WorldWideScience

Sample records for transition state geometries

  1. Determining Transition State Geometries in Liquids Using 2D-IR

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Charles; Cahoon, James F.; Sawyer, Karma R.; Schlegel, Jacob P.; Harris, Charles B.

    2007-12-11

    Many properties of chemical reactions are determined by the transition state connecting reactant and product, yet it is difficult to directly obtain any information about these short-lived structures in liquids. We show that two-dimensional infrared (2D-IR) spectroscopy can provide direct information about transition states by tracking the transformation of vibrational modes as a molecule crossed a transition state. We successfully monitored a simple chemical reaction, the fluxional rearrangement of Fe(CO)5, in which the exchange of axial and equatorial CO ligands causes an exchange of vibrational energy between the normal modes of the molecule. This energy transfer provides direct evidence regarding the time scale, transition state, and mechanism of the reaction.

  2. Geometry of Quantum States

    Energy Technology Data Exchange (ETDEWEB)

    Hook, D W [Blackett Laboratory, Imperial College of Science Technology and Medicine, University of London, Prince Consort Road, London, SW7 2BW (United Kingdom)

    2008-01-11

    A geometric framework for quantum mechanics arose during the mid 1970s when authors such as Cantoni explored the notion of generalized transition probabilities, and Kibble promoted the idea that the space of pure quantum states provides a natural quantum mechanical analogue for classical phase space. This central idea can be seen easily since the projection of Schroedinger's equation from a Hilbert space into the space of pure spaces is a set of Hamilton's equations. Over the intervening years considerable work has been carried out by a variety of authors and a mature description of quantum mechanics in geometric terms has emerged with many applications. This current offering would seem ideally placed to review the last thirty years of progress and relate this to the most recent work in quantum entanglement. Bengtsson and Zyczkowski's beautifully illustrated volume, Geometry of Quantum States (referred to as GQS from now on) attempts to cover considerable ground in its 466 pages. Its topics range from colour theory in Chapter 1 to quantum entanglement in Chapter 15-to say that this is a whirlwind tour is, perhaps, no understatement. The use of the work 'introduction' in the subtitle of GQS, might suggest to the reader that this work be viewed as a textbook and I think that this interpretation would be incorrect. The authors have chosen to present a survey of different topics with the specific aim to introduce entanglement in geometric terms-the book is not intended as a pedagogical introduction to the geometric approach to quantum mechanics. Each of the fifteen chapters is a short, and mostly self-contained, essay on a particular aspect or application of geometry in the context of quantum mechanics with entanglement being addressed specifically in the final chapter. The chapters fall into three classifications: those concerned with the mathematical background, those which discuss quantum theory and the foundational aspects of the geometric

  3. Topology changing transitions in bubbling geometries

    International Nuclear Information System (INIS)

    Horava, Petr; Shepard, Peter G.

    2005-01-01

    Topological transitions in bubbling half-BPS Type IIB geometries with SO(4) x SO(4) symmetry can be decomposed into a sequence of n elementary transitions. The half-BPS solution that describes the elementary transition is seeded by a phase space distribution of fermions filling two diagonal quadrants. We study the geometry of this solution in some detail. We show that this solution can be interpreted as a time dependent geometry, interpolating between two asymptotic pp-waves in the far past and the far future. The singular solution at the transition can be resolved in two different ways, related by the particle-hole duality in the effective fermion description. Some universal features of the topology change are governed by two-dimensional Type 0B string theory, whose double scaling limit corresponds to the Penrose limit of AdS 5 x S 5 at topological transition. In addition, we present the full class of geometries describing the vicinity of the most general localized classical singularity that can occur in this class of half-BPS bubbling geometries. (author)

  4. System Geometries and Transit/Eclipse Probabilities

    Directory of Open Access Journals (Sweden)

    Howard A.

    2011-02-01

    Full Text Available Transiting exoplanets provide access to data to study the mass-radius relation and internal structure of extrasolar planets. Long-period transiting planets allow insight into planetary environments similar to the Solar System where, in contrast to hot Jupiters, planets are not constantly exposed to the intense radiation of their parent stars. Observations of secondary eclipses additionally permit studies of exoplanet temperatures and large-scale exo-atmospheric properties. We show how transit and eclipse probabilities are related to planet-star system geometries, particularly for long-period, eccentric orbits. The resulting target selection and observational strategies represent the principal ingredients of our photometric survey of known radial-velocity planets with the aim of detecting transit signatures (TERMS.

  5. Complex quantum network geometries: Evolution and phase transitions

    Science.gov (United States)

    Bianconi, Ginestra; Rahmede, Christoph; Wu, Zhihao

    2015-08-01

    Networks are topological and geometric structures used to describe systems as different as the Internet, the brain, or the quantum structure of space-time. Here we define complex quantum network geometries, describing the underlying structure of growing simplicial 2-complexes, i.e., simplicial complexes formed by triangles. These networks are geometric networks with energies of the links that grow according to a nonequilibrium dynamics. The evolution in time of the geometric networks is a classical evolution describing a given path of a path integral defining the evolution of quantum network states. The quantum network states are characterized by quantum occupation numbers that can be mapped, respectively, to the nodes, links, and triangles incident to each link of the network. We call the geometric networks describing the evolution of quantum network states the quantum geometric networks. The quantum geometric networks have many properties common to complex networks, including small-world property, high clustering coefficient, high modularity, and scale-free degree distribution. Moreover, they can be distinguished between the Fermi-Dirac network and the Bose-Einstein network obeying, respectively, the Fermi-Dirac and Bose-Einstein statistics. We show that these networks can undergo structural phase transitions where the geometrical properties of the networks change drastically. Finally, we comment on the relation between quantum complex network geometries, spin networks, and triangulations.

  6. Geometry of spin coherent states

    Science.gov (United States)

    Chryssomalakos, C.; Guzmán-González, E.; Serrano-Ensástiga, E.

    2018-04-01

    Spin states of maximal projection along some direction in space are called (spin) coherent, and are, in many respects, the ‘most classical’ available. For any spin s, the spin coherent states form a 2-sphere in the projective Hilbert space \

  7. Geometry of generalized coherent states

    International Nuclear Information System (INIS)

    Bacry, H.; Centre National de la Recherche Scientifique, 13 - Marseille; Grossmann, A.; Zak, J.

    1975-09-01

    Various attempts have been made to generalize the concept of coherent states (c.s.). One of them, due to Perelomov, seems to be very promising but no restrictive enough. The Perelomov c.s. are briefly reviewed. One shows how his definition gives rise to Radcliffe's c.s. Relationship between the usual and Radcliffe's c.s. can be investigated either from group contraction point of view (Arecchi et al.) or from a physical point of view (with the aid of the Poincare sphere of elliptic polarizations of electromagnetic plane waves). The question of finding complete subsets of c.s. is revisited and an attempt is made to restrict the Perelomov definition [fr

  8. Extracting Entanglement Geometry from Quantum States.

    Science.gov (United States)

    Hyatt, Katharine; Garrison, James R; Bauer, Bela

    2017-10-06

    Tensor networks impose a notion of geometry on the entanglement of a quantum system. In some cases, this geometry is found to reproduce key properties of holographic dualities, and subsequently much work has focused on using tensor networks as tractable models for holographic dualities. Conventionally, the structure of the network-and hence the geometry-is largely fixed a priori by the choice of the tensor network ansatz. Here, we evade this restriction and describe an unbiased approach that allows us to extract the appropriate geometry from a given quantum state. We develop an algorithm that iteratively finds a unitary circuit that transforms a given quantum state into an unentangled product state. We then analyze the structure of the resulting unitary circuits. In the case of noninteracting, critical systems in one dimension, we recover signatures of scale invariance in the unitary network, and we show that appropriately defined geodesic paths between physical degrees of freedom exhibit known properties of a hyperbolic geometry.

  9. Variational Transition State Theory

    Energy Technology Data Exchange (ETDEWEB)

    Truhlar, Donald G. [Univ. of Minnesota, Minneapolis, MN (United States)

    2016-09-29

    This is the final report on a project involving the development and applications of variational transition state theory. This project involved the development of variational transition state theory for gas-phase reactions, including optimized multidimensional tunneling contributions and the application of this theory to gas-phase reactions with a special emphasis on developing reaction rate theory in directions that are important for applications to combustion. The development of variational transition state theory with optimized multidimensional tunneling as a useful computational tool for combustion kinetics involved eight objectives.

  10. Variational transition state theory

    Energy Technology Data Exchange (ETDEWEB)

    Truhlar, D.G. [Univ. of Minnesota, Minneapolis (United States)

    1993-12-01

    This research program involves the development of variational transition state theory (VTST) and semiclassical tunneling methods for the calculation of gas-phase reaction rates and selected applications. The applications are selected for their fundamental interest and/or their relevance to combustion.

  11. Resistance transition assisted geometry enhanced magnetoresistance in semiconductors

    International Nuclear Information System (INIS)

    Luo, Zhaochu; Zhang, Xiaozhong

    2015-01-01

    Magnetoresistance (MR) reported in some non-magnetic semiconductors (particularly silicon) has triggered considerable interest owing to the large magnitude of the effect. Here, we showed that MR in lightly doped n-Si can be significantly enhanced by introducing two diodes and proper design of the carrier path [Wan, Nature 477, 304 (2011)]. We designed a geometrical enhanced magnetoresistance (GEMR) device whose room-temperature MR ratio reaching 30% at 0.065 T and 20 000% at 1.2 T, respectively, approaching the performance of commercial MR devices. The mechanism of this GEMR is: the diodes help to define a high resistive state (HRS) and a low resistive state (LRS) in device by their openness and closeness, respectively. The ratio of apparent resistance between HRS and LRS is determined by geometry of silicon wafer and electrodes. Magnetic field could induce a transition from LRS to HRS by reshaping potential and current distribution among silicon wafer, resulting in a giant enhancement of intrinsic MR. We expect that this GEMR could be also realized in other semiconductors. The combination of high sensitivity to low magnetic fields and large high-field response should make this device concept attractive to the magnetic field sensing industry. Moreover, because this MR device is based on a conventional silicon/semiconductor platform, it should be possible to integrate this MR device with existing silicon/semiconductor devices and so aid the development of silicon/semiconductor-based magnetoelectronics. Also combining MR devices and semiconducting devices in a single Si/semiconductor chip may lead to some novel devices with hybrid function, such as electric-magnetic-photonic properties. Our work demonstrates that the charge property of semiconductor can be used in the magnetic sensing industry, where the spin properties of magnetic materials play a role traditionally

  12. Geometric Transitions, Topological Strings, and Generalized Complex Geometry

    Energy Technology Data Exchange (ETDEWEB)

    Chuang, Wu-yen; /SLAC /Stanford U., Phys. Dept.

    2007-06-29

    Mirror symmetry is one of the most beautiful symmetries in string theory. It helps us very effectively gain insights into non-perturbative worldsheet instanton effects. It was also shown that the study of mirror symmetry for Calabi-Yau flux compactification leads us to the territory of ''Non-Kaehlerity''. In this thesis we demonstrate how to construct a new class of symplectic non-Kaehler and complex non-Kaehler string theory vacua via generalized geometric transitions. The class admits a mirror pairing by construction. From a variety of sources, including super-gravity analysis and KK reduction on SU(3) structure manifolds, we conclude that string theory connects Calabi-Yau spaces to both complex non-Kaehler and symplectic non-Kaehler manifolds and the resulting manifolds lie in generalized complex geometry. We go on to study the topological twisted models on a class of generalized complex geometry, bi-Hermitian geometry, which is the most general target space for (2, 2) world-sheet theory with non-trivial H flux turned on. We show that the usual Kaehler A and B models are generalized in a natural way. Since the gauged supergravity is the low energy effective theory for the compactifications on generalized geometries, we study the fate of flux-induced isometry gauging in N = 2 IIA and heterotic strings under non-perturbative instanton effects. Interestingly, we find we have protection mechanisms preventing the corrections to the hyper moduli spaces. Besides generalized geometries, we also discuss the possibility of new NS-NS fluxes in a new doubled formalism.

  13. Variational transition state theory

    International Nuclear Information System (INIS)

    Truhlar, D.G.

    1986-01-01

    This project is concerned with the development and applications of generalized transition state theory and multidimensional tunneling approximations to chemical reaction rates. They have developed and implemented several practical versions of variational transition state theory (VTST), namely canonical variational theory (CVT), improved canonical variational theory (ICVT), and microcanonical variational theory (μVT). They have also developed and implemented several accurate multidimensional semiclassical tunneling approximations, the most accurate of which are the small-curvature semiclassical adiabatic (SCSA), large-curvature version-3 (LC3), and least-action (LA) approximations. They have applied the methods to thermal rate constants, using transmission coefficients based on ground-state tunneling, and they have also presented and applied adiabatic and diabatic extensions to calculated rate constants for vibrationally excited reactants. Their general goal is to develop accurate methods for calculating chemical reaction rate constants that remain practical even for reasonably complicated molecules. The approximations mentioned above yield rate constants for systems whose potential energy surface is known or assumed. Thus a second, equally important aspect of their work is the determination or modeling, semi-empirically and/or from electronic structure calculations, of potential energy surfaces

  14. Geometry

    Indian Academy of Sciences (India)

    . In the previous article we looked at the origins of synthetic and analytic geometry. More practical minded people, the builders and navigators, were studying two other aspects of geometry- trigonometry and integral calculus. These are actually ...

  15. Effect of diamond trip geometries on boundary layer transition for hypersonic inlet

    Science.gov (United States)

    Zhao, H. Y.; Ni, H. L.; Zhang, Z. M.; Yi, M. R.

    2016-10-01

    In order to grasp the effect of diamond trip geometries on boundary layer transition of hypersonic inlet, an experiment at Mach number 6 in a hypersonic wind tunnel was performed for a hypersonic inlet. The heat transfers at the inlet wall were measured through the infrared thermography. The transition region was judged by the comparison of heat transfer between experiment and computation. Ten diamond forced transition trips were designed according to Modern Design of Experiments. The experimental results shown that the effect order of trip geometries on transition region were the trip height, distance between diamond elements and diagonal length of diamond element from the largest to the smallest. Transition region moved forward to the model tip with increasing trip height or trip length, or with decreasing distance between diamond elements, or with increasing diagonal length of element. The optimized configuration was obtained for diamond forced-transition trip when the optimization object was transition region.

  16. Thermodynamics on noncommutative geometry in coherent state formalism

    International Nuclear Information System (INIS)

    Huang, W.-H.; Huang, K.-W.

    2009-01-01

    The thermodynamics of ideal gas on the noncommutative geometry in the coherent state formalism is investigated. We first evaluate the statistical interparticle potential and see that there are residual 'attraction (repulsion) potential' between boson (fermion) in the high temperature limit. The characters could be traced to the fact that, the particle with mass m in noncommutative thermal geometry with noncommutativity θ and temperature T will correspond to that in the commutative background with temperature T(1+kTmθ) -1 . Such a correspondence implies that the ideal gas energy will asymptotically approach to a finite limiting value as that on commutative geometry at T θ =(kmθ) -1 . We also investigate the squeezed coherent states and see that they could have arbitrary mean energy. The thermal properties of those systems are calculated and compared to each other. We find that the heat capacity of the squeezed coherent states of boson and fermion on the noncommutative geometry have different values, contrast to that on the commutative geometry

  17. Efficient Geometry Minimization and Transition Structure Optimization Using Interpolated Potential Energy Surfaces and Iteratively Updated Hessians.

    Science.gov (United States)

    Zheng, Jingjing; Frisch, Michael J

    2017-12-12

    An efficient geometry optimization algorithm based on interpolated potential energy surfaces with iteratively updated Hessians is presented in this work. At each step of geometry optimization (including both minimization and transition structure search), an interpolated potential energy surface is properly constructed by using the previously calculated information (energies, gradients, and Hessians/updated Hessians), and Hessians of the two latest geometries are updated in an iterative manner. The optimized minimum or transition structure on the interpolated surface is used for the starting geometry of the next geometry optimization step. The cost of searching the minimum or transition structure on the interpolated surface and iteratively updating Hessians is usually negligible compared with most electronic structure single gradient calculations. These interpolated potential energy surfaces are often better representations of the true potential energy surface in a broader range than a local quadratic approximation that is usually used in most geometry optimization algorithms. Tests on a series of large and floppy molecules and transition structures both in gas phase and in solutions show that the new algorithm can significantly improve the optimization efficiency by using the iteratively updated Hessians and optimizations on interpolated surfaces.

  18. Geometry

    CERN Document Server

    Pedoe, Dan

    1988-01-01

    ""A lucid and masterly survey."" - Mathematics Gazette Professor Pedoe is widely known as a fine teacher and a fine geometer. His abilities in both areas are clearly evident in this self-contained, well-written, and lucid introduction to the scope and methods of elementary geometry. It covers the geometry usually included in undergraduate courses in mathematics, except for the theory of convex sets. Based on a course given by the author for several years at the University of Minnesota, the main purpose of the book is to increase geometrical, and therefore mathematical, understanding and to he

  19. Transition in the fractal geometry of Arctic melt ponds

    Directory of Open Access Journals (Sweden)

    C. Hohenegger

    2012-10-01

    Full Text Available During the Arctic melt season, the sea ice surface undergoes a remarkable transformation from vast expanses of snow covered ice to complex mosaics of ice and melt ponds. Sea ice albedo, a key parameter in climate modeling, is determined by the complex evolution of melt pond configurations. In fact, ice–albedo feedback has played a major role in the recent declines of the summer Arctic sea ice pack. However, understanding melt pond evolution remains a significant challenge to improving climate projections. By analyzing area–perimeter data from hundreds of thousands of melt ponds, we find here an unexpected separation of scales, where pond fractal dimension D transitions from 1 to 2 around a critical length scale of 100 m2 in area. Pond complexity increases rapidly through the transition as smaller ponds coalesce to form large connected regions, and reaches a maximum for ponds larger than 1000 m2, whose boundaries resemble space-filling curves, with D ≈ 2. These universal features of Arctic melt pond evolution are similar to phase transitions in statistical physics. The results impact sea ice albedo, the transmitted radiation fields under melting sea ice, the heat balance of sea ice and the upper ocean, and biological productivity such as under ice phytoplankton blooms.

  20. Geometri

    DEFF Research Database (Denmark)

    Byg din egen boomerang, kast den, se den flyve, forstå hvorfor og hvordan den vender tilbage, og grib den. Det handler om opdriften på vingerne når du flyver, men det handler også og allermest om den mærkværdige gyroskop-effekt, du bruger til at holde balancen, når du kører på cykel. Vi vil bruge...... matematik, geometri, og fysik til at forstå, hvad det er, der foregår....

  1. The green wave model of two-dimensional traffic: Transitions in the flow properties and in the geometry of the traffic jam

    Science.gov (United States)

    Török, János; Kertész, János

    1996-02-01

    We carried out computer simulations to study the green wave model (GWM), the parallel updating version of the two-dimensional traffic model of Biham et al. The better convergence properties of the GWM together with a multi-spin coding technique enabled us to extrapolate to the infinite system size which indicates a nonzero density transition from the free flow to the congested state (jamming transition). In spite of the sudden change in the symmetry of the correlation function at the transition point, finite size scaling and temporal scaling seems to hold, at least above the threshold density. There is a second transition point at a density deep in the congested phase where the geometry of the cluster of jammed cars changes from linear to branched: Just at this transition point this cluster has fractal geometry with dimension 1.58. The jamming transition is also described within the mean field approach.

  2. Geometry effect of isolated roughness on boundary layer transition investigated by tomographic PIV

    International Nuclear Information System (INIS)

    Ye, Qingqing; Schrijer, Ferry F.J.; Scarano, Fulvio

    2016-01-01

    Highlights: • The transition of boundary layer induced by isolated roughness elements is analyzed by using tomographic PIV. • Roughness geometry greatly modifies the wake flow topology and the evolution process towards transition. • The bluff front elements induce a horseshoe vortex, leading to more rapid transition than the slender micro-ramp. • The lateral spreading of the turbulent wedge is caused by a destabilizing mechanism involving convection and regeneration of hairpin vortices at the turbulent-non-turbulent interface. - Abstract: Boundary layer transition over isolated roughness elements is investigated in the incompressible flow regime using tomographic PIV. Four different geometries (cylinder, square, hemisphere and micro-ramp) are considered maintaining constant height and span of the element. The main target is to compare the different flow topologies and study the effect of the element shape on accelerating boundary layer transition. The measurement domain encompasses the full transition process until the turbulent regime is established. The flow behavior is described by means of vortex topology and by statistical analysis of the velocity fluctuations. The instantaneous flow topology elucidates the mechanism of transition along its stages. A main distinction is observed between the bluff front elements that induce a horseshoe vortex due to upstream flow separation, leading to more rapid transition and the slender micro-ramp. The later geometry requires significant longer distance for transition onset. The mechanism of sideward propagation of the turbulent non-turbulent interface features a continuous convection and generation of hairpin-like vortices and remains the common denominator among all elements considered.

