunches produced in the FEL. One can also find a simple theoretical modeling of the beam-cavity interaction, and the numerical results dealing with the design of the cavity we tested. (author) [fr

  9. Dispersion of coupled mode-gap cavities

    NARCIS (Netherlands)

    Lian, Jin; Sokolov, Sergei; Yuce, E.; Combrie, S.; de Rossi, A.; Mosk, Allard

    2015-01-01

    The dispersion of a coupled resonator optical waveguide made of photonic crystal mode-gap cavities is pronouncedly asymmetric. This asymmetry cannot be explained by the standard tight binding model. We show that the fundamental cause of the asymmetric dispersion is the inherent dispersive cavity

  10. Significantly improving nuclear resonance fluorescence non-destructive assay by using the integral resonance transmission method and photofission

    International Nuclear Information System (INIS)

    Angell, Christopher T.; Hayakawa, Takehito; Shizuma, Toshiyuki; Hajima, Ryoichi

    2013-01-01

    Non-destructive assay (NDA) of 239 Pu in spent nuclear fuel or melted fuel using a γ-ray beam is possible using self absorption and the integral resonance transmission method. The method uses nuclear resonance absorption where resonances in 239 Pu remove photons from the beam, and the selective absorption is detected by measuring the decrease in scattering in a witness target placed in the beam after the fuel, consisting of the isotope of interest, namely 239 Pu. The method is isotope specific, and can use photofission or scattered γ-rays to assay the 239 Pu. It overcomes several problems related to NDA of melted fuel, including the radioactivity of the fuel, and the unknown composition and geometry. This talk will explain the general method, and how photofission can be used to assay specific isotopes, and present example calculations. (author)

  11. Effects of Core Cavity on a Flow Distribution

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Tae-Soon; Kim, Kihwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The axial pressure drop is removed in the free core condition, But the actual core has lots of fuel bundles and mixing vanes to the flow direction. The axial pressure drop induces flow uniformity. In a uniform flow having no shear stress, the cross flow or cross flow mixing decreases. The mixing factor is important in the reactor safety during a Steam Line Break (SLB) or Main Steam Line Break (MSLB) transients. And the effect of core cavity is needed to evaluate the realistic core mixing factor quantification. The multi-dimensional flow mixing phenomena in a core cavity has been studied using a CFD code. The 1/5-scale model was applied for the reactor flow analysis. A single phase water flow conditions were considered for the 4-cold leg and DVI flows. To quantify the mixing intensity, a boron scalar was introduced to the ECC injection water at cold legs and DVI nozzles. The present CFD pre-study was performed to quantify the effects of core structure on the mixing phenomena. The quantified boron mixing scalar in the core simulator model represented the effect of core cavity on the core mixing phenomena. This simulation results also give the information for sensor resolution to measure the boron concentration in the experiments and response time to detect mixing phenomena at the core and reactor vessel.

  12. Lasing by driven atoms-cavity system in collective strong coupling regime.

    Science.gov (United States)

    Sawant, Rahul; Rangwala, S A

    2017-09-12

    The interaction of laser cooled atoms with resonant light is determined by the natural linewidth of the excited state. An optical cavity is another optically resonant system where the loss from the cavity determines the resonant optical response of the system. The near resonant combination of an optical Fabry-Pérot cavity with laser cooled and trapped atoms couples two distinct optical resonators via light and has great potential for precision measurements and the creation of versatile quantum optics systems. Here we show how driven magneto-optically trapped atoms in collective strong coupling regime with the cavity leads to lasing at a frequency red detuned from the atomic transition. Lasing is demonstrated experimentally by the observation of a lasing threshold accompanied by polarization and spatial mode purity, and line-narrowing in the outcoupled light. Spontaneous emission into the cavity mode by the driven atoms stimulates lasing action, which is capable of operating as a continuous wave laser in steady state, without a seed laser. The system is modeled theoretically, and qualitative agreement with experimentally observed lasing is seen. Our result opens up a range of new measurement possibilities with this system.

  13. Characterisation of a microwave re-entrant cavity resonator for phase-equilibrium measurements and new dew-point data for a (0.25 argon + 0.75 carbon dioxide) mixture

    International Nuclear Information System (INIS)

    Tsankova, Gergana; Richter, Markus; Madigan, Adele; Stanwix, Paul L.; May, Eric F.; Span, Roland

    2016-01-01

    Highlights: • A microwave reentrant cavity resonator was refurbished and extensively characterised. • Vacuum resonance frequencies and Q-factors were modelled and experimentally validated. • Whispering gallery-type modes first-time reported for present cavity geometry. • Dew points of a (0.2491 argon + 0.7509 carbon dioxide) mixture were measured. • Measurements were carried out from T = (252–280) K at pressures up to 6.9 MPa. - Abstract: An apparatus based on a microwave re-entrant cavity resonator, originally built for accurate measurements of the dielectric permittivity of natural gas mixtures, was refurbished and extensively characterised. This was done to enable the future investigation of phase equilibria and (p, ρ, T, x) behaviour of fluid mixtures utilizing the present experimental technique. Vacuum resonance frequencies and Q-factors of the resonator’s modes were modelled using both analytic and finite element methods, and found to compare well with experimental values. The finite element models helped to identify two whispering gallery-type modes not previously reported for such cavity geometries. The models also predict distributions of the electric and magnetic fields in the re-entrant cavity resonator useful for identifying regions in the cavity more sensitive to the presence of a liquid. Following the resonator’s characterisation, its ability to measure dew points was tested using a gravimetrically prepared (0.2501 argon + 0.7499 carbon dioxide) mixture over the temperature range from (252 to 280) K at pressures from (2.8 to 6.9) MPa. The combined expanded uncertainty with a level of confidence of approximately 95% (k = 2) in dew-point temperature and pressure ranged between (0.025 and 0.044) K and from (0.009 to 0.015) MPa, respectively. We compared the experimental dew-point pressures with the recently developed multi-parameter equation of state optimised for combustion gases (EOS-CG), showing relative deviations in the range of (0

  14. Numerical analysis of resonances induced by s wave neutrons in transmission time-of-flight experiments with a computer IBM 7094 II; Methodes d'analyse des resonances induites par les neutrons s dans les experiences de transmission par temps de vol et automatisation de ces methodes sur ordinateur IBM 7094 II

    Energy Technology Data Exchange (ETDEWEB)

    Corge, Ch [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-01-01

    Numerical analysis of transmission resonances induced by s wave neutrons in time-of-flight experiments can be achieved in a fairly automatic way on an IBM 7094/II computer. The involved computations are carried out following a four step scheme: 1 - experimental raw data are processed to obtain the resonant transmissions, 2 - values of experimental quantities for each resonance are derived from the above transmissions, 3 - resonance parameters are determined using a least square method to solve the over determined system obtained by equalling theoretical functions to the correspondent experimental values. Four analysis methods are gathered in the same code, 4 - graphical control of the results is performed. (author) [French] L'automatisation, sur ordinateur IBM 7094/II, de l'analyse des resonances induites par les neutrons s dans les experiences de transmission par temps de vol a ete accomplie en la decomposant selon un schema articule en quatre phases: 1 - le traitement des donnees experimentales brutes pour obtenir les transmissions interfero-resonnantes, 2 - la determination des grandeurs d'analyse a partir des transmissions precedentes, 3 - l'analyse proprement dite des resonances dont les parametres sont obtenus par la resolution d'un systeme surabondant. Quatre methodes d'analyse sont groupees en un meme programme, 4 - la procedure de verification graphique. (auteur)

  15. Reduction of sound transmission through fuselage walls by alternate resonance tuning (A.R.T.)

    Science.gov (United States)

    Bliss, Donald B.; Gottwald, James A.

    1989-01-01

    The ability of alternate resonance tuning (ART) to block sound transmission through light-weight flexible paneled walls by controlling the dynamics of the wall panels is considered. Analytical results for sound transmission through an idealized panel wall illustrate the effect of varying system parameters and show that one or more harmonics of the incident sound field can be cancelled by the present method. Experimental results demonstrate that very large transmission losses with reasonable bandwidths can be achieved by a simple ART panel barrier in a duct.

  16. Michelson interferometer with diffractively-coupled arm resonators in second-order Littrow configuration.

    Science.gov (United States)

    Britzger, Michael; Wimmer, Maximilian H; Khalaidovski, Alexander; Friedrich, Daniel; Kroker, Stefanie; Brückner, Frank; Kley, Ernst-Bernhard; Tünnermann, Andreas; Danzmann, Karsten; Schnabel, Roman

    2012-11-05

    Michelson-type laser-interferometric gravitational-wave (GW) observatories employ very high light powers as well as transmissively-coupled Fabry-Perot arm resonators in order to realize high measurement sensitivities. Due to the absorption in the transmissive optics, high powers lead to thermal lensing and hence to thermal distortions of the laser beam profile, which sets a limit on the maximal light power employable in GW observatories. Here, we propose and realize a Michelson-type laser interferometer with arm resonators whose coupling components are all-reflective second-order Littrow gratings. In principle such gratings allow high finesse values of the resonators but avoid bulk transmission of the laser light and thus the corresponding thermal beam distortion. The gratings used have three diffraction orders, which leads to the creation of a second signal port. We theoretically analyze the signal response of the proposed topology and show that it is equivalent to a conventional Michelson-type interferometer. In our proof-of-principle experiment we generated phase-modulation signals inside the arm resonators and detected them simultaneously at the two signal ports. The sum signal was shown to be equivalent to a single-output-port Michelson interferometer with transmissively-coupled arm cavities, taking into account optical loss. The proposed and demonstrated topology is a possible approach for future all-reflective GW observatory designs.

  17. Cavity QED with single trapped Ca+-ions

    International Nuclear Information System (INIS)

    Mundt, A.B.

    2003-02-01

    This thesis reports on the design and setup of a vacuum apparatus allowing the investigation of cavity QED effects with single trapped 40 Ca + ions. The weak coupling of ion and cavity in the 'bad cavity limit' may serve to inter--convert stationary and flying qubits. The ion is confined in a miniaturized Paul trap and cooled via the Doppler effect to the Lamb--Dicke regime. The extent of the atomic wave function is less than 30 nm. The ion is enclosed by a high finesse optical cavity. The technically--involved apparatus allows movement of the trap relative to the cavity and the trapped ion can be placed at any position in the standing wave. By means of a transfer lock the cavity can be resonantly stabilized with the S 1/2 ↔ D 5/2 quadrupole transition at 729 nm (suitable as a qubit) without light at that wavelength being present in the cavity. The coupling of the cavity field to the S 1/2 ↔ D 5/2 quadrupole transition is investigated with various techniques in order to determine the spatial dependence as well as the temporal dynamics. The orthogonal coupling of carrier and first--order sideband transitions at field nodes and antinodes is explored. The coherent interaction of the ion and the cavity field is confirmed by exciting Rabi oscillations with short resonant pulses injected into the cavity. Finally, first experimental steps towards the observation of cavity enhanced spontaneous emission have been taken. (author)

  18. A water-filled radio frequency accelerating cavity

    International Nuclear Information System (INIS)

    Faehl, R.J.; Keinigs, R.K.; Pogue, E.W.

    1998-01-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The objective of this project was to study water-filled resonant cavities as a high-energy density source to drive high-current accelerator configurations. Basic considerations lead to the expectation that a dielectric-filled cavity should be able to store up to e/e o as much energy as a vacuum one with the same dimensions and thus be capable of accelerating a proportionately larger amount of charge before cavity depletion occurs. During this project, we confirmed that water-filled cavities with e/e o = 60-80 did indeed behave with the expected characteristics, in terms of resonant TM modes and cavity Q. We accomplished this result with numerical cavity eigenvalue codes; fully electromagnetic, two-dimensional, particle-in-cell codes; and, most significantly, with scaled experiments performed in water-filled aluminum cavities. The low-power experiments showed excellent agreement with the numerical results. Simulations of the high-field, high-current mode of operation indicated that charged-particle loss on the dielectric windows, which separate the cavity from the beamline, must be carefully controlled to avoid significant distortion of the axial fields

  19. Optical trapping and binding of particles in an optofluidic stable Fabry-Pérot resonator with single-sided injection.

    Science.gov (United States)

    Gaber, Noha; Malak, Maurine; Marty, Frédéric; Angelescu, Dan E; Richalot, Elodie; Bourouina, Tarik

    2014-07-07

    In this article, microparticles are manipulated inside an optofluidic Fabry-Pérot cylindrical cavity embedding a fluidic capillary tube, taking advantage of field enhancement and multiple reflections within the optically-resonant cavity. This enables trapping of suspended particles with single-side injection of light and with low optical power. A Hermite-Gaussian standing wave is developed inside the cavity, forming trapping spots at the locations of the electromagnetic field maxima with a strong intensity gradient. The particles get arranged in a pattern related to the mechanism affecting them: either optical trapping or optical binding. This is proven to eventually translate into either an axial one dimensional (1D) particle array or a cluster of particles. Numerical simulations are performed to model the field distributions inside the cavity allowing a behavioral understanding of the phenomena involved in each case.

  20. Wideband perfect coherent absorber based on white-light cavity

    Science.gov (United States)

    Kotlicki, Omer; Scheuer, Jacob

    2015-03-01

    Coherent Perfect Absorbers (CPAs) are optical cavities which can be described as time-reversed lasers where light waves that enter the cavity, coherently interfere and react with the intra-cavity losses to yield perfect absorption. In contrast to lasers, which benefit from high coherency and narrow spectral linewidths, for absorbers these properties are often undesirable as absorption at a single frequency is highly susceptible to spectral noise and inappropriate for most practical applications. Recently, a new class of cavities, characterized by a spectrally wide resonance has been proposed. Such resonators, often referred to as White Light Cavities (WLCs), include an intra-cavity superluminal phase element, designed to provide a phase response with a slope that is opposite in sign and equal in magnitude to that of light propagation through the empty cavity. Consequently, the resonance phase condition in WLCs is satisfied over a band of frequencies providing a spectrally wide resonance. WLCs have drawn much attention due to their attractiveness for various applications such as ultra-sensitive sensors and optical buffering components. Nevertheless, WLCs exhibit inherent losses that are often undesirable. Here we introduce a simple wideband CPA device that is based on the WLC concept along with a complete analytical analysis. We present analytical and FDTD simulations of a practical, highly compact (12µm), Silicon based WLC-CPA that exhibits a flat and wide absorption profile (40nm) and demonstrate its usefulness as an optical pulse terminator (>35db isolation) and an all optical modulator that span the entire C-Band and exhibit high immunity to spectral noise.

  1. A qubit strongly coupled to a resonant cavity: asymmetry of the spontaneous emission spectrum beyond the rotating wave approximation

    Energy Technology Data Exchange (ETDEWEB)

    Cao, X [Department of Physics and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen, 361005 (China); You, J Q; Nori, F [Advanced Science Institute, RIKEN, Wako-shi 351-0198 (Japan); Zheng, H, E-mail: xfcao@xmu.edu.cn [Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2011-07-15

    We investigate the spontaneous emission (SE) spectrum of a qubit in a lossy resonant cavity. We use neither the rotating-wave approximation nor the Markov approximation. For the weak-coupling case, the SE spectrum of the qubit is a single peak, with its location depending on the spectral density of the qubit environment. Then, the asymmetry (of the location and heights of the two peaks) of the two SE peaks (which are related to the vacuum Rabi splitting) changes as the qubit-cavity coupling increases. Explicitly, for a qubit in a low-frequency intrinsic bath, the height asymmetry of the splitting peaks is enhanced as the qubit-cavity coupling strength increases. However, for a qubit in an Ohmic bath, the height asymmetry of the spectral peaks is inverted compared to the low-frequency bath case. With further increasing the qubit-cavity coupling to the ultra-strong regime, the height asymmetry of the left and right peaks is slightly inverted, which is consistent with the corresponding case of a low-frequency bath. This inversion of the asymmetry arises from the competition between the Ohmic bath and the cavity bath. Therefore, after considering the anti-rotating terms, our results explicitly show how the height asymmetry in the SE spectrum peaks depends on the qubit-cavity coupling and the type of intrinsic noise experienced by the qubit.

  2. Influences of thermal deformation of cavity mirrors induced by high energy DF laser to beam quality under the simulated real physical circumstances

    Science.gov (United States)

    Deng, Shaoyong; Zhang, Shiqiang; He, Minbo; Zhang, Zheng; Guan, Xiaowei

    2017-05-01

    The positive-branch confocal unstable resonator with inhomogeneous gain medium was studied for the normal used high energy DF laser system. The fast changing process of the resonator's eigenmodes was coupled with the slow changing process of the thermal deformation of cavity mirrors. Influences of the thermal deformation of cavity mirrors to the outcoupled beam quality and transmission loss of high frequency components of high energy laser were computed. The simulations are done through programs compiled by MATLAB and GLAD software and the method of combination of finite elements and Fox-li iteration algorithm was used. Effects of thermal distortion, misaligned of cavity mirrors and inhomogeneous distribution of gain medium were introduced to simulate the real physical circumstances of laser cavity. The wavefront distribution and beam quality (including RMS of wavefront, power in the bucket, Strehl ratio, diffraction limit β, position of the beam spot center, spot size and intensity distribution in far-field ) of the distorted outcoupled beam were studied. The conclusions of the simulation agree with the experimental results. This work would supply references of wavefront correction range to the adaptive optics system of interior alleyway.

  3. A numerically efficient damping model for acoustic resonances in microfluidic cavities

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, P., E-mail: hahnp@ethz.ch; Dual, J. [Institute of Mechanical Systems (IMES), Department of Mechanical and Process Engineering, ETH Zurich, Tannenstrasse 3, CH-8092 Zurich (Switzerland)

    2015-06-15

    Bulk acoustic wave devices are typically operated in a resonant state to achieve enhanced acoustic amplitudes and high acoustofluidic forces for the manipulation of microparticles. Among other loss mechanisms related to the structural parts of acoustofluidic devices, damping in the fluidic cavity is a crucial factor that limits the attainable acoustic amplitudes. In the analytical part of this study, we quantify all relevant loss mechanisms related to the fluid inside acoustofluidic micro-devices. Subsequently, a numerical analysis of the time-harmonic visco-acoustic and thermo-visco-acoustic equations is carried out to verify the analytical results for 2D and 3D examples. The damping results are fitted into the framework of classical linear acoustics to set up a numerically efficient device model. For this purpose, all damping effects are combined into an acoustofluidic loss factor. Since some components of the acoustofluidic loss factor depend on the acoustic mode shape in the fluid cavity, we propose a two-step simulation procedure. In the first step, the loss factors are deduced from the simulated mode shape. Subsequently, a second simulation is invoked, taking all losses into account. Owing to its computational efficiency, the presented numerical device model is of great relevance for the simulation of acoustofluidic particle manipulation by means of acoustic radiation forces or acoustic streaming. For the first time, accurate 3D simulations of realistic micro-devices for the quantitative prediction of pressure amplitudes and the related acoustofluidic forces become feasible.

  4. Optical and acoustic sensing using Fano-like resonances in dual phononic and photonic crystal plate

    Energy Technology Data Exchange (ETDEWEB)

    Amoudache, Samira [Institut d' Electronique, de Microélectronique et de Nanotechnologie, Université de Lille 1, 59655 Villeneuve d' Ascq (France); Laboratoire de Physique et Chimie Quantique, Université Mouloud Mammeri, B.P. 17 RP, 15000 Tizi-Ouzou (Algeria); Moiseyenko, Rayisa [Department of Physics, Technical University of Denmark, DTU Physics, Building 309, DK-2800 Kongens Lyngby (Denmark); Pennec, Yan, E-mail: yan.pennec@univ-lille1.fr; Rouhani, Bahram Djafari [Institut d' Electronique, de Microélectronique et de Nanotechnologie, Université de Lille 1, 59655 Villeneuve d' Ascq (France); Khater, Antoine [Institut des Molécules et Matériaux du Mans (IMMM), UMR CNRS 6283, l' UNAM, Université du Maine, 72085 Le Mans (France); Lucklum, Ralf [Institute of Micro and Sensor Systems (IMOS), Otto-von-Guericke-University, P.O. Box 4120, D-39016 Magdeburg (Germany); Tigrine, Rachid [Laboratoire de Physique et Chimie Quantique, Université Mouloud Mammeri, B.P. 17 RP, 15000 Tizi-Ouzou (Algeria)

    2016-03-21

    We perform a theoretical study based on the transmissions of optical and acoustic waves normally impinging to a periodic perforated silicon plate when the embedded medium is a liquid and show the existence of Fano-like resonances in both cases. The signature of the resonances appears as well-defined asymmetric peaks in the phononic and photonic transmission spectra. We show that the origin of the Fano-like resonances is different with respect to the nature of the wave. In photonic, the origin comes from guided modes in the photonic plate while in phononic we show that it comes from the excitation of standing waves confined inside the cavity coming from the deformation of the water/silicon edges of the cylindrical inclusion. We finally use these features for sensing and show ultra-sensitivity to the light and sound velocities for different concentrations of analytes.

  5. Open microwave cavities

    Czech Academy of Sciences Publication Activity Database

    Šeba, Petr; Rotter, I.; Mueller, M.; Persson, C.; Pichugin, Konstantin N.

    2001-01-01

    Roč. 9, - (2001), s. 484-487 ISSN 1386-9477 Institutional research plan: CEZ:A02/98:Z1-010-914 Keywords : microwave cavity * resonances Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.009, year: 2001

  6. Pacer processing: cavity inventory relationships

    International Nuclear Information System (INIS)

    Dietz, R.J.; Gritzo, L.A.

    1975-09-01

    The pacer cavity and its associated primary power loop comprise a recirculating system in which materials are introduced by a series of thermonuclear explosions while debris is continuously removed by radioactive decay, sorption phenomena, and deliberate processing. Safe, reliable, and economical realization of the Pacer concept depends on the removal and control of both noxious and valuable by-products of the fusion reaction. Mathematical relationships are developed that describe the quantities of materials that are introduced into the Pacer cavity by a series of discrete events and are removed continuously by processing and decay. An iterative computer program based on these relationships is developed that allows both the total cavity inventory and the amounts of important individual species to be determined at any time during the lifetime of the cavity in order to establish the effects of the thermonuclear event, the cavity, the flow, and various processing parameters on Pacer design requirements

  7. Design of a Miniaturized X-Band Diplexer Based on Novel One-Third-Mode Substrate Integrated Resonator Filters

    Science.gov (United States)

    Zhang, Hao; Kang, Wei; Wu, Wen

    2017-12-01

    In this paper, a miniaturized diplexer designed with two novel one-third-mode substrate integrated resonator (OTMSIR) filters has been presented. The one-third triangular resonator cavity with two transmission zeros (TZs) and two transmission poles is investigated. TZs are implemented by taking cross couplings of lower order modes in this design. The diplexer is then obtained by integrating two different sizes of OTMSIR filters with a common T-junction structure. A X-band diplexer operating at 10 GHz and 11.5 GHz is designed on a substrate with a dielectric constant of 3.55 to verify the above design concept. This novel structure features more compact size, better transmission performance, higher out of band rejection and easier integration compared with other circuits. A good agreement is obtained between the simulations and the measured results.

  8. Minimum wakefield achievable by waveguide damped cavity

    International Nuclear Information System (INIS)

    Lin, X.E.; Kroll, N.M.

    1995-01-01

    The authors use an equivalent circuit to model a waveguide damped cavity. Both exponentially damped and persistent (decay t -3/2 ) components of the wakefield are derived from this model. The result shows that for a cavity with resonant frequency a fixed interval above waveguide cutoff, the persistent wakefield amplitude is inversely proportional to the external Q value of the damped mode. The competition of the two terms results in an optimal Q value, which gives a minimum wakefield as a function of the distance behind the source particle. The minimum wakefield increases when the resonant frequency approaches the waveguide cutoff. The results agree very well with computer simulation on a real cavity-waveguide system

  9. Real-time magnetic resonance imaging of highly dynamic granular phenomena

    Science.gov (United States)

    Penn, Alexander; Pruessmann, Klaas P.; Müller, Christoph

    Probing non-intrusively the interior of three-dimensional granular systems is a challenging task for which a number of imaging techniques have been applied including positron emission particle tracking, X-ray tomography and magnetic resonance imaging (MRI). A particular advantage of MRI is its versatility allowing quantitative velocimetry through phase contrast encoding and tagging, arbitrary slice orientations and the flexibility to trade spatial for temporal resolution and vice versa during image reconstruction. However, previous attempts to image granular systems using MRI were often limited to (pseudo-) steady state systems due to the poor temporal resolution of conventional imaging methodology. Here we present an experimental approach that overcomes previous limitations in temporal resolution by implementing a variety of methodological advances, viz. parallel data acquisition through tailored multiple receiver coils, fast gradient readouts for time-efficient data sampling and engineered granular materials that contain signal sources of high proton density. Achieving a spatial and temporal resolution of, respectively, 2 mm x 2 mm and 50 ms, we were able to image highly dynamic phenomena in granular media such as bubble coalescence and granular compaction waves.

  10. Dynamic control of the asymmetric Fano resonance in side-coupled Fabry–Pérot and photonic crystal nanobeam cavities

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Tong; Chau, Fook Siong; Zhou, Guangya, E-mail: mpezgy@nus.edu.sg [Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576 (Singapore); Deng, Jie [Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602 (Singapore)

    2015-11-30

    Fano resonance is a prevailing interference phenomenon that stems from the intersection between discrete and continuum states in many fields. We theoretically and experimentally characterize the asymmetric Fano lineshape in side-coupled waveguide Fabry–Pérot and photonic crystal nanobeam cavities. The measured quality-factor of the Fano resonance before tuning is 28 100. A nanoelectromechanical systems bidirectional actuator is integrated seamlessly to control the shape of the Fano resonance through in-plane translations in two directions without sacrificing the quality-factor. The peak intensity level of the Fano resonance can be increased by 8.5 dB from 60 nW to 409 nW while the corresponding dip intensity is increased by 12.8 dB from 1 nW to 18 nW. The maximum recorded quality-factor throughout the tuning procedure is up to 32 500. Potential applications of the proposed structure include enhancing the sensitivity of sensing, reconfigurable nanophotonics devices, and on-chip intensity modulator.

  11. Microphonics detuning compensation in 3.9 GHZ superconducting RF cavities

    International Nuclear Information System (INIS)

    Ruben Carcagno

    2003-01-01

    Mechanical vibrations can detune superconducting radio frequency (SCRF) cavities unless a tuning mechanism counteracting the vibrations is present. Due to their narrow operating bandwidth and demanding mechanical structure, the 13-cell 3.9GHz SCRF cavities for the Charged Kaons at Main Injector (CKM) experiment at Fermilab are especially susceptible to this microphonic phenomena. We present early results correlating RF frequency detuning with cavity vibration measurements for CKM cavities; initial detuning compensation results with piezoelectric actuators are also presented

  12. Microphonics detuning compensation in 3.9 GHZ superconducting RF cavities

    Energy Technology Data Exchange (ETDEWEB)

    Ruben Carcagno et al.

