WorldWideScience

Sample records for translationally invariant harmonic

  1. The Tucson-Melbourne Three-Body Force in a Translationally-Invariant Harmonic Oscillator Basis

    Science.gov (United States)

    Marsden, David; Navratil, Petr; Barrett, Bruce

    2000-09-01

    A translationally-invariant three-body basis set has been employed in shell model calculations on ^3H and ^3He including the Tucson-Melbourne form of the real nuclear three-body force. The basis consists of harmonic oscillators in Jacobi coordinates, explicitly avoiding the centre of mass drift problem in the calculations. The derivation of the three-body matrix elements and the results of large basis effective interaction shell model calculations will be presented. J. L. Friar, B. F. Gibson, G. L. Payne and S. A. Coon; Few Body Systems 5, 13 (1988) P. Navratil, G.P. Kamuntavicius and B.R. Barrett; Phys. Rev. C. 61, 044001 (2000)

  2. On the construction of translationally invariant deformed wave functions

    International Nuclear Information System (INIS)

    Guardiola, R.

    1975-01-01

    Translationally invariant nuclear wave functions are constructed from deformed harmonic oscillator shell-model wave functions, with an exact projection of angular momentum quantum numbers. It is shown that the computation of matrix elements with the translationally invariant wave functions is as simple as the standard calculation, and formulae are obtained for (i) the potential energy, (ii) the kinetic energy and rms radius, and (iii) the charge form factor. (Auth.)

  3. Translational invariance and the anisotropy of the cosmic microwave background

    International Nuclear Information System (INIS)

    Carroll, Sean M.; Tseng, C.-Y.; Wise, Mark B.

    2010-01-01

    Primordial quantum fluctuations produced by inflation are conventionally assumed to be statistically homogeneous, a consequence of translational invariance. In this paper we quantify the potentially observable effects of a small violation of translational invariance during inflation, as characterized by the presence of a preferred point, line, or plane. We explore the imprint such a violation would leave on the cosmic microwave background anisotropy, and provide explicit formulas for the expected amplitudes lm a l ' m ' *> of the spherical-harmonic coefficients.

  4. Translational invariance and the anisotropy of the cosmic microwave background

    Science.gov (United States)

    Carroll, Sean M.; Tseng, Chien-Yao; Wise, Mark B.

    2010-04-01

    Primordial quantum fluctuations produced by inflation are conventionally assumed to be statistically homogeneous, a consequence of translational invariance. In this paper we quantify the potentially observable effects of a small violation of translational invariance during inflation, as characterized by the presence of a preferred point, line, or plane. We explore the imprint such a violation would leave on the cosmic microwave background anisotropy, and provide explicit formulas for the expected amplitudes ⟨almal'm'*⟩ of the spherical-harmonic coefficients.

  5. Quantifying Translation-Invariance in Convolutional Neural Networks

    OpenAIRE

    Kauderer-Abrams, Eric

    2017-01-01

    A fundamental problem in object recognition is the development of image representations that are invariant to common transformations such as translation, rotation, and small deformations. There are multiple hypotheses regarding the source of translation invariance in CNNs. One idea is that translation invariance is due to the increasing receptive field size of neurons in successive convolution layers. Another possibility is that invariance is due to the pooling operation. We develop a simple ...

  6. Conformal invariance in harmonic superspace

    International Nuclear Information System (INIS)

    Galperin, A.; Ivanov, E.; Ogievetsky, V.; Sokatchev, E.

    1987-01-01

    In the present paper we show how the N = 2 superconformal group is realised in harmonic superspace and examine conformal invariance of N = 2 off-shell theories. We believe that the example of N = O self-dual Yang-Mills equations can serve as an instructive introduction to the subject of harmonic superspace and this is examined. The rigid N = 2 conformal supersymmetry and its local version, i.e. N = 2 conformal supergravity is also discussed. The paper is a contribution to the book commemorating the sixtieth birthday of E.S. Fradkin. (author)

  7. Translationally invariant and non-translationally invariant empirical effective interactions

    International Nuclear Information System (INIS)

    Golin, M.; Zamick, L.

    1975-01-01

    In this work empirical deficiencies of the core-renormalized realistic effective interactions are examined and simple corrective potentials are sought. The inability of the current realistic interactions to account for the energies of isobaric analog states is noted, likewise they are unable to reproduce the changes in the single-particle energies, as one goes from one closed shell to another. It is noted that the Schiffer interaction gives better results for these gross properties and this is attributed to a combination of several facts. First, to the inclusion of long range terms in the Schiffer potential, then to the presence of relative p-state terms (l=1), in addition to the usual relative s-state terms (l=0). The strange shape of the above interaction is further attributed to the fact that it is translationally invariant whereas the theory of core-polarization yields non-translationally invariant potentials. Consequently, as a correction to the monopole deficiencies of the realistic interactions the term Vsub(mon)=ar 2 (1)r 2 (2)+r 2 (1)+β[r 4 (1)r 2 (2)r 4 (2) ] is proposed. (Auth.)

  8. Cubic Invariant Spherical Surface Harmonics in Conjunction With Diffraction Strain Pole-Figures

    NARCIS (Netherlands)

    Brakman, C.M.

    1986-01-01

    Four kinds of cubic invariant spherical surface harmonics are introduced. It has been shown previously that these harmonics occur in the equations relating measured diffraction (line-shift) elastic strain and macro-stresses generating these strains for the case of textured cubic materials. As a

  9. Attainable conditions and exact invariant for the time-dependent harmonic oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Guasti, Manuel Fernandez [Lab. de Optica Cuantica, Dep. de Fisica, Universidad A. Metropolitana, Unidad Iztapalapa, Mexico DF, Ap. Post. 55-534 (Mexico)

    2006-09-22

    The time-dependent oscillator equation is solved numerically for various trajectories in amplitude and phase variables. The solutions exhibit a finite time-dependent parameter whenever the squared amplitude times the derivative of the phase is invariant. If the invariant relationship does not hold, the time-dependent parameter has divergent singularities. These observations lead to the proposition that the harmonic oscillator equation with finite time-dependent parameter must have amplitude and phase solutions fulfilling the invariant relationship. Since the time-dependent parameter or the potential must be finite for any real oscillator implementation, the invariant must hold for any such physically realizable system.

  10. Attainable conditions and exact invariant for the time-dependent harmonic oscillator

    International Nuclear Information System (INIS)

    Guasti, Manuel Fernandez

    2006-01-01

    The time-dependent oscillator equation is solved numerically for various trajectories in amplitude and phase variables. The solutions exhibit a finite time-dependent parameter whenever the squared amplitude times the derivative of the phase is invariant. If the invariant relationship does not hold, the time-dependent parameter has divergent singularities. These observations lead to the proposition that the harmonic oscillator equation with finite time-dependent parameter must have amplitude and phase solutions fulfilling the invariant relationship. Since the time-dependent parameter or the potential must be finite for any real oscillator implementation, the invariant must hold for any such physically realizable system

  11. Maximal overlap with a fully separable state and translational invariance for multipartite entangled states

    International Nuclear Information System (INIS)

    Cui, H. T.; Yuan Di; Tian, J. L.

    2010-01-01

    The maximal overlap with the fully separable state for the multipartite entangled pure state with translational invariance is studied explicitly by some exact and numerical evaluations, focusing on the one-dimensional qubit system and some representative types of translational invariance. The results show that the translational invariance of the multipartite state could have an intrinsic effect on the determination of the maximal overlap and the nearest fully separable state for multipartite entangled states. Furthermore, a hierarchy of the basic entangled states with translational invariance is found, from which one could readily find the maximal overlap and a related fully separable state for the multipartite state composed of different translational invariance structures.

  12. Single-particle basis and translational invariance in microscopic nuclear calculations

    International Nuclear Information System (INIS)

    Ehfros, V.D.

    1977-01-01

    The approach to the few-body problem is considered which allows to use the simple single-particle basis without violation of the translation invariance. A method is proposed to solve the nuclear reaction problems in the single-particle basis. The method satisfies the Pauli principle and the translation invariance. Calculation of the matrix elements of operators is treated

  13. Nonlocal, yet translation invariant, constraints for rotationally invariant slave bosons

    Science.gov (United States)

    Ayral, Thomas; Kotliar, Gabriel

    The rotationally-invariant slave boson (RISB) method is a lightweight framework allowing to study the low-energy properties of complex multiorbital problems currently out of the reach of more comprehensive, yet more computationally demanding methods such as dynamical mean field theory. In the original formulation of this formalism, the slave-boson constraints can be made nonlocal by enlarging the unit cell and viewing the quantum states enclosed in this new unit cell as molecular levels. In this work, we extend RISB to constraints which are nonlocal while preserving translation invariance. We apply this extension to the Hubbard model.

  14. Some exact solutions to the translation-invariant N-body problem

    International Nuclear Information System (INIS)

    Hall, R.L.

    1978-01-01

    It is shown that Schroedinger's equation for a translation-invariant system consisting of N particles with arbitrary masses interacting via Hooke's law pair potentials with the same coupling constant can be solved exactly; explicit solutions are found for the case N = 3. Exact solutions are also found explicitly for the translation-invariant problem in which a particle with mass m 0 interacts with N identical particles of mass m 1 via Hooke's law pair potential with coupling constant k 0 2 , and the identical particles interact with each other via Hooke's law pair potentials with coupling constant k 1 2 . The latter solution provides a basis problem for an energy lower-bound method for translation-invariant atom-like systems. (author)

  15. Rotation, scale, and translation invariant pattern recognition using feature extraction

    Science.gov (United States)

    Prevost, Donald; Doucet, Michel; Bergeron, Alain; Veilleux, Luc; Chevrette, Paul C.; Gingras, Denis J.

    1997-03-01

    A rotation, scale and translation invariant pattern recognition technique is proposed.It is based on Fourier- Mellin Descriptors (FMD). Each FMD is taken as an independent feature of the object, and a set of those features forms a signature. FMDs are naturally rotation invariant. Translation invariance is achieved through pre- processing. A proper normalization of the FMDs gives the scale invariance property. This approach offers the double advantage of providing invariant signatures of the objects, and a dramatic reduction of the amount of data to process. The compressed invariant feature signature is next presented to a multi-layered perceptron neural network. This final step provides some robustness to the classification of the signatures, enabling good recognition behavior under anamorphically scaled distortion. We also present an original feature extraction technique, adapted to optical calculation of the FMDs. A prototype optical set-up was built, and experimental results are presented.

  16. Translationally invariant self-consistent field theories

    International Nuclear Information System (INIS)

    Shakin, C.M.; Weiss, M.S.

    1977-01-01

    We present a self-consistent field theory which is translationally invariant. The equations obtained go over to the usual Hartree-Fock equations in the limit of large particle number. In addition to deriving the dynamic equations for the self-consistent amplitudes we discuss the calculation of form factors and various other observables

  17. Translationally invariant multipartite Bell inequalities involving only two-body correlators

    International Nuclear Information System (INIS)

    Tura, J; B Sainz, A; Acín, A; Lewenstein, M; Augusiak, R; Vértesi, T

    2014-01-01

    Bell inequalities are natural tools that allow one to certify the presence of nonlocality in quantum systems. The known constructions of multipartite Bell inequalities contain, however, correlation functions involving all observers, making their experimental implementation difficult. The main purpose of this work is to explore the possibility of witnessing nonlocality in multipartite quantum states from the easiest-to-measure quantities, that is, the two-body correlations. In particular, we determine all three- and four-partite Bell inequalities constructed from one- and two-body expectation values that obey translational symmetry, and show that they reveal nonlocality in multipartite states. Also, by providing a particular example of a five-partite Bell inequality, we show that nonlocality can be detected from two-body correlators involving only nearest neighbours. Finally, we demonstrate that any translationally invariant Bell inequality can be maximally violated by a translationally invariant state and the same set of observables at all sites. We provide a numerical algorithm allowing one to seek for maximal violation of a translationally invariant Bell inequality. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘50 years of Bell’s theorem’. (paper)

  18. Selected papers on harmonic analysis, groups, and invariants

    CERN Document Server

    Nomizu, Katsumi

    1997-01-01

    This volume contains papers that originally appeared in Japanese in the journal Sūgaku. Ordinarily the papers would appear in the AMS translation of that journal, but to expedite publication the Society has chosen to publish them as a volume of selected papers. The papers range over a variety of topics, including representation theory, differential geometry, invariant theory, and complex analysis.

  19. Effect translational invariance in low-lying electric dipole excitations in 236U and 238U

    International Nuclear Information System (INIS)

    Ertugral, F.

    2005-01-01

    In this paper the translational invariant QRPA approach suggested by Pyatov [1] for the spherical nuclei has been extended to describe the 1 - states in deformed nuclei. The role of spurious centre-of-motion state on the Pygmy dipole resonance (PDR) has been investigated in the deformed 236 U and 238 U nuclei. It has been shown that the effect of taking into account the translational invariance of the Hamiltonians in the QRPA with separation of zero energy spurious solutions are noticeable in both the low energy density of 1 - states and in the PDR. Present investigation demonstrates the advantage of the translational invariant QRPA over the non translational invariant one. Within the translational invariant model the effect of removing spurious states on the E1 strength distribution is stronger than in none invariant QRPA (∼20%) for the states up to the neutron binding energy. It is found that the spurious state is spread over many levels, the largest admixture being situated in the region of the energy spacing between nuclear shells o w h . The giant resonance states contain, as a rule, very small admixtures of the spurious state

  20. The complexity of translationally invariant low-dimensional spin lattices in 3D

    Science.gov (United States)

    Bausch, Johannes; Piddock, Stephen

    2017-11-01

    In this theoretical paper, we consider spin systems in three spatial dimensions and consider the computational complexity of estimating the ground state energy, known as the local Hamiltonian problem, for translationally invariant Hamiltonians. We prove that the local Hamiltonian problem for 3D lattices with face-centered cubic unit cells and 4-local translationally invariant interactions between spin-3/2 particles and open boundary conditions is QMAEXP-complete, where QMAEXP is the class of problems which can be verified in exponential time on a quantum computer. We go beyond a mere embedding of past hard 1D history state constructions, for which the local spin dimension is enormous: even state-of-the-art constructions have local dimension 42. We avoid such a large local dimension by combining some different techniques in a novel way. For the verifier circuit which we embed into the ground space of the local Hamiltonian, we utilize a recently developed computational model, called a quantum ring machine, which is especially well suited for translationally invariant history state constructions. This is encoded with a new and particularly simple universal gate set, which consists of a single 2-qubit gate applied only to nearest-neighbour qubits. The Hamiltonian construction involves a classical Wang tiling problem as a binary counter which translates one cube side length into a binary description for the encoded verifier input and a carefully engineered history state construction that implements the ring machine on the cubic lattice faces. These novel techniques allow us to significantly lower the local spin dimension, surpassing the best translationally invariant result to date by two orders of magnitude (in the number of degrees of freedom per coupling). This brings our models on par with the best non-translationally invariant construction.

  1. High efficiency transfer of quantum information and multiparticle entanglement generation in translation-invariant quantum chains

    International Nuclear Information System (INIS)

    Plenio, Martin B; Semiao, Fernando L

    2005-01-01

    We demonstrate that a translation-invariant chain of interacting quantum systems can be used for high efficiency transfer of quantum entanglement and the generation of multiparticle entanglement over large distances and between arbitrary sites without the requirement of precise spatial or temporal control. The scheme is largely insensitive to disorder and random coupling strengths in the chain. We discuss harmonic oscillator systems both in the case of arbitrary Gaussian states and in situations when at most one excitation is in the system. The latter case, which we prove to be equivalent to an xy-spin chain, may be used to generate genuine multiparticle entanglement. Such a 'quantum data bus' may prove useful in future solid state architectures for quantum information processing

  2. Sp(2) BRST invariant quantization of strings: The harmonic gauge

    International Nuclear Information System (INIS)

    Latorre, J.I.; Massachusetts Inst. of Tech., Cambridge

    1988-01-01

    We analyze the mixed algebra of local diffeomorphisms and Weyl transformations for bosonic strings. BRST and anti-BRST operators are then constructed keeping a manifest Sp(2) invariance. The harmonic gauge arises as a natural gauge choice. All this work is redone in the presence of a two-dimensional background metric. We manage to write down a simple action, to compute the stress tensor and to work out the critical dimensions. (orig.)

  3. Translational invariance of the Einstein-Cartan action in any dimension

    Science.gov (United States)

    Kiriushcheva, N.; Kuzmin, S. V.

    2010-11-01

    We demonstrate that from the first order formulation of the Einstein- Cartan action it is possible to derive the basic differential identity that leads to translational invariance of the action in the tangent space. The transformations of fields is written explicitly for both the first and second order formulations and the group properties of transformations are studied. This, combined with the preliminary results from the Hamiltonian formulation (Kiriushcheva and Kuzmin in arXiv:0907.1553 [gr-qc]), allows us to conclude that without any modification, the Einstein-Cartan action in any dimension higher than two possesses not only rotational invariance but also a form of translational invariance in the tangent space. We argue that not only a complete Hamiltonian analysis can unambiguously give an answer to the question of what a gauge symmetry is, but also the pure Lagrangian methods allow us to find the same gauge symmetry from the basic differential identities.

  4. A theory of frequency domain invariants: spherical harmonic identities for BRDF/lighting transfer and image consistency.

    Science.gov (United States)

    Mahajan, Dhruv; Ramamoorthi, Ravi; Curless, Brian

    2008-02-01

    This paper develops a theory of frequency domain invariants in computer vision. We derive novel identities using spherical harmonics, which are the angular frequency domain analog to common spatial domain invariants such as reflectance ratios. These invariants are derived from the spherical harmonic convolution framework for reflection from a curved surface. Our identities apply in a number of canonical cases, including single and multiple images of objects under the same and different lighting conditions. One important case we consider is two different glossy objects in two different lighting environments. For this case, we derive a novel identity, independent of the specific lighting configurations or BRDFs, that allows us to directly estimate the fourth image if the other three are available. The identity can also be used as an invariant to detecttampering in the images. While this paper is primarily theoretical, it has the potential to lay the mathematical foundations for two important practical applications. First, we can develop more general algorithms for inverse rendering problems, which can directly relight and change material properties by transferring the BRDF or lighting from another object or illumination. Second, we can check the consistency of an image, to detect tampering or image splicing.

  5. Lack of anomalous diffusion in linear translationally-invariant systems determined by only one initial condition

    International Nuclear Information System (INIS)

    Khorrami, Mohammad; Shariati, Ahmad; Aghamohammadi, Amir; Fatollahi, Amir H.

    2012-01-01

    It is shown that as far as the linear diffusion equation meets both time- and space-translational invariance, the time dependence of a moment of degree α is a polynomial of degree at most equal to α, while all connected moments are at most linear functions of time. As a special case, the variance is an at most linear function of time. -- Highlights: ► The sufficient conditions for having the non-anomalous diffusion are given. ► Conditions are linearity, space-time translation invariance, solution uniqueness. ► Some versions of the fractional derivatives lack the translational invariance. ► It is shown the encoded inhomogeneity in derivatives causes anomalous behavior.

  6. Lack of anomalous diffusion in linear translationally-invariant systems determined by only one initial condition

    Energy Technology Data Exchange (ETDEWEB)

    Khorrami, Mohammad, E-mail: mamwad@mailaps.org [Department of Physics, Alzahra University, Tehran 19938-93973 (Iran, Islamic Republic of); Shariati, Ahmad, E-mail: shariati@mailaps.org [Department of Physics, Alzahra University, Tehran 19938-93973 (Iran, Islamic Republic of); Aghamohammadi, Amir, E-mail: mohamadi@alzahra.ac.ir [Department of Physics, Alzahra University, Tehran 19938-93973 (Iran, Islamic Republic of); Fatollahi, Amir H., E-mail: ahfatol@gmail.com [Department of Physics, Alzahra University, Tehran 19938-93973 (Iran, Islamic Republic of)

    2012-01-16

    It is shown that as far as the linear diffusion equation meets both time- and space-translational invariance, the time dependence of a moment of degree α is a polynomial of degree at most equal to α, while all connected moments are at most linear functions of time. As a special case, the variance is an at most linear function of time. -- Highlights: ► The sufficient conditions for having the non-anomalous diffusion are given. ► Conditions are linearity, space-time translation invariance, solution uniqueness. ► Some versions of the fractional derivatives lack the translational invariance. ► It is shown the encoded inhomogeneity in derivatives causes anomalous behavior.

  7. Spectral and scattering theory for translation invariant models in quantum field theory

    DEFF Research Database (Denmark)

    Rasmussen, Morten Grud

    This thesis is concerned with a large class of massive translation invariant models in quantum field theory, including the Nelson model and the Fröhlich polaron. The models in the class describe a matter particle, e.g. a nucleon or an electron, linearly coupled to a second quantised massive scalar...... by the physically relevant choices. The translation invariance implies that the Hamiltonian may be decomposed into a direct integral over the space of total momentum where the fixed momentum fiber Hamiltonians are given by , where denotes total momentum and is the Segal field operator. The fiber Hamiltonians...

  8. Translation invariance, commutation relations and ultraviolet/infrared mixing

    International Nuclear Information System (INIS)

    Galluccio, Salvatore; Lizzi, Fedele; Vitale, Patrizia

    2009-01-01

    We show that the Ultraviolet/Infrared mixing of noncommutative field theories with the Groenewold-Moyal product, whereby some (but not all) ultraviolet divergences become infrared, is a generic feature of translationally invariant associative products. We find, with an explicit calculation that the phase appearing in the nonplanar diagrams is the one given by the commutator of the coordinates, the semiclassical Poisson structure of the non commutative spacetime. We do this with an explicit calculation for represented generic products.

  9. Translational invariance in bag model

    International Nuclear Information System (INIS)

    Megahed, F.

    1981-10-01

    In this thesis, the effect of restoring the translational invariance to an approximation to the MIT bag model on the calculation of deep inelastic structure functions is investigated. In chapter one, the model and its major problems are reviewed and Dirac's method of quantisation is outlined. This method is used in chapter two to quantise a two-dimensional complex scalar bag and formal expressions for the form factor and the structure functions are obtained. In chapter three, the expression for the structure function away from the Bjorken limit is studied. The corrections to the L 0 - approximation to the structure function is calculated in chapter four and it is shown to be large. Finally, in chapter five, a bag-like model for kinematic corrections to structure functions is introduced and agreement with data between 2 and 6 (GeV/C) 2 is obtained. (author)

  10. Invariance of the Berry phase under unitary transformations: application to the time-dependent generalized harmonic oscillator

    International Nuclear Information System (INIS)

    Kobe, D.H.

    1989-01-01

    The Berry phase is derived in a manifestly gauge-invariant way, without adiabatic or cyclic requirements. It is invariant under unitary transformations, contrary to recent assertions. A time-dependent generalized harmonic oscillator is taken as an example. The energy of the system is not in general the Hamiltonian. An energy, the time derivative of which is the power, is obtained from the equation of motion. When the system is quantized, the Berry phase is zero, and is invariant under unitary transformations. If the energy is chosen incorrectly to be the Hamiltonian, a nonzero Berry phase is obtained. In this case the total phase, the sun of the dynamical and Berry phases, is equal to the correct total phase through first order in perturbation theory. (author)

  11. Noncommutative field theory and violation of translation invariance

    International Nuclear Information System (INIS)

    Bertolami, Orfeu; Guisado, Luis

    2003-01-01

    Noncommutative field theories with commutator of the coordinates of the form [x μ , x ν ] = i Λ μν ω x ω with nilpotent structure constants are studied and shown that a free quantum field theory is not affected. Invariance under translations is broken and the conservation of energy-momentum is violated, obeying a new law which is expressed by a Poincare-invariant equation. The resulting new kinematics is studied and applied to simple examples and to astrophysical puzzles, such as the observed violation of the GZK cutoff. The λΦ 4 quantum field theory is also considered in this context. In particular, self interaction terms violate the usual conservation of energy-momentum and, hence, the radiative correction to the propagator is altered. The correction to first order in λ is calculated. The usual UV divergent terms are still present, but a new type of term also emerges, which is IR divergent, violates momentum conservation and implies a correction to the dispersion relation. (author)

  12. The visual system supports online translation invariance for object identification.

    Science.gov (United States)

    Bowers, Jeffrey S; Vankov, Ivan I; Ludwig, Casimir J H

    2016-04-01

    The ability to recognize the same image projected to different retinal locations is critical for visual object recognition in natural contexts. According to many theories, the translation invariance for objects extends only to trained retinal locations, so that a familiar object projected to a nontrained location should not be identified. In another approach, invariance is achieved "online," such that learning to identify an object in one location immediately affords generalization to other locations. We trained participants to name novel objects at one retinal location using eyetracking technology and then tested their ability to name the same images presented at novel retinal locations. Across three experiments, we found robust generalization. These findings provide a strong constraint for theories of vision.

  13. Exactness of supersymmetric WKB method for translational shape invariant potentials

    International Nuclear Information System (INIS)

    Cheng, K M; Leung, P T; Pang, C S

    2003-01-01

    By examining the generic form of the superpotential of translational shape invariant potentials (TSIPs), we explicitly show the exactness of the lowest order supersymmetric WKB (SWKB) formula for TSIPs. Remarkably, our method applies to both unbroken and broken supersymmetric systems. We also demonstrate the equivalence of one-parameter and multi-parameter TSIPs, thus establishing the exactness of the SWKB formula for all TSIPs

  14. Exactness of supersymmetric WKB method for translational shape invariant potentials

    CERN Document Server

    Cheng, K M; Pang, C S

    2003-01-01

    By examining the generic form of the superpotential of translational shape invariant potentials (TSIPs), we explicitly show the exactness of the lowest order supersymmetric WKB (SWKB) formula for TSIPs. Remarkably, our method applies to both unbroken and broken supersymmetric systems. We also demonstrate the equivalence of one-parameter and multi-parameter TSIPs, thus establishing the exactness of the SWKB formula for all TSIPs.

  15. Translation-invariant global charges in a local scattering theory of massless particles

    International Nuclear Information System (INIS)

    Strube, D.

    1989-01-01

    The present thesis is dedicated to the study for specifically translation-invariant charges in the framework of a Wightman field theory without mass gap. The aim consists thereby in the determination of the effect of the charge operator on asymptotic scattering states of massless particles. In the first section the most important results in the massive case and of the present thesis in the massless case are presented. The object of the second section is the construction of asymptotic scattering states. In the third section the charge operator, which is first only defined on strictly local vectors, is extended to these scattering states, on which it acts additively. Finally an infinitesimal transformation of scalar asymptotic fields is determined. By this for the special case of translation-invariant generators and scalar massless asymptotic fields the same results is present as in the massive case. (orig./HSI) [de

  16. Rotationally invariant clustering of diffusion MRI data using spherical harmonics

    DEFF Research Database (Denmark)

    Liptrot, Matthew George; Lauze, Francois Bernard

    2016-01-01

    simple features that are invariant to the rotation of the highly orientational diffusion data. This provides a way to directly classify voxels whose diffusion characteristics are similar yet whose primary diffusion orientations differ. Subsequent application of machine-learning to the spherical harmonic...... data as a collection of spherical basis functions. We use the derived coefficients as voxelwise feature vectors for classification. Using a simple Gaussian mixture model, we examined the classification performance for a range of sub-classes (3-20). The results were compared against existing...... classification of DWI data can be performed without the need for a model reconstruction step. This avoids the potential confounds and uncertainty that such models may impose, and has the benefit of being computable directly from the DWI volumes. As such, the method could prove useful in subsequent pre...

  17. N=2 supergravity in superspace: the invariant action

    International Nuclear Information System (INIS)

    Gal'perin, A.S.; Sokachev, E.

    1987-01-01

    This paper continues the formulation of harmonic superspace supergravity. We write down the invariant action for the first off-shell version of the theory. The proof of the invariance relies on the existence of a new 'hybrid' basis in harmonic superspace in which semi-chirality combined with analyticity are manifest

  18. Slow dynamics in translation-invariant quantum lattice models

    Science.gov (United States)

    Michailidis, Alexios A.; Žnidarič, Marko; Medvedyeva, Mariya; Abanin, Dmitry A.; Prosen, Tomaž; Papić, Z.

    2018-03-01

    Many-body quantum systems typically display fast dynamics and ballistic spreading of information. Here we address the open problem of how slow the dynamics can be after a generic breaking of integrability by local interactions. We develop a method based on degenerate perturbation theory that reveals slow dynamical regimes and delocalization processes in general translation invariant models, along with accurate estimates of their delocalization time scales. Our results shed light on the fundamental questions of the robustness of quantum integrable systems and the possibility of many-body localization without disorder. As an example, we construct a large class of one-dimensional lattice models where, despite the absence of asymptotic localization, the transient dynamics is exceptionally slow, i.e., the dynamics is indistinguishable from that of many-body localized systems for the system sizes and time scales accessible in experiments and numerical simulations.

  19. Rotationally invariant correlation filtering

    International Nuclear Information System (INIS)

    Schils, G.F.; Sweeney, D.W.

    1985-01-01

    A method is presented for analyzing and designing optical correlation filters that have tailored rotational invariance properties. The concept of a correlation of an image with a rotation of itself is introduced. A unified theory of rotation-invariant filtering is then formulated. The unified approach describes matched filters (with no rotation invariance) and circular-harmonic filters (with full rotation invariance) as special cases. The continuum of intermediate cases is described in terms of a cyclic convolution operation over angle. The angular filtering approach allows an exact choice for the continuous trade-off between loss of the correlation energy (or specificity regarding the image) and the amount of rotational invariance desired

  20. Harmonization in preclinical epilepsy research: A joint AES/ILAE translational initiative.

    Science.gov (United States)

    Galanopoulou, Aristea S; French, Jacqueline A; O'Brien, Terence; Simonato, Michele

    2017-11-01

    Among the priority next steps outlined during the first translational epilepsy research workshop in London, United Kingdom (2012), jointly organized by the American Epilepsy Society (AES) and the International League Against Epilepsy (ILAE), are the harmonization of research practices used in preclinical studies and the development of infrastructure that facilitates multicenter preclinical studies. The AES/ILAE Translational Task Force of the ILAE has been pursuing initiatives that advance these goals. In this supplement, we present the first reports of the working groups of the Task Force that aim to improve practices of performing rodent video-electroencephalography (vEEG) studies in experimental controls, generate systematic reviews of preclinical research data, and develop preclinical common data elements (CDEs) for epilepsy research in animals. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.

  1. Conformal invariance in harmonic superspace

    International Nuclear Information System (INIS)

    Galperin, A.; Ivanov, E.; Ogievetsky, V.; Sokatchev, E.

    1985-01-01

    N=2 conformal supersymmetry is realized in harmonic superspace, its peculiarities are analyzed. The coordinate group and analytical prepotentials for N=2 conformal supergravity are found. A new version of the N=2 Einstein supergravity with infinite number of auxiliary fields is suggested. A hypermultiplet without central charges and constraints is used as a compensator

  2. Hybrid intelligent methodology to design translation invariant morphological operators for Brazilian stock market prediction.

    Science.gov (United States)

    Araújo, Ricardo de A

    2010-12-01

    This paper presents a hybrid intelligent methodology to design increasing translation invariant morphological operators applied to Brazilian stock market prediction (overcoming the random walk dilemma). The proposed Translation Invariant Morphological Robust Automatic phase-Adjustment (TIMRAA) method consists of a hybrid intelligent model composed of a Modular Morphological Neural Network (MMNN) with a Quantum-Inspired Evolutionary Algorithm (QIEA), which searches for the best time lags to reconstruct the phase space of the time series generator phenomenon and determines the initial (sub-optimal) parameters of the MMNN. Each individual of the QIEA population is further trained by the Back Propagation (BP) algorithm to improve the MMNN parameters supplied by the QIEA. Also, for each prediction model generated, it uses a behavioral statistical test and a phase fix procedure to adjust time phase distortions observed in stock market time series. Furthermore, an experimental analysis is conducted with the proposed method through four Brazilian stock market time series, and the achieved results are discussed and compared to results found with random walk models and the previously introduced Time-delay Added Evolutionary Forecasting (TAEF) and Morphological-Rank-Linear Time-lag Added Evolutionary Forecasting (MRLTAEF) methods. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Exact diagonalization of cubic lattice models in commensurate Abelian magnetic fluxes and translational invariant non-Abelian potentials

    DEFF Research Database (Denmark)

    Burrello, M.; Fulga, Ion Cosma; Lepori, L.

    2017-01-01

    of a translational invariant non-Abelian coupling for multi-component spinors does not affect the dimension of the minimal Hamiltonian blocks, nor the dimension of the magnetic Brillouin zone. General formulas are presented for the U(2) case and explicit examples are investigated involving π and 2π/3 magnetic fluxes......We present a general analytical formalism to determine the energy spectrum of a quantum particle in a cubic lattice subject to translationally invariant commensurate magnetic fluxes and in the presence of a general spaceindependent non-Abelian gauge potential. We first review and analyze the case...... of purely Abelian potentials, showing also that the so-called Hasegawa gauge yields a decomposition of the Hamiltonian into sub-matrices having minimal dimension. Explicit expressions for such matrices are derived, also for general anisotropic fluxes. Later on, we show that the introduction...

  4. Construction of time-dependent dynamical invariants: A new approach

    International Nuclear Information System (INIS)

    Bertin, M. C.; Pimentel, B. M.; Ramirez, J. A.

    2012-01-01

    We propose a new way to obtain polynomial dynamical invariants of the classical and quantum time-dependent harmonic oscillator from the equations of motion. We also establish relations between linear and quadratic invariants, and discuss how the quadratic invariant can be related to the Ermakov invariant.

  5. Dynamical constraints and adiabatic invariants in chemical reactions.

    Science.gov (United States)

    Lorquet, J C

    2007-08-23

    For long-range electrostatic potentials and, more generally, when the topography of the potential energy surface is locally simple, the reaction path coordinate is adiabatically separable from the perpendicular degrees of freedom. For the ion-permanent dipole and ion-quadrupole interactions, the Poisson bracket of the adiabatic invariant decreases with the interfragment distance more rapidly than the electrostatic potential. The smaller the translational momentum, the moment of inertia of the neutral fragment, and the dipole or quadrupole moments are, the more reliable the adiabatic approximation is, as expected from the usual argumentation. Closed-form expressions for an effective one-dimensional potential in an adiabatic Hamiltonian are given. Connection with a model where the decoupling is exact is obtained in the limit of an infinitely heavy dipole. The dynamics is also constrained by adiabatic invariance for a harmonic valley about a curved reaction path, as shown by the reaction path Hamiltonian method. The maximum entropy method reveals that, as a result of the invariance properties of the entropy, constraints whose validity has been demonstrated locally only subsist in all parts of phase space. However, their form varies continuously, and they are not necessarily expressed in simple terms as they are in the asymptotic region. Therefore, although the influence of adiabatic invariance has been demonstrated at asymptotically large values of the reaction coordinate only, it persists in more interesting ranges.

  6. Harmonic statistics

    International Nuclear Information System (INIS)

    Eliazar, Iddo

    2017-01-01

    The exponential, the normal, and the Poisson statistical laws are of major importance due to their universality. Harmonic statistics are as universal as the three aforementioned laws, but yet they fall short in their ‘public relations’ for the following reason: the full scope of harmonic statistics cannot be described in terms of a statistical law. In this paper we describe harmonic statistics, in their full scope, via an object termed harmonic Poisson process: a Poisson process, over the positive half-line, with a harmonic intensity. The paper reviews the harmonic Poisson process, investigates its properties, and presents the connections of this object to an assortment of topics: uniform statistics, scale invariance, random multiplicative perturbations, Pareto and inverse-Pareto statistics, exponential growth and exponential decay, power-law renormalization, convergence and domains of attraction, the Langevin equation, diffusions, Benford’s law, and 1/f noise. - Highlights: • Harmonic statistics are described and reviewed in detail. • Connections to various statistical laws are established. • Connections to perturbation, renormalization and dynamics are established.

  7. Harmonic statistics

    Energy Technology Data Exchange (ETDEWEB)

    Eliazar, Iddo, E-mail: eliazar@post.tau.ac.il

    2017-05-15

    The exponential, the normal, and the Poisson statistical laws are of major importance due to their universality. Harmonic statistics are as universal as the three aforementioned laws, but yet they fall short in their ‘public relations’ for the following reason: the full scope of harmonic statistics cannot be described in terms of a statistical law. In this paper we describe harmonic statistics, in their full scope, via an object termed harmonic Poisson process: a Poisson process, over the positive half-line, with a harmonic intensity. The paper reviews the harmonic Poisson process, investigates its properties, and presents the connections of this object to an assortment of topics: uniform statistics, scale invariance, random multiplicative perturbations, Pareto and inverse-Pareto statistics, exponential growth and exponential decay, power-law renormalization, convergence and domains of attraction, the Langevin equation, diffusions, Benford’s law, and 1/f noise. - Highlights: • Harmonic statistics are described and reviewed in detail. • Connections to various statistical laws are established. • Connections to perturbation, renormalization and dynamics are established.

  8. Translation invariant time-dependent solutions to massive gravity II

    Science.gov (United States)

    Mourad, J.; Steer, D. A.

    2014-06-01

    This paper is a sequel to JCAP 12 (2013) 004 and is also devoted to translation-invariant solutions of ghost-free massive gravity in its moving frame formulation. Here we consider a mass term which is linear in the vielbein (corresponding to a β3 term in the 4D metric formulation) in addition to the cosmological constant. We determine explicitly the constraints, and from the initial value formulation show that the time-dependent solutions can have singularities at a finite time. Although the constraints give, as in the β1 case, the correct number of degrees of freedom for a massive spin two field, we show that the lapse function can change sign at a finite time causing a singular time evolution. This is very different to the β1 case where time evolution is always well defined. We conclude that the β3 mass term can be pathological and should be treated with care.

  9. On logarithmic extensions of local scale-invariance

    International Nuclear Information System (INIS)

    Henkel, Malte

    2013-01-01

    Ageing phenomena far from equilibrium naturally present dynamical scaling and in many situations this may be generalised to local scale-invariance. Generically, the absence of time-translation-invariance implies that each scaling operator is characterised by two independent scaling dimensions. Building on analogies with logarithmic conformal invariance and logarithmic Schrödinger-invariance, this work proposes a logarithmic extension of local scale-invariance, without time-translation-invariance. Carrying this out requires in general to replace both scaling dimensions of each scaling operator by Jordan cells. Co-variant two-point functions are derived for the most simple case of a two-dimensional logarithmic extension. Their form is compared to simulational data for autoresponse functions in several universality classes of non-equilibrium ageing phenomena

  10. Harmonic Interaction Analysis in Grid-connected Converter using Harmonic State Space (HSS) Modeling

    DEFF Research Database (Denmark)

    Kwon, Jun Bum; Wang, Xiongfei; Blaabjerg, Frede

    2017-01-01

    research about the harmonic interaction. However, it is found that the Linear Time Invariant (LTI) based model analysis makes it difficult to analyze these phenomena because of the time-varying properties of the power electronic based systems. This paper investigates grid-connected converter by using......An increasing number of power electronic based Distributed Generation (DG) systems and loads generate not only characteristic harmonics but also unexpected harmonics. Several methods like impedance based analysis, which are derived from the conventional average model, are introduced to perform...

  11. Translation, Adaptation and Invariance Testing of the Teaching Perspectives Inventory: Comparing Faculty of Malaysia and the United States

    Science.gov (United States)

    Misieng, Jecky

    2013-01-01

    As a result of growing attention in cross-cultural research, existing measurement instruments developed in one language are being translated and adapted for use in other languages and cultural contexts. Producing invariant measurement instruments that assess educational and psychological constructs provide a way of testing the cross-cultural…

  12. Ab initio translationally invariant nonlocal one-body densities from no-core shell-model theory

    Science.gov (United States)

    Burrows, M.; Elster, Ch.; Popa, G.; Launey, K. D.; Nogga, A.; Maris, P.

    2018-02-01

    Background: It is well known that effective nuclear interactions are in general nonlocal. Thus if nuclear densities obtained from ab initio no-core shell-model (NCSM) calculations are to be used in reaction calculations, translationally invariant nonlocal densities must be available. Purpose: Though it is standard to extract translationally invariant one-body local densities from NCSM calculations to calculate local nuclear observables like radii and transition amplitudes, the corresponding nonlocal one-body densities have not been considered so far. A major reason for this is that the procedure for removing the center-of-mass component from NCSM wave functions up to now has only been developed for local densities. Results: A formulation for removing center-of-mass contributions from nonlocal one-body densities obtained from NCSM and symmetry-adapted NCSM (SA-NCSM) calculations is derived, and applied to the ground state densities of 4He, 6Li, 12C, and 16O. The nonlocality is studied as a function of angular momentum components in momentum as well as coordinate space. Conclusions: We find that the nonlocality for the ground state densities of the nuclei under consideration increases as a function of the angular momentum. The relative magnitude of those contributions decreases with increasing angular momentum. In general, the nonlocal structure of the one-body density matrices we studied is given by the shell structure of the nucleus, and cannot be described with simple functional forms.

  13. Rotation Invariance Neural Network

    OpenAIRE

    Li, Shiyuan

    2017-01-01

    Rotation invariance and translation invariance have great values in image recognition tasks. In this paper, we bring a new architecture in convolutional neural network (CNN) named cyclic convolutional layer to achieve rotation invariance in 2-D symbol recognition. We can also get the position and orientation of the 2-D symbol by the network to achieve detection purpose for multiple non-overlap target. Last but not least, this architecture can achieve one-shot learning in some cases using thos...

  14. Harmonic Interaction Analysis in Grid Connected Converter using Harmonic State Space (HSS) Modeling

    DEFF Research Database (Denmark)

    Kwon, Jun Bum; Wang, Xiongfei; Bak, Claus Leth

    2015-01-01

    -model, are introduced to analyze these problems. However, it is found that Linear Time Invariant (LTI) base model analysis makes it difficult to analyze these phenomenon because of time varying system operation trajectories, varying output impedance seen by grid connected systems and neglected switching component......An increasing number of power electronics based Distributed Generation (DG) systems and loads generate coupled harmonic as well as non-characteristic harmonic with each other. Several methods like impedance based analysis, which is derived from conventional small signal- and average...... during the modeling process. This paper investigates grid connected converter by means of Harmonic State Space (HSS) small signal model, which is modeled from Linear Time varying Periodically (LTP) system. Further, a grid connected converter harmonic matrix is investigated to analyze the harmonic...

  15. Identification of invariant measures of interacting systems

    International Nuclear Information System (INIS)

    Chen Jinwen

    2004-01-01

    In this paper we provide an approach for identifying certain mixture representations of some invariant measures of interacting stochastic systems. This is related to the problem of ergodicity of certain extremal invariant measures that are translation invariant. Corresponding to these, results concerning the existence of invariant measures and certain weak convergence of the systems are also provided

  16. Microscopic optical potentials derived from ab initio translationally invariant nonlocal one-body densities

    Science.gov (United States)

    Gennari, Michael; Vorabbi, Matteo; Calci, Angelo; Navrátil, Petr

    2018-03-01

    Background: The nuclear optical potential is a successful tool for the study of nucleon-nucleus elastic scattering and its use has been further extended to inelastic scattering and other nuclear reactions. The nuclear density of the target nucleus is a fundamental ingredient in the construction of the optical potential and thus plays an important role in the description of the scattering process. Purpose: In this paper we derive a microscopic optical potential for intermediate energies using ab initio translationally invariant nonlocal one-body nuclear densities computed within the no-core shell model (NCSM) approach utilizing two- and three-nucleon chiral interactions as the only input. Methods: The optical potential is derived at first order within the spectator expansion of the nonrelativistic multiple scattering theory by adopting the impulse approximation. Nonlocal nuclear densities are derived from the NCSM one-body densities calculated in the second quantization. The translational invariance is generated by exactly removing the spurious center-of-mass (COM) component from the NCSM eigenstates. Results: The ground-state local and nonlocal densities of He 4 ,6 ,8 , 12C, and 16O are calculated and applied to optical potential construction. The differential cross sections and the analyzing powers for the elastic proton scattering off these nuclei are then calculated for different values of the incident proton energy. The impact of nonlocality and the COM removal is discussed. Conclusions: The use of nonlocal densities has a substantial impact on the differential cross sections and improves agreement with experiment in comparison to results generated with the local densities especially for light nuclei. For the halo nuclei 6He and 8He, the results for the differential cross section are in a reasonable agreement with the data although a more sophisticated model for the optical potential is required to properly describe the analyzing powers.

  17. Performance limitations of translationally symmetric nonimaging devices

    Science.gov (United States)

    Bortz, John C.; Shatz, Narkis E.; Winston, Roland

    2001-11-01

    The component of the optical direction vector along the symmetry axis is conserved for all rays propagated through a translationally symmetric optical device. This quality, referred to herein as the translational skew invariant, is analogous to the conventional skew invariant, which is conserved in rotationally symmetric optical systems. The invariance of both of these quantities is a consequence of Noether's theorem. We show how performance limits for translationally symmetric nonimaging optical devices can be derived from the distributions of the translational skew invariant for the optical source and for the target to which flux is to be transferred. Examples of computed performance limits are provided. In addition, we show that a numerically optimized non-tracking solar concentrator utilizing symmetry-breaking surface microstructure can overcome the performance limits associated with translational symmetry. The optimized design provides a 47.4% increase in efficiency and concentration relative to an ideal translationally symmetric concentrator.

  18. Time reversal invariance for a nonlinear scatterer exhibiting contact acoustic nonlinearity

    Science.gov (United States)

    Blanloeuil, Philippe; Rose, L. R. Francis; Veidt, Martin; Wang, Chun H.

    2018-03-01

    The time reversal invariance of an ultrasonic plane wave interacting with a contact interface characterized by a unilateral contact law is investigated analytically and numerically. It is shown analytically that despite the contact nonlinearity, the re-emission of a time reversed version of the reflected and transmitted waves can perfectly recover the original pulse shape, thereby demonstrating time reversal invariance for this type of contact acoustic nonlinearity. With the aid of finite element modelling, the time-reversal analysis is extended to finite-size nonlinear scatterers such as closed cracks. The results show that time reversal invariance holds provided that all the additional frequencies generated during the forward propagation, such as higher harmonics, sub-harmonics and zero-frequency component, are fully included in the retro-propagation. If the scattered waves are frequency filtered during receiving or transmitting, such as through the use of narrowband transducers, the recombination of the time-reversed waves will not exactly recover the original incident wave. This discrepancy due to incomplete time invariance can be exploited as a new method for characterizing damage by defining damage indices that quantify the departure from time reversal invariance. The sensitivity of these damage indices for various crack lengths and contact stress levels is investigated computationally, indicating some advantages of this narrowband approach relative to the more conventional measurement of higher harmonic amplitude, which requires broadband transducers.

  19. Quantization of a 3D Nonstationary Harmonic plus an Inverse Harmonic Potential System

    Directory of Open Access Journals (Sweden)

    Salim Medjber

    2016-01-01

    Full Text Available The Schrödinger solutions for a three-dimensional central potential system whose Hamiltonian is composed of a time-dependent harmonic plus an inverse harmonic potential are investigated. Because of the time-dependence of parameters, we cannot solve the Schrödinger solutions relying only on the conventional method of separation of variables. To overcome this difficulty, special mathematical methods, which are the invariant operator method, the unitary transformation method, and the Nikiforov-Uvarov method, are used when we derive solutions of the Schrödinger equation for the system. In particular, the Nikiforov-Uvarov method with an appropriate coordinate transformation enabled us to reduce the eigenvalue equation of the invariant operator, which is a second-order differential equation, to a hypergeometric-type equation that is convenient to treat. Through this procedure, we derived exact Schrödinger solutions (wave functions of the system. It is confirmed that the wave functions are represented in terms of time-dependent radial functions, spherical harmonics, and general time-varying global phases. Such wave functions are useful for studying various quantum properties of the system. As an example, the uncertainty relations for position and momentum are derived by taking advantage of the wave functions.

  20. An examination of the factor structure and sex invariance of a French translation of the Body Appreciation Scale-2 in university students.

    Science.gov (United States)

    Kertechian, Sevag; Swami, Viren

    2017-06-01

    The Body Appreciation Scale-2 (BAS-2) is a measure of positive body image that has been found that have a one-dimensional factor structure in a number of different cultural groups. Here, we examined the factor structure and sex-based measurement invariance of a French translation of the BAS-2. A total of 652 university students (age M=21.33, SD=3.18) completed a newly-translated French version of the BAS-2. Exploratory factor analyses with a randomly selected split-half subsample revealed that the BAS-2 had a one-dimensional factor structure in both sexes. Confirmatory factor analyses with a second split-half subsample indicated that the one-dimensional factor structure had adequate fit following modifications and was invariant across sex. French BAS-2 scores had adequate internal consistency and men had significantly higher body appreciation than women (ds=.16-.23). These results provide preliminary support for the factorial validity of the French BAS-2. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. A High-Order, Linear Time-Invariant Model for Application to Higher Harmonic Control and Flight Control System Interaction

    Science.gov (United States)

    Cheng, Rendy P.; Tischler, Mark B.; Celi, Roberto

    2006-01-01

    This research describes a new methodology for the extraction of a high-order, linear time invariant model, which allows the periodicity of the helicopter response to be accurately captured. This model provides the needed level of dynamic fidelity to permit an analysis and optimization of the AFCS and HHC algorithms. The key results of this study indicate that the closed-loop HHC system has little influence on the AFCS or on the vehicle handling qualities, which indicates that the AFCS does not need modification to work with the HHC system. However, the results show that the vibration response to maneuvers must be considered during the HHC design process, and this leads to much higher required HHC loop crossover frequencies. This research also demonstrates that the transient vibration responses during maneuvers can be reduced by optimizing the closed-loop higher harmonic control algorithm using conventional control system analyses.

  2. Target Identification Using Harmonic Wavelet Based ISAR Imaging

    Science.gov (United States)

    Shreyamsha Kumar, B. K.; Prabhakar, B.; Suryanarayana, K.; Thilagavathi, V.; Rajagopal, R.

    2006-12-01

    A new approach has been proposed to reduce the computations involved in the ISAR imaging, which uses harmonic wavelet-(HW) based time-frequency representation (TFR). Since the HW-based TFR falls into a category of nonparametric time-frequency (T-F) analysis tool, it is computationally efficient compared to parametric T-F analysis tools such as adaptive joint time-frequency transform (AJTFT), adaptive wavelet transform (AWT), and evolutionary AWT (EAWT). Further, the performance of the proposed method of ISAR imaging is compared with the ISAR imaging by other nonparametric T-F analysis tools such as short-time Fourier transform (STFT) and Choi-Williams distribution (CWD). In the ISAR imaging, the use of HW-based TFR provides similar/better results with significant (92%) computational advantage compared to that obtained by CWD. The ISAR images thus obtained are identified using a neural network-based classification scheme with feature set invariant to translation, rotation, and scaling.

  3. Real-time trajectory analysis using stacked invariance methods

    OpenAIRE

    Kitts, B.

    1998-01-01

    Invariance methods are used widely in pattern recognition as a preprocessing stage before algorithms such as neural networks are applied to the problem. A pattern recognition system has to be able to recognise objects invariant to scale, translation, and rotation. Presumably the human eye implements some of these preprocessing transforms in making sense of incoming stimuli, for example, placing signals onto a log scale. This paper surveys many of the commonly used invariance methods, and asse...

  4. A model for size- and rotation-invariant pattern processing in the visual system.

    Science.gov (United States)

    Reitboeck, H J; Altmann, J

    1984-01-01

    The mapping of retinal space onto the striate cortex of some mammals can be approximated by a log-polar function. It has been proposed that this mapping is of functional importance for scale- and rotation-invariant pattern recognition in the visual system. An exact log-polar transform converts centered scaling and rotation into translations. A subsequent translation-invariant transform, such as the absolute value of the Fourier transform, thus generates overall size- and rotation-invariance. In our model, the translation-invariance is realized via the R-transform. This transform can be executed by simple neural networks, and it does not require the complex computations of the Fourier transform, used in Mellin-transform size-invariance models. The logarithmic space distortion and differentiation in the first processing stage of the model is realized via "Mexican hat" filters whose diameter increases linearly with eccentricity, similar to the characteristics of the receptive fields of retinal ganglion cells. Except for some special cases, the model can explain object recognition independent of size, orientation and position. Some general problems of Mellin-type size-invariance models-that also apply to our model-are discussed.

  5. Efficient and Invariant Convolutional Neural Networks for Dense Prediction

    OpenAIRE

    Gao, Hongyang; Ji, Shuiwang

    2017-01-01

    Convolutional neural networks have shown great success on feature extraction from raw input data such as images. Although convolutional neural networks are invariant to translations on the inputs, they are not invariant to other transformations, including rotation and flip. Recent attempts have been made to incorporate more invariance in image recognition applications, but they are not applicable to dense prediction tasks, such as image segmentation. In this paper, we propose a set of methods...

  6. The N=2 supersymmetric Ward-identities on harmonic superspace

    International Nuclear Information System (INIS)

    Lhallabi, T.