  3. State Transitions in Semiarid Landscapes

    Science.gov (United States)

    Phillips, J. D.

    2012-04-01

    The U.S. Department of Agriculture has developed a large number of state-and-transition models (STM) to predict and interpret changes in vegetation communities in drylands of the southwestern U.S. These are represented as box-and-arrow models indicating potential changes in response to various combinations of management practices and environmental forcings. Analysis of the 320 STMs developed for areas within the state of Texas reveals two important aspects of environmental change in semiarid environments. First, the STMs are highly local—they are specific to very particular combinations of landform, soil, and climate. This is consistent with the perfect landscape concept in geomorphology, which emphasizes the irreducible importance of geographically and historically contingent local factors in addition to universal laws or principles in determining the state or condition of landscapes. Second, analysis of the STMs using algebraic graph theory shows that a majority of them have structures that tend to amplify effects of change and disturbances. In many cases the STMs represent a form of self-organization characterized by the potential of divergent behavior rather than convergence toward a dominant pattern or outcome. These results indicate that geomorphic, hydrologic, and ecological responses to climate and land use change are likely to be highly variable and idiosyncratic, both within and between semiarid landscapes of Texas.

  4. Geometry of criticality, supercriticality, and Hawking-Page transitions in Gauss-Bonnet-AdS black holes

    Science.gov (United States)

    Sahay, Anurag; Jha, Rishabh

    2017-12-01

    We obtain the Ruppeiner geometry associated with the nonextended state space (Λ constant) of the charged Gauss-Bonnet AdS (GB-AdS) black holes and confirm that the state space Riemannian manifold becomes strongly curved in regions where the black hole system develops strong statistical correlations in the grand canonical ensemble (M and Q fluctuating). We establish the exact proportionality between the state space scalar curvature R and the inverse of the singular free energy near the isolated critical point for the grand canonical ensemble in spacetime dimension d =5 , thus hopefully moving a step closer to the agenda of a concrete physical interpretation of R for black holes. On the other hand, we show that while R signals the Davies transition points (which exist in GB-AdS black holes for d ≥6 ) through its divergence, it does not scale as the inverse of the singular free energy there. Furthermore, adapting to the black hole case the ideas developed in [1] in the context of pure fluids, we find that the state space geometry encodes phase coexistence and first order transitions, identifies the asymptotically critical region and even suggests a Widom-line-like crossover regime in the supercritical region for 5 -d case. The sign of R appears to imply a significant difference between the microscopic structure of the small and the large black hole branches in d =5 . We show that thermodynamic geometry informs the microscopic nature of coexisting thermal GB-AdS and black hole phases near the Hawking-Page phase transition.

  5. The SUSY oscillator from local geometry: Dynamics and coherent states

    International Nuclear Information System (INIS)

    Thienel, H.P.

    1994-01-01

    The choice of a coordinate chart on an analytical R n (R a n ) provides a representation of the n-dimensional SUSY oscillator. The corresponding Hilbert space is Cartan's exterior algebra endowed with a suitable scalar product. The exterior derivative gives rise to the algebra of the n-dimensional SUSY oscillator. Its euclidean dynamics is an inherent consequence of the geometry imposed by the Lie derivative generating the dilations, i.e. evolution of the quantum system corresponds to parametrization of a sequence of charts by euclidean time. Coherent states emerge as a natural structure related to the Lie derivative generating the translations. (orig.)

  6. Dependency in State Transitions of Wind Turbines

    DEFF Research Database (Denmark)

    Herp, Jürgen; Ramezani, Mohammad Hossein; S. Nadimi, Esmaeil

    2017-01-01

    © 2017 IEEE. Turbine states and predicting the transition into failure states ahead of time is important in operation and maintenance of wind turbines. This study presents a method to monitor state transitions of a wind turbine based on the online inference on residuals. In a Bayesian framework...... the impact machine learning concepts have on the predictive performance of the presented models. In conclusion, a study on model residuals is performed to highlight the contribution to wind turbine monitoring. The presented algorithm can consistently detect the state transition under various configurations...

  7. Bifurcations of transition states: Morse bifurcations

    International Nuclear Information System (INIS)

    MacKay, R S; Strub, D C

    2014-01-01

    A transition state for a Hamiltonian system is a closed, invariant, oriented, codimension-2 submanifold of an energy level that can be spanned by two compact codimension-1 surfaces of unidirectional flux whose union, called a dividing surface, locally separates the energy level into two components and has no local recrossings. For this to happen robustly to all smooth perturbations, the transition state must be normally hyperbolic. The dividing surface then has locally minimal geometric flux through it, giving an upper bound on the rate of transport in either direction. Transition states diffeomorphic to S 2m−3 are known to exist for energies just above any index-1 critical point of a Hamiltonian of m degrees of freedom, with dividing surfaces S 2m−2 . The question addressed here is what qualitative changes in the transition state, and consequently the dividing surface, may occur as the energy or other parameters are varied? We find that there is a class of systems for which the transition state becomes singular and then regains normal hyperbolicity with a change in diffeomorphism class. These are Morse bifurcations. Various examples are considered. Firstly, some simple examples in which transition states connect or disconnect, and the dividing surface may become a torus or other. Then, we show how sequences of Morse bifurcations producing various interesting forms of transition state and dividing surface are present in reacting systems, by considering a hypothetical class of bimolecular reactions in gas phase. (paper)

  8. Transitions between compound states of spherical nuclei

    International Nuclear Information System (INIS)

    Kadmenskii, S.G.; Markushev, V.P.; Furman, V.I.

    1980-01-01

    Wigner's statistical matrices are used to study the average reduced g widths and their dispersion for g transitions from a compound state c to another state f, with a lower excitation energy but of arbitrary complexity, for spherical nuclei. It is found that the Porter--Thomas distribution holds for the g widths for all cases of practical interest. In g transitions between compound states c and c' with E/sub g/< or =2 MeV, the most important transitions are M1 transitions involving the major many-quasiparticle components of state c and E1 transitions involving the minor components of state c. It is shown that the strength functions predicted by the various theories for M1 and E1 transitions between compound states with E/sub g/< or =2 MeV are similar. Preference is assigned to the M1-transition version because of experimental results on (n,ga) reactions with thermal and resonance neutrons

  9. Probing emergent geometry through phase transitions in free vector and matrix models

    Energy Technology Data Exchange (ETDEWEB)

    Amado, Irene; Sundborg, Bo [The Oskar Klein Centre for Cosmoparticle Physics, Department of Physics, Stockholm University,AlbaNova, 106 91 Stockholm (Sweden); Thorlacius, Larus [The Oskar Klein Centre for Cosmoparticle Physics, Department of Physics, Stockholm University,AlbaNova, 106 91 Stockholm (Sweden); Science Institute, University of Iceland, Dunhaga 3, 107 Reykjavik (Iceland); Wintergerst, Nico [The Oskar Klein Centre for Cosmoparticle Physics, Department of Physics, Stockholm University,AlbaNova, 106 91 Stockholm (Sweden)

    2017-02-01

    Boundary correlation functions provide insight into the emergence of an effective geometry in higher spin gravity duals of O(N) or U(N) symmetric field theories. On a compact manifold, the singlet constraint leads to nontrivial dynamics at finite temperature and large N phase transitions even at vanishing ’t Hooft coupling. At low temperature, the leading behavior of boundary two-point functions is consistent with propagation through a bulk thermal anti de Sitter space. Above the phase transition, the two-point function shows significant departure from thermal AdS space and the emergence of localized black hole like objects in the bulk. In adjoint models, these objects appear at length scales of order of the AdS radius, consistent with a Hawking-Page transition, but in vector models they are parametrically larger than the AdS scale. In low dimensions, we find another crossover at large distances beyond which the correlation function again takes a thermal AdS form, albeit with a temperature dependent normalization factor.

  10. Origin of trans-bent geometries in maximally bonded transition metal and main group molecules.

    Science.gov (United States)

    Landis, Clark R; Weinhold, Frank

    2006-06-07

    Recent crystallographic data unambiguously demonstrate that neither Ar'GeGeAr' nor Ar'CrCrAr' molecules adopt the expected linear (VSEPR-like) geometries. Does the adoption of trans-bent geometries indicate that Ar'MMAr' molecules are not "maximally bonded" (i.e., bond order of three for M = Ge and five for M = Cr)? We employ theoretical hybrid density functional (B3LYP/6-311++G) computations and natural bond orbital-based analysis to quantify molecular bond orders and to elucidate the electronic origin of such unintuitive structures. Resonance structures based on quintuple M-M bonding dominate for the transition metal compounds, especially for molybdenum and tungsten. For the main group, M-M bonding consists of three shared electron pairs, except for M = Pb. For both d- and p-block compounds, the M-M bond orders are reflected in torsional barriers, bond-antibond splittings, and heats of hydrogenation in a qualitatively intuitive way. Trans-bent structures arise primarily from hybridization tendencies that yield the strongest sigma-bonds. For transition metals, the strong tendency toward sd-hybridization in making covalent bonds naturally results in bent ligand arrangements about the metal. In the p-block, hybridization tendencies favor high p-character, with increasing avidity as one moves down the Group 14 column, and nonlinear structures result. In both the p-block and the d-block, bonding schemes have easily identifiable Lewis-like character but adopt somewhat unconventional orbital interactions. For more common metal-metal multiply bonded compounds such as [Re2Cl8]2-, the core Lewis-like fragment [Re2Cl4]2+ is modified by four hypervalent three-center/four-electron additions.

  11. Visualizing cell state transition using Raman spectroscopy.

    Directory of Open Access Journals (Sweden)

    Taro Ichimura

    Full Text Available System level understanding of the cell requires detailed description of the cell state, which is often characterized by the expression levels of proteins. However, understanding the cell state requires comprehensive information of the cell, which is usually obtained from a large number of cells and their disruption. In this study, we used Raman spectroscopy, which can report changes in the cell state without introducing any label, as a non-invasive method with single cell capability. Significant differences in Raman spectra were observed at the levels of both the cytosol and nucleus in different cell-lines from mouse, indicating that Raman spectra reflect differences in the cell state. Difference in cell state was observed before and after the induction of differentiation in neuroblastoma and adipocytes, showing that Raman spectra can detect subtle changes in the cell state. Cell state transitions during embryonic stem cell (ESC differentiation were visualized when Raman spectroscopy was coupled with principal component analysis (PCA, which showed gradual transition in the cell states during differentiation. Detailed analysis showed that the diversity between cells are large in undifferentiated ESC and in mesenchymal stem cells compared with terminally differentiated cells, implying that the cell state in stem cells stochastically fluctuates during the self-renewal process. The present study strongly indicates that Raman spectral morphology, in combination with PCA, can be used to establish cells' fingerprints, which can be useful for distinguishing and identifying different cellular states.

  12. Factorised steady states and condensation transitions in ...

    Indian Academy of Sciences (India)

    I will then consider a more general class of mass trans- port models, encompassing continuous mass variables and discrete time updating, and present a necessary and sufficient condition for the steady state to factorise. The prop- erty of factorisation again allows an analysis of the condensation transitions which may occur.

  13. Transition state theory for enzyme kinetics

    Science.gov (United States)

    Truhlar, Donald G.

    2015-01-01

    This article is an essay that discusses the concepts underlying the application of modern transition state theory to reactions in enzymes. Issues covered include the potential of mean force, the quantization of vibrations, the free energy of activation, and transmission coefficients to account for nonequilibrium effect, recrossing, and tunneling. PMID:26008760

  14. A Model of Mental State Transition Network

    Science.gov (United States)

    Xiang, Hua; Jiang, Peilin; Xiao, Shuang; Ren, Fuji; Kuroiwa, Shingo

    Emotion is one of the most essential and basic attributes of human intelligence. Current AI (Artificial Intelligence) research is concentrating on physical components of emotion, rarely is it carried out from the view of psychology directly(1). Study on the model of artificial psychology is the first step in the development of human-computer interaction. As affective computing remains unpredictable, creating a reasonable mental model becomes the primary task for building a hybrid system. A pragmatic mental model is also the fundament of some key topics such as recognition and synthesis of emotions. In this paper a Mental State Transition Network Model(2) is proposed to detect human emotions. By a series of psychological experiments, we present a new way to predict coming human's emotions depending on the various current emotional states under various stimuli. Besides, people in different genders and characters are taken into consideration in our investigation. According to the psychological experiments data derived from 200 questionnaires, a Mental State Transition Network Model for describing the transitions in distribution among the emotions and relationships between internal mental situations and external are concluded. Further more the coefficients of the mental transition network model were achieved. Comparing seven relative evaluating experiments, an average precision rate of 0.843 is achieved using a set of samples for the proposed model.

  15. Transition-state theory and dynamical corrections

    DEFF Research Database (Denmark)

    Henriksen, Niels Engholm; Hansen, Flemming Yssing

    2002-01-01

    . The correction factor due to non-adiabatic dynamics is considered in relation to the non-activated dissociative sticking of N-2 on Fe(111). For this process, conventional transition-state theory gives a sticking probability which is about 10 times too large (at T = 300 K). We estimate that the sticking......We consider conventional transition-state theory, and show how quantum dynamical correction factors can be incorporated in a simple fashion, as a natural extension of the fundamental formulation. Corrections due to tunneling and non-adiabatic dynamics are discussed, with emphasis on the latter...... probability is reduced by a factor of 2 due to non-adiabatic dynamics....

  16. Quantum phase transitions in matrix product states

    International Nuclear Information System (INIS)

    Zhu Jingmin

    2008-01-01

    We present a new general and much simpler scheme to construct various quantum phase transitions (QPTs) in spin chain systems with matrix product ground states. By use of the scheme we take into account one kind of matrix product state (MPS) QPT and provide a concrete model. We also study the properties of the concrete example and show that a kind of QPT appears, accompanied by the appearance of the discontinuity of the parity absent block physical observable, diverging correlation length only for the parity absent block operator, and other properties which are that the fixed point of the transition point is an isolated intermediate-coupling fixed point of renormalization flow and the entanglement entropy of a half-infinite chain is discontinuous. (authors)

  17. Quantum Phase Transitions in Matrix Product States

    International Nuclear Information System (INIS)

    Jing-Min, Zhu

    2008-01-01

    We present a new general and much simpler scheme to construct various quantum phase transitions (QPTs) in spin chain systems with matrix product ground states. By use of the scheme we take into account one kind of matrix product state (MPS) QPT and provide a concrete model. We also study the properties of the concrete example and show that a kind of QPT appears, accompanied by the appearance of the discontinuity of the parity absent block physical observable, diverging correlation length only for the parity absent block operator, and other properties which are that the fixed point of the transition point is an isolated intermediate-coupling fixed point of renormalization flow and the entanglement entropy of a half-infinite chain is discontinuous

  18. Transition from Connected to Fragmented Vegetation across an Environmental Gradient: Scaling Laws in Ecotone Geometry.

    Science.gov (United States)

    Gastner, Michael T; Oborny, Beata; Zimmermann, D K; Pruessner, Gunnar

    2009-07-01

    A change in the environmental conditions across space-for example, altitude or latitude-can cause significant changes in the density of a vegetation type and, consequently, in spatial connectivity. We use spatially explicit simulations to study the transition from connected to fragmented vegetation. A static (gradient percolation) model is compared to dynamic (gradient contact process) models. Connectivity is characterized from the perspective of various species that use this vegetation type for habitat and differ in dispersal or migration range, that is, "step length" across the landscape. The boundary of connected vegetation delineated by a particular step length is termed the " hull edge." We found that for every step length and for every gradient, the hull edge is a fractal with dimension 7/4. The result is the same for different spatial models, suggesting that there are universal laws in ecotone geometry. To demonstrate that the model is applicable to real data, a hull edge of fractal dimension 7/4 is shown on a satellite image of a piñon-juniper woodland on a hillside. We propose to use the hull edge to define the boundary of a vegetation type unambiguously. This offers a new tool for detecting a shift of the boundary due to a climate change.

  19. State-transition diagrams for biologists.

    Directory of Open Access Journals (Sweden)

    Hugues Bersini

    Full Text Available It is clearly in the tradition of biologists to conceptualize the dynamical evolution of biological systems in terms of state-transitions of biological objects. This paper is mainly concerned with (but obviously not limited too the immunological branch of biology and shows how the adoption of UML (Unified Modeling Language state-transition diagrams can ease the modeling, the understanding, the coding, the manipulation or the documentation of population-based immune software model generally defined as a set of ordinary differential equations (ODE, describing the evolution in time of populations of various biological objects. Moreover, that same UML adoption naturally entails a far from negligible representational economy since one graphical item of the diagram might have to be repeated in various places of the mathematical model. First, the main graphical elements of the UML state-transition diagram and how they can be mapped onto a corresponding ODE mathematical model are presented. Then, two already published immune models of thymocyte behavior and time evolution in the thymus, the first one originally conceived as an ODE population-based model whereas the second one as an agent-based one, are refactored and expressed in a state-transition form so as to make them much easier to understand and their respective code easier to access, to modify and run. As an illustrative proof, for any immunologist, it should be possible to understand faithfully enough what the two software models are supposed to reproduce and how they execute with no need to plunge into the Java or Fortran lines.

  20. State-space Geometry, Statistical Fluctuations and Black Holes in String Theory

    CERN Document Server

    Bellucci, Stefano

    2011-01-01

    We study the state-space geometry of various extremal and nonextremal black holes in string theory. From the notion of the intrinsic geometry, we offer a new perspective of black hole vacuum fluctuations. For a given black hole entropy, we explicate the intrinsic state-space geometric meaning of the statistical fluctuations, local and global stability conditions and long range statistical correlations. We provide a set of physical motivations pertaining to the extremal and nonextremal black holes, \\textit{viz.}, the meaning of the chemical geometry and physics of correlation. We illustrate the state-space configurations for general charge extremal black holes. In sequel, we extend our analysis for various possible charge and anticharge nonextremal black holes. From the perspective of statistical fluctuation theory, we offer general remarks, future directions and open issues towards the intrinsic geometric understanding of the vacuum fluctuations and black holes in string theory. Keywords: Intrinsic Geometry; ...

  1. Mott transition and anomalous resistive state in the pyrochlore molybdates

    Science.gov (United States)

    Swain, Nyayabanta; Majumdar, Pinaki

    2017-07-01

    The rare-earth based pyrochlore molybdates involve orbitally degenerate electrons Hund's coupled to local moments. The large Hund's coupling promotes ferromagnetism, the superexchange between the local moments prefers antiferromagnetism, and Hubbard repulsion tries to open a Mott gap. The phase competition is tuned by the rare-earth ionic radius, decreasing which leads to change from a ferromagnetic metal to a spin disordered highly resistive ground state, and ultimately an “Anderson-Mott” insulator. We attempt a quantitative theory of the molybdates by studying their minimal model on a pyrochlore geometry, using a static auxiliary field based Monte Carlo. We establish a thermal phase diagram that closely corresponds to the experiments, predict the hitherto unexplored orbital correlations, quantify and explain the origin of the anomalous resistivity, and present dynamical properties across the metal-insulator transition.

  2. The Geometry of Density States, Positive Maps and Tomograms

    Science.gov (United States)

    Man'ko, V. I.; Marmo, G.; Sudarshan, E. C. G.; Zaccaria, F.

    The positive and not completely positive maps of density matrices, which are contractive maps, are discussed as elements of a semigroup. A new kind of positive map (the purification map), which is nonlinear map, is introduced. The density matrices are considered as vectors, linear maps among matrices are represented by superoperators given in the form of higher dimensional matrices. Probability representation of spin states (spin tomography) is reviewed and U(N)-tomogram of spin states is presented. Properties of the tomograms as probability distribution functions are studied. Notion of tomographic purity of spin states is introduced. Entanglement and separability of density matrices are expressed in terms of properties of the tomographic joint probability distributions of random spin projections which depend also on unitary group parameters. A new positivity criterion for hermitian matrices is formulated. An entanglement criterion is given in terms of a function depending on unitary group paramete rs and semigroup of positive map parameters. The function is constructed as sum of moduli of U(N)- tomographic symbols of the hermitian matrix obtained after action on the density matrix of composite system by a positive but not completely positive map of the subsystem density matrix. Some two-qubit and two-qutritt states are considered as examples of entangled states. The connection with the star-product quantisation is discussed. The structure of the set of density matrices and their relation to unitary group and Lie algebra of the unitary group are studied. Nonlinear quantum evolution of state vector obtained by means of applying purification rule of density matrices evolving via dynamical maps is considered. Some connection of positive maps and entanglement with random matrices is discussed and used.