    2003-10-20

    Mechanical vibrations can detune superconducting radio frequency (SCRF) cavities unless a tuning mechanism counteracting the vibrations is present. Due to their narrow operating bandwidth and demanding mechanical structure, the 13-cell 3.9GHz SCRF cavities for the Charged Kaons at Main Injector (CKM) experiment at Fermilab are especially susceptible to this microphonic phenomena. We present early results correlating RF frequency detuning with cavity vibration measurements for CKM cavities; initial detuning compensation results with piezoelectric actuators are also presented.

  13. Numerical analysis of resonances induced by s wave neutrons in transmission time-of-flight experiments with a computer IBM 7094 II; Methodes d'analyse des resonances induites par les neutrons s dans les experiences de transmission par temps de vol et automatisation de ces methodes sur ordinateur IBM 7094 II

    Energy Technology Data Exchange (ETDEWEB)

    Corge, Ch. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-01-01

    Numerical analysis of transmission resonances induced by s wave neutrons in time-of-flight experiments can be achieved in a fairly automatic way on an IBM 7094/II computer. The involved computations are carried out following a four step scheme: 1 - experimental raw data are processed to obtain the resonant transmissions, 2 - values of experimental quantities for each resonance are derived from the above transmissions, 3 - resonance parameters are determined using a least square method to solve the over determined system obtained by equalling theoretical functions to the correspondent experimental values. Four analysis methods are gathered in the same code, 4 - graphical control of the results is performed. (author) [French] L'automatisation, sur ordinateur IBM 7094/II, de l'analyse des resonances induites par les neutrons s dans les experiences de transmission par temps de vol a ete accomplie en la decomposant selon un schema articule en quatre phases: 1 - le traitement des donnees experimentales brutes pour obtenir les transmissions interfero-resonnantes, 2 - la determination des grandeurs d'analyse a partir des transmissions precedentes, 3 - l'analyse proprement dite des resonances dont les parametres sont obtenus par la resolution d'un systeme surabondant. Quatre methodes d'analyse sont groupees en un meme programme, 4 - la procedure de verification graphique. (auteur)

  14. Injection-controlled laser resonator

    Science.gov (United States)

    Chang, J.J.

    1995-07-18

    A new injection-controlled laser resonator incorporates self-filtering and self-imaging characteristics with an efficient injection scheme. A low-divergence laser signal is injected into the resonator, which enables the injection signal to be converted to the desired resonator modes before the main laser pulse starts. This injection technique and resonator design enable the laser cavity to improve the quality of the injection signal through self-filtering before the main laser pulse starts. The self-imaging property of the present resonator reduces the cavity induced diffraction effects and, in turn, improves the laser beam quality. 5 figs.

  15. Fabrication and RF characterization of zinc oxide based Film Bulk Acoustic Resonator

    Science.gov (United States)

    Patel, Raju; Bansal, Deepak; Agrawal, Vimal Kumar; Rangra, Kamaljit; Boolchandani, Dharmendar

    2018-06-01

    This work reports fabrication and characterization of Film Bulk Acoustic Resonator (FBAR) to improve the performance characteristics for RF filter and sensing application. Zinc oxide as a piezoelectric (PZE) material was deposited on an aluminum bottom electrode using an RF magnetron sputtering, at room temperature, and gold as top electrode for the resonator. Tetramethyl ammonium hydroxide (TMAH) setup was used for bulk silicon etching to make back side cavity to confine the acoustic signals. The transmission characteristics show that the FBARs have a central frequency at 1.77 GHz with a return loss of -10.7 dB.

  16. Transmission line model for coupled rectangular double split‐ring resonators

    DEFF Research Database (Denmark)

    Yan, Lei; Tang, Meng; Krozer, Viktor

    2011-01-01

    In this work, a model based on a coupled transmission line formulation is developed for microstrip rectangular double split‐ring resonators (DSRRs). This model allows using the physical dimensions of the DSRRs as an input avoiding commonly used extraction of equivalent parameters. The model inclu...... simulations of the DSRR structures. © 2011 Wiley Periodicals, Inc. Microwave Opt Technol Lett 53:1311–1315, 2011; View this article online at wileyonlinelibrary.com. DOI 10.1002/mop.25988...

  17. Neutron Transmission and Capture Measurements and Resonance Parameter Analysis of Neodymium from 1eV to 500 eV

    International Nuclear Information System (INIS)

    DP Barry; MJ Trbovich; Y Danon; RC Block; RE Slovacek

    2005-01-01

    Neodymium is a 235 U fission product and is important for reactor neutronic calculations. The aim of the present work is to improve upon the existing neutron cross section data of neodymium. Neutron capture and transmission measurements were performed by the time-off-light technique at the Rensselaer Polytechnic Institute LINAC laboratory using metallic neodymium samples. The capture measurements were made at the 25-m flight station with a 16-segment NaI multiplicity detector, and the transmission measurements were performed at 15-m and 25-m flight stations, respectively, with 6 Li glass scintillation detectors. After the data were collected and reduced, resonance parameters were determined by combined fitting of the transmission and capture data with the multilevel R-matrix Bayesian code SAMMY. The resonance parameters for all naturally occurring neodymium isotopes were deduced within the energy range of 1 eV to 500 eV. The resulting resonance parameters were used to calculate the capture resonance integrals from this energy. The RPI parameters gave a resonance integral value of 32 ± 1 barns that is approximately 7% lower than that obtained with the ENDF-B/VI parameters. The current measurements significantly reduce the uncertainties on the resonance parameters when compared with previously published parameters

  18. Optical properties of the two-port resonant tunneling filters in two-dimensional photonic crystal slabs

    International Nuclear Information System (INIS)

    Ren Cheng; Cheng Li-Feng; Kang Feng; Gan Lin; Zhang Dao-Zhong; Li Zhi-Yuan

    2012-01-01

    We have designed and fabricated two types of two-port resonant tunneling filters with a triangular air-hole lattice in two-dimensional photonic crystal slabs. In order to improve the filtering efficiency, a feedback method is introduced by closing the waveguide. It is found that the relative position between the closed waveguide boundary and the resonator has an important impact on the dropping efficiency. Based on our analyses, two different types of filters are designed. The transmission spectra and scattering-light far-field patterns are measured, which agree well with theoretical prediction. In addition, the resonant filters are highly sensitive to the size of the resonant cavities, which are useful for practical applications

  19. High Voltage AC underground cable systems for power transmission

    DEFF Research Database (Denmark)

    Bak, Claus Leth; Silva, Filipe Miguel Faria da

    2016-01-01

    researching electrical engineering topics related to using underground cables for power transmission at EHV level and including the 420 kV level. The research topics were laid down by ET/AAU and Energinet.dk in the DANPAC (DANish Power systems with AC Cables) research project. The main topics are discussed...... on the basis of 39 references published by ET/AAU and Energinet.dk. Part I of the paper explains the events that lead to the research project, reactive power compensation, modelling for transient studies, including field measurements and improvements to the existing models, and temporary overvoltages due...... to resonances. Part II covers transient phenomena, harmonics in cables, system modelling for different phenomena, main and backup protections in cable-based networks, online fault detection and future trends....

  20. High Voltage AC underground cable systems for power transmission

    DEFF Research Database (Denmark)

    Bak, Claus Leth; Silva, Filipe Miguel Faria da

    2016-01-01

    researching electrical engineering topics related to using underground cables for power transmission at EHV level and including the 420 kV level. The research topics were laid down by ET/AAU and Energinet.dk in the DANPAC (DANish Power systems with Ac Cables) research project. The main topics are discussed...... on the basis of 39 references published by ET/AAU and Energinet.dk. Part I of the paper explains the events that lead to the research project, reactive power compensation, modelling for transient studies, including field measurements and improvements to the existing models, and temporary overvoltages due...... to resonances. Part II covers transient phenomena, harmonics in cables, system modelling for different phenomena, main and backup protections in cable-based networks, online fault detection and future trends....

  1. Computed tomography and magnetic resonance for the advanced imaging of the normal nasal cavity and paranasal sinuses of the koala (Phascolarctos cinereus).

    Science.gov (United States)

    Bercier, Marjorie; Alexander, Kate; Gorow, April; Pye, Geoffrey W

    2014-12-01

    The objective of this study is to describe computed tomography (CT) and magnetic resonance (MR) for the cross-sectional imaging of the normal anatomy of the nasal cavity and paranasal sinuses of the koala (Phascolarctos cinereus), to provide reference figures for gross anatomy with corresponding CT and MR images and to compare the features of the nasal cavity and paranasal sinuses of the normal koala with that reported in other domestic species. Advanced imaging can be used to aid in diagnosis, to plan surgical intervention, and to monitor therapeutic responses to diseases of the nasal passages in koalas. One clinically normal koala was anesthetized twice for the separate acquisition of dorsal CT scan images and transverse, dorsal, and sagittal MR images of its nasal cavity and paranasal sinuses. Sagittal and transverse CT planes were reformatted. Three fresh koala skulls were also transected in one of each transverse, sagittal, and dorsal planes and photographed. The CT and MR images obtained were matched with corresponding gross anatomic images and the normal bone, tissues and airway passages were identified. All anatomic structures were readily identifiable on CT, magnetic resonance imaging (MRI), and gross images. CT and MRI are both valuable diagnostic tools for imaging the nasal cavities and paranasal sinuses of koalas. Images obtained from this project can be used as baseline references for future comparison with diseased koalas to help with diagnosis, surgical intervention, and response to therapy.

  2. Circuit QED with 3D cavities

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Edwar; Eder, Peter; Fischer, Michael; Goetz, Jan; Deppe, Frank; Gross, Rudolf [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching (Germany); Physik-Department, TU Muenchen, 85748 Garching (Germany); Nanosystems Initiative Munich (NIM), 80799 Muenchen (Germany); Haeberlein, Max; Wulschner, Karl Friedrich [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching (Germany); Physik-Department, TU Muenchen, 85748 Garching (Germany); Fedorov, Kirill; Marx, Achim [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching (Germany)

    2016-07-01

    In typical circuit QED systems, on-chip superconducting qubits are coupled to integrated coplanar microwave resonators. Due to the planar geometry, the resonators are often a limiting factor regarding the total coherence of the system. Alternatively, similar hybrid systems can be realized using 3D microwave cavities. Here, we present studies on transmon qubits capacitively coupled to 3D cavities. The internal quality factors of our 3D cavities, machined out of high purity aluminum, are above 1.4 .10{sup 6} at the single photon level and a temperature of 50 mK. For characterization of the sample, we perform dispersive shift measurements up to the third energy level of the qubit. We show simulations and data describing the effect of the transmon geometry on it's capacitive properties. In addition, we present progress towards an integrated quantum memory application.

  3. A hybrid polarization-selective atomic sensor for radio-frequency field detection with a passive resonant-cavity field amplifier

    OpenAIRE

    Anderson, David A.; Paradis, Eric G.; Raithel, Georg

    2018-01-01

    We present a hybrid atomic sensor that realizes radio-frequency electric field detection with intrinsic field amplification and polarization selectivity for robust high-sensitivity field measurement. The hybrid sensor incorporates a passive resonator element integrated with an atomic vapor cell that provides amplification and polarization selectivity for detection of incident radio-frequency fields. The amplified intra-cavity radio-frequency field is measured by atoms using a quantum-optical ...

  4. Optical and acoustic sensing using Fano-like resonances in dual phononic and photonic crystal plate

    DEFF Research Database (Denmark)

    Amoudache, Samira; Moiseyenko, Rayisa; Pennec, Yan

    2016-01-01

    We perform a theoretical study based on the transmissions of optical and acoustic waves normally impinging to a periodic perforated silicon plate when the embedded medium is a liquid and show the existence of Fano-like resonances in both cases. The signature of the resonances appears as well-defi...... of standing waves confined inside the cavity coming from the deformation of the water/silicon edges of the cylindrical inclusion. We finally use these features for sensing and show ultra-sensitivity to the light and sound velocities for different concentrations of analytes.......-defined asymmetric peaks in the phononic and photonic transmission spectra. We show that the origin of the Fano-like resonances is different with respect to the nature of the wave. In photonic, the origin comes from guided modes in the photonic plate while in phononic we show that it comes from the excitation...

  5. CFD Simulation of Flow Tones from Grazing Flow past a Deep Cavity

    International Nuclear Information System (INIS)

    T Bagwell

    2006-01-01

    Locked-in flow tones due to shear flow over a deep cavity are investigated using Large Eddy Simulation (LES). An isentropic form of the compressible Navier-Stokes equations (pseudo-compressibility) is used to couple the vertical flow over the cavity mouth with the deep cavity resonances (1). Comparisons to published experimental data (2) show that the pseudo-compressible LES formulation is capable of predicting the feedforward excitation of the deep cavity resonator, as well as the feedback process from the resonator to the flow source. By systematically increasing the resonator damping level, it is shown that strong lock-in results in a more organized shear layer than is observed for the locked-out flow state. By comparison, weak interactions (non-locked-in) produce no change in the shear layer characteristics. This supports the 40 dB definition of lock-in defined in the experiment

  6. Quality factor of a transmission line coupled coplanar waveguide resonator

    Energy Technology Data Exchange (ETDEWEB)

    Besedin, Ilya [National University for Science and Technology (MISiS), Moscow (Russian Federation); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation); Menushenkov, Alexey P. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation)

    2018-12-15

    We investigate analytically the coupling of a coplanar waveguide resonator to a coplanar waveguide feedline. Using a conformal mapping technique we obtain an expression for the characteristic mode impedances and coupling coefficients of an asymmetric multi-conductor transmission line. Leading order terms for the external quality factor and frequency shift are calculated. The obtained analytical results are relevant for designing circuit-QED quantum systems and frequency division multiplexing of superconducting bolometers, detectors and similar microwave-range multi-pixel devices. (orig.)

  7. Analytic Solution of the Electromagnetic Eigenvalues Problem in a Cylindrical Resonator

    Energy Technology Data Exchange (ETDEWEB)

    Checchin, Mattia [Fermilab; Martinello, Martina [Fermilab

    2016-10-06

    Resonant accelerating cavities are key components in modern particles accelerating facilities. These take advantage of electromagnetic fields resonating at microwave frequencies to accelerate charged particles. Particles gain finite energy at each passage through a cavity if in phase with the resonating field, reaching energies even of the order of $TeV$ when a cascade of accelerating resonators are present. In order to understand how a resonant accelerating cavity transfers energy to charged particles, it is important to determine how the electromagnetic modes are exited into such resonators. In this paper we present a complete analytical calculation of the resonating fields for a simple cylindrical-shaped cavity.

  8. Middle ear cavity morphology is consistent with an aquatic origin for testudines.

    Directory of Open Access Journals (Sweden)

    Katie L Willis

    Full Text Available The position of testudines in vertebrate phylogeny is being re-evaluated. At present, testudine morphological and molecular data conflict when reconstructing phylogenetic relationships. Complicating matters, the ecological niche of stem testudines is ambiguous. To understand how turtles have evolved to hear in different environments, we examined middle ear morphology and scaling in most extant families, as well as some extinct species, using 3-dimensional reconstructions from micro magnetic resonance (MR and submillimeter computed tomography (CT scans. All families of testudines exhibited a similar shape of the bony structure of the middle ear cavity, with the tympanic disk located on the rostrolateral edge of the cavity. Sea Turtles have additional soft tissue that fills the middle ear cavity to varying degrees. When the middle ear cavity is modeled as an air-filled sphere of the same volume resonating in an underwater sound field, the calculated resonances for the volumes of the middle ear cavities largely fell within testudine hearing ranges. Although there were some differences in morphology, there were no statistically significant differences in the scaling of the volume of the bony middle ear cavity with head size among groups when categorized by phylogeny and ecology. Because the cavity is predicted to resonate underwater within the testudine hearing range, the data support the hypothesis of an aquatic origin for testudines, and function of the middle ear cavity in underwater sound detection.

  9. STRUCTURAL ANALYSIS OF SUPERCONDUCTING ACCELERATOR CAVITIES

    International Nuclear Information System (INIS)

    Schrage, D.

    2000-01-01

    The static and dynamic structural behavior of superconducting cavities for various projects was determined by finite element structural analysis. The β = 0.61 cavity shape for the Neutron Science Project was studied in detail and found to meet all design requirements if fabricated from five millimeter thick material with a single annular stiffener. This 600 MHz cavity will have a Lorentz coefficient of minus1.8 Hz/(Mv/meter) 2 and a lowest structural resonance of more than 100 Hz. Cavities at β = 0.48, 0.61, and 0.77 were analyzed for a Neutron Science Project concept which would incorporate 7-cell cavities. The medium and high beta cavities were found to meet all criteria but it was not possible to generate a β = 0.48 cavity with a Lorentz coefficient of less than minus3 Hz/(Mv/meter) 2

  10. Neutron Resonance Transmission Analysis (NRTA): Initial Studies of a Method for Assaying Plutonium in Spent Fuel

    Energy Technology Data Exchange (ETDEWEB)

    David L. Chichester; James W. Sterbentz

    2011-05-01

    Neutron Resonance Transmission Analysis (NRTA) is an analytical technique that uses neutrons to assay the isotopic content of bulk materials. The technique uses a pulsed accelerator to produce an intense, short pulse of neutrons in a time-of-flight configuration. These neutrons, traveling at different speeds according to their energy, can be used to interrogate a spent fuel (SF) assembly to determine its plutonium content. Neutron transmission through the assembly is monitored as a function of neutron energy (time after the pulse), similar to the way neutron cross-section data is often collected. The transmitted neutron intensity is recorded as a function of time, with faster (higher-energy) neutrons arriving first and slower (lower-energy) neutrons arriving later. The low-energy elastic scattering and absorption resonances of plutonium and other isotopes modulate the transmitted neutron spectrum. Plutonium content in SF can be determined by analyzing this attenuation. Work is currently underway at Idaho National Laboratory, as a part of United States Department of Energy's Next Generation Safeguards Initiative (NGSI), to investigate the NRTA technique and to assess its feasibility for quantifying the plutonium content in SF and for determining the diversion of SF pins from assemblies. Preliminary results indicate that NRTA has great potential for being able to assay intact SF assemblies. Operating in the 1-40 eV range, it can identify four plutonium isotopes (239, 240, 241, & 242Pu), three uranium isotopes (235, 236, & 238U), and six resonant fission products (99Tc, 103Rh, 131Xe, 133Cs, 145Nd, and 152Sm). It can determine the areal density or mass of these isotopes in single- or multiple-pin integral transmission scans. Further, multiple observables exist to allow the detection of material diversion (pin defects) including fast-neutron and x-ray radiography, gross-transmission neutron counting, plutonium resonance absorption analysis, and fission

  11. Cavity parameters identification for TESLA control system development

    Energy Technology Data Exchange (ETDEWEB)

    Czarski, T.; Pozniak, K.T.; Romaniuk, R.S. [Warsaw Univ. of Technology (Poland). ELHEP Lab., ISE; Simrock, S. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2005-07-01

    The control system modeling for the TESLA - TeV-Energy Superconducting Linear Accelerator project has been developed for the efficient stabilization of the pulsed, accelerating EM field of the resonator. The cavity parameters identification is an essential task for the comprehensive control algorithm. The TESLA cavity simulator has been successfully implemented by applying very high speed FPGA - Field Programmable Gate Array technology. The electromechanical model of the cavity resonator includes the basic features - Lorentz force detuning and beam loading. The parameters identification bases on the electrical model of the cavity. The model is represented by the state space equation for the envelope of the cavity voltage driven by the current generator and the beam loading. For a given model structure, the over-determined matrix equation is created covering the long enough measurement range with the solution according to the least squares method. A low degree polynomial approximation is applied to estimate the time-varying cavity detuning during the pulse. The measurement channel distortion is considered, leading to the external cavity model seen by the controller. The comprehensive algorithm of the cavity parameters identification has been implemented in the Matlab system with different modes of the operation. Some experimental results have been presented for different cavity operational conditions. The following considerations have lead to the synthesis of the efficient algorithm for the cavity control system predicted for the potential FPGA technology implementation. (orig.)

  12. Cavity parameters identification for TESLA control system development

    International Nuclear Information System (INIS)

    Czarski, T.; Pozniak, K.T.; Romaniuk, R.S.

    2005-01-01

    The control system modeling for the TESLA - TeV-Energy Superconducting Linear Accelerator project has been developed for the efficient stabilization of the pulsed, accelerating EM field of the resonator. The cavity parameters identification is an essential task for the comprehensive control algorithm. The TESLA cavity simulator has been successfully implemented by applying very high speed FPGA - Field Programmable Gate Array technology. The electromechanical model of the cavity resonator includes the basic features - Lorentz force detuning and beam loading. The parameters identification bases on the electrical model of the cavity. The model is represented by the state space equation for the envelope of the cavity voltage driven by the current generator and the beam loading. For a given model structure, the over-determined matrix equation is created covering the long enough measurement range with the solution according to the least squares method. A low degree polynomial approximation is applied to estimate the time-varying cavity detuning during the pulse. The measurement channel distortion is considered, leading to the external cavity model seen by the controller. The comprehensive algorithm of the cavity parameters identification has been implemented in the Matlab system with different modes of the operation. Some experimental results have been presented for different cavity operational conditions. The following considerations have lead to the synthesis of the efficient algorithm for the cavity control system predicted for the potential FPGA technology implementation. (orig.)

  13. Output field-quadrature measurements and squeezing in ultrastrong cavity-QED

    Science.gov (United States)

    Stassi, Roberto; Savasta, Salvatore; Garziano, Luigi; Spagnolo, Bernardo; Nori, Franco

    2016-12-01

    We study the squeezing of output quadratures of an electro-magnetic field escaping from a resonator coupled to a general quantum system with arbitrary interaction strengths. The generalized theoretical analysis of output squeezing proposed here is valid for all the interaction regimes of cavity-quantum electrodynamics: from the weak to the strong, ultrastrong, and deep coupling regimes. For coupling rates comparable or larger then the cavity resonance frequency, the standard input-output theory for optical cavities fails to calculate the variance of output field-quadratures and predicts a non-negligible amount of output squeezing, even if the system is in its ground state. Here we show that, for arbitrary interaction strength and for general cavity-embedded quantum systems, no squeezing can be found in the output-field quadratures if the system is in its ground state. We also apply the proposed theoretical approach to study the output squeezing produced by: (i) an artificial two-level atom embedded in a coherently-excited cavity; and (ii) a cascade-type three-level system interacting with a cavity field mode. In the latter case the output squeezing arises from the virtual photons of the atom-cavity dressed states. This work extends the possibility of predicting and analyzing the results of continuous-variable optical quantum-state tomography when optical resonators interact very strongly with other quantum systems.

  14. Broadband Transmission Loss Using the Overlap of Resonances in 3D Sonic Crystals

    Directory of Open Access Journals (Sweden)

    Alexandre Lardeau

    2016-05-01

    Full Text Available The acoustic properties of a three-dimensional sonic crystal made of square-rod rigid scatterers incorporating a periodic arrangement of quarter wavelength resonators are theoretically and experimentally reported in this work. The periodicity of the system produces Bragg band gaps that can be tuned in frequency by modifying the orientation of the square-rod scatterers with respect to the incident wave. In addition, the quarter wavelength resonators introduce resonant band gaps that can be tuned by coupling the neighbor resonators. Bragg and resonant band gaps can overlap allowing the wave propagation control inside the periodic resonant medium. In particular, we show theoretically and experimentally that this system can produce a broad frequency band gap exceeding two and a half octaves (from 590 Hz to 3220 Hz with transmission lower than 3%. Finite element methods were used to calculate the dispersion relation of the locally resonant system. The visco-thermal losses were accounted for in the quarter wavelength resonators to simulate the wave propagation in the semi-infinite structures and to compare the numerical results with the experiments performed in an echo-free chamber. The simulations and the experimental results are in good agreement. This work motivates interesting applications of this system as acoustic audible filters.

  15. Modes and Mode Volumes for Leaky Optical Cavities and Plasmonic Nanoresonators

    DEFF Research Database (Denmark)

    Hughes, Stephen; Kristensen, Philip Trøst

    2013-01-01

    Electromagnetic cavity modes in photonic and plasmonic resonators offer rich and attractive regimes for tailoring the properties of light–matter interactions, yet there is a disturbing lack of a precise definition for what constitutes a cavity mode, and as a result their mathematical properties r...... methods for quasinormal modes of both photonic and plasmonic resonators and the concept of a generalized effective mode volume, and we illustrate the theory with several representative cavity structures from the fields of photonic crystals and nanoplasmonics....

  16. Measurements of sub photon cavity fields by atom interferometry; Mesures de champs au niveau du photon par interferometrie atomique

    Energy Technology Data Exchange (ETDEWEB)

    Nussenzveig, P

    1994-07-15

    Two neighbouring levels of a Rydberg atom coupled to a high quality-factor microwave cavity are an excellent tool for the study of matter-wave interactions at the most basic level. The system is so simple (a two-level atom coupled to a single mode of the field) that most phenomena can be described analytically. In this work we study dispersive effects of the non-resonant atom-cavity interaction. We have measured the linear dependence of the atomic energy level-shifts on the average photon number in the cavity. Light shifts induced by an average microwave field intensity weaker than a single photon have been observed. It has also been possible to measure the residual shift of one of the two levels of the atomic transition in the absence of an injected field: a Lamb shift due to a single mode of the field. A sensitive measurement of these energy shifts is performed by an interferometric method: the Ramsey separated oscillatory fields technique. Future experiments, in a situation of very weak field relaxation, are proposed. The quantum behavior of the field will then be dominant and it shall be possible to perform a Quantum Non-Demolition measurement of the photon number: since the interaction is non-resonant, the atoms can neither absorb nor emit photons in the cavity. The performed experiments demonstrate the sensitivity of the apparatus and set the stage for future non-demolition measurements and for the study of 'mesoscopic' Schroedinger cat states of the field, on the boundary between classical and quantum worlds. (author)

  17. Femtojoule-scale all-optical latching and modulation via cavity nonlinear optics.

    Science.gov (United States)

    Kwon, Yeong-Dae; Armen, Michael A; Mabuchi, Hideo

    2013-11-15

    We experimentally characterize Hopf bifurcation phenomena at femtojoule energy scales in a multiatom cavity quantum electrodynamical (cavity QED) system and demonstrate how such behaviors can be exploited in the design of all-optical memory and modulation devices. The data are analyzed by using a semiclassical model that explicitly treats heterogeneous coupling of atoms to the cavity mode. Our results highlight the interest of cavity QED systems for ultralow power photonic signal processing as well as for fundamental studies of mesoscopic nonlinear dynamics.