    1986-09-01

    The quantization of N=2 supersymmetric Yang-Mills theory coupled to matter hypermultiplet has been done in the harmonic superspace, by requiring BRS and anti-BRS invariance. Also the corresponding Ward-identities have been derived. (author)

  7. Sigma models in (4,4) harmonic superspace

    International Nuclear Information System (INIS)

    Ivanov, E.; Joint Inst. for Nuclear Research, Dubna; Sutulin, A.

    1994-04-01

    We define basics of (4,4) 2D harmonic superspace with two independent sets of SU(2) harmonic variables and apply it to construct new superfield actions of (4,4) supersymmetric two-dimensional sigma models with torsion and mutually commuting left and right complex structures, as well as of their massive deformations. We show that the generic off-shell sigma model action is the general action of constrained analytic superfields q (1,1) representing twisted N=4 multiplets in (4,4) harmonic superspace. The massive term of q (1,1) is shown to be unique; it generates a scalar potential the form of which is determined by the metric on the target bosonic manifold. We discuss in detail (4,4) supersymmetric group manifold SU(2)xU(1) WZNW sigma model and its Liouville deformation. A deep analogy of the relevant superconformally invariant analytic superfield action to that of the improved tensor N=2 4D multiplet is found. We define (4,4) duality transformation and find new off-shell dual representations of the previously constructed actions via unconstrained analytic (4,4) superfields. The main peculiarities of the (4,4) duality transformation are: (i) It preserves manifest (4,4) supersymmetry; (ii) dual actions reveal a gauge invariance needed for the onshell equivalence to the original description; (iii) in the actions dual to the massive ones 2D supersymmetry is modified off shell by SU(2) tensor central charges. The dual representation suggests some hints of how to describe (4,4) models with non-commuting complex structures in the harmonic superspace. (orig.)

  8. Complex dynamical invariants for two-dimensional complex potentials

    Indian Academy of Sciences (India)

    Abstract. Complex dynamical invariants are searched out for two-dimensional complex poten- tials using rationalization method within the framework of an extended complex phase space characterized by x = x1 + ip3, y = x2 + ip4, px = p1 + ix3, py = p2 + ix4. It is found that the cubic oscillator and shifted harmonic oscillator ...

  9. Demystifying the constancy of the Ermakov-Lewis invariant for a time-dependent oscillator

    Science.gov (United States)

    Padmanabhan, T.

    2018-03-01

    It is well known that the time-dependent harmonic oscillator (TDHO) possesses a conserved quantity, usually called Ermakov-Lewis invariant. I provide a simple physical interpretation of this invariant as well as a whole family of related invariants. This interpretation does not seem to have been noticed in the literature before. The procedure also allows one to tackle some key conceptual issues which arise in the study of quantum fields in the external, time-dependent backgrounds like in the case of particle production in an expanding universe and Schwinger effect.

  10. The Modeling and Harmonic Coupling Analysis of Multiple-Parallel Connected Inverter Using Harmonic State Space (HSS)

    DEFF Research Database (Denmark)

    Kwon, Jun Bum; Wang, Xiongfei; Bak, Claus Leth

    2015-01-01

    As the number of power electronics based systems are increasing, studies about overall stability and harmonic problems are rising. In order to analyze harmonics and stability, most research is using an analysis method, which is based on the Linear Time Invariant (LTI) approach. However, this can...... be difficult in terms of complex multi-parallel connected systems, especially in the case of renewable energy, where possibilities for intermittent operation due to the weather conditions exist. Hence, it can bring many different operating points to the power converter, and the impedance characteristics can...... can demonstrate other phenomenon, which can not be found in the conventional LTI approach. The theoretical modeling and analysis are verified by means of simulations and experiments....

  11. Analysis on h-harmonics and Dunkl transforms

    CERN Document Server

    2015-01-01

    As a unique case in this Advanced Courses book series, the authors have jointly written this introduction to h-harmonics and Dunkl transforms. These are extensions of the ordinary spherical harmonics and Fourier transforms, in which the usual Lebesgue measure is replaced by a reflection-invariant weighted measure. The theory, originally introduced by C. Dunkl, has been expanded on by many authors over the last 20 years. These notes provide an overview of what has been developed so far. The first chapter gives a brief recount of the basics of ordinary spherical harmonics and the Fourier transform. The Dunkl operators, the intertwining operators between partial derivatives and the Dunkl operators are introduced and discussed in the second chapter. The next three chapters are devoted to analysis on the sphere, and the final two chapters to the Dunkl transform. The authors’ focus is on the analysis side of both h-harmonics and Dunkl transforms. The need for background knowledge on reflection groups is kept to a...

  12. View invariant gesture recognition using the CSEMSwissRanger SR-2 camera

    DEFF Research Database (Denmark)

    Holte, Michael Boelstoft; Moeslund, Thomas B.; Fihl, Preben

    2008-01-01

    by a hysteresis bandpass filter. Gestures are represented by concatenating harmonic shape contexts over time. This representation allows for a view invariant matching of the gestures. The system is trained on gestures from one viewpoint and evaluated on gestures from other viewpoints. The results show...

  13. Explicit construction of quasiconserved local operator of translationally invariant nonintegrable quantum spin chain in prethermalization

    Science.gov (United States)

    Lin, Cheng-Ju; Motrunich, Olexei I.

    2017-12-01

    We numerically construct translationally invariant quasiconserved operators with maximum range M , which best commute with a nonintegrable quantum spin chain Hamiltonian, up to M =12 . In the large coupling limit, we find that the residual norm of the commutator of the quasiconserved operator decays exponentially with its maximum range M at small M , and turns into a slower decay at larger M . This quasiconserved operator can be understood as a dressed total "spin-z " operator, by comparing with the perturbative Schrieffer-Wolff construction developed to high order reaching essentially the same maximum range. We also examine the operator inverse participation ratio of the operator, which suggests its localization in the operator Hilbert space. The operator also shows an almost exponentially decaying profile at short distance, while the long-distance behavior is not clear due to limitations of our numerical calculation. Further dynamical simulation confirms that the prethermalization-equilibrated values are described by a generalized Gibbs ensemble that includes such quasiconserved operator.

  14. On the development of non-commutative translation-invariant quantum gauge field models

    International Nuclear Information System (INIS)

    Sedmik, R.I.P.

    2009-01-01

    Aiming to understand the most fundamental principles of nature one has to approach the highest possible energy scales corresponding to the smallest possible distances - the Planck scale. Historically, three different theoretical fields have been developed to treat the problems appearing in this endeavor: string theory, quantum gravity, and non-commutative (NC) quantum field theory (QFT). The latter was originally motivated by the conjecture that the introduction of uncertainty relations between space-time coordinates introduces a natural energy cutoff, which should render the resulting computations well defined and finite. Despite failing to fulfill this expectation, NC physics is a challenging field of research, which has proved to be a fruitful source for new ideas and methods. Mathematically, non-commutativity is implemented by the so called Weyl quantization, giving rise to a modified product - the Groenewold-Moyal product. It realizes an operator ordering, and allows to work within the well established framework of QFT on non-commutative spaces. The main obstacle of NCQFT is the appearance of singularities being shifted from high to low energies. This effect, being referred to as 'uV/IR mixing', is a direct consequence of the deformation of the product, and inhibits or complicates the direct application of well approved renormalization schemes. In order to remedy this problem, several approaches have been worked out during the past decade which, unfortunately, all have shortcomings such as the breaking of translation invariance or an inappropriate alternation of degrees of freedom. Thence, the resulting theories are either being rendered 'unphysical', or considered a priori to be toy models. Nonetheless, these efforts have helped to analyze the mechanisms leading to uV/IR mixing and finally led to the insight that renormalizability can only be achieved by respecting the inherent connection of long and short distances (scales) of NCQFT in the construction of

  15. Coherent states of general time-dependent harmonic oscillator

    Indian Academy of Sciences (India)

    Abstract. By introducing an invariant operator, we obtain exact wave functions for a general time-dependent quadratic harmonic oscillator. The coherent states, both in x- and p-spaces, are calculated. We confirm that the uncertainty product in coherent state is always larger than Η/2 and is equal to the minimum of the ...

  16. Wavelet-based moment invariants for pattern recognition

    Science.gov (United States)

    Chen, Guangyi; Xie, Wenfang

    2011-07-01

    Moment invariants have received a lot of attention as features for identification and inspection of two-dimensional shapes. In this paper, two sets of novel moments are proposed by using the auto-correlation of wavelet functions and the dual-tree complex wavelet functions. It is well known that the wavelet transform lacks the property of shift invariance. A little shift in the input signal will cause very different output wavelet coefficients. The autocorrelation of wavelet functions and the dual-tree complex wavelet functions, on the other hand, are shift-invariant, which is very important in pattern recognition. Rotation invariance is the major concern in this paper, while translation invariance and scale invariance can be achieved by standard normalization techniques. The Gaussian white noise is added to the noise-free images and the noise levels vary with different signal-to-noise ratios. Experimental results conducted in this paper show that the proposed wavelet-based moments outperform Zernike's moments and the Fourier-wavelet descriptor for pattern recognition under different rotation angles and different noise levels. It can be seen that the proposed wavelet-based moments can do an excellent job even when the noise levels are very high.

  17. Thermal state of the general time-dependent harmonic oscillator

    Indian Academy of Sciences (India)

    Taking advantage of dynamical invariant operator, we derived quantum mechanical solution of general time-dependent harmonic oscillator. The uncertainty relation of the system is always larger than ħ=2 not only in number but also in the thermal state as expected. We used the diagonal elements of density operator ...

  18. Quasi-greedy systems of integer translates

    DEFF Research Database (Denmark)

    Nielsen, Morten; Sikic, Hrvoje

    We consider quasi-greedy systems of integer translates in a finitely generated shift invariant subspace of L2(Rd), that is systems for which the thresholding approximation procedure is well behaved. We prove that every quasi-greedy system of integer translates is also a Riesz basis for its closed...

  19. Quasi-greedy systems of integer translates

    DEFF Research Database (Denmark)

    Nielsen, Morten; Sikic, Hrvoje

    2008-01-01

    We consider quasi-greedy systems of integer translates in a finitely generated shift-invariant subspace of L2(Rd), that is systems for which the thresholding approximation procedure is well behaved. We prove that every quasi-greedy system of integer translates is also a Riesz basis for its closed...

  20. Supersymmetry and the constants of motion of the two-dimensional isotropic harmonic oscillator

    International Nuclear Information System (INIS)

    Torres del Castillo, G.F.; Tepper G, T.

    2002-01-01

    It is shown that the constants of motion of the two-dimensional isotropic harmonic oscillator not related to the rotational invariance of the Hamiltonian can be derived using the ideas of supersymmetric quantum mechanics. (Author)

  1. A scale invariance criterion for LES parametrizations

    Directory of Open Access Journals (Sweden)

    Urs Schaefer-Rolffs

    2015-01-01

    Full Text Available Turbulent kinetic energy cascades in fluid dynamical systems are usually characterized by scale invariance. However, representations of subgrid scales in large eddy simulations do not necessarily fulfill this constraint. So far, scale invariance has been considered in the context of isotropic, incompressible, and three-dimensional turbulence. In the present paper, the theory is extended to compressible flows that obey the hydrostatic approximation, as well as to corresponding subgrid-scale parametrizations. A criterion is presented to check if the symmetries of the governing equations are correctly translated into the equations used in numerical models. By applying scaling transformations to the model equations, relations between the scaling factors are obtained by demanding that the mathematical structure of the equations does not change.The criterion is validated by recovering the breakdown of scale invariance in the classical Smagorinsky model and confirming scale invariance for the Dynamic Smagorinsky Model. The criterion also shows that the compressible continuity equation is intrinsically scale-invariant. The criterion also proves that a scale-invariant turbulent kinetic energy equation or a scale-invariant equation of motion for a passive tracer is obtained only with a dynamic mixing length. For large-scale atmospheric flows governed by the hydrostatic balance the energy cascade is due to horizontal advection and the vertical length scale exhibits a scaling behaviour that is different from that derived for horizontal length scales.

  2. Extended BRS and anti-BRS symmetries in N=2 harmonic superspace

    International Nuclear Information System (INIS)

    Lhallabi, T.; Saidi, E.H.

    1986-08-01

    The full set of extended BRS and anti-BRS symmetries are derived for components of superconnection and gauge superfield using the N=2 harmonic superspace. The quantization of N=2 supersymmetric theory is developed and the proof of its gauge invariance is presented. (author)

  3. Incoherent transport for phases that spontaneously break translations

    Science.gov (United States)

    Donos, Aristomenis; Gauntlett, Jerome P.; Griffin, Tom; Ziogas, Vaios

    2018-04-01

    We consider phases of matter at finite charge density which spontaneously break spatial translations. Without taking a hydrodynamic limit we identify a boost invariant incoherent current operator. We also derive expressions for the small frequency behaviour of the thermoelectric conductivities generalising those that have been derived in a translationally invariant context. Within holographic constructions we show that the DC conductivity for the incoherent current can be obtained from a solution to a Stokes flow for an auxiliary fluid on the black hole horizon combined with specific thermodynamic quantities associated with the equilibrium black hole solutions.

  4. Cross-constrained problems for nonlinear Schrodinger equation with harmonic potential

    Directory of Open Access Journals (Sweden)

    Runzhang Xu

    2012-11-01

    Full Text Available This article studies a nonlinear Schodinger equation with harmonic potential by constructing different cross-constrained problems. By comparing the different cross-constrained problems, we derive different sharp criterion and different invariant manifolds that separate the global solutions and blowup solutions. Moreover, we conclude that some manifolds are empty due to the essence of the cross-constrained problems. Besides, we compare the three cross-constrained problems and the three depths of the potential wells. In this way, we explain the gaps in [J. Shu and J. Zhang, Nonlinear Shrodinger equation with harmonic potential, Journal of Mathematical Physics, 47, 063503 (2006], which was pointed out in [R. Xu and Y. Liu, Remarks on nonlinear Schrodinger equation with harmonic potential, Journal of Mathematical Physics, 49, 043512 (2008].

  5. Harmonic Coupling Analysis of a Multi-Drive System with Slim DC-link Drive

    DEFF Research Database (Denmark)

    Yang, Feng; Kwon, Jun Bum; Blaabjerg, Frede

    2017-01-01

    One of the problems with slim dc-link adjustable speed drive is the difficulties to analyze the harmonic coupling when it is integrated into a multi-drive system. The traditional methods analyze this harmonic issue by neglecting the harmonic coupling, and base on the linear time-invariant methods....... Its disadvantages include the time consumption and large computer memory. This paper proposes to do harmonic analysis by using the harmonic state-space modeling method by using the linear time-periodic theory. By using the proposed model, the harmonic couplings, between dc-link and point of common...... coupling in different drives, are all analyzed in the multi-drive system. In the meantime, the effects of the small film dc-link capacitance and the nonlinear characteristic of the diode rectifier are considered. The detailed modeling procedure, the simulations and the lab experiment on a two-drive system...

  6. Invariant object recognition based on the generalized discrete radon transform

    Science.gov (United States)

    Easley, Glenn R.; Colonna, Flavia

    2004-04-01

    We introduce a method for classifying objects based on special cases of the generalized discrete Radon transform. We adjust the transform and the corresponding ridgelet transform by means of circular shifting and a singular value decomposition (SVD) to obtain a translation, rotation and scaling invariant set of feature vectors. We then use a back-propagation neural network to classify the input feature vectors. We conclude with experimental results and compare these with other invariant recognition methods.

  7. Study of the Gray Scale, Polychromatic, Distortion Invariant Neural Networks Using the Ipa Model.

    Science.gov (United States)

    Uang, Chii-Maw

    Research in the optical neural network field is primarily motivated by the fact that humans recognize objects better than the conventional digital computers and the massively parallel inherent nature of optics. This research represents a continuous effort during the past several years in the exploitation of using neurocomputing for pattern recognition. Based on the interpattern association (IPA) model and Hamming net model, many new systems and applications are introduced. A gray level discrete associative memory that is based on object decomposition/composition is proposed for recognizing gray-level patterns. This technique extends the processing ability from the binary mode to gray-level mode, and thus the information capacity is increased. Two polychromatic optical neural networks using color liquid crystal television (LCTV) panels for color pattern recognition are introduced. By introducing a color encoding technique in conjunction with the interpattern associative algorithm, a color associative memory was realized. Based on the color decomposition and composition technique, a color exemplar-based Hamming net was built for color image classification. A shift-invariant neural network is presented through use of the translation invariant property of the modulus of the Fourier transformation and the hetero-associative interpattern association (IPA) memory. To extract the main features, a quadrantal sampling method is used to sampled data and then replace the training patterns. Using the concept of hetero-associative memory to recall the distorted object. A shift and rotation invariant neural network using an interpattern hetero-association (IHA) model is presented. To preserve the shift and rotation invariant properties, a set of binarized-encoded circular harmonic expansion (CHE) functions at the Fourier domain is used as the training set. We use the shift and symmetric properties of the modulus of the Fourier spectrum to avoid the problem of centering the CHE

  8. Achieving Translationally Invariant Trapped Ion Rings

    Science.gov (United States)

    Urban, Erik; Li, Hao-Kun; Noel, Crystal; Hemmerling, Boerge; Zhang, Xiang; Haeffner, Hartmut

    2017-04-01

    We present the design and implementation of a novel surface ion trap design in a ring configuration. By eliminating the need for wire bonds through the use of electrical vias and using a rotationally invariant electrode configuration, we have realized a trap that is able to trap up to 20 ions in a ring geometry 45um in diameter, 400um above the trap surface. This large trapping height to ring diameter ratio allows for global addressing of the ring with both lasers and electric fields in the chamber, thereby increasing our ability to control the ring as a whole. Applying compensating electric fields, we measure very low tangential trap frequencies (less than 20kHz) corresponding to rotational barriers down to 4mK. This measurement is currently limited by the temperature of the ions but extrapolation indicates the barrier can be reduced much further with more advanced cooling techniques. Finally, we show that we are able to reduce this energy barrier sufficiently such that the ions are able to overcome it either through thermal motion or rotational motion and delocalize over the full extent of the ring. This work was funded by the Keck Foundation and the NSF.

  9. Slow feature analysis: unsupervised learning of invariances.

    Science.gov (United States)

    Wiskott, Laurenz; Sejnowski, Terrence J

    2002-04-01

    Invariant features of temporally varying signals are useful for analysis and classification. Slow feature analysis (SFA) is a new method for learning invariant or slowly varying features from a vectorial input signal. It is based on a nonlinear expansion of the input signal and application of principal component analysis to this expanded signal and its time derivative. It is guaranteed to find the optimal solution within a family of functions directly and can learn to extract a large number of decorrelated features, which are ordered by their degree of invariance. SFA can be applied hierarchically to process high-dimensional input signals and extract complex features. SFA is applied first to complex cell tuning properties based on simple cell output, including disparity and motion. Then more complicated input-output functions are learned by repeated application of SFA. Finally, a hierarchical network of SFA modules is presented as a simple model of the visual system. The same unstructured network can learn translation, size, rotation, contrast, or, to a lesser degree, illumination invariance for one-dimensional objects, depending on only the training stimulus. Surprisingly, only a few training objects suffice to achieve good generalization to new objects. The generated representation is suitable for object recognition. Performance degrades if the network is trained to learn multiple invariances simultaneously.

  10. Neurons with two sites of synaptic integration learn invariant representations.

    Science.gov (United States)

    Körding, K P; König, P

    2001-12-01

    Neurons in mammalian cerebral cortex combine specific responses with respect to some stimulus features with invariant responses to other stimulus features. For example, in primary visual cortex, complex cells code for orientation of a contour but ignore its position to a certain degree. In higher areas, such as the inferotemporal cortex, translation-invariant, rotation-invariant, and even view point-invariant responses can be observed. Such properties are of obvious interest to artificial systems performing tasks like pattern recognition. It remains to be resolved how such response properties develop in biological systems. Here we present an unsupervised learning rule that addresses this problem. It is based on a neuron model with two sites of synaptic integration, allowing qualitatively different effects of input to basal and apical dendritic trees, respectively. Without supervision, the system learns to extract invariance properties using temporal or spatial continuity of stimuli. Furthermore, top-down information can be smoothly integrated in the same framework. Thus, this model lends a physiological implementation to approaches of unsupervised learning of invariant-response properties.

  11. Harmonic maps of V-manifolds

    International Nuclear Information System (INIS)

    Chiang, Yuan-Jen.

    1989-01-01

    Harmonic maps between manifolds are described as the critical maps of their associated energy functionals. By using Sampson's method [Sam1], the author constructs a Sobolev's chain on a compact V-manifold and obtain Rellich's Theorem (Theorem 3.1), Sobolev's Theorem (Theorem 3.2), the regularity theorem (Theorem 3.3), the property of the eigenspaces for the Laplacian (Theorem 3.5) and the solvability of Laplacian (Theorem 3.6). Then, with these results, he constructs the Green's functions for the Laplacian on a compact V-manifold M in Proposition 4.1; and obtain an orthonormal basis for L 2 (M) formed by the eigenfunctions of the Laplacian corresponding to the eigenvalues in Proposition 4.2. He also estimates the eigenvalues and eigenfunctions of the Laplacian in Theorem 4.3, which is used to construct the heat kernel on a compact V-manifold in Proposition 5.1. Afterwards, he compares the G-invariant heat kernel functions with the G-invariant fundamental solutions of heat equations in the finite V-charts of a compact V-manifold in Theorem 6.1, and then study two integral operators associated to the heat kernel on a compact V-manifold in section 7. With all the preceding results established, in Theorem 8.3 he uses successive approximations to prove the existence of the solutions of parabolic equations on V-manifolds. Finally, he uses Theorem 8.3 to show the existence of harmonic maps from compact V-manifolds into compact Riemannian manifolds in Theorem 9.1 which extends Eells-Sampson's results [E-S

  12. Superconformal geometry from the Grassmann and harmonic analyticities II: The N=4SU(2) conformal case

    International Nuclear Information System (INIS)

    Saidi, E.H.; Zakkari, M.

    1990-05-01

    N=4SU(2) conformal invariance is studied in harmonic superspace. It is shown that the N=4SU(2) conformal structure is equivalent to the harmonic analyticity. The solutions of the superconformal constraints are worked out in detail and the conformal properties of all objects of interests are given. A realization of the N=4 current in terms of the free (F.S.) hypermultiplet is obtained. (author). 10 refs

  13. The component structure of conformal supergravity invariants in six dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Butter, Daniel [Nikhef Theory Group,Science Park 105, 1098 XG Amsterdam (Netherlands); George and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy,Texas A& M University,College Station, TX 77843 (United States); Novak, Joseph [Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut, Am Mühlenberg 1, D-14476 Golm (Germany); Tartaglino-Mazzucchelli, Gabriele [Instituut voor Theoretische Fysica, KU Leuven,Celestijnenlaan 200D, B-3001 Leuven (Belgium)

    2017-05-24

    In the recent paper https://arxiv.org/abs/1606.02921, the two invariant actions for 6D N=(1,0) conformal supergravity were constructed in superspace, corresponding to the supersymmetrization of C{sup 3} and C◻C. In this paper, we provide the translation from superspace to the component formulation of superconformal tensor calculus, and we give the full component actions of these two invariants. As a second application, we build the component form for the supersymmetric F◻F action coupled to conformal supergravity. Exploiting the fact that the N=(2,0) Weyl multiplet has a consistent truncation to N=(1,0), we then verify that there is indeed only a single N=(2,0) conformal supergravity invariant and reconstruct most of its bosonic terms by uplifting a certain linear combination of N=(1,0) invariants.

  14. Group theoretic derivation of angular functions for the non-relativistic A-body problem in the K-harmonics approach

    International Nuclear Information System (INIS)

    Alcaras, J.A.C.; Ferreira, J.L.

    1975-01-01

    A derivation of an angular basis for the A-body problem, suitable for the K-harmonics method, is presented. Those angular functions are obtained from homogeneous and harmonic polynomials, which are completely specified by labels associated to eigenvalues of the Casimir invariants of subgroups of the 3(A-1)-dimensional orthogonal group, among them, the total angular momentum and its z-projection [pt

  15. 1+1+2 gravitational perturbations on LRS class II spacetimes: decoupling gravito-electromagnetic tensor harmonic amplitudes

    International Nuclear Information System (INIS)

    Burston, R B

    2008-01-01

    This is the first in a series of papers which considers gauge-invariant and covariant gravitational perturbations on arbitrary vacuum locally rotationally symmetric (LRS) class II spacetimes. Ultimately, we derive four decoupled equations governing four specific combinations of the gravito-electromagnetic (GEM) 2-tensor harmonic amplitudes. We use the gauge-invariant and covariant 1+1+2 formalism which Clarkson and Barrett (2003 Class. Quantum Grav. 20 3855) developed for analysis of vacuum Schwarzschild perturbations. In particular we focus on the first-order 1+1+2 GEM system and use linear algebra techniques suitable for exploiting its structure. Consequently, we express the GEM system new 1+1+2 complex form by choosing new complex GEM tensors, which is conducive to decoupling. We then show how to derive a gauge-invariant and covariant decoupled equation governing a newly defined complex GEM 2-tensor. Finally, the GEM 2-tensor is expanded in terms of arbitrary tensor harmonics and linear algebra is used once again to decouple the system further into four real decoupled equations

  16. The maximal kinematical invariance group of fluid dynamics and explosion-implosion duality

    International Nuclear Information System (INIS)

    O'Raifeartaigh, L.; Sreedhar, V.V.

    2001-01-01

    It has recently been found that supernova explosions can be simulated in the laboratory by implosions induced in a plasma by intense lasers. A theoretical explanation is that the inversion transformation, (Σ:t→-1/t, x→x/t), leaves the Euler equations of fluid dynamics, with standard polytropic exponent, invariant. This implies that the kinematical invariance group of the Euler equations is larger than the Galilei group. In this paper we determine, in a systematic manner, the maximal invariance group G of general fluid dynamics and show that it is a semi-direct product G=SL(2, R) three G, where the SL(2, R) group contains the time-translations, dilations, and the inversion Σ, and G is the static (nine-parameter) Galilei group. A subtle aspect of the inclusion of viscosity fields is discussed and it is shown that the Navier-Stokes assumption of constant viscosity breaks the SL(2, R) group to a two-parameter group of time translations and dilations in a tensorial way. The 12-parameter group G is also known to be the maximal invariance group of the free Schroedinger equation. It originates in the free Hamilton-Jacobi equation which is central to both fluid dynamics and the Schroedinger equation

  17. ASIFT: An Algorithm for Fully Affine Invariant Comparison

    Directory of Open Access Journals (Sweden)

    Guoshen Yu

    2011-02-01

    Full Text Available If a physical object has a smooth or piecewise smooth boundary, its images obtained by cameras in varying positions undergo smooth apparent deformations. These deformations are locally well approximated by affine transforms of the image plane. In consequence the solid object recognition problem has often been led back to the computation of affine invariant image local features. The similarity invariance (invariance to translation, rotation, and zoom is dealt with rigorously by the SIFT method The method illustrated and demonstrated in this work, Affine-SIFT (ASIFT, simulates a set of sample views of the initial images, obtainable by varying the two camera axis orientation parameters, namely the latitude and the longitude angles, which are not treated by the SIFT method. Then it applies the SIFT method itself to all images thus generated. Thus, ASIFT covers effectively all six parameters of the affine transform.

  18. Modeling Item-Level and Step-Level Invariance Effects in Polytomous Items Using the Partial Credit Model

    Science.gov (United States)

    Gattamorta, Karina A.; Penfield, Randall D.; Myers, Nicholas D.

    2012-01-01

    Measurement invariance is a common consideration in the evaluation of the validity and fairness of test scores when the tested population contains distinct groups of examinees, such as examinees receiving different forms of a translated test. Measurement invariance in polytomous items has traditionally been evaluated at the item-level,…

  19. Harmonic Analysis Associated with the Generalized q-Bessel Operator

    Directory of Open Access Journals (Sweden)

    Ahmed Abouelaz

    2016-01-01

    Full Text Available In this article, we give a new harmonic analysis associated with the generalized q-Bessel operator. We introduce the generalized $q$-Bessel transform, the generalized q-Bessel translation and the generalized $q$-Bessel convolution product.

  20. Renormalizable N=2 supersymmetric and gauge invariant interactions from the N=2 harmonic superspace with central charges

    International Nuclear Information System (INIS)

    Saidi, E.H.

    1986-04-01

    The N=2 harmonic-superspace in the presence of central charges is developed. Renormalizable interactions unusual in N=2 supersymmetric theories, are derived in a consistent way. Symmetries generated by the central charges are discussed. A certain equivalence between N=2 harmonic superspace with and without central charges is established. A non-abelian generalization of the model is given. (author)

  1. Can a stationary Bianchi black brane have momentum along the direction with no translational symmetry?

    International Nuclear Information System (INIS)

    Iizuka, Norihiro; Ishibashi, Akihiro; Maeda, Kengo

    2014-01-01

    Bianchi black branes (black brane solutions with homogeneous but anisotropic horizons classified by the Bianchi type) provide a simple holographic setting with lattice structures taken into account. In the case of holographic superconductor, we have a persistent current with lattices. Accordingly, we expect that in the dual gravity side, a black brane should carry some momentum along a direction of lattice structure, where translational invariance is broken. Motivated by this expectation, we consider whether — and if possible, in what circumstances — a Bianchi black brane can have momentum along a direction of no-translational invariance. First, we show that this cannot be the case for a certain class of stationary Bianchi black brane solutions in the Einstein-Maxwell-dilation theory. Then we also show that this can be the case for some Bianchi VII_0 black branes by numerically constructing such a solution in the Einstein-Maxwell theory with an additional vector field having a source term. The horizon of this solution admits a translational invariance on the horizon and conveys momentum (and is “rotating” when compactified). However this translational invariance is broken just outside the horizon. This indicates the existence of a black brane solution which is regular but non-analytic at the horizon, thereby evading the black hole rigidity theorem.

  2. Discrete Velocity Models for Polyatomic Molecules Without Nonphysical Collision Invariants

    Science.gov (United States)

    Bernhoff, Niclas

    2018-05-01

    An important aspect of constructing discrete velocity models (DVMs) for the Boltzmann equation is to obtain the right number of collision invariants. Unlike for the Boltzmann equation, for DVMs there can appear extra collision invariants, so called spurious collision invariants, in plus to the physical ones. A DVM with only physical collision invariants, and hence, without spurious ones, is called normal. The construction of such normal DVMs has been studied a lot in the literature for single species, but also for binary mixtures and recently extensively for multicomponent mixtures. In this paper, we address ways of constructing normal DVMs for polyatomic molecules (here represented by that each molecule has an internal energy, to account for non-translational energies, which can change during collisions), under the assumption that the set of allowed internal energies are finite. We present general algorithms for constructing such models, but we also give concrete examples of such constructions. This approach can also be combined with similar constructions of multicomponent mixtures to obtain multicomponent mixtures with polyatomic molecules, which is also briefly outlined. Then also, chemical reactions can be added.

  3. Second-harmonic generation in shear wave beams with different polarizations

    Science.gov (United States)

    Spratt, Kyle S.; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hamilton, Mark F.

    2015-10-01

    A coupled pair of nonlinear parabolic equations was derived by Zabolotskaya [1] that model the transverse components of the particle motion in a collimated shear wave beam propagating in an isotropic elastic solid. Like the KZK equation, the parabolic equation for shear wave beams accounts consistently for the leading order effects of diffraction, viscosity and nonlinearity. The nonlinearity includes a cubic nonlinear term that is equivalent to that present in plane shear waves, as well as a quadratic nonlinear term that is unique to diffracting beams. The work by Wochner et al. [2] considered shear wave beams with translational polarizations (linear, circular and elliptical), wherein second-order nonlinear effects vanish and the leading order nonlinear effect is third-harmonic generation by the cubic nonlinearity. The purpose of the current work is to investigate the quadratic nonlinear term present in the parabolic equation for shear wave beams by considering second-harmonic generation in Gaussian beams as a second-order nonlinear effect using standard perturbation theory. In order for second-order nonlinear effects to be present, a broader class of source polarizations must be considered that includes not only the familiar translational polarizations, but also polarizations accounting for stretching, shearing and rotation of the source plane. It is found that the polarization of the second harmonic generated by the quadratic nonlinearity is not necessarily the same as the polarization of the source-frequency beam, and we are able to derive a general analytic solution for second-harmonic generation from a Gaussian source condition that gives explicitly the relationship between the polarization of the source-frequency beam and the polarization of the second harmonic.

  4. Second-harmonic generation in shear wave beams with different polarizations

    Energy Technology Data Exchange (ETDEWEB)

    Spratt, Kyle S., E-mail: sprattkyle@gmail.com; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hamilton, Mark F. [Applied Research Laboratories, The University of Texas at Austin, P. O. Box 8029, Austin, Texas 78713–8029, US (United States)

    2015-10-28

    A coupled pair of nonlinear parabolic equations was derived by Zabolotskaya [1] that model the transverse components of the particle motion in a collimated shear wave beam propagating in an isotropic elastic solid. Like the KZK equation, the parabolic equation for shear wave beams accounts consistently for the leading order effects of diffraction, viscosity and nonlinearity. The nonlinearity includes a cubic nonlinear term that is equivalent to that present in plane shear waves, as well as a quadratic nonlinear term that is unique to diffracting beams. The work by Wochner et al. [2] considered shear wave beams with translational polarizations (linear, circular and elliptical), wherein second-order nonlinear effects vanish and the leading order nonlinear effect is third-harmonic generation by the cubic nonlinearity. The purpose of the current work is to investigate the quadratic nonlinear term present in the parabolic equation for shear wave beams by considering second-harmonic generation in Gaussian beams as a second-order nonlinear effect using standard perturbation theory. In order for second-order nonlinear effects to be present, a broader class of source polarizations must be considered that includes not only the familiar translational polarizations, but also polarizations accounting for stretching, shearing and rotation of the source plane. It is found that the polarization of the second harmonic generated by the quadratic nonlinearity is not necessarily the same as the polarization of the source-frequency beam, and we are able to derive a general analytic solution for second-harmonic generation from a Gaussian source condition that gives explicitly the relationship between the polarization of the source-frequency beam and the polarization of the second harmonic.

  5. Second-harmonic generation in shear wave beams with different polarizations

    International Nuclear Information System (INIS)

    Spratt, Kyle S.; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hamilton, Mark F.

    2015-01-01

    A coupled pair of nonlinear parabolic equations was derived by Zabolotskaya [1] that model the transverse components of the particle motion in a collimated shear wave beam propagating in an isotropic elastic solid. Like the KZK equation, the parabolic equation for shear wave beams accounts consistently for the leading order effects of diffraction, viscosity and nonlinearity. The nonlinearity includes a cubic nonlinear term that is equivalent to that present in plane shear waves, as well as a quadratic nonlinear term that is unique to diffracting beams. The work by Wochner et al. [2] considered shear wave beams with translational polarizations (linear, circular and elliptical), wherein second-order nonlinear effects vanish and the leading order nonlinear effect is third-harmonic generation by the cubic nonlinearity. The purpose of the current work is to investigate the quadratic nonlinear term present in the parabolic equation for shear wave beams by considering second-harmonic generation in Gaussian beams as a second-order nonlinear effect using standard perturbation theory. In order for second-order nonlinear effects to be present, a broader class of source polarizations must be considered that includes not only the familiar translational polarizations, but also polarizations accounting for stretching, shearing and rotation of the source plane. It is found that the polarization of the second harmonic generated by the quadratic nonlinearity is not necessarily the same as the polarization of the source-frequency beam, and we are able to derive a general analytic solution for second-harmonic generation from a Gaussian source condition that gives explicitly the relationship between the polarization of the source-frequency beam and the polarization of the second harmonic

  6. OBJECT TRACKING WITH ROTATION-INVARIANT LARGEST DIFFERENCE INDEXED LOCAL TERNARY PATTERN

    Directory of Open Access Journals (Sweden)

    J Shajeena

    2017-02-01

    Full Text Available This paper presents an ideal method for object tracking directly in the compressed domain in video sequences. An enhanced rotation-invariant image operator called Largest Difference Indexed Local Ternary Pattern (LDILTP has been proposed. The Local Ternary Pattern which worked very well in texture classification and face recognition is now extended for rotation invariant object tracking. Histogramming the LTP code makes the descriptor resistant to translation. The histogram intersection is used to find the similarity measure. This method is robust to noise and retain contrast details. The proposed scheme has been verified on various datasets and shows a commendable performance.

  7. Gauge invariance over a group as the first principle of interacting string dynamics

    International Nuclear Information System (INIS)

    Gervais, J.L.

    1986-01-01

    It is stressed that the basic principle of the standard gauge theories is the invariance under internal symmetry transformations that do not commute with translations. This concept is generalized to the case where the translation group is replaced by an arbitrarily given non-abelian group G. The generalized Yang-Mills theory, called gauge theory over G, is an attractive extension of the standard formalism. The gauge theory over the conformal group is proposed as the fundamental theory of bosonic strings. As is usual in gauge theories, the interaction is uniquely specific by the invariance properties. For strings, overlap conditions between string positions come out in a natural way. The powerful machinery of Yang-Mills theories is fully applicable to the gauge theories over groups. In particular, an example of the Higgs-Kibble mechanism is given. (orig.)

  8. Spherical harmonics coefficients for ligand-based virtual screening of cyclooxygenase inhibitors.

    Science.gov (United States)

    Wang, Quan; Birod, Kerstin; Angioni, Carlo; Grösch, Sabine; Geppert, Tim; Schneider, Petra; Rupp, Matthias; Schneider, Gisbert

    2011-01-01

    Molecular descriptors are essential for many applications in computational chemistry, such as ligand-based similarity searching. Spherical harmonics have previously been suggested as comprehensive descriptors of molecular structure and properties. We investigate a spherical harmonics descriptor for shape-based virtual screening. We introduce and validate a partially rotation-invariant three-dimensional molecular shape descriptor based on the norm of spherical harmonics expansion coefficients. Using this molecular representation, we parameterize molecular surfaces, i.e., isosurfaces of spatial molecular property distributions. We validate the shape descriptor in a comprehensive retrospective virtual screening experiment. In a prospective study, we virtually screen a large compound library for cyclooxygenase inhibitors, using a self-organizing map as a pre-filter and the shape descriptor for candidate prioritization. 12 compounds were tested in vitro for direct enzyme inhibition and in a whole blood assay. Active compounds containing a triazole scaffold were identified as direct cyclooxygenase-1 inhibitors. This outcome corroborates the usefulness of spherical harmonics for representation of molecular shape in virtual screening of large compound collections. The combination of pharmacophore and shape-based filtering of screening candidates proved to be a straightforward approach to finding novel bioactive chemotypes with minimal experimental effort.

  9. An analogue of the Berry phase for simple harmonic oscillators

    Science.gov (United States)

    Suslov, S. K.

    2013-03-01

    We evaluate a variant of Berry's phase for a ‘missing’ family of the square integrable wavefunctions for the linear harmonic oscillator, which cannot be derived by the separation of variables (in a natural way). Instead, it is obtained by the action of the maximal kinematical invariance group on the standard solutions. A simple closed formula for the phase (in terms of elementary functions) is found here by integration with the help of a computer algebra system.

  10. Invariance Signatures: Characterizing contours by their departures from invariance

    OpenAIRE

    Squire, David; Caelli, Terry M.

    1997-01-01

    In this paper, a new invariant feature of two-dimensional contours is reported: the Invariance Signature. The Invariance Signature is a measure of the degree to which a contour is invariant under a variety of transformations, derived from the theory of Lie transformation groups. It is shown that the Invariance Signature is itself invariant under shift, rotation and scaling of the contour. Since it is derived from local properties of the contour, it is well-suited to a neural network implement...

  11. A biologically plausible transform for visual recognition that is invariant to translation, scale and rotation

    Directory of Open Access Journals (Sweden)

    Pavel eSountsov

    2011-11-01

    Full Text Available Visual object recognition occurs easily despite differences in position, size, and rotation of the object, but the neural mechanisms responsible for this invariance are not known. We have found a set of transforms that achieve invariance in a neurally plausible way. We find that a transform based on local spatial frequency analysis of oriented segments and on logarithmic mapping, when applied twice in an iterative fashion, produces an output image that is unique to the object and that remains constant as the input image is shifted, scaled or rotated.

  12. A Biologically Plausible Transform for Visual Recognition that is Invariant to Translation, Scale, and Rotation.

    Science.gov (United States)

    Sountsov, Pavel; Santucci, David M; Lisman, John E

    2011-01-01

    Visual object recognition occurs easily despite differences in position, size, and rotation of the object, but the neural mechanisms responsible for this invariance are not known. We have found a set of transforms that achieve invariance in a neurally plausible way. We find that a transform based on local spatial frequency analysis of oriented segments and on logarithmic mapping, when applied twice in an iterative fashion, produces an output image that is unique to the object and that remains constant as the input image is shifted, scaled, or rotated.

  13. On a generalized oscillator: invariance algebra and interbasis expansions

    International Nuclear Information System (INIS)

    Hakopyan, E.M.; Pogosyan, G.S.; Sisakyan, A.N.; Kibler, M.

    1998-01-01

    This article deals with a quantum-mechanical system which generalizes the ordinary isotropic harmonic oscillator system. We give the coefficients connecting the polar and Cartesian bases for D=2 and the coefficients connecting the Cartesian and cylindrical bases as well as the cylindrical and spherical bases for D=3. These interbasis expansion coefficients are found to be analytic continuations to real values of their arguments of the Clebsch-Gordan coefficients for the group SU(2). For D=2, the super integrable character for the generalized oscillator system is investigated from the point of view of a quadratic invariance algebra

  14. Time-dependent coupled harmonic oscillators: classical and quantum solutions

    International Nuclear Information System (INIS)

    Macedo, D.X.; Guedes, I.

    2014-01-01

    In this work we present the classical and quantum solutions for an arbitrary system of time-dependent coupled harmonic oscillators, where the masses (m), frequencies (ω) and coupling parameter (k) are functions of time. To obtain the classical solutions, we use a coordinate and momentum transformations along with a canonical transformation to write the original Hamiltonian as the sum of two Hamiltonians of uncoupled harmonic oscillators with modified time-dependent frequencies and unitary masses. To obtain the exact quantum solutions we use a unitary transformation and the Lewis and Riesenfeld (LR) invariant method. The exact wave functions are obtained by solving the respective Milne–Pinney (MP) equation for each system. We obtain the solutions for the system with m 1 = m 2 = m 0 e γt , ω 1 = ω 01 e -γt/2 , ω 2 = ω 02 e -γt/2 and k = k 0 . (author)

  15. Novel symmetries in Weyl-invariant gravity with massive gauge field

    Energy Technology Data Exchange (ETDEWEB)

    Abhinav, K. [S.N. Bose National Centre for Basic Sciences, Salt Lake, Kolkata (India); Shukla, A.; Panigrahi, P.K. [Indian Institute of Science Education and Research Kolkata, Mohanpur (India)

    2016-11-15

    The background field method is used to linearize the Weyl-invariant scalar-tensor gravity, coupled with a Stueckelberg field. For a generic background metric, this action is found not to be invariant, under both a diffeomorphism and generalized Weyl symmetry, the latter being a combination of gauge and Weyl transformations. Interestingly, the quadratic Lagrangian, emerging from a background of Minkowski metric, respects both transformations independently. The Becchi-Rouet-Stora-Tyutin symmetry of scalar-tensor gravity coupled with a Stueckelberg-like massive gauge particle, possessing a diffeomorphism and generalized Weyl symmetry, reveals that in both cases negative-norm states with unphysical degrees of freedom do exist. We then show that, by combining diffeomorphism and generalized Weyl symmetries, all the ghost states decouple, thereby removing the unphysical redundancies of the theory. During this process, the scalar field does not represent any dynamic mode, yet modifies the usual harmonic gauge condition through non-minimal coupling with gravity. (orig.)

  16. Real-space mapping of topological invariants using artificial neural networks

    Science.gov (United States)

    Carvalho, D.; García-Martínez, N. A.; Lado, J. L.; Fernández-Rossier, J.

    2018-03-01

    Topological invariants allow one to characterize Hamiltonians, predicting the existence of topologically protected in-gap modes. Those invariants can be computed by tracing the evolution of the occupied wave functions under twisted boundary conditions. However, those procedures do not allow one to calculate a topological invariant by evaluating the system locally, and thus require information about the wave functions in the whole system. Here we show that artificial neural networks can be trained to identify the topological order by evaluating a local projection of the density matrix. We demonstrate this for two different models, a one-dimensional topological superconductor and a two-dimensional quantum anomalous Hall state, both with spatially modulated parameters. Our neural network correctly identifies the different topological domains in real space, predicting the location of in-gap states. By combining a neural network with a calculation of the electronic states that uses the kernel polynomial method, we show that the local evaluation of the invariant can be carried out by evaluating a local quantity, in particular for systems without translational symmetry consisting of tens of thousands of atoms. Our results show that supervised learning is an efficient methodology to characterize the local topology of a system.

  17. Symmetries and invariants of the oscillator and envelope equations with time-dependent frequency

    Directory of Open Access Journals (Sweden)

    Hong Qin

    2006-05-01

    Full Text Available The single-particle dynamics in a time-dependent focusing field is examined. The existence of the Courant-Snyder invariant, a fundamental concept in accelerator physics, is fundamentally a result of the corresponding symmetry admitted by the harmonic oscillator equation with linear time-dependent frequency. It is demonstrated that the Lie algebra of the symmetry group for the oscillator equation with time-dependent frequency is eight dimensional, and is composed of four independent subalgebras. A detailed analysis of the admitted symmetries reveals a deeper connection between the nonlinear envelope equation and the oscillator equation. A general theorem regarding the symmetries and invariants of the envelope equation, which includes the existence of the Courant-Snyder invariant as a special case, is demonstrated. As an application to accelerator physics, the symmetries of the envelope equation enable a fast numerical algorithm for finding matched solutions without using the conventional iterative Newton’s method, where the envelope equation needs to be numerically integrated once for every iteration, and the Jacobi matrix needs to be calculated for the envelope perturbation.

  18. Training Convolutional Neural Networks for Translational Invariance on SAR ATR

    DEFF Research Database (Denmark)

    Malmgren-Hansen, David; Engholm, Rasmus; Østergaard Pedersen, Morten

    2016-01-01

    In this paper we present a comparison of the robustness of Convolutional Neural Networks (CNN) to other classifiers in the presence of uncertainty of the objects localization in SAR image. We present a framework for simulating simple SAR images, translating the object of interest systematically...

  19. BRS invariant stochastic quantization of Einstein gravity

    International Nuclear Information System (INIS)

    Nakazawa, Naohito.

    1989-11-01

    We study stochastic quantization of gravity in terms of a BRS invariant canonical operator formalism. By introducing artificially canonical momentum variables for the original field variables, a canonical formulation of stochastic quantization is proposed in the sense that the Fokker-Planck hamiltonian is the generator of the fictitious time translation. Then we show that there exists a nilpotent BRS symmetry in an enlarged phase space of the first-class constrained systems. The phase space is spanned by the dynamical variables, their canonical conjugate momentum variables, Faddeev-Popov ghost and anti-ghost. We apply the general BRS invariant formulation to stochastic quantization of gravity which is described as a second-class constrained system in terms of a pair of Langevin equations coupled with white noises. It is shown that the stochastic action of gravity includes explicitly the De Witt's type superspace metric which leads to a geometrical interpretation of quantum gravity analogous to nonlinear σ-models. (author)

  20. Wave function for time-dependent harmonically confined electrons in a time-dependent electric field.

    Science.gov (United States)

    Li, Yu-Qi; Pan, Xiao-Yin; Sahni, Viraht

    2013-09-21

    The many-body wave function of a system of interacting particles confined by a time-dependent harmonic potential and perturbed by a time-dependent spatially homogeneous electric field is derived via the Feynman path-integral method. The wave function is comprised of a phase factor times the solution to the unperturbed time-dependent Schrödinger equation with the latter being translated by a time-dependent value that satisfies the classical driven equation of motion. The wave function reduces to that of the Harmonic Potential Theorem wave function for the case of the time-independent harmonic confining potential.

  1. Harmonization of radiobiological assays: why and how?

    International Nuclear Information System (INIS)

    Prasanna, Pataje G.

    2014-01-01

    The International Atomic Energy Agency has made available a technical manual for cytogenetic biodosimetry assays (dicentric chromosome aberration (DCA) and cytokinesis-block micronucleus (CBMN) assays) used for radiation dose assessment in radiation accidents. The International Standardization Organization, which develops standards and guidelines, also provides an avenue for laboratory accreditation, has developed guidelines and recommendations for performing cytogenetic biodosimetry assays. Harmonization of DCA and CBMN assays, has improved their accuracy. Double-blinded inter-laboratory comparison studies involving several networks have further validated DCA and CBMN assays and improved the confidence in their potential use for radiation dose assessment in mass casualties. This kind of international harmonization is lacking for pre-clinical radiobiology assays. The widely used pre-clinical assays that are relatively important to set stage for clinical trials include clonogenic assays, flow-cytometry assays, apoptotic assays, and tumor regression and growth delay assays. However, significant inter-laboratory variations occur with respect to data among laboratories. This raises concerns on the reliability and reproducibility of preclinical data that drives further development and translation. Lack of reproducibility may stem from a variety of factors such as poor scientist training, less than optimal experimental design, inadequate description of methodology, and impulse to publish only the positive data etc. Availability of technical manuals, standard operating procedures, accreditation avenues for laboratories performing such assays, inter-laboratory comparisons, and use of standardized protocols are necessary to enhance reliability and reproducibility. Thus, it is important that radiobiological assays are harmonized for laboratory protocols to ensure successful translation of pre-clinical research on radiation effect modulators to help design clinic trials with

  2. Invariant recognition drives neural representations of action sequences.

    Directory of Open Access Journals (Sweden)

    Andrea Tacchetti

    2017-12-01

    Full Text Available Recognizing the actions of others from visual stimuli is a crucial aspect of human perception that allows individuals to respond to social cues. Humans are able to discriminate between similar actions despite transformations, like changes in viewpoint or actor, that substantially alter the visual appearance of a scene. This ability to generalize across complex transformations is a hallmark of human visual intelligence. Advances in understanding action recognition at the neural level have not always translated into precise accounts of the computational principles underlying what representations of action sequences are constructed by human visual cortex. Here we test the hypothesis that invariant action discrimination might fill this gap. Recently, the study of artificial systems for static object perception has produced models, Convolutional Neural Networks (CNNs, that achieve human level performance in complex discriminative tasks. Within this class, architectures that better support invariant object recognition also produce image representations that better match those implied by human and primate neural data. However, whether these models produce representations of action sequences that support recognition across complex transformations and closely follow neural representations of actions remains unknown. Here we show that spatiotemporal CNNs accurately categorize video stimuli into action classes, and that deliberate model modifications that improve performance on an invariant action recognition task lead to data representations that better match human neural recordings. Our results support our hypothesis that performance on invariant discrimination dictates the neural representations of actions computed in the brain. These results broaden the scope of the invariant recognition framework for understanding visual intelligence from perception of inanimate objects and faces in static images to the study of human perception of action sequences.

  3. A variational calculation of 12C in the alpha-particle model

    International Nuclear Information System (INIS)

    Portilho, O.

    1973-01-01

    Some physical properties of three structureless alpha particles interacting through two-body potentials were discussed. Comparison between them and the corresponding experimental observations for the 12 C nucleus is done. The wave function is expanded in terms of translationally invariant harmonic-oscillator states, the coefficients being variational parameters

  4. Selective harmonic elimination strategy in eleven level inverter for PV system with unbalanced DC sources

    Science.gov (United States)

    Ghoudelbourk, Sihem.; Dib, D.; Meghni, B.; Zouli, M.

    2017-02-01

    The paper deals with the multilevel converters control strategy for photovoltaic system integrated in distribution grids. The objective of the proposed work is to design multilevel inverters for solar energy applications so as to reduce the Total Harmonic Distortion (THD) and to improve the power quality. The multilevel inverter power structure plays a vital role in every aspect of the power system. It is easier to produce a high-power, high-voltage inverter with the multilevel structure. The topologies of multilevel inverter have several advantages such as high output voltage, lower total harmonic distortion (THD) and reduction of voltage ratings of the power semiconductor switching devices. The proposed control strategy ensures an implementation of selective harmonic elimination (SHE) modulation for eleven levels. SHE is a very important and efficient strategy of eliminating selected harmonics by judicious selection of the firing angles of the inverter. Harmonics elimination technique eliminates the need of the expensive low pass filters in the system. Previous research considered that constant and equal DC sources with invariant behavior; however, this research extends earlier work to include variant DC sources, which are typical of lead-acid batteries when used in system PV. This Study also investigates methods to minimize the total harmonic distortion of the synthesized multilevel waveform and to help balance the battery voltage. The harmonic elimination method was used to eliminate selected lower dominant harmonics resulting from the inverter switching action.