  3. Superconformal interpretation of BPS states in AdS geometries

    CERN Document Server

    Ferrara, Sergio; Ferrara, Sergio; Sokatchev, Emery

    2001-01-01

    We carry out a general analysis of the representations of the superconformal algebras SU(2,2/N), OSp(8/4,R) and OSp(8^*/4) and give their realization in superspace. We present a construction of their UIR's by multiplication of the different types of massless superfields ("supersingletons"). Particular attention is paid to the so-called "short multiplets". Representations undergoing shortening have "protected dimension" and correspond to BPS states in the dual supergravity theory in anti-de Sitter space. These results are relevant for the classification of multitrace operators in boundary conformally invariant theories as well as for the classification of AdS black holes preserving different fractions of supersymmetry.

  4. State-Space Geometry, Statistical Fluctuations, and Black Holes in String Theory

    Directory of Open Access Journals (Sweden)

    Stefano Bellucci

    2014-01-01

    Full Text Available We study the state-space geometry of various extremal and nonextremal black holes in string theory. From the notion of the intrinsic geometry, we offer a state-space perspective to the black hole vacuum fluctuations. For a given black hole entropy, we explicate the intrinsic geometric meaning of the statistical fluctuations, local and global stability conditions, and long range statistical correlations. We provide a set of physical motivations pertaining to the extremal and nonextremal black holes, namely, the meaning of the chemical geometry and physics of correlation. We illustrate the state-space configurations for general charge extremal black holes. In sequel, we extend our analysis for various possible charge and anticharge nonextremal black holes. From the perspective of statistical fluctuation theory, we offer general remarks, future directions, and open issues towards the intrinsic geometric understanding of the vacuum fluctuations and black holes in string theory.

  5. Vibrational nonadiabaticity and tunneling effects in transition state theory

    International Nuclear Information System (INIS)

    Marcus, R.A.

    1979-01-01

    The usual quantum mechanical derivation of transition state theory is a statistical one (a quasi-equilibrium is assumed) or dynamical. The typical dynamical one defines a set of internal states and assumes vibrational adiabaticity. Effects of nonadiabaticity before and after the transition state are included in the present derivation, assuming a classical treatment of the reaction coordinate. The relation to a dynamical derivation of classical mechanical transition state theory is described, and tunneling effects are considered

  6. User's manual for EVITS: a steady state fluids code for complex two-dimensional geometries

    International Nuclear Information System (INIS)

    Domanus, H.M.

    1976-07-01

    A 2-D computer code, EVITS, has been developed for estimating steady state, incompressible, isothermal flow fields in complex geometries. A vorticity-stream function formulation is used along with a model to resolve viscous effects at solid boundaries. Sufficient geometry and boundary type options are included within the code so that a large number of flow situations can be specified without modifying the program. All instructions to the code are via an input dataset. Detailed instructions for preparing the user oriented input, along with examples, are included in this users' manual

  7. Molecular geometry

    CERN Document Server

    Rodger, Alison

    1995-01-01

    Molecular Geometry discusses topics relevant to the arrangement of atoms. The book is comprised of seven chapters that tackle several areas of molecular geometry. Chapter 1 reviews the definition and determination of molecular geometry, while Chapter 2 discusses the unified view of stereochemistry and stereochemical changes. Chapter 3 covers the geometry of molecules of second row atoms, and Chapter 4 deals with the main group elements beyond the second row. The book also talks about the complexes of transition metals and f-block elements, and then covers the organometallic compounds and trans

  8. One-Way Information Deficit and Geometry for a Class of Two-Qubit States

    International Nuclear Information System (INIS)

    Wang Yaokun; Ma Teng; Wang Zhixi; Li Bo

    2013-01-01

    The work deficit, as introduced by Jonathan Oppenheim et al. [Phys. Rev. Lett. 89 (2002) 180402] is a good measure of the quantum correlations in a state and provides a new standpoint for understanding quantum non-locality. In this paper, we analytically evaluate the one-way information deficit (OWID) for the Bell-diagonal states and a class of two-qubit states and further give the geometry picture for OWID. The dynamic behavior of the OWID under decoherence channel is investigated and it is shown that the OWID of some classes of X states is more robust against the decoherence than the entanglement. (general)

  9. Hadamard States for the Klein-Gordon Equation on Lorentzian Manifolds of Bounded Geometry

    Science.gov (United States)

    Gérard, Christian; Oulghazi, Omar; Wrochna, Michał

    2017-06-01

    We consider the Klein-Gordon equation on a class of Lorentzian manifolds with Cauchy surface of bounded geometry, which is shown to include examples such as exterior Kerr, Kerr-de Sitter spacetime and the maximal globally hyperbolic extension of the Kerr outer region. In this setup, we give an approximate diagonalization and a microlocal decomposition of the Cauchy evolution using a time-dependent version of the pseudodifferential calculus on Riemannian manifolds of bounded geometry. We apply this result to construct all pure regular Hadamard states (and associated Feynman inverses), where regular refers to the state's two-point function having Cauchy data given by pseudodifferential operators. This allows us to conclude that there is a one-parameter family of elliptic pseudodifferential operators that encodes both the choice of (pure, regular) Hadamard state and the underlying spacetime metric.

  10. Localized excitations and the geometry of the 1nπ* excited states of pyrazine

    International Nuclear Information System (INIS)

    Kleier, D.A.; Martin, R.L.; Wadt, W.R.; Moomaw, W.R.

    1982-01-01

    Previous theoretical work has shown that the lowest excited singlet state of pyrazine, the π* 1 B 3 u state, is best described in terms of interacting excitations localized on each nitrogen. The present work refines the localized excitation model and considers its implications for the geometry of the 1 B 3 u state. Hartree-Fock calculations show that the best single configuration description of the nπ* state has broken ( 1 B 1 ) symmetry with the excitation strongly localized at one end of the molcule. If the symmetry-restricted hf result is used for reference, this localization describes an important correlation effect. The excited-state geometry was probed using configuration interaction wave functions based on the symmetry-restricted orbitals, as well as properly symmetrized ''valance-bond'' wave functions based on the broken symmetry solutions. Both descriptions lead to a very flat potential for a b/sub 1u/ vibrational mode. This mode reduces the molecular geometry from D/sub 2h/ to C/sub 2v/. We present spectroscopic evidence of our own and of other workers which is consistent with such a flat potential

  11. Microscopic model of the glass transition and the glassy state

    International Nuclear Information System (INIS)

    Shukla, P.

    1982-07-01

    A microscopic model of the glass transition and the glassy state is presented. It is exactly solvable, and offers a unified view of the equilibrium and non-equilibrium aspects of the glass transition. It also provides a statistical-mechanical justification of the irreversible thermodynamic models of the glass transition proposed earlier. (author)

  12. Influence of Particle Geometry on Gastrointestinal Transit and Absorption following Oral Administration.

    Science.gov (United States)

    Li, Dong; Zhuang, Jie; He, Haisheng; Jiang, Sifan; Banerjee, Amrita; Lu, Yi; Wu, Wei; Mitragotri, Samir; Gan, Li; Qi, Jianping

    2017-12-13

    Geometry has been considered as one of the important parameters in nanoparticle design because it affects cellular uptake, transport across the physiological barriers, and in vivo distribution. However, only a few studies have been conducted to elucidate the influence of nanoparticle geometry in their in vivo fate after oral administration. This article discloses the effect of nanoparticle shape on transport and absorption in gastrointestinal (GI) tract. Nanorods and nanospheres were prepared and labeled using fluorescence resonance energy transfer molecules to track the in vivo fate of intact nanoparticles accurately. Results demonstrated that nanorods had significantly longer retention time in GI tract compared with nanospheres. Furthermore, nanorods exhibited stronger ability of penetration into space of villi than nanospheres, which is the main reason of longer retention time. In addition, mesenteric lymph transported 1.75% nanorods within 10 h, which was more than that with nanospheres (0.98%). Fluorescent signals arising from nanoparticles were found in the kidney but not in the liver, lung, spleen, or blood, which could be ascribed to low absorption of intact nanoparticles. In conclusion, nanoparticle geometry influences in vivo fate after oral delivery and nanorods should be further investigated for designing oral delivery systems for therapeutic drugs, vaccines, or diagnostic materials.

  13. M1 transitions between superdeformed states in 195Tl

    International Nuclear Information System (INIS)

    Zheng Xing; Xingqu Chen; Xiaochun Wang

    1996-01-01

    Using a triaxial-particle-rotor model, the quadrupole and dipole transition energies, kinematic and dynamic moments of inertia, electromagnetic transition probabilities and the relative intensity of the E2 γ-transitions are calculated for superdeformed bands in 195 Tl. A strong perturbation effect of rotation on transition energies and M1 and E2 transitions of superdeformed states is investigated. The total M1 transitions, enhanced by internal conversion, are expected to compete strongly with the E2 γ-ray at low spins in the superdeformed 195 Tl nucleus. (author)

  14. Quantum Brachistochrone Problem and the Geometry of the State Space in Pseudo-Hermitian Quantum Mechanics

    Science.gov (United States)

    Mostafazadeh, Ali

    2007-09-01

    A non-Hermitian operator with a real spectrum and a complete set of eigenvectors may serve as the Hamiltonian operator for a unitary quantum system provided that one makes an appropriate choice for the defining the inner product of physical Hilbert state. We study the consequences of such a choice for the representation of states in terms of projection operators and the geometry of the state space. This allows for a careful treatment of the quantum Brachistochrone problem and shows that it is indeed impossible to achieve faster unitary evolutions using PT-symmetric or other non-Hermitian Hamiltonians than those given by Hermitian Hamiltonians.

  15. An integral equation-based numerical solver for Taylor states in toroidal geometries

    Science.gov (United States)

    O'Neil, Michael; Cerfon, Antoine J.

    2018-04-01

    We present an algorithm for the numerical calculation of Taylor states in toroidal and toroidal-shell geometries using an analytical framework developed for the solution to the time-harmonic Maxwell equations. Taylor states are a special case of what are known as Beltrami fields, or linear force-free fields. The scheme of this work relies on the generalized Debye source representation of Maxwell fields and an integral representation of Beltrami fields which immediately yields a well-conditioned second-kind integral equation. This integral equation has a unique solution whenever the Beltrami parameter λ is not a member of a discrete, countable set of resonances which physically correspond to spontaneous symmetry breaking. Several numerical examples relevant to magnetohydrodynamic equilibria calculations are provided. Lastly, our approach easily generalizes to arbitrary geometries, both bounded and unbounded, and of varying genus.

  16. Steady-state and transient heat transfer through fins of complex geometry

    Directory of Open Access Journals (Sweden)

    Taler Dawid

    2014-06-01

    Full Text Available Various methods for steady-state and transient analysis of temperature distribution and efficiency of continuous-plate fins are presented. For a constant heat transfer coefficient over the fin surface, the plate fin can be divided into imaginary rectangular or hexangular fins. At first approximate methods for determining the steady-state fin efficiency like the method of equivalent circular fin and the sector method are discussed. When the fin geometry is complex, thus transient temperature distribution and fin efficiency can be determined using numerical methods. A numerical method for transient analysis of fins with complex geometry is developed. Transient temperature distributions in continuous fins attached to oval tubes is computed using the finite volume - finite element methods. The developed method can be used in the transient analysis of compact heat exchangers to calculate correctly the heat flow rate transferred from the finned tubes to the fluid.

  17. Quantum Geometry: Relativistic energy approach to cooperative electron-nucleary-transition spectrum

    Directory of Open Access Journals (Sweden)

    Ольга Юрьевна Хецелиус

    2014-11-01

    Full Text Available An advanced relativistic energy approach is presented and applied to calculating parameters of electron-nuclear 7-transition spectra of nucleus in the atom. The intensities of the spectral satellites are defined in the relativistic version of the energy approach (S-matrix formalism, and gauge-invariant quantum-electrodynamical perturbation theory with the Dirac-Kohn-Sham density-functional zeroth approximation.

  18. Improving Upon String Methods for Transition State Discovery.

    Science.gov (United States)

    Chaffey-Millar, Hugh; Nikodem, Astrid; Matveev, Alexei V; Krüger, Sven; Rösch, Notker

    2012-02-14

    Transition state discovery via application of string methods has been researched on two fronts. The first front involves development of a new string method, named the Searching String method, while the second one aims at estimating transition states from a discretized reaction path. The Searching String method has been benchmarked against a number of previously existing string methods and the Nudged Elastic Band method. The developed methods have led to a reduction in the number of gradient calls required to optimize a transition state, as compared to existing methods. The Searching String method reported here places new beads on a reaction pathway at the midpoint between existing beads, such that the resolution of the path discretization in the region containing the transition state grows exponentially with the number of beads. This approach leads to favorable convergence behavior and generates more accurate estimates of transition states from which convergence to the final transition states occurs more readily. Several techniques for generating improved estimates of transition states from a converged string or nudged elastic band have been developed and benchmarked on 13 chemical test cases. Optimization approaches for string methods, and pitfalls therein, are discussed.

  19. Factorised steady states and condensation transitions in ...

    Indian Academy of Sciences (India)

    Systems driven out of equilibrium can often exhibit behaviour not seen in systems in thermal equilibrium – for example phase transitions in one-dimensional systems. In this talk I will review a simple model of a nonequilibrium system known as the `zero-range process' and its recent developments. The nonequilibrium ...

  20. Arab States in Transition | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    ... and investigate the interplay between political and economic factors. Workshops will be convened involving experts, activists, policymakers and other actors involved in their country's transition. The workshops will allow the participants to define the problems as they see them, and point the researchers in new directions.

  1. Experimental study on incident wave speed and the mechanisms of deflagration-to-detonation transition in a bent geometry

    Science.gov (United States)

    Li, L.; Li, J.; Teo, C. J.; Chang, P. H.; Khoo, B. C.

    2018-03-01

    The study of deflagration-to-detonation transition (DDT) in bent tubes is important with many potential applications including fuel pipeline and mine tunnel designs for explosion prevention and detonation engines for propulsion. The aim of this study is to exploit low-speed incident shock waves for DDT using an S-shaped geometry and investigate its effectiveness as a DDT enhancement device. Experiments were conducted in a valveless detonation chamber using ethylene-air mixture at room temperature and pressure (303 K, 1 bar). High-speed Schlieren photography was employed to keep track of the wave dynamic evolution. Results showed that waves with velocity as low as 500 m/s can experience a successful DDT process through this S-shaped geometry. To better understand the mechanism, clear images of local explosion processes were captured in either the first curved section or the second curved section depending on the inlet wave velocity, thus proving that this S-shaped tube can act as a two-stage device for DDT. Owing to the curved wall structure, the passing wave was observed to undergo a continuous compression phase which could ignite the local unburnt mixture and finally lead to a local explosion and a detonation transition. Additionally, the phenomenon of shock-vortex interaction near the wave diffraction region was also found to play an important role in the whole process. It was recorded that this interaction could not only result in local head-on reflection of the reflected wave on the wall that could ignite the local mixture, and it could also contribute to the recoupling of the shock-flame complex when a detonation wave is successfully formed in the first curved section.

  2. Phase transitions of amorphous solid acetone in confined geometry investigated by reflection absorption infrared spectroscopy.

    Science.gov (United States)

    Shin, Sunghwan; Kang, Hani; Kim, Jun Soo; Kang, Heon

    2014-11-26

    We investigated the phase transformations of amorphous solid acetone under confined geometry by preparing acetone films trapped in amorphous solid water (ASW) or CCl4. Reflection absorption infrared spectroscopy (RAIRS) and temperature-programmed desorption (TPD) were used to monitor the phase changes of the acetone sample with increasing temperature. An acetone film trapped in ASW shows an abrupt change in the RAIRS features of the acetone vibrational bands during heating from 80 to 100 K, which indicates the transformation of amorphous solid acetone to a molecularly aligned crystalline phase. Further heating of the sample to 140 K produces an isotropic solid phase, and eventually a fluid phase near 157 K, at which the acetone sample is probably trapped in a pressurized, superheated condition inside the ASW matrix. Inside a CCl4 matrix, amorphous solid acetone crystallizes into a different, isotropic structure at ca. 90 K. We propose that the molecularly aligned crystalline phase formed in ASW is created by heterogeneous nucleation at the acetone-water interface, with resultant crystal growth, whereas the isotropic crystalline phase in CCl4 is formed by homogeneous crystal growth starting from the bulk region of the acetone sample.

  3. Suppression of excess noise in Transition-Edge Sensors using magnetic field and geometry

    International Nuclear Information System (INIS)

    Ullom, J.N.; Doriese, W.B.; Hilton, G.C.; Beall, J.A.; Deiker, S.; Irwin, K.D.; Reintsema, C.D.; Vale, L.R.; Xu, Y.

    2004-01-01

    We report recent progress at NIST on Mo/Cu Transition-Edge Sensors (TESs). While the signal-band noise of our sensors agrees with theory, we observe excess high-frequency noise. We describe this noise and demonstrate that it can be strongly suppressed by a magnetic field perpendicular to the plane of the sensor. Both the excess noise and α=(T/R)(dR/dT) depend strongly on field so our results show that accurate comparisons between devices are only possible when the field is well known or constant. We also present results showing the noise performance of TES designs incorporating parallel and perpendicular normal metal bars, an array of normal metal islands, and in wedge-shaped devices. We demonstrate significant reduction of high-frequency noise with the perpendicular bar devices at the cost of reduced α. Both the bars and the magnetic field are useful noise reduction techniques for bolometers

  4. Ground State Geometries of Polyacetylene Chains from Many-Particle Quantum Mechanics.

    Science.gov (United States)

    Barborini, Matteo; Guidoni, Leonardo

    2015-09-08

    Due to the crucial role played by electron correlation, the accurate determination of ground state geometries of π-conjugated molecules is still a challenge for many quantum chemistry methods. Because of the high parallelism of the algorithms and their explicit treatment of electron correlation effects, Quantum Monte Carlo calculations can offer an accurate and reliable description of the electronic states and of the geometries of such systems, competing with traditional quantum chemistry approaches. Here, we report the structural properties of polyacetylene chains H-(C₂H₂)(N)-H up to N = 12 acetylene units, by means of Variational Monte Carlo (VMC) calculations based on the multi-determinant Jastrow Antisymmetrized Geminal Power (JAGP) wave function. This compact ansatz can provide for such systems an accurate description of the dynamical electronic correlation as recently detailed for the 1,3-butadiene molecule [J. Chem. Theory Comput. 2015 11 (2), 508-517]. The calculated Bond Length Alternation (BLA), namely the difference between the single and double carbon bonds, extrapolates, for N → ∞, to a value of 0.0910(7) Å, compatible with the experimental data. An accurate analysis was able to distinguish between the influence of the multi-determinantal AGP expansion and of the Jastrow factor on the geometrical properties of the fragments. Our size-extensive and self-interaction-free results provide new and accurate ab initio references for the structures of the ground state of polyenes.

  5. Noncommutative Geometry of the Moyal Plane: Translation Isometries, Connes' Distance on Coherent States, Pythagoras Equality

    Science.gov (United States)

    Martinetti, Pierre; Tomassini, Luca

    2013-10-01

    We study the metric aspect of the Moyal plane from Connes' noncommutative geometry point of view. First, we compute Connes' spectral distance associated with the natural isometric action of on the algebra of the Moyal plane . We show that the distance between any state of and any of its translated states is precisely the amplitude of the translation. As a consequence, we obtain the spectral distance between coherent states of the quantum harmonic oscillator as the Euclidean distance on the plane. We investigate the classical limit, showing that the set of coherent states equipped with Connes' spectral distance tends towards the Euclidean plane as the parameter of deformation goes to zero. The extension of these results to the action of the symplectic group is also discussed, with particular emphasis on the orbits of coherent states under rotations. Second, we compute the spectral distance in the double Moyal plane, intended as the product of (the minimal unitization of) by . We show that on the set of states obtained by translation of an arbitrary state of , this distance is given by the Pythagoras theorem. On the way, we prove some Pythagoras inequalities for the product of arbitrary unital and non-degenerate spectral triples. Applied to the Doplicher- Fredenhagen-Roberts model of quantum spacetime [DFR], these two theorems show that Connes' spectral distance and the DFR quantum length coincide on the set of states of optimal localization.

