WorldWideScience

Sample records for translational repression multiple

  1. Translational Repression in Malaria Sporozoites

    Science.gov (United States)

    Turque, Oliver; Tsao, Tiffany; Li, Thomas; Zhang, Min

    2016-01-01

    Malaria is a mosquito-borne infectious disease of humans and other animals. It is caused by the parasitic protozoan, Plasmodium. Sporozoites, the infectious form of malaria parasites, are quiescent when they remain in the salivary glands of the Anopheles mosquito until transmission into a mammalian host. Metamorphosis of the dormant sporozoite to its active form in the liver stage requires transcriptional and translational regulations. Here, we summarize recent advances in the translational repression of gene expression in the malaria sporozoite. In sporozoites, many mRNAs that are required for liver stage development are translationally repressed. Phosphorylation of eukaryotic Initiation Factor 2α (eIF2α) leads to a global translational repression in sporozoites. The eIF2α kinase, known as Upregulated in Infectious Sporozoite 1 (UIS1), is dominant in the sporozoite. The eIF2α phosphatase, UIS2, is translationally repressed by the Pumilio protein Puf2. This translational repression is alleviated when sporozoites are delivered into the mammalian host. PMID:28357358

  2. Translational repression in malaria sporozoites

    Directory of Open Access Journals (Sweden)

    Oliver Turque

    2016-04-01

    Full Text Available Malaria is a mosquito-borne infectious disease of humans and other animals. It is caused by the parasitic protozoan, Plasmodium. Sporozoites, the infectious form of malaria parasites, are quiescent when they remain in the salivary glands of the Anopheles mosquito until transmission into a mammalian host. Metamorphosis of the dormant sporozoite to its active form in the liver stage requires transcriptional and translational regulations. Here, we summarize recent advances in the translational repression of gene expression in the malaria sporozoite. In sporozoites, many mRNAs that are required for liver stage development are translationally repressed. Phosphorylation of eukaryotic Initiation Factor 2α (eIF2α leads to a global translational repression in sporozoites. The eIF2α kinase, known as Upregulated in Infectious Sporozoite 1 (UIS1, is dominant in the sporozoite. The eIF2α phosphatase, UIS2, is translationally repressed by the Pumilio protein Puf2. This translational repression is alleviated when sporozoites are delivered into the mammalian host.

  3. Inhibition of tumor cell growth by Sigma1 ligand mediated translational repression

    International Nuclear Information System (INIS)

    Kim, Felix J.; Schrock, Joel M.; Spino, Christina M.; Marino, Jacqueline C.; Pasternak, Gavril W.

    2012-01-01

    Highlights: ► Sigma1 ligand treatment mediates decrease in tumor cell mass. ► Identification of a Sigma1 ligand with reversible translational repressor actions. ► Demonstration of a role for Sigma1 in cellular protein synthesis. -- Abstract: Treatment with sigma1 receptor (Sigma1) ligands can inhibit cell proliferation in vitro and tumor growth in vivo. However, the cellular pathways engaged in response to Sigma1 ligand treatment that contribute to these outcomes remain largely undefined. Here, we show that treatment with putative antagonists of Sigma1 decreases cell mass. This effect corresponds with repressed cap-dependent translation initiation in multiple breast and prostate cancer cell lines. Sigma1 antagonist treatment suppresses phosphorylation of translational regulator proteins p70S6K, S6, and 4E-BP1. RNAi-mediated knockdown of Sigma1 also results in translational repression, consistent with the effects of antagonist treatment. Sigma1 antagonist mediated translational repression and decreased cell size are both reversible. Together, these data reveal a role for Sigma1 in tumor cell protein synthesis, and demonstrate that small molecule Sigma1 ligands can be used as modulators of protein translation.

  4. miRNA-dependent translational repression in the Drosophila ovary.

    Directory of Open Access Journals (Sweden)

    John Reich

    Full Text Available The Drosophila ovary is a tissue rich in post-transcriptional regulation of gene expression. Many of the regulatory factors are proteins identified via genetic screens. The more recent discovery of microRNAs, which in other animals and tissues appear to regulate translation of a large fraction of all mRNAs, raised the possibility that they too might act during oogenesis. However, there has been no direct demonstration of microRNA-dependent translational repression in the ovary.Here, quantitative analyses of transcript and protein levels of transgenes with or without synthetic miR-312 binding sites show that the binding sites do confer translational repression. This effect is dependent on the ability of the cells to produce microRNAs. By comparison with microRNA-dependent translational repression in other cell types, the regulated mRNAs and the protein factors that mediate repression were expected to be enriched in sponge bodies, subcellular structures with extensive similarities to the P bodies found in other cells. However, no such enrichment was observed.Our results reveal the variety of post-transcriptional regulatory mechanisms that operate in the Drosophila ovary, and have implications for the mechanisms of miRNA-dependent translational control used in the ovary.

  5. SRSF3 represses the expression of PDCD4 protein by coordinated regulation of alternative splicing, export and translation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seung Kuk; Jeong, Sunjoo, E-mail: sjsj@dankook.ac.kr

    2016-02-05

    Gene expression is regulated at multiple steps, such as transcription, splicing, export, degradation and translation. Considering diverse roles of SR proteins, we determined whether the tumor-related splicing factor SRSF3 regulates the expression of the tumor-suppressor protein, PDCD4, at multiple steps. As we have reported previously, knockdown of SRSF3 increased the PDCD4 protein level in SW480 colon cancer cells. More interestingly, here we showed that the alternative splicing and the nuclear export of minor isoforms of pdcd4 mRNA were repressed by SRSF3, but the translation step was unaffected. In contrast, only the translation step of the major isoform of pdcd4 mRNA was repressed by SRSF3. Therefore, overexpression of SRSF3 might be relevant to the repression of all isoforms of PDCD4 protein levels in most types of cancer cell. We propose that SRSF3 could act as a coordinator of the expression of PDCD4 protein via two mechanisms on two alternatively spliced mRNA isoforms.

  6. Determinants of RNA binding and translational repression by the Bicaudal-C regulatory protein.

    Science.gov (United States)

    Zhang, Yan; Park, Sookhee; Blaser, Susanne; Sheets, Michael D

    2014-03-14

    Bicaudal-C (Bic-C) RNA binding proteins function as important translational repressors in multiple biological contexts within metazoans. However, their RNA binding sites are unknown. We recently demonstrated that Bic-C functions in spatially regulated translational repression of the xCR1 mRNA during Xenopus development. This repression contributes to normal development by confining the xCR1 protein, a regulator of key signaling pathways, to specific cells of the embryo. In this report, we combined biochemical approaches with in vivo mRNA reporter assays to define the minimal Bic-C target site within the xCR1 mRNA. This 32-nucleotide Bic-C target site is predicted to fold into a stem-loop secondary structure. Mutational analyses provided evidence that this stem-loop structure is important for Bic-C binding. The Bic-C target site was sufficient for Bic-C mediated repression in vivo. Thus, we describe the first RNA binding site for a Bic-C protein. This identification provides an important step toward understanding the mechanisms by which evolutionarily conserved Bic-C proteins control cellular function in metazoans.

  7. A molecular doorstop ensures a trickle through translational repression.

    Science.gov (United States)

    Brook, Matthew; Smith, Richard W P; Gray, Nicola K

    2012-03-30

    Switching mRNA translation off and on is central to regulated gene expression, but what mechanisms moderate the extent of switch-off? Yao et al. describe how basal expression from interferon-gamma-induced transcripts is maintained during mRNA-specific translational repression. This antagonistic mechanism utilizes a truncated RNA-binding factor generated by a unique alternative polyadenylation event. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Degradation of YRA1 Pre-mRNA in the cytoplasm requires translational repression, multiple modular intronic elements, Edc3p, and Mex67p.

    Directory of Open Access Journals (Sweden)

    Shuyun Dong

    2010-04-01

    Full Text Available Intron-containing pre-mRNAs are normally retained and processed in the nucleus but are sometimes exported to the cytoplasm and degraded by the nonsense-mediated mRNA decay (NMD pathway as a consequence of their inclusion of intronic in-frame termination codons. When shunted to the cytoplasm by autoregulated nuclear export, the intron-containing yeast YRA1 pre-mRNA evades NMD and is targeted by a cytoplasmic decay pathway mediated by the decapping activator Edc3p. Here, we have elucidated this transcript-specific decay mechanism, showing that Edc3p-mediated YRA1 pre-mRNA degradation occurs independently of translation and is controlled through five structurally distinct but functionally interdependent modular elements in the YRA1 intron. Two of these elements target the pre-mRNA as an Edc3p substrate and the other three mediate transcript-specific translational repression. Translational repression of YRA1 pre-mRNA also requires the heterodimeric Mex67p/Mtr2p general mRNA export receptor, but not Edc3p, and serves to enhance Edc3p substrate specificity by inhibiting the susceptibility of this pre-mRNA to NMD. Collectively, our data indicate that YRA1 pre-mRNA degradation is a highly regulated process that proceeds through translational repression, substrate recognition by Edc3p, recruitment of the Dcp1p/Dcp2p decapping enzyme, and activation of decapping.

  9. Translational Control of the SigR-Directed Oxidative Stress Response in Streptomyces via IF3-Mediated Repression of a Noncanonical GTC Start Codon.

    Science.gov (United States)

    Feeney, Morgan A; Chandra, Govind; Findlay, Kim C; Paget, Mark S B; Buttner, Mark J

    2017-06-13

    The major oxidative stress response in Streptomyces is controlled by the sigma factor SigR and its cognate antisigma factor RsrA, and SigR activity is tightly controlled through multiple mechanisms at both the transcriptional and posttranslational levels. Here we show that sigR has a highly unusual GTC start codon and that this leads to another level of SigR regulation, in which SigR translation is repressed by translation initiation factor 3 (IF3). Changing the GTC to a canonical start codon causes SigR to be overproduced relative to RsrA, resulting in unregulated and constitutive expression of the SigR regulon. Similarly, introducing IF3* mutations that impair its ability to repress SigR translation has the same effect. Thus, the noncanonical GTC sigR start codon and its repression by IF3 are critical for the correct and proper functioning of the oxidative stress regulatory system. sigR and rsrA are cotranscribed and translationally coupled, and it had therefore been assumed that SigR and RsrA are produced in stoichiometric amounts. Here we show that RsrA can be transcribed and translated independently of SigR, present evidence that RsrA is normally produced in excess of SigR, and describe the factors that determine SigR-RsrA stoichiometry. IMPORTANCE In all sigma factor-antisigma factor regulatory switches, the relative abundance of the two proteins is critical to the proper functioning of the system. Many sigma-antisigma operons are cotranscribed and translationally coupled, leading to a generic assumption that the sigma and antisigma factors are produced in a fixed 1:1 ratio. In the case of sigR - rsrA , we show instead that the antisigma factor is produced in excess over the sigma factor, providing a buffer to prevent spurious release of sigma activity. This excess arises in part because sigR has an extremely rare noncanonical GTC start codon, and as a result, SigR translation initiation is repressed by IF3. This finding highlights the potential significance

  10. A family of insulin-like growth factor II mRNA-binding proteins represses translation in late development

    DEFF Research Database (Denmark)

    Nielsen, J; Christiansen, J; Lykke-Andersen, J

    1999-01-01

    Insulin-like growth factor II (IGF-II) is a major fetal growth factor. The IGF-II gene generates multiple mRNAs with different 5' untranslated regions (5' UTRs) that are translated in a differential manner during development. We have identified a human family of three IGF-II mRNA-binding proteins.......5 followed by a decline towards birth, and, similar to IGF-II, IMPs are especially expressed in developing epithelia, muscle, and placenta in both mouse and human embryos. The results imply that cytoplasmic 5' UTR-binding proteins control IGF-II biosynthesis during late mammalian development....... and are homologous to the Xenopus Vera and chicken zipcode-binding proteins. IMP localizes to subcytoplasmic domains in a growth-dependent and cell-specific manner and causes a dose-dependent translational repression of IGF-II leader 3 -luciferase mRNA. Mouse IMPs are produced in a burst at embryonic day 12...

  11. Interplay between the catabolite repression control protein Crc, Hfq and RNA in Hfq-dependent translational regulation in Pseudomonas aeruginosa.

    Science.gov (United States)

    Sonnleitner, Elisabeth; Wulf, Alexander; Campagne, Sébastien; Pei, Xue-Yuan; Wolfinger, Michael T; Forlani, Giada; Prindl, Konstantin; Abdou, Laetitia; Resch, Armin; Allain, Frederic H-T; Luisi, Ben F; Urlaub, Henning; Bläsi, Udo

    2018-02-16

    In Pseudomonas aeruginosa the RNA chaperone Hfq and the catabolite repression control protein (Crc) act as post-transcriptional regulators during carbon catabolite repression (CCR). In this regard Crc is required for full-fledged Hfq-mediated translational repression of catabolic genes. RNAseq based transcriptome analyses revealed a significant overlap between the Crc and Hfq regulons, which in conjunction with genetic data supported a concerted action of both proteins. Biochemical and biophysical approaches further suggest that Crc and Hfq form an assembly in the presence of RNAs containing A-rich motifs, and that Crc interacts with both, Hfq and RNA. Through these interactions, Crc enhances the stability of Hfq/Crc/RNA complexes, which can explain its facilitating role in Hfq-mediated translational repression. Hence, these studies revealed for the first time insights into how an interacting protein can modulate Hfq function. Moreover, Crc is shown to interfere with binding of a regulatory RNA to Hfq, which bears implications for riboregulation. These results are discussed in terms of a working model, wherein Crc prioritizes the function of Hfq toward utilization of favored carbon sources.

  12. Repression of protein translation and mTOR signaling by proteasome inhibitor in colon cancer cells

    International Nuclear Information System (INIS)

    Wu, William Ka Kei; Volta, Viviana; Cho, Chi Hin; Wu, Ya Chun; Li, Hai Tao; Yu, Le; Li, Zhi Jie; Sung, Joseph Jao Yiu

    2009-01-01

    Protein homeostasis relies on a balance between protein synthesis and protein degradation. The ubiquitin-proteasome system is a major catabolic pathway for protein degradation. In this respect, proteasome inhibition has been used therapeutically for the treatment of cancer. Whether inhibition of protein degradation by proteasome inhibitor can repress protein translation via a negative feedback mechanism, however, is unknown. In this study, proteasome inhibitor MG-132 lowered the proliferation of colon cancer cells HT-29 and SW1116. In this connection, MG-132 reduced the phosphorylation of mammalian target of rapamycin (mTOR) at Ser2448 and Ser2481 and the phosphorylation of its downstream targets 4E-BP1 and p70/p85 S6 kinases. Further analysis revealed that MG-132 inhibited protein translation as evidenced by the reductions of 35 S-methionine incorporation and polysomes/80S ratio. Knockdown of raptor, a structural component of mTOR complex 1, mimicked the anti-proliferative effect of MG-132. To conclude, we demonstrate that the inhibition of protein degradation by proteasome inhibitor represses mTOR signaling and protein translation in colon cancer cells.

  13. Cell type-specific translational repression of Cyclin B during meiosis in males.

    Science.gov (United States)

    Baker, Catherine Craig; Gim, Byung Soo; Fuller, Margaret T

    2015-10-01

    The unique cell cycle dynamics of meiosis are controlled by layers of regulation imposed on core mitotic cell cycle machinery components by the program of germ cell development. Although the mechanisms that regulate Cdk1/Cyclin B activity in meiosis in oocytes have been well studied, little is known about the trans-acting factors responsible for developmental control of these factors in male gametogenesis. During meiotic prophase in Drosophila males, transcript for the core cell cycle protein Cyclin B1 (CycB) is expressed in spermatocytes, but the protein does not accumulate in spermatocytes until just before the meiotic divisions. Here, we show that two interacting proteins, Rbp4 and Fest, expressed at the onset of spermatocyte differentiation under control of the developmental program of male gametogenesis, function to direct cell type- and stage-specific repression of translation of the core G2/M cell cycle component cycB during the specialized cell cycle of male meiosis. Binding of Fest to Rbp4 requires a 31-amino acid region within Rbp4. Rbp4 and Fest are required for translational repression of cycB in immature spermatocytes, with Rbp4 binding sequences in a cell type-specific shortened form of the cycB 3' UTR. Finally, we show that Fest is required for proper execution of meiosis I. © 2015. Published by The Company of Biologists Ltd.

  14. The yeast ADH7 promoter enables gene expression under pronounced translation repression caused by the combined stress of vanillin, furfural, and 5-hydroxymethylfurfural.

    Science.gov (United States)

    Ishida, Yoko; Nguyen, Trinh Thi My; Izawa, Shingo

    2017-06-20

    Lignocellulosic biomass conversion inhibitors such as vanillin, furfural, and 5-hydroxymethylfurfural (HMF) inhibit the growth of and fermentation by Saccharomyces cerevisiae. A high concentration of each fermentation inhibitor represses translation and increases non-translated mRNAs. We previously reported that the mRNAs of ADH7 and BDH2, which encode putative NADPH- and NADH-dependent alcohol dehydrogenases, respectively, were efficiently translated even with translation repression in response to severe vanillin stress. However, the combined effects of these fermentation inhibitors on the expression of ADH7 and BDH2 remain unclear. We herein demonstrated that exposure to a combined stress of vanillin, furfural, and HMF repressed translation. The protein synthesis of Adh7, but not Bdh2 was significantly induced under combined stress conditions, even though the mRNA levels of ADH7 and BDH2 were up-regulated. Additionally, adh7Δ cells were more sensitive to the combined stress than wild-type and bdh2Δ cells. These results suggest that induction of the ADH7 expression plays a role in the tolerance to the combined stress of vanillin, furfural, and HMF. Furthermore, we succeeded in improving yeast tolerance to the combined stress by controlling the expression of ALD6 with the ADH7 promoter. Our results demonstrate that the ADH7 promoter can overcome the pronounced translation repression caused by the combined stress of vanillin, furfural, and HMF, and also suggest a new gene engineering strategy to breed robust and optimized yeasts for bioethanol production from a lignocellulosic biomass. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Evidence against translational repression by the carboxyltransferase component of Escherichia coli acetyl coenzyme A carboxylase.

    Science.gov (United States)

    Smith, Alexander C; Cronan, John E

    2014-11-01

    In Escherichia coli, synthesis of the malonyl coenzyme A (malonyl-CoA) required for membrane lipid synthesis is catalyzed by acetyl-CoA carboxylase, a large complex composed of four subunits. The subunit proteins are needed in a defined stoichiometry, and it remains unclear how such production is achieved since the proteins are encoded at three different loci. Meades and coworkers (G. Meades, Jr., B. K. Benson, A. Grove, and G. L. Waldrop, Nucleic Acids Res. 38:1217-1227, 2010, doi:http://dx.doi.org/10.1093/nar/gkp1079) reported that coordinated production of the AccA and AccD subunits is due to a translational repression mechanism exerted by the proteins themselves. The AccA and AccD subunits form the carboxyltransferase (CT) heterotetramer that catalyzes the second partial reaction of acetyl-CoA carboxylase. Meades et al. reported that CT tetramers bind the central portions of the accA and accD mRNAs and block their translation in vitro. However, long mRNA molecules (500 to 600 bases) were required for CT binding, but such long mRNA molecules devoid of ribosomes seemed unlikely to exist in vivo. This, plus problematical aspects of the data reported by Meades and coworkers, led us to perform in vivo experiments to test CT tetramer-mediated translational repression of the accA and accD mRNAs. We report that increased levels of CT tetramer have no detectable effect on translation of the CT subunit mRNAs. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  16. Repression of mitochondrial translation, respiration and a metabolic cycle-regulated gene, SLF1, by the yeast Pumilio-family protein Puf3p.

    Directory of Open Access Journals (Sweden)

    Marc Chatenay-Lapointe

    Full Text Available Synthesis and assembly of the mitochondrial oxidative phosphorylation (OXPHOS system requires genes located both in the nuclear and mitochondrial genomes, but how gene expression is coordinated between these two compartments is not fully understood. One level of control is through regulated expression mitochondrial ribosomal proteins and other factors required for mitochondrial translation and OXPHOS assembly, which are all products of nuclear genes that are subsequently imported into mitochondria. Interestingly, this cadre of genes in budding yeast has in common a 3'-UTR element that is bound by the Pumilio family protein, Puf3p, and is coordinately regulated under many conditions, including during the yeast metabolic cycle. Multiple functions have been assigned to Puf3p, including promoting mRNA degradation, localizing nucleus-encoded mitochondrial transcripts to the outer mitochondrial membrane, and facilitating mitochondria-cytoskeletal interactions and motility. Here we show that Puf3p has a general repressive effect on mitochondrial OXPHOS abundance, translation, and respiration that does not involve changes in overall mitochondrial biogenesis and largely independent of TORC1-mitochondrial signaling. We also identified the cytoplasmic translation factor Slf1p as yeast metabolic cycle-regulated gene that is repressed by Puf3p at the post-transcriptional level and promotes respiration and extension of yeast chronological life span when over-expressed. Altogether, these results should facilitate future studies on which of the many functions of Puf3p is most relevant for regulating mitochondrial gene expression and the role of nuclear-mitochondrial communication in aging and longevity.

  17. Prioritized expression of BTN2 of Saccharomyces cerevisiae under pronounced translation repression induced by severe ethanol stress

    Directory of Open Access Journals (Sweden)

    Yukina Yamauchi

    2016-08-01

    Full Text Available Severe ethanol stress (>9% ethanol, v/v as well as glucose deprivation rapidly induces a pronounced repression of overall protein synthesis in budding yeast Saccharomyces cerevisiae. Therefore, transcriptional activation in yeast cells under severe ethanol stress does not always indicate the production of expected protein levels. Messenger RNAs of genes containing heat shock elements can be intensively translated under glucose deprivation, suggesting that some mRNAs are preferentially translated even under severe ethanol stress. In the present study, we tried to identify the mRNA that can be preferentially translated under severe ethanol stress. BTN2 encodes a v-SNARE binding protein, and its null mutant shows hypersensitivity to ethanol. We found that BTN2 mRNA was efficiently translated under severe ethanol stress but not under mild ethanol stress. Moreover, the increased Btn2 protein levels caused by severe ethanol stress were smoothly decreased with the elimination of ethanol stress. These findings suggested that severe ethanol stress extensively induced BTN2 expression. Further, the BTN2 promoter induced protein synthesis of non-native genes such as CUR1, GIC2, and YUR1 in the presence of high ethanol concentrations, indicating that this promoter overcame severe ethanol stress-induced translation repression. Thus, our findings provide an important clue about yeast response to severe ethanol stress and suggest that the BTN2 promoter can be used to improve the efficiency of ethanol production and stress tolerance of yeast cells by modifying gene expression in the presence of high ethanol concentration.

  18. Regulation of mRNA translation during mitosis.

    Science.gov (United States)

    Tanenbaum, Marvin E; Stern-Ginossar, Noam; Weissman, Jonathan S; Vale, Ronald D

    2015-08-25

    Passage through mitosis is driven by precisely-timed changes in transcriptional regulation and protein degradation. However, the importance of translational regulation during mitosis remains poorly understood. Here, using ribosome profiling, we find both a global translational repression and identified ~200 mRNAs that undergo specific translational regulation at mitotic entry. In contrast, few changes in mRNA abundance are observed, indicating that regulation of translation is the primary mechanism of modulating protein expression during mitosis. Interestingly, 91% of the mRNAs that undergo gene-specific regulation in mitosis are translationally repressed, rather than activated. One of the most pronounced translationally-repressed genes is Emi1, an inhibitor of the anaphase promoting complex (APC) which is degraded during mitosis. We show that full APC activation requires translational repression of Emi1 in addition to its degradation. These results identify gene-specific translational repression as a means of controlling the mitotic proteome, which may complement post-translational mechanisms for inactivating protein function.

  19. Hypothesis: A Role for Fragile X Mental Retardation Protein in Mediating and Relieving MicroRNA-Guided Translational Repression?

    Directory of Open Access Journals (Sweden)

    Isabelle Plante

    2006-01-01

    Full Text Available MicroRNA (miRNA-guided messenger RNA (mRNA translational repression is believed to be mediated by effector miRNA-containing ribonucleoprotein (miRNP complexes harboring fragile X mental retardation protein (FMRP. Recent studies documented the nucleic acid chaperone properties of FMRP and characterized its role and importance in RNA silencing in mammalian cells. We propose a model in which FMRP could facilitate miRNA assembly on target mRNAs in a process involving recognition of G quartet structures. Functioning within a duplex miRNP, FMRP may also mediate mRNA targeting through a strand exchange mechanism, in which the miRNA* of the duplex is swapped for the mRNA. Furthermore, FMRP may contribute to the relief of miRNA-guided mRNA repression through a reverse strand exchange reaction, possibly initiated by a specific cellular signal, that would liberate the mRNA for translation. Suboptimal utilization of miRNAs may thus account for some of themolecular defects in patients with the fragile X syndrome.

  20. Structural basis for the Nanos-mediated recruitment of the CCR4-NOT complex and translational repression.

    Science.gov (United States)

    Bhandari, Dipankar; Raisch, Tobias; Weichenrieder, Oliver; Jonas, Stefanie; Izaurralde, Elisa

    2014-04-15

    The RNA-binding proteins of the Nanos family play an essential role in germ cell development and survival in a wide range of metazoan species. They function by suppressing the expression of target mRNAs through the recruitment of effector complexes, which include the CCR4-NOT deadenylase complex. Here, we show that the three human Nanos paralogs (Nanos1-3) interact with the CNOT1 C-terminal domain and determine the structural basis for the specific molecular recognition. Nanos1-3 bind CNOT1 through a short CNOT1-interacting motif (NIM) that is conserved in all vertebrates and some invertebrate species. The crystal structure of the human Nanos1 NIM peptide bound to CNOT1 reveals that the peptide opens a conserved hydrophobic pocket on the CNOT1 surface by inserting conserved aromatic residues. The substitutions of these aromatic residues in the Nanos1-3 NIMs abolish binding to CNOT1 and abrogate the ability of the proteins to repress translation. Our findings provide the structural basis for the recruitment of the CCR4-NOT complex by vertebrate Nanos, indicate that the NIMs are the major determinants of the translational repression mediated by Nanos, and identify the CCR4-NOT complex as the main effector complex for Nanos function.

  1. Prioritized Expression of BDH2 under Bulk Translational Repression and Its Contribution to Tolerance to Severe Vanillin Stress in Saccharomyces cerevisiae

    OpenAIRE

    Ishida, Yoko; Nguyen, Trinh T. M.; Kitajima, Sakihito; Izawa, Shingo

    2016-01-01

    Vanillin is a potent fermentation inhibitor derived from the lignocellulosic biomass in biofuel production, and high concentrations of vanillin result in the pronounced repression of bulk translation in Saccharomyces cerevisiae. Studies on genes that are efficiently translated even in the presence of high concentrations of vanillin will be useful for improving yeast vanillin tolerance and fermentation efficiency. The BDH1 and BDH2 genes encode putative medium-chain alcohol dehydrogenase/reduc...

  2. Drosophila Pumilio protein contains multiple autonomous repression domains that regulate mRNAs independently of Nanos and brain tumor.

    Science.gov (United States)

    Weidmann, Chase A; Goldstrohm, Aaron C

    2012-01-01

    Drosophila melanogaster Pumilio is an RNA-binding protein that potently represses specific mRNAs. In developing embryos, Pumilio regulates a key morphogen, Hunchback, in collaboration with the cofactor Nanos. To investigate repression by Pumilio and Nanos, we created cell-based assays and found that Pumilio inhibits translation and enhances mRNA decay independent of Nanos. Nanos robustly stimulates repression through interactions with the Pumilio RNA-binding domain. We programmed Pumilio to recognize a new binding site, which garners repression of new target mRNAs. We show that cofactors Brain Tumor and eIF4E Homologous Protein are not obligatory for Pumilio and Nanos activity. The conserved RNA-binding domain of Pumilio was thought to be sufficient for its function. Instead, we demonstrate that three unique domains in the N terminus of Pumilio possess the major repressive activity and can function autonomously. The N termini of insect and vertebrate Pumilio and Fem-3 binding factors (PUFs) are related, and we show that corresponding regions of human PUM1 and PUM2 have repressive activity. Other PUF proteins lack these repression domains. Our findings suggest that PUF proteins have evolved new regulatory functions through protein sequences appended to their conserved PUF repeat RNA-binding domains.

  3. Suppression and repression: A theoretical discussion illustrated by a movie

    Directory of Open Access Journals (Sweden)

    Maria Lucia de Souza Campos Paiva

    2012-02-01

    Full Text Available The first translations of Freud's work into Portuguese have presented problems because they were not translated from the German language. More than a hundred years after the beginning of Psychoanalysis, there are still many discussions on Freud's metapsychology and a considerable difficulty in obtaining a consensus on the translation of some concepts. This paper refers back to Freud's concepts of primal repression, repression and suppression. In order to discuss such concepts, we have made use of a film, co-produced by Germans and Argentineans, which is named "The Song in me" (Das Lied in mir, released to the public in 2011 and directed by Florian Micoud Cossen. Through this motion picture, the following of Freud's concepts are analyzed, and the differentiation between them is discussed: suppression and repression, as well as the importance of their precise translation.

  4. Structural basis for the Nanos-mediated recruitment of the CCR4–NOT complex and translational repression

    Science.gov (United States)

    Bhandari, Dipankar; Raisch, Tobias; Weichenrieder, Oliver; Jonas, Stefanie; Izaurralde, Elisa

    2014-01-01

    The RNA-binding proteins of the Nanos family play an essential role in germ cell development and survival in a wide range of metazoan species. They function by suppressing the expression of target mRNAs through the recruitment of effector complexes, which include the CCR4–NOT deadenylase complex. Here, we show that the three human Nanos paralogs (Nanos1–3) interact with the CNOT1 C-terminal domain and determine the structural basis for the specific molecular recognition. Nanos1–3 bind CNOT1 through a short CNOT1-interacting motif (NIM) that is conserved in all vertebrates and some invertebrate species. The crystal structure of the human Nanos1 NIM peptide bound to CNOT1 reveals that the peptide opens a conserved hydrophobic pocket on the CNOT1 surface by inserting conserved aromatic residues. The substitutions of these aromatic residues in the Nanos1–3 NIMs abolish binding to CNOT1 and abrogate the ability of the proteins to repress translation. Our findings provide the structural basis for the recruitment of the CCR4–NOT complex by vertebrate Nanos, indicate that the NIMs are the major determinants of the translational repression mediated by Nanos, and identify the CCR4–NOT complex as the main effector complex for Nanos function. PMID:24736845

  5. Glucose repression in Saccharomyces cerevisiae.

    Science.gov (United States)

    Kayikci, Ömur; Nielsen, Jens

    2015-09-01

    Glucose is the primary source of energy for the budding yeast Saccharomyces cerevisiae. Although yeast cells can utilize a wide range of carbon sources, presence of glucose suppresses molecular activities involved in the use of alternate carbon sources as well as it represses respiration and gluconeogenesis. This dominant effect of glucose on yeast carbon metabolism is coordinated by several signaling and metabolic interactions that mainly regulate transcriptional activity but are also effective at post-transcriptional and post-translational levels. This review describes effects of glucose repression on yeast carbon metabolism with a focus on roles of the Snf3/Rgt2 glucose-sensing pathway and Snf1 signal transduction in establishment and relief of glucose repression. © FEMS 2015.

  6. The Role of Semantics in Translation Recognition: Effects of Number of Translations, Dominance of Translations and Semantic Relatedness of Multiple Translations

    Science.gov (United States)

    Laxen, Jannika; Lavaur, Jean-Marc

    2010-01-01

    This study aims to examine the influence of multiple translations of a word on bilingual processing in three translation recognition experiments during which French-English bilinguals had to decide whether two words were translations of each other or not. In the first experiment, words with only one translation were recognized as translations…

  7. miR-186 inhibits cell proliferation in multiple myeloma by repressing Jagged1

    International Nuclear Information System (INIS)

    Liu, Zengyan; Zhang, Guoqiang; Yu, Wenzheng; Gao, Na; Peng, Jun

    2016-01-01

    MicroRNAs (miRNAs) are small, noncoding ribonucleic acids that regulate gene expression by targeting mRNAs for translational repression and degradation. Accumulating experimental evidence supports a causal role of miRNAs in hematology tumorigenesis. However, the specific functions of miRNAs in the pathogenesis of multiple myeloma (MM) remain to be established. In this study, we demonstrated that miR-186 is commonly downregulated in MM cell lines and patient MM cells. Ectopic expression of miR-186 significantly inhibited cell growth, both in vitro and in vivo, and induced cell cycle G_0/G_1 arrest. Furthermore, miR-186 induced downregulation of Jagged1 protein expression by directly targeting its 3′-untranslated region (3′-UTR). Conversely, overexpression of Jagged1 rescued cells from miR-186-induced growth inhibition. Our collective results clearly indicate that miR-186 functions as a tumor suppressor in MM, supporting its potential as a therapeutic target for the disease. - Highlights: • miR-186 expression is decreased in MM. • miR-186 inhibits MM cell proliferation in vitro and in vivo. • Jagged1 is regulated by miR-186. • Overexpression of Jagged1 reverses the effects of miR-186.

  8. miR-186 inhibits cell proliferation in multiple myeloma by repressing Jagged1

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zengyan [Department of Hematology, Qilu Hospital, Shandong University, 107 Wenhuaxi Road, Jinan, Shandong 250012 (China); Department of Hematology, Hospital Affiliated to Binzhou Medical University, 661 Second Huanghe Street, Binzhou 256603 (China); Zhang, Guoqiang [Department of Thyroid and Breast Surgery, Hospital Affiliated to Binzhou Medical University, 661 Second Huanghe Street, Binzhou 256603 (China); Yu, Wenzheng; Gao, Na [Department of Hematology, Hospital Affiliated to Binzhou Medical University, 661 Second Huanghe Street, Binzhou 256603 (China); Peng, Jun, E-mail: junpeng885@sina.com [Department of Hematology, Qilu Hospital, Shandong University, 107 Wenhuaxi Road, Jinan, Shandong 250012 (China)

    2016-01-15

    MicroRNAs (miRNAs) are small, noncoding ribonucleic acids that regulate gene expression by targeting mRNAs for translational repression and degradation. Accumulating experimental evidence supports a causal role of miRNAs in hematology tumorigenesis. However, the specific functions of miRNAs in the pathogenesis of multiple myeloma (MM) remain to be established. In this study, we demonstrated that miR-186 is commonly downregulated in MM cell lines and patient MM cells. Ectopic expression of miR-186 significantly inhibited cell growth, both in vitro and in vivo, and induced cell cycle G{sub 0}/G{sub 1} arrest. Furthermore, miR-186 induced downregulation of Jagged1 protein expression by directly targeting its 3′-untranslated region (3′-UTR). Conversely, overexpression of Jagged1 rescued cells from miR-186-induced growth inhibition. Our collective results clearly indicate that miR-186 functions as a tumor suppressor in MM, supporting its potential as a therapeutic target for the disease. - Highlights: • miR-186 expression is decreased in MM. • miR-186 inhibits MM cell proliferation in vitro and in vivo. • Jagged1 is regulated by miR-186. • Overexpression of Jagged1 reverses the effects of miR-186.

  9. The VFH1 (YLL056C) promoter is vanillin-inducible and enables mRNA translation despite pronounced translation repression caused by severe vanillin stress in Saccharomyces cerevisiae.

    Science.gov (United States)

    Nguyen, Trinh Thi My; Ishida, Yoko; Kato, Sae; Iwaki, Aya; Izawa, Shingo

    2018-03-25

    Vanillin, furfural, and 5-hydroxymethylfurfural (HMF) are representative fermentation inhibitors generated during the pretreatment process of lignocellulosic biomass in bioethanol production. These biomass conversion inhibitors, particularly vanillin, are known to repress translation activity in Saccharomyces cerevisiae. We have reported that the mRNAs of ADH7 and BDH2 were efficiently translated under severe vanillin stress despite marked repression of overall protein synthesis. In this study, we found that expression of VFH1 (YLL056C) was also significantly induced at the protein level by severe vanillin stress. Additionally, we demonstrated that the VFH1 promoter enabled the protein synthesis of other genes including GFP and ALD6 under severe vanillin stress. It is known that transcriptional activation of VFH1 is induced by furfural and HMF, and we herein verified that Vfh1 protein synthesis was also induced by furfural and HMF. The null mutant of VFH1 delayed growth in the presence of vanillin, furfural, and HMF, indicating the importance of Vfh1 for sufficient tolerance against these inhibitors. The protein levels of Vfh1 induced by the inhibitors tested were markedly higher than those of Adh7 and Bdh2, suggesting the superior utility of the VFH1 promoter over the ADH7 or BDH2 promoter for breeding optimized yeast strains for bioethanol production from lignocellulosic biomass. This article is protected by copyright. All rights reserved.

  10. Translational repression of the Drosophila nanos mRNA involves the RNA helicase Belle and RNA coating by Me31B and Trailer hitch.

    Science.gov (United States)

    Götze, Michael; Dufourt, Jérémy; Ihling, Christian; Rammelt, Christiane; Pierson, Stephanie; Sambrani, Nagraj; Temme, Claudia; Sinz, Andrea; Simonelig, Martine; Wahle, Elmar

    2017-10-01

    Translational repression of maternal mRNAs is an essential regulatory mechanism during early embryonic development. Repression of the Drosophila nanos mRNA, required for the formation of the anterior-posterior body axis, depends on the protein Smaug binding to two Smaug recognition elements (SREs) in the nanos 3' UTR. In a comprehensive mass spectrometric analysis of the SRE-dependent repressor complex, we identified Smaug, Cup, Me31B, Trailer hitch, eIF4E, and PABPC, in agreement with earlier data. As a novel component, the RNA-dependent ATPase Belle (DDX3) was found, and its involvement in deadenylation and repression of nanos was confirmed in vivo. Smaug, Cup, and Belle bound stoichiometrically to the SREs, independently of RNA length. Binding of Me31B and Tral was also SRE-dependent, but their amounts were proportional to the length of the RNA and equimolar to each other. We suggest that "coating" of the RNA by a Me31B•Tral complex may be at the core of repression. © 2017 Götze et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  11. Defect in the GTPase activating protein (GAP) function of eIF5 causes repression of GCN4 translation.

    Science.gov (United States)

    Antony A, Charles; Alone, Pankaj V

    2017-05-13

    In eukaryotes, the eIF5 protein plays an important role in translation start site selection by providing the GAP (GTPase activating protein) function. However, in yeast translation initiation fidelity defective eIF5 G31R mutant causes preferential utilization of UUG as initiation codon and is termed as Suppressor of initiation codon (Sui - ) phenotype due to its hyper GTPase activity. The eIF5 G31R mutant dominantly represses GCN4 expression and confers sensitivity to 3-Amino-1,2,4-Trizole (3AT) induced starvation. The down-regulation of the GCN4 expression (Gcn - phenotype) in the eIF5 G31R mutant was not because of leaky scanning defects; rather was due to the utilization of upUUG initiation codons at the 5' regulatory region present between uORF1 and the main GCN4 ORF. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Identification of the base-pairing requirements for repression of hctA translation by the small RNA IhtA leads to the discovery of a new mRNA target in Chlamydia trachomatis.

    Directory of Open Access Journals (Sweden)

    Nicole A Grieshaber

    Full Text Available The non-coding small RNA, IhtA expressed by the obligate intracellular human pathogen Chlamydia trachomatis modulates the translation of HctA, a key protein involved in replicative to infectious cell type differentiation. Using a combination of bioinformatics and mutagenesis we sought to identify the base pairing requirement for functional repression of HctA protein expression, with an eye to applying our findings towards the identification of additional targets. IhtA is predicted to fold into a three stem:loop structure. We found that loop 1 occludes the initiation codon of hctA, while loop 2 and 3 are not required for function. This 7 nucleotide region forms G/C rich interactions surrounding the AUG of hctA. Two additional genes in the chlamydial genome, CTL0322 and CTL0097, contained some elements of the hctA:IhtA recognition sequence. The mRNA of both CTL0322and CTL0097 interacted with IhtA in vitro as measured by biolayer interferometry. However, using a CheZ reporter expression system, IhtA only inhibited the translation of CTL0322. The proposed IhtA recognition site in the CTL0322 message contains significant G/C base pairing on either side of the initiation codon while CTL0097 only contains G/C base pairing 3' to the AUG initiation codon. These data suggest that as the functional interacting region is only 6-7nt in length that full translation repression is dependent on the degree of G/C base pairing. Additionally our results indicate that IhtA may regulate multiple mRNAs involved in the chlamydial infectious cycle.

  13. Translational control of Nrf2 within the open reading frame

    International Nuclear Information System (INIS)

    Perez-Leal, Oscar; Barrero, Carlos A.; Merali, Salim

    2013-01-01

    Highlights: •Identification of a novel Nrf2 translational repression mechanism. •The repressor is within the 3′ portion of the Nrf2 ORF. •The translation of Nrf2 or eGFP is reduced by the regulatory element. •The translational repression can be reversed with synonymous codon substitutions. •The molecular mechanism requires the mRNA sequence, but not the encoded amino acids. -- Abstract: Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2) is a transcription factor that is essential for the regulation of an effective antioxidant and detoxifying response. The regulation of its activity can occur at transcription, translation and post-translational levels. Evidence suggests that under environmental stress conditions, new synthesis of Nrf2 is required – a process that is regulated by translational control and is not fully understood. Here we described the identification of a novel molecular process that under basal conditions strongly represses the translation of Nrf2 within the open reading frame (ORF). This mechanism is dependent on the mRNA sequence within the 3′ portion of the ORF of Nrf2 but not in the encoded amino acid sequence. The Nrf2 translational repression can be reversed with the use of synonymous codon substitutions. This discovery suggests an additional layer of control to explain the reason for the low Nrf2 concentration under quiescent state

  14. Gene repressive mechanisms in the mouse brain involved in memory formation.

    Science.gov (United States)

    Yu, Nam-Kyung; Kaang, Bong-Kiun

    2016-04-01

    Gene regulation in the brain is essential for long-term plasticity and memory formation. Despite this established notion, the quantitative translational map in the brain during memory formation has not been reported. To systematically probe the changes in protein synthesis during memory formation, our recent study exploited ribosome profiling using the mouse hippocampal tissues at multiple time points after a learning event. Analysis of the resulting database revealed novel types of gene regulation after learning. First, the translation of a group of genes was rapidly suppressed without change in mRNA levels. At later time points, the expression of another group of genes was downregulated through reduction in mRNA levels. This reduction was predicted to be downstream of inhibition of ESR1 (Estrogen Receptor 1) signaling. Overexpressing Nrsn1, one of the genes whose translation was suppressed, or activating ESR1 by injecting an agonist interfered with memory formation, suggesting the functional importance of these findings. Moreover, the translation of genes encoding the translational machineries was found to be suppressed, among other genes in the mouse hippocampus. Together, this unbiased approach has revealed previously unidentified characteristics of gene regulation in the brain and highlighted the importance of repressive controls. [BMB Reports 2016; 49(4): 199-200].

  15. Repression of multiple CYP2D genes in mouse primary hepatocytes with a single siRNA construct.

    Science.gov (United States)

    Elraghy, Omaima; Baldwin, William S

    2015-01-01

    The Cyp2d subfamily is the second most abun-dant subfamily of hepatic drug-metabolizing CYPs. In mice, there are nine Cyp2d members that are believed to have redundant catalytic activity. We are testing and optimizing the ability of one short interfering RNA (siRNA) construct to knockdown the expression of multiple mouse Cyp2ds in primary hepatocytes. Expression of Cyp2d10, Cyp2d11, Cyp2d22, and Cyp2d26 was observed in the primary male mouse hepatocytes. Cyp2d9, which is male-specific and growth hormone-dependent, was not expressed in male primary hepatocytes, potentially because of its dependence on pulsatile growth hormone release from the anterior pituitary. Several different siRNAs at different concentrations and with different reagents were used to knockdown Cyp2d expression. siRNA constructs designed to repress only one construct often mildly repressed several Cyp2d isoforms. A construct designed to knockdown every Cyp2d isoform provided the best results, especially when incubated with transfection reagents designed specifically for primary cell culture. Interestingly, a construct designed to knockdown all Cyp2d isoforms, except Cyp2d10, caused a 2.5× increase in Cyp2d10 expression, presumably because of a compensatory response. However, while RNA expression is repressed 24 h after siRNA treatment, associated changes in Cyp2d-mediated metabolism are tenuous. Overall, this study provides data on the expression of murine Cyp2ds in primary cell lines, valuable information on designing siRNAs for silencing multiple murine CYPs, and potential pros and cons of using siRNA as a tool for repressing Cyp2d and estimating Cyp2d's role in murine xenobiotic metabolism.

  16. Polycomb group protein-mediated repression of transcription

    DEFF Research Database (Denmark)

    Morey, Lluís; Helin, Kristian

    2010-01-01

    The polycomb group (PcG) proteins are essential for the normal development of multicellular organisms. They form multi-protein complexes that work as transcriptional repressors of several thousand genes controlling differentiation pathways during development. How the PcG proteins work as transcri......The polycomb group (PcG) proteins are essential for the normal development of multicellular organisms. They form multi-protein complexes that work as transcriptional repressors of several thousand genes controlling differentiation pathways during development. How the PcG proteins work...... as transcriptional repressors is incompletely understood, but involves post-translational modifications of histones by two major PcG protein complexes: polycomb repressive complex 1 and polycomb repressive complex 2....

  17. An upstream open reading frame controls translation of var2csa, a gene implicated in placental malaria

    DEFF Research Database (Denmark)

    Amulic, Borko; Salanti, Ali; Lavstsen, Thomas

    2009-01-01

    contains a small upstream open reading frame that acts to repress translation of the resulting mRNA, revealing a novel form of gene regulation in malaria parasites. The mechanism underlying this translational repression is reversible, allowing high levels of protein translation upon selection, thus...

  18. Asymmetric Translation between Multiple Representations in Chemistry

    Science.gov (United States)

    Lin, Yulan I.; Son, Ji Y.; Rudd, James A., II

    2016-01-01

    Experts are more proficient in manipulating and translating between multiple representations (MRs) of a given concept than novices. Studies have shown that instruction using MR can increase student understanding of MR, and one model for MR instruction in chemistry is the chemistry triplet proposed by Johnstone. Concreteness fading theory suggests…

  19. Differentially expressed microRNA in multiple sclerosis: A window into pathogenesis?

    DEFF Research Database (Denmark)

    Martin, Nellie Anne; Illés, Zsolt

    2014-01-01

    MicroRNA are small non-coding RNA that mediate mRNA translation repression or mRNA degradation, and thereby refine protein expression levels. More than 30–60% of all genes are regulated by microRNA. Exploring disease-related microRNA signatures is an emerging tool in biomarker discovery, and sile......MicroRNA are small non-coding RNA that mediate mRNA translation repression or mRNA degradation, and thereby refine protein expression levels. More than 30–60% of all genes are regulated by microRNA. Exploring disease-related microRNA signatures is an emerging tool in biomarker discovery......RNA related to multiple sclerosis has increased significantly in recent years. Differentially expressed microRNA have been identified in the whole blood, serum, plasma, cerebrospinal fluid, peripheral blood mononuclear cells, blood-derived cell subsets and brain lesions of patients with multiple sclerosis....... Most studies applied a non-candidate approach of screening by microarray and validation by quantitative polymerase chain reaction or next generation sequencing; others used a candidate-driven approach. Despite a relatively high number of multiple sclerosis-associated microRNA, just a few could...

  20. Translational Control in Plasmodium and Toxoplasma Parasites

    Science.gov (United States)

    Joyce, Bradley R.; Sullivan, William J.; Nussenzweig, Victor

    2013-01-01

    The life cycles of apicomplexan parasites such as Plasmodium spp. and Toxoplasma gondii are complex, consisting of proliferative and latent stages within multiple hosts. Dramatic transformations take place during the cycles, and they demand precise control of gene expression at all levels, including translation. This review focuses on the mechanisms that regulate translational control in Plasmodium and Toxoplasma, with a particular emphasis on the phosphorylation of the α subunit of eukaryotic translation initiation factor 2 (eIF2α). Phosphorylation of eIF2α (eIF2α∼P) is a conserved mechanism that eukaryotic cells use to repress global protein synthesis while enhancing gene-specific translation of a subset of mRNAs. Elevated levels of eIF2α∼P have been observed during latent stages in both Toxoplasma and Plasmodium, indicating that translational control plays a role in maintaining dormancy. Parasite-specific eIF2α kinases and phosphatases are also required for proper developmental transitions and adaptation to cellular stresses encountered during the life cycle. Identification of small-molecule inhibitors of apicomplexan eIF2α kinases may selectively interfere with parasite translational control and lead to the development of new therapies to treat malaria and toxoplasmosis. PMID:23243065

  1. Translational control in Plasmodium and toxoplasma parasites.

    Science.gov (United States)

    Zhang, Min; Joyce, Bradley R; Sullivan, William J; Nussenzweig, Victor

    2013-02-01

    The life cycles of apicomplexan parasites such as Plasmodium spp. and Toxoplasma gondii are complex, consisting of proliferative and latent stages within multiple hosts. Dramatic transformations take place during the cycles, and they demand precise control of gene expression at all levels, including translation. This review focuses on the mechanisms that regulate translational control in Plasmodium and Toxoplasma, with a particular emphasis on the phosphorylation of the α subunit of eukaryotic translation initiation factor 2 (eIF2α). Phosphorylation of eIF2α (eIF2α∼P) is a conserved mechanism that eukaryotic cells use to repress global protein synthesis while enhancing gene-specific translation of a subset of mRNAs. Elevated levels of eIF2α∼P have been observed during latent stages in both Toxoplasma and Plasmodium, indicating that translational control plays a role in maintaining dormancy. Parasite-specific eIF2α kinases and phosphatases are also required for proper developmental transitions and adaptation to cellular stresses encountered during the life cycle. Identification of small-molecule inhibitors of apicomplexan eIF2α kinases may selectively interfere with parasite translational control and lead to the development of new therapies to treat malaria and toxoplasmosis.

  2. Targeting MUC1-C suppresses polycomb repressive complex 1 in multiple myeloma.

    Science.gov (United States)

    Tagde, Ashujit; Markert, Tahireh; Rajabi, Hasan; Hiraki, Masayuki; Alam, Maroof; Bouillez, Audrey; Avigan, David; Anderson, Kenneth; Kufe, Donald

    2017-09-19

    The polycomb repressive complex 1 (PRC1) includes the BMI1, RING1 and RING2 proteins. BMI1 is required for survival of multiple myeloma (MM) cells. The MUC1-C oncoprotein is aberrantly expressed by MM cells, activates MYC and is also necessary for MM cell survival. The present studies show that targeting MUC1-C with (i) stable and inducible silencing and CRISPR/Cas9 editing and (ii) the pharmacologic inhibitor GO-203, which blocks MUC1-C function, downregulates BMI1, RING1 and RING2 expression. The results demonstrate that MUC1-C drives BMI1 transcription by a MYC-dependent mechanism. MUC1-C thus promotes MYC occupancy on the BMI1 promoter and thereby activates BMI1 expression. We also show that the MUC1-C→MYC pathway induces RING2 expression. Moreover, in contrast to BMI1 and RING2, we found that MUC1-C drives RING1 by an NF-κB p65-dependent mechanism. Targeting MUC1-C and thereby the suppression of these key PRC1 proteins was associated with downregulation of the PRC1 E3 ligase activity as evidenced by decreases in ubiquitylation of histone H2A. Targeting MUC1-C also resulted in activation of the PRC1-repressed tumor suppressor genes, PTEN, CDNK2A and BIM . These findings identify a heretofore unrecognized role for MUC1-C in the epigenetic regulation of MM cells.

  3. Selective translational repression of truncated proteins from frameshift mutation-derived mRNAs in tumors.

    Directory of Open Access Journals (Sweden)

    Kwon Tae You

    2007-05-01

    Full Text Available Frameshift and nonsense mutations are common in tumors with microsatellite instability, and mRNAs from these mutated genes have premature termination codons (PTCs. Abnormal mRNAs containing PTCs are normally degraded by the nonsense-mediated mRNA decay (NMD system. However, PTCs located within 50-55 nucleotides of the last exon-exon junction are not recognized by NMD (NMD-irrelevant, and some PTC-containing mRNAs can escape from the NMD system (NMD-escape. We investigated protein expression from NMD-irrelevant and NMD-escape PTC-containing mRNAs by Western blotting and transfection assays. We demonstrated that transfection of NMD-irrelevant PTC-containing genomic DNA of MARCKS generates truncated protein. In contrast, NMD-escape PTC-containing versions of hMSH3 and TGFBR2 generate normal levels of mRNA, but do not generate detectable levels of protein. Transfection of NMD-escape mutant TGFBR2 genomic DNA failed to generate expression of truncated proteins, whereas transfection of wild-type TGFBR2 genomic DNA or mutant PTC-containing TGFBR2 cDNA generated expression of wild-type protein and truncated protein, respectively. Our findings suggest a novel mechanism of gene expression regulation for PTC-containing mRNAs in which the deleterious transcripts are regulated either by NMD or translational repression.

  4. Global regulation of mRNA translation and stability in the early Drosophila embryo by the Smaug RNA-binding protein.

    Science.gov (United States)

    Chen, Linan; Dumelie, Jason G; Li, Xiao; Cheng, Matthew Hk; Yang, Zhiyong; Laver, John D; Siddiqui, Najeeb U; Westwood, J Timothy; Morris, Quaid; Lipshitz, Howard D; Smibert, Craig A

    2014-01-07

    Smaug is an RNA-binding protein that induces the degradation and represses the translation of mRNAs in the early Drosophila embryo. Smaug has two identified direct target mRNAs that it differentially regulates: nanos and Hsp83. Smaug represses the translation of nanos mRNA but has only a modest effect on its stability, whereas it destabilizes Hsp83 mRNA but has no detectable effect on Hsp83 translation. Smaug is required to destabilize more than one thousand mRNAs in the early embryo, but whether these transcripts represent direct targets of Smaug is unclear and the extent of Smaug-mediated translational repression is unknown. To gain a panoramic view of Smaug function in the early embryo, we identified mRNAs that are bound to Smaug using RNA co-immunoprecipitation followed by hybridization to DNA microarrays. We also identified mRNAs that are translationally repressed by Smaug using polysome gradients and microarrays. Comparison of the bound mRNAs to those that are translationally repressed by Smaug and those that require Smaug for their degradation suggests that a large fraction of Smaug's target mRNAs are both translationally repressed and degraded by Smaug. Smaug directly regulates components of the TRiC/CCT chaperonin, the proteasome regulatory particle and lipid droplets, as well as many metabolic enzymes, including several glycolytic enzymes. Smaug plays a direct and global role in regulating the translation and stability of a large fraction of the mRNAs in the early Drosophila embryo, and has unanticipated functions in control of protein folding and degradation, lipid droplet function and metabolism.

  5. Prioritized Expression of BDH2 under Bulk Translational Repression and Its Contribution to Tolerance to Severe Vanillin Stress in Saccharomyces cerevisiae.

    Science.gov (United States)

    Ishida, Yoko; Nguyen, Trinh T M; Kitajima, Sakihito; Izawa, Shingo

    2016-01-01

    Vanillin is a potent fermentation inhibitor derived from the lignocellulosic biomass in biofuel production, and high concentrations of vanillin result in the pronounced repression of bulk translation in Saccharomyces cerevisiae. Studies on genes that are efficiently translated even in the presence of high concentrations of vanillin will be useful for improving yeast vanillin tolerance and fermentation efficiency. The BDH1 and BDH2 genes encode putative medium-chain alcohol dehydrogenase/reductases and their amino acid sequences are very similar to each other. Although BDH2 was previously suggested to be involved in vanillin tolerance, it has yet to be clarified whether Bdh1/Bdh2 actually contribute to vanillin tolerance and reductions in vanillin. Therefore, we herein investigated the effects of Bdh1 and Bdh2 on vanillin tolerance. bdh2Δ cells exhibited hypersensitivity to vanillin and slower reductions in vanillin than wild-type cells and bdh1Δ cells. Additionally, the overexpression of the BDH2 gene improved yeast tolerance to vanillin more efficiently than that of BDH1. Only BDH2 mRNA was efficiently translated under severe vanillin stress, however, both BDH genes were transcriptionally up-regulated. These results reveal the importance of Bdh2 in vanillin detoxification and confirm the preferential translation of the BDH2 gene in the presence of high concentrations of vanillin. The BDH2 promoter also enabled the expression of non-native genes under severe vanillin stress and furfural stress, suggesting its availability to improve of the efficiency of bioethanol production through modifications in gene expression in the presence of fermentation inhibitors.

  6. ME31B globally represses maternal mRNAs by two distinct mechanisms during the Drosophila maternal-to-zygotic transition.

    Science.gov (United States)

    Wang, Miranda; Ly, Michael; Lugowski, Andrew; Laver, John D; Lipshitz, Howard D; Smibert, Craig A; Rissland, Olivia S

    2017-09-06

    In animal embryos, control of development is passed from exclusively maternal gene products to those encoded by the embryonic genome in a process referred to as the maternal-to-zygotic transition (MZT). We show that the RNA-binding protein, ME31B, binds to and represses the expression of thousands of maternal mRNAs during the Drosophila MZT. However, ME31B carries out repression in different ways during different phases of the MZT. Early, it represses translation while, later, its binding leads to mRNA destruction, most likely as a consequence of translational repression in the context of robust mRNA decay. In a process dependent on the PNG kinase, levels of ME31B and its partners, Cup and Trailer Hitch (TRAL), decrease by over 10-fold during the MZT, leading to a change in the composition of mRNA-protein complexes. We propose that ME31B is a global repressor whose regulatory impact changes based on its biological context.

  7. An upstream open reading frame represses expression of Lc, a member of the R/B family of maize transcriptional activators

    Energy Technology Data Exchange (ETDEWEB)

    Damiani, R.D. Jr.; Wessler, S.R. (Univ. of Georgia, Athens, GA (United States))

    1993-09-01

    The R/B genes of maize encode a family of basic helix-loop-helix proteins that determine where and when the anthocyanin-pigment pathway will be expressed in the plant. Previous studies showed that allelic diversity among family members reflects differences in gene expression, specifically in transcription initiation. The authors present evidence that the R gene Lc is under translational control. They demonstrate that the 235-nt transcript leader of Lc represses expression 25- to 30-fold in an in vivo assay. Repression is mediated by the presence in cis of a 38-codon upstream open reading frame. Furthermore, the coding capacity of the upstream open reading frame influences the magnitude of repression. It is proposed that translational control does not contribute to tissue specificity but prevents overexpression of the Lc protein. The diversity of promoter and 5' untranslated leader sequences among the R/B genes provides an opportunity to study the coevolution of transcriptional and translational mechanisms of gene regulation. 36 refs., 5 figs.

  8. The Crc global regulator inhibits the Pseudomonas putida pWW0 toluene/xylene assimilation pathway by repressing the translation of regulatory and structural genes.

    Science.gov (United States)

    Moreno, Renata; Fonseca, Pilar; Rojo, Fernando

    2010-08-06

    In Pseudomonas putida, the expression of the pWW0 plasmid genes for the toluene/xylene assimilation pathway (the TOL pathway) is subject to complex regulation in response to environmental and physiological signals. This includes strong inhibition via catabolite repression, elicited by the carbon sources that the cells prefer to hydrocarbons. The Crc protein, a global regulator that controls carbon flow in pseudomonads, has an important role in this inhibition. Crc is a translational repressor that regulates the TOL genes, but how it does this has remained unknown. This study reports that Crc binds to sites located at the translation initiation regions of the mRNAs coding for XylR and XylS, two specific transcription activators of the TOL genes. Unexpectedly, eight additional Crc binding sites were found overlapping the translation initiation sites of genes coding for several enzymes of the pathway, all encoded within two polycistronic mRNAs. Evidence is provided supporting the idea that these sites are functional. This implies that Crc can differentially modulate the expression of particular genes within polycistronic mRNAs. It is proposed that Crc controls TOL genes in two ways. First, Crc inhibits the translation of the XylR and XylS regulators, thereby reducing the transcription of all TOL pathway genes. Second, Crc inhibits the translation of specific structural genes of the pathway, acting mainly on proteins involved in the first steps of toluene assimilation. This ensures a rapid inhibitory response that reduces the expression of the toluene/xylene degradation proteins when preferred carbon sources become available.

  9. Multiple Hfq-Crc target sites are required to impose catabolite repression on (methyl)phenol metabolism in Pseudomonas putida CF600.

    Science.gov (United States)

    Wirebrand, Lisa; Madhushani, Anjana W K; Irie, Yasuhiko; Shingler, Victoria

    2018-01-01

    The dmp-system encoded on the IncP-2 pVI150 plasmid of Pseudomonas putida CF600 confers the ability to assimilate (methyl)phenols. Regulation of the dmp-genes is subject to sophisticated control, which includes global regulatory input to subvert expression of the pathway in the presence of preferred carbon sources. Previously we have shown that in P. putida, translational inhibition exerted by the carbon repression control protein Crc operates hand-in-hand with the RNA chaperon protein Hfq to reduce translation of the DmpR regulator of the Dmp-pathway. Here, we show that Crc and Hfq co-target four additional sites to form riboprotein complexes within the proximity of the translational initiation sites of genes encoding the first two steps of the Dmp-pathway to mediate two-layered control in the face of selection of preferred substrates. Furthermore, we present evidence that Crc plays a hitherto unsuspected role in maintaining the pVI150 plasmid within a bacterial population, which has implications for (methyl)phenol degradation and a wide variety of other physiological processes encoded by the IncP-2 group of Pseudomonas-specific mega-plasmids. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  10. 4EGI-1 represses cap-dependent translation and regulates genome-wide translation in malignant pleural mesothelioma.

    Science.gov (United States)

    De, Arpita; Jacobson, Blake A; Peterson, Mark S; Jay-Dixon, Joe; Kratzke, Marian G; Sadiq, Ahad A; Patel, Manish R; Kratzke, Robert A

    2018-04-01

    Deregulation of cap-dependent translation has been implicated in the malignant transformation of numerous human tissues. 4EGI-1, a novel small-molecule inhibitor of cap-dependent translation, disrupts formation of the eukaryotic initiation factor 4F (eIF4F) complex. The effects of 4EGI-1-mediated inhibition of translation initiation in malignant pleural mesothelioma (MPM) were examined. 4EGI-1 preferentially inhibited cell viability and induced apoptosis in MPM cells compared to normal mesothelial (LP9) cells. This effect was associated with hypophosphorylation of 4E-binding protein 1 (4E-BP1) and decreased protein levels of the cancer-related genes, c-myc and osteopontin. 4EGI-1 showed enhanced cytotoxicity in combination with pemetrexed or gemcitabine. Translatome-wide polysome microarray analysis revealed a large cohort of genes that were translationally regulated upon treatment with 4EGI-1. The 4EGI-1-regulated translatome was negatively correlated to a previously published translatome regulated by eIF4E overexpression in human mammary epithelial cells, which is in agreement with the notion that 4EGI-1 inhibits the eIF4F complex. These data indicate that inhibition of the eIF4F complex by 4EGI-1 or similar translation inhibitors could be a strategy for treating mesothelioma. Genome wide translational profiling identified a large cohort of promising target genes that should be further evaluated for their potential significance in the treatment of MPM.

  11. Translational control is a major contributor to hypoxia induced gene expression

    International Nuclear Information System (INIS)

    Beucken, Twan van den; Magagnin, Michael G.; Jutten, Barry; Seigneuric, Renaud; Lambin, Philippe; Koritzinsky, Marianne; Wouters, Bradly G.

    2011-01-01

    Background and purpose: Hypoxia is a common feature of solid tumors that is associated with an aggressive phenotype, resistance to therapy and poor prognosis. Major contributors to these adverse effects are the transcriptional program activated by the HIF family of transcription factors as well as the translational response mediated by PERK-dependent phosphorylation of eIF2α and inhibition of mTORC1 activity. In this study we determined the relative contribution of both transcriptional and translational responses to changes in hypoxia induced gene expression. Material and methods: Total and efficiently translated (polysomal) mRNA was isolated from DU145 prostate carcinoma cells that were exposed for up to 24 h of hypoxia ( 2 ). Changes in transcription and translation were assessed using affymetrix microarray technology. Results: Our data reveal an unexpectedly large contribution of translation control on both induced and repressed gene expression at all hypoxic time points, particularly during acute hypoxia (2-4 h). Gene ontology analysis revealed that gene classes like transcription and signal transduction are stimulated by translational control whereas expression of genes involved in cell growth and protein metabolism are repressed during hypoxic conditions by translational control. Conclusions: Our data indicate that translation influences gene expression during hypoxia on a scale comparable to that of transcription.

  12. miR-200b mediates post-transcriptional repression of ZFHX1B

    DEFF Research Database (Denmark)

    Christoffersen, Nanna Rønbjerg; Silahtaroglu, Asli; Ørom, Ulf Lupo Andersson

    2007-01-01

    of E-cadherin. We show that Zfhx1b and miR-200b are regionally coexpressed in the adult mouse brain and that miR-200b represses the expression of Zfhx1b via multiple sequence elements present in the 3'-untranslated region. Overexpression of miR-200b leads to repression of endogenous ZFHX1B...

  13. Dual Nature of Translational Control by Regulatory BC RNAs ▿

    Science.gov (United States)

    Eom, Taesun; Berardi, Valerio; Zhong, Jun; Risuleo, Gianfranco; Tiedge, Henri

    2011-01-01

    In higher eukaryotes, increasing evidence suggests, gene expression is to a large degree controlled by RNA. Regulatory RNAs have been implicated in the management of neuronal function and plasticity in mammalian brains. However, much of the molecular-mechanistic framework that enables neuronal regulatory RNAs to control gene expression remains poorly understood. Here, we establish molecular mechanisms that underlie the regulatory capacity of neuronal BC RNAs in the translational control of gene expression. We report that regulatory BC RNAs employ a two-pronged approach in translational control. One of two distinct repression mechanisms is mediated by C-loop motifs in BC RNA 3′ stem-loop domains. These C-loops bind to eIF4B and prevent the factor's interaction with 18S rRNA of the small ribosomal subunit. In the second mechanism, the central A-rich domains of BC RNAs target eIF4A, specifically inhibiting its RNA helicase activity. Thus, BC RNAs repress translation initiation in a bimodal mechanistic approach. As BC RNA functionality has evolved independently in rodent and primate lineages, our data suggest that BC RNA translational control was necessitated and implemented during mammalian phylogenetic development of complex neural systems. PMID:21930783

  14. Genome-wide RIP-Chip analysis of translational repressor-bound mRNAs in the Plasmodium gametocyte

    KAUST Repository

    Guerreiro, Ana

    2014-11-03

    Background Following fertilization, the early proteomes of metazoans are defined by the translation of stored but repressed transcripts; further embryonic development relies on de novo transcription of the zygotic genome. During sexual development of Plasmodium berghei, a rodent model for human malaria species including P. falciparum, the stability of repressed mRNAs requires the translational repressors DOZI and CITH. When these repressors are absent, Plasmodium zygote development and transmission to the mosquito vector is halted, as hundreds of transcripts become destabilized. However, which mRNAs are direct targets of these RNA binding proteins, and thus subject to translational repression, is unknown. Results We identify the maternal mRNA contribution to post-fertilization development of P. berghei using RNA immunoprecipitation and microarray analysis. We find that 731 mRNAs, approximately 50% of the transcriptome, are associated with DOZI and CITH, allowing zygote development to proceed in the absence of RNA polymerase II transcription. Using GFP-tagging, we validate the repression phenotype of selected genes and identify mRNAs relying on the 5′ untranslated region for translational control. Gene deletion reveals a novel protein located in the ookinete crystalloid with an essential function for sporozoite development. Conclusions Our study details for the first time the P. berghei maternal repressome. This mRNA population provides the developing ookinete with coding potential for key molecules required for life-cycle progression, and that are likely to be critical for the transmission of the malaria parasite from the rodent and the human host to the mosquito vector.

  15. Down-regulation of eIF4GII by miR-520c-3p represses diffuse large B cell lymphoma development.

    Directory of Open Access Journals (Sweden)

    Krystyna Mazan-Mamczarz

    2014-01-01

    Full Text Available Deregulation of the translational machinery is emerging as a critical contributor to cancer development. The contribution of microRNAs in translational gene control has been established however; the role of microRNAs in disrupting the cap-dependent translation regulation complex has not been previously described. Here, we established that elevated miR-520c-3p represses global translation, cell proliferation and initiates premature senescence in HeLa and DLBCL cells. Moreover, we demonstrate that miR-520c-3p directly targets translation initiation factor, eIF4GII mRNA and negatively regulates eIF4GII protein synthesis. miR-520c-3p overexpression diminishes cells colony formation and reduces tumor growth in a human xenograft mouse model. Consequently, downregulation of eIF4GII by siRNA decreases translation, cell proliferation and ability to form colonies, as well as induces cellular senescence. In vitro and in vivo findings were further validated in patient samples; DLBCL primary cells demonstrated low miR-520c-3p levels with reciprocally up-regulated eIF4GII protein expression. Our results provide evidence that the tumor suppressor effect of miR-520c-3p is mediated through repression of translation while inducing senescence and that eIF4GII is a key effector of this anti-tumor activity.

  16. The role of PKA in the translational response to heat stress in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Carla E Barraza

    Full Text Available Cellular responses to stress stem from a variety of different mechanisms, including translation arrest and relocation of the translationally repressed mRNAs to ribonucleoprotein particles like stress granules (SGs and processing bodies (PBs. Here, we examine the role of PKA in the S. cerevisiae heat shock response. Under mild heat stress Tpk3 aggregates and promotes aggregation of eIF4G, Pab1 and eIF4E, whereas severe heat stress leads to the formation of PBs and SGs that contain both Tpk2 and Tpk3 and a larger 48S translation initiation complex. Deletion of TPK2 or TPK3 impacts upon the translational response to heat stress of several mRNAs including CYC1, HSP42, HSP30 and ENO2. TPK2 deletion leads to a robust translational arrest, an increase in SGs/PBs aggregation and translational hypersensitivity to heat stress, whereas TPK3 deletion represses SGs/PBs formation, translational arrest and response for the analyzed mRNAs. Therefore, this work provides evidence indicating that Tpk2 and Tpk3 have opposing roles in translational adaptation during heat stress, and highlight how the same signaling pathway can be regulated to generate strikingly distinct physiological outputs.

  17. A viral microRNA down-regulates multiple cell cycle genes through mRNA 5'UTRs.

    Directory of Open Access Journals (Sweden)

    Finn Grey

    2010-06-01

    Full Text Available Global gene expression data combined with bioinformatic analysis provides strong evidence that mammalian miRNAs mediate repression of gene expression primarily through binding sites within the 3' untranslated region (UTR. Using RNA induced silencing complex immunoprecipitation (RISC-IP techniques we have identified multiple cellular targets for a human cytomegalovirus (HCMV miRNA, miR-US25-1. Strikingly, this miRNA binds target sites primarily within 5'UTRs, mediating significant reduction in gene expression. Intriguingly, many of the genes targeted by miR-US25-1 are associated with cell cycle control, including cyclin E2, BRCC3, EID1, MAPRE2, and CD147, suggesting that miR-US25-1 is targeting genes within a related pathway. Deletion of miR-US25-1 from HCMV results in over expression of cyclin E2 in the context of viral infection. Our studies demonstrate that a viral miRNA mediates translational repression of multiple cellular genes by targeting mRNA 5'UTRs.

  18. An upstream open reading frame controls translation of var2csa, a gene implicated in placental malaria.

    Directory of Open Access Journals (Sweden)

    Borko Amulic

    2009-01-01

    Full Text Available Malaria, caused by the parasite Plasmodium falciparum, is responsible for substantial morbidity, mortality and economic losses in tropical regions of the world. Pregnant women are exceptionally vulnerable to severe consequences of the infection, due to the specific adhesion of parasite-infected erythrocytes in the placenta. This adhesion is mediated by a unique variant of PfEMP1, a parasite encoded, hyper-variable antigen placed on the surface of infected cells. This variant, called VAR2CSA, binds to chondroitin sulfate A on syncytiotrophoblasts in the intervillous space of placentas. VAR2CSA appears to only be expressed in the presence of a placenta, suggesting that its expression is actively repressed in men, children or non-pregnant women; however, the mechanism of repression is not understood. Using cultured parasite lines and reporter gene constructs, we show that the gene encoding VAR2CSA contains a small upstream open reading frame that acts to repress translation of the resulting mRNA, revealing a novel form of gene regulation in malaria parasites. The mechanism underlying this translational repression is reversible, allowing high levels of protein translation upon selection, thus potentially enabling parasites to upregulate expression of this variant antigen in the presence of the appropriate host tissue.

  19. Content Validity and Reliability of Multiple Intelligences Developmental Assessment Scales (MIDAS Translated into Persian

    Directory of Open Access Journals (Sweden)

    Mahnaz Saeidi

    2012-11-01

    Full Text Available This study aimed to translate MIDAS questionnaire from English into Persian and determine its content validity and reliability. MIDAS was translated and validated on a sample (N = 110 of Iranian adult population. The participants were both male and female with the age range of 17-57. They were at different educational levels and from different ethnic groups in Iran. A translating team, consisting of five members, bilingual in English and Persian and familiar with multiple intelligences (MI theory and practice, were involved in translating and determining content validity, which included the processes of forward translation, back-translation, review, final proof-reading, and testing. The statistical analyses of inter-scale correlation were performed using the Cronbach's alpha coefficient. In an intra-class correlation, the Cronbach's alpha was high for all of the questions. Translation and content validity of MIDAS questionnaire was completed by a proper process leading to high reliability and validity. The results suggest that Persian MIDAS (P-MIDAS could serve as a valid and reliable instrument for measuring Iranian adults MIs.

  20. The Pseudomonas aeruginosa catabolite repression control protein Crc is devoid of RNA binding activity.

    Science.gov (United States)

    Milojevic, Tetyana; Grishkovskaya, Irina; Sonnleitner, Elisabeth; Djinovic-Carugo, Kristina; Bläsi, Udo

    2013-01-01

    The Crc protein has been shown to mediate catabolite repression control in Pseudomonas, leading to a preferential assimilation of carbon sources. It has been suggested that Crc acts as a translational repressor of mRNAs, encoding functions involved in uptake and breakdown of different carbon sources. Moreover, the regulatory RNA CrcZ, the level of which is increased in the presence of less preferred carbon sources, was suggested to bind to and sequester Crc, resulting in a relief of catabolite repression. Here, we determined the crystal structure of Pseudomonas aeruginosa Crc, a member of apurinic/apyrimidinic (AP) endonuclease family, at 1.8 Å. Although Crc displays high sequence similarity with its orthologs, there are amino acid alterations in the area corresponding to the active site in AP proteins. Unlike typical AP endonuclease family proteins, Crc has a reduced overall positive charge and the conserved positively charged amino-acid residues of the DNA-binding surface of AP proteins are partially substituted by negatively charged, polar and hydrophobic residues. Crc protein purified to homogeneity from P. aeruginosa did neither display DNase activity, nor did it bind to previously identified RNA substrates. Rather, the RNA chaperone Hfq was identified as a contaminant in His-tagged Crc preparations purified by one step Ni-affinity chromatography from Escherichia coli, and was shown to account for the RNA binding activity observed with the His-Crc preparations. Taken together, these data challenge a role of Crc as a direct translational repressor in carbon catabolite repression in P. aeruginosa.