  5. Intersection of the Sierpinski carpet with its rational translate

    International Nuclear Information System (INIS)

    Dai Meifeng; Tian Lixin

    2007-01-01

    Motivated by Mandelbrot's idea of referring to lacunarity of Cantor sets in terms of departure from translation invariance, Nekka and Li studied the properties of these translation sets and showed how they can be used for a classification purpose. In this paper, we pursue this study on the Sierpinski carpet with its rational translate. We also get the fractal structure of intersection I(x, y) of the Sierpinski carpet with its translate. We find that the packing measure of these sets forms a discrete spectrum whose non-zero values come only from shifting numbers with a finite triadic expansion. Concretely, when x and y have a finite triadic expansion, a very brief calculation formula of the measure is given

  6. Invariant subspaces

    CERN Document Server

    Radjavi, Heydar

    2003-01-01

    This broad survey spans a wealth of studies on invariant subspaces, focusing on operators on separable Hilbert space. Largely self-contained, it requires only a working knowledge of measure theory, complex analysis, and elementary functional analysis. Subjects include normal operators, analytic functions of operators, shift operators, examples of invariant subspace lattices, compact operators, and the existence of invariant and hyperinvariant subspaces. Additional chapters cover certain results on von Neumann algebras, transitive operator algebras, algebras associated with invariant subspaces,

  7. Transformation de Fourier et moments invariants appliqués à la reconnaissance des caractères Tifinaghe

    Directory of Open Access Journals (Sweden)

    Rachid El Ayachi

    2012-03-01

    Full Text Available Optical Character Recognition OCR is a tool that aims to provide opportunities for computers to read characters without human intervention. The objective of OCR is characterization of a character by invariant descriptors in translation, rotation and scaling. In this paper, the OCR developed use invariant moments and Fourier transform in extraction phase. In the recognition phase, dynamic programming and neural network are adopted. All tests are applied on Tifinaghe printed characters.

  8. Measurement invariance versus selection invariance: Is fair selection possible?

    NARCIS (Netherlands)

    Borsboom, D.; Romeijn, J.W.; Wicherts, J.M.

    2008-01-01

    This article shows that measurement invariance (defined in terms of an invariant measurement model in different groups) is generally inconsistent with selection invariance (defined in terms of equal sensitivity and specificity across groups). In particular, when a unidimensional measurement

  9. Measurement invariance versus selection invariance : Is fair selection possible?

    NARCIS (Netherlands)

    Borsboom, Denny; Romeijn, Jan-Willem; Wicherts, Jelte M.

    This article shows that measurement invariance (defined in terms of an invariant measurement model in different groups) is generally inconsistent with selection invariance (defined in terms of equal sensitivity and specificity across groups). In particular, when a unidimensional measurement

  10. Second harmonic inversion for ultrasound contrast harmonic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Pasovic, Mirza; Danilouchkine, Mike; Faez, Telli; Van Neer, Paul L M J; Van der Steen, Antonius F W; De Jong, Nico [THORAXCENTER, Department of Biomedical Engineering Ee2302, Erasmus MC, Rotterdam (Netherlands); Cachard, Christian; Basset, Olivier, E-mail: mirza.pasovic@creatis.insa-lyon.fr [CREATIS-LRMN, Universite de Lyon, INSA-Lyon, Universite Lyon 1, Inserm U630, CNRS UMR 5220 (France)

    2011-06-07

    Ultrasound contrast agents (UCAs) are small micro-bubbles that behave nonlinearly when exposed to an ultrasound wave. This nonlinear behavior can be observed through the generated higher harmonics in a back-scattered echo. In past years several techniques have been proposed to detect or image harmonics produced by UCAs. In these proposed works, the harmonics generated in the medium during the propagation of the ultrasound wave played an important role, since these harmonics compete with the harmonics generated by the micro-bubbles. We present a method for the reduction of the second harmonic generated during nonlinear-propagation-dubbed second harmonic inversion (SHI). A general expression for the suppression signals is also derived. The SHI technique uses two pulses, p' and p'', of the same frequency f{sub 0} and the same amplitude P{sub 0} to cancel out the second harmonic generated by nonlinearities of the medium. Simulations show that the second harmonic is reduced by 40 dB on a large axial range. Experimental SHI B-mode images, from a tissue-mimicking phantom and UCAs, show an improvement in the agent-to-tissue ratio (ATR) of 20 dB compared to standard second harmonic imaging and 13 dB of improvement in harmonic power Doppler.

  11. Second harmonic inversion for ultrasound contrast harmonic imaging

    International Nuclear Information System (INIS)

    Pasovic, Mirza; Danilouchkine, Mike; Faez, Telli; Van Neer, Paul L M J; Van der Steen, Antonius F W; De Jong, Nico; Cachard, Christian; Basset, Olivier

    2011-01-01

    Ultrasound contrast agents (UCAs) are small micro-bubbles that behave nonlinearly when exposed to an ultrasound wave. This nonlinear behavior can be observed through the generated higher harmonics in a back-scattered echo. In past years several techniques have been proposed to detect or image harmonics produced by UCAs. In these proposed works, the harmonics generated in the medium during the propagation of the ultrasound wave played an important role, since these harmonics compete with the harmonics generated by the micro-bubbles. We present a method for the reduction of the second harmonic generated during nonlinear-propagation-dubbed second harmonic inversion (SHI). A general expression for the suppression signals is also derived. The SHI technique uses two pulses, p' and p'', of the same frequency f 0 and the same amplitude P 0 to cancel out the second harmonic generated by nonlinearities of the medium. Simulations show that the second harmonic is reduced by 40 dB on a large axial range. Experimental SHI B-mode images, from a tissue-mimicking phantom and UCAs, show an improvement in the agent-to-tissue ratio (ATR) of 20 dB compared to standard second harmonic imaging and 13 dB of improvement in harmonic power Doppler.

  12. Shortening of primary operators in N-extended $SCFT_{4}$ and harmonic-superspace analyticity

    CERN Document Server

    Andrianopoli, L.; Sokatchev, E.; Zupnik, B.

    1999-01-01

    We present the analysis of all possible shortenings which occur for composite gauge invariant conformal primary superfields in SU(2,2/N) invariant gauge theories. These primaries have top-spin range N/2 \\leq J_{max} < N with J_{max} = J_1 + J_2, (J_1,J_2) being the SL(2,C) quantum numbers of the highest spin component of the superfield. In Harmonic superspace, analytic and chiral superfields give J_{max}= N/2 series while intermediate shortenings correspond to fusion of chiral with analytic in N=2, or analytic with different analytic structures in N=3,4. In the AdS/CFT language shortenings of UIR's correspond to all possible BPS conditions on bulk states. An application of this analysis to multitrace operators, corresponding to multiparticle supergravity states, is spelled out.

  13. Covariant quantization of the d=4 Brink-Schwarz superparticle using Lorentz harmonics

    International Nuclear Information System (INIS)

    Zima, V.G.; Fedoryuk, S.A.

    1995-01-01

    Covariant first and second quantizations of the free d=4 massless superparticle are implemented with the introduction of purely gauge auxiliary spinor Lorentz harmonics. It is shown that the general solution of the condition of masslessness is a sum of two independent chiral superfields with each of them corresponding to finite superspin. A translationally covariant, in general bijective correspondence between harmonic and massless superfields is constructed. By calculation of the commutation function it is shown that in the considered approach only harmonic fields with the correct connection between spin and statistics and with integer negative homogeneity index satisfy the microcausality condition. It is emphasized that the harmonic fields that arise are reducible at integer points. The index spinor technique is used to describe infinite-component fields of finite spin; the equations of motion of such fields are obtained, and for them Weinberg's theorem on the connection between massless helicity particles and the type of nongauge field that describes them is generalized

  14. Computational invariant theory

    CERN Document Server

    Derksen, Harm

    2015-01-01

    This book is about the computational aspects of invariant theory. Of central interest is the question how the invariant ring of a given group action can be calculated. Algorithms for this purpose form the main pillars around which the book is built. There are two introductory chapters, one on Gröbner basis methods and one on the basic concepts of invariant theory, which prepare the ground for the algorithms. Then algorithms for computing invariants of finite and reductive groups are discussed. Particular emphasis lies on interrelations between structural properties of invariant rings and computational methods. Finally, the book contains a chapter on applications of invariant theory, covering fields as disparate as graph theory, coding theory, dynamical systems, and computer vision. The book is intended for postgraduate students as well as researchers in geometry, computer algebra, and, of course, invariant theory. The text is enriched with numerous explicit examples which illustrate the theory and should be ...

  15. Invariant submanifold flows

    Energy Technology Data Exchange (ETDEWEB)

    Olver, Peter J [School of Mathematics, University of Minnesota, Minneapolis, MN 55455 (United States)], E-mail: olver@math.umn.edu

    2008-08-29

    Given a Lie group acting on a manifold, our aim is to analyze the evolution of differential invariants under invariant submanifold flows. The constructions are based on the equivariant method of moving frames and the induced invariant variational bicomplex. Applications to integrable soliton dynamics, and to the evolution of differential invariant signatures, used in equivalence problems and object recognition and symmetry detection in images, are discussed.

  16. Cross-cultural adaptation of the Health Education Impact Questionnaire: experimental study showed expert committee, not back-translation, added value.

    Science.gov (United States)

    Epstein, Jonathan; Osborne, Richard H; Elsworth, Gerald R; Beaton, Dorcas E; Guillemin, Francis

    2015-04-01

    To assess the contribution of back-translation and expert committee to the content and psychometric properties of a translated multidimensional questionnaire. Recommendations for questionnaire translation include back-translation and expert committee, but their contribution to measurement properties is unknown. Four English to French translations of the Health Education Impact Questionnaire were generated with and without committee or back-translation. Face validity, acceptability, and structural properties were compared after random assignment to people with rheumatoid arthritis (N = 1,168), chronic renal failure (N = 2,368), and diabetes (N = 538). For face validity, 15 bilingual people compared translations quality with the original. Psychometric properties were examined using confirmatory factor analysis (metric and scalar invariance) and item response theory. Qualitatively, there were five types of translation errors: style, intensity, frequency/time frame, breadth, and meaning. Bilingual assessors ranked best the translations with committee (P = 0.0026). All translations had good structural properties (root mean square error of approximation translations (ΔCFI ≤ 0.01) with metric invariance between translations and original (lowest ΔCFI = 0.022 between fully constrained models and models with free intercepts). Item characteristic curve analyses revealed no significant differences. This is the first experimental evidence that back-translation has moderate impact, whereas expert committee helps to ensure accurate content. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Harmonic analysis and global solvability of a differential operator invariant on motion groups and semi-simple Lie groups

    International Nuclear Information System (INIS)

    El-Hussein, K.

    1991-08-01

    Let V be a real finite dimensional vector space and let K be a connected compact Lie group, which acts on V by means of a continuous linear representation ρ. Let G=V x p K be the motion group which is the semi-direct product of V by K and let P be an invariant differential operator on G. In this paper we give a necessary and sufficient condition for the global solvability of P on G. Now let G be a connected semi-simple Lie group with finite centre and let P be an invariant differential operator on G. We give also a necessary and sufficient condition for the global solvability of P on G. (author). 8 refs

  18. Topological string in harmonic space and correlation functions in S3 stringy cosmology

    International Nuclear Information System (INIS)

    Saidi, El Hassan; Sedra, Moulay Brahim

    2006-01-01

    We develop the harmonic space method for conifold and use it to study local complex deformations of T*S 3 preserving manifestly SL(2,C) isometry. We derive the perturbative manifestly SL(2,C) invariant partition function Z top of topological string B model on locally deformed conifold. Generic n momentum and winding modes of 2D c=1 noncritical theory are described by highest υ (n,0) and lowest components υ (0,n) of SL(2,C) spin s=n2 multiplets (υ (n-k,k) ), 0= α + and V α - . We also derive a dictionary giving the passage from Laurent (Fourier) analysis on T*S 1 (S 1 ) to the harmonic method on T*S 3 (S 3 ). The manifestly SU(2,C) covariant correlation functions of the S 3 quantum cosmology model of Gukov-Saraikin-Vafa are also studied

  19. Translation and adaptation of the physical activity enjoyment scale (PACES in a sample of Portuguese athletes, invariance across genders nature sports and swimming

    Directory of Open Access Journals (Sweden)

    Diogo Monteiro

    2017-12-01

    Full Text Available The aim of this study was to translate and validate of the Physical Activity Enjoyment Scale (PACES, from Mullen et al. version in Portuguese athletes, invariance across genders and nature sports and swimming, as well as, external validity, through the Portuguese version of BRSQ. Athletes (n=1032; 273 nature sports, 759 swimming with an average age of 18,95 ± 6,59 years participated in this study. Confirmatory factor analysis (maximum likelihood, multigroup analysis (measurement invariance and correlation analysis were used for data analyzed. Results supported the suitability of the models (one factor which eight items showing an adequate fit to the data in each sample (general:χ²=181,96, p=<0,01, df=20, SRMR=0,04, NNFI=0,94, CFI=0,96, RMSEA=0,07, RMSEA 90% IC=0,06-0,08; male: χ²=113,27, p=<0,01, df=20, SRMR=0,04, NNFI=0,95, CFI=0,97, RMSEA=0,07, RMSEA 90% IC=0,06-0,08; female: χ²=67,59, p=<0,01, df=20, SRMR=0,03, NNFI=0,94, CFI=0,96, RMSEA=0,07, RMSEA 90% IC=0,06-0,09; nature sports: χ²=42,32, p=0,02, df=20, SRMR=0,037, NNFI=0,96, CFI=0,98, RMSEA=0,06, RMSEA 90% IC=0,04-0,08; swimming: χ²=130,14, p=<0,01, df=20, SRMR=0,04, NNFI=0,94, CFI=0,96, RMSEA=0,07, RMSEA 90% IC=0,06-0,08, as well as, were invariant across genders and nature sports and swimming (ΔCFI≤0,01. Enjoyment was, on the one hand, found to be positively and significantly correlated with identified regulation (r=0,82, integrated regulation (r=0,62 and intrinsic motivation (r=0,90. On the other, it was negatively and significantly correlated with amotivation (r=-0,25 and external and introjected regulation (r=-0,42; -0,38, respectively. Those findings allow concluding that PACES can be used to measure enjoyment in the future studies, thus filling an existing gap to date.

  20. Translation and convection of Earth's inner core

    Science.gov (United States)

    Monnereau, M.; Calvet, M.; Margerin, L.; Mizzon, H.; Souriau, A.

    2012-12-01

    outer core. Translation is a particular solution of Navier-Stokes equation with permeable boundary conditions, but depending on the viscosity of the solid core, modes with higher spherical harmonics degree can develop. At low viscosity, these modes can be dominant and dissipate the degree l=1 of thermal heterogeneities. Hence, a viscosity threshold may be expected below which translation cannot take place, thereby constraining the viscosity of iron at inner core conditions. Using a hybrid finite-difference spherical harmonics Navier-Stokes solver, we investigate the interplay between translation and convection in a 3D spherical model with permeable boundary conditions. Our numerical simulations show the dominance of pure translation for viscosities of the inner core higher than 5 x 1018 Pas. Translation is almost completely hampered by convective motions for viscosities lower than 1017 Pas and the phase change becomes an almost impermeable boundary. Between these values, a well developed circulation at the harmonic degree l=1 persists, but composed of localized cold downwellings, a passive upward flow taking place on the opposite side (the melting side). Such a convective structure remains compatible with the seismic asymmetry. Alboussiere, T., Deguen, R., Melzani, M., 2010. Nature 466 (7307), 744-U9. Monnereau, M., Calvet, M., Margerin, L., Souriau, A., 2010. Science 328 (5981), 1014-1017.

  1. Gauge-Invariant Formulation of Time-Dependent Configuration Interaction Singles Method

    Directory of Open Access Journals (Sweden)

    Takeshi Sato

    2018-03-01

    Full Text Available We propose a gauge-invariant formulation of the channel orbital-based time-dependent configuration interaction singles (TDCIS method [Phys. Rev. A, 74, 043420 (2006], one of the powerful ab initio methods to investigate electron dynamics in atoms and molecules subject to an external laser field. In the present formulation, we derive the equations of motion (EOMs in the velocity gauge using gauge-transformed time-dependent, not fixed, orbitals that are equivalent to the conventional EOMs in the length gauge using fixed orbitals. The new velocity-gauge EOMs avoid the use of the length-gauge dipole operator, which diverges at large distance, and allows us to exploit computational advantages of the velocity-gauge treatment over the length-gauge one, e.g., a faster convergence in simulations with intense and long-wavelength lasers, and the feasibility of exterior complex scaling as an absorbing boundary. The reformulated TDCIS method is applied to an exactly solvable model of one-dimensional helium atom in an intense laser field to numerically demonstrate the gauge invariance. We also discuss the consistent method for evaluating the time derivative of an observable, which is relevant, e.g., in simulating high-harmonic generation.

  2. Metric invariance in object recognition: a review and further evidence.

    Science.gov (United States)

    Cooper, E E; Biederman, I; Hummel, J E

    1992-06-01

    Phenomenologically, human shape recognition appears to be invariant with changes of orientation in depth (up to parts occlusion), position in the visual field, and size. Recent versions of template theories (e.g., Ullman, 1989; Lowe, 1987) assume that these invariances are achieved through the application of transformations such as rotation, translation, and scaling of the image so that it can be matched metrically to a stored template. Presumably, such transformations would require time for their execution. We describe recent priming experiments in which the effects of a prior brief presentation of an image on its subsequent recognition are assessed. The results of these experiments indicate that the invariance is complete: The magnitude of visual priming (as distinct from name or basic level concept priming) is not affected by a change in position, size, orientation in depth, or the particular lines and vertices present in the image, as long as representations of the same components can be activated. An implemented seven layer neural network model (Hummel & Biederman, 1992) that captures these fundamental properties of human object recognition is described. Given a line drawing of an object, the model activates a viewpoint-invariant structural description of the object, specifying its parts and their interrelations. Visual priming is interpreted as a change in the connection weights for the activation of: a) cells, termed geon feature assemblies (GFAs), that conjoin the output of units that represent invariant, independent properties of a single geon and its relations (such as its type, aspect ratio, relations to other geons), or b) a change in the connection weights by which several GFAs activate a cell representing an object.

  3. Algebraic solutions of shape-invariant position-dependent effective mass systems

    Energy Technology Data Exchange (ETDEWEB)

    Amir, Naila, E-mail: naila.amir@live.com, E-mail: naila.amir@seecs.edu.pk [School of Electrical Engineering and Computer Sciences, National University of Sciences and Technology, Islamabad (Pakistan); Iqbal, Shahid, E-mail: sic80@hotmail.com, E-mail: siqbal@sns.nust.edu.pk [School of Natural Sciences, National University of Sciences and Technology, Islamabad (Pakistan)

    2016-06-15

    Keeping in view the ordering ambiguity that arises due to the presence of position-dependent effective mass in the kinetic energy term of the Hamiltonian, a general scheme for obtaining algebraic solutions of quantum mechanical systems with position-dependent effective mass is discussed. We quantize the Hamiltonian of the pertaining system by using symmetric ordering of the operators concerning momentum and the spatially varying mass, initially proposed by von Roos and Lévy-Leblond. The algebraic method, used to obtain the solutions, is based on the concepts of supersymmetric quantum mechanics and shape invariance. In order to exemplify the general formalism a class of non-linear oscillators has been considered. This class includes the particular example of a one-dimensional oscillator with different position-dependent effective mass profiles. Explicit expressions for the eigenenergies and eigenfunctions in terms of generalized Hermite polynomials are presented. Moreover, properties of these modified Hermite polynomials, like existence of generating function and recurrence relations among the polynomials have also been studied. Furthermore, it has been shown that in the harmonic limit, all the results for the linear harmonic oscillator are recovered.

  4. Shift-, rotation-, and scale-invariant shape recognition system using an optical Hough transform

    Science.gov (United States)

    Schmid, Volker R.; Bader, Gerhard; Lueder, Ernst H.

    1998-02-01

    We present a hybrid shape recognition system with an optical Hough transform processor. The features of the Hough space offer a separate cancellation of distortions caused by translations and rotations. Scale invariance is also provided by suitable normalization. The proposed system extends the capabilities of Hough transform based detection from only straight lines to areas bounded by edges. A very compact optical design is achieved by a microlens array processor accepting incoherent light as direct optical input and realizing the computationally expensive connections massively parallel. Our newly developed algorithm extracts rotation and translation invariant normalized patterns of bright spots on a 2D grid. A neural network classifier maps the 2D features via a nonlinear hidden layer onto the classification output vector. We propose initialization of the connection weights according to regions of activity specifically assigned to each neuron in the hidden layer using a competitive network. The presented system is designed for industry inspection applications. Presently we have demonstrated detection of six different machined parts in real-time. Our method yields very promising detection results of more than 96% correctly classified parts.

  5. Bound state solution of Dirac equation for 3D harmonics oscillator plus trigonometric scarf noncentral potential using SUSY QM approach

    Energy Technology Data Exchange (ETDEWEB)

    Cari, C., E-mail: carinln@yahoo.com; Suparmi, A., E-mail: carinln@yahoo.com [Physics Department, Sebelas Maret University, Jl. Ir. Sutami no 36A Kentingan Surakarta 57126 (Indonesia)

    2014-09-30

    Dirac equation of 3D harmonics oscillator plus trigonometric Scarf non-central potential for spin symmetric case is solved using supersymmetric quantum mechanics approach. The Dirac equation for exact spin symmetry reduces to Schrodinger like equation. The relativistic energy and wave function for spin symmetric case are simply obtained using SUSY quantum mechanics method and idea of shape invariance.

  6. Mean anisotropy of homogeneous Gaussian random fields and anisotropic norms of linear translation-invariant operators on multidimensional integer lattices

    Directory of Open Access Journals (Sweden)

    Phil Diamond

    2003-01-01

    Full Text Available Sensitivity of output of a linear operator to its input can be quantified in various ways. In Control Theory, the input is usually interpreted as disturbance and the output is to be minimized in some sense. In stochastic worst-case design settings, the disturbance is considered random with imprecisely known probability distribution. The prior set of probability measures can be chosen so as to quantify how far the disturbance deviates from the white-noise hypothesis of Linear Quadratic Gaussian control. Such deviation can be measured by the minimal Kullback-Leibler informational divergence from the Gaussian distributions with zero mean and scalar covariance matrices. The resulting anisotropy functional is defined for finite power random vectors. Originally, anisotropy was introduced for directionally generic random vectors as the relative entropy of the normalized vector with respect to the uniform distribution on the unit sphere. The associated a-anisotropic norm of a matrix is then its maximum root mean square or average energy gain with respect to finite power or directionally generic inputs whose anisotropy is bounded above by a≥0. We give a systematic comparison of the anisotropy functionals and the associated norms. These are considered for unboundedly growing fragments of homogeneous Gaussian random fields on multidimensional integer lattice to yield mean anisotropy. Correspondingly, the anisotropic norms of finite matrices are extended to bounded linear translation invariant operators over such fields.

  7. Semileptonic (Λb → Λc eV) decay in a field theoretic quark model

    International Nuclear Information System (INIS)

    Das, R.K.; Panda, A.R.; Sahoo, R.K.; Swain, M.R.

    2002-01-01

    The semileptonic decay width of heavy baryons such as (Λ b → Λ c eV) has been estimated in the framework of a nonrelativistic field theoretic quark model where four component quark field operators along with a harmonic oscillator wave function are used to describe translationally invariant hadronic states. The present estimation does not make an explicit use of heavy quark symmetry and has a reasonable agreement with the experimentally measured decay width, polarisation ratio and form factors with the harmonic oscillator radii and quark momentum distribution inside the hadron as free parameters. (author)

  8. Invariant and Absolute Invariant Means of Double Sequences

    Directory of Open Access Journals (Sweden)

    Abdullah Alotaibi

    2012-01-01

    Full Text Available We examine some properties of the invariant mean, define the concepts of strong σ-convergence and absolute σ-convergence for double sequences, and determine the associated sublinear functionals. We also define the absolute invariant mean through which the space of absolutely σ-convergent double sequences is characterized.

  9. Adiabatic invariants in stellar dynamics. 1: Basic concepts

    Science.gov (United States)

    Weinberg, Martin D.

    1994-01-01

    The adiabatic criterion, widely used in astronomical dynamics, is based on the harmonic oscillator. It asserts that the change in action under a slowly varying perturbation is exponentially small. Recent mathematical results that precisely define the conditions for invariance show that this model does not apply in general. In particular, a slowly varying perturbation may cause significant evolution stellar dynamical systems even if its time scale is longer than any internal orbital time scale. This additional 'heating' may have serious implications for the evolution of star clusters and dwarf galaxies which are subject to long-term environmental forces. The mathematical developments leading to these results are reviewed, and the conditions for applicability to and further implications for stellar systems are discussed. Companion papers present a computational method for a general time-dependent disturbance and detailed example.

  10. Coarse-coded higher-order neural networks for PSRI object recognition. [position, scale, and rotation invariant

    Science.gov (United States)

    Spirkovska, Lilly; Reid, Max B.

    1993-01-01

    A higher-order neural network (HONN) can be designed to be invariant to changes in scale, translation, and inplane rotation. Invariances are built directly into the architecture of a HONN and do not need to be learned. Consequently, fewer training passes and a smaller training set are required to learn to distinguish between objects. The size of the input field is limited, however, because of the memory required for the large number of interconnections in a fully connected HONN. By coarse coding the input image, the input field size can be increased to allow the larger input scenes required for practical object recognition problems. We describe a coarse coding technique and present simulation results illustrating its usefulness and its limitations. Our simulations show that a third-order neural network can be trained to distinguish between two objects in a 4096 x 4096 pixel input field independent of transformations in translation, in-plane rotation, and scale in less than ten passes through the training set. Furthermore, we empirically determine the limits of the coarse coding technique in the object recognition domain.

  11. A Method for Harmonic Sources Detection based on Harmonic Distortion Power Rate

    Science.gov (United States)

    Lin, Ruixing; Xu, Lin; Zheng, Xian

    2018-03-01

    Harmonic sources detection at the point of common coupling is an essential step for harmonic contribution determination and harmonic mitigation. The harmonic distortion power rate index is proposed for harmonic source location based on IEEE Std 1459-2010 in the paper. The method only based on harmonic distortion power is not suitable when the background harmonic is large. To solve this problem, a threshold is determined by the prior information, when the harmonic distortion power is larger than the threshold, the customer side is considered as the main harmonic source, otherwise, the utility side is. A simple model of public power system was built in MATLAB/Simulink and field test results of typical harmonic loads verified the effectiveness of proposed method.

  12. The Harmonic Potential Theorem for a Quantum System with Time-Dependent Effective Mass

    International Nuclear Information System (INIS)

    Lai Meng-Yun; Xiao Duan-Liang; Pan Xiao-Yin

    2015-01-01

    We investigate the many-body wave function of a quantum system with time-dependent effective mass, confined by a harmonic potential with time-dependent frequency, and perturbed by a time-dependent spatially homogeneous electric field. It is found that the wave function is comprised of a phase factor times the solution to the unperturbed time-dependent Schrödinger equation with the latter being translated by a time-dependent value that satisfies the classical driven equation of motion. The wave function reduces to that of the harmonic potential theorem wave function when both the effective mass and frequency are static. An example of application is also given. (paper)

  13. Invariant and semi-invariant probabilistic normed spaces

    Energy Technology Data Exchange (ETDEWEB)

    Ghaemi, M.B. [School of Mathematics Iran, University of Science and Technology, Narmak, Tehran (Iran, Islamic Republic of)], E-mail: mghaemi@iust.ac.ir; Lafuerza-Guillen, B. [Departamento de Estadistica y Matematica Aplicada, Universidad de Almeria, Almeria E-04120 (Spain)], E-mail: blafuerz@ual.es; Saiedinezhad, S. [School of Mathematics Iran, University of Science and Technology, Narmak, Tehran (Iran, Islamic Republic of)], E-mail: ssaiedinezhad@yahoo.com

    2009-10-15

    Probabilistic metric spaces were introduced by Karl Menger. Alsina, Schweizer and Sklar gave a general definition of probabilistic normed space based on the definition of Menger . We introduce the concept of semi-invariance among the PN spaces. In this paper we will find a sufficient condition for some PN spaces to be semi-invariant. We will show that PN spaces are normal spaces. Urysohn's lemma, and Tietze extension theorem for them are proved.

  14. Some properties for the intersection of Moran sets with their translates

    International Nuclear Information System (INIS)

    Dai Meifeng; Tian Lixin

    2007-01-01

    Motivated by Mandelbrot's idea of referring to lacunarity of Cantor sets in terms of departure from translation invariance, Nekka and Li studied the properties of these translation sets and showed how they can be used for the classification purpose. In this paper, we pursue this study on a class of Moran sets with their rational translates. We also get the fractal structure of intersection I(x, y) of a class of Moran sets with their rational translates, and the formula of the box-counting dimension. We find that the Hausdorff measures of these sets form a discrete spectrum whose non-zero values come only from shifting vector with the expansion in fraction of (x, y). Concretely, when (x, y) has a finite expansion in fraction, a very brief calculation formula of the measure is given

  15. An Efficient Translation of Timed-Arc Petri Nets to Networks of Timed Automata

    DEFF Research Database (Denmark)

    Byg, Joakim; Jørgensen, Kenneth Yrke; Srba, Jiri

    2009-01-01

    Bounded timed-arc Petri nets with read-arcs were recently proven equivalent to networks of timed automata, though the Petri net model cannot express urgent behaviour and the described mutual trans- lations are rather inefficient. We propose an extension of timed-arc Petri nets with invariants...... to enforce urgency and with transport arcs to generalise the read-arcs. We also describe a novel translation from the extended timed-arc Petri net model to networks of timed automata. The translation is implemented in the tool TAPAAL and it uses UPPAAL as the verification engine. Our experiments confirm...... the efficiency of the translation and in some cases the translated models verify significantly faster than the native UPPAAL models do....

  16. Properties of invariant modelling and invariant glueing of vector fields

    International Nuclear Information System (INIS)

    Petukhov, V.R.

    1987-01-01

    Invariant modelling and invariant glueing of both continuous (rates and accelerations) and descrete vector fields, gradient and divergence cases are considered. The following appendices are discussed: vector fields in crystals, crystal disclinations, topological charges and their fields

  17. One dimension harmonic oscillator

    International Nuclear Information System (INIS)

    Cohen-Tannoudji, Claude; Diu, Bernard; Laloe, Franck.

    1977-01-01

    The importance of harmonic oscillator in classical and quantum physics, eigenvalues and eigenstates of hamiltonian operator are discussed. In complement are presented: study of some physical examples of harmonic oscillators; study of stationnary states in the /x> representation; Hermite polynomials; resolution of eigenvalue equation of harmonic oscillator by polynomial method; isotope harmonic oscillator with three dimensions; charged harmonic oscillator in uniform electric field; quasi classical coherent states of harmonic oscillator; eigenmodes of vibration of two coupled harmonic oscillators; vibration modus of a continuous physical system (application to radiation: photons); vibration modus of indefinite linear chain of coupled harmonic oscillators (phonons); one-dimensional harmonic oscillator in thermodynamic equilibrium at temperature T [fr

  18. Crypto-harmonic oscillator in higher dimensions: classical and quantum aspects

    International Nuclear Information System (INIS)

    Ghosh, Subir; Majhi, Bibhas Ranjan

    2008-01-01

    We study complexified harmonic oscillator models in two and three dimensions. Our work is a generalization of the work of Smilga (2007 Preprint 0706.4064 (J. Phys. A: Math. Theor. at press)) who initiated the study of these Crypto-gauge invariant models that can be related to PT-symmetric models. We show that rotational symmetry in higher spatial dimensions naturally introduces more constraints (in contrast to Smilga (2007 Preprint 0706.4064 (J. Phys. A: Math. Theor. at press)) where one deals with a single constraint) with a much richer constraint structure. Some common as well as distinct features in the study of the same Crypto-oscillator in different dimensions are revealed. We also quantize the two dimensional Crypto-oscillator

  19. HARMONIC DRIVE SELECTION

    Directory of Open Access Journals (Sweden)

    Piotr FOLĘGA

    2014-03-01

    Full Text Available The variety of types and sizes currently in production harmonic drive is a problem in their rational choice. Properly selected harmonic drive must meet certain requirements during operation, and achieve the anticipated service life. The paper discusses the problems associated with the selection of the harmonic drive. It also presents the algorithm correct choice of harmonic drive. The main objective of this study was to develop a computer program that allows the correct choice of harmonic drive by developed algorithm.

  20. Comparison between length and velocity gauges in quantum simulations of high-order harmonic generation

    DEFF Research Database (Denmark)

    Han, Yong-Chang; Madsen, Lars Bojer

    2010-01-01

    , and acceleration forms, and two gauges, the length and velocity gauges. The relationships among the harmonic phases obtained from the Fourier transform of the three forms are discussed in detail. Although quantum mechanics is gauge invariant and the length and velocity gauges should give identical results, the two...... gauges present different computation efficiencies, which reflects the different behavior in terms of characteristics of the physical couplings acting in the two gauges. In order to obtain convergence, more angular momentum states are required in the length gauge, while more grid points are required...

  1. On translational superfluidity and the Landau criterion for Bose gases in the Gross-Pitaevski limit

    International Nuclear Information System (INIS)

    Wreszinski, Walter F

    2008-01-01

    The two-fluid and Landau criteria for superfluidity are compared for trapped Bose gases. While the two-fluid criterion predicts translational superfluidity, it is suggested, on the basis of the homogeneous Gross-Pitaevski limit, that a necessary part of Landau's criterion, adequate for non-translationally invariant systems, does not hold for trapped Bose gases in the GP limit. As a consequence, if the compressibility is detected to be very large (infinite by experimental standards), the two-fluid criterion is seen to be the relevant one in case the system is a translational superfluid, while the Landau criterion is the relevant one if translational superfluidity is absent. (fast track communication)

  2. Static harmonization of dynamically harmonized Fourier transform ion cyclotron resonance cell.

    Science.gov (United States)

    Zhdanova, Ekaterina; Kostyukevich, Yury; Nikolaev, Eugene

    2017-08-01

    Static harmonization in the Fourier transform ion cyclotron resonance cell improves the resolving power of the cell and prevents dephasing of the ion cloud in the case of any trajectory of the charged particle, not necessarily axisymmetric cyclotron (as opposed to dynamic harmonization). We reveal that the Fourier transform ion cyclotron resonance cell with dynamic harmonization (paracell) is proved to be statically harmonized. The volume of the statically harmonized potential distribution increases with an increase in the number of trap segments.

  3. Remarks on the E-invariant and the Casson invariant

    International Nuclear Information System (INIS)

    Seade, J.

    1991-08-01

    In this work a framed manifold means a pair (M,F) consisting of a closed C ∞ , stably parallelizable manifold M, together with a trivialization F of its stable tangent bundle. The purpose of this work is to understand and determine in higher dimensions the invariant h(M,F) appearing in connection with the Adams e-invariants. 28 refs

  4. Some properties for the intersection of Moran sets with their translates

    Energy Technology Data Exchange (ETDEWEB)

    Dai Meifeng [Nonlinear Scientific Research Center, Faculty of Science, Jiangsu University, Zhenjiang 212013 (China)]. E-mail: daimf@ujs.edu.cn; Tian Lixin [Nonlinear Scientific Research Center, Faculty of Science, Jiangsu University, Zhenjiang 212013 (China)]. E-mail: tianlx@ujs.edu.cn

    2007-02-15

    Motivated by Mandelbrot's idea of referring to lacunarity of Cantor sets in terms of departure from translation invariance, Nekka and Li studied the properties of these translation sets and showed how they can be used for the classification purpose. In this paper, we pursue this study on a class of Moran sets with their rational translates. We also get the fractal structure of intersection I(x, y) of a class of Moran sets with their rational translates, and the formula of the box-counting dimension. We find that the Hausdorff measures of these sets form a discrete spectrum whose non-zero values come only from shifting vector with the expansion in fraction of (x, y). Concretely, when (x, y) has a finite expansion in fraction, a very brief calculation formula of the measure is given.

  5. Invariants of generalized Lie algebras

    International Nuclear Information System (INIS)

    Agrawala, V.K.

    1981-01-01

    Invariants and invariant multilinear forms are defined for generalized Lie algebras with arbitrary grading and commutation factor. Explicit constructions of invariants and vector operators are given by contracting invariant forms with basic elements of the generalized Lie algebra. The use of the matrix of a linear map between graded vector spaces is emphasized. With the help of this matrix, the concept of graded trace of a linear operator is introduced, which is a rich source of multilinear forms of degree zero. To illustrate the use of invariants, a characteristic identity similar to that of Green is derived and a few Racah coefficients are evaluated in terms of invariants

  6. Gauge invariance and Weyl-polymer quantization

    CERN Document Server

    Strocchi, Franco

    2016-01-01

    The book gives an introduction to Weyl non-regular quantization suitable for the description of physically interesting quantum systems, where the traditional Dirac-Heisenberg quantization is not applicable.  The latter implicitly assumes that the canonical variables describe observables, entailing necessarily the regularity of their exponentials (Weyl operators). However, in physically interesting cases -- typically in the presence of a gauge symmetry -- non-observable canonical variables are introduced for the description of the states, namely of the relevant representations of the observable algebra. In general, a gauge invariant ground state defines a non-regular representation of the gauge dependent Weyl operators, providing a mathematically consistent treatment of familiar quantum systems -- such as the electron in a periodic potential (Bloch electron), the Quantum Hall electron, or the quantum particle on a circle -- where the gauge transformations are, respectively, the lattice translations, the magne...

  7. On density of the Vassiliev invariants

    DEFF Research Database (Denmark)

    Røgen, Peter

    1999-01-01

    The main result is that the Vassiliev invariants are dense in the set of numeric knot invariants if and only if they separate knots.Keywords: Knots, Vassiliev invariants, separation, density, torus knots......The main result is that the Vassiliev invariants are dense in the set of numeric knot invariants if and only if they separate knots.Keywords: Knots, Vassiliev invariants, separation, density, torus knots...

  8. Einstein causal quantum fields on lattices with discrete Lorentz invariance

    International Nuclear Information System (INIS)

    Baumgaertel, H.

    1986-01-01

    Results on rigorous construction of quantum fields on the hypercubic lattice Z 4 considered as a lattice in the Minkowski space R 4 are presented. Two associated fields are constructed: The first one having on the lattice points of Z 4 is causal and Poincare invariant in the discrete sense. The second one is an interpolating field over R 4 which is pointlike, translationally covariant and spectral in such a manner that the 'real' lattices field is the restriction of the interpolating field to Z 4 . Furthermore, results on a rigorous perturbation theory of such fields are mentioned

  9. An improved filtered spherical harmonic method for transport calculations

    International Nuclear Information System (INIS)

    Ahrens, C.; Merton, S.

    2013-01-01

    Motivated by the work of R. G. McClarren, C. D. Hauck, and R. B. Lowrie on a filtered spherical harmonic method, we present a new filter for such numerical approximations to the multi-dimensional transport equation. In several test problems, we demonstrate that the new filter produces results with significantly less Gibbs phenomena than the filter used by McClarren, Hauck and Lowrie. This reduction in Gibbs phenomena translates into propagation speeds that more closely match the correct propagation speed and solutions that have fewer regions where the scalar flux is negative. (authors)

  10. 1+1+2 gravitational perturbations on LRS class II spacetimes: II. Decoupling gravito-electromagnetic 2-vector and scalar harmonic amplitudes

    International Nuclear Information System (INIS)

    Burston, R B

    2008-01-01

    This is the second paper in a series that considers first-order, gauge-invariant and covariant, gravitational perturbations to locally rotationally symmetric (LRS) class II vacuum spacetimes. Focusing on the 1+1+2 gravito-electromagnetic (GEM) formalism, the first paper used linear algebra techniques to derive four decoupled equations that govern four specific combinations of the GEM 2-tensor harmonic amplitudes. This paper completes the decoupling of the 1+1+2 GEM system by showing how to derive seven new decoupled quantities. Four of these arise when considering the GEM 2-vector harmonic amplitudes and it is found that decoupling is achieved by combining these with the (2/3-sheet) shear 2-tensor harmonic amplitudes. The remaining three arise from the 1+1+2 GEM scalars. Two of which concern the 2-gradient of the gravito-electric scalar that must also be combined with shear 2-tensor amplitudes, whereas the other involves the gravito-magnetic scalar only

  11. Cohomological invariants in Galois cohomology

    CERN Document Server

    Garibaldi, Skip; Serre, Jean Pierre

    2003-01-01

    This volume is concerned with algebraic invariants, such as the Stiefel-Whitney classes of quadratic forms (with values in Galois cohomology mod 2) and the trace form of �tale algebras (with values in the Witt ring). The invariants are analogues for Galois cohomology of the characteristic classes of topology. Historically, one of the first examples of cohomological invariants of the type considered here was the Hasse-Witt invariant of quadratic forms. The first part classifies such invariants in several cases. A principal tool is the notion of versal torsor, which is an analogue of the universal bundle in topology. The second part gives Rost's determination of the invariants of G-torsors with values in H^3(\\mathbb{Q}/\\mathbb{Z}(2)), when G is a semisimple, simply connected, linear group. This part gives detailed proofs of the existence and basic properties of the Rost invariant. This is the first time that most of this material appears in print.

  12. Ab initio optimization principle for the ground states of translationally invariant strongly correlated quantum lattice models.

    Science.gov (United States)

    Ran, Shi-Ju

    2016-05-01

    In this work, a simple and fundamental numeric scheme dubbed as ab initio optimization principle (AOP) is proposed for the ground states of translational invariant strongly correlated quantum lattice models. The idea is to transform a nondeterministic-polynomial-hard ground-state simulation with infinite degrees of freedom into a single optimization problem of a local function with finite number of physical and ancillary degrees of freedom. This work contributes mainly in the following aspects: (1) AOP provides a simple and efficient scheme to simulate the ground state by solving a local optimization problem. Its solution contains two kinds of boundary states, one of which play the role of the entanglement bath that mimics the interactions between a supercell and the infinite environment, and the other gives the ground state in a tensor network (TN) form. (2) In the sense of TN, a novel decomposition named as tensor ring decomposition (TRD) is proposed to implement AOP. Instead of following the contraction-truncation scheme used by many existing TN-based algorithms, TRD solves the contraction of a uniform TN in an opposite way by encoding the contraction in a set of self-consistent equations that automatically reconstruct the whole TN, making the simulation simple and unified; (3) AOP inherits and develops the ideas of different well-established methods, including the density matrix renormalization group (DMRG), infinite time-evolving block decimation (iTEBD), network contractor dynamics, density matrix embedding theory, etc., providing a unified perspective that is previously missing in this fields. (4) AOP as well as TRD give novel implications to existing TN-based algorithms: A modified iTEBD is suggested and the two-dimensional (2D) AOP is argued to be an intrinsic 2D extension of DMRG that is based on infinite projected entangled pair state. This paper is focused on one-dimensional quantum models to present AOP. The benchmark is given on a transverse Ising

  13. Cosmological disformal invariance

    Energy Technology Data Exchange (ETDEWEB)

    Domènech, Guillem; Sasaki, Misao [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan); Naruko, Atsushi, E-mail: guillem.domenech@yukawa.kyoto-u.ac.jp, E-mail: naruko@th.phys.titech.ac.jp, E-mail: misao@yukawa.kyoto-u.ac.jp [Department of Physics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551 (Japan)

    2015-10-01

    The invariance of physical observables under disformal transformations is considered. It is known that conformal transformations leave physical observables invariant. However, whether it is true for disformal transformations is still an open question. In this paper, it is shown that a pure disformal transformation without any conformal factor is equivalent to rescaling the time coordinate. Since this rescaling applies equally to all the physical quantities, physics must be invariant under a disformal transformation, that is, neither causal structure, propagation speed nor any other property of the fields are affected by a disformal transformation itself. This fact is presented at the action level for gravitational and matter fields and it is illustrated with some examples of observable quantities. We also find the physical invariance for cosmological perturbations at linear and high orders in perturbation, extending previous studies. Finally, a comparison with Horndeski and beyond Horndeski theories under a disformal transformation is made.

  14. The Ptolemaen Musica. Introduction, Russian translation and notes

    OpenAIRE

    Lyudmila V. Alexandrova

    2012-01-01

    An often neglected small treatise, conventionally entitled The Ptolemaean ‘Musica’ (apparently dated to the Late Antiquity), is translated into the Russian for the first time. The work is a compilation of various sources, which include the Aristoxenian rhythmics, the Neopythagorean numerology and harmonics as well as the Ptolemaean geocentric astrology. According to its author the planetary cycles in their unity are closely related to the musical proportions. This approach further allows corr...

  15. Donaldson invariants in algebraic geometry

    International Nuclear Information System (INIS)

    Goettsche, L.

    2000-01-01

    In these lectures I want to give an introduction to the relation of Donaldson invariants with algebraic geometry: Donaldson invariants are differentiable invariants of smooth compact 4-manifolds X, defined via moduli spaces of anti-self-dual connections. If X is an algebraic surface, then these moduli spaces can for a suitable choice of the metric be identified with moduli spaces of stable vector bundles on X. This can be used to compute Donaldson invariants via methods of algebraic geometry and has led to a lot of activity on moduli spaces of vector bundles and coherent sheaves on algebraic surfaces. We will first recall the definition of the Donaldson invariants via gauge theory. Then we will show the relation between moduli spaces of anti-self-dual connections and moduli spaces of vector bundles on algebraic surfaces, and how this makes it possible to compute Donaldson invariants via algebraic geometry methods. Finally we concentrate on the case that the number b + of positive eigenvalues of the intersection form on the second homology of the 4-manifold is 1. In this case the Donaldson invariants depend on the metric (or in the algebraic geometric case on the polarization) via a system of walls and chambers. We will study the change of the invariants under wall-crossing, and use this in particular to compute the Donaldson invariants of rational algebraic surfaces. (author)

  16. Moment invariants for particle beams

    International Nuclear Information System (INIS)

    Lysenko, W.P.; Overley, M.S.

    1988-01-01

    The rms emittance is a certain function of second moments in 2-D phase space. It is preserved for linear uncoupled (1-D) motion. In this paper, the authors present new functions of moments that are invariants for coupled motion. These invariants were computed symbolically using a computer algebra system. Possible applications for these invariants are discussed. Also, approximate moment invariants for nonlinear motion are presented

  17. World-line quantization of a reciprocally invariant system

    International Nuclear Information System (INIS)

    Govaerts, Jan; Jarvis, Peter D; Morgan, Stuart O; Low, Stephen G

    2007-01-01

    We present the world-line quantization of a system invariant under the symmetries of reciprocal relativity (pseudo-unitary transformations on 'phase-space coordinates' (x μ (τ), p μ (τ)) which preserve the Minkowski metric and the symplectic form, and global shifts in these coordinates, together with coordinate-dependent transformations of an additional compact phase coordinate, θ(τ)). The action is that of free motion over the corresponding Weyl-Heisenberg group. Imposition of the first class constraint, the generator of local time reparametrizations, on physical states enforces identification of the world-line cosmological constant with a fixed value of the quadratic Casimir of the quaplectic symmetry group Q(D-1,1)≅U(D-1,1)xH(D), the semi-direct product of the pseudo-unitary group with the Weyl-Heisenberg group (the central extension of the global translation group, with central extension associated with the phase variable θ(τ)). The spacetime spectrum of physical states is identified. Even though for an appropriate range of values the restriction enforced by the cosmological constant projects out negative norm states from the physical gauge invariant spectrum, leaving over spin zero states only, in this purely bosonic setting the mass-squared spectrum is continuous over the entire real line and thus includes a tachyonic branch as well

  18. Invariant visual object and face recognition: neural and computational bases, and a model, VisNet

    Directory of Open Access Journals (Sweden)

    Edmund T eRolls

    2012-06-01

    Full Text Available Neurophysiological evidence for invariant representations of objects and faces in the primate inferior temporal visual cortex is described. Then a computational approach to how invariant representations are formed in the brain is described that builds on the neurophysiology. A feature hierarchy modelin which invariant representations can be built by self-organizing learning based on the temporal and spatialstatistics of the visual input produced by objects as they transform in the world is described. VisNet can use temporal continuity in an associativesynaptic learning rule with a short term memory trace, and/or it can use spatialcontinuity in Continuous Spatial Transformation learning which does not require a temporal trace. The model of visual processing in theventral cortical stream can build representations of objects that are invariant withrespect to translation, view, size, and also lighting. The modelhas been extended to provide an account of invariant representations in the dorsal visualsystem of the global motion produced by objects such as looming, rotation, and objectbased movement. The model has been extended to incorporate top-down feedback connectionsto model the control of attention by biased competition in for example spatial and objectsearch tasks. The model has also been extended to account for how the visual system canselect single objects in complex visual scenes, and how multiple objects can berepresented in a scene. The model has also been extended to provide, with an additional layer, for the development of representations of spatial scenes of the type found in the hippocampus.

  19. On the simplest scale invariant tree-tensor-states preserving the quantum symmetries of the antiferromagnetic XXZ chain

    Science.gov (United States)

    Monthus, Cécile

    2018-03-01

    For the line of critical antiferromagnetic XXZ chains with coupling J  >  0 and anisotropy 0<Δ ≤slant 1 , we describe how the block-spin renormalization procedure preserving the SU q (2) symmetry introduced by Martin-Delgado and Sierra (1996 Phys. Rev. Lett. 76 1146) can be reformulated as the translation-invariant scale-invariant tree-tensor-state of the smallest dimension that is compatible with the quantum symmetries of the model. The properties of this tree-tensor-state are studied in detail via the ground-state energy, the magnetizations and the staggered magnetizations, as well as the Shannon-Renyi entropies characterizing the multifractality of the components of the wave function.

  20. Feedback-Driven Dynamic Invariant Discovery

    Science.gov (United States)

    Zhang, Lingming; Yang, Guowei; Rungta, Neha S.; Person, Suzette; Khurshid, Sarfraz

    2014-01-01

    Program invariants can help software developers identify program properties that must be preserved as the software evolves, however, formulating correct invariants can be challenging. In this work, we introduce iDiscovery, a technique which leverages symbolic execution to improve the quality of dynamically discovered invariants computed by Daikon. Candidate invariants generated by Daikon are synthesized into assertions and instrumented onto the program. The instrumented code is executed symbolically to generate new test cases that are fed back to Daikon to help further re ne the set of candidate invariants. This feedback loop is executed until a x-point is reached. To mitigate the cost of symbolic execution, we present optimizations to prune the symbolic state space and to reduce the complexity of the generated path conditions. We also leverage recent advances in constraint solution reuse techniques to avoid computing results for the same constraints across iterations. Experimental results show that iDiscovery converges to a set of higher quality invariants compared to the initial set of candidate invariants in a small number of iterations.

  1. Relating measurement invariance, cross-level invariance, and multilevel reliability

    OpenAIRE

    Jak, S.; Jorgensen, T.D.

    2017-01-01

    Data often have a nested, multilevel structure, for example when data are collected from children in classrooms. This kind of data complicate the evaluation of reliability and measurement invariance, because several properties can be evaluated at both the individual level and the cluster level, as well as across levels. For example, cross-level invariance implies equal factor loadings across levels, which is needed to give latent variables at the two levels a similar interpretation. Reliabili...

  2. Foliated vector fields, the Godbillon-Vey invariant and the invariant I(F)

    International Nuclear Information System (INIS)

    Banyaga, A.; Landa, Alain Musesa

    2004-03-01

    We prove that if the invariant I(F) constructed in 'An invariant of contact structures and transversally oriented foliations', Ann. Global Analysis and Geom. 14(1996) 427-441 (A. Banyaga), through the Lie algebra of infinitesimal automorphisms of transversally oriented foliations F is trivial, then the Godbillon-Vey invariant GV (F) of F is also trivial, but that the converse is not true. For codimension one foliations, the restrictions I τ , (F) of I(F) to the Lie subalgebra of vector fields tangent to the leaves is the Reeb class R(F) of F. We also prove that if there exists a foliated vector field which is everywhere transverse to a codimension one foliation, then the Reeb class R(F) is trivial, hence so is the GV(F) invariant. (author)

  3. Gauge invariance rediscovered

    International Nuclear Information System (INIS)

    Moriyasu, K.