  6. Drawing the geometry of 3d transition metal-boron pairs in silicon from electron emission channeling experiments

    CERN Document Server

    Silva, Daniel; Wahl, Ulrich; Martins Correia, Joao; Augustyns, Valerie; De Lemos Lima, Tiago Abel; Granadeiro Costa, Angelo Rafael; David Bosne, Eric; Castro Ribeiro Da Silva, Manuel; Esteves De Araujo, Araujo Joao Pedro; Da Costa Pereira, Lino Miguel

    2016-01-01

    Although the formation of transition metal-boron pairs is currently well established in silicon processing, the geometry of these complexes is still not completely understood. We investigated the lattice location of the transition metals manganese, iron, cobalt and nickel in n- and p+-type silicon by means of electron emission channeling. For manganese, iron and cobalt, we observed an increase of sites near the ideal tetrahedral interstitial position by changing the doping from n- to p+-type Si. Such increase was not observed for Ni. We ascribe this increase to the formation of pairs with boron, driven by Coulomb interactions, since the majority of iron, manganese and cobalt is positively charged in p+-type silicon while Ni is neutral. We propose that breathing mode relaxation around the boron ion within the pair causes the observed displacement from the ideal tetrahedral interstitial site. We discuss the application of the emission channeling technique in this system and, in particular, how it provides insi...

  7. Quantifying the limits of transition state theory in enzymatic catalysis.

    Science.gov (United States)

    Zinovjev, Kirill; Tuñón, Iñaki

    2017-11-21

    While being one of the most popular reaction rate theories, the applicability of transition state theory to the study of enzymatic reactions has been often challenged. The complex dynamic nature of the protein environment raised the question about the validity of the nonrecrossing hypothesis, a cornerstone in this theory. We present a computational strategy to quantify the error associated to transition state theory from the number of recrossings observed at the equicommittor, which is the best possible dividing surface. Application of a direct multidimensional transition state optimization to the hydride transfer step in human dihydrofolate reductase shows that both the participation of the protein degrees of freedom in the reaction coordinate and the error associated to the nonrecrossing hypothesis are small. Thus, the use of transition state theory, even with simplified reaction coordinates, provides a good theoretical framework for the study of enzymatic catalysis. Copyright © 2017 the Author(s). Published by PNAS.

  8. Religion, state, society and identity in transition: Ukraine

    NARCIS (Netherlands)

    van der Laarse, R.; Cherenkov, M.N.; Proshak, V.V.; Mykhalchuk, T.

    2015-01-01

    State-society-identity relations could be defined as interaction(s) between state institutions, societal groups and individuals living within the borders of a (political) community/ state. These relations are never static, but vibrant, being in constant transition under the influence of cultural,

  9. Transition state for the NSD2-catalyzed methylation of histone H3 lysine 36.

    Science.gov (United States)

    Poulin, Myles B; Schneck, Jessica L; Matico, Rosalie E; McDevitt, Patrick J; Huddleston, Michael J; Hou, Wangfang; Johnson, Neil W; Thrall, Sara H; Meek, Thomas D; Schramm, Vern L

    2016-02-02

    Nuclear receptor SET domain containing protein 2 (NSD2) catalyzes the methylation of histone H3 lysine 36 (H3K36). It is a determinant in Wolf-Hirschhorn syndrome and is overexpressed in human multiple myeloma. Despite the relevance of NSD2 to cancer, there are no potent, selective inhibitors of this enzyme reported. Here, a combination of kinetic isotope effect measurements and quantum chemical modeling was used to provide subangstrom details of the transition state structure for NSD2 enzymatic activity. Kinetic isotope effects were measured for the methylation of isolated HeLa cell nucleosomes by NSD2. NSD2 preferentially catalyzes the dimethylation of H3K36 along with a reduced preference for H3K36 monomethylation. Primary Me-(14)C and (36)S and secondary Me-(3)H3, Me-(2)H3, 5'-(14)C, and 5'-(3)H2 kinetic isotope effects were measured for the methylation of H3K36 using specifically labeled S-adenosyl-l-methionine. The intrinsic kinetic isotope effects were used as boundary constraints for quantum mechanical calculations for the NSD2 transition state. The experimental and calculated kinetic isotope effects are consistent with an SN2 chemical mechanism with methyl transfer as the first irreversible chemical step in the reaction mechanism. The transition state is a late, asymmetric nucleophilic displacement with bond separation from the leaving group at (2.53 Å) and bond making to the attacking nucleophile (2.10 Å) advanced at the transition state. The transition state structure can be represented in a molecular electrostatic potential map to guide the design of inhibitors that mimic the transition state geometry and charge.

  10. Policy to Performance: State ABE Transition Systems Report. Transitioning Adults to Opportunity

    Science.gov (United States)

    Alamprese, Judith A.

    2012-01-01

    The U.S. Department of Education's Policy to Performance project was funded in 2009 to build the capacity of state adult basic education (ABE) staff to develop and implement policies and practices that would support an ABE transition system. Policy to Performance states were selected though a competitive process. State adult education directors…

  11. Growth, economic development and structural transition in small vulnerable states

    OpenAIRE

    Read, Robert

    2001-01-01

    This paper reviews the critical theoretical and policy issues relating to growth, economic development and structural transition in small states. The paper discusses alternative perspectives on small size and highlights the salient characteristics which give rise to their economic sub-optimality. The theoretical and empirical relationship between size and growth is reviewed, including recent inferences relating to structural transition and comparative advantage in small states. This discussio...

  12. Magnetic Ground State Properties of Transition Metals

    DEFF Research Database (Denmark)

    Andersen, O. K.; Madsen, J.; Poulsen, U. K.

    1977-01-01

    We review a simple one-electron theory of the magnetic and cohesive properties of ferro- and nearly ferromagnetic transition metals at 0 K. The theory is based on the density functional formalism, it makes use of the local spin density and atomic sphere approximations and it may, with further...... approximations, be reduced to the Stoner model. Results for the volume dependence of the ferromagnetic moment and the electronic pressure of bcc, fcc and hcp Fe are presented, together with theoretical values for the equilibrium atomic volume, the bulk modulus, the ferromagnetic moment, the spin susceptibility...

  13. Gamma transitions between compound states in spherical nuclei

    International Nuclear Information System (INIS)

    Kadmenskij, S.G.; Markushev, V.P.; Furman, V.I.

    1980-01-01

    Average values of the reduced γ widths and their dispersions are investigated, basing on the Wigner statistical matrix method, for γ transitions from a compound state c into a less-energy excited state f of an arbitrary complexity in spherical nuclei. It is shown that in all the cases of practical interest the Porter-Thomas distribution is valid for the γ widths. It is found that in the γ transitions between compound states c and c' with Esub(γ) <= 2 MeV the dominating role is played by the M1 transitions due to the main multiquasiparticle states of c, and by the E1 transitions, due to small components of the state c. In framework of the existent theoretical schemes it is shown that the strength functions of the M1 and E1 transitions between the compound states with Esub(γ) <2 MeV are close. It is deduced thet the variant of the M1 transitions is preferable in view of the experimental results on the (n, γα) reactions induced by thermal and resonance neutrons

  14. Competing ν = 5/2 fractional quantum Hall states in confined geometry.

    Science.gov (United States)

    Fu, Hailong; Wang, Pengjie; Shan, Pujia; Xiong, Lin; Pfeiffer, Loren N; West, Ken; Kastner, Marc A; Lin, Xi

    2016-11-01

    Some theories predict that the filling factor 5/2 fractional quantum Hall state can exhibit non-Abelian statistics, which makes it a candidate for fault-tolerant topological quantum computation. Although the non-Abelian Pfaffian state and its particle-hole conjugate, the anti-Pfaffian state, are the most plausible wave functions for the 5/2 state, there are a number of alternatives with either Abelian or non-Abelian statistics. Recent experiments suggest that the tunneling exponents are more consistent with an Abelian state rather than a non-Abelian state. Here, we present edge-current-tunneling experiments in geometrically confined quantum point contacts, which indicate that Abelian and non-Abelian states compete at filling factor 5/2. Our results are consistent with a transition from an Abelian state to a non-Abelian state in a single quantum point contact when the confinement is tuned. Our observation suggests that there is an intrinsic non-Abelian 5/2 ground state but that the appropriate confinement is necessary to maintain it. This observation is important not only for understanding the physics of the 5/2 state but also for the design of future topological quantum computation devices.

  15. Factorised steady states and condensation transitions in ...

    Indian Academy of Sciences (India)

    Scotland. E-mail: martin@ph.ed.ac.uk. Abstract. Systems driven out of equilibrium can often exhibit behaviour not seen in systems in thermal equilibrium – for example phase ... weights rather it will be a nonequilibrium steady state. ... particular cases are: if u(m) = m then the dynamics of each particle is independent.

  16. TPmsm: Estimation of the Transition Probabilities in 3-State Models

    Directory of Open Access Journals (Sweden)

    Artur Araújo

    2014-12-01

    Full Text Available One major goal in clinical applications of multi-state models is the estimation of transition probabilities. The usual nonparametric estimator of the transition matrix for non-homogeneous Markov processes is the Aalen-Johansen estimator (Aalen and Johansen 1978. However, two problems may arise from using this estimator: first, its standard error may be large in heavy censored scenarios; second, the estimator may be inconsistent if the process is non-Markovian. The development of the R package TPmsm has been motivated by several recent contributions that account for these estimation problems. Estimation and statistical inference for transition probabilities can be performed using TPmsm. The TPmsm package provides seven different approaches to three-state illness-death modeling. In two of these approaches the transition probabilities are estimated conditionally on current or past covariate measures. Two real data examples are included for illustration of software usage.

  17. GENESIS - The GENEric SImulation System for Modelling State Transitions.

    Science.gov (United States)

    Gillman, Matthew S

    2017-09-20

    This software implements a discrete time Markov chain model, used to model transitions between states when the transition probabilities are known a priori . It is highly configurable; the user supplies two text files, a "state transition table" and a "config file", to the Perl script genesis.pl. Given the content of these files, the script generates a set of C++ classes based on the State design pattern, and a main program, which can then be compiled and run. The C++ code generated is based on the specification in the text files. Both multiple branching and bi-directional transitions are allowed. The software has been used to model the natural histories of colorectal cancer in Mexico. Although written primarily to model such disease processes, it can be used in any process which depends on discrete states with known transition probabilities between those states. One suitable area may be in environmental modelling. A test suite is supplied with the distribution. Due to its high degree of configurability and flexibility, this software has good re-use potential. It is stored on the Figshare repository.

  18. Critical-state magnetization of type-II superconductors in rectangular slab and cylinder geometries

    Science.gov (United States)

    Johansen, T. H.; Bratsberg, H.

    1995-04-01

    A scheme is described for analytical calculation of critical-state magnetization M of superconductors in the geometry of long rectangular slabs and cylindrical specimens in a parallel magnetic field. The simplicity of the general scheme is demonstrated by deriving compact expressions for the ascending and descending field branches of M in the exponential model Jc=jc0 exp(-B/B0) and in the Kim, Hempstead, and Strnad model [Phys. Rev. 129, 528 (1963)], Jc=jc0/(1+B/B0). The analyses focus on the vertical width ΔM of large field magnetization hysteresis loops. While Bean's result [Phys. Rev. Lett. 8, 250 (1962)], Jc∝ΔM, today is used extensively to infer the critical current, it is well known that the method lacks consistency when a field dependence is seen in ΔM. For the two models it is shown explicitly that in the expansion of the functional relation ΔM(Jc), Bean's result corresponds to the lowest-order term. Also to the next order in the functional expansion we find a unifying form of expressing the model behaviors. This term contains the second derivative of J2c(B) with a prefactor that depends on the sample geometry. A model-independent proof for the two first terms in the expansion of ΔM(Jc) is also given, which allows the significance of size and shape, i.e., thickness and aspect ratio, to be discussed on a general basis. New methods to extract Jc from ΔM data, one of them without having to invoke specific critical-state models, are indicated.

  19. Complexity and state-transitions in social dependence networks

    Directory of Open Access Journals (Sweden)

    Giuliano Pistolesi

    2001-01-01

    Full Text Available Computation of complexity in Social Dependence Networks is an interesting research domain to understand evolution processes and group exchange dynamics in natural and artificial intelligent Multi-Agent Systems. We perform an agent-based simulation by NET-PLEX (Conte and Pistolesi, 2000, a new software system able both to build interdependence networks tipically emerging in Multi-Agent System scenarios and to investigate complexity phenomena, i.e., unstability and state-transitions like Hopf bifurcation (Nowak and Lewenstein, 1994, and to describe social self organization phenomena emerging in these artificial social systems by means of complexity measures similar to those introduced by Hubermann and Hogg (1986. By performing analysis of complexity in these kind of artificial societies we observed interesting phenomena in emerging organizations that suggest state-transitions induced by critical configurations of parameters describing the social system similar to those observed in many studies on state-transitions in bifurcation chaos (Schuster, 1988; Ruelle, 1989.

  20. Laboratory research of fracture geometry in multistage HFF in triaxial state

    Science.gov (United States)

    Bondarenko, T. M.; Hou, B.; Chen, M.; Yan, L.

    2017-05-01

    Multistage hydraulic fracturing of formation (HFF) in wells with horizontal completion is an efficientmethod for intensifying oil extraction which, as a rule, is used to develop nontraditional collectors. It is assumed that the complicated character of HFF fractures significantly influences the fracture geometry in the rock matrix. Numerous theoretical models proposed to predict the fracture geometry and the character of interaction of mechanical stresses in the multistage HFF have not been proved experimentally. In this paper, we present the results of laboratory modeling of the multistage HFF performed on a contemporary laboratory-scale plant in the triaxial stress state by using a gel-solution as the HFF agent. As a result of the experiment, a fracturing pattern was formed in the cubic specimen of the model material. The laboratory results showed that a nearly plane fracture is formed at the firstHFF stage, while a concave fracture is formed at the second HFF stage. The interaction of the stress fields created by the two principal HFF fractures results in the growth of secondary fractures whose directions turned out to be parallel to the modeled well bore. But this stress interference leads to a decrease in the width of the second principal fracture. It is was discovered that the penny-shaped fracture model is more appropriate for predicting the geometry of HFF fractures in horizontal wells than the two-dimensional models of fracture propagation (PKN model, KGD model). A computational experiment based on the boundary element method was carried out to obtain the qualitative description of the multistage HFF processes. As a result, a mechanical model of fracture propagation was constructed,which was used to obtain the mechanical stress field (the stress contrast) and the fracture opening angle distribution over fracture length and fracture orientation direction. The conclusions made in the laboratory modeling of the multistage HFF technology agree well with the

  1. Thermodynamics, phase transitions and Ruppeiner geometry for Einstein-dilaton-Lifshitz black holes in the presence of Maxwell and Born-Infeld electrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Zangeneh, M.K. [Shanghai Jiao Tong University, Department of Physics and Astronomy, Center of Astronomy and Astrophysics, Shanghai (China); Shiraz University, Physics Department and Biruni Observatory, Shiraz (Iran, Islamic Republic of); Shahid Chamran University of Ahvaz, Physics Department, Faculty of Science, Ahvaz (Iran, Islamic Republic of); Dehyadegari, A. [Shiraz University, Physics Department and Biruni Observatory, Shiraz (Iran, Islamic Republic of); Mehdizadeh, M.R. [Shahid Bahonar University, Department of Physics, P.O. Box 76175, Kerman (Iran, Islamic Republic of); Research Institute for Astrophysics and Astronomy of Maragha (RIAAM), P.O. Box 55134-441, Maragha (Iran, Islamic Republic of); Wang, B. [Shanghai Jiao Tong University, Department of Physics and Astronomy, Center of Astronomy and Astrophysics, Shanghai (China); Sheykhi, A. [Shiraz University, Physics Department and Biruni Observatory, Shiraz (Iran, Islamic Republic of); Research Institute for Astrophysics and Astronomy of Maragha (RIAAM), P.O. Box 55134-441, Maragha (Iran, Islamic Republic of)

    2017-06-15

    In this paper, we first obtain the higher-dimen-sional dilaton-Lifshitz black hole solutions in the presence of Born-Infeld (BI) electrodynamics. We find that there are two different solutions for the cases of z = n + 1 and z ≠ n + 1 where z is the dynamical critical exponent and n is the number of spatial dimensions. Calculating the conserved and thermodynamical quantities, we show that the first law of thermodynamics is satisfied for both cases. Then we turn to the study of different phase transitions for our Lifshitz black holes. We start with the Hawking-Page phase transition and explore the effects of different parameters of our model on it for both linearly and BI charged cases. After that, we discuss the phase transitions inside the black holes. We present the improved Davies quantities and prove that the phase transition points shown by them are coincident with the Ruppeiner ones. We show that the zero temperature phase transitions are transitions in the radiance properties of black holes by using the Landau-Lifshitz theory of thermodynamic fluctuations. Next, we turn to the study of the Ruppeiner geometry (thermodynamic geometry) for our solutions. We investigate thermal stability, interaction type of possible black hole molecules and phase transitions of our solutions for linearly and BI charged cases separately. For the linearly charged case, we show that there are no phase transitions at finite temperature for the case z ≥ 2. For z < 2, it is found that the number of finite temperature phase transition points depends on the value of the black hole charge and there are not more than two. When we have two finite temperature phase transition points, there is no thermally stable black hole between these two points and we have discontinuous small/large black hole phase transitions. As expected, for small black holes, we observe finite magnitude for the Ruppeiner invariant, which shows the finite correlation between possible black hole molecules, while

  2. Thermodynamics, phase transitions and Ruppeiner geometry for Einstein-dilaton-Lifshitz black holes in the presence of Maxwell and Born-Infeld electrodynamics

    International Nuclear Information System (INIS)

    Zangeneh, M.K.; Dehyadegari, A.; Mehdizadeh, M.R.; Wang, B.; Sheykhi, A.

    2017-01-01

    In this paper, we first obtain the higher-dimen-sional dilaton-Lifshitz black hole solutions in the presence of Born-Infeld (BI) electrodynamics. We find that there are two different solutions for the cases of z = n + 1 and z ≠ n + 1 where z is the dynamical critical exponent and n is the number of spatial dimensions. Calculating the conserved and thermodynamical quantities, we show that the first law of thermodynamics is satisfied for both cases. Then we turn to the study of different phase transitions for our Lifshitz black holes. We start with the Hawking-Page phase transition and explore the effects of different parameters of our model on it for both linearly and BI charged cases. After that, we discuss the phase transitions inside the black holes. We present the improved Davies quantities and prove that the phase transition points shown by them are coincident with the Ruppeiner ones. We show that the zero temperature phase transitions are transitions in the radiance properties of black holes by using the Landau-Lifshitz theory of thermodynamic fluctuations. Next, we turn to the study of the Ruppeiner geometry (thermodynamic geometry) for our solutions. We investigate thermal stability, interaction type of possible black hole molecules and phase transitions of our solutions for linearly and BI charged cases separately. For the linearly charged case, we show that there are no phase transitions at finite temperature for the case z ≥ 2. For z < 2, it is found that the number of finite temperature phase transition points depends on the value of the black hole charge and there are not more than two. When we have two finite temperature phase transition points, there is no thermally stable black hole between these two points and we have discontinuous small/large black hole phase transitions. As expected, for small black holes, we observe finite magnitude for the Ruppeiner invariant, which shows the finite correlation between possible black hole molecules, while

  3. Spinning geometry = Twisted geometry

    International Nuclear Information System (INIS)

    Freidel, Laurent; Ziprick, Jonathan

    2014-01-01

    It is well known that the SU(2)-gauge invariant phase space of loop gravity can be represented in terms of twisted geometries. These are piecewise-linear-flat geometries obtained by gluing together polyhedra, but the resulting geometries are not continuous across the faces. Here we show that this phase space can also be represented by continuous, piecewise-flat three-geometries called spinning geometries. These are composed of metric-flat three-cells glued together consistently. The geometry of each cell and the manner in which they are glued is compatible with the choice of fluxes and holonomies. We first remark that the fluxes provide each edge with an angular momentum. By studying the piecewise-flat geometries which minimize edge lengths, we show that these angular momenta can be literally interpreted as the spin of the edges: the geometries of all edges are necessarily helices. We also show that the compatibility of the gluing maps with the holonomy data results in the same conclusion. This shows that a spinning geometry represents a way to glue together the three-cells of a twisted geometry to form a continuous geometry which represents a point in the loop gravity phase space. (paper)

  4. seniority changing transitions in yrast states and systematics of Sn ...

    Indian Academy of Sciences (India)

    Bhoomika Maheshwari

    2017-10-26

    Oct 26, 2017 ... 1 states; Sn isotopes; generalized seniority; odd-tensor E3 transitions; shell model. PACS Nos 23.20.Js; 27.60.+j; 21.60.Cs. 1. Introduction. Symmetries in physics play a fundamental role in the theoretical description of a wide range of phenomena and are particularly useful in systematizing the prop-.