  1. The Crc and Hfq proteins of Pseudomonas putida cooperate in catabolite repression and formation of ribonucleic acid complexes with specific target motifs.

    Science.gov (United States)

    Moreno, Renata; Hernández-Arranz, Sofía; La Rosa, Ruggero; Yuste, Luis; Madhushani, Anjana; Shingler, Victoria; Rojo, Fernando

    2015-01-01

    The Crc protein is a global regulator that has a key role in catabolite repression and optimization of metabolism in Pseudomonads. Crc inhibits gene expression post-transcriptionally, preventing translation of mRNAs bearing an AAnAAnAA motif [the catabolite activity (CA) motif] close to the translation start site. Although Crc was initially believed to bind RNA by itself, this idea was recently challenged by results suggesting that a protein co-purifying with Crc, presumably the Hfq protein, could account for the detected RNA-binding activity. Hfq is an abundant protein that has a central role in post-transcriptional gene regulation. Herein, we show that the Pseudomonas putida Hfq protein can recognize the CA motifs of RNAs through its distal face and that Crc facilitates formation of a more stable complex at these targets. Crc was unable to bind RNA in the absence of Hfq. However, pull-down assays showed that Crc and Hfq can form a co-complex with RNA containing a CA motif in vitro. Inactivation of the hfq or the crc gene impaired catabolite repression to a similar extent. We propose that Crc and Hfq cooperate in catabolite repression, probably through forming a stable co-complex with RNAs containing CA motifs to result in inhibition of translation initiation. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  2. Aubergine and piRNAs promote germline stem cell self-renewal by repressing the proto-oncogene Cbl.

    Science.gov (United States)

    Rojas-Ríos, Patricia; Chartier, Aymeric; Pierson, Stéphanie; Simonelig, Martine

    2017-11-02

    PIWI proteins play essential roles in germ cells and stem cell lineages. In Drosophila , Piwi is required in somatic niche cells and germline stem cells (GSCs) to support GSC self-renewal and differentiation. Whether and how other PIWI proteins are involved in GSC biology remains unknown. Here, we show that Aubergine (Aub), another PIWI protein, is intrinsically required in GSCs for their self-renewal and differentiation. Aub needs to be loaded with piRNAs to control GSC self-renewal and acts through direct mRNA regulation. We identify the Cbl proto-oncogene, a regulator of mammalian hematopoietic stem cells, as a novel GSC differentiation factor. Aub stimulates GSC self-renewal by repressing Cbl mRNA translation and does so in part through recruitment of the CCR4-NOT complex. This study reveals the role of piRNAs and PIWI proteins in controlling stem cell homeostasis via translational repression and highlights piRNAs as major post-transcriptional regulators in key developmental decisions. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  3. Crystal structure of a minimal eIF4E–Cup complex reveals a general mechanism of eIF4E regulation in translational repression

    Science.gov (United States)

    Kinkelin, Kerstin; Veith, Katharina; Grünwald, Marlene; Bono, Fulvia

    2012-01-01

    Cup is an eIF4E-binding protein (4E-BP) that plays a central role in translational regulation of localized mRNAs during early Drosophila development. In particular, Cup is required for repressing translation of the maternally contributed oskar, nanos, and gurken mRNAs, all of which are essential for embryonic body axis determination. Here, we present the 2.8 Å resolution crystal structure of a minimal eIF4E–Cup assembly, consisting of the interacting regions of the two proteins. In the structure, two separate segments of Cup contact two orthogonal faces of eIF4E. The eIF4E-binding consensus motif of Cup (YXXXXLΦ) binds the convex side of eIF4E similarly to the consensus of other eIF4E-binding proteins, such as 4E-BPs and eIF4G. The second, noncanonical, eIF4E-binding site of Cup binds laterally and perpendicularly to the eIF4E β-sheet. Mutations of Cup at this binding site were shown to reduce binding to eIF4E and to promote the destabilization of the associated mRNA. Comparison with the binding mode of eIF4G to eIF4E suggests that Cup and eIF4G binding would be mutually exclusive at both binding sites. This shows how a common molecular surface of eIF4E might recognize different proteins acting at different times in the same pathway. The structure provides insight into the mechanism by which Cup disrupts eIF4E–eIF4G interaction and has broader implications for understanding the role of 4E-BPs in translational regulation. PMID:22832024

  4. Translational repression of the cpw-wpc gene family in the malaria parasite Plasmodium

    KAUST Repository

    Rao, Pavitra N.

    2016-06-14

    The technical challenges of working with the sexual stages of the malaria parasite Plasmodium have hindered the characterization of sexual stage antigens in the quest for a successful malaria transmission-blocking vaccine. One such predicted and largely uncharacterized group of sexual stage candidate antigens is the CPW-WPC family of proteins. CPW-WPC proteins are named for a characteristic domain that contains two conserved motifs, CPxxW and WPC. Conserved across Apicomplexa, this family is also present earlier in the Alveolata in the free-living, non-parasitophorous, photosynthetic chromerids, Chromera and Vitrella. In P. falciparum and P. berghei blood stage parasites the transcripts of all nine cpw-wpc genes have been detected in gametocytes. RNA immunoprecipitation followed by reverse transcriptase-PCR reveals all P. berghei cpw-wpc transcripts to be bound by the translational repressors DOZI and CITH, and thus are likely under translational control prior to transmission from the rodent host to the mosquito vector in P. berghei. The GFP tagging of two endogenous P. berghei genes confirmed translational silencing in the gametocyte and translation in ookinetes. Establishing a luciferase transgene assay we show that the 3′ untranslated region of PF3D7_1331400 controls protein expression of this reporter in P. falciparum gametocytes. Our analyses suggest that cpw-wpc genes are translationally silenced in gametocytes across Plasmodium spp. and activated during ookinete formation and thus may have a role in transmission to the mosquito.

  5. Translational repression of the cpw-wpc gene family in the malaria parasite Plasmodium

    KAUST Repository

    Rao, Pavitra N.; Santos, Jorge M.; Pain, Arnab; Templeton, Thomas J.; Mair, Gunnar R.

    2016-01-01

    The technical challenges of working with the sexual stages of the malaria parasite Plasmodium have hindered the characterization of sexual stage antigens in the quest for a successful malaria transmission-blocking vaccine. One such predicted and largely uncharacterized group of sexual stage candidate antigens is the CPW-WPC family of proteins. CPW-WPC proteins are named for a characteristic domain that contains two conserved motifs, CPxxW and WPC. Conserved across Apicomplexa, this family is also present earlier in the Alveolata in the free-living, non-parasitophorous, photosynthetic chromerids, Chromera and Vitrella. In P. falciparum and P. berghei blood stage parasites the transcripts of all nine cpw-wpc genes have been detected in gametocytes. RNA immunoprecipitation followed by reverse transcriptase-PCR reveals all P. berghei cpw-wpc transcripts to be bound by the translational repressors DOZI and CITH, and thus are likely under translational control prior to transmission from the rodent host to the mosquito vector in P. berghei. The GFP tagging of two endogenous P. berghei genes confirmed translational silencing in the gametocyte and translation in ookinetes. Establishing a luciferase transgene assay we show that the 3′ untranslated region of PF3D7_1331400 controls protein expression of this reporter in P. falciparum gametocytes. Our analyses suggest that cpw-wpc genes are translationally silenced in gametocytes across Plasmodium spp. and activated during ookinete formation and thus may have a role in transmission to the mosquito.

  6. Eukaryotic translation initiator protein 1A isoform, CCS-3, enhances the transcriptional repression of p21CIP1 by proto-oncogene FBI-1 (Pokemon/ZBTB7A).

    Science.gov (United States)

    Choi, Won-Il; Kim, Youngsoo; Kim, Yuri; Yu, Mi-young; Park, Jungeun; Lee, Choong-Eun; Jeon, Bu-Nam; Koh, Dong-In; Hur, Man-Wook

    2009-01-01

    FBI-1, a member of the POK (POZ and Kruppel) family of transcription factors, plays a role in differentiation, oncogenesis, and adipogenesis. eEF1A is a eukaryotic translation elongation factor involved in several cellular processes including embryogenesis, oncogenic transformation, cell proliferation, and cytoskeletal organization. CCS-3, a potential cervical cancer suppressor, is an isoform of eEF1A. We found that eEF1A forms a complex with FBI-1 by co-immunoprecipitation, SDS-PAGE, and MALDI-TOF Mass analysis of the immunoprecipitate. GST fusion protein pull-downs showed that FBI-1 directly interacts with eEF1A and CCS-3 via the zinc finger and POZ-domain of FBI-1. FBI-1 co-localizes with either eEF1A or CCS-3 at the nuclear periplasm. CCS-3 enhances transcriptional repression of the p21CIP1 gene (hereafter referred to as p21) by FBI-1. The POZ-domain of FBI-1 interacts with the co-repressors, SMRT and BCoR. We found that CCS-3 also interacts with the co-repressors independently. The molecular interaction between the co-repressors and CCS-3 at the POZ-domain of FBI-1 appears to enhance FBI-1 mediated transcriptional repression. Our data suggest that CCS-3 may be important in cell differentiation, tumorigenesis, and oncogenesis by interacting with the proto-oncogene FBI-1 and transcriptional co-repressors. Copyright 2009 S. Karger AG, Basel.

  7. Granules Harboring Translationally Active mRNAs Provide a Platform for P-Body Formation following Stress

    Directory of Open Access Journals (Sweden)

    Jennifer Lui

    2014-11-01

    Full Text Available The localization of mRNA to defined cytoplasmic sites in eukaryotic cells not only allows localized protein production but also determines the fate of mRNAs. For instance, translationally repressed mRNAs localize to P-bodies and stress granules where their decay and storage, respectively, are directed. Here, we find that several mRNAs are localized to granules in unstressed, actively growing cells. These granules play a key role in the stress-dependent formation of P-bodies. Specific glycolytic mRNAs are colocalized in multiple granules per cell, which aggregate during P-body formation. Such aggregation is still observed under conditions or in mutants where P-bodies do not form. In unstressed cells, the mRNA granules appear associated with active translation; this might enable a coregulation of protein expression from the same pathways or complexes. Parallels can be drawn between this coregulation and the advantage of operons in prokaryotic systems.

  8. The CPT1C 5'UTR contains a repressing upstream open reading frame that is regulated by cellular energy availability and AMPK.

    Directory of Open Access Journals (Sweden)

    Ines Lohse

    Full Text Available BACKGROUND: Translational control is utilized as a means of regulating gene expression in many species. In most cases, posttranscriptional regulatory mechanisms play an important role in stress response pathways and can lead to dysfunctional physiology if blocked by mutations. Carnitine Palmitoyltransferase 1 C (CPT1C, the brain-specific member of the CPT 1 family, has previously been shown to be involved in regulating metabolism in situations of energy surplus. PRINCIPAL FINDINGS: Sequence analysis of the CPT1C mRNA revealed that it contains an upstream open reading frame (uORF in the 5' UTR of its mRNA. Using CPT1C 5' UTR/luciferase constructs, we investigated the role of the uORF in translational regulation. The results presented here show that translation from the CPT1C main open reading frame (mORF is repressed by the presence of the uORF, that this repression is relieved in response to specific stress stimuli, namely glucose deprivation and palmitate-BSA treatment, and that AMPK inhibition can relieve this uORF-dependent repression. SIGNIFICANCE: The fact that the mORF regulation is relieved in response to a specific set of stress stimuli rather than general stress response, hints at an involvement of CPT1C in cellular energy-sensing pathways and provides further evidence for a role of CPT1C in hypothalamic regulation of energy homeostasis.

  9. The Drosophila PNG kinase complex regulates the translation of cyclin B.

    Science.gov (United States)

    Vardy, Leah; Orr-Weaver, Terry L

    2007-01-01

    The Drosophila PAN GU (PNG) kinase complex regulates the developmental translation of cyclin B. cyclin B mRNA becomes unmasked during oogenesis independent of PNG activity, but PNG is required for translation from egg activation. We find that although polyadenylation of cyclin B augments translation, it is not essential, and a fully elongated poly(A) is not required for translation to proceed. In fact, changes in poly(A) tail length are not sufficient to account for PNG-mediated control of cyclin B translation and of the early embryonic cell cycles. We present evidence that PNG functions instead as an antagonist of PUMILIO-dependent translational repression. Our data argue that changes in poly(A) tail length are not a universal mechanism governing embryonic cell cycles, and that PNG-mediated derepression of translation is an important alternative mechanism in Drosophila.

  10. Dynamic Modeling of GAIT System Reveals Transcriptome Expansion and Translational Trickle Control Device

    Science.gov (United States)

    Yao, Peng; Potdar, Alka A.; Arif, Abul; Ray, Partho Sarothi; Mukhopadhyay, Rupak; Willard, Belinda; Xu, Yichi; Yan, Jun; Saidel, Gerald M.; Fox, Paul L.

    2012-01-01

    SUMMARY Post-transcriptional regulatory mechanisms superimpose “fine-tuning” control upon “on-off” switches characteristic of gene transcription. We have exploited computational modeling with experimental validation to resolve an anomalous relationship between mRNA expression and protein synthesis. Differential GAIT (Gamma-interferon Activated Inhibitor of Translation) complex activation repressed VEGF-A synthesis to a low, constant rate despite high, variable VEGFA mRNA expression. Dynamic model simulations indicated the presence of an unidentified, inhibitory GAIT element-interacting factor. We discovered a truncated form of glutamyl-prolyl tRNA synthetase (EPRS), the GAIT constituent that binds the 3’-UTR GAIT element in target transcripts. The truncated protein, EPRSN1, prevents binding of functional GAIT complex. EPRSN1 mRNA is generated by a remarkable polyadenylation-directed conversion of a Tyr codon in the EPRS coding sequence to a stop codon (PAY*). By low-level protection of GAIT element-bearing transcripts, EPRSN1 imposes a robust “translational trickle” of target protein expression. Genome-wide analysis shows PAY* generates multiple truncated transcripts thereby contributing to transcriptome expansion. PMID:22386318

  11. SUMO modification of Stra13 is required for repression of cyclin D1 expression and cellular growth arrest.

    Directory of Open Access Journals (Sweden)

    Yaju Wang

    Full Text Available Stra13, a basic helix-loop-helix (bHLH transcription factor is involved in myriad biological functions including cellular growth arrest, differentiation and senescence. However, the mechanisms by which its transcriptional activity and function are regulated remain unclear. In this study, we provide evidence that post-translational modification of Stra13 by Small Ubiquitin-like Modifier (SUMO dramatically potentiates its ability to transcriptionally repress cyclin D1 and mediate G(1 cell cycle arrest in fibroblast cells. Mutation of SUMO acceptor lysines 159 and 279 located in the C-terminal repression domain has no impact on nuclear localization; however, it abrogates association with the co-repressor histone deacetylase 1 (HDAC1, attenuates repression of cyclin D1, and prevents Stra13-mediated growth suppression. HDAC1, which promotes cellular proliferation and cell cycle progression, antagonizes Stra13 sumoylation-dependent growth arrest. Our results uncover an unidentified regulatory axis between Stra13 and HDAC1 in progression through the G(1/S phase of the cell cycle, and provide new mechanistic insights into regulation of Stra13-mediated transcriptional repression by sumoylation.

  12. Differential repression of arylsulphatase synthesis in Aspergillus oryzae.

    Science.gov (United States)

    Burns, G R; Wynn, C H

    1977-09-15

    1. The activities of the three arylsulphatases (arylsulphate sulphohydrolase, EC 3.1.6.1) of Aspergillus oryzae produced under a variety of repressing and non-repressing conditions were determined. 2. These enzymes exhibit different sensitivities to repression by inorganic sulphate. 3. Arylsulphatase I, but not arylsulphatases II and III, exhibits a transient de-repression in the early growth phase in sulphate media. 4. When the fungus is cultured in repressing media and subsequently transferred to non-repressing media, the synthesis of the three enzymes is non-co-ordinate. 5. Growth of the fungus in media containing choline O-sulphate or tyrosine O-sulphate as the sole source of sulphur results in complete de-repression of arylsulphatase I, But the synthesis of arylsulphatases II and III is essentially fully repressed. 6. The marked similarities between the repression characteristics of arylsulphatases II and III, contrasted with those of arylsulphatase I, indicate that the genetic locus of arylsulphatase I is distinct from that of arylsulphatases II and III, suggesting that there are distinct physiological roles for the enzyme.

  13. Translational profiling of B cells infected with the Epstein-Barr virus reveals 5' leader ribosome recruitment through upstream open reading frames.

    Science.gov (United States)

    Bencun, Maja; Klinke, Olaf; Hotz-Wagenblatt, Agnes; Klaus, Severina; Tsai, Ming-Han; Poirey, Remy; Delecluse, Henri-Jacques

    2018-04-06

    The Epstein-Barr virus (EBV) genome encodes several hundred transcripts. We have used ribosome profiling to characterize viral translation in infected cells and map new translation initiation sites. We show here that EBV transcripts are translated with highly variable efficiency, owing to variable transcription and translation rates, variable ribosome recruitment to the leader region and coverage by monosomes versus polysomes. Some transcripts were hardly translated, others mainly carried monosomes, showed ribosome accumulation in leader regions and most likely represent non-coding RNAs. A similar process was visible for a subset of lytic genes including the key transactivators BZLF1 and BRLF1 in cells infected with weakly replicating EBV strains. This suggests that ribosome trapping, particularly in the leader region, represents a new checkpoint for the repression of lytic replication. We could identify 25 upstream open reading frames (uORFs) located upstream of coding transcripts that displayed 5' leader ribosome trapping, six of which were located in the leader region shared by many latent transcripts. These uORFs repressed viral translation and are likely to play an important role in the regulation of EBV translation.

  14. The Swedish version of the Acceptance of Chronic Health Conditions Scale for people with multiple sclerosis: Translation, cultural adaptation and psychometric properties.

    Science.gov (United States)

    Forslin, Mia; Kottorp, Anders; Kierkegaard, Marie; Johansson, Sverker

    2016-11-11

    To translate and culturally adapt the Acceptance of Chronic Health Conditions (ACHC) Scale for people with multiple sclerosis into Swedish, and to analyse the psychometric properties of the Swedish version. Ten people with multiple sclerosis participated in translation and cultural adaptation of the ACHC Scale; 148 people with multiple sclerosis were included in evaluation of the psychometric properties of the scale. Translation and cultural adaptation were carried out through translation and back-translation, by expert committee evaluation and pre-test with cognitive interviews in people with multiple sclerosis. The psychometric properties of the Swedish version were evaluated using Rasch analysis. The Swedish version of the ACHC Scale was an acceptable equivalent to the original version. Seven of the original 10 items fitted the Rasch model and demonstrated ability to separate between groups. A 5-item version, including 2 items and 3 super-items, demonstrated better psychometric properties, but lower ability to separate between groups. The Swedish version of the ACHC Scale with the original 10 items did not fit the Rasch model. Two solutions, either with 7 items (ACHC-7) or with 2 items and 3 super-items (ACHC-5), demonstrated acceptable psychometric properties. Use of the ACHC-5 Scale with super-items is recommended, since this solution adjusts for local dependency among items.

  15. The unified theory of repression.

    Science.gov (United States)

    Erdelyi, Matthew Hugh

    2006-10-01

    Repression has become an empirical fact that is at once obvious and problematic. Fragmented clinical and laboratory traditions and disputed terminology have resulted in a Babel of misunderstandings in which false distinctions are imposed (e.g., between repression and suppression) and necessary distinctions not drawn (e.g., between the mechanism and the use to which it is put, defense being just one). "Repression" was introduced by Herbart to designate the (nondefensive) inhibition of ideas by other ideas in their struggle for consciousness. Freud adapted repression to the defensive inhibition of "unbearable" mental contents. Substantial experimental literatures on attentional biases, thought avoidance, interference, and intentional forgetting exist, the oldest prototype being the work of Ebbinghaus, who showed that intentional avoidance of memories results in their progressive forgetting over time. It has now become clear, as clinicians had claimed, that the inaccessible materials are often available and emerge indirectly (e.g., procedurally, implicitly). It is also now established that the Ebbinghaus retention function can be partly reversed, with resulting increases of conscious memory over time (hypermnesia). Freud's clinical experience revealed early on that exclusion from consciousness was effected not just by simple repression (inhibition) but also by a variety of distorting techniques, some deployed to degrade latent contents (denial), all eventually subsumed under the rubric of defense mechanisms ("repression in the widest sense"). Freudian and Bartlettian distortions are essentially the same, even in name, except for motive (cognitive vs. emotional), and experimentally induced false memories and other "memory illusions" are laboratory analogs of self-induced distortions.

  16. Repression of the albumin gene in Novikoff hepatoma cells

    International Nuclear Information System (INIS)

    Capetanaki, Y.G.; Flytzanis, C.N.; Alonso, A.

    1982-01-01

    Novikoff hepatoma cells have lost their capacity to synthesize albumin. As a first approach to study the mechanisms underlying this event, in vitro translation in a reticulocyte system was performed using total polyadenylated mRNA from rat liver and Novikoff hepatoma cells. Immunoprecipitation of the in vitro translation products with albumin-specific antibody revealed a total lack of albumin synthesis in Novikoff hepatoma, suggesting the absence of functional albumin mRNA in these cells. Titration experiments using as probe albumin cDNA cloned in pBR322 plasmid demonstrated the absence of albumin-specific sequences in both polysomal and nuclear polyadenylated and total RNA from Novikoff cells. This albumin recombinant plasmid was obtained by screening a rat liver cDNA library with albumin [/sup 32/P]cDNA reverse transcribed from immuno-precipitated mRNA. The presence of an albumin-specific gene insert was documented with translation assays as well as by restriction mapping. Repression of the albumin gene at the transcriptional level was further demonstrated by RNA blotting experiments using the cloned albumin cDNA probe. Genomic DNA blots using the cloned albumin cDNA as probe did not reveal any large-scale deletions, insertions, or rearrangements in the albumin gene, suggesting that the processes involved in the suppression of albumin mRNA synthesis do not involve extensive genomic rearrangements

  17. Trichostatin A enhances estrogen receptor-alpha repression in MCF-7 breast cancer cells under hypoxia

    International Nuclear Information System (INIS)

    Noh, Hyunggyun; Park, Joonwoo; Shim, Myeongguk; Lee, YoungJoo

    2016-01-01

    Estrogen receptor (ER) is a crucial determinant of resistance to endocrine therapy, which may change during the progression of breast cancer. We previously showed that hypoxia induces ESR1 gene repression and ERα protein degradation via proteasome-mediated pathway in breast cancer cells. HDAC plays important roles in the regulation of histone and non-histone protein post-translational modification. HDAC inhibitors can induce epigenetic changes and have therapeutic potential for targeting various cancers. Trichostatin A exerts potent antitumor activities against breast cancer cells in vitro and in vivo. In this report, we show that TSA augments ESR1 gene repression at the transcriptional level and downregulates ERα protein expression under hypoxic conditions through a proteasome-mediated pathway. TSA-induced estrogen response element-driven reporter activity in the absence of estrogen was synergistically enhanced under hypoxia; however, TSA inhibited cell proliferation under both normoxia and hypoxia. Our data show that the hypoxia-induced repression of ESR1 and degradation of ERα are enhanced by concomitant treatment with TSA. These findings expand our understanding of hormone responsiveness in the tumor microenvironment; however, additional in-depth studies are required to elucidate the detailed mechanisms of TSA-induced ERα regulation under hypoxia. - Highlights: • TSA augments ESR1 gene repression at the transcriptional level under hypoxia. • TSA downregulates ERα protein expression under hypoxia. • TSA-induced ERα regulation under hypoxia is essential for understanding the behavior and progression of breast cancer.

  18. Trichostatin A enhances estrogen receptor-alpha repression in MCF-7 breast cancer cells under hypoxia

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Hyunggyun; Park, Joonwoo; Shim, Myeongguk; Lee, YoungJoo, E-mail: yjlee@sejong.ac.kr

    2016-02-12

    Estrogen receptor (ER) is a crucial determinant of resistance to endocrine therapy, which may change during the progression of breast cancer. We previously showed that hypoxia induces ESR1 gene repression and ERα protein degradation via proteasome-mediated pathway in breast cancer cells. HDAC plays important roles in the regulation of histone and non-histone protein post-translational modification. HDAC inhibitors can induce epigenetic changes and have therapeutic potential for targeting various cancers. Trichostatin A exerts potent antitumor activities against breast cancer cells in vitro and in vivo. In this report, we show that TSA augments ESR1 gene repression at the transcriptional level and downregulates ERα protein expression under hypoxic conditions through a proteasome-mediated pathway. TSA-induced estrogen response element-driven reporter activity in the absence of estrogen was synergistically enhanced under hypoxia; however, TSA inhibited cell proliferation under both normoxia and hypoxia. Our data show that the hypoxia-induced repression of ESR1 and degradation of ERα are enhanced by concomitant treatment with TSA. These findings expand our understanding of hormone responsiveness in the tumor microenvironment; however, additional in-depth studies are required to elucidate the detailed mechanisms of TSA-induced ERα regulation under hypoxia. - Highlights: • TSA augments ESR1 gene repression at the transcriptional level under hypoxia. • TSA downregulates ERα protein expression under hypoxia. • TSA-induced ERα regulation under hypoxia is essential for understanding the behavior and progression of breast cancer.

  19. Plant Translation Factors and Virus Resistance

    Directory of Open Access Journals (Sweden)

    Hélène Sanfaçon

    2015-06-01

    Full Text Available Plant viruses recruit cellular translation factors not only to translate their viral RNAs but also to regulate their replication and potentiate their local and systemic movement. Because of the virus dependence on cellular translation factors, it is perhaps not surprising that many natural plant recessive resistance genes have been mapped to mutations of translation initiation factors eIF4E and eIF4G or their isoforms, eIFiso4E and eIFiso4G. The partial functional redundancy of these isoforms allows specific mutation or knock-down of one isoform to provide virus resistance without hindering the general health of the plant. New possible targets for antiviral strategies have also been identified following the characterization of other plant translation factors (eIF4A-like helicases, eIF3, eEF1A and eEF1B that specifically interact with viral RNAs and proteins and regulate various aspects of the infection cycle. Emerging evidence that translation repression operates as an alternative antiviral RNA silencing mechanism is also discussed. Understanding the mechanisms that control the development of natural viral resistance and the emergence of virulent isolates in response to these plant defense responses will provide the basis for the selection of new sources of resistance and for the intelligent design of engineered resistance that is broad-spectrum and durable.

  20. Sepsis and mechnaical ventilation restrain translation initiation in skeletal muscle by inducing AMPK-associated TSC[2] restriction of mTOR signaling in pigs

    Science.gov (United States)

    In skeletal muscle, AMP-activated protein kinase (AMPK) acts as a cellular energy sensor of AMP: ATP and modulates translation by repressing mammalian target of rapamycin (mTOR) activation. Endotoxin (LPS)-induced sepsis reduces muscle protein synthesis by blunting translation initiation. We hypothe...

  1. Genome-wide RIP-Chip analysis of translational repressor-bound mRNAs in the Plasmodium gametocyte

    KAUST Repository

    Guerreiro, Ana; Deligianni, Elena; Santos, Jorge M; Silva, Patricia AGC; Louis, Christos; Pain, Arnab; Janse, Chris J; Franke-Fayard, Blandine; Carret, Celine K; Siden-Kiamos, Inga; Mair, Gunnar R

    2014-01-01

    of RNA polymerase II transcription. Using GFP-tagging, we validate the repression phenotype of selected genes and identify mRNAs relying on the 5′ untranslated region for translational control. Gene deletion reveals a novel protein located in the ookinete

  2. Dissociation of SERPINE1 mRNA from the translational repressor proteins Ago2 and TIA-1 upon platelet activation.

    Science.gov (United States)

    Corduan, Aurélie; Plé, Hélène; Laffont, Benoit; Wallon, Thérèse; Plante, Isabelle; Landry, Patricia; Provost, Patrick

    2015-05-01

    Platelets play an important role in haemostasis, as well as in thrombosis and coagulation processes. They harbour a wide variety of messenger RNAs (mRNAs), that can template de novo protein synthesis, and an abundant array of microRNAs, which are known to mediate mRNA translational repression through proteins of the Argonaute (Ago) family. The relationship between platelet microRNAs and proteins capable of mediating translational repression, however, remains unclear. Here, we report that half of platelet microRNAs is associated to mRNA-regulatory Ago2 protein complexes, in various proportions. Associated to these Ago2 complexes are platelet mRNAs known to support de novo protein synthesis. Reporter gene activity assays confirmed the capacity of the platelet microRNAs, found to be associated to Ago2 complexes, to regulate translation of these platelet mRNAs through their 3'UTR. Neither the microRNA repertoire nor the microRNA composition of Ago2 complexes of human platelets changed upon activation with thrombin. However, under conditions favoring de novo synthesis of Plasminogen Activator Inhibitor-1 (PAI-1) protein, we documented a rapid dissociation of the encoding platelet SERPINE1 mRNA from Ago2 protein complexes as well as from the translational repressor protein T-cell-restricted intracellular antigen-1 (TIA-1). These findings are consistent with a scenario by which lifting of the repressive effects of Ago2 and TIA-1 protein complexes, involving a rearrangement of proteinmRNA complexes rather than disassembly of Ago2microRNA complexes, would allow translation of SERPINE1 mRNA into PAI-1 in response to platelet activation.

  3. Enterovirus Control of Translation and RNA Granule Stress Responses.

    Science.gov (United States)

    Lloyd, Richard E

    2016-03-30

    Enteroviruses such as poliovirus (PV) and coxsackievirus B3 (CVB3) have evolved several parallel strategies to regulate cellular gene expression and stress responses to ensure efficient expression of the viral genome. Enteroviruses utilize their encoded proteinases to take over the cellular translation apparatus and direct ribosomes to viral mRNAs. In addition, viral proteinases are used to control and repress the two main types of cytoplasmic RNA granules, stress granules (SGs) and processing bodies (P-bodies, PBs), which are stress-responsive dynamic structures involved in repression of gene expression. This review discusses these processes and the current understanding of the underlying mechanisms with respect to enterovirus infections. In addition, the review discusses accumulating data suggesting linkage exists between RNA granule formation and innate immune sensing and activation.

  4. Mitosis-associated repression in development.

    Science.gov (United States)

    Esposito, Emilia; Lim, Bomyi; Guessous, Ghita; Falahati, Hanieh; Levine, Michael

    2016-07-01

    Transcriptional repression is a pervasive feature of animal development. Here, we employ live-imaging methods to visualize the Snail repressor, which establishes the boundary between the presumptive mesoderm and neurogenic ectoderm of early Drosophila embryos. Snail target enhancers were attached to an MS2 reporter gene, permitting detection of nascent transcripts in living embryos. The transgenes exhibit initially broad patterns of transcription but are refined by repression in the mesoderm following mitosis. These observations reveal a correlation between mitotic silencing and Snail repression. We propose that mitosis and other inherent discontinuities in transcription boost the activities of sequence-specific repressors, such as Snail. © 2016 Esposito et al.; Published by Cold Spring Harbor Laboratory Press.

  5. Two small RNAs, CrcY and CrcZ, act in concert to sequester the Crc global regulator in Pseudomonas putida, modulating catabolite repression.

    Science.gov (United States)

    Moreno, Renata; Fonseca, Pilar; Rojo, Fernando

    2012-01-01

    The Crc protein is a translational repressor that recognizes a specific target at some mRNAs, controlling catabolite repression and co-ordinating carbon metabolism in pseudomonads. In Pseudomonas aeruginosa, the levels of free Crc protein are controlled by CrcZ, a sRNA that sequesters Crc, acting as an antagonist. We show that, in Pseudomonas putida, the levels of free Crc are controlled by CrcZ and by a novel 368 nt sRNA named CrcY. CrcZ and CrcY, which contain six potential targets for Crc, were able to bind Crc specifically in vitro. The levels of CrcZ and CrcY were low under conditions generating a strong catabolite repression, and increased strongly when catabolite repression was absent. Deletion of either crcZ or crcY had no effect on catabolite repression, but the simultaneous absence of both sRNAs led to constitutive catabolite repression that compromised growth on some carbon sources. Overproduction of CrcZ or CrcY significantly reduced repression. We propose that CrcZ and CrcY act in concert, sequestering and modulating the levels of free Crc according to metabolic conditions. The CbrA/CbrB two-component system activated crcZ transcription, but had little effect on crcY. CrcY was detected in P. putida, Pseudomonas fluorescens and Pseudomonas syringae, but not in P. aeruginosa. © 2011 Blackwell Publishing Ltd.

  6. The Related Transcriptional Enhancer Factor-1 Isoform, TEAD4216, Can Repress Vascular Endothelial Growth Factor Expression in Mammalian Cells

    Science.gov (United States)

    Appukuttan, Binoy; McFarland, Trevor J.; Stempel, Andrew; Kassem, Jean B.; Hartzell, Matthew; Zhang, Yi; Bond, Derek; West, Kelsey; Wilson, Reid; Stout, Andrew; Pan, Yuzhen; Ilias, Hoda; Robertson, Kathryn; Klein, Michael L.; Wilson, David; Smith, Justine R.; Stout, J. Timothy

    2012-01-01

    Increased cellular production of vascular endothelial growth factor (VEGF) is responsible for the development and progression of multiple cancers and other neovascular conditions, and therapies targeting post-translational VEGF products are used in the treatment of these diseases. Development of methods to control and modify the transcription of the VEGF gene is an alternative approach that may have therapeutic potential. We have previously shown that isoforms of the transcriptional enhancer factor 1-related (TEAD4) protein can enhance the production of VEGF. In this study we describe a new TEAD4 isoform, TEAD4216, which represses VEGF promoter activity. The TEAD4216 isoform inhibits human VEGF promoter activity and does not require the presence of the hypoxia responsive element (HRE), which is the sequence critical to hypoxia inducible factor (HIF)-mediated effects. The TEAD4216 protein is localized to the cytoplasm, whereas the enhancer isoforms are found within the nucleus. The TEAD4216 isoform can competitively repress the stimulatory activity of the TEAD4434 and TEAD4148 enhancers. Synthesis of the native VEGF165 protein and cellular proliferation is suppressed by the TEAD4216 isoform. Mutational analysis indicates that nuclear or cytoplasmic localization of any isoform determines whether it acts as an enhancer or repressor, respectively. The TEAD4216 isoform appears to inhibit VEGF production independently of the HRE required activity by HIF, suggesting that this alternatively spliced isoform of TEAD4 may provide a novel approach to treat VEGF-dependent diseases. PMID:22761647

  7. Biomass conversion inhibitors furfural and 5-hydroxymethylfurfural induce formation of messenger RNP granules and attenuate translation activity in Saccharomyces cerevisiae.

    Science.gov (United States)

    Iwaki, Aya; Kawai, Takao; Yamamoto, Yosuke; Izawa, Shingo

    2013-03-01

    Various forms of stress can cause an attenuation of bulk translation activity and the accumulation of nontranslating mRNAs into cytoplasmic messenger RNP (mRNP) granules termed processing bodies (P-bodies) and stress granules (SGs) in eukaryotic cells. Furfural and 5-hydroxymethylfurfural (HMF), derived from lignocellulosic biomass, inhibit yeast growth and fermentation as stressors. Since there is no report regarding their effects on the formation of cytoplasmic mRNP granules, here we investigated whether furfural and HMF cause the assembly of yeast P-bodies and SGs accompanied by translational repression. We found that furfural and HMF cause the attenuation of bulk translation activity and the assembly of cytoplasmic mRNP granules in Saccharomyces cerevisiae. Notably, a combination of furfural and HMF induced the remarkable repression of translation initiation and SG formation. These findings provide new information about the physiological effects of furfural and HMF on yeast cells, and also suggest the potential usefulness of cytoplasmic mRNP granules as a warning sign or index of the deterioration of cellular physiological status in the fermentation of lignocellulosic hydrolysates.

  8. mEBT: multiple-matching Evidence-based Translator of Murine Genomic Responses for Human Immunity Studies.

    Science.gov (United States)

    Tae, Donghyun; Seok, Junhee

    2018-05-29

    In this paper, we introduce multiple-matching Evidence-based Translator (mEBT) to discover genomic responses from murine expression data for human immune studies, which are significant in the given condition of mice and likely have similar responses in the corresponding condition of human. mEBT is evaluated over multiple data sets and shows improved inter-species agreement. mEBT is expected to be useful for research groups who use murine models to study human immunity. http://cdal.korea.ac.kr/mebt/. jseok14@korea.ac.kr. Supplementary data are available at Bioinformatics online.

  9. Viral MicroRNAs Repress the Cholesterol Pathway, and 25-Hydroxycholesterol Inhibits Infection.

    Science.gov (United States)

    Serquiña, Anna K P; Kambach, Diane M; Sarker, Ontara; Ziegelbauer, Joseph M

    2017-07-11

    From various screens, we found that Kaposi's sarcoma-associated herpesvirus (KSHV) viral microRNAs (miRNAs) target several enzymes in the mevalonate/cholesterol pathway. 3-Hydroxy-3-methylglutaryl-coenzyme A (CoA) synthase 1 (HMGCS1), 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR [a rate-limiting step in the mevalonate pathway]), and farnesyl-diphosphate farnesyltransferase 1 (FDFT1 [a committed step in the cholesterol branch]) are repressed by multiple KSHV miRNAs. Transfection of viral miRNA mimics in primary endothelial cells (human umbilical vein endothelial cells [HUVECs]) is sufficient to reduce intracellular cholesterol levels; however, small interfering RNAs (siRNAs) targeting only HMGCS1 did not reduce cholesterol levels. This suggests that multiple targets are needed to perturb this tightly regulated pathway. We also report here that cholesterol levels were decreased in de novo -infected HUVECs after 7 days. This reduction is at least partially due to viral miRNAs, since the mutant form of KSHV lacking 10 of the 12 miRNA genes had increased cholesterol compared to wild-type infections. We hypothesized that KSHV is downregulating cholesterol to suppress the antiviral response by a modified form of cholesterol, 25-hydroxycholesterol (25HC). We found that the cholesterol 25-hydroxylase (CH25H) gene, which is responsible for generating 25HC, had increased expression in de novo -infected HUVECs but was strongly suppressed in long-term latently infected cell lines. We found that 25HC inhibits KSHV infection when added exogenously prior to de novo infection. In conclusion, we found that multiple KSHV viral miRNAs target enzymes in the mevalonate pathway to modulate cholesterol in infected cells during latency. This repression of cholesterol levels could potentially be beneficial to viral infection by decreasing the levels of 25HC. IMPORTANCE A subset of viruses express unique microRNAs (miRNAs), which act like cellular miRNAs to generally repress host gene

  10. Deregulation of sucrose-controlled translation of a bZIP-type transcription factor results in sucrose accumulation in leaves.

    Directory of Open Access Journals (Sweden)

    Sunil Kumar Thalor

    Full Text Available Sucrose is known to repress the translation of Arabidopsis thaliana AtbZIP11 transcript which encodes a protein belonging to the group of S (S--stands for small basic region-leucine zipper (bZIP-type transcription factor. This repression is called sucrose-induced repression of translation (SIRT. It is mediated through the sucrose-controlled upstream open reading frame (SC-uORF found in the AtbZIP11 transcript. The SIRT is reported for 4 other genes belonging to the group of S bZIP in Arabidopsis. Tobacco tbz17 is phylogenetically closely related to AtbZIP11 and carries a putative SC-uORF in its 5'-leader region. Here we demonstrate that tbz17 exhibits SIRT mediated by its SC-uORF in a manner similar to genes belonging to the S bZIP group of the Arabidopsis genus. Furthermore, constitutive transgenic expression of tbz17 lacking its 5'-leader region containing the SC-uORF leads to production of tobacco plants with thicker leaves composed of enlarged cells with 3-4 times higher sucrose content compared to wild type plants. Our finding provides a novel strategy to generate plants with high sucrose content.

  11. Deregulation of sucrose-controlled translation of a bZIP-type transcription factor results in sucrose accumulation in leaves.

    Science.gov (United States)

    Thalor, Sunil Kumar; Berberich, Thomas; Lee, Sung Shin; Yang, Seung Hwan; Zhu, Xujun; Imai, Ryozo; Takahashi, Yoshihiro; Kusano, Tomonobu

    2012-01-01

    Sucrose is known to repress the translation of Arabidopsis thaliana AtbZIP11 transcript which encodes a protein belonging to the group of S (S--stands for small) basic region-leucine zipper (bZIP)-type transcription factor. This repression is called sucrose-induced repression of translation (SIRT). It is mediated through the sucrose-controlled upstream open reading frame (SC-uORF) found in the AtbZIP11 transcript. The SIRT is reported for 4 other genes belonging to the group of S bZIP in Arabidopsis. Tobacco tbz17 is phylogenetically closely related to AtbZIP11 and carries a putative SC-uORF in its 5'-leader region. Here we demonstrate that tbz17 exhibits SIRT mediated by its SC-uORF in a manner similar to genes belonging to the S bZIP group of the Arabidopsis genus. Furthermore, constitutive transgenic expression of tbz17 lacking its 5'-leader region containing the SC-uORF leads to production of tobacco plants with thicker leaves composed of enlarged cells with 3-4 times higher sucrose content compared to wild type plants. Our finding provides a novel strategy to generate plants with high sucrose content.

  12. JavaScript DNA translator: DNA-aligned protein translations.

    Science.gov (United States)

    Perry, William L

    2002-12-01

    There are many instances in molecular biology when it is necessary to identify ORFs in a DNA sequence. While programs exist for displaying protein translations in multiple ORFs in alignment with a DNA sequence, they are often expensive, exist as add-ons to software that must be purchased, or are only compatible with a particular operating system. JavaScript DNA Translator is a shareware application written in JavaScript, a scripting language interpreted by the Netscape Communicator and Internet Explorer Web browsers, which makes it compatible with several different operating systems. While the program uses a familiar Web page interface, it requires no connection to the Internet since calculations are performed on the user's own computer. The program analyzes one or multiple DNA sequences and generates translations in up to six reading frames aligned to a DNA sequence, in addition to displaying translations as separate sequences in FASTA format. ORFs within a reading frame can also be displayed as separate sequences. Flexible formatting options are provided, including the ability to hide ORFs below a minimum size specified by the user. The program is available free of charge at the BioTechniques Software Library (www.Biotechniques.com).

  13. Translating Alcohol Research

    Science.gov (United States)

    Batman, Angela M.; Miles, Michael F.

    2015-01-01

    Alcohol use disorder (AUD) and its sequelae impose a major burden on the public health of the United States, and adequate long-term control of this disorder has not been achieved. Molecular and behavioral basic science research findings are providing the groundwork for understanding the mechanisms underlying AUD and have identified multiple candidate targets for ongoing clinical trials. However, the translation of basic research or clinical findings into improved therapeutic approaches for AUD must become more efficient. Translational research is a multistage process of streamlining the movement of basic biomedical research findings into clinical research and then to the clinical target populations. This process demands efficient bidirectional communication across basic, applied, and clinical science as well as with clinical practitioners. Ongoing work suggests rapid progress is being made with an evolving translational framework within the alcohol research field. This is helped by multiple interdisciplinary collaborative research structures that have been developed to advance translational work on AUD. Moreover, the integration of systems biology approaches with collaborative clinical studies may yield novel insights for future translational success. Finally, appreciation of genetic variation in pharmacological or behavioral treatment responses and optimal communication from bench to bedside and back may strengthen the success of translational research applications to AUD. PMID:26259085

  14. The histone deacetylase inhibitor, Vorinostat, represses hypoxia inducible factor 1 alpha expression through translational inhibition.

    Directory of Open Access Journals (Sweden)

    Darren M Hutt

    Full Text Available Hypoxia inducible factor 1α (HIF-1α is a master regulator of tumor angiogenesis being one of the major targets for cancer therapy. Previous studies have shown that Histone Deacetylase Inhibitors (HDACi block tumor angiogenesis through the inhibition of HIF-1α expression. As such, Vorinostat (Suberoylanilide Hydroxamic Acid/SAHA and Romidepsin, two HDACis, were recently approved by the Food and Drug Administration (FDA for the treatment of cutaneous T cell lymphoma. Although HDACis have been shown to affect HIF-1α expression by modulating its interactions with the Hsp70/Hsp90 chaperone axis or its acetylation status, the molecular mechanisms by which HDACis inhibit HIF-1α expression need to be further characterized. Here, we report that the FDA-approved HDACi Vorinostat/SAHA inhibits HIF-1α expression in liver cancer-derived cell lines, by a new mechanism independent of p53, prolyl-hydroxylases, autophagy and proteasome degradation. We found that SAHA or silencing of HDAC9 mechanism of action is due to inhibition of HIF-1α translation, which in turn, is mediated by the eukaryotic translation initiation factor--eIF3G. We also highlighted that HIF-1α translation is dramatically inhibited when SAHA is combined with eIF3H silencing. Taken together, we show that HDAC activity regulates HIF-1α translation, with HDACis such as SAHA representing a potential novel approach for the treatment of hepatocellular carcinoma.

  15. Drosophila Nanos acts as a molecular clamp that modulates the RNA-binding and repression activities of Pumilio.

    Science.gov (United States)

    Weidmann, Chase A; Qiu, Chen; Arvola, René M; Lou, Tzu-Fang; Killingsworth, Jordan; Campbell, Zachary T; Tanaka Hall, Traci M; Goldstrohm, Aaron C

    2016-08-02

    Collaboration among the multitude of RNA-binding proteins (RBPs) is ubiquitous, yet our understanding of these key regulatory complexes has been limited to single RBPs. We investigated combinatorial translational regulation by Drosophila Pumilio (Pum) and Nanos (Nos), which control development, fertility, and neuronal functions. Our results show how the specificity of one RBP (Pum) is modulated by cooperative RNA recognition with a second RBP (Nos) to synergistically repress mRNAs. Crystal structures of Nos-Pum-RNA complexes reveal that Nos embraces Pum and RNA, contributes sequence-specific contacts, and increases Pum RNA-binding affinity. Nos shifts the recognition sequence and promotes repression complex formation on mRNAs that are not stably bound by Pum alone, explaining the preponderance of sub-optimal Pum sites regulated in vivo. Our results illuminate the molecular mechanism of a regulatory switch controlling crucial gene expression programs, and provide a framework for understanding how the partnering of RBPs evokes changes in binding specificity that underlie regulatory network dynamics.

  16. Reassessment of the role of TSC, mTORC1 and microRNAs in amino acids-meditated translational control of TOP mRNAs.

    Directory of Open Access Journals (Sweden)

    Ilona Patursky-Polischuk

    Full Text Available TOP mRNAs encode components of the translational apparatus, and repression of their translation comprises one mechanism, by which cells encountering amino acid deprivation downregulate the biosynthesis of the protein synthesis machinery. This mode of regulation involves TSC as knockout of TSC1 or TSC2 rescued TOP mRNAs translation in amino acid-starved cells. The involvement of mTOR in translational control of TOP mRNAs is demonstrated by the ability of constitutively active mTOR to relieve the translational repression of TOP mRNA upon amino acid deprivation. Consistently, knockdown of this kinase as well as its inhibition by pharmacological means blocked amino acid-induced translational activation of these mRNAs. The signaling of amino acids to TOP mRNAs involves RagB, as overexpression of active RagB derepressed the translation of these mRNAs in amino acid-starved cells. Nonetheless, knockdown of raptor or rictor failed to suppress translational activation of TOP mRNAs by amino acids, suggesting that mTORC1 or mTORC2 plays a minor, if any, role in this mode of regulation. Finally, miR10a has previously been suggested to positively regulate the translation of TOP mRNAs. However, we show here that titration of this microRNA failed to downregulate the basal translation efficiency of TOP mRNAs. Moreover, Drosha knockdown or Dicer knockout, which carries out the first and second processing steps in microRNAs biosynthesis, respectively, failed to block the translational activation of TOP mRNAs by amino acid or serum stimulation. Evidently, these results are questioning the positive role of microRNAs in this mode of regulation.

  17. The related transcriptional enhancer factor-1 isoform, TEAD4(216, can repress vascular endothelial growth factor expression in mammalian cells.

    Directory of Open Access Journals (Sweden)

    Binoy Appukuttan

    Full Text Available Increased cellular production of vascular endothelial growth factor (VEGF is responsible for the development and progression of multiple cancers and other neovascular conditions, and therapies targeting post-translational VEGF products are used in the treatment of these diseases. Development of methods to control and modify the transcription of the VEGF gene is an alternative approach that may have therapeutic potential. We have previously shown that isoforms of the transcriptional enhancer factor 1-related (TEAD4 protein can enhance the production of VEGF. In this study we describe a new TEAD4 isoform, TEAD4(216, which represses VEGF promoter activity. The TEAD4(216 isoform inhibits human VEGF promoter activity and does not require the presence of the hypoxia responsive element (HRE, which is the sequence critical to hypoxia inducible factor (HIF-mediated effects. The TEAD4(216 protein is localized to the cytoplasm, whereas the enhancer isoforms are found within the nucleus. The TEAD4(216 isoform can competitively repress the stimulatory activity of the TEAD4(434 and TEAD4(148 enhancers. Synthesis of the native VEGF(165 protein and cellular proliferation is suppressed by the TEAD4(216 isoform. Mutational analysis indicates that nuclear or cytoplasmic localization of any isoform determines whether it acts as an enhancer or repressor, respectively. The TEAD4(216 isoform appears to inhibit VEGF production independently of the HRE required activity by HIF, suggesting that this alternatively spliced isoform of TEAD4 may provide a novel approach to treat VEGF-dependent diseases.

  18. Systemic delivery of microRNA-101 potently inhibits hepatocellular carcinoma in vivo by repressing multiple targets.

    Directory of Open Access Journals (Sweden)

    Fang Zheng

    2015-02-01

    Full Text Available Targeted therapy based on adjustment of microRNA (miRNAs activity takes great promise due to the ability of these small RNAs to modulate cellular behavior. However, the efficacy of miR-101 replacement therapy to hepatocellular carcinoma (HCC remains unclear. In the current study, we first observed that plasma levels of miR-101 were significantly lower in distant metastatic HCC patients than in HCCs without distant metastasis, and down-regulation of plasma miR-101 predicted a worse disease-free survival (DFS, P<0.05. In an animal model of HCC, we demonstrated that systemic delivery of lentivirus-mediated miR-101 abrogated HCC growth in the liver, intrahepatic metastasis and distant metastasis to the lung and to the mediastinum, resulting in a dramatic suppression of HCC development and metastasis in mice without toxicity and extending life expectancy. Furthermore, enforced overexpression of miR-101 in HCC cells not only decreased EZH2, COX2 and STMN1, but also directly down-regulated a novel target ROCK2, inhibited Rho/Rac GTPase activation, and blocked HCC cells epithelial-mesenchymal transition (EMT and angiogenesis, inducing a strong abrogation of HCC tumorigenesis and aggressiveness both in vitro and in vivo. These results provide proof-of-concept support for systemic delivery of lentivirus-mediated miR-101 as a powerful anti-HCC therapeutic modality by repressing multiple molecular targets.

  19. Glucose repression in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Kayikci, Omur; Nielsen, Jens

    2015-01-01

    Glucose is the primary source of energy for the budding yeast Saccharomyces cerevisiae. Although yeast cells can utilize a wide range of carbon sources, presence of glucose suppresses molecular activities involved in the use of alternate carbon sources as well as it represses respiration and gluc......Glucose is the primary source of energy for the budding yeast Saccharomyces cerevisiae. Although yeast cells can utilize a wide range of carbon sources, presence of glucose suppresses molecular activities involved in the use of alternate carbon sources as well as it represses respiration...

  20. Authorial and Editorial Voices in Translation

    DEFF Research Database (Denmark)

    Translation Studies now recognizes that translators are not the only agents involved in translation. Authors and editors provide suggestions and instructions. Publishers have considerable power over the final text and how it is presented to the public. While it is well-known that translations...... understanding of the processes through which authors, publishers, editors, directors, and critics can affect translation. Empirical studies from historical and contemporary settings examine forms of collaboration and negotiation, or conflict, with special attention to the multiple voices in theatre translation....

  1. A Turning Point in the Translation of Shakespeare into Catalan: The Case of Josep M. De Sagarra’s Macbeth

    Directory of Open Access Journals (Sweden)

    Berjaga Vanessa Palomo

    2017-12-01

    Full Text Available Josep Maria de Sagarra translated twenty-eight of Shakespeare’s plays into Catalan in the early forties, at a time when Catalan language and culture were suffering severe repression due to Franco’s regime. The manuscript of Macbeth by Sagarra is from 1942; and the first edition (an impressive hard-bound clandestine edition is from 1946 or 1947. Before his translation, there were three other Catalan translations of Macbeth, produced by Cebrià Montoliu (1907, Diego Ruiz (1908 and Cèsar August Jordana (1928. The main purpose of this article is to show that Sagarra’s translations marked a turning point regarding the translation of Shakespeare’s works in Catalan culture. This is done by reflecting on both cultural and personal circumstances that led Sagarra to translate Shakespeare and by comparing Sagarra’s translation of Macbeth with the other three from the first half of the twentieth century.

  2. The translational repressor Crc controls the Pseudomonas putida benzoate and alkane catabolic pathways using a multi-tier regulation strategy.

    Science.gov (United States)

    Hernández-Arranz, Sofía; Moreno, Renata; Rojo, Fernando

    2013-01-01

    Metabolically versatile bacteria usually perceive aromatic compounds and hydrocarbons as non-preferred carbon sources, and their assimilation is inhibited if more preferable substrates are available. This is achieved via catabolite repression. In Pseudomonas putida, the expression of the genes allowing the assimilation of benzoate and n-alkanes is strongly inhibited by catabolite repression, a process controlled by the translational repressor Crc. Crc binds to and inhibits the translation of benR and alkS mRNAs, which encode the transcriptional activators that induce the expression of the benzoate and alkane degradation genes respectively. However, sequences similar to those recognized by Crc in benR and alkS mRNAs exist as well in the translation initiation regions of the mRNA of several structural genes of the benzoate and alkane pathways, which suggests that Crc may also regulate their translation. The present results show that some of these sites are functional, and that Crc inhibits the induction of both pathways by limiting not only the translation of their transcriptional activators, but also that of genes coding for the first enzyme in each pathway. Crc may also inhibit the translation of a gene involved in benzoate uptake. This multi-tier approach probably ensures the rapid regulation of pathway genes, minimizing the assimilation of non-preferred substrates when better options are available. A survey of possible Crc sites in the mRNAs of genes associated with other catabolic pathways suggested that targeting substrate uptake, pathway induction and/or pathway enzymes may be a common strategy to control the assimilation of non-preferred compounds. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  3. Characterization of the functional role of nucleotides within the URE2 IRES element and the requirements for eIF2A-mediated repression.

    Science.gov (United States)

    Reineke, Lucas C; Merrick, William C

    2009-12-01

    Cap-independent initiation of translation is thought to promote protein synthesis on some mRNAs during times when cap-dependent initiation is down-regulated. However, the mechanism of cap-independent initiation is poorly understood. We have previously reported the secondary structure within the yeast minimal URE2 IRES element. In this study, we sought to investigate the mechanism of internal initiation in yeast by assessing the functional role of nucleotides within the minimal URE2 IRES element, and delineating the cis-sequences that modulate levels of internal initiation using a monocistronic reporter vector. Furthermore, we compared the eIF2A sensitivity of the URE2 IRES element with some of the invasive growth IRES elements using DeltaeIF2A yeast. We found that the stability of the stem-loop structure within the minimal URE2 IRES element is not a critical determinant of optimal IRES activity, and the downstream sequences that modulate URE2 IRES-mediated translation can be defined to discrete regions within the URE2 coding region. Repression of internal initiation on the URE2 minimal IRES element by eIF2A is not dependent on the stability of the secondary structure within the URE2 IRES element. Our data also indicate that eIF2A-mediated repression is not specific to the URE2 IRES element, as both the GIC1 and PAB1 IRES elements are repressed by eIF2A. These data provide valuable insights into the mRNA requirements for internal initiation in yeast, and insights into the mechanism of eIF2A-mediated suppression.

  4. Cyclin D1 represses p300 transactivation through a cyclin-dependent kinase-independent mechanism.

    Science.gov (United States)

    Fu, Maofu; Wang, Chenguang; Rao, Mahadev; Wu, Xiaofang; Bouras, Toula; Zhang, Xueping; Li, Zhiping; Jiao, Xuanmao; Yang, Jianguo; Li, Anping; Perkins, Neil D; Thimmapaya, Bayar; Kung, Andrew L; Munoz, Alberto; Giordano, Antonio; Lisanti, Michael P; Pestell, Richard G

    2005-08-19

    Cyclin D1 encodes a regulatory subunit, which with its cyclin-dependent kinase (Cdk)-binding partner forms a holoenzyme that phosphorylates and inactivates the retinoblastoma protein. In addition to its Cdk binding-dependent functions, cyclin D1 regulates cellular differentiation in part by modifying several transcription factors and nuclear receptors. The molecular mechanism through which cyclin D1 regulates the function of transcription factors involved in cellular differentiation remains to be clarified. The histone acetyltransferase protein p300 is a co-integrator required for regulation of multiple transcription factors. Here we show that cyclin D1 physically interacts with p300 and represses p300 transactivation. We demonstrated further that the interaction of the two proteins occurs at the peroxisome proliferator-activated receptor gamma-responsive element of the lipoprotein lipase promoter in the context of the local chromatin structure. We have mapped the domains in p300 and cyclin D1 involved in this interaction. The bromo domain and cysteine- and histidine-rich domains of p300 were required for repression by cyclin D1. Cyclin D1 repression of p300 was independent of the Cdk- and retinoblastoma protein-binding domains of cyclin D1. Cyclin D1 inhibits histone acetyltransferase activity of p300 in vitro. Microarray analysis identified a signature of genes repressed by cyclin D1 and induced by p300 that promotes cellular differentiation and induces cell cycle arrest. Together, our results suggest that cyclin D1 plays an important role in cellular proliferation and differentiation through regulation of p300.

  5. Reconceptualising translation in agricultural innovation

    NARCIS (Netherlands)

    Ingram, Julie; Dwyer, Janet; Gaskell, Peter; Mills, Jane; Wolf, de Pieter

    2018-01-01

    Scientific research continues to play a significant role in meeting the multiple innovation challenges in agriculture. If this role is to be fulfilled, provision needs to be made for effective translation of research outputs, where translation is understood to be the process whereby science becomes

  6. From Satis House to Newgate: Manipulation and Repression in the Adaptation of Great Expectations by Julian Jarrold

    Directory of Open Access Journals (Sweden)

    Claudia Cao

    2012-12-01

    Full Text Available This article analyzes a serial of Great Expectations in two parts directed by Julian Jarrold for the BBC in 1999. Through the semiotic approach proposed by Nicola Dusi in his essay Il cinema come traduzione. Da un medium all’altro (2003, this paper wants to highlight the translation strategies employed in the target text in comparison with the hypotext. The aim of this article is to show how the dominant isotopies – Pip’s repression and manipulation – are figurativized in the representation of the main places of power in the adaptation: Satis House, Little Britain and Newgate.

  7. Bringing translation out of the shadows: translation as an issue of methodological significance in cross-cultural qualitative research.

    Science.gov (United States)

    Wong, Josephine Pui-Hing; Poon, Maurice Kwong-Lai

    2010-04-01

    Translation is an integral component of cross-cultural research that has remained invisible. It is commonly assumed that translation is an objective and neutral process, in which the translators are "technicians" in producing texts in different languages. Drawing from the field of translation studies and the findings of a translation exercise conducted with three bilingual Cantonese-English translators, the authors highlight some of the methodological issues about translation in cross-cultural qualitative research. They argue that only by making translation visible and through open dialogue can researchers uncover the richness embedded in the research data and facilitate multiple ways of knowing.

  8. Neural Progenitors Adopt Specific Identities by Directly Repressing All Alternative Progenitor Transcriptional Programs.

    Science.gov (United States)

    Kutejova, Eva; Sasai, Noriaki; Shah, Ankita; Gouti, Mina; Briscoe, James

    2016-03-21

    In the vertebrate neural tube, a morphogen-induced transcriptional network produces multiple molecularly distinct progenitor domains, each generating different neuronal subtypes. Using an in vitro differentiation system, we defined gene expression signatures of distinct progenitor populations and identified direct gene-regulatory inputs corresponding to locations of specific transcription factor binding. Combined with targeted perturbations of the network, this revealed a mechanism in which a progenitor identity is installed by active repression of the entire transcriptional programs of other neural progenitor fates. In the ventral neural tube, sonic hedgehog (Shh) signaling, together with broadly expressed transcriptional activators, concurrently activates the gene expression programs of several domains. The specific outcome is selected by repressive input provided by Shh-induced transcription factors that act as the key nodes in the network, enabling progenitors to adopt a single definitive identity from several initially permitted options. Together, the data suggest design principles relevant to many developing tissues. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Translating Legal Collocations in Contract Agreements by Iraqi EFL Students-Translators

    Directory of Open Access Journals (Sweden)

    Muntaha A. Abdulwahid

    2017-01-01

    Full Text Available Legal translation of contract agreements is a challenge to translators as it involves combining the literary translation with the technical terminological precision. In translating legal contract agreements, a legal translator must utilize the lexical or syntactic precision and, more importantly, the pragmatic awareness of the context. This will guarantee an overall communicative process and avoid inconsistency in legal translation. However, the inability of the translator to meet these two functions in translating the contract item not only affects the contractors’ comprehension of the contract item but also affects the parties’ contractual obligations. In light of this, the purpose of this study was to find out how legal collocations used in contract agreements are translated from Arabic into English by student-translators in terms of (1 purely technical, (2 semi-technical, and (3 everyday vocabulary collocations. For the data collection, a multiple-choice collocation test was used to be answered by 35 EFL Iraqi undergraduate translator-students to decide on the aspects of weaknesses and strengths of their translation, thus decide on the aspects of correction. The findings showed that these students had serious problems in translating legal collocations as they lack the linguistic knowledge and pragmatic awareness needed to achieve the legal meaning and effect. They were also unable to make a difference among the three categories of legal collocations, purely technical, semi-technical, and everyday vocabulary collocations. These students should be exposed to more legal translation practices to obtain the required experience needed for their future career.

  10. Catabolite repression of enzyme synthesis does not prevent sporulation.

    OpenAIRE

    Lopez, J M; Uratani-Wong, B; Freese, E

    1980-01-01

    In the presence of excess glucose, a decrease of guanine nucleotides in Bacillus subtilis initiated sporulation but did not prevent catabolite repression of three enzymes. Therefore, the ultimate mechanism(s) repressing enzyme synthesis differs from that suppressing sporulation.

  11. DsrA regulatory RNA represses both hns and rbsD mRNAs through distinct mechanisms in Escherichia coli.

    Science.gov (United States)

    Lalaouna, David; Morissette, Audrey; Carrier, Marie-Claude; Massé, Eric

    2015-10-01

    The 87 nucleotide long DsrA sRNA has been mostly studied for its translational activation of the transcriptional regulator RpoS. However, it also represses hns mRNA, which encodes H-NS, a major regulator that affects expression of nearly 5% of Escherichia coli genes. A speculative model previously suggested that DsrA would block hns mRNA translation by binding simultaneously to start and stop codon regions of hns mRNA (coaxial model). Here, we show that DsrA efficiently blocked translation of hns mRNA by base-pairing immediately downstream of the start codon. In addition, DsrA induced hns mRNA degradation by actively recruiting the RNA degradosome complex. Data presented here led to a model of DsrA action on hns mRNA, which supports a canonical mechanism of sRNA-induced mRNA degradation by binding to the translation initiation region. Furthermore, using MS2-affinity purification coupled with RNA sequencing technology (MAPS), we also demonstrated that DsrA targets rbsD mRNA, involved in ribose utilization. Surprisingly, DsrA base pairs far downstream of rbsD start codon and induces rapid degradation of the transcript. Thus, our study enables us to draw an extended DsrA targetome. © 2015 John Wiley & Sons Ltd.

  12. Racism and Surplus Repression.

    Science.gov (United States)

    Johnson, Howard

    1983-01-01

    Explores the relationship between Herbert Marcuse's theory of "surplus repression" and Freud's theory of the "unconscious" with respect to latent, hidden, covert, or subliminal aspects of racism in the United States. Argues that unconscious racism, manifested in evasion/avoidance, acting out/projection, and attempted…

  13. Msx1 Homeodomain Protein Represses the αGSU and GnRH Receptor Genes During Gonadotrope Development

    Science.gov (United States)

    Xie, Huimin; Cherrington, Brian D.; Meadows, Jason D.; Witham, Emily A.

    2013-01-01

    Multiple homeodomain transcription factors are crucial for pituitary organogenesis and cellular differentiation. A homeodomain repressor, Msx1, is expressed from the ventral aspect of the developing anterior pituitary and implicated in gonadotrope differentiation. Here, we find that Msx1 represses transcription of lineage-specific pituitary genes such as the common α-glycoprotein subunit (αGSU) and GnRH receptor (GnRHR) promoters in the mouse gonadotrope-derived cell lines, αT3-1 and LβT2. Repression of the mouse GnRHR promoter by Msx1 is mediated through a consensus-binding motif in the downstream activin regulatory element (DARE). Truncation and mutation analyses of the human αGSU promoter map Msx1 repression to a site at −114, located at the junctional regulatory element (JRE). Dlx activators are closely related to the Msx repressors, acting through the same elements, and Dlx3 and Dlx2 act as transcriptional activators for GnRHR and αGSU, respectively. Small interfering RNA knockdown of Msx1 in αT3-1 cells increases endogenous αGSU and GnRHR mRNA expression. Msx1 gene expression reaches its maximal expression at the rostral edge at e13.5. The subsequent decline in Msx1 expression specifically coincides with the onset of expression of both αGSU and GnRHR. The expression levels of both αGSU and GnRHR in Msx1-null mice at e18.5 are higher compared with wild type, further confirming a role for Msx1 in the repression of αGSU and GnRHR. In summary, Msx1 functions as a negative regulator early in pituitary development by repressing the gonadotrope-specific αGSU and GnRHR genes, but a temporal decline in Msx1 expression alleviates this repression allowing induction of GnRHR and αGSU, thus serving to time the onset of gonadotrope-specific gene program. PMID:23371388

  14. Msx1 homeodomain protein represses the αGSU and GnRH receptor genes during gonadotrope development.

    Science.gov (United States)

    Xie, Huimin; Cherrington, Brian D; Meadows, Jason D; Witham, Emily A; Mellon, Pamela L

    2013-03-01

    Multiple homeodomain transcription factors are crucial for pituitary organogenesis and cellular differentiation. A homeodomain repressor, Msx1, is expressed from the ventral aspect of the developing anterior pituitary and implicated in gonadotrope differentiation. Here, we find that Msx1 represses transcription of lineage-specific pituitary genes such as the common α-glycoprotein subunit (αGSU) and GnRH receptor (GnRHR) promoters in the mouse gonadotrope-derived cell lines, αT3-1 and LβT2. Repression of the mouse GnRHR promoter by Msx1 is mediated through a consensus-binding motif in the downstream activin regulatory element (DARE). Truncation and mutation analyses of the human αGSU promoter map Msx1 repression to a site at -114, located at the junctional regulatory element (JRE). Dlx activators are closely related to the Msx repressors, acting through the same elements, and Dlx3 and Dlx2 act as transcriptional activators for GnRHR and αGSU, respectively. Small interfering RNA knockdown of Msx1 in αT3-1 cells increases endogenous αGSU and GnRHR mRNA expression. Msx1 gene expression reaches its maximal expression at the rostral edge at e13.5. The subsequent decline in Msx1 expression specifically coincides with the onset of expression of both αGSU and GnRHR. The expression levels of both αGSU and GnRHR in Msx1-null mice at e18.5 are higher compared with wild type, further confirming a role for Msx1 in the repression of αGSU and GnRHR. In summary, Msx1 functions as a negative regulator early in pituitary development by repressing the gonadotrope-specific αGSU and GnRHR genes, but a temporal decline in Msx1 expression alleviates this repression allowing induction of GnRHR and αGSU, thus serving to time the onset of gonadotrope-specific gene program.

  15. Translating Management Practices in Hierarchical Organizations

    DEFF Research Database (Denmark)

    Wæraas, Arild; Nielsen, Jeppe Agger

    structures affect translators’ approaches taken towards management ideas. This paper reports the findings from a longitudinal case study of the translation of Leadership Pipeline in a Danish fire department and how the translators’ approach changed over time from a modifying to a reproducing mode. The study......This study examines how translators in a hierarchical context approach the translation of management practices. Although current translation theory and research emphasize the importance of contextual factors in translation processes, little research has investigated how strongly hierarchical...... finds that translation does not necessarily imply transformation of the management idea, pointing instead to aspects of exact imitation and copying of an ”original” idea. It also highlights how translation is likely to involve multiple and successive translation modes and, furthermore, that strongly...

  16. Translational nanomedicine : Through the therapeutic window

    NARCIS (Netherlands)

    Pierce, Robin

    2015-01-01

    Translational nanomedicine occurs only through the successful integration of multiple inputs and iterative modifications. The therapeutic window plays a pivotal role in the trajectory of translational nanomedicine. Often defined in terms of the range of dosage for safe and effective therapeutic

  17. The role of mitochondria in carbon catabolite repression in yeast.

    Science.gov (United States)

    Haussmann, P; Zimmermann, F K

    1976-10-18

    The role of mitochondria in carbon catabolite repression in Saccharomyces cerevisiae was investigated by comparing normal, respiratory competent (RHO) strains with their mitochondrially inherited, respiratory deficient mutant derivatives (rho). Formation of maltase and invertase was used as an indicator system for the effect of carbon catabolite repression on carbon catabolic reactions. Fermentation rates for glucose, maltose and sucrose were the same in RHO and rho strains. Specific activities of maltase and invertase were usually higher in the rho-mutants. A very pronounced difference in invertase levels was observed when cells were grown on maltose; rho-mutants had around 30 times more invertase than their RHO parent strains. The fact that rho-mutants were much less sensitive to carbon catabolite repression of invertase synthesis than their RHO parents was used to search for the mitochondrial factor(s) or function(s) involved in carbon catabolite repression. A possible metabolic influence of mitochondria on this system of regulation was tested after growth of RHO strains under anaerobic conditions (no respiration nor oxidative phosphorylation), in the presence of KCN (respiration inhibited), dinitrophenol (uncoupling of oxidative phosphorylation) and of both inhibitors anaerobic conditions and dinitrophenol had no effect on the extent of invertase repression. KCN reduced the degree of repression but not to the level found in rho-mutants. A combination of both inhibitors gave the same results as with KCN alone. Erythromycin and chloramphenicol were used as specific inhibitors of mitochondrial protein synthesis. Erythromycin prevented the formation of mitochondrial respiratory systems but did not induce rho-mutants under the conditions used. However, repression of invertase was as strong as in the absence of the inhibitor. Chloramphenicol led only to a slight reduction of the respiratory systems and did not affect invertase levels. A combination of both

  18. Mechanism of ultraviolet light induced catabolite repression of L-arabinose isomerase

    Energy Technology Data Exchange (ETDEWEB)

    Bhatnagar, D; Bhattacharya, A K [Banaras Hindu Univ. (India). Inst. of Medical Sciences

    1982-12-01

    An attempt has been made to find out how U.V. irradiation of E.coli B/r cells causes catabolite repression to inhibit L-arabinose isomerase synthesis. The results presented show that U.V. irradiation leads to a lowering of the cellular cyclic AMP level and of the cyclic AMP binding activity. Unlike catabolite repression by glucose, no small molecular weight compound is involved in U.V. light induced inhibition of the binding activity. It is therefore concluded that the mechanism of catabolite repression induced by U.V. appears to be different from that of the catabolite repression by glucose.

  19. Interference of transcription across H-NS binding sites and repression by H-NS.

    Science.gov (United States)

    Rangarajan, Aathmaja Anandhi; Schnetz, Karin

    2018-05-01

    Nucleoid-associated protein H-NS represses transcription by forming extended DNA-H-NS complexes. Repression by H-NS operates mostly at the level of transcription initiation. Less is known about how DNA-H-NS complexes interfere with transcription elongation. In vitro H-NS has been shown to enhance RNA polymerase pausing and to promote Rho-dependent termination, while in vivo inhibition of Rho resulted in a decrease of the genome occupancy by H-NS. Here we show that transcription directed across H-NS binding regions relieves H-NS (and H-NS/StpA) mediated repression of promoters in these regions. Further, we observed a correlation of transcription across the H-NS-bound region and de-repression. The data suggest that the transcribing RNA polymerase is able to remodel the H-NS complex and/or dislodge H-NS from the DNA and thus relieve repression. Such an interference of transcription and H-NS mediated repression may imply that poorly transcribed AT-rich loci are prone to be repressed by H-NS, while efficiently transcribed loci escape repression. © 2018 John Wiley & Sons Ltd.

  20. Genetic interactions of MAF1 identify a role for Med20 in transcriptional repression of ribosomal protein genes.

    Directory of Open Access Journals (Sweden)

    Ian M Willis

    2008-07-01

    Full Text Available Transcriptional repression of ribosomal components and tRNAs is coordinately regulated in response to a wide variety of environmental stresses. Part of this response involves the convergence of different nutritional and stress signaling pathways on Maf1, a protein that is essential for repressing transcription by RNA polymerase (pol III in Saccharomyces cerevisiae. Here we identify the functions buffering yeast cells that are unable to down-regulate transcription by RNA pol III. MAF1 genetic interactions identified in screens of non-essential gene-deletions and conditionally expressed essential genes reveal a highly interconnected network of 64 genes involved in ribosome biogenesis, RNA pol II transcription, tRNA modification, ubiquitin-dependent proteolysis and other processes. A survey of non-essential MAF1 synthetic sick/lethal (SSL genes identified six gene-deletions that are defective in transcriptional repression of ribosomal protein (RP genes following rapamycin treatment. This subset of MAF1 SSL genes included MED20 which encodes a head module subunit of the RNA pol II Mediator complex. Genetic interactions between MAF1 and subunits in each structural module of Mediator were investigated to examine the functional relationship between these transcriptional regulators. Gene expression profiling identified a prominent and highly selective role for Med20 in the repression of RP gene transcription under multiple conditions. In addition, attenuated repression of RP genes by rapamycin was observed in a strain deleted for the Mediator tail module subunit Med16. The data suggest that Mediator and Maf1 function in parallel pathways to negatively regulate RP mRNA and tRNA synthesis.