  18. Upgraded cavities for the positron accumulator ring of the APS

    International Nuclear Information System (INIS)

    Kang, Y.W.; Jiang, X.; Mangra, D.

    1997-01-01

    Upgraded versions of cavities for the APS positron accumulator ring (PAR) have been built and are being tested. Two cavities are in the PAR: a fundamental 9.8-MHz cavity and a twelfth harmonic 117.3-MHz cavity. Both cavities have been manufactured for higher voltage operation with improved Q-factors, reliability, and tuning capability. Both cavities employ current-controlled ferrite tuners for control of the resonant frequency. The harmonic cavity can be operated in either a pulsed mode or a CW mode. The rf properties of the cavities are presented

  19. Design of a high-power Nd:YAG Q-switched laser cavity

    Science.gov (United States)

    Singh, Ikbal; Kumar, Avinash; Nijhawan, O. P.

    1995-06-01

    An electro-optically Q-switched Nd:YAG laser resonator that uses two end prisms placed orthogonally perpendicular to each other has been designed. This configuration improves the stability of the resonator and does not alter the characteristics of the electro-optical Q switch. The outcoupling ratio of the cavity is optimized by a change in the azimuthal angle of a phase-matched Porro prism placed at one end of the cavity. The prism placed at the other end of the cavity is designed so that it introduces a phase change of Pi , regardless of its orientation and index of refraction, resulting in a more efficient and stable cavity.

  20. Cavity Optomechnics with 150nm-thick GaAs Membrane

    DEFF Research Database (Denmark)

    Usami, K.; Melholt Nielsen, B.; Naesby, A.

    2010-01-01

    -coupled to a Fabry-P´erot cavity formed between the membrane and a mirror (Finesse: 24) inside a vacuum chamber (10 7Torr), is used to lock the cavity length at the cavity resonant slope and to induce mechanical oscillations by modulating the intensity from the offset level for ring down measurements. We observe...

  1. Examination of total cross section resonance structure of niobium and silicon in neutron transmission experiments

    Science.gov (United States)

    Andrianova, Olga; Lomakov, Gleb; Manturov, Gennady

    2017-09-01

    The neutron transmission experiments are one of the main sources of information about the neutron cross section resonance structure and effect in the self-shielding. Such kind of data for niobium and silicon nuclides in energy range 7 keV to 3 MeV can be obtained from low-resolution transmission measurements performed earlier in Russia (with samples of 0.027 to 0.871 atom/barn for niobium and 0.076 to 1.803 atom/barn for silicon). A significant calculation-to-experiment discrepancy in energy range 100 to 600 keV and 300 to 800 keV for niobium and silicon, respectively, obtained using the evaluated nuclear data library ROSFOND, were found. The EVPAR code was used for estimation the average resonance parameters in energy range 7 to 600 keV for niobium. For silicon a stochastic optimization method was used to modify the resolved resonance parameters in energy range 300 to 800 keV. The improved ROSFOND evaluated nuclear data files were tested in calculation of ICSBEP integral benchmark experiments.

  2. Paired modes of heterostructure cavities in photonic crystal waveguides with split band edges

    DEFF Research Database (Denmark)

    Mahmoodian, Sahand; Sukhorukov, Andrey A.; Ha, Sangwoo

    2010-01-01

    We investigate the modes of double heterostructure cavities where the underlying photonic crystal waveguide has been dispersion engineered to have two band-edges inside the Brillouin zone. By deriving and using a perturbative method, we show that these structures possess two modes. For unapodized...... cavities, the relative detuning of the two modes can be controlled by changing the cavity length, and for particular lengths, a resonant-like effect makes the modes degenerate. For apodized cavities no such resonances exist and the modes are always non-degenerate....

  3. Slotted cage resonator for high-field magnetic resonance imaging of rodents

    Energy Technology Data Exchange (ETDEWEB)

    Marrufo, O; Vasquez, F; Solis, S E; Rodriguez, A O, E-mail: arog@xanum.uam.mx [Departamento de Ingenieria Electrica, Universidad Autonoma Metropolitana Iztapalapa, Mexico, DF 09340 (Mexico)

    2011-04-20

    A variation of the high-frequency cavity resonator coil was experimentally developed according to the theoretical frame proposed by Mansfield in 1990. Circular slots were used instead of cavities to form the coil endplates and it was called the slotted cage resonator coil. The theoretical principles were validated via a coil equivalent circuit and also experimentally with a coil prototype. The radio frequency magnetic field, B1, produced by several coil configurations was numerically simulated using the finite-element approach to investigate their performances. A transceiver coil, 8 cm long and 7.6 cm in diameter, and composed of 4 circular slots with a 15 mm diameter on both endplates, was built to operate at 300 MHz and quadrature driven. Experimental results obtained with the slotted cage resonator coil were presented and showed very good agreement with the theoretical expectations for the resonant frequency as a function of the coil dimensions and slots. A standard birdcage coil was also built for performance comparison purposes. Phantom images were then acquired to compute the signal-to-noise ratio of both coils showing an important improvement of the slotted cage coil over the birdcage coil. The whole-body images of the mouse were also obtained showing high-quality images. Volume resonator coils can be reliably built following the physical principles of the cavity resonator design for high-field magnetic resonance imaging applications of rodents.

  4. Collapse–revival of squeezing of two atoms in dissipative cavities

    International Nuclear Information System (INIS)

    Zou Hong-Mei; Fang Mao-Fa

    2016-01-01

    Based on the time-convolutionless master-equation approach, we investigate the squeezing dynamics of two atoms in dissipative cavities. We find that the atomic squeezing is related to initial atomic states, atom–cavity couplings, non-Markovian effects and resonant frequencies of an atom and its cavity. The results show that a collapse–revival phenomenon will occur in the atomic squeezing and this process is accompanied by the buildup and decay of entanglement between two atoms. Enhancing the atom–cavity coupling can increase the frequency of the collapse–revival of the atomic squeezing. The stronger the non-Markovian effect is, the more obvious the collapse–revival phenomenon is. In particular, if the atom–cavity coupling or the non-Markovian effect is very strong, the atomic squeezing will tend to a stably periodic oscillation in a long time. The oscillatory frequency of the atomic squeezing is dependent on the resonant frequency of the atom and its cavity. (paper)

  5. Resonance and Fractal Geometry

    NARCIS (Netherlands)

    Broer, Henk W.

    The phenomenon of resonance will be dealt with from the viewpoint of dynamical systems depending on parameters and their bifurcations. Resonance phenomena are associated to open subsets in the parameter space, while their complement corresponds to quasi-periodicity and chaos. The latter phenomena

  6. Resonator QED experiments with single {sup 40}Ca{sup +} ions; Resonator-QED-Experimente mit einzelnen {sup 40}Ca{sup +}-Ionen

    Energy Technology Data Exchange (ETDEWEB)

    Lange, B.

    2006-12-20

    Combining an optical resonator with an ion trap provides the possibility for QED experiments with single or few particles interacting with a single mode of the electro-magnetic field (Cavity-QED). In the present setup, fluctuations in the count rate on a time scale below 30 seconds were purely determined by the photon statistics due to finite emission and detection efficiency, whereas a marginal drift of the system was noticeable above 200 seconds. To find methods to increase the efficiency of the photon source, investigations were conducted and experimental improvements of the setup implemented in the frame of this thesis. Damping of the resonator field and coupling of ion and field were considered as the most important factors. To reduce the damping of the resonator field, a resonator with a smaller transmissivity of the output mirror was set up. The linear trap used in the experiment allows for the interaction of multiple ions with the resonator field, so that more than one photon may be emitted per pump pulse. This was investigated in this thesis with two ions coupled to the resonator. The cross correlation of the emitted photons was measured with the Hanbury Brown-Twiss method. (orig.)

  7. Development of Side Coupled Cavities

    International Nuclear Information System (INIS)

    Conto, J.M. de; Carretta, J.M.; Gomez-Martinez, Y.; Micoud, R.

    2008-01-01

    Side coupled Cavities are good candidates for proton accelerations in the 90-180 MeV range, as it has been first proposed for the CERN LINAC4 project. A side coupled Linac is made of a lump chain of resonant cavities, alternatively accelerating and coupling. A side coupled cavity has been designed in a CERN-LPSC collaboration to achieve LINAC4 requirements. After RF studies, a complete thermal study has been done, showing that 10-15% is the absolute maximum duty-cycle achievable by such a cavity. Error studies have been developed. They have shown that a tuning ring is mandatory and that a K equals 3% coupling factor is a good choice. A prototype has been built and each cell has been measured and tuned. A simple and accurate method has been used to get both the resonant frequency and the coupling factor, with a movable tuner and a linear fit. A similar method has been used to get the second order coupling factor. A large dispersion is observed on K. This is mainly due to the shape of the coupling apertures, which are very sensitive to mechanical errors. A future and realistic design must be very careful to guarantee a constant aperture (the important parameter is more the dispersion of k than its exact value). Finally, we analyse how to tune the cavity. This has to checked carefully and probably improved or corrected. Results are expected for mid-2008

  8. Teleportation of atomic states with a weak coherent cavity field

    Institute of Scientific and Technical Information of China (English)

    Zheng Shi-Biao

    2005-01-01

    A scheme is proposed for the teleportation of an unknown atomic state. The scheme is based on the resonant interaction of atoms with a coherent cavity field. The mean photon-number of the cavity field is much smaller than one and thus the cavity decay can be effectively suppressed. Another adwntage of the scheme is that only one cavity is required.

  9. All-Optical Switching in Photonic Crystal Cavities

    DEFF Research Database (Denmark)

    Heuck, Mikkel

    All-Optical switching in photonic crystal waveguide-cavity structures is studied predominantly theoretically and numerically, but also from an experimental point of view. We have calculated the first order perturbations to the resonance frequency and decay rate of cavity modes, using a mathematical...... exhibiting Fano resonances. These devices were predicted to be superior to structures with the more well-known Lorentzian line shape in terms of energy consumption and switching contrast. Finally, the mathematical framework of optimal control theory was employed as a general setting, in which the optical...... faster than the photon lifetime by utilizing interference effects....

  10. Characterization of etch pits found on a large-grain bulk niobium superconducting radio-frequency resonant cavity

    Science.gov (United States)

    Zhao, Xin; Ciovati, G.; Bieler, T. R.

    2010-12-01

    The performance of superconducting radio-frequency (SRF) resonant cavities made of bulk niobium is limited by nonlinear localized effects. Surface analysis of regions of higher power dissipation is thus of intense interest. Such areas (referred to as “hotspots”) were identified in a large-grain single-cell cavity that had been buffered-chemical polished and dissected for examination by high resolution electron microscopy, electron backscattered diffraction microscopy (EBSD), and optical microscopy. Pits with clearly discernible crystal facets were observed in both “hotspot” and “coldspot” specimens. The pits were found in-grain, at bicrystal boundaries, and on tricrystal junctions. They are interpreted as etch pits induced by crystal defects (e.g. dislocations). All coldspots examined had a qualitatively lower density of etch pits or relatively smooth tricrystal boundary junctions. EBSD mapping revealed the crystal orientation surrounding the pits. Locations with high pit density are correlated with higher mean values of the local average misorientation angle distributions, indicating a higher geometrically necessary dislocation content. In addition, a survey of the samples by energy dispersive x-ray analysis did not show any significant contamination of the samples’ surface. The local magnetic field enhancement produced by the sharp-edge features observed on the samples is not sufficient to explain the observed degradation of the cavity quality factor, which starts at peak surface magnetic field as low as 20 mT.

  11. Acoustic energy harvesting by piezoelectric curved beams in the cavity of a sonic crystal

    International Nuclear Information System (INIS)

    Wang, Wei-Chung; Wu, Liang-Yu; Chen, Lien-Wen; Liu, Chia-Ming

    2010-01-01

    Acoustic energy harvesting by piezoelectric curved beams in the cavity of a sonic crystal is investigated. A resonant cavity of the sonic crystal is used to localize the acoustic wave as the acoustic waves are incident into the sonic crystal at the resonant frequency. The piezoelectric curved beam is placed in the resonant cavity and vibrated by the acoustic wave. The energy harvesting can be achieved as the acoustic waves are incident at the resonant frequency. A model for energy harvesting of the piezoelectric curved beam is also developed to predict the output voltage and power of the energy harvesting. The experimental results are compared with the theoretical

  12. Dichroic mirror embedded in a submicrometer waveguide for enhanced resonant nonlinear optical devices.

    Science.gov (United States)

    Scaccabarozzi, Luigi; Fejer, M M; Huo, Yijie; Fan, Shanhui; Yu, Xiaojun; Harris, James S

    2006-11-15

    We report the design, fabrication and characterization of novel dichroic mirrors embedded in a tightly confining AlGaAs/Al(x)O(y) waveguide. Reflection at the first-harmonic wavelength as high as 93% is achieved, while high transmission is maintained at the second-harmonic wavelength. The measured cavity spectrum is in excellent agreement with finite-difference time-domain simulations. Such a mirror is essential for achieving resonant enhancement of second-harmonic generation.

  13. Resonant coupling applied to superconducting accelerator structures

    International Nuclear Information System (INIS)

    Potter, James M.; Krawczyk, Frank L.

    2013-01-01

    The concept of resonant coupling and the benefits that accrue from its application is well known in the world of room temperature coupled cavity linacs. Design studies show that it can be applied successfully between sections of conventional elliptical superconducting coupled cavity accelerator structures and internally to structures with spoked cavity resonators. The coupling mechanisms can be designed without creating problems with high field regions or multipactoring. The application of resonant coupling to superconducting accelerators eliminates the need for complex cryogenic mechanical tuners and reduces the time needed to bring a superconducting accelerator into operation.

  14. Optical nonreciprocal transmission in an asymmetric silicon photonic crystal structure

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Zheng; Chen, Juguang; Ji, Mengxi; Huang, Qingzhong; Xia, Jinsong; Wang, Yi, E-mail: yingwu2@126.com, E-mail: ywangwnlo@mail.hust.edu.cn [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Wu, Ying, E-mail: yingwu2@126.com, E-mail: ywangwnlo@mail.hust.edu.cn [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)

    2015-11-30

    An optical nonreciprocal transmission (ONT) is realized by employing the nonlinear effects in a compact asymmetric direct-coupled nanocavity-waveguide silicon photonic crystal structure with a high loaded quality factor (Q{sub L}) of 42 360 and large extinction ratio exceeding 30 dB. Applying a single step lithography and successive etching, the device can realize the ONT in an individual nanocavity, alleviating the requirement to accurately control the resonance of the cavities. A maximum nonreciprocal transmission ratio of 21.1 dB as well as a working bandwidth of 280 pm in the telecommunication band are obtained at a low input power of 76.7 μW. The calculated results by employing a nonlinear coupled-mode model are in good agreement with the experiment.

  15. Resonator QED experiments with single 40Ca+ ions

    International Nuclear Information System (INIS)

    Lange, B.

    2006-01-01

    Combining an optical resonator with an ion trap provides the possibility for QED experiments with single or few particles interacting with a single mode of the electro-magnetic field (Cavity-QED). In the present setup, fluctuations in the count rate on a time scale below 30 seconds were purely determined by the photon statistics due to finite emission and detection efficiency, whereas a marginal drift of the system was noticeable above 200 seconds. To find methods to increase the efficiency of the photon source, investigations were conducted and experimental improvements of the setup implemented in the frame of this thesis. Damping of the resonator field and coupling of ion and field were considered as the most important factors. To reduce the damping of the resonator field, a resonator with a smaller transmissivity of the output mirror was set up. The linear trap used in the experiment allows for the interaction of multiple ions with the resonator field, so that more than one photon may be emitted per pump pulse. This was investigated in this thesis with two ions coupled to the resonator. The cross correlation of the emitted photons was measured with the Hanbury Brown-Twiss method. (orig.)

  16. Entanglement Evolution of Jaynes-Cummings Model in Resonance Case and Non-resonance Case

    Science.gov (United States)

    Cheng, Jing; Chen, Xi; Shan, Chuan-Jia

    2018-03-01

    We investigate the entanglement evolution of a two-level atom and a quantized single model electromagnetic filed in the resonance and non-resonance cases. The effects of the initial state, detuning degree, photon number on the entanglement are shown in detail. The results show that the atom-cavity entanglement state appears with periodicity. The increasing of the photon number can make the period of quantum entanglement be shorter. In the non-resonant case, if we choose the suitable initial state the entanglement of atom-cavity can be 1.0

  17. Experiments on two-resonator circuit quantum electrodynamics. A superconducting quantum switch

    International Nuclear Information System (INIS)

    Hoffmann, Elisabeth Christiane Maria

    2013-01-01

    The field of cavity quantum electrodynamics (QED) studies the interaction between light and matter on a fundamental level. In typical experiments individual natural atoms are interacting with individual photons trapped in three-dimensional cavities. Within the last decade the prospering new field of circuit QED has been developed. Here, the natural atoms are replaced by artificial solid state quantum circuits offering large dipole moments which are coupled to quasi-onedimensional cavities providing a small mode volume and hence a large vacuum field strength. In our experiments Josephson junction based superconducting quantum bits are coupled to superconducting microwave resonators. In circuit QED the number of parameters that can be varied is increased and regimes that are not accessible using natural atoms can be entered and investigated. Apart from design flexibility and tunability of system parameters a particular advantage of circuit QED is the scalability to larger system size enabled by well developed micro- and nanofabrication tools. When scaling up the resonator-qubit systems beyond a few coupled circuits, the rapidly increasing number of interacting subsystems requires an active control and directed transmission of quantum signals. This can, for example, be achieved by implementing switchable coupling between two microwave resonators. To this end, a superconducting flux qubit is used to realize a suitable coupling between two microwave resonators, all working in the Gigahertz regime. The resulting device is called quantum switch. The flux qubit mediates a second order tunable and switchable coupling between the resonators. Depending on the qubit state, this coupling can compensate for the direct geometric coupling of the two resonators. As the qubit may also be in a quantum superposition state, the switch itself can be ''quantum'': it can be a superposition of ''on'' and ''off''. This work presents the theoretical background, the fabrication techniques and

  18. Atomic spin resonance in a rubidium beam obliquely incident to a transmission magnetic grating

    International Nuclear Information System (INIS)

    Hatakeyama, A; Goto, K

    2016-01-01

    We studied atomic spin resonance induced by atomic motion in a spatially periodic magnetostatic field. A rubidium atomic beam, with a velocity of about 400 m s −1 , was obliquely incident to a transmission magnetic grating that produced a spatially periodic magnetic field. The magnetic grating was formed by a magnetic thin film on a polyimide substrate that had multiple slits at 150 μm intervals. The atoms experienced field oscillation, depending on their velocity and the field period when passing through the grating, and underwent magnetic resonance. Resonance spectra obtained with a perpendicular magnetization film were in clear contrast to ones obtained with an in-plane magnetization film. The former exhibited resonance peaks at odd multiples of the frequency, determined by the velocity over the period, while the latter had dips at the same frequencies. (paper)

  19. Porous photonic crystal external cavity laser biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Qinglan [Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Peh, Jessie; Hergenrother, Paul J. [Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Cunningham, Brian T. [Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

    2016-08-15

    We report the design, fabrication, and testing of a photonic crystal (PC) biosensor structure that incorporates a porous high refractive index TiO{sub 2} dielectric film that enables immobilization of capture proteins within an enhanced surface-area volume that spatially overlaps with the regions of resonant electromagnetic fields where biomolecular binding can produce the greatest shifts in photonic crystal resonant wavelength. Despite the nanoscale porosity of the sensor structure, the PC slab exhibits narrowband and high efficiency resonant reflection, enabling the structure to serve as a wavelength-tunable element of an external cavity laser. In the context of sensing small molecule interactions with much larger immobilized proteins, we demonstrate that the porous structure provides 3.7× larger biosensor signals than an equivalent nonporous structure, while the external cavity laser (ECL) detection method provides capability for sensing picometer-scale shifts in the PC resonant wavelength caused by small molecule binding. The porous ECL achieves a record high figure of merit for label-free optical biosensors.

  20. Determination of calibration constants for perturbing objects of cavity resonators

    International Nuclear Information System (INIS)

    Franco, M.A.R.; Serrao, V.A.; Fuhrmann, C.

    1989-05-01

    Using the Slater theorem, the calibrating constants for objects utilized in the tecnique of perturbing measurements of cavities electric and magnetic fields have been determined. Such perturbing objects are utilized in the measurements of the shunt impedance and electric field relative intensity ocurring in linac accelerating structures. To determine the calibrating constants of the perturbing objects, a cylindrical cavity of well know field pattern has been utilized. The cavity was excited in two differente modes of oscillation and the experimental results are in good aggrement with the theoretical values. (author) [pt

  1. Magnetic resonance phenomena in dynamics of relativistic particles

    International Nuclear Information System (INIS)

    Ternov, I.M.; Bordovitsyn, V.A.

    1987-01-01

    A relativistic generalization of Rabi's formula for magnetic resonance is given. On this basis, we consider fast and slow passage through resonance. We define a magnetic resonance exterior field as usual, using unit vectors of a Cartesian coordinate system, a homogeneous magnetic field, and the amplitude of a rotating magnetic field. For the description of spin dynamics we use the Bargmann-Michel-Telegdi equation

  2. Cavity quantum electrodynamics using a near-resonance two-level system: Emergence of the Glauber state

    Energy Technology Data Exchange (ETDEWEB)

    Sarabi, B.; Ramanayaka, A. N. [Laboratory for Physical Sciences, College Park, Maryland 20740 (United States); Department of Physics, University of Maryland, College Park, Maryland 20742 (United States); Burin, A. L. [Department of Chemistry, Tulane University, New Orleans, Louisiana 70118 (United States); Wellstood, F. C. [Department of Physics, University of Maryland, College Park, Maryland 20742 (United States); Joint Quantum Institute, University of Maryland, College Park, Maryland 20742 (United States); Osborn, K. D. [Laboratory for Physical Sciences, College Park, Maryland 20740 (United States); Joint Quantum Institute, University of Maryland, College Park, Maryland 20742 (United States)

    2015-04-27

    Random tunneling two-level systems (TLSs) in dielectrics have been of interest recently because they adversely affect the performance of superconducting qubits. The coupling of TLSs to qubits has allowed individual TLS characterization, which has previously been limited to TLSs within (thin) Josephson tunneling barriers made from aluminum oxide. Here, we report on the measurement of an individual TLS within the capacitor of a lumped-element LC microwave resonator, which forms a cavity quantum electrodynamics (CQED) system and allows for individual TLS characterization in a different structure and material than demonstrated with qubits. Due to the reduced volume of the dielectric (80 μm{sup 3}), even with a moderate dielectric thickness (250 nm), we achieve the strong coupling regime as evidenced by the vacuum Rabi splitting observed in the cavity spectrum. A TLS with a coherence time of 3.2 μs was observed in a film of silicon nitride as analyzed with a Jaynes-Cummings spectral model, which is larger than seen from superconducting qubits. As the drive power is increased, we observe an unusual but explicable set of continuous and discrete crossovers from the vacuum Rabi split transitions to the Glauber (coherent) state.

  3. Room temperature RF characterization of Nb make super conducting radio frequency cavities at RRCAT

    International Nuclear Information System (INIS)

    Mahawar, Ashish; Mohania, Praveen; Shrivastava, Purushottam; Yadav, Anand; Puntambekar, Avinash

    2015-01-01

    In order to ensure that the final welded Nb superconducting RF cavities are at the correct frequency the cavity structures are measured at various development stages for their resonant frequency. These measurements are performed at room temperature using a cavity measurement setup developed in house and a VNA. These measurements are critical to identify the length a cavity structure needs to be trimmed before welding. Measurement of resonant frequencies of Nb made cavity structures were performed for half cell, dumb bell, single cell, long end cell and short end cell structures. These structures were then joined to develop single cell and multi-cell 650 MHz/1300 MHz cavities. The present paper describes room temperature cavity characterization being carried out at RRCAT. (author)

  4. Non-destructive assay of EBR-II blanket elements using resonance transmission analysis

    International Nuclear Information System (INIS)

    Klann, R.T.; Poenitz, W.P.

    1998-01-01

    Resonance transmission analysis utilizing a faltered reactor beam was examined as a means of determining the 239 Pu content in Experimental Breeder Reactor-II depleted uranium blanket elements. The technique uses cadmium and gadolinium falters along with a 239 Pu fission chamber to isolate the 0.3 eV resonance in 239 Pu. In the energy range of this resonance (0.1 eV to 0.5 ev), the total microscopic cross-section of 239 Pu is significantly greater than the cross-sections of 238 U and 235 U. This large difference allows small changes in the 239 Pu content of a sample to result in large changes in the mass signal response. Tests with small stacks of depleted uranium and 239 Pu foils indicate a significant change in response based on the 239 Pu content of the foil stack. In addition, the tests indicate good agreement between the measured and predicted values of 239 Pu up to approximately two weight percent

  5. Amplification of an Autodyne Signal in a Bistable Vertical-Cavity Surface-Emitting Laser with the Use of a Vibrational Resonance

    Science.gov (United States)

    Chizhevsky, V. N.

    2018-01-01

    For the first time, it is demonstrated experimentally that a vibrational resonance in a polarization-bistable vertical-cavity surface-emitting laser can be used to increase the laser response in autodyne detection of microvibrations from reflecting surfaces. In this case, more than 25-fold signal amplification is achieved. The influence of the asymmetry of the bistable potential on the microvibration-detection efficiency is studied.

  6. Geometrical optics model of Mie resonances

    Science.gov (United States)

    Roll; Schweiger

    2000-07-01

    The geometrical optics model of Mie resonances is presented. The ray path geometry is given and the resonance condition is discussed with special emphasis on the phase shift that the rays undergo at the surface of the dielectric sphere. On the basis of this model, approximate expressions for the positions of first-order resonances are given. Formulas for the cavity mode spacing are rederived in a simple manner. It is shown that the resonance linewidth can be calculated regarding the cavity losses. Formulas for the mode density of Mie resonances are given that account for the different width of resonances and thus may be adapted to specific experimental situations.

  7. Cavity enhancement by controlled directional scattering

    Science.gov (United States)

    Winston, R.

    1980-01-01

    A method for designing cavity enclosures is presented that can be applied to the design of a nonimaging concentrator. The method maintains high transmission at the expense of some concentration in the presence of a gap between the reflector and the receiver. The slight loss of concentration may be partly offset by enhanced absorption of radiation by the receiver, resulting from the cavity effect.