  5. Tracking the embryonic stem cell transition from ground state pluripotency

    NARCIS (Netherlands)

    Kalkan, T.; Olova, N.; Roode, M.; Mulas, C.; Lee, H.J.; Nett, I.; Marks, H.; Walker, R.; Stunnenberg, H.; Lilley, K.S.; Nichols, J.; Reik, W.; Bertone, P.; Smith, A.

    2017-01-01

    Mouse embryonic stem (ES) cells are locked into self-renewal by shielding from inductive cues. Release from this ground state in minimal conditions offers a system for delineating developmental progression from naive pluripotency. Here we examined the initial transition process. The ES cell

  6. Religion, state, society and identity in transition Ukraine

    NARCIS (Netherlands)

    van der Laarse, R.; Cherenkov, M.N.; Proshak, V.V.; Mykhalchuk, T.

    2015-01-01

    BookCover Religion, state, society and identity in transition Ukraine Rob van der Laarse, Mykhailo N. Cherenkov, Vitaliy V. Proshak, and Tetiana Mykhalchuk, eds. Pages: 800 pages Shipping Weight: 1000 gram Published: 11-2015 Publisher: WLP Language: US ISBN (softcover) : 9789462402652 Product

  7. Study of radicals, clusters and transition state species by anion photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Arnold, D.W.

    1994-08-01

    Free radicals, elemental and van der Waals clusters and transition state species for bimolecular chemical reactions are investigated using anion photoelectron spectroscopy. Several low-lying electronic states of ozone have been identified via photoelectron spectroscopy of O 3 - . A characterization of these states is important to models for atmospheric ozone reaction kinetics. The fluoroformyloxyl radical, FCO 2 , has been investigated, providing vibrational frequencies and energies for two electronic states. The technique has also been employed to make the first direct observation and characterization of the NNO 2 molecule. Several electronic states are observed for this species which is believed to play a role as a reactive intermediate in the N + NO 2 reaction. The experimental results for all three of these radicals are supplemented by ab initio investigations of their molecular properties. The clusters investigations include studies of elemental carbon clusters (C 2 - - C 11 - ), and van der Waals clusters (X - (CO 2 ) n , X = I, Br, Cl; n ≤ 13 and I - (N 2 O) n=1--11 ). Primarily linear clusters are observed for the smaller carbon clusters, while the spectra of the larger clusters contain contribution from cyclic anion photodetachment. Very interesting ion-solvent interactions are observed in the X - (CO 2 )n clusters. The transition state regions for several bimolecular chemical reactions have also been investigated by photodetachment of a negative ion precursor possessing a geometry similar to that of the transition state species. These spectra show features which are assigned to motions of the unstable neutral complex existing between reactants and products

  8. Study of radicals, clusters and transition state species by anion photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, Don Wesley [Univ. of California, Berkeley, CA (United States)

    1994-08-01

    Free radicals, elemental and van der Waals clusters and transition state species for bimolecular chemical reactions are investigated using anion photoelectron spectroscopy. Several low-lying electronic states of ozone have been identified via photoelectron spectroscopy of O3-. A characterization of these states is important to models for atmospheric ozone reaction kinetics. The fluoroformyloxyl radical, FCO2, has been investigated, providing vibrational frequencies and energies for two electronic states. The technique has also been employed to make the first direct observation and characterization of the NNO2 molecule. Several electronic states are observed for this species which is believed to play a role as a reactive intermediate in the N + NO2 reaction. The experimental results for all three of these radicals are supplemented by ab initio investigations of their molecular properties. The clusters investigations include studies of elemental carbon clusters (C2- - C11-), and van der Waals clusters (X-(CO2)n, X = I, Br, Cl; n {le} 13 and I- (N2O)n=1--11). Primarily linear clusters are observed for the smaller carbon clusters, while the spectra of the larger clusters contain contribution from cyclic anion photodetachment. Very interesting ion-solvent interactions are observed in the X-(CO2)n clusters. The transition state regions for several bimolecular chemical reactions have also been investigated by photodetachment of a negative ion precursor possessing a geometry similar to that of the transition state species. These spectra show features which are assigned to motions of the unstable neutral complex existing between reactants and products.

  9. Development of bankfull hydraulic geometry relationships for the physiographic divisions of the United States

    Science.gov (United States)

    Bankfull hydraulic geometry relationships are used to estimate channel dimensions for stream flow simulation models, which require channel geometry data as input parameters. Often, one nationwide curve is used across the entire U.S. (e.g. in SWAT), even though studies have shown that the use of reg...

  10. Electronic properties of corrugated graphene: the Heisenberg principle and wormhole geometry in the solid state.

    Science.gov (United States)

    Atanasov, Victor; Saxena, Avadh

    2011-05-04

    Adopting a purely two-dimensional relativistic equation for graphene's carriers contradicts the Heisenberg uncertainty principle since it requires setting the off-the-surface coordinate of a three-dimensional wavefunction to zero. Here we present a theoretical framework for describing graphene's massless relativistic carriers in accordance with this most fundamental of all quantum principles. A gradual confining procedure is used to restrict the dynamics onto a surface and normal to the surface parts, and in the process the embedding of this surface into the three-dimensional world is accounted for. As a result an invariant geometric potential arises in the surface part which scales linearly with the mean curvature and shifts the Fermi energy of the material proportional to bending. Strain induced modification of the electronic properties or 'straintronics' is clearly an important field of study in graphene. This opens an avenue to producing electronic devices: micro- and nano-electromechanical systems (MEMS and NEMS), where the electronic properties are controlled by geometric means and no additional alteration of graphene is necessary. The appearance of this geometric potential also provides us with clues as to how quantum dynamics looks in the curved space-time of general relativity. In this context we explore a two-dimensional cross-section of the wormhole geometry, realized with graphene as a solid state thought experiment. © 2011 IOP Publishing Ltd

  11. Study of the Ground-State Geometry of Silicon Clusters Using Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    M.R. Lemes

    2002-09-01

    Full Text Available Theoretical determination of the ground-state geometry of Si clusters is a difficult task. As the number of local minima grows exponentially with the number of atoms, to find the global minimum is a real challenge. One may start the search procedure from a random distribution of atoms but it is probably wiser to make use of any available information to restrict the search space. Here, we introduce a new approach, the Assisted Genetic Optimization (AGO that couples an Artificial Neural Network (ANN to a Genetic Algorithm (GA. Using available information on small Silicon clusters, we trained an ANN to predict good starting points (initial population for the GA. AGO is applied to Si10 and Si20 and compared to pure GA. Our results indicate: i AGO is, at least, 5 times faster than pure GA in our test case; ii ANN training can be made very fast and successfully plays the role of an experienced investigator; iii AGO can easily be adapted to other optimization problems.

  12. On the geometry dependence of differential pathlength factor for near-infrared spectroscopy. I. Steady-state with homogeneous medium

    Science.gov (United States)

    Piao, Daqing; Barbour, Randall L.; Graber, Harry L.; Lee, Daniel C.

    2015-01-01

    Abstract. This work analytically examines some dependences of the differential pathlength factor (DPF) for steady-state photon diffusion in a homogeneous medium on the shape, dimension, and absorption and reduced scattering coefficients of the medium. The medium geometries considered include a semi-infinite geometry, an infinite-length cylinder evaluated along the azimuthal direction, and a sphere. Steady-state photon fluence rate in the cylinder and sphere geometries is represented by a form involving the physical source, its image with respect to the associated extrapolated half-plane, and a radius-dependent term, leading to simplified formula for estimating the DPFs. With the source-detector distance and medium optical properties held fixed across all three geometries, and equal radii for the cylinder and sphere, the DPF is the greatest in the semi-infinite and the smallest in the sphere geometry. When compared to the results from finite-element method, the DPFs analytically estimated for 10 to 25 mm source–detector separations on a sphere of 50 mm radius with μa=0.01  mm−1 and μs′=1.0  mm−1 are on average less than 5% different. The approximation for sphere, generally valid for a diameter ≥20 times of the effective attenuation pathlength, may be useful for rapid estimation of DPFs in near-infrared spectroscopy of an infant head and for short source–detector separation. PMID:26465613

  13. A Comparison of Geometry Problems in Middle-Grade Mathematics Textbooks from Taiwan, Singapore, Finland, and the United States

    Science.gov (United States)

    Yang, Der-Ching; Tseng, Yi-Kuan; Wang, Tzu-Ling

    2017-01-01

    This study analyzed geometry problems in four middle-grade mathematics textbook series from Taiwan, Singapore, Finland, and the United States, while exploring the expectations for students' learning experiences with these problems. An analytical framework developed for mathematics textbook problem analysis had three dimensions: representation…

  14. Antiferrodistortive phase transitions and ground state of PZT ceramics

    International Nuclear Information System (INIS)

    Pandey, Dhananjai

    2013-01-01

    The ground state of the technologically important Pb(Zr x Ti (1-x) )O 3 , commonly known as PZT, ceramics is currently under intense debate. The phase diagram of this material shows a morphotropic phase boundary (MPB) for x∼0.52 at 300K, across which a composition induced structural phase transition occurs leading to maximization of the piezoelectric properties. In search for the true ground state of the PZT in the MPB region, Beatrix Noheda and coworkers first discovered a phase transition from tetragonal (space group P4mm) to an M A type monoclinic phase (space group Cm) at low temperatures for x=0.52. Soon afterwards, we discovered yet another low temperature phase transition for the same composition in which the M A type (Cm) monoclinic phase transforms to another monoclinic phase with Cc space group. We have shown that the Cm to Cc phase transition is an antiferrodistortive (AFD) transition involving tilting of oxygen octahedra leading to unit cell doubling and causing appearance of superlattice reflections which are observable in the electron and neutron diffraction patterns only and not in the XRD patterns, as a result of which Noheda and coworkers missed the Cc phase in their synchrotron XRD studies at low temperatures. Our findings were confirmed by leading groups using neutron, TEM, Raman and high pressure diffraction studies. The first principles calculations also confirmed that the true ground state of PZT in the MPB region has Cc space group. However, in the last couple of years, the Cc space group of the ground state has become controversial with an alternative proposal of R3c as the space group of the ground state phase which is proposed to coexist with the metastable Cm phase. In order to resolve this controversy, we recently revisited the issue using pure PZT and 6% Sr 2+ substituted PZT, the latter samples show larger tilt angle on account of the reduction in the average cationic radius at the Pb 2+ site. Using high wavelength neutrons and high

  15. Physiologic Measures of Animal Stress during Transitional States of Consciousness

    Directory of Open Access Journals (Sweden)

    Robert E. Meyer

    2015-08-01

    Full Text Available Determination of the humaneness of methods used to produce unconsciousness in animals, whether for anesthesia, euthanasia, humane slaughter, or depopulation, relies on our ability to assess stress, pain, and consciousness within the contexts of method and application. Determining the subjective experience of animals during transitional states of consciousness, however, can be quite difficult; further, loss of consciousness with different agents or methods may occur at substantially different rates. Stress and distress may manifest behaviorally (e.g., overt escape behaviors, approach-avoidance preferences [aversion] or physiologically (e.g., movement, vocalization, changes in electroencephalographic activity, heart rate, sympathetic nervous system [SNS] activity, hypothalamic-pituitary axis [HPA] activity, such that a one-size-fits-all approach cannot be easily applied to evaluate methods or determine specific species applications. The purpose of this review is to discuss methods of evaluating stress in animals using physiologic methods, with emphasis on the transition between the conscious and unconscious states.

  16. Communication: Electronic flux induced by crossing the transition state

    Science.gov (United States)

    Jia, Dongming; Manz, Jörn; Yang, Yonggang

    2018-01-01

    We present a new effect of chemical reactions, e.g., isomerizations, that occurs when the reactants pass along the transition state, on the way to products. It is based on the well-known fact that at the transition state, the electronic structure of one isomer changes to the other. We discover that this switch of electronic structure causes a strong electronic flux that is well distinguishable from the usual flux of electrons that travel with the nuclei. As a simple but clear example, the effect is demonstrated here for bond length isomerization of Na2 (21Σu+), with adiabatic crossing the barrier between the inner and outer wells of the double minimum potential that support different "Rydberg" and "ionic" type electronic structures, respectively.

  17. Optimal control of transitions between nonequilibrium steady states.

    Directory of Open Access Journals (Sweden)

    Patrick R Zulkowski

    Full Text Available Biological systems fundamentally exist out of equilibrium in order to preserve organized structures and processes. Many changing cellular conditions can be represented as transitions between nonequilibrium steady states, and organisms have an interest in optimizing such transitions. Using the Hatano-Sasa Y-value, we extend a recently developed geometrical framework for determining optimal protocols so that it can be applied to systems driven from nonequilibrium steady states. We calculate and numerically verify optimal protocols for a colloidal particle dragged through solution by a translating optical trap with two controllable parameters. We offer experimental predictions, specifically that optimal protocols are significantly less costly than naive ones. Optimal protocols similar to these may ultimately point to design principles for biological energy transduction systems and guide the design of artificial molecular machines.

  18. Edge effect and significant increase of the superconducting transition onset temperature of 2D superconductors in flat and curved geometries

    International Nuclear Information System (INIS)

    Wong, Chi Ho; Lortz, Rolf

    2016-01-01

    Highlights: • The superconducting transition temperature T c in the case of a 2D rectangular sheet, a hollow cylinder and a hollow sphere of one coherence length thickness is compared. • Being extremely thin in a flat rectangular shape is not enough to significantly enhance the T c through phonon softening unless a curvature is added. • The edge effect of such a 2D sheet has a strong broadening effect on T c in addition to the effect of order parameter phase fluctuations. - Abstract: In this paper, we present a simple method to model the curvature activated phonon softening in a 2D superconducting layer. The superconducting transition temperature T c in the case of a 2D rectangular sheet, a hollow cylinder and a hollow sphere of one coherence length thickness is calculated by the quantum mechanical electron–phonon scattering matrix, and a series of collective lattice vibrations in the surface state. We will show that being extremely thin in a flat rectangular shape is not enough to significantly enhance the T c through phonon softening. However, if a curvature is added, T c can be strongly enhanced. The increase in T c with respect to the bulk is greatest in a hollow sphere, intermediate in a hollow cylinder and weakest for the rectangular sheet, when systems of identical length scale are considered. In addition, we find that the edge effect of such a 2D sheet has a strong broadening effect on T c in addition to the effect of order parameter phase fluctuations.

  19. Electromagnetic transitions between states satisfying free-boundary conditions

    International Nuclear Information System (INIS)

    Nikolopoulos, L. A. A.

    2006-01-01

    We address the problem of calculating electromagnetic transition matrix elements between states of a particle in spherically symmetrical potentials with no assumed boundary conditions at finite distance (free-boundary-condition method). For this, the Schroedinger equation is solved in a finite box of radius R and bound and continuum states, appropriately normalized, are numerically represented, through a variational finite-basis-set (B-spline) approach. The equivalence between the three transition operator forms (length, velocity, acceleration), within this approach, is discussed, and bound-continuum and continuum-continuum matrix elements are calculated in all three gauges. Results for the strong electromagnetic radiation of hydrogen are presented through the calculation of two-photon ionization cross sections and photoelectron angular distributions. It is demonstrated that the present approach is well suited for the calculation of multiphoton transitions when ionization in the continuum is allowed (above-threshold ionization). With the free-boundary-condition method complete control over the density of scattering states is feasible and, as the result of that, the degeneracy in the continuum between partial waves is preserved

  20. Reliable Transition State Searches Integrated with the Growing String Method.

    Science.gov (United States)

    Zimmerman, Paul

    2013-07-09

    The growing string method (GSM) is highly useful for locating reaction paths connecting two molecular intermediates. GSM has often been used in a two-step procedure to locate exact transition states (TS), where GSM creates a quality initial structure for a local TS search. This procedure and others like it, however, do not always converge to the desired transition state because the local search is sensitive to the quality of the initial guess. This article describes an integrated technique for simultaneous reaction path and exact transition state search. This is achieved by implementing an eigenvector following optimization algorithm in internal coordinates with Hessian update techniques. After partial convergence of the string, an exact saddle point search begins under the constraint that the maximized eigenmode of the TS node Hessian has significant overlap with the string tangent near the TS. Subsequent optimization maintains connectivity of the string to the TS as well as locks in the TS direction, all but eliminating the possibility that the local search leads to the wrong TS. To verify the robustness of this approach, reaction paths and TSs are found for a benchmark set of more than 100 elementary reactions.

  1. Biosynthetic consequences of multiple sequential post-transition-state bifurcations

    Science.gov (United States)

    Hong, Young Joo; Tantillo, Dean J.

    2014-02-01

    Selectivity in chemical reactions that form complex molecular architectures from simpler precursors is usually rationalized by comparing competing transition-state structures that lead to different possible products. Herein we describe a system for which a single transition-state structure leads to the formation of many isomeric products via pathways that feature multiple sequential bifurcations. The reaction network described connects the pimar-15-en-8-yl cation to miltiradiene, a tricyclic diterpene natural product, and isomers via cyclizations and/or rearrangements. The results suggest that the selectivity of the reaction is controlled by (post-transition-state) dynamic effects, that is, how the carbocation structure changes in response to the distribution of energy in its vibrational modes. The inherent dynamical effects revealed herein (characterized through quasiclassical direct dynamics calculations using density functional theory) have implications not only for the general principles of selectivity prediction in systems with complex potential energy surfaces, but also for the mechanisms of terpene synthase enzymes and their evolution. These findings redefine the challenges faced by nature in controlling the biosynthesis of complex natural products.

  2. Interplay of Zero-Field Splitting and Excited State Geometry Relaxation in fac-Ir(ppy)3.

    Science.gov (United States)

    Gonzalez-Vazquez, José P; Burn, Paul L; Powell, Benjamin J

    2015-11-02

    The lowest energy triplet state, T1, of organometallic complexes based on iridium(III) is of fundamental interest, as the behavior of molecules in this state determines the suitability of the complex for use in many applications, e.g., organic light-emitting diodes. Previous characterization of T1 in fac-Ir(ppy)3 suggests that the trigonal symmetry of the complex is weakly broken in the excited state. Here we report relativistic time dependent density functional calculations of the zero-field splitting (ZFS) of fac-Ir(ppy)3 in the ground state (S0) and lowest energy triplet (T1) geometries and at intermediate geometries. We show that the energy scale of the geometry relaxation in the T1 state is large compared to the ZFS. Thus, the natural analysis of the ZFS and the radiative decay rates, based on the assumption that the structural distortion is a small perturbation, fails dramatically. In contrast, our calculations of these quantities are in good agreement with experiment.

  3. Assessing awareness, interest, and knowledge of fractal geometry among secondary mathematics teachers in the United States and China

    Science.gov (United States)

    Chen, Suanrong

    Fractal geometry has gained great attention from mathematicians and scientists in the past three decades (Fraboni & Moller, 2008). As a new geometry language and subject, fractal geometry has significant value in teaching and learning secondary mathematics. The present study focused on investigating the current state of mathematics teachers' awareness, interest, and knowledge of fractal geometry in the United States (U.S.) and China, as well as the factors that influence them. The instrument of the study included a survey and a test designed by the researcher and validated by five experts. The results of the study indicated that secondary math teachers in the U.S. and China had very low levels of awareness of fractals and lack the knowledge and skills of solving fractal problems, but they had a higher level of interest in fractals related to classroom teaching and professional development as compared with their levels of awareness. Furthermore, the results of this study indicated that the factor 'experience of learning fractals' had the most positive effect on the average score of awareness. The factor nationality (U.S.) had the most positive effect on the average score of interest. The factor nationality (U.S.) had the most negative effect on the average score of knowledge.

  4. Characterization of the matrix glass transition in carbon-epoxy laminates using the CSD test geometry. [centro-symmetric deformation

    Science.gov (United States)

    Sternstein, S. S.; Yang, P.

    1983-01-01

    A new test geometry, referred to as centro-symmetric deformation (CSD), is proposed for characterizing the viscoelastic behavior of the matrix of carbon-epoxy laminates. The sample consists of a thin disk, typically 6-14 plies thick, having a nominal diameter of 30 mm. The disk is freely supported on a circular anvil; the load is applied to the center of the disk using an 8-mm-diameter ball bearing nosepiece. The CSD test geometry provides viscoelastic dispersion data which are independent of the angular orientation of the sample. The test geometry is sufficiently sensitive to matrix changes to allow its use for postcuring, humidity, crosslink density, and other matrix change studies. Test results are presented for a carbon-epoxy laminate.