  1. Computational prediction of the Crc regulon identifies genus-wide and species-specific targets of catabolite repression control in Pseudomonas bacteria

    Directory of Open Access Journals (Sweden)

    O'Gara Fergal

    2010-11-01

    Full Text Available Abstract Background Catabolite repression control (CRC is an important global control system in Pseudomonas that fine tunes metabolism in order optimise growth and metabolism in a range of different environments. The mechanism of CRC in Pseudomonas spp. centres on the binding of a protein, Crc, to an A-rich motif on the 5' end of an mRNA resulting in translational down-regulation of target genes. Despite the identification of several Crc targets in Pseudomonas spp. the Crc regulon has remained largely unexplored. Results In order to predict direct targets of Crc, we used a bioinformatics approach based on detection of A-rich motifs near the initiation of translation of all protein-encoding genes in twelve fully sequenced Pseudomonas genomes. As expected, our data predict that genes related to the utilisation of less preferred nutrients, such as some carbohydrates, nitrogen sources and aromatic carbon compounds are targets of Crc. A general trend in this analysis is that the regulation of transporters is conserved across species whereas regulation of specific enzymatic steps or transcriptional activators are often conserved only within a species. Interestingly, some nucleoid associated proteins (NAPs such as HU and IHF are predicted to be regulated by Crc. This finding indicates a possible role of Crc in indirect control over a subset of genes that depend on the DNA bending properties of NAPs for expression or repression. Finally, some virulence traits such as alginate and rhamnolipid production also appear to be regulated by Crc, which links nutritional status cues with the regulation of virulence traits. Conclusions Catabolite repression control regulates a broad spectrum of genes in Pseudomonas. Some targets are genus-wide and are typically related to central metabolism, whereas other targets are species-specific, or even unique to particular strains. Further study of these novel targets will enhance our understanding of how Pseudomonas

  2. Computational prediction of the Crc regulon identifies genus-wide and species-specific targets of catabolite repression control in Pseudomonas bacteria.

    Science.gov (United States)

    Browne, Patrick; Barret, Matthieu; O'Gara, Fergal; Morrissey, John P

    2010-11-25

    Catabolite repression control (CRC) is an important global control system in Pseudomonas that fine tunes metabolism in order optimise growth and metabolism in a range of different environments. The mechanism of CRC in Pseudomonas spp. centres on the binding of a protein, Crc, to an A-rich motif on the 5' end of an mRNA resulting in translational down-regulation of target genes. Despite the identification of several Crc targets in Pseudomonas spp. the Crc regulon has remained largely unexplored. In order to predict direct targets of Crc, we used a bioinformatics approach based on detection of A-rich motifs near the initiation of translation of all protein-encoding genes in twelve fully sequenced Pseudomonas genomes. As expected, our data predict that genes related to the utilisation of less preferred nutrients, such as some carbohydrates, nitrogen sources and aromatic carbon compounds are targets of Crc. A general trend in this analysis is that the regulation of transporters is conserved across species whereas regulation of specific enzymatic steps or transcriptional activators are often conserved only within a species. Interestingly, some nucleoid associated proteins (NAPs) such as HU and IHF are predicted to be regulated by Crc. This finding indicates a possible role of Crc in indirect control over a subset of genes that depend on the DNA bending properties of NAPs for expression or repression. Finally, some virulence traits such as alginate and rhamnolipid production also appear to be regulated by Crc, which links nutritional status cues with the regulation of virulence traits. Catabolite repression control regulates a broad spectrum of genes in Pseudomonas. Some targets are genus-wide and are typically related to central metabolism, whereas other targets are species-specific, or even unique to particular strains. Further study of these novel targets will enhance our understanding of how Pseudomonas bacteria integrate nutritional status cues with the regulation

  3. Computational prediction of the Crc regulon identifies genus-wide and species-specific targets of catabolite repression control in Pseudomonas bacteria

    LENUS (Irish Health Repository)

    Browne, Patrick

    2010-11-25

    Abstract Background Catabolite repression control (CRC) is an important global control system in Pseudomonas that fine tunes metabolism in order optimise growth and metabolism in a range of different environments. The mechanism of CRC in Pseudomonas spp. centres on the binding of a protein, Crc, to an A-rich motif on the 5\\' end of an mRNA resulting in translational down-regulation of target genes. Despite the identification of several Crc targets in Pseudomonas spp. the Crc regulon has remained largely unexplored. Results In order to predict direct targets of Crc, we used a bioinformatics approach based on detection of A-rich motifs near the initiation of translation of all protein-encoding genes in twelve fully sequenced Pseudomonas genomes. As expected, our data predict that genes related to the utilisation of less preferred nutrients, such as some carbohydrates, nitrogen sources and aromatic carbon compounds are targets of Crc. A general trend in this analysis is that the regulation of transporters is conserved across species whereas regulation of specific enzymatic steps or transcriptional activators are often conserved only within a species. Interestingly, some nucleoid associated proteins (NAPs) such as HU and IHF are predicted to be regulated by Crc. This finding indicates a possible role of Crc in indirect control over a subset of genes that depend on the DNA bending properties of NAPs for expression or repression. Finally, some virulence traits such as alginate and rhamnolipid production also appear to be regulated by Crc, which links nutritional status cues with the regulation of virulence traits. Conclusions Catabolite repression control regulates a broad spectrum of genes in Pseudomonas. Some targets are genus-wide and are typically related to central metabolism, whereas other targets are species-specific, or even unique to particular strains. Further study of these novel targets will enhance our understanding of how Pseudomonas bacteria integrate

  4. A multiplexed miRNA and transgene expression platform for simultaneous repression and expression of protein coding sequences.

    Science.gov (United States)

    Seyhan, Attila A

    2016-01-01

    Knockdown of single or multiple gene targets by RNA interference (RNAi) is necessary to overcome escape mutants or isoform redundancy. It is also necessary to use multiple RNAi reagents to knockdown multiple targets. It is also desirable to express a transgene or positive regulatory elements and inhibit a target gene in a coordinated fashion. This study reports a flexible multiplexed RNAi and transgene platform using endogenous intronic primary microRNAs (pri-miRNAs) as a scaffold located in the green fluorescent protein (GFP) as a model for any functional transgene. The multiplexed intronic miRNA - GFP transgene platform was designed to co-express multiple small RNAs within the polycistronic cluster from a Pol II promoter at more moderate levels to reduce potential vector toxicity. The native intronic miRNAs are co-transcribed with a precursor GFP mRNA as a single transcript and presumably cleaved out of the precursor-(pre) mRNA by the RNA splicing machinery, spliceosome. The spliced intron with miRNA hairpins will be further processed into mature miRNAs or small interfering RNAs (siRNAs) capable of triggering RNAi effects, while the ligated exons become a mature messenger RNA for the translation of the functional GFP protein. Data show that this approach led to robust RNAi-mediated silencing of multiple Renilla Luciferase (R-Luc)-tagged target genes and coordinated expression of functional GFP from a single transcript in transiently transfected HeLa cells. The results demonstrated that this design facilitates the coordinated expression of all mature miRNAs either as individual miRNAs or as multiple miRNAs and the associated protein. The data suggest that, it is possible to simultaneously deliver multiple negative (miRNA or shRNA) and positive (transgene) regulatory elements. Because many cellular processes require simultaneous repression and activation of downstream pathways, this approach offers a platform technology to achieve that dual manipulation efficiently

  5. Technique Selectively Represses Immune System

    Science.gov (United States)

    ... Research Matters December 3, 2012 Technique Selectively Represses Immune System Myelin (green) encases and protects nerve fibers (brown). A new technique prevents the immune system from attacking myelin in a mouse model of ...

  6. Multiple effects of S13 in modulating the strength of intersubunit interactions in the ribosome during translation.

    Science.gov (United States)

    Cukras, Anthony R; Green, Rachel

    2005-05-27

    The ribosomal protein S13 is found in the head region of the small subunit, where it interacts with the central protuberance of the large ribosomal subunit and with the P site-bound tRNA through its extended C terminus. The bridging interactions between the large and small subunits are dynamic, and are thought to be critical in orchestrating the molecular motions of the translation cycle. S13 provides a direct link between the tRNA-binding site and the movements in the head of the small subunit seen during translocation, thereby providing a possible pathway of signal transduction. We have created and characterized an rpsM(S13)-deficient strain of Escherichia coli and have found significant defects in subunit association, initiation and translocation through in vitro assays of S13-deficient ribosomes. Targeted mutagenesis of specific bridge and tRNA contact elements in S13 provides evidence that these two interaction domains play critical roles in maintaining the fidelity of translation. This ribosomal protein thus appears to play a non-essential, yet important role by modulating subunit interactions in multiple steps of the translation cycle.

  7. Drosophila Nanos acts as a molecular clamp that modulates the RNA-binding and repression activities of Pumilio

    Energy Technology Data Exchange (ETDEWEB)

    Weidmann, Chase A.; Qiu, Chen; Arvola, René M.; Lou, Tzu-Fang; Killingsworth, Jordan; Campbell, Zachary T.; Tanaka Hall, Traci M.; Goldstrohm, Aaron C.

    2016-08-02

    Collaboration among the multitude of RNA-binding proteins (RBPs) is ubiquitous, yet our understanding of these key regulatory complexes has been limited to single RBPs. We investigated combinatorial translational regulation byDrosophilaPumilio (Pum) and Nanos (Nos), which control development, fertility, and neuronal functions. Our results show how the specificity of one RBP (Pum) is modulated by cooperative RNA recognition with a second RBP (Nos) to synergistically repress mRNAs. Crystal structures of Nos-Pum-RNA complexes reveal that Nos embraces Pum and RNA, contributes sequence-specific contacts, and increases Pum RNA-binding affinity. Nos shifts the recognition sequence and promotes repression complex formation on mRNAs that are not stably bound by Pum alone, explaining the preponderance of sub-optimal Pum sites regulatedin vivo. Our results illuminate the molecular mechanism of a regulatory switch controlling crucial gene expression programs, and provide a framework for understanding how the partnering of RBPs evokes changes in binding specificity that underlie regulatory network dynamics.

  8. Recognition of Translator Expertise using Sequences of Fixations and Keystrokes

    DEFF Research Database (Denmark)

    Gómez, Pascual Martínez; Minocha, Akshay; Huang, Jin

    2014-01-01

    Professional human translation is necessary to meet high quality standards in industry and governmental agencies. Translators engage in multiple activities during their task, and there is a need to model their behavior, with the objective to understand and optimize the translation process....... In recent years, user interfaces enabled us to record user events such as eye-movements or keystrokes. Although there have been insightful descriptive analysis of the translation process, there are multiple advantages in enabling quantitative inference. We present methods to classify sequences of fixations...... and keystrokes into activities and model translation sessions with the objective to recognize translator expertise. We show significant error reductions in the task of recognizing certified translators and their years of experience, and analyze the characterizing patterns....

  9. A Growth Model of Inflation, Tax Evasion and Financial Repression

    OpenAIRE

    Roubini, Nouriel; Sala-i-Martin, Xavier

    1992-01-01

    In this paper we study the effects of policies of financial repression on long term growth and try to explain why optimizing governments might want to repress the financial sector. We also explain why inflation may be negatively related to growth, even though it does not affect growth directly. We argue that the main reason why governments repress the financial sector is that this sector is the source of "easy" resources for the public budget The source of revenue stemming from this intervent...

  10. Repressive coping and alexithymia in idiopathic environmental intolerance

    DEFF Research Database (Denmark)

    Skovbjerg, Sine; Zachariae, Robert; Rasmussen, Alice

    2010-01-01

    To examine if the non-expression of negative emotions (i.e., repressive coping) and differences in the ability to process and regulate emotions (i.e., alexithymia) is associated with idiopathic environmental intolerance (IEI).......To examine if the non-expression of negative emotions (i.e., repressive coping) and differences in the ability to process and regulate emotions (i.e., alexithymia) is associated with idiopathic environmental intolerance (IEI)....

  11. Multiple novel alternative splicing forms of FBXW7α have a translational modulatory function and show specific alteration in human cancer.

    Directory of Open Access Journals (Sweden)

    Yueyong Liu

    Full Text Available FBXW7 acts as a tumor suppressor through ubiquitination and degradation of multiple oncoproteins. Loss of FBXW7 expression, which could be partially attributed by the genomic deletion or mutation of FBXW7 locus, is frequently observed in various human cancers. However, the mechanisms regulating FBXW7 expression still remain poorly understood. Here we examined the 5' region of FBXW7 gene to investigate the regulation of FBXW7 expression. We identified seven alternative splicing (AS 5'-UTR forms of FBXW7α that are composed of multiple novel non-coding exons. A significant difference in translational efficiency among these 5'-UTRs variants was observed by in vivo Luciferase reporter assay and Western blot. Furthermore, we found that the mRNA level of the AS form with high translational efficiency was specifically reduced in more than 80% of breast cancer cell lines and in more than 50% of human primary cancers from various tissues. In addition, we also identified mutations of FBXW7 in prostate cancers (5.6%, kidney cancers (16.7%, and bladder cancers (18.8%. Our results suggest that in addition to mutation, differential expression of FBXW7α AS forms with different translational properties may serve as a novel mechanism for inactivation of FBXW7 in human cancer.

  12. Rapid and Scalable Characterization of CRISPR Technologies Using an E. coli Cell-Free Transcription-Translation System.

    Science.gov (United States)

    Marshall, Ryan; Maxwell, Colin S; Collins, Scott P; Jacobsen, Thomas; Luo, Michelle L; Begemann, Matthew B; Gray, Benjamin N; January, Emma; Singer, Anna; He, Yonghua; Beisel, Chase L; Noireaux, Vincent

    2018-01-04

    CRISPR-Cas systems offer versatile technologies for genome engineering, yet their implementation has been outpaced by ongoing discoveries of new Cas nucleases and anti-CRISPR proteins. Here, we present the use of E. coli cell-free transcription-translation (TXTL) systems to vastly improve the speed and scalability of CRISPR characterization and validation. TXTL can express active CRISPR machinery from added plasmids and linear DNA, and TXTL can output quantitative dynamics of DNA cleavage and gene repression-all without protein purification or live cells. We used TXTL to measure the dynamics of DNA cleavage and gene repression for single- and multi-effector CRISPR nucleases, predict gene repression strength in E. coli, determine the specificities of 24 diverse anti-CRISPR proteins, and develop a fast and scalable screen for protospacer-adjacent motifs that was successfully applied to five uncharacterized Cpf1 nucleases. These examples underscore how TXTL can facilitate the characterization and application of CRISPR technologies across their many uses. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Mutual repression enhances the steepness and precision of gene expression boundaries.

    Directory of Open Access Journals (Sweden)

    Thomas R Sokolowski

    Full Text Available Embryonic development is driven by spatial patterns of gene expression that determine the fate of each cell in the embryo. While gene expression is often highly erratic, embryonic development is usually exceedingly precise. In particular, gene expression boundaries are robust not only against intra-embryonic fluctuations such as noise in gene expression and protein diffusion, but also against embryo-to-embryo variations in the morphogen gradients, which provide positional information to the differentiating cells. How development is robust against intra- and inter-embryonic variations is not understood. A common motif in the gene regulation networks that control embryonic development is mutual repression between pairs of genes. To assess the role of mutual repression in the robust formation of gene expression patterns, we have performed large-scale stochastic simulations of a minimal model of two mutually repressing gap genes in Drosophila, hunchback (hb and knirps (kni. Our model includes not only mutual repression between hb and kni, but also the stochastic and cooperative activation of hb by the anterior morphogen Bicoid (Bcd and of kni by the posterior morphogen Caudal (Cad, as well as the diffusion of Hb and Kni between neighboring nuclei. Our analysis reveals that mutual repression can markedly increase the steepness and precision of the gap gene expression boundaries. In contrast to other mechanisms such as spatial averaging and cooperative gene activation, mutual repression thus allows for gene-expression boundaries that are both steep and precise. Moreover, mutual repression dramatically enhances their robustness against embryo-to-embryo variations in the morphogen levels. Finally, our simulations reveal that diffusion of the gap proteins plays a critical role not only in reducing the width of the gap gene expression boundaries via the mechanism of spatial averaging, but also in repairing patterning errors that could arise because of the

  14. Translating Alcohol Research: Opportunities and Challenges.

    Science.gov (United States)

    Batman, Angela M; Miles, Michael F

    2015-01-01

    Alcohol use disorder (AUD) and its sequelae impose a major burden on the public health of the United States, and adequate long-term control of this disorder has not been achieved. Molecular and behavioral basic science research findings are providing the groundwork for understanding the mechanisms underlying AUD and have identified multiple candidate targets for ongoing clinical trials. However, the translation of basic research or clinical findings into improved therapeutic approaches for AUD must become more efficient. Translational research is a multistage process of stream-lining the movement of basic biomedical research findings into clinical research and then to the clinical target populations. This process demands efficient bidirectional communication across basic, applied, and clinical science as well as with clinical practitioners. Ongoing work suggests rapid progress is being made with an evolving translational framework within the alcohol research field. This is helped by multiple interdisciplinary collaborative research structures that have been developed to advance translational work on AUD. Moreover, the integration of systems biology approaches with collaborative clinical studies may yield novel insights for future translational success. Finally, appreciation of genetic variation in pharmacological or behavioral treatment responses and optimal communication from bench to bedside and back may strengthen the success of translational research applications to AUD.

  15. Translating Romans: some persistent headaches

    Directory of Open Access Journals (Sweden)

    A.B. du Toit

    2010-07-01

    Full Text Available Translating Romans: some persistent headaches Gone are the days when it was axiomatic that expertise in biblical languages automatically qualified one as a Bible translator. In 1949, Ronald Knox, who for nine years conscientiously struggled with translating the Bible for his generation, published a booklet under the title The trials of a translator. At that stage Bible translation as the subject of scientific study was still in its infancy. Since then, research into the intricacies of communicating the biblical message in an authentic but understandable manner, has made significant progress (cf. Roberts, 2009. However, the frustrations of Bible translators, first of all to really understand what the biblical authors wanted to convey to their original addressees, and then to commu-nicate that message to their own targeted readers in a meaningful way, have not disappeared. In fact, the challenge to meet the vary-ing requirements of the multiple kinds of translation that are present-ly in vogue, has only increased.

  16. Mechanisms of transcriptional repression by EWS-FLl1 in Ewing Sarcoma

    International Nuclear Information System (INIS)

    Niedan, S.

    2012-01-01

    The EWS-FLI1 chimeric oncoprotein characterizing Ewing Sarcoma (ES) is a prototypic aberrant ETS transcription factor with activating and repressive gene regulatory functions. Mechanisms of transcriptional regulation, especially transcriptional repression by EWS-FLI1, are poorly understood. We report that EWS-FLI1 repressed promoters are enriched in forkhead box recognition motifs, and identify FOXO1 as a EWS-FLI1 suppressed master regulator responsible for a significant subset of EWS-FLI1 repressed genes. In addition to transcriptional FOXO1 regulation by direct promoter binding of EWS-FLI1, its subcellular localization and activity is regulated by CDK2 and AKT mediated phosphorylation downstream of EWS-FLI1. Functional restoration of nuclear FOXO1 expression in ES cells impaired proliferation and significantly reduced clonogenicity. Gene-expression profiling revealed a significant overlap between EWS-FLI1 repressed and FOXO1-activated genes. Treatment of ES cell lines with Methylseleninic acid (MSA) evoked reactivation of endogenous FOXO1 in the presence of EWS-FLI1 in a dose- and time-dependent manner and induced massive cell death which was found to be partially FOXO1-dependent. In an orthotopic xenograft mouse model, MSA increased FOXO1 expression in the tumor paralleled by a significant decrease in ES tumor growth. Together, these data suggest that a repressive sub-signature of EWS-FLI1 repressed genes precipitates suppression of FOXO1. FOXO1 re-activation by small molecules may therefore constitute a novel therapeutic strategy in the treatment of ES. (author) [de

  17. Circuitry Linking the Catabolite Repression and Csr Global Regulatory Systems of Escherichia coli.

    Science.gov (United States)

    Pannuri, Archana; Vakulskas, Christopher A; Zere, Tesfalem; McGibbon, Louise C; Edwards, Adrianne N; Georgellis, Dimitris; Babitzke, Paul; Romeo, Tony

    2016-11-01

    Cyclic AMP (cAMP) and the cAMP receptor protein (cAMP-CRP) and CsrA are the principal regulators of the catabolite repression and carbon storage global regulatory systems, respectively. cAMP-CRP controls the transcription of genes for carbohydrate metabolism and other processes in response to carbon nutritional status, while CsrA binds to diverse mRNAs and regulates translation, RNA stability, and/or transcription elongation. CsrA also binds to the regulatory small RNAs (sRNAs) CsrB and CsrC, which antagonize its activity. The BarA-UvrY two-component signal transduction system (TCS) directly activates csrB and csrC (csrB/C) transcription, while CsrA does so indirectly. We show that cAMP-CRP inhibits csrB/C transcription without negatively regulating phosphorylated UvrY (P-UvrY) or CsrA levels. A crp deletion caused an elevation in CsrB/C levels in the stationary phase of growth and increased the expression of csrB-lacZ and csrC-lacZ transcriptional fusions, although modest stimulation of CsrB/C turnover by the crp deletion partially masked the former effects. DNase I footprinting and other studies demonstrated that cAMP-CRP bound specifically to three sites located upstream from the csrC promoter, two of which overlapped the P-UvrY binding site. These two proteins competed for binding at the overlapping sites. In vitro transcription-translation experiments confirmed direct repression of csrC-lacZ expression by cAMP-CRP. In contrast, cAMP-CRP effects on csrB transcription may be mediated indirectly, as it bound nonspecifically to csrB DNA. In the reciprocal direction, CsrA bound to crp mRNA with high affinity and specificity and yet exhibited only modest, conditional effects on expression. Our findings are incorporated into an emerging model for the response of Csr circuitry to carbon nutritional status. Csr (Rsm) noncoding small RNAs (sRNAs) CsrB and CsrC of Escherichia coli use molecular mimicry to sequester the RNA binding protein CsrA (RsmA) away from lower

  18. 'Translation' and 'transformation' in the analytic situation: Freud-Bion-Laplanche.

    Science.gov (United States)

    Heenen-Wolff, Susann

    2013-06-01

    Following a short introduction to the core theses of Jean Laplanche's theory of a 'general seduction' the author presents the resultant clinical position of the analyst. In the same way that an adult sends 'enigmatic messages' to the child, it is the analyst's task to reopen this primal situation so that the patient can find new 'translations' for these messages. Laplanche distinguishes between the function of the analytic frame--which represents and supports attachment--and the 'sexual'--which is the repressed and constitutes the unconscious. Only the focus on this unconscious facilitates the deconstruction of 'incorrect' translations. Accordingly, the analyst, says Laplanche, should not take part in construction--this is a self-construction of the patient--but only in reconstruction. The author compares this clinical model with Freud's notions and the 'transformation processes' through the alpha function as described by Bion. She illustrates Laplanche's model and the interpretation strategy with case material. Copyright © 2013 Institute of Psychoanalysis.

  19. Rule of Repression in Chile.

    Science.gov (United States)

    American Indian Journal, 1979

    1979-01-01

    This report on the current condition of the Mapuche Indians of Chile is edited from a document on the "Situation of Human Rights in Chile" and details the repressive and inhumane treatment of the largest indigenous ethnic minority in the country. (Author/RTS)

  20. p16(INK4a translation suppressed by miR-24.

    Directory of Open Access Journals (Sweden)

    Ashish Lal

    2008-03-01

    Full Text Available Expression of the tumor suppressor p16(INK4a increases during aging and replicative senescence.Here, we report that the microRNA miR-24 suppresses p16 expression in human diploid fibroblasts and cervical carcinoma cells. Increased p16 expression with replicative senescence was associated with decreased levels of miR-24, a microRNA that was predicted to associate with the p16 mRNA coding and 3'-untranslated regions. Ectopic miR-24 overexpression reduced p16 protein but not p16 mRNA levels. Conversely, introduction of antisense (AS-miR-24 blocked miR-24 expression and markedly enhanced p16 protein levels, p16 translation, and the production of EGFP-p16 reporter bearing the miR-24 target recognition sites.Together, our results suggest that miR-24 represses the initiation and elongation phases of p16 translation.

  1. Arabidopsis ETR1 and ERS1 Differentially Repress the Ethylene Response in Combination with Other Ethylene Receptor Genes1[W

    Science.gov (United States)

    Liu, Qian; Wen, Chi-Kuang

    2012-01-01

    The ethylene response is negatively regulated by a family of five ethylene receptor genes in Arabidopsis (Arabidopsis thaliana). The five members of the ethylene receptor family can physically interact and form complexes, which implies that cooperativity for signaling may exist among the receptors. The ethylene receptor gene mutations etr1-1(C65Y)(for ethylene response1-1), ers1-1(I62P) (for ethylene response sensor1-1), and ers1C65Y are dominant, and each confers ethylene insensitivity. In this study, the repression of the ethylene response by these dominant mutant receptor genes was examined in receptor-defective mutants to investigate the functional significance of receptor cooperativity in ethylene signaling. We showed that etr1-1(C65Y), but not ers1-1(I62P), substantially repressed various ethylene responses independent of other receptor genes. In contrast, wild-type receptor genes differentially supported the repression of ethylene responses by ers1-1(I62P); ETR1 and ETHYLENE INSENSITIVE4 (EIN4) supported ers1-1(I62P) functions to a greater extent than did ERS2, ETR2, and ERS1. The lack of both ETR1 and EIN4 almost abolished the repression of ethylene responses by ers1C65Y, which implied that ETR1 and EIN4 have synergistic effects on ers1C65Y functions. Our data indicated that a dominant ethylene-insensitive receptor differentially repressed ethylene responses when coupled with a wild-type ethylene receptor, which supported the hypothesis that the formation of a variety of receptor complexes may facilitate differential receptor signal output, by which ethylene responses can be repressed to different extents. We hypothesize that plants can respond to a broad ethylene concentration range and exhibit tissue-specific ethylene responsiveness with differential cooperation of the multiple ethylene receptors. PMID:22227969

  2. Regulation of Cited2 expression provides a functional link between translational and transcriptional responses during hypoxia

    International Nuclear Information System (INIS)

    Beucken, Twan van den; Magagnin, Michael G.; Savelkouls, Kim; Lambin, Philippe; Koritzinsky, Marianne; Wouters, Bradly G.

    2007-01-01

    Background and purpose: Protein synthesis rates are greatly reduced under hypoxic conditions as a consequence of an overall inhibition of mRNA translation. Certain specific mRNA species have the ability to escape this general translational repression. At the cellular level this results in differential protein expression during hypoxic conditions. The objective of this study was to characterize the translational regulation of the postulated HIF-1α antagonist Cited2. Materials and methods: DU145 prostate carcinoma cells and mouse embryonic fibroblasts with a homozygous knock-in mutation for eIF2α (S51A) or wild-type eIF2α were exposed to severe hypoxia after which both total mRNA and efficiently translated mRNA were isolated. Quantitative RT-PCR was used to measure and compare changes in transcription (total mRNA) with changes in translation (efficiently translated mRNA fraction). Results: We show using HIF-1α null MEF cells that transcriptional induction of Cited2 during hypoxia is dependent on HIF-1α. Although global mRNA translation is inhibited during hypoxia Cited2 mRNA remains efficiently translated. An evolutionary conserved upstream open reading frame (uORF) in the 5'UTR of Cited2 did not stimulate translation in an eIF2α dependent manner during hypoxia. Conclusions: Selective translation Cited2 by an eIF2α independent mechanism establishes a link between translation and HIF-1 dependent transcription during hypoxia

  3. Literature, Advertising and Return of the Repressed

    Directory of Open Access Journals (Sweden)

    Francesco Ghelli

    2013-06-01

    Full Text Available Since I have faced with the hypothesis elaborated by Francesco Orlando, according to which literature is a form of return of the repressed, I wondered what – in our era of deregulation, end of censorship and taboos – could occupy the place of the repressed. One of the most influential sociologists, Zygmunt Bauman, has outlined the epochal passage from “the uneasiness in civilization” to today's “uneasiness of freedom”. The problem of desire today would not be a clash with a limit, but an indefinite freedom that is likely to turn into lost, loss of intensity and meaning.

  4. Social adjustment and repressive adaptive style in survivors of pediatric cancer.

    Science.gov (United States)

    Schulte, Fiona; Wurz, Amanda; Russell, K Brooke; Reynolds, Kathleen; Strother, Douglas; Dewey, Deborah

    2018-01-01

    The aim of the study was to explore the relationship between repressive adaptive style and self-reports of social adjustment in survivors of pediatric cancer compared to their siblings. We hypothesized that there would be a greater proportion of repressors among survivors of pediatric cancer compared to siblings, and that repressive adaptive style would be significantly associated with more positive self-reports of social adjustment. We utilized a cross-sectional approach. Seventy-seven families participated. Survivors of pediatric cancer (n = 77, 48% male; 8-18 years of age) and one sibling (n = 50, 48% male; 8-18 years of age) completed measures assessing repressive adaptive style and social adjustment. As well, one parent from each family completed a socio-demographic questionnaire. Questionnaire packages were mailed to eligible families who agreed to participate, and were mailed back to investigators in a pre-addressed, pre-stamped envelope. Chi-square analyses revealed there was no significant difference in the proportion of repressors among survivors and siblings. Social adjustment scores were subjected to a two (group: survivor, sibling) by two (repressor, nonrepressor) ANCOVA with gender and age as covariates. There was a significant main effect of repressive adaptive style (F = 5.69, p < .05, η 2 = 0.05) with a modest effect. Survivors and siblings with a repressive style reported significantly higher social adjustment scores (M = 106.91, SD = 11.69) compared to nonrepressors (M = 99.57, SD = 13.45). Repressive adaptive style explains some of the variance in survivors and siblings' self-reports of social adjustment. Future research should aim to better understand the role of the repressive adaptive style in survivors and siblings of children with cancer.

  5. The translation initiation factor eIF4E regulates the sex-specific expression of the master switch gene Sxl in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Patricia L Graham

    2011-07-01

    Full Text Available In female fruit flies, Sex-lethal (Sxl turns off the X chromosome dosage compensation system by a mechanism involving a combination of alternative splicing and translational repression of the male specific lethal-2 (msl-2 mRNA. A genetic screen identified the translation initiation factor eif4e as a gene that acts together with Sxl to repress expression of the Msl-2 protein. However, eif4e is not required for Sxl mediated repression of msl-2 mRNA translation. Instead, eif4e functions as a co-factor in Sxl-dependent female-specific alternative splicing of msl-2 and also Sxl pre-mRNAs. Like other factors required for Sxl regulation of splicing, eif4e shows maternal-effect female-lethal interactions with Sxl. This female lethality can be enhanced by mutations in other co-factors that promote female-specific splicing and is caused by a failure to properly activate the Sxl-positive autoregulatory feedback loop in early embryos. In this feedback loop Sxl proteins promote their own synthesis by directing the female-specific alternative splicing of Sxl-Pm pre-mRNAs. Analysis of pre-mRNA splicing when eif4e activity is compromised demonstrates that Sxl-dependent female-specific splicing of both Sxl-Pm and msl-2 pre-mRNAs requires eif4e activity. Consistent with a direct involvement in Sxl-dependent alternative splicing, eIF4E is associated with unspliced Sxl-Pm pre-mRNAs and is found in complexes that contain early acting splicing factors--the U1/U2 snRNP protein Sans-fils (Snf, the U1 snRNP protein U1-70k, U2AF38, U2AF50, and the Wilms' Tumor 1 Associated Protein Fl(2d--that have been directly implicated in Sxl splicing regulation.

  6. State Repression and its Effects on Civil Conflict, Socio-Economic Outcomes, and Leadership Tenure

    Science.gov (United States)

    feedback loop: how citizens respond peacefully or violently influences the type of repression rulers employ. How rulers use repression influences how and...whether citizens protest. Moreover, how rulers respond to their citizens may influence leadership duration. Obviously, the relationship among repression...US (and allied) officials may want policy options to influence rulers who are becoming increasingly repressive (as in Turkey and Egypt) or leaders who

  7. Mechanisms of transcriptional repression by histone lysine methylation

    DEFF Research Database (Denmark)

    Hublitz, Philip; Albert, Mareike; Peters, Antoine H F M

    2009-01-01

    . In this report, we review the recent literature to deduce mechanisms underlying Polycomb and H3K9 methylation mediated repression, and describe the functional interplay with activating H3K4 methylation. We summarize recent data that indicate a close relationship between GC density of promoter sequences......, transcription factor binding and the antagonizing activities of distinct epigenetic regulators such as histone methyltransferases (HMTs) and histone demethylases (HDMs). Subsequently, we compare chromatin signatures associated with different types of transcriptional outcomes from stable repression to highly...

  8. Identification of PNG kinase substrates uncovers interactions with the translational repressor TRAL in the oocyte-to-embryo transition.

    Science.gov (United States)

    Hara, Masatoshi; Lourido, Sebastian; Petrova, Boryana; Lou, Hua Jane; Von Stetina, Jessica R; Kashevsky, Helena; Turk, Benjamin E; Orr-Weaver, Terry L

    2018-02-26

    The Drosophila Pan Gu (PNG) kinase complex regulates hundreds of maternal mRNAs that become translationally repressed or activated as the oocyte transitions to an embryo. In a previous paper (Hara et al., 2017), we demonstrated PNG activity is under tight developmental control and restricted to this transition. Here, examination of PNG specificity showed it to be a Thr-kinase yet lacking a clear phosphorylation site consensus sequence. An unbiased biochemical screen for PNG substrates identified the conserved translational repressor Trailer Hitch (TRAL). Phosphomimetic mutation of the PNG phospho-sites in TRAL reduced its ability to inhibit translation in vitro. In vivo, mutation of tral dominantly suppressed png mutants and restored Cyclin B protein levels. The repressor Pumilio (PUM) has the same relationship with PNG, and we also show that PUM is a PNG substrate. Furthermore, PNG can phosphorylate BICC and ME31B, repressors that bind TRAL in cytoplasmic RNPs. Therefore, PNG likely promotes translation at the oocyte-to-embryo transition by phosphorylating and inactivating translational repressors. © 2018, Hara et al.

  9. Quantifying Translation-Invariance in Convolutional Neural Networks

    OpenAIRE

    Kauderer-Abrams, Eric

    2017-01-01

    A fundamental problem in object recognition is the development of image representations that are invariant to common transformations such as translation, rotation, and small deformations. There are multiple hypotheses regarding the source of translation invariance in CNNs. One idea is that translation invariance is due to the increasing receptive field size of neurons in successive convolution layers. Another possibility is that invariance is due to the pooling operation. We develop a simple ...

  10. Allele-Specific DNA Methylation and Its Interplay with Repressive Histone Marks at Promoter-Mutant TERT Genes

    Directory of Open Access Journals (Sweden)

    Josh Lewis Stern

    2017-12-01

    Full Text Available A mutation in the promoter of the Telomerase Reverse Transcriptase (TERT gene is the most frequent noncoding mutation in cancer. The mutation drives unusual monoallelic expression of TERT, allowing immortalization. Here, we find that DNA methylation of the TERT CpG island (CGI is also allele-specific in multiple cancers. The expressed allele is hypomethylated, which is opposite to cancers without TERT promoter mutations. The continued presence of Polycomb repressive complex 2 (PRC2 on the inactive allele suggests that histone marks of repressed chromatin may be causally linked to high DNA methylation. Consistent with this hypothesis, TERT promoter DNA containing 5-methyl-CpG has much increased affinity for PRC2 in vitro. Thus, CpG methylation and histone marks appear to collaborate to maintain the two TERT alleles in different epigenetic states in TERT promoter mutant cancers. Finally, in several cancers, DNA methylation levels at the TERT CGI correlate with altered patient survival.

  11. Translation inhibition of the developmental cycle protein HctA by the small RNA IhtA is conserved across Chlamydia.

    Directory of Open Access Journals (Sweden)

    Jeremiah Tattersall

    Full Text Available The developmental cycle of the obligate intracellular pathogen Chlamydia trachomatis serovar L2 is controlled in part by the small non-coding RNA (sRNA, IhtA. All Chlamydia alternate in a regulated fashion between the infectious elementary body (EB and the replicative reticulate body (RB which asynchronously re-differentiates back to the terminal EB form at the end of the cycle. The histone like protein HctA is central to RB:EB differentiation late in the cycle as it binds to and occludes the genome, thereby repressing transcription and translation. The sRNA IhtA is a critical component of this regulatory loop as it represses translation of hctA until late in infection at which point IhtA transcription decreases, allowing HctA expression to occur and RB to EB differentiation to proceed. It has been reported that IhtA is expressed during infection by the human pathogens C. trachomatis serovars L2, D and L2b and C. pneumoniae. We show in this work that IhtA is also expressed by the animal pathogens C. caviae and C. muridarum. Expression of HctA in E. coli is lethal and co-expression of IhtA relieves this phenotype. To determine if regulation of HctA by IhtA is a conserved mechanism across pathogenic chlamydial species, we cloned hctA and ihtA from C. trachomatis serovar D, C. muridarum, C. caviae and C. pneumoniae and assayed for rescue of growth repression in E. coli co-expression studies. In each case, co-expression of ihtA with the cognate hctA resulted in relief of growth repression. In addition, expression of each chlamydial species IhtA rescued the lethal phenotype of C. trachomatis serovar L2 HctA expression. As biolayer interferometry studies indicate that IhtA interacts directly with hctA message for all species tested, we predict that conserved sequences of IhtA are necessary for function and/or binding.

  12. Translation inhibition of the developmental cycle protein HctA by the small RNA IhtA is conserved across Chlamydia.

    Science.gov (United States)

    Tattersall, Jeremiah; Rao, Geeta Vittal; Runac, Justin; Hackstadt, Ted; Grieshaber, Scott S; Grieshaber, Nicole A

    2012-01-01

    The developmental cycle of the obligate intracellular pathogen Chlamydia trachomatis serovar L2 is controlled in part by the small non-coding RNA (sRNA), IhtA. All Chlamydia alternate in a regulated fashion between the infectious elementary body (EB) and the replicative reticulate body (RB) which asynchronously re-differentiates back to the terminal EB form at the end of the cycle. The histone like protein HctA is central to RB:EB differentiation late in the cycle as it binds to and occludes the genome, thereby repressing transcription and translation. The sRNA IhtA is a critical component of this regulatory loop as it represses translation of hctA until late in infection at which point IhtA transcription decreases, allowing HctA expression to occur and RB to EB differentiation to proceed. It has been reported that IhtA is expressed during infection by the human pathogens C. trachomatis serovars L2, D and L2b and C. pneumoniae. We show in this work that IhtA is also expressed by the animal pathogens C. caviae and C. muridarum. Expression of HctA in E. coli is lethal and co-expression of IhtA relieves this phenotype. To determine if regulation of HctA by IhtA is a conserved mechanism across pathogenic chlamydial species, we cloned hctA and ihtA from C. trachomatis serovar D, C. muridarum, C. caviae and C. pneumoniae and assayed for rescue of growth repression in E. coli co-expression studies. In each case, co-expression of ihtA with the cognate hctA resulted in relief of growth repression. In addition, expression of each chlamydial species IhtA rescued the lethal phenotype of C. trachomatis serovar L2 HctA expression. As biolayer interferometry studies indicate that IhtA interacts directly with hctA message for all species tested, we predict that conserved sequences of IhtA are necessary for function and/or binding.

  13. Identification of phlebovirus and arenavirus RNA sequences that stall and repress the exoribonuclease XRN1.

    Science.gov (United States)

    Charley, Phillida A; Wilusz, Carol J; Wilusz, Jeffrey

    2018-01-05

    Regulated mRNA decay plays a vital role in determining both the level and quality of cellular gene expression. Viral RNAs must successfully evade this host RNA decay machinery to establish a productive infection. One way for RNA viruses to accomplish this is to target the cellular exoribonuclease XRN1, because this enzyme is accessible in the cytoplasm and plays a major role in mRNA decay. Members of the Flaviviridae use RNA structures in their 5'- or 3'-untranslated regions to stall and repress XRN1, effectively stabilizing viral RNAs while also causing significant dysregulation of host cell mRNA stability. Here, we use a series of biochemical assays to demonstrate that the 3'-terminal portion of the nucleocapsid (N) mRNA of Rift Valley fever virus, a phlebovirus of the Bunyaviridae family, also can effectively stall and repress XRN1. The region responsible for impeding XRN1 includes a G-rich portion that likely forms a G-quadruplex structure. The 3'-terminal portions of ambisense-derived transcripts of multiple arenaviruses also stalled XRN1. Therefore, we conclude that RNAs from two additional families of mammalian RNA viruses stall and repress XRN1. This observation. emphasizes the importance and commonality of this viral strategy to interfere with the 5'-to-3'-exoribonuclease component of the cytoplasmic RNA decay machinery. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Nuclear AXIN2 represses MYC gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Rennoll, Sherri A.; Konsavage, Wesley M.; Yochum, Gregory S., E-mail: gsy3@psu.edu

    2014-01-03

    Highlights: •AXIN2 localizes to cytoplasmic and nuclear compartments in colorectal cancer cells. •Nuclear AXIN2 represses the activity of Wnt-responsive luciferase reporters. •β-Catenin bridges AXIN2 to TCF transcription factors. •AXIN2 binds the MYC promoter and represses MYC gene expression. -- Abstract: The β-catenin transcriptional coactivator is the key mediator of the canonical Wnt signaling pathway. In the absence of Wnt, β-catenin associates with a cytosolic and multi-protein destruction complex where it is phosphorylated and targeted for proteasomal degradation. In the presence of Wnt, the destruction complex is inactivated and β-catenin translocates into the nucleus. In the nucleus, β-catenin binds T-cell factor (TCF) transcription factors to activate expression of c-MYC (MYC) and Axis inhibition protein 2 (AXIN2). AXIN2 is a member of the destruction complex and, thus, serves in a negative feedback loop to control Wnt/β-catenin signaling. AXIN2 is also present in the nucleus, but its function within this compartment is unknown. Here, we demonstrate that AXIN2 localizes to the nuclei of epithelial cells within normal and colonic tumor tissues as well as colorectal cancer cell lines. In the nucleus, AXIN2 represses expression of Wnt/β-catenin-responsive luciferase reporters and forms a complex with β-catenin and TCF. We demonstrate that AXIN2 co-occupies β-catenin/TCF complexes at the MYC promoter region. When constitutively localized to the nucleus, AXIN2 alters the chromatin structure at the MYC promoter and directly represses MYC gene expression. These findings suggest that nuclear AXIN2 functions as a rheostat to control MYC expression in response to Wnt/β-catenin signaling.

  15. Nuclear AXIN2 represses MYC gene expression

    International Nuclear Information System (INIS)

    Rennoll, Sherri A.; Konsavage, Wesley M.; Yochum, Gregory S.

    2014-01-01

    Highlights: •AXIN2 localizes to cytoplasmic and nuclear compartments in colorectal cancer cells. •Nuclear AXIN2 represses the activity of Wnt-responsive luciferase reporters. •β-Catenin bridges AXIN2 to TCF transcription factors. •AXIN2 binds the MYC promoter and represses MYC gene expression. -- Abstract: The β-catenin transcriptional coactivator is the key mediator of the canonical Wnt signaling pathway. In the absence of Wnt, β-catenin associates with a cytosolic and multi-protein destruction complex where it is phosphorylated and targeted for proteasomal degradation. In the presence of Wnt, the destruction complex is inactivated and β-catenin translocates into the nucleus. In the nucleus, β-catenin binds T-cell factor (TCF) transcription factors to activate expression of c-MYC (MYC) and Axis inhibition protein 2 (AXIN2). AXIN2 is a member of the destruction complex and, thus, serves in a negative feedback loop to control Wnt/β-catenin signaling. AXIN2 is also present in the nucleus, but its function within this compartment is unknown. Here, we demonstrate that AXIN2 localizes to the nuclei of epithelial cells within normal and colonic tumor tissues as well as colorectal cancer cell lines. In the nucleus, AXIN2 represses expression of Wnt/β-catenin-responsive luciferase reporters and forms a complex with β-catenin and TCF. We demonstrate that AXIN2 co-occupies β-catenin/TCF complexes at the MYC promoter region. When constitutively localized to the nucleus, AXIN2 alters the chromatin structure at the MYC promoter and directly represses MYC gene expression. These findings suggest that nuclear AXIN2 functions as a rheostat to control MYC expression in response to Wnt/β-catenin signaling

  16. THE DYNAMICS OF REPRESSIVE HABITUS LAWS: ETHNOGRAPHIC CASE STUDY IN UNWIMA

    Directory of Open Access Journals (Sweden)

    Teddy Asmara

    2015-01-01

    Full Text Available This research describes repressive legal habitus Unwima community by focusing on the issue of why they create a legal cognition such manner and how to empower them in the public domain when facing a lawsuit in court and examination process in higher education office. The results of the research with ethnographic methods and interpretative analysis, First, that repressive legal habitus is a part of the neo-feudalistic thinking in education management. Second, the empowerment of repressive legal habitus in the public domain potentially generate a legal behavior of impulsive that tends to a manipulative, coercive, veiled, and other immorality practices.

  17. How social media matter: Repression and the diffusion of the Occupy Wall Street movement.

    Science.gov (United States)

    Suh, Chan S; Vasi, Ion Bogdan; Chang, Paul Y

    2017-07-01

    This study explores the role played by social media in reshaping the repression-mobilization relationship. Drawing on the case of the Occupy Wall Street movement, we examine the impact of Facebook and Twitter on the spatial diffusion of protests during a period of heightened state repression. Results from event history analyses suggest that the effects of repression on protest diffusion are contingent on the presence of social media accounts supporting the movement. We find that state repression at earlier protest sites encouraged activists to create Facebook and Twitter accounts in their own cities, which then served as important vehicles for the initiation of new Occupy protests. Moreover, results suggest that repression incidents can directly facilitate future protests in cities that already have Occupy Facebook accounts. This study highlights the potential of social media to both mediate and moderate the influence of repression on the diffusion of contemporary movements. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Spot 42 Small RNA Regulates Arabinose-Inducible araBAD Promoter Activity by Repressing Synthesis of the High-Affinity Low-Capacity Arabinose Transporter

    Science.gov (United States)

    Chen, Jiandong

    2016-01-01

    ABSTRACT The l-arabinose-inducible araBAD promoter (PBAD) enables tightly controlled and tunable expression of genes of interest in a broad range of bacterial species. It has been used successfully to study bacterial sRNA regulation, where PBAD drives expression of target mRNA translational fusions. Here we report that in Escherichia coli, Spot 42 sRNA regulates PBAD promoter activity by affecting arabinose uptake. We demonstrate that Spot 42 sRNA represses araF, a gene encoding the AraF subunit of the high-affinity low-capacity arabinose transporter AraFGH, through direct base-pairing interactions. We further show that endogenous Spot 42 sRNA is sufficient to repress araF expression under various growth conditions. Finally, we demonstrate this posttranscriptional repression has a biological consequence, decreasing the induction of PBAD at low levels of arabinose. This problem can be circumvented using strategies reported previously for avoiding all-or-none induction behavior, such as through constitutive expression of the low-affinity high-capacity arabinose transporter AraE or induction with a higher concentration of inducers. This work adds araF to the set of Spot 42-regulated genes, in agreement with previous studies suggesting that Spot 42, itself negatively regulated by the cyclic AMP (cAMP) receptor protein-cAMP complex, reinforces the catabolite repression network. IMPORTANCE The bacterial arabinose-inducible system is widely used for titratable control of gene expression. We demonstrate here that a posttranscriptional mechanism mediated by Spot 42 sRNA contributes to the functionality of the PBAD system at subsaturating inducer concentrations by affecting inducer uptake. Our finding extends the inputs into the known transcriptional control for the PBAD system and has implications for improving its usage for tunable gene expression. PMID:27849174

  19. Multiple γ-glutamylation: A novel type of post-translational modification in a diapausing Artemia cyst protein

    International Nuclear Information System (INIS)

    Hasegawa, Mai; Ikeda, Yuka; Kanzawa, Hideaki; Sakamoto, Mika; Goto, Mina; Tsunasawa, Susumu; Uchiumi, Toshio; Odani, Shoji

    2010-01-01

    A highly hydrophilic, glutamate-rich protein was identified in the aqueous phenol extract from the cytosolic fraction of brine shrimp (Artemia franciscana) diapausing cysts and termed Artemia phenol soluble protein (PSP). Mass spectrometric analysis revealed the presence of many protein peaks around m/z 11,000, separated by 129 atomic mass units; this value corresponds to that of glutamate, which is strongly suggestive of heterogeneous polyglutamylation. Polyglutamylation has long been known as the functionally important post-translational modification of tubulins, which carry poly(L-glutamic acid) chains of heterogeneous length branching off from the main chain at the γ-carboxy groups of a few specific glutamate residues. In Artemia PSP, however, Edman degradation of enzymatic peptides revealed that at least 13, and presumably 16, glutamate residues were modified by the attachment of a single L-glutamate, representing a hitherto undescribed type of post-translational modification: namely, multiple γ-glutamylation or the addition of a large number of glutamate residues along the polypeptide chain. Although biological significance of PSP and its modification is yet to be established, suppression of in vitro thermal aggregation of lactate dehydrogenase by glutamylated PSP was observed.

  20. PROBLEM OF CRIMINAL REPRESSION, APPLIED OUTSIDE OF CRIMINAL LIABILITY

    Directory of Open Access Journals (Sweden)

    Vitaly Stepashin

    2017-01-01

    Full Text Available УДК 343.2A new institute of repressive measures applied outside the criminal liability in criminal law (including as a condition for exemption from criminal liability is forming now in Russian legislation. The author concludes that the provisions of the criminal law on monetary compensation and a court fine should be deleted because of the following reasons. 1 By their nature, and monetary compensation and a court fine, not being a formal punishment (and, therefore, a form of realization of criminal responsibility is a monetary penalty, i.e., penalty-punishment. Moreover, the rules of court fine destination identical rules of criminal sentencing. 2 Quantitatively court fine may exceed the minimum limits of criminal punish-ment in the form of fines. The dimensions of monetary compensation in the order of hours. Pt. 2, Art. 76.1 of the Criminal Code and at all close to the maximum values of fine-punishment. 3 Exemption from criminal liability requires states to refrain from prosecuting the person alleged to have committed a crime, which means that the nonuse of criminal repression. Regulatory standards analyzed, on the other hand, require mandatory use of repression, ie, virtually no exemption from criminal liability does not occur at all. 4 The use of a quasi-penalty in the form of monetary compensation and court fines are not an exemption from criminal responsibility, but on the contrary, the use of criminal repression (of responsibility, and in a simplified manner. 5 Contrary to the requirements of the Constitution and the Criminal Code of criminal repression is applied to persons whose guilt has not been established in the commission of a crime. Thus, in criminal law introduced a presumption of guilt. 6 Customization repression (in fact – of criminal responsibility in the application of the judicial penalty is substantially limited, and the application of monetary compensation is excluded at all, contrary to the requirement that the rough

  1. Characterizing the Range of Extracellular Protein Post-Translational Modifications in a Cellulose-Degrading Bacteria Using a Multiple Proteolyic Digestion/Peptide Fragmentation Approach

    Energy Technology Data Exchange (ETDEWEB)

    Dykstra, Andrew B [ORNL; Rodriguez, Jr., Miguel [ORNL; Raman, Babu [Dow Chemical Company, The; Cook, Kelsey [ORNL; Hettich, Robert {Bob} L [ORNL

    2013-01-01

    Post-translational modifications (PTMs) are known to play a significant role in many biological functions. The focus of this study is to characterize the post-translational modifications of the cellulosome protein complex used by the bacterium Clostridium thermocellum to better understand how this protein machine is tuned for enzymatic cellulose solubilization. To enhance comprehensive characterization, the extracellular cellulosome proteins were analyzed using multiple proteolytic digests (trypsin, Lys-C, Glu-C) and multiple fragmentation techniques (collisionally-activated dissociation, electron transfer dissociation, decision tree). As expected, peptide and protein identifications were increased by utilizing alternate proteases and fragmentation methods, in addition to the increase in protein sequence coverage. The complementarity of these experiments also allowed for a global exploration of PTMs associated with the cellulosome based upon a set of defined PTMs that included methylation, oxidation, acetylation, phosphorylation, and signal peptide cleavage. In these experiments, 85 modified peptides corresponding to 28 cellulosome proteins were identified. Many of these modifications were located in active cellulolytic or structural domains of the cellulosome proteins, suggesting a level of possible regulatory control of protein function in various cellulotyic conditions. The use of multiple enzymes and fragmentation technologies allowed for independent verification of PTMs in different experiments, thus leading to increased confidence in PTM identifications.

  2. Maternal Dead-end 1 promotes translation of nanos1 by binding the eIF3 complex.

    Science.gov (United States)

    Aguero, Tristan; Jin, Zhigang; Chorghade, Sandip; Kalsotra, Auinash; King, Mary Lou; Yang, Jing

    2017-10-15

    In the developing embryo, primordial germ cells (PGCs) represent the exclusive progenitors of the gametes, and their loss results in adult infertility. During early development, PGCs are exposed to numerous signals that specify somatic cell fates. To prevent somatic differentiation, PGCs must transiently silence their genome, an early developmental process that requires Nanos activity. However, it is unclear how Nanos translation is regulated in developing embryos. We report here that translation of nanos1 after fertilization requires Dead-end 1 (Dnd1), a vertebrate-specific germline RNA-binding protein. We provide evidence that Dnd1 protein, expression of which is low in oocytes, but increases dramatically after fertilization, directly interacts with, and relieves the inhibitory function of eukaryotic initiation factor 3f, a repressive component in the 43S preinitiation complex. This work uncovers a novel translational regulatory mechanism that is fundamentally important for germline development. © 2017. Published by The Company of Biologists Ltd.

  3. Threshold-dependent repression of SPL gene expression by miR156/miR157 controls vegetative phase change in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Jia He

    2018-04-01

    Full Text Available Vegetative phase change is regulated by a decrease in the abundance of the miRNAs, miR156 and miR157, and the resulting increase in the expression of their targets, SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL transcription factors. To determine how miR156/miR157 specify the quantitative and qualitative changes in leaf morphology that occur during vegetative phase change, we measured their abundance in successive leaves and characterized the phenotype of mutations in different MIR156 and MIR157 genes. miR156/miR157 decline rapidly between leaf 1&2 and leaf 3 and decrease more slowly after this point. The amount of miR156/miR157 in leaves 1&2 greatly exceeds the threshold required to specify their identity. Subsequent leaves have relatively low levels of miR156/miR157 and are sensitive to small changes in their abundance. In these later-formed leaves, the amount of miR156/miR157 is close to the threshold required to specify juvenile vs. adult identity; a relatively small decrease in the abundance of miR156/157 in these leaves produces a disproportionately large increase in SPL proteins and a significant change in leaf morphology. miR157 is more abundant than miR156 but has a smaller effect on shoot morphology and SPL gene expression than miR156. This may be attributable to the inefficiency with which miR157 is loaded onto AGO1, as well as to the presence of an extra nucleotide at the 5' end of miR157 that is mis-paired in the miR157:SPL13 duplex. miR156 represses different targets by different mechanisms: it regulates SPL9 by a combination of transcript cleavage and translational repression and regulates SPL13 primarily by translational repression. Our results offer a molecular explanation for the changes in leaf morphology that occur during shoot development in Arabidopsis and provide new insights into the mechanism by which miR156 and miR157 regulate gene expression.

  4. Cap-dependent translational control of oncolytic measles virus infection in malignant mesothelioma.

    Science.gov (United States)

    Jacobson, Blake A; Sadiq, Ahad A; Tang, Shaogeng; Jay-Dixon, Joe; Patel, Manish R; Drees, Jeremy; Sorenson, Brent S; Russell, Stephen J; Kratzke, Robert A

    2017-09-08

    Malignant mesothelioma has a poor prognosis for which there remains an urgent need for successful treatment approaches. Infection with the Edmonston vaccine strain (MV-Edm) derivative of measles virus results in lysis of cancer cells and has been tested in clinical trials for numerous tumor types including mesothelioma. Many factors play a role in MV-Edm tumor cell selectivity and cytopathic activity while also sparing non-cancerous cells. The MV-Edm receptor CD46 (cluster of differentiation 46) was demonstrated to be significantly higher in mesothelioma cells than in control cells. In contrast, mesothelioma cells are not reliant upon the alternative MV-Edm receptor nectin-4 for entry. MV-Edm treatment of mesothelioma reduced cell viability and also invoked apoptotic cell death. Forced expression of eIF4E or translation stimulation following IGF-I (insulin-like growth factor 1) exposure strengthened the potency of measles virus oncolytic activity. It was also shown that repression of cap-dependent translation by treatment with agents [4EASO, 4EGI-1] that suppress host cell translation or by forcing cells to produce an activated repressor protein diminishes the strength of oncolytic viral efficacy.

  5. Translational neural engineering: multiple perspectives on bringing benchtop research into the clinical domain.

    Science.gov (United States)

    Rousche, Patrick; Schneeweis, David M; Perreault, Eric J; Jensen, Winnie

    2008-03-01

    A half-day forum to address a wide range of issues related to translational neural engineering was conducted at the annual meeting of the Biomedical Engineering Society. Successful practitioners of translational neural engineering from academics, clinical medicine and industry were invited to share a diversity of perspectives and experiences on the translational process. The forum was targeted towards traditional academic researchers who may be interested in the expanded funding opportunities available for translational research that emphasizes product commercialization and clinical implementation. The seminar was funded by the NIH with support from the Rehabilitation Institute of Chicago. We report here a summary of the speaker viewpoints with particular focus on extracting successful strategies for engaging in or conducting translational neural engineering research. Daryl Kipke, PhD, (Department of Biomedical Engineering at the University of Michigan) and Molly Shoichet, PhD, (Department of Chemical Engineering at the University of Toronto) gave details of their extensive experience with product commercialization while holding primary appointments in academic departments. They both encouraged strong clinical input at very early stages of research. Neurosurgeon Fady Charbel, MD, (Department of Neurosurgery at the University of Illinois at Chicago) discussed his role in product commercialization as a clinician. Todd Kuiken, MD, PhD, (Director of the Neural Engineering for Artificial Limbs at the Rehabilitation Institute of Chicago, affiliated with Northwestern University) also a clinician, described a model of translational engineering that emphasized the development of clinically relevant technology, without a strong commercialization imperative. The clinicians emphasized the importance of communicating effectively with engineers. Representing commercial neural engineering was Doug Sheffield, PhD, (Director of New Technology at Vertis Neuroscience, Inc.) who

  6. Glucose-mediated repression of autolysis and conidiogenesis in Emericella nidulans.

    Science.gov (United States)

    Emri, Tamás; Molnár, Zsolt; Veres, Tünde; Pusztahelyi, Tünde; Dudás, Gábor; Pócsi, István

    2006-10-01

    Glucose-mediated repression of autolysis and sporulation was studied in submerged Emericellanidulans (anam. Aspergillus nidulans) cultures. Null mutation of the creA gene, which encodes the major carbon catabolite repressor CreA in E. nidulans, resulted in a hyperautolytic phenotype characterized by increased extracellular hydrolase production and dry cell mass declination. Interestingly, glucose, as well as the glucose antimetabolite 2-deoxy-d-glucose, repressed autolysis and sporulation in both the control and the creA null mutant strains suggesting that these processes were also subjected to CreA-independent carbon regulation. For example, the glucose-mediated, but CreA-independent, repression of the sporulation transcription factor BrlA was likely to contribute to the negative regulation of conidiogenesis by glucose. Although CreA played a prominent role in the regulation of autolysis via the repression of genes encoding important autolytic hydrolases like ChiB chitinase and PrtA protease the age-related production of the chitinase activity was also negatively affected by the down-regulation of brlA expression. However, neither CreA-dependent nor CreA-independent elements of carbon regulation affected the initiation and regulation of cell death in E. nidulans under carbon starvation.

  7. Heat shock-induced accumulation of translation elongation and termination factors precedes assembly of stress granules in S. cerevisiae.

    Directory of Open Access Journals (Sweden)

    Tomas Grousl

    Full Text Available In response to severe environmental stresses eukaryotic cells shut down translation and accumulate components of the translational machinery in stress granules (SGs. Since they contain mainly mRNA, translation initiation factors and 40S ribosomal subunits, they have been referred to as dominant accumulations of stalled translation preinitiation complexes. Here we present evidence that the robust heat shock-induced SGs of S. cerevisiae also contain translation elongation factors eEF3 (Yef3p and eEF1Bγ2 (Tef4p as well as translation termination factors eRF1 (Sup45p and eRF3 (Sup35p. Despite the presence of the yeast prion protein Sup35 in heat shock-induced SGs, we found out that its prion-like domain is not involved in the SGs assembly. Factors eEF3, eEF1Bγ2 and eRF1 were accumulated and co-localized with Dcp2 foci even upon a milder heat shock at 42°C independently of P-bodies scaffolding proteins. We also show that eEF3 accumulations at 42°C determine sites of the genuine SGs assembly at 46°C. We suggest that identification of translation elongation and termination factors in SGs might help to understand the mechanism of the eIF2α factor phosphorylation-independent repression of translation and SGs assembly.

  8. Understanding the organization of cognitive approaches to translation

    DEFF Research Database (Denmark)

    Serban, Maria

    2017-01-01

    Cognitive approaches to translation studies are driven by three interrelated aims: to understand the structure and organization of the capacities of cognitive agents involved in processes of translation, to build better theories and models of translation, and to develop more efficient methods...... theory, it is more descriptively adequate and more fruitful to understand it as a family of projects based on multiple theories that are relevant for studying different aspects of the translation process. This perspective allows us to extract the erotetic structure of these programs which are organized...

  9. A single cis element maintains repression of the key developmental regulator Gata2.

    Directory of Open Access Journals (Sweden)

    Jonathan W Snow

    2010-09-01

    Full Text Available In development, lineage-restricted transcription factors simultaneously promote differentiation while repressing alternative fates. Molecular dissection of this process has been challenging as transcription factor loci are regulated by many trans-acting factors functioning through dispersed cis elements. It is not understood whether these elements function collectively to confer transcriptional regulation, or individually to control specific aspects of activation or repression, such as initiation versus maintenance. Here, we have analyzed cis element regulation of the critical hematopoietic factor Gata2, which is expressed in early precursors and repressed as GATA-1 levels rise during terminal differentiation. We engineered mice lacking a single cis element -1.8 kb upstream of the Gata2 transcriptional start site. Although Gata2 is normally repressed in late-stage erythroblasts, the -1.8 kb mutation unexpectedly resulted in reactivated Gata2 transcription, blocked differentiation, and an aberrant lineage-specific gene expression pattern. Our findings demonstrate that the -1.8 kb site selectively maintains repression, confers a specific histone modification pattern and expels RNA Polymerase II from the locus. These studies reveal how an individual cis element establishes a normal developmental program via regulating specific steps in the mechanism by which a critical transcription factor is repressed.

  10. The defense-responsive genes showing enhanced and repressed expression after pathogen infection in rice (Oryza sativa L.)

    Institute of Scientific and Technical Information of China (English)

    ZHOU; Bin(周斌); PENG; Kaiman(彭开蔓); CHU; Zhaohui(储昭晖); WANG; Shiping(王石平); ZHANG; Qifa(张启发)

    2002-01-01

    Despite large numbers of studies about defense response, processes involved in the resistance of plants to incompatible pathogens are still largely uncharacterized. The objective of this study was to identify genes involved in defense response by cDNA array analysis and to gain knowledge about the functions of the genes involved in defense response. Approximately 20000 rice cDNA clones were arrayed on nylon filters. RNA samples isolated from different rice lines after infection with incompatible strains or isolates of Xanthomonas oryzae pv. oryzae or Pyricularia grisea, respectively, were used to synthesize cDNA as probes for screening the cDNA arrays. A total of 100 differentially expressed unique sequences were identified from 5 pathogen-host combinations. Fifty-three sequences were detected as showing enhanced expression and 47 sequences were detected as showing repressed expression after pathogen infection. Sequence analysis revealed that most of the 100 sequences had various degrees of homology with genes in databases which encode or putatively encode transcription regulating proteins, translation regulating proteins, transport proteins, kinases, metabolic enzymes, and proteins involved in other functions. Most of the genes have not been previously reported as being involved in the disease resistance response in rice. The results from cDNA arrays, reverse transcription-polymerase chain reaction, and RNA gel blot analysis suggest that activation or repression of most of these genes might occur commonly in the defense response.

  11. CTCF and CohesinSA-1 Mark Active Promoters and Boundaries of Repressive Chromatin Domains in Primary Human Erythroid Cells.

    Directory of Open Access Journals (Sweden)

    Laurie A Steiner

    Full Text Available CTCF and cohesinSA-1 are regulatory proteins involved in a number of critical cellular processes including transcription, maintenance of chromatin domain architecture, and insulator function. To assess changes in the CTCF and cohesinSA-1 interactomes during erythropoiesis, chromatin immunoprecipitation coupled with high throughput sequencing and mRNA transcriptome analyses via RNA-seq were performed in primary human hematopoietic stem and progenitor cells (HSPC and primary human erythroid cells from single donors.Sites of CTCF and cohesinSA-1 co-occupancy were enriched in gene promoters in HSPC and erythroid cells compared to single CTCF or cohesin sites. Cell type-specific CTCF sites in erythroid cells were linked to highly expressed genes, with the opposite pattern observed in HSPCs. Chromatin domains were identified by ChIP-seq with antibodies against trimethylated lysine 27 histone H3, a modification associated with repressive chromatin. Repressive chromatin domains increased in both number and size during hematopoiesis, with many more repressive domains in erythroid cells than HSPCs. CTCF and cohesinSA-1 marked the boundaries of these repressive chromatin domains in a cell-type specific manner.These genome wide data, changes in sites of protein occupancy, chromatin architecture, and related gene expression, support the hypothesis that CTCF and cohesinSA-1 have multiple roles in the regulation of gene expression during erythropoiesis including transcriptional regulation at gene promoters and maintenance of chromatin architecture. These data from primary human erythroid cells provide a resource for studies of normal and perturbed erythropoiesis.

  12. Political Repression in U.S. History

    NARCIS (Netherlands)

    van Minnen, C.A.

    2009-01-01

    The authors of the essays in this book amass considerable historical evidence illustrating various forms of political repression and its relationship with democracy in the United States, from the late-eighteenth century to the present. They discuss efforts, made mostly but not only by government

  13. Extremadura: Behind the material traces of Franco’s repression

    OpenAIRE

    Muñoz Encinar, Laura; Chaves Palacios, Julián

    2014-01-01

    After the failed coup d’état of July 17th, 1936 and after the start of the Spanish Civil War that followed it, rebels carried out a repressive strategy based on the execution of thousands of people as a key tool of social control. The socialization of fear and terror through humiliation, killing and disappearance would become the main strategy employed throughout the war and the post-war period. In this context, perpetrators would exercise repressive practices on victims and their bodies. As ...

  14. The Hsp70 homolog Ssb and the 14-3-3 protein Bmh1 jointly regulate transcription of glucose repressed genes in Saccharomyces cerevisiae.

    Science.gov (United States)

    Hübscher, Volker; Mudholkar, Kaivalya; Chiabudini, Marco; Fitzke, Edith; Wölfle, Tina; Pfeifer, Dietmar; Drepper, Friedel; Warscheid, Bettina; Rospert, Sabine

    2016-07-08

    Chaperones of the Hsp70 family interact with a multitude of newly synthesized polypeptides and prevent their aggregation. Saccharomyces cerevisiae cells lacking the Hsp70 homolog Ssb suffer from pleiotropic defects, among others a defect in glucose-repression. The highly conserved heterotrimeric kinase SNF1/AMPK (AMP-activated protein kinase) is required for the release from glucose-repression in yeast and is a key regulator of energy balance also in mammalian cells. When glucose is available the phosphatase Glc7 keeps SNF1 in its inactive, dephosphorylated state. Dephosphorylation depends on Reg1, which mediates targeting of Glc7 to its substrate SNF1. Here we show that the defect in glucose-repression in the absence of Ssb is due to the ability of the chaperone to bridge between the SNF1 and Glc7 complexes. Ssb performs this post-translational function in concert with the 14-3-3 protein Bmh, to which Ssb binds via its very C-terminus. Raising the intracellular concentration of Ssb or Bmh enabled Glc7 to dephosphorylate SNF1 even in the absence of Reg1. By that Ssb and Bmh efficiently suppressed transcriptional deregulation of Δreg1 cells. The findings reveal that Ssb and Bmh comprise a new chaperone module, which is involved in the fine tuning of a phosphorylation-dependent switch between respiration and fermentation. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. The Efficiency of Repressive Anti-Corruption Measures in Conditions of High-Level Corruption

    OpenAIRE

    Abramov Fedir V.

    2017-01-01

    The article is aimed at determining the efficiency of repressive anti-corruption measures in conditions of high-level corruption. It is shown that the formal rules regulating the use of repressive methods of countering corruption are characterized by a significant level of the target inefficiency of formal rules. Resulting from ignorance as to the causes of both occurence and spread of corruption – the inefficiency of the current formal rules – repressive anti-corruption measures are fundamen...

  16. The Efficiency of Repressive Anti-Corruption Measures in Conditions of High-Level Corruption

    Directory of Open Access Journals (Sweden)

    Abramov Fedir V.

    2017-12-01

    Full Text Available The article is aimed at determining the efficiency of repressive anti-corruption measures in conditions of high-level corruption. It is shown that the formal rules regulating the use of repressive methods of countering corruption are characterized by a significant level of the target inefficiency of formal rules. Resulting from ignorance as to the causes of both occurence and spread of corruption – the inefficiency of the current formal rules – repressive anti-corruption measures are fundamentally incapable of achieving a significant reduction in the level of corruptness. It has been proved that, in addition to significant target inefficiency, repressive anti-corruption methods can potentially lead to increased levels of corruption because of abusing by supervisory officials of their official duties and the spread of internal corruption within anti-corruption structures. The potential threats from the uncontrolled anti-corruption structures towards other controlling organizations were considered. It is shown that in conditions of high-level corruption repressive anti-corruption measures can lead to expansion of imitation of anti-corruption activity.

  17. Repressed Sexual Modernity: A Case Study of Herbert Giles’ (1845 - 1935 Rendition of Pu Songling’s Strange Stories from a Chinese Studio (1880 in the late Qing

    Directory of Open Access Journals (Sweden)

    Wing Bo Anna TSO

    2017-12-01

    Full Text Available Translation studies in English and Chinese has long been of great interest to academics. Yet, Chinese scholars who have translation training and linguistic expertise are often found to “give excessive attention to listing facts and probing linguistic matters, to the neglect of the cultural and contextual considerations that have given rise to translation in China in the first place” (Lin, 2002, p. 170. Much emphasis has been placed on translation strategies, while translation “in connection with power and patronage” (Lefereve, 1992, p. 10 is overlooked, leaving “existing ideology” or “existing poetics” (Lefereve, 1992, p. 10, such as gender unexplored. In light of this, this paper attempts to take the literary and cultural approach and focus on examining the gender ideologies in Pu Songling’s Strange Stories from a Chinese Studio (1740 and Herbert Giles’ English rendition (1880. By comparing the source and target texts, the paper reveals that in many of Pu Songling’s stories, spirit-freelove and sexual pleasure are celebrated. A witty parody of the imitative structures of gender can be found in Pu Songling’s “Painted Skin” too. Unfortunately, to a large extent, such transgressive gender views are repressed in Giles’ English rendition.

  18. Cancer, acute stress disorder, and repressive coping

    DEFF Research Database (Denmark)

    Pedersen, Anette Fischer; Zachariae, Robert

    2010-01-01

    The purpose of this study was to investigate the association between repressive coping style and Acute Stress Disorder (ASD) in a sample of cancer patients. A total of 112 cancer patients recently diagnosed with cancer participated in the study. ASD was assessed by the Stanford Acute Stress...... Reaction Questionnaire, and repressive coping was assessed by a combination of scores from the Marlowe-Crowne Social Desirability Scale, and the Bendig version of the Taylor Manifest Anxiety Scale. Significantly fewer patients classified as "repressors" were diagnosed with ASD compared to patients...... classified as "non-repressors". However, further investigations revealed that the lower incidence of ASD in repressors apparently was caused by a low score on anxiety and not by an interaction effect between anxiety and defensiveness. Future studies have to investigate whether different psychological...

  19. Allele-Specific DNA Methylation and Its Interplay with Repressive Histone Marks at Promoter-Mutant TERT Genes.

    Science.gov (United States)

    Stern, Josh Lewis; Paucek, Richard D; Huang, Franklin W; Ghandi, Mahmoud; Nwumeh, Ronald; Costello, James C; Cech, Thomas R

    2017-12-26

    A mutation in the promoter of the Telomerase Reverse Transcriptase (TERT) gene is the most frequent noncoding mutation in cancer. The mutation drives unusual monoallelic expression of TERT, allowing immortalization. Here, we find that DNA methylation of the TERT CpG island (CGI) is also allele-specific in multiple cancers. The expressed allele is hypomethylated, which is opposite to cancers without TERT promoter mutations. The continued presence of Polycomb repressive complex 2 (PRC2) on the inactive allele suggests that histone marks of repressed chromatin may be causally linked to high DNA methylation. Consistent with this hypothesis, TERT promoter DNA containing 5-methyl-CpG has much increased affinity for PRC2 in vitro. Thus, CpG methylation and histone marks appear to collaborate to maintain the two TERT alleles in different epigenetic states in TERT promoter mutant cancers. Finally, in several cancers, DNA methylation levels at the TERT CGI correlate with altered patient survival. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  20. Identification of HDA15-PIF1 as a key repression module directing the transcriptional network of seed germination in the dark.