  8. Physics of Limiting Phenomena in Superconducting Microwave Resonators: Vortex Dissipation, Ultimate Quench and Quality Factor Degradation Mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Checchin, Mattia [Illinois Inst. of Technology, Chicago, IL (United States)

    2016-12-01

    Superconducting niobium accelerating cavities are devices operating in radio-frequency and able to accelerate charged particles up to energy of tera-electron-volts. Such accelerating structures are though limited in terms of quality factor and accelerating gradient, that translates--in some cases--in higher capital costs of construction and operation of superconducting rf accelerators. Looking forward for a new generation of more affordable accelerators, the physical description of limiting mechanisms in superconducting microwave resonators is discussed. In particular, the physics behind the dissipation introduced by vortices in the superconductor, the ultimate quench limitations and the quality factor degradation mechanism after a quench are described in detail. One of the limiting factor of the quality factor is the dissipation introduced by trapped magnetic flux vortices. The radio-frequency complex response of trapped vortices in superconductors is derived by solving the motion equation for a magnetic flux line, assuming a bi-dimensional and mean free path-dependent Lorentzian-shaped pinning potential. The resulting surface resistance shows the bell-shaped trend as a function of the mean free path, in agreement with the experimental data observed. Such bell-shaped trend of the surface resistance is described in terms of the interplay of the two limiting regimes identified as pinning and flux flow regimes, for low and large mean free path values respectively. The model predicts that the dissipation regime--pinning- or flux-flow-dominated--can be tuned either by acting on the frequency or on the electron mean free path value. The effect of different configurations of pinning sites and strength on the vortex surface resistance are also discussed. Accelerating cavities are also limited by the quench of the superconductive state, which limits the maximum accelerating gradient achievable. The accelerating field limiting factor is usually associate d to the

  9. Physics of limiting phenomena in superconducting microwave resonators: Vortex dissipation, ultimate quench and quality factor degradation mechanisms

    Science.gov (United States)

    Checchin, Mattia

    Superconducting niobium accelerating cavities are devices operating in radiofrequency and able to accelerate charged particles up to energy of tera-electron-volts. Such accelerating structures are though limited in terms of quality factor and accelerating gradient, that translates--in some cases--in higher capital costs of construction and operation of superconducting rf accelerators. Looking forward for a new generation of more affordable accelerators, the physical description of limiting mechanisms in superconducting microwave resonators is discussed. In particular, the physics behind the dissipation introduced by vortices in the superconductor, the ultimate quench limitations and the quality factor degradation mechanism after a quench are described in detail. One of the limiting factor of the quality factor is the dissipation introduced by trapped magnetic flux vortices. The radio-frequency complex response of trapped vortices in superconductors is derived by solving the motion equation for a magnetic flux line, assuming a bi-dimensional and mean free path-dependent Lorentzian-shaped pinning potential. The resulting surface resistance shows the bell-shaped trend as a function of the mean free path, in agreement with the experimental data observed. Such bell-shaped trend of the surface resistance is described in terms of the interplay of the two limiting regimes identified as pinning and flux flow regimes, for low and large mean free path values respectively. The model predicts that the dissipation regime--pinning- or flux-flow-dominated--can be tuned either by acting on the frequency or on the electron mean free path value. The effect of different configurations of pinning sites and strength on the vortex surface resistance are also discussed. Accelerating cavities are also limited by the quench of the superconductive state, which limits the maximum accelerating gradient achievable. The accelerating field limiting factor is usually associated to the superheating

  10. On the tunneling time of ultracold atoms through a system of two mazer cavities.

    Science.gov (United States)

    Badshah, Fazal; Ge, Guo-Qin; Irfan, Muhammad; Qamar, Sajid; Qamar, Shahid

    2018-01-30

    We study the resonant tunneling of ultraslow atoms through a system of high quality microwave cavities. We find that the phase tunneling time across the two coupled cavities exhibits more frequent resonances as compared to the single cavity interaction. The increased resonances are instrumental in the display of an alternate sub and superclassical character of the tunneling time along the momentum axis with increasing energies of the incident slow atoms. Here, the intercavity separation appears as an additional controlling parameter of the system that provides an efficient control of the superclassical behavior of the phase tunneling time. Further, we find that the phase time characteristics through two cavity system has the combined features of the tunneling through a double barrier and a double well arrangements.

  11. Few emitters in a cavity: from cooperative emission to individualization

    International Nuclear Information System (INIS)

    Auffeves, A; Portolan, S; Gerace, D; Drezet, A; Franca Santos, M

    2011-01-01

    We study the temporal correlations of the field emitted by an electromagnetic resonator coupled to a mesoscopic number of two-level emitters that are incoherently pumped by a weak external drive. We solve the master equation of the system for increasing number of emitters and as a function of the cavity quality factor, and we identify three main regimes characterized by well-distinguished statistical properties of the emitted radiation. For small cavity decay rates, the emission events are uncorrelated and the number of photons in the emitted field becomes larger than one, resembling the build-up of a laser field inside the cavity. At intermediate decay rates (as compared with the emitter-cavity coupling) and for a few emitters, the statistics of the emitted radiation is bunched and strikingly dependent on the parity of the number of emitters. The latter property is related to the cooperativity of the emitters mediated by their coupling to the cavity mode, and its connection with steady-state subradiance is discussed. Finally, in the bad cavity regime the typical situation of emission from a collection of individual emitters is recovered. We also analyze how the cooperative behavior evolves as a function of pure dephasing, which allows us to recover the case of a classical source made of an ensemble of independent emitters, similar to what is obtained for a very leaky cavity. State-of-the-art techniques of Q-switch of resonant cavities, allied with the recent capability of tuning single emitters in and out of resonance, suggest this system to be a versatile source of different quantum states of light.

  12. Few emitters in a cavity: from cooperative emission to individualization

    Energy Technology Data Exchange (ETDEWEB)

    Auffeves, A; Portolan, S [CEA/CNRS/UJF Joint Team ' Nanophysics and Semiconductors' , Institut Neel-CNRS, BP 166, 25 Rue des Martyrs, 38042 Grenoble Cedex 9 (France); Gerace, D [Dipartimento di Fisica ' Alessandro Volta' and UdR CNISM, Universita di Pavia, via Bassi 6, 27100 Pavia (Italy); Drezet, A [Institut Neel-CNRS, BP 166, 25 Rue des Martyrs, 38042 Grenoble Cedex 9 (France); Franca Santos, M, E-mail: msantos@fisica.ufmg.br [Departamento de Fisica, Universidade Federal de Minas Gerais, Belo Horizonte, CP 702, 30123-970 (Brazil)

    2011-09-15

    We study the temporal correlations of the field emitted by an electromagnetic resonator coupled to a mesoscopic number of two-level emitters that are incoherently pumped by a weak external drive. We solve the master equation of the system for increasing number of emitters and as a function of the cavity quality factor, and we identify three main regimes characterized by well-distinguished statistical properties of the emitted radiation. For small cavity decay rates, the emission events are uncorrelated and the number of photons in the emitted field becomes larger than one, resembling the build-up of a laser field inside the cavity. At intermediate decay rates (as compared with the emitter-cavity coupling) and for a few emitters, the statistics of the emitted radiation is bunched and strikingly dependent on the parity of the number of emitters. The latter property is related to the cooperativity of the emitters mediated by their coupling to the cavity mode, and its connection with steady-state subradiance is discussed. Finally, in the bad cavity regime the typical situation of emission from a collection of individual emitters is recovered. We also analyze how the cooperative behavior evolves as a function of pure dephasing, which allows us to recover the case of a classical source made of an ensemble of independent emitters, similar to what is obtained for a very leaky cavity. State-of-the-art techniques of Q-switch of resonant cavities, allied with the recent capability of tuning single emitters in and out of resonance, suggest this system to be a versatile source of different quantum states of light.

  13. Photon-Induced Spin-Orbit Coupling in Ultracold Atoms inside Optical Cavity

    Directory of Open Access Journals (Sweden)

    Lin Dong

    2015-05-01

    Full Text Available We consider an atom inside a ring cavity, where a plane-wave cavity field together with an external coherent laser beam induces a two-photon Raman transition between two hyperfine ground states of the atom. This cavity-assisted Raman transition induces effective coupling between atom’s internal degrees of freedom and its center-of-mass motion. In the meantime, atomic dynamics exerts a back-action to cavity photons. We investigate the properties of this system by adopting a mean-field and a full quantum approach, and show that the interplay between the atomic dynamics and the cavity field gives rise to intriguing nonlinear phenomena.

  14. Label-Free, Single Molecule Resonant Cavity Detection: A Double-Blind Experimental Study

    Directory of Open Access Journals (Sweden)

    Maria V. Chistiakova

    2015-03-01

    Full Text Available Optical resonant cavity sensors are gaining increasing interest as a potential diagnostic method for a range of applications, including medical prognostics and environmental monitoring. However, the majority of detection demonstrations to date have involved identifying a “known” analyte, and the more rigorous double-blind experiment, in which the experimenter must identify unknown solutions, has yet to be performed. This scenario is more representative of a real-world situation. Therefore, before these devices can truly transition, it is necessary to demonstrate this level of robustness. By combining a recently developed surface chemistry with integrated silica optical sensors, we have performed a double-blind experiment to identify four unknown solutions. The four unknown solutions represented a subset or complete set of four known solutions; as such, there were 256 possible combinations. Based on the single molecule detection signal, we correctly identified all solutions. In addition, as part of this work, we developed noise reduction algorithms.

  15. Complex envelope control of pulsed accelerating fields in superconducting cavities

    CERN Document Server

    Czarski, T

    2010-01-01

    A digital control system for superconducting cavities of a linear accelerator is presented in this work. FPGA (Field Programmable Gate Arrays) based controller, managed by MATLAB, was developed to investigate a novel firmware implementation. The LLRF - Low Level Radio Frequency system for FLASH project in DESY is introduced. Essential modeling of a cavity resonator with signal and power analysis is considered as a key approach to the control methods. An electrical model is represented by the non-stationary state space equation for the complex envelope of the cavity voltage driven by the current generator and the beam loading. The electromechanical model of the superconducting cavity resonator including the Lorentz force detuning has been developed for a simulation purpose. The digital signal processing is proposed for the field vector detection. The field vector sum control is considered for multiple cavities driven by one klystron. An algebraic, complex domain model is proposed for the system analysis. The c...

  16. Interaction of IREB with a cavity

    International Nuclear Information System (INIS)

    Sawhney, R.; Mishra, Mamta; Purkayastha, A.D.; Rambabu, P.; Maheshwari, K.P.

    1991-01-01

    The propagation of an intense pulsed relativistic electron beam (IREB) through a cavity resonator is considered. The cavity gets shock excited. The electromagnetic fields so generated interact with the beam in such a way that the energy is transferred from the front of the beam to the back. As a result the beams gets energized but shortened in time. Analysis for the chosen dominant mode of the cavity viz. TMsub(010) is carried out. The induced electric field excited is calculated and the accelerating potential is estimated. The results are compared with the recent-experiments. (author). 5 refs., 1 fig

  17. Characterization of etch pits found on a large-grain bulk niobium superconducting radio-frequency resonant cavity

    Directory of Open Access Journals (Sweden)

    Xin Zhao

    2010-12-01

    Full Text Available The performance of superconducting radio-frequency (SRF resonant cavities made of bulk niobium is limited by nonlinear localized effects. Surface analysis of regions of higher power dissipation is thus of intense interest. Such areas (referred to as “hotspots” were identified in a large-grain single-cell cavity that had been buffered-chemical polished and dissected for examination by high resolution electron microscopy, electron backscattered diffraction microscopy (EBSD, and optical microscopy. Pits with clearly discernible crystal facets were observed in both “hotspot” and “coldspot” specimens. The pits were found in-grain, at bicrystal boundaries, and on tricrystal junctions. They are interpreted as etch pits induced by crystal defects (e.g. dislocations. All coldspots examined had a qualitatively lower density of etch pits or relatively smooth tricrystal boundary junctions. EBSD mapping revealed the crystal orientation surrounding the pits. Locations with high pit density are correlated with higher mean values of the local average misorientation angle distributions, indicating a higher geometrically necessary dislocation content. In addition, a survey of the samples by energy dispersive x-ray analysis did not show any significant contamination of the samples’ surface. The local magnetic field enhancement produced by the sharp-edge features observed on the samples is not sufficient to explain the observed degradation of the cavity quality factor, which starts at peak surface magnetic field as low as 20 mT.

  18. Numerical study of wave propagation around an underground cavity: acoustic case

    Science.gov (United States)

    Esterhazy, Sofi; Perugia, Ilaria; Schöberl, Joachim; Bokelmann, Götz

    2015-04-01

    Motivated by the need to detect an underground cavity within the procedure of an On-Site-Inspection (OSI) of the Comprehensive Nuclear Test Ban Treaty Organization (CTBTO), which might be caused by a nuclear explosion/weapon testing, we aim to provide a basic numerical study of the wave propagation around and inside such an underground cavity. The aim of the CTBTO is to ban all nuclear explosions of any size anywhere, by anyone. Therefore, it is essential to build a powerful strategy to efficiently investigate and detect critical signatures such as gas filled cavities, rubble zones and fracture networks below the surface. One method to investigate the geophysical properties of an underground cavity allowed by the Comprehensive Nuclear-test Ban Treaty is referred to as 'resonance seismometry' - a resonance method that uses passive or active seismic techniques, relying on seismic cavity vibrations. This method is in fact not yet entirely determined by the Treaty and there are also only few experimental examples that have been suitably documented to build a proper scientific groundwork. This motivates to investigate this problem on a purely numerical level and to simulate these events based on recent advances in the mathematical understanding of the underlying physical phenomena. Here, we focus our numerical study on the propagation of P-waves in two dimensions. An extension to three dimensions as well as an inclusion of the full elastic wave field is planned in the following. For the numerical simulations of wave propagation we use a high order finite element discretization which has the significant advantage that it can be extended easily from simple toy designs to complex and irregularly shaped geometries without excessive effort. Our computations are done with the parallel Finite Element Library NGSOLVE ontop of the automatic 2D/3D tetrahedral mesh generator NETGEN (http://sourceforge.net/projects/ngsolve/). Using the basic mathematical understanding of the

  19. Enhanced Transmissions Through Three-dimensional Cascade Sharp Waveguide Bends Using C-slit Diaphragms.

    Science.gov (United States)

    Yang, Rui; Hu, Bowei; Zhang, Aofang; Gao, Dongxing; Wang, Hui; Shi, Ayuan; Lei, Zhenya; Yang, Pei

    2017-03-21

    Transmission properties through sharp rectangular waveguide bends are investigated to determine the cut-off bending angles of the wave propagation. We show that a simple metallic diaphragm at the bending corner with properly devised sub-wavelength defect apertures of C-slits would be readily to turn on the transmissions with scarce reflections of the propagating modes, while preserving the integrity of the transmitting fields soon after the bends. In particularly, our design also demonstrates the capability of eliminating all the unwanted cavity resonant transmissions that exist in the three-dimensional cascade sharp waveguide bends, and solely let the desired signals travel along the whole passage of the waveguide. The present approach, using C-slit diaphragms to support the sharp bending behaviors of the guided waves with greatly enhanced transmissions, would be especially effective in constructing novel waveguides and pave the way for the development of more compact and miniaturized electromagnetic systems that exploit these waveguide bends.

  20. Laser of optical fiber composed by two coupled cavities: application as optical fiber sensor

    International Nuclear Information System (INIS)

    Vazquez S, R.A.; Kuzin, E.A.; Ibarra E, B.; May A, M.; Shlyagin, M.; Marquez B, I.

    2004-01-01

    We show an optical fiber laser sensor which consist of two cavities coupled and three fiber Bragg gratings. We used one Bragg grating (called reference) and two Bragg gratings (called sensors), which have the lower reflection wavelength. The reference grating with the two sensors grating make two cavities: first one is the internal cavity which has 4230 m of length and the another one is the external cavity which has 4277 m of length. Measuring the laser beating frequency for a resonance cavity and moving the frequency peaks when the another cavity is put in resonance, we prove that the arrangement can be used as a two points sensor for determining the difference of temperature or stress between these two points. (Author)

  1. Precise Measurements of the Density and Critical Phenomena Near Phase Transitions in Liquid Helium

    Science.gov (United States)

    Yeh, Nai-Chang

    1997-01-01

    The first-year progress for the project of precise measurements of the density and critical phenomena of helium near phase transitions is summarized below: (1) completion of a cryogenic sample probe for the proposed measurements, and the rehabilitation of a designated laboratory at Caltech for this project; (2) construction and testing of a superconducting niobium cavity; (3) acquisition of one phase-locked-loop system for high-resolution frequency control and read- out; (4) setting up high-resolution thermometry (HRT) for temperature readout and control; (5) developing new approaches for calibrating the coefficient between the resonant frequency shift (delta f) and the helium density (rho), as well as for measuring the effect of gravity on T(sub lambda) to a much better precision; (6) programming of the interface control of all instruments for automatic data acquisition; and (7) improving data analyses and fitting procedures.

  2. A novel nano-sensor based on optomechanical crystal cavity

    Science.gov (United States)

    Zhang, Yeping; Ai, Jie; Ma, Jingfang

    2017-10-01

    Optical devices based on new sensing principle are widely used in biochemical and medical area. Nowadays, mass sensing based on monitoring the frequency shifts induced by added mass in oscillators is a well-known and widely used technique. It is interesting to note that for nanoscience and nanotechnology applications there is a strong demand for very sensitive mass sensors, being the target a sensor for single molecule detection. The desired mass resolution for very few or even single molecule detection, has to be below the femtogram range. Considering the strong interaction between high co-localized optical mode and mechanical mode in optomechanical crystal (OMC) cavities, we investigate OMC splitnanobeam cavities in silicon operating near at the 1550nm to achieve high optomechanical coupling rate and ultra-small motion mass. Theoretical investigations of the optical and mechanical characteristic for the proposed cavity are carried out. By adjusting the structural parameters, the cavity's effective motion mass below 10fg and mechanical frequency exceed 10GHz. The transmission spectrum of the cavity is sensitive to the sample which located on the center of the cavity. We conducted the fabrication and the characterization of this cavity sensor on the silicon-on-insulator (SOI) chip. By using vertical coupling between the tapered fiber and the SOI chip, we measured the transmission spectrum of the cavity, and verify this cavity is promising for ultimate precision mass sensing and detection.

  3. Resonant excitation of high order modes in the 3.9 GHz cavity of the Linac Coherent Light Source

    Science.gov (United States)

    Lunin, A.; Khabiboulline, T.; Solyak, N.; Sukhanov, A.; Yakovlev, V.

    2018-02-01

    Construction of the Linac Coherent Light Source II (LCLS-II) is underway for the world's first hard x-ray free-electron laser. A central part of the LCLS-II project is a 4 GeV superconducting radio frequency electron linac that will operate in the continuous wave (cw) mode. The linac is segmented into four sections named as L 0 , L 1 , L 2 , and L 3 . Two 3.9 GHz cryomodules, each housing of eight third-harmonic cavities similar to the cavities developed for the European X-ray Free Electron Laser (XFEL), will be used in section L 1 of the linac for linearizing the longitudinal beam profile. In this paper, we present a study of trapped high order modes (HOMs) excited by a cw electron beam in the third-harmonic cavities of the LCLS-II linac. A detailed comparison of the original XFEL design and the LCLS-II design with a modified end group is performed in order to estimate the effect of a reduced beam pipe aperture on the efficiency of HOM damping. Furthermore, we apply a statistical analysis of the eigenmode spectrum for the estimation of the probability of resonant HOM losses and influence of HOMs on beam dynamics.

  4. Double threshold behavior in a resonance-controlled ZnO random laser

    Directory of Open Access Journals (Sweden)

    Ryo Niyuki

    2017-03-01

    Full Text Available We observed unusual lasing characteristics, such as double thresholds and blue-shift of lasing peak, in a resonance-controlled ZnO random laser. From the analysis of lasing threshold carrier density, we found that the lasing at 1st and 2nd thresholds possibly arises from different mechanisms; the lasing at 1st threshold involves exciton recombination, whereas the lasing at 2nd threshold is caused by electron-hole plasma recombination, which is the typical origin of conventional random lasers. These phenomena are very similar to the transition from polariton lasing to photon lasing observed in a well-defined cavity laser.

  5. RF cavity evaluation with the code SUPERFISH

    International Nuclear Information System (INIS)

    Hori, T.; Nakanishi, T.; Ueda, N.

    1982-01-01

    The computer code SUPERFISH calculates axisymmetric rf fields and is most applicable to re-entrant cavities of an Alvarez linac. Some sample results are shown for the first Alvarez's in NUMATRON project. On the other hand the code can also be effectivily applied to TE modes excited in an RFQ linac when the cavity is approximately considered as positioning at an infinite distance from the symmetry axis. The evaluation was made for several RFQ cavities, models I, II and a test linac named LITL, and useful results for the resonator design were obtained. (author)

  6. Superconducting cavities for the APT accelerator

    International Nuclear Information System (INIS)

    Krawczyk, F.L.; Gentzlinger, R.C.; Haynes, B.; Montoya, D.I.; Rusnak, B.; Shapiro, A.H.

    1997-01-01

    The design of an Accelerator Production of Tritium (APT) facility being investigated at Los Alamos includes a linear accelerator using superconducting rf-cavities for the acceleration of a high-current cw proton beam. For electron accelerators with particles moving at the speed of light (β ∼ 1.0), resonators with a rounded shape, consisting of ellipsoidal and cylindrical sections, are well established. They are referred to as elliptical cavities. For the APT-design, this shape has been adapted for much slower proton beams with β ranging from 0.60 to 0.94. This is a new energy range, in which resonators of an elliptical type have never been used before. Simulations with the well-proven electromagnetic modeling tools MAFIA and SUPERFISH were performed. The structures have been optimized for their rf and mechanical properties as well as for beam dynamics requirements. The TRAK-RF simulation code is used to investigate potential multipacting in these structures. All the simulations will be put to a final test in experiments performed on single cell cavities that have started in the structures laboratory

  7. Resonant and Ground Experimental Study on the Microwave Plasma Thruster

    Science.gov (United States)

    Yang, Juan; He, Hongqing; Mao, Genwang; Qu, Kun; Tang, Jinlan; Han, Xianwei

    2002-01-01

    chemistry. Therefore, the application of EP for the attitude control and station keeping of satellite, the propulsion of deep space exploration craft allows to reduce substantially the mass of on-board propellant and the launching cost. The EP research is now receiving high interest everywhere. microwave generating subsystem, the propellant supplying subsystem and the resonator (the thruster). Its principle is that the magnetron of the microwave generating subsystem transfers electric energy into microwave energy at given frequency which is introduced into a resonant cavity. Microwave will resonate within the cavity when it is adjusted. When the propellant gas (N2, Ar, He, NH3 or H2) is put into the cavity and coupled with microwave energy at the maximal electric intensity place, it will be broken down to form free-floating plasma, which flows from nozzle with high speed to produce thrust. Its characteristic is high efficiency, simple power supply and without electrode ablation, its specific impulse is greater than arcjet. 2450MHz, have been developed. The microwave generating subsystem and resonator of lower power MPT, 70-200W, are coaxial. The resonator with TEM resonating mode is section of coaxial wave-guide, of which one end is shorted, another is semi-opened. The maximal electric intensity field is in the lumped capacity formed between the end surface of inner conductor, retracting in the cavity, and the semi-opened surface of outer conductor. It provides favorable condition for gas breakdown. The microwave generating system and resonator of middle power MPT, 500-1,000W, are wave-guide cavity. The resonator with TM011 resonating mode is cylinder wave-guide cavity, of which two end surface are shorted. The distribution of electromagnetic field is axial symmetry, its maximal electric intensity field locates on the axis and closes to the exit of nozzle, where the propellant gas is breakdown to form free floating plasma. The plasma is free from the wall of

  8. Qubit Coupled Mechanical Resonator in an Electromechanical System

    Science.gov (United States)

    Hao, Yu

    This thesis describes the development of a hybrid quantum electromechanical system. In this system the mechanical resonator is capacitively coupled to a superconducting transmon which is embedded in a superconducting coplanar waveguide (CPW) cavity. The difficulty of achieving high quality of superconducting qubit in a high-quality voltage-biased cavity is overcome by integrating a superconducting reflective T-filter to the cavity. Further spectroscopic and pulsed measurements of the hybrid system demonstrate interactions between the ultra-high frequency mechanical resonator and transmon qubit. The noise of mechanical resonator close to ground state is measured by looking at the spectroscopy of the transmon. At last, fabrication and tests of membrane resonators are discussed.

  9. Atmospheric signals produced by cavity rebound

    International Nuclear Information System (INIS)

    Jones, E.M.; App, F.N.; Whitaker, R.W.

    1993-01-01

    An analysis of the atmospheric acoustic signals produced by a class of low-yield tests conducted just below the base of the alluvial cover in Yucca Flat of the Nevada Test Site (NTS), has revealed a clear manifestation of an elastic, cavity rebound signal. We use modeling as the basis for understanding the observed phenomena

  10. Experimental Studies of Light Emission Phenomena in Superconducting RF Cavitites

    Energy Technology Data Exchange (ETDEWEB)

    Anthony, P.L.; /SLAC; Delayen, J.R.; /Jefferson Lab; Fryberger, D.; /SLAC; Goree, W.S.; Mammosser, J.; /Jefferson Lab /SNS Project, Oak Ridge; Szalata, Z.M.; II, J.G.Weisend /SLAC

    2009-08-04

    Experimental studies of light emission phenomena in superconducting RF cavities, which we categorize under the general heading of cavity lights, are described. The cavity lights data, which were obtained using a small CCD video camera, were collected in a series of nine experimental runs ranging from {approx} 1/2 to {approx} 2 h in duration. The video data were recorded on a standard VHS tape. As the runs progressed, additional instrumentation was added. For the last three runs a LabVIEW controlled data acquisition system was included. These runs furnish evidence for several, possibly related, light emission phenomena. The most intriguing of these is what appear to be small luminous objects {le} 1.5 mm in size, freely moving about in the vacuum space, generally without wall contact, as verified by reflections of the tracks in the cavity walls. In addition, on a number of occasions, these objects were observed to bounce off of the cavity walls. The wall-bounce aspect of most of these events was clearly confirmed by pre-bounce and post-bounce reflections concurrent with the tracks. In one of the later runs, a mode of behavior was observed that was qualitatively different from anything observed in the earlier runs. Perhaps the most perplexing aspect of this new mode was the observation of as many as seven luminous objects arrayed in what might be described as a macromolecular formation, coherently moving about in the interior of the cavity for extended periods of time, evidently without any wall contact. It is suggested that these mobile luminous objects are without explanation within the realm of established physics. Some remarks about more exotic theoretical possibilities are made, and future plans are discussed.