  5. A transition-state based rotational sudden (TSRS) approximation for polyatomic reactive scattering.

    Science.gov (United States)

    Zhao, Bin; Manthe, Uwe

    2017-10-14

    A transition-state based rotational sudden (TSRS) approximation for the calculation of differential and integral cross sections is introduced. The TSRS approach only requires data obtained from reactive scattering calculations for the vanishing total angular momentum (J = 0). It is derived within the quantum transition state framework and can be viewed as a generalization and improvement of existing J-shifting schemes. The TSRS approach assumes a sudden decay of the activated complex and separability of the overall rotation and motion in the internal coordinates. Depending on the choice of the body fixed frame, different variants of the TSRS can be derived. The TSRS approach is applied to the calculation of integral cross sections of various isotopomers of the H 2 O+H→H 2 +OH reaction, the reverse reaction H 2 +OH→H 2 O+H, and the H 2 O+Cl→HCl+OH reaction. Comparison with accurate close-coupling calculations and established approximate schemes shows that a scattering frame based TSRS approximation yields more accurate results than the centrifugal sudden approximation and standard J-shifting for the H 2 O+H→H 2 +OH reaction and all isotopomers studied. For the H 2 +OH→H 2 O+H and the H 2 O+Cl→HCl+OH reactions, the TSRS results as well as the results of the other approximate schemes agree well with the exact ones. The findings are rationalized by an analysis of the different contributions to the moment of inertia matrix at the transition state geometry.

  6. Transition-state structures for enzymatic and alkaline phosphotriester hydrolysis

    International Nuclear Information System (INIS)

    Caldwell, S.R.; Raushel, F.M.; Weiss, P.M.; Cleland, W.W.

    1991-01-01

    The primary and secondary 18 O isotope effects for the alkaline (KOH) and enzymatic (phosphotriesterase) hydrolysis of two phosphotriesters, O,O-diethyl p-nitrophenyl phosphate (I) and O,O-diethyl O-(4-carbamoylphenyl) phosphate (II), are consistent with an associative mechanism with significant changes in bond order to both the phosphoryl and phenolic leaving group oxygens in the transition state. The synthesis of [ 15 N, phosphoryl- 18 O]-,[ 15 N, phenolic- 18 O]-, and [ 15 N]-O,O-diethyl p-nitrophenyl phosphate and O,O-diethyl O-(4-carbamoylphenyl)phosphate is described. The primary and secondary 18 O isotope effects for the alkaline hydrolysis of compound I are 1.0060 and 1.0063 ± 0.0001, whereas for compound II they are 1.027±0.002 and 1.025 ± 0.002, respectively. These isotope effects are consistent with the rate-limiting addition of hydroxide and provide evidence for a S N 2-like transition state with the absence of a stable phosphorane intermediate. For the enzymatic hydrolysis of compound I, the primary and secondary 18 O isotope effects are very small, 1.0020 and 1.0021±0.0004, respectively, and indicate that the chemical step in the enzymatic mechanism is not rate-limiting. The 18 O isotope effects for the enzymatic hydrolysis of compound II are 1.036±0.001 and 1.0181±0.0007, respectively, and are comparable in magnitude to the isotope effects for alkaline hydrolysis, suggesting that the chemical step is rate-limiting. The relative magnitude of the primary 18 O isotope effects for the alkaline and enzymatic hydrolysis of compound II reflect a transition state that is more progressed for the enzymatic reaction

  7. Finite-state transition system analysis of disturbed foundation stiffness

    DEFF Research Database (Denmark)

    Sabaliauskas, Tomas; Ibsen, Lars Bo

    2018-01-01

    Foundations erected in sand can become disturbed during dynamic loading, as sand stiffness can both increase and decrease episodically. Paradigms outside geotechnics analyze similar problems as finite-state transition systems. Therefore, patterns governing disturbed foundation stiffness change......, the unconventional analysis technique delivers substantial descriptive and predictive power. To demonstrate the utility, stiffness of a foundation prototype is manipulated: during real-life, real-time testing, the initial stiffness path is disturbed and recovered 5 times in one loading sequence. Thus, the "memory...

  8. Transitional states of central serotonin receptors in Parkinson's disease

    International Nuclear Information System (INIS)

    Kienzl, E.; Riederer, P.; Jellinger, K.; Wesemann, W.; Marburg Univ.

    1981-01-01

    Crude membrane preparations from the frontal cortex of controls and pakinsonian patients were used to demonstrate affinity changes of the specific 3 H-5-hydroxytryptamine (5-HT) binding sites. Two such sites were noteable in controls, a finding consistent with earlier observations. In Parkinson's disease, both high- and low-affinity sites are significantly decreased. Additional experiments either with prolonged incubation times or pre-incubation with N-ethylmaleimide change the two affinities to a single high-affinity or low-affinity constant. The concept of transitional states of 5-HT receptors is discussed and seems to have important implications in the treatment of parkinsonism. (author)

  9. Solid-state nanopores of controlled geometry fabricated in a transmission electron microscope

    Science.gov (United States)

    Qian, Hui; Egerton, Ray F.

    2017-11-01

    Energy-filtered transmission electron microscopy and electron tomography were applied to in situ studies of the formation, shape, and diameter of nanopores formed in a silicon nitride membrane in a transmission electron microscope. The nanopore geometry was observed in three dimensions by electron tomography. Drilling conditions, such as probe current, beam convergence angle, and probe position, affect the formation rate and the geometry of the pores. With a beam convergence semi-angle of α = 22 mrad, a conical shaped nanopore is formed but at α = 45 mrad, double-cone (hourglass-shaped) nanopores were produced. Nanopores with an effective diameter between 10 nm and 1.8 nm were fabricated by controlling the drilling time.

  10. Magnetism of Nanographene-Based Microporous Carbon and Its Applications: Interplay of Edge Geometry and Chemistry Details in the Edge State

    Science.gov (United States)

    Enoki, Toshiaki; Kiguchi, Manabu

    2018-03-01

    This paper is a contribution to the Physical Review Applied collection in memory of Mildred S. Dresselhaus. Nanographenes have important edge geometry dependence in their electronic structures. In armchair edges, electron wave interference works to contribute to energetic stability. Meanwhile, zigzag edges possess an edge-localized and spin-polarized nonbonding edge state, which causes electronic, magnetic, and chemical activities. In addition to the geometry dependence, the electronic structures are seriously affected by edge chemistry details. The edge chemistry dependence together with edge geometries on the electronic structures are discussed with samples of randomly networked nanographenes (microporous activated carbon fibers) in pristine state and under high-temperature annealing. In the pristine sample with the edges oxidized in ambient atmospheric conditions, the edge state, which is otherwise unstable, can be stabilized because of the charge transfer from nanographene to terminating oxygen. Nanographene, whose edges consist of a combination of magnetic zigzag edges and nonmagnetic armchair edges, is found to be ferrimagnetic with a nonzero net magnetic moment created under the interplay between a strong intrazigzag-edge ferromagnetic interaction and intermediate-strength interzigzag-edge antiferromagnetic-ferromagnetic interaction. At heat-treatment temperatures just below the fusion start (approximately 1500 K), the edge-terminating structure is changed from oxygen-containing groups to hydrogen in the nanographene network. Additionally, hydrogen-terminated zigzag edges, which are present as the majority and chemically unstable, play a triggering role in fusion above 1500 K. The fusion start brings about an insulator-to-metal transition at TI -M˜1500 K . Local fusions taking place percolatively between nanographenes work to expand the π -bond network, eventually resulting in the development of antiferromagnetic short-range order toward spin glass in the

  11. Tracking the embryonic stem cell transition from ground state pluripotency.

    Science.gov (United States)

    Kalkan, Tüzer; Olova, Nelly; Roode, Mila; Mulas, Carla; Lee, Heather J; Nett, Isabelle; Marks, Hendrik; Walker, Rachael; Stunnenberg, Hendrik G; Lilley, Kathryn S; Nichols, Jennifer; Reik, Wolf; Bertone, Paul; Smith, Austin

    2017-04-01

    Mouse embryonic stem (ES) cells are locked into self-renewal by shielding from inductive cues. Release from this ground state in minimal conditions offers a system for delineating developmental progression from naïve pluripotency. Here, we examine the initial transition process. The ES cell population behaves asynchronously. We therefore exploited a short-half-life Rex1::GFP reporter to isolate cells either side of exit from naïve status. Extinction of ES cell identity in single cells is acute. It occurs only after near-complete elimination of naïve pluripotency factors, but precedes appearance of lineage specification markers. Cells newly departed from the ES cell state display features of early post-implantation epiblast and are distinct from primed epiblast. They also exhibit a genome-wide increase in DNA methylation, intermediate between early and late epiblast. These findings are consistent with the proposition that naïve cells transition to a distinct formative phase of pluripotency preparatory to lineage priming. © 2017. Published by The Company of Biologists Ltd.

  12. Automated Transition State Searches without Evaluating the Hessian.

    Science.gov (United States)

    Mallikarjun Sharada, Shaama; Zimmerman, Paul M; Bell, Alexis T; Head-Gordon, Martin

    2012-12-11

    Accurate and speedy determination of transition structures (TSs) is essential for computational studies on reaction pathways, particularly when the process involves expensive electronic structure calculations. Many search algorithms require a good initial guess of the TS geometry, as well as a Hessian input that possesses a structure consistent with the desired saddle point. Among the double-ended interpolation methods for generation of the guess for the TS, the freezing string method (FSM) is proven to be far less expensive compared to its predecessor, the growing string method (GSM). In this paper, it is demonstrated that the efficiency of this technique can be improved further by replacing the conjugate gradient optimization step (FSM-CG) with a quasi-Newton line search coupled with a BFGS Hessian update (FSM-BFGS). A second crucial factor that affects the speed with which convergence to the TS is achieved is the quality and cost of the Hessian of the energy for the guessed TS. For electronic structure calculations, the cost of calculating an exact Hessian increases more rapidly with system size than the energy and gradient. Therefore, to sidestep calculation of the exact Hessian, an approximate Hessian is constructed, using the tangent direction and local curvature at the TS guess. It is demonstrated that the partitioned-rational function optimization algorithm for locating TSs with this approximate Hessian input performs at least as well as with an exact Hessian input in most test cases. The two techniques, FSM and approximate Hessian construction, therefore can significantly reduce costs associated with finding TSs.

  13. Transit Car Performance Comparison, State-of-the-Art Car vs. PATCO Transit Car, NYCTA R-46, MBTA Silverbirds

    Science.gov (United States)

    1978-02-01

    The first phase of this contract authorized the design, development, and demonstration of two State-Of-The-Art Cars (SOAC). This document reports on the gathering of comparative test data on existing in-service transit cars. The three transit cars se...

  14. Bound states of quarks and gluons and hadronic transitions

    International Nuclear Information System (INIS)

    Castro, Antonio Soares de.

    1990-05-01

    A potential which incorporates the concepts of confinement and asymptotic freedom, previously utilized in the description of the spectroscopy of mesons and baryons, is extended to the gluon sector. The mass spectroscopy of glueballs and hybrids is analyzed considering only pairwise potentials and massive constituent gluons. The mass spectrum of the color octet two-gluon system is adopted as a suitable description of the intermediate states of hadronic transitions, within the framework of the multipole expansion for quantum chromodynamics. The spin-dependent effects in the gluonium spectrum, associated with the Coulombian potential, are calculated through the inverted first Born approximation for the gluon-gluon scattering. (author). 102 refs, 1 fig, 13 tabs

  15. Excited state geometry optimizations by analytical energy gradient of long-range corrected time-dependent density functional theory.

    Science.gov (United States)

    Chiba, Mahito; Tsuneda, Takao; Hirao, Kimihiko

    2006-04-14

    An analytical excitation energy gradient of long-range corrected time-dependent density functional theory (LC-TDDFT) is presented. This is based on a previous analytical TDDFT gradient formalism, which avoids solving the coupled-perturbed Kohn-Sham equation for each nuclear degree of freedom. In LC-TDDFT, exchange interactions are evaluated by combining the short-range part of a DFT exchange functional with the long-range part of the Hartree-Fock exchange integral. This LC-TDDFT gradient was first examined by calculating the excited state geometries and adiabatic excitation energies of small typical molecules and a small protonated Schiff base. As a result, we found that long-range interactions play a significant role even in valence excited states of small systems. This analytical LC-TDDFT gradient was also applied to the investigations of small twisted intramolecular charge transfer (TICT) systems. By comparing with calculated ab initio multireference perturbation theory and experimental results, we found that LC-TDDFT gave much more accurate absorption and fluorescence energies of these systems than those of conventional TDDFTs using pure and hybrid functionals. For optimized excited state geometries, LC-TDDFT provided fairly different twisting and wagging angles of these small TICT systems in comparison with conventional TDDFT results.

  16. Quantum Hall states of atomic Bose gases: Density profiles in single-layer and multilayer geometries

    International Nuclear Information System (INIS)

    Cooper, N. R.; Lankvelt, F. J. M. van; Reijnders, J. W.; Schoutens, K.

    2005-01-01

    We describe the density profiles of confined atomic Bose gases in the high-rotation limit, in single-layer and multilayer geometries. We show that, in a local-density approximation, the density in a single layer shows a landscape of quantized steps due to the formation of incompressible liquids, which are analogous to fractional quantum Hall liquids for a two-dimensional electron gas in a strong magnetic field. In a multilayered setup we find different phases, depending on the strength of the interlayer tunneling t. We discuss the situation where a vortex lattice in the three-dimensional condensate (at large tunneling) undergoes quantum melting at a critical tunneling t c 1 . For tunneling well below t c 1 one expects weakly coupled or isolated layers, each exhibiting a landscape of quantum Hall liquids. After expansion, this gives a radial density distribution with characteristic features (cusps) that provide experimental signatures of the quantum Hall liquids

  17. Electron correlations and two-photon states in polycyclic aromatic hydrocarbon molecules: A peculiar role of geometry

    International Nuclear Information System (INIS)

    Aryanpour, Karan; Shukla, Alok; Mazumdar, Sumit

    2014-01-01

    We present numerical studies of one- and two-photon excited states ordering in a number of polycyclic aromatic hydrocarbon molecules: coronene, hexa-peri-hexabenzocoronene, and circumcoronene, all possessing D 6h point group symmetry versus ovalene with D 2h symmetry, within the Pariser-Parr-Pople model of interacting π-electrons. The calculated energies of the two-photon states as well as their relative two-photon absorption cross-sections within the interacting model are qualitatively different from single-particle descriptions. More remarkably, a peculiar role of molecular geometry is found. The consequence of electron correlations is far stronger for ovalene, where the lowest spin-singlet two-photon state is a quantum superposition of pairs of lowest spin triplet states, as in the linear polyenes. The same is not true for D 6h group hydrocarbons. Our work indicates significant covalent character, in valence bond language, of the ground state, the lowest spin triplet state and a few of the lowest two-photon states in D 2h ovalene but not in those with D 6h symmetry

  18. Electron correlations and two-photon states in polycyclic aromatic hydrocarbon molecules: A peculiar role of geometry

    Energy Technology Data Exchange (ETDEWEB)

    Aryanpour, Karan [Department of Physics, University of Arizona, Tucson, Arizona 85721 (United States); Shukla, Alok [Department of Physics, Indian Institute of Technology, Powai, Mumbai 400076 (India); Mazumdar, Sumit [Department of Physics, University of Arizona, Tucson, Arizona 85721 (United States); College of Optical Sciences, University of Arizona, Tucson, Arizona 85721 (United States)

    2014-03-14

    We present numerical studies of one- and two-photon excited states ordering in a number of polycyclic aromatic hydrocarbon molecules: coronene, hexa-peri-hexabenzocoronene, and circumcoronene, all possessing D{sub 6h} point group symmetry versus ovalene with D{sub 2h} symmetry, within the Pariser-Parr-Pople model of interacting π-electrons. The calculated energies of the two-photon states as well as their relative two-photon absorption cross-sections within the interacting model are qualitatively different from single-particle descriptions. More remarkably, a peculiar role of molecular geometry is found. The consequence of electron correlations is far stronger for ovalene, where the lowest spin-singlet two-photon state is a quantum superposition of pairs of lowest spin triplet states, as in the linear polyenes. The same is not true for D{sub 6h} group hydrocarbons. Our work indicates significant covalent character, in valence bond language, of the ground state, the lowest spin triplet state and a few of the lowest two-photon states in D{sub 2h} ovalene but not in those with D{sub 6h} symmetry.

  19. Electron correlations and two-photon states in polycyclic aromatic hydrocarbon molecules: a peculiar role of geometry.

    Science.gov (United States)

    Aryanpour, Karan; Shukla, Alok; Mazumdar, Sumit

    2014-03-14

    We present numerical studies of one- and two-photon excited states ordering in a number of polycyclic aromatic hydrocarbon molecules: coronene, hexa-peri-hexabenzocoronene, and circumcoronene, all possessing D(6h) point group symmetry versus ovalene with D(2h) symmetry, within the Pariser-Parr-Pople model of interacting π-electrons. The calculated energies of the two-photon states as well as their relative two-photon absorption cross-sections within the interacting model are qualitatively different from single-particle descriptions. More remarkably, a peculiar role of molecular geometry is found. The consequence of electron correlations is far stronger for ovalene, where the lowest spin-singlet two-photon state is a quantum superposition of pairs of lowest spin triplet states, as in the linear polyenes. The same is not true for D(6h) group hydrocarbons. Our work indicates significant covalent character, in valence bond language, of the ground state, the lowest spin triplet state and a few of the lowest two-photon states in D(2h) ovalene but not in those with D(6h) symmetry.

  20. The Astrophysical Weeds: Rotational Transitions in Excited Vibrational States

    Science.gov (United States)

    Alonso, José L.; Kolesniková, Lucie; Alonso, Elena R.; Mata, Santiago

    2017-06-01

    The number of unidentified lines in the millimeter and submillimeter wave surveys of the interstellar medium has grown rapidly. The major contributions are due to rotational transitions in excited vibrational states of a relatively few molecules that are called the astrophysical weeds. necessary data to deal with spectral lines from astrophysical weeds species can be obtained from detailed laboratory rotational measurements in the microwave and millimeter wave region. A general procedure is being used at Valladolid combining different time and/or frequency domain spectroscopic tools of varying importance for providing the precise set of spectroscopic constants that could be used to search for this species in the ISM. This is illustrated in the present contribution through its application to several significant examples. Fortman, S. M., Medvedev, I. R., Neese, C.F., & De Lucia, F.C. 2010, ApJ,725, 1682 Rotational Spectra in 29 Vibrationally Excited States of Interstellar Aminoacetonitrile, L. Kolesniková, E. R. Alonso, S. Mata, and J. L. Alonso, The Astrophysical Journal Supplement Series 2017, (in press).

  1. Studies of transition states and radicals by negative ion photodetachment

    Energy Technology Data Exchange (ETDEWEB)

    Metz, Ricardo Baer [Univ. of California, Berkeley, CA (United States)

    1991-12-01

    Negative ion photodetachment is a versatile tool for the production and study of transient neutral species such as reaction intermediates and free radicals. Photodetachment of the stable XHY- anion provides a direct spectroscopic probe of the transition state region of the potential energy surface for the neutral hydrogen transfer reaction X + HY → XH + Y, where X and Y are halogen atoms. The technique is especially sensitive to resonances, which occur at a specific energy, but the spectra also show features due to direct scattering. We have used collinear adiabatic simulations of the photoelectron spectra to evaluate trail potential energy surfaces for the biomolecular reactions and have extended the adiabatic approach to three dimensions and used it to evaluate empirical potential energy surfaces for the I + Hl and Br + HI reactions. In addition, we have derived an empirical, collinear potential energy surface for the Br + HBr reaction that reproduces our experimental results and have extended this surface to three dimensions. Photodetachment of a negative ion can be also used to study neutral free radicals. We have studied the vibrational and electronic spectroscopy of CH2NO2 by photoelectron spectroscopy of CH2NO2-, determining the electron affinity of CH2NO2, gaining insight on the bonding of the 2B1 ground state and observing the 2A2 excited state for the first time. Negative ion photodetachment also provides a novel and versatile source of mass-selected, jet-cooled free radicals. We have studied the photodissociation of CH2NO2 at 270, 235, and 208 nm, obtaining information on the dissociation products by measuring the kinetic energy release in the photodissociation.

  2. Studies of transition states and radicals by negative ion photodetachment

    Energy Technology Data Exchange (ETDEWEB)

    Metz, R.B.