    1978-01-01

    A pedagogical approach to gauge invariance is presented which is based on the analogy between gauge transformations and relativity. By using the concept of an internal space, purely geometrical arguments are used to teach the physical ideas behind gauge invariance. Many of the results are applicable to general gauge theories

  4. Translation and cross-cultural adaptation of the Sexual Function Questionnaire (SFQ) into Brazilian Portuguese.

    Science.gov (United States)

    Lapa, Clara de Oliveira; Rocha, Gibsi Possapp; Marques, Tiago Reis; Howes, Oliver; Smith, Shubulade; Monteiro, Ricardo Tavares; Zorzetti, Roberta; Spanemberg, Lucas

    2017-01-01

    Sexual dysfunction is common in patients with psychotic illness. This article describes the translation and cross-cultural adaptation of the Sexual Function Questionnaire (SFQ) into Brazilian Portuguese. The translation and cross-cultural adaptation followed the guidelines for adapting self-report instruments proposed by the Task Force of the International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Briefly, ISPOR steps include: preparation, forward translation, reconciliation, back-translation, back-translation review, harmonization, cognitive debriefing, review of cognitive debriefing and finalization, before proofreading and final version. The original authors authorized the translation and participated in the study. There was good agreement between translations and between the back-translation and the original English version of the SFQ. The final version was prepared with certificated evaluators in the original language and in Portuguese. Few changes were necessary to the new version in Portuguese. The translated and adapted Brazilian Portuguese version of the SFQ is reliable and semantically equivalent to the original version. Studies on psychotropic-related sexual dysfunction may now test the validity of the instrument and can investigate sexual dysfunction in Portuguese-speaking patients.

  5. Harmonics and energy management

    International Nuclear Information System (INIS)

    Andresen, M.

    1993-01-01

    To summarize what this paper has presented: Voltage and current non-sinusoidal wave shapes exist in our power system. These harmonics result from the prolific use of non-linear loads. The use of these types of loads is increasing dramatically, partly due to the push to implement energy management techniques involving harmonic generating equipment. Harmonic analysis can identify specific harmonics, their frequency, magnitude, and phase shift referenced to the fundamental. Harmonic distortion forces the use of true RMS multimeters for measurement accuracy. High levels of neutral current and N-G voltages are now possible. Transformers may overheat and fail even though they are below rated capacity. Low power factors due to harmonics cannot be corrected by the installation of capacitors, and knowledge of the fundamental VARs or the displacement power factor is needed to use capacitors alone for power factor correction. The harmonic related problems presented are by no means an exhaustive list. Many other concerns arise when harmonics are involved in the power system. The critical issue behind these problems is that many of the devices being recommended from an energy management point of view are contributing to the harmonic levels, and thus to the potential for harmonic problems. We can no longer live in the sinusoidal mentality if we are to be effective in saving energy and reducing costs

  6. Link invariants from finite Coxeter racks

    OpenAIRE

    Nelson, Sam; Wieghard, Ryan

    2008-01-01

    We study Coxeter racks over $\\mathbb{Z}_n$ and the knot and link invariants they define. We exploit the module structure of these racks to enhance the rack counting invariants and give examples showing that these enhanced invariants are stronger than the unenhanced rack counting invariants.

  7. Magnetic translation groups in an n-dimensional torus and their representations

    International Nuclear Information System (INIS)

    Tanimura, Shogo

    2002-01-01

    A charged particle in a uniform magnetic field in a two-dimensional torus has a discrete noncommutative translation symmetry instead of a continuous commutative translation symmetry. We study topology and symmetry of a particle in a magnetic field in a torus of arbitrary dimensions. The magnetic translation group (MTG) is defined as a group of translations that leave the gauge field invariant. We show that the MTG in an n-dimensional torus is isomorphic to a central extension of a cyclic group Z ν 1 x···xZ ν 2l xT m by U(1) with 2l+m=n. We construct and classify irreducible unitary representations of the MTG in a three-torus and apply the representation theory to three examples. We briefly describe a representation theory for a general n-torus. The MTG in an n-torus can be regarded as a generalization of the so-called noncommutative torus

  8. Lorentz invariance with an invariant energy scale.

    Science.gov (United States)

    Magueijo, João; Smolin, Lee

    2002-05-13

    We propose a modification of special relativity in which a physical energy, which may be the Planck energy, joins the speed of light as an invariant, in spite of a complete relativity of inertial frames and agreement with Einstein's theory at low energies. This is accomplished by a nonlinear modification of the action of the Lorentz group on momentum space, generated by adding a dilatation to each boost in such a way that the Planck energy remains invariant. The associated algebra has unmodified structure constants. We also discuss the resulting modifications of field theory and suggest a modification of the equivalence principle which determines how the new theory is embedded in general relativity.

  9. Many-Body Localization Dynamics from Gauge Invariance

    Science.gov (United States)

    Brenes, Marlon; Dalmonte, Marcello; Heyl, Markus; Scardicchio, Antonello

    2018-01-01

    We show how lattice gauge theories can display many-body localization dynamics in the absence of disorder. Our starting point is the observation that, for some generic translationally invariant states, the Gauss law effectively induces a dynamics which can be described as a disorder average over gauge superselection sectors. We carry out extensive exact simulations on the real-time dynamics of a lattice Schwinger model, describing the coupling between U(1) gauge fields and staggered fermions. Our results show how memory effects and slow, double-logarithmic entanglement growth are present in a broad regime of parameters—in particular, for sufficiently large interactions. These findings are immediately relevant to cold atoms and trapped ion experiments realizing dynamical gauge fields and suggest a new and universal link between confinement and entanglement dynamics in the many-body localized phase of lattice models.

  10. Atto second high harmonic sources

    International Nuclear Information System (INIS)

    Nam, Chang Hee

    2008-01-01

    High harmonic generation is a powerful method to produce attosecond pulses. The high harmonics, emitted from atoms driven by intense femtosecond laser pulses, can from an attosecond pulse train with equally spaced harmonic spectrum or an isolated single attosecond pulse with broad continuum spectrum. Using high power femtosecond laser technology developed at CXRC, we have investigated the spectral and temporal characteristics of high harmonics obtained from gaseous atoms. The spectral structure of harmonics could be manipulated by controlling laser chirp, and continuous tuning of harmonic wavelengths was achieved. For rigorous temporal characterization of attosecond harmonic pulses a cross correlation technique was applied to the photoionization process by harmonic and IR femtosecond pulses and achieved the complete temporal reconstruction of attosecond pulse trains, revealing the detailed temporal structure of the attosecond chirp by material dispersion. The duration of attosecond high harmonic pulses is usually much longer than that of transform limited pulses due to the inherent chirp originating from the harmonic generation process. The attosecond chirp compensation in the harmonic generation medium itself was demonstrated, thereby realizing the generation of near transform limited attosecond pulses. The interference of attosecond electron wave packets, generated from an atom by attosecond harmonic pulses, will be also presented

  11. The Dynamical Invariant of Open Quantum System

    OpenAIRE

    Wu, S. L.; Zhang, X. Y.; Yi, X. X.

    2015-01-01

    The dynamical invariant, whose expectation value is constant, is generalized to open quantum system. The evolution equation of dynamical invariant (the dynamical invariant condition) is presented for Markovian dynamics. Different with the dynamical invariant for the closed quantum system, the evolution of the dynamical invariant for the open quantum system is no longer unitary, and the eigenvalues of it are time-dependent. Since any hermitian operator fulfilling dynamical invariant condition ...

  12. Synthesizing Modular Invariants for Synchronous Code

    Directory of Open Access Journals (Sweden)

    Pierre-Loic Garoche

    2014-12-01

    Full Text Available In this paper, we explore different techniques to synthesize modular invariants for synchronous code encoded as Horn clauses. Modular invariants are a set of formulas that characterizes the validity of predicates. They are very useful for different aspects of analysis, synthesis, testing and program transformation. We describe two techniques to generate modular invariants for code written in the synchronous dataflow language Lustre. The first technique directly encodes the synchronous code in a modular fashion. While in the second technique, we synthesize modular invariants starting from a monolithic invariant. Both techniques, take advantage of analysis techniques based on property-directed reachability. We also describe a technique to minimize the synthesized invariants.

  13. The Ptolemaen Musica. Introduction, Russian translation and notes

    Directory of Open Access Journals (Sweden)

    Lyudmila V. Alexandrova

    2012-01-01

    Full Text Available An often neglected small treatise, conventionally entitled The Ptolemaean ‘Musica’ (apparently dated to the Late Antiquity, is translated into the Russian for the first time. The work is a compilation of various sources, which include the Aristoxenian rhythmics, the Neopythagorean numerology and harmonics as well as the Ptolemaean geocentric astrology. According to its author the planetary cycles in their unity are closely related to the musical proportions. This approach further allows correlating the planetary rhythms with the musical rhythmics.

  14. Hidden scale invariance of metals

    DEFF Research Database (Denmark)

    Hummel, Felix; Kresse, Georg; Dyre, Jeppe C.

    2015-01-01

    Density functional theory (DFT) calculations of 58 liquid elements at their triple point show that most metals exhibit near proportionality between the thermal fluctuations of the virial and the potential energy in the isochoric ensemble. This demonstrates a general “hidden” scale invariance...... of metals making the condensed part of the thermodynamic phase diagram effectively one dimensional with respect to structure and dynamics. DFT computed density scaling exponents, related to the Grüneisen parameter, are in good agreement with experimental values for the 16 elements where reliable data were...... available. Hidden scale invariance is demonstrated in detail for magnesium by showing invariance of structure and dynamics. Computed melting curves of period three metals follow curves with invariance (isomorphs). The experimental structure factor of magnesium is predicted by assuming scale invariant...

  15. Invariant Visual Object and Face Recognition: Neural and Computational Bases, and a Model, VisNet.

    Science.gov (United States)

    Rolls, Edmund T

    2012-01-01

    Neurophysiological evidence for invariant representations of objects and faces in the primate inferior temporal visual cortex is described. Then a computational approach to how invariant representations are formed in the brain is described that builds on the neurophysiology. A feature hierarchy model in which invariant representations can be built by self-organizing learning based on the temporal and spatial statistics of the visual input produced by objects as they transform in the world is described. VisNet can use temporal continuity in an associative synaptic learning rule with a short-term memory trace, and/or it can use spatial continuity in continuous spatial transformation learning which does not require a temporal trace. The model of visual processing in the ventral cortical stream can build representations of objects that are invariant with respect to translation, view, size, and also lighting. The model has been extended to provide an account of invariant representations in the dorsal visual system of the global motion produced by objects such as looming, rotation, and object-based movement. The model has been extended to incorporate top-down feedback connections to model the control of attention by biased competition in, for example, spatial and object search tasks. The approach has also been extended to account for how the visual system can select single objects in complex visual scenes, and how multiple objects can be represented in a scene. The approach has also been extended to provide, with an additional layer, for the development of representations of spatial scenes of the type found in the hippocampus.

  16. Reducing Lookups for Invariant Checking

    DEFF Research Database (Denmark)

    Thomsen, Jakob Grauenkjær; Clausen, Christian; Andersen, Kristoffer Just

    2013-01-01

    This paper helps reduce the cost of invariant checking in cases where access to data is expensive. Assume that a set of variables satisfy a given invariant and a request is received to update a subset of them. We reduce the set of variables to inspect, in order to verify that the invariant is still...

  17. A renormalization group invariant line and an infrared attractive top-Higgs mass relation

    International Nuclear Information System (INIS)

    Schrempp, B.; Schrempp, F.

    1992-10-01

    The renormalization group equations (RGE's) of the Standard Model at one loop in terms of the gauge couplings g 1,2,3, the top Yukawa coupling g t and the scalar self coupling λ are reexamined. For g 1,2 = 0, the general solution of the RGE's is obtained analytically in terms of an interesting special solution for the ratio λ/g 2 t as function of the ratio g 2 t /g 2 3 which i) represents an RG invariant line which is strongly infrared attractive ii) interpolates all known quasi-fixed points and iii) is finite for large g 2 t /g 2 3 (ultraviolet limit). All essential features survive for g 1,2 ≠ 0. The invariant line translates into an infrared attractive top-Higgs mass relation, which e.g. associates to the top masses m t = 130/145/200 GeV the Higgs masses m H ≅ 68-90/103-115/207 GeV, respectively. (orig.)

  18. High-harmonic spectroscopy of oriented OCS molecules: emission of even and odd harmonics.

    Science.gov (United States)

    Kraus, P M; Rupenyan, A; Wörner, H J

    2012-12-07

    We study the emission of even and odd high-harmonic orders from oriented OCS molecules. We use an intense, nonresonant femtosecond laser pulse superimposed with its phase-controlled second harmonic field to impulsively align and orient a dense sample of molecules from which we subsequently generate high-order harmonics. The even harmonics appear around the full revivals of the rotational dynamics. We demonstrate perfect coherent control over their intensity through the subcycle delay of the two-color fields. The odd harmonics are insensitive to the degree of orientation, but modulate with the degree of axis alignment, in agreement with calculated photorecombination dipole moments. We further compare the shape of the even and odd harmonic spectra with our calculations and determine the degree of orientation.

  19. Harmonic supergraphs

    International Nuclear Information System (INIS)

    Galperin, A.; Ivanov, E.; Ogievetsky, V.; Sokatchev, E.

    1985-01-01

    This paper completes a descrption of the quantization procedure in the harmonic superspace approach. The Feynman rules for N=2 matter and Yang-Mills theories are derived and the various examples of harmonic supergraph calculations are given. Calculations appear to be not more difficult than those in the N=1 case. The integration over harmonic variables does not lead to any troubles, a non-locality in these disappears on-shell. The important property is that the quantum corrections are always writen as integrals over the full harmonic superspace even though the initial action is an integral over the analytic subspace. As a by-product our results imply a very simple proof of finiteness of a wide class of the N=4, d=2 non-linear Σ-models. The most general self-couplings of hypermultiplets including those with broken SU(2) are considered.The duality relations among the N=2 linear multiplet and both kinds of hypermultiplet are established

  20. Algorithms in invariant theory

    CERN Document Server

    Sturmfels, Bernd

    2008-01-01

    J. Kung and G.-C. Rota, in their 1984 paper, write: "Like the Arabian phoenix rising out of its ashes, the theory of invariants, pronounced dead at the turn of the century, is once again at the forefront of mathematics". The book of Sturmfels is both an easy-to-read textbook for invariant theory and a challenging research monograph that introduces a new approach to the algorithmic side of invariant theory. The Groebner bases method is the main tool by which the central problems in invariant theory become amenable to algorithmic solutions. Students will find the book an easy introduction to this "classical and new" area of mathematics. Researchers in mathematics, symbolic computation, and computer science will get access to a wealth of research ideas, hints for applications, outlines and details of algorithms, worked out examples, and research problems.

  1. A New Method for Estimating the Number of Harmonic Components in Noise with Application in High Resolution Radar

    Directory of Open Access Journals (Sweden)

    Radoi Emanuel

    2004-01-01

    Full Text Available In order to operate properly, the superresolution methods based on orthogonal subspace decomposition, such as multiple signal classification (MUSIC or estimation of signal parameters by rotational invariance techniques (ESPRIT, need accurate estimation of the signal subspace dimension, that is, of the number of harmonic components that are superimposed and corrupted by noise. This estimation is particularly difficult when the S/N ratio is low and the statistical properties of the noise are unknown. Moreover, in some applications such as radar imagery, it is very important to avoid underestimation of the number of harmonic components which are associated to the target scattering centers. In this paper, we propose an effective method for the estimation of the signal subspace dimension which is able to operate against colored noise with performances superior to those exhibited by the classical information theoretic criteria of Akaike and Rissanen. The capabilities of the new method are demonstrated through computer simulations and it is proved that compared to three other methods it carries out the best trade-off from four points of view, S/N ratio in white noise, frequency band of colored noise, dynamic range of the harmonic component amplitudes, and computing time.

  2. Cartan invariants and event horizon detection

    Science.gov (United States)

    Brooks, D.; Chavy-Waddy, P. C.; Coley, A. A.; Forget, A.; Gregoris, D.; MacCallum, M. A. H.; McNutt, D. D.

    2018-04-01

    We show that it is possible to locate the event horizon of a black hole (in arbitrary dimensions) by the zeros of certain Cartan invariants. This approach accounts for the recent results on the detection of stationary horizons using scalar polynomial curvature invariants, and improves upon them since the proposed method is computationally less expensive. As an application, we produce Cartan invariants that locate the event horizons for various exact four-dimensional and five-dimensional stationary, asymptotically flat (or (anti) de Sitter), black hole solutions and compare the Cartan invariants with the corresponding scalar curvature invariants that detect the event horizon.

  3. Improved time-dependent harmonic oscillator method for vibrationally inelastic collisions

    International Nuclear Information System (INIS)

    DePristo, A.E.

    1985-01-01

    A quantal solution to vibrationally inelastic collisions is presented based upon a linear expansion of the interaction potential around the time-dependent classical positions of all translational and vibrational degrees of freedom. The full time-dependent wave function is a product of a Gaussian translational wave packet and a multidimensional harmonic oscillator wave function, both centered around the appropriate classical position variables. The computational requirements are small since the initial vibrational coordinates are the equilibrium values in the classical trajectory (i.e., phase space sampling does not occur). Different choices of the initial width of the translational wave packet and the initial classical translational momenta are possible, and two combinations are investigated. The first involves setting the initial classical momenta equal to the quantal expectation value, and varying the width to satisfy normalization of the transition probability matrix. The second involves adjusting the initial classical momenta to ensure detailed balancing for each set of transitions, i→f and f→i, and varying the width to satisfy normalization. This choice illustrates the origin of the empirical correction of using the arithmetic average momenta as the initial classical momenta in the forced oscillator approximation. Both methods are tested for the collinear collision systems CO 2 --(He, Ne), and are found to be accurate except for near-resonant vibration--vibration exchange at low initial kinetic energies

  4. Mass generation within conformal invariant theories

    International Nuclear Information System (INIS)

    Flato, M.; Guenin, M.

    1981-01-01

    The massless Yang-Mills theory is strongly conformally invariant and renormalizable; however, when masses are introduced the theory becomes nonrenormalizable and weakly conformally invariant. Conditions which recover strong conformal invariance are discussed in the letter. (author)

  5. Coordinate-invariant regularization

    International Nuclear Information System (INIS)

    Halpern, M.B.

    1987-01-01

    A general phase-space framework for coordinate-invariant regularization is given. The development is geometric, with all regularization contained in regularized DeWitt Superstructures on field deformations. Parallel development of invariant coordinate-space regularization is obtained by regularized functional integration of the momenta. As representative examples of the general formulation, the regularized general non-linear sigma model and regularized quantum gravity are discussed. copyright 1987 Academic Press, Inc

  6. Invariant sets for Windows

    CERN Document Server

    Morozov, Albert D; Dragunov, Timothy N; Malysheva, Olga V

    1999-01-01

    This book deals with the visualization and exploration of invariant sets (fractals, strange attractors, resonance structures, patterns etc.) for various kinds of nonlinear dynamical systems. The authors have created a special Windows 95 application called WInSet, which allows one to visualize the invariant sets. A WInSet installation disk is enclosed with the book.The book consists of two parts. Part I contains a description of WInSet and a list of the built-in invariant sets which can be plotted using the program. This part is intended for a wide audience with interests ranging from dynamical

  7. Harmonic operation of high gain harmonic generation free electron laser

    International Nuclear Information System (INIS)

    Deng Haixiao; Chinese Academy of Sciences, Beijing; Dai Zhimin

    2008-01-01

    In high gain harmonic generation (HGHG) free electron laser (FEL), with the right choice of parameters of the modulator undulator, the dispersive section and the seed laser, one may make the spatial bunching of the electron beam density distribution correspond to one of the harmonic frequencies of the radiator radiation, instead of the fundamental frequency of the radiator radiation in conventional HGHG, thus the radiator undulator is in harmonic operation (HO) mode. In this paper, we investigate HO of HGHG FEL. Theoretical analyses with universal method are derived and numerical simulations in ultraviolet and deep ultraviolet spectral regions are given. It shows that the power of the 3rd harmonic radiation in the HO of HGHG may be as high as 18.5% of the fundamental power level. Thus HO of HGHG FEL may obtain short wavelength by using lower beam energy. (authors)

  8. General Lp-harmonic Blaschke bodies

    Indian Academy of Sciences (India)

    Lutwak introduced the harmonic Blaschke combination and the harmonic Blaschke body of a star body. Further, Feng and Wang introduced the concept of the -harmonic Blaschke body of a star body. In this paper, we define the notion of general -harmonic Blaschke bodies and establish some of its properties.

  9. What's hampering measurement invariance : Detecting non-invariant items using clusterwise simultaneous component analysis

    NARCIS (Netherlands)

    De Roover, K.; Timmerman, Marieke; De Leersnyder, J.; Mesquita, B.; Ceulemans, Eva

    2014-01-01

    The issue of measurement invariance is ubiquitous in the behavioral sciences nowadays as more and more studies yield multivariate multigroup data. When measurement invariance cannot be established across groups, this is often due to different loadings on only a few items. Within the multigroup CFA

  10. Some stylistic and syntactic devices of expansion and complication of a German advertising sentence in translation into Russian

    Directory of Open Access Journals (Sweden)

    Артур Нарманович Мамедов

    2011-06-01

    Full Text Available The translate of an advertising text of source language doesn't fully correspond the criteria of communicative equivalence without an adequate transfer of the invariant functional dominance, the construction, which expands or complicates the syntactic structure of an advertising sentence. Alternative correspondences of the target language, which fully transfer the meaning of such construction in certain cases of its usage, are often being found in macrocontext in the process of translation of such constructions.

  11. General Lp-harmonic Blaschke bodies

    Indian Academy of Sciences (India)

    Abstract. Lutwak introduced the harmonic Blaschke combination and the harmonic. Blaschke body of a star body. Further, Feng and Wang introduced the concept of the L p- harmonic Blaschke body of a star body. In this paper, we define the notion of general. L p-harmonic Blaschke bodies and establish some of its ...

  12. What’s hampering measurement invariance: Detecting non-invariant items using clusterwise simultaneous component analysis

    Directory of Open Access Journals (Sweden)

    Kim eDe Roover

    2014-06-01

    Full Text Available The issue of measurement invariance is ubiquitous in the behavioral sciences nowadays as more and more studies yield multivariate multigroup data. When measurement invariance cannot be established across groups, this is often due to different loadings on only a few items. Within the multigroup CFA framework, methods have been proposed to trace such non-invariant items, but these methods have some disadvantages in that they require researchers to run a multitude of analyses and in that they imply assumptions that are often questionable. In this paper, we propose an alternative strategy which builds on clusterwise simultaneous component analysis (SCA. Clusterwise SCA, being an exploratory technique, assigns the groups under study to a few clusters based on differences and similarities in the covariance matrices, and thus based on the component structure of the items. Non-invariant items can then be traced by comparing the cluster-specific component loadings via congruence coefficients, which is far more parsimonious than comparing the component structure of all separate groups. In this paper we present a heuristic for this procedure. Afterwards, one can return to the multigroup CFA framework and check whether removing the non-invariant items or removing some of the equality restrictions for these items, yields satisfactory invariance test results. An empirical application concerning cross-cultural emotion data is used to demonstrate that this novel approach is useful and can co-exist with the traditional CFA approaches.

  13. Gauge-invariant cosmological density perturbations

    International Nuclear Information System (INIS)

    Sasaki, Misao.

    1986-06-01

    Gauge-invariant formulation of cosmological density perturbation theory is reviewed with special emphasis on its geometrical aspects. Then the gauge-invariant measure of the magnitude of a given perturbation is presented. (author)

  14. Second-harmonic generation in second-harmonic fiber Bragg gratings.

    Science.gov (United States)

    Steel, M J; de Sterke, C M

    1996-06-20

    We consider the production of second-harmonic light in gratings resonant with the generated field, through a Green's function approach. We recover some standard results and obtain new limits for the uniform grating case. With the extension to nonuniform gratings, we find the Green's function for the second harmonic in a grating with an arbitrary phase shift at some point. We then obtain closed form approximate expressions for the generated light for phase shifts close to π/2 and at the center of the grating. Finally, comparing the uniform and phase-shifted gratings with homogeneous materials, we discuss the enhancement in generated light and the bandwidth over which it occurs, and the consequences for second-harmonic generation in optical fiber Bragg gratings.

  15. Gauge invariant perturbations of self-similar Lemaitre-Tolman-Bondi spacetime: Even parity modes with l≥2

    International Nuclear Information System (INIS)

    Waters, Thomas J.; Nolan, Brien C.

    2009-01-01

    In this paper we consider gauge invariant linear perturbations of the metric and matter tensors describing the self-similar Lemaitre-Tolman-Bondi (timelike dust) spacetime containing a naked singularity. We decompose the angular part of the perturbation in terms of spherical harmonics and perform a Mellin transform to reduce the perturbation equations to a set of ordinary differential equations with singular points. We fix initial data so the perturbation is finite on the axis and the past null cone of the singularity, and follow the perturbation modes up to the Cauchy horizon. There we argue that certain scalars formed from the modes of the perturbation remain finite, indicating linear stability of the Cauchy horizon.

  16. Revisiting measurement invariance in intelligence testing in aging research: Evidence for almost complete metric invariance across age groups.

    Science.gov (United States)

    Sprague, Briana N; Hyun, Jinshil; Molenaar, Peter C M

    2017-01-01

    Invariance of intelligence across age is often assumed but infrequently explicitly tested. Horn and McArdle (1992) tested measurement invariance of intelligence, providing adequate model fit but might not consider all relevant aspects such as sub-test differences. The goal of the current paper is to explore age-related invariance of the WAIS-R using an alternative model that allows direct tests of age on WAIS-R subtests. Cross-sectional data on 940 participants aged 16-75 from the WAIS-R normative values were used. Subtests examined were information, comprehension, similarities, vocabulary, picture completion, block design, picture arrangement, and object assembly. The two intelligence factors considered were fluid and crystallized intelligence. Self-reported ages were divided into young (16-22, n = 300), adult (29-39, n = 275), middle (40-60, n = 205), and older (61-75, n = 160) adult groups. Results suggested partial metric invariance holds. Although most of the subtests reflected fluid and crystalized intelligence similarly across different ages, invariance did not hold for block design on fluid intelligence and picture arrangement on crystallized intelligence for older adults. Additionally, there was evidence of a correlated residual between information and vocabulary for the young adults only. This partial metric invariance model yielded acceptable model fit compared to previously-proposed invariance models of Horn and McArdle (1992). Almost complete metric invariance holds for a two-factor model of intelligence. Most of the subtests were invariant across age groups, suggesting little evidence for age-related bias in the WAIS-R. However, we did find unique relationships between two subtests and intelligence. Future studies should examine age-related differences in subtests when testing measurement invariance in intelligence.

  17. Constructing Invariant Fairness Measures for Surfaces

    DEFF Research Database (Denmark)

    Gravesen, Jens; Ungstrup, Michael

    1998-01-01

    of the size of this vector field is used as the fairness measure on the family.Six basic 3rd order invariants satisfying two quadratic equations are defined. They form a complete set in the sense that any invariant 3rd order function can be written as a function of the six basic invariants together...

  18. Danish version of the Tilburg Frailty Indicator-translation, cross-cultural adaption and validity pretest by cognitive interviewing

    DEFF Research Database (Denmark)

    Andreasen, Jane; Sørensen, Erik E; Gobbens, Robbert J J

    2014-01-01

    The Tilburg Frailty Indicator (TFI) is a self-administered questionnaire with a bio-psycho-social integrated approach that measures the degree of frailty in elderly persons. The TFI was developed in the Netherlands and tested in a population of elderly Dutch men and women. The aim of this study...... was to translate and culturally adapt the TFI to a Danish context, and to test face validity of the Danish version by cognitive interviewing. An internationally recognized procedure was applied as a basis for the translation process. The primary tasks were forward translation, reconciliation, back translation......, harmonization and pretest. Pretest and review of the preliminary version by cognitive interviewing, were performed at a local community center and in an acute medical ward at the University Hospital in Aalborg, Denmark respectively. A large agreement regarding meaning of the items in the forward translation...

  19. Input Harmonic Analysis on the Slim DC-Link Drive Using Harmonic State Space Model

    DEFF Research Database (Denmark)

    Yang, Feng; Kwon, Jun Bum; Wang, Xiongfei

    2017-01-01

    The harmonic performance of the slim dc-link adjustable speed drives has shown good performance in some studies but poor in some others. The contradiction indicates that a feasible theoretical analysis is still lacking to characterize the harmonic distortion for the slim dc-link drive. Considerin...... results of the slim dc-link drive, loaded up to 2.0 kW, are presented to validate the theoretical analysis....... variation according to the switching instant, the harmonics at the steady-state condition, as well as the coupling between the multiple harmonic impedances. By using this model, the impaction on the harmonics performance by the film capacitor and the grid inductance is derived. Simulation and experimental...

  20. The development of the MeDALL Core Questionnaires for a harmonized follow-up assessment of eleven European birth cohorts on asthma and allergies

    DEFF Research Database (Denmark)

    Hohmann, Cynthia; Pinart, Mariona; Tischer, Christina

    2014-01-01

    BACKGROUND: Numerous birth cohorts have been initiated in the world over the past 30 years using heterogeneous methods to assess the incidence, course and risk factors of asthma and allergies. The aim of the present work is to provide the stepwise proceedings of the development and current version...... of the harmonized MeDALL-Core Questionnaire (MeDALL-CQ) used prospectively in 11 European birth cohorts. METHODS: The harmonization of questions was accomplished in 4 steps: (i) collection of variables from 14 birth cohorts, (ii) consensus on questionnaire items, (iii) translation and back...

  1. INVARIANTS OF GENERALIZED RAPOPORT-LEAS EQUATIONS

    Directory of Open Access Journals (Sweden)

    Elena N. Kushner

    2018-01-01

    Full Text Available For the generalized Rapoport-Leas equations, algebra of differential invariants is constructed with respect to point transformations, that is, transformations of independent and dependent variables. The finding of a general transformation of this type reduces to solving an extremely complicated functional equation. Therefore, following the approach of Sophus Lie, we restrict ourselves to the search for infinitesimal transformations which are generated by translations along the trajectories of vector fields. The problem of finding these vector fields reduces to the redefined system decision of linear differential equations with respect to their coefficients. The Rapoport-Leas equations arise in the study of nonlinear filtration processes in porous media, as well as in other areas of natural science: for example, these equations describe various physical phenomena: two-phase filtration in a porous medium, filtration of a polytropic gas, and propagation of heat at nuclear explosion. They are vital topic for research: in recent works of Bibikov, Lychagin, and others, the analysis of the symmetries of the generalized Rapoport-Leas equations has been carried out; finite-dimensional dynamics and conditions of attractors existence have been found. Since the generalized RapoportLeas equations are nonlinear partial differential equations of the second order with two independent variables; the methods of the geometric theory of differential equations are used to study them in this paper. According to this theory differential equations generate subvarieties in the space of jets. This makes it possible to use the apparatus of modern differential geometry to study differential equations. We introduce the concept of admissible transformations, that is, replacements of variables that do not derive equations outside the class of the Rapoport-Leas equations. Such transformations form a Lie group. For this Lie group there are differential invariants that separate

  2. Comparison study among conventional, tissue harmonic and pulse inversion harmonic images to evaluate pleural effusion and ascites

    International Nuclear Information System (INIS)

    Chung, Hwan Hoon; Kim, Yun Hwan; Kang, Chang Ho; Park, Bum Jin; Chung, Kyoo Byung; Suh, Won Hyuck

    2000-01-01

    To determine the most useful sonographic technique to evaluate pleural effusion and ascites by comparing conventional, tissue harmonic and pulse inversion harmonic images. 12 patients having pleural effusion and 14 patients having ascites were included in this study. 18 patients were male and 8 patients were female. Average age was 54.8 yrs (25-77). We compared images which had been taken at the same section with 3 above mentioned sonographic techniques. Evaluation was done by 3 radiologists in consensus and grades were given to 3 techniques from 1 to 3. Evaluating points were 1) normal structures that border the fluid such as liver, peritoneal lining, pleura, 2) septation in fluid, 3) debris floating in fluid, and 4) artifacts. Pulse inversion harmonic image was the best in image quality for normal structures, followed by tissue harmonic and conventional image (p<0.05). Pulse inversion harmonic image was better than conventional image to evaluate septation in fluid (p<0.05), but there were no statistically significant difference between pulse inversion and tissue harmonic images, and tissue harmonic and conventional images. Tissue harmonic image was better than pulse inversion harmonic and conventional images to evaluate debris floating in fluid (p<0.05) but there was no statistically significant difference between these two latter techniques. Artifacts were most prominent on conventional image followed by tissue harmonic and pulse inversion harmonic image (p<0.05). Pulse inversion harmonic image was the best sonographic technique to evaluate pleural effusion or ascites, However, Tissue harmonic image was the best for evaluation of debris.

  3. Comparison study among conventional, tissue harmonic and pulse inversion harmonic images to evaluate pleural effusion and ascites

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Hwan Hoon; Kim, Yun Hwan; Kang, Chang Ho; Park, Bum Jin; Chung, Kyoo Byung; Suh, Won Hyuck [Korea University College of Medicine, Seoul (Korea, Republic of)

    2000-12-15

    To determine the most useful sonographic technique to evaluate pleural effusion and ascites by comparing conventional, tissue harmonic and pulse inversion harmonic images. 12 patients having pleural effusion and 14 patients having ascites were included in this study. 18 patients were male and 8 patients were female. Average age was 54.8 yrs (25-77). We compared images which had been taken at the same section with 3 above mentioned sonographic techniques. Evaluation was done by 3 radiologists in consensus and grades were given to 3 techniques from 1 to 3. Evaluating points were 1) normal structures that border the fluid such as liver, peritoneal lining, pleura, 2) septation in fluid, 3) debris floating in fluid, and 4) artifacts. Pulse inversion harmonic image was the best in image quality for normal structures, followed by tissue harmonic and conventional image (p<0.05). Pulse inversion harmonic image was better than conventional image to evaluate septation in fluid (p<0.05), but there were no statistically significant difference between pulse inversion and tissue harmonic images, and tissue harmonic and conventional images. Tissue harmonic image was better than pulse inversion harmonic and conventional images to evaluate debris floating in fluid (p<0.05) but there was no statistically significant difference between these two latter techniques. Artifacts were most prominent on conventional image followed by tissue harmonic and pulse inversion harmonic image (p<0.05). Pulse inversion harmonic image was the best sonographic technique to evaluate pleural effusion or ascites, However, Tissue harmonic image was the best for evaluation of debris.

  4. Translation elicits a growth rate-dependent, genome-wide, differential protein production in Bacillus subtilis.

    Science.gov (United States)

    Borkowski, Olivier; Goelzer, Anne; Schaffer, Marc; Calabre, Magali; Mäder, Ulrike; Aymerich, Stéphane; Jules, Matthieu; Fromion, Vincent

    2016-05-17

    Complex regulatory programs control cell adaptation to environmental changes by setting condition-specific proteomes. In balanced growth, bacterial protein abundances depend on the dilution rate, transcript abundances and transcript-specific translation efficiencies. We revisited the current theory claiming the invariance of bacterial translation efficiency. By integrating genome-wide transcriptome datasets and datasets from a library of synthetic gfp-reporter fusions, we demonstrated that translation efficiencies in Bacillus subtilis decreased up to fourfold from slow to fast growth. The translation initiation regions elicited a growth rate-dependent, differential production of proteins without regulators, hence revealing a unique, hard-coded, growth rate-dependent mode of regulation. We combined model-based data analyses of transcript and protein abundances genome-wide and revealed that this global regulation is extensively used in B. subtilis We eventually developed a knowledge-based, three-step translation initiation model, experimentally challenged the model predictions and proposed that a growth rate-dependent drop in free ribosome abundance accounted for the differential protein production. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  5. Analytic invariants of boundary links

    OpenAIRE

    Garoufalidis, Stavros; Levine, Jerome

    2001-01-01

    Using basic topology and linear algebra, we define a plethora of invariants of boundary links whose values are power series with noncommuting variables. These turn out to be useful and elementary reformulations of an invariant originally defined by M. Farber.

  6. Status of time reversal invariance

    International Nuclear Information System (INIS)

    Henley, E.M.

    1989-01-01

    Time Reversal Invariance is introduced, and theories for its violation are reviewed. The present experimental and theoretical status of Time Reversal Invariance and tests thereof will be presented. Possible future tests will be discussed. 30 refs., 2 figs., 1 tab

  7. A Scale-Invariant Model of Statistical Mechanics and Modified Forms of the First and the Second Laws of Thermodynamics

    Science.gov (United States)

    Sohrab, Siavash H.; Pitch, Nancy (Technical Monitor)

    1999-01-01

    A scale-invariant statistical theory of fields is presented that leads to invariant definition of density, velocity, temperature, and pressure, The definition of Boltzmann constant is introduced as k(sub k) = m(sub k)v(sub k)c = 1.381 x 10(exp -23) J x K(exp -1), suggesting that the Kelvin absolute temperature scale is equivalent to a length scale. Two new state variables called the reversible heat Q(sub rev) = TS and the reversible work W(sub rev) = PV are introduced. The modified forms of the first and second law of thermodynamics are presented. The microscopic definition of heat (work) is presented as the kinetic energy due to the random (peculiar) translational, rotational, and pulsational motions. The Gibbs free energy of an element at scale Beta is identified as the total system energy at scale (Beta-1), thus leading to an invariant form of the first law of thermodynamics U(sub Beta) = Q(sub Beta) - W(sub Beta) +N(e3)U(sub Beta-1).

  8. Summational invariants

    International Nuclear Information System (INIS)

    Mackrodt, C.; Reeh, H.

    1997-01-01

    General summational invariants, i.e., conservation laws acting additively on asymptotic particle states, are investigated within a classical framework for point particles with nontrivial scattering. copyright 1997 American Institute of Physics

  9. Link invariants for flows in higher dimensions

    International Nuclear Information System (INIS)

    Garcia-Compean, Hugo; Santos-Silva, Roberto

    2010-01-01

    Linking numbers in higher dimensions and their generalization including gauge fields are studied in the context of BF theories. The linking numbers associated with n-manifolds with smooth flows generated by divergence-free p-vector fields, endowed with an invariant flow measure, are computed in the context of quantum field theory. They constitute invariants of smooth dynamical systems (for nonsingular flows) and generalize previous proposals of invariants. In particular, they generalize Arnold's asymptotic Hopf invariant from three to higher dimensions. This invariant is generalized by coupling with a non-Abelian gauge flat connection with nontrivial holonomy. The computation of the asymptotic Jones-Witten invariants for flows is naturally extended to dimension n=2p+1. Finally, we give a possible interpretation and implementation of these issues in the context of 11-dimensional supergravity and string theory.

  10. Dynamical topological invariant after a quantum quench

    Science.gov (United States)

    Yang, Chao; Li, Linhu; Chen, Shu

    2018-02-01

    We show how to define a dynamical topological invariant for one-dimensional two-band topological systems after a quantum quench. By analyzing general two-band models of topological insulators, we demonstrate that the reduced momentum-time manifold can be viewed as a series of submanifolds S2, and thus we are able to define a dynamical topological invariant on each of the spheres. We also unveil the intrinsic relation between the dynamical topological invariant and the difference in the topological invariant of the initial and final static Hamiltonian. By considering some concrete examples, we illustrate the calculation of the dynamical topological invariant and its geometrical meaning explicitly.

  11. Phenomenology of local scale invariance: from conformal invariance to dynamical scaling

    International Nuclear Information System (INIS)

    Henkel, Malte

    2002-01-01

    Statistical systems displaying a strongly anisotropic or dynamical scaling behaviour are characterized by an anisotropy exponent θ or a dynamical exponent z. For a given value of θ (or z), we construct local scale transformations, which can be viewed as scale transformations with a space-time-dependent dilatation factor. Two distinct types of local scale transformations are found. The first type may describe strongly anisotropic scaling of static systems with a given value of θ, whereas the second type may describe dynamical scaling with a dynamical exponent z. Local scale transformations act as a dynamical symmetry group of certain non-local free-field theories. Known special cases of local scale invariance are conformal invariance for θ=1 and Schroedinger invariance for θ=2. The hypothesis of local scale invariance implies that two-point functions of quasi primary operators satisfy certain linear fractional differential equations, which are constructed from commuting fractional derivatives. The explicit solution of these yields exact expressions for two-point correlators at equilibrium and for two-point response functions out of equilibrium. A particularly simple and general form is found for the two-time auto response function. These predictions are explicitly confirmed at the uniaxial Lifshitz points in the ANNNI and ANNNS models and in the aging behaviour of simple ferromagnets such as the kinetic Glauber-Ising model and the kinetic spherical model with a non-conserved order parameter undergoing either phase-ordering kinetics or non-equilibrium critical dynamics

  12. Invariant measures in brain dynamics

    International Nuclear Information System (INIS)

    Boyarsky, Abraham; Gora, Pawel

    2006-01-01

    This note concerns brain activity at the level of neural ensembles and uses ideas from ergodic dynamical systems to model and characterize chaotic patterns among these ensembles during conscious mental activity. Central to our model is the definition of a space of neural ensembles and the assumption of discrete time ensemble dynamics. We argue that continuous invariant measures draw the attention of deeper brain processes, engendering emergent properties such as consciousness. Invariant measures supported on a finite set of ensembles reflect periodic behavior, whereas the existence of continuous invariant measures reflect the dynamics of nonrepeating ensemble patterns that elicit the interest of deeper mental processes. We shall consider two different ways to achieve continuous invariant measures on the space of neural ensembles: (1) via quantum jitters, and (2) via sensory input accompanied by inner thought processes which engender a 'folding' property on the space of ensembles

  13. Harmonic Patterns in Forex Trading

    OpenAIRE

    Nemček, Sebastian

    2013-01-01

    This diploma thesis is committed to examination of validity of Harmonic Patterns in Forex trading. Scott Carney described existing and introduced new Harmonic Patterns in 1999 in his book Harmonic Trader. These patterns use the Fibonacci principle to analyze price action and to provide both bullish and bearish trading signals. The goal of this thesis is to find out whether harmonic trading strategy on selected pairs is profitable in FX market, which patterns are the most profitable and what i...

  14. The usage of color invariance in SURF

    Science.gov (United States)

    Meng, Gang; Jiang, Zhiguo; Zhao, Danpei

    2009-10-01

    SURF (Scale Invariant Feature Transform) is a robust local invariant feature descriptor. However, SURF is mainly designed for gray images. In order to make use of the information provided by color (mainly RGB channels), this paper presents a novel colored local invariant feature descriptor, CISURF (Color Invariance based SURF). The proposed approach builds the descriptors in a color invariant space, which stems from Kubelka-Munk model and provides more valuable information than the gray space. Compared with the conventional SURF and SIFT descriptors, the experimental results show that descriptors created by CISURF is more robust to the circumstance changes such as the illumination direction, illumination intensity, and the viewpoints, and are more suitable for the deep space background objects.

  15. Target recognition of log-polar ladar range images using moment invariants

    Science.gov (United States)

    Xia, Wenze; Han, Shaokun; Cao, Jie; Yu, Haoyong

    2017-01-01

    The ladar range image has received considerable attentions in the automatic target recognition field. However, previous research does not cover target recognition using log-polar ladar range images. Therefore, we construct a target recognition system based on log-polar ladar range images in this paper. In this system combined moment invariants and backpropagation neural network are selected as shape descriptor and shape classifier, respectively. In order to fully analyze the effect of log-polar sampling pattern on recognition result, several comparative experiments based on simulated and real range images are carried out. Eventually, several important conclusions are drawn: (i) if combined moments are computed directly by log-polar range images, translation, rotation and scaling invariant properties of combined moments will be invalid (ii) when object is located in the center of field of view, recognition rate of log-polar range images is less sensitive to the changing of field of view (iii) as object position changes from center to edge of field of view, recognition performance of log-polar range images will decline dramatically (iv) log-polar range images has a better noise robustness than Cartesian range images. Finally, we give a suggestion that it is better to divide field of view into recognition area and searching area in the real application.

  16. Anisotropic Weyl invariance

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Nadal, Guillem [Universidad de Buenos Aires, Buenos Aires (Argentina)

    2017-07-15

    We consider a non-relativistic free scalar field theory with a type of anisotropic scale invariance in which the number of coordinates ''scaling like time'' is generically greater than one. We propose the Cartesian product of two curved spaces, the metric of each space being parameterized by the other space, as a notion of curved background to which the theory can be extended. We study this type of geometries, and find a family of extensions of the theory to curved backgrounds in which the anisotropic scale invariance is promoted to a local, Weyl-type symmetry. (orig.)

  17. The invariant theory of matrices

    CERN Document Server

    Concini, Corrado De

    2017-01-01

    This book gives a unified, complete, and self-contained exposition of the main algebraic theorems of invariant theory for matrices in a characteristic free approach. More precisely, it contains the description of polynomial functions in several variables on the set of m\\times m matrices with coefficients in an infinite field or even the ring of integers, invariant under simultaneous conjugation. Following Hermann Weyl's classical approach, the ring of invariants is described by formulating and proving the first fundamental theorem that describes a set of generators in the ring of invariants, and the second fundamental theorem that describes relations between these generators. The authors study both the case of matrices over a field of characteristic 0 and the case of matrices over a field of positive characteristic. While the case of characteristic 0 can be treated following a classical approach, the case of positive characteristic (developed by Donkin and Zubkov) is much harder. A presentation of this case...

  18. Synthesis of Variable Harmonic Impedance in Inverter-Interfaced Distributed Generation Unit for Harmonic Damping Throughout a Distribution Network

    DEFF Research Database (Denmark)

    Wang, Xiongfei; Blaabjerg, Frede; Chen, Zhe

    2012-01-01

    This paper proposes a harmonic impedance synthesis technique for voltage-controlled distributed generation inverters in order to damp harmonic voltage distortion on a distribution network. The approach employs a multiloop control scheme, where a selective harmonic load current feedforward loop...... at the dominant harmonic frequencies. Thus, the harmonic voltage drop on the grid-side inductance and the harmonic resonances throughout a distribution feeder with multiple shunt-connected capacitors can be effectively attenuated. Simulation and laboratory test results validate the performance of the proposed...

  19. Tuvan throat singing and harmonics

    Science.gov (United States)

    Ruiz, Michael J.; Wilken, David

    2018-05-01

    Tuvan throat singing, also called overtone singing, provides for an exotic demonstration of the physics of harmonics as well as introducing an Asian musical aesthetic. A low fundamental is sung and the singer skillfully alters the resonances of the vocal system to enhance an overtone (harmonic above the fundamental). The result is that the listener hears two pitches simultaneously. Harmonics such as H8, H9, H10, and H12 form part of a pentatonic scale and are commonly selected for melody tones by Tuvan singers. A real-time spectrogram is provided in a video (Ruiz M J 2018 Video: Tuvan Throat Singing and Harmonics http://mjtruiz.com/ped/tuva/) so that Tuvan harmonics can be visualized as they are heard.

  20. Scale invariant Volkov–Akulov supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Ferrara, S., E-mail: sergio.ferrara@cern.ch [Th-Ph Department, CERN, CH-1211 Geneva 23 (Switzerland); INFN – Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044 Frascati (Italy); Department of Physics and Astronomy, University of California, Los Angeles, CA 90095-1547 (United States); Porrati, M., E-mail: mp9@nyu.edu [Th-Ph Department, CERN, CH-1211 Geneva 23 (Switzerland); CCPP, Department of Physics, NYU, 4 Washington Pl., New York, NY 10003 (United States); Sagnotti, A., E-mail: sagnotti@sns.it [Th-Ph Department, CERN, CH-1211 Geneva 23 (Switzerland); Scuola Normale Superiore and INFN, Piazza dei Cavalieri 7, 56126 Pisa (Italy)

    2015-10-07

    A scale invariant goldstino theory coupled to supergravity is obtained as a standard supergravity dual of a rigidly scale-invariant higher-curvature supergravity with a nilpotent chiral scalar curvature. The bosonic part of this theory describes a massless scalaron and a massive axion in a de Sitter Universe.

  1. On the invariance principle

    Energy Technology Data Exchange (ETDEWEB)

    Moller-Nielsen, Thomas [University of Oxford (United Kingdom)

    2014-07-01

    Physicists and philosophers have long claimed that the symmetries of our physical theories - roughly speaking, those transformations which map solutions of the theory into solutions - can provide us with genuine insight into what the world is really like. According to this 'Invariance Principle', only those quantities which are invariant under a theory's symmetries should be taken to be physically real, while those quantities which vary under its symmetries should not. Physicists and philosophers, however, are generally divided (or, indeed, silent) when it comes to explaining how such a principle is to be justified. In this paper, I spell out some of the problems inherent in other theorists' attempts to justify this principle, and sketch my own proposed general schema for explaining how - and when - the Invariance Principle can indeed be used as a legitimate tool of metaphysical inference.

  2. A functional LMO invariant for Lagrangian cobordisms

    DEFF Research Database (Denmark)

    Cheptea, Dorin; Habiro, Kazuo; Massuyeau, Gwénaël

    2008-01-01

    Lagrangian cobordisms are three-dimensional compact oriented cobordisms between once-punctured surfaces, subject to some homological conditions. We extend the Le–Murakami–Ohtsuki invariant of homology three-spheres to a functor from the category of Lagrangian cobordisms to a certain category...... of Jacobi diagrams. We prove some properties of this functorial LMO invariant, including its universality among rational finite-type invariants of Lagrangian cobordisms. Finally, we apply the LMO functor to the study of homology cylinders from the point of view of their finite-type invariants....

  3. Tissue Harmonic Synthetic Aperture Imaging

    DEFF Research Database (Denmark)

    Rasmussen, Joachim

    The main purpose of this PhD project is to develop an ultrasonic method for tissue harmonic synthetic aperture imaging. The motivation is to advance the field of synthetic aperture imaging in ultrasound, which has shown great potentials in the clinic. Suggestions for synthetic aperture tissue...... system complexity compared to conventional synthetic aperture techniques. In this project, SASB is sought combined with a pulse inversion technique for 2nd harmonic tissue harmonic imaging. The advantages in tissue harmonic imaging (THI) are expected to further improve the image quality of SASB...

  4. Symmetries of cyclic work distributions for an isolated harmonic oscillator

    International Nuclear Information System (INIS)

    Ford, Ian J; Minor, David S; Binnie, Simon J

    2012-01-01

    We have calculated the distribution of work W done on a 1D harmonic oscillator that is initially in canonical equilibrium at temperature T, then thermally isolated and driven by an arbitrary time-dependent cyclic spring constant κ(t), and demonstrated that it satisfies P(W) = exp (βW)P( − W), where β = 1/k B T, in both classical and quantum dynamics. This differs from the celebrated Crooks relation of nonequilibrium thermodynamics, since the latter relates distributions for forward and backward protocols of driving. We show that it is a special case of a symmetry that holds for non-cyclic work processes on the isolated oscillator, and that consideration of time reversal invariance shows it to be consistent with the Crooks relation. We have verified that the symmetry holds in both classical and quantum treatments of the dynamics, but that inherent uncertainty in the latter case leads to greater fluctuations in work performed for a given process. (paper)

  5. Continuous Integrated Invariant Inference, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed project will develop a new technique for invariant inference and embed this and other current invariant inference and checking techniques in an...

  6. Test of charge conjugation invariance

    International Nuclear Information System (INIS)

    Nefkens, B.M.K.; Prakhov, S.; Gaardestig, A.; Clajus, M.; Marusic, A.; McDonald, S.; Phaisangittisakul, N.; Price, J.W.; Starostin, A.; Tippens, W.B.; Allgower, C.E.; Spinka, H.; Bekrenev, V.; Koulbardis, A.; Kozlenko, N.; Kruglov, S.; Lopatin, I.; Briscoe, W.J.; Shafi, A.; Comfort, J.R.

    2005-01-01

    We report on the first determination of upper limits on the branching ratio (BR) of η decay to π 0 π 0 γ and to π 0 π 0 π 0 γ. Both decay modes are strictly forbidden by charge conjugation (C) invariance. Using the Crystal Ball multiphoton detector, we obtained BR(η→π 0 π 0 γ) -4 at the 90% confidence level, in support of C invariance of isoscalar electromagnetic interactions of the light quarks. We have also measured BR(η→π 0 π 0 π 0 γ) -5 at the 90% confidence level, in support of C invariance of isovector electromagnetic interactions

  7. Superstrings and harmonic superspace

    International Nuclear Information System (INIS)

    Kallosh, R.E.; AN SSSR, Moscow. Fizicheskij Inst.)

    1987-01-01

    The paper on superstrings and harmonic superspace is a contribution to the book dedicated to E.S. Fradkin on his sixtieth birthday. The purpose of the paper is to propose a description of N = 2,3 superspace which could be used for the investigation of the effective d = 10 harmonic superspace corresponding to the heterotic superstring. A description is given of the structure of semi-simple Lie algebras in the Cartan-Weyl basis, as well as the general properties of the even, compact part of harmonic superspace. The main properties of the four-dimensional N = 2 SYM theory are discussed, along with the N = 3, d = 4 super Yang-Mills theory. Finally the relation between the harmonic superspace and the heterotic E 8 x E 8 superstring is examined. (U.K.)

  8. On the conformal equivalence of harmonic maps and exponentially harmonic maps

    International Nuclear Information System (INIS)

    Hong Minchun.