  11. Split-disk micro-lasers: Tunable whispering gallery mode cavities

    Directory of Open Access Journals (Sweden)

    T. Siegle

    2017-09-01

    Full Text Available Optical micro-cavities of various types have emerged as promising photonic structures, for both the investigation of fundamental science in cavity quantum electrodynamics and simultaneously for various applications, e.g., lasers, filters, or modulators. In either branch a demand for adjustable and tunable photonic devices becomes apparent, which has been mainly based on the modification of the refractive index of the micro-resonators so far. In this paper, we report on a novel type of whispering gallery mode resonator where resonance tuning is achieved by modification of the configuration. This is realized by polymeric split-disks consisting of opposing half-disks with an intermediate air gap. Functionality of the split-disk concept and its figures of merit like low-threshold lasing are demonstrated for laser dye-doped split-disks fabricated by electron beam lithography on Si substrates. Reversible resonance tuning is achieved for split-disks structured onto elastomeric substrates by direct laser writing. The gap width and hence the resonance wavelength can be well-controlled by mechanically stretching the elastomer and exploiting the lateral shrinkage of the substrate. We demonstrate a broad spectral tunability of laser modes by more than three times the free spectral range. These cavities have the potential to form a key element of flexible and tunable photonic circuits based on polymers.

  12. Natural oscillations of a gas bubble in a liquid-filled cavity located in a viscoelastic medium

    Science.gov (United States)

    Doinikov, Alexander A.; Marmottant, Philippe

    2018-04-01

    The present study is motivated by cavitation phenomena that occur in the stems of trees. The internal pressure in tree conduits can drop down to significant negative values. This drop gives rise to cavitation bubbles, which undergo high-frequency eigenmodes. The aim of the present study is to determine the parameters of the bubble natural oscillations. To this end, a theory is developed that describes the pulsation of a spherical bubble located at the center of a spherical cavity surrounded by an infinite solid medium. It is assumed that the medium inside the bubble is a gas-vapor mixture, the cavity is filled with a compressible viscous liquid, and the medium surrounding the cavity behaves as a viscoelastic solid. The theoretical solution takes into account the outgoing acoustic wave produced by the bubble pulsation, the incoming wave caused by reflection from the liquid-solid boundary, and the outgoing wave propagating in the solid. A dispersion equation for the calculation of complex wavenumbers of the bubble eigenmodes is derived. Approximate analytical solutions to the dispersion equation are found. Numerical simulations are performed to reveal the effect of different physical parameters on the resonance frequency and the attenuation coefficient of the bubble oscillations.

  13. Long Josephson Junction Stack Coupled to a Cavity

    DEFF Research Database (Denmark)

    Madsen, Søren Peder; Pedersen, Niels Falsig; Groenbech-Jensen, N.

    2007-01-01

    A stack of inductively coupled long Josephson junctions are modeled as a system of coupled sine-Gordon equations. One boundary of the stack is coupled electrically to a resonant cavity. With one fluxon in each Josephson junction, the inter-junction fluxon forces are repulsive. We look at a possible...... transition, induced by the cavity, to a bunched state....

  14. Algorithm of resonance orders for the objects

    Science.gov (United States)

    Zhang, YongGang; Zhang, JianXue

    2018-03-01

    In mechanical engineering, the object resonance phenomena often occur when the external incident wave frequency is close to object of the natural frequency. Object resonance phenomena get the maximum value when the external incident frequency is equal to object the natural frequency. Experiments found that resonance intension of the object is changed, different objects resonance phenomena present different characteristics of ladders. Based on object orders resonance characteristics, the calculation method of object orders resonance is put forward in the paper, and the application for the light and sound waves on the seven order resonance characteristics by people feel, the result error is less than 1%.Visible in this paper, the method has high accuracy and usability. The calculation method reveals that some object resonance occur present order characteristic only four types, namely the first-orders resonance characteristics, third-orders characteristics, five orders characteristic, and seven orders characteristic.

  15. Prediction of quantum interference in molecular junctions using a parabolic diagram: Understanding the origin of Fano and anti-resonances

    DEFF Research Database (Denmark)

    Nozaki, Daijiro; Avdoshenko, Stanislav M.; Sevincli, Haldun

    2013-01-01

    Recently the interest in quantum interference (QI) phenomena in molecular devices (molecular junctions) has been growing due to the unique features observed in the transmission spectra. In order to design single molecular devices exploiting QI effects as desired, it is necessary to provide simple...... rules for predicting the appearance of QI effects such as anti-resonances or Fano line shapes and for controlling them. In this study, we derive a transmission function of a generic molecular junction with a side group (T-shaped molecular junction) using a minimal toy model. We developed a simple method...... to predict the appearance of quantum interference, Fano resonances or anti- resonances, and its position in the conductance spectrum by introducing a simple graphical representation (parabolic model). Using it we can easily visualize the relation between the key electronic parameters and the positions...

  16. Entanglement of transverse modes in a pendular cavity

    OpenAIRE

    Mancini, Stefano; Gatti, Alessandra

    2001-01-01

    We study the phenomena that arise in the transverse structure of electromagnetic field impinging on a linear Fabry-Perot cavity with an oscillating end mirror. We find quantum correlations among transverse modes which can be considered as a signature of their entanglement.

  17. Design of 118 MHz twelfth harmonic cavity of APS PAR

    International Nuclear Information System (INIS)

    Kang, Y.W.; Kustom, R.L.; Bridges, J.F.

    1992-01-01

    Two radio frequency (RF) cavities are needed in the Positron Accumulator Ring (PAR) of the Advanced Photon Source. One is for the first harmonic frequency at 9.8 MHz, and the other is for the twelfth harmonic frequency at 118 MHz. This note reports on the design of the 118 MHz RF cavity. Computer models are used to find the mode frequencies, impedances, Q-factors, and field distributions in the cavity. The computer codes MAFIA, URMEL, and URMEL-T are useful tools which model and simulate the resonance characteristics of a cavity. These codes employ the finite difference method to solve Maxwell's equations. MAFIA is a three-dimensional problem solver and uses square patches to approximate the inner surface of a cavity. URMEL and URMEL-T are two-dimensional problem solvers and use rectangular and triangular meshes, respectively. URMEL-T and MAFIA can handle problems with arbitrary dielectric materials located inside the boundary. The cavity employs a circularly cylindrical ceramic window to limit the vacuum to the beam pipe. The ceramic window used in the modeling will have a wall thickness of 0.9 cm. This wall thickness is not negligible in determining the resonant frequencies of the cavity. In the following, results of two- and three-dimensional modeling of the cavities using the URMEL-T and MAFIA codes are reported

  18. Effect of mild baking on superconducting niobium cavities investigated by sequential nanoremoval

    Directory of Open Access Journals (Sweden)

    A. Romanenko

    2013-01-01

    Full Text Available The near-surface nanostructure of niobium determines the performance of superconducting microwave cavities. Subtle variations in surface nanostructure lead to yet unexplained phenomena such as the dependence of the quality factor of these resonating structures on the magnitude of rf fields—an effect known as the “Q slopes”. Understanding and controlling the Q slopes is of great practical importance for particle accelerators. Here we investigate the mild baking effect—120°C vacuum baking for 48 hours—which strongly affects the Q slopes. We used a hydrofluoric acid rinse alternating with oxidation in water as a tool for stepwise material removal of about 2  nanometers/step from the surface of superconducting niobium cavities. Applying removal cycles on mild baked cavities and measuring the quality factor dependence on the rf fields after one or several such cycles allowed us to explore the distribution of lossy layers within the first several tens of nanometers from the surface. We found that a single HF rinse results in the increase of the cavity quality factor. The low field Q slope was shown to be mostly controlled by the material structure within the first six nanometers from the surface. The medium field Q slope evolution was fitted using linear (∝B peak surface magnetic field and quadratic (∝B^{2} terms in the surface resistance and it was found that best fits do not require the quadratic term. We found that about 10 nanometers of material removal are required to bring back the high field Q slope and about 20–50 nanometers to restore the onset field to the prebaking value.

  19. Test of superconducting radio-frequency cavity bombarded by protons

    Science.gov (United States)

    O'Donnell, J. M.; McCloud, B. J.; Morris, C. L.; McClelland, J. B.; Rusnak, B.; Thiessen, H. A.; Langenbrunner, J. L.

    1992-05-01

    A beam of 2 × 10 10 protons/s was focused onto a small area on the high-field iris of a superconducting cavity operating at the resonance frequency. The input, reflected, and stored power were monitored. The cavity remained in steady state during this test. We conclude that such superconducting cavities will remain viable in the high-proton-flux environments proposed in the design of a superconducting accelerator for pions (PILAC).

  20. Test of superconducting radio-frequency cavity bombarded by protons

    Energy Technology Data Exchange (ETDEWEB)

    O' Donnell, J.M.; McCloud, B.J.; Morris, C.L.; McClelland, J.B.; Rusnak, B.; Thiessen, H.A. (Los Alamos National Lab., NM (United States)); Langenbrunner, J.L. (Dept. of Physics and Astronomy, Univ. Minnesota, Minneapolis, MN (United States))

    1992-05-10

    A beam of 2x10{sup 10} protons/s was focused onto a small area on the high-field iris of a superconducting cavity operating at the resonance frequency. The input, reflected, and stored power were monitored. The cavity remained in steady state during this test. We conclude that such superconducting cavities will remain viable in the high-proton-flux environments proposed in the design of a superconducting accelerator for pions (PILAC). (orig.).

  1. Contamination issues in superconducting cavity technology

    International Nuclear Information System (INIS)

    Kneisel, Peter

    1997-01-01

    The application of radio-frequency superconductivity technology in particle accelerator projects has become increasingly evident in recent years. Several large scale projects around the world are either completed or close to completion, such as CEBAF, HERA, TRISTAN and LEP. And superconducting cavity technology is seriously being considered for future applications in linear colliders (TESLA), high current proton accelerators (APT, spallation neutron sources), muon colliders and free electron lasers for industrial application. The reason for this multitude of activities are matured technology based on a better understanding of the phenomena encountered in superconducting cavities and the influence of improved material properties and contamination and quality control measures

  2. Resonantly-enhanced transmission through a periodic array of subwavelength apertures in heavily-doped conducting polymer films

    Science.gov (United States)

    Matsui, Tatsunosuke; Vardeny, Z. Valy; Agrawal, Amit; Nahata, Ajay; Menon, Reghu

    2006-02-01

    We observed resonantly-enhanced terahertz transmission through two-dimensional (2D) periodic arrays of subwavelength apertures with various periodicities fabricated on metallic organic conducting polymer films of polypyrrole heavily doped with PF6 molecules [PPy(PF6)]. The "anomalous transmission" spectra are in good agreement with a model involving surface plasmon polariton excitations on the film surfaces. We also found that the `anomalous transmission' peaks are broader in the exotic metallic PPy (PF6) films compared to those formed in 2D aperture array in regular metallic films such as silver, showing that the surface plasmon polaritons on the PPy (PF6) film surfaces have higher attenuation.

  3. Study of thermal phenomena in niobium superconducting cavities when stiffened by thermal spray coating; Etude des phenomenes thermiques dans les cavites acceleratrices supraconductrices en niobium rigidifiees par projection thermique

    Energy Technology Data Exchange (ETDEWEB)

    Bousson, S

    2000-02-01

    The first objective of this thesis is to study a new superconducting cavity stiffening method based on thermal spraying. The principle is to add on the cavity external walls a copper layer using the thermal spraying process. Several tests on samples allowed to measure the thermal and mechanical properties of the layers deposited by several different processes. Measurements performed on 3 and 1.3 GHz niobium cavities, before and after copper deposition, proved the interest and feasibility of the method. The study showed the need to have very dense layers (porosity reduced to the minimum in order to have good mechanical characteristics), and not oxidised (to reduce the coating thermal resistance). As a conclusion, the spraying process performed under controlled atmosphere seems to be the most suited for superconducting cavity stiffening. The tools and analysing methods which have been developed for this study allowed to investigate other phenomena involved in the cavity thermal stability, and particularly the quench, a phenomenon often studied but not in its dynamic. A model is proposed in this thesis to analyse the quench dynamic behaviour using only the fast RF signal measurement during a quench. It has been shown that the quench propagation velocity depends essentially on the accelerating field and the niobium thermal conductivity. A study on the thermometer response time used as diagnostics on cavities proved that the transients during a quench are not efficiently measured with Allen-Bradley sensors: for this application Cernox thermometers are to be preferred due to their lower time response. The development of a thermometer acquisition device for the 3 GHz cavities, used for the study on cavity stiffening, has been adapted for anomalous heating measurements on high gradient 1.3 GHz cavities. It has been possible to prove that anomalous RF losses are responsible of the quality factor degradation, that they are not localised in a small of the cavity, but

  4. Additive Manufactured Superconducting Cavities

    Science.gov (United States)

    Holland, Eric; Rosen, Yaniv; Woolleet, Nathan; Materise, Nicholas; Voisin, Thomas; Wang, Morris; Mireles, Jorge; Carosi, Gianpaolo; Dubois, Jonathan

    Superconducting radio frequency cavities provide an ultra-low dissipative environment, which has enabled fundamental investigations in quantum mechanics, materials properties, and the search for new particles in and beyond the standard model. However, resonator designs are constrained by limitations in conventional machining techniques. For example, current through a seam is a limiting factor in performance for many waveguide cavities. Development of highly reproducible methods for metallic parts through additive manufacturing, referred to colloquially as 3D printing\\x9D, opens the possibility for novel cavity designs which cannot be implemented through conventional methods. We present preliminary investigations of superconducting cavities made through a selective laser melting process, which compacts a granular powder via a high-power laser according to a digitally defined geometry. Initial work suggests that assuming a loss model and numerically optimizing a geometry to minimize dissipation results in modest improvements in device performance. Furthermore, a subset of titanium alloys, particularly, a titanium, aluminum, vanadium alloy (Ti - 6Al - 4V) exhibits properties indicative of a high kinetic inductance material. This work is supported by LDRD 16-SI-004.

  5. Narrow band wavelength selective filter using grating assisted single ring resonator

    Energy Technology Data Exchange (ETDEWEB)

    Prabhathan, P., E-mail: PPrabhathan@ntu.edu.sg; Murukeshan, V. M. [Centre for Optical and Laser Engineering (COLE), School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

    2014-09-15

    This paper illustrates a filter configuration which uses a single ring resonator of larger radius connected to a grating resonator at its drop port to achieve single wavelength selectivity and switching property with spectral features suitable for on-chip wavelength selection applications. The proposed configuration is expected to find applications in silicon photonics devices such as, on-chip external cavity lasers and multi analytic label-free biosensors. The grating resonator has been designed for a high Q-factor, high transmittivity, and minimum loss so that the wavelength selectivity of the device is improved. The proof-of-concept device has been demonstrated on a Silicon-on-Insulator (SOI) platform through electron beam lithography and Reactive Ion Etching (RIE) process. The transmission spectrum shows narrow band single wavelength selection and switching property with a high Free Spectral Range (FSR) ∼60 nm and side band rejection ratio >15 dB.

  6. Dielectric micro-resonator-based opto-mechanical systems for sensing applications

    Science.gov (United States)

    Ali, Amir Roushdy

    In recent years, whispering gallery mode (WGM), or morphology dependent optical resonances (MDR) of dielectric micro-resonators have attracted interest with proposed applications in a wide range of areas due to the high optical quality factors, Q, they can exhibit (reaching ~ 10. 9 for silica spheres). Micro-resonator WGMs have been used in applications that include those in spectroscopy, micro-cavity laser technology, optical communications (switching, filtering and multiplexing), sensors technologies and even chemical and biological sensing. The WGM of these dielectric micro-resonators are highly sensitive to morphological changes (such as the size, shape, or refractive index) of the resonance cavity and hence, can be tuned by causing a minute change in the physical condition of the surrounding. In this dissertation, we have been creating opto-mechanical systems, which at their most basic, are extraordinarily sensitive sensors. One of the ultimate goals of this dissertation is to develop sensors capable of detecting the extremely small electric field changes. To improve the performance of the sensors, we couple a polymer cantilever beam to a dielectric micro-resonator. The eventual use of such ultra sensitive electric filed sensors could include neural-machine interfaces for advanced prosthetics devices. The work presented here includes a basic analysis and experimental investigations of the electric field sensitivity and range of micro-resonators of several different materials and geometries followed by the electric field sensor design, testing, and characterization. Also, the effects of angular velocity on the WGM shifts of spherical micro-resonators are also investigated. The elastic deformation that is induced on a spinning resonator due to the centrifugal force may lead to a sufficient shift in the optical resonances and therefore interfering with its desirable operational sensor design. Furthermore, this principle could be used for the development of

  7. Construction of the LITL cavity structure

    International Nuclear Information System (INIS)

    Itoh, S.; Masuda, S.; Ukai, Y.; Hirao, Y.

    1984-01-01

    This report presents briefly the mechanical consideration for the 100 MHz four-vane RFQ (radio frequency quadrupole accelerator) structure construction. At first, the theoretical vane shape required to obtain the RFQ electric field distribution was determined. A numerically controlled milling machine was employed for the precise machining of the complicated shape. The data sets for NC machining and for checking the size of three-dimensional coordinates were made up. A small vane model was machined by way of trial experiment to check the data to verify the circular interpolation programmed NC machining method, and to investigate cutter interference. The errors in the measurement in machining were less than +- 30 micrometer. The resonator tank is 56 cm in inner diameter and 138 cm in length, and is made of mild steel of 35 mm thickness. The inside wall was plated with copper thickly. Various conditions for the copper plating were investigated. Four vanes were assembled within the cavity of the RFQ. The vanes were built in the cavity tank with high dimensional accuracy. It was a matter of primary concern to design acceptable mechanical rf joints and select suitable rf contact elements for a high Q value of the RFQ resonator cavity. Finally, the Q value was measured, and was 10,600. The cavity was able to be evacuated to 10 -7 Torr. (Kato, T.)

  8. Niobium sputter deposition on quarter wave resonators

    CERN Document Server

    Viswanadham, C; Jayaprakash, D; Mishra, R L

    2003-01-01

    Niobium sputter deposition on quarter wave copper R.F resonators, have been taken up in our laboratory, An ultra high vacuum system was made for this purpose. Niobium exhibits superconducting properties at liquid Helium temperature. A uniform coating of about 1.5 mu m of niobium on the internal surfaces of the copper resonant cavities is desired. Power dissipation in the resonators can be greatly reduced by making the internal surfaces of the R.F cavity super conducting. (author)

  9. Considerations relating to the presence of water in the reactor cavity during severe accidents

    International Nuclear Information System (INIS)

    Perez, F.; Morales, M.D.

    1994-01-01

    The purpose of this paper is to present some of the factors, both positive and negative, associated with the presence of water in the reactor cavity. The presence of water in the reactor cavity is one of the factors whose influence on the evolution of severe accidents must be determined since, on the one hand, it has an impact on some of the most significant severe accident phenomena and, on the other, it could be an important factor when preparing accident management strategies resulting from containment analyses. In spite of the initial intuitive impression that water in the reactor cavity must always be beneficial, certain phenomena, such as the following must also be taken into account before developing accident management strategies: - Higher production of steam - Possibility of steam explosions - Increased production of H 2 due to oxidation of steel components of the melted core ejected from the vessel - More oxidation energy released due to the presence of oxygen in the cavity (Author)

  10. Experiments on two-resonator circuit quantum electrodynamics. A superconducting quantum switch

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Elisabeth Christiane Maria

    2013-05-29

    The field of cavity quantum electrodynamics (QED) studies the interaction between light and matter on a fundamental level. In typical experiments individual natural atoms are interacting with individual photons trapped in three-dimensional cavities. Within the last decade the prospering new field of circuit QED has been developed. Here, the natural atoms are replaced by artificial solid state quantum circuits offering large dipole moments which are coupled to quasi-onedimensional cavities providing a small mode volume and hence a large vacuum field strength. In our experiments Josephson junction based superconducting quantum bits are coupled to superconducting microwave resonators. In circuit QED the number of parameters that can be varied is increased and regimes that are not accessible using natural atoms can be entered and investigated. Apart from design flexibility and tunability of system parameters a particular advantage of circuit QED is the scalability to larger system size enabled by well developed micro- and nanofabrication tools. When scaling up the resonator-qubit systems beyond a few coupled circuits, the rapidly increasing number of interacting subsystems requires an active control and directed transmission of quantum signals. This can, for example, be achieved by implementing switchable coupling between two microwave resonators. To this end, a superconducting flux qubit is used to realize a suitable coupling between two microwave resonators, all working in the Gigahertz regime. The resulting device is called quantum switch. The flux qubit mediates a second order tunable and switchable coupling between the resonators. Depending on the qubit state, this coupling can compensate for the direct geometric coupling of the two resonators. As the qubit may also be in a quantum superposition state, the switch itself can be ''quantum'': it can be a superposition of ''on'' and ''off''. This work

  11. Generation of maximally entangled mixed states of two atoms via on-resonance asymmetric atom-cavity couplings

    International Nuclear Information System (INIS)

    Li, Shang-Bin

    2007-01-01

    A scheme for generating the maximally entangled mixed state of two atoms on-resonance asymmetrically coupled to a single mode optical cavity field is presented. The part frontier of both maximally entangled mixed states and maximal Bell violating mixed states can be approximately reached by the evolving reduced density matrix of two atoms if the ratio of coupling strengths of two atoms is appropriately controlled. It is also shown that exchange symmetry of global maximal concurrence is broken if and only if coupling strength ratio lies between (√(3)/3) and √(3) for the case of one-particle excitation and asymmetric coupling, while this partial symmetry breaking cannot be verified by detecting maximal Bell violation

  12. Resonant excitation of high order modes in the 3.9 GHz cavity of the Linac Coherent Light Source

    Directory of Open Access Journals (Sweden)

    A. Lunin

    2018-02-01

    Full Text Available Construction of the Linac Coherent Light Source II (LCLS-II is underway for the world’s first hard x-ray free-electron laser. A central part of the LCLS-II project is a 4 GeV superconducting radio frequency electron linac that will operate in the continuous wave (cw mode. The linac is segmented into four sections named as L0, L1, L2, and L3. Two 3.9 GHz cryomodules, each housing of eight third-harmonic cavities similar to the cavities developed for the European X-ray Free Electron Laser (XFEL, will be used in section L1 of the linac for linearizing the longitudinal beam profile. In this paper, we present a study of trapped high order modes (HOMs excited by a cw electron beam in the third-harmonic cavities of the LCLS-II linac. A detailed comparison of the original XFEL design and the LCLS-II design with a modified end group is performed in order to estimate the effect of a reduced beam pipe aperture on the efficiency of HOM damping. Furthermore, we apply a statistical analysis of the eigenmode spectrum for the estimation of the probability of resonant HOM losses and influence of HOMs on beam dynamics.

  13. Implementation of intra-cavity beam shaping technique to enhance pump efficiency

    CSIR Research Space (South Africa)

    Litvin, IA

    2012-02-01

    Full Text Available In this work the author proposes an implementation of a new intra-cavity beam shaping technique to vary the intensity distribution of the fundamental mode in a resonator cavity while maintaining a constant intensity distribution at the output...

  14. Lamb shift of Rydberg atoms in a resonator

    International Nuclear Information System (INIS)

    Belov, A.A.; Lozovik, Yu.E.; Pokrovsky, V.L.

    1988-08-01

    The Lamb shift of a Rydberg atom in a cavity is shown to be enhanced with the resonance interaction of a virtual atomic transition and cavity modes. The dependence of the Lamb shift on quantum numbers and atomic number changes drastically. Shifting cavity walls and scanning the atomic beam one can vary the Lamb shift. The value of the Lamb shift in a cavity may exceed a typical magnitude of the fine structure energy. For a rough resonance tuning the Coulumb multiplet occurs to be strongly mixed and a novel classification is necessary. (author). 8 refs, 2 figs

  15. Mechanical design and fabrication of power feed cavity test setup

    International Nuclear Information System (INIS)

    Ghodke, S.R.; Dhavle, A.S.; Sharma, Vijay; Sarkar, Shreya; Kumar, Mahendra; Nayak, Susanta; Barnwal, Rajesh; Jayaprakash, D.; Mondal, J.; Nimje, V.T.; Mittal, K.C.; Gantayet, L.M.

    2013-01-01

    Power feed cavity set up consists of nine number of accelerating cavity and eight numbers of coupling cavity for testing of power feed cavity with coupling flange for 2856 MHz S band standing wave coupled cavity linac. When we are assembling the cavity and applying the pressure, its resonance frequency changes with applied pressure/load. After some critical pressure/load frequency change becomes negligible or zero. This set up will be used to find out assembly performance of power feed cavity and its coupler. Top four cavity or eight half cells as well as bottom four cavity or eight half cells will be brazed separately. Power feed cavity will be sandwiched between this two brazed cavity assemblies. This paper discuss about linear motion bush, linear motion rod, load cell, hydraulic actuator, power pack, stepper motor PLC control, jig boring, alignment, tolerances and assembly procedure for this test setup. (author)

  16. RF cavity using liquid dielectric for tuning and cooling

    Science.gov (United States)

    Popovic, Milorad [Warrenville, IL; Johnson, Rolland P [Newport News, VA

    2012-04-17

    A system for accelerating particles includes an RF cavity that contains a ferrite core and a liquid dielectric. Characteristics of the ferrite core and the liquid dielectric, among other factors, determine the resonant frequency of the RF cavity. The liquid dielectric is circulated to cool the ferrite core during the operation of the system.

  17. Room temperature RF characterization of niobium SCRF cavities and their prototypes

    International Nuclear Information System (INIS)

    Mahawar, Ashish; Mohania, Praveen; Shrivastava, P.; Yadav, Anand; Puntambekar, A.M.

    2013-01-01

    Raja Ramanna Centre for Advanced Technology is working on development of 1.3 GHz and 650 MHz multi-cell SCRF cavities. The multi-cell cavities require RF characterization at various stages of fabrication to ensure that the final welded cavity has the right resonant frequency. The prototype cavities as well as the final cavities were extensively characterized at each stage of half cell, dumb bell and end group development and assembly stages. The paper will provide details of the RF characterizations done and the final results achieved. (author)

  18. Optical Material Characterization Using Microdisk Cavities

    Science.gov (United States)

    Michael, Christopher P.