    Science.gov (United States)

    Gu, Dachuan; Chen, Chia-Yang; Zhao, Minglei; Zhao, Linmao; Duan, Xuewu; Duan, Jun; Wu, Keqiang; Liu, Xuncheng

    2017-07-07

    Light is a major external factor in regulating seed germination. Photoreceptor phytochrome B (PHYB) plays a predominant role in promoting seed germination in the initial phase after imbibition, partially by repressing phytochrome-interacting factor1 (PIF1). However, the mechanism underlying the PHYB-PIF1-mediated transcription regulation remains largely unclear. Here, we identified that histone deacetylase15 (HDA15) is a negative component of PHYB-dependent seed germination. Overexpression of HDA15 in Arabidopsis inhibits PHYB-dependent seed germination, whereas loss of function of HDA15 increases PHYB-dependent seed germination. Genetic evidence indicated that HDA15 acts downstream of PHYB and represses seed germination dependent on PIF1. Furthermore, HDA15 interacts with PIF1 both in vitro and in vivo. Genome-wide transcriptome analysis revealed that HDA15 and PIF1 co-regulate the transcription of the light-responsive genes involved in multiple hormonal signaling pathways and cellular processes in germinating seeds in the dark. In addition, PIF1 recruits HDA15 to the promoter regions of target genes and represses their expression by decreasing the histone H3 acetylation levels in the dark. Taken together, our analysis uncovered the role of histone deacetylation in the light-regulated seed germination process and identified that HDA15-PIF1 acts as a key repression module directing the transcription network of seed germination. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. Multiple post-translational modifications in hepatocyte nuclear factor 4α

    International Nuclear Information System (INIS)

    Yokoyama, Atsushi; Katsura, Shogo; Ito, Ryo; Hashiba, Waka; Sekine, Hiroki; Fujiki, Ryoji; Kato, Shigeaki

    2011-01-01

    Highlights: → We performed comprehensive PTM analysis for HNF4α protein. → We identified 8 PTMs in HNF4α protein including newly identified PTMs. → Among them, we found acetylation at lysine 458 was one of the prime PTMs for HNF4α function. → Acetylation at lysine 458 was inhibitory for HNF4α transcription function. → This modification fluctuated in response to extracellular condition. -- Abstract: To investigate the role of post-translational modifications (PTMs) in the hepatocyte nuclear factor 4α (HNF4α)-mediated transcription, we took a comprehensive survey of PTMs in HNF4α protein by massspectrometry and identified totally 8 PTM sites including newly identified ubiquitilation and acetylation sites. To assess the impact of identified PTMs in HNF4α-function, we introduced point mutations at the identified PTM sites and, tested transcriptional activity of the HNF4α. Among the point-mutations, an acetylation site at lysine 458 was found significant in the HNF4α-mediated transcriptional control. An acetylation negative mutant at lysine 458 showed an increased transcriptional activity by about 2-fold, while an acetylation mimic mutant had a lowered transcriptional activation. Furthermore, this acetylation appeared to be fluctuated in response to extracellular nutrient conditions. Thus, by applying an comprehensive analysis of PTMs, multiple PTMs were newly identified in HNF4α and unexpected role of an HNF4α acetylation could be uncovered.

  2. Multiple Sclerosis Walking Scale-12, translation, adaptation and validation for the Persian language population.

    Science.gov (United States)

    Nakhostin Ansari, Noureddin; Naghdi, Soofia; Mohammadi, Roghaye; Hasson, Scott

    2015-02-01

    The Multiple Sclerosis Walking Scale-12 (MSWS-12) is a multi-item rating scale used to assess the perspectives of patients about the impact of MS on their walking ability. The aim of this study was to examine the reliability and validity of the MSWS-12 in Persian speaking patients with MS. The MSWS-12 questionnaire was translated into Persian language according to internationally adopted standards involving forward-backward translation, reviewed by an expert committee and tested on the pre-final version. In this cross-sectional study, 100 participants (50 patients with MS and 50 healthy subjects) were included. The MSWS-12 was administered twice 7 days apart to 30 patients with MS for test and retest reliability. Internal consistency reliability was Cronbach's α 0.96 for test and 0.97 for retest. There were no significant floor or ceiling effects. Test-retest reliability was excellent (intraclass correlation coefficient [ICC] agreement of 0.98, 95% CI, 0.95-0.99) confirming the reproducibility of the Persian MSWS-12. Construct validity using known group methods was demonstrated through a significant difference in the Persian MSWS-12 total score between the patients with MS and healthy subjects. Factor analysis extracted 2 latent factors (79.24% of the total variance). A second factor analysis suggested the 9-item Persian MSWS as a unidimensional scale for patients with MS. The Persian MSWS-12 was found to be valid and reliable for assessing walking ability in Persian speaking patients with MS. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Role of sugar uptake and metabolic intermediates on catabolite repression in Bacillus subtilis.

    Science.gov (United States)

    Lopez, J M; Thoms, B

    1977-01-01

    Many phosphorylated intermediates exert catabolite repression on the enzyme acetoin dehydrogenase in Bacillus subtilis. This was shown with strains that are blocked at different positions in central metabolism when they receive sugars that cannot be metabolized past enzymatic block(s). In the case of sorbitol, transport events were not involved in catabolite repression, for this sugar cannot repress acetoin dehydrogenase in a strain lacking sorbitol dehydrogenase but otherwise able to take up sorbitol. The presence of glucose did not markedly influence the uptake of acetoin. PMID:401492

  4. The transcription factor DREAM represses A20 and mediates inflammation

    OpenAIRE

    Tiruppathi, Chinnaswamy; Soni, Dheeraj; Wang, Dong-Mei; Xue, Jiaping; Singh, Vandana; Thippegowda, Prabhakar B.; Cheppudira, Bopaiah P.; Mishra, Rakesh K.; DebRoy, Auditi; Qian, Zhijian; Bachmaier, Kurt; Zhao, Youyang; Christman, John W.; Vogel, Stephen M.; Ma, Averil

    2014-01-01

    Here we show that the transcription-repressor DREAM binds to the A20 promoter to repress the expression of A20, the deubiquitinase suppressing inflammatory NF-κB signaling. DREAM-deficient (Dream−/− ) mice displayed persistent and unchecked A20 expression in response to endotoxin. DREAM functioned by transcriptionally repressing A20 through binding to downstream regulatory elements (DREs). In contrast, USF1 binding to the DRE-associated E-box domain activated A20 expression in response to inf...

  5. Molecular mechanism underlying juvenile hormone-mediated repression of precocious larval-adult metamorphosis.

    Science.gov (United States)

    Kayukawa, Takumi; Jouraku, Akiya; Ito, Yuka; Shinoda, Tetsuro

    2017-01-31

    Juvenile hormone (JH) represses precocious metamorphosis of larval to pupal and adult transitions in holometabolous insects. The early JH-inducible gene Krüppel homolog 1 (Kr-h1) plays a key role in the repression of metamorphosis as a mediator of JH action. Previous studies demonstrated that Kr-h1 inhibits precocious larval-pupal transition in immature larva via direct transcriptional repression of the pupal specifier Broad-Complex (BR-C). JH was recently reported to repress the adult specifier gene Ecdysone-induced protein 93F (E93); however, its mechanism of action remains unclear. Here, we found that JH suppressed ecdysone-inducible E93 expression in the epidermis of the silkworm Bombyx mori and in a B. mori cell line. Reporter assays in the cell line revealed that the JH-dependent suppression was mediated by Kr-h1. Genome-wide ChIP-seq analysis identified a consensus Kr-h1 binding site (KBS, 14 bp) located in the E93 promoter region, and EMSA confirmed that Kr-h1 directly binds to the KBS. Moreover, we identified a C-terminal conserved domain in Kr-h1 essential for the transcriptional repression of E93 Based on these results, we propose a mechanism in which JH-inducible Kr-h1 directly binds to the KBS site upstream of the E93 locus to repress its transcription in a cell-autonomous manner, thereby preventing larva from bypassing the pupal stage and progressing to precocious adult development. These findings help to elucidate the molecular mechanisms regulating the metamorphic genetic network, including the functional significance of Kr-h1, BR-C, and E93 in holometabolous insect metamorphosis.

  6. Tracking Small Satellites using Translated GPS

    OpenAIRE

    Lefevre, Don; Mulally, Daniel

    1991-01-01

    This paper discusses using translated GPS for tracking small satellites, the technical trade-offs involved, and the position and timing accuracies which are achievable using translated GPS. The Global Positioning System (GPS) uses the relative times-of-arrival of multiple spread-spectrum signals at an antenna to determine the position of the antenna. The system can also determine the time the antenna was at that position. The direct sequence spread spectrum signals are transmitted from GPS sa...

  7. Investigating Behavioral and Psychophysiological Reactions to Conflict-Related and Individualized Stimuli as Potential Correlates of Repression

    Directory of Open Access Journals (Sweden)

    Henrik Kessler

    2017-09-01

    Full Text Available Background: Repression is considered as a central defense mechanism in psychodynamic theory. It refers to the process by which “unbearable” mental contents (e.g., those related to internal conflicts are kept out of consciousness. The process of repression is probably closely related to concepts of emotion regulation derived from a different theoretical background. This relationship is particularly relevant because it relates repression to current research in the affective neurosciences as well as to experimental studies on emotion regulation. Due to its complex and highly individual nature, repression has been notoriously difficult to investigate. We investigated repression with an individualized experiment in healthy subjects in order to establish methods to study repression in clinical populations. To this end we operationalized repression using individualized experimental conditions, and then studied potential behavioral [memory and reaction time (RT] and psychophysiological correlates [skin conductance response (SCR].Method: Twenty-nine healthy female subjects were asked to freely associate to individualized cue sentences. Sentences were generated from individual psychodynamic interviews based on operationlized psychodynamic diagnosis (OPD, and were comprised of three different types: positive, negative non-conflictual, and negative conflict-related sentences. Subjects were asked to name the first three associations coming into their mind. Afterward, the remaining time was used for free association. SCR during each association trial and RT of the first given association were recorded. The memory for the first three associations was subsequently tested in an unexpected recall.Results: Associations to conflict-related cue sentences were associated with longer RTs and increased SCRs. Moreover, the unexpected recall task showed memory for these associations to be reduced.Conclusion: We interpret these findings as possible correlates of

  8. Investigating Behavioral and Psychophysiological Reactions to Conflict-Related and Individualized Stimuli as Potential Correlates of Repression.

    Science.gov (United States)

    Kessler, Henrik; Schmidt, Anna Christine; Hildenbrand, Oliver; Scharf, Daniela; Kehyayan, Aram; Axmacher, Nikolai

    2017-01-01

    Background: Repression is considered as a central defense mechanism in psychodynamic theory. It refers to the process by which "unbearable" mental contents (e.g., those related to internal conflicts) are kept out of consciousness. The process of repression is probably closely related to concepts of emotion regulation derived from a different theoretical background. This relationship is particularly relevant because it relates repression to current research in the affective neurosciences as well as to experimental studies on emotion regulation. Due to its complex and highly individual nature, repression has been notoriously difficult to investigate. We investigated repression with an individualized experiment in healthy subjects in order to establish methods to study repression in clinical populations. To this end we operationalized repression using individualized experimental conditions, and then studied potential behavioral [memory and reaction time (RT)] and psychophysiological correlates [skin conductance response (SCR)]. Method: Twenty-nine healthy female subjects were asked to freely associate to individualized cue sentences. Sentences were generated from individual psychodynamic interviews based on operationlized psychodynamic diagnosis (OPD), and were comprised of three different types: positive, negative non-conflictual, and negative conflict-related sentences. Subjects were asked to name the first three associations coming into their mind. Afterward, the remaining time was used for free association. SCR during each association trial and RT of the first given association were recorded. The memory for the first three associations was subsequently tested in an unexpected recall. Results: Associations to conflict-related cue sentences were associated with longer RTs and increased SCRs. Moreover, the unexpected recall task showed memory for these associations to be reduced. Conclusion: We interpret these findings as possible correlates of repression, in line

  9. Repressive effects of resveratrol on androgen receptor transcriptional activity.

    Directory of Open Access Journals (Sweden)

    Wen-feng Shi

    2009-10-01

    Full Text Available The chemopreventive effects of resveratrol (RSV on prostate cancer have been well established; the androgen receptor (AR plays pivotal roles in prostatic tumorigenesis. However, the exact underlying molecular mechanisms about the effects of RSV on AR have not been fully elucidated. A model system is needed to determine whether and how RSV represses AR transcriptional activity.The AR cDNA was first cloned into the retroviral vector pOZ-N and then integrated into the genome of AR-negative HeLa cells to generate the AR(+ cells. The constitutively expressed AR was characterized by monitoring hormone-stimulated nuclear translocation, DNA binding, and transcriptional activation, with the AR(- cells serving as controls. AR(+ cells were treated with RSV, and both AR protein levels and AR transcriptional activity were measured simultaneously. Chromatin immunoprecipitation (ChIP assays were used to detect the effects of RSV on the recruitment of AR to its cognate element (ARE.AR in the AR (+ stable cell line functions in a manner similar to that of endogenously expressed AR. Using this model system we clearly demonstrated that RSV represses AR transcriptional activity independently of any effects on AR protein levels. However, neither the hormone-mediated nucleus translocation nor the AR/ARE interaction was affected by RSV treatment.We demonstrated unambiguously that RSV regulates AR target gene expression, at least in part, by repressing AR transcriptional activity. Repressive effects of RSV on AR activity result from mechanisms other than the affects of AR nuclear translocation or DNA binding.

  10. Translation through argumentation in medical research and physician-citizenship.

    Science.gov (United States)

    Mitchell, Gordon R; McTigue, Kathleen M

    2012-06-01

    While many "benchtop-to-bedside" research pathways have been developed in "Type I" translational medicine, vehicles to facilitate "Type II" and "Type III" translation that convert scientific data into clinical and community interventions designed to improve the health of human populations remain elusive. Further, while a high percentage of physicians endorse the principle of citizen leadership, many have difficulty practicing it. This discrepancy has been attributed, in part, to lack of training and preparation for public advocacy, time limitation, and institutional resistance. As translational medicine and physician-citizenship implicate social, political, economic and cultural factors, both enterprises require "integrative" research strategies that blend insights from multiple fields of study, as well as rhetorical acumen in adapting messages to reach multiple audiences. This article considers how argumentation theory's epistemological flexibility, audience attentiveness, and heuristic qualities, combined with concepts from classical rhetoric, such as rhetorical invention, the synecdoche, and ethos, yield tools to facilitate translational medicine and enable physician-citizenship.

  11. Transcription and replication result in distinct epigenetic marks following repression of early gene expression

    OpenAIRE

    Kallestad, Les; Woods, Emily; Christensen, Kendra; Gefroh, Amanda; Balakrishnan, Lata; Milavetz, Barry

    2013-01-01

    Simian Virus 40 (SV40) early transcription is repressed when the product of early transcription, T-antigen, binds to its cognate regulatory sequence, Site I, in the promoter of the SV40 minichromosome. Because SV40 minichromosomes undergo replication and transcription potentially repression could occur during active transcription or during DNA replication. Since repression is frequently epigenetically marked by the introduction of specific forms of methylated histone H3, we characterized th...

  12. Machine Translation Using Constraint-Based Synchronous Grammar

    Institute of Scientific and Technical Information of China (English)

    WONG Fai; DONG Mingchui; HU Dongcheng

    2006-01-01

    A synchronous grammar based on the formalism of context-free grammar was developed by generalizing the first component of production that models the source text. Unlike other synchronous grammars,the grammar allows multiple target productions to be associated to a single production rule which can be used to guide a parser to infer different possible translational equivalences for a recognized input string according to the feature constraints of symbols in the pattern. An extended generalized LR algorithm was adapted to the parsing of the proposed formalism to analyze the syntactic structure of a language. The grammar was used as the basis for building a machine translation system for Portuguese to Chinese translation. The empirical results show that the grammar is more expressive when modeling the translational equivalences of parallel texts for machine translation and grammar rewriting applications.

  13. Nitrogen Catabolite Repression in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Hofman-Bang, H Jacob Peider

    1999-01-01

    In Saccharomyces cerevisiae the expression of all known nitrogen catabolite pathways are regulated by four regulators known as Gln3, Gat1, Da180, and Deh1. This is known as nitrogen catabolite repression (NCR). They bind to motifs in the promoter region to the consensus sequence S' GATAA 3'. Gln3...

  14. PERSPECTIVE: Translational neural engineering: multiple perspectives on bringing benchtop research into the clinical domain

    Science.gov (United States)

    Rousche, Patrick; Schneeweis, David M.; Perreault, Eric J.; Jensen, Winnie

    2008-03-01

    A half-day forum to address a wide range of issues related to translational neural engineering was conducted at the annual meeting of the Biomedical Engineering Society. Successful practitioners of translational neural engineering from academics, clinical medicine and industry were invited to share a diversity of perspectives and experiences on the translational process. The forum was targeted towards traditional academic researchers who may be interested in the expanded funding opportunities available for translational research that emphasizes product commercialization and clinical implementation. The seminar was funded by the NIH with support from the Rehabilitation Institute of Chicago. We report here a summary of the speaker viewpoints with particular focus on extracting successful strategies for engaging in or conducting translational neural engineering research. Daryl Kipke, PhD, (Department of Biomedical Engineering at the University of Michigan) and Molly Shoichet, PhD, (Department of Chemical Engineering at the University of Toronto) gave details of their extensive experience with product commercialization while holding primary appointments in academic departments. They both encouraged strong clinical input at very early stages of research. Neurosurgeon Fady Charbel, MD, (Department of Neurosurgery at the University of Illinois at Chicago) discussed his role in product commercialization as a clinician. Todd Kuiken, MD, PhD, (Director of the Neural Engineering for Artificial Limbs at the Rehabilitation Institute of Chicago, affiliated with Northwestern University) also a clinician, described a model of translational engineering that emphasized the development of clinically relevant technology, without a strong commercialization imperative. The clinicians emphasized the importance of communicating effectively with engineers. Representing commercial neural engineering was Doug Sheffield, PhD, (Director of New Technology at Vertis Neuroscience, Inc.) who

  15. The Impact of Machine Translation and Computer-aided Translation on Translators

    Science.gov (United States)

    Peng, Hao

    2018-03-01

    Under the context of globalization, communications between countries and cultures are becoming increasingly frequent, which make it imperative to use some techniques to help translate. This paper is to explore the influence of computer-aided translation on translators, which is derived from the field of the computer-aided translation (CAT) and machine translation (MT). Followed by an introduction to the development of machine and computer-aided translation, it then depicts the technologies practicable to translators, which are trying to analyze the demand of designing the computer-aided translation so far in translation practice, and optimize the designation of computer-aided translation techniques, and analyze its operability in translation. The findings underline the advantages and disadvantages of MT and CAT tools, and the serviceability and future development of MT and CAT technologies. Finally, this thesis probes into the impact of these new technologies on translators in hope that more translators and translation researchers can learn to use such tools to improve their productivity.

  16. GW-Bodies and P-Bodies Constitute Two Separate Pools of Sequestered Non-Translating RNAs.

    Directory of Open Access Journals (Sweden)

    Prajal H Patel

    Full Text Available Non-translating RNAs that have undergone active translational repression are culled from the cytoplasm into P-bodies for decapping-dependent decay or for sequestration. Organisms that use microRNA-mediated RNA silencing have an additional pathway to remove RNAs from active translation. Consequently, proteins that govern microRNA-mediated silencing, such as GW182/Gw and AGO1, are often associated with the P-bodies of higher eukaryotic organisms. Due to the presence of Gw, these structures have been referred to as GW-bodies. However, several reports have indicated that GW-bodies have different dynamics to P-bodies. Here, we use live imaging to examine GW-body and P-body dynamics in the early Drosophila melanogaster embryo. While P-bodies are present throughout early embryonic development, cytoplasmic GW-bodies only form in significant numbers at the midblastula transition. Unlike P-bodies, which are predominantly cytoplasmic, GW-bodies are present in both nuclei and the cytoplasm. RNA decapping factors such as DCP1, Me31B, and Hpat are not associated with GW-bodies, indicating that P-bodies and GW-bodies are distinct structures. Furthermore, known Gw interactors such as AGO1 and the CCR4-NOT deadenylation complex, which have been shown to be important for Gw function, are also not present in GW-bodies. Use of translational inhibitors puromycin and cycloheximide, which respectively increase or decrease cellular pools of non-translating RNAs, alter GW-body size, underscoring that GW-bodies are composed of non-translating RNAs. Taken together, these data indicate that active translational silencing most likely does not occur in GW-bodies. Instead GW-bodies most likely function as repositories for translationally silenced RNAs. Finally, inhibition of zygotic gene transcription is unable to block the formation of either P-bodies or GW-bodies in the early embryo, suggesting that these structures are composed of maternal RNAs.

  17. Translating Strategies of Boundary Spanners within an MNC

    DEFF Research Database (Denmark)

    Huerter O, Gabriela Gutierrez; Gold, Stefan; Moon, Jeremy

    2016-01-01

    Based on an embedded multiple case study of a UK-based MNC, informed by 27 semi-structured interviews and 20 follow-up interviews, this paper studies the translation of corporate social responsibility reporting (CSRR) within an MNC following its transfer from the HQ. Drawing from the Scandinavian...... institutionalism, with particular attention to Boxenbaum’s (2006b) three-dimensional framework of translation, the article conceptualises subsidiary translators as boundary spanners within the MNC and investigates the interplay of translators’ individual preferences, strategic framing and local grounding across...

  18. A Hexose Transporter Homologue Controls Glucose Repression in the Methylotrophic Yeast Hansenula polymorpha

    NARCIS (Netherlands)

    Stasyk, Oleh V.; Stasyk, Olena G.; Komduur, Janet; Veenhuis, Marten; Cregg, James M.; Sibirny, Andrei A.

    2004-01-01

    Peroxisome biogenesis and synthesis of peroxisomal enzymes in the methylotrophic yeast Hansenula polymorpha are under the strict control of glucose repression. We identified an H. polymorpha glucose catabolite repression gene (HpGCR1) that encodes a hexose transporter homologue. Deficiency in GCR1

  19. CUP promotes deadenylation and inhibits decapping of mRNA targets

    Science.gov (United States)

    Igreja, Catia; Izaurralde, Elisa

    2011-01-01

    CUP is an eIF4E-binding protein (4E-BP) that represses the expression of specific maternal mRNAs prior to their posterior localization. Here, we show that CUP employs multiple mechanisms to repress the expression of target mRNAs. In addition to inducing translational repression, CUP maintains mRNA targets in a repressed state by promoting their deadenylation and protects deadenylated mRNAs from further degradation. Translational repression and deadenylation are independent of eIF4E binding and require both the middle and C-terminal regions of CUP, which collectively we termed the effector domain. This domain associates with the deadenylase complex CAF1–CCR4–NOT and decapping activators. Accordingly, in isolation, the effector domain is a potent trigger of mRNA degradation and promotes deadenylation, decapping and decay. However, in the context of the full-length CUP protein, the decapping and decay mediated by the effector domain are inhibited, and target mRNAs are maintained in a deadenylated, repressed form. Remarkably, an N-terminal regulatory domain containing a noncanonical eIF4E-binding motif is required to protect CUP-associated mRNAs from decapping and further degradation, suggesting that this domain counteracts the activity of the effector domain. Our findings indicate that the mode of action of CUP is more complex than previously thought and provide mechanistic insight into the regulation of mRNA expression by 4E-BPs. PMID:21937713

  20. Disruption of histone modification and CARM1 recruitment by arsenic represses transcription at glucocorticoid receptor-regulated promoters.

    Science.gov (United States)

    Barr, Fiona D; Krohmer, Lori J; Hamilton, Joshua W; Sheldon, Lynn A

    2009-08-26

    Chronic exposure to inorganic arsenic (iAs) found in the environment is one of the most significant and widespread environmental health risks in the U.S. and throughout the world. It is associated with a broad range of health effects from cancer to diabetes as well as reproductive and developmental anomalies. This diversity of diseases can also result from disruption of metabolic and other cellular processes regulated by steroid hormone receptors via aberrant transcriptional regulation. Significantly, exposure to iAs inhibits steroid hormone-mediated gene activation. iAs exposure is associated with disease, but is also used therapeutically to treat specific cancers complicating an understanding of iAs action. Transcriptional activation by steroid hormone receptors is accompanied by changes in histone and non-histone protein post-translational modification (PTM) that result from the enzymatic activity of coactivator and corepressor proteins such as GRIP1 and CARM1. This study addresses how iAs represses steroid receptor-regulated gene transcription. PTMs on histones H3 and H4 at the glucocorticoid receptor (GR)-activated mouse mammary tumor virus (MMTV) promoter were identified by chromatin immunoprecipitation analysis following exposure to steroid hormone+/-iAs. Histone H3K18 and H3R17 amino acid residues had significantly different patterns of PTMs after treatment with iAs. Promoter interaction of the coactivator CARM1 was disrupted, but the interaction of GRIP1, a p160 coactivator through which CARM1 interacts with a promoter, was intact. Over-expression of CARM1 was able to fully restore and GRIP1 partially restored iAs-repressed transcription indicating that these coactivators are functionally associated with iAs-mediated transcriptional repression. Both are essential for robust transcription at steroid hormone regulated genes and both are associated with disease when inappropriately expressed. We postulate that iAs effects on CARM1 and GRIP1 may underlie some

  1. Translation Theory 'Translated'

    DEFF Research Database (Denmark)

    Wæraas, Arild; Nielsen, Jeppe

    2016-01-01

    Translation theory has proved to be a versatile analytical lens used by scholars working from different traditions. On the basis of a systematic literature review, this study adds to our understanding of the ‘translations’ of translation theory by identifying the distinguishing features of the most...... common theoretical approaches to translation within the organization and management discipline: actor-network theory, knowledge-based theory, and Scandinavian institutionalism. Although each of these approaches already has borne much fruit in research, the literature is diverse and somewhat fragmented......, but also overlapping. We discuss the ways in which the three versions of translation theory may be combined and enrich each other so as to inform future research, thereby offering a more complete understanding of translation in and across organizational settings....

  2. Binary translation using peephole translation rules

    Science.gov (United States)

    Bansal, Sorav; Aiken, Alex

    2010-05-04

    An efficient binary translator uses peephole translation rules to directly translate executable code from one instruction set to another. In a preferred embodiment, the translation rules are generated using superoptimization techniques that enable the translator to automatically learn translation rules for translating code from the source to target instruction set architecture.

  3. Translational control in plant antiviral immunity

    Directory of Open Access Journals (Sweden)

    João Paulo B. Machado

    Full Text Available Abstract Due to the limited coding capacity of viral genomes, plant viruses depend extensively on the host cell machinery to support the viral life cycle and, thereby, interact with a large number of host proteins during infection. Within this context, as plant viruses do not harbor translation-required components, they have developed several strategies to subvert the host protein synthesis machinery to produce rapidly and efficiently the viral proteins. As a countermeasure against infection, plants have evolved defense mechanisms that impair viral infections. Among them, the host-mediated translational suppression has been characterized as an efficient mean to restrict infection. To specifically suppress translation of viral mRNAs, plants can deploy susceptible recessive resistance genes, which encode translation initiation factors from the eIF4E and eIF4G family and are required for viral mRNA translation and multiplication. Additionally, recent evidence has demonstrated that, alternatively to the cleavage of viral RNA targets, host cells can suppress viral protein translation to silence viral RNA. Finally, a novel strategy of plant antiviral defense based on suppression of host global translation, which is mediated by the transmembrane immune receptor NIK1 (nuclear shuttle protein (NSP-Interacting Kinase1, is discussed in this review.

  4. Drosophila DNA-Binding Proteins in Polycomb Repression

    Directory of Open Access Journals (Sweden)

    Maksim Erokhin

    2018-01-01

    Full Text Available The formation of individual gene expression patterns in different cell types is required during differentiation and development of multicellular organisms. Polycomb group (PcG proteins are key epigenetic regulators responsible for gene repression, and dysregulation of their activities leads to developmental abnormalities and diseases. PcG proteins were first identified in Drosophila, which still remains the most convenient system for studying PcG-dependent repression. In the Drosophila genome, these proteins bind to DNA regions called Polycomb response elements (PREs. A major role in the recruitment of PcG proteins to PREs is played by DNA-binding factors, several of which have been characterized in detail. However, current knowledge is insufficient for comprehensively describing the mechanism of this process. In this review, we summarize and discuss the available data on the role of DNA-binding proteins in PcG recruitment to chromatin.

  5. Identity approach in translation : sociocultural implications

    Directory of Open Access Journals (Sweden)

    Alicja Żuchelkowska

    2012-01-01

    Full Text Available The objective of this text consists in presenting how it is necessary for contemporary translators and interpreters (both literary and specialised to acquire and develop the ability to recognize elements of identity discourse in translated texts. Nowadays, the need for inter-cultural exchange is inevitably connected with the necessity of establishing harmonious co-existence for numerous cultures and identities. Therefore, it is crucial to educate translators in a way that enables them to pay special attention to identity and cultural perturbations present in translated texts (culture and language hybridisation, multiple identity, cultural dislocation, presence in linguistic and political discourse of minority cultures, regardless of their genre or form. Such a strong emphasis on identity problems in the translation is especially relevant in the European context, where the attention of researchers and politicians directed at identity problems stemming from ethnical and cultural issues sets the framework for a new cultural paradigm that determines the future development of the Eu. Becoming acquainted with this paradigm which emphasises fl uency, identity unmarkedness and the new model of European collectivity is indispensable for a translator aspiring to become a true cultural mediator.

  6. DW4TR: A Data Warehouse for Translational Research.

    Science.gov (United States)

    Hu, Hai; Correll, Mick; Kvecher, Leonid; Osmond, Michelle; Clark, Jim; Bekhash, Anthony; Schwab, Gwendolyn; Gao, De; Gao, Jun; Kubatin, Vladimir; Shriver, Craig D; Hooke, Jeffrey A; Maxwell, Larry G; Kovatich, Albert J; Sheldon, Jonathan G; Liebman, Michael N; Mural, Richard J

    2011-12-01

    The linkage between the clinical and laboratory research domains is a key issue in translational research. Integration of clinicopathologic data alone is a major task given the number of data elements involved. For a translational research environment, it is critical to make these data usable at the point-of-need. Individual systems have been developed to meet the needs of particular projects though the need for a generalizable system has been recognized. Increased use of Electronic Medical Record data in translational research will demand generalizing the system for integrating clinical data to support the study of a broad range of human diseases. To ultimately satisfy these needs, we have developed a system to support multiple translational research projects. This system, the Data Warehouse for Translational Research (DW4TR), is based on a light-weight, patient-centric modularly-structured clinical data model and a specimen-centric molecular data model. The temporal relationships of the data are also part of the model. The data are accessed through an interface composed of an Aggregated Biomedical-Information Browser (ABB) and an Individual Subject Information Viewer (ISIV) which target general users. The system was developed to support a breast cancer translational research program and has been extended to support a gynecological disease program. Further extensions of the DW4TR are underway. We believe that the DW4TR will play an important role in translational research across multiple disease types. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Notch-mediated post-translational control of Ngn3 protein stability regulates pancreatic patterning and cell fate commitment

    DEFF Research Database (Denmark)

    Qu, Xiaoling; Afelik, Solomon; Jensen, Jan Nygaard

    2013-01-01

    of ducts. On one hand, Ngn3 cell-intrinsically activates endocrine target genes; on the other, Ngn3 cell-extrinsically promotes lateral signaling via the Dll1>Notch>Hes1 pathway which substantially limits its ability to sustain endocrine formation. Prior to endocrine commitment, the Ngn3-mediated...... involves transcriptional repression as previously shown, but also incorporates a novel post-translational mechanism. In addition to its ability to promote endocrine fate, we provide evidence of a competing ability of Ngn3 in the patterning of multipotent progenitor cells in turn controlling the formation...

  8. Revisiting the Master-Signifier, or, Mandela and Repression.

    Science.gov (United States)

    Hook, Derek; Vanheule, Stijn

    2015-01-01

    The concept of the master-signifier has been subject to a variety of applications in Lacanian forms of political discourse theory and ideology critique. While there is much to be commended in literature of this sort, it often neglects salient issues pertaining to the role of master signifiers in the clinical domain of (individual) psychical economy. The popularity of the concept of the master (or "empty") signifier in political discourse analysis has thus proved a double-edged sword. On the one hand it demonstrates how crucial psychical processes are performed via the operations of the signifier, extending thus the Lacanian thesis that identification is the outcome of linguistic and symbolic as opposed to merely psychological processes. On the other, the use of the master signifier concept within the political realm to track discursive formations tends to distance the term from the dynamics of the unconscious and operation of repression. Accordingly, this paper revisits the master signifier concept, and does so within the socio-political domain, yet while paying particular attention to the functioning of unconscious processes of fantasy and repression. More specifically, it investigates how Nelson Mandela operates as a master signifier in contemporary South Africa, as a vital means of knitting together diverse elements of post-apartheid society, enabling the fantasy of the post-apartheid nation, and holding at bay a whole series of repressed and negated undercurrents.

  9. Repression/depression of conjugative plasmids and their influence on the mutation-selection balance in static environments.

    Directory of Open Access Journals (Sweden)

    Yoav Atsmon-Raz

    Full Text Available We study the effect that conjugation-mediated Horizontal Gene Transfer (HGT has on the mutation-selection balance of a population in a static environment. We consider a model whereby a population of unicellular organisms, capable of conjugation, comes to mutation-selection balance in the presence of an antibiotic, which induces a first-order death rate constant [Formula: see text] for genomes that are not resistant. We explicitly take into consideration the repression/de-repression dynamics of the conjugative plasmid, and assume that a de-repressed plasmid remains temporarily de-repressed after copying itself into another cell. We assume that both repression and de-repression are characterized by first-order rate constants [Formula: see text]and [Formula: see text], respectively. We find that conjugation has a deleterious effect on the mean fitness of the population, suggesting that HGT does not provide a selective advantage in a static environment, but is rather only useful for adapting to new environments. This effect can be ameliorated by repression, suggesting that while HGT is not necessarily advantageous for a population in a static environment, its deleterious effect on the mean fitness can be negated via repression. Therefore, it is likely that HGT is much more advantageous in a dynamic landscape. Furthermore, in the limiting case of a vanishing spontaneous de-repression rate constant, we find that the fraction of conjugators in the population undergoes a phase transition as a function of population density. Below a critical population density, the fraction of conjugators is zero, while above this critical population density the fraction of conjugators rises continuously to one. Our model for conjugation-mediated HGT is related to models of infectious disease dynamics, where the conjugators play the role of the infected (I class, and the non-conjugators play the role of the susceptible (S class.

  10. Polycomb complexes act redundantly to repress genomic repeats and genes

    DEFF Research Database (Denmark)

    Leeb, Martin; Pasini, Diego; Novatchkova, Maria

    2010-01-01

    Polycomb complexes establish chromatin modifications for maintaining gene repression and are essential for embryonic development in mice. Here we use pluripotent embryonic stem (ES) cells to demonstrate an unexpected redundancy between Polycomb-repressive complex 1 (PRC1) and PRC2 during...... the formation of differentiated cells. ES cells lacking the function of either PRC1 or PRC2 can differentiate into cells of the three germ layers, whereas simultaneous loss of PRC1 and PRC2 abrogates differentiation. On the molecular level, the differentiation defect is caused by the derepression of a set...

  11. Just-in-time control of Spo0A synthesis in Bacillus subtilis by multiple regulatory mechanisms.

    Science.gov (United States)

    Chastanet, Arnaud; Losick, Richard

    2011-11-01

    The response regulator Spo0A governs multiple developmental processes in Bacillus subtilis, including most conspicuously sporulation. Spo0A is activated by phosphorylation via a multicomponent phosphorelay. Previous work has shown that the Spo0A protein is not rate limiting for sporulation. Rather, Spo0A is present at high levels in growing cells, rapidly rising to yet higher levels under sporulation-inducing conditions, suggesting that synthesis of the response regulator is subject to a just-in-time control mechanism. Transcription of spo0A is governed by a promoter switching mechanism, involving a vegetative, σ(A)-recognized promoter, P(v), and a sporulation σ(H)-recognized promoter, P(s), that is under phosphorylated Spo0A (Spo0A∼P) control. The spo0A regulatory region also contains four (including one identified in the present work) conserved elements that conform to the consensus binding site for Spo0A∼P binding sites. These are herein designated O(1), O(2), O(3), and O(4) in reverse order of their proximity to the coding sequence. Here we report that O(1) is responsible for repressing P(v) during the transition to stationary phase, that O(2) is responsible for repressing P(s) during growth, that O(3) is responsible for activating P(s) at the start of sporulation, and that O(4) is dispensable for promoter switching. We also report that Spo0A synthesis is subject to a posttranscriptional control mechanism such that translation of mRNAs originating from P(v) is impeded due to RNA secondary structure whereas mRNAs originating from P(s) are fully competent for protein synthesis. We propose that the opposing actions of O(2) and O(3) and the enhanced translatability of mRNAs originating from P(s) create a highly sensitive, self-reinforcing switch that is responsible for producing a burst of Spo0A synthesis at the start of sporulation.

  12. Induction and catabolite repression of α-glucosidase synthesis in protoplasts of Saccharomyces carlsbergensis

    NARCIS (Netherlands)

    Wijk, R. van; Ouwehand, J.; Bos, T. van den; Koningsberger, V.V.

    1969-01-01

    1. 1. Kinetic data on the repression, the derepression and the induction of α-glucosidase synthesis in protoplasts of Saccharomyces carlsbergensis suggested that some site other than the stereospecific site for the induction by maltose was involved in the repression by glucose. 2. 2. A study of the

  13. Machine Translation and Other Translation Technologies.

    Science.gov (United States)

    Melby, Alan

    1996-01-01

    Examines the application of linguistic theory to machine translation and translator tools, discusses the use of machine translation and translator tools in the real world of translation, and addresses the impact of translation technology on conceptions of language and other issues. Findings indicate that the human mind is flexible and linguistic…

  14. Translational regulation of ribosomal protein S15 drives characteristic patterns of protein-mRNA epistasis.

    Science.gov (United States)

    Mallik, Saurav; Basu, Sudipto; Hait, Suman; Kundu, Sudip

    2018-04-21

    Do coding and regulatory segments of a gene co-evolve with each-other? Seeking answers to this question, here we analyze the case of Escherichia coli ribosomal protein S15, that represses its own translation by specifically binding its messenger RNA (rpsO mRNA) and stabilizing a pseudoknot structure at the upstream untranslated region, thus trapping the ribosome into an incomplete translation initiation complex. In the absence of S15, ribosomal protein S1 recognizes rpsO and promotes translation by melting this very pseudoknot. We employ a robust statistical method to detect signatures of positive epistasis between residue site pairs and find that biophysical constraints of translational regulation (S15-rpsO and S1-rpsO recognition, S15-mediated rpsO structural rearrangement, and S1-mediated melting) are strong predictors of positive epistasis. Transforming the epistatic pairs into a network, we find that signatures of two different, but interconnected regulatory cascades are imprinted in the sequence-space and can be captured in terms of two dense network modules that are sparsely connected to each other. This network topology further reflects a general principle of how functionally coupled components of biological networks are interconnected. These results depict a model case, where translational regulation drives characteristic residue-level epistasis-not only between a protein and its own mRNA but also between a protein and the mRNA of an entirely different protein. © 2018 Wiley Periodicals, Inc.

  15. Effect of Content Schema, Vocabulary Knowledge, and Reading Comprehension on Translation Performance

    Directory of Open Access Journals (Sweden)

    Reza Kafipour

    2017-09-01

    Full Text Available Schemata refer to all kinds of knowledge which are gained throughout the lifetime. Few studies tried to integrate schema theory and the next two crucial factors in translation and learning which are vocabulary knowledge and reading comprehension. Thus, the present research aimed at delineating the potential effect of these three factors on translation performance of Iranian undergraduate students majoring in translator training. To this end, 172 Iranian undergraduate students majoring in translator training were selected based on two-step cluster sampling. To collect data, the participants answered a set of 6 open-ended questions to measure the students’ content schema along with a vocabulary size test, reading comprehension test, and translation task. To analyze data, Pearson correlation coefficient as well as stepwise multiple regressions was conducted through Statistical Package for Social Sciences (SPSS version 17. Data analysis indicated that the independent variables significantly correlated with translation performance. In addition, multiple regressions analysis specified reading comprehension as the main contributing variable and content schema as the second in students’ translation performance. It also showed that vocabulary knowledge could not be a predicting factor in translation performance of the learners; the reason may refer to the inseparable component of their translation task that is dictionary. The results highlighted the role of content schema in translation performance of the learners.

  16. Obacunone Represses Salmonella Pathogenicity Islands 1 and 2 in an envZ-Dependent Fashion

    Science.gov (United States)

    Vikram, Amit; Jayaprakasha, Guddadarangavvanahally K.; Jesudhasan, Palmy R.

    2012-01-01

    Obacunone belongs to a class of unique triterpenoids called limonoids, present in Citrus species. Previous studies from our laboratory suggested that obacunone possesses antivirulence activity and demonstrates inhibition of cell-cell signaling in Vibrio harveyi and Escherichia coli O157:H7. The present work sought to determine the effect of obacunone on the food-borne pathogen Salmonella enterica serovar Typhimurium LT2 by using a cDNA microarray. Transcriptomic studies indicated that obacunone represses Salmonella pathogenicity island 1 (SPI1), the maltose transporter, and the hydrogenase operon. Furthermore, phenotypic data for the Caco-2 infection assay and maltose utilization were in agreement with microarray data suggesting repression of SPI1 and maltose transport. Further studies demonstrated that repression of SPI1 was plausibly mediated through hilA. Additionally, obacunone seems to repress SPI2 under SPI2-inducing conditions as well as in Caco-2 infection models. Furthermore, obacunone seems to repress hilA in an EnvZ-dependent fashion. Altogether, the results of the study seems to suggest that obacunone exerts an antivirulence effect on S. Typhimurium and may serve as a lead compound for development of antivirulence strategies for S. Typhimurium. PMID:22843534

  17. RNAi and heterochromatin repress centromeric meiotic recombination

    DEFF Research Database (Denmark)

    Ellermeier, Chad; Higuchi, Emily C; Phadnis, Naina

    2010-01-01

    During meiosis, the formation of viable haploid gametes from diploid precursors requires that each homologous chromosome pair be properly segregated to produce an exact haploid set of chromosomes. Genetic recombination, which provides a physical connection between homologous chromosomes, is essen......During meiosis, the formation of viable haploid gametes from diploid precursors requires that each homologous chromosome pair be properly segregated to produce an exact haploid set of chromosomes. Genetic recombination, which provides a physical connection between homologous chromosomes....... Surprisingly, one mutant derepressed for recombination in the heterochromatic mating-type region during meiosis and several mutants derepressed for centromeric gene expression during mitotic growth are not derepressed for centromeric recombination during meiosis. These results reveal a complex relation between...... types of repression by heterochromatin. Our results also reveal a previously undemonstrated role for RNAi and heterochromatin in the repression of meiotic centromeric recombination and, potentially, in the prevention of birth defects by maintenance of proper chromosome segregation during meiosis....

  18. Natural memory beyond the storage model: Repression, trauma, and the construction of a personal past

    Directory of Open Access Journals (Sweden)

    Nikolai Axmacher

    2010-11-01

    Full Text Available Naturally occurring memory processes show features which are difficult to investigate by conventional cognitive neuroscience paradigms. Distortions of memory for problematic contents are described both by psychoanalysis (internal conflicts and research on post-traumatic stress disorder (external traumata. Typically, declarative memory for these contents is impaired – possibly due to repression in the case of internal conflicts or due to dissociation in the case of external traumata – but they continue to exert an unconscious pathological influence: neurotic symptoms or psychosomatic disorders after repression or flashbacks and intrusions in post-traumatic stress disorder after dissociation. Several experimental paradigms aim at investigating repression in healthy control subjects. We argue that these paradigms do not adequately operationalize the clinical process of repression, because they rely on an intentional inhibition of random stimuli (suppression. Furthermore, these paradigms ignore that memory distortions due to repression or dissociation are most accurately characterized by a lack of self-referential processing, resulting in an impaired integration of these contents into the self. This aspect of repression and dissociation cannot be captured by the concept of memory as a storage device which is usually employed in the cognitive neurosciences. It can only be assessed within the framework of a constructivist memory concept, according to which successful memory involves a reconstruction of experiences such that they fit into a representation of the self. We suggest several experimental paradigms that allow for the investigation of the neural correlates of repressed memories and trauma-induced memory distortions based on a constructivist memory concept.

  19. Translational coregulation of 5′TOP mRNAs by TIA-1 and TIAR

    Science.gov (United States)

    Damgaard, Christian Kroun; Lykke-Andersen, Jens

    2011-01-01

    The response of cells to changes in their environment often requires coregulation of gene networks, but little is known about how this can occur at the post-transcriptional level. An important example of post-transcriptional coregulation is the selective translational regulation in response to growth conditions of mammalian mRNAs that encode protein biosynthesis factors and contain hallmark 5′-terminal oligopyrimidine tracts (5′TOP). However, the responsible trans-factors and the mechanism by which they coregulate 5′TOP mRNAs have remained elusive. Here we identify stress granule-associated TIA-1 and TIAR proteins as key factors in human 5′TOP mRNA regulation, which upon amino acid starvation assemble onto the 5′ end of 5′TOP mRNAs and arrest translation at the initiation step, as evidenced by TIA-1/TIAR-dependent 5′TOP mRNA translation repression, polysome release, and accumulation in stress granules. This requires starvation-mediated activation of the GCN2 (general control nonderepressible 2) kinase and inactivation of the mTOR (mammalian target of rapamycin) signaling pathway. Our findings provide a mechanistic explanation to the long-standing question of how the network of 5′TOP mRNAs are coregulated according to amino acid availability, thereby allowing redirection of limited resources to mount a nutrient deprivation response. This presents a fundamental example of how a group of mRNAs can be translationally coregulated in response to changes in the cellular environment. PMID:21979918

  20. Targeted repression of AXIN2 and MYC gene expression using designer TALEs

    International Nuclear Information System (INIS)

    Rennoll, Sherri A.; Scott, Samantha A.; Yochum, Gregory S.

    2014-01-01

    Highlights: • We designed TALE–SID fusion proteins to target AXIN2 and MYC. • TALE–SIDs bound the chromosomal AXIN2 and MYC genes and repressed their expression. • TALE–SIDs repress β-catenin S45F -dependent AXIN2 and MYC transcription. - Abstract: Designer TALEs (dTALEs) are chimeric transcription factors that can be engineered to regulate gene expression in mammalian cells. Whether dTALEs can block gene transcription downstream of signal transduction cascades, however, has yet to be fully explored. Here we tested whether dTALEs can be used to target genes whose expression is controlled by Wnt/β-catenin signaling. TALE DNA binding domains were engineered to recognize sequences adjacent to Wnt responsive enhancer elements (WREs) that control expression of axis inhibition protein 2 (AXIN2) and c-MYC (MYC). These custom DNA binding domains were linked to the mSin3A interaction domain (SID) to generate TALE–SID chimeric repressors. The TALE–SIDs repressed luciferase reporter activity, bound their genomic target sites, and repressed AXIN2 and MYC expression in HEK293 cells. We generated a novel HEK293 cell line to determine whether the TALE–SIDs could function downstream of oncogenic Wnt/β-catenin signaling. Treating these cells with doxycycline and tamoxifen stimulates nuclear accumulation of a stabilized form of β-catenin found in a subset of colorectal cancers. The TALE–SIDs repressed AXIN2 and MYC expression in these cells, which suggests that dTALEs could offer an effective therapeutic strategy for the treatment of colorectal cancer

  1. Targeted repression of AXIN2 and MYC gene expression using designer TALEs

    Energy Technology Data Exchange (ETDEWEB)

    Rennoll, Sherri A.; Scott, Samantha A.; Yochum, Gregory S., E-mail: gsy3@psu.edu

    2014-04-18

    Highlights: • We designed TALE–SID fusion proteins to target AXIN2 and MYC. • TALE–SIDs bound the chromosomal AXIN2 and MYC genes and repressed their expression. • TALE–SIDs repress β-catenin{sup S45F}-dependent AXIN2 and MYC transcription. - Abstract: Designer TALEs (dTALEs) are chimeric transcription factors that can be engineered to regulate gene expression in mammalian cells. Whether dTALEs can block gene transcription downstream of signal transduction cascades, however, has yet to be fully explored. Here we tested whether dTALEs can be used to target genes whose expression is controlled by Wnt/β-catenin signaling. TALE DNA binding domains were engineered to recognize sequences adjacent to Wnt responsive enhancer elements (WREs) that control expression of axis inhibition protein 2 (AXIN2) and c-MYC (MYC). These custom DNA binding domains were linked to the mSin3A interaction domain (SID) to generate TALE–SID chimeric repressors. The TALE–SIDs repressed luciferase reporter activity, bound their genomic target sites, and repressed AXIN2 and MYC expression in HEK293 cells. We generated a novel HEK293 cell line to determine whether the TALE–SIDs could function downstream of oncogenic Wnt/β-catenin signaling. Treating these cells with doxycycline and tamoxifen stimulates nuclear accumulation of a stabilized form of β-catenin found in a subset of colorectal cancers. The TALE–SIDs repressed AXIN2 and MYC expression in these cells, which suggests that dTALEs could offer an effective therapeutic strategy for the treatment of colorectal cancer.

  2. Phaseolin expression in tobacco chloroplast reveals an autoregulatory mechanism in heterologous protein translation.

    Science.gov (United States)

    De Marchis, Francesca; Bellucci, Michele; Pompa, Andrea

    2016-02-01

    Plastid DNA engineering is a well-established research area of plant biotechnology, and plastid transgenes often give high expression levels. However, it is still almost impossible to predict the accumulation rate of heterologous protein in transplastomic plants, and there are many cases of unsuccessful transgene expression. Chloroplasts regulate their proteome at the post-transcriptional level, mainly through translation control. One of the mechanisms to modulate the translation has been described in plant chloroplasts for the chloroplast-encoded subunits of multiprotein complexes, and the autoregulation of the translation initiation of these subunits depends on the availability of their assembly partners [control by epistasy of synthesis (CES)]. In Chlamydomonas reinhardtii, autoregulation of endogenous proteins recruited in the assembly of functional complexes has also been reported. In this study, we revealed a self-regulation mechanism triggered by the accumulation of a soluble recombinant protein, phaseolin, in the stroma of chloroplast-transformed tobacco plants. Immunoblotting experiments showed that phaseolin could avoid this self-regulation mechanism when targeted to the thylakoids in transplastomic plants. To inhibit the thylakoid-targeted phaseolin translation as well, this protein was expressed in the presence of a nuclear version of the phaseolin gene with a transit peptide. Pulse-chase and polysome analysis revealed that phaseolin mRNA translation on plastid ribosomes was repressed due to the accumulation in the stroma of the same soluble polypeptide imported from the cytosol. We suggest that translation autoregulation in chloroplast is not limited to heteromeric protein subunits but also involves at least some of the foreign soluble recombinant proteins, leading to the inhibition of plastome-encoded transgene expression in chloroplast. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  3. The ribosomal protein Rpl22 controls ribosome composition by directly repressing expression of its own paralog, Rpl22l1.

    Directory of Open Access Journals (Sweden)

    Monique N O'Leary

    Full Text Available Most yeast ribosomal protein genes are duplicated and their characterization has led to hypotheses regarding the existence of specialized ribosomes with different subunit composition or specifically-tailored functions. In yeast, ribosomal protein genes are generally duplicated and evidence has emerged that paralogs might have specific roles. Unlike yeast, most mammalian ribosomal proteins are thought to be encoded by a single gene copy, raising the possibility that heterogenous populations of ribosomes are unique to yeast. Here, we examine the roles of the mammalian Rpl22, finding that Rpl22(-/- mice have only subtle phenotypes with no significant translation defects. We find that in the Rpl22(-/- mouse there is a compensatory increase in Rpl22-like1 (Rpl22l1 expression and incorporation into ribosomes. Consistent with the hypothesis that either ribosomal protein can support translation, knockdown of Rpl22l1 impairs growth of cells lacking Rpl22. Mechanistically, Rpl22 regulates Rpl22l1 directly by binding to an internal hairpin structure and repressing its expression. We propose that ribosome specificity may exist in mammals, providing evidence that one ribosomal protein can influence composition of the ribosome by regulating its own paralog.

  4. ZEB1 limits adenoviral infectability by transcriptionally repressing the Coxsackie virus and Adenovirus Receptor

    Directory of Open Access Journals (Sweden)

    Lacher Markus D

    2011-07-01

    Full Text Available Abstract Background We have previously reported that RAS-MEK (Cancer Res. 2003 May 1;63(9:2088-95 and TGF-β (Cancer Res. 2006 Feb 1;66(3:1648-57 signaling negatively regulate coxsackie virus and adenovirus receptor (CAR cell-surface expression and adenovirus uptake. In the case of TGF-β, down-regulation of CAR occurred in context of epithelial-to-mesenchymal transition (EMT, a process associated with transcriptional repression of E-cadherin by, for instance, the E2 box-binding factors Snail, Slug, SIP1 or ZEB1. While EMT is crucial in embryonic development, it has been proposed to contribute to the formation of invasive and metastatic carcinomas by reducing cell-cell contacts and increasing cell migration. Results Here, we show that ZEB1 represses CAR expression in both PANC-1 (pancreatic and MDA-MB-231 (breast human cancer cells. We demonstrate that ZEB1 physically associates with at least one of two closely spaced and conserved E2 boxes within the minimal CAR promoter here defined as genomic region -291 to -1 relative to the translational start ATG. In agreement with ZEB1's established role as a negative regulator of the epithelial phenotype, silencing its expression in MDA-MB-231 cells induced a partial Mesenchymal-to-Epithelial Transition (MET characterized by increased levels of E-cadherin and CAR, and decreased expression of fibronectin. Conversely, knockdown of ZEB1 in PANC-1 cells antagonized both the TGF-β-induced down-regulation of E-cadherin and CAR and the reduction of adenovirus uptake. Interestingly, even though ZEB1 clearly contributes to the TGF-β-induced mesenchymal phenotype of PANC-1 cells, TGF-β did not seem to affect ZEB1's protein levels or subcellular localization. These findings suggest that TGF-β may inhibit CAR expression by regulating factor(s that cooperate with ZEB1 to repress the CAR promoter, rather than by regulating ZEB1 expression levels. In addition to the negative E2 box-mediated regulation the minimal

  5. Promoter DNA hypermethylation and gene repression in undifferentiated Arabidopsis cells.

    Directory of Open Access Journals (Sweden)

    María Berdasco

    Full Text Available Maintaining and acquiring the pluripotent cell state in plants is critical to tissue regeneration and vegetative multiplication. Histone-based epigenetic mechanisms are important for regulating this undifferentiated state. Here we report the use of genetic and pharmacological experimental approaches to show that Arabidopsis cell suspensions and calluses specifically repress some genes as a result of promoter DNA hypermethylation. We found that promoters of the MAPK12, GSTU10 and BXL1 genes become hypermethylated in callus cells and that hypermethylation also affects the TTG1, GSTF5, SUVH8, fimbrin and CCD7 genes in cell suspensions. Promoter hypermethylation in undifferentiated cells was associated with histone hypoacetylation and primarily occurred at CpG sites. Accordingly, we found that the process specifically depends on MET1 and DRM2 methyltransferases, as demonstrated with DNA methyltransferase mutants. Our results suggest that promoter DNA methylation may be another important epigenetic mechanism for the establishment and/or maintenance of the undifferentiated state in plant cells.

  6. Translation system engineering in Escherichia coli enhances non-canonical amino acid incorporation into proteins.

    Science.gov (United States)

    Gan, Rui; Perez, Jessica G; Carlson, Erik D; Ntai, Ioanna; Isaacs, Farren J; Kelleher, Neil L; Jewett, Michael C

    2017-05-01

    The ability to site-specifically incorporate non-canonical amino acids (ncAAs) into proteins has made possible the study of protein structure and function in fundamentally new ways, as well as the bio synthesis of unnatural polymers. However, the task of site-specifically incorporating multiple ncAAs into proteins with high purity and yield continues to present a challenge. At the heart of this challenge lies the lower efficiency of engineered orthogonal translation system components compared to their natural counterparts (e.g., translation elements that specifically use a ncAA and do not interact with the cell's natural translation apparatus). Here, we show that evolving and tuning expression levels of multiple components of an engineered translation system together as a whole enhances ncAA incorporation efficiency. Specifically, we increase protein yield when incorporating multiple p-azido-phenylalanine(pAzF) residues into proteins by (i) evolving the Methanocaldococcus jannaschii p-azido-phenylalanyl-tRNA synthetase anti-codon binding domain, (ii) evolving the elongation factor Tu amino acid-binding pocket, and (iii) tuning the expression of evolved translation machinery components in a single vector. Use of the evolved translation machinery in a genomically recoded organism lacking release factor one enabled enhanced multi-site ncAA incorporation into proteins. We anticipate that our approach to orthogonal translation system development will accelerate and expand our ability to site-specifically incorporate multiple ncAAs into proteins and biopolymers, advancing new horizons for synthetic and chemical biotechnology. Biotechnol. Bioeng. 2017;114: 1074-1086. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Revisiting the master-signifier, or, Mandela and repression

    Directory of Open Access Journals (Sweden)

    Derek eHook

    2016-01-01

    Full Text Available The concept of the master-signifier has been subject to a variety of applications in Lacanian forms of political discourse theory and ideology critique. While there is much to be commended in literature of this sort, it often neglects salient issues pertaining to the role of master signifiers in the clinical domain of (individual psychical economy. The popularity of the concept of the master (or ‘empty’ signifier in political discourse analysis has thus proved a double-edged sword. On the one hand it demonstrates how crucial psychical processes are performed via the operations of the signifier, extending thus the Lacanian thesis that identification is as much the outcome of linguistic and symbolic as opposed to merely psychological processes. On the other, the use of the master signifier concept within the political realm to track discursive formations tends to distance the term from the dynamics of the unconscious and operation of repression. Accordingly, this paper revisits the master signifier concept, and does so within the socio-political domain, yet while paying particular attention to the functioning of unconscious processes of fantasy and repression. More specifically, it investigates how Nelson Mandela operates as a master signifier in contemporary South Africa, as a vital means of knitting together diverse elements of post-apartheid society, enabling the fantasy of the post-apartheid nation, and holding at bay a whole series of repressed and negated undercurrents.

  8. The multiple sclerosis work difficulties questionnaire: translation and cross-cultural adaptation to Turkish and assessment of validity and reliability.

    Science.gov (United States)

    Kahraman, Turhan; Özdoğar, Asiye Tuba; Honan, Cynthia Alison; Ertekin, Özge; Özakbaş, Serkan

    2018-05-09

    To linguistically and culturally adapt the Multiple Sclerosis Work Difficulties Questionnaire-23 (MSWDQ-23) for use in Turkey, and to examine its reliability and validity. Following standard forward-back translation of the MSWDQ-23, it was administered to 124 people with multiple sclerosis (MS). Validity was evaluated using related outcome measures including those related to employment status and expectations, disability level, fatigue, walking, and quality of life. Randomly selected participants were asked to complete the MSWDQ-23 again to assess test-retest reliability. Confirmatory factor analysis on the MSWDQ-23 demonstrated a good fit for the data, and the internal consistency of each subscale was excellent. The test-retest reliability for the total score, psychological/cognitive barriers, physical barriers, and external barriers subscales were high. The MSWDQ-23 and its subscales were positively correlated with the employment, disability level, walking, and fatigue outcome measures. This study suggests that the Turkish version of MSWDQ-23 has high reliability and adequate validity, and it can be used to determine the difficulties faced by people with multiple sclerosis in workplace. Moreover, the study provides evidence about the test-retest reliability of the questionnaire. Implications for rehabilitation Multiple sclerosis affects young people of working age. Understanding work-related problems is crucial to enhance people with multiple sclerosis likelihood of maintaining their job. The Multiple Sclerosis Work Difficulties Questionnaire-23 (MSWDQ-23) is a valid and reliable measure of perceived workplace difficulties in people with multiple sclerosis: we presented its validation to Turkish. Professionals working in the field of vocational rehabilitation may benefit from using the MSWDQ-23 to predict the current work outcomes and future employment expectations.

  9. Financial Repression as a Policy Choice: The Case of Ukraine, 1992—2000

    Directory of Open Access Journals (Sweden)

    Robert S. Kravchuk

    2004-10-01

    Full Text Available By their nature, instruments of financial repression distort interest rates, foreign exchange rates, patterns of investment, and the economic incentives of both borrowers and lenders. In order to deal with the economic pathologies introduced by the government’s own credit and financial policies, governments inevitably find that they must intervene further, to ration credit and impose controls, generally on prices, wages, interest rates, foreign exchange rates and other transactions. Not only did Ukraine exhibit all of the symptoms of financial repression in the 1990s, but the basic policy instruments of financial repression also became too familiar in Ukraine. In fact, to one extent or another, in the 1990s Ukraine employed several of these measures (often in combination as means to suppress the effects of excessive amounts of state consumption, the resultant inflation, and its own credit policies. In the long run, economic growth will suffer, however, because repression reduces the capacity of the financial system to respond to the needs of firms and households in the real economy.

  10. Protein translation and cell death: the role of rare tRNAs in biofilm formation and in activating dormant phage killer genes.

    Directory of Open Access Journals (Sweden)

    Rodolfo García-Contreras

    2008-06-01

    Full Text Available We discovered previously that the small Escherichia coli proteins Hha (hemolysin expression modulating protein and the adjacent, poorly-characterized YbaJ are important for biofilm formation; however, their roles have been nebulous. Biofilms are intricate communities in which cell signaling often converts single cells into primitive tissues. Here we show that Hha decreases biofilm formation dramatically by repressing the transcription of rare codon tRNAs which serves to inhibit fimbriae production and by repressing to some extent transcription of fimbrial genes fimA and ihfA. In vivo binding studies show Hha binds to the rare codon tRNAs argU, ileX, ileY, and proL and to two prophage clusters D1P12 and CP4-57. Real-time PCR corroborated that Hha represses argU and proL, and Hha type I fimbriae repression is abolished by the addition of extra copies of argU, ileY, and proL. The repression of transcription of rare codon tRNAs by Hha also leads to cell lysis and biofilm dispersal due to activation of prophage lytic genes rzpD, yfjZ, appY, and alpA and due to induction of ClpP/ClpX proteases which activate toxins by degrading antitoxins. YbaJ serves to mediate the toxicity of Hha. Hence, we have identified that a single protein (Hha can control biofilm formation by limiting fimbriae production as well as by controlling cell death. The mechanism used by Hha is the control of translation via the availability of rare codon tRNAs which reduces fimbriae production and activates prophage lytic genes. Therefore, Hha acts as a toxin in conjunction with co-transcribed YbaJ (TomB that attenuates Hha toxicity.

  11. CcpA-dependent carbon catabolite repression in bacteria

    NARCIS (Netherlands)

    Warner, JB; Lolkema, JS; Warner, Jessica B.

    2003-01-01

    Carbon catabolite repression (CCR) by transcriptional regulators follows different mechanisms in gram-positive and gram-negative bacteria. In gram-positive bacteria, CcpA-dependent CCR is mediated by phosphorylation of the phosphoenolpyruvate:sugar phosphotransferase system intermediate HPr at a

  12. Human resources management in a translation process

    OpenAIRE

    Rogelj, Jure

    2015-01-01

    The purpose of the web application development is the modernization of the current data acquisition and management model for new and existing translators in the company Iolar d.o.o. Previously data on translators who signed up to work in the company were entered multiple times as they were entered through several entry points. The acquired data were then manually entered into an MS Excel sheet and the Projetex program. We analyzed the current data acquisition and management model as well ...

  13. Human resources management in a translation process

    OpenAIRE

    Rogelj, Jure

    2014-01-01

    The purpose of the web application development is the modernization of the current data acquisition and management model for new and existing translators in the company Iolar d.o.o. Previously data on translators who signed up to work in the company were entered multiple times as they were entered through several entry points. The acquired data were then manually entered into an MS Excel sheet and the Projetex program. We analyzed the current data acquisition and management model as well ...

  14. Neuromuscular adaptations to long-term progressive resistance training translates to improved functional capacity for people with multiple sclerosis and is maintained at follow-up

    DEFF Research Database (Denmark)

    Kjolhede, T.; Vissing, K.; de Place, L.

    2015-01-01

    BACKGROUND: Progressive resistance training (PRT) is acknowledged to effectively improve muscle strength for people with multiple sclerosis (PwMS), but diverging results exist regarding whether such improvements translates to improved functional capacity, possibly relating to insufficient duration......: This study was a randomised controlled trial, with a training group and a waitlist group undergoing supervised PRT for 24 weeks initially or after 24 weeks of habitual lifestyle, respectively. Functional capacity, isometric muscle strength of knee extensors and flexors, neural drive and thigh muscle cross......-sectional area was measured at baseline, after 24 and 48 weeks. RESULTS: The training group significantly improved neuromuscular function of the knee extensors and flexors, which translated to improvements in functional capacity. Furthermore, the improved functional capacity was maintained after 24 weeks of self...

  15. The interplay of multiple feedback loops with post-translational kinetics results in bistability of mycobacterial stress response

    International Nuclear Information System (INIS)

    Tiwari, Abhinav; Igoshin, Oleg A; Balázsi, Gábor; Gennaro, Maria Laura

    2010-01-01

    Bacterial persistence is the phenomenon in which a genetically identical fraction of a bacterial population can survive exposure to stress by reduction or cessation of growth. Persistence in mycobacteria has been recently linked to a stress-response network, consisting of the MprA/MprB two-component system and alternative sigma factor σ E . This network contains multiple positive transcriptional feedback loops which may give rise to bistability, making it a good candidate for controlling the mycobacterial persistence switch. To analyze the possibility of bistability, we develop a method that involves decoupling of the network into transcriptional and post-translational interaction modules. As a result we reduce the dimensionality of the dynamical system and independently analyze input–output relations in the two modules to formulate a necessary condition for bistability in terms of their logarithmic gains. We show that neither the positive autoregulation in the MprA/MprB network nor the σ E -mediated transcriptional feedback is sufficient to induce bistability in a biochemically realistic parameter range. Nonetheless, inclusion of the post-translational regulation of σ E by RseA increases the effective cooperativity of the system, resulting in bistability that is robust to parameter variation. We predict that overexpression or deletion of RseA, the key element controlling the ultrasensitive response, can eliminate bistability

  16. Chapter 16: text mining for translational bioinformatics.

    Science.gov (United States)

    Cohen, K Bretonnel; Hunter, Lawrence E

    2013-04-01

    Text mining for translational bioinformatics is a new field with tremendous research potential. It is a subfield of biomedical natural language processing that concerns itself directly with the problem of relating basic biomedical research to clinical practice, and vice versa. Applications of text mining fall both into the category of T1 translational research-translating basic science results into new interventions-and T2 translational research, or translational research for public health. Potential use cases include better phenotyping of research subjects, and pharmacogenomic research. A variety of methods for evaluating text mining applications exist, including corpora, structured test suites, and post hoc judging. Two basic principles of linguistic structure are relevant for building text mining applications. One is that linguistic structure consists of multiple levels. The other is that every level of linguistic structure is characterized by ambiguity. There are two basic approaches to text mining: rule-based, also known as knowledge-based; and machine-learning-based, also known as statistical. Many systems are hybrids of the two approaches. Shared tasks have had a strong effect on the direction of the field. Like all translational bioinformatics software, text mining software for translational bioinformatics can be considered health-critical and should be subject to the strictest standards of quality assurance and software testing.

  17. The natural product peiminine represses colorectal carcinoma tumor growth by inducing autophagic cell death

    International Nuclear Information System (INIS)

    Lyu, Qing; Tou, Fangfang; Su, Hong; Wu, Xiaoyong; Chen, Xinyi; Zheng, Zhi

    2015-01-01

    Autophagy is evolutionarily conservative in eukaryotic cells that engulf cellular long-lived proteins and organelles, and it degrades the contents through fusion with lysosomes, via which the cell acquires recycled building blocks for the synthesis of new molecules. In this study, we revealed that peiminine induces cell death and enhances autophagic flux in colorectal carcinoma HCT-116 cells. We determined that peiminine enhances the autophagic flux by repressing the phosphorylation of mTOR through inhibiting upstream signals. Knocking down ATG5 greatly reduced the peiminine-induced cell death in wild-type HCT-116 cells, while treating Bax/Bak-deficient cells with peiminine resulted in significant cell death. In summary, our discoveries demonstrated that peiminine represses colorectal carcinoma cell proliferation and cell growth by inducing autophagic cell death. - Highlights: • Peiminine induces autophagy and upregulates autophagic flux. • Peiminine represses colorectal carcinoma tumor growth. • Peiminine induces autophagic cell death. • Peiminine represses mTOR phosphorylation by influencing PI3K/Akt and AMPK pathway

  18. The natural product peiminine represses colorectal carcinoma tumor growth by inducing autophagic cell death

    Energy Technology Data Exchange (ETDEWEB)

    Lyu, Qing [School of Life Sciences, Tsinghua University, Beijing, 100084 (China); Key Lab in Healthy Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055 (China); Tou, Fangfang [Jiangxi Provincial Key Lab of Oncology Translation Medicine, Jiangxi Cancer Hospital, Nanchang, 330029 (China); Su, Hong; Wu, Xiaoyong [First Affiliated Hospital, Guiyang College of Traditional Chinese Medicine, Guiyang, 550002 (China); Chen, Xinyi [Department of Hematology and Oncology, Beijing University of Chinese Medicine, Beijing, 100029 (China); Zheng, Zhi, E-mail: zheng_sheva@hotmail.com [Jiangxi Provincial Key Lab of Oncology Translation Medicine, Jiangxi Cancer Hospital, Nanchang, 330029 (China)

    2015-06-19

    Autophagy is evolutionarily conservative in eukaryotic cells that engulf cellular long-lived proteins and organelles, and it degrades the contents through fusion with lysosomes, via which the cell acquires recycled building blocks for the synthesis of new molecules. In this study, we revealed that peiminine induces cell death and enhances autophagic flux in colorectal carcinoma HCT-116 cells. We determined that peiminine enhances the autophagic flux by repressing the phosphorylation of mTOR through inhibiting upstream signals. Knocking down ATG5 greatly reduced the peiminine-induced cell death in wild-type HCT-116 cells, while treating Bax/Bak-deficient cells with peiminine resulted in significant cell death. In summary, our discoveries demonstrated that peiminine represses colorectal carcinoma cell proliferation and cell growth by inducing autophagic cell death. - Highlights: • Peiminine induces autophagy and upregulates autophagic flux. • Peiminine represses colorectal carcinoma tumor growth. • Peiminine induces autophagic cell death. • Peiminine represses mTOR phosphorylation by influencing PI3K/Akt and AMPK pathway.

  19. Repression of MYBL2 by Both microRNA858a and HY5 Leads to the Activation of Anthocyanin Biosynthetic Pathway in Arabidopsis.

    Science.gov (United States)

    Wang, Yulong; Wang, Yiqing; Song, Zhaoqing; Zhang, Huiyong

    2016-10-10

    Extensive studies in various plants show that the anthocyanin biosynthetic process is affected by environmental factors and regulated by many transcription factors through sophisticated regulatory networks. However, it remains largely unclear about the roles of microRNA in this process. Here, we demonstrate that miR858a is a positive regulator of anthocyanin biosynthesis in Arabidopsis seedlings. Overexpression of miR858a enhances the accumulation of anthocyanins, whereas the reduced miR858a activity results in low levels of anthocyanins in STTM858 transgenic plants. We found that miR858a inhibits the expression of MYBL2, a key negative regulator of anthocyanin biosynthesis, by translational repression. In addition, ELONGATED HYPOCOTYL 5 (HY5) was shown to directly bind the MYBL2 promoter and represses its expression via specific histone modifications. Interestingly, we found that miR858a exhibits light-responsive expression in an HY5-dependent manner. Together, these results delineate the HY5-MIR858a-MYBL2 loop as a cellular mechanism for modulating anthocyanin biosynthesis, suggesting that integration of transcriptional and posttranscriptional regulation is critical for governing proper anthocyanin accumulation in response to light and other environmental factors. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  20. Derangement of a factor upstream of RARalpha triggers the repression of a pleiotropic epigenetic network.

    Directory of Open Access Journals (Sweden)

    Francesca Corlazzoli

    Full Text Available Chromatin adapts and responds to extrinsic and intrinsic cues. We hypothesize that inheritable aberrant chromatin states in cancer and aging are caused by genetic/environmental factors. In previous studies we demonstrated that either genetic mutations, or loss, of retinoic acid receptor alpha (RARalpha, can impair the integration of the retinoic acid (RA signal at the chromatin of RA-responsive genes downstream of RARalpha, and can lead to aberrant repressive chromatin states marked by epigenetic modifications. In this study we tested whether the mere interference with the availability of RA signal at RARalpha, in cells with an otherwise functional RARalpha, can also induce epigenetic repression at RA-responsive genes downstream of RARalpha.To hamper the availability of RA at RARalpha in untransformed human mammary epithelial cells, we targeted the cellular RA-binding protein 2 (CRABP2, which transports RA from the cytoplasm onto the nuclear RARs. Stable ectopic expression of a CRABP2 mutant unable to enter the nucleus, as well as stable knock down of endogenous CRABP2, led to the coordinated transcriptional repression of a few RA-responsive genes downstream of RARalpha. The chromatin at these genes acquired an exacerbated repressed state, or state "of no return". This aberrant state is unresponsive to RA, and therefore differs from the physiologically repressed, yet "poised" state, which is responsive to RA. Consistent with development of homozygosis for epigenetically repressed loci, a significant proportion of cells with a defective CRABP2-mediated RA transport developed heritable phenotypes indicative of loss of function.Derangement/lack of a critical factor necessary for RARalpha function induces epigenetic repression of a RA-regulated gene network downstream of RARalpha, with major pleiotropic biological outcomes.

  1. Potyviral VPg enhances viral RNA Translation and inhibits reporter mRNA translation in planta.

    Science.gov (United States)

    Eskelin, Katri; Hafrén, Anders; Rantalainen, Kimmo I; Mäkinen, Kristiina

    2011-09-01

    Viral protein genome-linked (VPg) plays a central role in several stages of potyvirus infection. This study sought to answer questions about the role of Potato virus A (PVA; genus Potyvirus) VPg in viral and host RNA expression. When expressed in Nicotiana benthamiana leaves in trans, a dual role of VPg in translation is observed. It repressed the expression of monocistronic luciferase (luc) mRNA and simultaneously induced a significant upregulation in the expression of both replicating and nonreplicating PVA RNAs. This enhanced viral gene expression was due at least to the 5' untranslated region (UTR) of PVA RNA, eukaryotic initiation factors 4E and iso 4E [eIF4E/eIF(iso)4E], and the presence of a sufficient amount of VPg. Coexpression of VPg with viral RNA increased the viral RNA amount, which was not the case with the monocistronic mRNA. Both mutations at certain lysine residues in PVA VPg and eIF4E/eIF(iso)4E depletion reduced its ability to upregulate the viral RNA expression. These modifications were also involved in VPg-mediated downregulation of monocistronic luc expression. These results suggest that VPg can titrate eIF4Es from capped monocistronic RNAs. Because VPg-mediated enhancement of viral gene expression required eIF4Es, it is possible that VPg directs eIF4Es to promote viral RNA expression. From this study it is evident that VPg can serve as a specific regulator of PVA expression by boosting the viral RNA amounts as well as the accumulation of viral translation products. Such a mechanism could function to protect viral RNA from being degraded and to secure efficient production of coat protein (CP) for virion formation.