    1991-12-01

    Negative ion photodetachment is a versatile tool for the production and study of transient neutral species such as reaction intermediates and free radicals. Photodetachment of the stable XHY{sup {minus}} anion provides a direct spectroscopic probe of the transition state region of the potential energy surface for the neutral hydrogen transfer reaction X + HY {yields} XH + Y, where X and Y are halogen atoms. The technique is especially sensitive to resonances, which occur at a specific energy, but the spectra also show features due to direct scattering. We have used collinear adiabatic simulations of the photoelectron spectra to evaluate trail potential energy surfaces for the biomolecular reactions and have extended the adiabatic approach to three dimensions and used it to evaluate empirical potential energy surfaces for the I + Hl and Br + HI reactions. In addition, we have derived an empirical, collinear potential energy surface for the Br + HBr reaction that reproduces our experimental results and have extended this surface to three dimensions. Photodetachment of a negative ion can be also used to study neutral free radicals. We have studied the vibrational and electronic spectroscopy of CH{sub 2}NO{sub 2} by photoelectron spectroscopy of CH{sub 2}NO{sub 2}{sup {minus}}, determining the electron affinity of CH{sub 2}NO{sub 2}, gaining insight on the bonding of the {sup 2}B{sub 1} ground state and observing the {sup 2}A{sub 2} excited state for the first time. Negative ion photodetachment also provides a novel and versatile source of mass-selected, jet-cooled free radicals. We have studied the photodissociation of CH{sub 2}NO{sub 2} at 270, 235, and 208 nm, obtaining information on the dissociation products by measuring the kinetic energy release in the photodissociation.

  3. Account of states with indefinite spin in calculations of intercombination collisional transitions

    International Nuclear Information System (INIS)

    Gordeev, S.V.; Chirtsov, A.S.

    1986-01-01

    States with indefinite spin are used in the second order of the perturbation theory as intermediate states for calculating electronic collisional transitions with changing spin between excited states of atoms. The rate coefficient for 4 1 P-4 3 D transition in helium is estimated

  4. Computational Approaches to the Determination of the Molecular Geometry of Acrolein in its T_1(n,π*) State

    Science.gov (United States)

    McAnally, Michael O.; Hlavacek, Nikolaus C.; Drucker, Stephen

    2012-06-01

    The spectroscopically derived inertial constants for acrolein (propenal) in its T_1(n,π*) state were used to test predictions from a variety of computational methods. One focus was on multiconfigurational methods, such as CASSCF and CASPT2, that are applicable to excited states. We also examined excited-state methods that utilize single reference configurations, including EOM-EE-CCSD and TD-PBE0. Finally, we applied unrestricted ground-state techniques, such as UCCSD(T) and the more economical UPBE0 method, to the T_1(n,π*) excited state under the constraint of C_s symmetry. The unrestricted ground-state methods are applicable because at a planar geometry, the T_1(n,π*) state of acrolein is the lowest-energy state of its spin multiplicity. Each of the above methods was used with a triple zeta quality basis set to optimize the T_1(n,π*) geometry. This procedure resulted in the following sets of inertial constants: Inertial constants (cm-1) of acrolein in its T_1(n,π*) state Method A B C Method A B C CASPT2(6,5) 1.667 0.1491 0.1368 UCCSD(T)^b 1.668 0.1480 0.1360 CASSCF(6,5) 1.667 0.1491 0.1369 UPBE0 1.699 0.1487 0.1367 EOM-EE-CCSD 1.675 0.1507 0.1383 TD-PBE0 1.719 0.1493 0.1374 Experiment^a 1.662 0.1485 0.1363 The two multiconfigurational methods produce the same inertial constants, and those constants agree closely with experiment. However the sets of computed bond lengths differ significantly for the two methods. In the CASSCF calculation, the lengthening of the C=O and C=C bonds and the shortening of the C--C bond are more pronounced than in CASPT2. O. S. Bokareva et al., Int. J. Quant. Chem. {108}, 2719 (2008).

  5. Detecting critical state before phase transition of complex biological systems by hidden Markov model.

    Science.gov (United States)

    Chen, Pei; Liu, Rui; Li, Yongjun; Chen, Luonan

    2016-07-15

    Identifying the critical state or pre-transition state just before the occurrence of a phase transition is a challenging task, because the state of the system may show little apparent change before this critical transition during the gradual parameter variations. Such dynamics of phase transition is generally composed of three stages, i.e. before-transition state, pre-transition state and after-transition state, which can be considered as three different Markov processes. By exploring the rich dynamical information provided by high-throughput data, we present a novel computational method, i.e. hidden Markov model (HMM) based approach, to detect the switching point of the two Markov processes from the before-transition state (a stationary Markov process) to the pre-transition state (a time-varying Markov process), thereby identifying the pre-transition state or early-warning signals of the phase transition. To validate the effectiveness, we apply this method to detect the signals of the imminent phase transitions of complex systems based on the simulated datasets, and further identify the pre-transition states as well as their critical modules for three real datasets, i.e. the acute lung injury triggered by phosgene inhalation, MCF-7 human breast cancer caused by heregulin and HCV-induced dysplasia and hepatocellular carcinoma. Both functional and pathway enrichment analyses validate the computational results. The source code and some supporting files are available at https://github.com/rabbitpei/HMM_based-method lnchen@sibs.ac.cn or liyj@scut.edu.cn Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Numerical and experimental investigation of nonsteady state, natural laminar double diffusive convection on heating surfaces of different geometry; Numerische und experimentelle Untersuchung der instationaeren, natuerlichen, laminaren doppelt diffusen Konvektion an Heizflaechen unterschiedlicher Geometrie

    Energy Technology Data Exchange (ETDEWEB)

    Dosch, J.

    1990-12-31

    The aim of this work is the development of a numerical process independent of the geometry of the flow space. The temperature, concentration and speed fields set up with double diffusive convection should be determined by this and their effect on heat transfer should be determined. The numerical process should be used for non-steady state double diffusive convection in various geometries. The results should be verified experimentally with the aid of holographic interferometry. (orig./IHL) [Deutsch] Ziel der vorliegenden Arbeit ist die Entwicklung eines von der Geometrie des Stroemungsraumes unabhaengigen numerischen Verfahrens. Mit ihm sollen die sich bei doppelt diffusiver Konvektion einstellenden Temperatur-, Konzentrations- und Geschwindigkeitsfelder bestimmt und deren Einfluss auf die Waermeuebertragung ermittelt werden. Das numerische Verfahren soll auf die instationaere doppelt diffusive Konvektion in verschiedenen Geometrien angewendet werden. Die Ergebnisse sollen experimentell mit Hilfe der holographischen Interferometrie verifiziert werden. (orig./IHL)

  7. Discovering Unique, Low-Energy Transition States Using Evolutionary Molecular Memetic Computing

    DEFF Research Database (Denmark)

    Ellabaan, Mostafa M Hashim; Ong, Y.S.; Handoko, S.D.

    2013-01-01

    be accurately identified through the transition states. Transition states describe the paths of molecular systems in transiting across stable states. In this article, we present the discovery of unique, low-energy transition states and showcase the efficacy of their identification using the memetic computing...... for the global search, Berny algorithm for individual learning, and make use of the valley-adaptive clearing scheme as the niching strategy in the spirit of Lamarckian learning. Experiments with a number of small non-cyclic molecules demonstrated excellent efficacy of the MMC compared to recent advances...

  8. Modelling transition states of a small once-through boiler

    Energy Technology Data Exchange (ETDEWEB)

    Talonpoika, T. [Lappeenranta Univ. of Technology (Finland). Dept. of Energy Technology

    1997-12-31

    This article presents a model for the unsteady dynamic behaviour of a once-through counter flow boiler that uses an organic working fluid. The boiler is a compact waste-heat boiler without a furnace and it has a preheater, a vaporiser and a superheater. The relative lengths of the boiler parts vary with the operating conditions since they are all parts of a single tube. The boiler model is presented using a selected example case that uses toluene as the process fluid and flue gas from natural gas combustion as the heat source. The dynamic behaviour of the boiler means transition from the steady initial state towards another steady state that corresponds to the changed process conditions. The solution method chosen is to find such a pressure of the process fluid that the mass of the process fluid in the boiler equals the mass calculated using the mass flows into and out of the boiler during a time step, using the finite difference method. A special method of fast calculation of the thermal properties is used, because most of the calculation time is spent in calculating the fluid properties. The boiler is divided into elements. The values of the thermodynamic properties and mass flows are calculated in the nodes that connect the elements. Dynamic behaviour is limited to the process fluid and tube wall, and the heat source is regarded as to be steady. The elements that connect the preheater to the vaporiser and the vaporiser to the superheater are treated in a special way that takes into account a flexible change from one part to the other. The initial state of the boiler is received from a steady process model that is not a part of the boiler model. The known boundary values that may vary during the dynamic calculation were the inlet temperature and mass flow rates of both the heat source fluid and the process fluid. The dynamic boiler model is analysed for linear and step charges of the entering fluid temperatures and flow rates. The heat source side tests show that

  9. Using swarm intelligence for finding transition states and reaction paths.

    Science.gov (United States)

    Fournier, René; Bulusu, Satya; Chen, Stephen; Tung, Jamie

    2011-09-14

    We describe an algorithm that explores potential energy surfaces (PES) and finds approximate reaction paths and transition states. A few (≈6) evolving atomic configurations ("climbers") start near a local minimum M1 of the PES. The climbers seek a shallow ascent, low energy, path toward a saddle point S12, cross over to another valley of the PES, and climb down to a new minimum M2 that was not known beforehand. Climbers use both energy and energy derivatives to make individual decisions, and they use relative fitness to make team-based decisions. In sufficiently long runs, they keep exploring and may go through a sequence M1-S12-M2-S23-M3 ... of minima and saddle points without revisiting any of the critical points. We report results on eight small test systems that highlight advantages and disadvantages of the method. We also investigated the PES of Li(8), Al(7)(+), Ag(7), and Ag(2)NH(3) to illustrate potential applications of this new method. © 2011 American Institute of Physics

  10. Fourth-Order Vibrational Transition State Theory and Chemical Kinetics

    Science.gov (United States)

    Stanton, John F.; Matthews, Devin A.; Gong, Justin Z.

    2015-06-01

    Second-order vibrational perturbation theory (VPT2) is an enormously successful and well-established theory for treating anharmonic effects on the vibrational levels of semi-rigid molecules. Partially as a consequence of the fact that the theory is exact for the Morse potential (which provides an appropriate qualitative model for stretching anharmonicity), VPT2 calculations for such systems with appropriate ab initio potential functions tend to give fundamental and overtone levels that fall within a handful of wavenumbers of experimentally measured positions. As a consequence, the next non-vanishing level of perturbation theory -- VPT4 -- offers only slight improvements over VPT2 and is not practical for most calculations since it requires information about force constants up through sextic. However, VPT4 (as well as VPT2) can be used for other applications such as the next vibrational correction to rotational constants (the ``gammas'') and other spectroscopic parameters. In addition, the marriage of VPT with the semi-classical transition state theory of Miller (SCTST) has recently proven to be a powerful and accurate treatment for chemical kinetics. In this talk, VPT4-based SCTST tunneling probabilities and cumulative reaction probabilities are give for the first time for selected low-dimensional model systems. The prospects for VPT4, both practical and intrinsic, will also be discussed.

  11. Youth and administrator perspectives on transition in Kentucky's state agency schools.

    Science.gov (United States)

    Marshall, Amy; Powell, Norman; Pierce, Doris; Nolan, Ronnie; Fehringer, Elaine

    2012-01-01

    Students, a large percentage with disabilities, are at high risk for poor post-secondary outcomes in state agency education programs. This mixed-methods study describes the understandings of student transitions in state agency education programs from the perspectives of youth and administrators. Results indicated that: transition is more narrowly defined within alternative education programs; key strengths of transition practice are present in nontraditional schools; and the coordination barriers within this fluid inter-agency transition system are most apparent in students' frequent inter-setting transitions between nontraditional and home schools.

  12. Arab States in Transition | CRDI - Centre de recherches pour le ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Researchers will study key participants in transitions, their motivation, goals and organization; examine the role of institutions in ensuring a successful transition; document the nature of the small revolutions that are accompanying the big ones; and investigate the interplay between ... Date de début. 22 septembre 2011 ...

  13. Algebraic Geometry

    CERN Document Server

    Holme, Audun

    1988-01-01

    This volume presents selected papers resulting from the meeting at Sundance on enumerative algebraic geometry. The papers are original research articles and concentrate on the underlying geometry of the subject.

  14. Internal states of model isotropic granular packings. I. Assembling process, geometry, and contact networks

    OpenAIRE

    I. Agnolin; J.-N. Roux;  

    2007-01-01

    29 pages. Published in Physical Review E; International audience; This is the first paper of a series of three, reporting on numerical simulation studies of geometric and mechanical properties of static assemblies of spherical beads under an isotropic pressure. Frictionless systems assemble in the unique random close packing (RCP) state in the low pressure limit if the compression process is fast enough, slower processes inducing traces of crystallization, and exhibit specific properties direct...

  15. Discontinuous jamming transitions in soft materials: coexistence of flowing and jammed states

    International Nuclear Information System (INIS)

    Dennin, Michael

    2008-01-01

    Many systems in nature exhibit transitions between fluid-like states and solid-like states, or 'jamming transitions'. There is a strong theoretical foundation for understanding equilibrium phase transitions that involve solidification, or jamming. Other jamming transitions, such as the glass transition, are less well understood. The jamming phase diagram has been proposed to unify the description of equilibrium phase transitions, the glass transitions, and other nonequilibrium jamming transitions. As with equilibrium phase transitions, which can either be first order (discontinuous in a relevant order parameter) or second order (continuous), one would expect that generalized jamming transitions can be continuous or discontinuous. In studies of flow in complex fluids, there is a wide range of evidence for discontinuous transitions, mostly in the context of shear localization, or shear banding. In this paper, I review the experimental evidence for discontinuous transitions. I focus on systems in which there is a discontinuity in the rate of strain between two, coexisting states: one in which the material is flowing and the other in which it is solid-like. (topical review)

  16. Twistor geometry

    NARCIS (Netherlands)

    van den Broek, P.M.

    1984-01-01

    The aim of this paper is to give a detailed exposition of the relation between the geometry of twistor space and the geometry of Minkowski space. The paper has a didactical purpose; no use has been made of differential geometry and cohomology.

  17. Transitions in the computational power of thermal states for measurement-based quantum computation

    International Nuclear Information System (INIS)

    Barrett, Sean D.; Bartlett, Stephen D.; Jennings, David; Doherty, Andrew C.; Rudolph, Terry

    2009-01-01

    We show that the usefulness of the thermal state of a specific spin-lattice model for measurement-based quantum computing exhibits a transition between two distinct 'phases' - one in which every state is a universal resource for quantum computation, and another in which any local measurement sequence can be simulated efficiently on a classical computer. Remarkably, this transition in computational power does not coincide with any phase transition, classical, or quantum in the underlying spin-lattice model.

  18. Internal states of model isotropic granular packings. I. Assembling process, geometry, and contact networks.

    Science.gov (United States)

    Agnolin, Ivana; Roux, Jean-Noël

    2007-12-01

    This is the first paper of a series of three, in which we report on numerical simulation studies of geometric and mechanical properties of static assemblies of spherical beads under an isotropic pressure. The influence of various assembling processes on packing microstructures is investigated. It is accurately checked that frictionless systems assemble in the unique random close packing (RCP) state in the low pressure limit if the compression process is fast enough, higher solid fractions corresponding to more ordered configurations with traces of crystallization. Specific properties directly related to isostaticity of the force-carrying structure in the rigid limit are discussed. With frictional grains, different preparation procedures result in quite different inner structures that cannot be classified by the sole density. If partly or completely lubricated they will assemble like frictionless ones, approaching the RCP solid fraction Phi_{RCP} approximately 0.639 with a high coordination number: z* approximately =6 on the force-carrying backbone. If compressed with a realistic coefficient of friction mu=0.3 packings stabilize in a loose state with Phi approximately 0.593 and z* approximately =4.5 . And, more surprisingly, an idealized "vibration" procedure, which maintains an agitated, collisional regime up to high densities results in equally small values of z* while Phi is close to the maximum value Phi_{RCP}. Low coordination packings have a large proportion (>10%) of rattlers--grains carrying no force--the effect of which should be accounted for on studying position correlations, and also contain a small proportion of localized "floppy modes" associated with divalent grains. Low-pressure states of frictional packings retain a finite level of force indeterminacy even when assembled with the slowest compression rates simulated, except in the case when the friction coefficient tends to infinity. Different microstructures are characterized in terms of near

  19. Thermal geometry from CFT at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Gan, Wen-Cong, E-mail: ganwencong@gmail.com [Department of Physics, Nanchang University, Nanchang 330031 (China); Center for Relativistic Astrophysics and High Energy Physics, Nanchang University, Nanchang 330031 (China); Shu, Fu-Wen, E-mail: shufuwen@ncu.edu.cn [Department of Physics, Nanchang University, Nanchang 330031 (China); Center for Relativistic Astrophysics and High Energy Physics, Nanchang University, Nanchang 330031 (China); Wu, Meng-He, E-mail: menghewu.physik@gmail.com [Department of Physics, Nanchang University, Nanchang 330031 (China); Center for Relativistic Astrophysics and High Energy Physics, Nanchang University, Nanchang 330031 (China)

    2016-09-10

    We present how the thermal geometry emerges from CFT at finite temperature by using the truncated entanglement renormalization network, the cMERA. For the case of 2d CFT, the reduced geometry is the BTZ black hole or the thermal AdS as expectation. In order to determine which spacetimes prefer to form, we propose a cMERA description of the Hawking–Page phase transition. Our proposal is in agreement with the picture of the recent proposed surface/state correspondence.

  20. Thermal geometry from CFT at finite temperature

    Directory of Open Access Journals (Sweden)

    Wen-Cong Gan

    2016-09-01

    Full Text Available We present how the thermal geometry emerges from CFT at finite temperature by using the truncated entanglement renormalization network, the cMERA. For the case of 2d CFT, the reduced geometry is the BTZ black hole or the thermal AdS as expectation. In order to determine which spacetimes prefer to form, we propose a cMERA description of the Hawking–Page phase transition. Our proposal is in agreement with the picture of the recent proposed surface/state correspondence.

  1. Fast Transition between High-soft and Low-soft States in GRS 1915 ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    intensity in GRS 1758 − 258. Though transition from low-hard to high-soft states are seen in many Galactic black hole candidate sources, a transition between two different intensity states (high and low) with similar physical parameters of the accretion disk was not observed in GRS 1915 + 105 or in any other black hole ...

  2. 31 CFR 560.406 - Transshipment or transit through United States prohibited.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Transshipment or transit through United States prohibited. 560.406 Section 560.406 Money and Finance: Treasury Regulations Relating to... TRANSACTIONS REGULATIONS Interpretations § 560.406 Transshipment or transit through United States prohibited...

  3. Status of Credentialing Structures Related to Secondary Transition: A State-Level Policy Analysis

    Science.gov (United States)

    Simonsen, Monica L.; Novak, Jeanne A.; Mazzotti, Valerie L.

    2018-01-01

    To understand the current status of transition-related credentialing systems in driving personnel preparation, it is necessary to identify which state education and rehabilitation services agencies are currently providing certification and licensure in the area of secondary transition. The purpose of this study was to examine the current state of…

  4. Predicting landscape vegetation dynamics using state-and-transition simulation models

    Science.gov (United States)

    Colin J. Daniel; Leonardo. Frid

    2012-01-01

    This paper outlines how state-and-transition simulation models (STSMs) can be used to project changes in vegetation over time across a landscape. STSMs are stochastic, empirical simulation models that use an adapted Markov chain approach to predict how vegetation will transition between states over time, typically in response to interactions between succession,...

  5. Migration transition in small Northern and Eastern Caribbean states.

    Science.gov (United States)

    Mcelroy, J L; De Albuquerque, K

    1988-01-01

    1 area of intra-Caribbean migration that has been overlooked is the "migration transition"--the transformation of rapidly modernizing societies from net labor exporters to net labor importers. This article assembles 8 case studies to 1) briefly present a spectrum of migration experiences in the Caribbean, 2) uncover some transitions under way, 3) pinpoint the forces that underlie the migration transition, and 4) point out some of the more important policy implications of labor migration reversals. The 8 island societies sampled for illustration purposes include 1) the Bahamas and the US Virgin Islands as post-migration transition societies (Zelinsky's advanced society), 2) the British Virgin Islands and the Cayman Islands as undergoing transition (Zelinsky's late transitional society), and 3) Anguilla, St. Kitts-Nevis, Turks and Caicos, and Montserrat as premigration transition societies (Zelinsky's early transitional society). Population data for the islands were derived primarily from the West Indian censuses and government statistics. These 8 historical sketches reveal certain commonalities. All are at various stages in a long-term economic restructuring to displace traditional staple crops with more income elastic, high value export services. In such societies, population growth and progress along the migration transition is an increasing function of this kind of successful export substitution. In addition, along the migration and economic transitions, such insular economies exhibit a relatively large public sector (20-30% of all activity), declining unemployment, increasing fiscal autonomy, and are committed to a development strategy remarkably similar to the "successful" model of the Bahamas and the US Virgin Islands. Cursory evidence suggests that, because of intersectoral competition for land and labor, there is an inverse relationship between farm effort/manufacturing employment and tourism intensity. This review suggests that small islands undergoing

  6. Modeling Enzymatic Transition States by Force Field Methods

    DEFF Research Database (Denmark)

    Hansen, Mikkel Bo; Jensen, Hans Jørgen Aagaard; Jensen, Frank

    2009-01-01

    The SEAM method, which models a transition structure as a minimum on the seam of two diabatic surfaces represented by force field functions, has been used to generate 20 transition structures for the decarboxylation of orotidine by the orotidine-5'-monophosphate decarboxylase enzyme. The dependence...... by various electronic structure methods, where part of the enzyme is represented by a force field description and the effects of the solvent are represented by a continuum model. The relative energies vary by several hundreds of kJ/mol between the transition structures, and tests showed that a large part...