    1991-06-01

    Suppose that (M,g) and (N,h) are compact smooth Riemannian manifolds without boundaries. For m = dim M ≥3, and Φ: (M,g) → (N,h) is exponentially harmonic, there exists a smooth metric g-tilde conformally equivalent to g such that Φ: (M,g-tilde) → (N,h) is harmonic. (author). 7 refs

  9. Scale invariant Volkov–Akulov supergravity

    Directory of Open Access Journals (Sweden)

    S. Ferrara

    2015-10-01

    Full Text Available A scale invariant goldstino theory coupled to supergravity is obtained as a standard supergravity dual of a rigidly scale-invariant higher-curvature supergravity with a nilpotent chiral scalar curvature. The bosonic part of this theory describes a massless scalaron and a massive axion in a de Sitter Universe.

  10. Symmetries and Laplacians introduction to harmonic analysis, group representations and applications

    CERN Document Server

    Gurarie, D

    1992-01-01

    Designed as an introduction to harmonic analysis and group representations,this book covers a wide range of topics rather than delving deeply into anyparticular one. In the words of H. Weyl ...it is primarily meant forthe humble, who want to learn as new the things set forth therein, rather thanfor the proud and learned who are already familiar with the subject and merelylook for quick and exact information.... The main objective is tointroduce the reader to concepts, ideas, results and techniques that evolvearound symmetry-groups, representations and Laplacians. Morespecifically, the main interest concerns geometrical objects and structures{X}, discrete or continuous, that possess sufficiently large symmetrygroup G, such as regular graphs (Platonic solids), lattices, andsymmetric Riemannian manifolds. All such objects have a natural Laplacian&Dgr;, a linear operator on functions over X, invariant underthe group action. There are many problems associated with Laplacians onX, such as continuous or discrete...

  11. Waveguide harmonic damper for klystron amplifier

    International Nuclear Information System (INIS)

    Kang, Y.

    1998-01-01

    A waveguide harmonic damper was designed for removing the harmonic frequency power from the klystron amplifiers of the APS linac. Straight coaxial probe antennas are used in a rectangular waveguide to form a damper. A linear array of the probe antennas is used on a narrow wall of the rectangular waveguide for damping klystron harmonics while decoupling the fundamental frequency in dominent TE 01 mode. The klystron harmonics can exist in the waveguide as waveguide higher-order modes above cutoff. Computer simulations are made to investigate the waveguide harmonic damping characteristics of the damper

  12. Translational Symmetry and Microscopic Constraints on Symmetry-Enriched Topological Phases: A View from the Surface

    Directory of Open Access Journals (Sweden)

    Meng Cheng

    2016-12-01

    Full Text Available The Lieb-Schultz-Mattis theorem and its higher-dimensional generalizations by Oshikawa and Hastings require that translationally invariant 2D spin systems with a half-integer spin per unit cell must either have a continuum of low energy excitations, spontaneously break some symmetries, or exhibit topological order with anyonic excitations. We establish a connection between these constraints and a remarkably similar set of constraints at the surface of a 3D interacting topological insulator. This, combined with recent work on symmetry-enriched topological phases with on-site unitary symmetries, enables us to develop a framework for understanding the structure of symmetry-enriched topological phases with both translational and on-site unitary symmetries, including the effective theory of symmetry defects. This framework places stringent constraints on the possible types of symmetry fractionalization that can occur in 2D systems whose unit cell contains fractional spin, fractional charge, or a projective representation of the symmetry group. As a concrete application, we determine when a topological phase must possess a “spinon” excitation, even in cases when spin rotational invariance is broken down to a discrete subgroup by the crystal structure. We also describe the phenomena of “anyonic spin-orbit coupling,” which may arise from the interplay of translational and on-site symmetries. These include the possibility of on-site symmetry defect branch lines carrying topological charge per unit length and lattice dislocations inducing degeneracies protected by on-site symmetry.

  13. HONTIOR - HIGHER-ORDER NEURAL NETWORK FOR TRANSFORMATION INVARIANT OBJECT RECOGNITION

    Science.gov (United States)

    Spirkovska, L.

    1994-01-01

    Neural networks have been applied in numerous fields, including transformation invariant object recognition, wherein an object is recognized despite changes in the object's position in the input field, size, or rotation. One of the more successful neural network methods used in invariant object recognition is the higher-order neural network (HONN) method. With a HONN, known relationships are exploited and the desired invariances are built directly into the architecture of the network, eliminating the need for the network to learn invariance to transformations. This results in a significant reduction in the training time required, since the network needs to be trained on only one view of each object, not on numerous transformed views. Moreover, one hundred percent accuracy is guaranteed for images characterized by the built-in distortions, providing noise is not introduced through pixelation. The program HONTIOR implements a third-order neural network having invariance to translation, scale, and in-plane rotation built directly into the architecture, Thus, for 2-D transformation invariance, the network needs only to be trained on just one view of each object. HONTIOR can also be used for 3-D transformation invariant object recognition by training the network only on a set of out-of-plane rotated views. Historically, the major drawback of HONNs has been that the size of the input field was limited to the memory required for the large number of interconnections in a fully connected network. HONTIOR solves this problem by coarse coding the input images (coding an image as a set of overlapping but offset coarser images). Using this scheme, large input fields (4096 x 4096 pixels) can easily be represented using very little virtual memory (30Mb). The HONTIOR distribution consists of three main programs. The first program contains the training and testing routines for a third-order neural network. The second program contains the same training and testing procedures as the

  14. Recent progress in invariant pattern recognition

    Science.gov (United States)

    Arsenault, Henri H.; Chang, S.; Gagne, Philippe; Gualdron Gonzalez, Oscar

    1996-12-01

    We present some recent results in invariant pattern recognition, including methods that are invariant under two or more distortions of position, orientation and scale. There are now a few methods that yield good results under changes of both rotation and scale. Some new methods are introduced. These include locally adaptive nonlinear matched filters, scale-adapted wavelet transforms and invariant filters for disjoint noise. Methods using neural networks will also be discussed, including an optical method that allows simultaneous classification of multiple targets.

  15. Harmonic Damping in DG-Penetrated Distribution Network

    DEFF Research Database (Denmark)

    Lu, Jinghang; Savaghebi, Mehdi; Guerrero, Josep M.

    2016-01-01

    Grid background harmonics may be amplified, propagate through a long distribution feeder and even lead to power system instability. In this paper, harmonic propagation issue is investigated and mitigation of the harmonics is analyzed by using transmission line theory which has already been applied...... in power systems. It is demonstrated that a specific harmonic will not be amplified if the feeder’s length is less than one quarter of the harmonic wavelength meanwhile the terminal impedance is less than characteristic impedance. Besides, three scenarios will be considered in accordance...... with the relationship between the feeder’s length and harmonic wavelength. Harmonic suppression control strategies will be respectively designed considering 5th and 7th harmonics coexisting in the distribution line. Finally, a simulation study has been performed to verify the theoretical analysis and demonstrate...

  16. Finite type invariants and fatgraphs

    DEFF Research Database (Denmark)

    Andersen, Jørgen Ellegaard; Bene, Alex; Meilhan, Jean-Baptiste Odet Thierry

    2010-01-01

    –Murakami–Ohtsuki of the link invariant of Andersen–Mattes–Reshetikhin computed relative to choices determined by the fatgraph G; this provides a basic connection between 2d geometry and 3d quantum topology. For each fixed G, this invariant is shown to be universal for homology cylinders, i.e., G establishes an isomorphism...

  17. Ermakov–Lewis invariants and Reid systems

    Energy Technology Data Exchange (ETDEWEB)

    Mancas, Stefan C., E-mail: stefan.mancas@erau.edu [Department of Mathematics, Embry-Riddle Aeronautical University, Daytona Beach, FL 32114-3900 (United States); Rosu, Haret C., E-mail: hcr@ipicyt.edu.mx [IPICyT, Instituto Potosino de Investigacion Cientifica y Tecnologica, Camino a la presa San José 2055, Col. Lomas 4a Sección, 78216 San Luis Potosí, S.L.P. (Mexico)

    2014-06-13

    Reid's mth-order generalized Ermakov systems of nonlinear coupling constant α are equivalent to an integrable Emden–Fowler equation. The standard Ermakov–Lewis invariant is discussed from this perspective, and a closed formula for the invariant is obtained for the higher-order Reid systems (m≥3). We also discuss the parametric solutions of these systems of equations through the integration of the Emden–Fowler equation and present an example of a dynamical system for which the invariant is equivalent to the total energy. - Highlights: • Reid systems of order m are connected to Emden–Fowler equations. • General expressions for the Ermakov–Lewis invariants both for m=2 and m≥3 are obtained. • Parametric solutions of the Emden–Fowler equations related to Reid systems are obtained.

  18. Harmonic supergraphs. Green functions

    International Nuclear Information System (INIS)

    Galperin, A.; Ivanov, E.; Gievetsky, V.; Sokatchev, E.

    1985-01-01

    The quantization procedure in the harmonic superspace approach is worked out. Harmonic distributions are introduced and are used to construct the analytic superspace delta-functions and the Green functions for the hypermultiplet and the N=2 Yang-Mills superfields. The gauge fixing is described and the relevant Faddeev-Popov ghosts are defined. The corresponding BRST transformations are found. The harmonic superspace quantization of the N=2 gauge theory turns out to be rather simple and has many parallels with that for the standard (N=0) Yang-Mills theory. In particular, no ghosts-forghosts are needed

  19. A pretandem harmonic buncher

    International Nuclear Information System (INIS)

    Lin, Qui-xun; Van Wechel, T.D.

    1987-01-01

    A single gap harmonic buncher has been constructed as a pretandem buncher. Over 85% of a proton dc beam has been bunched into pulses. The width (fwhm) of the pulses is 0.7 ns. The buncher is based on that built at Argonne. Changes were made to the buncher's configuration so that the buncher could be tuned to the desired four harmonic frequencies. A method of calibrating and setting the relative phases and amplitudes of the four harmonic frequencies has been used to obtain an optimum sawtooth-like bunching waveform

  20. A Systematic Translation and Cultural Adaptation Process for Three-Factor Eating Questionnaire (TFEQ-R21).

    Science.gov (United States)

    Rosnah, I; Noor Hassim, I; Shafizah, A S

    2013-10-01

    The Three-Factor Eating Questionnaire was first constructed to measure eating behavior in an English population in the United States. It has been validated and translated for various populations in different languages. The aim of this article is to describe a systematic process for translating the questionnaire from English to Malay language. The report of the International Society for Pharmacoeconomics and Outcome Research (ISPOR) Task Force was used as the basis for the systematic translation process. The process began with preparation; followed by forward translation (2 independent translators), reconciliation, back translation (2 independent translators), back translation review, harmonization, cognitive debriefing, review of cognitive debriefing results and finalization, proofreading; and ended with the final report. Four independent Malay translators who fluent in English and reside in Malaysia were involved in the process. A team of health care researchers had assisted the review of the new translated questionnaires. Majority of the TFEQ-R21 items were experiencing, conceptually and semantically equivalence between original English and translated English. However, certain phrase such as "feels like bottomless pit" was difficult to translate by forward translators. Cognitive debriefing was a very helpful process to ensure the TFEQ-R21 Malay version was appropriate in term of wording and culturally accepted. A total of four redundant comments in regards to response scale wording, word confusion and wording arrangement. The systematic translation process is a way to reduce the linguistic discrepancies between the English and Malay language in order to promote equivalence and culturally adapted TFEQ-R21 questionnaire.

  1. Conformal invariance in the long-range Ising model

    Directory of Open Access Journals (Sweden)

    Miguel F. Paulos

    2016-01-01

    Full Text Available We consider the question of conformal invariance of the long-range Ising model at the critical point. The continuum description is given in terms of a nonlocal field theory, and the absence of a stress tensor invalidates all of the standard arguments for the enhancement of scale invariance to conformal invariance. We however show that several correlation functions, computed to second order in the epsilon expansion, are nontrivially consistent with conformal invariance. We proceed to give a proof of conformal invariance to all orders in the epsilon expansion, based on the description of the long-range Ising model as a defect theory in an auxiliary higher-dimensional space. A detailed review of conformal invariance in the d-dimensional short-range Ising model is also included and may be of independent interest.

  2. Conformal Invariance in the Long-Range Ising Model

    CERN Document Server

    Paulos, Miguel F; van Rees, Balt C; Zan, Bernardo

    2016-01-01

    We consider the question of conformal invariance of the long-range Ising model at the critical point. The continuum description is given in terms of a nonlocal field theory, and the absence of a stress tensor invalidates all of the standard arguments for the enhancement of scale invariance to conformal invariance. We however show that several correlation functions, computed to second order in the epsilon expansion, are nontrivially consistent with conformal invariance. We proceed to give a proof of conformal invariance to all orders in the epsilon expansion, based on the description of the long-range Ising model as a defect theory in an auxiliary higher-dimensional space. A detailed review of conformal invariance in the d-dimensional short-range Ising model is also included and may be of independent interest.

  3. Conformal invariance in the long-range Ising model

    Energy Technology Data Exchange (ETDEWEB)

    Paulos, Miguel F. [CERN, Theory Group, Geneva (Switzerland); Rychkov, Slava, E-mail: slava.rychkov@lpt.ens.fr [CERN, Theory Group, Geneva (Switzerland); Laboratoire de Physique Théorique de l' École Normale Supérieure (LPTENS), Paris (France); Faculté de Physique, Université Pierre et Marie Curie (UPMC), Paris (France); Rees, Balt C. van [CERN, Theory Group, Geneva (Switzerland); Zan, Bernardo [Institute of Physics, Universiteit van Amsterdam, Amsterdam (Netherlands)

    2016-01-15

    We consider the question of conformal invariance of the long-range Ising model at the critical point. The continuum description is given in terms of a nonlocal field theory, and the absence of a stress tensor invalidates all of the standard arguments for the enhancement of scale invariance to conformal invariance. We however show that several correlation functions, computed to second order in the epsilon expansion, are nontrivially consistent with conformal invariance. We proceed to give a proof of conformal invariance to all orders in the epsilon expansion, based on the description of the long-range Ising model as a defect theory in an auxiliary higher-dimensional space. A detailed review of conformal invariance in the d-dimensional short-range Ising model is also included and may be of independent interest.

  4. BRDF invariant stereo using light transport constancy.

    Science.gov (United States)

    Wang, Liang; Yang, Ruigang; Davis, James E

    2007-09-01

    Nearly all existing methods for stereo reconstruction assume that scene reflectance is Lambertian and make use of brightness constancy as a matching invariant. We introduce a new invariant for stereo reconstruction called light transport constancy (LTC), which allows completely arbitrary scene reflectance (bidirectional reflectance distribution functions (BRDFs)). This invariant can be used to formulate a rank constraint on multiview stereo matching when the scene is observed by several lighting configurations in which only the lighting intensity varies. In addition, we show that this multiview constraint can be used with as few as two cameras and two lighting configurations. Unlike previous methods for BRDF invariant stereo, LTC does not require precisely configured or calibrated light sources or calibration objects in the scene. Importantly, the new constraint can be used to provide BRDF invariance to any existing stereo method whenever appropriate lighting variation is available.

  5. Quantum-mechanical elaboration for the description of low- and high-order harmonics generated by extended gas media: prospects to the efficiency enhancement in spatially modulated media

    Science.gov (United States)

    Stremoukhov, Sergey Yu; Andreev, Anatoly V.

    2018-03-01

    A simple model fully matching the description of the low- and high-order harmonic generation in extended media interacting with multicolor laser fields is proposed. The extended atomic media is modeled by a 1D chain of atoms, the number of atoms and the distance between them depend on the pressure of the gas and the length of the gas cell. The response of the individual atoms is calculated accurately in the frame of the non-perturbative theory where the driving field for each atom is calculated with account of dispersion properties of any multicolor field component. In spite of the simplicity of the proposed model it provides the detailed description of behaviour of harmonic spectra under variation of the gas pressure and medium length, it also predicts a scaling law for harmonic generation (an invariant). To demonstrate the wide range of applications of the model we have simulated the results of recent experiments dealing with spatially modulated media and obtained good coincidence between the numerical results and the experimental ones.

  6. Harmonics in transmission power systems

    DEFF Research Database (Denmark)

    Wiechowski, Wojciech Tomasz

    . The comparison shows that results obtained used both types of the cores are the same, so it is concluded that both cores can be used for harmonic measurements. Low-inductance resistors are introduced in the secondary circuits, in series with the metering and protective relaying. On those resistors, the harmonic......Some time ago, Energinet.dk, the Transmission System Operator of the 150 kV and 400 kV transmission network in Denmark, had experienced operational malfunctions of some of the measuring and protection equipment. Also an overloading of a harmonic filter has been reported, and therefore, a need...... end only so the ground is not used as a return path. A way to reduce the capacitive coupling is to provide shielding. Harmonic currents are measured using the conventional inductive voltage transformers. Both protective and metering cores were compared if they could be used for harmonic measurements...

  7. Multidimensional high harmonic spectroscopy

    International Nuclear Information System (INIS)

    Bruner, Barry D; Soifer, Hadas; Shafir, Dror; Dudovich, Nirit; Serbinenko, Valeria; Smirnova, Olga

    2015-01-01

    High harmonic generation (HHG) has opened up a new frontier in ultrafast science where attosecond time resolution and Angstrom spatial resolution are accessible in a single measurement. However, reconstructing the dynamics under study is limited by the multiple degrees of freedom involved in strong field interactions. In this paper we describe a new class of measurement schemes for resolving attosecond dynamics, integrating perturbative nonlinear optics with strong-field physics. These approaches serve as a basis for multidimensional high harmonic spectroscopy. Specifically, we show that multidimensional high harmonic spectroscopy can measure tunnel ionization dynamics with high precision, and resolves the interference between multiple ionization channels. In addition, we show how multidimensional HHG can function as a type of lock-in amplifier measurement. Similar to multi-dimensional approaches in nonlinear optical spectroscopy that have resolved correlated femtosecond dynamics, multi-dimensional high harmonic spectroscopy reveals the underlying complex dynamics behind attosecond scale phenomena. (paper)

  8. Linguistic validation of translation of the self-assessment goal achievement (saga) questionnaire from English

    Science.gov (United States)

    2012-01-01

    Background A linguistic validation of the Self-Assessment Goal Achievement (SAGA) questionnaire was conducted for 12 European languages, documenting that each translation adequately captures the concepts of the original English-language version of the questionnaire and is readily understood by subjects in the target population. Methods Native-speaking residents of the target countries who reported urinary problems/lower urinary tract problems were asked to review a translation of the SAGA questionnaire, which was harmonized among 12 languages: Danish, Dutch, English (UK), Finnish, French, German, Greek, Icelandic, Italian, Norwegian, Spanish, and Swedish. During a cognitive debriefing interview, participants were asked to identify any words that were difficult to understand and explain in their own words the meaning of each sentence in the questionnaire. The qualitative analysis was conducted by local linguistic validation teams (original translators, back translator, project manager, interviewer, and survey research expert). Results Translations of the SAGA questionnaire from English to 12 European languages were well understood by the participants with an overall comprehension rate across language of 98.9%. In addition, the translations retained the original meaning of the SAGA items and instructions. Comprehension difficulties were identified, and after review by the translation team, minor changes were made to 7 of the 12 translations to improve clarity and comprehension. Conclusions Conceptual, semantic, and cultural equivalence of each translation of the SAGA questionnaire was achieved thus confirming linguistic validation. PMID:22525050

  9. Linguistic validation of translation of the self-assessment goal achievement (saga questionnaire from English

    Directory of Open Access Journals (Sweden)

    Piault Elisabeth

    2012-04-01

    Full Text Available Abstract Background A linguistic validation of the Self-Assessment Goal Achievement (SAGA questionnaire was conducted for 12 European languages, documenting that each translation adequately captures the concepts of the original English-language version of the questionnaire and is readily understood by subjects in the target population. Methods Native-speaking residents of the target countries who reported urinary problems/lower urinary tract problems were asked to review a translation of the SAGA questionnaire, which was harmonized among 12 languages: Danish, Dutch, English (UK, Finnish, French, German, Greek, Icelandic, Italian, Norwegian, Spanish, and Swedish. During a cognitive debriefing interview, participants were asked to identify any words that were difficult to understand and explain in their own words the meaning of each sentence in the questionnaire. The qualitative analysis was conducted by local linguistic validation teams (original translators, back translator, project manager, interviewer, and survey research expert. Results Translations of the SAGA questionnaire from English to 12 European languages were well understood by the participants with an overall comprehension rate across language of 98.9%. In addition, the translations retained the original meaning of the SAGA items and instructions. Comprehension difficulties were identified, and after review by the translation team, minor changes were made to 7 of the 12 translations to improve clarity and comprehension. Conclusions Conceptual, semantic, and cultural equivalence of each translation of the SAGA questionnaire was achieved thus confirming linguistic validation.

  10. Non-Gaussian and nonscale-invariant perturbations from tachyonic preheating in hybrid inflation

    Science.gov (United States)

    Barnaby, Neil; Cline, James M.

    2006-05-01

    We show that in hybrid inflation it is possible to generate large second-order perturbations in the cosmic microwave background due to the instability of the tachyonic field during preheating. We carefully calculate this effect from the tachyon contribution to the gauge-invariant curvature perturbation, clarifying some confusion in the literature concerning nonlocal terms in the tachyon curvature perturbation; we show explicitly that such terms are absent. We quantitatively compute the non-Gaussianity generated by the tachyon field during the preheating phase and translate the experimental constraints on the nonlinearity parameter fNL into constraints on the parameters of the model. We also show that nonscale-invariant second-order perturbations from the tachyon field with spectral index n=4 can become larger than the inflaton-generated first-order perturbations, leading to stronger constraints than those coming from non-Gaussianity. The width of the excluded region in terms of the logarithm of the dimensionless coupling g, grows linearly with the log of the ratio of the Planck mass to the tachyon VEV, log⁡(Mp/v); hence very large regions are ruled out if the inflationary scale v is small. We apply these results to string-theoretic brane-antibrane inflation, and find a stringent upper bound on the string coupling, gs<10-4.5.

  11. Therapeutic Potential of Invariant Natural Killer T Cells in Autoimmunity

    Directory of Open Access Journals (Sweden)

    Luc Van Kaer

    2018-03-01

    Full Text Available Tolerance against self-antigens is regulated by a variety of cell types with immunoregulatory properties, such as CD1d-restricted invariant natural killer T (iNKT cells. In many experimental models of autoimmunity, iNKT cells promote self-tolerance and protect against autoimmunity. These findings are supported by studies with patients suffering from autoimmune diseases. Based on these studies, the therapeutic potential of iNKT cells in autoimmunity has been explored. Many of these studies have been performed with the potent iNKT cell agonist KRN7000 or its structural variants. These findings have generated promising results in several autoimmune diseases, although mechanisms by which iNKT cells modulate autoimmunity remain incompletely understood. Here, we will review these preclinical studies and discuss the prospects for translating their findings to patients suffering from autoimmune diseases.

  12. Audibility of harmonics in 'periodic white noise'

    NARCIS (Netherlands)

    Duifhuis, H.; Tomesen, H.H.

    1970-01-01

    In a previous article (Duifhuis, 1970) results' concerning the audibility of harmonics in a periodic pulse have been presented. Each of the lower harmonics could be perceived separately, whereas the high harmonics were heard together as one complex signal. High harmonics, however, appeared to be

  13. Probabilistic Harmonic Modeling of Wind Power Plants

    DEFF Research Database (Denmark)

    Guest, Emerson; Jensen, Kim H.; Rasmussen, Tonny Wederberg

    2017-01-01

    A probabilistic sequence domain (SD) harmonic model of a grid-connected voltage-source converter is used to estimate harmonic emissions in a wind power plant (WPP) comprised of Type-IV wind turbines. The SD representation naturally partitioned converter generated voltage harmonics into those...... with deterministic phase and those with probabilistic phase. A case study performed on a string of ten 3MW, Type-IV wind turbines implemented in PSCAD was used to verify the probabilistic SD harmonic model. The probabilistic SD harmonic model can be employed in the planning phase of WPP projects to assess harmonic...

  14. Novel topological invariants and anomalies

    International Nuclear Information System (INIS)

    Hirayama, M.; Sugimasa, N.

    1987-01-01

    It is shown that novel topological invariants are associated with a class of Dirac operators. Trace formulas which are similar to but different from Callias's formula are derived. Implications of these topological invariants to anomalies in quantum field theory are discussed. A new class of anomalies are calculated for two models: one is two dimensional and the other four dimensional

  15. Wilson loop invariants from WN conformal blocks

    Directory of Open Access Journals (Sweden)

    Oleg Alekseev

    2015-12-01

    Full Text Available Knot and link polynomials are topological invariants calculated from the expectation value of loop operators in topological field theories. In 3D Chern–Simons theory, these invariants can be found from crossing and braiding matrices of four-point conformal blocks of the boundary 2D CFT. We calculate crossing and braiding matrices for WN conformal blocks with one component in the fundamental representation and another component in a rectangular representation of SU(N, which can be used to obtain HOMFLY knot and link invariants for these cases. We also discuss how our approach can be generalized to invariants in higher-representations of WN algebra.

  16. Invariants of triangular Lie algebras

    International Nuclear Information System (INIS)

    Boyko, Vyacheslav; Patera, Jiri; Popovych, Roman

    2007-01-01

    Triangular Lie algebras are the Lie algebras which can be faithfully represented by triangular matrices of any finite size over the real/complex number field. In the paper invariants ('generalized Casimir operators') are found for three classes of Lie algebras, namely those which are either strictly or non-strictly triangular, and for so-called special upper triangular Lie algebras. Algebraic algorithm of Boyko et al (2006 J. Phys. A: Math. Gen.39 5749 (Preprint math-ph/0602046)), developed further in Boyko et al (2007 J. Phys. A: Math. Theor.40 113 (Preprint math-ph/0606045)), is used to determine the invariants. A conjecture of Tremblay and Winternitz (2001 J. Phys. A: Math. Gen.34 9085), concerning the number of independent invariants and their form, is corroborated

  17. A biologically inspired neural network model to transformation invariant object recognition

    Science.gov (United States)

    Iftekharuddin, Khan M.; Li, Yaqin; Siddiqui, Faraz

    2007-09-01

    Transformation invariant image recognition has been an active research area due to its widespread applications in a variety of fields such as military operations, robotics, medical practices, geographic scene analysis, and many others. The primary goal for this research is detection of objects in the presence of image transformations such as changes in resolution, rotation, translation, scale and occlusion. We investigate a biologically-inspired neural network (NN) model for such transformation-invariant object recognition. In a classical training-testing setup for NN, the performance is largely dependent on the range of transformation or orientation involved in training. However, an even more serious dilemma is that there may not be enough training data available for successful learning or even no training data at all. To alleviate this problem, a biologically inspired reinforcement learning (RL) approach is proposed. In this paper, the RL approach is explored for object recognition with different types of transformations such as changes in scale, size, resolution and rotation. The RL is implemented in an adaptive critic design (ACD) framework, which approximates the neuro-dynamic programming of an action network and a critic network, respectively. Two ACD algorithms such as Heuristic Dynamic Programming (HDP) and Dual Heuristic dynamic Programming (DHP) are investigated to obtain transformation invariant object recognition. The two learning algorithms are evaluated statistically using simulated transformations in images as well as with a large-scale UMIST face database with pose variations. In the face database authentication case, the 90° out-of-plane rotation of faces from 20 different subjects in the UMIST database is used. Our simulations show promising results for both designs for transformation-invariant object recognition and authentication of faces. Comparing the two algorithms, DHP outperforms HDP in learning capability, as DHP takes fewer steps to

  18. Complex harmonic modal analysis of rotor systems

    International Nuclear Information System (INIS)

    Han, Dong Ju

    2015-01-01

    Complex harmonic analysis for rotor systems has been proposed from the strict complex modal analysis based upon Floquet theory. In this process the harmonic balance method is adopted, effectively associated with conventional eigenvalue analysis. Also, the harmonic coefficients equivalent to dFRFs in harmonic mode has been derived in practice. The modes are classified from identifying the modal characteristics, and the adaptation of harmonic balance method has been proven by comparing the results of the stability analyses from Floque theory and the eigen analysis. The modal features of each critical speed are depicted in quantitatively and qualitatively by showing that the strengths of each component of the harmonic coefficients are estimated from the order of magnitude analysis according to their harmonic patterns. This effectiveness has been verified by comparing with the numerical solutions

  19. The Schizotypal Personality Questionnaire-Brief lacks measurement invariance across three countries.

    Science.gov (United States)

    Liu, Shujuan; Mellor, David; Ling, Mathew; Saiz, José L; Vinet, Eugenia V; Xu, Xiaoyan; Renati, Solomon; Byrne, Linda K

    2017-12-01

    The Schizotypal Personality Questionnaire-Brief (SPQ-B) is a commonly-used tool for measuring schizotypal personality traits and due to its wide application, its cross-cultural validity is of interest. Previous studies suggest that the SPQ-B either has a three- or four-factor structure, but the majority of studies have been conducted in Western contexts and little is known about the psychometric properties of the scale in other populations. In this study factorial invariance testing across three cultural contexts-Australia, China and Chile was conducted. In total, 729 young adults (Mean age = 23.99 years, SD = 9.87 years) participated. Invariance testing did not support the four-factor model across three countries. Confirmatory Factor Analyses revealed that neither the four- nor three-factor model had strong fit in any of the settings. However, in comparison with other competing models, the four-factor model showed the best for the Australian sample, while the three-factor model was the most reasonable for both Chinese and Chilean samples. The reliability of the SPQ-B scores, estimated with Omega, ranged from 0.86 to 0.91. These findings suggest that the SPQ-B factors are not consistent across different cultural groups. We suggest that these differences could be attributed to potential confounding cultural and translation issues. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Action priors for learning domain invariances

    CSIR Research Space (South Africa)

    Rosman, Benjamin S

    2015-04-01

    Full Text Available behavioural invariances in the domain, by identifying actions to be prioritised in local contexts, invariant to task details. This information has the effect of greatly increasing the speed of solving new problems. We formalise this notion as action priors...

  1. Stellar interferometers and hypertelescopes: new insights on an angular spatial frequency approach to their non-invariant imaging

    Science.gov (United States)

    Dettwiller, L.; Lépine, T.

    2017-12-01

    A general and pure wave theory of image formation for all types of stellar interferometers, including hypertelescopes, is developed in the frame of Fresnel's paraxial approximations of diffraction. For a hypertelescope, we show that the severe lack of translation invariance leads to multiple and strong spatial frequency heterodyning, which codes the very high frequencies detected by the hypertelescope into medium spatial frequencies and introduces a moiré-type ambiguity for extended objects. This explains mathematically the disappointing appearance of poor resolution observed in some image simulations for hypertelescopes.

  2. Maxwell equations in conformal invariant electrodynamics

    International Nuclear Information System (INIS)

    Fradkin, E.S.; AN SSSR, Novosibirsk. Inst. Avtomatiki i Ehlektrometrii); Kozhevnikov, A.A.; Palchik, M.Ya.; Pomeransky, A.A.

    1983-01-01

    We consider a conformal invariant formulation of quantum electrodynamics. Conformal invariance is achieved with a specific mathematical construction based on the indecomposable representations of the conformal group associated with the electromagnetic potential and current. As a corolary of this construction modified expressions for the 3-point Green functions are obtained which both contain transverse parts. They make it possible to formulate a conformal invariant skeleton perturbation theory. It is also shown that the Euclidean Maxwell equations in conformal electrodynamics are manifestations of its kinematical structure: in the case of the 3-point Green functions these equations follow (up to constants) from the conformal invariance while in the case of higher Green functions they are equivalent to the equality of the kernels of the partial wave expansions. This is the manifestation of the mathematical fast of a (partial) equivalence of the representations associated with the potential, current and the field tensor. (orig.)

  3. The Impact of Machine Translation and Computer-aided Translation on Translators

    Science.gov (United States)

    Peng, Hao

    2018-03-01

    Under the context of globalization, communications between countries and cultures are becoming increasingly frequent, which make it imperative to use some techniques to help translate. This paper is to explore the influence of computer-aided translation on translators, which is derived from the field of the computer-aided translation (CAT) and machine translation (MT). Followed by an introduction to the development of machine and computer-aided translation, it then depicts the technologies practicable to translators, which are trying to analyze the demand of designing the computer-aided translation so far in translation practice, and optimize the designation of computer-aided translation techniques, and analyze its operability in translation. The findings underline the advantages and disadvantages of MT and CAT tools, and the serviceability and future development of MT and CAT technologies. Finally, this thesis probes into the impact of these new technologies on translators in hope that more translators and translation researchers can learn to use such tools to improve their productivity.

  4. Harmonic uniflow engine

    Science.gov (United States)

    Bennett, Charles L.

    2016-03-22

    A reciprocating-piston uniflow engine includes a harmonic oscillator inlet valve capable of oscillating at a resonant frequency for controlling the flow of working fluid into the engine. In particular, the inlet valve includes an inlet valve head and a spring arranged together as a harmonic oscillator so that the inlet valve head is moveable from an unbiased equilibrium position to a biased closed position occluding an inlet. When released, the inlet valve head undergoes a single oscillation past the equilibrium position to a maximum open position and returns to a biased return position close to the closed position to choke the flow and produce a pressure drop across the inlet valve causing the inlet valve to close. In other embodiments, the harmonic oscillator arrangement of the inlet valve enables the uniflow engine to be reversibly operated as a uniflow compressor.

  5. Embedded graph invariants in Chern-Simons theory

    International Nuclear Information System (INIS)

    Major, Seth A.

    1999-01-01

    Chern-Simons gauge theory, since its inception as a topological quantum field theory, has proved to be a rich source of understanding for knot invariants. In this work the theory is used to explore the definition of the expectation value of a network of Wilson lines -- an embedded graph invariant. Using a generalization of the variational method, lowest-order results for invariants for graphs of arbitrary valence and general vertex tangent space structure are derived. Gauge invariant operators are introduced. Higher order results are found. The method used here provides a Vassiliev-type definition of graph invariants which depend on both the embedding of the graph and the group structure of the gauge theory. It is found that one need not frame individual vertices. However, without a global projection of the graph there is an ambiguity in the relation of the decomposition of distinct vertices. It is suggested that framing may be seen as arising from this ambiguity -- as a way of relating frames at distinct vertices

  6. Relating measurement invariance, cross-level invariance, and multilevel reliability

    NARCIS (Netherlands)

    Jak, S.; Jorgensen, T.D.

    2017-01-01

    Data often have a nested, multilevel structure, for example when data are collected from children in classrooms. This kind of data complicate the evaluation of reliability and measurement invariance, because several properties can be evaluated at both the individual level and the cluster level, as

  7. Analysis of Harmonic Coupling and Stability in Back-to-Back Converter Systems for Wind Turbines using Harmonic State Space (HSS)

    DEFF Research Database (Denmark)

    Kwon, Jun Bum; Wang, Xiongfei; Bak, Claus Leth

    2015-01-01

    Understanding about harmonic propagation in wind turbine converter is fundamental to research the influence of these on a large network harmonic distortion. Therefore, the analysis of wind turbine converter harmonic spectrum as well as the influence of converter operating point into the network i...... connected into the large wind farm model to analyze the overall steady-state harmonic as well as harmonic stability. All theoretical modeling and analysis is verified by means of simulation and experimental results.......Understanding about harmonic propagation in wind turbine converter is fundamental to research the influence of these on a large network harmonic distortion. Therefore, the analysis of wind turbine converter harmonic spectrum as well as the influence of converter operating point into the network...... is urgently important issues in harmonic studies on wind farm. However, the conventional modeling procedure and simplified model for controller design are not enough to analyze such complicated systems. Besides, they have many limitations in terms of including a non-linear component, different operating...

  8. Conformal invariance and two-dimensional physics

    International Nuclear Information System (INIS)

    Zuber, J.B.

    1993-01-01

    Actually, physicists and mathematicians are very interested in conformal invariance: geometric transformations which keep angles. This symmetry is very important for two-dimensional systems as phase transitions, string theory or node mathematics. In this article, the author presents the conformal invariance and explains its usefulness

  9. Pattern recognition: invariants in 3D

    International Nuclear Information System (INIS)

    Proriol, J.

    1992-01-01

    In e + e - events, the jets have a spherical 3D symmetry. A set of invariants are defined for 3D objects with a spherical symmetry. These new invariants are used to tag the number of jets in e + e - events. (K.A.) 3 refs

  10. A test for ordinal measurement invariance

    NARCIS (Netherlands)

    Ligtvoet, R.; Millsap, R.E.; Bolt, D.M.; van der Ark, L.A.; Wang, W.-C.

    2015-01-01

    One problem with the analysis of measurement invariance is the reliance of the analysis on having a parametric model that accurately describes the data. In this paper an ordinal version of the property of measurement invariance is proposed, which relies only on nonparametric restrictions. This

  11. A scale invariant covariance structure on jet space

    DEFF Research Database (Denmark)

    Pedersen, Kim Steenstrup; Loog, Marco; Markussen, Bo

    2005-01-01

    This paper considers scale invariance of statistical image models. We study statistical scale invariance of the covariance structure of jet space under scale space blurring and derive the necessary structure and conditions of the jet covariance matrix in order for it to be scale invariant. As par...

  12. Inflation in a Scale Invariant Universe

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Pedro G. [Oxford U.; Hill, Christopher T. [Fermilab; Noller, Johannes [Zurich U.; Ross, Graham G. [Oxford U., Theor. Phys.

    2018-02-16

    A scale-invariant universe can have a period of accelerated expansion at early times: inflation. We use a frame-invariant approach to calculate inflationary observables in a scale invariant theory of gravity involving two scalar fields - the spectral indices, the tensor to scalar ratio, the level of isocurvature modes and non-Gaussianity. We show that scale symmetry leads to an exact cancellation of isocurvature modes and that, in the scale-symmetry broken phase, this theory is well described by a single scalar field theory. We find the predictions of this theory strongly compatible with current observations.

  13. Adiabatic invariants of the extended KdV equation

    Energy Technology Data Exchange (ETDEWEB)

    Karczewska, Anna [Faculty of Mathematics, Computer Science and Econometrics, University of Zielona Góra, Szafrana 4a, 65-246 Zielona Góra (Poland); Rozmej, Piotr, E-mail: p.rozmej@if.uz.zgora.pl [Institute of Physics, Faculty of Physics and Astronomy, University of Zielona Góra, Szafrana 4a, 65-246 Zielona Góra (Poland); Infeld, Eryk [National Centre for Nuclear Research, Hoża 69, 00-681 Warszawa (Poland); Rowlands, George [Department of Physics, University of Warwick, Coventry, CV4 7A (United Kingdom)

    2017-01-30

    When the Euler equations for shallow water are taken to the next order, beyond KdV, momentum and energy are no longer exact invariants. (The only one is mass.) However, adiabatic invariants (AI) can be found. When the KdV expansion parameters are zero, exact invariants are recovered. Existence of adiabatic invariants results from general theory of near-identity transformations (NIT) which allow us to transform higher order nonintegrable equations to asymptotically equivalent (when small parameters tend to zero) integrable form. Here we present a direct method of calculations of adiabatic invariants. It does not need a transformation to a moving reference frame nor performing a near-identity transformation. Numerical tests show that deviations of AI from constant values are indeed small. - Highlights: • We suggest a new and simple method for calculating adiabatic invariants of second order wave equations. • It is easy to use and we hope that it will be useful if published. • Interesting numerics included.

  14. High-frequency harmonic imaging of the eye

    Science.gov (United States)

    Silverman, Ronald H.; Coleman, D. Jackson; Ketterling, Jeffrey A.; Lizzi, Frederic L.

    2005-04-01

    Purpose: Harmonic imaging has become a well-established technique for ultrasonic imaging at fundamental frequencies of 10 MHz or less. Ophthalmology has benefited from the use of fundamentals of 20 MHz to 50 MHz. Our aim was to explore the ability to generate harmonics for this frequency range, and to generate harmonic images of the eye. Methods: The presence of harmonics was determined in both water and bovine vitreous propagation media by pulse/echo and hydrophone at a series of increasing excitation pulse intensities and frequencies. Hydrophone measurements were made at the focal point and in the near- and far-fields of 20 MHz and 40 MHz transducers. Harmonic images of the anterior segment of the rabbit eye were obtained by a combination of analog filtering and digital post-processing. Results: Harmonics were generated nearly identically in both water and vitreous. Hydrophone measurements showed the maximum second harmonic to be -5 dB relative to the 35 MHz fundamental at the focus, while in pulse/echo the maximum harmonic amplitude was -15dB relative to the fundamental. Harmonics were absent in the near-field, but present in the far-field. Harmonic images of the eye showed improved resolution. Conclusion: Harmonics can be readily generated at very high frequencies, and at power levels compliant with FDA guidelines for ophthalmology. This technique may yield further improvements to the already impressive resolutions obtainable in this frequency range. Improved imaging of the macular region, in particular, may provide significant improvements in diagnosis of retinal disease.

  15. Gromov-Witten invariants and localization

    Science.gov (United States)

    Morrison, David R.

    2017-11-01

    We give a pedagogical review of the computation of Gromov-Witten invariants via localization in 2D gauged linear sigma models. We explain the relationship between the two-sphere partition function of the theory and the Kähler potential on the conformal manifold. We show how the Kähler potential can be assembled from classical, perturbative, and non-perturbative contributions, and explain how the non-perturbative contributions are related to the Gromov-Witten invariants of the corresponding Calabi-Yau manifold. We then explain how localization enables efficient calculation of the two-sphere partition function and, ultimately, the Gromov-Witten invariants themselves. This is a contribution to the review issue ‘Localization techniques in quantum field theories’ (ed V Pestun and M Zabzine) which contains 17 chapters, available at [1].

  16. Harmonics Monitoring Survey on LED Lamps

    Directory of Open Access Journals (Sweden)

    Abdelrahman Ahmed Akila

    2017-03-01

    Full Text Available Light Emitting Diode (LED lamps are being increasingly used in many applications. These LED lamps operate using a driver, which is a switching device. Hence, LED lamps will be a source of harmonics in the power system. These harmonics if not well treated, may cause severe performance and operational problems. In this paper, harmonics (amplitude and phase angles generated by both LED lamps and conventional fluorescent lamps will be studied practically. Then they will be analyzed and evaluated. Compared to each other harmonics generated by both LED and conventional florescent lamps, self mitigation may occur based on the phase angle of these harmonics. All data will be measured using power analyzer and will be done on a sample of actual lamps.

  17. Computer model for harmonic ultrasound imaging.

    Science.gov (United States)

    Li, Y; Zagzebski, J A

    2000-01-01

    Harmonic ultrasound imaging has received great attention from ultrasound scanner manufacturers and researchers. In this paper, we present a computer model that can generate realistic harmonic images. In this model, the incident ultrasound is modeled after the "KZK" equation, and the echo signal is modeled using linear propagation theory because the echo signal is much weaker than the incident pulse. Both time domain and frequency domain numerical solutions to the "KZK" equation were studied. Realistic harmonic images of spherical lesion phantoms were generated for scans by a circular transducer. This model can be a very useful tool for studying the harmonic buildup and dissipation processes in a nonlinear medium, and it can be used to investigate a wide variety of topics related to B-mode harmonic imaging.

  18. High-order harmonics generation from overdense plasmas

    International Nuclear Information System (INIS)

    Quere, F.; Thaury, C.; Monot, P.; Martin, Ph.; Geindre, J.P.; Audebert, P.; Marjoribanks, R.

    2006-01-01

    Complete test of publication follows. When an intense laser beam reflects on an overdense plasma generated on a solid target, high-order harmonics of the incident laser frequency are observed in the reflected beam. This process provides a way to produce XUV femtosecond and attosecond pulses in the μJ range from ultrafast ultraintense lasers. Studying the mechanisms responsible for this harmonic emission is also of strong fundamental interest: just as HHG in gases has been instrumental in providing a comprehensive understanding of basic intense laser-atom interactions, HHG from solid-density plasmas is likely to become a unique tool to investigate many key features of laser-plasma interactions at high intensities. We will present both experimental and theoretical evidence that two mechanisms contribute to this harmonic emission: - Coherent Wake Emission: in this process, harmonics are emitted by plasma oscillations in te overdense plasma, triggered in the wake of jets of Brunel electrons generated by the laser field. - The relativistic oscillating mirror: in this process, the intense laser field drives a relativistic oscillation of the plasma surface, which in turn gives rise to a periodic phase modulation of the reflected beam, and hence to the generation of harmonics of the incident frequency. Left graph: experimental harmonic spectrum from a polypropylene target, obtained with 60 fs laser pulses at 10 19 W/cm 2 , with a very high temporal contrast (10 10 ). The plasma frequency of this target corresponds to harmonics 15-16, thus excluding the CWE mechanism for the generation of harmonics of higher orders. Images on the right: harmonic spectra from orders 13 et 18, for different distances z between the target and the best focus. At the highest intensity (z=0), harmonics emitted by the ROM mechanism are observed above the 15th order. These harmonics have a much smaller spectral width then those due to CWE (below the 15th order). These ROM harmonics vanish as soon

  19. Harmonic Detection at Initialization With Kalman Filter

    DEFF Research Database (Denmark)

    Hussain, Dil Muhammad Akbar; Imran, Raja Muhammad; Shoro, Ghulam Mustafa

    2014-01-01

    Most power electronic equipment these days generate harmonic disturbances, these devices hold nonlinear voltage/current characteristic. The harmonics generated can potentially be harmful to the consumer supply. Typically, filters are integrated at the power source or utility location to filter out...... the affect of harmonics on the supply. For the detection of these harmonics various techniques are available and one of that technique is the Kalman filter. In this paper we investigate that what are the consequences when harmonic detection system based on Kalman Filtering is initialized...

  20. Testing Lorentz invariance of dark matter

    CERN Document Server

    Blas, Diego; Sibiryakov, Sergey

    2012-01-01

    We study the possibility to constrain deviations from Lorentz invariance in dark matter (DM) with cosmological observations. Breaking of Lorentz invariance generically introduces new light gravitational degrees of freedom, which we represent through a dynamical timelike vector field. If DM does not obey Lorentz invariance, it couples to this vector field. We find that this coupling affects the inertial mass of small DM halos which no longer satisfy the equivalence principle. For large enough lumps of DM we identify a (chameleon) mechanism that restores the inertial mass to its standard value. As a consequence, the dynamics of gravitational clustering are modified. Two prominent effects are a scale dependent enhancement in the growth of large scale structure and a scale dependent bias between DM and baryon density perturbations. The comparison with the measured linear matter power spectrum in principle allows to bound the departure from Lorentz invariance of DM at the per cent level.

  1. Testing Lorentz invariance of dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Blas, Diego [Theory Group, Physics Department, CERN, CH-1211 Geneva 23 (Switzerland); Ivanov, Mikhail M.; Sibiryakov, Sergey, E-mail: diego.blas@cern.ch, E-mail: mm.ivanov@physics.msu.ru, E-mail: sibir@inr.ac.ru [Faculty of Physics, Moscow State University, Vorobjevy Gory, 119991 Moscow (Russian Federation)

    2012-10-01

    We study the possibility to constrain deviations from Lorentz invariance in dark matter (DM) with cosmological observations. Breaking of Lorentz invariance generically introduces new light gravitational degrees of freedom, which we represent through a dynamical timelike vector field. If DM does not obey Lorentz invariance, it couples to this vector field. We find that this coupling affects the inertial mass of small DM halos which no longer satisfy the equivalence principle. For large enough lumps of DM we identify a (chameleon) mechanism that restores the inertial mass to its standard value. As a consequence, the dynamics of gravitational clustering are modified. Two prominent effects are a scale dependent enhancement in the growth of large scale structure and a scale dependent bias between DM and baryon density perturbations. The comparison with the measured linear matter power spectrum in principle allows to bound the departure from Lorentz invariance of DM at the per cent level.

  2. Harmonic response of coupled and uncoupled granular YBCO

    International Nuclear Information System (INIS)

    Torralba, Maria Veronica S; Sarmago, Roland V

    2004-01-01

    The harmonic responses of granular YBCO were obtained via mutual inductance measurements. Two samples, one with and another without intergranular coupling, were investigated in terms of the harmonic components of magnetization at various field amplitudes and frequencies. By comparing the behaviour of the features in the harmonics to that of the peaks in the fundamental response, we explicitly identified which features in the harmonics originate from intragranular harmonic generation and which arise due to a contribution of intergranular coupling. Harmonic responses were obtained despite the absence of vortices and even harmonics were detected in a purely AC magnetic field

  3. Translation Theory 'Translated'

    DEFF Research Database (Denmark)

    Wæraas, Arild; Nielsen, Jeppe

    2016-01-01

    Translation theory has proved to be a versatile analytical lens used by scholars working from different traditions. On the basis of a systematic literature review, this study adds to our understanding of the ‘translations’ of translation theory by identifying the distinguishing features of the most...... common theoretical approaches to translation within the organization and management discipline: actor-network theory, knowledge-based theory, and Scandinavian institutionalism. Although each of these approaches already has borne much fruit in research, the literature is diverse and somewhat fragmented......, but also overlapping. We discuss the ways in which the three versions of translation theory may be combined and enrich each other so as to inform future research, thereby offering a more complete understanding of translation in and across organizational settings....

  4. Binary translation using peephole translation rules

    Science.gov (United States)

    Bansal, Sorav; Aiken, Alex

    2010-05-04

    An efficient binary translator uses peephole translation rules to directly translate executable code from one instruction set to another. In a preferred embodiment, the translation rules are generated using superoptimization techniques that enable the translator to automatically learn translation rules for translating code from the source to target instruction set architecture.

  5. Affine invariants of convex polygons.

    Science.gov (United States)

    Flusser, Jan

    2002-01-01

    In this correspondence, we prove that the affine invariants, for image registration and object recognition, proposed recently by Yang and Cohen (see ibid., vol.8, no.7, p.934-46, July 1999) are algebraically dependent. We show how to select an independent and complete set of the invariants. The use of this new set leads to a significant reduction of the computing complexity without decreasing the discrimination power.

  6. Electromagnetic cyclotron harmonic waves

    International Nuclear Information System (INIS)

    Ohnuma, T.; Watanabe, T.; Hamamatsu, K.

    1981-09-01

    Electromagnetic electron cyclotron harmonic waves just below the electron cyclotron harmonics are investigated numerically and experimentally. Backward waves which are observed to propagate nearly perpendicular to the magnetic field just below the electron cyclotron frequency in a high density magnetoplasma are confirmed to be in accord with the theoretical electromagnetic cyclotron waves. (author)

  7. Second harmonic generation in a bounded magnetoplasma

    International Nuclear Information System (INIS)

    Thomas, D.G.

    1975-01-01

    An experimental study of second harmonic generation in a magnetized plasma contained in a cylindrical cavity resonator shows how the harmonic power varies with fundamental power, background gas pressure, and magnetization. Two cavities were designed. For each the TM010 resonance was in the S-band and the TM011 resonance in the C-band. Both frequencies were harmonically related when the d.c. discharge sustaining the plasma was adjusted to give plasma frequencies of approximately 0.7 GHz and 1.53 GHz. The experimental results show the harmonic power approximately proportional to the square of the fundamental power from 5 to 100 mw, and a decreasing function of pressure from 10 to 150 millitorr. Experiments at constant plasma frequency and varying magnetic field from 0 to 3000 Gauss show a sharp drop in harmonic power to undetectable levels when the electron cyclotron frequency approximates either the fundamental or second harmonic frequencies. These effects are attributed, respectively, to the coupling of fundamental power to other modes and to cavity detuning away from the harmonic. With the plasma frequency adjusted to maintain simultaneous resonance of fundamental and harmonic, a harmonic signal maximum occurred when the upper hybrid frequency approximated the harmonic frequency. Several anomalies, apparently related to the magnetization, background gas, and electron density distribution were observed. Otherwise, the results are qualitatively consistent with the first order theory for a cold, collisional plasma

  8. Notes on algebraic invariants for non-commutative dynamical systems

    Energy Technology Data Exchange (ETDEWEB)

    Longo, R [Rome Univ. (Italy). Istituto di Matematica

    1979-11-01

    We consider an algebraic invariant for non-commutative dynamical systems naturally arising as the spectrum of the modular operator associated to an invariant state, provided certain conditions of mixing type are present. This invariant turns out to be exactly the annihilator of the invariant T of Connes. Further comments are included, in particular on the type of certain algebras of local observables

  9. Conformal invariance in supergravity

    International Nuclear Information System (INIS)

    Bergshoeff, E.A.

    1983-01-01

    In this thesis the author explains the role of conformal invariance in supergravity. He presents the complete structure of extended conformal supergravity for N <= 4. The outline of this work is as follows. In chapter 2 he briefly summarizes the essential properties of supersymmetry and supergravity and indicates the use of conformal invariance in supergravity. The idea that the introduction of additional symmetry transformations can make clear the structure of a field theory is not reserved to supergravity only. By means of some simple examples it is shown in chapter 3 how one can always introduce additional gauge transformations in a theory of massive vector fields. Moreover it is shown how the gauge invariant formulation sometimes explains the quantum mechanical properties of the theory. In chapter 4 the author defines the conformal transformations and summarizes their main properties. He explains how these conformal transformations can be used to analyse the structure of gravity. The supersymmetric extension of these results is discussed in chapter 5. Here he describes as an example how N=1 supergravity can be reformulated in a conformally-invariant way. He also shows that beyond N=1 the gauge fields of the superconformal symmetries do not constitute an off-shell field representation of extended conformal supergravity. Therefore, in chapter 6, a systematic method to construct the off-shell formulation of all extended conformal supergravity theories with N <= 4 is developed. As an example he uses this method to construct N=1 conformal supergravity. Finally, in chapter 7 N=4 conformal supergravity is discussed. (Auth.)