  2. Potyviral VPg Enhances Viral RNA Translation and Inhibits Reporter mRNA Translation In Planta▿

    Science.gov (United States)

    Eskelin, Katri; Hafrén, Anders; Rantalainen, Kimmo I.; Mäkinen, Kristiina

    2011-01-01

    Viral protein genome-linked (VPg) plays a central role in several stages of potyvirus infection. This study sought to answer questions about the role of Potato virus A (PVA; genus Potyvirus) VPg in viral and host RNA expression. When expressed in Nicotiana benthamiana leaves in trans, a dual role of VPg in translation is observed. It repressed the expression of monocistronic luciferase (luc) mRNA and simultaneously induced a significant upregulation in the expression of both replicating and nonreplicating PVA RNAs. This enhanced viral gene expression was due at least to the 5′ untranslated region (UTR) of PVA RNA, eukaryotic initiation factors 4E and iso 4E [eIF4E/eIF(iso)4E], and the presence of a sufficient amount of VPg. Coexpression of VPg with viral RNA increased the viral RNA amount, which was not the case with the monocistronic mRNA. Both mutations at certain lysine residues in PVA VPg and eIF4E/eIF(iso)4E depletion reduced its ability to upregulate the viral RNA expression. These modifications were also involved in VPg-mediated downregulation of monocistronic luc expression. These results suggest that VPg can titrate eIF4Es from capped monocistronic RNAs. Because VPg-mediated enhancement of viral gene expression required eIF4Es, it is possible that VPg directs eIF4Es to promote viral RNA expression. From this study it is evident that VPg can serve as a specific regulator of PVA expression by boosting the viral RNA amounts as well as the accumulation of viral translation products. Such a mechanism could function to protect viral RNA from being degraded and to secure efficient production of coat protein (CP) for virion formation. PMID:21697470

  3. Repressive coping and alexithymia in ideopathic environmental intolerance

    DEFF Research Database (Denmark)

    Skovbjerg, Sine; Zachariae, Robert; Rasmussen, Alice

    2010-01-01

    participated in a general population-based study and reported symptoms of environmental intolerance (n = 787) and patients with IEI (n = 237). The participants completed questionnaires assessing IEI, namely, a measure of repressive coping combining scores on the Marlowe–Crowne Social Desirability Scale (MCSDS...

  4. Selective translational repression of HIV-1 RNA by Sam68DeltaC occurs by altering PABP1 binding to unspliced viral RNA

    Directory of Open Access Journals (Sweden)

    Soros Vanessa

    2008-10-01

    Full Text Available Abstract HIV-1 structural proteins are translated from incompletely spliced 9 kb and 4 kb mRNAs, which are transported to the cytoplasm by Crm1. It has been assumed that once in the cytoplasm, translation of incompletely spliced HIV-1 mRNAs occurs in the same manner as host mRNAs. Previous analyses have demonstrated that Sam68 and a mutant thereof, Sam68ΔC, have dramatic effects on HIV gene expression, strongly enhancing and inhibiting viral structural protein synthesis, respectively. While investigating the inhibition of incompletely spliced HIV-1 mRNAs by Sam68ΔC, we determined that the effect was independent of the perinuclear bundling of the viral RNA. Inhibition was dependent upon the nuclear export pathway used, as translation of viral RNA exported via the Tap/CTE export pathway was not blocked by Sam68ΔC. We demonstrate that inhibition of HIV expression by Sam68ΔC is correlated with a loss of PABP1 binding with no attendant change in polyadenosine tail length of the affected RNAs. The capacity of Sam68ΔC to selectively inhibit translation of HIV-1 RNAs exported by Crm1 suggests that it is able to recognize unique characteristics of these viral RNPs, a property that could lead to new therapeutic approaches to controlling HIV-1 replication.

  5. Mapping Translation Technology Research in Translation Studies

    DEFF Research Database (Denmark)

    Schjoldager, Anne; Christensen, Tina Paulsen; Flanagan, Marian

    2017-01-01

    section aims to improve this situation by presenting new and innovative research papers that reflect on recent technological advances and their impact on the translation profession and translators from a diversity of perspectives and using a variety of methods. In Section 2, we present translation......Due to the growing uptake of translation technology in the language industry and its documented impact on the translation profession, translation students and scholars need in-depth and empirically founded knowledge of the nature and influences of translation technology (e.g. Christensen....../Schjoldager 2010, 2011; Christensen 2011). Unfortunately, the increasing professional use of translation technology has not been mirrored within translation studies (TS) by a similar increase in research projects on translation technology (Munday 2009: 15; O’Hagan 2013; Doherty 2016: 952). The current thematic...

  6. Distinct Residues Contribute to Motility Repression and Autoregulation in the Proteus mirabilis Fimbria-Associated Transcriptional Regulator AtfJ.

    Science.gov (United States)

    Bode, Nadine J; Chan, Kun-Wei; Kong, Xiang-Peng; Pearson, Melanie M

    2016-08-01

    Proteus mirabilis contributes to a significant number of catheter-associated urinary tract infections, where coordinated regulation of adherence and motility is critical for ascending disease progression. Previously, the mannose-resistant Proteus-like (MR/P) fimbria-associated transcriptional regulator MrpJ has been shown to both repress motility and directly induce the transcription of its own operon; in addition, it affects the expression of a wide range of cellular processes. Interestingly, 14 additional mrpJ paralogs are included in the P. mirabilis genome. Looking at a selection of MrpJ paralogs, we discovered that these proteins, which consistently repress motility, also have nonidentical functions that include cross-regulation of fimbrial operons. A subset of paralogs, including AtfJ (encoded by the ambient temperature fimbrial operon), Fim8J, and MrpJ, are capable of autoinduction. We identified an element of the atf promoter extending from 487 to 655 nucleotides upstream of the transcriptional start site that is responsive to AtfJ, and we found that AtfJ directly binds this fragment. Mutational analysis of AtfJ revealed that its two identified functions, autoregulation and motility repression, are not invariably linked. Residues within the DNA-binding helix-turn-helix domain are required for motility repression but not necessarily autoregulation. Likewise, the C-terminal domain is dispensable for motility repression but is essential for autoregulation. Supported by a three-dimensional (3D) structural model, we hypothesize that the C-terminal domain confers unique regulatory capacities on the AtfJ family of regulators. Balancing adherence with motility is essential for uropathogens to successfully establish a foothold in their host. Proteus mirabilis uses a fimbria-associated transcriptional regulator to switch between these antagonistic processes by increasing fimbrial adherence while simultaneously downregulating flagella. The discovery of multiple

  7. A human Polycomb isoform lacking the Pc box does not participate to PRC1 complexes but forms protein assemblies and represses transcription.

    Science.gov (United States)

    Völkel, Pamela; Le Faou, Perrine; Vandamme, Julien; Pira, Dorcas; Angrand, Pierre-Olivier

    2012-05-01

    Polycomb repression controls the expression of hundreds of genes involved in development and is mediated by essentially two classes of chromatin-associated protein complexes. The Polycomb repressive complex 2 (PRC2) trimethylates histone H3 at lysine 27, an epigenetic mark that serves as a docking site for the PRC1 protein complex. Drosophila core PRC1 is composed of four subunits: Polycomb (Pc), Posterior sex combs (Psc), Polyhomeotic (Ph) and Sex combs extra (Sce). Each of these proteins has multiple orthologs in vertebrates, thus generating an enormous scope for potential combinatorial diversity. In particular, mammalian genomes encode five Pc family members: CBX2, CBX4, CBX6, CBX7 and CBX8. To complicate matters further, distinct isoforms might arise from single genes. Here, we address the functional role of the two human CBX2 isoforms. Owing to different polyadenylation sites and alternative splicing events, the human CBX2 locus produces two transcripts: a 5-exon transcript that encodes the 532-amino acid CBX2-1 isoform that contains the conserved chromodomain and Pc box and a 4-exon transcript encoding a shorter isoform, CBX2-2, lacking the Pc box but still possessing a chromodomain. Using biochemical approaches and a novel in vivo imaging assay, we show that the short CBX2-2 isoform lacking the Pc box, does not participate in PRC1 protein complexes, but self-associates in vivo and forms complexes of high molecular weight. Furthermore, the CBX2 short isoform is still able to repress transcription, suggesting that Polycomb repression might occur in the absence of PRC1 formation.

  8. Radiation Therapy - Multiple Languages

    Science.gov (United States)

    ... W XYZ List of All Topics All Radiation Therapy - Multiple Languages To use the sharing features on this page, ... Information Translations Vietnamese (Tiếng Việt) Expand Section Radiation Therapy - Tiếng Việt (Vietnamese) ... Health Information Translations Characters not displaying correctly on this page? See language display issues . Return to the MedlinePlus Health Information ...

  9. Repressive Tolerance and the Practice of Adult Education

    Science.gov (United States)

    Brookfield, Stephen D.

    2014-01-01

    Herbert Marcuse's concept of repressive tolerance argues that behind the justification of tolerance lies the possibility of ideological domination. Tolerance allows intolerable practices to go unchallenged and flattens discussion to assume all viewpoints have equal validity. When alternative, dissenting views are inserted into the curriculum…

  10. The race to decipher the top secrets of TOP mRNAs.

    Science.gov (United States)

    Meyuhas, Oded; Kahan, Tamar

    2015-07-01

    Cells encountering hostile growth conditions, like those residing in the middle of a newly developing solid tumor, conserve resources and energy by downregulating protein synthesis. One mechanism in this response is the translational repression of multiple mRNAs that encode components of the translational apparatus. This coordinated translational control is carried through a common cis-regulatory element, the 5' Terminal OligoPyrimidine motif (5'TOP), after which these mRNAs are referred to as TOP mRNAs. Subsequent to the initial structural and functional characterization of members of this family, the research of TOP mRNAs has progressed in three major directions: a) delineating the landscape of the family; b) establishing the pathways that transduce stress cues into selective translational repression; and c) attempting to decipher the most proximal trans-acting factor(s) and defining its mode of action--a repressor or activator. The present chapter critically reviews the development in these three avenues of research with a special emphasis on the two "top secrets" of the TOP mRNA family: the scope of its members and the identity of the proximal cellular regulator(s). This article is part of a Special Issue entitled: Translation and Cancer. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Absolute in vivo translation rates of individual codons in Escherichia coli: The two glutamic acid codons GAA and GAG are translated with a threefold difference in rate

    DEFF Research Database (Denmark)

    Sørensen, M.A.; Pedersen, Steen

    1991-01-01

    We have determined the absolute translation rates for four individual codons in Escherichia coli. We used our previously described system for direct measurements of in vivo translation rates using small, in-frame inserts in the lacZ gene. The inserts consisted of multiple synthetic 30 base-pair D...

  12. Epigenetic regulation of puberty via Zinc finger protein-mediated transcriptional repression.

    Science.gov (United States)

    Lomniczi, Alejandro; Wright, Hollis; Castellano, Juan Manuel; Matagne, Valerie; Toro, Carlos A; Ramaswamy, Suresh; Plant, Tony M; Ojeda, Sergio R

    2015-12-16

    In primates, puberty is unleashed by increased GnRH release from the hypothalamus following an interval of juvenile quiescence. GWAS implicates Zinc finger (ZNF) genes in timing human puberty. Here we show that hypothalamic expression of several ZNFs decreased in agonadal male monkeys in association with the pubertal reactivation of gonadotropin secretion. Expression of two of these ZNFs, GATAD1 and ZNF573, also decreases in peripubertal female monkeys. However, only GATAD1 abundance increases when gonadotropin secretion is suppressed during late infancy. Targeted delivery of GATAD1 or ZNF573 to the rat hypothalamus delays puberty by impairing the transition of a transcriptional network from an immature repressive epigenetic configuration to one of activation. GATAD1 represses transcription of two key puberty-related genes, KISS1 and TAC3, directly, and reduces the activating histone mark H3K4me2 at each promoter via recruitment of histone demethylase KDM1A. We conclude that GATAD1 epitomizes a subset of ZNFs involved in epigenetic repression of primate puberty.

  13. Timing is critical for effective glucocorticoid receptor mediated repression of the cAMP-induced CRH gene.

    Directory of Open Access Journals (Sweden)

    Siem van der Laan

    Full Text Available Glucocorticoid negative feedback of the hypothalamus-pituitary-adrenal axis is mediated in part by direct repression of gene transcription in glucocorticoid receptor (GR expressing cells. We have investigated the cross talk between the two main signaling pathways involved in activation and repression of corticotrophin releasing hormone (CRH mRNA expression: cyclic AMP (cAMP and GR. We report that in the At-T20 cell-line the glucocorticoid-mediated repression of the cAMP-induced human CRH proximal promoter activity depends on the relative timing of activation of both signaling pathways. Activation of the GR prior to or in conjunction with cAMP signaling results in an effective repression of the cAMP-induced transcription of the CRH gene. In contrast, activation of the GR 10 minutes after onset of cAMP treatment, results in a significant loss of GR-mediated repression. In addition, translocation of ligand-activated GR to the nucleus was found as early as 10 minutes after glucocorticoid treatment. Interestingly, while both signaling cascades counteract each other on the CRH proximal promoter, they synergize on a synthetic promoter containing 'positive' response elements. Since the order of activation of both signaling pathways may vary considerably in vivo, we conclude that a critical time-window exists for effective repression of the CRH gene by glucocorticoids.

  14. Clinical events in coronary patients who report low distress: adverse effect of repressive coping.

    Science.gov (United States)

    Denollet, Johan; Martens, Elisabeth J; Nyklícek, Ivan; Conraads, Viviane M; de Gelder, Beatrice

    2008-05-01

    Coronary artery disease (CAD) patients who report low distress are considered to be at low psychological risk for clinical events. However, patients with a repressive coping style may fail to detect and report signals of emotional distress. The authors hypothesized that repressive CAD patients are at risk for clinical events, despite low self-rated distress. This was a prospective 5- to 10-year follow-up study, with a mean follow-up of 6.6 years. At baseline, 731 CAD patients filled out Trait-Anxiety (distress), Marlowe-Crowne (defensiveness), and Type D scales; 159 patients were classified as "repressive," 360 as "nonrepressive," and 212 as "Type D." The primary endpoint was a composite of total mortality or myocardial infarction (MI); the secondary endpoint was cardiac mortality/MI. No patients were lost to follow-up; 91 patients had a clinical event (including 35 cardiac death and 32 MI). Repressive patients reported low levels of anxiety, anger and depression at baseline, but were at increased risk for death/MI (21/159 = 13%) compared with nonrepressive patients (22/360 = 6%), p = .009. Poor systolic function, poor exercise tolerance, 3-vessel disease, index MI and Type-D personality--but not depression, anxiety or anger--also independently predicted clinical events. After controlling for these variables, repressive patients still had a twofold increased risk of death/MI, OR = 2.17, 95% CI = 1.10-4.08, p = .025). These findings were replicated for cardiac mortality/MI. CAD patients who use a repressive coping style are at increased risk for clinical events, despite their claims of low emotional distress. This phenomenon may cause an underestimation of the effect of stress on the heart. (PsycINFO Database Record (c) 2008 APA, all rights reserved).

  15. "The Neurosis That Has Possessed Us": Political Repression in the Cold War Medical Profession.

    Science.gov (United States)

    Chowkwanyun, Merlin

    2018-04-27

    Political repression played a central role in shaping the political complexion of the American medical profession, the policies it advocated, and those allowed to function comfortably in it. Previous work on the impact of McCarthyism and medicine focuses heavily on the mid-century failure of national health insurance (NHI) and medical reform organizations that suffered from McCarthyist attacks. The focus is national and birds-eye but says less about the impact on day-to-day life of physicians caught in a McCarthyist web; and how exactly the machinery of political repression within the medical profession worked on the ground. This study shifts orientation by using the abrupt dismissal of three Los Angeles physicians from their jobs as a starting point for exploring these dynamics. I argue that the rise of the medical profession and the repressive state in the mid-century, frequently studied apart, worked hand-in-hand, with institutions from each playing symbiotic and mutually reinforcing roles. I also explore tactics of resistance - rhetorical and organizational - to medical repression by physicians who came under attack.

  16. Global transcriptional repression in C. elegans germline precursors by regulated sequestration of TAF-4.

    Science.gov (United States)

    Guven-Ozkan, Tugba; Nishi, Yuichi; Robertson, Scott M; Lin, Rueyling

    2008-10-03

    In C. elegans, four asymmetric divisions, beginning with the zygote (P0), generate transcriptionally repressed germline blastomeres (P1-P4) and somatic sisters that become transcriptionally active. The protein PIE-1 represses transcription in the later germline blastomeres but not in the earlier germline blastomeres P0 and P1. We show here that OMA-1 and OMA-2, previously shown to regulate oocyte maturation, repress transcription in P0 and P1 by binding to and sequestering in the cytoplasm TAF-4, a component critical for assembly of TFIID and the pol II preinitiation complex. OMA-1/2 binding to TAF-4 is developmentally regulated, requiring phosphorylation by the DYRK kinase MBK-2, which is activated at meiosis II after fertilization. OMA-1/2 are normally degraded after the first mitosis, but ectopic expression of wild-type OMA-1 is sufficient to repress transcription in both somatic and later germline blastomeres. We propose that phosphorylation by MBK-2 serves as a developmental switch, converting OMA-1/2 from oocyte to embryo regulators.

  17. Real-time PCR analysis of carbon catabolite repression of cellobiose gene transcription in Trametes versicolor

    Energy Technology Data Exchange (ETDEWEB)

    Stapleton, P. C.; O' Mahoney, J.; Dobson, A. D. W. [National University of Ireland, Microbiology Department, Cork (Ireland)

    2004-02-01

    Previous reports indicate that in white rot fungi such as Trametes versicolor, the production of cellobiose dehydrogenase (CDH), an extracellular haemo-flavo-enzyme, is subject to carbon catabolite repression by both glucose and maltose, and that the repression is mediated at the transcriptional level. This paper describes the results of an investigation of CDH gene transcription in cellulolytic cultures of T. versicolor, in the presence of other additional carbon sources such as glucose, arabinose, and xylose. Using real time polymerase chain reaction (RT-PCR) assay methods in the presence of these other additional carbon sources, the levels of repression observed are quantitatively determined in an effort to obtain more accurate measurements of carbon catabolite repression of CDH production in this ligninolytic fungus. Ninety-six hours after addition, results of the analysis showed reduction in CDH transcript levels of 19-fold for galactose, 92-fold for arabinose and 114-fold for xylose. The greatest repressive effect was exhibited by glucose. In this case the reduction in CDH transcript levels was 3400-fold. CDH plays an important role in lignin degradation, and there is also substantial interest in the biotechnological applications of CDH, most particularly in the pulp and paper industry. 24 refs., 4 figs.

  18. Lactose-mediated carbon catabolite repression of putrescine production in dairy Lactococcus lactis is strain dependent.

    Science.gov (United States)

    del Rio, Beatriz; Ladero, Victor; Redruello, Begoña; Linares, Daniel M; Fernández, Maria; Martín, Maria Cruz; Alvarez, Miguel A

    2015-06-01

    Lactococcus lactis is the lactic acid bacterial (LAB) species most widely used as a primary starter in the dairy industry. However, several strains of L. lactis produce the biogenic amine putrescine via the agmatine deiminase (AGDI) pathway. We previously reported the putrescine biosynthesis pathway in L. lactis subsp. cremoris GE2-14 to be regulated by carbon catabolic repression (CCR) via glucose but not lactose (Linares et al., 2013). The present study shows that both these sugars repress putrescine biosynthesis in L. lactis subsp. lactis T3/33, a strain isolated from a Spanish artisanal cheese. Furthermore, we demonstrated that both glucose and lactose repressed the transcriptional activity of the aguBDAC catabolic genes of the AGDI route. Finally, a screening performed in putrescine-producing dairy L. lactis strains determined that putrescine biosynthesis was repressed by lactose in all the L. lactis subsp. lactis strains tested, but in only one L. lactis subsp. cremoris strain. Given the obvious importance of the lactose-repression in cheese putrescine accumulation, it is advisable to consider the diversity of L. lactis in this sense and characterize consequently the starter cultures to select the safest strains. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Mammalian poly(A)-binding protein is a eukaryotic translation initiation factor, which acts via multiple mechanisms.

    Science.gov (United States)

    Kahvejian, Avak; Svitkin, Yuri V; Sukarieh, Rami; M'Boutchou, Marie-Noël; Sonenberg, Nahum

    2005-01-01

    Translation initiation is a multistep process involving several canonical translation factors, which assemble at the 5'-end of the mRNA to promote the recruitment of the ribosome. Although the 3' poly(A) tail of eukaryotic mRNAs and its major bound protein, the poly(A)-binding protein (PABP), have been studied extensively, their mechanism of action in translation is not well understood and is confounded by differences between in vivo and in vitro systems. Here, we provide direct evidence for the involvement of PABP in key steps of the translation initiation pathway. Using a new technique to deplete PABP from mammalian cell extracts, we show that extracts lacking PABP exhibit dramatically reduced rates of translation, reduced efficiency of 48S and 80S ribosome initiation complex formation, and impaired interaction of eIF4E with the mRNA cap structure. Supplementing PABP-depleted extracts with wild-type PABP completely rectified these deficiencies, whereas a mutant of PABP, M161A, which is incapable of interacting with eIF4G, failed to restore translation. In addition, a stronger inhibition (approximately twofold) of 80S as compared to 48S ribosome complex formation (approximately 65% vs. approximately 35%, respectively) by PABP depletion suggests that PABP plays a direct role in 60S subunit joining. PABP can thus be considered a canonical translation initiation factor, integral to initiation complex formation at the 5'-end of mRNA.

  20. Financial repression and high public debt in Europe

    NARCIS (Netherlands)

    van Riet, Ad

    2018-01-01

    The sharp rise in public debt-to-GDP ratios in the aftermath of the global financial crisis of 2008 posed serious challenges for fiscal policy in euro area countries. This thesis examines whether and to what extent modern financial repression has been applied in Europe to address these challenges.

  1. Translating a wicked problem

    DEFF Research Database (Denmark)

    Tietjen, Anne; Jørgensen, Gertrud

    2016-01-01

    , place-based and project-oriented process directed at concrete physical outcomes. We frame strategic planning as a translation process where the interaction between human and non-human actors translates a unique, complex and contested situation into an innovated situation. We find that local physical...... on the case of a Danish planning process which was carried out in collaboration with a charitable trust, this paper discusses an emerging strategic planning approach at the municipal level. We use the concept of wicked problems, strategic planning theory and Actor-Network-Theory to study a collaborative...... projects played a major role in this process. First, they acted as a vehicle that assembled planners, politicians and stakeholders to work towards strategic visions across multiple scales. Second and consequently, they stimulated considerable second and third order effects in the form of shared problem...

  2. Understanding Translation

    DEFF Research Database (Denmark)

    Schjoldager, Anne Gram; Gottlieb, Henrik; Klitgård, Ida

    Understanding Translation is designed as a textbook for courses on the theory and practice of translation in general and of particular types of translation - such as interpreting, screen translation and literary translation. The aim of the book is to help you gain an in-depth understanding...... of the phenomenon of translation and to provide you with a conceptual framework for the analysis of various aspects of professional translation. Intended readers are students of translation and languages, but the book will also be relevant for others who are interested in the theory and practice of translation...... - translators, language teachers, translation users and literary, TV and film critics, for instance. Discussions focus on translation between Danish and English....

  3. Political Repressions in USSR (Against Speculations, Perversion and Mystifications

    Directory of Open Access Journals (Sweden)

    Viktor N. Zemskov

    2012-12-01

    Full Text Available In the article the great numbers of political repressions, which were exaggerated by authors: R.A. Medvedev, A.I. Solzhenitsyn, O.G. Shatunovskoy, A.V. Antonov-Ovseenko in 80-90s are criticized. The author characterizes figures given in tens and even in hundreds of millions of victims as a statistical charlatanism.After checking up the KGB archives, and documents of division responsible for NKVD-MVD special settlements, the author spills the light on real numbers of political repressions in USSR. In his view, the total number of political victims does not exceed 2, 6 million people. This number implies over 800 thousand of death sentenced for political reasons, around 600 thousand political prisoners who died in labor camps, and about 1, 2 million people died in exile (including ‘Kulak Exile’ and during transportation (deported ethnic groups and others.

  4. Effective knowledge management in translational medicine.

    Science.gov (United States)

    Szalma, Sándor; Koka, Venkata; Khasanova, Tatiana; Perakslis, Eric D

    2010-07-19

    The growing consensus that most valuable data source for biomedical discoveries is derived from human samples is clearly reflected in the growing number of translational medicine and translational sciences departments across pharma as well as academic and government supported initiatives such as Clinical and Translational Science Awards (CTSA) in the US and the Seventh Framework Programme (FP7) of EU with emphasis on translating research for human health. The pharmaceutical companies of Johnson and Johnson have established translational and biomarker departments and implemented an effective knowledge management framework including building a data warehouse and the associated data mining applications. The implemented resource is built from open source systems such as i2b2 and GenePattern. The system has been deployed across multiple therapeutic areas within the pharmaceutical companies of Johnson and Johnsons and being used actively to integrate and mine internal and public data to support drug discovery and development decisions such as indication selection and trial design in a translational medicine setting. Our results show that the established system allows scientist to quickly re-validate hypotheses or generate new ones with the use of an intuitive graphical interface. The implemented resource can serve as the basis of precompetitive sharing and mining of studies involving samples from human subjects thus enhancing our understanding of human biology and pathophysiology and ultimately leading to more effective treatment of diseases which represent unmet medical needs.

  5. Effective knowledge management in translational medicine

    Directory of Open Access Journals (Sweden)

    Khasanova Tatiana

    2010-07-01

    Full Text Available Abstract Background The growing consensus that most valuable data source for biomedical discoveries is derived from human samples is clearly reflected in the growing number of translational medicine and translational sciences departments across pharma as well as academic and government supported initiatives such as Clinical and Translational Science Awards (CTSA in the US and the Seventh Framework Programme (FP7 of EU with emphasis on translating research for human health. Methods The pharmaceutical companies of Johnson and Johnson have established translational and biomarker departments and implemented an effective knowledge management framework including building a data warehouse and the associated data mining applications. The implemented resource is built from open source systems such as i2b2 and GenePattern. Results The system has been deployed across multiple therapeutic areas within the pharmaceutical companies of Johnson and Johnsons and being used actively to integrate and mine internal and public data to support drug discovery and development decisions such as indication selection and trial design in a translational medicine setting. Our results show that the established system allows scientist to quickly re-validate hypotheses or generate new ones with the use of an intuitive graphical interface. Conclusions The implemented resource can serve as the basis of precompetitive sharing and mining of studies involving samples from human subjects thus enhancing our understanding of human biology and pathophysiology and ultimately leading to more effective treatment of diseases which represent unmet medical needs.

  6. Acetate repression of methane oxidation by supplemental Methylocella silvestris in a peat soil microcosm.

    Science.gov (United States)

    Rahman, M Tanvir; Crombie, Andrew; Moussard, Hélène; Chen, Yin; Murrell, J Colin

    2011-06-01

    Methylocella spp. are facultative methanotrophs that grow on methane and multicarbon substrates, such as acetate. Acetate represses transcription of methane monooxygenase of Methylocella silvestris in laboratory culture. DNA stable-isotope probing (DNA-SIP) using (13)C-methane and (12)C-acetate, carried out with Methylocella-spiked peat soil, showed that acetate also repressed methane oxidation by Methylocella in environmental samples.

  7. Selective mRNA translation coordinates energetic and metabolic adjustments to cellular oxygen deprivation and reoxygenation in Arabidopsis thaliana.

    Science.gov (United States)

    Branco-Price, Cristina; Kaiser, Kayla A; Jang, Charles J H; Larive, Cynthia K; Bailey-Serres, Julia

    2008-12-01

    Cellular oxygen deprivation (hypoxia/anoxia) requires an acclimation response that enables survival during an energy crisis. To gain new insights into the processes that facilitate the endurance of transient oxygen deprivation, the dynamics of the mRNA translation state and metabolites were quantitatively monitored in Arabidopsis thaliana seedlings exposed to a short (2 h) or prolonged (9 h) period of oxygen and carbon dioxide deprivation and following 1 h of re-aeration. Hypoxia stress and reoxygenation promoted adjustments in the levels of polyribosomes (polysomes) that were highly coordinated with cellular ATP content. A quantitative comparison of steady-state and polysomal mRNA populations revealed that over half of the cellular mRNAs were restricted from polysome complexes during the stress, with little or no change in abundance. This selective repression of translation was rapidly reversed upon reoxygenation. Comparison of the adjustment in gene transcripts and metabolites demonstrated that profiling of polysomal mRNAs strongly augments the prediction of cellular processes that are altered during cellular oxygen deprivation. The selective translation of a subset of mRNAs promotes the conservation of ATP and facilitates the transition to anaerobic metabolism during low-oxygen stress.

  8. Glucocorticoid and cytokine crosstalk: Feedback, feedforward, and co-regulatory interactions determine repression or resistance.

    Science.gov (United States)

    Newton, Robert; Shah, Suharsh; Altonsy, Mohammed O; Gerber, Antony N

    2017-04-28

    Inflammatory signals induce feedback and feedforward systems that provide temporal control. Although glucocorticoids can repress inflammatory gene expression, glucocorticoid receptor recruitment increases expression of negative feedback and feedforward regulators, including the phosphatase, DUSP1, the ubiquitin-modifying enzyme, TNFAIP3, or the mRNA-destabilizing protein, ZFP36. Moreover, glucocorticoid receptor cooperativity with factors, including nuclear factor-κB (NF-κB), may enhance regulator expression to promote repression. Conversely, MAPKs, which are inhibited by glucocorticoids, provide feedforward control to limit expression of the transcription factor IRF1, and the chemokine, CXCL10. We propose that modulation of feedback and feedforward control can determine repression or resistance of inflammatory gene expression toglucocorticoid. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Accurate microRNA target prediction correlates with protein repression levels

    Directory of Open Access Journals (Sweden)

    Simossis Victor A

    2009-09-01

    Full Text Available Abstract Background MicroRNAs are small endogenously expressed non-coding RNA molecules that regulate target gene expression through translation repression or messenger RNA degradation. MicroRNA regulation is performed through pairing of the microRNA to sites in the messenger RNA of protein coding genes. Since experimental identification of miRNA target genes poses difficulties, computational microRNA target prediction is one of the key means in deciphering the role of microRNAs in development and disease. Results DIANA-microT 3.0 is an algorithm for microRNA target prediction which is based on several parameters calculated individually for each microRNA and combines conserved and non-conserved microRNA recognition elements into a final prediction score, which correlates with protein production fold change. Specifically, for each predicted interaction the program reports a signal to noise ratio and a precision score which can be used as an indication of the false positive rate of the prediction. Conclusion Recently, several computational target prediction programs were benchmarked based on a set of microRNA target genes identified by the pSILAC method. In this assessment DIANA-microT 3.0 was found to achieve the highest precision among the most widely used microRNA target prediction programs reaching approximately 66%. The DIANA-microT 3.0 prediction results are available online in a user friendly web server at http://www.microrna.gr/microT

  10. Eigenvalues and eigenvectors of the translation matrices of spherical waves of multiple-scattering theory

    International Nuclear Information System (INIS)

    Torrini, M.

    1983-01-01

    The exponential nature of the translation matrix G of spherical free waves has been set forth in a previous paper.The explicit expression of the exponential form of the translation matrix is given here, once the eigenvectros and the eigenvalues of G have been found. In addition, the eigenproblem relative to the matrix which transforms outgoing waves scattered by a centre in a set of spherical free waves centered at a different point is solved

  11. Translation of Lexical Stylistic Devices from English to Chinese in Com-mercial Advertisements

    Institute of Scientific and Technical Information of China (English)

    林鑫

    2014-01-01

    With rapid development of China, a growing number of foreign products are entering the Chinese market. An excel-lent translation of a product’s advertisement from English to Chinese undoubtedly contributes to its successful promotion in the Chinese market. Although the translation practice contains multiple difficulties, the translation of lexical stylistic devices is a big challenge for translators. It is not simply because lexical stylistic devices are diverse and various in form, but also because most de-vices involve linguistic and cultural differences between English and Chinese. This thesis analyzed a number of current English to Chinese translations of the devices in commercial advertisements, which mainly come from two translation scholars ’works and official websites of world-known brands. By analyzing the selected data, seven translation strategies are found to be the major translation strategies in this respect, namely literal translation, free translation, flexible translation, extended translation, adaptation translation, compensation translation and amplification translation strategies. Moreover, a number of linguistic and cultural issues which need to be considered by translators are also illustrated here.

  12. Mentoring in Clinical-Translational Research: A Study of Participants in Master’s Degree Programs

    OpenAIRE

    McGinn, Aileen P; Lee, Linda S; Baez, Adriana; Zwanziger, Jack; Anderson, Karl E; Seely, Ellen W; Schoenbaum, Ellie

    2015-01-01

    Research projects in translational science are increasingly complex and require interdisciplinary collaborations. In the context of training translational researchers, this suggests that multiple mentors may be needed in different content areas. This study explored mentoring structure as it relates to perceived mentoring effectiveness and other characteristics of masters-level trainees in clinical-translational research training programs.

  13. Interferon-Stimulated Genes Are Transcriptionally Repressed by PR in Breast Cancer.

    Science.gov (United States)

    Walter, Katherine R; Goodman, Merit L; Singhal, Hari; Hall, Jade A; Li, Tianbao; Holloran, Sean M; Trinca, Gloria M; Gibson, Katelin A; Jin, Victor X; Greene, Geoffrey L; Hagan, Christy R

    2017-10-01

    The progesterone receptor (PR) regulates transcriptional programs that drive proliferation, survival, and stem cell phenotypes. Although the role of native progesterone in the development of breast cancer remains controversial, PR clearly alters the transcriptome in breast tumors. This study identifies a class of genes, Interferon (IFN)-stimulated genes (ISGs), potently downregulated by ligand-activated PR which have not been previously shown to be regulated by PR. Progestin-dependent transcriptional repression of ISGs was observed in breast cancer cell line models and human breast tumors. Ligand-independent regulation of ISGs was also observed, as basal transcript levels were markedly higher in cells with PR knockdown. PR repressed ISG transcription in response to IFN treatment, the canonical mechanism through which these genes are activated. Liganded PR is robustly recruited to enhancer regions of ISGs, and ISG transcriptional repression is dependent upon PR's ability to bind DNA. In response to PR activation, key regulatory transcription factors that are required for IFN-activated ISG transcription, STAT2 and IRF9, exhibit impaired recruitment to ISG promoter regions, correlating with PR/ligand-dependent ISG transcriptional repression. IFN activation is a critical early step in nascent tumor recognition and destruction through immunosurveillance. As the large majority of breast tumors are PR positive at the time of diagnosis, PR-dependent downregulation of IFN signaling may be a mechanism through which early PR-positive breast tumors evade the immune system and develop into clinically relevant tumors. Implications: This study highlights a novel transcriptional mechanism through which PR drives breast cancer development and potentially evades the immune system. Mol Cancer Res; 15(10); 1331-40. ©2017 AACR . ©2017 American Association for Cancer Research.

  14. Targeted transcriptional repression using a chimeric TALE-SRDX repressor protein

    KAUST Repository

    Mahfouz, Magdy M.

    2011-12-14

    Transcriptional activator-like effectors (TALEs) are proteins secreted by Xanthomonas bacteria when they infect plants. TALEs contain a modular DNA binding domain that can be easily engineered to bind any sequence of interest, and have been used to provide user-selected DNA-binding modules to generate chimeric nucleases and transcriptional activators in mammalian cells and plants. Here we report the use of TALEs to generate chimeric sequence-specific transcriptional repressors. The dHax3 TALE was used as a scaffold to provide a DNA-binding module fused to the EAR-repression domain (SRDX) to generate a chimeric repressor that targets the RD29A promoter. The dHax3. SRDX protein efficiently repressed the transcription of the RD29A

  15. Targeted transcriptional repression using a chimeric TALE-SRDX repressor protein

    KAUST Repository

    Mahfouz, Magdy M.; Li, Lixin; Piatek, Marek J.; Fang, Xiaoyun; Mansour, Hicham; Bangarusamy, Dhinoth K.; Zhu, Jian-Kang

    2011-01-01

    Transcriptional activator-like effectors (TALEs) are proteins secreted by Xanthomonas bacteria when they infect plants. TALEs contain a modular DNA binding domain that can be easily engineered to bind any sequence of interest, and have been used to provide user-selected DNA-binding modules to generate chimeric nucleases and transcriptional activators in mammalian cells and plants. Here we report the use of TALEs to generate chimeric sequence-specific transcriptional repressors. The dHax3 TALE was used as a scaffold to provide a DNA-binding module fused to the EAR-repression domain (SRDX) to generate a chimeric repressor that targets the RD29A promoter. The dHax3. SRDX protein efficiently repressed the transcription of the RD29A

  16. Transliteration normalization for Information Extraction and Machine Translation

    Directory of Open Access Journals (Sweden)

    Yuval Marton

    2014-12-01

    Full Text Available Foreign name transliterations typically include multiple spelling variants. These variants cause data sparseness and inconsistency problems, increase the Out-of-Vocabulary (OOV rate, and present challenges for Machine Translation, Information Extraction and other natural language processing (NLP tasks. This work aims to identify and cluster name spelling variants using a Statistical Machine Translation method: word alignment. The variants are identified by being aligned to the same “pivot” name in another language (the source-language in Machine Translation settings. Based on word-to-word translation and transliteration probabilities, as well as the string edit distance metric, names with similar spellings in the target language are clustered and then normalized to a canonical form. With this approach, tens of thousands of high-precision name transliteration spelling variants are extracted from sentence-aligned bilingual corpora in Arabic and English (in both languages. When these normalized name spelling variants are applied to Information Extraction tasks, improvements over strong baseline systems are observed. When applied to Machine Translation tasks, a large improvement potential is shown.

  17. Gene Repression in Haloarchaea Using the CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-Cas I-B System.

    Science.gov (United States)

    Stachler, Aris-Edda; Marchfelder, Anita

    2016-07-15

    The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system is used by bacteria and archaea to fend off foreign genetic elements. Since its discovery it has been developed into numerous applications like genome editing and regulation of transcription in eukaryotes and bacteria. For archaea currently no tools for transcriptional repression exist. Because molecular biology analyses in archaea become more and more widespread such a tool is vital for investigating the biological function of essential genes in archaea. Here we use the model archaeon Haloferax volcanii to demonstrate that its endogenous CRISPR-Cas system I-B can be harnessed to repress gene expression in archaea. Deletion of cas3 and cas6b genes results in efficient repression of transcription. crRNAs targeting the promoter region reduced transcript levels down to 8%. crRNAs targeting the reading frame have only slight impact on transcription. crRNAs that target the coding strand repress expression only down to 88%, whereas crRNAs targeting the template strand repress expression down to 8%. Repression of an essential gene results in reduction of transcription levels down to 22%. Targeting efficiencies can be enhanced by expressing a catalytically inactive Cas3 mutant. Genes can be targeted on plasmids or on the chromosome, they can be monocistronic or part of a polycistronic operon. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Gene Repression in Haloarchaea Using the CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-Cas I-B System*

    Science.gov (United States)

    Stachler, Aris-Edda; Marchfelder, Anita

    2016-01-01

    The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system is used by bacteria and archaea to fend off foreign genetic elements. Since its discovery it has been developed into numerous applications like genome editing and regulation of transcription in eukaryotes and bacteria. For archaea currently no tools for transcriptional repression exist. Because molecular biology analyses in archaea become more and more widespread such a tool is vital for investigating the biological function of essential genes in archaea. Here we use the model archaeon Haloferax volcanii to demonstrate that its endogenous CRISPR-Cas system I-B can be harnessed to repress gene expression in archaea. Deletion of cas3 and cas6b genes results in efficient repression of transcription. crRNAs targeting the promoter region reduced transcript levels down to 8%. crRNAs targeting the reading frame have only slight impact on transcription. crRNAs that target the coding strand repress expression only down to 88%, whereas crRNAs targeting the template strand repress expression down to 8%. Repression of an essential gene results in reduction of transcription levels down to 22%. Targeting efficiencies can be enhanced by expressing a catalytically inactive Cas3 mutant. Genes can be targeted on plasmids or on the chromosome, they can be monocistronic or part of a polycistronic operon. PMID:27226589

  19. Repressive Tolerance

    DEFF Research Database (Denmark)

    Pedersen, Morten Jarlbæk

    2017-01-01

    Consultation of organised interests and others when drafting laws is often seen as an important source of both input and output legitimacy. But whereas the input side of the equation stems from the very process of listening to societal actors, output legitimacy can only be strengthened if consult......Consultation of organised interests and others when drafting laws is often seen as an important source of both input and output legitimacy. But whereas the input side of the equation stems from the very process of listening to societal actors, output legitimacy can only be strengthened...... a substantial effect on the substance of laws – shows that there is a great difference in the amenability of different branches of government but that, in general, authorities do not listen much despite a very strong consultation institution and tradition. A suggestion for an explanation could be pointing...... to an administrative culture of repressive tolerance of organised interests: authorities listen but only reacts in a very limited sense. This bears in it the risk of jeopardising the knowledge transfer from societal actors to administrative ditto thus harming the consultation institutions’ potential for strengthening...

  20. Mei-p26 cooperates with Bam, Bgcn and Sxl to promote early germline development in the Drosophila ovary.

    Directory of Open Access Journals (Sweden)

    Yun Li

    Full Text Available In the Drosophila female germline, spatially and temporally specific translation of mRNAs governs both stem cell maintenance and the differentiation of their progeny. However, the mechanisms that control and coordinate different modes of translational repression within this lineage remain incompletely understood. Here we present data showing that Mei-P26 associates with Bam, Bgcn and Sxl and nanos mRNA during early cyst development, suggesting that this protein helps to repress the translation of nanos mRNA. Together with recently published studies, these data suggest that Mei-P26 mediates both GSC self-renewal and germline differentiation through distinct modes of translational repression depending on the presence of Bam.

  1. Mei-P26 Cooperates with Bam, Bgcn and Sxl to Promote Early Germline Development in the Drosophila Ovary

    Science.gov (United States)

    Li, Yun; Zhang, Qiao; Carreira-Rosario, Arnaldo; Maines, Jean Z.; McKearin, Dennis M.; Buszczak, Michael

    2013-01-01

    In the Drosophila female germline, spatially and temporally specific translation of mRNAs governs both stem cell maintenance and the differentiation of their progeny. However, the mechanisms that control and coordinate different modes of translational repression within this lineage remain incompletely understood. Here we present data showing that Mei-P26 associates with Bam, Bgcn and Sxl and nanos mRNA during early cyst development, suggesting that this protein helps to repress the translation of nanos mRNA. Together with recently published studies, these data suggest that Mei-P26 mediates both GSC self-renewal and germline differentiation through distinct modes of translational repression depending on the presence of Bam. PMID:23526974

  2. Mammalian poly(A)-binding protein is a eukaryotic translation initiation factor, which acts via multiple mechanisms

    OpenAIRE

    Kahvejian, Avak; Svitkin, Yuri V.; Sukarieh, Rami; M'Boutchou, Marie-Noël; Sonenberg, Nahum

    2005-01-01

    Translation initiation is a multistep process involving several canonical translation factors, which assemble at the 5′-end of the mRNA to promote the recruitment of the ribosome. Although the 3′ poly(A) tail of eukaryotic mRNAs and its major bound protein, the poly(A)-binding protein (PABP), have been studied extensively, their mechanism of action in translation is not well understood and is confounded by differences between in vivo and in vitro systems. Here, we provide direct evidence for ...

  3. Nitrogen Metabolite Repression of Metabolism and Virulence in the Human Fungal Pathogen Cryptococcus neoformans

    Science.gov (United States)

    Lee, I. Russel; Chow, Eve W. L.; Morrow, Carl A.; Djordjevic, Julianne T.; Fraser, James A.

    2011-01-01

    Proper regulation of metabolism is essential to maximizing fitness of organisms in their chosen environmental niche. Nitrogen metabolite repression is an example of a regulatory mechanism in fungi that enables preferential utilization of easily assimilated nitrogen sources, such as ammonium, to conserve resources. Here we provide genetic, transcriptional, and phenotypic evidence of nitrogen metabolite repression in the human pathogen Cryptococcus neoformans. In addition to loss of transcriptional activation of catabolic enzyme-encoding genes of the uric acid and proline assimilation pathways in the presence of ammonium, nitrogen metabolite repression also regulates the production of the virulence determinants capsule and melanin. Since GATA transcription factors are known to play a key role in nitrogen metabolite repression, bioinformatic analyses of the C. neoformans genome were undertaken and seven predicted GATA-type genes were identified. A screen of these deletion mutants revealed GAT1, encoding the only global transcription factor essential for utilization of a wide range of nitrogen sources, including uric acid, urea, and creatinine—three predominant nitrogen constituents found in the C. neoformans ecological niche. In addition to its evolutionarily conserved role in mediating nitrogen metabolite repression and controlling the expression of catabolic enzyme and permease-encoding genes, Gat1 also negatively regulates virulence traits, including infectious basidiospore production, melanin formation, and growth at high body temperature (39°–40°). Conversely, Gat1 positively regulates capsule production. A murine inhalation model of cryptococcosis revealed that the gat1Δ mutant is slightly more virulent than wild type, indicating that Gat1 plays a complex regulatory role during infection. PMID:21441208

  4. DNA Translator and Aligner: HyperCard utilities to aid phylogenetic analysis of molecules.

    Science.gov (United States)

    Eernisse, D J

    1992-04-01

    DNA Translator and Aligner are molecular phylogenetics HyperCard stacks for Macintosh computers. They manipulate sequence data to provide graphical gene mapping, conversions, translations and manual multiple-sequence alignment editing. DNA Translator is able to convert documented GenBank or EMBL documented sequences into linearized, rescalable gene maps whose gene sequences are extractable by clicking on the corresponding map button or by selection from a scrolling list. Provided gene maps, complete with extractable sequences, consist of nine metazoan, one yeast, and one ciliate mitochondrial DNAs and three green plant chloroplast DNAs. Single or multiple sequences can be manipulated to aid in phylogenetic analysis. Sequences can be translated between nucleic acids and proteins in either direction with flexible support of alternate genetic codes and ambiguous nucleotide symbols. Multiple aligned sequence output from diverse sources can be converted to Nexus, Hennig86 or PHYLIP format for subsequent phylogenetic analysis. Input or output alignments can be examined with Aligner, a convenient accessory stack included in the DNA Translator package. Aligner is an editor for the manual alignment of up to 100 sequences that toggles between display of matched characters and normal unmatched sequences. DNA Translator also generates graphic displays of amino acid coding and codon usage frequency relative to all other, or only synonymous, codons for approximately 70 select organism-organelle combinations. Codon usage data is compatible with spreadsheet or UWGCG formats for incorporation of additional molecules of interest. The complete package is available via anonymous ftp and is free for non-commercial uses.

  5. ATF3 represses PPARγ expression and inhibits adipocyte differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Min-Kyung; Jung, Myeong Ho, E-mail: jung0603@pusan.ac.kr

    2014-11-07

    Highlights: • ATF3 decrease the expression of PPARγ and its target gene in 3T3-L1 adipocytes. • ATF3 represses the promoter activity of PPARγ2 gene. • ATF/CRE (−1537/−1530) is critical for ATF3-mediated downregulation of PPARγ. • ATF3 binds to the promoter region containing the ATF/CRE. • ER stress inhibits adipocyte differentiation through downregulation of PPARγ by ATF3. - Abstract: Activating transcription factor 3 (ATF3) is a stress-adaptive transcription factor that mediates cellular stress response signaling. We previously reported that ATF3 represses CCAAT/enhancer binding protein α (C/EBPα) expression and inhibits 3T3-L1 adipocyte differentiation. In this study, we explored potential role of ATF3 in negatively regulating peroxisome proliferator activated receptor-γ (PPARγ). ATF3 decreased the expression of PPARγ and its target gene in 3T3-L1 adipocytes. ATF3 also repressed the activity of −2.6 Kb promoter of mouse PPARγ2. Overexpression of PPARγ significantly prevented the ATF3-mediated inhibition of 3T3-L1 differentiation. Transfection studies with 5′ deleted-reporters showed that ATF3 repressed the activity of −2037 bp promoter, whereas it did not affect the activity of −1458 bp promoter, suggesting that ATF3 responsive element is located between the −2037 and −1458. An electrophoretic mobility shift assay and chromatin immunoprecipitation assay demonstrated that ATF3 binds to ATF/CRE site (5′-TGACGTTT-3′) between −1537 and −1530. Mutation of the ATF/CRE site abrogated ATF3-mediated transrepression of the PPARγ2 promoter. Treatment with thapsigargin, endoplasmic reticulum (ER) stress inducer, increased ATF3 expression, whereas it decreased PPARγ expression. ATF3 knockdown significantly blocked the thapsigargin-mediated downregulation of PPARγ expression. Furthermore, overexpression of PPARγ prevented inhibition of 3T3-L1 differentiation by thapsigargin. Collectively, these results suggest that ATF3-mediated

  6. Existential Choice as Repressed Theism: Jean-Paul Sartre and Giorgio Agamben in Conversation

    Directory of Open Access Journals (Sweden)

    Marcos Antonio Norris

    2018-04-01

    Full Text Available This article brings Sartre’s notion of existential authenticity, or sovereign decisionism, into conversation with the work of contemporary political theorist Giorgio Agamben, who argues that sovereign decisionism is the repressed theological foundation of authoritarian governments. As such, the article seeks to accomplish two goals. The first is to show that Sartre’s depiction of sovereign decisionism directly parallels how modern democratic governments conduct themselves during a state of emergency. The second is to show that Sartre’s notion of existential authenticity models, what Agamben calls, secularized theism. Through an ontotheological critique of Sartre’s professed atheism, the article concludes that an existential belief in sovereign decision represses, rather than profanes, the divine origins of authoritarian law. I frame the argument with a reading of Sartre’s 1943 play The Flies, which models the repressed theological underpinnings of Sartre’s theory.

  7. Modifications to the translational apparatus which affect the regulation of protein synthesis in sea urchin embryos

    International Nuclear Information System (INIS)

    Scalise, F.W.

    1988-01-01

    Protein synthesis can be regulated at a number of cellular levels. I have examined how modifications to specific components of the protein synthetic machinery are involved in regulating the efficiency of initiation of translation during early sea urchin embryogenesis. It is demonstrated that Ca 2+ concentrations exceeding 500 uM cause the inhibition of protein synthesis in cell-free translation lysates prepared from sea urchin embryos. Specific changes in the state of phosphorylation of at least 8 proteins occur during this Ca 2+ -mediated repression of translation. Analysis of these proteins has indicated that, unlike mammalian systems, there is no detectable level of Ca 2+ -dependent phosphorylation of the αsubunit eIF-2. Two of the proteins which do become phosphorylated in response to Ca 2+ are calmodulin and an isoelectric form of sea urchin eIF-4D. In addition, 2 proteins which share similarities with kinases involved in the regulation of protein synthesis in mammalian cells, also become phosphorylated. I have investigated the consequences of changes in eIF-4D during sea urchin embryogenesis because it has been proposed that a polyamine-mediated conversion of lysine to hypusine in this factor may enhance translational activity. It is demonstrated that [ 3 H] spermidine-derived radioactivity is incorporated into a number of proteins when sea urchin embryos are labeled in vivo, and that the pattern of individual proteins that become labeled changes over the course of the first 30 hr of development

  8. The Transcription Factor STAT6 Mediates Direct Repression of Inflammatory Enhancers and Limits Activation of Alternatively Polarized Macrophages

    OpenAIRE

    Czimmerer, Zsolt; Daniel, Bence; Horvath, Attila; Rückerl, Dominik; Nagy, Gergely; Kiss, Mate; Peloquin, Matthew; Budai, Marietta M.; Cuaranta-Monroy, Ixchelt; Simandi, Zoltan; Steiner, Laszlo; Nagy, Bela; Poliska, Szilard; Banko, Csaba; Bacso, Zsolt

    2018-01-01

    Summary The molecular basis of signal-dependent transcriptional activation has been extensively studied in macrophage polarization, but our understanding remains limited regarding the molecular determinants of repression. Here we show that IL-4-activated STAT6 transcription factor is required for the direct transcriptional repression of a large number of genes during in vitro and in vivo alternative macrophage polarization. Repression results in decreased lineage-determining transcription fac...

  9. Repression of competition favours cooperation : experimental evidence from bacteria

    NARCIS (Netherlands)

    Kümmerli, Rolf; van den Berg, Piet; Griffin, Ashleigh S; West, Stuart A; Gardner, Andy

    Repression of competition (RC) within social groups has been suggested as a key mechanism driving the evolution of cooperation, because it aligns the individual's proximate interest with the interest of the group. Despite its enormous potential for explaining cooperation across all levels of

  10. Financial repression, money growth, and seignorage: The Polish experience

    NARCIS (Netherlands)

    Aarle, B. van; Budina, N.

    1997-01-01

    Financial Repression, Money Growth and Seignorage: The Polish Experience. — A small analytical framework is developed to analyze the relation between reserve requirements, base money growth and seignorage revenues. From the analysis, the authors can derive of steady-state seignorage revenues as a

  11. Dopamine signaling leads to loss of Polycomb repression and aberrant gene activation in experimental parkinsonism.

    Directory of Open Access Journals (Sweden)

    Erik Södersten

    2014-09-01

    Full Text Available Polycomb group (PcG proteins bind to and repress genes in embryonic stem cells through lineage commitment to the terminal differentiated state. PcG repressed genes are commonly characterized by the presence of the epigenetic histone mark H3K27me3, catalyzed by the Polycomb repressive complex 2. Here, we present in vivo evidence for a previously unrecognized plasticity of PcG-repressed genes in terminally differentiated brain neurons of parkisonian mice. We show that acute administration of the dopamine precursor, L-DOPA, induces a remarkable increase in H3K27me3S28 phosphorylation. The induction of the H3K27me3S28p histone mark specifically occurs in medium spiny neurons expressing dopamine D1 receptors and is dependent on Msk1 kinase activity and DARPP-32-mediated inhibition of protein phosphatase-1. Chromatin immunoprecipitation (ChIP experiments showed that increased H3K27me3S28p was accompanied by reduced PcG binding to regulatory regions of genes. An analysis of the genome wide distribution of L-DOPA-induced H3K27me3S28 phosphorylation by ChIP sequencing (ChIP-seq in combination with expression analysis by RNA-sequencing (RNA-seq showed that the induction of H3K27me3S28p correlated with increased expression of a subset of PcG repressed genes. We found that induction of H3K27me3S28p persisted during chronic L-DOPA administration to parkisonian mice and correlated with aberrant gene expression. We propose that dopaminergic transmission can activate PcG repressed genes in the adult brain and thereby contribute to long-term maladaptive responses including the motor complications, or dyskinesia, caused by prolonged administration of L-DOPA in Parkinson's disease.

  12. Mapping Translation Technology Research in Translation Studies

    DEFF Research Database (Denmark)

    Schjoldager, Anne; Christensen, Tina Paulsen; Flanagan, Marian

    2017-01-01

    /Schjoldager 2010, 2011; Christensen 2011). Unfortunately, the increasing professional use of translation technology has not been mirrored within translation studies (TS) by a similar increase in research projects on translation technology (Munday 2009: 15; O’Hagan 2013; Doherty 2016: 952). The current thematic...... section aims to improve this situation by presenting new and innovative research papers that reflect on recent technological advances and their impact on the translation profession and translators from a diversity of perspectives and using a variety of methods. In Section 2, we present translation...... technology research as a subdiscipline of TS, and we define and discuss some basic concepts and models of the field that we use in the rest of the paper. Based on a small-scale study of papers published in TS journals between 2006 and 2016, Section 3 attempts to map relevant developments of translation...

  13. PRMT5 regulates IRES-dependent translation via methylation of hnRNP A1

    Science.gov (United States)

    Gao, Guozhen; Dhar, Surbhi

    2017-01-01

    Abstract The type II arginine methyltransferase PRMT5 is responsible for the symmetric dimethylation of histone to generate the H3R8me2s and H4R3me2s marks, which correlate with the repression of transcription. However, the protein level of a number of genes (MEP50, CCND1, MYC, HIF1a, MTIF and CDKN1B) are reported to be downregulated by the loss of PRMT5, while their mRNA levels remain unchanged, which is counterintuitive for PRMT5's proposed role as a transcription repressor. We noticed that the majority of the genes regulated by PRMT5, at the posttranscriptional level, express mRNA containing an internal ribosome entry site (IRES). Using an IRES-dependent reporter system, we established that PRMT5 facilitates the translation of a subset of IRES-containing genes. The heterogeneous nuclear ribonucleoprotein, hnRNP A1, is an IRES transacting factor (ITAF) that regulates the IRES-dependent translation of Cyclin D1 and c-Myc. We showed that hnRNP A1 is methylated by PRMT5 on two residues, R218 and R225, and that this methylation facilitates the interaction of hnRNP A1 with IRES RNA to promote IRES-dependent translation. This study defines a new role for PRMT5 regulation of cellular protein levels, which goes beyond the known functions of PRMT5 as a transcription and splicing regulator. PMID:28115626

  14. Telomeric trans-silencing: an epigenetic repression combining RNA silencing and heterochromatin formation.

    Directory of Open Access Journals (Sweden)

    Thibaut Josse

    2007-09-01

    Full Text Available The study of P-element repression in Drosophila melanogaster led to the discovery of the telomeric Trans-Silencing Effect (TSE, a repression mechanism by which a transposon or a transgene inserted in subtelomeric heterochromatin (Telomeric Associated Sequence or TAS has the capacity to repress in trans in the female germline, a homologous transposon, or transgene located in euchromatin. TSE shows variegation among egg chambers in ovaries when silencing is incomplete. Here, we report that TSE displays an epigenetic transmission through meiosis, which involves an extrachromosomal maternally transmitted factor. We show that this silencing is highly sensitive to mutations affecting both heterochromatin formation (Su(var205 encoding Heterochromatin Protein 1 and Su(var3-7 and the repeat-associated small interfering RNA (or rasiRNA silencing pathway (aubergine, homeless, armitage, and piwi. In contrast, TSE is not sensitive to mutations affecting r2d2, which is involved in the small interfering RNA (or siRNA silencing pathway, nor is it sensitive to a mutation in loquacious, which is involved in the micro RNA (or miRNA silencing pathway. These results, taken together with the recent discovery of TAS homologous small RNAs associated to PIWI proteins, support the proposition that TSE involves a repeat-associated small interfering RNA pathway linked to heterochromatin formation, which was co-opted by the P element to establish repression of its own transposition after its recent invasion of the D. melanogaster genome. Therefore, the study of TSE provides insight into the genetic properties of a germline-specific small RNA silencing pathway.

  15. IS FINANCIAL REPRESSION REALLY BAD?

    Directory of Open Access Journals (Sweden)

    Eun Young OH

    2011-01-01

    Full Text Available This paper examines the relationship between reserve requirements, interest rate taxes, and long-term growth. I present a model which shows that the government might repress the financial sector as this is the easy way of channelling resources to productive sectors. In this endogenous model, I employ the government input in the firm production function. The implications of the model are confirmed in that, an increase in reserve requirements and interest rate controls have two different reverse effects on growth - one is the negative effect on the financial sector. The other is a growth enhancing effect from the effective public spending on the real sectors.

  16. Very low amounts of glucose cause repression of the stress-responsive gene HSP12 in Saccharomyces cerevisiae.

    Science.gov (United States)

    de Groot, E; Bebelman, J P; Mager, W H; Planta, R J

    2000-02-01

    Changing the growth mode of Saccharomyces cerevisiae by adding fermentable amounts of glucose to cells growing on a non-fermentable carbon source leads to rapid repression of general stress-responsive genes like HSP12. Remarkably, glucose repression of HSP12 appeared to occur even at very low glucose concentrations, down to 0.005%. Although these low levels of glucose do not induce fermentative growth, they do act as a growth signal, since upon addition of glucose to a concentration of 0.02%, growth rate increased and ribosomal protein gene transcription was up-regulated. In an attempt to elucidate how this type of glucose signalling may operate, several signalling mutants were examined. Consistent with the low amounts of glucose that elicit HSP12 repression, neither the main glucose-repression pathway nor cAMP-dependent activation of protein kinase A appeared to play a role in this regulation. Using mutants involved in glucose metabolism, evidence was obtained suggesting that glucose 6-phosphate serves as a signalling molecule. To identify the target for glucose repression on the promoter of the HSP12 gene, a promoter deletion series was used. The major transcription factors governing (stress-induced) transcriptional activation of HSP12 are Msn2p and Msn4p, binding to the general stress-responsive promoter elements (STREs). Surprisingly, glucose repression of HSP12 appeared to be independent of Msn2/4p: HSP12 transcription in glycerol-grown cells was unaffected in a deltamsn2deltamsn4 strain. Nevertheless, evidence was obtained that STRE-mediated transcription is the target of repression by low amounts of glucose. These data suggest that an as yet unidentified factor is involved in STRE-mediated transcriptional regulation of HSP12.

  17. EWS/FLI mediates transcriptional repression via NKX2.2 during oncogenic transformation in Ewing's sarcoma.

    Directory of Open Access Journals (Sweden)

    Leah A Owen

    2008-04-01

    Full Text Available EWS/FLI is a master regulator of Ewing's sarcoma formation. Gene expression studies in A673 Ewing's sarcoma cells have demonstrated that EWS/FLI downregulates more genes than it upregulates, suggesting that EWS/FLI, and/or its targets, function as transcriptional repressors. One critical EWS/FLI target, NKX2.2, is a transcription factor that contains both transcriptional activation and transcriptional repression domains, raising the possibility that it mediates portions of the EWS/FLI transcriptional signature. We now report that microarray analysis demonstrated that the transcriptional profile of NKX2.2 consists solely of downregulated genes, and overlaps with the EWS/FLI downregulated signature, suggesting that NKX2.2 mediates oncogenic transformation via transcriptional repression. Structure-function analysis revealed that the DNA binding and repressor domains in NKX2.2 are required for oncogenesis in Ewing's sarcoma cells, while the transcriptional activation domain is completely dispensable. Furthermore, blockade of TLE or HDAC function, two protein families thought to mediate the repressive function of NKX2.2, inhibited the transformed phenotype and reversed the NKX2.2 transcriptional profile in Ewing's sarcoma cells. Whole genome localization studies (ChIP-chip revealed that a significant portion of the NKX2.2-repressed gene expression signature was directly mediated by NKX2.2 binding. These data demonstrate that the transcriptional repressive function of NKX2.2 is necessary, and sufficient, for the oncogenic phenotype of Ewing's sarcoma, and suggest a therapeutic approach to this disease.

  18. Generation of a glucose de-repressed mutant of Trichoderma reesei using disparity mutagenesis.

    Science.gov (United States)

    Iwakuma, Hidekazu; Koyama, Yoshiyuki; Miyachi, Ayako; Nasukawa, Masashi; Matsumoto, Hitoshi; Yano, Shuntaro; Ogihara, Jun; Kasumi, Takafumi

    2016-01-01

    We obtained a novel glucose de-repressed mutant of Trichoderma reesei using disparity mutagenesis. A plasmid containing DNA polymerase δ lacking proofreading activity, and AMAI, an autonomously replicating sequence was introduced into T. reesei ATCC66589. The rate of mutation evaluated with 5-fluoroorotic acid resistance was approximately 30-fold higher than that obtained by UV irradiation. The transformants harboring incompetent DNA polymerase δ were then selected on 2-deoxyglucose agar plates with hygromycin B. The pNP-lactoside hydrolyzing activities of mutants were 2 to 5-fold higher than the parent in liquid medium containing glucose. Notably, the amino acid sequence of cre1, a key gene involved in glucose repression, was identical in the mutant and parent strains, and further, the cre1 expression levels was not abolished in the mutant. Taken together, these results demonstrate that the strains of T. reesei generated by disparity mutagenesis are glucose de-repressed variants that contain mutations in yet-unidentified factors other than cre1.

  19. The base pairing RNA Spot 42 participates in a multi-output feedforward loop to help enact catabolite repression in Escherichia coli

    Science.gov (United States)

    Beisel, Chase L.; Storz, Gisela

    2011-01-01

    SUMMARY Bacteria selectively consume some carbon sources over others through a regulatory mechanism termed catabolite repression. Here, we show that the base pairing RNA Spot 42 plays a broad role in catabolite repression in Escherichia coli by directly repressing genes involved in central and secondary metabolism, redox balancing, and the consumption of diverse non-preferred carbon sources. Many of the genes repressed by Spot 42 are transcriptionally activated by the global regulator CRP. Since CRP represses Spot 42, these regulators participate in a specific regulatory circuit called a multi-output feedforward loop. We found that this loop can reduce leaky expression of target genes in the presence of glucose and can maintain repression of target genes under changing nutrient conditions. Our results suggest that base pairing RNAs in feedforward loops can help shape the steady-state levels and dynamics of gene expression. PMID:21292161

  20. Repression of violence at public meetings and sporting events within the European legal space

    Directory of Open Access Journals (Sweden)

    Božović Milenko

    2014-01-01

    Full Text Available Violence and unbecoming behaviour at sporting events stand for a most acute problem in numerous European countries. However, the method and modes of its' repression have been determined within the frames of each country, that is its' national legislation. Thus, a wide range of various regulations referring to the distinctions of this type of violence can be spotted in legislative of each European country. Nevertheless, along with the development and maturing of the idea of the necessity of implementation of both international and regional legal instruments, used for setting up national law of individual states, a number of European legal instruments have also come to life. It comes as no surprise, though, the growing need for more both general and separate legal instruments in the repression of violence and unbecoming behaviour at sporting events in the European legislative. Based on the analysis, it is possible to single out the ones to achieve the strongest effect to our national legislative. Consequently, the general frames of the repression of violence and unbecoming behaviour at sporting events are founded on European Convention on Human Rights and Fundamental Freedoms (1950, whereas the separated ones lie in the Convention of the European Council on the Repression of Violence and Unbecoming Behaviour at Sporting Events, especially the soccer games, with the Recommendation (1985. The subject of this paper is based on analysis of the legal frames established by the European legal instruments in the field of the repression of violence and unbecoming behaviour at sporting events. The methodological framework throughout the research considers the usage of various methods: historical, linguistic, sociological, logical, normative, analysis of content, etc.

  1. A mesh-free approach to acoustic scattering from multiple spheres nested inside a large sphere by using diagonal translation operators.

    Science.gov (United States)

    Hesford, Andrew J; Astheimer, Jeffrey P; Greengard, Leslie F; Waag, Robert C

    2010-02-01

    A multiple-scattering approach is presented to compute the solution of the Helmholtz equation when a number of spherical scatterers are nested in the interior of an acoustically large enclosing sphere. The solution is represented in terms of partial-wave expansions, and a linear system of equations is derived to enforce continuity of pressure and normal particle velocity across all material interfaces. This approach yields high-order accuracy and avoids some of the difficulties encountered when using integral equations that apply to surfaces of arbitrary shape. Calculations are accelerated by using diagonal translation operators to compute the interactions between spheres when the operators are numerically stable. Numerical results are presented to demonstrate the accuracy and efficiency of the method.

  2. An Alternative Transcript of the FOG-2 Gene Encodes a FOG-2 Isoform lacking the FOG Repression Motif

    OpenAIRE

    Dale, Rodney M.; Remo, Benjamin F.; Svensson, Eric C.

    2007-01-01

    The FOG family of transcriptional co-factors is composed of two members in mammals: FOG-1 and FOG-2. Both have been shown to bind to GATA factors and function as transcriptional co-repressors in specific cell and promoter contexts. We have previously defined a novel repression domain localized to the N-terminus of each FOG family member, the FOG Repression Motif, which is necessary for FOG-mediated transcriptional repression. In this report, we describe the identification and characterization...

  3. Repression of Middle Sporulation Genes in Saccharomyces cerevisiae by the Sum1-Rfm1-Hst1 Complex Is Maintained by Set1 and H3K4 Methylation

    Science.gov (United States)

    Jaiswal, Deepika; Jezek, Meagan; Quijote, Jeremiah; Lum, Joanna; Choi, Grace; Kulkarni, Rushmie; Park, DoHwan; Green, Erin M.

    2017-01-01

    The conserved yeast histone methyltransferase Set1 targets H3 lysine 4 (H3K4) for mono, di, and trimethylation and is linked to active transcription due to the euchromatic distribution of these methyl marks and the recruitment of Set1 during transcription. However, loss of Set1 results in increased expression of multiple classes of genes, including genes adjacent to telomeres and middle sporulation genes, which are repressed under normal growth conditions because they function in meiotic progression and spore formation. The mechanisms underlying Set1-mediated gene repression are varied, and still unclear in some cases, although repression has been linked to both direct and indirect action of Set1, associated with noncoding transcription, and is often dependent on the H3K4me2 mark. We show that Set1, and particularly the H3K4me2 mark, are implicated in repression of a subset of middle sporulation genes during vegetative growth. In the absence of Set1, there is loss of the DNA-binding transcriptional regulator Sum1 and the associated histone deacetylase Hst1 from chromatin in a locus-specific manner. This is linked to increased H4K5ac at these loci and aberrant middle gene expression. These data indicate that, in addition to DNA sequence, histone modification status also contributes to proper localization of Sum1. Our results also show that the role for Set1 in middle gene expression control diverges as cells receive signals to undergo meiosis. Overall, this work dissects an unexplored role for Set1 in gene-specific repression, and provides important insights into a new mechanism associated with the control of gene expression linked to meiotic differentiation. PMID:29066473

  4. Polycomb repressive complex 2 regulates MiR-200b in retinal endothelial cells: potential relevance in diabetic retinopathy.

    Directory of Open Access Journals (Sweden)

    Michael Anthony Ruiz

    Full Text Available Glucose-induced augmented vascular endothelial growth factor (VEGF production is a key event in diabetic retinopathy. We have previously demonstrated that downregulation of miR-200b increases VEGF, mediating structural and functional changes in the retina in diabetes. However, mechanisms regulating miR-200b in diabetes are not known. Histone methyltransferase complex, Polycomb Repressive Complex 2 (PRC2, has been shown to repress miRNAs in neoplastic process. We hypothesized that, in diabetes, PRC2 represses miR-200b through its histone H3 lysine-27 trimethylation mark. We show that human retinal microvascular endothelial cells exposed to high levels of glucose regulate miR-200b repression through histone methylation and that inhibition of PRC2 increases miR-200b while reducing VEGF. Furthermore, retinal tissue from animal models of diabetes showed increased expression of major PRC2 components, demonstrating in vivo relevance. This research established a repressive relationship between PRC2 and miR-200b, providing evidence of a novel mechanism of miRNA regulation through histone methylation.

  5. Pseudomonas putida growing at low temperature shows increased levels of CrcZ and CrcY sRNAs, leading to reduced Crc-dependent catabolite repression.

    Science.gov (United States)

    Fonseca, Pilar; Moreno, Renata; Rojo, Fernando

    2013-01-01

    The Crc protein of Pseudomonas inhibits the expression of genes involved in the transport and assimilation of a number of non-preferred carbon sources when preferred substrates are available, thus coordinating carbon metabolism. Crc acts by binding to target mRNAs, inhibiting their translation. In Pseudomonas putida, the amount of free Crc available is controlled by two sRNAs, CrcY and CrcZ, which bind to and sequester Crc. The levels of these sRNAs vary according to metabolic conditions. Pseudomonas putida grows optimally at 30°C, but can also thrive at 10°C. The present work shows that when cells grow exponentially at 10°C, the repressive effect of Crc on many genes is significantly reduced compared with that seen at 30°C. Total Crc levels were similar at both temperatures, but those of CrcZ and CrcY were significantly higher at 10°C. Therefore, Crc-mediated repression may, at least in part, be reduced at 10°C because the fraction of Crc protein sequestered by CrcZ and CrcY is larger, reducing the amount of free Crc available to bind its targets. This may help P. putida to face cold stress. The results reported might help understanding the behaviour of this bacterium in bioremediation or rhizoremediation strategies at low temperatures. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  6. Origin of the polycomb repressive complex 2 and gene silencing by an E(z) homolog in the unicellular alga Chlamydomonas.

    Science.gov (United States)

    Shaver, Scott; Casas-Mollano, J Armando; Cerny, Ronald L; Cerutti, Heriberto

    2010-05-16

    Polycomb group proteins play an essential role in the maintenance of cell identity and the regulation of development in both animals and plants. The Polycomb Repressive Complex 2 (PRC2) is involved in the establishment of transcriptionally silent chromatin states, in part through its ability to methylate lysine 27 of histone H3 by the Enhancer of zeste [E(z)] subunit. The absence of PRC2 in unicellular model fungi and its function in the repression of genes vital for the development of higher eukaryotes led to the proposal that this complex may have evolved together with the emergence of multicellularity. However, we report here on the widespread presence of PRC2 core subunits in unicellular eukaryotes from the Opisthokonta, Chromalveolata and Archaeplastida supergroups. To gain insight on the role of PRC2 in single celled organisms, we characterized an E(z) homolog, EZH, in the green alga Chlamydomonas reinhardtii. RNAi-mediated suppression of EZH led to defects in the silencing of transgenes and retrotransposons as well as to a global increase in histone post-translational modifications associated with transcriptional activity, such as trimethylation of histone H3 lysine 4 and acetylation of histone H4. On the basis of the parsimony principle, our findings suggest that PRC2 appeared early in eukaryotic evolution, even perhaps in the last unicellular common ancestor of eukaryotes. One of the ancestral roles of PCR2 may have been in defense responses against intragenomic parasites such as transposable elements, prior to being co-opted for lineage specific functions like developmental regulation in multicellular eukaryotes.

  7. Translational Creativity

    DEFF Research Database (Denmark)

    Nielsen, Sandro

    2010-01-01

    A long-established approach to legal translation focuses on terminological equivalence making translators strictly follow the words of source texts. Recent research suggests that there is room for some creativity allowing translators to deviate from the source texts. However, little attention...... is given to genre conventions in source texts and the ways in which they can best be translated. I propose that translators of statutes with an informative function in expert-to-expert communication may be allowed limited translational creativity when translating specific types of genre convention....... This creativity is a result of translators adopting either a source-language or a target-language oriented strategy and is limited by the pragmatic principle of co-operation. Examples of translation options are provided illustrating the different results in target texts. The use of a target-language oriented...

  8. Fidelity, Alterity and Shifting Borders in Translation

    Directory of Open Access Journals (Sweden)

    Titela Vîlceanu

    2007-01-01

    Full Text Available The translator as communicator across linguistic and cultural boundaries should be aware of the cultural power differentials and develop a set of feasible strategies in dealing with such a text type. The text type can be seen as carrying over the text producer’s beliefs and his/her own identity, which is shaped by the higher pre-potent one: the global social and cultural identity of the speech community to which s/he belongs. Things become more complex with the translated text since there is multiplicity of identities: those belonging to the source language culture and those characterising the target language culture.