    Since Jack Kilby recorded his "Monolithic Idea" for integrated circuits in 1958, microelectronics companies have invested billions of dollars in developing the silicon material system to increase performance and reduce cost. For decades, the industry has made Moore's Law, concerning cost and transistor density, a self-fulfilling prophecy by integrating technical and material requirements vertically down their supply chains and horizontally across competitors in the market. At recent technology nodes, the unacceptable scaling behavior of copper interconnects has become a major design constraint by increasing latency and power consumption---more than 50% of the power consumed by high speed processors is dissipated by intrachip communications. Optical networks at the chip scale are a potential low-power high-bandwidth replacement for conventional global interconnects, but the lack of efficient on-chip optical sources has remained an outstanding problem despite significant advances in silicon optoelectronics. Many material systems are being researched, but there is no ideal candidate even though the established infrastructure strongly favors a CMOS-compatible solution. This thesis focuses on assessing the optical properties of materials using microdisk cavities with the intention to advance processing techniques and materials relevant to silicon photonics. Low-loss microdisk resonators are chosen because of their simplicity and long optical path lengths. A localized photonic probe is developed and characterized that employs a tapered optical-fiber waveguide, and it is utilized in practical demonstrations to test tightly arranged devices and to help prototype new fabrication methods. A case study in AlxGa1-xAs illustrates how the optical scattering and absorption losses can be obtained from the cavity-waveguide transmission. Finally, single-crystal Er2O3 epitaxially grown on silicon is analyzed in detail as a potential CMOS-compatable gain medium due to its high Er3

  19. Flow Tones in a Pipeline-Cavity System: Effect of Pipe Asymmetry

    Energy Technology Data Exchange (ETDEWEB)

    D. Erdem; D. rockwell; P. Oshkai; M. Pollack

    2002-05-29

    Flow tones in a pipeline-cavity system are characterized in terms of unsteady pressure within the cavity and along the pipe. The reference case corresponds to equal lengths of pipe connected to the inlet and outlet ends of the cavity. Varying degrees of asymmetry of this pipe arrangement are investigated. The asymmetry is achieved by an extension of variable length, which is added to the pipe at the cavity outlet. An extension length as small as a few percent of the acoustic wavelength of the resonant mode can yield a substantial reduction in the pressure amplitude of the flow tone. This amplitude decrease occurs in a similar fashion within both the cavity and the pipe resonator, which indicates that it is a global phenomenon. Furthermore, the decrease of pressure amplitude is closely correlated with a decrease of the Q (quality)-factor of the predominant spectral component of pressure. At a sufficiently large value of extension length, however, the overall form of the pressure spectrum recovers to the form that exists at zero length of the extension. Further insight is provided by variation of the inflow velocity at selected values of extension length. Irrespective of its value, both the magnitude and frequency of the peak pressure exhibit a sequence of resonant-like states. Moreover, the maximum attainable magnitude of the peak pressure decreases with increasing extension length.

  20. Flow Tones in a Pipeline-Cavity System: Effect of Pipe Asymmetry

    Energy Technology Data Exchange (ETDEWEB)

    D. Erdem; D. Rockwell; P.L. Oshkai; M. Pollack

    2001-02-28

    Flow tones in a pipeline-cavity system are characterized in terms of unsteady pressure within the cavity and along the pipe. The reference case corresponds to equal lengths of pipe connected to the inlet and outlet ends of the cavity. Varying degrees of asymmetry of this pipe arrangement are investigated. The asymmetry is achieved by an extension of variable length, which is added to the pipe at the cavity outlet. An extension length as small as a few percent of the acoustic wavelength of the resonant mode can yield a substantial reduction in the pressure amplitude of the flow tone. This amplitude decrease occurs in a similar fashion within both the cavity and the pipe resonator, which indicates that it is a global phenomenon. Furthermore, the decrease of pressure amplitude is closely correlated with a decrease of the Q (quality)-factor of the predominant spectral component of pressure. At a sufficiently large value of extension length, however, the overall form of the pressure spectrum recovers to the form that exists at zero length of the extension. Further insight is provided by variation of the inflow velocity at selected values of extension length. Irrespective of its value, both the magnitude and frequency of the peak pressure exhibit a sequence of resonant-like states. moreover, the maximum attainable magnitude of the peak pressure decreases with increasing extension length.

  1. Circuit QED with hybrid metamaterial transmission lines

    Energy Technology Data Exchange (ETDEWEB)

    Ruloff, Stefan; Taketani, Bruno; Wilhelm, Frank [Theoretical Physics, Universitaet des Saarlandes, Saarbruecken (Germany)

    2016-07-01

    We're working on the theory of metamaterials providing some interesting results. The negative refraction index causes an opposite orientation of the wave vector k and the Poynting vector S of the travelling waves. Hence the metamaterial has a falling dispersion relation ∂ω(k)/∂k < 0 implying that low frequencies correspond to short wavelengths. Metamaterials are simulated by left-handed transmission lines consisting of discrete arrays of series capacitors and parallel inductors to ground. Unusual physics arises when right-and left-handed transmission lines are coupled forming a hybrid metamaterial transmission line. E.g. if a qubit is placed in front of a hybrid metamaterial transmission line terminated in an open circuit, the spontaneous emission rate is weakened or unaffected depending on the transition frequency of the qubit. Some other research interests are the general analysis of metamaterial cavities and the mode structure of hybrid metamaterial cavities for QND readout of multi-qubit operators. Especially the precise answer to the question about the definition of the mode volume of a metamaterial cavity is one of our primary goals.

  2. Cavity Optomechanics at Millikelvin Temperatures

    Science.gov (United States)

    Meenehan, Sean Michael

    The field of cavity optomechanics, which concerns the coupling of a mechanical object's motion to the electromagnetic field of a high finesse cavity, allows for exquisitely sensitive measurements of mechanical motion, from large-scale gravitational wave detection to microscale accelerometers. Moreover, it provides a potential means to control and engineer the state of a macroscopic mechanical object at the quantum level, provided one can realize sufficiently strong interaction strengths relative to the ambient thermal noise. Recent experiments utilizing the optomechanical interaction to cool mechanical resonators to their motional quantum ground state allow for a variety of quantum engineering applications, including preparation of non-classical mechanical states and coherent optical to microwave conversion. Optomechanical crystals (OMCs), in which bandgaps for both optical and mechanical waves can be introduced through patterning of a material, provide one particularly attractive means for realizing strong interactions between high-frequency mechanical resonators and near-infrared light. Beyond the usual paradigm of cavity optomechanics involving isolated single mechanical elements, OMCs can also be fashioned into planar circuits for photons and phonons, and arrays of optomechanical elements can be interconnected via optical and acoustic waveguides. Such coupled OMC arrays have been proposed as a way to realize quantum optomechanical memories, nanomechanical circuits for continuous variable quantum information processing and phononic quantum networks, and as a platform for engineering and studying quantum many-body physics of optomechanical meta-materials. However, while ground state occupancies (that is, average phonon occupancies less than one) have been achieved in OMC cavities utilizing laser cooling techniques, parasitic absorption and the concomitant degradation of the mechanical quality factor fundamentally limit this approach. On the other hand, the high

  3. Single-photon switch: Controllable scattering of photons inside a one-dimensional resonator waveguide

    Science.gov (United States)

    Zhou, L.; Gong, Z. R.; Liu, Y. X.; Sun, C. P.; Nori, F.

    2010-03-01

    We analyze the coherent transport of a single photon, which propagates in a one-dimensional coupled-resonator waveguide and is scattered by a controllable two-level system located inside one of the resonators of this waveguide. Our approach, which uses discrete coordinates, unifies low and high energy effective theories for single-photon scattering. We show that the controllable two-level system can behave as a quantum switch for the coherent transport of a single photon. This study may inspire new electro-optical single-photon quantum devices. We also suggest an experimental setup based on superconducting transmission line resonators and qubits. References: L. Zhou, Z.R. Gong, Y.X. Liu, C.P. Sun, F. Nori, Controllable scattering of photons inside a one-dimensional resonator waveguide, Phys. Rev. Lett. 101, 100501 (2008). L. Zhou, H. Dong, Y.X. Liu, C.P. Sun, F. Nori, Quantum super-cavity with atomic mirrors, Phys. Rev. A 78, 063827 (2008).

  4. Enhanced photoelastic modulation in silica phononic crystal cavities

    Science.gov (United States)

    Kim, Ingi; Iwamoto, Satoshi; Arakawa, Yasuhiko

    2018-04-01

    The enhanced photoelastic modulation in quasi-one-dimensional (1D) phononic crystal (PnC) cavities made of fused silica is experimentally demonstrated. A confined acoustic wave in the cavity can induce a large birefringence through the photoelastic effect and enable larger optical modulation amplitude at the same acoustic power. We observe a phase retardation of ∼26 mrad of light passing through the cavity when the exciting acoustic frequency is tuned to the cavity mode resonance of ∼500 kHz at 2.5 V. In the present experiment, a 16-fold enhancement of retardation in the PnC cavity is demonstrated compared with that in a bar-shaped silica structure. Spatially resolved optical retardation measurement reveals that the large retardation is realized only around the cavity reflecting the localized nature of the acoustic cavity mode. The enhanced interactions between acoustic waves and light can be utilized to improve the performance of acousto-optic devices such as photoelastic modulators.

  5. Intra–cavity flat–top beam generation

    CSIR Research Space (South Africa)

    Litvin, IA

    2009-08-01

    Full Text Available In this paper the authors present the analytical and numerical analyses of two new resonator systems for generating flat–top–like beams. Both approaches lead to closed form expressions for the required cavity optics, but differ substantially...

  6. Photoluminescence of PMMA doped with fluorescein and carbosilane dendrimer and lasing in PBG resonance cavity

    International Nuclear Information System (INIS)

    Li Chunfang; Jin Feng; Dong Xianzi; Chen Weiqiang; Duan Xuanming

    2007-01-01

    Carbosilane dendrimers with terminal allyl groups were synthesized and used to encapsulate the allyl derivative of fluorescein (allyl-FL) doped in PMMA. The optical property of this system was investigated and the results showed that the concentration of allyl-FL in PMMA could be increased to 4.5 wt% without decrease of the luminescence efficiency by adding the dendrimer into the system. The allyl-FL/dendrimer/PMMA film was embedded into a resonance cavity composed of two pieces of photonic band gap (PBG) materials to form a new-type solid-state laser. A laser emission at 589 nm was obtained when excited with a third harmonic generation (THG) of a pulsed Nd:YAG laser (355 nm) and its full-width at half-maximum of the spectrum was 1.7 nm

  7. Optical Microspherical Resonators for Biomedical Sensing

    Directory of Open Access Journals (Sweden)

    Giancarlo C. Righini

    2011-01-01

    Full Text Available Optical resonators play an ubiquitous role in modern optics. A particular class of optical resonators is constituted by spherical dielectric structures, where optical rays are total internal reflected. Due to minimal reflection losses and to potentially very low material absorption, these guided modes, known as whispering gallery modes, can confer the resonator an exceptionally high quality factor Q, leading to high energy density, narrow resonant-wavelength lines and a lengthy cavity ringdown. These attractive characteristics make these miniaturized optical resonators especially suited as laser cavities and resonant filters, but also as very sensitive sensors. First, a brief analysis is presented of the characteristics of microspherical resonators, of their fabrication methods, and of the light coupling techniques. Then, we attempt to overview some of the recent advances in the development of microspherical biosensors, underlining a number of important applications in the biomedical field.

  8. Analytic evaluation of LAMPF II Booster Cavity design

    International Nuclear Information System (INIS)

    Friedrichs, C.C.

    1985-01-01

    Through the past few decades, a great deal of sophistication has evolved in the numeric codes used to evaluate electromagnetically resonant structures. The numeric methods are extremely precise, even for complicated geometries, whereas analytic methods require a simple uniform geometry and a simple, known mode configuration if the same precision is to be obtained. The code SUPERFISH, which is near the present state-of-the-art of numeric methods, does have the following limitations: No circumferential geometry variations are permissible; there are no provisions for magnetic or dielectric losses; and finally, it is impractical (because of the complexity of the code) to modify it to extract particular bits of data one might want that are not provided by the code as written. This paper describes how SUPERFISH was used as an aid in derivating an analytic model of the LAMPF II Booster Cavity. Once a satisfactory model was derived, simple FORTRAN codes were generated to provide whatever data was required. The analytic model is made up of TEM- and radial-mode transmission-line sections, as well as lumped elements where appropriate. Radial transmission-line equations, which include losses, were not found in any literature, and the extension of the lossless equations to include magnetic and dielectric losses are included in this paper

  9. Nonlinear resonance phenomena of a doped fibre laser under cavity ...

    Indian Academy of Sciences (India)

    quence and other routes to chaos, generalized multistability and crisis. But, doped ... of chaos and synchronization of coupled chaotic lasers (for communication with a ... The two basic issues in focus here for the nonlinear dynamical studies.

  10. Novel automatic phase lock determination for superconducting cavity tests at vertical test stand at RRCAT

    International Nuclear Information System (INIS)

    Singh, Kunver Adarsh Pratap; Mohania, Praveen; Rajput, Vikas; Baxy, Deodatta; Shrivastava, Purushottam

    2015-01-01

    RRCAT has developed a Vertical Test Stand (VTS) which is used to test the Nb superconducting cavities under cryogenic conditions. In the VTS, RF cavity is characterized for its quality factor variation vs the accelerating gradient. The RF system is an essential part of the VTS which is required to provide stable RF power to the cavity in terms of amplitude, frequency and phase. RF system of VTS consists of several modules including the LLRF system. The LLRF system consists of the 'Frequency Control Module' which controls the input frequency to the SCRF cavity. Due to high quality factor, bandwidth of the cavity is less than 1 Hz. Even slight mechanical vibrations (microphonics) causes change in cavity resonance frequency resulting in total reflection of incident power. A PLL based frequency tracking module has been used to track the resonant frequency of RF cavity. This module changes RF source frequency according to change in Cavity resonance frequency. A novel method using a LabView based computer program has been developed which changes the phase of input RF signal using IQ modulator and monitors the transmitted power, incident and reflected power. The program plots the graph between phase and ratio of transmitted power to incident/reflected power and gives optimum locking phase for operation which has resulted in significant saving in the overall process time for the tests of the cavities in VTS. (author)

  11. Some effects that influence the measurement of a nuclear resonance by using of a crystal spectrometer. Alguns efeitos que influenciam a medida de uma ressonancia nuclear com um espctrometro de cristal

    Energy Technology Data Exchange (ETDEWEB)

    Stasiulevicius, R [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, MG (Brazil)

    1993-10-01

    This work describes the neutron transmission experiments aimed at evaluating the thermal resonance of [sup 176] Lu by using a crystal spectrometer located next to an irradiation channel of the IEA-R1 reactor. The iridium resonance was used to calibrate the experimental data. The effects of several phenomena affecting the measurements were also accounted for. Finally, the results were compared to values from the literature. (author).

  12. Multidimensional and interference effects in atom trapping by a cavity field

    International Nuclear Information System (INIS)

    Vukics, A; Domokos, P; Ritsch, H

    2004-01-01

    We study the trapping of a driven two-level atom in a strongly coupled single-mode cavity field. The cavity can significantly enhance the cooling in the direction perpendicular to the cavity axis and thus the standard Doppler-cooling scheme together with a transverse high-finesse resonator yields long trapping times up to the range of seconds. By the addition of a weak cavity pump, trapping can be achieved in the direction of the cavity axis as well. The system is sensitive to the relative phase of the atomic and cavity pumps due to the interference of the fields injected and scattered into the cavity mode. Variation of the phase difference leads to a switching between two possible trap positions along the cavity axis

  13. Cavity resonance absorption in ultra-high bandwidth CRT deflection structure by a resistive load

    Science.gov (United States)

    Dunham, M.E.; Hudson, C.L.

    1993-05-11

    An improved ultra-high bandwidth helical coil deflection structure for a cathode ray tube is described comprising a first metal member having a bore therein, the metal walls of which form a first ground plane; a second metal member coaxially mounted in the bore of the first metal member and forming a second ground plane; a helical deflection coil coaxially mounted within the bore between the two ground planes; and a resistive load disposed in one end of the bore and electrically connected to the first and second ground planes, the resistive load having an impedance substantially equal to the characteristic impedance of the coaxial line formed by the two coaxial ground planes to inhibit cavity resonance in the structure within the ultra-high bandwidth of operation. Preferably, the resistive load comprises a carbon film on a surface of an end plug in one end of the bore.

  14. Cavity quantum electrodynamics in application to plasmonics and metamaterials

    Directory of Open Access Journals (Sweden)

    Pavel Ginzburg

    2016-11-01

    Full Text Available Frontier quantum engineering tasks require reliable control over light-matter interaction dynamics, which could be obtained by introducing electromagnetic structuring. Initiated by the Purcell's discovery of spontaneous emission acceleration in a cavity, the concept of electromagnetic modes' design have gained a considerable amount of attention due to development of photonic crystals, micro-resonators, plasmonic nanostructures and metamaterials. Those approaches, however, offer qualitatively different strategies for tailoring light-matter interactions and are based on either high quality factor modes shaping, near field control, or both. Remarkably, rigorous quantum mechanical description might address those processes in a different fashion. While traditional cavity quantum electrodynamics tools are commonly based on mode decomposition approach, few challenges rise once dispersive and lossy nanostructures, such as noble metals (plasmonic antennas or metamaterials, are involved. The primary objective of this review is to introduce key methods and techniques while aiming to obtain comprehensive quantum mechanical description of spontaneous, stimulated and higher order emission and interaction processes, tailored by nanostructured material environment. The main challenge and the complexity here are set by the level of rigorousity, up to which materials should be treated. While relatively big nanostructured features (10nm and larger could be addressed by applying fluctuation–dissipation theorem and corresponding Green functions' analysis, smaller objects will require individual approach. Effects of material granularity, spatial dispersion, tunneling over small gaps, material memory and others will be reviewed. Quantum phenomena, inspired and tailored by nanostructured environment, plays a key role in development of quantum information devices and related technologies. Rigorous analysis is required for both examination of experimental observations

  15. Resonance Control for Future Linear Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Schappert, Warren [Fermilab

    2017-05-01

    Many of the next generation of particle accelerators (LCLS II, PIP II) are designed for relatively low beam loading. Low beam loading requirement means the cavities can operate with narrow bandwidths, minimizing capital and base operational costs of the RF power system. With such narrow bandwidths, however, cavity detuning from microphonics or dynamic Lorentz Force Detuning becomes a significant factor, and in some cases can significantly increase both the acquisition cost and the operational cost of the machine. In addition to the efforts to passive environmental detuning reduction (microphonics) active resonance control for the SRF cavities for next generation linear machine will be required. State of the art in the field of the SRF Cavity active resonance control and the results from the recent efforts at FNAL will be presented in this talk.

  16. Short-cavity squeezing in barium

    Science.gov (United States)

    Hope, D. M.; Bachor, H-A.; Manson, P. J.; Mcclelland, D. E.

    1992-01-01

    Broadband phase sensitive noise and squeezing were experimentally observed in a system of barium atoms interacting with a single mode of a short optical cavity. Squeezing of 13 +/- 3 percent was observed. A maximum possible squeezing of 45 +/- 8 percent could be inferred for out experimental conditions, after correction for measured loss factors. Noise reductions below the quantum limit were found over a range of detection frequencies 60-170 MHz and were best for high cavity transmission and large optical depths. The amount of squeezing observed is consistent with theoretical predictions from a full quantum statistical model of the system.

  17. Optical feedback in dfb quantum cascade laser for mid-infrared cavity ring-down spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Terabayashi, Ryohei, E-mail: terabayashi.ryouhei@h.mbox.nagoya-u.ac.jp; Sonnenschein, Volker, E-mail: volker@nagoya-u.jp; Tomita, Hideki, E-mail: tomita@nagoya-u.jp; Hayashi, Noriyoshi, E-mail: hayashi.noriyoshi@h.mbox.nagoya-u.ac.jp; Kato, Shusuke, E-mail: katou.shuusuke@f.mbox.nagoya-u.ac.jp; Jin, Lei, E-mail: kin@nuee.nagoya-u.ac.jp; Yamanaka, Masahito, E-mail: yamanaka@nuee.nagoya-u.ac.jp; Nishizawa, Norihiko, E-mail: nishizawa@nuee.nagoya-u.ac.jp [Nagoya University, Department of Quantum Engineering, Graduate School of Engineering (Japan); Sato, Atsushi, E-mail: atsushi.sato@sekisui.com; Nozawa, Kohei, E-mail: kohei.nozawa@sekisui.com; Hashizume, Kenta, E-mail: kenta.hashizume@sekisui.com; Oh-hara, Toshinari, E-mail: toshinari.ohara@sekisui.com [Sekisui Medical Co., Ltd., Drug Development Solutions Center (Japan); Iguchi, Tetsuo, E-mail: t-iguchi@nucl.nagoya-u.ac.jp [Nagoya University, Department of Quantum Engineering, Graduate School of Engineering (Japan)

    2017-11-15

    A simple external optical feedback system has been applied to a distributed feedback quantum cascade laser (DFB QCL) for cavity ring-down spectroscopy (CRDS) and a clear effect of feedback was observed. A long external feedback path length of up to 4m can decrease the QCL linewidth to around 50kHz, which is of the order of the transmission linewidth of our high finesse ring-down cavity. The power spectral density of the transmission signal from high finesse cavity reveals that the noise at frequencies above 20kHz is reduced dramatically.

  18. Challenges in resonant cavity biosensor design: collection efficiency and specificity

    Science.gov (United States)

    Armani, Andrea M.; Mehrabani, Simin; Sun, Victoria; McBirney, Samantha; Hawk, Rasheeda M.; Gungor, Eda; Lee, Michele

    2014-03-01

    Optical cavities have successfully demonstrated the ability to detect a wide range of analytes with exquisite sensitivity. However, optimizing other parameters of the system, such as collection efficiency and specificity, have remained elusive. This presentation will discuss some of the recent work in this area, including 3D COMSOL Multiphysics models including mass transfer and binding kinetics of different cavity geometries and covalent attachment methods for a wide range of biological and synthetic moieties. A few representative experimental demonstrations will also be presented.

  19. Unstable Resonator Retrofitted Handheld Laser Designator

    Science.gov (United States)

    1978-06-01

    retrofitted with a negative-branch unstable resona- tor laser and hybrid pump cavity in place of the conventional plane-mirror/ porro prism resonator and...directed by prism B to an expanding telescope, shared with the viewing system of the designator. The actual, unfolded resonator length is approxi...was performed based on using a plane- parallel cavity consisting of a 47% reflectivity output coupler, porro - prism reflector, and the same LiNb03

  20. Model-Based, Closed-Loop Control of PZT Creep for Cavity Ring-Down Spectroscopy.

    Science.gov (United States)

    McCartt, A D; Ognibene, T J; Bench, G; Turteltaub, K W

    2014-09-01

    Cavity ring-down spectrometers typically employ a PZT stack to modulate the cavity transmission spectrum. While PZTs ease instrument complexity and aid measurement sensitivity, PZT hysteresis hinders the implementation of cavity-length-stabilized, data-acquisition routines. Once the cavity length is stabilized, the cavity's free spectral range imparts extreme linearity and precision to the measured spectrum's wavelength axis. Methods such as frequency-stabilized cavity ring-down spectroscopy have successfully mitigated PZT hysteresis, but their complexity limits commercial applications. Described herein is a single-laser, model-based, closed-loop method for cavity length control.

  1. Progress in diagnostic techniques for sc cavities

    International Nuclear Information System (INIS)

    Reece, C.E.

    1988-01-01

    While routinely achieved performance characteristics of superconducting cavities have now reached a level which makes them useful in large scale applications, achieving this level has come only through the knowledge gained by systematic studies of performance limiting phenomena. Despite the very real progress that has been made, the routine performance of superconducting cavities still falls far short of both the theoretical expectations and the performance of a few exception examples. It is the task of systematically applied diagnostic techniques to reveal additional information concerning the response of superconducting surfaces to applied RF fields. Here recent developments in diagnostic techniques are discussed. 18 references, 12 figures

  2. Video Toroid Cavity Imager

    Energy Technology Data Exchange (ETDEWEB)

    Gerald, Rex E. II; Sanchez, Jairo; Rathke, Jerome W.

    2004-08-10

    A video toroid cavity imager for in situ measurement of electrochemical properties of an electrolytic material sample includes a cylindrical toroid cavity resonator containing the sample and employs NMR and video imaging for providing high-resolution spectral and visual information of molecular characteristics of the sample on a real-time basis. A large magnetic field is applied to the sample under controlled temperature and pressure conditions to simultaneously provide NMR spectroscopy and video imaging capabilities for investigating electrochemical transformations of materials or the evolution of long-range molecular aggregation during cooling of hydrocarbon melts. The video toroid cavity imager includes a miniature commercial video camera with an adjustable lens, a modified compression coin cell imager with a fiat circular principal detector element, and a sample mounted on a transparent circular glass disk, and provides NMR information as well as a video image of a sample, such as a polymer film, with micrometer resolution.

  3. Theoretical vibro-acoustic modeling of acoustic noise transmission through aircraft windows

    Science.gov (United States)

    Aloufi, Badr; Behdinan, Kamran; Zu, Jean

    2016-06-01

    In this paper, a fully vibro-acoustic model for sound transmission across a multi-pane aircraft window is developed. The proposed model is efficiently applied for a set of window models to perform extensive theoretical parametric studies. The studied window configurations generally simulate the passenger window designs of modern aircraft classes which have an exterior multi-Plexiglas pane, an interior single acrylic glass pane and a dimmable glass ("smart" glass), all separated by thin air cavities. The sound transmission loss (STL) characteristics of three different models, triple-, quadruple- and quintuple-paned windows identical in size and surface density, are analyzed for improving the acoustic insulation performances. Typical results describing the influence of several system parameters, such as the thicknesses, number and spacing of the window panes, on the transmission loss are then investigated. In addition, a comparison study is carried out to evaluate the acoustic reduction capability of each window model. The STL results show that the higher frequencies sound transmission loss performance can be improved by increasing the number of window panels, however, the low frequency performance is decreased, particularly at the mass-spring resonances.