  10. Intense harmonic generation from various ablation media

    International Nuclear Information System (INIS)

    Ozaki, T.; Elouga, L.; Suzuki, M.; Kuroda, H.; Ganeev, R.A.

    2006-01-01

    Complete test of publication follows. High-order harmonic generation (HHG) is a unique source of coherent extreme ultraviolet (XUV) radiation, which can produce soft x-rays within the spectral 'water-window' (between 2.3 and 4.4 nm), and ultimately short pulses with attosecond duration. However, the intensity of present-day harmonics is still low, and serious applications will need an increase of the conversion efficiency. Instead of using gas media, one can also use ablation material, produced on solid targets using a low-intensity prepulse, as the nonlinear medium to generate high-order harmonics. Recently, we have successfully demonstrated the generation of up to the 63 rd harmonic (λ = 12.6 nm) of a Ti:sapphire laser radiation using boron ablation, and a strong enhancement in the intensity of the 13 th harmonic from indium ablation. These harmonics were generated with a modest laser (10 mJ, 150 fs) and with the pre-pulse to main pulse energy ratio constant. In this paper, we perform systematic investigations of ablation harmonics, using the 200 mJ, 30 fs Ti:sapphire beam line of the Canadian Advanced Laser Light Source (ALLS) facility. ALLS allows studying ablation harmonics over wider experimental parameters, and with independent control over the pre-pulse and main pulse energies. The 10 Hz, 200 mJ Ti:sapphire beam line of ALLS is divided into two beams. Each beam has its own energy control system, which allows independent control over the energy of each beam. One of the beams is used as a pre-pulse for creating ablation, which is focused onto the solid target without pulse compression, with pulse duration of 200 ps. The second beam is used as the main pulse for harmonic generation. The main pulse is delayed in time relative to the pre-pulse by propagating through an optical delay line, and then sent through a pulse compressor. The compressed pulse duration have typical pulse duration of 30 fs FWHM, which is then focused onto the ablation medium using MgF 2

  11. Harmonic balance approach to the periodic solutions of the (an)harmonic relativistic oscillator

    International Nuclear Information System (INIS)

    Belendez, Augusto; Pascual, Carolina

    2007-01-01

    The first-order harmonic balance method via the first Fourier coefficient is used to construct two approximate frequency-amplitude relations for the relativistic oscillator for which the nonlinearity (anharmonicity) is a relativistic effect due to the time line dilation along the world line. Making a change of variable, a new nonlinear differential equation is obtained and two procedures are used to approximately solve this differential equation. In the first the differential equation is rewritten in a form that does not contain a square-root expression, while in the second the differential equation is solved directly. The approximate frequency obtained using the second procedure is more accurate than the frequency obtained with the first due to the fact that, in the second procedure, application of the harmonic balance method produces an infinite set of harmonics, while in the first procedure only two harmonics are produced. Both approximate frequencies are valid for the complete range of oscillation amplitudes, and excellent agreement of the approximate frequencies with the exact one are demonstrated and discussed. The discrepancy between the first-order approximate frequency obtained by means of the second procedure and the exact frequency never exceeds 1.6%. We also obtained the approximate frequency by applying the second-order harmonic balance method and in this case the relative error is as low 0.31% for all the range of values of amplitude of oscillation A

  12. Harmonically excited orbital variations

    International Nuclear Information System (INIS)

    Morgan, T.

    1985-01-01

    Rephrasing the equations of motion for orbital maneuvers in terms of Lagrangian generalized coordinates instead of Newtonian rectangular cartesian coordinates can make certain harmonic terms in the orbital angular momentum vector more readily apparent. In this formulation the equations of motion adopt the form of a damped harmonic oscillator when torques are applied to the orbit in a variationally prescribed manner. The frequencies of the oscillator equation are in some ways unexpected but can nonetheless be exploited through resonant forcing functions to achieve large secular variations in the orbital elements. Two cases are discussed using a circular orbit as the control case: (1) large changes in orbital inclination achieved by harmonic excitation rather than one impulsive velocity change, and (2) periodic and secular changes to the longitude of the ascending node using both stable and unstable excitation strategies. The implications of these equations are also discussed for both artificial satellites and natural satellites. For the former, two utilitarian orbits are suggested, each exploiting a form of harmonic excitation. 5 refs

  13. Expansion into lattice harmonics in cubic symmetries

    Science.gov (United States)

    Kontrym-Sznajd, G.

    2018-05-01

    On the example of a few sets of sampling directions in the Brillouin zone, this work shows how important the choice of the cubic harmonics is on the quality of approximation of some quantities by a series of such harmonics. These studies led to the following questions: (1) In the case that for a given l there are several independent harmonics, can one use in the expansion only one harmonic with a given l?; (2) How should harmonics be ordered: according to l or, after writing them in terms of (x4 + y4 + z4)n (x2y2z2)m, according to their degree q = n + m? To enable practical applications of such harmonics, they are constructed in terms of the associated Legendre polynomials up to l = 26. It is shown that electron momentum densities, reconstructed from experimental data for ErGa3 and InGa3, are described much better by harmonics ordered with q.

  14. Balancing Vibrations at Harmonic Frequencies by Injecting Harmonic Balancing Signals into the Armature of a Linear Motor/Alternator Coupled to a Stirling Machine

    Science.gov (United States)

    Holliday, Ezekiel S. (Inventor)

    2014-01-01

    Vibrations at harmonic frequencies are reduced by injecting harmonic balancing signals into the armature of a linear motor/alternator coupled to a Stirling machine. The vibrations are sensed to provide a signal representing the mechanical vibrations. A harmonic balancing signal is generated for selected harmonics of the operating frequency by processing the sensed vibration signal with adaptive filter algorithms of adaptive filters for each harmonic. Reference inputs for each harmonic are applied to the adaptive filter algorithms at the frequency of the selected harmonic. The harmonic balancing signals for all of the harmonics are summed with a principal control signal. The harmonic balancing signals modify the principal electrical drive voltage and drive the motor/alternator with a drive voltage component in opposition to the vibration at each harmonic.

  15. Explaining the harmonic sequence paradox.

    Science.gov (United States)

    Schmidt, Ulrich; Zimper, Alexander

    2012-05-01

    According to the harmonic sequence paradox, an expected utility decision maker's willingness to pay for a gamble whose expected payoffs evolve according to the harmonic series is finite if and only if his marginal utility of additional income becomes zero for rather low payoff levels. Since the assumption of zero marginal utility is implausible for finite payoff levels, expected utility theory - as well as its standard generalizations such as cumulative prospect theory - are apparently unable to explain a finite willingness to pay. This paper presents first an experimental study of the harmonic sequence paradox. Additionally, it demonstrates that the theoretical argument of the harmonic sequence paradox only applies to time-patient decision makers, whereas the paradox is easily avoided if time-impatience is introduced. ©2011 The British Psychological Society.

  16. Synthesis of variable harmonic impedance in inverter-interfaced distributed generation unit for harmonic damping throughout a distribution network

    DEFF Research Database (Denmark)

    Wang, Xiongfei; Blaabjerg, Frede; Chen, Zhe

    2012-01-01

    This paper proposes a harmonic impedance synthesis technique for voltage-controlled distributed generation inverter in order to damp harmonic voltage distortion on a distribution network. The approach employs a multiloop control scheme, where a selective load harmonic current feedforward loop bas...

  17. Quantum tunneling, adiabatic invariance and black hole spectroscopy

    Science.gov (United States)

    Li, Guo-Ping; Pu, Jin; Jiang, Qing-Quan; Zu, Xiao-Tao

    2017-05-01

    In the tunneling framework, one of us, Jiang, together with Han has studied the black hole spectroscopy via adiabatic invariance, where the adiabatic invariant quantity has been intriguingly obtained by investigating the oscillating velocity of the black hole horizon. In this paper, we attempt to improve Jiang-Han's proposal in two ways. Firstly, we once again examine the fact that, in different types (Schwarzschild and Painlevé) of coordinates as well as in different gravity frames, the adiabatic invariant I_adia = \\oint p_i dq_i introduced by Jiang and Han is canonically invariant. Secondly, we attempt to confirm Jiang-Han's proposal reasonably in more general gravity frames (including Einstein's gravity, EGB gravity and HL gravity). Concurrently, for improving this proposal, we interestingly find in more general gravity theories that the entropy of the black hole is an adiabatic invariant action variable, but the horizon area is only an adiabatic invariant. In this sense, we emphasize the concept that the quantum of the black hole entropy is more natural than that of the horizon area.

  18. Harmonic d-tensors

    Energy Technology Data Exchange (ETDEWEB)

    Hohmann, Manuel [Physikalisches Institut, Universitaet Tartu (Estonia)

    2016-07-01

    Tensor harmonics are a useful mathematical tool for finding solutions to differential equations which transform under a particular representation of the rotation group SO(3). In order to make use of this tool also in the setting of Finsler geometry, where the objects of relevance are d-tensors instead of tensors, we construct a set of d-tensor harmonics for both SO(3) and SO(4) symmetries and show how these can be used for calculations in Finsler geometry and gravity.

  19. Object recognition by implicit invariants

    Czech Academy of Sciences Publication Activity Database

    Flusser, Jan; Kautsky, J.; Šroubek, Filip

    2007-01-01

    Roč. 2007, č. 4673 (2007), s. 856-863 ISSN 0302-9743. [Computer Analysis of Images and Patterns. Vienna, 27.08.2007-29.08.2007] R&D Projects: GA MŠk 1M0572 Institutional research plan: CEZ:AV0Z10750506 Keywords : Invariants * implicit invariants * moments * orthogonal polynomials * nonlinear object deformation Subject RIV: JD - Computer Applications, Robotics Impact factor: 0.402, year: 2005 http:// staff .utia.cas.cz/sroubekf/papers/CAIP_07.pdf

  20. Modular invariance, chiral anomalies and contact terms

    International Nuclear Information System (INIS)

    Kutasov, D.

    1988-03-01

    The chiral anomaly in heterotic strings with full and partial modular invariance in D=2n+2 dimensions is calculated. The boundary terms which were present in previous calculations are shown to be cancelled in the modular invariant case by contact terms, which can be obtained by an appropriate analytic continuation. The relation to the low energy field theory is explained. In theories with partial modular invariance, an expression for the anomaly is obtained and shown to be non zero in general. (author)

  1. HARMONIZATION OF TAX POLICIES: REVIEWING MACEDONIA AND CROATIA

    Directory of Open Access Journals (Sweden)

    Sasho Kozuharov

    2015-12-01

    Full Text Available The tax harmonization is a complex issue in the process of European integration. The tax harmonization is a process of convergence of the tax system based on mutual set of rules and, in general, it means existence of identical or similar tax rates for the tax payers in European Union, i.e. Euro zone. In case there are identical tax rates, then we are talking about a, so called, total explicit tax harmonization, whereas, if there are similar tax rates, we are talking about partial explicit tax harmonization, which refers to determination of the highest and the lowest tax rates. Thus, countries can determine the tax rates of certain taxes. The total harmonization, besides tax rates harmonization, means structural harmonization or harmonization of the tax structure. The harmonization of direct taxes mainly relies on the following main objectives: avoiding tax evasion and elimination of double taxation. The harmonization of regulations and directives in the field of indirect taxes is necessary in terms of establishing a single market, or removal of barriers to the free movement of goods, people, services and capital.

  2. Harmonic mappings into manifolds with boundary

    International Nuclear Information System (INIS)

    Chen Yunmei; Musina, R.

    1989-08-01

    In this paper we deal with harmonic maps from a compact Riemannian manifold into a manifold with boundary. In this case, a weak harmonic map is by definition a solution to a differential inclusion. In the first part of the paper we investigate the general properties of weak harmonic maps, which can be seen as solutions to a system of elliptic differential equations. In the second part we concentrate our attention on the heat flow method for harmonic maps. The result we achieve in this context extends a result by Chen and Struwe. (author). 21 refs

  3. Power quality issues current harmonics

    CERN Document Server

    Mikkili, Suresh

    2015-01-01

    Power Quality Issues: Current Harmonics provides solutions for the mitigation of power quality problems related to harmonics. Focusing on active power filters (APFs) due to their excellent harmonic and reactive power compensation in two-wire (single phase), three-wire (three-phase without neutral), and four-wire (three-phase with neutral) AC power networks with nonlinear loads, the text:Introduces the APF technology, describing various APF configurations and offering guidelines for the selection of APFs for specific application considerationsCompares shunt active filter (SHAF) control strategi

  4. Three-Phase Harmonic Analysis Method for Unbalanced Distribution Systems

    Directory of Open Access Journals (Sweden)

    Jen-Hao Teng

    2014-01-01

    Full Text Available Due to the unbalanced features of distribution systems, a three-phase harmonic analysis method is essential to accurately analyze the harmonic impact on distribution systems. Moreover, harmonic analysis is the basic tool for harmonic filter design and harmonic resonance mitigation; therefore, the computational performance should also be efficient. An accurate and efficient three-phase harmonic analysis method for unbalanced distribution systems is proposed in this paper. The variations of bus voltages, bus current injections and branch currents affected by harmonic current injections can be analyzed by two relationship matrices developed from the topological characteristics of distribution systems. Some useful formulas are then derived to solve the three-phase harmonic propagation problem. After the harmonic propagation for each harmonic order is calculated, the total harmonic distortion (THD for bus voltages can be calculated accordingly. The proposed method has better computational performance, since the time-consuming full admittance matrix inverse employed by the commonly-used harmonic analysis methods is not necessary in the solution procedure. In addition, the proposed method can provide novel viewpoints in calculating the branch currents and bus voltages under harmonic pollution which are vital for harmonic filter design. Test results demonstrate the effectiveness and efficiency of the proposed method.

  5. Harmonic engine

    Science.gov (United States)

    Bennett, Charles L [Livermore, CA

    2009-10-20

    A high efficiency harmonic engine based on a resonantly reciprocating piston expander that extracts work from heat and pressurizes working fluid in a reciprocating piston compressor. The engine preferably includes harmonic oscillator valves capable of oscillating at a resonant frequency for controlling the flow of working fluid into and out of the expander, and also preferably includes a shunt line connecting an expansion chamber of the expander to a buffer chamber of the expander for minimizing pressure variations in the fluidic circuit of the engine. The engine is especially designed to operate with very high temperature input to the expander and very low temperature input to the compressor, to produce very high thermal conversion efficiency.

  6. Machine Translation and Other Translation Technologies.

    Science.gov (United States)

    Melby, Alan

    1996-01-01

    Examines the application of linguistic theory to machine translation and translator tools, discusses the use of machine translation and translator tools in the real world of translation, and addresses the impact of translation technology on conceptions of language and other issues. Findings indicate that the human mind is flexible and linguistic…

  7. Coherent harmonics generated by a super-short electron pulse

    International Nuclear Information System (INIS)

    Ding Wu

    1996-01-01

    A novel mechanism generating superradiance harmonics is found. In this superradiance harmonics, the temporal width of harmonics is extremely short, the ratio of high harmonic fundamental wave is much higher than the known superradiance harmonics

  8. Strong coupling in a gauge invariant field theory

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, K. [Physics Department, Massachusetts Institute of Technology, Cambridge, MA (United States)

    1963-01-15

    I would like to discuss some approximations which may be significant in the domain of strong coupling in a field system analogous to quantum electrodynamics. The motivation of this work is the idea that the strong couplings and elementary particle spectrum may be the consequence of the dynamics of a system whose underlying description is in terms of a set of Fermi fields gauge invariantly coupled to a single (''bare'') massless neutral vector field. The basis of this gauge invariance would of course be the exact conservation law of baryons or ''nucleonic charge''. It seems to me that a coupling scheme based on an invariance principle is most attractive if that invariance is an exact one. It would then be nice to try to account for the approximate invariance principles in the same way one would describe ''accidental degeneracies'' in any quantum system.

  9. Harmonic lasing in X-ray FELs

    Energy Technology Data Exchange (ETDEWEB)

    Schneidmiller, E.A.; Yurkov, M.V.

    2012-05-15

    Harmonic lasing in a free electron laser with a planar undulator (under the condition that the fundamental frequency is suppressed) might be a cheap and efficient way of extension of wavelength ranges of existing and planned X-ray FEL facilities. Contrary to nonlinear harmonic generation, harmonic lasing can provide much more intense, stable, and narrow-band FEL beam which is easier to handle due to the suppressed fundamental frequency. In this paper we perform a parametrization of the solution of the eigenvalue equation for lasing at odd harmonics, and present an explicit expression for FEL gain length, taking into account all essential effects. We propose and discuss methods for suppression of the fundamental harmonic. We also suggest a combined use of harmonic lasing and lasing at the retuned fundamental wavelength in order to reduce bandwidth and to increase brilliance of X-ray beam at saturation. Considering 3rd harmonic lasing as a practical example, we come to the conclusion that it is much more robust than usually thought, and can be widely used in the existing or planned X-ray FEL facilities. In particular, LCLS after a minor modification can lase to saturation at the 3rd harmonic up to the photon energy of 25-30 keV providing multi-gigawatt power level and narrow bandwidth. As for the European XFEL, harmonic lasing would allow to extend operating range (ultimately up to 100 keV), to reduce FEL bandwidth and to increase brilliance, to enable two-color operation for pump-probe experiments, and to provide more flexible operation at different electron energies. Similar improvements can be realized in other X-ray FEL facilities with gap-tunable undulators like FLASH II, SACLA, LCLS II, etc. Harmonic lasing can be an attractive option for compact X-ray FELs (driven by electron beams with a relatively low energy), allowing the use of the standard undulator technology instead of small-gap in-vacuum devices. Finally, in this paper we discover that in a part of the

  10. Symmetries in physics and harmonics

    International Nuclear Information System (INIS)

    Kolk, D.

    2006-01-01

    In this book the symmetries of elementary particles are described in relation to the rules of harmonics in music. The selection rules are described in connections with harmonic intervals. Also symmetry breaking is considered in this framework. (HSI)

  11. Quantum Hall Conductivity and Topological Invariants

    Science.gov (United States)

    Reyes, Andres

    2001-04-01

    A short survey of the theory of the Quantum Hall effect is given emphasizing topological aspects of the quantization of the conductivity and showing how topological invariants can be derived from the hamiltonian. We express these invariants in terms of Chern numbers and show in precise mathematical terms how this relates to the Kubo formula.

  12. Quantized gauge invariant periodic TDHF solutions

    International Nuclear Information System (INIS)

    Kan, K.-K.; Griffin, J.J.; Lichtner, P.C.; Dworzecka, M.

    1979-01-01

    Time-dependent Hartree-Fock (TDHF) is used to study steady state large amplitude nuclear collective motions, such as vibration and rotation. As is well known the small amplitude TDHF leads to the RPA equation. The analysis of periodicity in TDHF is not trivial because TDHF is a nonlinear theory and it is not known under what circumstances a nonlinear theory can support periodic solutions. It is also unknown whether such periodic solution, if they exist, form a continuous or a discrete set. But, these properties may be important in obtaining the energy spectrum of the collective states from the TDHF description. The periodicity and Gauge Invariant Periodicity of solutions are investigated for that class of models whose TDHF solutions depend on time through two parameters. In such models TDHF supports a continuous family of periodic solutions, but only a discrete subset of these is gauge invariant. These discrete Gauge Invariant Periodic solutions obey the Bohr-Summerfeld quantization rule. The energy spectrum of the Gauge Invariant Periodic solutions is compared with the exact eigenergies in one specific example

  13. Classification of simple current invariants

    CERN Document Server

    Gato-Rivera, Beatriz

    1992-01-01

    We summarize recent work on the classification of modular invariant partition functions that can be obtained with simple currents in theories with a center (Z_p)^k with p prime. New empirical results for other centers are also presented. Our observation that the total number of invariants is monodromy-independent for (Z_p)^k appears to be true in general as well. (Talk presented in the parallel session on string theory of the Lepton-Photon/EPS Conference, Geneva, 1991.)

  14. Harmonic generation effect in high-Tc films

    International Nuclear Information System (INIS)

    Khare, Neeraj; Shrivastava, S.K.; Padmanabhan, V.P.N.; Khare, Sangeeta; Gupta, A.K.

    1997-01-01

    Harmonic generation in thick BPSCCO and thin YBCO films are reported. The application of an ac field (H ac > H c1 ) of frequency f causes the generation of odd harmonics of frequency (2n+1)f. The application of dc field in addition to the ac field causes the appearance of even harmonics also in the BPSCCO film. However, the appearance of even harmonics is not observed in YBCO film with high J c ∼ 1.6x10 6 A/cm 2 and appearance of second harmonic with small magnitude is observed in YBCO film with low J c ∼ 2x10 3 A/cm 2 . The variation of amplitudes of these harmonics are studied as a function of magnitude of ac and dc field and the results are explained in the framework of critical state model. A high-T c film magnetometer based on the measurement of the amplitude of second harmonic has been developed whose field sensitivity is ∼ 1.5x10 -8 T. (author)

  15. High-harmonic generation in a dense medium

    International Nuclear Information System (INIS)

    Strelkov, V.V.; Platonenko, V.T.; Becker, A.

    2005-01-01

    The high-harmonic generation in a plasma or gas under conditions when the single-atom response is affected by neighboring ions or atoms of the medium is studied theoretically. We solve numerically the three-dimensional Schroedinger equation for a single-electron atom in the combined fields of the neighboring particles and the laser, and average the results over different random positions of the particles using the Monte Carlo method. Harmonic spectra are calculated for different medium densities and laser intensities. We observe a change of the harmonic properties due to a random variation of the harmonic phase induced by the field of the medium, when the medium density exceeds a certain transition density. The transition density is found to depend on the harmonic order, but it is almost independent of the fundamental intensity. It also differs for the two (shorter and longer) quantum paths. The latter effect leads for ionic densities in the transition regime to a narrowing of the harmonic lines and a shortening of the attosecond pulses generated using a group of harmonics

  16. Quantum tunneling, adiabatic invariance and black hole spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guo-Ping; Zu, Xiao-Tao [University of Electronic Science and Technology of China, School of Physical Electronics, Chengdu (China); Pu, Jin [University of Electronic Science and Technology of China, School of Physical Electronics, Chengdu (China); China West Normal University, College of Physics and Space Science, Nanchong (China); Jiang, Qing-Quan [China West Normal University, College of Physics and Space Science, Nanchong (China)

    2017-05-15

    In the tunneling framework, one of us, Jiang, together with Han has studied the black hole spectroscopy via adiabatic invariance, where the adiabatic invariant quantity has been intriguingly obtained by investigating the oscillating velocity of the black hole horizon. In this paper, we attempt to improve Jiang-Han's proposal in two ways. Firstly, we once again examine the fact that, in different types (Schwarzschild and Painleve) of coordinates as well as in different gravity frames, the adiabatic invariant I{sub adia} = circular integral p{sub i}dq{sub i} introduced by Jiang and Han is canonically invariant. Secondly, we attempt to confirm Jiang-Han's proposal reasonably in more general gravity frames (including Einstein's gravity, EGB gravity and HL gravity). Concurrently, for improving this proposal, we interestingly find in more general gravity theories that the entropy of the black hole is an adiabatic invariant action variable, but the horizon area is only an adiabatic invariant. In this sense, we emphasize the concept that the quantum of the black hole entropy is more natural than that of the horizon area. (orig.)

  17. Harmonic sums and polylogarithms generated by cyclotomic polynomials

    Energy Technology Data Exchange (ETDEWEB)

    Ablinger, Jakob; Schneider, Carsten [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation; Bluemlein, Johannes [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2011-05-15

    The computation of Feynman integrals in massive higher order perturbative calculations in renormalizable Quantum Field Theories requires extensions of multiply nested harmonic sums, which can be generated as real representations by Mellin transforms of Poincare-iterated integrals including denominators of higher cyclotomic polynomials. We derive the cyclotomic harmonic polylogarithms and harmonic sums and study their algebraic and structural relations. The analytic continuation of cyclotomic harmonic sums to complex values of N is performed using analytic representations. We also consider special values of the cyclotomic harmonic polylogarithms at argument x=1, resp., for the cyclotomic harmonic sums at N{yields}{infinity}, which are related to colored multiple zeta values, deriving various of their relations, based on the stuffle and shuffle algebras and three multiple argument relations. We also consider infinite generalized nested harmonic sums at roots of unity which are related to the infinite cyclotomic harmonic sums. Basis representations are derived for weight w=1,2 sums up to cyclotomy l=20. (orig.)

  18. Concept of a collective subspace associated with the invariance principle of the Schroedinger equation

    International Nuclear Information System (INIS)

    Marumori, Toshio; Hayashi, Akihisa; Tomoda, Toshiaki; Kuriyama, Atsushi; Maskawa, Toshihide

    1980-01-01

    The aim of this series of papers is to propose a microscopic theory to go beyond the situations where collective motions are described by the random phase approximation, i.e., by small amplitude harmonic oscillations about equilibrium. The theory is thus appropriate for the microscopic description of the large amplitude collective motion of soft nuclei. The essential idea is to develop a method to determine the collective subspace (or submanifold) in the many-particle Hilbert space in an optimal way, on the basis of a fundamental principle called the invariance principle of the Schroedinger equation. By using the principle within the framework of the Hartree-Fock theory, it is shown that the theory can clarify the structure of the so-called ''phonon-bands'' by self-consistently deriving the collective Hamiltonian where the number of the ''physical phonon'' is conserved. The purpose of this paper is not to go into detailed quantitative discussion, but rather to develop the basic idea. (author)

  19. Multiperiod Maximum Loss is time unit invariant.

    Science.gov (United States)

    Kovacevic, Raimund M; Breuer, Thomas

    2016-01-01

    Time unit invariance is introduced as an additional requirement for multiperiod risk measures: for a constant portfolio under an i.i.d. risk factor process, the multiperiod risk should equal the one period risk of the aggregated loss, for an appropriate choice of parameters and independent of the portfolio and its distribution. Multiperiod Maximum Loss over a sequence of Kullback-Leibler balls is time unit invariant. This is also the case for the entropic risk measure. On the other hand, multiperiod Value at Risk and multiperiod Expected Shortfall are not time unit invariant.

  20. Dimuon Level-1 invariant mass in 2017 data

    CERN Document Server

    CMS Collaboration

    2018-01-01

    This document shows the Level-1 (L1) dimuon invariant mass with and without L1 muon track extrapolation to the collision vertex and how it compares with the offline reconstructed dimuon invariant mass. The plots are made with the data sample collected in 2017. The event selection, the matching algorithm and the results of the L1 dimuon invariant mass are described in the next pages.

  1. Harmonic currents circulation in electrical networks simulation and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Em-Mamlouk, W.M. [MEP, Cairo (Egypt); El-Sharkawy, M.A. [Shams Univ., Cairo (Egypt). Dept. of Electrical Power and Machines; Mostafa, H.E. [Jazan Univ., Jazan (Saudi Arabia). Electrical Dept.

    2009-07-01

    A detailed harmonic flow analysis for a 13-bus balanced industrial distribution system was presented. The aim of the study was to determine the influence of harmonic sources in various branches of the system on voltage and current waveforms before disruptions to the utility supply system occurred. The current harmonic contents of an adjustable speed drive (ASD) were studied under various loading conditions. The test system was simulated using a standard study test system. Harmonic effects from multiple sources were investigated, and voltage distortion on the different buses was monitored. The study demonstrated that while the harmonic loads circulated harmonic currents in all system branches, no harmonic source was directly connected to the system buses. Many of the investigated cases exceeded allowable voltage total harmonic distortion and or current total harmonic distortion standards set by the Institute of Electrical and Electronic Engineers (IEEE). It was concluded that active harmonic filters should be used to prevent the effects of harmonic current circulation at different buses on neighbouring loads within a system. 8 refs., 11 tabs., 15 figs.

  2. Exact solution of the time-dependent harmonic plus an inverse harmonic potential with a time-dependent electromagnetic field

    International Nuclear Information System (INIS)

    Yuece, Cem

    2003-01-01

    In this paper, the problem of the charged harmonic plus an inverse harmonic oscillator with time-dependent mass and frequency in a time-dependent electromagnetic field is investigated. It is reduced to the problem of the inverse harmonic oscillator with time-independent parameters and the exact wave function is obtained

  3. A Balanced Comparison of Object Invariances in Monkey IT Neurons.

    Science.gov (United States)

    Ratan Murty, N Apurva; Arun, Sripati P

    2017-01-01

    Our ability to recognize objects across variations in size, position, or rotation is based on invariant object representations in higher visual cortex. However, we know little about how these invariances are related. Are some invariances harder than others? Do some invariances arise faster than others? These comparisons can be made only upon equating image changes across transformations. Here, we targeted invariant neural representations in the monkey inferotemporal (IT) cortex using object images with balanced changes in size, position, and rotation. Across the recorded population, IT neurons generalized across size and position both stronger and faster than to rotations in the image plane as well as in depth. We obtained a similar ordering of invariances in deep neural networks but not in low-level visual representations. Thus, invariant neural representations dynamically evolve in a temporal order reflective of their underlying computational complexity.

  4. Young children's harmonic perception.

    Science.gov (United States)

    Costa-Giomi, Eugenia

    2003-11-01

    Harmony and tonality are two of the most difficult elements for young children to perceive and manipulate and are seldom taught in the schools until the end of early childhood. Children's gradual harmonic and tonal development has been attributed to their cumulative exposure to Western tonal music and their increasing experiential knowledge of its rules and principles. Two questions that are relevant to this problem are: (1) Can focused and systematic teaching accelerate the learning of the harmonic/tonal principles that seem to occur in an implicit way throughout childhood? (2) Are there cognitive constraints that make it difficult for young children to perceive and/or manipulate certain harmonic and tonal principles? A series of studies specifically addressed the first question and suggested some possible answers to the second one. Results showed that harmonic instruction has limited effects on children's perception of harmony and indicated that the drastic improvement in the perception of implied harmony noted approximately at age 9 is due to development rather than instruction. I propose that young children's difficulty in perceiving implied harmony stems from their attention behaviors. Older children have less memory constraints and more strategies to direct their attention to the relevant cues of the stimulus. Younger children focus their attention on the melody, if present in the stimulus, and specifically on its concrete elements such as rhythm, pitch, and contour rather than its abstract elements such as harmony and key. The inference of the abstract harmonic organization of a melody required in the perception of implied harmony is thus an elusive task for the young child.

  5. Classical and multilinear harmonic analysis

    CERN Document Server

    Muscalu, Camil

    2013-01-01

    This two-volume text in harmonic analysis introduces a wealth of analytical results and techniques. It is largely self-contained and useful to graduates and researchers in pure and applied analysis. Numerous exercises and problems make the text suitable for self-study and the classroom alike. The first volume starts with classical one-dimensional topics: Fourier series; harmonic functions; Hilbert transform. Then the higher-dimensional Calderón-Zygmund and Littlewood-Paley theories are developed. Probabilistic methods and their applications are discussed, as are applications of harmonic analysis to partial differential equations. The volume concludes with an introduction to the Weyl calculus. The second volume goes beyond the classical to the highly contemporary and focuses on multilinear aspects of harmonic analysis: the bilinear Hilbert transform; Coifman-Meyer theory; Carleson's resolution of the Lusin conjecture; Calderón's commutators and the Cauchy integral on Lipschitz curves. The material in this vo...

  6. Higher order harmonics of reactor neutron equation

    International Nuclear Information System (INIS)

    Li Fu; Hu Yongming; Luo Zhengpei

    1996-01-01

    The flux mapping method using the higher order harmonics of the neutron equation is proposed. Based on the bi-orthogonality of the higher order harmonics, the process and formulas for higher order harmonics calculation are derived via the source iteration method with source correction. For the first time, not only any order harmonics for up-to-3-dimensional geometry are achieved, but also the preliminary verification to the capability for flux mapping have been carried out

  7. Bounce-harmonic Landau Damping of Plasma Waves

    Science.gov (United States)

    Anderegg, Francois

    2015-11-01

    We present measurement of plasma wave damping, spanning the temperature regimes of direct Landau damping, bounce-harmonic Landau damping, inter-species drag damping, and viscous damping. Direct Landau damping is dominant at high temperatures, but becomes negligible as v vph / 5 . The measurements are conducted in trapped pure ion plasmas contained in Penning-Malmberg trap, with wave-coherent LIF diagnostics of particle velocities. Our focus is on bounce harmonics damping, controlled by an applied ``squeeze'' potential, which generates harmonics in the wave potential and in the particle dynamics. A particle moving in z experiences a non-sinusoidal mode potential caused by the squeeze, producing high spatial harmonics with lower phase velocity. These harmonics are Landau damped even when the mode phase velocity vph is large compared to the thermal velocity v , since the nth harmonic is resonant with a particle bouncing at velocity vb =vph / n . Here we increase the bounce harmonics through applied squeeze potential; but some harmonics are always present in finite length systems. For our centered squeeze geometry, theory shows that only odd harmonics are generated, and predicts the Landau damping rate from vph / n . Experimentally, the squeeze potential increases the wave damping and reduces its frequency. The frequency shift occurs because the squeeze potential reduces the number of particle where the mode velocity is the largest, therefore reducing the mode frequency. We observe an increase in the damping proportional to Vs2,and a frequency reduction proportional to Vs , in quantitative agreement with theory. Wave-coherent laser induced fluorescence allows direct observation of bounce resonances on the particle distribution, here predominantly at vph / 3 . A clear increase of the bounce harmonics is visible on the particle distribution when the squeeze potential is applied. Supported by NSF Grant PHY-1414570, and DOE Grants DE-SC0002451 and DE-SC0008693.

  8. Invariant probabilities of transition functions

    CERN Document Server

    Zaharopol, Radu

    2014-01-01

    The structure of the set of all the invariant probabilities and the structure of various types of individual invariant probabilities of a transition function are two topics of significant interest in the theory of transition functions, and are studied in this book. The results obtained are useful in ergodic theory and the theory of dynamical systems, which, in turn, can be applied in various other areas (like number theory). They are illustrated using transition functions defined by flows, semiflows, and one-parameter convolution semigroups of probability measures. In this book, all results on transition probabilities that have been published by the author between 2004 and 2008 are extended to transition functions. The proofs of the results obtained are new. For transition functions that satisfy very general conditions the book describes an ergodic decomposition that provides relevant information on the structure of the corresponding set of invariant probabilities. Ergodic decomposition means a splitting of t...

  9. Riemann quasi-invariants

    International Nuclear Information System (INIS)

    Pokhozhaev, Stanislav I

    2011-01-01

    The notion of Riemann quasi-invariants is introduced and their applications to several conservation laws are considered. The case of nonisentropic flow of an ideal polytropic gas is analysed in detail. Sufficient conditions for gradient catastrophes are obtained. Bibliography: 16 titles.

  10. Understanding fifth-harmonic generation in CLBO

    Science.gov (United States)

    Patankar, S.; Yang, S. T.; Moody, J. D.; Bayramian, A. J.; Swadling, G. F.; Barker, D.; Datte, P.; Mennerat, G.; Norton, M.; Carr, C. W.; Begishev, I. A.; Bromage, J.; Ross, J. S.

    2018-02-01

    We report on results of fifth harmonic generation in Cesium Lithium Borate (CLBO) using a three-crystal cascaded frequency conversion scheme designed to study the energy balance of the final sum frequency generation stage. The experimental setup independently combines the first and fourth harmonic of a Nd:Glass laser in a 5mm thick CLBO crystal. Energy balance between the incoming and output energy is close to unity when the CLBO is out of phase matching and approximately 80% when the crystal is in phase matching. A detailed analysis of the residual fundamental and fourth harmonic energy indicates 5th harmonic light is being generated but only 26% is unaccounted for. We attribute the missing light to linear transmission loss in the CLBO oven. The ratio of the output to input energy is unity when the missing 5th harmonic is incorporated into the calculations. Two-dimensional plane wave mixing simulations show agreement with the results at lower intensities.

  11. Modular categories and 3-manifold invariants

    International Nuclear Information System (INIS)

    Tureav, V.G.

    1992-01-01

    The aim of this paper is to give a concise introduction to the theory of knot invariants and 3-manifold invariants which generalize the Jones polynomial and which may be considered as a mathematical version of the Witten invariants. Such a theory was introduced by N. Reshetikhin and the author on the ground of the theory of quantum groups. here we use more general algebraic objects, specifically, ribbon and modular categories. Such categories in particular arise as the categories of representations of quantum groups. The notion of modular category, interesting in itself, is closely related to the notion of modular tensor category in the sense of G. Moore and N. Seiberg. For simplicity we restrict ourselves in this paper to the case of closed 3-manifolds

  12. Knot invariants and higher representation theory

    CERN Document Server

    Webster, Ben

    2018-01-01

    The author constructs knot invariants categorifying the quantum knot variants for all representations of quantum groups. He shows that these invariants coincide with previous invariants defined by Khovanov for \\mathfrak{sl}_2 and \\mathfrak{sl}_3 and by Mazorchuk-Stroppel and Sussan for \\mathfrak{sl}_n. The author's technique is to study 2-representations of 2-quantum groups (in the sense of Rouquier and Khovanov-Lauda) categorifying tensor products of irreducible representations. These are the representation categories of certain finite dimensional algebras with an explicit diagrammatic presentation, generalizing the cyclotomic quotient of the KLR algebra. When the Lie algebra under consideration is \\mathfrak{sl}_n, the author shows that these categories agree with certain subcategories of parabolic category \\mathcal{O} for \\mathfrak{gl}_k.

  13. A collaborative quality improvement model and electronic community of practice to support sepsis management in emergency departments: investigating care harmonization for provincial knowledge translation.

    Science.gov (United States)

    Ho, Kendall; Marsden, Julian; Jarvis-Selinger, Sandra; Novak Lauscher, Helen; Kamal, Noreen; Stenstrom, Rob; Sweet, David; Goldman, Ran D; Innes, Grant

    2012-07-12

    Emergency medicine departments within several organizations are now advocating the adoption of early intervention guidelines for patients with the signs and symptoms of sepsis. This proposed research will lead to a comprehensive understanding of how diverse emergency department (ED) sites across British Columbia (BC), Canada, engage in a quality improvement collaborative to lead to improvements in time-based process measures and clinical outcomes for septic patients in EDs. To address the challenge of sepsis management, in 2007, the BC Ministry of Health began working with emergency health professionals, including health administrators, to establish a provincial ED collaborative: Evidence to Excellence (E2E). The E2E initiative employs the Institute for Healthcare Improvement (IHI) model and is supported by a Web-based community of practice (CoP) in emergency medicine. It aims to (1) support clinicians in accessing and applying evidence to clinical practice in emergency medicine, (2) support system change and clinical process improvement, and (3) develop resources and strategies to facilitate knowledge translation and process improvement. Improving sepsis management is one of the central foci of the E2E initiative. The primary purpose of our research is to investigate whether the application of sepsis management protocols leads to improved time-based process measures and clinical outcomes for patients presenting to EDs with sepsis. Also, we seek to investigate the implementation of sepsis protocols among different EDs. For example: (1) How can sepsis protocols be harmonized among different EDs? (2) What are health professionals' perspectives on interprofessional collaboration with various EDs? and (3) What are the factors affecting the level of success among EDs? Lastly, working in collaboration with the BC Ministry of Health as our policy-maker partner, the research will investigate how the demonstrated efficacy of this research can be applied on a provincial and

  14. Existence of a last invariant of conservative motion

    International Nuclear Information System (INIS)

    Hall, L.S.

    1982-01-01

    A general theory of integrable systems in two dimensions is formulated and applied. (The theory also has applications to more dimensions). The constraints are found which admit to general integrability of the orbits for magnetic forces as well as for forces derivable from a potential. When a system admits a given invariant, the invariant is found. A number of examples including known and apparently previously unknown invariants are given. The theory of exact integrals of the motion also can be extended to the derivation of approximate invariants. The general theory admits a variational principle, among other approximation techniques, for the computation of a best approximate invariant. The problem of the general cubic potential with one symmetric coordinate, V = 1/2 Ax 2 + 1/2 By 2 + Cx 2 y + 1/3 Dy 3 (of which the well-studied Henon-Heiles potential is the special case for A = B and C = -D), is examined in detail

  15. Knot invariants derived from quandles and racks

    OpenAIRE

    Kamada, Seiichi

    2002-01-01

    The homology and cohomology of quandles and racks are used in knot theory: given a finite quandle and a cocycle, we can construct a knot invariant. This is a quick introductory survey to the invariants of knots derived from quandles and racks.

  16. Third Harmonic Imaging using a Pulse Inversion

    DEFF Research Database (Denmark)

    Rasmussen, Joachim; Du, Yigang; Jensen, Jørgen Arendt

    2011-01-01

    The pulse inversion (PI) technique can be utilized to separate and enhance harmonic components of a waveform for tissue harmonic imaging. While most ultrasound systems can perform pulse inversion, only few image the 3rd harmonic component. PI pulse subtraction can isolate and enhance the 3rd...

  17. Invariant approach to CP in unbroken Δ(27

    Directory of Open Access Journals (Sweden)

    Gustavo C. Branco

    2015-10-01

    Full Text Available The invariant approach is a powerful method for studying CP violation for specific Lagrangians. The method is particularly useful for dealing with discrete family symmetries. We focus on the CP properties of unbroken Δ(27 invariant Lagrangians with Yukawa-like terms, which proves to be a rich framework, with distinct aspects of CP, making it an ideal group to investigate with the invariant approach. We classify Lagrangians depending on the number of fields transforming as irreducible triplet representations of Δ(27. For each case, we construct CP-odd weak basis invariants and use them to discuss the respective CP properties. We find that CP violation is sensitive to the number and type of Δ(27 representations.

  18. Inertial Spontaneous Symmetry Breaking and Quantum Scale Invariance

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Pedro G. [Oxford U.; Hill, Christopher T. [Fermilab; Ross, Graham G. [Oxford U., Theor. Phys.

    2018-01-23

    Weyl invariant theories of scalars and gravity can generate all mass scales spontaneously, initiated by a dynamical process of "inertial spontaneous symmetry breaking" that does not involve a potential. This is dictated by the structure of the Weyl current, $K_\\mu$, and a cosmological phase during which the universe expands and the Einstein-Hilbert effective action is formed. Maintaining exact Weyl invariance in the renormalised quantum theory is straightforward when renormalisation conditions are referred back to the VEV's of fields in the action of the theory, which implies a conserved Weyl current. We do not require scale invariant regulators. We illustrate the computation of a Weyl invariant Coleman-Weinberg potential.

  19. Validation Techniques of network harmonic models based on switching of a series linear component and measuring resultant harmonic increments

    DEFF Research Database (Denmark)

    Wiechowski, Wojciech Tomasz; Lykkegaard, Jan; Bak, Claus Leth

    2007-01-01

    In this paper two methods of validation of transmission network harmonic models are introduced. The methods were developed as a result of the work presented in [1]. The first method allows calculating the transfer harmonic impedance between two nodes of a network. Switching a linear, series network......, as for example a transmission line. Both methods require that harmonic measurements performed at two ends of the disconnected element are precisely synchronized....... are used for calculation of the transfer harmonic impedance between the nodes. The determined transfer harmonic impedance can be used to validate a computer model of the network. The second method is an extension of the fist one. It allows switching a series element that contains a shunt branch...

  20. Benefits from the BESSY FEL Higher Harmonic Radiation

    CERN Document Server

    Goldammer, K

    2005-01-01

    In the FEL process, bunching and coherent radiation is produced at the fundamental frequency as well as its higher harmonics. BESSY proposes a linac-based cascaded High-Gain Harmonic-Generation (HGHG) free electron laser (FEL) multi-user facility. The BESSY soft X-ray FEL will be seeded by three lasers spanning the spectral range of 230nm to 460nm. Two to four HGHG stages downconvert the seed wavelength to the desired radiation range of 1.24nm to 51nm using higher harmonic bunching. As a surplus, higher harmonic radiation is intrinsically produced in each FEL stage. Radiation on a higher harmonic of the FEL frequency is of high interest because it yields the possibility to reduce the number of FEL stages. This paper details extensive studies of the higher harmonic content of the BESSY FEL radiation. Important aspects of FEL interaction on higher harmonics as resulting from theory and from numerical simulations are discussed. For the case of the BESSY FEL, methods for improving the harmonic content are present...

  1. Invariance as a Tool for Ontology of Information

    Directory of Open Access Journals (Sweden)

    Marcin J. Schroeder

    2016-03-01

    Full Text Available Attempts to answer questions regarding the ontological status of information are frequently based on the assumption that information should be placed within an already existing framework of concepts of established ontological statuses related to science, in particular to physics. However, many concepts of physics have undetermined or questionable ontological foundations. We can look for a solution in the recognition of the fundamental role of invariance with respect to a change of reference frame and to other transformations as a criterion for objective existence. The importance of invariance (symmetry as a criterion for a primary ontological status can be identified in the methodology of physics from its beginnings in the work of Galileo, to modern classifications of elementary particles. Thus, the study of the invariance of the theoretical description of information is proposed as the first step towards ontology of information. With the exception of only a few works among publications which set the paradigm of information studies, the issues of invariance were neglected. Orthodox analysis of information lacks conceptual framework for the study of invariance. The present paper shows how invariance can be formalized for the definition of information and, accompanying it, mathematical formalism proposed by the author in his earlier publications.

  2. Hermitian harmonic maps into convex balls

    International Nuclear Information System (INIS)

    Li Zhenyang; Xi Zhang

    2004-07-01

    In this paper, we consider Hermitian harmonic maps from Hermitian manifolds into convex balls. We prove that there exist no non-trivial Hermitian harmonic maps from closed Hermitian manifolds into convex balls, and we use the heat flow method to solve the Dirichlet problem for Hermitian harmonic maps when the domain is compact Hermitian manifold with non-empty boundary. The case where the domain manifold is complete(noncompact) is also studied. (author)

  3. A study of parametric instability in a harmonic gyrotron: Designs of third harmonic gyrotrons at 94 GHz and 210 GHz

    International Nuclear Information System (INIS)

    Saraph, G.P.; Antonsen, T.M. Jr.; Nusinovich, G.S.; Levush, B.

    1995-01-01

    Mode competition can present a major hurdle in achieving stable, efficient operation of a gyrotron at the cyclotron harmonics. A type of mode interaction in which three modes at different cyclotron harmonics are parametrically coupled together is analyzed here. This coupling can lead to parametric excitation or suppression of a mode; cyclic mode hopping; or the coexistence of three modes. Simulation results are presented for the parametric instability involving modes at the fundamental, second harmonic, and third harmonic of the cyclotron frequency. It is shown that the parametric excitation can lead to stable, efficient operation of a high-power gyrotron at the third harmonic. Based on this phenomenon, two practical designs are presented here for the third harmonic operation at 94 and 210 GHz. copyright 1995 American Institute of Physics

  4. Harmonic disturbance location by applying Bayesian inference

    NARCIS (Netherlands)

    Ye, G.; Xiang, Y.; Cuk, V.; Cobben, J.F.G.

    2016-01-01

    Harmonic pollution is one of the most important power quality issues in electric power systems. Correct location of the main harmonic disturbance source is a key step to solve the problem. This paper presents a method to detect the location of harmonic disturbance source in low voltage network

  5. Introduction to classical and quantum harmonic oscillators

    CERN Document Server

    Bloch, Sylvan C

    2013-01-01

    From conch shells to lasers . harmonic oscillators, the timeless scientific phenomenon As intriguing to Galileo as they are to scientists today, harmonic oscillators have provided a simple and compelling paradigm for understanding the complexities that underlie some of nature's and mankind's most fascinating creations. From early string and wind instruments fashioned from bows and seashells to the intense precision of lasers, harmonic oscillators have existed in various forms, as objects of beauty and scientific use. And harmonic oscillation has endured as one of science's most fascinating con

  6. Dual aperture dipole magnet with second harmonic component

    Science.gov (United States)

    Praeg, Walter F.

    1985-01-01

    An improved dual aperture dipole electromagnet includes a second-harmonic frequency magnetic guide field winding which surrounds first harmonic frequency magnetic guide field windings associated with each aperture. The second harmonic winding and the first harmonic windings cooperate to produce resultant magnetic waveforms in the apertures which have extended acceleration and shortened reset portions of electromagnet operation.

  7. Evaluation of Harmonics Impact on Digital Relays

    Directory of Open Access Journals (Sweden)

    Kinan Wannous

    2018-04-01

    Full Text Available This paper presents the concept of the impact of harmonic distortion on a digital protection relay. The aim is to verify and determine the reasons of a mal-trip or failure to trip the protection relays; the suggested solution of the harmonic distortion is explained by a mathematical model in the Matlab Simulink programming environment. The digital relays have been tested under harmonic distortions in order to verify the function of the relays algorithm under abnormal conditions. The comparison between the protection relay algorithm under abnormal conditions and a mathematical model in the Matlab Simulink programming environment based on injected harmonics of high values is provided. The test is separated into different levels; the first level is based on the harmonic effect of an individual harmonic and mixed harmonics. The test includes the effect of the harmonics in the location of the fault point into distance protection zones. This paper is a new proposal in the signal processing of power quality disturbances using Matlab Simulink and the power quality impact on the measurements of the power system quantities; the test simulates the function of protection in power systems in terms of calculating the current and voltage values of short circuits and their faults. The paper includes several tests: frequency variations and decomposition of voltage waveforms with Fourier transforms (model and commercial relay, the effect of the power factor on the location of fault points, the relation between the tripping time and the total harmonic distortion (THD levels in a commercial relay, and a comparison of the THD capture between the commercial relay and the model.

  8. Normal Anti-Invariant Submanifolds of Paraquaternionic Kähler Manifolds

    Directory of Open Access Journals (Sweden)

    Novac-Claudiu Chiriac

    2006-12-01

    Full Text Available We introduce normal anti-invariant submanifolds of paraquaternionic Kähler manifolds and study the geometric structures induced on them. We obtain necessary and sufficient conditions for the integrability of the distributions defined on a normal anti-invariant submanifold. Also, we present characterizations of local (global anti-invariant products.

  9. Perturbation to Unified Symmetry and Adiabatic Invariants for Relativistic Hamilton Systems

    International Nuclear Information System (INIS)

    Zhang Mingjiang; Fang Jianhui; Lu Kai; Pang Ting; Lin Peng

    2009-01-01

    Based on the concept of adiabatic invariant, the perturbation to unified symmetry and adiabatic invariants for relativistic Hamilton systems are studied. The definition of the perturbation to unified symmetry for the system is presented, and the criterion of the perturbation to unified symmetry is given. Meanwhile, the Noether adiabatic invariants, the generalized Hojman adiabatic invariants, and the Mei adiabatic invariants for the perturbed system are obtained. (general)

  10. Dark coupling and gauge invariance

    International Nuclear Information System (INIS)

    Gavela, M.B.; Honorez, L. Lopez; Mena, O.; Rigolin, S.

    2010-01-01

    We study a coupled dark energy-dark matter model in which the energy-momentum exchange is proportional to the Hubble expansion rate. The inclusion of its perturbation is required by gauge invariance. We derive the linear perturbation equations for the gauge invariant energy density contrast and velocity of the coupled fluids, and we determine the initial conditions. The latter turn out to be adiabatic for dark energy, when assuming adiabatic initial conditions for all the standard fluids. We perform a full Monte Carlo Markov Chain likelihood analysis of the model, using WMAP 7-year data

  11. Dark Coupling and Gauge Invariance

    CERN Document Server

    Gavela, M B; Mena, O; Rigolin, S

    2010-01-01

    We study a coupled dark energy-dark matter model in which the energy-momentum exchange is proportional to the Hubble expansion rate. The inclusion of its perturbation is required by gauge invariance. We derive the linear perturbation equations for the gauge invariant energy density contrast and velocity of the coupled fluids, and we determine the initial conditions. The latter turn out to be adiabatic for dark energy, when assuming adiabatic initial conditions for all the standard fluids. We perform a full Monte Carlo Markov Chain likelihood analysis of the model, using WMAP 7-year data.

  12. Fast harmonic field mapper

    International Nuclear Information System (INIS)

    Au, R.; Fowler, M.; Hanawa, H.; Riedel, J.; Qua, Z.G.