  9. Topical Review: Translating Translational Research in Behavioral Science.

    Science.gov (United States)

    Hommel, Kevin A; Modi, Avani C; Piazza-Waggoner, Carrie; Myers, James D

    2015-01-01

    To present a model of translational research for behavioral science that communicates the role of behavioral research at each phase of translation. A task force identified gaps in knowledge regarding behavioral translational research processes and made recommendations regarding advancement of knowledge. A comprehensive model of translational behavioral research was developed. This model represents T1, T2, and T3 research activities, as well as Phase 1, 2, 3, and 4 clinical trials. Clinical illustrations of translational processes are also offered as support for the model. Behavioral science has struggled with defining a translational research model that effectively articulates each stage of translation and complements biomedical research. Our model defines key activities at each phase of translation from basic discovery to dissemination/implementation. This should be a starting point for communicating the role of behavioral science in translational research and a catalyst for better integration of biomedical and behavioral research. © The Author 2015. Published by Oxford University Press on behalf of the Society of Pediatric Psychology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Repression of meiotic genes by antisense transcription and by Fkh2 transcription factor in Schizosaccharomyces pombe.

    Science.gov (United States)

    Chen, Huei-Mei; Rosebrock, Adam P; Khan, Sohail R; Futcher, Bruce; Leatherwood, Janet K

    2012-01-01

    In S. pombe, about 5% of genes are meiosis-specific and accumulate little or no mRNA during vegetative growth. Here we use Affymetrix tiling arrays to characterize transcripts in vegetative and meiotic cells. In vegetative cells, many meiotic genes, especially those induced in mid-meiosis, have abundant antisense transcripts. Disruption of the antisense transcription of three of these mid-meiotic genes allowed vegetative sense transcription. These results suggest that antisense transcription represses sense transcription of meiotic genes in vegetative cells. Although the mechanism(s) of antisense mediated transcription repression need to be further explored, our data indicates that RNAi machinery is not required for repression. Previously, we and others used non-strand specific methods to study splicing regulation of meiotic genes and concluded that 28 mid-meiotic genes are spliced only in meiosis. We now demonstrate that the "unspliced" signal in vegetative cells comes from the antisense RNA, not from unspliced sense RNA, and we argue against the idea that splicing regulates these mid-meiotic genes. Most of these mid-meiotic genes are induced in mid-meiosis by the forkhead transcription factor Mei4. Interestingly, deletion of a different forkhead transcription factor, Fkh2, allows low levels of sense expression of some mid-meiotic genes in vegetative cells. We propose that vegetative expression of mid-meiotic genes is repressed at least two independent ways: antisense transcription and Fkh2 repression.

  11. Finite translation surfaces with maximal number of translations

    OpenAIRE

    Schlage-Puchta, Jan-Christoph; Weitze-Schmithuesen, Gabriela

    2013-01-01

    The natural automorphism group of a translation surface is its group of translations. For finite translation surfaces of genus g > 1 the order of this group is naturally bounded in terms of g due to a Riemann-Hurwitz formula argument. In analogy with classical Hurwitz surfaces, we call surfaces which achieve the maximal bound Hurwitz translation surfaces. We study for which g there exist Hurwitz translation surfaces of genus g.

  12. Noncanonical SQSTM1/p62-Nrf2 pathway activation mediates proteasome inhibitor resistance in multiple myeloma cells via redox, metabolic and translational reprogramming

    OpenAIRE

    Riz, Irene; Hawley, Teresa S.; Marsal, Jeffrey W.; Hawley, Robert G.

    2016-01-01

    Multiple Myeloma (MM) is a B-cell malignancy characterized by the accumulation of clonal plasma cells in the bone marrow, with drug resistance being a major cause of therapeutic failure. We established a carfilzomib-resistant derivative of the LP-1 MM cell line (LP-1/Cfz) and found that the transcription factor NF-E2 p45-related factor 2 (Nrf2; gene symbol NFE2L2) contributes to carfilzomib resistance. The mechanism of Nrf2 activation involved enhanced translation of Nrf2 as well as its posit...

  13. Machine Translation Tools - Tools of The Translator's Trade

    DEFF Research Database (Denmark)

    Kastberg, Peter

    2012-01-01

    In this article three of the more common types of translation tools are presented, discussed and critically evaluated. The types of translation tools dealt with in this article are: Fully Automated Machine Translation (or FAMT), Human Aided Machine Translation (or HAMT) and Machine Aided Human...... Translation (or MAHT). The strengths and weaknesses of the different types of tools are discussed and evaluated by means of a number of examples. The article aims at two things: at presenting a sort of state of the art of what is commonly referred to as “machine translation” as well as at providing the reader...... with a sound basis for considering what translation tool (if any) is the most appropriate in order to meet his or her specific translation needs....

  14. Translation of children’s literature

    Directory of Open Access Journals (Sweden)

    Marcílio Garcia de Queiroga

    2016-01-01

    Full Text Available In this paper we aim to discuss the complexities of the translation of children’s literature. Therefore, we seek to make up the theoretical framework in search of a concept for children’s literature, its intersection points among a wide range of speeches and the challenges encountered in establishing a definition due to the complexity of the elements involved. The arguments about the definition of children’s literature allow us a deeper look about the complexity and peculiarities of the genre, as pointed out by theorists such as Peter Hunt, Ronald Jobe and Zohar Shavit. Specific features of the translation of children’s literature are pointed out and discussed, of which we highlight the asymmetrical relationship / dual player - the adult intervenes at all stages of the translation children’s literature; the multiplicity of functions, as indicated by the insertion/ belonging of the genre to socio-educational and literary systems and permeated by their values; and textual manipulation, through liberties because of the peripheral position of the genre. Abridgments, omissions, additions, adaptations, language adjustements all determined by ideological issues are some of the aspects discussed in this article.

  15. Inhibition of p53 acetylation by INHAT subunit SET/TAF-Iβ represses p53 activity.

    Science.gov (United States)

    Kim, Ji-Young; Lee, Kyu-Sun; Seol, Jin-Ee; Yu, Kweon; Chakravarti, Debabrata; Seo, Sang-Beom

    2012-01-01

    The tumor suppressor p53 responds to a wide variety of cellular stress signals. Among potential regulatory pathways, post-translational modifications such as acetylation by CBP/p300 and PCAF have been suggested for modulation of p53 activity. However, exactly how p53 acetylation is modulated remains poorly understood. Here, we found that SET/TAF-Iβ inhibited p300- and PCAF-mediated p53 acetylation in an INHAT (inhibitor of histone acetyltransferase) domain-dependent manner. SET/TAF-Iβ interacted with p53 and repressed transcription of p53 target genes. Consequently, SET/TAF-Iβ blocked both p53-mediated cell cycle arrest and apoptosis in response to cellular stress. Using different apoptosis analyses, including FACS, TUNEL and BrdU incorporation assays, we also found that SET/TAF-Iβ induced cellular proliferation via inhibition of p53 acetylation. Furthermore, we observed that apoptotic Drosophila eye phenotype induced by either dp53 overexpression or UV irradiation was rescued by expression of dSet. Inhibition of dp53 acetylation by dSet was observed in both cases. Our findings provide new insights into the regulation of stress-induced p53 activation by HAT-inhibiting histone chaperone SET/TAF-Iβ.

  16. Translation and interpretation of sign language in the postgraduate context: problematizing positions

    Directory of Open Access Journals (Sweden)

    Luiz Daniel Rodrigues Dinarte

    2015-12-01

    Full Text Available This article aims, based in sign language translation researches, and at the same time entering discussions with inspiration in contemporary theories on the concept of "deconstruction" (DERRIDA, 2004 DERRIDA e ROUDINESCO, 2004 ARROJO, 1993, to reflect on some aspects concerning to the definition of the role and duties of translators and interpreters. We conceive that deconstruction does not consist in a method to be applied on the linguistic and social phenomena, but a set of political strategies that comes from a speech community which translate texts, and thus put themselves in a translational task performing an act of reading that inserts sign language in the academic linguistic multiplicity.

  17. Translational nanomedicine--through the therapeutic window.

    Science.gov (United States)

    Pierce, Robin L

    2015-01-01

    Translational nanomedicine occurs only through the successful integration of multiple inputs and iterative modifications. The therapeutic window plays a pivotal role in the trajectory of translational nanomedicine. Often defined in terms of the range of dosage for safe and effective therapeutic effect, a second definition of the therapeutic window refers to the often narrow temporal window in which a therapeutic effect can be obtained. Expanding the second definition to explicitly include the spatial dimension, this article explores aspects of the therapeutic spaces created by nanomedicine that shift the traditional dimensions of symptom, sign and pathology. This article analyzes three aspects of the therapeutic window in nanomedicine - temporal, spatial and manner of construction and their impact on the dimensions of modern medicine.

  18. Synaptic control of local translation: the plot thickens with new characters.

    Science.gov (United States)

    Thomas, María Gabriela; Pascual, Malena Lucía; Maschi, Darío; Luchelli, Luciana; Boccaccio, Graciela Lidia

    2014-06-01

    The production of proteins from mRNAs localized at the synapse ultimately controls the strength of synaptic transmission, thereby affecting behavior and cognitive functions. The regulated transcription, processing, and transport of mRNAs provide dynamic control of the dendritic transcriptome, which includes thousands of messengers encoding multiple cellular functions. Translation is locally modulated by synaptic activity through a complex network of RNA-binding proteins (RBPs) and various types of non-coding RNAs (ncRNAs) including BC-RNAs, microRNAs, piwi-interacting RNAs, and small interference RNAs. The RBPs FMRP and CPEB play a well-established role in synaptic translation, and additional regulatory factors are emerging. The mRNA repressors Smaug, Nanos, and Pumilio define a novel pathway for local translational control that affects dendritic branching and spines in both flies and mammals. Recent findings support a role for processing bodies and related synaptic mRNA-silencing foci (SyAS-foci) in the modulation of synaptic plasticity and memory formation. The SyAS-foci respond to different stimuli with changes in their integrity thus enabling regulated mRNA release followed by translation. CPEB, Pumilio, TDP-43, and FUS/TLS form multimers through low-complexity regions related to prion domains or polyQ expansions. The oligomerization of these repressor RBPs is mechanistically linked to the aggregation of abnormal proteins commonly associated with neurodegeneration. Here, we summarize the current knowledge on how specificity in mRNA translation is achieved through the concerted action of multiple pathways that involve regulatory ncRNAs and RBPs, the modification of translation factors, and mRNA-silencing foci dynamics.

  19. Translation Techniques

    OpenAIRE

    Marcia Pinheiro

    2015-01-01

    In this paper, we discuss three translation techniques: literal, cultural, and artistic. Literal translation is a well-known technique, which means that it is quite easy to find sources on the topic. Cultural and artistic translation may be new terms. Whilst cultural translation focuses on matching contexts, artistic translation focuses on matching reactions. Because literal translation matches only words, it is not hard to find situations in which we should not use this technique.  Because a...

  20. Reconstruction and logical modeling of glucose repression signaling pathways in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Oliveira Ana

    2009-01-01

    Full Text Available Abstract Background In the yeast Saccharomyces cerevisiae, the presence of high levels of glucose leads to an array of down-regulatory effects known as glucose repression. This process is complex due to the presence of feedback loops and crosstalk between different pathways, complicating the use of intuitive approaches to analyze the system. Results We established a logical model of yeast glucose repression, formalized as a hypergraph. The model was constructed based on verified regulatory interactions and it includes 50 gene transcripts, 22 proteins, 5 metabolites and 118 hyperedges. We computed the logical steady states of all nodes in the network in order to simulate wildtype and deletion mutant responses to different sugar availabilities. Evaluation of the model predictive power was achieved by comparing changes in the logical state of gene nodes with transcriptome data. Overall, we observed 71% true predictions, and analyzed sources of errors and discrepancies for the remaining. Conclusion Though the binary nature of logical (Boolean models entails inherent limitations, our model constitutes a primary tool for storing regulatory knowledge, searching for incoherencies in hypotheses and evaluating the effect of deleting regulatory elements involved in glucose repression.

  1. Translation Ambiguity but Not Word Class Predicts Translation Performance

    Science.gov (United States)

    Prior, Anat; Kroll, Judith F.; Macwhinney, Brian

    2013-01-01

    We investigated the influence of word class and translation ambiguity on cross-linguistic representation and processing. Bilingual speakers of English and Spanish performed translation production and translation recognition tasks on nouns and verbs in both languages. Words either had a single translation or more than one translation. Translation…

  2. Examining English-German Translation Ambiguity Using Primed Translation Recognition

    Science.gov (United States)

    Eddington, Chelsea M.; Tokowicz, Natasha

    2013-01-01

    Many words have more than one translation across languages. Such "translation-ambiguous" words are translated more slowly and less accurately than their unambiguous counterparts. We examine the extent to which word context and translation dominance influence the processing of translation-ambiguous words. We further examine how these factors…

  3. A GRAMMATICAL ADJUSTMENT ANALYSIS OF STATISTICAL MACHINE TRANSLATION METHOD USED BY GOOGLE TRANSLATE COMPARED TO HUMAN TRANSLATION IN TRANSLATING ENGLISH TEXT TO INDONESIAN

    Directory of Open Access Journals (Sweden)

    Eko Pujianto

    2017-04-01

    Full Text Available Google translate is a program which provides fast, free and effortless translating service. This service uses a unique method to translate. The system is called ―Statistical Machine Translation‖, the newest method in automatic translation. Machine translation (MT is an area of many kinds of different subjects of study and technique from linguistics, computers science, artificial intelligent (AI, translation theory, and statistics. SMT works by using statistical methods and mathematics to process the training data. The training data is corpus-based. It is a compilation of sentences and words of the languages (SL and TL from translation done by human. By using this method, Google let their machine discovers the rules for themselves. They do this by analyzing millions of documents that have already been translated by human translators and then generate the result based on the corpus/training data. However, questions arise when the results of the automatic translation prove to be unreliable in some extent. This paper questions the dependability of Google translate in comparison with grammatical adjustment that naturally characterizes human translators' specific advantage. The attempt is manifested through the analysis of the TL of some texts translated by the SMT. It is expected that by using the sample of TL produced by SMT we can learn the potential flaws of the translation. If such exists, the partial of more substantial undependability of SMT may open more windows to the debates of whether this service may suffice the users‘ need.

  4. Promotion of Viral IRES-Mediated Translation Initiation under Mild Hypothermia.

    Directory of Open Access Journals (Sweden)

    Maria Licursi

    Full Text Available Internal ribosome entry site (IRES-mediated translation is an essential replication step for certain viruses. As IRES-mediated translation is regulated differently from cap-dependent translation under various cellular conditions, we sought to investigate whether temperature influences efficiency of viral IRES-mediated translation initiation by using bicistronic reporter constructs containing an IRES element of encephalomyocarditis virus (EMCV, foot-and-mouth disease virus (FMDV, hepatitis C virus (HCV, human rhinovirus (HRV or poliovirus (PV. Under mild hypothermic conditions (30 and 35°C, we observed increases in the efficiency of translation initiation by HCV and HRV IRES elements compared to translation initiation at 37°C. The promotion of HRV IRES activity was observed as early as 2 hours after exposure to mild hypothermia. We also confirmed the promotion of translation initiation by HRV IRES under mild hypothermia in multiple cell lines. The expression levels and locations of polypyrimidine tract-binding protein (PTB and upstream of N-Ras (unr, the IRES trans-acting factors (ITAFs of HCV and HRV IRES elements, were not modulated by the temperature shift from 37°C to 30°C. Taken together, this study demonstrates that efficiency of translation initiation by some viral IRES elements is temperature dependent.

  5. Proposal for a telehealth concept in the translational research model.

    Science.gov (United States)

    Silva, Angélica Baptista; Morel, Carlos Médicis; Moraes, Ilara Hämmerli Sozzi de

    2014-04-01

    To review the conceptual relationship between telehealth and translational research. Bibliographical search on telehealth was conducted in the Scopus, Cochrane BVS, LILACS and MEDLINE databases to find experiences of telehealth in conjunction with discussion of translational research in health. The search retrieved eight studies based on analysis of models of the five stages of translational research and the multiple strands of public health policy in the context of telehealth in Brazil. The models were applied to telehealth activities concerning the Network of Human Milk Banks, in the Telemedicine University Network. The translational research cycle of human milk collected, stored and distributed presents several integrated telehealth initiatives, such as video conferencing, and software and portals for synthesizing knowledge, composing elements of an information ecosystem, mediated by information and communication technologies in the health system. Telehealth should be composed of a set of activities in a computer mediated network promoting the translation of knowledge between research and health services.

  6. The Perils of Repressive Tolerance in Music Education Curriculum

    Science.gov (United States)

    Perrine, William M.

    2017-01-01

    In recent years, philosophers of music education have called for a greater degree of political engagement by music education practitioners. Using Marcuse's discussion of "repressive tolerance" as a conceptual framework, I argue that a politicized curriculum in music education works against the liberal ideas of free speech and a free…

  7. Global transcriptional repression in C. elegans germline precursors by regulated sequestration of TFIID component TAF-4

    Science.gov (United States)

    Guven-Ozkan, Tugba; Nishi, Yuichi; Robertson, Scott M.; Lin, Rueyling

    2008-01-01

    In C. elegans, four asymmetric divisions, beginning with the zygote (P0), generate transcriptionally repressed germline blastomeres (P1–P4) and somatic sisters that become transcriptionally active. The protein PIE-1 represses transcription in the later germline blastomeres, but not in the earlier germline blastomeres P0 and P1. We show here that OMA-1 and OMA-2, previously shown to regulate oocyte maturation, repress transcription in P0 and P1 by binding to and sequestering in the cytoplasm TAF-4, a component critical for assembly of TFIID and the pol II preinitiation complex. OMA-1/2 binding to TAF-4 is developmentally regulated, requiring phosphorylation by the DYRK kinase MBK-2, which is activated at meiosis II following fertilization. OMA-1/2 are normally degraded after the first mitosis, but ectopic expression of wildtype OMA-1 is sufficient to repress transcription in both somatic and later germline blastomeres. We propose that phosphorylation by MBK-2 serves as a developmental switch, converting OMA-1/2 from oocyte to embryo regulators. PMID:18854162

  8. Lifted Java: A Minimal Calculus for Translation Polymorphism

    DEFF Research Database (Denmark)

    Ingesman, Matthias Diehn; Ernst, Erik

    2011-01-01

    To support roles and similar notions involving multiple views on an object, languages like Object Teams and CaesarJ include mechanisms known as lifting and lowering. These mechanisms connect pairs of objects of otherwise unrelated types, and enables programmers to consider such a pair almost...... of translation polymorphism has not been proved. This paper presents a simple model that extends Featherweight Java with the core operations of translation polymorphism, provides a Coq proof that its type system is sound, and shows that the ambiguity problem associated with the so-called smart lifting mechanism...... can be eliminated by a very simple semantics for lifting....

  9. Binding of DEAD-box helicase Dhh1 to the 5'-untranslated region of ASH1 mRNA represses localized translation of ASH1 in yeast cells.

    Science.gov (United States)

    Zhang, Qianjun; Meng, Xiuhua; Li, Delin; Chen, Shaoyin; Luo, Jianmin; Zhu, Linjie; Singer, Robert H; Gu, Wei

    2017-06-09

    Local translation of specific mRNAs is regulated by dynamic changes in their subcellular localization, and these changes are due to complex mechanisms controlling cytoplasmic mRNA transport. The budding yeast Saccharomyces cerevisiae is well suited to studying these mechanisms because many of its transcripts are transported from the mother cell to the budding daughter cell. Here, we investigated the translational control of ASH1 mRNA after transport and localization. We show that although ASH1 transcripts were translated after they reached the bud tip, some mRNAs were bound by the RNA-binding protein Puf6 and were non-polysomal. We also found that the DEAD-box helicase Dhh1 complexed with the untranslated ASH1 mRNA and Puf6. Loss of Dhh1 affected local translation of ASH1 mRNA and resulted in delocalization of ASH1 transcript in the bud. Forcibly shifting the non-polysomal ASH1 mRNA into polysomes was associated with Dhh1 dissociation. We further demonstrated that Dhh1 is not recruited to ASH1 mRNA co-transcriptionally, suggesting that it could bind to ASH1 mRNA within the cytoplasm. Of note, Dhh1 bound to the 5'-UTR of ASH1 mRNA and inhibited its translation in vitro These results suggest that after localization to the bud tip, a portion of the localized ASH1 mRNA becomes translationally inactive because of binding of Dhh1 and Puf6 to the 5'- and 3'-UTRs of ASH1 mRNA. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Arts and design as translational mechanisms for academic entrepreneurship

    DEFF Research Database (Denmark)

    Simeone, Luca; Secundo, Giustina; Schiuma, Giovanni

    2018-01-01

    This paper proposes arts and design as translational mechanisms to connect and align stakeholders, particularly in the context of academic entrepreneurship where multiple stakeholders with different expertise and interests work together in joint endeavors. Insights gathered from an ethnographic...

  11. Stability of XIST repression in relation to genomic imprinting following global genome demethylation in a human cell line

    International Nuclear Information System (INIS)

    Araújo, E.S.S. de; Vasques, L.R.; Stabellini, R.; Krepischi, A.C.V.; Pereira, L.V.

    2014-01-01

    DNA methylation is essential in X chromosome inactivation and genomic imprinting, maintaining repression of XIST in the active X chromosome and monoallelic repression of imprinted genes. Disruption of the DNA methyltransferase genes DNMT1 and DNMT3B in the HCT116 cell line (DKO cells) leads to global DNA hypomethylation and biallelic expression of the imprinted gene IGF2 but does not lead to reactivation of XIST expression, suggesting that XIST repression is due to a more stable epigenetic mark than imprinting. To test this hypothesis, we induced acute hypomethylation in HCT116 cells by 5-aza-2′-deoxycytidine (5-aza-CdR) treatment (HCT116-5-aza-CdR) and compared that to DKO cells, evaluating DNA methylation by microarray and monitoring the expression of XIST and imprinted genes IGF2, H19, and PEG10. Whereas imprinted genes showed biallelic expression in HCT116-5-aza-CdR and DKO cells, the XIST locus was hypomethylated and weakly expressed only under acute hypomethylation conditions, indicating the importance of XIST repression in the active X to cell survival. Given that DNMT3A is the only active DNMT in DKO cells, it may be responsible for ensuring the repression of XIST in those cells. Taken together, our data suggest that XIST repression is more tightly controlled than genomic imprinting and, at least in part, is due to DNMT3A

  12. Stability of XIST repression in relation to genomic imprinting following global genome demethylation in a human cell line

    Energy Technology Data Exchange (ETDEWEB)

    Araújo, E.S.S. de [Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP (Brazil); Centro Internacional de Pesquisa, A.C. Camargo Cancer Center, São Paulo, SP (Brazil); Vasques, L.R. [Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP (Brazil); Stabellini, R.; Krepischi, A.C.V. [Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP (Brazil); Centro Internacional de Pesquisa, A.C. Camargo Cancer Center, São Paulo, SP (Brazil); Pereira, L.V. [Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP (Brazil)

    2014-10-17

    DNA methylation is essential in X chromosome inactivation and genomic imprinting, maintaining repression of XIST in the active X chromosome and monoallelic repression of imprinted genes. Disruption of the DNA methyltransferase genes DNMT1 and DNMT3B in the HCT116 cell line (DKO cells) leads to global DNA hypomethylation and biallelic expression of the imprinted gene IGF2 but does not lead to reactivation of XIST expression, suggesting that XIST repression is due to a more stable epigenetic mark than imprinting. To test this hypothesis, we induced acute hypomethylation in HCT116 cells by 5-aza-2′-deoxycytidine (5-aza-CdR) treatment (HCT116-5-aza-CdR) and compared that to DKO cells, evaluating DNA methylation by microarray and monitoring the expression of XIST and imprinted genes IGF2, H19, and PEG10. Whereas imprinted genes showed biallelic expression in HCT116-5-aza-CdR and DKO cells, the XIST locus was hypomethylated and weakly expressed only under acute hypomethylation conditions, indicating the importance of XIST repression in the active X to cell survival. Given that DNMT3A is the only active DNMT in DKO cells, it may be responsible for ensuring the repression of XIST in those cells. Taken together, our data suggest that XIST repression is more tightly controlled than genomic imprinting and, at least in part, is due to DNMT3A.

  13. Translation-coupling systems

    Science.gov (United States)

    Pfleger, Brian; Mendez-Perez, Daniel

    2013-11-05

    Disclosed are systems and methods for coupling translation of a target gene to a detectable response gene. A version of the invention includes a translation-coupling cassette. The translation-coupling cassette includes a target gene, a response gene, a response-gene translation control element, and a secondary structure-forming sequence that reversibly forms a secondary structure masking the response-gene translation control element. Masking of the response-gene translation control element inhibits translation of the response gene. Full translation of the target gene results in unfolding of the secondary structure and consequent translation of the response gene. Translation of the target gene is determined by detecting presence of the response-gene protein product. The invention further includes RNA transcripts of the translation-coupling cassettes, vectors comprising the translation-coupling cassettes, hosts comprising the translation-coupling cassettes, methods of using the translation-coupling cassettes, and gene products produced with the translation-coupling cassettes.

  14. Translating Dominant Institutional Logics in Practice

    DEFF Research Database (Denmark)

    Agger Nielsen, Jeppe; Jensen, Tina Blegind

    In this paper we examine the proliferation of a new mobile technology in a structured setting of home care in Denmark, focusing on how actions at multiple levels interact to enable technology diffusion and institutionalization. The case study shows how a dominating field level logic...... that combining an institutional logic perspective with a translation perspective furthers our understanding of the malleability of institutional logics....

  15. Repression of Meiotic Genes by Antisense Transcription and by Fkh2 Transcription Factor in Schizosaccharomyces pombe

    Science.gov (United States)

    Chen, Huei-Mei; Rosebrock, Adam P.; Khan, Sohail R.; Futcher, Bruce; Leatherwood, Janet K.

    2012-01-01

    In S. pombe, about 5% of genes are meiosis-specific and accumulate little or no mRNA during vegetative growth. Here we use Affymetrix tiling arrays to characterize transcripts in vegetative and meiotic cells. In vegetative cells, many meiotic genes, especially those induced in mid-meiosis, have abundant antisense transcripts. Disruption of the antisense transcription of three of these mid-meiotic genes allowed vegetative sense transcription. These results suggest that antisense transcription represses sense transcription of meiotic genes in vegetative cells. Although the mechanism(s) of antisense mediated transcription repression need to be further explored, our data indicates that RNAi machinery is not required for repression. Previously, we and others used non-strand specific methods to study splicing regulation of meiotic genes and concluded that 28 mid-meiotic genes are spliced only in meiosis. We now demonstrate that the “unspliced” signal in vegetative cells comes from the antisense RNA, not from unspliced sense RNA, and we argue against the idea that splicing regulates these mid-meiotic genes. Most of these mid-meiotic genes are induced in mid-meiosis by the forkhead transcription factor Mei4. Interestingly, deletion of a different forkhead transcription factor, Fkh2, allows low levels of sense expression of some mid-meiotic genes in vegetative cells. We propose that vegetative expression of mid-meiotic genes is repressed at least two independent ways: antisense transcription and Fkh2 repression. PMID:22238674

  16. Repression of meiotic genes by antisense transcription and by Fkh2 transcription factor in Schizosaccharomyces pombe.

    Directory of Open Access Journals (Sweden)

    Huei-Mei Chen

    Full Text Available In S. pombe, about 5% of genes are meiosis-specific and accumulate little or no mRNA during vegetative growth. Here we use Affymetrix tiling arrays to characterize transcripts in vegetative and meiotic cells. In vegetative cells, many meiotic genes, especially those induced in mid-meiosis, have abundant antisense transcripts. Disruption of the antisense transcription of three of these mid-meiotic genes allowed vegetative sense transcription. These results suggest that antisense transcription represses sense transcription of meiotic genes in vegetative cells. Although the mechanism(s of antisense mediated transcription repression need to be further explored, our data indicates that RNAi machinery is not required for repression. Previously, we and others used non-strand specific methods to study splicing regulation of meiotic genes and concluded that 28 mid-meiotic genes are spliced only in meiosis. We now demonstrate that the "unspliced" signal in vegetative cells comes from the antisense RNA, not from unspliced sense RNA, and we argue against the idea that splicing regulates these mid-meiotic genes. Most of these mid-meiotic genes are induced in mid-meiosis by the forkhead transcription factor Mei4. Interestingly, deletion of a different forkhead transcription factor, Fkh2, allows low levels of sense expression of some mid-meiotic genes in vegetative cells. We propose that vegetative expression of mid-meiotic genes is repressed at least two independent ways: antisense transcription and Fkh2 repression.

  17. Repression of death consciousness and the psychedelic trip

    Directory of Open Access Journals (Sweden)

    Varsha Dutta

    2012-01-01

    Full Text Available Death is our most repressed consciousness, it inheres our condition as the primordial fear. Perhaps it was necessary that this angst be repressed in man or he would be hurled against the dark forces of nature. Modern ethos was built on this edifice, where the ′denial of death′ while ′embracing one′s symbolic immortality′ would be worshipped, so this ideology simply overturned and repressed looking into the morass of the inevitable when it finally announced itself. Once this slowly pieced its way into all of life, ′death′ would soon become a terminology in medicine too and assert its position, by giving a push to those directly dealing with the dying to shy away from its emotional and spiritual affliction. The need to put off death and prolong one′s life would become ever more urgent. Research using psychedelics on the terminally ill which had begun in the 1950s and 1960s would coerce into another realm and alter the face of medicine; but the aggression with which it forced itself in the 1960s would soon be politically maimed, and what remained would be sporadic outpours that trickled its way from European labs and underground boot camps. Now, with the curtain rising, the question has etched itself again, about the use of psychedelic drugs in medicine, particularly psychedelic psychotherapy with the terminally ill. This study is an attempt to philosophically explore death anxiety from its existential context and how something that is innate in our condition cannot be therapeutically cured. Psychedelic use was immutably linked with ancient cultures and only recently has it seen its scientific revival, from which a scientific culture grew around psychedelic therapy. How much of what was threaded in the ritual and spiritual mores can be extricated and be interpreted in our own mechanized language of medicine is the question that nudges many.

  18. Fate of the H-NS-repressed bgl operon in evolution of Escherichia coli.

    Directory of Open Access Journals (Sweden)

    T Sabari Sankar

    2009-03-01

    Full Text Available In the enterobacterial species Escherichia coli and Salmonella enterica, expression of horizontally acquired genes with a higher than average AT content is repressed by the nucleoid-associated protein H-NS. A classical example of an H-NS-repressed locus is the bgl (aryl-beta,D-glucoside operon of E. coli. This locus is "cryptic," as no laboratory growth conditions are known to relieve repression of bgl by H-NS in E. coli K12. However, repression can be relieved by spontaneous mutations. Here, we investigated the phylogeny of the bgl operon. Typing of bgl in a representative collection of E. coli demonstrated that it evolved clonally and that it is present in strains of the phylogenetic groups A, B1, and B2, while it is presumably replaced by a cluster of ORFans in the phylogenetic group D. Interestingly, the bgl operon is mutated in 20% of the strains of phylogenetic groups A and B1, suggesting erosion of bgl in these groups. However, bgl is functional in almost all B2 isolates and, in approximately 50% of them, it is weakly expressed at laboratory growth conditions. Homologs of bgl genes exist in Klebsiella, Enterobacter, and Erwinia species and also in low GC-content Gram-positive bacteria, while absent in E. albertii and Salmonella sp. This suggests horizontal transfer of bgl genes to an ancestral Enterobacterium. Conservation and weak expression of bgl in isolates of phylogenetic group B2 may indicate a functional role of bgl in extraintestinal pathogenic E. coli.

  19. The transcription factor Mlc promotes Vibrio cholerae biofilm formation through repression of phosphotransferase system components.

    Science.gov (United States)

    Pickering, Bradley S; Lopilato, Jane E; Smith, Daniel R; Watnick, Paula I

    2014-07-01

    The phosphoenol phosphotransferase system (PTS) is a multicomponent signal transduction cascade that regulates diverse aspects of bacterial cellular physiology in response to the availability of high-energy sugars in the environment. Many PTS components are repressed at the transcriptional level when the substrates they transport are not available. In Escherichia coli, the transcription factor Mlc (for makes large colonies) represses transcription of the genes encoding enzyme I (EI), histidine protein (HPr), and the glucose-specific enzyme IIBC (EIIBC(Glc)) in defined media that lack PTS substrates. When glucose is present, the unphosphorylated form of EIIBC(Glc) sequesters Mlc to the cell membrane, preventing its interaction with DNA. Very little is known about Vibrio cholerae Mlc. We found that V. cholerae Mlc activates biofilm formation in LB broth but not in defined medium supplemented with either pyruvate or glucose. Therefore, we questioned whether V. cholerae Mlc functions differently than E. coli Mlc. Here we have shown that, like E. coli Mlc, V. cholerae Mlc represses transcription of PTS components in both defined medium and LB broth and that E. coli Mlc is able to rescue the biofilm defect of a V. cholerae Δmlc mutant. Furthermore, we provide evidence that Mlc indirectly activates transcription of the vps genes by repressing expression of EI. Because activation of the vps genes by Mlc occurs under only a subset of the conditions in which repression of PTS components is observed, we conclude that additional inputs present in LB broth are required for activation of vps gene transcription by Mlc. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  20. PERSONALITY TYPE AND TRANSLATION PERFORMANCE OF PERSIAN TRANSLATOR TRAINEES

    Directory of Open Access Journals (Sweden)

    Reza Shaki

    2017-09-01

    Full Text Available The study investigated the relationship between the personality typology of a sample of Iranian translation students and their translation quality in terms of expressive, appellative, and informative text types. The study also attempted to identify the personality types that can perform better in English to Persian translation of the three text types. For that purpose, the personality type and the translation quality of the participants was assessed using Myers-Briggs Type Indicator (MBTI personality test and translation quality assessment (TQA, respectively. The analysis of the data revealed that the personality type of the participants seemed relevant to the translation quality of all the text types. The translation quality of the participants with intuitive and thinking types was significantly better than the sensing type counterparts in translating expressive texts. The participants with intuitive and feeling types also performed better than their counterparts with sensing type in translation of the informative text. Moreover, the participants with intuitive, feeling, and thinking personality types performed more successfully than the participants with sensing type in translation of the appellative text. The findings of the study are discussed in light of the existing research literature.

  1. Translational Geoscience: Converting Geoscience Innovation into Societal Impacts

    Science.gov (United States)

    Schiffries, C. M.

    2015-12-01

    Translational geoscience — which involves the conversion of geoscience discovery into societal, economic, and environmental impacts — has significant potential to generate large benefits but has received little systematic attention or resources. In contrast, translational medicine — which focuses on the conversion of scientific discovery into health improvement — has grown enormously in the past decade and provides useful models for other fields. Elias Zerhouni [1] developed a "new vision" for translational science to "ensure that extraordinary scientific advances of the past decade will be rapidly captured, translated, and disseminated for the benefit of all Americans." According to Francis Collins, "Opportunities to advance the discipline of translational science have never been better. We must move forward now. Science and society cannot afford to do otherwise." On 9 July 2015, the White House issued a memorandum directing U.S. federal agencies to focus on translating research into broader impacts, including commercial products and decision-making frameworks [3]. Natural hazards mitigation is one of many geoscience topics that would benefit from advances in translational science. This paper demonstrates that natural hazards mitigation can benefit from advances in translational science that address such topics as improving emergency preparedness, communicating life-saving information to government officials and citizens, explaining false positives and false negatives, working with multiple stakeholders and organizations across all sectors of the economy and all levels of government, and collaborating across a broad range of disciplines. [1] Zerhouni, EA (2005) New England Journal of Medicine 353(15):1621-1623. [2] Collins, FS (2011) Science Translational Medicine 3(90):1-6. [3] Donovan, S and Holdren, JP (2015) Multi-agency science and technology priorities for the FY 2017 budget. Executive Office of the President of the United States, 5 pp.

  2. From sensorimotor inhibition to Freudian repression: insights from psychosis applied to neurosis

    Directory of Open Access Journals (Sweden)

    Ariane eBazan

    2012-11-01

    Full Text Available First, three case studies are presented of psychotic patients having in common an inability to hold something down or out. In line with other theories on psychosis, we propose that a key change is at the efference copy system. Going back to Freud’s mental apparatus, we propose that the messages of discharge of the motor neurones, mobilised to direct perception, also called indications of reality, are equivalent to the modern efference copies. With this key, the reading of the cases is coherent with the psychodynamic understanding of psychosis, being a downplay of secondary processes, and consequently, a dominance of primary processes. Moreover, putting together the sensorimotor idea of a failure of efference copy-mediated inhibition with the psychoanalytic idea of a failing repression in psychosis, the hypothesis emerges that the attenuation enabled by the efference copy dynamics is, in some instances, the physiological instantiation of repression. Second, we applied this idea to the mental organisation in neurosis. Indeed, the efference copy-mediated attenuation is thought to be the mechanism through which sustained activation of an intention, without reaching it – i.e. inhibition of an action – gives rise to mental imagery. Therefore, as inhibition is needed for any targeted action or for normal language understanding, acting in the world or processing language structurally induces mental imagery, constituting a subjective unconscious mental reality. Repression is a special instance of inhibition for emotionally threatening stimuli. These stimuli require stronger inhibition, leaving (the attenuation of the motor intentions totally unanswered, in order to radically prevent execution which would lead to development of excess affect. This inhibition, then, yields a specific type of motor imagery, called phantoms, which induce mental preoccupation, as well as symptoms which, especially through their form, refer to the repressed motor

  3. Circuitry linking the global Csr and σE-dependent cell envelope stress response systems.

    Science.gov (United States)

    Yakhnin, Helen; Aichele, Robert; Ades, Sarah E; Romeo, Tony; Babitzke, Paul

    2017-09-18

    CsrA of Escherichia coli is an RNA-binding protein that globally regulates a wide variety of cellular processes and behaviors including carbon metabolism, motility, biofilm formation, and the stringent response. CsrB and CsrC are sRNAs that sequester CsrA, thereby preventing CsrA-mRNA interaction. RpoE (σ E ) is the extracytoplasmic stress response sigma factor of E. coli Previous RNA-seq studies identified rpoE mRNA as a CsrA target. Here we explored the regulation of rpoE by CsrA and found that CsrA represses rpoE translation. Gel mobility shift, footprint and toeprint studies identified three CsrA binding sites in the rpoE leader transcript, one of which overlaps the rpoE Shine-Dalgarno (SD) sequence, while another overlaps the rpoE translation initiation codon. Coupled in vitro transcription-translation experiments showed that CsrA represses rpoE translation by binding to these sites. We further demonstrate that σ E indirectly activates transcription of csrB and csrC , leading to increased sequestration of CsrA such that repression of rpoE by CsrA is reduced. We propose that the Csr system fine-tunes the σ E -dependent cell envelope stress response. We also identified a 51 amino acid coding sequence whose stop codon overlaps the rpoE start codon, and demonstrate that rpoE is translationally coupled with this upstream open reading frame (ORF51). Loss of coupling reduces rpoE translation by more than 50%. Identification of a translationally coupled ORF upstream of rpoE suggests that this previously unannotated protein may participate in the cell envelope stress response. In keeping with existing nomenclature, we name ORF51 as rseD , resulting in an operon arrangement of rseD-rpoE-rseA-rseB-rseC IMPORTANCE CsrA posttranscriptionally represses genes required for bacterial stress responses, including the stringent response, catabolite repression, and the RpoS (σ S )-mediated general stress response. We show that CsrA represses translation of rpoE , encoding the

  4. Acetate Repression of Methane Oxidation by Supplemental Methylocella silvestris in a Peat Soil Microcosm ▿ †

    Science.gov (United States)

    Rahman, M. Tanvir; Crombie, Andrew; Moussard, Hélène; Chen, Yin; Murrell, J. Colin

    2011-01-01

    Methylocella spp. are facultative methanotrophs that grow on methane and multicarbon substrates, such as acetate. Acetate represses transcription of methane monooxygenase of Methylocella silvestris in laboratory culture. DNA stable-isotope probing (DNA-SIP) using 13C-methane and 12C-acetate, carried out with Methylocella-spiked peat soil, showed that acetate also repressed methane oxidation by Methylocella in environmental samples. PMID:21515721

  5. Acetate Repression of Methane Oxidation by Supplemental Methylocella silvestris in a Peat Soil Microcosm ▿ †

    OpenAIRE

    Rahman, M. Tanvir; Crombie, Andrew; Moussard, Hélène; Chen, Yin; Murrell, J. Colin

    2011-01-01

    Methylocella spp. are facultative methanotrophs that grow on methane and multicarbon substrates, such as acetate. Acetate represses transcription of methane monooxygenase of Methylocella silvestris in laboratory culture. DNA stable-isotope probing (DNA-SIP) using 13C-methane and 12C-acetate, carried out with Methylocella-spiked peat soil, showed that acetate also repressed methane oxidation by Methylocella in environmental samples.

  6. Repression of Salmonella enterica phoP Expression by Small Molecules from Physiological Bile

    Science.gov (United States)

    Antunes, L. Caetano M.; Wang, Melody; Andersen, Sarah K.; Ferreira, Rosana B. R.; Kappelhoff, Reinhild; Han, Jun; Borchers, Christoph H.

    2012-01-01

    Infection with Salmonella enterica serovar Typhi in humans causes the life-threatening disease typhoid fever. In the laboratory, typhoid fever can be modeled through the inoculation of susceptible mice with Salmonella enterica serovar Typhimurium. Using this murine model, we previously characterized the interactions between Salmonella Typhimurium and host cells in the gallbladder and showed that this pathogen can successfully invade gallbladder epithelial cells and proliferate. Additionally, we showed that Salmonella Typhimurium can use bile phospholipids to grow at high rates. These abilities are likely important for quick colonization of the gallbladder during typhoid fever and further pathogen dissemination through fecal shedding. To further characterize the interactions between Salmonella and the gallbladder environment, we compared the transcriptomes of Salmonella cultures grown in LB broth or physiological murine bile. Our data showed that many genes involved in bacterial central metabolism are affected by bile, with the citric acid cycle being repressed and alternative respiratory systems being activated. Additionally, our study revealed a new aspect of Salmonella interactions with bile through the identification of the global regulator phoP as a bile-responsive gene. Repression of phoP expression could also be achieved using physiological, but not commercial, bovine bile. The biological activity does not involve PhoPQ sensing of a bile component and is not caused by bile acids, the most abundant organic components of bile. Bioactivity-guided purification allowed the identification of a subset of small molecules from bile that can elicit full activity; however, a single compound with phoP inhibitory activity could not be isolated, suggesting that multiple molecules may act in synergy to achieve this effect. Due to the critical role of phoP in Salmonella virulence, further studies in this area will likely reveal aspects of the interaction between Salmonella

  7. Regulation of the cellulolytic system in Trichoderma reesei by sophorose: induction of cellulase and repression of beta-glucosidase.

    OpenAIRE

    Sternberg, D; Mandels, G R

    1980-01-01

    Sophorose has two regulatory roles in the production of cellulase enzymes in Trichoderma reesei: beta-glucosidase repression and cellulase induction. Sophorose also is hydrolyzed by the mycelial-associated beta-glucosidase. Repression of beta-glucosidase reduces sophorose hydrolysis and thus may increase cellulase induction.

  8. Repression of both isoforms of disproportionating enzyme leads to higher malto-oligosaccharide content and reduced growth in potato

    DEFF Research Database (Denmark)

    Mogensen, Henrik Lütken; Lloyd, James Richard; Glaring, Mikkel A.

    2010-01-01

    Two glucanotransferases, disproportionating enzyme 1 (StDPE1) and disproportionating enzyme 2 (StDPE2), were repressed using RNA interference technology in potato, leading to plants repressed in either isoform individually, or both simultaneously. This is the first detailed report of their combin...

  9. The interplay of post-translational modification and gene therapy

    Directory of Open Access Journals (Sweden)

    Osamor VC

    2016-02-01

    Full Text Available Victor Chukwudi Osamor,1–3 Shalom N Chinedu,3,4 Dominic E Azuh,3,5 Emeka Joshua Iweala,3,4 Olubanke Olujoke Ogunlana3,4 1Covenant University Bioinformatics Research (CUBRe Unit, Department of Computer and Information Sciences, College of Science and Technology (CST, Covenant University, Ota, Ogun State, Nigeria; 2Institute of Informatics (Computational biology and Bioinformatics, Faculty of Mathematics, Informatics and Mechanics, University of Warsaw (Uniwersytet Warszawski, Warszawa, Poland; 3Covenant University Public Health and Well-being Research Group (CUPHWERG, Covenant University, 4Biochemistry and Molecular Biology Unit, Department of Biological Sciences, College of Science and Technology, Covenant University, Canaan Land, 5Department of Economics and Development Studies, Covenant University, Ota, Ogun State, Nigeria Abstract: Several proteins interact either to activate or repress the expression of other genes during transcription. Based on the impact of these activities, the proteins can be classified into readers, modifier writers, and modifier erasers depending on whether histone marks are read, added, or removed, respectively, from a specific amino acid. Transcription is controlled by dynamic epigenetic marks with serious health implications in certain complex diseases, whose understanding may be useful in gene therapy. This work highlights traditional and current advances in post-translational modifications with relevance to gene therapy delivery. We report that enhanced understanding of epigenetic machinery provides clues to functional implication of certain genes/gene products and may facilitate transition toward revision of our clinical treatment procedure with effective fortification of gene therapy delivery. Keywords: post-translational modification, gene therapy, epigenetics, histone, methylation

  10. EBNA3C Directs Recruitment of RBPJ (CBF1) to Chromatin during the Process of Gene Repression in EBV Infected B Cells.

    Science.gov (United States)

    Kalchschmidt, Jens S; Gillman, Adam C T; Paschos, Kostas; Bazot, Quentin; Kempkes, Bettina; Allday, Martin J

    2016-01-01

    It is well established that Epstein-Barr virus nuclear antigen 3C (EBNA3C) can act as a potent repressor of gene expression, but little is known about the sequence of events occurring during the repression process. To explore further the role of EBNA3C in gene repression-particularly in relation to histone modifications and cell factors involved-the three host genes previously reported as most robustly repressed by EBNA3C were investigated. COBLL1, a gene of unknown function, is regulated by EBNA3C alone and the two co-regulated disintegrin/metalloproteases, ADAM28 and ADAMDEC1 have been described previously as targets of both EBNA3A and EBNA3C. For the first time, EBNA3C was here shown to be the main regulator of all three genes early after infection of primary B cells. Using various EBV-recombinants, repression over orders of magnitude was seen only when EBNA3C was expressed. Unexpectedly, full repression was not achieved until 30 days after infection. This was accurately reproduced in established LCLs carrying EBV-recombinants conditional for EBNA3C function, demonstrating the utility of the conditional system to replicate events early after infection. Using this system, detailed chromatin immunoprecipitation analysis revealed that the initial repression was associated with loss of activation-associated histone modifications (H3K9ac, H3K27ac and H3K4me3) and was independent of recruitment of polycomb proteins and deposition of the repressive H3K27me3 modification, which were only observed later in repression. Most remarkable, and in contrast to current models of RBPJ in repression, was the observation that this DNA-binding factor accumulated at the EBNA3C-binding sites only when EBNA3C was functional. Transient reporter assays indicated that repression of these genes was dependent on the interaction between EBNA3C and RBPJ. This was confirmed with a novel EBV-recombinant encoding a mutant of EBNA3C unable to bind RBPJ, by showing this virus was incapable of

  11. Translation of children’s literature

    Directory of Open Access Journals (Sweden)

    Marcílio Garcia de Queiroga

    2015-08-01

    Full Text Available http://dx.doi.org/10.5007/2175-7968.2016v36n1p64 In this paper we aim to discuss the complexities of the translation of children’s literature. Therefore, we seek to make up the theoretical framework in search of a concept for children’s literature, its intersection points among a wide range of speeches and the challenges encountered in establishing a definition due to the complexity of the elements involved. The arguments about the definition of children’s literature allow us a deeper look about the complexity and peculiarities of the genre, as pointed out by theorists such as Peter Hunt, Ronald Jobe and Zohar Shavit. Specific features of the translation of children’s literature are pointed out and discussed, of which we highlight the asymmetrical relationship / dual player - the adult intervenes at all stages of the  translation children’s literature; the multiplicity of functions, as indicated by the insertion/ belonging of the genre to socio-educational and literary systems and permeated by their  values; and textual manipulation, through liberties because of the peripheral position of the genre. Abridgments, omissions, additions, adaptations, language adjustements all determined by ideological issues are some of the aspects discussed in this article.

  12. Estradiol represses Insulin-like 3 expression and promoter activity in MA-10 Leydig cells

    International Nuclear Information System (INIS)

    Lague, Eric; Tremblay, Jacques J.

    2009-01-01

    There are increasing evidence in the literature reporting the detrimental effects of endocrine disruptors on the development and function of the male reproductive system. One example is cryptorchidism, or undescended testis, caused by exposure to excessive estrogens. Estrogens, acting through the estrogen receptor α (ERα), have been shown to repress expression of the gene encoding insulin-like 3 (INSL3), a small peptide produced by testicular Leydig cells that is essential for normal testis descent. The molecular mechanism of estrogen/ER action on Insl3 expression, however, remains poorly understood. Here we report estradiol (E 2 ) represses Insl3 mRNA levels in MA-10 cells, a Leydig cell line model. We also found that E 2 represses the activity of the human and mouse Insl3 promoter in these cells. The E 2 -responsive region of the human INSL3 promoter was located to the proximal INSL3 promoter. This region does not contain a consensus estrogen response element indicating an indirect mechanism of action. In agreement with this, we found that E 2 -responsiveness was lost when two previously characterized binding sites for the nuclear receptors NUR77 and SF1 were mutated. Finally we show that the E 2 repressive effect could be overcome by cotreatment with testosterone, a positive regulator of Insl3 transcription. Collectively our data provide important new insights into the molecular mechanism of estrogen action in Insl3 transcription in Leydig cells

  13. Spatial and Temporal Effects in Protein Post-translational Modification Distributions in the Developing Mouse Brain

    DEFF Research Database (Denmark)

    Edwards, Alistair V G; Edwards, Gregory J; Schwämmle, Veit

    2014-01-01

    Protein post-translational modification (PTM) is a powerful way to modify the behavior of cellular proteins and thereby cellular behavior. Multiple recent studies of evolutionary trends have shown that certain pairs of protein post-translational modifications tend to occur closer to each other than...... for observations of increasingly frequent and diverse protein modification in cell biology. In this study, we use mass spectrometry and proteomic strategies to present biological data showing spatiotemporal PTM co-localization across multiple PTM categories, which display changes over development of the brain...

  14. Complete clinical responses to cancer therapy caused by multiple divergent approaches: a repeating theme lost in translation

    Directory of Open Access Journals (Sweden)

    Coventry BJ

    2012-05-01

    Full Text Available Brendon J Coventry, Martin L AshdownDiscipline of Surgery, University of Adelaide, Royal Adelaide Hospital and Faculty of Medicine, University of Melbourne, AustraliaAbstract: Over 50 years of cancer therapy history reveals complete clinical responses (CRs from remarkably divergent forms of therapies (eg, chemotherapy, radiotherapy, surgery, vaccines, autologous cell transfers, cytokines, monoclonal antibodies for advanced solid malignancies occur with an approximately similar frequency of 5%–10%. This has remained frustratingly almost static. However, CRs usually underpin strong durable 5-year patient survival. How can this apparent paradox be explained?Over some 20 years, realization that (1 chronic inflammation is intricately associated with cancer, and (2 the immune system is delicately balanced between responsiveness and tolerance of cancer, provides a greatly significant insight into ways cancer might be more effectively treated. In this review, divergent aspects from the largely segmented literature and recent conferences are drawn together to provide observations revealing some emerging reasoning, in terms of "final common pathways" of cancer cell damage, immune stimulation, and auto-vaccination events, ultimately leading to cancer cell destruction. Created from this is a unifying overarching concept to explain why multiple approaches to cancer therapy can provide complete responses at almost equivalent rates. This "missing" aspect provides a reasoned explanation for what has, and is being, increasingly reported in the mainstream literature – that inflammatory and immune responses appear intricately associated with, if not causative of, complete responses induced by divergent forms of cancer therapy. Curiously, whether by chemotherapy, radiation, surgery, or other means, therapy-induced cell injury results, leaving inflammation and immune system stimulation as a final common denominator across all of these mechanisms of cancer

  15. Pauses by Student and Professional Translators in Translation Process

    Directory of Open Access Journals (Sweden)

    Rusdi Noor Rosa

    2018-01-01

    Full Text Available Translation as a process of meaning making activity requires a cognitive process one of which is realized in a pause, a temporary stop or a break indicating doing other than typing activities in a certain period of translation process. Scholars agree that pauses are an indicator of cognitive process without which there will never be any translation practices. Despite such agreement, pauses are debatable as well, either in terms of their length or in terms of the activities managed by a translator while taking pauses. This study, in particular, aims at finding out how student translators and professional translators managed the pauses in a translation process. This was a descriptive research taking two student translators and two professional translators as the participants who were asked to translate a text from English into bahasa Indonesia. The source text (ST was a historical recount text entitled ‘Early History of Yellowstone National Park’ downloaded from http://www.nezperce.com/yelpark9.html composed of 230-word long from English into bahasa Indonesia. The data were collected using Translog protocols, think aloud protocols (TAPs and screen recording. Based on the data analysis, it was found that student translators took the longest pauses in the drafting phase spent to solve the problems related to finding out the right equivalent for the ST words or terms and to solve the difficulties encountered in encoding their ST understanding in the TL; meanwhile, professional translators took the longest pauses in the pos-drafting phase spent to ensure whether their TT had been natural and whether their TT had corresponded to the prevailing grammatical rules of the TL.

  16. Machine translation

    Energy Technology Data Exchange (ETDEWEB)

    Nagao, M

    1982-04-01

    Each language has its own structure. In translating one language into another one, language attributes and grammatical interpretation must be defined in an unambiguous form. In order to parse a sentence, it is necessary to recognize its structure. A so-called context-free grammar can help in this respect for machine translation and machine-aided translation. Problems to be solved in studying machine translation are taken up in the paper, which discusses subjects for semantics and for syntactic analysis and translation software. 14 references.

  17. RNAi mediates post-transcriptional repression of gene expression in fission yeast Schizosaccharomyces pombe

    International Nuclear Information System (INIS)

    Smialowska, Agata; Djupedal, Ingela; Wang, Jingwen; Kylsten, Per; Swoboda, Peter; Ekwall, Karl

    2014-01-01

    Highlights: • Protein coding genes accumulate anti-sense sRNAs in fission yeast S. pombe. • RNAi represses protein-coding genes in S. pombe. • RNAi-mediated gene repression is post-transcriptional. - Abstract: RNA interference (RNAi) is a gene silencing mechanism conserved from fungi to mammals. Small interfering RNAs are products and mediators of the RNAi pathway and act as specificity factors in recruiting effector complexes. The Schizosaccharomyces pombe genome encodes one of each of the core RNAi proteins, Dicer, Argonaute and RNA-dependent RNA polymerase (dcr1, ago1, rdp1). Even though the function of RNAi in heterochromatin assembly in S. pombe is established, its role in controlling gene expression is elusive. Here, we report the identification of small RNAs mapped anti-sense to protein coding genes in fission yeast. We demonstrate that these genes are up-regulated at the protein level in RNAi mutants, while their mRNA levels are not significantly changed. We show that the repression by RNAi is not a result of heterochromatin formation. Thus, we conclude that RNAi is involved in post-transcriptional gene silencing in S. pombe

  18. Functional improvement of dystrophic muscle by repression of utrophin: let-7c interaction.

    Directory of Open Access Journals (Sweden)

    Manoj K Mishra

    Full Text Available Duchenne muscular dystrophy (DMD is a fatal genetic disease caused by an absence of the 427kD muscle-specific dystrophin isoform. Utrophin is the autosomal homolog of dystrophin and when overexpressed, can compensate for the absence of dystrophin and rescue the dystrophic phenotype of the mdx mouse model of DMD. Utrophin is subject to miRNA mediated repression by several miRNAs including let-7c. Inhibition of utrophin: let-7c interaction is predicted to 'repress the repression' and increase utrophin expression. We developed and tested the ability of an oligonucleotide, composed of 2'-O-methyl modified bases on a phosphorothioate backbone, to anneal to the utrophin 3'UTR and prevent let-7c miRNA binding, thereby upregulating utrophin expression and improving the dystrophic phenotype in vivo. Suppression of utrophin: let-7c interaction using bi-weekly intraperitoneal injections of let7 site blocking oligonucleotides (SBOs for 1 month in the mdx mouse model for DMD, led to increased utrophin expression along with improved muscle histology, decreased fibrosis and increased specific force. The functional improvement of dystrophic muscle achieved using let7-SBOs suggests a novel utrophin upregulation-based therapeutic strategy for DMD.

  19. AtLa1 protein initiates IRES-dependent translation of WUSCHEL mRNA and regulates the stem cell homeostasis of Arabidopsis in response to environmental hazards.

    Science.gov (United States)

    Cui, Yuchao; Rao, Shaofei; Chang, Beibei; Wang, Xiaoshuang; Zhang, Kaidian; Hou, Xueliang; Zhu, Xueyi; Wu, Haijun; Tian, Zhaoxia; Zhao, Zhong; Yang, Chengwei; Huang, Tao

    2015-10-01

    Plant stem cells are hypersensitive to environmental hazards throughout their life cycle, but the mechanism by which plants safeguard stem cell homeostasis in response to environmental hazards is largely unknown. The homeodomain transcription factor WUSCHEL (WUS) protein maintains the stem cell pool in the shoot apical meristem of Arabidopsis. Here, we demonstrate that the translation of WUS mRNA is directed by an internal ribosomal entry site (IRES) located in the 5'-untranslated region. The AtLa1 protein, an RNA-binding factor, binds to the 5'-untranslated region and initiates the IRES-dependent translation of WUS mRNA. Knockdown of AtLa1 expression represses the WUS IRES-dependent translation and leads to the arrest of growth and development. The AtLa1 protein is mainly located in the nucleoplasm. However, environmental hazards promote the nuclear-to-cytoplasmic translocation of the AtLa1 protein, which further enhances the IRES-dependent translation of WUS mRNA. Genetic evidence indicates that the WUS protein increases the tolerance of the shoot apical meristem to environmental hazards. Based on these results, we conclude that the stem cell niche in Arabidopsis copes with environmental hazards by enhancing the IRES-dependent translation of WUS mRNA under the control of the AtLa1 protein. © 2015 John Wiley & Sons Ltd.

  20. Translation, cross-cultural adaptation and validation of the Persian version of COOP/WONCA charts in Persian-speaking Iranians with multiple sclerosis.

    Science.gov (United States)

    Taghipour, Morteza; Salavati, Mahyar; Nabavi, Seyed Massood; Akhbari, Behnam; Ebrahimi Takamjani, Ismail; Negahban, Hossein; Rajabzadeh, Fatemeh

    2018-03-01

    Translation, cross-culturally adaptation and validation of a Persian version of COOP/WONCA charts in Persian-speaking Iranians with multiple sclerosis (MS). The Persian version of COOP/WONCA charts was developed after a standard forward translation, synthesis and backward translation. A total of 197 subjects with MS participated in this study. They were asked to complete the COOP/WONCA charts and Short-Form 36 Health Survey (SF-36). The COOP/WONCA charts were re-administered to 50 patients, 4 weeks after the first session. Expanded Disability Status Scale (EDSS) was also scored for each subject by the referring physician. Construct validity was assessed by testing linear relationship between corresponding domains of the COOP/WONCA charts, the SF-36 and the EDSS. Test-retest reliability was examined using interclass correlation coefficient (ICC), standard error of measurement (SEM) and minimal detectable change (MDC) values. Related domains of COOP/WONCA charts and SF-36 demonstrated strong linear relationships with Spearman's coefficients ranging from -0.51 to -0.75 (p0.70) except for feelings and quality-of-life domains that were 0.50 and 0.51, respectively. The Persian version of the COOP/WONCA charts was shown to be psychometrically appropriate to evaluate the functional level and quality of life in Persian-speaking Iranians with MS. Implications for rehabilitation COOP/WONCA charts are now available in Persian and demonstrate good psychometric properties. COOP/WONCA charts demonstrate excellent reliability and construct validity in a Persian-speaking Iranian population with MS. Minimal detectable change in COOP/WONCA is now available in MS to guide within and between group analyses. Knowledge on a wide variety of physical, mental and emotional parameters as well as the status of patients' symptoms, daily activities and quality of life helps rehabilitation clinicians and service providers plan preventive and remedial interventions more effectively.

  1. I-mfa domain proteins specifically interact with HTLV-1 Tax and repress its transactivating functions

    International Nuclear Information System (INIS)

    Kusano, Shuichi; Yoshimitsu, Makoto; Hachiman, Miho; Ikeda, Masanori

    2015-01-01

    The I-mfa domain proteins HIC (also known as MDFIC) and I-mfa (also known as MDFI) are candidate tumor suppressor genes that are involved in cellular and viral transcriptional regulation. Here, we show that HIC and I-mfa directly interact with human T-cell leukemia virus type-1 (HTLV-1) Tax protein in vitro. In addition, HIC and I-mfa repress Tax-dependent transactivation of an HTLV-1 long terminal repeat (LTR) reporter construct in COS-1, Jurkat and high-Tax-producing HTLV-1-infected T cells. HIC also interacts with Tax through its I-mfa domain in vivo and represses Tax-dependent transactivation of HTLV-1 LTR and NF-κB reporter constructs in an interaction-dependent manner. Furthermore, we show that HIC decreases the nuclear distribution and stimulates the proteasomal degradation of Tax. These data reveal that HIC specifically interacts with HTLV-1 Tax and negatively regulates Tax transactivational activity by altering its subcellular distribution and stability. - Highlights: • I-mfa domain proteins, HIC and I-mfa, specifically interact with HTLV-1 Tax. • HIC and I-mfa repress the Tax-dependent transactivation of HTLV-1 LTR. • HIC represses the Tax-dependent transactivation of NF-κΒ. • HIC decreases the nuclear distribution of Tax. • HIC stimulates the proteasomal degradation of Tax.

  2. Direct Repression of Evening Genes by CIRCADIAN CLOCK-ASSOCIATED1 in the Arabidopsis Circadian Clock.

    Science.gov (United States)

    Kamioka, Mari; Takao, Saori; Suzuki, Takamasa; Taki, Kyomi; Higashiyama, Tetsuya; Kinoshita, Toshinori; Nakamichi, Norihito

    2016-03-01

    The circadian clock is a biological timekeeping system that provides organisms with the ability to adapt to day-night cycles. Timing of the expression of four members of the Arabidopsis thaliana PSEUDO-RESPONSE REGULATOR(PRR) family is crucial for proper clock function, and transcriptional control of PRRs remains incompletely defined. Here, we demonstrate that direct regulation of PRR5 by CIRCADIAN CLOCK-ASSOCIATED1 (CCA1) determines the repression state of PRR5 in the morning. Chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) analyses indicated that CCA1 associates with three separate regions upstream of PRR5 CCA1 and its homolog LATE ELONGATED HYPOCOTYL (LHY) suppressed PRR5 promoter activity in a transient assay. The regions bound by CCA1 in the PRR5 promoter gave rhythmic patterns with troughs in the morning, when CCA1 and LHY are at high levels. Furthermore,ChIP-seq revealed that CCA1 associates with at least 449 loci with 863 adjacent genes. Importantly, this gene set contains genes that are repressed but upregulated incca1 lhy double mutants in the morning. This study shows that direct binding by CCA1 in the morning provides strong repression of PRR5, and repression by CCA1 also temporally regulates an evening-expressed gene set that includes PRR5. © 2016 American Society of Plant Biologists. All rights reserved.

  3. I-mfa domain proteins specifically interact with HTLV-1 Tax and repress its transactivating functions

    Energy Technology Data Exchange (ETDEWEB)

    Kusano, Shuichi, E-mail: skusano@m2.kufm.kagoshima-u.ac.jp [Division of Persistent and Oncogenic Viruses, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan); Yoshimitsu, Makoto; Hachiman, Miho [Division of Hematology and Immunology, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan); Ikeda, Masanori [Division of Persistent and Oncogenic Viruses, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan)

    2015-12-15

    The I-mfa domain proteins HIC (also known as MDFIC) and I-mfa (also known as MDFI) are candidate tumor suppressor genes that are involved in cellular and viral transcriptional regulation. Here, we show that HIC and I-mfa directly interact with human T-cell leukemia virus type-1 (HTLV-1) Tax protein in vitro. In addition, HIC and I-mfa repress Tax-dependent transactivation of an HTLV-1 long terminal repeat (LTR) reporter construct in COS-1, Jurkat and high-Tax-producing HTLV-1-infected T cells. HIC also interacts with Tax through its I-mfa domain in vivo and represses Tax-dependent transactivation of HTLV-1 LTR and NF-κB reporter constructs in an interaction-dependent manner. Furthermore, we show that HIC decreases the nuclear distribution and stimulates the proteasomal degradation of Tax. These data reveal that HIC specifically interacts with HTLV-1 Tax and negatively regulates Tax transactivational activity by altering its subcellular distribution and stability. - Highlights: • I-mfa domain proteins, HIC and I-mfa, specifically interact with HTLV-1 Tax. • HIC and I-mfa repress the Tax-dependent transactivation of HTLV-1 LTR. • HIC represses the Tax-dependent transactivation of NF-κΒ. • HIC decreases the nuclear distribution of Tax. • HIC stimulates the proteasomal degradation of Tax.

  4. Bureau-repression: Administrative Sanction and Social Control in Modern Spain

    Directory of Open Access Journals (Sweden)

    Pedro Oliver Olmo

    2015-12-01

    Full Text Available This paper explains the creation of an intelligible suggestion for better understanding the administrative sanction in many disciplines in social sciences: the bureau-repression. The coining of this concept is due especially to the repression to which social protestors and demonstrators have been subject since the birth of the 15-M movement in Spain. However, bureau-repression had already begun being exercised in the years following the Transition, and it has developed in parallel to the stage of Security State that characterizes the state system of social control. A detailed analysis of the administrative sanction is performed for many benefits which such sanction provides for those in power, who use it both to silence voices from the street and to dispose of elements which are harmful for the neoliberal system (disadvantaged groups or immigrants. In short, the reader will find the underlying political and repressive background which, at first glance, is usually a monetary fine, and will discover that there are ways to avoid this dense surveillance exercised over the governed people (bureau-resistance. Este artículo explica la creación de una sugerencia inteligible para una mejor comprensión de la sanción administrativa en muchas disciplinas de las ciencias sociales: la burorrepresión. Este término nació especialmente a raíz de la represión que han sufrido los manifestantes de las protestas sociales desde el nacimiento del movimiento 15-M en España. Sin embargo, la burorrepresión ya había comenzado a ejercerse en los años que siguieron a la Transición, y se ha desarrollado de forma paralela al estado de seguridad que caracteriza el sistema estatal de control social. Se realiza un análisis detallado de la sanción administrativa, desarrollada en beneficio de los que están en el poder, quienes la usan tanto para silenciar las voces de la calle como para deshacerse de elementos que sean perjudiciales para el sistema neoliberal

  5. HPV18 Persistence Impairs Basal and DNA Ligand-Mediated IFN-β and IFN-λ1 Production through Transcriptional Repression of Multiple Downstream Effectors of Pattern Recognition Receptor Signaling.

    Science.gov (United States)

    Albertini, Silvia; Lo Cigno, Irene; Calati, Federica; De Andrea, Marco; Borgogna, Cinzia; Dell'Oste, Valentina; Landolfo, Santo; Gariglio, Marisa

    2018-03-15

    Although it is clear that high-risk human papillomaviruses (HPVs) can selectively infect keratinocytes and persist in the host, it still remains to be unequivocally determined whether they can escape antiviral innate immunity by interfering with pattern recognition receptor (PRR) signaling. In this study, we have assessed the innate immune response in monolayer and organotypic raft cultures of NIKS cells harboring multiple copies of episomal HPV18 (NIKSmcHPV18), which fully recapitulates the persistent state of infection. We show for the first time, to our knowledge, that NIKSmcHPV18, as well as HeLa cells (a cervical carcinoma-derived cell line harboring integrated HPV18 DNA), display marked downregulation of several PRRs, as well as other PRR downstream effectors, such as the adaptor protein stimulator of IFN genes and the transcription factors IRF1 and 7. Importantly, we provide evidence that downregulation of stimulator of IFN genes, cyclic GMP-AMP synthase, and retinoic acid-inducible gene I mRNA levels occurs at the transcriptional level through a novel epigenetic silencing mechanism, as documented by the accumulation of repressive heterochromatin markers seen at the promoter region of these genes. Furthermore, stimulation of NIKSmcHPV18 cells with salmon sperm DNA or poly(deoxyadenylic-deoxythymidylic) acid, two potent inducers of PRR signaling, only partially restored PRR protein expression. Accordingly, the production of IFN-β and IFN-λ 1 was significantly reduced in comparison with the parental NIKS cells, indicating that HPV18 exerts its immunosuppressive activity through downregulation of PRR signaling. Altogether, our findings indicate that high-risk human papillomaviruses have evolved broad-spectrum mechanisms that allow simultaneous depletion of multiple effectors of the innate immunity network, thereby creating an unreactive cellular milieu suitable for viral persistence. Copyright © 2018 by The American Association of Immunologists, Inc.

  6. Translating Inclusion

    DEFF Research Database (Denmark)

    Fallov, Mia Arp; Birk, Rasmus

    2018-01-01

    The purpose of this paper is to explore how practices of translation shape particular paths of inclusion for people living in marginalized residential areas in Denmark. Inclusion, we argue, is not an end-state, but rather something which must be constantly performed. Active citizenship, today......, is not merely a question of participation, but of learning to become active in all spheres of life. The paper draws on empirical examples from a multi-sited field work in 6 different sites of local community work in Denmark, to demonstrate how different dimensions of translation are involved in shaping active...... citizenship. We propose the following different dimensions of translation: translating authority, translating language, translating social problems. The paper takes its theoretical point of departure from assemblage urbanism, arguing that cities are heterogeneous assemblages of socio-material interactions...

  7. Pluripotency factors and Polycomb Group proteins repress aryl hydrocarbon receptor expression in murine embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Chia-I Ko

    2014-01-01

    Full Text Available The aryl hydrocarbon receptor (AHR is a transcription factor and environmental sensor that regulates expression of genes involved in drug-metabolism and cell cycle regulation. Chromatin immunoprecipitation analyses, Ahr ablation in mice and studies with orthologous genes in invertebrates suggest that AHR may also play a significant role in embryonic development. To address this hypothesis, we studied the regulation of Ahr expression in mouse embryonic stem cells and their differentiated progeny. In ES cells, interactions between OCT3/4, NANOG, SOX2 and Polycomb Group proteins at the Ahr promoter repress AHR expression, which can also be repressed by ectopic expression of reprogramming factors in hepatoma cells. In ES cells, unproductive RNA polymerase II binds at the Ahr transcription start site and drives the synthesis of short abortive transcripts. Activation of Ahr expression during differentiation follows from reversal of repressive marks in Ahr promoter chromatin, release of pluripotency factors and PcG proteins, binding of Sp factors, establishment of histone marks of open chromatin, and engagement of active RNAPII to drive full-length RNA transcript elongation. Our results suggest that reversible Ahr repression in ES cells holds the gene poised for expression and allows for a quick switch to activation during embryonic development.

  8. The MSX1 homeoprotein recruits G9a methyltransferase to repressed target genes in myoblast cells.

    Directory of Open Access Journals (Sweden)

    Jingqiang Wang

    Full Text Available Although the significance of lysine modifications of core histones for regulating gene expression is widely appreciated, the mechanisms by which these modifications are incorporated at specific regulatory elements during cellular differentiation remains largely unknown. In our previous studies, we have shown that in developing myoblasts the Msx1 homeoprotein represses gene expression by influencing the modification status of chromatin at its target genes. We now show that genomic binding by Msx1 promotes enrichment of the H3K9me2 mark on repressed target genes via recruitment of G9a histone methyltransferase, the enzyme responsible for catalyzing this histone mark. Interaction of Msx1 with G9a is mediated via the homeodomain and is required for transcriptional repression and regulation of cellular differentiation, as well as enrichment of the H3K9me2 mark in proximity to Msx1 binding sites on repressed target genes in myoblast cells as well as the developing limb. We propose that regulation of chromatin status by Msx1 recruitment of G9a and other histone modifying enzymes to regulatory regions of target genes represents an important means of regulating the gene expression during development.

  9. RETRACTED: Translating Connotative Meaning in Literary Texts at the University of Petra

    Directory of Open Access Journals (Sweden)

    Akram M. Beiruti

    2013-09-01

    Full Text Available This article is primarily concerned with the investigation of the importance of connotation in translation. The four meanings normally discussed in semantics are denotation, connotation, reference and sense. Denotation is the frame of meaning, which is found in definitions given by dictionaries; while connotation is an additional shade of meaning added to the denotation of a word. Pragmatic meanings play an important role in the interpretation of a literary text. They need to be handled carefully by translators, and are likely not to survive the process of translation. Their meanings are fragile and often culture specific. They may also be highly personal associated with the author himself. In literary translation, meaning can only be accurate to a certain degree, since it is looking for the connotative as well as the denotative meanings. As such the successful translator is aware of the multiple meanings of the word. Whilst the translator has to cope with the different shades of word meanings, which are in non-literary translation, he can achieve anywhere near perfection. It worth mentioning that poetry is the hardest of all literary genres to translate, because it has some linguistic factors to account for (notably sound, rhyme and meter and connotation. Thus the importance of connotation is of utmost importance in translation. which translators have to be aware of.

  10. Translation and Culture:Translation as a Cross-cultural Mediation

    Institute of Scientific and Technical Information of China (English)

    叶谋锦

    2013-01-01

    Translation is a complex activity which involves language competence as well as proficiency in multiculturalism. From the perspective of multiculturalism, translation resembles recreation of source text by grasping essential meanings to produce a sub-tle target text which can be clearly perceived by target readers. Ignoring cultural issues can present serious mistranslations in the field of advertising translation. This paper aims to explore the significance of connotation confined by the framework of culture and point out that verbal translation is a dangerous inclination by illustrating three business examples. This paper argues that cross-cultural mediation plays an important role in translation.

  11. The Effect of Translators' Emotional Intelligence on Their Translation Quality

    Science.gov (United States)

    Varzande, Mohsen; Jadidi, Esmaeil

    2015-01-01

    Translators differ from each other in many ways in terms of their knowledge, professional and psychological conditions that may directly influence their translation. The present study aimed at investigating the impact of translators' Emotional Intelligence on their translation quality. Following a "causal-comparative study," a sample of…

  12. Vanillin inhibits translation and induces messenger ribonucleoprotein (mRNP) granule formation in saccharomyces cerevisiae: application and validation of high-content, image-based profiling.