  4. Scheme for secure swapping two unknown states of a photonic qubit and an electron-spin qubit using simultaneous quantum transmission and teleportation via quantum dots inside single-sided optical cavities

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Jino [College of Electrical and Computer Engineering, Chungbuk National University, Chungdae-ro 1, Seowon-Gu, Cheongju (Korea, Republic of); Kang, Min-Sung [Center for Quantum Information, Korea Institute of Science and Technology (KIST), Seoul, 136-791 (Korea, Republic of); Hong, Chang-Ho [National Security Research Institute, P.O.Box 1, Yuseong, Daejeon, 34188 (Korea, Republic of); Choi, Seong-Gon [College of Electrical and Computer Engineering, Chungbuk National University, Chungdae-ro 1, Seowon-Gu, Cheongju (Korea, Republic of); Hong, Jong-Phil, E-mail: jongph@cbnu.ac.kr [College of Electrical and Computer Engineering, Chungbuk National University, Chungdae-ro 1, Seowon-Gu, Cheongju (Korea, Republic of)

    2017-06-15

    We propose a scheme for swapping two unknown states of a photon and electron spin confined to a charged quantum dot (QD) between two users by transferring a single photon. This scheme simultaneously transfers and teleports an unknown state (electron spin) between two users. For this bidirectional quantum communication, we utilize the interactions between a photonic and an electron-spin qubits of a QD located inside a single-sided optical cavity. Thus, our proposal using QD-cavity systems can obtain a certain success probability with high fidelity. Furthermore, compared to a previous scheme using cross-Kerr nonlinearities and homodyne detections, our scheme (using QD-cavity systems) can improve the feasibility under the decoherence effect in practice. - Highlights: • Design of Simultaneous quantum transmission and teleportation scheme via quantum dots and cavities. • We have developed the experimental feasibility of this scheme compared with the existing scheme. • Analysis of some benefits when our scheme is experimentally implemented using quantum dots and single-sided cavities.

  5. Coherent Dynamics of Quantum Dots in Photonic-Crystal Cavities

    DEFF Research Database (Denmark)

    Madsen, Kristian Høeg

    deviations. Similar measurements on a quantum dot in a photonic-crystal cavity sow a Rabi splitting on resonance, while time-resolved measurements prove that the system is in the weak coupling regime. Whle tuning the quantum dot through resonance of the high-Q mode we observe a strong and surprisingly...

  6. An Experiment and Detection Scheme for Cavity-Based Light Cold Dark Matter Particle Searches

    Directory of Open Access Journals (Sweden)

    Masroor H. S. Bukhari

    2017-01-01

    Full Text Available A resonance detection scheme and some useful ideas for cavity-based searches of light cold dark matter particles (such as axions are presented, as an effort to aid in the on-going endeavors in this direction as well as for future experiments, especially in possibly developing a table-top experiment. The scheme is based on our idea of a resonant detector, incorporating an integrated tunnel diode (TD and GaAs HEMT/HFET (High-Electron Mobility Transistor/Heterogeneous FET transistor amplifier, weakly coupled to a cavity in a strong transverse magnetic field. The TD-amplifier combination is suggested as a sensitive and simple technique to facilitate resonance detection within the cavity while maintaining excellent noise performance, whereas our proposed Halbach magnet array could serve as a low-noise and permanent solution replacing the conventional electromagnets scheme. We present some preliminary test results which demonstrate resonance detection from simulated test signals in a small optimal axion mass range with superior signal-to-noise ratios (SNR. Our suggested design also contains an overview of a simpler on-resonance dc signal read-out scheme replacing the complicated heterodyne read-out. We believe that all these factors and our propositions could possibly improve or at least simplify the resonance detection and read-out in cavity-based DM particle detection searches (and other spectroscopy applications and reduce the complications (and associated costs, in addition to reducing the electromagnetic interference and background.

  7. Accelerating RF cavity of the Booster

    CERN Multimedia

    CERN PhotoLab

    1981-01-01

    Each of the 4 PS Booster rings has a single accelerating cavity. It consists of 2 quarter-wave ferrite-loaded resonators. There are 2 figure-of-eight loops on the ferrite loads for tuning the frequency throughout the acceleration cycle, from 3 to 8 MHz (from 50 MeV at injection to the original Booster energy of 800 MeV, 2 GeV today). The cavities have a flat design, to fit the ring-to-ring distance of 36 cm. The tube for forced-air cooling is visible in the left front. See also 8301084.

  8. Accelerating RF cavity of the Booster

    CERN Multimedia

    CERN PhotoLab

    1983-01-01

    Each of the 4 PS Booster rings has a single accelerating cavity.It consists of 2 quarter-wave ferrite-loaded resonators. 2 figure-of-eight loops tune the frequency throughout the accelerating cycle, from 3 to 8 MHz (from 50 MeV at injection to the original Booster energy of 800 MeV, 2 GeV today). The cavities have a flat design, to fit the ring-to-ring distance of 36 cm, and are forced-air cooled. The 2 round objects in the front-compartments are the final-stage power-tetrodes. See also 8111095.

  9. Magnetic Resonance Image Guided Radiation Therapy for External Beam Accelerated Partial-Breast Irradiation: Evaluation of Delivered Dose and Intrafractional Cavity Motion

    Energy Technology Data Exchange (ETDEWEB)

    Acharya, Sahaja; Fischer-Valuck, Benjamin W.; Mazur, Thomas R.; Curcuru, Austen; Sona, Karl; Kashani, Rojano; Green, Olga; Ochoa, Laura; Mutic, Sasa; Zoberi, Imran; Li, H. Harold; Thomas, Maria A., E-mail: mthomas@radonc.wustl.edu

    2016-11-15

    Purpose: To use magnetic resonance image guided radiation therapy (MR-IGRT) for accelerated partial-breast irradiation (APBI) to (1) determine intrafractional motion of the breast surgical cavity; and (2) assess delivered dose versus planned dose. Methods and Materials: Thirty women with breast cancer (stages 0-I) who underwent breast-conserving surgery were enrolled in a prospective registry evaluating APBI using a 0.35-T MR-IGRT system. Clinical target volume was defined as the surgical cavity plus a 1-cm margin (excluding chest wall, pectoral muscles, and 5 mm from skin). No additional margin was added for the planning target volume (PTV). A volumetric MR image was acquired before each fraction, and patients were set up to the surgical cavity as visualized on MR imaging. To determine the delivered dose for each fraction, the electron density map and contours from the computed tomography simulation were transferred to the pretreatment MR image via rigid registration. Intrafractional motion of the surgical cavity was determined by applying a tracking algorithm to the cavity contour as visualized on cine MR. Results: Median PTV volume was reduced by 52% when using no PTV margin compared with a 1-cm PTV margin used conventionally. The mean (± standard deviation) difference between planned and delivered dose to the PTV (V95) was 0.6% ± 0.1%. The mean cavity displacement in the anterior–posterior and superior–inferior directions was 0.6 ± 0.4 mm and 0.6 ± 0.3 mm, respectively. The mean margin required for at least 90% of the cavity to be contained by the margin for 90% of the time was 0.7 mm (5th-95th percentile: 0-2.7 mm). Conclusion: Minimal intrafractional motion was observed, and the mean difference between planned and delivered dose was less than 1%. Assessment of efficacy and cosmesis of this MR-guided APBI approach is under way.

  10. Cavity characterization for general use in linear electron accelerators

    International Nuclear Information System (INIS)

    Souza Neto, M.V. de.

    1985-01-01

    The main objective of this work is to is to develop measurement techniques for the characterization of microwave cavities used in linear electron accelerators. Methods are developed for the measurement of parameters that are essential to the design of an accelerator structure using conventional techniques of resonant cavities at low power. Disk-loaded cavities were designed and built, similar to those in most existing linear electron accelerators. As a result, the methods developed and the estimated accuracy were compared with those from other investigators. The results of this work are relevant for the design of cavities with the objective of developing linear electron accelerators. (author) [pt

  11. Classifying prion and prion-like phenomena.

    Science.gov (United States)

    Harbi, Djamel; Harrison, Paul M

    2014-01-01

    The universe of prion and prion-like phenomena has expanded significantly in the past several years. Here, we overview the challenges in classifying this data informatically, given that terms such as "prion-like", "prion-related" or "prion-forming" do not have a stable meaning in the scientific literature. We examine the spectrum of proteins that have been described in the literature as forming prions, and discuss how "prion" can have a range of meaning, with a strict definition being for demonstration of infection with in vitro-derived recombinant prions. We suggest that although prion/prion-like phenomena can largely be apportioned into a small number of broad groups dependent on the type of transmissibility evidence for them, as new phenomena are discovered in the coming years, a detailed ontological approach might be necessary that allows for subtle definition of different "flavors" of prion / prion-like phenomena.

  12. Generation of coherent radiation in vacuum ultra-violet by tripling frequency in continuous supersonic nitrogen free jet: quantitative investigation of resonance phenomena

    International Nuclear Information System (INIS)

    Faucher, Olivier

    1991-01-01

    This research thesis reports experimental studies performed on the generation of a coherent radiation in vacuum ultraviolet (94 nm) by tripling the frequency of an ultraviolet laser focussed within a continuous supersonic free nitrogen jet. After a recall of some general issues related to non-linear optics, the evolution of the non-linear susceptibility and conditions of phase adaptation in supersonic jet have been determined. This allowed a quantitative study of the third harmonic generation for the three following types of conversion: without resonance, with resonance with two photons, and with resonance with three photons. In the first two cases, due to the absence of saturation phenomena, measuring the harmonic signal intensity allows a diagnosis of the non-linear medium internal state to the performed. As far as the third harmonic generation with resonance with three photons is concerned, the use of supersonic free jet properties leads to a perfect understanding of saturation effects by self-absorption which are at the origin of the unusual character of the obtained spectra [fr

  13. Propagation of spiking regularity and double coherence resonance in feedforward networks.

    Science.gov (United States)

    Men, Cong; Wang, Jiang; Qin, Ying-Mei; Deng, Bin; Tsang, Kai-Ming; Chan, Wai-Lok

    2012-03-01

    We investigate the propagation of spiking regularity in noisy feedforward networks (FFNs) based on FitzHugh-Nagumo neuron model systematically. It is found that noise could modulate the transmission of firing rate and spiking regularity. Noise-induced synchronization and synfire-enhanced coherence resonance are also observed when signals propagate in noisy multilayer networks. It is interesting that double coherence resonance (DCR) with the combination of synaptic input correlation and noise intensity is finally attained after the processing layer by layer in FFNs. Furthermore, inhibitory connections also play essential roles in shaping DCR phenomena. Several properties of the neuronal network such as noise intensity, correlation of synaptic inputs, and inhibitory connections can serve as control parameters in modulating both rate coding and the order of temporal coding.

  14. Resonance-shifting luminescent solar concentrators

    Energy Technology Data Exchange (ETDEWEB)

    Giebink, Noel Christopher; Wiederrecht, Gary P.; Wasielewski, Michael R.

    2018-01-23

    An optical system and method to overcome luminescent solar concentrator inefficiencies by resonance-shifting, in which sharply directed emission from a bi-layer cavity into a glass substrate returns to interact with the cavity off-resonance at each subsequent reflection, significantly reducing reabsorption loss en route to the edges. In one embodiment, the system comprises a luminescent solar concentrator comprising a transparent substrate, a luminescent film having a variable thickness; and a low refractive index layer disposed between the transparent substrate and the luminescent film.

  15. [Overview of researches for Helicobacter pylori in oral cavity and stomach].

    Science.gov (United States)

    Yang, Kaiyu; Li, Yuqing; Zhou, Xuedong

    2014-06-01

    Helicobacter pylori (H. pylori) is one of the most common pathogens in human and it is closely related to gastrointestinal diseases. It is essential for us to understand the transmission process of H. pylori to prevent its spreading. The oral cavity has been proposed as a reservoir for gastric H. pylori, which has been detected by culture and polymerase chain reaction (PCR) in both dental plaque and saliva. Some researchers have proposed H. pylori in oral cavity may play an important role in its transmission and reinfection. Oral-oral or fecal-oral transmission are thought to be the most possible transmit way. This review will discuss the evidence for the role of the oral cavity in the transmission of H. pylori, the difficulties encountered in addressing this topic and possible directions for future research. Oral H. pylori may also play a role in the diagnosis and prevention of deceases related to H. pylori such as gastritis, gastric ulcer and gastric carcinoma. The recent progresses in this area are also reviewed. Moreover, we also discussed the relationship between oral H. pylori and oral deceases like periodontal disease and oral ulcer.

  16. Two-dimensional Josephson junction arrays coupled through a high-Q cavity

    DEFF Research Database (Denmark)

    Filatrella, G.; Pedersen, Niels Falsig; Wiesenfeld, K.

    2001-01-01

    the cavity. The highly resonant cavity induces synchronized behavior, which is qualitatively different than what is familiar from other studies on nonlinear oscillator arrays, for example the Kuramoto model. We also address the effects of disorder, as well as the role of detuning between the spontaneous...

  17. The influence of boundary conditions on resonant frequencies of cavities in 3-D FDTD algorithm using non-orthogonal co-ordinates

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, L.; Tong, L.S. [Southeast Univ., Nanjing (China). Research Inst. of Electronics; Carter, R.G. [Lancaster Univ. (United Kingdom). Engineering Dept.

    1994-09-01

    The 3-dimensional finite-difference time-domain method in non-orthogonal co-ordinates (non-standard FDTD) is used to calculate the frequencies of resonators. The numerical boundary conditions of the method are presented. The Influences of boundary conditions and discrete meshes on the numerical accuracy are investigated. The authors present the nonstandard FDTD method using the boundary-orthogonal mesh and equivalent dielectric constant so that the error is reduced from 8.66% to 3.0% for the cylindrical cavity loaded by a dielectric button.

  18. A highly directive graphene antenna embedded inside a Fabry-Perot cavity in terahertz regime

    Science.gov (United States)

    Roshanaei, Majid; Karami, Hamidreza; Dehkhoda, Parisa; Esfahani, Hamid; Dabir, Fatemeh

    2018-05-01

    In this paper, a highly directive nano-thickness graphene-based antenna is introduced in the terahertz frequency band. The antenna is a graphene patch dipole which is placed between two Bragg mirrors called Fabry-Perot cavity. Tunability of the graphene's conductivity makes it possible to excite the desired resonances of the cavity. Here, first, a single resonant antenna is introduced at 5 THz with an enhanced gain from 2.11 dBi to 12.8 dBi with a beamwidth of 22.7°. Then, a triple resonant antenna at 4.7, 5 and 5.3 THz is presented with respective gains of 7.97, 11.9 and 8.52 dBi. Finally, the effect of dimensions and number of the dielectric layers of the cavity are studied in order to further increase in directivity.

  19. All-optical tunable photonic crystal cavity

    DEFF Research Database (Denmark)

    Pu, Minhao; Liu, Liu; Ou, Haiyan

    2010-01-01

    We demonstrate an ultra-small photonic crystal cavity with two resonant modes. An all-optical tuning operation based on the free-carrier plasma effect is, for the first time, realized utilizing a continuous wave light source. The termo-optical effect is minimized by isoproponal infiltration...

  20. Transversely coupled Fabry-Perot resonators with Bragg grating reflectors.

    Science.gov (United States)

    Saber, Md Ghulam; Wang, Yun; El-Fiky, Eslam; Patel, David; Shahriar, Kh Arif; Alam, Md Samiul; Jacques, Maxime; Xing, Zhenping; Xu, Luhua; Abadía, Nicolás; Plant, David V

    2018-01-01

    We design and demonstrate Fabry-Perot resonators with transverse coupling using Bragg gratings as reflectors on the silicon-on-insulator (SOI) platform. The effects of tailoring the cavity length and the coupling coefficient of the directional coupler on the spectral characteristics of the device are studied. The fabricated resonators achieved an extinction ratio (ER) of 37.28 dB and a Q-factor of 3356 with an effective cavity length of 110 μm, and an ER of 8.69 dB and a Q-factor of 23642 with a 943 μm effective cavity length. The resonator structure presented here has the highest reported ER on SOI and provides additional degrees of freedom compared to an all-pass ring resonator to tune the spectral characteristics.

  1. Harnessing the mode mixing in optical fiber-tip cavities

    International Nuclear Information System (INIS)

    Podoliak, Nina; Horak, Peter; Takahashi, Hiroki; Keller, Matthias

    2017-01-01

    We present a systematic numerical study of Fabry–Pérot optical cavities with Gaussian-shape mirrors formed between tips of optical fibers. Such cavities can be fabricated by laser machining of fiber tips and are promising systems for achieving strong coupling between atomic particles and an optical field as required for quantum information applications. Using a mode mixing matrix method, we analyze the cavity optical eigenmodes and corresponding losses depending on a range of cavity-shape parameters, such as mirror radius of curvature, indentation depth and cavity length. The Gaussian shape of the mirrors causes mixing of optical modes in the cavity. We investigate the effect of the mode mixing on the coherent atom-cavity coupling as well as the mode matching between the cavity and a single-mode optical fiber. While the mode mixing is associated with increased cavity losses, it can also lead to an enhancement of the local optical field. We demonstrate that around the resonance between the fundamental and 2nd order Laguerre–Gaussian modes of the cavity it is possible to obtain 50% enhancement of the atom-cavity coupling at the cavity center while still maintaining low cavity losses and high cavity-fiber optical coupling. (paper)

  2. Frequency-tunable SRF cavities for microwave opto-mechanics

    Science.gov (United States)

    Castelli, Alessandro; Martinez, Luis; Pate, Jacob; Thompson, Johnathon; Chiao, Raymond; Sharping, Jay

    Three dimensional SRF (Superconducting Radio Frequency) cavities are known for achieving high quality factors (Q =109 or higher) but suffer from limited frequency tunability once fabricated and cooled to superconducting temperatures. Our end-wall design allows for numerous applications of cavity tuning at temperatures as low as 40 millikelvin. Using a bimorphic piezoelectric transducer, we demonstrate approximately 15 MHz of resonance tunability for the TE011 mode at cryogenic temperatures in a cylindrical reactor grade niobium (Nb) cavity (10% of the range at room temperature). This range doubles when using tunable end-walls on both cavity ends. We report on techniques for improving the Q of multi-component cavities including the use of concave end-walls to reduce fields near the cylinder ends and indium O-rings to reduce resistive losses at the gaps. Three-dimensional SRF cavities of this type have potential applications to quantum information science, precision displacement metrology, and quantum electro-dynamics.

  3. Study on the crystallization of the metal glass with the ferromagnetic resonance and transmission electron microscopy techniques

    International Nuclear Information System (INIS)

    Biasi, R.S. de; Rodrigues, R.W.D.; Pascual, R.; Pessoa, C.S.

    1983-01-01

    The crystallization of the metal glass METGLAS 2826A has been studied with the ferromagnetic resonance and electron transmission microscopy techniques. The first-derivative linewidth of the absorption curve was measured for several times of isothermal treatments at 375 0 C. After an initial decrease, attributed to stress relaxation, the linewidth increases linearly with the transformed fraction of the first crystallization phase. Comparison with the electron microscopy results shows that the ferromagnetic resonance technique is particularly useful for short and medium aging times. (Author) [pt

  4. Nonlinear dynamics and cavity cooling of levitated nanoparticles

    Science.gov (United States)

    Fonseca, P. Z. G.; Aranas, E. B.; Millen, J.; Monteiro, T. S.; Barker, P. F.

    2016-09-01

    We investigate a dynamic nonlinear optomechanical system, comprising a nanosphere levitated in a hybrid electro-optical trap. An optical cavity offers readout of both linear-in-position and quadratic-in-position (nonlinear) light-matter coupling, whilst simultaneously cooling the nanosphere, for indefinite periods of time and in high vacuum. Through the rich sideband structure displayed by the cavity output we can observe cooling of the linear and non-linear particle's motion. Here we present an experimental setup which allows full control over the cavity resonant frequencies, and shows cooling of the particle's motion as a function of the detuning. This work paves the way to strong-coupled quantum dynamics between a cavity and a mesoscopic object largely decoupled from its environment.

  5. Design of the Advanced Virgo non-degenerate recycling cavities

    International Nuclear Information System (INIS)

    Granata, M; Barsuglia, M; Flaminio, R; Freise, A; Hild, S; Marque, J

    2010-01-01

    Advanced Virgo is the project to upgrade the interferometric gravitational wave detector Virgo, and it foresees the implementation of power and signal non-degenerate recycling cavities. Such cavities suppress the build-up of high order modes of the resonating sidebands, with some advantage for the commissioning of the detector and the build-up of the gravitational signal. Here we present the baseline design of the Advanced Virgo non-degenerate recycling cavities, giving some preliminary results of simulations about the tolerances of this design to astigmatism, mirror figure errors and thermal lensing.

  6. Graphene photonics for resonator-enhanced electro-optic devices and all-optical interactions

    Science.gov (United States)

    Englund, Dirk R.; Gan, Xuetao

    2017-03-21

    Techniques for coupling light into graphene using a planar photonic crystal having a resonant cavity characterized by a mode volume and a quality factor and at least one graphene layer positioned in proximity to the planar photonic crystal to at least partially overlap with an evanescent field of the resonant cavity. At least one mode of the resonant cavity can couple into the graphene layer via evanescent coupling. The optical properties of the graphene layer can be controlled, and characteristics of the graphene-cavity system can be detected. Coupling light into graphene can include electro-optic modulation of light, photodetection, saturable absorption, bistability, and autocorrelation.

  7. An inductively heated hot cavity catcher laser ion source

    CERN Document Server

    Reponen, M; Pohjalainen, I; Rothe, S; Savonen, M; Sonnenschein, V; Voss, A

    2015-01-01

    An inductively heated hot cavity catcher has been constructed for the production of low-energy ion beams of exotic, neutron-deficient Agisotopes. A proof-of-principle experiment has been realized by implanting primary 107Ag21+ ions from a heavy-ion cyclotron into a graphite catcher. A variable-thickness nickel foil was used to degrade the energy of the primary beam in order to mimic the implantation depth expected from the heavy-ion fusion-evaporation recoils of N = Z94Ag. Following implantation, the silver atoms diffused out of the graphite and effused into the catcher cavity and transfer tube, where they were resonantly laser ionized using a three-step excitation and ionization scheme. Following mass separation, the ions were identified by scanning the frequency of the first resonant excitation step while recording the ion count rate. Ion release time profiles were measured for different implantation depths and cavity temperatures with the mean delay time varying from 10 to 600 ms. In addition, the diffusio...

  8. Investigations on perturbations of microwave dielectric resonator thermometer

    International Nuclear Information System (INIS)

    Yu, Lili; Zhang, Guangming; Fernicola, V; Lu, Jinchuan

    2017-01-01

    Investigations of antenna probe length, antenna-dielectric distance, cavity filling and humidity on microwave resonator thermometer with respect to Q , spurious mode depression, coupling strength, accuracy, shock resistance or sensitivity were carried out in order to improve the dielectric resonator thermometer performance. Significant improvement of Q and depression of spurious mode coupling were obtained when the antenna length was reduced. It also turns out that the Q and spurious mode coupling strength vary with the distance between dielectric and antenna pin, as well under appropriate antenna length. Filling the cavity with nitrogen increases coupling strength but decrease frequency-temperature sensitivity compared to a vacuum-pumped cavity. Besides, preliminary results on the microwave resonator sensitivity to air humidity were obtained. (technical note)

  9. Resonance Phenomena in Goupillaud-type Media

    Science.gov (United States)

    2010-10-01

    layered structures (7), anisotropic elastic bodies (8), anisotropic layered crystals (9, 10), elastic plates (11, 12), periodic media (13), laminated and...sandwich plates (14), composite laminates (15), piezoelectric composites (16), locally resonant acoustic metamaterials (17, 18), and acoustic wave...bm 2 c∑ k=1 ai,k cos (nθk) + bi,k sin (nθk) ] , (20) where operation ∗ means convolution , i = 1, 2, . . .m, and n ≥ 0. The stress representation

  10. Multi-angle VECSEL cavities for dispersion control and multi-color operation

    Science.gov (United States)

    Baker, Caleb; Scheller, Maik; Laurain, Alexandre; Yang, Hwang-Jye; Ruiz Perez, Antje; Stolz, Wolfgang; Addamane, Sadhvikas J.; Balakrishnan, Ganesh; Jones, R. Jason; Moloney, Jerome V.

    2017-02-01

    We present a novel Vertical External Cavity Surface Emitting Laser (VECSEL) cavity design which makes use of multiple interactions with the gain region under different angles of incidence in a single round trip. This design allows for optimization of the net, round-trip Group Delay Dispersion (GDD) by shifting the GDD of the gain via cavity fold angle while still maintaining the high gain of resonant structures. The effectiveness of this scheme is demonstrated with femtosecond-regime pulses from a resonant structure and record pulse energies for the VECSEL gain medium. In addition, we show that the interference pattern of the intracavity mode within the active region, resulting from the double-angle multifold, is advantageous for operating the laser in CW on multiple wavelengths simultaneously. Power, noise, and mode competition characterization is presented.

  11. High-Q microsphere resonators for angular velocity sensing in gyroscopes

    International Nuclear Information System (INIS)

    An, Panlong; Zheng, Yongqiu; Yan, Shubin; Xue, Chenyang; Liu, Jun; Wang, Wanjun

    2015-01-01

    A resonator gyroscope based on the Sagnac effect is proposed using a core unit that is generated by water-hydrogen flame melting. The relationship between the quality factor Q and diameter D is revealed. The Q factor of the spectral lines of the microsphere cavity coupling system, which uses tapered fibers, is found to be 10 6 or more before packaging with a low refractive curable ultraviolet polymer, although it drops to approximately 10 5 after packaging. In addition, a rotating test platform is built, and the transmission spectrum and discriminator curves of a microsphere cavity with Q of 3.22×10 6 are measured using a semiconductor laser (linewidth less than 1 kHz) and a real-time proportional-integral circuit tracking and feedback technique. Equations fitting the relation between the voltage and angular rotation rate are obtained. According to the experimentally measured parameters, the sensitivity of the microsphere-coupled system can reach 0.095 ∘ /s

  12. Dynamical Properties of Two Coupled Dissipative QED Cavities Driven by Coherent Fields

    International Nuclear Information System (INIS)

    Hou Bangpin; Sun Weili; Wang Shunjin; Wang Gang

    2007-01-01

    When two identical QED cavities driven by the coherent fields are located in a uniform environment, in addition to dissipation, there appears an indirect coupling between the two cavities induced by the background fields. We investigate the effects of the coherent fields, the dissipation as well as the incoherent coupling on the following dynamical properties of the system: photon transfer, reversible decoherence, and quantum state transfer, etc. We find that the photons in the cavities do not leak completely into the environment due to the collective coupling between the cavities and the environment, and the photons are transferred irreversibly from the cavity with more photons to the cavity with less ones due to the incoherent coupling so that they are equally distributed among the two cavities. The coherent field pumping on the two cavities increases the mean photons, complements the revived magnitude of the reversible decoherence, but hinders the quantum state transfer between the two cavities. The above phenomena may find applications in quantum communication and other basic fields.