    1984-01-01

    In early 1983 it was decided to mount coils on arms separated by 120 degrees and buck them out so that the third harmonic dphi/dt component would be cancelled and thus the first and second field harmonics could be very accurately measured. The original intention was to do as others had done, namely, use fast ADC's to read the voltages, and computer process the result to get the Fourier components. However, because of the 100 to 1 dynamic range of the fast ADC's and the likelihood that noise would be a problem, the authors decided to do things differently. Using a fast Fourier transform analyzer was considered, but this instrument is very expensive, so they decided to use a completely electronic analog approach: The authors decided to use active bandpass filters to render the harmonic components

  13. Spin foam diagrammatics and topological invariance

    International Nuclear Information System (INIS)

    Girelli, Florian; Oeckl, Robert; Perez, Alejandro

    2002-01-01

    We provide a simple proof of the topological invariance of the Turaev-Viro model (corresponding to simplicial 3D pure Euclidean gravity with cosmological constant) by means of a novel diagrammatic formulation of the state sum models for quantum BF theories. Moreover, we prove the invariance under more general conditions allowing the state sum to be defined on arbitrary cellular decompositions of the underlying manifold. Invariance is governed by a set of identities corresponding to local gluing and rearrangement of cells in the complex. Due to the fully algebraic nature of these identities our results extend to a vast class of quantum groups. The techniques introduced here could be relevant for investigating the scaling properties of non-topological state sums, proposed as models of quantum gravity in 4D, under refinement of the cellular decomposition

  14. Second-order gauge-invariant perturbations during inflation

    International Nuclear Information System (INIS)

    Finelli, F.; Marozzi, G.; Vacca, G. P.; Venturi, G.

    2006-01-01

    The evolution of gauge invariant second-order scalar perturbations in a general single field inflationary scenario are presented. Different second-order gauge-invariant expressions for the curvature are considered. We evaluate perturbatively one of these second order curvature fluctuations and a second-order gauge-invariant scalar field fluctuation during the slow-roll stage of a massive chaotic inflationary scenario, taking into account the deviation from a pure de Sitter evolution and considering only the contribution of super-Hubble perturbations in mode-mode coupling. The spectra resulting from their contribution to the second order quantum correlation function are nearly scale-invariant, with additional logarithmic corrections with respect to the first order spectrum. For all scales of interest the amplitude of these spectra depends on the total number of e-folds. We find, on comparing first and second order perturbation results, an upper limit to the total number of e-folds beyond which the two orders are comparable

  15. Field transformations, collective coordinates and BRST invariance

    International Nuclear Information System (INIS)

    Alfaro, J.; Damgaard, P.H.

    1989-12-01

    A very large class of general field transformations can be viewed as a field theory generalization of the method of collective coordinates. The introduction of new variables induces a gauge invariance in the transformed theory, and the freedom left in gauge fixing this new invariance can be used to find equivalent formulations of the same theory. First the Batalin-Fradkin-Vilkovisky formalism is applied to the Hamiltonian formulation of physical systems that can be described in terms of collective coordinates. We then show how this type of collective coordinate scheme can be generalized to field transformations, and discuss the War Identities of the associated BRST invariance. For Yang-Mills theory a connection to topological field theory and the background field method is explained in detail. In general the resulting BRST invariance we find hidden in any quantum field theory can be viewed as a consequence of our freedom in choosing a basis of coordinates φ(χ) in the action S[φ]. (orig.)

  16. Modified dispersion relations, inflation, and scale invariance

    Science.gov (United States)

    Bianco, Stefano; Friedhoff, Victor Nicolai; Wilson-Ewing, Edward

    2018-02-01

    For a certain type of modified dispersion relations, the vacuum quantum state for very short wavelength cosmological perturbations is scale-invariant and it has been suggested that this may be the source of the scale-invariance observed in the temperature anisotropies in the cosmic microwave background. We point out that for this scenario to be possible, it is necessary to redshift these short wavelength modes to cosmological scales in such a way that the scale-invariance is not lost. This requires nontrivial background dynamics before the onset of standard radiation-dominated cosmology; we demonstrate that one possible solution is inflation with a sufficiently large Hubble rate, for this slow roll is not necessary. In addition, we also show that if the slow-roll condition is added to inflation with a large Hubble rate, then for any power law modified dispersion relation quantum vacuum fluctuations become nearly scale-invariant when they exit the Hubble radius.

  17. Stability and nonlinear dynamics of gyrotrons at cyclotron harmonics

    International Nuclear Information System (INIS)

    Saraph, G.P.; Nusinovich, G.S.; Antonsen, T.M. Jr.; Levush, B.

    1992-01-01

    Gyrotrons operating at higher harmonics of the cyclotron frequency can overcome the frequency limitations caused by achievable strength of the magnetic field. However, the excitation of modes at the fundamental frequency exhibit a major problem for stable operation of harmonic gyrotron at high power with high efficiency. Therefore the issues of stability of gyrotron operation at the cyclotron harmonics and nonlinear dynamics of mode interaction are of great importance. The results of the authors stability analysis and multimode simulation are presented here. A detailed nonlinear theory of steady state single mode operation at cyclotron harmonics has been presented previously, taking into account beam-wave coupling and nonlinear gain function at cyclotron harmonics. A set of equations describing low gain regime interaction of modes resonant at different cyclotron harmonics was studied before. The multifrequency time-dependent nonlinear analysis presented here is based on previous gyrotron studies and beam-wave interaction at cyclotron harmonics. The authors have determined the parameter space for stable single mode operation at the second harmonic. The nonlinear dynamics of mode evolution and mode interaction for a harmonic gyrotron is presented. A new nonlinear effect in which the parasite at the fundamental harmonic helps excite the operating mode at the second harmonic has been demonstrated

  18. Detection of Harmonic Occurring using Kalman Filtering

    DEFF Research Database (Denmark)

    Hussain, Dil Muhammad Akbar; Shoro, Ghulam Mustafa; Imran, Raja Muhammed

    2014-01-01

    /current characteristic. These harmonics are not to be allowed to grow beyond a certain limit to avoid any grave consequence to the customer’s main supply. Filters can be implemented at the power source or utility location to eliminate these harmonics. In this paper we detect the instance at which these harmonics occur...

  19. High order harmonic generation in rare gases

    Energy Technology Data Exchange (ETDEWEB)

    Budil, Kimberly Susan [Univ. of California, Davis, CA (United States)

    1994-05-01

    The process of high order harmonic generation in atomic gases has shown great promise as a method of generating extremely short wavelength radiation, extending far into the extreme ultraviolet (XUV). The process is conceptually simple. A very intense laser pulse (I ~1013-1014 W/cm2) is focused into a dense (~1017 particles/cm3) atomic medium, causing the atoms to become polarized. These atomic dipoles are then coherently driven by the laser field and begin to radiate at odd harmonics of the laser field. This dissertation is a study of both the physical mechanism of harmonic generation as well as its development as a source of coherent XUV radiation. Recently, a semiclassical theory has been proposed which provides a simple, intuitive description of harmonic generation. In this picture the process is treated in two steps. The atom ionizes via tunneling after which its classical motion in the laser field is studied. Electron trajectories which return to the vicinity of the nucleus may recombine and emit a harmonic photon, while those which do not return will ionize. An experiment was performed to test the validity of this model wherein the trajectory of the electron as it orbits the nucleus or ion core is perturbed by driving the process with elliptically, rather than linearly, polarized laser radiation. The semiclassical theory predicts a rapid turn-off of harmonic production as the ellipticity of the driving field is increased. This decrease in harmonic production is observed experimentally and a simple quantum mechanical theory is used to model the data. The second major focus of this work was on development of the harmonic "source". A series of experiments were performed examining the spatial profiles of the harmonics. The quality of the spatial profile is crucial if the harmonics are to be used as the source for experiments, particularly if they must be refocused.

  20. Mapping Translation Technology Research in Translation Studies

    DEFF Research Database (Denmark)

    Schjoldager, Anne; Christensen, Tina Paulsen; Flanagan, Marian

    2017-01-01

    section aims to improve this situation by presenting new and innovative research papers that reflect on recent technological advances and their impact on the translation profession and translators from a diversity of perspectives and using a variety of methods. In Section 2, we present translation......Due to the growing uptake of translation technology in the language industry and its documented impact on the translation profession, translation students and scholars need in-depth and empirically founded knowledge of the nature and influences of translation technology (e.g. Christensen....../Schjoldager 2010, 2011; Christensen 2011). Unfortunately, the increasing professional use of translation technology has not been mirrored within translation studies (TS) by a similar increase in research projects on translation technology (Munday 2009: 15; O’Hagan 2013; Doherty 2016: 952). The current thematic...

  1. Harmonic Instability Analysis of Single-Phase Grid Connected Converter using Harmonic State Space (HSS) modeling method

    DEFF Research Database (Denmark)

    Kwon, Jun Bum; Wang, Xiongfei; Bak, Claus Leth

    2015-01-01

    The increasing number of renewable energy sources at the distribution grid is becoming a major issue for utility companies, since the grid connected converters are operating at different operating points due to the probabilistic characteristics of renewable energy. Besides, typically, the harmonics...... proposes a new model of a single phase grid connected renewable energy source using the Harmonic State Space modeling approach, which is able to identify such problems and the model can be extended to be applied in the multiple connected converter analysis. The modeling results show the different harmonic...... and impedance from other renewable energy sources are not taken carefully into account in the installation and design. However, this may bring an unknown harmonic instability into the multiple power sourced system and also make the analysis difficult due to the complexity of the grid network. This paper...

  2. Invariant subsets under compact quantum group actions

    OpenAIRE

    Huang, Huichi

    2012-01-01

    We investigate compact quantum group actions on unital $C^*$-algebras by analyzing invariant subsets and invariant states. In particular, we come up with the concept of compact quantum group orbits and use it to show that countable compact metrizable spaces with infinitely many points are not quantum homogeneous spaces.

  3. Borromean surgery formula for the Casson invariant

    DEFF Research Database (Denmark)

    Meilhan, Jean-Baptiste Odet Thierry

    2008-01-01

    It is known that every oriented integral homology 3-sphere can be obtained from S3 by a finite sequence of Borromean surgeries. We give an explicit formula for the variation of the Casson invariant under such a surgery move. The formula involves simple classical invariants, namely the framing...

  4. Conformal (WEYL) invariance and Higgs mechanism

    International Nuclear Information System (INIS)

    Zhao Shucheng.

    1991-10-01

    A massive Yang-Mills field theory with conformal invariance and gauge invariance is proposed. It involves gravitational and various gauge interactions, in which all the mass terms appear as a uniform form of interaction m(x) KΦ(x). When the conformal symmetry is broken spontaneously and gravitation is ignored, the Higgs field emerges naturally, where the imaginary mass μ can be described as a background curvature. (author). 7 refs

  5. Linking high harmonics from gases and solids.

    Science.gov (United States)

    Vampa, G; Hammond, T J; Thiré, N; Schmidt, B E; Légaré, F; McDonald, C R; Brabec, T; Corkum, P B

    2015-06-25

    When intense light interacts with an atomic gas, recollision between an ionizing electron and its parent ion creates high-order harmonics of the fundamental laser frequency. This sub-cycle effect generates coherent soft X-rays and attosecond pulses, and provides a means to image molecular orbitals. Recently, high harmonics have been generated from bulk crystals, but what mechanism dominates the emission remains uncertain. To resolve this issue, we adapt measurement methods from gas-phase research to solid zinc oxide driven by mid-infrared laser fields of 0.25 volts per ångström. We find that when we alter the generation process with a second-harmonic beam, the modified harmonic spectrum bears the signature of a generalized recollision between an electron and its associated hole. In addition, we find that solid-state high harmonics are perturbed by fields so weak that they are present in conventional electronic circuits, thus opening a route to integrate electronics with attosecond and high-harmonic technology. Future experiments will permit the band structure of a solid to be tomographically reconstructed.

  6. Topological excitations in U(1) -invariant theories

    International Nuclear Information System (INIS)

    Savit, R.

    1977-01-01

    A class of U(1) -invariant theories in d dimensions is introduced on a lattice. These theories are labeled by a simplex number s, with 1 < or = s < d. The case with s = 1 is the X-Y model; and s = 2 gives compact photodynamics. An exact duality transformation is applied to show that the U(1) -invariant theory in d dimensions with simplex number s is the same as a similar theory in d dimensions but which is Z /sub infinity/-invariant and has simplex number s = d-s. This dual theory describes the topological excitations of the original theory. These excitations are of dimension s - 1

  7. Psychometric evaluation and sex invariance of the Spanish version of the Body and Appearance Self-Conscious Emotions Scale.

    Science.gov (United States)

    Alcaraz-Ibáñez, Manuel; Sicilia, Alvaro

    2018-06-01

    This study examined the psychometric properties of a Spanish translation of the Body and Appearance Self-Conscious Emotions Scale (BASES; Castonguay et al., 2014) in a sample of university Spanish students. A total of 815 participants enrolled in two public universities located in Almería and Elche, Spain, completed the BASES along with measures of social physique anxiety and positive/negative affect. Exploratory and confirmatory factor analyses showed that one item failed to load clearly on the hypothesized factor (guilt). Once it was removed, results supported the hypothesized four-factor structure. Evidence of invariance of the four-factor structure across sex was obtained. Scores on the BASES showed adequate internal consistency and acceptable convergent validity. Compared to men, women reported significantly higher body and appearance-related guilt and shame, and significant lower authentic and hubristic pride. Preliminary evidence supporting the validity and reliability of the Spanish translation of the BASES is provided. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Double Harmonic Transmission (D.H.T.

    Directory of Open Access Journals (Sweden)

    Sava Ianici

    2006-10-01

    Full Text Available The paper presents the construction and functioning of a new type of harmonic drive named double harmonic transmission (D.H.T.. In the second part of this paper is presented the dynamic analysis of the double harmonic transmission, which is based on the results of the experimental researches on the D.H.T. This study of the stress status and the forces distribution is necessary for to determine the durability on the portant elements of the D.H.T.

  9. Pseudo harmonic morphisms on Riemannian polyhedra

    International Nuclear Information System (INIS)

    Aprodu, M.A.; Bouziane, T.

    2004-10-01

    The aim of this paper is to extend the notion of pseudo harmonic morphism (introduced by Loubeau) to the case when the source manifold is an admissible Riemannian polyhedron. We define these maps to be harmonic in the sense of Eells-Fuglede and pseudo-horizontally weakly conformal in our sense. We characterize them by means of germs of harmonic functions on the source polyhedron, in the sense of Korevaar-Schoen, and germs of holomorphic functions on the Kaehler target manifold. (author)

  10. Invariance group of the Finster metric function

    International Nuclear Information System (INIS)

    Asanov, G.S.

    1985-01-01

    An invariance group of the Finsler metric function is introduced and studied that directly generalized the respective concept (a group of Euclidean rolations) of the Rieman geometry. A sequential description of the isotopic invariance of physical fields on the base of the Finsler geometry is possible in terms of this group

  11. Coherent harmonic production using a two-section undulator FEL

    Energy Technology Data Exchange (ETDEWEB)

    Jaroszynski, D.A. [Commissariat a l`Energie, Bruyeres-le-Chatel (France); Prazeres, R.; Glotin, F. [Centre Universitaire Paris-Sud (France)] [and others

    1995-12-31

    We present measurements and a theoretical analysis of a new method of generating harmonic radiation in a free-electron laser oscillator with a two section undulator in a single optical cavity. To produce coherent harmonic radiation the undulator is arranged so that the downstream undulator section resonance frequency matches a harmonic of the upstream undulator. Both the fundamental and the harmonic optical fields evolve in the same optical cavity and are coupled out with different extraction fractions using a hole in one of the cavity mirrors. We present measurements that show that the optical power at the second and third harmonic can be enhanced by more than an order of magnitude in this fundamental/harmonic configuration. We compare the production of harmonic radiation of a two sectioned fundamental/harmonic undulator with that produced from a FEL operating at its highest efficiency with a step-tapered undulator, where the bunching at the end of the first section is very large. We examine, the dependence of the harmonic power on the intracavity power by adjusting the optical cavity desynchronism, {delta}L. We also examine the evolution of the fundamental and harmonic powers as a function of cavity roundtrip number to evaluate the importance of the small signal gain at the harmonic. We compare our measurements with predictions of a multi-electron numerical model that follows the evolution of fundamental and harmonic power to saturation. This fundamental/harmonic mode, of operation of the FEL may have useful applications in the production of coherent X-ray and VUV radiation, a spectral range where high reflectivity optical cavity mirrors are difficult or impossible to manufacture.

  12. Note on Weyl versus conformal invariance in field theory

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Feng [Nanchang University, Department of Physics, Nanchang (China)

    2017-12-15

    It was argued recently that conformal invariance in flat spacetime implies Weyl invariance in a general curved background for unitary theories and possible anomalies in the Weyl variation of scalar operators are identified. We argue that generically unitarity alone is not sufficient for a conformal field theory to be Weyl invariant. Furthermore, we show explicitly that when a unitary conformal field theory couples to gravity in a Weyl-invariant way, each primary scalar operator that is either relevant or marginal in the unitary conformal field theory corresponds to a Weyl-covariant operator in the curved background. (orig.)

  13. Invariant functionals in higher-spin theory

    Directory of Open Access Journals (Sweden)

    M.A. Vasiliev

    2017-03-01

    Full Text Available A new construction for gauge invariant functionals in the nonlinear higher-spin theory is proposed. Being supported by differential forms closed by virtue of the higher-spin equations, invariant functionals are associated with central elements of the higher-spin algebra. In the on-shell AdS4 higher-spin theory we identify a four-form conjectured to represent the generating functional for 3d boundary correlators and a two-form argued to support charges for black hole solutions. Two actions for 3d boundary conformal higher-spin theory are associated with the two parity-invariant higher-spin models in AdS4. The peculiarity of the spinorial formulation of the on-shell AdS3 higher-spin theory, where the invariant functional is supported by a two-form, is conjectured to be related to the holomorphic factorization at the boundary. The nonlinear part of the star-product function F⁎(B(x in the higher-spin equations is argued to lead to divergencies in the boundary limit representing singularities at coinciding boundary space–time points of the factors of B(x, which can be regularized by the point splitting. An interpretation of the RG flow in terms of proposed construction is briefly discussed.

  14. Quantum implications of a scale invariant regularization

    Science.gov (United States)

    Ghilencea, D. M.

    2018-04-01

    We study scale invariance at the quantum level in a perturbative approach. For a scale-invariant classical theory, the scalar potential is computed at a three-loop level while keeping manifest this symmetry. Spontaneous scale symmetry breaking is transmitted at a quantum level to the visible sector (of ϕ ) by the associated Goldstone mode (dilaton σ ), which enables a scale-invariant regularization and whose vacuum expectation value ⟨σ ⟩ generates the subtraction scale (μ ). While the hidden (σ ) and visible sector (ϕ ) are classically decoupled in d =4 due to an enhanced Poincaré symmetry, they interact through (a series of) evanescent couplings ∝ɛ , dictated by the scale invariance of the action in d =4 -2 ɛ . At the quantum level, these couplings generate new corrections to the potential, as scale-invariant nonpolynomial effective operators ϕ2 n +4/σ2 n. These are comparable in size to "standard" loop corrections and are important for values of ϕ close to ⟨σ ⟩. For n =1 , 2, the beta functions of their coefficient are computed at three loops. In the IR limit, dilaton fluctuations decouple, the effective operators are suppressed by large ⟨σ ⟩, and the effective potential becomes that of a renormalizable theory with explicit scale symmetry breaking by the DR scheme (of μ =constant).

  15. Second harmonic generation imaging

    CERN Document Server

    2013-01-01

    Second-harmonic generation (SHG) microscopy has shown great promise for imaging live cells and tissues, with applications in basic science, medical research, and tissue engineering. Second Harmonic Generation Imaging offers a complete guide to this optical modality, from basic principles, instrumentation, methods, and image analysis to biomedical applications. The book features contributions by experts in second-harmonic imaging, including many pioneering researchers in the field. Written for researchers at all levels, it takes an in-depth look at the current state of the art and possibilities of SHG microscopy. Organized into three sections, the book: Provides an introduction to the physics of the process, step-by-step instructions on how to build an SHG microscope, and comparisons with related imaging techniques Gives an overview of the capabilities of SHG microscopy for imaging tissues and cells—including cell membranes, muscle, collagen in tissues, and microtubules in live cells—by summarizing experi...

  16. How to Find Invariants for Coloured Petri Nets

    DEFF Research Database (Denmark)

    Jensen, Kurt

    1981-01-01

    This paper shows how invariants can be found for coloured Petri Nets. We define a set of transformation rules, which can be used to transform the incidence matrix, without changing the set of invariants....

  17. Second-harmonic imaging of semiconductor quantum dots

    DEFF Research Database (Denmark)

    Østergaard, John Erland; Bozhevolnyi, Sergey I.; Pedersen, Kjeld

    2000-01-01

    Resonant second-harmonic generation is observed at room temperature in reflection from self-assembled InAlGaAs quantum dots grown on a GaAs (001) substrate. The detected second-harmonic signal peaks at a pump wavelength of similar to 885 nm corresponding to the quantum-dot photoluminescence maximum....... In addition, the second-harmonic spectrum exhibits another smaller but well-pronounced peak at 765 nm not found in the linear experiments. We attribute this peak to the generation of second-harmonic radiation in the AlGaAs spacer layer enhanced by the local symmetry at the quantum-dot interface. We further...

  18. Harmonic Series Meets Fibonacci Sequence

    Science.gov (United States)

    Chen, Hongwei; Kennedy, Chris

    2012-01-01

    The terms of a conditionally convergent series may be rearranged to converge to any prescribed real value. What if the harmonic series is grouped into Fibonacci length blocks? Or the harmonic series is arranged in alternating Fibonacci length blocks? Or rearranged and alternated into separate blocks of even and odd terms of Fibonacci length?

  19. Tuvan Throat Singing and Harmonics

    Science.gov (United States)

    Ruiz, Michael J.; Wilken, David

    2018-01-01

    Tuvan throat singing, also called overtone singing, provides for an exotic demonstration of the physics of harmonics as well as introducing an Asian musical aesthetic. A low fundamental is sung and the singer skillfully alters the resonances of the vocal system to enhance an overtone (harmonic above the fundamental). The result is that the…

  20. Groups, generators, syzygies, and orbits in invariant theory

    CERN Document Server

    Popov, V L

    2011-01-01

    The history of invariant theory spans nearly a century and a half, with roots in certain problems from number theory, algebra, and geometry appearing in the work of Gauss, Jacobi, Eisenstein, and Hermite. Although the connection between invariants and orbits was essentially discovered in the work of Aronhold and Boole, a clear understanding of this connection had not been achieved until recently, when invariant theory was in fact subsumed by a general theory of algebraic groups. Written by one of the major leaders in the field, this book provides an excellent, comprehensive exposition of invariant theory. Its point of view is unique in that it combines both modern and classical approaches to the subject. The introductory chapter sets the historical stage for the subject, helping to make the book accessible to nonspecialists.

  1. Passion: Does one scale fit all? Construct validity of two-factor passion scale and psychometric invariance over different activities and languages.

    Science.gov (United States)

    Marsh, Herbert W; Vallerand, Robert J; Lafrenière, Marc-André K; Parker, Philip; Morin, Alexandre J S; Carbonneau, Noémie; Jowett, Sophia; Bureau, Julien S; Fernet, Claude; Guay, Frédéric; Salah Abduljabbar, Adel; Paquet, Yvan

    2013-09-01

    The passion scale, based on the dualistic model of passion, measures 2 distinct types of passion: Harmonious and obsessive passions are predictive of adaptive and less adaptive outcomes, respectively. In a substantive-methodological synergy, we evaluate the construct validity (factor structure, reliability, convergent and discriminant validity) of Passion Scale responses (N = 3,571). The exploratory structural equation model fit to the data was substantially better than the confirmatory factor analysis solution, and resulted in better differentiated (less correlated) factors. Results from a 13-model taxonomy of measurement invariance supported complete invariance (factor loadings, factor correlations, item uniquenesses, item intercepts, and latent means) over language (French vs. English; the instrument was originally devised in French, then translated into English) and gender. Strong measurement partial invariance over 5 passion activity groups (leisure, sport, social, work, education) indicates that the same set of items is appropriate for assessing passion across a wide variety of activities--a previously untested, implicit assumption that greatly enhances practical utility. Support was found for the convergent and discriminant validity of the harmonious and obsessive passion scales, based on a set of validity correlates: life satisfaction, rumination, conflict, time investment, activity liking and valuation, and perceiving the activity as a passion.

  2. Invariants for the generalized Lotka-Volterra equations

    Science.gov (United States)

    Cairó, Laurent; Feix, Marc R.; Goedert, Joao

    A generalisation of Lotka-Volterra System is given when self limiting terms are introduced in the model. We use a modification of the Carleman embedding method to find invariants for this system of equations. The position and stability of the equilibrium point and the regression of system under invariant conditions are studied.

  3. Invariant relations in Boussinesq-type equations

    International Nuclear Information System (INIS)

    Meletlidou, Efi; Pouget, Joeel; Maugin, Gerard; Aifantis, Elias

    2004-01-01

    A wide class of partial differential equations have at least three conservation laws that remain invariant for certain solutions of them and especially for solitary wave solutions. These conservation laws can be considered as the energy, pseudomomentum and mass integrals of these solutions. We investigate the invariant relation between the energy and the pseudomomentum for solitary waves in two Boussinesq-type equations that come from the theory of elasticity and lattice models

  4. New Evidence That Nonlinear Source-Filter Coupling Affects Harmonic Intensity and fo Stability During Instances of Harmonics Crossing Formants.

    Science.gov (United States)

    Maxfield, Lynn; Palaparthi, Anil; Titze, Ingo

    2017-03-01

    The traditional source-filter theory of voice production describes a linear relationship between the source (glottal flow pulse) and the filter (vocal tract). Such a linear relationship does not allow for nor explain how changes in the filter may impact the stability and regularity of the source. The objective of this experiment was to examine what effect unpredictable changes to vocal tract dimensions could have on fo stability and individual harmonic intensities in situations in which low frequency harmonics cross formants in a fundamental frequency glide. To determine these effects, eight human subjects (five male, three female) were recorded producing fo glides while their vocal tracts were artificially lengthened by a section of vinyl tubing inserted into the mouth. It was hypothesized that if the source and filter operated as a purely linear system, harmonic intensities would increase and decrease at nearly the same rates as they passed through a formant bandwidth, resulting in a relatively symmetric peak on an intensity-time contour. Additionally, fo stability should not be predictably perturbed by formant/harmonic crossings in a linear system. Acoustic analysis of these recordings, however, revealed that harmonic intensity peaks were asymmetric in 76% of cases, and that 85% of fo instabilities aligned with a crossing of one of the first four harmonics with the first three formants. These results provide further evidence that nonlinear dynamics in the source-filter relationship can impact fo stability as well as harmonic intensities as harmonics cross through formant bandwidths. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  5. Theoretical description of high-order harmonic generation in solids

    International Nuclear Information System (INIS)

    Kemper, A F; Moritz, B; Devereaux, T P; Freericks, J K

    2013-01-01

    We consider several aspects of high-order harmonic generation in solids: the effects of elastic and inelastic scattering, varying pulse characteristics and inclusion of material-specific parameters through a realistic band structure. We reproduce many observed characteristics of high harmonic generation experiments in solids including the formation of only odd harmonics in inversion-symmetric materials, and the nonlinear formation of high harmonics with increasing field. We find that the harmonic spectra are fairly robust against elastic and inelastic scattering. Furthermore, we find that the pulse characteristics can play an important role in determining the harmonic spectra. (paper)

  6. The Virasoro algebra from harmonic superspace

    International Nuclear Information System (INIS)

    Saidi, E.H.; Zakkari, M.

    1990-08-01

    Using harmonic superspace techniques, we construct a new field realization of the Virasoro algebra. The main conformal objects are U(1) Cartan tensors instead of the U(1) Lorentz ones. The new conformal model, which admits moreover a d=2 (4,0) global supersymmetry is constructed out of the infinitely relaxed HST and FS hypermultiplets. The conformal current T 4+ together with the harmonic superspace OPE rules are given. The Virasoro algebra and the harmonic superspace Schwarzian derivative S 4+ are also derived. (author). 14 refs

  7. Invariants for minimal conformal supergravity in six dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Butter, Daniel [Nikhef Theory Group,Science Park 105, 1098 XG Amsterdam (Netherlands); Kuzenko, Sergei M. [School of Physics M013, The University of Western Australia,35 Stirling Highway, Crawley W.A. 6009 (Australia); Novak, Joseph; Theisen, Stefan [Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut,Am Mühlenberg 1, D-14476 Golm (Germany)

    2016-12-15

    We develop a new off-shell formulation for six-dimensional conformal supergravity obtained by gauging the 6D N=(1,0) superconformal algebra in superspace. This formulation is employed to construct two invariants for 6D N=(1,0) conformal supergravity, which contain C{sup 3} and C◻C terms at the component level. Using a conformal supercurrent analysis, we prove that these exhaust all such invariants in minimal conformal supergravity. Finally, we show how to construct the supersymmetric F◻F invariant in curved superspace.

  8. Anisotropic inflation reexamined: upper bound on broken rotational invariance during inflation

    International Nuclear Information System (INIS)

    Naruko, Atsushi; Yamaguchi, Masahide; Komatsu, Eiichiro

    2015-01-01

    The presence of a light vector field coupled to a scalar field during inflation makes a distinct prediction: the observed correlation functions of the cosmic microwave background (CMB) become statistically anisotropic. We study the implications of the current bound on statistical anisotropy derived from the Planck 2013 CMB temperature data for such a model. The previous calculations based on the attractor solution indicate that the magnitude of anisotropy in the power spectrum is proportional to N 2 , where N is the number of e-folds of inflation counted from the end of inflation. In this paper, we show that the attractor solution is not necessarily compatible with the current bound, and derive new predictions using another branch of anisotropic inflation. In addition, we improve upon the calculation of the mode function of perturbations by including the leading-order slow-roll corrections. We find that the anisotropy is roughly proportional to [2(ε H +4η H )/3−4(c−1)] −2 , where ε H and η H are the usual slow-roll parameters and c is the parameter in the model, regardless of the form of potential of an inflaton field. The bound from Planck implies that breaking of rotational invariance during inflation (characterized by the background homogeneous shear divided by the Hubble rate) is limited to be less than O(10 −9 ). This bound is many orders of magnitude smaller than the amplitude of breaking of time translation invariance, which is observed to be O(10 −2 )

  9. Differential invariants in nonclassical models of hydrodynamics

    Science.gov (United States)

    Bublik, Vasily V.

    2017-10-01

    In this paper, differential invariants are used to construct solutions for equations of the dynamics of a viscous heat-conducting gas and the dynamics of a viscous incompressible fluid modified by nanopowder inoculators. To describe the dynamics of a viscous heat-conducting gas, we use the complete system of Navier—Stokes equations with allowance for heat fluxes. Mathematical description of the dynamics of liquid metals under high-energy external influences (laser radiation or plasma flow) includes, in addition to the Navier—Stokes system of an incompressible viscous fluid, also heat fluxes and processes of nonequilibrium crystallization of a deformable fluid. Differentially invariant solutions are a generalization of partially invariant solutions, and their active study for various models of continuous medium mechanics is just beginning. Differentially invariant solutions can also be considered as solutions with differential constraints; therefore, when developing them, the approaches and methods developed by the science schools of academicians N. N. Yanenko and A. F. Sidorov will be actively used. In the construction of partially invariant and differentially invariant solutions, there are overdetermined systems of differential equations that require a compatibility analysis. The algorithms for reducing such systems to involution in a finite number of steps are described by Cartan, Finikov, Kuranishi, and other authors. However, the difficultly foreseeable volume of intermediate calculations complicates their practical application. Therefore, the methods of computer algebra are actively used here, which largely helps in solving this difficult problem. It is proposed to use the constructed exact solutions as tests for formulas, algorithms and their software implementations when developing and creating numerical methods and computational program complexes. This combination of effective numerical methods, capable of solving a wide class of problems, with

  10. Voltage harmonic elimination with RLC based interface smoothing filter

    International Nuclear Information System (INIS)

    Chandrasekaran, K; Ramachandaramurthy, V K

    2015-01-01

    A method is proposed for designing a Dynamic Voltage Restorer (DVR) with RLC interface smoothing filter. The RLC filter connected between the IGBT based Voltage Source Inverter (VSI) is attempted to eliminate voltage harmonics in the busbar voltage and switching harmonics from VSI by producing a PWM controlled harmonic voltage. In this method, the DVR or series active filter produces PWM voltage that cancels the existing harmonic voltage due to any harmonic voltage source. The proposed method is valid for any distorted busbar voltage. The operating VSI handles no active power but only harmonic power. The DVR is able to suppress the lower order switching harmonics generated by the IGBT based VSI. Good dynamic and transient results obtained. The Total Harmonic Distortion (THD) is minimized to zero at the sensitive load end. Digital simulations are carried out using PSCAD/EMTDC to validate the performance of RLC filter. Simulated results are presented. (paper)

  11. Manifestly gauge invariant discretizations of the Schrödinger equation

    International Nuclear Information System (INIS)

    Halvorsen, Tore Gunnar; Kvaal, Simen

    2012-01-01

    Grid-based discretizations of the time dependent Schrödinger equation coupled to an external magnetic field are converted to manifest gauge invariant discretizations. This is done using generalizations of ideas used in classical lattice gauge theory, and the process defined is applicable to a large class of discretized differential operators. In particular, popular discretizations such as pseudospectral discretizations using the fast Fourier transform can be transformed to gauge invariant schemes. Also generic gauge invariant versions of generic time integration methods are considered, enabling completely gauge invariant calculations of the time dependent Schrödinger equation. Numerical examples illuminating the differences between a gauge invariant discretization and conventional discretization procedures are also presented. -- Highlights: ► We investigate the Schrödinger equation coupled to an external magnetic field. ► Any grid-based discretization is made trivially gauge invariant. ► An extension of classical lattice gauge theory.

  12. Three-dimensional harmonic control of a nuclear reactor

    International Nuclear Information System (INIS)

    Potapenko, P.T.

    1989-01-01

    Algorithms for neutron flux control based on harmonic three-dimensional core are considered. The essence of the considered approach includes determination of harmonics amplitudes by signals self-powered detectors placed in reactor channels and reconstruction of neutron field distribution over the reactor core volume using the data obtained. Neutron field harmonic control is shown to be reduced to independent measurement and calculation of height harmonics in channels using techniques developed for channel power control

  13. Triality invariance in the N=2 superstring

    International Nuclear Information System (INIS)

    Castellani, Leonardo; Grassi, Pietro Antonio; Sommovigo, Luca

    2009-01-01

    We prove the discrete triality invariance of the N=2 NSR superstring moving in a D=2+2 target space. We find that triality holds also in the Siegel-Berkovits formulation of the selfdual superstring. A supersymmetric generalization of Cayley's hyperdeterminant, based on a quartic invariant of the SL(2|1) 3 superalgebra, is presented.

  14. Heterotic superstring and curved, scale-invariant superspace

    International Nuclear Information System (INIS)

    Kuusk, P.K.

    1988-01-01

    It is shown that the modified heterotic superstring [R. E. Kallosh, JETP Lett. 43, 456 (1986); Phys. Lett. 176B, 50 (1986)] demands a scale-invariant superspace for its existence. Explicit expressions are given for the connection, the torsion, and the curvature of an extended scale-invariant superspace with 506 bosonic and 16 fermionic coordinates

  15. Synthesizing chaotic maps with prescribed invariant densities

    International Nuclear Information System (INIS)

    Rogers, Alan; Shorten, Robert; Heffernan, Daniel M.

    2004-01-01

    The Inverse Frobenius-Perron Problem (IFPP) concerns the creation of discrete chaotic mappings with arbitrary invariant densities. In this Letter, we present a new and elegant solution to the IFPP, based on positive matrix theory. Our method allows chaotic maps with arbitrary piecewise-constant invariant densities, and with arbitrary mixing properties, to be synthesized

  16. Invariant differential operators

    CERN Document Server

    Dobrev, Vladimir K

    2016-01-01

    With applications in quantum field theory, elementary particle physics and general relativity, this two-volume work studies invariance of differential operators under Lie algebras, quantum groups, superalgebras including infinite-dimensional cases, Schrödinger algebras, applications to holography. This first volume covers the general aspects of Lie algebras and group theory.

  17. Invariant differential operators

    CERN Document Server

    Dobrev, Vladimir K

    With applications in quantum field theory, elementary particle physics and general relativity, this two-volume work studies invariance of differential operators under Lie algebras, quantum groups, superalgebras including infinite-dimensional cases, Schrödinger algebras, applications to holography. This first volume covers the general aspects of Lie algebras and group theory.

  18. Gauge invariance of the Rayleigh--Schroedinger time-independent perturbation theory

    International Nuclear Information System (INIS)

    Yang, K.H.

    1977-08-01

    It is shown that the Rayleigh-Schroedinger time-independent perturbation theory is gauge invariant when the operator concerned is the particle's instantaneous energy operator H/sub B/ = (1/2m)[vector p - (e/c) vector A] 2 + eV 0 . More explicitly, it is shown that the energy perturbation corrections of each individual order of every state is gauge invariant. When the vector potential is curlless, the energy corrections of all orders are shown to vanish identically regardless of the explicit form of the vector potential. The relation between causality and gauge invariance is investigated. It is shown that gauge invariance guarantees conformity with causality and violation of gauge invariance implies violation of causality

  19. Seeding High Gain Harmonic Generation with Laser Harmonics produced in Gases

    CERN Document Server

    Lambert, Guillaume; Couprie, Marie Emmanuelle; Garzella, David; Doria, Andrea; Giannessi, Luca; Hara, Toru; Kitamura, Hideo; Shintake, Tsumoru

    2004-01-01

    Free electron Lasers employing High Gain Harmonic generation (HGHG) schemes are very promising coherent ligth sources for the soft X-ray regime. They offer both transverse and longitudinal coherence, while Self Amplified Spontaneous Emission schemes have a longitudinal coherence limited. We propose here to seed HGHG with high harmonics produced by a Ti:Sa femtosecond laser focused on a gas jet, tuneable in the 100-10 nm spectral region. Specifities concerning the implementation of this particular laser source as a seed for HGHG are investigated. Semi analytical , numerical 1D and 3D calculations are given, for the cases of the SCSS, SPARC and ARC-EN-CIEL projects.

  20. Recent progress of below-threshold harmonic generation

    International Nuclear Information System (INIS)

    Xiong, Wei-Hao; Peng, Liang-You; Gong, Qihuang

    2017-01-01

    The harmonics generated from the interaction of a strong laser field with atoms and molecules in the gas phase can be applied as coherent light sources and detecting techniques for structures and dynamics in matter. In the last three decades, the most prevailing experimental and theoretical studies have been focused on the high-order harmonic generation due to its applications in attosecond science. However, low-order harmonics near the ionization threshold of the target have been less explored, partially because the spectrum in this region is more complicated from both the theoretical and experimental point of view. After several pioneering investigations in the mid 1990s, near threshold harmonics (NTHs) begun to draw a great attention again because of the development of high repetition rate cavity enhanced harmonics about 10 years ago. Very recently, NTHs have attracted a lot of experimental and theoretical studies due to their potential applications as light sources and complicated mechanisms. In this topical review, we will summarize the progress of NTHs, including the early and recent experimental measurements in atoms and molecules, as well as the relevant theoretical explorations of these harmonics. (topical review)

  1. Harmonic generation with a dual frequency pulse.

    Science.gov (United States)

    Keravnou, Christina P; Averkiou, Michalakis A

    2014-05-01

    Nonlinear imaging was implemented in commercial ultrasound systems over the last 15 years offering major advantages in many clinical applications. In this work, pulsing schemes coupled with a dual frequency pulse are presented. The pulsing schemes considered were pulse inversion, power modulation, and power modulated pulse inversion. The pulse contains a fundamental frequency f and a specified amount of its second harmonic 2f. The advantages and limitations of this method were evaluated with both acoustic measurements of harmonic generation and theoretical simulations based on the KZK equation. The use of two frequencies in a pulse results in the generation of the sum and difference frequency components in addition to the other harmonic components. While with single frequency pulses, only power modulation and power modulated pulse inversion contained odd harmonic components, with the dual frequency pulse, pulse inversion now also contains odd harmonic components.

  2. Harmonic and geometric analysis

    CERN Document Server

    Citti, Giovanna; Pérez, Carlos; Sarti, Alessandro; Zhong, Xiao

    2015-01-01

    This book presents an expanded version of four series of lectures delivered by the authors at the CRM. Harmonic analysis, understood in a broad sense, has a very wide interplay with partial differential equations and in particular with the theory of quasiconformal mappings and its applications. Some areas in which real analysis has been extremely influential are PDE's and geometric analysis. Their foundations and subsequent developments made extensive use of the Calderón–Zygmund theory, especially the Lp inequalities for Calderón–Zygmund operators (Beurling transform and Riesz transform, among others) and the theory of Muckenhoupt weights.  The first chapter is an application of harmonic analysis and the Heisenberg group to understanding human vision, while the second and third chapters cover some of the main topics on linear and multilinear harmonic analysis. The last serves as a comprehensive introduction to a deep result from De Giorgi, Moser and Nash on the regularity of elliptic partial differen...

  3. Harmonization versus Mutual Recognition

    DEFF Research Database (Denmark)

    Jørgensen, Jan Guldager; Schröder, Philipp

    The present paper examines trade liberalization driven by the coordination of product standards. For oligopolistic firms situated in separate markets that are initially sheltered by national standards, mutual recognition of standards implies entry and reduced profits at home paired with the oppor......The present paper examines trade liberalization driven by the coordination of product standards. For oligopolistic firms situated in separate markets that are initially sheltered by national standards, mutual recognition of standards implies entry and reduced profits at home paired...... countries and three firms, where firms first lobby for the policy coordination regime (harmonization versus mutual recognition), and subsequently, in case of harmonization, the global standard is auctioned among the firms. We discuss welfare effects and conclude with policy implications. In particular......, harmonized standards may fail to harvest the full pro-competitive effects from trade liberalization compared to mutual recognition; moreover, the issue is most pronounced in markets featuring price competition....

  4. [Harmonization of TSH Measurements.

    Science.gov (United States)

    Takeoka, Keiko; Hidaka, Yoh; Hishinuma, Akira; Ikeda, Katsuyoshi; Okubo, Shigeo; Tsuchiya, Tatsuyuki; Hashiguchi, Teruto; Furuta, Koh; Hotta, Taeko; Matsushita, Kazuyuki; Matsumoto, Hiroyuki; Murakami, Masami; Maekawa, Masato

    2016-05-01

    The measured concentration of thyroid stimulating hormone (TSH) differs depending on the reagents used. Harmonization of TSH is crucial because the decision limits are described in current clinical practice guide- lines as absolute values, e.g. 2.5 mIU/L in early pregnancy. In this study, we tried to harmonize the report- ed concentrations of TSH using the all-procedure trimmed mean. TSH was measured in 146 serum samples, with values ranging from 0.01 to 18.8 mIU/L, using 4 immunoassays. The concentration of TSH was highest with E test TOSOH and lowest with LUMIPULSE. The concentrations with each reagent were recalculated with the following formulas: E test TOSOH 0.855x-0.014; ECLusys 0.993x+0.079; ARCHITECT 1.041x- 0.010; and LUMIPULSE 1.096x-0.015. Recalculation eliminated the between-assay discrepancy. These formulas may be used until harmonization of TSH is achieved by the International Federation of Clinical Chemistry and Laboratory Medicine (IFCC).

  5. Triality invariance in the N=2 superstring

    Energy Technology Data Exchange (ETDEWEB)

    Castellani, Leonardo [Dipartimento di Scienze e Tecnologie Avanzate and INFN Gruppo collegato di Alessandria, Universita del Piemonte Orientale, Via Teresa Michel 11, 15121 Alessandria (Italy)], E-mail: leonardo.castellani@mfn.unipmn.it; Grassi, Pietro Antonio [Dipartimento di Scienze e Tecnologie Avanzate and INFN Gruppo collegato di Alessandria, Universita del Piemonte Orientale, Via Teresa Michel 11, 15121 Alessandria (Italy)], E-mail: pietro.grassi@mfn.unipmn.it; Sommovigo, Luca [Dipartimento di Scienze e Tecnologie Avanzate and INFN Gruppo collegato di Alessandria, Universita del Piemonte Orientale, Via Teresa Michel 11, 15121 Alessandria (Italy)], E-mail: luca.sommovigo@mfn.unipmn.it

    2009-07-20

    We prove the discrete triality invariance of the N=2 NSR superstring moving in a D=2+2 target space. We find that triality holds also in the Siegel-Berkovits formulation of the selfdual superstring. A supersymmetric generalization of Cayley's hyperdeterminant, based on a quartic invariant of the SL(2|1){sup 3} superalgebra, is presented.

  6. Weyl-Invariant Extension of the Metric-Affine Gravity

    International Nuclear Information System (INIS)

    Vazirian, R.; Tanhayi, M. R.; Motahar, Z. A.

    2015-01-01

    Metric-affine geometry provides a nontrivial extension of the general relativity where the metric and connection are treated as the two independent fundamental quantities in constructing the spacetime (with nonvanishing torsion and nonmetricity). In this paper, we study the generic form of action in this formalism and then construct the Weyl-invariant version of this theory. It is shown that, in Weitzenböck space, the obtained Weyl-invariant action can cover the conformally invariant teleparallel action. Finally, the related field equations are obtained in the general case.

  7. Harmonic Mitigation Methods in Large Offshore Wind Power Plants

    DEFF Research Database (Denmark)

    Kocewiak, Łukasz Hubert; Chaudhary, Sanjay; Hesselbæk, Bo

    2013-01-01

    Various sources of harmonic problems in large wind power plants (WPPs) and optimized harmonic mitigation methods are presented in this paper. The harmonic problems such as sources of harmonic emission and amplification as well as harmonic stability are identified. Also modern preventive...... and remedial harmonic mitigation methods in terms of passive and active filtering are described. It is shown that WPP components such as long HVAC cables and park transformers can introduce significant low-frequency resonances which can affect wind turbine control system operation and overall WPP stability...... as well as amplification of harmonic distortion. It is underlined that there is a potential in terms of active filtering in modern grid-side converters in e.g. wind turbines, STATCOMs or HVDC stations utilized in modern large WPPs. It is also emphasized that the grid-side converter controller should...

  8. Gauge invariant perturbation theory prediction of the sensitivity required for experimental measurement of quadrupole and higher moments of the cosmic microwave background radiation

    International Nuclear Information System (INIS)

    Wilson, K.E.

    1985-01-01

    The temperature variation of the cosmic microwave background radiation is computed in a spherical harmonic expansion for a 4 million term sum of perturbations. Each term has a different direction and a randomly chosen phase. The spherical harmonics are evaluated for values of the index l from 1 through 9. The computation was done by starting with the model for gauge invariant cosmological perturbations composed by James M. Bardeen (1980). This model does linear perturbation theory against a background Friedmann-Robertson-Walker general relativistic cosmological model. The Bardeen model was recomputed for a cosmological-time metric then solved for zero curvature and zero cosmological constant in the background for radiation and dust equations of state. Instantaneous decoupling was assumed. The model was solved for zero curvature, cosmological constant, and pressure in perturbation order. These solutions were used to compute the redshift equation, and then the temperature variation equation. The integral over the null geodesic (photon) path can be evaluated analytically under the zero curvature cosmological constant, and pressure assumption. Analytic equations are obtained for the temperature variation caused by an isothermal or adiabatic perturbation of a single mode (amplitude, wavelength, phase, and direction)

  9. Translation and cultural adaptation of a specific instrument for measuring asthma control and asthma status: the Asthma Control and Communication Instrument

    Directory of Open Access Journals (Sweden)

    Michelle Gonçalves de Souza Tavares

    Full Text Available ABSTRACT Objective: To translate the Asthma Control and Communication Instrument (ACCI to Portuguese and adapt it for use in Brazil. Methods: The ACCI was translated to Portuguese and adapted for use in Brazil in accordance with internationally accepted guidelines. The protocol included the following steps: permission and rights of use granted by the original author; translation of the ACCI from English to Portuguese; reconciliation; back-translation; review and harmonization of the back-translation; approval from the original author; review of the Portuguese version of the ACCI by an expert panel; cognitive debriefing (the clarity, understandability, and acceptability of the translated version being tested in a sample of the target population; and reconciliation and preparation of the final version. Results: During the cognitive debriefing process, 41 asthma patients meeting the inclusion criteria completed the ACCI and evaluated the clarity of the questions/statements. The clarity index for all ACCI items was > 0.9, meaning that all items were considered to be clear. Conclusions: The ACCI was successfully translated to Portuguese and culturally adapted for use in Brazil, the translated version maintaining the psychometric properties of the original version. The ACCI can be used in clinical practice because it is easy to understand and easily applied.

  10. Translation and cultural adaptation of a specific instrument for measuring asthma control and asthma status: the Asthma Control and Communication Instrument

    Science.gov (United States)

    Tavares, Michelle Gonçalves de Souza; Brümmer, Carolina Finardi; Nicolau, Gabriela Valente; de Melo, José Tavares; Nazário, Nazaré Otilia; Steidle, Leila John Marques; Patino, Cecília Maria; Pizzichini, Marcia Margaret Menezes; Pizzichini, Emílio

    2017-01-01

    ABSTRACT Objective: To translate the Asthma Control and Communication Instrument (ACCI) to Portuguese and adapt it for use in Brazil. Methods: The ACCI was translated to Portuguese and adapted for use in Brazil in accordance with internationally accepted guidelines. The protocol included the following steps: permission and rights of use granted by the original author; translation of the ACCI from English to Portuguese; reconciliation; back-translation; review and harmonization of the back-translation; approval from the original author; review of the Portuguese version of the ACCI by an expert panel; cognitive debriefing (the clarity, understandability, and acceptability of the translated version being tested in a sample of the target population); and reconciliation and preparation of the final version. Results: During the cognitive debriefing process, 41 asthma patients meeting the inclusion criteria completed the ACCI and evaluated the clarity of the questions/statements. The clarity index for all ACCI items was > 0.9, meaning that all items were considered to be clear. Conclusions: The ACCI was successfully translated to Portuguese and culturally adapted for use in Brazil, the translated version maintaining the psychometric properties of the original version. The ACCI can be used in clinical practice because it is easy to understand and easily applied. PMID:29365000

  11. Understanding Translation

    DEFF Research Database (Denmark)

    Schjoldager, Anne Gram; Gottlieb, Henrik; Klitgård, Ida

    Understanding Translation is designed as a textbook for courses on the theory and practice of translation in general and of particular types of translation - such as interpreting, screen translation and literary translation. The aim of the book is to help you gain an in-depth understanding...... of the phenomenon of translation and to provide you with a conceptual framework for the analysis of various aspects of professional translation. Intended readers are students of translation and languages, but the book will also be relevant for others who are interested in the theory and practice of translation...... - translators, language teachers, translation users and literary, TV and film critics, for instance. Discussions focus on translation between Danish and English....

  12. Two examples of escaping harmonic maps

    International Nuclear Information System (INIS)

    Pereira do Valle, A.; Verjovsky, A.

    1988-12-01

    This paper is part of a study on the existence of special harmonic maps on complete non-compact Riemannian manifolds. We generalize the notion of escaping geodesic and prove some results on the existence of escaping harmonic maps. 11 refs, 6 figs

  13. The local Gromov-Witten invariants of configurations of rational curves

    CERN Document Server

    Karp, D; Marino, M; CERN. Geneva; Karp, Dagan; Liu, Chiu-Chu Melissa; Marino, Marcos

    2005-01-01

    We compute the local Gromov-Witten invariants of certain configurations of rational curves in a Calabi-Yau threefold. These configurations are connected subcurves of the ``minimal trivalent configuration'', which is a particular tree of CP^1's with specified formal neighborhood. We show that these local invariants are equal to certain global or ordinary Gromov-Witten invariants of a blowup of CP^3 at points, and we compute these ordinary invariants using the geometry of the Cremona transform. We also realize the configurations in question as formal toric schemes and compute their formal Gromov-Witten invariants using the mathematical and physical theories of the topological vertex. In particular, we provide further evidence equating the vertex amplitudes derived from physical and mathematical theories of the topological vertex.

  14. High-order harmonic conversion efficiency in helium

    International Nuclear Information System (INIS)

    Crane, J.K.

    1992-01-01

    Calculated results are presented for the energy, number of photons, and conversion efficiency for high-order harmonic generation in helium. The results show the maximum values that we should expect to achieve experimentally with our current apparatus and the important parameters for scaling this source to higher output. In the desired operating regime where the coherence length, given by L coh =πb/(q-1), is greater than the gas column length, l, the harmonic output can be summarized by a single equation: N q =[(π z n z b 3 τ q |d q | z )/4h]{(p/q)(2l/b) z }. N q - numbers of photons of q-th harmonic; n - atom density; b - laser confocal parameter; τ q - pulse width of harmonic radiation; q - harmonic order; p - effective order of nonlinearity. (Note the term in brackets, the phase-matching function, has been separated from the rest of the expression in order to be consistent with the relevant literature)

  15. Harmonic calculation software for industrial applications with ASDs

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Asiminoaei, Lucian; Hansen, Steffan

    2007-01-01

    This article describes the evaluation of new harmonic calculation software. By using a combination of a prestored database and new interpolation techniques the software can provide the harmonic data on real applications of a very fast speed. The harmonic results obtained with this software have a...