    Science.gov (United States)

    Iwaki, Aya; Ohnuki, Shinsuke; Suga, Yohei; Izawa, Shingo; Ohya, Yoshikazu

    2013-01-01

    Vanillin, generated by acid hydrolysis of lignocellulose, acts as a potent inhibitor of the growth of the yeast Saccharomyces cerevisiae. Here, we investigated the cellular processes affected by vanillin using high-content, image-based profiling. Among 4,718 non-essential yeast deletion mutants, the morphology of those defective in the large ribosomal subunit showed significant similarity to that of vanillin-treated cells. The defects in these mutants were clustered in three domains of the ribosome: the mRNA tunnel entrance, exit and backbone required for small subunit attachment. To confirm that vanillin inhibited ribosomal function, we assessed polysome and messenger ribonucleoprotein granule formation after treatment with vanillin. Analysis of polysome profiles showed disassembly of the polysomes in the presence of vanillin. Processing bodies and stress granules, which are composed of non-translating mRNAs and various proteins, were formed after treatment with vanillin. These results suggest that vanillin represses translation in yeast cells.

  13. The CpG island encompassing the promoter and first exon of human DNMT3L gene is a PcG/TrX response element (PRE).

    Science.gov (United States)

    Basu, Amitava; Dasari, Vasanthi; Mishra, Rakesh K; Khosla, Sanjeev

    2014-01-01

    DNMT3L, a member of DNA methyltransferases family, is present only in mammals. As it provides specificity to the action of de novo methyltransferases, DNMT3A and DNMT3B and interacts with histone H3, DNMT3L has been invoked as the molecule that can read the histone code and translate it into DNA methylation. It plays an important role in the initiation of genomic imprints during gametogenesis and in nuclear reprogramming. With important functions attributed to it, it is imperative that the DNMT3L expression is tightly controlled. Previously, we had identified a CpG island within the human DNMT3L promoter and first exon that showed loss of DNA methylation in cancer samples. Here we show that this Differentially Methylated CpG island within DNMT3L (DNMT3L DMC) acts to repress transcription, is a Polycomb/Trithorax Response Element (PRE) and interacts with both PRC1 and PRC2 Polycomb repressive complexes. In addition, it adopts inactive chromatin conformation and is associated with other inactive chromatin-specific proteins like SUV39H1 and HP1. The presence of DNMT3L DMC also influences the adjacent promoter to adopt repressive histone post-translational modifications. Due to its association with multiple layers of repressive epigenetic modifications, we believe that PRE within the DNMT3L DMC is responsible for the tight regulation of DNMT3L expression and the aberrant epigenetic modifications of this region leading to DNMT3L overexpression could be the reason of nuclear programming during carcinogenesis.

  14. The CpG island encompassing the promoter and first exon of human DNMT3L gene is a PcG/TrX response element (PRE.

    Directory of Open Access Journals (Sweden)

    Amitava Basu

    Full Text Available DNMT3L, a member of DNA methyltransferases family, is present only in mammals. As it provides specificity to the action of de novo methyltransferases, DNMT3A and DNMT3B and interacts with histone H3, DNMT3L has been invoked as the molecule that can read the histone code and translate it into DNA methylation. It plays an important role in the initiation of genomic imprints during gametogenesis and in nuclear reprogramming. With important functions attributed to it, it is imperative that the DNMT3L expression is tightly controlled. Previously, we had identified a CpG island within the human DNMT3L promoter and first exon that showed loss of DNA methylation in cancer samples. Here we show that this Differentially Methylated CpG island within DNMT3L (DNMT3L DMC acts to repress transcription, is a Polycomb/Trithorax Response Element (PRE and interacts with both PRC1 and PRC2 Polycomb repressive complexes. In addition, it adopts inactive chromatin conformation and is associated with other inactive chromatin-specific proteins like SUV39H1 and HP1. The presence of DNMT3L DMC also influences the adjacent promoter to adopt repressive histone post-translational modifications. Due to its association with multiple layers of repressive epigenetic modifications, we believe that PRE within the DNMT3L DMC is responsible for the tight regulation of DNMT3L expression and the aberrant epigenetic modifications of this region leading to DNMT3L overexpression could be the reason of nuclear programming during carcinogenesis.

  15. Translating India

    CERN Document Server

    Kothari, Rita

    2014-01-01

    The cultural universe of urban, English-speaking middle class in India shows signs of growing inclusiveness as far as English is concerned. This phenomenon manifests itself in increasing forms of bilingualism (combination of English and one Indian language) in everyday forms of speech - advertisement jingles, bilingual movies, signboards, and of course conversations. It is also evident in the startling prominence of Indian Writing in English and somewhat less visibly, but steadily rising, activity of English translation from Indian languages. Since the eighties this has led to a frenetic activity around English translation in India's academic and literary circles. Kothari makes this very current phenomenon her chief concern in Translating India.   The study covers aspects such as the production, reception and marketability of English translation. Through an unusually multi-disciplinary approach, this study situates English translation in India amidst local and global debates on translation, representation an...

  16. Pyrrhocoricin, a proline-rich antimicrobial peptide derived from insect, inhibits the translation process in the cell-free Escherichia coli protein synthesis system.

    Science.gov (United States)

    Taniguchi, Masayuki; Ochiai, Akihito; Kondo, Hiroshi; Fukuda, Shun; Ishiyama, Yohei; Saitoh, Eiichi; Kato, Tetsuo; Tanaka, Takaaki

    2016-05-01

    Previous studies have shown that pyrrhocoricin, a proline-rich antimicrobial peptide (PrAMP), killed sensitive species in a dose-dependent manner by specifically binding to DnaK. Here, on the basis of the finding that DnaK-deficient Escherichia coli strains are susceptible to PrAMPs, we used pyrrhocoricin to investigate internal targets other than DnaK. Using conventional antibiotics (bleomycin, streptomycin, and fosfomycin) that have known modes of action, first, we validated the availability of an assay using a cell-free rapid translation system (RTS), which is an in vitro protein synthesis system based on E. coli lysate, for evaluating inhibition of protein synthesis. We found that, similarly to bleomycin and streptomycin, pyrrhocoricin inhibited GFP synthesis in RTS in a concentration-dependent manner. In addition, blockage of transcription and translation steps in RTS was individually estimated using RT-PCR after gene expression to determine mRNA products and using sodium dodecyl sulfate-polyacrylamide gel electrophoresis to determine the amounts of GFP expressed from purified mRNA, respectively. The results demonstrated that this inhibition of GFP synthesis by pyrrhocoricin did not occur at the transcription step but rather at the translation step, in a manner similar to that of GFP synthesis by streptomycin, an inhibitor of the translation step by causing misreading of tRNA. These results suggest that RTS is a powerful assay system for determining if antimicrobial peptides inhibit protein synthesis and its transcription and/or translation steps. This is the first study to have shown that pyrrhocoricin inhibited protein synthesis by specifically repressing the translation step. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  17. HosA, a MarR Family Transcriptional Regulator, Represses Nonoxidative Hydroxyarylic Acid Decarboxylase Operon and Is Modulated by 4-Hydroxybenzoic Acid.

    Science.gov (United States)

    Roy, Ajit; Ranjan, Akash

    2016-02-23

    Members of the Multiple antibiotic resistance Regulator (MarR) family of DNA binding proteins regulate transcription of a wide array of genes required for virulence and pathogenicity of bacteria. The present study reports the molecular characterization of HosA (Homologue of SlyA), a MarR protein, with respect to its target gene, DNA recognition motif, and nature of its ligand. Through a comparative genomics approach, we demonstrate that hosA is in synteny with nonoxidative hydroxyarylic acid decarboxylase (HAD) operon and is present exclusively within the mutS-rpoS polymorphic region in nine different genera of Enterobacteriaceae family. Using molecular biology and biochemical approach, we demonstrate that HosA binds to a palindromic sequence downstream to the transcription start site of divergently transcribed nonoxidative HAD operon and represses its expression. Furthermore, in silico analysis showed that the recognition motif for HosA is highly conserved in the upstream region of divergently transcribed operon in different genera of Enterobacteriaceae family. A systematic chemical search for the physiological ligand revealed that 4-hydroxybenzoic acid (4-HBA) interacts with HosA and derepresses HosA mediated repression of the nonoxidative HAD operon. Based on our study, we propose a model for molecular mechanism underlying the regulation of nonoxidative HAD operon by HosA in Enterobacteriaceae family.

  18. The Impact of Translators' Academic Experience on Their Translation Quality

    Science.gov (United States)

    Varzande, Mohsen; Jadidi, Esmaeil

    2015-01-01

    Translators differ from each other in many ways in terms of their knowledge and professional conditions that may directly influence their translation. The present study aimed at investigating the impact of translators' academic experience on their translation quality. Following a "causal-comparative study", a sample of 100 male and…

  19. A noncanonical Flt3ITD/NF-κB signaling pathway represses DAPK1 in acute myeloid leukemia.

    Science.gov (United States)

    Shanmugam, Rajasubramaniam; Gade, Padmaja; Wilson-Weekes, Annique; Sayar, Hamid; Suvannasankha, Attaya; Goswami, Chirayu; Li, Lang; Gupta, Sushil; Cardoso, Angelo A; Baghdadi, Tareq Al; Sargent, Katie J; Cripe, Larry D; Kalvakolanu, Dhananjaya V; Boswell, H Scott

    2012-01-15

    Death-associated protein kinase 1 (DAPK1), a tumor suppressor, is a rate-limiting effector in an endoplasmic reticulum (ER) stress-dependent apoptotic pathway. Its expression is epigenetically suppressed in several tumors. A mechanistic basis for epigenetic/transcriptional repression of DAPK1 was investigated in certain forms of acute myeloid leukemia (AML) with poor prognosis, which lacked ER stress-induced apoptosis. Heterogeneous primary AMLs were screened to identify a subgroup with Flt3ITD in which repression of DAPK1, among NF-κB-and c-Jun-responsive genes, was studied. RNA interference knockdown studies were carried out in an Flt3ITD(+) cell line, MV-4-11, to establish genetic epistasis in the pathway Flt3ITD-TAK1-DAPK1 repression, and chromatin immunoprecipitations were carried out to identify proximate effector proteins, including TAK1-activated p52NF-κB, at the DAPK1 locus. AMLs characterized by normal karyotype with Flt3ITD were found to have 10- to 100-fold lower DAPK1 transcripts normalized to the expression of c-Jun, a transcriptional activator of DAPK1, as compared with a heterogeneous cytogenetic category. In addition, Meis1, a c-Jun-responsive adverse AML prognostic gene signature was measured as control. These Flt3ITD(+) AMLs overexpress relB, a transcriptional repressor, which forms active heterodimers with p52NF-κB. Chromatin immunoprecipitation assays identified p52NF-κB binding to the DAPK1 promoter together with histone deacetylase 2 (HDAC2) and HDAC6 in the Flt3ITD(+) human AML cell line MV-4-11. Knockdown of p52NF-κB or its upstream regulator, NF-κB-inducing kinase (NIK), de-repressed DAPK1. DAPK1-repressed primary Flt3ITD(+) AMLs had selective nuclear activation of p52NF-κB. Flt3ITD promotes a noncanonical pathway via TAK1 and p52NF-κB to suppress DAPK1 in association with HDACs, which explains DAPK1 repression in Flt3ITD(+) AML. ©2011 AACR.

  20. Oncolytic adenovirus targeting cyclin E overexpression repressed tumor growth in syngeneic immunocompetent mice

    International Nuclear Information System (INIS)

    Cheng, Pei-Hsin; Rao, Xiao-Mei; Wechman, Stephen L.; Li, Xiao-Feng; McMasters, Kelly M.; Zhou, Heshan Sam

    2015-01-01

    Clinical trials have indicated that preclinical results obtained with human tumor xenografts in mouse models may overstate the potential of adenovirus (Ad)-mediated oncolytic therapies. We have previously demonstrated that the replication of human Ads depends on cyclin E dysregulation or overexpression in cancer cells. ED-1 cell derived from mouse lung adenocarcinomas triggered by transgenic overexpression of human cyclin E may be applied to investigate the antitumor efficacy of oncolytic Ads. Ad-cycE was used to target cyclin E overexpression in ED-1 cells and repress tumor growth in a syngeneic mouse model for investigation of oncolytic virotherapies. Murine ED-1 cells were permissive for human Ad replication and Ad-cycE repressed ED-1 tumor growth in immunocompetent FVB mice. ED-1 cells destroyed by oncolytic Ads in tumors were encircled in capsule-like structures, while cells outside the capsules were not infected and survived the treatment. Ad-cycE can target cyclin E overexpression in cancer cells and repress tumor growth in syngeneic mouse models. The capsule structures formed after Ad intratumoral injection may prevent viral particles from spreading to the entire tumor. The online version of this article (doi:10.1186/s12885-015-1731-x) contains supplementary material, which is available to authorized users

  1. The Translation and Adaptation of Agile Methods

    DEFF Research Database (Denmark)

    Pries-Heje, Jan; Baskerville, Richard

    2017-01-01

    Purpose The purpose of this paper is to use translation theory to develop a framework (called FTRA) that explains how companies adopt agile methods in a discourse of fragmentation and articulation. Design/methodology/approach A qualitative multiple case study of six firms using the Scrum agile...... (Scrum). This limits the confidence that the framework is suitable for other kinds of methodologies. Practical implications The FTRA framework and the technological rules are promising for use in practice as a prescriptive or even normative frame for governing methodology adaptation. Social implications....../value The use of translation theory and the FTRA framework to explain how agile adaptation (in particular Scrum) emerges continuously in a process where method fragments are articulated and re-articulated to momentarily suit the local setting. Complete agility that rapidly and elegantly changes its own...

  2. Residual translation compensations in radar target narrowband imaging based on trajectory information

    Science.gov (United States)

    Yue, Wenjue; Peng, Bo; Wei, Xizhang; Li, Xiang; Liao, Dongping

    2018-05-01

    High velocity translation will result in defocusing scattering centers in radar imaging. In this paper, we propose a Residual Translation Compensations (RTC) method based on target trajectory information to eliminate the translation effects in radar imaging. Translation could not be simply regarded as a uniformly accelerated motion in reality. So the prior knowledge of the target trajectory is introduced to enhance compensation precision. First we use the two-body orbit model to figure out the radial distance. Then, stepwise compensations are applied to eliminate residual propagation delay based on conjugate multiplication method. Finally, tomography is used to confirm the validity of the method. Compare with translation parameters estimation method based on the spectral peak of the conjugate multiplied signal, RTC method in this paper enjoys a better tomography result. When the Signal Noise Ratio (SNR) of the radar echo signal is 4dB, the scattering centers can also be extracted clearly.

  3. Translation Analysis on Civil Engineering Text Produced by Machine Translator

    Directory of Open Access Journals (Sweden)

    Sutopo Anam

    2018-01-01

    Full Text Available Translation is extremely needed in communication since people have serious problem in the language used. Translation activity is done by the person in charge for translating the material. Translation activity is also able to be done by machine. It is called machine translation, reflected in the programs developed by programmer. One of them is Transtool. Many people used Transtool for helping them in solving the problem related with translation activities. This paper wants to deliver how important is the Transtool program, how effective is Transtool program and how is the function of Transtool for human business. This study applies qualitative research. The sources of data were document and informant. This study used documentation and in dept-interviewing as the techniques for collecting data. The collected data were analyzed by using interactive analysis. The results of the study show that, first; Transtool program is helpful for people in translating the civil engineering text and it functions as the aid or helper, second; the working of Transtool software program is effective enough and third; the result of translation produced by Transtool is good for short and simple sentences and not readable, not understandable and not accurate for long sentences (compound, complex and compound complex thought the result is informative. The translated material must be edited by the professional translator.

  4. Translation Analysis on Civil Engineering Text Produced by Machine Translator

    Science.gov (United States)

    Sutopo, Anam

    2018-02-01

    Translation is extremely needed in communication since people have serious problem in the language used. Translation activity is done by the person in charge for translating the material. Translation activity is also able to be done by machine. It is called machine translation, reflected in the programs developed by programmer. One of them is Transtool. Many people used Transtool for helping them in solving the problem related with translation activities. This paper wants to deliver how important is the Transtool program, how effective is Transtool program and how is the function of Transtool for human business. This study applies qualitative research. The sources of data were document and informant. This study used documentation and in dept-interviewing as the techniques for collecting data. The collected data were analyzed by using interactive analysis. The results of the study show that, first; Transtool program is helpful for people in translating the civil engineering text and it functions as the aid or helper, second; the working of Transtool software program is effective enough and third; the result of translation produced by Transtool is good for short and simple sentences and not readable, not understandable and not accurate for long sentences (compound, complex and compound complex) thought the result is informative. The translated material must be edited by the professional translator.

  5. A central regulatory system largely controls transcriptional activation and repression responses to phosphate starvation in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Regla Bustos

    2010-09-01

    Full Text Available Plants respond to different stresses by inducing or repressing transcription of partially overlapping sets of genes. In Arabidopsis, the PHR1 transcription factor (TF has an important role in the control of phosphate (Pi starvation stress responses. Using transcriptomic analysis of Pi starvation in phr1, and phr1 phr1-like (phl1 mutants and in wild type plants, we show that PHR1 in conjunction with PHL1 controls most transcriptional activation and repression responses to phosphate starvation, regardless of the Pi starvation specificity of these responses. Induced genes are enriched in PHR1 binding sequences (P1BS in their promoters, whereas repressed genes do not show such enrichment, suggesting that PHR1(-like control of transcriptional repression responses is indirect. In agreement with this, transcriptomic analysis of a transgenic plant expressing PHR1 fused to the hormone ligand domain of the glucocorticoid receptor showed that PHR1 direct targets (i.e., displaying altered expression after GR:PHR1 activation by dexamethasone in the presence of cycloheximide corresponded largely to Pi starvation-induced genes that are highly enriched in P1BS. A minimal promoter containing a multimerised P1BS recapitulates Pi starvation-specific responsiveness. Likewise, mutation of P1BS in the promoter of two Pi starvation-responsive genes impaired their responsiveness to Pi starvation, but not to other stress types. Phylogenetic footprinting confirmed the importance of P1BS and PHR1 in Pi starvation responsiveness and indicated that P1BS acts in concert with other cis motifs. All together, our data show that PHR1 and PHL1 are partially redundant TF acting as central integrators of Pi starvation responses, both specific and generic. In addition, they indicate that transcriptional repression responses are an integral part of adaptive responses to stress.

  6. E2F repression by C/EBPalpha is required for adipogenesis and granulopoiesis in vivo

    DEFF Research Database (Denmark)

    Porse, B T; Pedersen TA; Xu, X

    2001-01-01

    -dependent transcription and found them to be impaired in their ability to suppress cellular proliferation, and to induce adipocyte differentiation in vitro. Using targeted mutagenesis of the mouse germline, we show that E2F repression-deficient C/EBPalpha alleles failed to support adipocyte and granulocyte...... differentiation in vivo. These results indicate that E2F repression by C/EBPalpha is critical for its ability to induce terminal differentiation, and thus provide genetic evidence that direct cell cycle control by a mammalian lineage-instructive transcription factor couples cellular growth arrest...

  7. Translation: between what can be translated and what must be translated

    Directory of Open Access Journals (Sweden)

    Magda Jeanrenaud

    2016-02-01

    Full Text Available Starting from a disconcerting interpretation of Jacques Derrida, our analysis aims at investigating and also tries to explain the blockage which appears in the English, French and Romanian translations (signed by Maurice de Gandillac, Antoine Berman, Laurent Lamy, Alexis Nouss, Harry Zohn, Steven Rendall, Martine Broda, Catrinel Pleșu etc. of a well-known text of Walter Benjamin, Die Aufgabe des Übersetzers, when translators transpose in their target languages the two quotations given by Benjamin: one of Mallarmé, left untranslated in the source text, and another, signed by Pannwitz. The fact is that both quotations have something in common: a discoursive form which results from an unusual syntax, as if they were already, in a certain sense, „translations”. As if the translators feared—a feature of the translator’s psychology?—not to render their text sufficiently accessible, even when the source text is not intended to be accessible. Hence the painful dilemma of the intentional fallacy (not only of the text to be translated.

  8. Silencing c-Myc translation as a therapeutic strategy through targeting PI3Kδ and CK1ε in hematological malignancies.

    Science.gov (United States)

    Deng, Changchun; Lipstein, Mark R; Scotto, Luigi; Jirau Serrano, Xavier O; Mangone, Michael A; Li, Shirong; Vendome, Jeremie; Hao, Yun; Xu, Xiaoming; Deng, Shi-Xian; Realubit, Ronald B; Tatonetti, Nicholas P; Karan, Charles; Lentzsch, Suzanne; Fruman, David A; Honig, Barry; Landry, Donald W; O'Connor, Owen A

    2017-01-05

    Phosphoinositide 3-kinase (PI3K) and the proteasome pathway are both involved in activating the mechanistic target of rapamycin (mTOR). Because mTOR signaling is required for initiation of messenger RNA translation, we hypothesized that cotargeting the PI3K and proteasome pathways might synergistically inhibit translation of c-Myc. We found that a novel PI3K δ isoform inhibitor TGR-1202, but not the approved PI3Kδ inhibitor idelalisib, was highly synergistic with the proteasome inhibitor carfilzomib in lymphoma, leukemia, and myeloma cell lines and primary lymphoma and leukemia cells. TGR-1202 and carfilzomib (TC) synergistically inhibited phosphorylation of the eukaryotic translation initiation factor 4E (eIF4E)-binding protein 1 (4E-BP1), leading to suppression of c-Myc translation and silencing of c-Myc-dependent transcription. The synergistic cytotoxicity of TC was rescued by overexpression of eIF4E or c-Myc. TGR-1202, but not other PI3Kδ inhibitors, inhibited casein kinase-1 ε (CK1ε). Targeting CK1ε using a selective chemical inhibitor or short hairpin RNA complements the effects of idelalisib, as a single agent or in combination with carfilzomib, in repressing phosphorylation of 4E-BP1 and the protein level of c-Myc. These results suggest that TGR-1202 is a dual PI3Kδ/CK1ε inhibitor, which may in part explain the clinical activity of TGR-1202 in aggressive lymphoma not found with idelalisib. Targeting CK1ε should become an integral part of therapeutic strategies targeting translation of oncogenes such as c-Myc. © 2017 by The American Society of Hematology.

  9. SIRT1 deacetylates RFX5 and antagonizes repression of collagen type I (COL1A2) transcription in smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Jun [Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University (China); Department of Respiratory Medicine, Jiangsu Provincial Hospital of Chinese Traditional Medicine (China); Wu, Xiaoyan; Yang, Yuyu; Zhao, Yuhao [Atherosclerosis Research Center, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Pathophysiology, Nanjing Medical University (China); Fang, Mingming [Jiangsu Jiankang Vocational Institute (China); Xie, Weiping, E-mail: wpxienjmu@gmail.com [Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University (China); Wang, Hong, E-mail: hwangnjmu@gmail.com [Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University (China); Xu, Yong [Atherosclerosis Research Center, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Pathophysiology, Nanjing Medical University (China)

    2012-11-16

    Highlights: Black-Right-Pointing-Pointer SIRT1 interacts with and deacetylates RFX5. Black-Right-Pointing-Pointer SIRT1 activation attenuates whereas SIRT1 inhibition enhances collagen repression by RFX5 in vascular smooth muscle cells. Black-Right-Pointing-Pointer SIRT1 promotes cytoplasmic localization and proteasomal degradation of RFX5 and cripples promoter recruitment of RFX5. Black-Right-Pointing-Pointer IFN-{gamma} represses SIRT1 expression in vascular smooth muscle cells. Black-Right-Pointing-Pointer SIRT1 agonist alleviates collagen repression by IFN-{gamma} in vascular smooth muscle cells. -- Abstract: Decreased expression of collagen by vascular smooth muscle cells (SMCs) within the atherosclerotic plaque contributes to the thinning of the fibrous cap and poses a great threat to plaque rupture. Elucidation of the mechanism underlying repressed collagen type I (COL1A2) gene would potentially provide novel solutions that can prevent rupture-induced complications. We have previously shown that regulatory factor for X-box (RFX5) binds to the COL1A2 transcription start site and represses its transcription. Here we report that SIRT1, an NAD-dependent, class III deacetylase, forms a complex with RFX5. Over-expression of SIRT1 or NAMPT, which synthesizes NAD+ to activate SIRT1, or treatment with the SIRT1 agonist resveratrol decreases RFX5 acetylation and disrupts repression of the COL1A2 promoter activity by RFX5. On the contrary, knockdown of SIRT1 or treatment with SIRT1 inhibitors induces RFX5 acetylation and enhances the repression of collagen transcription. SIRT1 antagonizes RFX5 activity by promoting its nuclear expulsion and proteasomal degradation hence dampening its binding to the COL1A2 promoter. The pro-inflammatory cytokine IFN-{gamma} represses COL1A2 transcription by down-regulating SIRT1 expression in SMCs. Therefore, our data have identified as novel pathway whereby SIRT1 maintains collagen synthesis in SMCs by modulating RFX5 activity.

  10. Integrating Automatic Speech Recognition and Machine Translation for Better Translation Outputs

    DEFF Research Database (Denmark)

    Liyanapathirana, Jeevanthi

    translations, combining machine translation with computer assisted translation has drawn attention in current research. This combines two prospects: the opportunity of ensuring high quality translation along with a significant performance gain. Automatic Speech Recognition (ASR) is another important area......, which caters important functionalities in language processing and natural language understanding tasks. In this work we integrate automatic speech recognition and machine translation in parallel. We aim to avoid manual typing of possible translations as dictating the translation would take less time...... to the n-best list rescoring, we also use word graphs with the expectation of arriving at a tighter integration of ASR and MT models. Integration methods include constraining ASR models using language and translation models of MT, and vice versa. We currently develop and experiment different methods...

  11. (Con)figuring gender in Bible translation: Cultural, translational and ...

    African Journals Online (AJOL)

    The gendered intersection of cultural studies and Bible translation is under acknowledged. Accounting for gender criticism in translation work requires, besides responsible theory and practice of translation, also attention to interwoven gender critical aspects. After a brief investigation of the intersections between biblical, ...

  12. Translation and identity: Translation of the Freedom Charter into ...

    African Journals Online (AJOL)

    A comparative analysis of the Afrikaans translations reveals how the respective translators struggled sporadically through certain ideological constraints in order to provide a satisfactory narrative. Their inability to internalise the principles contained in the Freedom Charter resulted in them presenting a 'framed' translation ...

  13. Subchondral drilling for articular cartilage repair: a systematic review of translational research.

    Science.gov (United States)

    Gao, Liang; Goebel, Lars K H; Orth, Patrick; Cucchiarini, Magali; Madry, Henning

    2018-05-03

    Articular cartilage defects may initiate osteoarthritis. Subchondral drilling, a widely applied clinical technique to treat small cartilage defects, does not yield cartilage regeneration. Various translational studies aiming to improve the outcome of drilling have been performed, however, a robust systematic analysis of its translational evidence has been still lacking. Here, we performed a systematic review of the outcome of subchondral drilling for knee cartilage repair in translational animal models. A total of 12 relevant publications studying 198 animals were identified, detailed study characteristics were extracted, and methodological quality and risk of bias were analyzed. Subchondral drilling was superior to defects untreated or treated with abrasion arthroplasty for cartilage repair in multiple translational models. Considerable subchondral bone changes were observed, including subchondral bone cysts and intralesional osteophytes. Furthermore, extensive alterations of the subchondral bone microarchitecture appeared in a temporal pattern in small and large animal models, together with specific topographic aspects of repair. Moreover, variable technical aspects directly affected the outcomes of osteochondral repair. The data from this systematic review indicate that subchondral drilling yields improved short-term structural articular cartilage repair compared with spontaneous repair in multiple small and large animal models. These results have important implications for future investigations aimed at an enhanced translation into clinical settings for the treatment of cartilage defects, highlighting the importance of considering specific aspects of modifiable variables such as improvements in the design and reporting of preclinical studies, together with the need to better understand the underlying mechanisms of cartilage repair following subchondral drilling. © 2018. Published by The Company of Biologists Ltd.

  14. Military westernization and state repression in the post-Cold War era.

    Science.gov (United States)

    Swed, Ori; Weinreb, Alexander

    2015-09-01

    The waves of unrest that have shaken the Arab world since December 2010 have highlighted significant differences in the readiness of the military to intervene in political unrest by forcefully suppressing dissent. We suggest that in the post-Cold War period, this readiness is inversely associated with the level of military westernization, which is a product of the acquisition of arms from western countries. We identify two mechanisms linking the acquisition of arms from western countries to less repressive responses: dependence and conditionality; and a longer-term diffusion of ideologies regarding the proper form of civil-military relations. Empirical support for our hypothesis is found in an analysis of 2523 cases of government response to political unrest in 138 countries in the 1996-2005 period. We find that military westernization mitigates state repression in general, with more pronounced effects in the poorest countries. However, we also identify substantial differences between the pre- and post-9/11 periods. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Repressive coping among British college women: A potential protective factor against body image concerns, drive for thinness, and bulimia symptoms.

    Science.gov (United States)

    Mohiyeddini, Changiz

    2017-09-01

    Repressive coping, as a means of preserving a positive self-image, has been widely explored in the context of dealing with self-evaluative cues. The current study extends this research by exploring whether repressive coping is associated with lower levels of body image concerns, drive for thinness, bulimic symptoms, and higher positive rational acceptance. A sample of 229 female college students was recruited in South London. Repressive coping was measured via the interaction between trait anxiety and defensiveness. The results of moderated regression analysis with simple slope analysis show that compared to non-repressors, repressors reported lower levels of body image concerns, drive for thinness, and bulimic symptoms while exhibiting a higher use of positive rational acceptance. These findings, in line with previous evidence, suggest that repressive coping may be adaptive particularly in the context of body image. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Acute TNF-induced repression of cell identity genes is mediated by NFκB-directed redistribution of cofactors from super-enhancers

    DEFF Research Database (Denmark)

    Schmidt, Søren Fisker; Larsen, Bjørk Ditlev; Loft, Anne

    2015-01-01

    The proinflammatory cytokine tumor necrosis factor (TNF) plays a central role in low-grade adipose tissue inflammation and development of insulin resistance during obesity. In this context, nuclear factor κ-light-chain-enhancer of activated B cells (NFκB) is directly involved and required for the...... specifically repressing super-enhancer-associated cell identity genes....... binding to the associated enhancers but rather loss of cofactors and enhancer RNA (eRNA) selectively from high-occupancy sites within super-enhancers. Based on these data, we have developed models that, with high accuracy, predict which enhancers and genes are repressed by TNF in adipocytes. We show...... that these models are applicable to other cell types where TNF represses genes associated with super-enhancers in a highly cell-type-specific manner. Our results propose a novel paradigm for NFκB-mediated repression, whereby NFκB selectively redistributes cofactors from high-occupancy enhancers, thereby...

  17. Interpreting suffering from illness: The role of culture and repressive suffering construal.

    Science.gov (United States)

    Yang, Qian; Liu, Shi; Sullivan, Daniel; Pan, Shengdong

    2016-07-01

    Mental and physical illnesses are among the most prominent forms of suffering. Cultural worldviews provide tools for making sense of and coping with suffering. In this research, we examine how culture influences both experts' and laypeople's interpretation of suffering from illness. We focus on one type of interpretation of suffering- repressive suffering construal-an interpretation that frames suffering both as the result of immorality on the part of the sufferer and as having the function of maintaining social order by curtailing deviance. We sought to test whether this type of suffering interpretation is more common in cultural ecologies (e.g., urban vs. rural; higher vs. lower status) traditionally associated with collectivist values. Study 1 used data from the General Social Survey to examine variation in suffering interpretation in a representative sample of the U.S. Study 2 examined variation in suffering interpretation with a survey completed by a subsample of Chinese health-care professionals. Study 1 found that U.S. citizens living in a rural environment are more likely to interpret illnesses as being the fault of the sufferer. Study 2 found that those from a lower-SES background are more likely to interpret illnesses in a repressive fashion. In these studies, family size mediates the effect of ecological conditions on RSC. Our research highlights how ecological variables associated with collectivism may bias both laypeople and professionals to interpret suffering from illness in a more repressive way. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Recommendations for translation and reliability testing of International Spinal Cord Injury Data Sets.

    Science.gov (United States)

    Biering-Sørensen, F; Alexander, M S; Burns, S; Charlifue, S; DeVivo, M; Dietz, V; Krassioukov, A; Marino, R; Noonan, V; Post, M W M; Stripling, T; Vogel, L; Wing, P

    2011-03-01

    To provide recommendations regarding translation and reliability testing of International Spinal Cord Injury (SCI) Data Sets. The Executive Committee for the International SCI Standards and Data Sets. Translations of any specific International SCI Data Set can be accomplished by translation from the English version into the target language, and be followed by a back-translation into English, to confirm that the original meaning has been preserved. Another approach is to have the initial translation performed by translators who have knowledge of SCI, and afterwards controlled by other person(s) with the same kind of knowledge. The translation process includes both language translation and cultural adaptation, and therefore shall not be made word for word, but will strive to include conceptual equivalence. At a minimum, the inter-rater reliability should be tested by no less than two independent observers, and preferably in multiple countries. Translations must include information on the name, role and background of everyone involved in the translation process, and shall be dated and noted with a version number. By following the proposed guidelines, translated data sets should assure comparability of data acquisition across countries and cultures. If the translation process identifies irregularities or misrepresentation in either the original English version or the target language, the working group for the particular International SCI Data Set shall revise the data set accordingly, which may include re-wording of the original English version in order to accomplish a compromise in the content of the data set.

  19. Word translation entropy in translation

    DEFF Research Database (Denmark)

    Schaeffer, Moritz; Dragsted, Barbara; Hvelplund, Kristian Tangsgaard

    2016-01-01

    This study reports on an investigation into the relationship between the number of translation alternatives for a single word and eye movements on the source text. In addition, the effect of word order differences between source and target text on eye movements on the source text is studied....... In particular, the current study investigates the effect of these variables on early and late eye movement measures. Early eye movement measures are indicative of processes that are more automatic while late measures are more indicative of conscious processing. Most studies that found evidence of target...... language activation during source text reading in translation, i.e. co-activation of the two linguistic systems, employed late eye movement measures or reaction times. The current study therefore aims to investigate if and to what extent earlier eye movement measures in reading for translation show...

  20. (Configuring gender in Bible translation: Cultural, translational and gender critical intersections

    Directory of Open Access Journals (Sweden)

    Jeremy Punt

    2014-06-01

    Full Text Available The gendered intersection of cultural studies and Bible translation is under acknowledged. Accounting for gender criticism in translation work requires, besides responsible theory and practice of translation, also attention to interwoven gender critical aspects. After a brief investigation of the intersections between biblical, translation and gender studies, translation in a few Pauline texts with bearing on gender and sexuality are investigated.

  1. Genomic Analysis Reveals Contrasting PIFq Contribution to Diurnal Rhythmic Gene Expression in PIF-Induced and -Repressed Genes.

    Science.gov (United States)

    Martin, Guiomar; Soy, Judit; Monte, Elena

    2016-01-01

    Members of the PIF quartet (PIFq; PIF1, PIF3, PIF4, and PIF5) collectively contribute to induce growth in Arabidopsis seedlings under short day (SD) conditions, specifically promoting elongation at dawn. Their action involves the direct regulation of growth-related and hormone-associated genes. However, a comprehensive definition of the PIFq-regulated transcriptome under SD is still lacking. We have recently shown that SD and free-running (LL) conditions correspond to "growth" and "no growth" conditions, respectively, correlating with greater abundance of PIF protein in SD. Here, we present a genomic analysis whereby we first define SD-regulated genes at dawn compared to LL in the wild type, followed by identification of those SD-regulated genes whose expression depends on the presence of PIFq. By using this sequential strategy, we have identified 349 PIF/SD-regulated genes, approximately 55% induced and 42% repressed by both SD and PIFq. Comparison with available databases indicates that PIF/SD-induced and PIF/SD-repressed sets are differently phased at dawn and mid-morning, respectively. In addition, we found that whereas rhythmicity of the PIF/SD-induced gene set is lost in LL, most PIF/SD-repressed genes keep their rhythmicity in LL, suggesting differential regulation of both gene sets by the circadian clock. Moreover, we also uncovered distinct overrepresented functions in the induced and repressed gene sets, in accord with previous studies in other examined PIF-regulated processes. Interestingly, promoter analyses showed that, whereas PIF/SD-induced genes are enriched in direct PIF targets, PIF/SD-repressed genes are mostly indirectly regulated by the PIFs and might be more enriched in ABA-regulated genes.

  2. 'Inhabiting' the Translator's Habitus – Antjie Krog as Translator ...

    African Journals Online (AJOL)

    Drawing on the Bourdieusian concept of habitus and its applicability in the field of translation, this article discusses Antjie Krog's profile in the practice of translation in. South Africa. Bourdieu's conceptualisation of the relationship between the initiating activities of translators and the structures which constrain and enable ...

  3. The contribution of conceptual frameworks to knowledge translation interventions in physical therapy.

    Science.gov (United States)

    Hudon, Anne; Gervais, Mathieu-Joël; Hunt, Matthew

    2015-04-01

    There is growing recognition of the importance of knowledge translation activities in physical therapy to ensure that research findings are integrated into clinical practice, and increasing numbers of knowledge translation interventions are being conducted. Although various frameworks have been developed to guide and facilitate the process of translating knowledge into practice, these tools have been infrequently used in physical therapy knowledge translation studies to date. Knowledge translation in physical therapy implicates multiple stakeholders and environments and involves numerous steps. In light of this complexity, the use of explicit conceptual frameworks by clinicians and researchers conducting knowledge translation interventions is associated with a range of potential benefits. This perspective article argues that such frameworks are important resources to promote the uptake of new evidence in physical therapist practice settings. Four key benefits associated with the use of conceptual frameworks in designing and implementing knowledge translation interventions are identified, and limits related to their use are considered. A sample of 5 conceptual frameworks is evaluated, and how they address common barriers to knowledge translation in physical therapy is assessed. The goal of this analysis is to provide guidance to physical therapists seeking to identify a framework to support the design and implementation of a knowledge translation intervention. Finally, the use of a conceptual framework is illustrated through a case example. Increased use of conceptual frameworks can have a positive impact on the field of knowledge translation in physical therapy and support the development and implementation of robust and effective knowledge translation interventions that help span the research-practice gap. © 2015 American Physical Therapy Association.

  4. The Contribution of Conceptual Frameworks to Knowledge Translation Interventions in Physical Therapy

    Science.gov (United States)

    Gervais, Mathieu-Joël; Hunt, Matthew

    2015-01-01

    There is growing recognition of the importance of knowledge translation activities in physical therapy to ensure that research findings are integrated into clinical practice, and increasing numbers of knowledge translation interventions are being conducted. Although various frameworks have been developed to guide and facilitate the process of translating knowledge into practice, these tools have been infrequently used in physical therapy knowledge translation studies to date. Knowledge translation in physical therapy implicates multiple stakeholders and environments and involves numerous steps. In light of this complexity, the use of explicit conceptual frameworks by clinicians and researchers conducting knowledge translation interventions is associated with a range of potential benefits. This perspective article argues that such frameworks are important resources to promote the uptake of new evidence in physical therapist practice settings. Four key benefits associated with the use of conceptual frameworks in designing and implementing knowledge translation interventions are identified, and limits related to their use are considered. A sample of 5 conceptual frameworks is evaluated, and how they address common barriers to knowledge translation in physical therapy is assessed. The goal of this analysis is to provide guidance to physical therapists seeking to identify a framework to support the design and implementation of a knowledge translation intervention. Finally, the use of a conceptual framework is illustrated through a case example. Increased use of conceptual frameworks can have a positive impact on the field of knowledge translation in physical therapy and support the development and implementation of robust and effective knowledge translation interventions that help span the research-practice gap. PMID:25060959

  5. A Saccharomyces cerevisiae mitochondrial DNA fragment activates Reg1p-dependent glucose-repressible transcription in the nucleus.

    Science.gov (United States)

    Santangelo, G M; Tornow, J

    1997-12-01

    As part of an effort to identify random carbon-source-regulated promoters in the Saccharomyces cerevisiae genome, we discovered that a mitochondrial DNA fragment is capable of directing glucose-repressible expression of a reporter gene. This fragment (CR24) originated from the mitochondrial genome adjacent to a transcription initiation site. Mutational analyses identified a GC cluster within the fragment that is required for transcriptional induction. Repression of nuclear CR24-driven transcription required Reg1p, indicating that this mitochondrially derived promoter is a member of a large group of glucose-repressible nuclear promoters that are similarly regulated by Reg1p. In vivo and in vitro binding assays indicated the presence of factors, located within the nucleus and the mitochondria, that bind to the GC cluster. One or more of these factors may provide a regulatory link between the nucleus and mitochondria.

  6. Literal Translation using Google Translate in Translating the Text from French to English in Digital Tourism Brochure “Bienvenue À Paris”

    Directory of Open Access Journals (Sweden)

    Rila Hilma

    2011-05-01

    Full Text Available Translation is basically change of form. The form from which the translation is made will be called the source language and the form into which it is to be changed will be called the receptor language. Translation consists of transferring the meaning of the source language into the receptor language. Translating is not an easy job to do because many things to be considered to do this activity because translation means determining the meaning of a text, then reconstructing this same meaning using the appropriate structure and form in the receptor language. Translation is basically divided by two types of translation, one is literal and the other is idiomatic. Literal translation is really strict to the structure and form then often can not well express the true meaning of source language. Idiomatic translation makes every effort to communicate the meaning of the source language text in the natural forms of the receptor language. Then the most popular translation machine, Google Translate, in this study shows the results of translation which remain odd, unnatural, and nonsensical because the unsuccessful of message delivery, which is notably the typically error of literal translation.

  7. Ribosome Profiling Reveals Pervasive Translation Outside of Annotated Protein-Coding Genes

    Directory of Open Access Journals (Sweden)

    Nicholas T. Ingolia

    2014-09-01

    Full Text Available Ribosome profiling suggests that ribosomes occupy many regions of the transcriptome thought to be noncoding, including 5′ UTRs and long noncoding RNAs (lncRNAs. Apparent ribosome footprints outside of protein-coding regions raise the possibility of artifacts unrelated to translation, particularly when they occupy multiple, overlapping open reading frames (ORFs. Here, we show hallmarks of translation in these footprints: copurification with the large ribosomal subunit, response to drugs targeting elongation, trinucleotide periodicity, and initiation at early AUGs. We develop a metric for distinguishing between 80S footprints and nonribosomal sources using footprint size distributions, which validates the vast majority of footprints outside of coding regions. We present evidence for polypeptide production beyond annotated genes, including the induction of immune responses following human cytomegalovirus (HCMV infection. Translation is pervasive on cytosolic transcripts outside of conserved reading frames, and direct detection of this expanded universe of translated products enables efforts at understanding how cells manage and exploit its consequences.

  8. Epigenetic involvement of Alien/ESET complex in thyroid hormone-mediated repression of E2F1 gene expression and cell proliferation

    International Nuclear Information System (INIS)

    Hong, Wei; Li, Jinru; Wang, Bo; Chen, Linfeng; Niu, Wenyan; Yao, Zhi; Baniahmad, Aria

    2011-01-01

    Highlights: ► Corepressor Alien interacts with histone methyltransferase ESET in vivo. ► Alien/ESET complex is recruited to nTRE of T3-responsive gene by liganded TRβ1. ► ESET-mediated H3K9 methylation is required for liganded TRβ1-repressed transcription. ► ESET is involved in T3-repressed G1/S phase transition and proliferation. -- Abstract: The ligand-bound thyroid hormone receptor (TR) is known to repress via a negative TRE (nTRE) the expression of E2F1, a key transcription factor that controls the G1/S phase transition. Alien has been identified as a novel interacting factor of E2F1 and acts as a corepressor of E2F1. The detailed molecular mechanism by which Alien inhibits E2F1 gene expression remains unclear. Here, we report that the histone H3 lysine 9 (H3K9) methyltransferase (HMT) ESET is an integral component of the corepressor Alien complex and the Alien/ESET complex is recruited to both sites, the E2F1 and the nTRE site of the E2F1 gene while the recruitment to the negative thyroid hormone response element (nTRE) is induced by the ligand-bound TRβ1 within the E2F1 gene promoter. We show that, overexpression of ESET promotes, whereas knockdown of ESET releases, the inhibition of TRβ1-regulated gene transcription upon T3 stimulation; and H3K9 methylation is required for TRβ1-repressed transcription. Furthermore, depletion of ESET impairs thyroid hormone-repressed proliferation as well as the G1/S transition of the cell cycle. Taken together, our data indicate that ESET is involved in TRβ1-mediated transcription repression and provide a molecular basis of thyroid hormone-induced repression of proliferation.

  9. Nanos-mediated repression of hid protects larval sensory neurons after a global switch in sensitivity to apoptotic signals.

    Science.gov (United States)

    Bhogal, Balpreet; Plaza-Jennings, Amara; Gavis, Elizabeth R

    2016-06-15

    Dendritic arbor morphology is a key determinant of neuronal function. Once established, dendrite branching patterns must be maintained as the animal develops to ensure receptive field coverage. The translational repressors Nanos (Nos) and Pumilio (Pum) are required to maintain dendrite growth and branching of Drosophila larval class IV dendritic arborization (da) neurons, but their specific regulatory role remains unknown. We show that Nos-Pum-mediated repression of the pro-apoptotic gene head involution defective (hid) is required to maintain a balance of dendritic growth and retraction in class IV da neurons and that upregulation of hid results in decreased branching because of an increase in caspase activity. The temporal requirement for nos correlates with an ecdysone-triggered switch in sensitivity to apoptotic stimuli that occurs during the mid-L3 transition. We find that hid is required during pupariation for caspase-dependent pruning of class IV da neurons and that Nos and Pum delay pruning. Together, these results suggest that Nos and Pum provide a crucial neuroprotective regulatory layer to ensure that neurons behave appropriately in response to developmental cues. © 2016. Published by The Company of Biologists Ltd.

  10. The ICNP BaT - from translation tool to translation web service.

    Science.gov (United States)

    Schrader, Ulrich

    2009-01-01

    The ICNP BaT has been developed as a web application to support the collaborative translation of different versions of the ICNP into different languages. A prototype of a web service is described that could reuse the translations in the database of the ICNP BaT to provide automatic translations of nursing content based on the ICNP terminology globally. The translation web service is based on a service-oriented architecture making it easy to interoperate with different applications. Such a global translation server would free individual institutions from the maintenance costs of realizing their own translation services.

  11. La-related protein 1 (LARP1) represses terminal oligopyrimidine (TOP) mRNA translation downstream of mTOR complex 1 (mTORC1)

    DEFF Research Database (Denmark)

    Fonseca, Bruno; Zakaria, Chadi; Jia, J J

    2015-01-01

    is incompletely understood. Here, we report that LARP1 functions as a key repressor of TOP mRNA translation downstream of mTORC1. Our data show the following: (i) LARP1 associates with mTORC1 via RAPTOR; (ii) LARP1 interacts with TOP mRNAs in an mTORC1-dependent manner; (iii) LARP1 binds the 5′TOP motif...

  12. Catabolite repression and nitrogen control of allantoin-degrading enzymes in Pseudomonas aeruginosa

    NARCIS (Netherlands)

    Janssen, D.B.; Drift, C. van der

    1983-01-01

    The formation of the allantoin-degrading enzymes allantoinase, allantoicase and ureidoglycolase in Pseudomonas aeruginosa was found to be regulated by induction, catabolite repression and nitrogen control. Induction was observed when urate, allantoin or allantoate were included in the growth medium,

  13. On Various Negative Translations

    Directory of Open Access Journals (Sweden)

    Gilda Ferreira

    2011-01-01

    Full Text Available Several proof translations of classical mathematics into intuitionistic mathematics have been proposed in the literature over the past century. These are normally referred to as negative translations or double-negation translations. Among those, the most commonly cited are translations due to Kolmogorov, Godel, Gentzen, Kuroda and Krivine (in chronological order. In this paper we propose a framework for explaining how these different translations are related to each other. More precisely, we define a notion of a (modular simplification starting from Kolmogorov translation, which leads to a partial order between different negative translations. In this derived ordering, Kuroda and Krivine are minimal elements. Two new minimal translations are introduced, with Godel and Gentzen translations sitting in between Kolmogorov and one of these new translations.

  14. Lost in translation?

    DEFF Research Database (Denmark)

    Granas, Anne Gerd; Nørgaard, Lotte Stig; Sporrong, Sofia Kälvemark

    2014-01-01

    OBJECTIVE: The "Beliefs about Medicines Questionnaire" (BMQ) assess balance of necessity and concern of medicines. The BMQ has been translated from English to many languages. However, the original meaning of statements, such as "My medicine is a mystery to me", may be lost in translation. The aim...... of this study is to compare three Scandinavian translations of the BMQ. (1) How reliable are the translations? (2) Are they still valid after translation? METHODS: Translated Norwegian, Swedish and Danish versions of the BMQ were scrutinized by three native Scandinavian researchers. Linguistic differences...... and ambiguities in the 5-point Likert scale and the BMQ statements were compared. RESULTS: In the Scandinavian translations, the Likert scale expanded beyond the original version at one endpoint (Swedish) or both endpoints (Danish). In the BMQ statements, discrepancies ranged from smaller inaccuracies toward...

  15. The Reg1-interacting proteins, Bmh1, Bmh2, Ssb1, and Ssb2, have roles in maintaining glucose repression in Saccharomyces cerevisiae.

    Science.gov (United States)

    Dombek, Kenneth M; Kacherovsky, Nataly; Young, Elton T

    2004-09-10

    In Saccharomyces cerevisiae, a type 1 protein phosphatase complex composed of the Glc7 catalytic subunit and the Reg1 regulatory subunit represses expression of many glucose-regulated genes. Here we show that the Reg1-interacting proteins Bmh1, Bmh2, Ssb1, and Ssb2 have roles in glucose repression. Deleting both BMH genes causes partially constitutive ADH2 expression without significantly increasing the level of Adr1 protein, the major activator of ADH2 expression. Adr1 and Bcy1, the regulatory subunit of cAMP-dependent protein kinase, are both required for this effect indicating that constitutive expression in Deltabmh1Deltabmh2 cells uses the same activation pathway that operates in Deltareg1 cells. Deletion of both BMH genes and REG1 causes a synergistic relief from repression, suggesting that Bmh proteins also act independently of Reg1 during glucose repression. A two-hybrid interaction with the Bmh proteins was mapped to amino acids 187-232, a region of Reg1 that is conserved in different classes of fungi. Deleting this region partially releases SUC2 from glucose repression. This indicates a role for the Reg1-Bmh interaction in glucose repression and also suggests a broad role for Bmh proteins in this process. An in vivo Reg1-Bmh interaction was confirmed by copurification of Bmh proteins with HA(3)-TAP-tagged Reg1. The nonconventional heat shock proteins Ssb1 and Ssb2 are also copurified with HA(3)-TAP-tagged Reg1. Deletion of both SSB genes modestly decreases repression of ADH2 expression in the presence of glucose, suggesting that Ssb proteins, perhaps through their interaction with Reg1, play a minor role in glucose repression.

  16. Regulating repression: roles for the sir4 N-terminus in linker DNA protection and stabilization of epigenetic states.

    Directory of Open Access Journals (Sweden)

    Stephanie Kueng

    Full Text Available Silent information regulator proteins Sir2, Sir3, and Sir4 form a heterotrimeric complex that represses transcription at subtelomeric regions and homothallic mating type (HM loci in budding yeast. We have performed a detailed biochemical and genetic analysis of the largest Sir protein, Sir4. The N-terminal half of Sir4 is dispensable for SIR-mediated repression of HM loci in vivo, except in strains that lack Yku70 or have weak silencer elements. For HM silencing in these cells, the C-terminal domain (Sir4C, residues 747-1,358 must be complemented with an N-terminal domain (Sir4N; residues 1-270, expressed either independently or as a fusion with Sir4C. Nonetheless, recombinant Sir4C can form a complex with Sir2 and Sir3 in vitro, is catalytically active, and has sedimentation properties similar to a full-length Sir4-containing SIR complex. Sir4C-containing SIR complexes bind nucleosomal arrays and protect linker DNA from nucleolytic digestion, but less effectively than wild-type SIR complexes. Consistently, full-length Sir4 is required for the complete repression of subtelomeric genes. Supporting the notion that the Sir4 N-terminus is a regulatory domain, we find it extensively phosphorylated on cyclin-dependent kinase consensus sites, some being hyperphosphorylated during mitosis. Mutation of two major phosphoacceptor sites (S63 and S84 derepresses natural subtelomeric genes when combined with a serendipitous mutation (P2A, which alone can enhance the stability of either the repressed or active state. The triple mutation confers resistance to rapamycin-induced stress and a loss of subtelomeric repression. We conclude that the Sir4 N-terminus plays two roles in SIR-mediated silencing: it contributes to epigenetic repression by stabilizing the SIR-mediated protection of linker DNA; and, as a target of phosphorylation, it can destabilize silencing in a regulated manner.

  17. The flexible C-terminal arm of the Lassa arenavirus Z-protein mediates interactions with multiple binding partners.

    Science.gov (United States)

    May, Eric R; Armen, Roger S; Mannan, Aristotle M; Brooks, Charles L

    2010-08-01

    The arenavirus genome encodes for a Z-protein, which contains a RING domain that coordinates two zinc ions, and has been identified as having several functional roles at various stages of the virus life cycle. Z-protein binds to multiple host proteins and has been directly implicated in the promotion of viral budding, repression of mRNA translation, and apoptosis of infected cells. Using homology models of the Z-protein from Lassa strain arenavirus, replica exchange molecular dynamics (MD) was used to refine the structures, which were then subsequently clustered. Population-weighted ensembles of low-energy cluster representatives were predicted based upon optimal agreement of the chemical shifts computed with the SPARTA program with the experimental NMR chemical shifts. A member of the refined ensemble was identified to be a potential binder of budding factor Tsg101 based on its correspondence to the structure of the HIV-1 Gag late domain when bound to Tsg101. Members of these ensembles were docked against the crystal structure of human eIF4E translation initiation factor. Two plausible binding modes emerged based upon their agreement with experimental observation, favorable interaction energies and stability during MD trajectories. Mutations to Z are proposed that would either inhibit both binding mechanisms or selectively inhibit only one mode. The C-terminal domain conformation of the most populated member of the representative ensemble shielded protein-binding recognition motifs for Tsg101 and eIF4E and represents the most populated state free in solution. We propose that C-terminal flexibility is key for mediating the different functional states of the Z-protein. (c) 2010 Wiley-Liss, Inc.

  18. An Evergreen Challenge for Translators – The Translation of Idioms

    Directory of Open Access Journals (Sweden)

    Kovács Gabriella

    2016-12-01

    Full Text Available Translating idioms has always been a challenging decision-making process for translators mainly because not all idioms have direct equivalents in the target language. Translators usually and ideally have a solid knowledge of the target language and its cultural aspects, but even so they cannot match the ability of a native speaker in deciding when – i.e. in what context and text type – an idiom would or would not be appropriate. This study aims to explore the main characteristics of idioms and the difficulties which might occur when translating them. A needs analysis will also be presented, where the various solutions which a group of translator trainees chose while translating certain idioms from the novel “A Game of Thrones” by George R. R. Martin into Hungarian are examined. Their strategies and the appropriateness of their choices are analysed and compared with the options of the experienced literary translator (Tamás Pétersz. We consider this an important endeavour because, based on our experience, we believe that the topic of the translation of idioms should be included into the curriculum and appropriate materials and tasks should be designed to develop the translator trainees’ knowledge and skills in this domain. Therefore, the aim of this analysis is to obtain a clearer view of the difficulties they are dealing with and bear them in mind when designing teaching materials for them.

  19. Translation in Language Teaching: Insights from Professional Translator Training

    Science.gov (United States)

    Carreres, Angeles; Noriega-Sanchez, Maria

    2011-01-01

    The past three decades have seen vast changes in attitudes towards translation, both as an academic discipline and as a profession. The insights we have gained in recent years, in particular in the area of professional translator training, call for a reassessment of the role of translation in language teaching. Drawing on research and practices in…

  20. Lost in translation

    DEFF Research Database (Denmark)

    Hedegaard, Steffen; Simonsen, Jakob Grue

    2011-01-01

    of translated texts. Our results suggest (i) that frame-based classifiers are usable for author attribution of both translated and untranslated texts; (ii) that framebased classifiers generally perform worse than the baseline classifiers for untranslated texts, but (iii) perform as well as, or superior...... to the baseline classifiers on translated texts; (iv) that—contrary to current belief—naïve classifiers based on lexical markers may perform tolerably on translated texts if the combination of author and translator is present in the training set of a classifier....

  1. Identification of the translational start site of codon-optimized mCherry in Mycobacterium tuberculosis

    OpenAIRE

    Carroll, Paul; Muwanguzi-Karugaba, Julian; Melief, Eduard; Files, Megan; Parish, Tanya

    2014-01-01

    Background Fluorescent proteins are used widely as reporter genes in many organisms. We previously codon-optimized mCherry for Mycobacterium tuberculosis and generated expression constructs with high level expression in mycobacteria with multiple uses in vitro and in vivo. However, little is known about the expression of fluorescent proteins in mycobacteria and the translational start codon for mCherry has not been experimentally determined. Results We determined the translational start site ...

  2. The Transcriptional Repressive Activity of KRAB Zinc Finger Proteins Does Not Correlate with Their Ability to Recruit TRIM28.

    Directory of Open Access Journals (Sweden)

    Kristin E Murphy

    Full Text Available KRAB domain Zinc finger proteins are one of the most abundant families of transcriptional regulators in higher vertebrates. The prevailing view is that KRAB domain proteins function as potent transcriptional repressors by recruiting TRIM28 and promoting heterochromatin spreading. However, the extent to which all KRAB domain proteins are TRIM28-dependent transcriptional repressors is currently unclear. Our studies on mouse ZFP568 revealed that TRIM28 recruitment by KRAB domain proteins is not sufficient to warrant transcriptional repressive activity. By using luciferase reporter assays and yeast two-hybrid experiments, we tested the ability of ZFP568 and other mouse KRAB domain proteins to repress transcription and bind TRIM28. We found that some mouse KRAB domain proteins are poor transcriptional repressors despite their ability to recruit TRIM28, while others showed strong KRAB-dependent transcriptional repression, but no TRIM28 binding. Together, our results show that the transcriptional repressive activity of KRAB-ZNF proteins does not correlate with their ability to recruit TRIM28, and provide evidence that KRAB domains can regulate transcription in a TRIM28-independent fashion. Our findings challenge the current understanding of the molecular mechanisms used by KRAB domain proteins to control gene expression and highlight that a high percentage of KRAB domain proteins in the mouse genome differ from the consensus KRAB sequence at amino acid residues that are critical for TRIM28 binding and/or repressive activity.

  3. Writing Through: Practising Translation

    Directory of Open Access Journals (Sweden)

    Joel Scott

    2010-05-01

    Full Text Available This essay exists as a segment in a line of study and writing practice that moves between a critical theory analysis of translation studies conceptions of language, and the practical questions of what those ideas might mean for contemporary translation and writing practice. Although the underlying preoccupation of this essay, and my more general line of inquiry, is translation studies and practice, in many ways translation is merely a way into a discussion on language. For this essay, translation is the threshold of language. But the two trails of the discussion never manage to elude each other, and these concatenations have informed two experimental translation methods, referred to here as Live Translations and Series Translations. Following the essay are a number of poems in translation, all of which come from Blanco Nuclear by the contemporary Spanish poet, Esteban Pujals Gesalí. The first group, the Live Translations consist of transcriptions I made from audio recordings read in a public setting, in which the texts were translated in situ, either off the page of original Spanish-language poems, or through a process very much like that carried out by simultaneous translators, for which readings of the poems were played back to me through headphones at varying speeds to be translated before the audience. The translations collected are imperfect renderings, attesting to a moment in language practice rather than language objects. The second method involves an iterative translation process, by which three versions of any one poem are rendered, with varying levels of fluency, fidelity and servility. All three translations are presented one after the other as a series, with no version asserting itself as the primary translation. These examples, as well as the translation methods themselves, are intended as preliminary experiments within an endlessly divergent continuum of potential methods and translations, and not as a complete representation of

  4. The interplay of StyR and IHF regulates substrate-dependent induction and carbon catabolite repression of styrene catabolism genes in Pseudomonas fluorescens ST

    Directory of Open Access Journals (Sweden)

    Leoni Livia

    2008-06-01

    Full Text Available Abstract Background In Pseudomonas fluorescens ST, the promoter of the styrene catabolic operon, PstyA, is induced by styrene and is subject to catabolite repression. PstyA regulation relies on the StyS/StyR two-component system and on the IHF global regulator. The phosphorylated response regulator StyR (StyR-P activates PstyA in inducing conditions when it binds to the high-affinity site STY2, located about -40 bp from the transcription start point. A cis-acting element upstream of STY2, named URE, contains a low-affinity StyR-P binding site (STY1, overlapping the IHF binding site. Deletion of the URE led to a decrease of promoter activity in inducing conditions and to a partial release of catabolite repression. This study was undertaken to assess the relative role played by IHF and StyR-P on the URE, and to clarify if PstyA catabolite repression could rely on the interplay of these regulators. Results StyR-P and IHF compete for binding to the URE region. PstyA full activity in inducing conditions is achieved when StyR-P and IHF bind to site STY2 and to the URE, respectively. Under catabolite repression conditions, StyR-P binds the STY1 site, replacing IHF at the URE region. StyR-P bound to both STY1 and STY2 sites oligomerizes, likely promoting the formation of a DNA loop that closes the promoter in a repressed conformation. We found that StyR and IHF protein levels did not change in catabolite repression conditions, implying that PstyA repression is achieved through an increase in the StyR-P/StyR ratio. Conclusion We propose a model according to which the activity of the PstyA promoter is determined by conformational changes. An open conformation is operative in inducing conditions when StyR-P is bound to STY2 site and IHF to the URE. Under catabolite repression conditions StyR-P cellular levels would increase, displacing IHF from the URE and closing the promoter in a repressed conformation. The balance between the open and the closed

  5. SUN2 Modulates HIV-1 Infection and Latency through Association with Lamin A/C To Maintain the Repressive Chromatin.

    Science.gov (United States)

    Sun, Wei-Wei; Jiao, Shi; Sun, Li; Zhou, Zhaocai; Jin, Xia; Wang, Jian-Hua

    2018-05-01

    The postintegrational latency of HIV-1 is characterized by reversible silencing of long terminal repeat (LTR)-driven transcription of the HIV genome. It is known that the formation of repressive chromatin at the 5'-LTR of HIV-1 proviral DNA impedes viral transcription by blocking the recruitment of positive transcription factors. How the repressive chromatin is formed and modulated during HIV-1 infection remains elusive. Elucidation of which chromatin reassembly factor mediates the reorganization of chromatin is likely to facilitate the understanding of the host's modulation of HIV-1 transcription and latency. Here we revealed that "Sad1 and UNC84 domain containing 2" (SUN2), an inner nuclear membrane protein, maintained the repressive chromatin and inhibited HIV LTR-driven transcription of proviral DNA through an association with lamin A/C. Specifically, lamin A/C tethered SUN2 to the nucleosomes 1 and 2 of the HIV-1 5'-LTR to block the initiation and elongation of HIV-1 transcription. SUN2 knockdown converted chromatin to an active form and thus enhanced the phosphorylation of RNA polymerase II and its recruitment to the 5'-LTR HIV-1 proviral DNA, leading to reactivation of HIV-1 from latency. Conversely, the exogenous factors such as tumor necrosis factor alpha (TNF-α) induced reactivation, and the replication of HIV-1 led to the disassociation between SUN2 and lamin A/C, suggesting that disruption of the association between SUN2 and lamin A/C to convert the repressive chromatin to the active form might be a prerequisite for the initiation of HIV-1 transcription and replication. Together, our findings indicate that SUN2 is a novel chromatin reassembly factor that helps to maintain chromatin in a repressive state and consequently inhibits HIV-1 transcription. IMPORTANCE Despite the successful use of scores of antiretroviral drugs, HIV latency poses a major impediment to virus eradication. Elucidation of the mechanism of latency facilitates the discovery of new

  6. Speaking your Translation

    DEFF Research Database (Denmark)

    Dragsted, Barbara; Mees, Inger M.; Gorm Hansen, Inge

    2011-01-01

    In this article we discuss the translation processes and products of 14 MA students who produced translations from Danish (L1) into English (L2) under different working conditions: (1) written translation, (2) sight translation, and (3) sight translation with a speech recognition (SR) tool. Audio......, since students were dictating in their L2, we looked into the number and types of error that occurred when using the SR software. Items that were misrecognised by the program could be divided into three categories: homophones, hesitations, and incorrectly pronounced words. Well over fifty per cent...

  7. Insomnia symptoms and repressive coping in a sample of older Black and White women

    Directory of Open Access Journals (Sweden)

    Pierre-Louis Jessy

    2007-01-01

    Full Text Available Abstract Background This study examined whether ethnic differences in insomnia symptoms are mediated by differences in repressive coping styles. Methods A total of 1274 women (average age = 59.36 ± 6.53 years participated in the study; 28% were White and 72% were Black. Older women in Brooklyn, NY were recruited using a stratified, cluster-sampling technique. Trained staff conducted face-to-face interviews lasting 1.5 hours acquiring sociodemographic data, health characteristics, and risk factors. A sleep questionnaire was administered and individual repressive coping styles were assessed. Fisher's exact test and Spearman and Pearson analyses were used to analyze the data. Results The rate of insomnia symptoms was greater among White women [74% vs. 46%; χ2 = 87.67, p 1,1272 = 304.75, p s = -0.43, p s = -0.18, p Conclusion Relationships between ethnicity and insomnia symptoms are jointly dependent on the degree of repressive coping, suggesting that Black women may be reporting fewer insomnia symptoms because of a greater ability to route negative emotions from consciousness. It may be that Blacks cope with sleep problems within a positive self-regulatory framework, which allows them to deal more effectively with sleep-interfering psychological processes to stressful life events and to curtail dysfunctional sleep-interpreting processes.

  8. Struggling with Translations

    DEFF Research Database (Denmark)

    Obed Madsen, Søren

    This paper shows empirical how actors have difficulties with translating strategy texts. The paper uses four cases as different examples of what happens, and what might be difficult, when actors translate organizational texts. In order to explore this, it draws on a translation training method from...... translation theory. The study shows that for those who have produced the text, it is difficult to translate a strategy where they have to change the words so others who don’t understand the language in the text can understand it. It also shows that for those who haven’t been a part of the production, it very...... challenge the notion that actors understand all texts and that managers per se can translate a text....

  9. MicroRNA-22 promotes cell survival upon UV radiation by repressing PTEN

    International Nuclear Information System (INIS)

    Tan, Guangyun; Shi, Yuling; Wu, Zhao-Hui

    2012-01-01

    Highlights: ► miR-22 is induced in cells treated with UV radiation. ► ATM is required for miR-22 induction in response to UV. ► miR-22 targets 3′-UTR of PTEN to repress its expression in UV-treated cells. ► Upregulated miR-22 inhibits apoptosis in cells exposed to UV. -- Abstract: DNA damage response upon UV radiation involves a complex network of cellular events required for maintaining the homeostasis and restoring genomic stability of the cells. As a new class of players involved in DNA damage response, the regulation and function of microRNAs in response to UV remain poorly understood. Here we show that UV radiation induces a significant increase of miR-22 expression, which appears to be dependent on the activation of DNA damage responding kinase ATM (ataxia telangiectasia mutated). Increased miR-22 expression may result from enhanced miR-22 maturation in cells exposed to UV. We further found that tumor suppressor gene phosphatase and tensin homolog (PTEN) expression was inversely correlated with miR-22 induction and UV-induced PTEN repression was attenuated by overexpression of a miR-22 inhibitor. Moreover, increased miR-22 expression significantly inhibited the activation of caspase signaling cascade, leading to enhanced cell survival upon UV radiation. Collectively, these results indicate that miR-22 is an important player in the cellular stress response upon UV radiation, which may promote cell survival via the repression of PTEN expression.

  10. A Comparative Study of "Google Translate" Translations: An Error Analysis of English-to-Persian and Persian-to-English Translations

    Science.gov (United States)

    Ghasemi, Hadis; Hashemian, Mahmood

    2016-01-01

    Both lack of time and the need to translate texts for numerous reasons brought about an increase in studying machine translation with a history spanning over 65 years. During the last decades, Google Translate, as a statistical machine translation (SMT), was in the center of attention for supporting 90 languages. Although there are many studies on…

  11. Estimating Return on Investment in Translational Research: Methods and Protocols

    Science.gov (United States)

    Trochim, William; Dilts, David M.; Kirk, Rosalind

    2014-01-01

    Assessing the value of clinical and translational research funding on accelerating the translation of scientific knowledge is a fundamental issue faced by the National Institutes of Health and its Clinical and Translational Awards (CTSA). To address this issue, the authors propose a model for measuring the return on investment (ROI) of one key CTSA program, the clinical research unit (CRU). By estimating the economic and social inputs and outputs of this program, this model produces multiple levels of ROI: investigator, program and institutional estimates. A methodology, or evaluation protocol, is proposed to assess the value of this CTSA function, with specific objectives, methods, descriptions of the data to be collected, and how data are to be filtered, analyzed, and evaluated. This paper provides an approach CTSAs could use to assess the economic and social returns on NIH and institutional investments in these critical activities. PMID:23925706

  12. Estimating return on investment in translational research: methods and protocols.

    Science.gov (United States)

    Grazier, Kyle L; Trochim, William M; Dilts, David M; Kirk, Rosalind

    2013-12-01

    Assessing the value of clinical and translational research funding on accelerating the translation of scientific knowledge is a fundamental issue faced by the National Institutes of Health (NIH) and its Clinical and Translational Awards (CTSAs). To address this issue, the authors propose a model for measuring the return on investment (ROI) of one key CTSA program, the clinical research unit (CRU). By estimating the economic and social inputs and outputs of this program, this model produces multiple levels of ROI: investigator, program, and institutional estimates. A methodology, or evaluation protocol, is proposed to assess the value of this CTSA function, with specific objectives, methods, descriptions of the data to be collected, and how data are to be filtered, analyzed, and evaluated. This article provides an approach CTSAs could use to assess the economic and social returns on NIH and institutional investments in these critical activities.

  13. Staphylococcus aureus RNAIII binds to two distant regions of coa mRNA to arrest translation and promote mRNA degradation.

    Directory of Open Access Journals (Sweden)

    Clément Chevalier

    2010-03-01

    Full Text Available Staphylococcus aureus RNAIII is the intracellular effector of the quorum sensing system that temporally controls a large number of virulence factors including exoproteins and cell-wall-associated proteins. Staphylocoagulase is one major virulence factor, which promotes clotting of human plasma. Like the major cell surface protein A, the expression of staphylocoagulase is strongly repressed by the quorum sensing system at the post-exponential growth phase. Here we used a combination of approaches in vivo and in vitro to analyze the mechanism used by RNAIII to regulate the expression of staphylocoagulase. Our data show that RNAIII represses the synthesis of the protein through a direct binding with the mRNA. Structure mapping shows that two distant regions of RNAIII interact with coa mRNA and that the mRNA harbors a conserved signature as found in other RNAIII-target mRNAs. The resulting complex is composed of an imperfect duplex masking the Shine-Dalgarno sequence of coa mRNA and of a loop-loop interaction occurring downstream in the coding region. The imperfect duplex is sufficient to prevent the formation of the ribosomal initiation complex and to repress the expression of a reporter gene in vivo. In addition, the double-strand-specific endoribonuclease III cleaves the two regions of the mRNA bound to RNAIII that may contribute to the degradation of the repressed mRNA. This study validates another direct target of RNAIII that plays a role in virulence. It also illustrates the diversity of RNAIII-mRNA topologies and how these multiple RNAIII-mRNA interactions would mediate virulence regulation.

  14. Repression of RNA polymerase by the archaeo-viral regulator ORF145/RIP

    DEFF Research Database (Denmark)

    Sheppard, Carol; Blombach, Fabian; Belsom, Adam

    2016-01-01

    Little is known about how archaeal viruses perturb the transcription machinery of their hosts. Here we provide the first example of an archaeo-viral transcription factor that directly targets the host RNA polymerase (RNAP) and efficiently represses its activity. ORF145 from the temperate Acidianus...

  15. DAF-16 and TCER-1 Facilitate Adaptation to Germline Loss by Restoring Lipid Homeostasis and Repressing Reproductive Physiology in C. elegans

    Science.gov (United States)

    Amrit, Francis Raj Gandhi; Steenkiste, Elizabeth Marie; Ratnappan, Ramesh; Chen, Shaw-Wen; McClendon, T. Brooke; Kostka, Dennis; Yanowitz, Judith; Olsen, Carissa Perez; Ghazi, Arjumand

    2016-01-01

    Elimination of the proliferating germline extends lifespan in C. elegans. This phenomenon provides a unique platform to understand how complex metazoans retain metabolic homeostasis when challenged with major physiological perturbations. Here, we demonstrate that two conserved transcription regulators essential for the longevity of germline-less adults, DAF-16/FOXO3A and TCER-1/TCERG1, concurrently enhance the expression of multiple genes involved in lipid synthesis and breakdown, and that both gene classes promote longevity. Lipidomic analyses revealed that key lipogenic processes, including de novo fatty acid synthesis, triglyceride production, desaturation and elongation, are augmented upon germline removal. Our data suggest that lipid anabolic and catabolic pathways are coordinately augmented in response to germline loss, and this metabolic shift helps preserve lipid homeostasis. DAF-16 and TCER-1 also perform essential inhibitory functions in germline-ablated animals. TCER-1 inhibits the somatic gene-expression program that facilitates reproduction and represses anti-longevity genes, whereas DAF-16 impedes ribosome biogenesis. Additionally, we discovered that TCER-1 is critical for optimal fertility in normal adults, suggesting that the protein acts as a switch supporting reproductive fitness or longevity depending on the presence or absence of the germline. Collectively, our data offer insights into how organisms adapt to changes in reproductive status, by utilizing the activating and repressive functions of transcription factors and coordinating fat production and degradation. PMID:26862916

  16. VDAC electronics: 4. Novel electrical mechanism and thermodynamic estimations of glucose repression of yeast respiration.