  13. Simultaneous cooling and entanglement of mechanical modes of a micromirror in an optical cavity

    International Nuclear Information System (INIS)

    Genes, Claudiu; Vitali, David; Tombesi, Paolo

    2008-01-01

    Laser cooling of a mechanical mode of a resonator by the radiation pressure of a detuned optical cavity mode has been recently demonstrated by various groups in different experimental configurations. Here, we consider the effect of a second mechanical mode with a close but different resonance frequency. We show that the nearby mechanical resonance is simultaneously cooled by the cavity field, provided that the difference between the two mechanical frequencies is not too small. When this frequency difference becomes smaller than the effective mechanical damping of the secondary mode, the two cooling processes interfere destructively similarly to what happens in electromagnetically induced transparency, and cavity cooling is suppressed in the limit of identical mechanical frequencies. We show that also the entanglement properties of the steady state of the tripartite system crucially depend upon the difference between the two mechanical frequencies. If the latter is larger than the effective damping of the second mechanical mode, the state shows fully tripartite entanglement and each mechanical mode is entangled with the cavity mode. If instead, the frequency difference is smaller, the steady state is a two-mode biseparable state, inseparable only when one splits the cavity mode from the two mechanical modes. In this latter case, the entanglement of each mechanical mode with the cavity mode is extremely fragile with respect to temperature.

  14. 3D-CFD analysis of diffusion and emission of VOCs in a FLEC cavity.

    Science.gov (United States)

    Zhu, Q; Kato, S; Murakami, S; Ito, K

    2007-06-01

    This study is performed as a part of research that examines the emission and diffusion characteristics of volatile organic compounds (VOCs) from indoor building materials. In this paper, the flow field and the emission field of VOCs from the surface of building materials in a Field and Laboratory Emission Cell (FLEC) cavity are examined by 3D Computational Fluid Dynamics (CFD) analysis. The flow field within the FLEC cavity is laminar. With a total flow of 250 ml/min, the air velocity near the test material surface ranges from 0.1 to 4.5 cm/s. Three types of emission from building materials are studied here: (i) emission phenomena controlled by internal diffusion, (ii) emission phenomena controlled by external diffusion, and (iii) emission phenomena controlled by mixed diffusion (internal + external diffusion). In the case of internal diffusion material, with respect to the concentration distribution in the cavity, the local VOC emission rate becomes uniform and the FLEC works well. However, in the case of evaporation type (external diffusion) material, or mixed type materials (internal + external diffusion) when the resistance to transporting VOCs in the material is small, the FLEC is not suitable for emission testing because of the thin FLEC cavity. In this case, the mean emission rate is restricted to a small value, since the VOC concentration in the cavity rises to the same value as the surface concentration through molecular diffusion within the thin cavity, and the concentration gradient normal to the surface becomes small. The diffusion field and emission rate depend on the cavity concentration and on the Loading Factor. That is, when the testing material surface in the cavity is partially sealed to decrease the Loading Factor, the emission rate become higher with the decrease in the exposed area of the testing material. The flow field and diffusion field within the FLEC cavity are investigated by CFD method. After presenting a summary of the velocity

  15. Nano-structured Fabry–Pérot resonators in neutron optics and tunneling of neutron wave-particles

    International Nuclear Information System (INIS)

    Maaza, M.; Hamidi, D.

    2012-01-01

    Correlated to the quantum mechanics wave-particle duality, the optical analogy between electromagnetic waves and cold neutrons manifests itself through several interference phenomena particularly the so called Frustrated Total Reflection i.e., the tunneling process in Fabry–Pérot nano-structured cavities. Prominent resonant situations offered by this configuration allow the attainment of numerous fundamental investigations and surface-interface studies as well as to devise new kinds of neutron optics devices. This review contribution reports such possibilities in addition to the recently observed peculiar Goos–Hänchen longitudinal shift of neutron wave-particles which was predicted by Sir Isaac Newton as early as 1730.

  16. Computer Aided Modeling of Human Mastoid Cavity Biomechanics Using Finite Element Analysis

    Directory of Open Access Journals (Sweden)

    Chou Yuan-Fang

    2010-01-01

    Full Text Available The aim of the present study was to analyze the human mastoid cavity on sound transmission using finite element method. Pressure distributions in the external ear canal and middle ear cavity at different frequencies were demonstrated. Our results showed that, first, blocking the aditus improves middle ear sound transmission in the 1500- to 2500-Hz range and decreases displacement in frequencies below 1000 Hz when compared with the normal ear. Second, at frequencies lower than 1000 Hz, the acoustic pressures were almost uniformly distributed in the external ear canal and middle ear cavity. At high frequencies, higher than 1000 Hz, the pressure distribution varied along the external ear canal and middle ear cavity. Third, opening the aditus, the pressures difference in dB between the middle ear cavity and external ear canal were larger than those of the closed mastoid cavity in low frequency (<1000 Hz. Finally, there was no significant difference in the acoustic pressure between the oval window and round window is noted and increased by 5 dB by blocking the aditus. These results suggest that our complete FE model including the mastoid cavity is potentially useful and can provide more information in the study of middle ear biomechanics.

  17. Analysis of resonances due to 'S' neutrons in experiments on transmission by time-of-flight. 1. without the interference term; Analyse des resonances dues aux neutrons 'S' dans les experiences de transmission par temps de vol. 1. sans terme d'interference

    Energy Technology Data Exchange (ETDEWEB)

    Corge, C R [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-01

    Various methods of transmission resonance analysis for 's' wave neutrons in time of flight experiments are described in this report. Only the case when the interference term can be neglected is treated in this first part. Results are given relative to a more complete partial area method and also to a new method so-called the width at half depth method. (author) [French] Le present rapport est consacre a l'expose de differentes methodes d'analyse des resonances dues aux neutrons d'ondes 's' dans les experiences de transmission par temps de vol, cette premiere partie traitant uniquement le cas ou l'on peut negliger le terme d'interference. Y figurent en particulier sous forme de reseaux de courbes, les resultats relatifs a une methode des aires partielles amelioree et ceux relatifs a une nouvelle methode dite de la largeur a mi-profondeur. (auteur)

  18. Observing mode propagation inside a laser cavity

    CSIR Research Space (South Africa)

    Naidoo, Darryl

    2012-05-01

    Full Text Available components, to study the forward and backward propagating waves everywhere inside a laser cavity. We verify the previous theoretical-only prediction that the two fields may differ substantially in their amplitude profile, even for stable resonator systems, a...

  19. Beam induced rf cavity transient voltage

    International Nuclear Information System (INIS)

    Kramer, S.L.; Wang, J.M.

    1998-10-01

    The authors calculate the transient voltage induced in a radio frequency cavity by the injection of a relativistic bunched beam into a circular accelerator. A simplified model of the beam induced voltage, using a single tone current signal, is generated and compared with the voltage induced by a more realistic model of a point-like bunched beam. The high Q limit of the bunched beam model is shown to be related simply to the simplified model. Both models are shown to induce voltages at the resonant frequency ω r of the cavity and at an integer multiple of the bunch revolution frequency (i.e. the accelerating frequency for powered cavity operation) hω ο . The presence of two nearby frequencies in the cavity leads to a modulation of the carrier wave exp(hω ο t). A special emphasis is placed in this paper on studying the modulation function. These models prove useful for computing the transient voltage induced in superconducting rf cavities, which was the motivation behind this research. The modulation of the transient cavity voltage discussed in this paper is the physical basis of the recently observed and explained new kinds of longitudinal rigid dipole mode which differs from the conventional Robinson mode

  20. Nanoparticle sizing: a comparative study using atomic force microscopy, transmission electron microscopy, and ferromagnetic resonance

    International Nuclear Information System (INIS)

    Lacava, L.M.; Lacava, B.M.; Azevedo, R.B.; Lacava, Z.G.M.; Buske, N.; Tronconi, A.L.; Morais, P.C.

    2001-01-01

    Atomic force microscopy (AFM), transmission electron microscopy (TEM), and ferromagnetic resonance (FMR) were used to unfold the nanoparticle size of a ferrofluid sample. Compared to TEM, the AFM method showed a nanoparticle diameter (D m ) reduction of 20% and standard deviation (σ) increase of 15%. The differences in D m and σ were associated with the AFM tip and the nanoparticle concentration on the substrate

  1. Observation of Fano resonance and classical analog of electromagnetically induced transparency in toroidal metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Han, Song; Yang, Helin [College of Physical Science and Technology, Central China Normal University, Wuhan (China); Cong, Lonqing; Singh, Ranjan [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore (Singapore); Centre for Disruptive Photonic Technologies, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore (Singapore); Gao, Fei [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore (Singapore)

    2016-05-15

    Toroidal multipoles have recently been explored in various scientific communities, ranging from atomic and molecular physics, electrodynamics, and solid-state physics to biology. Here we experimentally and numerically demonstrate a three-dimensional toroidal metamaterial where two different toroidal dipoles along orthogonal directions have been observed. The chosen toroidal metamaterial also simultaneously supports Fano resonance and the classical analog of electromagnetically induced transparency (EIT) phenomena in the transmission spectra that originate from the electric-toroidal dipole and electric-magnetic dipole destructive interference. The intriguing properties of the toroidal resonances may open up avenues for applications in toroidal moments generator, sensing and slow-light devices. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. 3-D analysis of Maxwell's equations for cavities of arbitrary shape

    International Nuclear Information System (INIS)

    Whealton, J.H.; Chen, G.L.; McGaffey, R.W.; Raridon, R.J.; Jaeger, E.F.; Bell, M.A.; Hoffman, D.J.

    1986-03-01

    A three-dimensional analysis of cavity antennas is presented. The analysis is based on the finite difference method with a successive overrelaxation convergence scheme. This method permits the calculation of resonance frequencies and corresponding electric and magnetic fields of eigenmodes in a cavity antenna with an arbitrary shape. 12 refs., 8 figs

  3. Ballistic transport in nanowire through junctions of narrow–wide–narrow geometry

    Energy Technology Data Exchange (ETDEWEB)

    Nonoyama, Shinji, E-mail: nonoyama@e.yamagata-u.ac.jp [Faculty of Education, Art, and Science, Yamagata University, Yamagata 990-8560 (Japan); Honma, Yukari [Faculty of Education, Art, and Science, Yamagata University, Yamagata 990-8560 (Japan); Nakamura, Atsunobu [Department of Creative Technology Engineering, National Institute of Technology, Anan College, Anan, Tokushima 774-0017 (Japan)

    2015-06-05

    We investigate ballistic transport phenomena through a region containing a cavity in a quasi-one-dimensional quantum wire. Conductance curve calculated as a function of a structure parameter shows very narrow periodic dips, which are due to anti-resonances. The nature of the virtual bound state appearing around the cavity is studied in detail. Transport phenomena through a small dilute magnetic semiconductor are also investigated.

  4. Ballistic transport in nanowire through junctions of narrow–wide–narrow geometry

    International Nuclear Information System (INIS)

    Nonoyama, Shinji; Honma, Yukari; Nakamura, Atsunobu

    2015-01-01

    We investigate ballistic transport phenomena through a region containing a cavity in a quasi-one-dimensional quantum wire. Conductance curve calculated as a function of a structure parameter shows very narrow periodic dips, which are due to anti-resonances. The nature of the virtual bound state appearing around the cavity is studied in detail. Transport phenomena through a small dilute magnetic semiconductor are also investigated

  5. Thermal resonance in signal transmission

    International Nuclear Information System (INIS)

    Reigada, Ramon; Sarmiento, Antonio; Lindenberg, Katja

    2001-01-01

    We use temperature tuning to control signal propagation in simple one-dimensional arrays of masses connected by hard anharmonic springs and with no local potentials. In our numerical model a sustained signal is applied at one site of a chain immersed in a thermal environment and the signal-to-noise ratio is measured at each oscillator. We show that raising the temperature can lead to enhanced signal propagation along the chain, resulting in thermal resonance effects akin to the resonance observed in arrays of bistable systems

  6. Thermal resonance in signal transmission

    Energy Technology Data Exchange (ETDEWEB)

    Reigada, Ramon; Sarmiento, Antonio; Lindenberg, Katja

    2001-06-01

    We use temperature tuning to control signal propagation in simple one-dimensional arrays of masses connected by hard anharmonic springs and with no local potentials. In our numerical model a sustained signal is applied at one site of a chain immersed in a thermal environment and the signal-to-noise ratio is measured at each oscillator. We show that raising the temperature can lead to enhanced signal propagation along the chain, resulting in thermal resonance effects akin to the resonance observed in arrays of bistable systems.

  7. Neutron resonance transmission spectroscopy with high spatial and energy resolution at the J-PARC pulsed neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Tremsin, A.S., E-mail: ast@ssl.berkeley.edu [University of California at Berkeley, 7 Gauss Way, Berkeley, CA 94720 (United States); Shinohara, T.; Kai, T.; Ooi, M. [Japan Atomic Energy Agency, 2–4 Shirakata-shirane, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Kamiyama, T.; Kiyanagi, Y.; Shiota, Y. [Hokkaido University, Kita 13 Nishi 8 Kita-ku, Sapporo-shi, Hokkaido 060-8628 (Japan); McPhate, J.B.; Vallerga, J.V.; Siegmund, O.H.W. [University of California at Berkeley, 7 Gauss Way, Berkeley, CA 94720 (United States); Feller, W.B. [NOVA Scientific, Inc., 10 Picker Rd., Sturbridge, MA 01566 (United States)

    2014-05-11

    The sharp variation of neutron attenuation at certain energies specific to particular nuclides (the lower range being from ∼1 eV up to ∼1 keV), can be exploited for the remote mapping of element and/or isotope distributions, as well as temperature probing, within relatively thick samples. Intense pulsed neutron beam-lines at spallation sources combined with a high spatial, high-timing resolution neutron counting detector, provide a unique opportunity to measure neutron transmission spectra through the time-of-flight technique. We present the results of experiments where spatially resolved neutron resonances were measured, at energies up to 50 keV. These experiments were performed with the intense flux low background NOBORU neutron beamline at the J-PARC neutron source and the high timing resolution (∼20 ns at epithermal neutron energies) and spatial resolution (∼55 µm) neutron counting detector using microchannel plates coupled to a Timepix electronic readout. Simultaneous element-specific imaging was carried out for several materials, at a spatial resolution of ∼150 µm. The high timing resolution of our detector combined with the low background beamline, also enabled characterization of the neutron pulse itself – specifically its pulse width, which varies with neutron energy. The results of our measurements are in good agreement with the predicted results for the double pulse structure of the J-PARC facility, which provides two 100 ns-wide proton pulses separated by 600 ns, broadened by the neutron energy moderation process. Thermal neutron radiography can be conducted simultaneously with resonance transmission spectroscopy, and can reveal the internal structure of the samples. The transmission spectra measured in our experiments demonstrate the feasibility of mapping elemental distributions using this non-destructive technique, for those elements (and in certain cases, specific isotopes), which have resonance energies below a few keV, and with lower

  8. Preparation of n-qubit Greenberger-Horne-Zeilinger entangled states in cavity QED: An approach with tolerance to nonidentical qubit-cavity coupling constants

    International Nuclear Information System (INIS)

    Yang Chuiping

    2011-01-01

    We propose a way for generating n-qubit Greenberger-Horne-Zeilinger (GHZ) entangled states with a three-level qubit system and (n-1) four-level qubit systems in a cavity. This proposal does not require identical qubit-cavity coupling constants and thus is tolerant to qubit-system parameter nonuniformity and nonexact placement of qubits in a cavity. The proposal does not require adjustment of the qubit-system level spacings during the entire operation. Moreover, it is shown that entanglement can be deterministically generated using this method and the operation time is independent of the number of qubits. The present proposal is quite general, which can be applied to physical systems such as various types of superconducting devices coupled to a resonator or atoms trapped in a cavity.

  9. New analytical calculations of the resonance modes in lens-shaped cavities: applications to the calculations of the energy levels and electronic wavefunctions in quantum dots

    International Nuclear Information System (INIS)

    Even, J; Loualiche, S

    2003-01-01

    The problem of the energy levels and electronic wavefunctions in quantum dots is studied in the parabolic coordinates system. A conventional effective mass Hamiltonian is written. For an infinite potential barrier, it is related to the more general problem of finding the resonance modes in a cavity. The problem is found to be separable for a biconvex-shaped cavity or quantum dot with an infinite potential barrier. This first shape of quantum dot corresponds to the intersection of two orthogonal confocal parabolas. Then plano-convex lens-shaped cavities or quantum dots are studied. This problem is no more separable in the parabolic coordinates but using symmetry properties, we show that the exact solutions of the problem are simple combinations of the previous solutions. The same approach is used for spherical coordinates and hemispherical quantum dots. It is finally shown that convex lens-shaped quantum dots give a good description of self-organized InAs quantum dots grown on InP

  10. HOM frequency control of SRF cavity in high current ERLs

    Science.gov (United States)

    Xu, Chen; Ben-Zvi, Ilan

    2018-03-01

    The acceleration of high-current beam in Superconducting Radio Frequency (SRF) cavities is a challenging but essential for a variety of advanced accelerators. SRF cavities should be carefully designed to minimize the High Order Modes (HOM) power generated in the cavities by the beam current. The reduction of HOM power we demonstrate in a particular case can be quite large. This paper presents a method to systematically control the HOM resonance frequencies in the initial design phase to minimize the HOM power generation. This method is expected to be beneficial for the design of high SRF cavities addressing a variety of Energy Recovery Linac (ERL) applications.

  11. Quantum Computation by Optically Coupled Steady Atoms/Quantum-Dots Inside a Quantum Cavity

    Science.gov (United States)

    Pradhan, P.; Wang, K. L.; Roychowdhury, V. P.; Anantram, M. P.; Mor, T.; Saini, Subhash (Technical Monitor)

    1999-01-01

    We present a model for quantum computation using $n$ steady 3-level atoms kept inside a quantum cavity, or using $n$ quantum-dots (QDs) kept inside a quantum cavity. In this model one external laser is pointed towards all the atoms/QDs, and $n$ pairs of electrodes are addressing the atoms/QDs, so that each atom is addressed by one pair. The energy levels of each atom/QD are controlled by an external Stark field given to the atom/QD by its external pair of electrodes. Transition between two energy levels of an individual atom/ QD are controlled by the voltage on its electrodes, and by the external laser. Interactions between two atoms/ QDs are performed with the additional help of the cavity mode (using on-resonance condition). Laser frequency, cavity frequency, and energy levels are far off-resonance most of the time, and they are brought to the resonance (using the Stark effect) only at the time of operations. Steps for a controlled-NOT gate between any two atoms/QDs have been described for this model. Our model demands some challenging technological efforts, such as manufacturing single-electron QDs inside a cavity. However, it promises big advantages over other existing models which are currently implemented, and might enable a much easier scale-up, to compute with many more qubits.

  12. The transition from quantum Zeno to anti-Zeno effects for a qubit in a cavity by varying the cavity frequency

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Xiufeng, E-mail: xfcao@xmu.edu.cn [Department of Physics and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen 361005 (China); Advanced Science Institute, RIKEN, Wako-shi 351-0198 (Japan); Ai, Qing; Sun, Chang-Pu [Advanced Science Institute, RIKEN, Wako-shi 351-0198 (Japan); Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China); Nori, Franco [Advanced Science Institute, RIKEN, Wako-shi 351-0198 (Japan); Physics Department, The University of Michigan, Ann Arbor, MI 48109-1040 (United States)

    2012-01-09

    We propose a strategy to demonstrate the transition from the quantum Zeno effect (QZE) to the anti-Zeno effect (AZE) using a superconducting qubit coupled to a transmission line cavity, by varying the central frequency of the cavity mode. Our results are obtained without the rotating wave approximation (RWA), and the initial state (a dressed state) is easy to prepare. Moreover, we find that in the presence of both qubit's intrinsic bath and the cavity bath, the emergence of the QZE and the AZE behaviors relies not only on the match between the qubit energy-level-spacing and the central frequency of the cavity mode, but also on the coupling strength between the qubit and the cavity mode. -- Highlights: ► We propose how to demonstrate the transition from Zeno effect to anti-Zeno effect. ► Our results are beyond the RWA, and the initial state is easy to prepare. ► The case of both qubit's intrinsic bath and cavity bath coexist is also studied.

  13. HFSS Simulation on Cavity Coupling for Axion Detecting Experiment

    CERN Document Server

    Yeo, Beomki

    2015-01-01

    In the resonant cavity experiment, it is vital maximize signal power at detector with the minimized reflection from source. Return loss is minimized when the impedance of source and cavity are matched to each other and this is called impedance matching. Establishing tunable antenna on source is required to get a impedance matching. Geometry and position of antenna is varied depending on the electromagnetic eld of cavity. This research is dedicated to simulation to nd such a proper design of coupling antenna, especially for axion dark matter detecting experiment. HFSS solver was used for the simulation.

  14. Superconducting cavities for HERA

    International Nuclear Information System (INIS)

    Dwersteg, B.; Ebeling, W.; Moeller, W.D.; Renken, D.; Proch, D.; Sekutowicz, J.; Susta, J.; Tong, D.

    1988-01-01

    Superconducting 500 MHz cavities are developed to demonstrate the feasibility of upgrading the e-beam energy of the HERA storage ring. A prototype module with 2 x 4 cell resonators and appropriate fundamental and higher mode couplers has been designed at DESY and is being built by industrial firms. The design and results of RF and cryogenic measurements are reported in detail. 17 references, 10 figures, 2 tables

  15. Slot-coupled CW standing wave accelerating cavity

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shaoheng; Rimmer, Robert; Wang, Haipeng

    2017-05-16

    A slot-coupled CW standing wave multi-cell accelerating cavity. To achieve high efficiency graded beta acceleration, each cell in the multi-cell cavity may include different cell lengths. Alternatively, to achieve high efficiency with acceleration for particles with beta equal to 1, each cell in the multi-cell cavity may include the same cell design. Coupling between the cells is achieved with a plurality of axially aligned kidney-shaped slots on the wall between cells. The slot-coupling method makes the design very compact. The shape of the cell, including the slots and the cone, are optimized to maximize the power efficiency and minimize the peak power density on the surface. The slots are non-resonant, thereby enabling shorter slots and less power loss.

  16. Temperature distribution induced by electron beam in a closed cavity

    International Nuclear Information System (INIS)

    Molhem, A.G.; Soulayman, S.Sh.

    2004-01-01

    In order to investigate heat transfer phenomena induced by EB in a closed cavity an experimental arrangement, which allows generating and focusing an electron beam in to closed cavity within 1 mm in diameter and measuring temperature all over any perpendicular section to the EB, is used for this purpose. Experimental data show that the radial distribution of current density and temperature is normal with pressure and location dependent parameters. Moreover, there is two distinguishable regions in the EB: one is central while the other surrounds the first one. (orig.)

  17. Plasmonic-cavity model for radiating nano-rod antennas

    DEFF Research Database (Denmark)

    Peng, Liang; Mortensen, N. Asger

    2014-01-01

    In this paper, we propose the analytical solution of nano-rod antennas utilizing a cylindrical harmonics expansion. By treating the metallic nano-rods as plasmonic cavities, we derive closed-form expressions for both the internal and the radiated fields, as well as the resonant condition and the ......In this paper, we propose the analytical solution of nano-rod antennas utilizing a cylindrical harmonics expansion. By treating the metallic nano-rods as plasmonic cavities, we derive closed-form expressions for both the internal and the radiated fields, as well as the resonant condition...... and the radiation efficiency. With our theoretical model, we show that besides the plasmonic resonances, efficient radiation takes advantage of (a) rendering a large value of the rods' radius and (b) a central-fed profile, through which the radiation efficiency can reach up to 70% and even higher in a wide...... frequency band. Our theoretical expressions and conclusions are general and pave the way for engineering and further optimization of optical antenna systems and their radiation patterns....

  18. Cavity-assisted mesoscopic transport of fermions: Coherent and dissipative dynamics

    Science.gov (United States)

    Hagenmüller, David; Schütz, Stefan; Schachenmayer, Johannes; Genes, Claudiu; Pupillo, Guido

    2018-05-01

    We study the interplay between charge transport and light-matter interactions in a confined geometry by considering an open, mesoscopic chain of two-orbital systems resonantly coupled to a single bosonic mode close to its vacuum state. We introduce and benchmark different methods based on self-consistent solutions of nonequilibrium Green's functions and numerical simulations of the quantum master equation, and derive both analytical and numerical results. It is shown that in the dissipative regime where the cavity photon decay rate is the largest parameter, the light-matter coupling is responsible for a steady-state current enhancement scaling with the cooperativity parameter. We further identify different regimes of interest depending on the ratio between the cavity decay rate and the electronic bandwidth. Considering the situation where the lower band has a vanishing bandwidth, we show that for a high-finesse cavity, the properties of the resonant Bloch state in the upper band are transferred to the lower one, giving rise to a delocalized state along the chain. Conversely, in the dissipative regime with low-cavity quality factors, we find that the current enhancement is due to a collective decay of populations from the upper to the lower band.

  19. Temperature control feedback loops for the linac upgrade side coupled cavities at Fermilab

    International Nuclear Information System (INIS)

    Crisp, J.

    1990-01-01

    The linac upgrade project at Fermilab will replace the last 4 drift-tube linac tanks with seven side coupled cavity strings. This will increase the beam energy from 200 to 400 MeV at injection into the Booster accelerator. The main objective of the temperature loop is to control the resonant frequency of the cavity strings. A cavity string will constant of 4 sections connected with bridge couplers driven with a 12 MW klystron at 805 MHz. Each section is a side coupled cavity chain consisting of 16 accelerating cells and 15 side coupling cells. For the linac upgrade, 7 full cavity strings will be used. A separate temperature control system is planned for each of the 28 accelerating sections, the two transition sections, and the debuncher section. The cavity strings will be tuned to resonance for full power beam loaded conditions. A separate frequency loop is planned that will sample the phase difference between a monitor placed in the end cell of each section and the rf drive. The frequency loop will control the set point for the temperature loop which will be able to maintain the resonant frequency through periods within beam or rf power. The frequency loop will need the intelligence required to determine under what conditions the phase error information is valid and the temperature set point should be adjusted. This paper will discuss some of the reason for temperature control, the implementation, and some of the problems encountered. An appendix contains some useful constants and descriptions of some of the sensor and control elements used. 13 figs

  20. The analytical solution of wake-fields in an elliptical pillbox cavity

    International Nuclear Information System (INIS)

    Yang, J.S.; Chen, K.W.

    1991-01-01

    The wake potential of a bunch of relativistic charged particles traversing an elliptical pillbox cavity is derived analytically in the limit of vanishing aperture. It is found that the resonant modes of an elliptical cavity can be expressed in terms of Mathieu functions. Calculation results are presented and compared with numerical ones. (author) 10 refs., 10 figs., 2 tabs