  16. Audibility of high harmonics in a periodic pulse

    NARCIS (Netherlands)

    Duifhuis, H.

    1970-01-01

    A periodic pulse consisting of sufficiently narrow pulses has a frequency spectrum which contains all harmonics with equal amplitude. Owing to the limited resolving power of the hearing organ, only the low harmonics can be perceived separately. The high harmonics are heard together as one complex

  17. Projective invariants in a conformal finsler space - I

    International Nuclear Information System (INIS)

    Mishra, C.K.; Singh, M.P.

    1989-12-01

    The projective invariants in a conformal Finsler space have been studied in regard to certain tensor and scalar which are invariant under projective transformation in a Finsler space. They have been the subject of further investigation by the present authors. (author). 8 refs

  18. Dynamical invariants for variable quadratic Hamiltonians

    International Nuclear Information System (INIS)

    Suslov, Sergei K

    2010-01-01

    We consider linear and quadratic integrals of motion for general variable quadratic Hamiltonians. Fundamental relations between the eigenvalue problem for linear dynamical invariants and solutions of the corresponding Cauchy initial value problem for the time-dependent Schroedinger equation are emphasized. An eigenfunction expansion of the solution of the initial value problem is also found. A nonlinear superposition principle for generalized Ermakov systems is established as a result of decomposition of the general quadratic invariant in terms of the linear ones.

  19. Numeric invariants from multidimensional persistence

    Energy Technology Data Exchange (ETDEWEB)

    Skryzalin, Jacek [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Carlsson, Gunnar [Stanford Univ., Stanford, CA (United States)

    2017-05-19

    In this paper, we analyze the space of multidimensional persistence modules from the perspectives of algebraic geometry. We first build a moduli space of a certain subclass of easily analyzed multidimensional persistence modules, which we construct specifically to capture much of the information which can be gained by using multidimensional persistence over one-dimensional persistence. We argue that the global sections of this space provide interesting numeric invariants when evaluated against our subclass of multidimensional persistence modules. Lastly, we extend these global sections to the space of all multidimensional persistence modules and discuss how the resulting numeric invariants might be used to study data.

  20. Enhancement of harmonic generation using a two section undulator

    International Nuclear Information System (INIS)

    Prazeres, R.; Glotin, F.; Jaroszynski, D.A.; Ortega, J.M.; Rippon, C.

    1999-01-01

    Enhancement of the 2nd and 3rd harmonic of the wavelength of a Free-Electron Laser (FEL) has been measured when a single electron beam is crossing a two-section undulator. To produce the harmonic radiation enhancement, the undulator is arranged so that the resonance wavelength of the 2nd undulator (downstream) matches a harmonic of the 1st undulator (upstream). Both the fundamental and the harmonic optical fields evolve in the same optical cavity and are coupled out with different extraction efficiency, through a hole in one of the cavity mirrors. We present measurements that show that the optical power at the 2nd and 3rd harmonic can be enhanced, by about one order of magnitude, in two configurations: when the resonance wavelength of the 2nd undulator matches the harmonic of 1st one (harmonic configuration), or when the gap of the 2nd undulator is slightly larger than first one (step-tapered configuration). We examine the dependence of the harmonic power on the gap of the 2nd undulator. This fundamental/harmonic mode of operation of the FEL may have useful applications in the production of coherent X-ray and VUV radiation, a spectral range where high reflectivity optical cavity mirrors are difficult or impossible to manufacture

  1. Spontaneously broken abelian gauge invariant supersymmetric model

    International Nuclear Information System (INIS)

    Mainland, G.B.; Tanaka, K.

    A model is presented that is invariant under an Abelian gauge transformation and a modified supersymmetry transformation. This model is broken spontaneously, and the interplay between symmetry breaking, Goldstone particles, and mass breaking is studied. In the present model, spontaneously breaking the Abelian symmetry of the vacuum restores the invariance of the vacuum under a modified supersymmetry transformation. (U.S.)

  2. Effects of harmonic roving on pitch discrimination

    DEFF Research Database (Denmark)

    Santurette, Sébastien; de Kérangal, Mathilde le Gal; Joshi, Suyash Narendra

    2015-01-01

    Performance in pitch discrimination tasks is limited by variability intrinsic to listeners which may arise from peripheral auditory coding limitations or more central noise sources. The present study aimed at quantifying such “internal noise” by estimating the amount of harmonic roving required...... to impair pitch discrimination performance. Fundamental-frequency difference limens (F0DLs) were obtained in normal-hearing listeners with and without musical training for complex tones filtered between 1.5 and 3.5 kHz with F0s of 300 Hz (resolved harmonics) and 75 Hz (unresolved harmonics). The harmonicity...... that could be used to quantify the internal noise and provide strong constraints for physiologically inspired models of pitch perception....

  3. Studies of harmonic generation in free electron lasers

    International Nuclear Information System (INIS)

    Goldammer, K.

    2007-01-01

    Nonlinear harmonic generation is one of the most interesting aspects of Free Electron Lasers under study today. It provides for coherent, high intensity radiation at higher harmonics of the FEL resonant frequency. The sources, numerical simulation and applications of harmonic radiation in cascaded High Gain Harmonic Generation FELs were the subject of this thesis. Harmonic emission in FELs originates from harmonic microbunching of the particles and the particular electron trajectory during FEL interaction. Numerical FEL simulation codes model these analytical equations and predict the performance of Free Electron Lasers with good accuracy. This thesis has relied heavily upon the FEL simulation code Genesis 1.3 which has been upgraded in the framework of this thesis to compute harmonic generation in a self-consistent manner. Tests against analytical predictions suggest that the harmonic power levels as well as harmonic gain lengths are simulated correctly. A benchmark with the FEL simulation code GINGER yields excellent agreement of the harmonic saturation length and saturation power. The new version of the simulation code Genesis was also tested against measurements from the VUV-FEL FLASH at DESY. The spectral power distributions of fundamental and third harmonic radiation were recorded at 25.9 nm and 8.6 nm, respectively. The relative bandwidths (FWHM) were in the range of 2 % for both the fundamental as well as the third harmonic, which was accurately reproduced by time-dependent simulations with Genesis. The new code was also used to propose and evaluate a new design for the BESSY Soft X-Ray FEL, a cascaded High Gain Harmonic Generation FEL proposed by BESSY in Berlin. The original design for the BESSY High Energy FEL line requires four HGHG stages to convert the initial seed laser wavelength of 297.5 nm down to 1.24 nm. A new scheme is proposed that makes use of fifth harmonic radiation from the first stage and reduces the number of HGHG stages to three. It

  4. Studies of harmonic generation in free electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Goldammer, K.

    2007-11-12

    Nonlinear harmonic generation is one of the most interesting aspects of Free Electron Lasers under study today. It provides for coherent, high intensity radiation at higher harmonics of the FEL resonant frequency. The sources, numerical simulation and applications of harmonic radiation in cascaded High Gain Harmonic Generation FELs were the subject of this thesis. Harmonic emission in FELs originates from harmonic microbunching of the particles and the particular electron trajectory during FEL interaction. Numerical FEL simulation codes model these analytical equations and predict the performance of Free Electron Lasers with good accuracy. This thesis has relied heavily upon the FEL simulation code Genesis 1.3 which has been upgraded in the framework of this thesis to compute harmonic generation in a self-consistent manner. Tests against analytical predictions suggest that the harmonic power levels as well as harmonic gain lengths are simulated correctly. A benchmark with the FEL simulation code GINGER yields excellent agreement of the harmonic saturation length and saturation power. The new version of the simulation code Genesis was also tested against measurements from the VUV-FEL FLASH at DESY. The spectral power distributions of fundamental and third harmonic radiation were recorded at 25.9 nm and 8.6 nm, respectively. The relative bandwidths (FWHM) were in the range of 2 % for both the fundamental as well as the third harmonic, which was accurately reproduced by time-dependent simulations with Genesis. The new code was also used to propose and evaluate a new design for the BESSY Soft X-Ray FEL, a cascaded High Gain Harmonic Generation FEL proposed by BESSY in Berlin. The original design for the BESSY High Energy FEL line requires four HGHG stages to convert the initial seed laser wavelength of 297.5 nm down to 1.24 nm. A new scheme is proposed that makes use of fifth harmonic radiation from the first stage and reduces the number of HGHG stages to three. It

  5. Change of adiabatic invariant near the separatrix

    International Nuclear Information System (INIS)

    Bulanov, S.V.

    1995-10-01

    The properties of particle motion in the vicinity of the separatrix in a phase plane are investigated. The change of adiabatic invariant value due to the separatrix crossing is evaluated as a function of a perturbation parameter magnitude and a phase of a particle for time dependent Hamiltonians. It is demonstrated that the change of adiabatic invariant value near the separatrix birth is much larger than that in the case of the separatrix crossing near the saddle point in a phase plane. The conditions of a stochastic regime to appear around the separatrix are found. The results are applied to study the longitudinal invariant behaviour of charged particles near singular lines of the magnetic field. (author). 22 refs, 9 figs

  6. Analyzing correlation functions with tesseral and Cartesian spherical harmonics

    International Nuclear Information System (INIS)

    Danielewicz, Pawel; Pratt, Scott

    2007-01-01

    The dependence of interparticle correlations on the orientation of particle relative momentum can yield unique information on the space-time features of emission in reactions with multiparticle final states. In the present paper, the benefits of a representation and analysis of the three-dimensional correlation information in terms of surface spherical harmonics is presented. The harmonics include the standard complex tesseral harmonics and the real Cartesian harmonics. Mathematical properties of the lesser known Cartesian harmonics are illuminated. The physical content of different angular harmonic components in a correlation is described. The resolving power of different final-state effects with regard to determining angular features of emission regions is investigated. The considered final-state effects include identity interference, strong interactions, and Coulomb interactions. The correlation analysis in terms of spherical harmonics is illustrated with the cases of Gaussian and blast-wave sources for proton-charged meson and baryon-baryon pairs

  7. Optimal Selective Harmonic Control for Power Harmonics Mitigation

    DEFF Research Database (Denmark)

    Zhou, Keliang; Yang, Yongheng; Blaabjerg, Frede

    2015-01-01

    of power harmonics. The proposed optimal SHC is of hybrid structure: all recursive SHC modules with weighted gains are connected in parallel. It bridges the real “nk+-m order RC” and the complex “parallel structure RC”. Compared to other IMP based control solutions, it offers an optimal trade-off among...

  8. Machine learning strategies for systems with invariance properties

    Science.gov (United States)

    Ling, Julia; Jones, Reese; Templeton, Jeremy

    2016-08-01

    In many scientific fields, empirical models are employed to facilitate computational simulations of engineering systems. For example, in fluid mechanics, empirical Reynolds stress closures enable computationally-efficient Reynolds Averaged Navier Stokes simulations. Likewise, in solid mechanics, constitutive relations between the stress and strain in a material are required in deformation analysis. Traditional methods for developing and tuning empirical models usually combine physical intuition with simple regression techniques on limited data sets. The rise of high performance computing has led to a growing availability of high fidelity simulation data. These data open up the possibility of using machine learning algorithms, such as random forests or neural networks, to develop more accurate and general empirical models. A key question when using data-driven algorithms to develop these empirical models is how domain knowledge should be incorporated into the machine learning process. This paper will specifically address physical systems that possess symmetry or invariance properties. Two different methods for teaching a machine learning model an invariance property are compared. In the first method, a basis of invariant inputs is constructed, and the machine learning model is trained upon this basis, thereby embedding the invariance into the model. In the second method, the algorithm is trained on multiple transformations of the raw input data until the model learns invariance to that transformation. Results are discussed for two case studies: one in turbulence modeling and one in crystal elasticity. It is shown that in both cases embedding the invariance property into the input features yields higher performance at significantly reduced computational training costs.

  9. Azimuthal anisotropy: The higher harmonics

    International Nuclear Information System (INIS)

    Poskanzer, Arthur M.; STAR Collaboration

    2004-01-01

    We report the first observations of the fourth harmonic (v 4 ) in the azimuthal distribution of particles at RHIC. The measurement was done taking advantage of the large elliptic flow generated at RHIC. The integrated v 4 is about a factor of 10 smaller than v 2 . For the sixth (v 6 ) and eighth (v 8 ) harmonics upper limits on the magnitudes are reported

  10. Invariance algorithms for processing NDE signals

    Science.gov (United States)

    Mandayam, Shreekanth; Udpa, Lalita; Udpa, Satish S.; Lord, William

    1996-11-01

    Signals that are obtained in a variety of nondestructive evaluation (NDE) processes capture information not only about the characteristics of the flaw, but also reflect variations in the specimen's material properties. Such signal changes may be viewed as anomalies that could obscure defect related information. An example of this situation occurs during in-line inspection of gas transmission pipelines. The magnetic flux leakage (MFL) method is used to conduct noninvasive measurements of the integrity of the pipe-wall. The MFL signals contain information both about the permeability of the pipe-wall and the dimensions of the flaw. Similar operational effects can be found in other NDE processes. This paper presents algorithms to render NDE signals invariant to selected test parameters, while retaining defect related information. Wavelet transform based neural network techniques are employed to develop the invariance algorithms. The invariance transformation is shown to be a necessary pre-processing step for subsequent defect characterization and visualization schemes. Results demonstrating the successful application of the method are presented.

  11. Optical klystron and harmonic generation free electron laser

    Directory of Open Access Journals (Sweden)

    Qika Jia

    2005-06-01

    Full Text Available The optical field evolution of an optical klystron free electron laser is analytically described for both low gain and high gain cases. The harmonic optical klystron (HOK in which the second undulator is resonant on the higher harmonic of the first undulator is analyzed as a harmonic amplifier. The optical field evolution equation of the HOK is derived analytically for both the CHG mode (coherent harmonic generation, the quadratic gain regime and the HGHG mode (high gain harmonic generation, the exponential gain regime, the effects of energy spread, energy modulation, and dispersion in the whole process are taken into account. The linear theory is given and discussed for the HGHG mode. The analytical formula is given for the CHG mode.

  12. General Criterion for Harmonicity

    Science.gov (United States)

    Proesmans, Karel; Vandebroek, Hans; Van den Broeck, Christian

    2017-10-01

    Inspired by Kubo-Anderson Markov processes, we introduce a new class of transfer matrices whose largest eigenvalue is determined by a simple explicit algebraic equation. Applications include the free energy calculation for various equilibrium systems and a general criterion for perfect harmonicity, i.e., a free energy that is exactly quadratic in the external field. As an illustration, we construct a "perfect spring," namely, a polymer with non-Gaussian, exponentially distributed subunits which, nevertheless, remains harmonic until it is fully stretched. This surprising discovery is confirmed by Monte Carlo and Langevin simulations.

  13. The Witten-Reshetikhin-Turaev invariants of finite order mapping tori II

    DEFF Research Database (Denmark)

    Andersen, Jørgen Ellegaard; Himpel, Benjamin

    2012-01-01

    We identify the leading order term of the asymptotic expansion of the Witten–Reshetikhin–Turaev invariants for finite order mapping tori with classical invariants for all simple and simply-connected compact Lie groups. The square root of the Reidemeister torsion is used as a density on the moduli...... space of flat connections and the leading order term is identified with the integral over this moduli space of this density weighted by a certain phase for each component of the moduli space. We also identify this phase in terms of classical invariants such as Chern–Simons invariants, eta invariants...

  14. Chronoprojective invariance of the five-dimensional Schroedinger formalism

    International Nuclear Information System (INIS)

    Perrin, M.; Burdet, G.; Duval, C.

    1984-10-01

    Invariance properties of the five-dimensional Schroedinger formalism describing a quantum test particle in the Newton-Cartan theory of gravitation are studied. The geometry which underlies these invariance properties is presented as a reduction of the 0(5,2) conformal geometry various applications are given

  15. Harmonic superspaces of extended supersymmetry

    International Nuclear Information System (INIS)

    Ivanov, E.; Kalitzin, S.; Nguyen Ai Viet; Ogievetsky, V.

    1984-01-01

    The main technical apparatus of the harmonic superspace approach to extended SUSY, the calculus of harmonic variables on homogeneous spaces of the SUSY automorphism groups, is presented in detail for N=2, 3, 4. The basic harmonics for the coset manifolds G/H with G=SU(2), H=U(1); G=SU(3), H=SU(2)xU(1) and H=U(1)xU(1); G=SU(4), H=SU(3)xU(1), H=SU(2)xSU(2)xU(1), H=SU(2)xU(1)xU(1) and H=U(1)xU(1)xU(1); G=USp(2), H=SU(2)xSU(2), H=SU(2)xU(1) and H=U(1)xU(1) are tabulated a number of useful relations among them

  16. On Noether symmetries and form invariance of mechanico-electrical systems

    International Nuclear Information System (INIS)

    Fu Jingli; Chen Liqun

    2004-01-01

    This Letter focuses on form invariance and Noether symmetries of mechanico-electrical systems. Based on the invariance of Hamiltonian actions for mechanico-electrical systems under the infinitesimal transformation of the coordinates, the electric quantities and the time, the authors present the Noether symmetry transformation, the Noether quasi-symmetry transformation, the generalized Noether quasi-symmetry transformation and the general Killing equations of Lagrange mechanico-electrical systems and Lagrange-Maxwell mechanico-electrical systems. Using the invariance of the differential equations, satisfied by physical quantities, such as Lagrangian, non-potential general forces, under the infinitesimal transformation, the authors propose the definition and criterions of the form invariance for mechanico-electrical systems. The Letter also demonstrates connection between the Noether symmetries and the form invariance of mechanico-electrical systems. An example is designed to illustrate these results

  17. Tunneling ionization and harmonic generation in two-color fields

    International Nuclear Information System (INIS)

    Kondo, K.; Kobayashi, Y.; Sagisaka, A.; Nabekawa, Y.; Watanabe, S.

    1996-01-01

    Tunneling ionization and harmonic generation in two-color fields were studied with a fundamental beam (ω) and its harmonics (2ω,3ω), which were generated by a 100-fs Ti:sapphire laser. Ion yields of atoms and molecules were successfully controlled by means of a change in the relative phase between ω and 3ω pulses. Two-color interference was clearly observed in photoelectron spectra and harmonic spectra. In the ω endash 2ω field even-order harmonics were observed in which the intensity was almost equal to that of the odd harmonics because of an asymmetric optical field. These results were compared with the quasi-static model for ionization and with the quantum theory for harmonic generation. copyright 1996 Optical Society of America

  18. Projective moment invariants

    Czech Academy of Sciences Publication Activity Database

    Suk, Tomáš; Flusser, Jan

    2004-01-01

    Roč. 26, č. 10 (2004), s. 1364-1367 ISSN 0162-8828 R&D Projects: GA ČR GA201/03/0675 Institutional research plan: CEZ:AV0Z1075907 Keywords : projective transform * moment invariants * object recognition Subject RIV: JD - Computer Applications, Robotics Impact factor: 4.352, year: 2004 http://library.utia.cas.cz/prace/20040112.pdf

  19. Fractal properties of critical invariant curves

    International Nuclear Information System (INIS)

    Hunt, B.R.; Yorke, J.A.; Khanin, K.M.; Sinai, Y.G.

    1996-01-01

    We examine the dimension of the invariant measure for some singular circle homeomorphisms for a variety of rotation numbers, through both the thermodynamic formalism and numerical computation. The maps we consider include those induced by the action of the standard map on an invariant curve at the critical parameter value beyond which the curve is destroyed. Our results indicate that the dimension is universal for a given type of singularity and rotation number, and that among all rotation numbers, the golden mean produces the largest dimension

  20. High-order harmonic generation with short-pulse lasers

    International Nuclear Information System (INIS)

    Schafer, K.J.; Krause, J.L.; Kulander, K.C.

    1992-12-01

    Recent progress in the understanding of high-order harmonic conversion from atoms and ions exposed to high-intensity, short-pulse optical lasers is reviewed. We find that ions can produce harmonics comparable in strength to those obtained from neutral atoms, and that the emission extends to much higher order. Simple scaling laws for the strength of the harmonic emission and the maximium observable harmonic are suggested. These results imply that the photoemission observed in recent experiments in helium and neon contains contributions from ions as well as neutrals

  1. Lorentz and CPT invariances and the Einstein-Podolsky-Rosen correlations

    International Nuclear Information System (INIS)

    Beauregard, O.C. de

    1984-01-01

    This paper shows that there is no conflict between Einstein-Podolsky-Rosen (EPR) correlation and the new 1925 - 55 ''microrelativity principle'' stating the Lorentz and CPT invariance of physical law at the microlevel. The CPT invariance concept is a perfectly legal heir of the 1876 Loschmidt T-invariance concept. Therefore, the EPR-paradox can be understood as synthetizing two earlier ''paradoxes'': the wavelike probability calculus, and the T- or CPT-symmetry of elementary physical processes. The CPT-invariance can be summarized as the basic requirement of second quantization, that particle emission and antiparticle absorption are mathematically equivalent. The phenomenology displays causality as arrowless at the microlevel. The relativistic S-matrix scheme displays the CPT invariance of causality concept at the microlevel. In order to strengthen the point that the Lorentz and CPT invariant schemes of relativistic quantum mechanics do contain the full formalization of the EPR correlation, the covariant calculations pertaining to the subject are presented. The formalization of the EPR correlation and its interpretation are contained in the existing relativistic quantum mechanics. (Kato, T.)

  2. Galilean invariance and homogeneous anisotropic randomly stirred flows

    International Nuclear Information System (INIS)

    Berera, Arjun; Hochberg, David

    2005-01-01

    The Ward-Takahashi identities for incompressible flow implied by Galilean invariance are derived for the randomly forced Navier-Stokes equation, in which both the mean and fluctuating velocity components are explicitly present. The consequences of the Galilean invariance for the vertex renormalization are drawn from this identity

  3. Conformal Invariance, Dark Energy, and CMB Non-Gaussianity

    CERN Document Server

    Antoniadis, Ignatios; Mottola, Emil

    2012-01-01

    We show that in addition to simple scale invariance, a universe dominated by dark energy naturally gives rise to correlation functions possessing full conformal invariance. This is due to the mathematical isomorphism between the conformal group of certain three dimensional slices of de Sitter space and the de Sitter isometry group SO(4,1). In the standard homogeneous, isotropic cosmological model in which primordial density perturbations are generated during a long vacuum energy dominated de Sitter phase, the embedding of flat spatial R^3 sections in de Sitter space induces a conformal invariant perturbation spectrum and definite prediction for the shape of the non-Gaussian CMB bispectrum. In the case in which the density fluctuations are generated instead on the de Sitter horizon, conformal invariance of the S^2 horizon embedding implies a different but also quite definite prediction for the angular correlations of CMB non-Gaussianity on the sky. Each of these forms for the bispectrum is intrinsic to the sym...

  4. SO(N) reformulated link invariants from topological strings

    International Nuclear Information System (INIS)

    Borhade, Pravina; Ramadevi, P.

    2005-01-01

    Large N duality conjecture between U(N) Chern-Simons gauge theory on S 3 and A-model topological string theory on the resolved conifold was verified at the level of partition function and Wilson loop observables. As a consequence, the conjectured form for the expectation value of the topological operators in A-model string theory led to a reformulation of link invariants in U(N) Chern-Simons theory giving new polynomial invariants whose integer coefficients could be given a topological meaning. We show that the A-model topological operator involving SO(N) holonomy leads to a reformulation of link invariants in SO(N) Chern-Simons theory. Surprisingly, the SO(N) reformulated invariants also has a similar form with integer coefficients. The topological meaning of the integer coefficients needs to be explored from the duality conjecture relating SO(N) Chern-Simons theory to A-model closed string theory on orientifold of the resolved conifold background

  5. Manifestly scale-invariant regularization and quantum effective operators

    CERN Document Server

    Ghilencea, D.M.

    2016-01-01

    Scale invariant theories are often used to address the hierarchy problem, however the regularization of their quantum corrections introduces a dimensionful coupling (dimensional regularization) or scale (Pauli-Villars, etc) which break this symmetry explicitly. We show how to avoid this problem and study the implications of a manifestly scale invariant regularization in (classical) scale invariant theories. We use a dilaton-dependent subtraction function $\\mu(\\sigma)$ which after spontaneous breaking of scale symmetry generates the usual DR subtraction scale $\\mu(\\langle\\sigma\\rangle)$. One consequence is that "evanescent" interactions generated by scale invariance of the action in $d=4-2\\epsilon$ (but vanishing in $d=4$), give rise to new, finite quantum corrections. We find a (finite) correction $\\Delta U(\\phi,\\sigma)$ to the one-loop scalar potential for $\\phi$ and $\\sigma$, beyond the Coleman-Weinberg term. $\\Delta U$ is due to an evanescent correction ($\\propto\\epsilon$) to the field-dependent masses (of...

  6. Differential invariants for higher-rank tensors. A progress report

    International Nuclear Information System (INIS)

    Tapial, V.

    2004-07-01

    We outline the construction of differential invariants for higher-rank tensors. In section 2 we outline the general method for the construction of differential invariants. A first result is that the simplest tensor differential invariant contains derivatives of the same order as the rank of the tensor. In section 3 we review the construction for the first-rank tensors (vectors) and second-rank tensors (metrics). In section 4 we outline the same construction for higher-rank tensors. (author)

  7. Shift-invariant discrete wavelet transform analysis for retinal image classification.

    Science.gov (United States)

    Khademi, April; Krishnan, Sridhar

    2007-12-01

    This work involves retinal image classification and a novel analysis system was developed. From the compressed domain, the proposed scheme extracts textural features from wavelet coefficients, which describe the relative homogeneity of localized areas of the retinal images. Since the discrete wavelet transform (DWT) is shift-variant, a shift-invariant DWT was explored to ensure that a robust feature set was extracted. To combat the small database size, linear discriminant analysis classification was used with the leave one out method. 38 normal and 48 abnormal (exudates, large drusens, fine drusens, choroidal neovascularization, central vein and artery occlusion, histoplasmosis, arteriosclerotic retinopathy, hemi-central retinal vein occlusion and more) were used and a specificity of 79% and sensitivity of 85.4% were achieved (the average classification rate is 82.2%). The success of the system can be accounted to the highly robust feature set which included translation, scale and semi-rotational, features. Additionally, this technique is database independent since the features were specifically tuned to the pathologies of the human eye.

  8. Challenges and Opportunities for Harmonizing Research Methodology

    DEFF Research Database (Denmark)

    van Hees, V. T.; Thaler-Kall, K.; Wolf, K. H.

    2016-01-01

    Objectives: Raw accelerometry is increasingly being used in physical activity research, but diversity in sensor design, attachment and signal processing challenges the comparability of research results. Therefore, efforts are needed to harmonize the methodology. In this article we reflect on how...... increased methodological harmonization may be achieved. Methods: The authors of this work convened for a two-day workshop (March 2014) themed on methodological harmonization of raw accelerometry. The discussions at the workshop were used as a basis for this review. Results: Key stakeholders were identified...... as manufacturers, method developers, method users (application), publishers, and funders. To facilitate methodological harmonization in raw accelerometry the following action points were proposed: i) Manufacturers are encouraged to provide a detailed specification of their sensors, ii) Each fundamental step...

  9. Reduction of Harmonics by 18-Pulse Rectifier

    Directory of Open Access Journals (Sweden)

    Stanislav Kocman

    2008-01-01

    Full Text Available Operation of such electrical devices as data processing and electronics devices, adjustable speed drives or uninterruptible power supply can cause problems by generating harmonic currents into the network, from which they are supplied. Effects of these harmonic currents are various, they can get worse the quality of supply voltage in the network or to have negative influences on devices connected to this network. There are various technical solutions for reduction of harmonics. One of them is using of multi-pulse rectifiers, whereas the 18-pulse rectifier in the structure of adjustable speed drive is briefly presented in this paper including some results of its behaviour. The examined experimental measurements confirmed its very good efficiency in the harmonic mitigation.

  10. Cohabiting with the harmonic pollution

    International Nuclear Information System (INIS)

    Garcia C, Antonio A

    1999-01-01

    The Norm IEEE 519 tries of the permissible limits of harmonic distortion in the point of common joining between the energy supplier company and the industry. However fulfilling these limits of distortion doesn't guarantee that the problem for the company has finished, on the contrary will have to counteract the effects created by the harmonic distortion toward the interior of its electric system and to cohabit with this distortion

  11. Infrared asymptotics of a gauge-invariant propagator in quantum electrodynamics

    International Nuclear Information System (INIS)

    Skachkov, N.B.; Shevchenko, O.Yu.; Solovtsov, I.l.

    1987-01-01

    A new class of gauge-invariant fields is introduced. For the gauge-invariant propagator of a spinor field the analogue of the Dyson-Schwinger equations is derived. With the help of these equations as well as the functional integration method it is shown that the gauge-invariant spinor propagator has a simple pole singularity in the infrared region

  12. Infrared asymptotics of a gauge-invariant propagator in quantum electrodynamics

    International Nuclear Information System (INIS)

    Skachkov, N.B.; Shevchenko, O.Yu.

    1985-01-01

    A new class of the gauge-invariant field is introduced. For the gauge-invariant propagator of a spinor field the analog of the Dyson-Schwinger equations is derived. By using these equations as well as the functional integration method it is shown that the gauge-invariant spinor propagator has a simple pole singularity in the infrared region

  13. On renormalization-invariant masses

    International Nuclear Information System (INIS)

    Fleming, H.; Furuya, K.

    1978-02-01

    It is shown that spontaneous generation of renormalization invariant mass is possible in infra-red stable theories with more than one coupling constant. If relations among the coupling constants are permitted the effect can be made compatible with pertubation theory

  14. Classically scale-invariant B–L model and conformal gravity

    International Nuclear Information System (INIS)

    Oda, Ichiro

    2013-01-01

    We consider a coupling of conformal gravity to the classically scale-invariant B–L extended standard model which has been recently proposed as a phenomenologically viable model realizing the Coleman–Weinberg mechanism of breakdown of the electroweak symmetry. As in a globally scale-invariant dilaton gravity, it is also shown in a locally scale-invariant conformal gravity that without recourse to the Coleman–Weinberg mechanism, the B–L gauge symmetry is broken in the process of spontaneous symmetry breakdown of the local scale invariance (Weyl invariance) at the tree level and as a result the B–L gauge field becomes massive via the Higgs mechanism. As a bonus of conformal gravity, the massless dilaton field does not appear and the parameters in front of the non-minimal coupling of gravity are completely fixed in the present model. This observation clearly shows that the conformal gravity has a practical application even if the scalar field does not possess any dynamical degree of freedom owing to the local scale symmetry

  15. An Advanced Rotation Invariant Descriptor for SAR Image Registration

    Directory of Open Access Journals (Sweden)

    Yuming Xiang

    2017-07-01

    Full Text Available The Scale-Invariant Feature Transform (SIFT algorithm and its many variants have been widely used in Synthetic Aperture Radar (SAR image registration. The SIFT-like algorithms maintain rotation invariance by assigning a dominant orientation for each keypoint, while the calculation of dominant orientation is not robust due to the effect of speckle noise in SAR imagery. In this paper, we propose an advanced local descriptor for SAR image registration to achieve rotation invariance without assigning a dominant orientation. Based on the improved intensity orders, we first divide a circular neighborhood into several sub-regions. Second, rotation-invariant ratio orientation histograms of each sub-region are proposed by accumulating the ratio values of different directions in a rotation-invariant coordinate system. The proposed descriptor is composed of the concatenation of the histograms of each sub-region. In order to increase the distinctiveness of the proposed descriptor, multiple image neighborhoods are aggregated. Experimental results on several satellite SAR images have shown an improvement in the matching performance over other state-of-the-art algorithms.

  16. SO(9,1) invariant matrix formulation of a supermembrane

    International Nuclear Information System (INIS)

    Fujikawa, K.; Okuyama, K.

    1998-01-01

    An SO(9,1) invariant formulation of an 11-dimensional supermembrane is presented by combining an SO(10,1) invariant treatment of reparametrization symmetry with an SO(9,1) invariant θ R = 0 gauge of κ-symmetry. The Lagrangian thus defined consists of polynomials in dynamical variables (up to quartic terms in X μ and up to the eighth power in θ), and reparametrization BRST symmetry is manifest. The area preserving diffeomorphism is consistently incorporated and the area preserving gauge symmetry is made explicit. The SO(9,1) invariant theory contains terms which cannot be induced by a naive dimensional reduction of higher-dimensional supersymmetric Yang-Mills theory. The SO(9,1) invariant Hamiltonian and the generator of area preserving diffeomorphism together with the supercharge are matrix regularized by applying the standard procedure. As an application of the present formulation, we evaluate the possible central charges in superalgebra both in the path integral and in the canonical (Dirac) formalism, and we find only the two-form charge [ X μ , X ν ]. (orig.)

  17. Uniqueness of the gauge invariant action for cosmological perturbations

    International Nuclear Information System (INIS)

    Prokopec, Tomislav; Weenink, Jan

    2012-01-01

    In second order perturbation theory different definitions are known of gauge invariant perturbations in single field inflationary models. Consequently the corresponding gauge invariant cubic actions do not have the same form. Here we show that the cubic action for one choice of gauge invariant variables is unique in the following sense: the action for any other, non-linearly related variable can be brought to the same bulk action, plus additional boundary terms. These boundary terms correspond to the choice of hypersurface and generate extra, disconnected contributions to the bispectrum. We also discuss uniqueness of the action with respect to conformal frames. When expressed in terms of the gauge invariant curvature perturbation on uniform field hypersurfaces the action for cosmological perturbations has a unique form, independent of the original Einstein or Jordan frame. Crucial is that the gauge invariant comoving curvature perturbation is frame independent, which makes it extremely helpful in showing the quantum equivalence of the two frames, and therefore in calculating quantum effects in nonminimally coupled theories such as Higgs inflation

  18. Quasi-phase-matching of only even-order high harmonics.

    Science.gov (United States)

    Diskin, Tzvi; Cohen, Oren

    2014-03-24

    High harmonic spectrum of a quasi-monochromatic pump that interacts with isotropic media consists of only odd-order harmonics. Addition of a secondary pump, e.g. a static field or the second harmonic of the primary pump, can results with generation of both odd and even harmonics of the primary pump. We propose a method for quasi-phase matching of only the even-order harmonics of the primary pump. We formulate a theory for this process and demonstrate it numerically. We also show that it leads to attosecond pulse trains with constant carrier envelop phase and high repetition rate.

  19. Analysis of Even Harmonics Generation in an Isolated Electric Power System

    Science.gov (United States)

    Kanao, Norikazu; Hayashi, Yasuhiro; Matsuki, Junya

    Harmonics bred from loads are mainly odd order because the current waveform has half-wave symmetry. Since the even harmonics are negligibly small, those are not generally measured in electric power systems. However, even harmonics were measured at a 500/275/154kV substation in Hokuriku Electric Power Company after removal of a transmission line fault. The even harmonics caused malfunctions of protective digital relays because the relays used 4th harmonics at the input filter as automatic supervisory signal. This paper describes the mechanism of generation of the even harmonics by comparing measured waveforms with ATP-EMTP simulation results. As a result of analysis, it is cleared that even harmonics are generated by three causes. The first cause is a magnetizing current of transformers due to flux deviation by DC component of a fault current. The second one is due to harmonic conversion of a synchronous machine which generates even harmonics when direct current component or even harmonic current flow into the machine. The third one is that increase of harmonic impedance due to an isolated power system produces harmonic voltages. The design of the input filter of protective digital relays should consider even harmonics generation in an isolated power system.

  20. On the hierarchy of partially invariant submodels of differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Golovin, Sergey V [Lavrentyev Institute of Hydrodynamics SB RAS, Novosibirsk 630090 (Russian Federation)], E-mail: sergey@hydro.nsc.ru

    2008-07-04

    It is noted that the partially invariant solution (PIS) of differential equations in many cases can be represented as an invariant reduction of some PISs of the higher rank. This introduces a hierarchic structure in the set of all PISs of a given system of differential equations. An equivalence of the two-step and the direct ways of construction of PISs is proved. The hierarchy simplifies the process of enumeration and analysis of partially invariant submodels to the given system of differential equations. In this framework, the complete classification of regular partially invariant solutions of ideal MHD equations is given.

  1. On the hierarchy of partially invariant submodels of differential equations

    Science.gov (United States)

    Golovin, Sergey V.

    2008-07-01

    It is noted that the partially invariant solution (PIS) of differential equations in many cases can be represented as an invariant reduction of some PISs of the higher rank. This introduces a hierarchic structure in the set of all PISs of a given system of differential equations. An equivalence of the two-step and the direct ways of construction of PISs is proved. The hierarchy simplifies the process of enumeration and analysis of partially invariant submodels to the given system of differential equations. In this framework, the complete classification of regular partially invariant solutions of ideal MHD equations is given.

  2. On the hierarchy of partially invariant submodels of differential equations

    International Nuclear Information System (INIS)

    Golovin, Sergey V

    2008-01-01

    It is noted that the partially invariant solution (PIS) of differential equations in many cases can be represented as an invariant reduction of some PISs of the higher rank. This introduces a hierarchic structure in the set of all PISs of a given system of differential equations. An equivalence of the two-step and the direct ways of construction of PISs is proved. The hierarchy simplifies the process of enumeration and analysis of partially invariant submodels to the given system of differential equations. In this framework, the complete classification of regular partially invariant solutions of ideal MHD equations is given

  3. Probabilistic Aspects of Harmonic Emission of Large Offshore Wind Farms

    DEFF Research Database (Denmark)

    Jensen, Christian Flytkjær; Bak, Claus Leth; Kocewiak, Lukasz Hubert

    2011-01-01

    In this article, a new probabilistic method of as-sessment of harmonic emission of large offshore wind farms is presented. Based on measurements from the British wind farm Burbo Banks, probability density functions are estimated for the dominating low order harmonic currents injected by a single...... turbine. The degree and type of dependence between the harmonic emission and the operating point of a single turbine is established. A model of Burbo Banks, suitable for harmonic load flow studies, is created in DIgSILENT Power Factory along with a DPL-script that deals with the probabilistic issues...... of the harmonic emission. The simulated harmonic distortion at the PCC is compared to measurement. This reveals some diffi-culties regarding harmonic load flow studies. The harmonic background distortion in the grid to where the wind farm is connected must be included in the study. Furthermore, a very detailed...

  4. Quantum properties of double kicked systems with classical translational invariance in momentum

    Science.gov (United States)

    Dana, Itzhack

    2015-01-01

    Double kicked rotors (DKRs) appear to be the simplest nonintegrable Hamiltonian systems featuring classical translational symmetry in phase space (i.e., in angular momentum) for an infinite set of values (the rational ones) of a parameter η . The experimental realization of quantum DKRs by atom-optics methods motivates the study of the double kicked particle (DKP). The latter reduces, at any fixed value of the conserved quasimomentum β ℏ , to a generalized DKR, the "β -DKR ." We determine general quantum properties of β -DKRs and DKPs for arbitrary rational η . The quasienergy problem of β -DKRs is shown to be equivalent to the energy eigenvalue problem of a finite strip of coupled lattice chains. Exact connections are then obtained between quasienergy spectra of β -DKRs for all β in a generically infinite set. The general conditions of quantum resonance for β -DKRs are shown to be the simultaneous rationality of η ,β , and a scaled Planck constant ℏS. For rational ℏS and generic values of β , the quasienergy spectrum is found to have a staggered-ladder structure. Other spectral structures, resembling Hofstadter butterflies, are also found. Finally, we show the existence of particular DKP wave-packets whose quantum dynamics is free, i.e., the evolution frequencies of expectation values in these wave-packets are independent of the nonintegrability. All the results for rational ℏS exhibit unique number-theoretical features involving η ,ℏS, and β .

  5. Improvement of the Convergence of the Invariant Imbedding T-Matrix Method

    Science.gov (United States)

    Zhai, S.; Panetta, R. L.; Yang, P.

    2017-12-01

    The invariant imbedding T-matrix method (IITM) is based on an electromagnetic volume integral equation to compute the T-matrix of an arbitrary scattering particle. A free-space Green's function is chosen as the integral kernel and thus each source point is placed in an imaginary vacuum spherical shell extending from the center to that source point. The final T-matrix (of the largest circumscribing sphere) is obtained through an iterative relation that, layer by layer, computes the T-matrix from the particle center to the outermost shell. On each spherical shell surface, an integration of the product of the refractive index 𝜀(𝜃, 𝜑) and vector spherical harmonics must be performed, resulting in the so-called U-matrix, which directly leads to the T-matrix on the spherical surface. Our observations indicate that the matrix size and sparseness are determined by the particular refractive index function 𝜀(𝜃, 𝜑). If 𝜀(𝜃, 𝜑) is an analytic function on the surface, then the matrix elements resulting from the integration decay rapidly, leading to sparse matrix; if 𝜀(𝜃, 𝜑) is not (for example, contains jump discontinuities), then the matrix elements decay slowly, leading to a large dense matrix. The intersection between an irregular scatterer and each spherical shell can leave jump discontinuities in 𝜀(𝜃, 𝜑) distributed over the shell surface. The aforementioned feature is analogous to the Gibbs phenomenon appearing in the orthogonal expansion of non-smooth functions with Hermitian eigenfunctions (complex exponential, Legendre, Bessel,...) where poor convergence speed is a direct consequence of the slow decay rate of the expansion coefficients. Various methods have been developed to deal with this slow convergence in the presence of discontinuities. Among the different approaches the most practical one may be a spectral filter: a filter is applied on the

  6. Testing CPT invariance with neutrinos

    International Nuclear Information System (INIS)

    Ohlsson, Tommy

    2003-01-01

    We investigate possible tests of CPT invariance on the level of event rates at neutrino factories. We do not assume any specific model, but phenomenological differences in the neutrino-antineutrino masses and mixing angles in a Lorentz invariance preserving context, which could be induced by physics beyond the Standard Model. We especially focus on the muon neutrino and antineutrino disappearance channels in order to obtain constraints on the neutrino-antineutrino mass and mixing angle differences. In a typical neutrino factory setup simulation, we find, for example, that vertical bar m 3 - m-bar 3 vertical bar $1.9 · 10 -4 eV and vertical bar ≡ 23 - ≡-bar 23 vertical bar < or approx. 2 deg

  7. Spontaneously broken supersymmetry and Poincare invariance

    International Nuclear Information System (INIS)

    Tata, X.R.; Sudarshan, E.C.G.; Schechter, J.M.

    1982-12-01

    It is argued that the spontaneous breakdown of global supersymmetry is consistent with unbroken Poincare invariance if and only if the supersymmetry algebra A = 0 is understood to mean the invariance of the dynamical variables phi under the transformations generated by the algebra, i.e. [A, phi] = 0 rather than as an operator equation. It is further argued that this weakening of the algebra does not alter any of the conclusions about supersymmetric quantum field theories that have been obtained using the original (stronger) form of the algebra

  8. Nonlinear Lorentz-invariant theory of gravitation

    International Nuclear Information System (INIS)

    Petry, W.

    1976-01-01

    A nonlinear Lorentz-invariant theory of gravitation and a Lorentz-invariant Hamiltonian for a particle with spin in the gravitational field are developed. The equations of motions are studied. The theory is applied to the three well known tests of General Relativity. In the special case of the red shift of spectral lines and of the deflection of light, the theory gives the same results as the General Theory of Relativity, whereas in the case of the perihelion of the Mercury, the theory gives 40,3'', in good agreement with experimental results of Dicke. (author)

  9. Spontaneously broken supersymmetry and Poincare invariance

    International Nuclear Information System (INIS)

    Tata, X.R.; Sudarshan, E.C.G.; Schechter, J.M.

    1983-01-01

    It is argued that the spontaneous breakdown of global supersymmetry is consistent with unbroken Poincare invariance if and only if the supersymmetry algebra 'A=0' is understood to mean the invariance of the dynamical variables phi under the transformations generated by the algebra, i.e. [A, phi]=0 rather than as an operator equation. It is further argued that this 'weakening' of the algrebra does not alter any of the conclusions about supersymmetry quantum field theories that have been obtained using the original (stronger) form of the algebra. (orig.)

  10. Jet invariant mass in quantum chromodynamics

    International Nuclear Information System (INIS)

    Clavelli, L.

    1979-03-01

    We give heuristic argument that a new class of observable related to the invariant mass of jets in e + e - annihilation is infrared finite to all orders of perturbation theory in Quantum Chromodynamics. We calculate the lowest order QCD predictions for the mass distribution as well as for the double differential cross section to produce back to back jets of invariant mass M 1 and M 2 . The resulting cross sections are quite different from that expected in simple hadronic fireball models and should provide experimentally accessible tests of QCD. (orig.) [de

  11. The decomposition of global conformal invariants

    CERN Document Server

    Alexakis, Spyros

    2012-01-01

    This book addresses a basic question in differential geometry that was first considered by physicists Stanley Deser and Adam Schwimmer in 1993 in their study of conformal anomalies. The question concerns conformally invariant functionals on the space of Riemannian metrics over a given manifold. These functionals act on a metric by first constructing a Riemannian scalar out of it, and then integrating this scalar over the manifold. Suppose this integral remains invariant under conformal re-scalings of the underlying metric. What information can one then deduce about the Riemannian scalar? Dese

  12. Solid-state harmonics beyond the atomic limit.

    Science.gov (United States)

    Ndabashimiye, Georges; Ghimire, Shambhu; Wu, Mengxi; Browne, Dana A; Schafer, Kenneth J; Gaarde, Mette B; Reis, David A

    2016-06-23

    Strong-field laser excitation of solids can produce extremely nonlinear electronic and optical behaviour. As recently demonstrated, this includes the generation of high harmonics extending into the vacuum-ultraviolet and extreme-ultraviolet regions of the electromagnetic spectrum. High harmonic generation is shown to occur fundamentally differently in solids and in dilute atomic gases. How the microscopic mechanisms in the solid and the gas differ remains a topic of intense debate. Here we report a direct comparison of high harmonic generation in the solid and gas phases of argon and krypton. Owing to the weak van der Waals interaction, rare (noble)-gas solids are a near-ideal medium in which to study the role of high density and periodicity in the generation process. We find that the high harmonic generation spectra from the rare-gas solids exhibit multiple plateaus extending well beyond the atomic limit of the corresponding gas-phase harmonics measured under similar conditions. The appearance of multiple plateaus indicates strong interband couplings involving multiple single-particle bands. We also compare the dependence of the solid and gas harmonic yield on laser ellipticity and find that they are similar, suggesting the importance of electron-hole recollision in these solids. This implies that gas-phase methods such as polarization gating for attosecond pulse generation and orbital tomography could be realized in solids.

  13. Harmonic-hopping in Wallacea's bats.

    Science.gov (United States)

    Kingston, Tigga; Rossiter, Stephen J

    2004-06-10

    Evolutionary divergence between species is facilitated by ecological shifts, and divergence is particularly rapid when such shifts also promote assortative mating. Horseshoe bats are a diverse Old World family (Rhinolophidae) that have undergone a rapid radiation in the past 5 million years. These insectivorous bats use a predominantly pure-tone echolocation call matched to an auditory fovea (an over-representation of the pure-tone frequency in the cochlea and inferior colliculus) to detect the minute changes in echo amplitude and frequency generated when an insect flutters its wings. The emitted signal is the accentuated second harmonic of a series in which the fundamental and remaining harmonics are filtered out. Here we show that three distinct, sympatric size morphs of the large-eared horseshoe bat (Rhinolophus philippinensis) echolocate at different harmonics of the same fundamental frequency. These morphs have undergone recent genetic divergence, and this process has occurred in parallel more than once. We suggest that switching harmonics creates a discontinuity in the bats' perception of available prey that can initiate disruptive selection. Moreover, because call frequency in horseshoe bats has a dual function in resource acquisition and communication, ecological selection on frequency might lead to assortative mating and ultimately reproductive isolation and speciation, regardless of external barriers to gene flow.

  14. Mapping Translation Technology Research in Translation Studies

    DEFF Research Database (Denmark)

    Schjoldager, Anne; Christensen, Tina Paulsen; Flanagan, Marian

    2017-01-01

    /Schjoldager 2010, 2011; Christensen 2011). Unfortunately, the increasing professional use of translation technology has not been mirrored within translation studies (TS) by a similar increase in research projects on translation technology (Munday 2009: 15; O’Hagan 2013; Doherty 2016: 952). The current thematic...... section aims to improve this situation by presenting new and innovative research papers that reflect on recent technological advances and their impact on the translation profession and translators from a diversity of perspectives and using a variety of methods. In Section 2, we present translation...... technology research as a subdiscipline of TS, and we define and discuss some basic concepts and models of the field that we use in the rest of the paper. Based on a small-scale study of papers published in TS journals between 2006 and 2016, Section 3 attempts to map relevant developments of translation...

  15. Translational and Rotational Diffusion in Water in the Gigapascal Range

    Science.gov (United States)

    Bove, L. E.; Klotz, S.; Strässle, Th.; Koza, M.; Teixeira, J.; Saitta, A. M.

    2013-11-01

    First measurements of the self-dynamics of liquid water in the GPa range are reported. The GPa range has here become accessible through a new setup for the Paris-Edinburgh press specially conceived for quasielastic neutron scattering studies. A direct measurement of both the translational and rotational diffusion coefficients of water along the 400 K isotherm up to 3 GPa, corresponding to the melting point of ice VII, is provided and compared with molecular dynamics simulations. The translational diffusion is observed to strongly decrease with pressure, though its variation slows down for pressures higher than 1 GPa and decouples from that of the shear viscosity. The rotational diffusion turns out to be insensitive to pressure. Through comparison with structural data and molecular dynamics simulations, we show that this is a consequence of the rigidity of the first neighbors shell and of the invariance of the number of hydrogen bonds of a water molecule under high pressure. These results show the inadequacy of the Stokes-Einstein-Debye equations to predict the self-diffusive behavior of water at high temperature and high pressure, and challenge the usual description of hot dense water behaving as a simple liquid.

  16. Determination of nonlinear resistance voltage-current relationships by measuring harmonics

    Science.gov (United States)

    Stafford, J. M.

    1971-01-01

    Test configuration measures harmonic signal amplitudes generated in nonlinear resistance. Vacuum-type voltmeter measures low frequency sinusoidal input signal amplitude and wave-analyzer measures amplitude of harmonic signals generated in junction. Input signal harmonics amplitude must not exceed that of harmonics generated in nonlinear resistance.

  17. RHIC susceptibility to variations in systematic magnetic harmonic errors

    International Nuclear Information System (INIS)

    Dell, G.F.; Peggs, S.; Pilat, F.; Satogata, T.; Tepikian, S.; Trbojevic, D.; Wei, J.

    1994-01-01

    Results of a study to determine the sensitivity of tune to uncertainties of the systematic magnetic harmonic errors in the 8 cm dipoles of RHIC are reported. Tolerances specified to the manufacturer for tooling and fabrication can result in systematic harmonics different from the expected values. Limits on the range of systematic harmonics have been established from magnet calculations, and the impact on tune from such harmonics has been established

  18. Random SU(2) invariant tensors

    Science.gov (United States)

    Li, Youning; Han, Muxin; Ruan, Dong; Zeng, Bei

    2018-04-01

    SU(2) invariant tensors are states in the (local) SU(2) tensor product representation but invariant under the global group action. They are of importance in the study of loop quantum gravity. A random tensor is an ensemble of tensor states. An average over the ensemble is carried out when computing any physical quantities. The random tensor exhibits a phenomenon known as ‘concentration of measure’, which states that for any bipartition the average value of entanglement entropy of its reduced density matrix is asymptotically the maximal possible as the local dimensions go to infinity. We show that this phenomenon is also true when the average is over the SU(2) invariant subspace instead of the entire space for rank-n tensors in general. It is shown in our earlier work Li et al (2017 New J. Phys. 19 063029) that the subleading correction of the entanglement entropy has a mild logarithmic divergence when n  =  4. In this paper, we show that for n  >  4 the subleading correction is not divergent but a finite number. In some special situation, the number could be even smaller than 1/2, which is the subleading correction of random state over the entire Hilbert space of tensors.

  19. Anomalies and modular invariance in string theory

    International Nuclear Information System (INIS)

    Schellekens, A.N.; Warner, N.P.

    1986-01-01

    All known anomaly cancellations of heterotic string theories are derived directly from one-loop modular invariance, and are shown to be related to a property of modular functions of weight 2. Using modular invariance infinite classes of anomaly free field theories are constructed in (8m+2) dimensions for any m. A generating function is obtained for the anomalies of string-related field theories in (8m+2) dimensions. (orig.)

  20. Computer calculation of Witten's 3-manifold invariant

    International Nuclear Information System (INIS)

    Freed, D.S.; Gompf, R.E.

    1991-01-01

    Witten's 2+1 dimensional Chern-Simons theory is exactly solvable. We compute the partition function, a topological invariant of 3-manifolds, on generalized Seifert spaces. Thus we test the path integral using the theory of 3-manifolds. In particular, we compare the exact solution with the asymptotic formula predicted by perturbation theory. We conclude that this path integral works as advertised and gives an effective topological invariant. (orig.)