    Science.gov (United States)

    Lemeshko, Victor V

    2017-11-01

    Inhibition of cell respiration by high concentrations of glucose (glucose repression), known as "Crabtree effect", has been demonstrated for various cancerous strains, highly proliferating cells and yeast lines. Although significant progress in understanding metabolic events associated with the glucose repression of cell respiration has been achieved, it is not yet clear whether the Crabtree effect is the result of a limited activity of the respiratory chain, or of some glucose-mediated regulation of mitochondrial metabolic state. In this work we propose an electrical mechanism of glucose repression of the yeast S. cerevisiae, resulting from generation of the mitochondrial outer membrane potential (OMP) coupled to the direct oxidation of cytosolic NADH in mitochondria. This yeast-type mechanism of OMP generation is different from the earlier proposed VDAC-hexokinase-mediated voltage generation of cancer-type, associated with the mitochondrial outer membrane. The model was developed assuming that VDAC is more permeable to NADH than to NAD + . Thermodynamic estimations of OMP, generated as a result of NADH(2-)/NAD + (1-) turnover through the outer membrane, demonstrated that the values of calculated negative OMP match the known range of VDAC voltage sensitivity, thus suggesting a possibility of OMP-dependent VDAC-mediated regulation of cell energy metabolism. According to the proposed mechanism, we suggest that the yeast-type Crabtree effect is the result of a fast VDAC-mediated electrical repression of mitochondria due to a decrease in the outer membrane permeability to charged metabolites and owing their redistribution between the mitochondrial intermembrane space and the cytosol, both controlled by metabolically-derived OMP. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Malondialdehyde inhibits an AMPK-mediated nuclear translocation and repression activity of ALDH2 in transcription

    International Nuclear Information System (INIS)

    Choi, Ji-Woong; Kim, Jae-Hwan; Cho, Sung-Chun; Ha, Moon-Kyung; Song, Kye-Yong; Youn, Hong-Duk; Park, Sang Chul

    2011-01-01

    Research highlights: → ALDH2 is an MDA-modified protein in old rat kidney tissues. → AMPK associates with ALDH2 and triggers the nuclear localization of ALDH2. → ALDH2 serves as a general transcriptional repressor by associating with HDACs. → MDA inhibits the AMPK-mediated translocation of ALDH2 and its repression activity. -- Abstract: Aging process results from deleterious damages by reactive oxygen species, in particular, various metabolic aldehydes. Aldehyde dehydrogenase 2 (ALDH2) is one of metabolic enzymes detoxifying various aldehydes under oxidative conditions. AMP-activated protein kinase (AMPK) plays a key role in controlling metabolic process. However, little was known about the relationship of ALDH2 with AMPK under oxidative conditions. Here, we, by using MDA-specific monoclonal antibody, screened the tissues of young and old rats for MDA-modified proteins and identified an ALDH2 as a prominent MDA-modified protein band in the old rat kidney tissue. ALDH2 associates with AMPK and is phosphorylated by AMPK. In addition, AICAR, an activator of AMP-activated protein kinase, induces the nuclear translocation of ALDH2. ALDH2 in nucleus is involved in general transcription repression by association with histone deacetylases. Furthermore, MDA modification inhibited the translocation of ALDH2 and the association with AMPK, and ultimately led to de-repression of transcription in the reporter system analysis. In this study, we have demonstrated that ALDH2 acts as a transcriptional repressor in response to AMPK activation, and MDA modifies ALDH2 and inhibits repressive activity of ALDH2 in general transcription. We thus suggest that increasing amount of MDA during aging process may interrupt the nuclear function of ALDH2, modulated by AMPK.

  18. Malondialdehyde inhibits an AMPK-mediated nuclear translocation and repression activity of ALDH2 in transcription

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Ji-Woong [Department of Biomedical Sciences and Biochemistry and Molecular Biology, Seoul National University College of Medicine, 28 Yongon-dong, Chongro-gu, Seoul 110-799 (Korea, Republic of); Aging and Apoptosis Research Center (AARC), Seoul National University College of Medicine, 28 Yongon-dong, Chongro-gu, Seoul 110-799, (Korea, Republic of); Kim, Jae-Hwan [Department of Biomedical Sciences and Biochemistry and Molecular Biology, Seoul National University College of Medicine, 28 Yongon-dong, Chongro-gu, Seoul 110-799 (Korea, Republic of); Cho, Sung-Chun; Ha, Moon-Kyung [Department of Biomedical Sciences and Biochemistry and Molecular Biology, Seoul National University College of Medicine, 28 Yongon-dong, Chongro-gu, Seoul 110-799 (Korea, Republic of); Aging and Apoptosis Research Center (AARC), Seoul National University College of Medicine, 28 Yongon-dong, Chongro-gu, Seoul 110-799, (Korea, Republic of); Song, Kye-Yong [Department of Pathology, Chung-Ang University College of Medicine, Seoul 156-756 (Korea, Republic of); Youn, Hong-Duk, E-mail: hdyoun@snu.ac.kr [Department of Biomedical Sciences and Biochemistry and Molecular Biology, Seoul National University College of Medicine, 28 Yongon-dong, Chongro-gu, Seoul 110-799 (Korea, Republic of); Park, Sang Chul, E-mail: scpark@snu.ac.kr [Department of Biomedical Sciences and Biochemistry and Molecular Biology, Seoul National University College of Medicine, 28 Yongon-dong, Chongro-gu, Seoul 110-799 (Korea, Republic of); Aging and Apoptosis Research Center (AARC), Seoul National University College of Medicine, 28 Yongon-dong, Chongro-gu, Seoul 110-799, (Korea, Republic of)

    2011-01-07

    Research highlights: {yields} ALDH2 is an MDA-modified protein in old rat kidney tissues. {yields} AMPK associates with ALDH2 and triggers the nuclear localization of ALDH2. {yields} ALDH2 serves as a general transcriptional repressor by associating with HDACs. {yields} MDA inhibits the AMPK-mediated translocation of ALDH2 and its repression activity. -- Abstract: Aging process results from deleterious damages by reactive oxygen species, in particular, various metabolic aldehydes. Aldehyde dehydrogenase 2 (ALDH2) is one of metabolic enzymes detoxifying various aldehydes under oxidative conditions. AMP-activated protein kinase (AMPK) plays a key role in controlling metabolic process. However, little was known about the relationship of ALDH2 with AMPK under oxidative conditions. Here, we, by using MDA-specific monoclonal antibody, screened the tissues of young and old rats for MDA-modified proteins and identified an ALDH2 as a prominent MDA-modified protein band in the old rat kidney tissue. ALDH2 associates with AMPK and is phosphorylated by AMPK. In addition, AICAR, an activator of AMP-activated protein kinase, induces the nuclear translocation of ALDH2. ALDH2 in nucleus is involved in general transcription repression by association with histone deacetylases. Furthermore, MDA modification inhibited the translocation of ALDH2 and the association with AMPK, and ultimately led to de-repression of transcription in the reporter system analysis. In this study, we have demonstrated that ALDH2 acts as a transcriptional repressor in response to AMPK activation, and MDA modifies ALDH2 and inhibits repressive activity of ALDH2 in general transcription. We thus suggest that increasing amount of MDA during aging process may interrupt the nuclear function of ALDH2, modulated by AMPK.

  19. pH-Dependent DNA Distortion and Repression of Gene Expression by Pectobacterium atrosepticum PecS.

    Science.gov (United States)

    Deochand, Dinesh K; Meariman, Jacob K; Grove, Anne

    2016-07-15

    Transcriptional activity is exquisitely sensitive to changes in promoter DNA topology. Transcription factors may therefore control gene activity by modulating the relative positioning of -10 and -35 promoter elements. The plant pathogen Pectobacterium atrosepticum, which causes soft rot in potatoes, must alter gene expression patterns to ensure growth in planta. In the related soft-rot enterobacterium Dickeya dadantii, PecS functions as a master regulator of virulence gene expression. Here, we report that P. atrosepticum PecS controls gene activity by altering promoter DNA topology in response to pH. While PecS binds the pecS promoter with high affinity regardless of pH, it induces significant DNA distortion only at neutral pH, the pH at which the pecS promoter is repressed in vivo. At pH ∼8, DNA distortions are attenuated, and PecS no longer represses the pecS promoter. A specific histidine (H142) located in a crevice between the dimerization- and DNA-binding regions is required for pH-dependent changes in DNA distortion and repression of gene activity, and mutation of this histidine renders the mutant protein incapable of repressing the pecS promoter. We propose that protonated PecS induces a DNA conformation at neutral pH in which -10 and -35 promoter elements are suboptimally positioned for RNA polymerase binding; on deprotonation of PecS, binding is no longer associated with significant changes in DNA conformation, allowing gene expression. We suggest that this mode of gene regulation leads to differential expression of the PecS regulon in response to alkalinization of the plant apoplast.

  20. Bean Soup Translation: Flexible, Linguistically-Motivated Syntax for Machine Translation

    Science.gov (United States)

    Mehay, Dennis Nolan

    2012-01-01

    Machine translation (MT) systems attempt to translate texts from one language into another by translating words from a "source language" and rearranging them into fluent utterances in a "target language." When the two languages organize concepts in very different ways, knowledge of their general sentence structure, or…

  1. Salt Sensitive Tet-Off-Like Systems to Knockdown Primordial Germ Cell Genes for Repressible Transgenic Sterilization in Channel Catfish, Ictalurus punctatus.

    Science.gov (United States)

    Li, Hanbo; Su, Baofeng; Qin, Guyu; Ye, Zhi; Alsaqufi, Ahmed; Perera, Dayan A; Shang, Mei; Odin, Ramjie; Vo, Khoi; Drescher, David; Robinson, Dalton; Zhang, Dan; Abass, Nermeen; Dunham, Rex A

    2017-05-31

    Repressible knockdown approaches were investigated for transgenic sterilization in channel catfish, Ictalurus punctatus . Two primordial germ cell (PGC) marker genes, nanos and dead end , were targeted for knockdown, and an off-target gene, vasa , was monitored. Two potentially salt sensitive repressible promoters, zebrafish adenylosuccinate synthase 2 (ADSS) and zebrafish racemase (Rm), were each coupled with four knockdown strategies: ds-sh RNA targeting the 5' end (N1) or 3' end (N2) of channel catfish nanos , full-length cDNA sequence of channel catfish nanos for overexpression (cDNA) and ds-sh RNA targeting channel catfish dead end (DND). Each construct had an untreated group and treated group with sodium chloride as the repressor compound. Spawning rates of full-sibling P₁ fish exposed or not exposed to the constructs as treated and untreated embryos were 93% and 59%, respectively, indicating potential sterilization of fish and repression of the constructs. Although the mRNA expression data of PGC marker genes were inconsistent in P₁ fish, most F₁ individuals were able to downregulate the target genes in untreated groups and repress the knockdown process in treated groups. The results indicate that repressible transgenic sterilization is feasible for reproductive control of fish, but more data from F₂ or F₃ are needed for evaluation.

  2. PPARγ partial agonist GQ-16 strongly represses a subset of genes in 3T3-L1 adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Milton, Flora Aparecida [Faculdade de Ciências da Saúde, Laboratório de Farmacologia Molecular, Universidade de Brasília (Brazil); Genomic Medicine, Houston Methodist Research Institute, Houston, TX (United States); Cvoro, Aleksandra [Genomic Medicine, Houston Methodist Research Institute, Houston, TX (United States); Amato, Angelica A. [Faculdade de Ciências da Saúde, Laboratório de Farmacologia Molecular, Universidade de Brasília (Brazil); Sieglaff, Douglas H.; Filgueira, Carly S.; Arumanayagam, Anithachristy Sigamani [Genomic Medicine, Houston Methodist Research Institute, Houston, TX (United States); Caro Alves de Lima, Maria do; Rocha Pitta, Ivan [Laboratório de Planejamento e Síntese de Fármacos – LPSF, Universidade Federal de Pernambuco (Brazil); Assis Rocha Neves, Francisco de [Faculdade de Ciências da Saúde, Laboratório de Farmacologia Molecular, Universidade de Brasília (Brazil); Webb, Paul, E-mail: pwebb@HoustonMethodist.org [Genomic Medicine, Houston Methodist Research Institute, Houston, TX (United States)

    2015-08-28

    Thiazolidinediones (TZDs) are peroxisome proliferator-activated receptor gamma (PPARγ) agonists that improve insulin resistance but trigger side effects such as weight gain, edema, congestive heart failure and bone loss. GQ-16 is a PPARγ partial agonist that improves glucose tolerance and insulin sensitivity in mouse models of obesity and diabetes without inducing weight gain or edema. It is not clear whether GQ-16 acts as a partial agonist at all PPARγ target genes, or whether it displays gene-selective actions. To determine how GQ-16 influences PPARγ activity on a gene by gene basis, we compared effects of rosiglitazone (Rosi) and GQ-16 in mature 3T3-L1 adipocytes using microarray and qRT-PCR. Rosi changed expression of 1156 genes in 3T3-L1, but GQ-16 only changed 89 genes. GQ-16 generally showed weak effects upon Rosi induced genes, consistent with partial agonist actions, but a subset of modestly Rosi induced and strongly repressed genes displayed disproportionately strong GQ-16 responses. PPARγ partial agonists MLR24 and SR1664 also exhibit disproportionately strong effects on transcriptional repression. We conclude that GQ-16 displays a continuum of weak partial agonist effects but efficiently represses some negatively regulated PPARγ responsive genes. Strong repressive effects could contribute to physiologic actions of GQ-16. - Highlights: • GQ-16 is an insulin sensitizing PPARγ ligand with reduced harmful side effects. • GQ-16 displays a continuum of weak partial agonist activities at PPARγ-induced genes. • GQ-16 exerts strong repressive effects at a subset of genes. • These inhibitor actions should be evaluated in models of adipose tissue inflammation.

  3. PPARγ partial agonist GQ-16 strongly represses a subset of genes in 3T3-L1 adipocytes

    International Nuclear Information System (INIS)

    Milton, Flora Aparecida; Cvoro, Aleksandra; Amato, Angelica A.; Sieglaff, Douglas H.; Filgueira, Carly S.; Arumanayagam, Anithachristy Sigamani; Caro Alves de Lima, Maria do; Rocha Pitta, Ivan; Assis Rocha Neves, Francisco de; Webb, Paul

    2015-01-01

    Thiazolidinediones (TZDs) are peroxisome proliferator-activated receptor gamma (PPARγ) agonists that improve insulin resistance but trigger side effects such as weight gain, edema, congestive heart failure and bone loss. GQ-16 is a PPARγ partial agonist that improves glucose tolerance and insulin sensitivity in mouse models of obesity and diabetes without inducing weight gain or edema. It is not clear whether GQ-16 acts as a partial agonist at all PPARγ target genes, or whether it displays gene-selective actions. To determine how GQ-16 influences PPARγ activity on a gene by gene basis, we compared effects of rosiglitazone (Rosi) and GQ-16 in mature 3T3-L1 adipocytes using microarray and qRT-PCR. Rosi changed expression of 1156 genes in 3T3-L1, but GQ-16 only changed 89 genes. GQ-16 generally showed weak effects upon Rosi induced genes, consistent with partial agonist actions, but a subset of modestly Rosi induced and strongly repressed genes displayed disproportionately strong GQ-16 responses. PPARγ partial agonists MLR24 and SR1664 also exhibit disproportionately strong effects on transcriptional repression. We conclude that GQ-16 displays a continuum of weak partial agonist effects but efficiently represses some negatively regulated PPARγ responsive genes. Strong repressive effects could contribute to physiologic actions of GQ-16. - Highlights: • GQ-16 is an insulin sensitizing PPARγ ligand with reduced harmful side effects. • GQ-16 displays a continuum of weak partial agonist activities at PPARγ-induced genes. • GQ-16 exerts strong repressive effects at a subset of genes. • These inhibitor actions should be evaluated in models of adipose tissue inflammation

  4. Maintaining Sentiment Polarity in Translation of User-Generated Content

    Directory of Open Access Journals (Sweden)

    Lohar Pintu

    2017-06-01

    Full Text Available The advent of social media has shaken the very foundations of how we share information, with Twitter, Facebook, and Linkedin among many well-known social networking platforms that facilitate information generation and distribution. However, the maximum 140-character restriction in Twitter encourages users to (sometimes deliberately write somewhat informally in most cases. As a result, machine translation (MT of user-generated content (UGC becomes much more difficult for such noisy texts. In addition to translation quality being affected, this phenomenon may also negatively impact sentiment preservation in the translation process. That is, a sentence with positive sentiment in the source language may be translated into a sentence with negative or neutral sentiment in the target language. In this paper, we analyse both sentiment preservation and MT quality per se in the context of UGC, focusing especially on whether sentiment classification helps improve sentiment preservation in MT of UGC. We build four different experimental setups for tweet translation (i using a single MT model trained on the whole Twitter parallel corpus, (ii using multiple MT models based on sentiment classification, (iii using MT models including additional out-of-domain data, and (iv adding MT models based on the phrase-table fill-up method to accompany the sentiment translation models with an aim of improving MT quality and at the same time maintaining sentiment polarity preservation. Our empirical evaluation shows that despite a slight deterioration in MT quality, our system significantly outperforms the Baseline MT system (without using sentiment classification in terms of sentiment preservation. We also demonstrate that using an MT engine that conveys a sentiment different from that of the UGC can even worsen both the translation quality and sentiment preservation.

  5. Promised Land No More: Dynamic Shifts in Slovene Translation Market and Translator Education

    Directory of Open Access Journals (Sweden)

    Nike K. Pokorn

    2016-12-01

    Full Text Available The article outlines the changes of the translation market, the development of Higher Education (HE translator training and of the profession of translator in Slovenia. First, three HE translator-training programmes in Slovenia are briefly described. Second, through an analysis of the public database containing information on all business entities in Slovenia, a description of the translation market in 2014 is made and the findings are compared to those of a similar study carried out in 2007. Then two surveys of translation graduates of University of Ljubljana are presented, focusing in particular on graduate employment statistics and average earnings of junior translators. The results show that despite the fact that the Slovene translation market is thriving, this growth is not reflected in the average earnings of individual translators. Finally, in view of the fact that translation rates are constantly falling, it is argued that the role of professional associations becomes vital.

  6. Repressive Adaptive Style and Self-Reported Psychological Functioning in Adolescent Cancer Survivors

    Science.gov (United States)

    Erickson, Sarah J.; Gerstle, Melissa; Montague, Erica Q.

    2008-01-01

    Low levels of posttraumatic stress disorder (PTSD), posttraumatic stress symptoms (PTSS), and psychosocial distress have been reported in pediatric cancer survivors. One explanation is the relatively high prevalence of the repressive adaptive style (low distress, high restraint) in this population. We investigated the relationship between this…

  7. Translation in ESL Classes

    Directory of Open Access Journals (Sweden)

    Nagy Imola Katalin

    2015-12-01

    Full Text Available The problem of translation in foreign language classes cannot be dealt with unless we attempt to make an overview of what translation meant for language teaching in different periods of language pedagogy. From the translation-oriented grammar-translation method through the complete ban on translation and mother tongue during the times of the audio-lingual approaches, we have come today to reconsider the role and status of translation in ESL classes. This article attempts to advocate for translation as a useful ESL class activity, which can completely fulfil the requirements of communicativeness. We also attempt to identify some activities and games, which rely on translation in some books published in the 1990s and the 2000s.

  8. Epigenetic involvement of Alien/ESET complex in thyroid hormone-mediated repression of E2F1 gene expression and cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Wei, E-mail: hongwei@tijmu.edu.cn [Department of Immunology, Tianjin Medical University, 300070 Tianjin (China); College of Basic Medicine, Tianjin Medical University, 300070 Tianjin (China); Li, Jinru; Wang, Bo [College of Basic Medicine, Tianjin Medical University, 300070 Tianjin (China); Chen, Linfeng [Department of Medical Oncology, Harvard Medical School, Dana Farber Cancer Institute, Boston, 02115 MA (United States); Niu, Wenyan; Yao, Zhi [Department of Immunology, Tianjin Medical University, 300070 Tianjin (China); Baniahmad, Aria, E-mail: aban@mti.uni-jena.de [Institute for Human Genetics, Jena University Hospital, 07740 Jena (Germany)

    2011-12-02

    Highlights: Black-Right-Pointing-Pointer Corepressor Alien interacts with histone methyltransferase ESET in vivo. Black-Right-Pointing-Pointer Alien/ESET complex is recruited to nTRE of T3-responsive gene by liganded TR{beta}1. Black-Right-Pointing-Pointer ESET-mediated H3K9 methylation is required for liganded TR{beta}1-repressed transcription. Black-Right-Pointing-Pointer ESET is involved in T3-repressed G1/S phase transition and proliferation. -- Abstract: The ligand-bound thyroid hormone receptor (TR) is known to repress via a negative TRE (nTRE) the expression of E2F1, a key transcription factor that controls the G1/S phase transition. Alien has been identified as a novel interacting factor of E2F1 and acts as a corepressor of E2F1. The detailed molecular mechanism by which Alien inhibits E2F1 gene expression remains unclear. Here, we report that the histone H3 lysine 9 (H3K9) methyltransferase (HMT) ESET is an integral component of the corepressor Alien complex and the Alien/ESET complex is recruited to both sites, the E2F1 and the nTRE site of the E2F1 gene while the recruitment to the negative thyroid hormone response element (nTRE) is induced by the ligand-bound TR{beta}1 within the E2F1 gene promoter. We show that, overexpression of ESET promotes, whereas knockdown of ESET releases, the inhibition of TR{beta}1-regulated gene transcription upon T3 stimulation; and H3K9 methylation is required for TR{beta}1-repressed transcription. Furthermore, depletion of ESET impairs thyroid hormone-repressed proliferation as well as the G1/S transition of the cell cycle. Taken together, our data indicate that ESET is involved in TR{beta}1-mediated transcription repression and provide a molecular basis of thyroid hormone-induced repression of proliferation.

  9. NFE2 Induces miR-423-5p to Promote Gluconeogenesis and Hyperglycemia by Repressing the Hepatic FAM3A-ATP-Akt Pathway.

    Science.gov (United States)

    Yang, Weili; Wang, Junpei; Chen, Zhenzhen; Chen, Ji; Meng, Yuhong; Chen, Liming; Chang, Yongsheng; Geng, Bin; Sun, Libo; Dou, Lin; Li, Jian; Guan, Youfei; Cui, Qinghua; Yang, Jichun

    2017-07-01

    Hepatic FAM3A expression is repressed under obese conditions, but the underlying mechanism remains unknown. This study determined the role and mechanism of miR-423-5p in hepatic glucose and lipid metabolism by repressing FAM3A expression. miR-423-5p expression was increased in the livers of obese diabetic mice and in patients with nonalcoholic fatty liver disease (NAFLD) with decreased FAM3A expression. miR-423-5p directly targeted FAM3A mRNA to repress its expression and the FAM3A-ATP-Akt pathway in cultured hepatocytes. Hepatic miR-423-5p inhibition suppressed gluconeogenesis and improved insulin resistance, hyperglycemia, and fatty liver in obese diabetic mice. In contrast, hepatic miR-423-5p overexpression promoted gluconeogenesis and hyperglycemia and increased lipid deposition in normal mice. miR-423-5p inhibition activated the FAM3A-ATP-Akt pathway and repressed gluconeogenic and lipogenic gene expression in diabetic mouse livers. The miR-423 precursor gene was further shown to be a target gene of NFE2, which induced miR-423-5p expression to repress the FAM3A-ATP-Akt pathway in cultured hepatocytes. Hepatic NFE2 overexpression upregulated miR-423-5p to repress the FAM3A-ATP-Akt pathway, promoting gluconeogenesis and lipid deposition and causing hyperglycemia in normal mice. In conclusion, under the obese condition, activation of the hepatic NFE2/miR-423-5p axis plays important roles in the progression of type 2 diabetes and NAFLD by repressing the FAM3A-ATP-Akt signaling pathway. © 2017 by the American Diabetes Association.

  10. Genome-Wide Search for Translated Upstream Open Reading Frames in Arabidopsis Thaliana.

    Science.gov (United States)

    Hu, Qiwen; Merchante, Catharina; Stepanova, Anna N; Alonso, Jose M; Heber, Steffen

    2016-03-01

    Upstream open reading frames (uORFs) are open reading frames that occur within the 5' UTR of an mRNA. uORFs have been found in many organisms. They play an important role in gene regulation, cell development, and in various metabolic processes. It is believed that translated uORFs reduce the translational efficiency of the main coding region. However, only few uORFs are experimentally characterized. In this paper, we use ribosome footprinting together with a semi-supervised approach based on stacking classification models to identify translated uORFs in Arabidopsis thaliana. Our approach identified 5360 potentially translated uORFs in 2051 genes. GO terms enriched in genes with translated uORFs include catalytic activity, binding, transferase activity, phosphotransferase activity, kinase activity, and transcription regulator activity. The reported uORFs occur with a higher frequency in multi-isoform genes, and some uORFs are affected by alternative transcript start sites or alternative splicing events. Association rule mining revealed sequence features associated with the translation status of the uORFs. We hypothesize that uORF translation is a complex process that might be regulated by multiple factors. The identified uORFs are available online at:https://www.dropbox.com/sh/zdutupedxafhly8/AABFsdNR5zDfiozB7B4igFcja?dl=0. This paper is the extended version of our research presented at ISBRA 2015.

  11. Cellular Senescence: A Translational Perspective

    Directory of Open Access Journals (Sweden)

    James L. Kirkland

    2017-07-01

    Full Text Available Cellular senescence entails essentially irreversible replicative arrest, apoptosis resistance, and frequently acquisition of a pro-inflammatory, tissue-destructive senescence-associated secretory phenotype (SASP. Senescent cells accumulate in various tissues with aging and at sites of pathogenesis in many chronic diseases and conditions. The SASP can contribute to senescence-related inflammation, metabolic dysregulation, stem cell dysfunction, aging phenotypes, chronic diseases, geriatric syndromes, and loss of resilience. Delaying senescent cell accumulation or reducing senescent cell burden is associated with delay, prevention, or alleviation of multiple senescence-associated conditions. We used a hypothesis-driven approach to discover pro-survival Senescent Cell Anti-apoptotic Pathways (SCAPs and, based on these SCAPs, the first senolytic agents, drugs that cause senescent cells to become susceptible to their own pro-apoptotic microenvironment. Several senolytic agents, which appear to alleviate multiple senescence-related phenotypes in pre-clinical models, are beginning the process of being translated into clinical interventions that could be transformative.

  12. Salinomycin repressed the epithelial–mesenchymal transition of epithelial ovarian cancer cells via downregulating Wnt/β-catenin pathway

    Directory of Open Access Journals (Sweden)

    Li R

    2017-02-01

    Full Text Available Rui Li,* Taotao Dong,* Chen Hu, Jingjing Lu, Jun Dai, Peishu Liu Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, People’s Republic of China *These authors contributed equally to this work Abstract: Epithelial ovarian cancer (EOC is the leading cause of death among all gynecological malignancies. Most patients are diagnosed in the advanced stage and have distant metastasis ultimately. Salinomycin has been demonstrated to reduce invasive capacity of multiple tumor cells. The objective of this study was to investigate the effects of salinomycin on EOC cells. The cell counting kit 8 (CCK-8 and Boyden chamber assays showed that salinomycin could effectively reduce the abilities of proliferation, migration and invasion in EOC cells. The western blot assay showed that salinomycin could increase the expression of epithelial markers (E-cadherin and Keratin while decrease the expression of mesenchymal markers (N-cadherin and vimentin in a dose-dependent manner. These results were ascertained by reverse transcription polymerase chain reaction (RT-PCR. Besides, salinomycin could downregulate the expression of proteins associated with the Wnt/β-catenin pathway and repress the nuclear translocation of β-catenin. It was also shown that salinomycin could reverse the aberrant activation of the canonical Wnt pathway induced by GSK-3β inhibitor (SB216763. Our results revealed that salinomycin could inhibit the proliferation, migration and invasion in EOC cells. In addition, the inhibitive effect of salinomycin on the invasive ability was mediated by repressing the epithelial–mesenchymal transition (EMT program, which may be achieved through its inhibition of the Wnt/β-catenin pathway. Keywords: salinomycin, epithelial–mesenchymal transition, epithelial ovarian cancer, Wnt/β-catenin pathway

  13. A Writer's Thoughts on Translation and Always Living in Translation.

    Science.gov (United States)

    Agosin, Marjorie; Jones, Robin

    2000-01-01

    Discusses how it feels to be a poet who writes in Spanish and has her work translated, examining the author's immigration experiences and noting the translator's contributions in making her work accessible across languages, borders, and cultures. Explains that writing in Spanish is a gesture of survival, and translation allows her memories to…

  14. Revisiting progesterone receptor (PR) actions in breast cancer: Insights into PR repressive functions.

    Science.gov (United States)

    Proietti, Cecilia J; Cenciarini, Mauro E; Elizalde, Patricia V

    2018-05-01

    Progesterone receptor (PR) is a master regulator in female reproductive tissues that controls developmental processes and proliferation and differentiation during the reproductive cycle and pregnancy. PR also plays a role in progression of endocrine-dependent breast cancer. As a member of the nuclear receptor family of ligand-dependent transcription factors, the main action of PR is to regulate networks of target gene expression in response to binding its cognate steroid hormone, progesterone. Liganded-PR transcriptional activation has been thoroughly studied and associated mechanisms have been described while progesterone-mediated repression has remained less explored. The present work summarizes recent advances in the understanding of how PR-mediated repression is accomplished in breast cancer cells and highlights the significance of fully understanding the determinants of context-dependent PR action. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. A non-canonical Flt3ITD/NF-κB signaling pathway represses DAPK1 in acute myeloid leukemia (AML)

    Science.gov (United States)

    Shanmugam, Rajasubramaniam; Sayar, Hamid; Suvannasankha, Attaya; Goswami, Chirayu; Li, Lang; Gupta, Sushil; Cardoso, Angelo A.; Baghdadi, Tareq Al; Sargent, Katie J.; Cripe, Larry D.; Kalvakolanu, Dhananjaya V.; Boswell, H. Scott

    2014-01-01

    Purpose DAPK1, a tumor suppressor, is a rate-limiting effector in an ER stress-dependent apoptotic pathway. Its expression is epigenetically suppressed in several tumors. A mechanistic basis for epigenetic/transcriptional repression of DAPK1 was investigated in certain forms of AML with poor prognosis, which lacked ER stress-induced apoptosis. Experimental Design Heterogeneous primary AMLs were screened to identify a subgroup with Flt3ITD in which repression of DAPK1, among NF-κB- and c- jun-responsive genes, was studied. RNAi knockdown studies were performed in Flt3ITD+ve cell line, MV-4-11, to establish genetic epistasis in the pathway Flt3ITD-TAK1-DAPK1 repression, and chromatin immunoprecipitations were performed to identify proximate effector proteins, including TAK1-activated p52NF-κB, at the DAPK1 locus. Results AMLs characterized by normal karyotype with Flt3ITD were found to have 10-100-fold lower DAPK1 transcripts normalized to the expression of c-jun, a transcriptional activator of DAPK1, as compared to a heterogeneous cytogenetic category. Meis1, a c-jun-responsive adverse AML prognostic gene signature was also measured as control. These Flt3ITD+ve AMLs over-express relB, a transcriptional repressor, which forms active heterodimers with p52NF-κB. Chromatin immunoprecipitation assays identified p52NF-κB binding to the DAPK1 promoter along with HDAC2 and HDAC6 in the Flt3ITD+ve human AML cell line MV-4-11. Knockdown of p52NF-κB or its upstream regulator, NIK, de-repressed DAPK1. DAPK1-repressed primary Flt3ITD+ve AMLs had selective nuclear activation of p52NF-κB. Conclusions Flt3ITD promotes a non-canonical pathway via TAK1 and p52NF-κB to suppress DAPK1 in association with HDACs, which explains DAPK1 repression in Flt3ITD+ve AML. PMID:22096027

  16. Lost in translation?: Comparing three Scandinavian translations of the Beliefs about Medicines Questionnaire.

    Science.gov (United States)

    Granas, Anne Gerd; Nørgaard, Lotte Stig; Sporrong, Sofia Kälvemark

    2014-08-01

    The "Beliefs about Medicines Questionnaire" (BMQ) assess balance of necessity and concern of medicines. The BMQ has been translated from English to many languages. However, the original meaning of statements, such as "My medicine is a mystery to me", may be lost in translation. The aim of this study is to compare three Scandinavian translations of the BMQ. (1) How reliable are the translations? (2) Are they still valid after translation? Translated Norwegian, Swedish and Danish versions of the BMQ were scrutinized by three native Scandinavian researchers. Linguistic differences and ambiguities in the 5-point Likert scale and the BMQ statements were compared. In the Scandinavian translations, the Likert scale expanded beyond the original version at one endpoint (Swedish) or both endpoints (Danish). In the BMQ statements, discrepancies ranged from smaller inaccuracies toward completely different meaning. Some dissimilarities reflect different cultural beliefs about medicines. When translating questionnaires, bilingual researchers should scrutinize translations across similar languages to address content validity across different countries and languages. Our findings are of relevance to other BMQ translations in non-English countries, as direct comparisons between different translations might not be reliable or valid. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. Translating Health Services Research into Practice in the Safety Net.

    Science.gov (United States)

    Moore, Susan L; Fischer, Ilana; Havranek, Edward P

    2016-02-01

    To summarize research relating to health services research translation in the safety net through analysis of the literature and case study of a safety net system. Literature review and key informant interviews at an integrated safety net hospital. This paper describes the results of a comprehensive literature review of translational science literature as applied to health care paired with qualitative analysis of five key informant interviews conducted with senior-level management at Denver Health and Hospital Authority. Results from the literature suggest that implementing innovation may be more difficult in the safety net due to multiple factors, including financial and organizational constraints. Results from key informant interviews confirmed the reality of financial barriers to innovation implementation but also implied that factors, including institutional respect for data, organizational attitudes, and leadership support, could compensate for disadvantages. Translating research into practice is of critical importance to safety net providers, which are under increased pressure to improve patient care and satisfaction. Results suggest that translational research done in the safety net can better illuminate the special challenges of this setting; more such research is needed. © Health Research and Educational Trust.

  18. NiO nanoparticles induce apoptosis through repressing SIRT1 in human bronchial epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Wei-Xia; He, Min-Di; Mao, Lin [Department of Occupational Health, Third Military Medical University, Chongqing 400038 (China); Qian, Feng-Hua [Department of Hematology, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); Li, Yu-Ming [Institute of Hepatobiliary Surgery, XinQiao Hospital, Third Military Medical University, Chongqing 400038 (China); Pi, Hui-Feng; Liu, Chuan; Chen, Chun-Hai; Lu, Yong-Hui; Cao, Zheng-Wang; Zhang, Lei; Yu, Zheng-Ping [Department of Occupational Health, Third Military Medical University, Chongqing 400038 (China); Zhou, Zhou, E-mail: lunazhou00@163.com [Department of Occupational Health, Third Military Medical University, Chongqing 400038 (China)

    2015-07-15

    With application of nano-sized nickel-containing particles (Nano-Ni) expanding, the health concerns about their adverse effects on the pulmonary system are increasing. However, the mechanisms for the pulmonary toxicity of these materials remain unclear. In the present study, we focused on the impacts of NiO nanoparticles (NiONPs) on sirtuin1 (SIRT1), a NAD-dependent deacetylase, and investigated whether SIRT1 was involved in NiONPs-induced apoptosis. Although the NiONPs tended to agglomerate in fluid medium, they still entered into the human bronchial epithelial cells (BEAS-2B) and released Ni{sup 2+} inside the cells. NiONPs at doses of 5, 10, and 20 μg/cm{sup 2} inhibited the cell viability. NiONPs' produced cytotoxicity was demonstrated through an apoptotic process, indicated by increased numbers of Annexin V positive cells and caspase-3 activation. The expression of SIRT1 was markedly down-regulated by the NiONPs, accompanied by the hyperacetylation of p53 (tumor protein 53) and overexpression of Bax (Bcl-2-associated X protein). However, overexpression of SIRT1 through resveratrol treatment or transfection clearly attenuated the NiONPs-induced apoptosis and activation of p53 and Bax. Our results suggest that the repression of SIRT1 may underlie the NiONPs-induced apoptosis via p53 hyperacetylation and subsequent Bax activation. Because SIRT1 participates in multiple biologic processes by deacetylation of dozens of substrates, this knowledge of the impact of NiONPs on SIRT1 may lead to an improved understanding of the toxic mechanisms of Nano-Ni and provide a molecular target to antagonize Nano-Ni toxicity. - Highlights: • NiONPs were taken up by BEAS-2B cells and released Ni{sup 2+}. • NiONPs produced cytotoxicity was demonstrated through an apoptotic process. • NiONPs repressed SIRT1 expression and activated p53 and Bax. • Overexpression of SIRT1 attenuated NiONPs-induced apoptosis via deacetylation p53.

  19. Influence of Translation Initiation on Organellar Protein Targeting in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Sally A. Mackenzie

    2011-04-18

    A primary focus of the Mackenzie laboratory is the elucidation of processes and machinery for mitochondrial genome maintenance and transmission in higher plants. We have found that numerous organellar DNA maintenance components in plants appear to be dual targeted to mitochondria and plastids. Of particular interest was the observation that some twin (tandemly arrayed) dual targeting presequences appeared to utilize non-AUG alternative translation initiation, allowing for multiple translation starts at a single gene. Two aspects of this phenomenon were of particular interest: (1) Alternative translation initiation might provide a mechanism to regulate protein targeting temporally and spatially, a possibility that had not been demonstrated previously, and (2) alternative translation initiation might occur in genes involved in nuclear-controlled mitochondrial genome recombination, thought to be exclusively mitochondrial in their function. During the course of this research, we pursued three aims, with an emphasis on two specific genes of interest: POLgamma2, an organellar DNA polymerase, and MSH1, a MutS homolog thought to participate in mitochondrial, but not plastid, genome recombination surveillance. Our aims were to (1) Identify additional genes within Arabidopsis and other genomes that employ non-AUG alternative translation initiation, (2) Locate sequences upstream to the annotated AUG that confer alternative non-AUG translation initiation activity, and (3) Identify cis and trans factors that influence start site selection in genes with non-AUG starts. Toward these ends, we have shown that non-AUG initiation occurs in a number of genes, likely influencing targeting behavior of the protein. We have also shown that start site selection is strongly influenced by Kozak consensus sequence environment, indicating that alternative translation initiation in plants occurs by relaxation of ribosome scanning.

  20. Blood-Brain Glucose Transfer: Repression in Chronic Hyperglycemia

    Science.gov (United States)

    Gjedde, Albert; Crone, Christian

    1981-10-01

    Diabetic patients with increased plasma glucose concentrations may develop cerebral symptoms of hypoglycemia when their plasma glucose is rapidly lowered to normal concentrations. The symptoms may indicate insufficient transport of glucose from blood to brain. In rats with chronic hyperglycemia the maximum glucose transport capacity of the blood-brain barrier decreased from 400 to 290 micromoles per 100 grams per minute. When plasma glucose was lowered to normal values, the glucose transport rate into brain was 20 percent below normal. This suggests that repressive changes of the glucose transport mechanism occur in brain endothelial cells in response to increased plasma glucose.

  1. Translation Methods Applied in Translating Quotations in “the Secret” by Rhonda

    OpenAIRE

    FEBRIANTI, VICKY

    2014-01-01

    Keywords: Translation Methods, The Secret, Quotations.Translation helps human to get information written in any language evenwhen it is written in foreign languages. Therefore translation happens in printed media. Books have been popular printed media. The Secret written by Rhonda Byrne is a popular self-help book which has been translated into 50 languages including Indonesian (“The Secret”, n.d., para.5-6).This study is meant to find out the translation methods applied in The Secret. The wr...

  2. SMRT repression of nuclear receptors controls the adipogenic set point and metabolic homeostasis

    NARCIS (Netherlands)

    Nofsinger, Russell R.; Li, Pingping; Hong, Suk-Hyun; Jonker, Johan W.; Barish, Grant D.; Ying, Hao; Cheng, Sheue-Yann; LeBlanc, Mathias; Xu, Wei; Pei, Liming; Kang, Yeon-Joo; Nelson, Michael; Downes, Michael; Yu, Ruth T.; Olefsky, Jerrold M.; Lee, Chih-Hao; Evans, Ronald M.

    2008-01-01

    The nuclear receptor corepressor, silencing mediator of retinoid and thyroid hormone receptors (SMRT), is recruited by a plethora of transcription factors to mediate lineage and signal-dependent transcriptional repression. We generated a knockin mutation in the receptor interaction domain (RID) of

  3. Light represses transcription of asparagine synthetase genes in photosynthetic and nonphotosynthetic organs of plants

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Fongying; Coruzzi, G. (Rockefeller Univ., New York, NY (United States))

    1991-10-01

    Asparagine synthetase (AS) mRNA in Pisum sativum accumulates preferentially in plants grown in the dark. Nuclear run-on experiments demonstrate that expression of both the AS1 and AS2 genes is negatively regulated by light at the level of transcription. A decrease in the transcriptional rate of the AS1 gene can be detected as early as 20 min after exposure to light. Time course experiments reveal that the levels of AS mRNA fluctuate dramatically during a normal light/dark cycle. This is due to a direct effect of light and not to changes associated with circadian rhythm. A novel finding is that the light-repressed expression of the AS1 gene is as dramatic nonphotosynthetic organs such as roots as it is in leaves. Experiments demonstrate that the small amount of light which passes through the soil is sufficient to repress AS1 expression in roots, indicating that light has a direct effect on AS1 gene expression in roots. The negative regulation of AS gene expression by light was shown to be a general phenomenon in plants which also occurs in nonlegumes such as Nicotiana plumbaginifolia and Nicotiana tabacum. Thus, the AS genes can serve as a model with which to dissect the molecular basis for light-regulated transcriptional repression in plants.

  4. Why Translation Is Difficult

    DEFF Research Database (Denmark)

    Carl, Michael; Schaeffer, Moritz Jonas

    2017-01-01

    The paper develops a definition of translation literality that is based on the syntactic and semantic similarity of the source and the target texts. We provide theoretical and empirical evidence that absolute literal translations are easy to produce. Based on a multilingual corpus of alternative...... translations we investigate the effects of cross-lingual syntactic and semantic distance on translation production times and find that non-literality makes from-scratch translation and post-editing difficult. We show that statistical machine translation systems encounter even more difficulties with non-literality....

  5. Cultural Context and Translation

    Institute of Scientific and Technical Information of China (English)

    张敏

    2009-01-01

    cultural context plays an important role in translation. Because translation is a cross-culture activity, the culture context that influ-ences translating is consisted of both the culture contexts of source language and target language. This article firstly analyzes the concept of context and cultural context, then according to the procedure of translating classifies cultural context into two stages and talks about how they respectively influence translating.

  6. Gender issues in translation

    OpenAIRE

    ERGASHEVA G.I.

    2015-01-01

    The following research is done regarding gender in translation dealing specifically with the issue of the translators’ gender identity and its effect on their translations, as well as on how gender itself is translated and produced. We will try to clarify what gender is, how gender manifests itself in the system of language, and what problems translators encounter when translating or producing gender-related materials

  7. Salt Sensitive Tet-Off-Like Systems to Knockdown Primordial Germ Cell Genes for Repressible Transgenic Sterilization in Channel Catfish, Ictalurus punctatus

    Directory of Open Access Journals (Sweden)

    Hanbo Li

    2017-05-01

    Full Text Available Repressible knockdown approaches were investigated for transgenic sterilization in channel catfish, Ictalurus punctatus. Two primordial germ cell (PGC marker genes, nanos and dead end, were targeted for knockdown, and an off-target gene, vasa, was monitored. Two potentially salt sensitive repressible promoters, zebrafish adenylosuccinate synthase 2 (ADSS and zebrafish racemase (Rm, were each coupled with four knockdown strategies: ds-sh RNA targeting the 5′ end (N1 or 3′ end (N2 of channel catfish nanos, full-length cDNA sequence of channel catfish nanos for overexpression (cDNA and ds-sh RNA targeting channel catfish dead end (DND. Each construct had an untreated group and treated group with sodium chloride as the repressor compound. Spawning rates of full-sibling P1 fish exposed or not exposed to the constructs as treated and untreated embryos were 93% and 59%, respectively, indicating potential sterilization of fish and repression of the constructs. Although the mRNA expression data of PGC marker genes were inconsistent in P1 fish, most F1 individuals were able to downregulate the target genes in untreated groups and repress the knockdown process in treated groups. The results indicate that repressible transgenic sterilization is feasible for reproductive control of fish, but more data from F2 or F3 are needed for evaluation.

  8. 40 Years of Research Put p53 in Translation

    Science.gov (United States)

    Marcel, Virginie; Nguyen Van Long, Flora; Diaz, Jean-Jacques

    2018-01-01

    Since its discovery in 1979, p53 has shown multiple facets. Initially the tumor suppressor p53 protein was considered as a stress sensor able to maintain the genome integrity by regulating transcription of genes involved in cell cycle arrest, apoptosis and DNA repair. However, it rapidly came into light that p53 regulates gene expression to control a wider range of biological processes allowing rapid cell adaptation to environmental context. Among them, those related to cancer have been extensively documented. In addition to its role as transcription factor, scattered studies reported that p53 regulates miRNA processing, modulates protein activity by direct interaction or exhibits RNA-binding activity, thus suggesting a role of p53 in regulating several layers of gene expression not restricted to transcription. After 40 years of research, it appears more and more clearly that p53 is strongly implicated in translational regulation as well as in the control of the production and activity of the translational machinery. Translation control of specific mRNAs could provide yet unsuspected capabilities to this well-known guardian of the genome.

  9. Design of Optical Pulse Position Modulation (PPM) Translating Receiver

    Energy Technology Data Exchange (ETDEWEB)

    Mendez, A J; Hernandez, V J; Gagliardi, R M; Bennett, C V

    2009-06-19

    M-ary pulse position modulation (M-ary PPM) signaling is a means of transmitting multiple bits per symbol in an intensity modulated/direct detection (IM/DD) system. PPM is used in applications with average power limitations. In optical communication systems, PPM becomes challenging to implement at gigabit rates and/or large M, since pulsed signaling requires higher electronic processing bandwidths than the fundamental transmission rate. they have thus been exploring techniques for PPM communications using optical processing. Previous work described a transmitter algorithm that directly translates a bit sequence of N digital bits to the optical pulse position m for any M = 2{sup N}. It has been considerably more difficult to define a similar receiver algorithm that translates the received optical pulse position directly back to a bit sequence with minimal electronic processing. Designs for specific Ms (e.g., 4-ary) have been shown and implemented, but are difficult to scale to larger M. In this work, they present for the first time a generalized PPM translating receiver that is applicable to all M and data rates.

  10. Research translation to inform national health policies: learning from multiple perspectives in Uganda

    Directory of Open Access Journals (Sweden)

    Glass Nancy

    2011-03-01

    Full Text Available Abstract Background Research and evidence can have an impact on policy and practice, resulting in positive outcomes. However, research translation is a complex, dynamic and non-linear process. Although universities in Africa play a major role in generating research evidence, their strategic approaches to influence health policies and decision making are weak. This study was conducted with the aim of understanding the process of translating research into policy in order to guide the strategic direction of Makerere University College of Health Sciences (MakCHS and similar institutions in their quest to influence health outcomes nationally and globally. Methods A case study approach using 30 in-depth interviews with stakeholders involved in two HIV prevention research project was purposively selected. The study sought to analyze the research-to-policy discourses for the prevention of mother-to-child transmission (PMTCT and safe male circumcision (SMC. The analysis sought to identify entry points, strengths and challenges for research-to-policy processes by interviewing three major groups of stakeholders in Uganda – researchers (8, policy makers (12 and media practitioners (12. Results Among the factors that facilitated PMTCT policy uptake and continued implementation were: shared platforms for learning and decision making among stakeholders, implementation pilots to assess feasibility of intervention, the emerging of agencies to undertake operations research and the high visibility of policy benefits to child survival. In contrast, SMC policy processes were stalled for over two years after the findings of the Uganda study was made public. Among other factors, policy makers demanded additional research to assess implementation feasibility of SMC within ordinary health system context. High level leaders also publicly contested the SMC evidence and the underlying values and messages – a situation that reduced the coalition of policy champions

  11. CRISPR-Cas gene-editing reveals RsmA and RsmC act through FlhDC to repress the SdhE flavinylation factor and control motility and prodigiosin production in Serratia.

    Science.gov (United States)

    Hampton, Hannah G; McNeil, Matthew B; Paterson, Thomas J; Ney, Blair; Williamson, Neil R; Easingwood, Richard A; Bostina, Mihnea; Salmond, George P C; Fineran, Peter C

    2016-06-01

    SdhE is required for the flavinylation and activation of succinate dehydrogenase and fumarate reductase (FRD). In addition, SdhE is conserved in proteobacteria (α, β and γ) and eukaryotes. Although the function of this recently characterized family of proteins has been determined, almost nothing is known about how their genes are regulated. Here, the RsmA (CsrA) and RsmC (HexY) post-transcriptional and post-translational regulators have been identified and shown to repress sdhEygfX expression in Serratia sp. ATCC 39006. Conversely, the flagella master regulator complex, FlhDC, activated sdhEygfX transcription. To investigate the hierarchy of control, we developed a novel approach that utilized endogenous CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR associated) genome-editing by a type I-F system to generate a chromosomal point mutation in flhC. Mutation of flhC alleviated the ability of RsmC to repress sdhEygfX expression, whereas RsmA acted in both an FlhDC-dependent and -independent manner to inhibit sdhEygfX. Mutation of rsmA or rsmC, or overexpression of FlhDC, led to increased prodigiosin, biosurfactant, swimming and swarming. Consistent with the modulation of sdhE by motility regulators, we have demonstrated that SdhE and FRD are required for maximal flagella-dependent swimming. Together, these results demonstrate that regulators of both metabolism and motility (RsmA, RsmC and FlhDC) control the transcription of the sdhEygfX operon.

  12. DNA residence time is a regulatory factor of transcription repression

    Science.gov (United States)

    Clauß, Karen; Popp, Achim P.; Schulze, Lena; Hettich, Johannes; Reisser, Matthias; Escoter Torres, Laura; Uhlenhaut, N. Henriette

    2017-01-01

    Abstract Transcription comprises a highly regulated sequence of intrinsically stochastic processes, resulting in bursts of transcription intermitted by quiescence. In transcription activation or repression, a transcription factor binds dynamically to DNA, with a residence time unique to each factor. Whether the DNA residence time is important in the transcription process is unclear. Here, we designed a series of transcription repressors differing in their DNA residence time by utilizing the modular DNA binding domain of transcription activator-like effectors (TALEs) and varying the number of nucleotide-recognizing repeat domains. We characterized the DNA residence times of our repressors in living cells using single molecule tracking. The residence times depended non-linearly on the number of repeat domains and differed by more than a factor of six. The factors provoked a residence time-dependent decrease in transcript level of the glucocorticoid receptor-activated gene SGK1. Down regulation of transcription was due to a lower burst frequency in the presence of long binding repressors and is in accordance with a model of competitive inhibition of endogenous activator binding. Our single molecule experiments reveal transcription factor DNA residence time as a regulatory factor controlling transcription repression and establish TALE-DNA binding domains as tools for the temporal dissection of transcription regulation. PMID:28977492

  13. A sensitive mass spectrometric method for hypothesis-driven detection of peptide post-translational modifications: multiple reaction monitoring-initiated detection and sequencing (MIDAS).

    Science.gov (United States)

    Unwin, Richard D; Griffiths, John R; Whetton, Anthony D

    2009-01-01

    The application of a targeted mass spectrometric workflow to the sensitive identification of post-translational modifications is described. This protocol employs multiple reaction monitoring (MRM) to search for all putative peptides specifically modified in a target protein. Positive MRMs trigger an MS/MS experiment to confirm the nature and site of the modification. This approach, termed MIDAS (MRM-initiated detection and sequencing), is more sensitive than approaches using neutral loss scanning or precursor ion scanning methodologies, due to a more efficient use of duty cycle along with a decreased background signal associated with MRM. We describe the use of MIDAS for the identification of phosphorylation, with a typical experiment taking just a couple of hours from obtaining a peptide sample. With minor modifications, the MIDAS method can be applied to other protein modifications or unmodified peptides can be used as a MIDAS target.

  14. Machine Translation

    Indian Academy of Sciences (India)

    Research Mt System Example: The 'Janus' Translating Phone Project. The Janus ... based on laptops, and simultaneous translation of two speakers in a dialogue. For more ..... The current focus in MT research is on using machine learning.

  15. Translating Proper Nouns: A Case Study on English Translation of Hafez's Lyrics

    Science.gov (United States)

    Shirinzadeh, Seyed Alireza; Mahadi, Tengku Sepora Tengku

    2014-01-01

    Proper nouns are regarded so simple that they might be taken for granted in translation explorations. Some may believe that they should not be translated in transmitting source texts to target texts. But, it is not the case; if one looks at present translations, he will notice that different strategies might be applied for translating proper…

  16. Histone deacetylase 3 represses p15INK4b and p21WAF1/cip1 transcription by interacting with Sp1

    International Nuclear Information System (INIS)

    Huang Weifeng; Tan Dapeng; Wang Xiuli; Han Songyan; Tan Jiang; Zhao Yanmei; Lu Jun; Huang Baiqu

    2006-01-01

    Histone deacetylase 3 (HDAC3) has been implicated to play roles in governing cell proliferation. Here we demonstrated that the overexpression of HDAC3 repressed transcription of p15 INK4b and p21 WAF1/cip1 genes in 293T cells, and that the recruitment of HDAC3 to the promoter regions of these genes was critical to this repression. We also showed that HDAC3 repressed GAL4-Sp1 transcriptional activity, and that Sp1 was co-immunoprecipitated with FLAG-tagged HDAC3. We conclude that HDAC3 can repress p15 INK4b and p21 WAF1/cip1 transcription by interacting with Sp1. Furthermore, knockdown of HDAC3 by RNAi up-regulated the transcriptional expression of p15 INK4b , but not that of p21 WAF1/cip1 , implicating the different roles of HDAC3 in repression of p15 INK4b and p21 WAF1/cip1 transcription. Data from this study indicate that the inhibition of p15 INK4b and p21 WAF1/cip1 may be one of the mechanisms by which HDAC3 participates in cell cycle regulation and oncogenesis

  17. Histone acetyltransferase (HAT) activity of p300 modulates human T lymphotropic virus type 1 p30II-mediated repression of LTR transcriptional activity

    International Nuclear Information System (INIS)

    Michael, Bindhu; Nair, Amrithraj M.; Datta, Antara; Hiraragi, Hajime; Ratner, Lee; Lairmore, Michael D.

    2006-01-01

    Human T-lymphotropic virus type-1 (HTLV-1) is a deltaretrovirus that causes adult T cell leukemia/lymphoma, and is implicated in a variety of lymphocyte-mediated inflammatory disorders. HTLV-1 provirus has regulatory and accessory genes in four pX open reading frames. HTLV-1 pX ORF-II encodes two proteins, p13 II and p30 II , which are incompletely defined in virus replication or pathogenesis. We have demonstrated that pX ORF-II mutations block virus replication in vivo and that ORF-II encoded p30 II , a nuclear-localizing protein that binds with CREB-binding protein (CBP)/p300, represses CREB and Tax responsive element (TRE)-mediated transcription. Herein, we have identified p30 II motifs important for p300 binding and in regulating TRE-mediated transcription in the absence and presence of HTLV-1 provirus. Within amino acids 100-179 of p30 II , a region important for repression of LTR-mediated transcription, we identified a single lysine residue at amino acid 106 (K3) that significantly modulates the ability of p30 II to repress TRE-mediated transcription. Exogenous p300, in a dose-responsive manner, reverses p30 II -dependent repression of TRE-mediated transcription, in the absence or presence of the provirus, In contrast to wild type p300, p300 HAT mutants (defective in histone acetyltransferase activity) only partially rescued p30 II -mediated LTR repression. Deacetylation by histone deacetylase-1 (HDAC-1) enhanced p30 II -mediated LTR repression, while inhibition of deacetylation by trichostatin A decreases p30 II -mediated LTR repression. Collectively, our data indicate that HTLV-1 p30 II modulates viral gene expression in a cooperative manner with p300-mediated acetylation

  18. Translation and Quality Management

    DEFF Research Database (Denmark)

    Petersen, Margrethe

    1996-01-01

    theory which would seem likely to be of interest in this connection and section 2. gives a linguist's introduction to the part of the area of quality management which I consider relevant for present purposes. Section 3. is devoted to the case study of a small translation firm which has been certified......The aim of this article is to consider the issue of quality in translation. Specifically, the question under consideration is whether quality assurance in relation to translation is feasible and, if so, what some of the implications for translation theory, translation practice and the teaching...... of translation would be. To provide a backdrop against which the issue may be discussed, I present an overview of the two areas which seem most likely to hold potential answers, viz., that of translation theory and that of quality management. Section 1. gives a brief outline of some contributions to translation...

  19. Translation-Memory (TM) Research

    DEFF Research Database (Denmark)

    Schjoldager, Anne Gram; Christensen, Tina Paulsen

    2010-01-01

    to be representative of the research field as a whole. Our analysis suggests that, while considerable knowledge is available about the technical side of TMs, more research is needed to understand how translators interact with TM technology and how TMs influence translators' cognitive translation processes.......  It is no exaggeration to say that the advent of translation-memory (TM) systems in the translation profession has led to drastic changes in translators' processes and workflow, and yet, though many professional translators nowadays depend on some form of TM system, this has not been the object...... of much research. Our paper attempts to find out what we know about the nature, applications and influences of TM technology, including translators' interaction with TMs, and also how we know it. An essential part of the analysis is based on a selection of empirical TM studies, which we assume...

  20. Engineering of carbon catabolite repression in recombinant xylose fermenting Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Roca, Christophe Francois Aime; Haack, Martin Brian; Olsson, Lisbeth

    2004-01-01

    analysed for changes in xylose consumption rate and ethanol production rate during anaerobic batch and chemostat cultivations on a mixture of 20 g l(-1) glucose and 50 g l(-1) xylose, and their characteristics were compared to the parental strain S. cerevisiae TMB3001 (XYL1, XYL2, XKS1). Improvement...... that xylose is a repressive sugar for S. cerevisiae....

  1. Translation modalities: an investigation of the translated short story “Dez de dezembro”

    Directory of Open Access Journals (Sweden)

    Clara Peron da Silva Guedes

    2017-05-01

    Full Text Available During the translation process translators adopt linguistic strategies in order to make decisions that help to render a translated text suitable to the target language and culture. The translation modalities proposed by Aubert (105-10 constitute a tool that enables one to identify some of these strategies. In addition, they permit to measure the level of linguistic differentiation between a source text and a target text verifying the distance or the proximity of the target text to the linguistic and cultural issues of the source text. Thus, this paper aims to investigate the translation modalities in the short story “Dez de dezembro” (Saunders 204-38, a translation of the short story “Tenth of December” (Saunders 215-51. For quantifying the translation modalities in the translated text the noun phrases from the source text were selected and their counterparts in the target text were classified and annotated within Notepad++ software. The most recurrent translation modalities in the corpus were Literal Translation and Transposition, categories considered intermediate ones in the rank proposed by Aubert (105-10. Therefore, a relation of equivalence can be established between the target and the source texts.

  2. Discourse Analysis in Translator Training

    OpenAIRE

    Gülfidan Ayvaz

    2015-01-01

    Translator training enables students to gain experience in both linguistic parameters and translation practice. Discourse Analysis is one of the strategies that lead to a better translation process and quality in translation. In that regard, this study aims to present DA as a translation strategy for translation practice and a useful tool for translator training. The relationship between DA and Translator Training is not widely studied. Therefore this study aims to define DA and how it can be...

  3. Translation Competence and Translation Performance: Lexical, Syntactic and Textual Patterns in Student Translations of a Specialized EU Genre

    Science.gov (United States)

    Karoly, Adrienn

    2012-01-01

    This paper reports the findings of a study aiming to reveal the recurring patterns of lexical, syntactic and textual errors in student translations of a specialized EU genre from English into Hungarian. By comparing the student translations to the official translation of the text, this article uncovers the most frequent errors that students made…

  4. How Italian dialect poets translate themselves and how they translate other poets

    Directory of Open Access Journals (Sweden)

    Edoardo Zuccato

    2017-07-01

    Full Text Available Part one of this essay discusses the way most contemporary Italian dialect poets translate themselves into Italian. Part two of the essay examines examples of poetry translation into dialect made by some of the same contemporary authors. A comparison between the style of the self-translations, which is mainly lyrical, and the variety of styles of the translations from other poets, shows that each choice is an intentional strategy rather than a missed opportunity for a more creative self-translation, as some scholars have argued.

  5. The CCR4 Deadenylase Acts with Nanos and Pumilio in the Fine-Tuning of Mei-P26 Expression to Promote Germline Stem Cell Self-Renewal

    Science.gov (United States)

    Joly, Willy; Chartier, Aymeric; Rojas-Rios, Patricia; Busseau, Isabelle; Simonelig, Martine

    2013-01-01

    Summary Translational regulation plays an essential role in Drosophila ovarian germline stem cell (GSC) biology. GSC self-renewal requires two translational repressors, Nanos (Nos) and Pumilio (Pum), which repress the expression of differentiation factors in the stem cells. The molecular mechanisms underlying this translational repression remain unknown. Here, we show that the CCR4 deadenylase is required for GSC self-renewal and that Nos and Pum act through its recruitment onto specific mRNAs. We identify mei-P26 mRNA as a direct and major target of Nos/Pum/CCR4 translational repression in the GSCs. mei-P26 encodes a protein of the Trim-NHL tumor suppressor family that has conserved functions in stem cell lineages. We show that fine-tuning Mei-P26 expression by CCR4 plays a key role in GSC self-renewal. These results identify the molecular mechanism of Nos/Pum function in GSC self-renewal and reveal the role of CCR4-NOT-mediated deadenylation in regulating the balance between GSC self-renewal and differentiation. PMID:24286029

  6. The CCR4 deadenylase acts with Nanos and Pumilio in the fine-tuning of Mei-P26 expression to promote germline stem cell self-renewal.

    Science.gov (United States)

    Joly, Willy; Chartier, Aymeric; Rojas-Rios, Patricia; Busseau, Isabelle; Simonelig, Martine

    2013-01-01

    Translational regulation plays an essential role in Drosophila ovarian germline stem cell (GSC) biology. GSC self-renewal requires two translational repressors, Nanos (Nos) and Pumilio (Pum), which repress the expression of differentiation factors in the stem cells. The molecular mechanisms underlying this translational repression remain unknown. Here, we show that the CCR4 deadenylase is required for GSC self-renewal and that Nos and Pum act through its recruitment onto specific mRNAs. We identify mei-P26 mRNA as a direct and major target of Nos/Pum/CCR4 translational repression in the GSCs. mei-P26 encodes a protein of the Trim-NHL tumor suppressor family that has conserved functions in stem cell lineages. We show that fine-tuning Mei-P26 expression by CCR4 plays a key role in GSC self-renewal. These results identify the molecular mechanism of Nos/Pum function in GSC self-renewal and reveal the role of CCR4-NOT-mediated deadenylation in regulating the balance between GSC self-renewal and differentiation.

  7. The role of the concentration camps in the Nazi repression of prostitutes, 1933-9.

    Science.gov (United States)

    Harris, Victoria

    2010-01-01

    This article uses prostitutes as a case study in order to investigate the role of the early concentration camps as centres of detention for social deviants. In contrasting the intensification of repressive policies towards prostitutes against narratives which demonstrate the unexpectedly lax treatment of these women, it explores what the reasons behind these contradictions might have been, and what this demonstrates about the development of these institutions. It asks the following questions. How and why were prostitutes interned? Which bureaucrats were responsible for incarcerating these women and what did they view the role of the camp to be? Were such policies centrally directed or the product of local decision-making? Through asking these questions, the article explores to what extent these camps were unique as mechanisms for the repression and marginalization of prostitutes.

  8. Translation Memory and Computer Assisted Translation Tool for Medieval Texts

    Directory of Open Access Journals (Sweden)

    Törcsvári Attila

    2013-05-01

    Full Text Available Translation memories (TMs, as part of Computer Assisted Translation (CAT tools, support translators reusing portions of formerly translated text. Fencing books are good candidates for using TMs due to the high number of repeated terms. Medieval texts suffer a number of drawbacks that make hard even “simple” rewording to the modern version of the same language. The analyzed difficulties are: lack of systematic spelling, unusual word orders and typos in the original. A hypothesis is made and verified that even simple modernization increases legibility and it is feasible, also it is worthwhile to apply translation memories due to the numerous and even extremely long repeated terms. Therefore, methods and algorithms are presented 1. for automated transcription of medieval texts (when a limited training set is available, and 2. collection of repeated patterns. The efficiency of the algorithms is analyzed for recall and precision.

  9. Who translates the translation? (Retraduire les héros marginaux d'Alan Moore

    Directory of Open Access Journals (Sweden)

    Alice RAY

    2016-11-01

    Full Text Available The retranslation phenomenon is essential to the translation process. It is considered as the logical progression of this process which allows the translated literary work to regenerate in a restless cultural and language space. To a lesser extent, we can observe the same phenomenon in the translation of comics. However, this specific translation requires other competencies and a translating approach somehow different from the ones required to translate fiction literature, especially because of the presence of the visual system of drawings which is strongly bound to its own culture and the endless mutations it goes through. The comic book Watchmen (Les Gardiens, in the first French translation by Alan Moore and Dave Gibbons, is known in the whole world as the comic which had not only remodeled the vision we had of super-heroes, but had also given the comic books another voice. Watchmen was published between 1986 and 1987 in the United States and translated in French from 1987 to 1988. Fifteen years after this first translation by Jean-Patrick Manchette, Panini publishing decided to retranslate this famous comic in 2007. However, if the reviews of the first translation were laudatory, the retranslation did not enjoy a great reception from the readers or from the reviewers. This paper proposes a comparative analysis of both these translations and of their original version as well as an experiment on the readers, comic books readers or not, in order to establish why the first translation was a success and the retranslation a failure. Thus, we could withdraw the elements which allow us to understand the reception of comic translation.

  10. MYC association with cancer risk and a new model of MYC-mediated repression.

    Science.gov (United States)

    Cole, Michael D

    2014-07-01

    MYC is one of the most frequently mutated and overexpressed genes in human cancer but the regulation of MYC expression and the ability of MYC protein to repress cellular genes (including itself) have remained mysterious. Recent genome-wide association studies show that many genetic polymorphisms associated with disease risk map to distal regulatory elements that regulate the MYC promoter through large chromatin loops. Cancer risk-associated single-nucleotide polymorphisms (SNPs) contain more potent enhancer activity, promoting higher MYC levels and a greater risk of disease. The MYC promoter is also subject to complex regulatory circuits and limits its own expression by a feedback loop. A model for MYC autoregulation is discussed which involves a signaling pathway between the PTEN (phosphatase and tensin homolog) tumor suppressor and repressive histone modifications laid down by the EZH2 methyltransferase. Copyright © 2014 Cold Spring Harbor Laboratory Press; all rights reserved.

  11. Determinants of translation ambiguity

    Science.gov (United States)

    Degani, Tamar; Prior, Anat; Eddington, Chelsea M.; Arêas da Luz Fontes, Ana B.; Tokowicz, Natasha

    2016-01-01

    Ambiguity in translation is highly prevalent, and has consequences for second-language learning and for bilingual lexical processing. To better understand this phenomenon, the current study compared the determinants of translation ambiguity across four sets of translation norms from English to Spanish, Dutch, German and Hebrew. The number of translations an English word received was correlated across these different languages, and was also correlated with the number of senses the word has in English, demonstrating that translation ambiguity is partially determined by within-language semantic ambiguity. For semantically-ambiguous English words, the probability of the different translations in Spanish and Hebrew was predicted by the meaning-dominance structure in English, beyond the influence of other lexical and semantic factors, for bilinguals translating from their L1, and translating from their L2. These findings are consistent with models postulating direct access to meaning from L2 words for moderately-proficient bilinguals. PMID:27882188

  12. Linguistic Levels of Translation: A Generic Exploration of Translation Difficulties in Literary Textual Corpus

    Directory of Open Access Journals (Sweden)

    Magda Madkour

    2016-11-01

    Full Text Available This case study research was based on a generic exploration of the translation problems that graduate students face in literary translation. Literary translation is fundamental to translation programs at higher education due to the upsurge that has occurred in publishing classical and modern literary works from various cultures. However, literary texts have special characteristics that make the process of transferring them from one language into another a daunting task. Translating literary texts is difficult even for professional translators because misinterpreting the messages of the source texts can lead to distorting the aesthetic aspects of the literary work. Students need to learn various linguistic levels of literary translation as well as strategies and methods of translation. Learning the linguistics levels of translation necessitates providing adequate training that is based on enhancing students’ cognitive abilities. Cognitive-based translation training helps students learn the procedures of solving the problems of translating sound and literary devices. Cognitive approaches are relevant to the translation process since cognition implies mental activities that students can use to understand and synthesize the literary text, and reconstruct it creatively. Therefore, the current study aimed at examining the relationship between cognitive teaching methodologies and students’ performance in literary translation. To examine this relationship, qualitative and quantitative data was collected from graduate students at the College of Languages and Translation at Imam Mohammed bin Saud Islamic University (IMAMU University, Riyadh, Saudi Arabia. In addition, corpus data was gathered from authentic literary texts including, novels, short stories, and poetry, to investigate the effect of linguistic analysis and cognitive strategies on the quality of literary translation. Quantitative data was analyzed using the Statistical Package for the

  13. An analysis of machine translation and speech synthesis in speech-to-speech translation system

    OpenAIRE

    Hashimoto, K.; Yamagishi, J.; Byrne, W.; King, S.; Tokuda, K.

    2011-01-01

    This paper provides an analysis of the impacts of machine translation and speech synthesis on speech-to-speech translation systems. The speech-to-speech translation system consists of three components: speech recognition, machine translation and speech synthesis. Many techniques for integration of speech recognition and machine translation have been proposed. However, speech synthesis has not yet been considered. Therefore, in this paper, we focus on machine translation and speech synthesis, ...

  14. Trigeminal Neuralgia and Multiple Sclerosis: A Historical Perspective.

    Science.gov (United States)

    Burkholder, David B; Koehler, Peter J; Boes, Christopher J

    2017-09-01

    Trigeminal neuralgia (TN) associated with multiple sclerosis (MS) was first described in Lehrbuch der Nervenkrankheiten für Ärzte und Studirende in 1894 by Hermann Oppenheim, including a pathologic description of trigeminal root entry zone demyelination. Early English-language translations in 1900 and 1904 did not so explicitly state this association compared with the German editions. The 1911 English-language translation described a more direct association. Other later descriptions were clinical with few pathologic reports, often referencing Oppenheim but citing the 1905 German or 1911 English editions of Lehrbuch. This discrepancy in part may be due to the translation differences of the original text.

  15. Efficient use of a translation start codon in BDNF exon I.

    Science.gov (United States)

    Koppel, Indrek; Tuvikene, Jürgen; Lekk, Ingrid; Timmusk, Tõnis

    2015-09-01

    The brain-derived neurotrophic factor (BDNF) gene contains a number of 5' exons alternatively spliced with a common 3' exon. BDNF protein is synthesized from alternative transcripts as a prepro-precursor encoded by the common 3' exon IX, which has a translation start site 21 bp downstream of the splicing site. BDNF mRNAs containing exon I are an exception to this arrangement as the last three nucleotides of this exon constitute an in-frame AUG. Here, we show that this AUG is efficiently used for translation initiation in PC12 cells and cultured cortical neurons. Use of exon I-specific AUG produces higher levels of BDNF protein than use of the common translation start site, resulting from a higher translation rate. No differences in protein degradation, constitutive or regulated secretion were detected between BDNF isoforms with alternative 5' termini. As the BDNF promoter preceding exon I is known to be highly regulated by neuronal activity, our results suggest that the function of this translation start site may be efficient stimulus-dependent synthesis of BDNF protein. The brain-derived neurotrophic factor (BDNF) gene contains multiple untranslated 5' exons alternatively spliced to one common protein-coding 3' exon. However, exon I contains an in-frame ATG in a favorable translation context. Here, we show that use of this ATG is associated with more efficient protein synthesis than the commonly used ATG in exon IX. © 2015 International Society for Neurochemistry.

  16. Translation Meets Cognitive Science: The Imprint of Translation on Cognitive Processing

    Science.gov (United States)

    Rojo, Ana

    2015-01-01

    Translation has long played a role in linguistic and literary studies research. More recently, the theoretical and methodological concerns of process research have given translation an additional role in cognitive science. The interest in the cognitive aspects of translation has led scholars to turn to disciplines such as cognitive linguistics,…

  17. Audiovisual Translation:A Critical Review on Sino-western Perspectives of Film Subtitle Translation

    OpenAIRE

    Junchen Zhang

    2018-01-01

    The paper argues the development of audiovisual translation (mainly focuses on the strand of film subtitle translation) in the West and China. Firstly, the paper discusses film translation from the perspective of the West and critically reviews the achievements produced by western researchers. Secondly, the paper analyzes film translation from Chinese perspective and outlines its change and development in Mainland China. Thirdly, some major issues exited in film translation such as cultural p...

  18. TRANSLATING BLACKNESS: A CHALLENGE TO TRANSLATION STUDIES IN CONTEMPORANEITY

    Directory of Open Access Journals (Sweden)

    Maria Aparecida Andrade Salgueiro

    2014-07-01

    Full Text Available The present article presents aspects of a work in progress about both African-American and Afro-Brazilian Literatures as well as Translation Studies. As it makes observations about how blackness has been translated in different contexts and geographical spaces, it calls the reader’s attention to power relations, processes of colonial and post-colonial identity construction, the rising of literary canons, cultural hegemony and globalization, demystifying spaces and showing translation as an activity that does not take place in a neutral space, but, for sure, inside social and political concrete situations.

  19. Word reading and translation in bilinguals: The impact of formal and informal translation expertise

    Directory of Open Access Journals (Sweden)

    Adolfo M. García

    2014-11-01

    Full Text Available Studies on bilingual word reading and translation have examined the effects of lexical variables (e.g., concreteness, cognate status by comparing groups of non-translators with varying levels of L2 proficiency. However, little attention has been paid to another relevant factor: translation expertise (TI. To explore this issue, we administered word reading and translation tasks to two groups of non-translators possessing different levels of informal TI (Experiment 1, and to three groups of bilinguals possessing different levels of translation training (Experiment 2. Reaction-time recordings showed that in all groups reading was faster than translation and unaffected by concreteness and cognate effects. Conversely, in both experiments, all groups translated concrete and cognate words faster than abstract and non-cognate words, respectively. Notably, an advantage of backward over forward translation was observed only for low-proficiency non-translators (in Experiment 1. Also, in Experiment 2, the modifications induced by translation expertise were more marked in the early than in the late stages of training and practice. The results suggest that TI contributes to modulating inter-equivalent connections in bilingual memory.

  20. What is a translator?

    Directory of Open Access Journals (Sweden)

    Martha Pulido

    2016-08-01

    Full Text Available I copied the title from Foucault’s text, "Qu'est-ce qu'un auteur" in Dits et écrits [1969], Paris, Gallimard, 1994, that I read in French, then in English in Donald F. Bouchard’s and Sherry Simon’s translation, and finally in Spanish in Yturbe Corina’s translation, and applied for the translator some of the analysis that Foucault presents to define the author. Foucault suggests that if we cannot define an author, at least we can see where their function is reflected. My purpose in this paper is to present those surfaces where the function of the translator is reflected or where it can be revealed, and to analyse the categories that could lead us to the elaboration of a suitable definition of a Translator. I dare already give a compound noun for the translator: Translator-Function.