  7. Multiconfiguration pair-density functional theory for doublet excitation energies and excited state geometries: the excited states of CN.

    Science.gov (United States)

    Bao, Jie J; Gagliardi, Laura; Truhlar, Donald G

    2017-11-15

    Multiconfiguration pair-density functional theory (MC-PDFT) is a post multiconfiguration self-consistent field (MCSCF) method with similar performance to complete active space second-order perturbation theory (CASPT2) but with greater computational efficiency. Cyano radical (CN) is a molecule whose spectrum is well established from experiments and whose excitation energies have been used as a testing ground for theoretical methods to treat excited states of open-shell systems, which are harder and much less studied than excitation energies of closed-shell singlets. In the present work, we studied the adiabatic excitation energies of CN with MC-PDFT. Then we compared this multireference (MR) method to some single-reference (SR) methods, including time-dependent density functional theory (TDDFT) and completely renormalized equation-of-motion coupled-cluster theory with singles, doubles and noniterative triples [CR-EOM-CCSD(T)]; we also compared to some other MR methods, including configuration interaction singles and doubles (MR-CISD) and multistate CASPT2 (MS-CASPT2). Through a comparison between SR and MR methods, we achieved a better appreciation of the need to use MR methods to accurately describe higher excited states, and we found that among the MR methods, MC-PDFT stands out for its accuracy for the first four states out of the five doublet states studied this paper; this shows its efficiency for calculating doublet excited states.

  8. Internal states of model isotropic granular packings. I. Assembling process, geometry, and contact networks

    Science.gov (United States)

    Agnolin, Ivana; Roux, Jean-Noël

    2007-12-01

    This is the first paper of a series of three, in which we report on numerical simulation studies of geometric and mechanical properties of static assemblies of spherical beads under an isotropic pressure. The influence of various assembling processes on packing microstructures is investigated. It is accurately checked that frictionless systems assemble in the unique random close packing (RCP) state in the low pressure limit if the compression process is fast enough, higher solid fractions corresponding to more ordered configurations with traces of crystallization. Specific properties directly related to isostaticity of the force-carrying structure in the rigid limit are discussed. With frictional grains, different preparation procedures result in quite different inner structures that cannot be classified by the sole density. If partly or completely lubricated they will assemble like frictionless ones, approaching the RCP solid fraction ΦRCP≃0.639 with a high coordination number: z*≃6 on the force-carrying backbone. If compressed with a realistic coefficient of friction μ=0.3 packings stabilize in a loose state with Φ≃0.593 and z*≃4.5 . And, more surprisingly, an idealized “vibration” procedure, which maintains an agitated, collisional regime up to high densities results in equally small values of z* while Φ is close to the maximum value ΦRCP . Low coordination packings have a large proportion (>10%) of rattlers—grains carrying no force—the effect of which should be accounted for on studying position correlations, and also contain a small proportion of localized “floppy modes” associated with divalent grains. Low-pressure states of frictional packings retain a finite level of force indeterminacy even when assembled with the slowest compression rates simulated, except in the case when the friction coefficient tends to infinity. Different microstructures are characterized in terms of near neighbor correlations on various scales, and some

  9. Energy Demand Modeling Methodology of Key State Transitions of Turning Processes

    Directory of Open Access Journals (Sweden)

    Shun Jia

    2017-04-01

    Full Text Available Energy demand modeling of machining processes is the foundation of energy optimization. Energy demand of machining state transition is integral to the energy requirements of the machining process. However, research focus on energy modeling of state transition is scarce. To fill this gap, an energy demand modeling methodology of key state transitions of the turning process is proposed. The establishment of an energy demand model of state transition could improve the accuracy of the energy model of the machining process, which also provides an accurate model and reliable data for energy optimization of the machining process. Finally, case studies were conducted on a CK6153i CNC lathe, the results demonstrating that predictive accuracy with the proposed method is generally above 90% for the state transition cases.

  10. Conformal superfields and BPS states in $AdS_{4/7}$ geometries

    CERN Document Server

    Ferrara, Sergio; Ferrara, Sergio; Sokatchev, Emery

    2000-01-01

    We carry out a general analysis of the representations of the superconformal algebras OSp(8/4,R) and OSp(8*/2N) in terms of harmonic superspace. We present a construction of their highest-weight UIR's by multiplication of the different types of massless conformal superfields ("supersingletons"). Particular attention is paid to the so-called "short multiplets". Representations undergoing shortening have "protected dimension" and may correspond to BPS states in the dual supergravity theory in anti-de Sitter space. These results are relevant for the classification of multitrace operators in boundary conformally invariant theories as well as for the classification of AdS black holes preserving different fractions of supersymmetry.

  11. Solution of the transport equation in stationary state and X Y geometry, using continuous and discontinuous hybrid nodal schemes

    International Nuclear Information System (INIS)

    Xolocostli M, V.; Valle G, E. del; Alonso V, G.

    2003-01-01

    In this work it is described the development and the application of the NH-FEM schemes, Hybrid Nodal schemes using the Finite Element method in the solution of the neutron transport equation in stationary state and X Y geometry, of which two families of schemes were developed, one of which corresponds to the continuous and the other to the discontinuous ones, inside those first its are had the Bi-Quadratic Bi Q, and to the Bi-cubic BiC, while for the seconds the Discontinuous Bi-lineal DBiL and the Discontinuous Bi-quadratic DBiQ. These schemes were implemented in a program to which was denominated TNHXY, Transport of neutrons with Hybrid Nodal schemes in X Y geometry. One of the immediate applications of the schemes NH-FEM it will be in the analysis of assemblies of nuclear fuel, particularly of the BWR type. The validation of the TNHXY program was made with two test problems or benchmark, already solved by other authors with numerical techniques and to compare results. The first of them consists in an it BWR fuel assemble in an arrangement 7x7 without rod and with control rod providing numerical results. The second is a fuel assemble of mixed oxides (MOX) in an arrangement 10x10. This last problem it is known as the Benchmark problem WPPR of the NEA Data Bank and the results are compared with those of other commercial codes as HELIOS, MCNP-4B and CPM-3. (Author)

  12. Complex transitions between spike, burst or chaos synchronization states in coupled neurons with coexisting bursting patterns

    International Nuclear Information System (INIS)

    Gu Hua-Guang; Chen Sheng-Gen; Li Yu-Ye

    2015-01-01

    We investigated the synchronization dynamics of a coupled neuronal system composed of two identical Chay model neurons. The Chay model showed coexisting period-1 and period-2 bursting patterns as a parameter and initial values are varied. We simulated multiple periodic and chaotic bursting patterns with non-(NS), burst phase (BS), spike phase (SS), complete (CS), and lag synchronization states. When the coexisting behavior is near period-2 bursting, the transitions of synchronization states of the coupled system follows very complex transitions that begins with transitions between BS and SS, moves to transitions between CS and SS, and to CS. Most initial values lead to the CS state of period-2 bursting while only a few lead to the CS state of period-1 bursting. When the coexisting behavior is near period-1 bursting, the transitions begin with NS, move to transitions between SS and BS, to transitions between SS and CS, and then to CS. Most initial values lead to the CS state of period-1 bursting but a few lead to the CS state of period-2 bursting. The BS was identified as chaos synchronization. The patterns for NS and transitions between BS and SS are insensitive to initial values. The patterns for transitions between CS and SS and the CS state are sensitive to them. The number of spikes per burst of non-CS bursting increases with increasing coupling strength. These results not only reveal the initial value- and parameter-dependent synchronization transitions of coupled systems with coexisting behaviors, but also facilitate interpretation of various bursting patterns and synchronization transitions generated in the nervous system with weak coupling strength. (paper)

  13. Probability of stochastic processes and spacetime geometry

    International Nuclear Information System (INIS)

    Canessa, E.

    2007-01-01

    We made a first attempt to associate a probabilistic description of stochastic processes like birth-death processes with spacetime geometry in the Schwarzschild metrics on distance scales from the macro- to the micro-domains. We idealize an ergodic system in which system states communicate through a curved path composed of transition arrows where each arrow corresponds to a positive, analogous birth or death rate. (author)

  14. Performance measure that indicates geometry sufficiency of state highways : volume II -- clear zones and cross-section information extraction.

    Science.gov (United States)

    2015-03-01

    Evaluationmethod employedforthe proposed corridor projects by IndianaDepartment of Transportation(INDOT) considerroad : geometry improvements by a generalized categorization. A newmethod which consi...

  15. State of corruption in transition: case of the Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Lízal, Lubomír; Kočenda, Evžen

    2001-01-01

    Roč. 2, č. 2 (2001), s. 137-160 ISSN 1566-0141 R&D Projects: GA AV ČR KSK9058117 Institutional research plan: CEZ:AV0Z7085904 Keywords : Czech Republic * transition * corruption Subject RIV: AH - Economics

  16. State of the Art of Current Practices for Transit Transfers.

    Science.gov (United States)

    1981-07-01

    The major objectives of the study are to: (1) describe and summarize the transfer policies currently in use on U.S. transit properties; (2) identify reasons why properties use or do not use particular transfer policies; (3) determine the consequences...

  17. Chaotic Dynamics Mediate Brain State Transitions, Driven by Changes in Extracellular Ion Concentrations

    DEFF Research Database (Denmark)

    Rasmussen, Rune; Jensen, Mogens H.; Heltberg, Mathias L.

    2017-01-01

    the transition from sleep to wakefulness. We find that sleep is governed by stable, self-sustained oscillations in neuronal firing patterns, whereas the quiet awake state and active awake state are both governed by irregular oscillations and chaotic dynamics; transitions between these separable awake states......Previous studies have suggested that changes in extracellular ion concentrations initiate the transition from an activity state that characterizes sleep in cortical neurons to states that characterize wakeful- ness. However, because neuronal activity and extra- cellular ion concentrations...... are interdependent, isolating their unique roles during sleep-wake transitions is not possible in vivo. Here, we extend the Averaged-Neuron model and demonstrate that, although changes in extracellular ion concentrations occur concurrently, decreasing the conductance of calcium-dependent potassium channels initiates...

  18. UP-DOWN cortical dynamics reflect state transitions in a bistable network.

    Science.gov (United States)

    Jercog, Daniel; Roxin, Alex; Barthó, Peter; Luczak, Artur; Compte, Albert; de la Rocha, Jaime

    2017-08-04

    In the idling brain, neuronal circuits transition between periods of sustained firing (UP state) and quiescence (DOWN state), a pattern the mechanisms of which remain unclear. Here we analyzed spontaneous cortical population activity from anesthetized rats and found that UP and DOWN durations were highly variable and that population rates showed no significant decay during UP periods. We built a network rate model with excitatory (E) and inhibitory (I) populations exhibiting a novel bistable regime between a quiescent and an inhibition-stabilized state of arbitrarily low rate. Fluctuations triggered state transitions, while adaptation in E cells paradoxically caused a marginal decay of E-rate but a marked decay of I-rate in UP periods, a prediction that we validated experimentally. A spiking network implementation further predicted that DOWN-to-UP transitions must be caused by synchronous high-amplitude events. Our findings provide evidence of bistable cortical networks that exhibit non-rhythmic state transitions when the brain rests.

  19. Transition probabilities of health states for workers in Malaysia using a Markov chain model

    Science.gov (United States)

    Samsuddin, Shamshimah; Ismail, Noriszura

    2017-04-01

    The aim of our study is to estimate the transition probabilities of health states for workers in Malaysia who contribute to the Employment Injury Scheme under the Social Security Organization Malaysia using the Markov chain model. Our study uses four states of health (active, temporary disability, permanent disability and death) based on the data collected from the longitudinal studies of workers in Malaysia for 5 years. The transition probabilities vary by health state, age and gender. The results show that men employees are more likely to have higher transition probabilities to any health state compared to women employees. The transition probabilities can be used to predict the future health of workers in terms of a function of current age, gender and health state.

  20. Exploration of the transition state of the alcohol oxidase catalytic reaction using quantum chemistry methods

    OpenAIRE

    Lasavičius, Edvinas

    2016-01-01

    Alcohol oxidases (AO) have a great potential for the use organic synthesis and manufacturing of biosensors. In this study, a transition state of oxidation of alcohol by AO was investigated using computational chemistry methods. First, the transition state and the intrinsic reaction path were de-termined using Hartree-Fock (HF) theory and STO-3G minimal basis set. Further the calculations of the transition states, reactants and products were expanded to include 3-21G and 6-31*G basis sets at t...

  1. Coherent state approach for the Φ6-lattice model and phase transitions

    International Nuclear Information System (INIS)

    Aguero-Granados, M.A.; Makhan'kov, V.G.

    1991-01-01

    Phase transitions in the lattice version of the Φ 6 -field theory are studied. The generalized coherent states approach to is used. In such a way the roles of kinks and bubbles in phase transitions have been reexamined. It is shown via a numerical analysis that first and second order phase transitions appear due to the behaviour of kinks and bubbles excitations. 12 refs.; 10 figs

  2. Optical geometry

    International Nuclear Information System (INIS)

    Robinson, I.; Trautman, A.

    1988-01-01

    The geometry of classical physics is Lorentzian; but weaker geometries are often more appropriate: null geodesics and electromagnetic fields, for example, are well known to be objects of conformal geometry. To deal with a single null congruence, or with the radiative electromagnetic fields associated with it, even less is needed: flag geometry for the first, optical geometry, with which this paper is chiefly concerned, for the second. The authors establish a natural one-to-one correspondence between optical geometries, considered locally, and three-dimensional Cauchy-Riemann structures. A number of Lorentzian geometries are shown to be equivalent from the optical point of view. For example the Goedel universe, the Taub-NUT metric and Hauser's twisting null solution have an optical geometry isomorphic to the one underlying the Robinson congruence in Minkowski space. The authors present general results on the problem of lifting a CR structure to a Lorentz manifold and, in particular, to Minkowski space; and exhibit the relevance of the deviation form to this problem

  3. Shape transition of state density for bosonic systems

    Indian Academy of Sciences (India)

    For a finite boson system, the ensemble-averaged state density has been computed with respect to the body interaction rank . The shape of such a state density changes from Gaussian to semicircle as the body rank of the interaction increases. This state density is expressed as a linear superposition of Gaussian and ...

  4. M1 and E2 transitions in the ground-state configuration of atomic ...

    Indian Academy of Sciences (India)

    state configuration are particularly useful because their relatively long wavelengths make them convenient for spectroscopic studies [1]. Although the atomic kinetics depend on, in particular, optical allowed transitions (E1), the weak forbidden transitions (in particular, magnetic dipole, M1 and electric quadrupole, E2) have ...

  5. Estimation and asymptotic theory for transition probabilities in markov renewal multi-state models

    NARCIS (Netherlands)

    Spitoni, Cristian|info:eu-repo/dai/nl/304625957; Verduijn, Marion; Putter, Hein

    2014-01-01

    In this paper we discuss estimation of transition probabilities for semi-Markov multi-state models. Non-parametric and semi-parametric estimators of the transition probabilities for a large class of models (forward going models) are proposed. Large sample theory is derived using the functional delta

  6. Transition Metal Oxides: Many Body Physics Meets Solid State ...

    Indian Academy of Sciences (India)

    New two-fluid (localized + band electron) model for manganites · Slide 19 · Picturizing the ferro-insulator to ferro-metal transition and the 2-fluid model · Material Systematics (varying Do) ( For fixed EJT = 0.5 eV , U = 5 eV, JF ~ (Do)2 ) · Real space structure in the presence of long range Coulomb interactions · Slide 23.

  7. Marketing planning: state of the art in a transitional economy

    OpenAIRE

    Marjanova Jovanov, Tamara; Temjanovski, Riste; Fotov, Risto

    2014-01-01

    This paper is provoked by the distorted marketing practices of companies that operate in a transitional economy, specifically Republic of Macedonia. The analysis has two main purposes: 1. to identify the weaknesses in the marketing planning process, 2. to prove the connection of continuous formal marketing planning with business performance, i.e. profitability and market share. Data was obtained from primary and secondary research. Primary research was conducted in the food, i.e. confectioner...

  8. Liquid state properties of certain noble and transition metals

    International Nuclear Information System (INIS)

    Bhuiyan, G.M.; Rahman, A.; Khaleque, M.A.; Rashid, R.I.M.A.; Mujibur Rahman, S.M.

    1998-07-01

    Certain structural, thermodynamic and atomic transport properties of a number of liquid noble and transition metals are reported. The underlying theory combines together a simple form of the N-body potential and the thermodynamically self-consistent variational modified hypernetted chain (VMHNC) theory of liquid. The static structure factors calculated by using the VMHNC resemble the hard sphere (HS) values. Consequently the HS model is used to calculate the thermodynamic properties viz. specific heat, entropy, isothermal compressibility and atomic transport properties. (author)

  9. Common Core State Standards in the Middle Grades: What's New in the Geometry Domain and How Can Teachers Support Student Learning?

    Science.gov (United States)

    Teuscher, Dawn; Tran, Dung; Reys, Barbara J.

    2015-01-01

    The Common Core State Standards for Mathematics (CCSSM) is a primary focus of attention for many stakeholders' (e.g., teachers, district mathematics leaders, and curriculum developers) intent on improving mathematics education. This article reports on specific content shifts related to the geometry domain in the middle grades (6-8)…

  10. Probing the transition state for nucleic acid hybridization using phi-value analysis.

    Science.gov (United States)

    Kim, Jandi; Shin, Jong-Shik

    2010-04-27

    Genetic regulation by noncoding RNA elements such as microRNA and small interfering RNA (siRNA) involves hybridization of a short single-stranded RNA with a complementary segment in a target mRNA. The physical basis of the hybridization process between the structured nucleic acids is not well understood primarily because of the lack of information about the transition-state structure. Here we use transition-state theory, inspired by phi-value analysis in protein folding studies, to provide quantitative analysis of the relationship between changes in the secondary structure stability and the activation free energy. Time course monitoring of the hybridization reaction was performed under pseudo-steady-state conditions using a single fluorophore. The phi-value analysis indicates that the native secondary structure remains intact in the transition state. The nativelike transition state was confirmed via examination of the salt dependence of the hybridization kinetics, indicating that the number of sodium ions associated with the transition state was not substantially affected by changes in the native secondary structure. These results propose that hybridization between structured nucleic acids undergoes a transition state leading to formation of a nucleation complex and then is followed by sequential displacement of preexisting base pairings involving successive small energy barriers. The proposed mechanism might provide new insight into physical processes during small RNA-mediated gene silencing, which is essential to selection of a target mRNA segment for siRNA design.

  11. State and Federal project development procedures for bus rapid transit : managing differences and reducing implementation delays

    Science.gov (United States)

    2011-08-01

    This report documents an investigation into the transportation project development process in the : context of the implementation of bus rapid transit systems on the State Highway System as well as such : systems being part of the Federal New Starts ...

  12. Enhancing pairwise state-transition weights: A new weighting scheme in simulated tempering that can minimize transition time between a pair of conformational states

    Science.gov (United States)

    Qiao, Qin; Zhang, Hou-Dao; Huang, Xuhui

    2016-04-01

    Simulated tempering (ST) is a widely used enhancing sampling method for Molecular Dynamics simulations. As one expanded ensemble method, ST is a combination of canonical ensembles at different temperatures and the acceptance probability of cross-temperature transitions is determined by both the temperature difference and the weights of each temperature. One popular way to obtain the weights is to adopt the free energy of each canonical ensemble, which achieves uniform sampling among temperature space. However, this uniform distribution in temperature space may not be optimal since high temperatures do not always speed up the conformational transitions of interest, as anti-Arrhenius kinetics are prevalent in protein and RNA folding. Here, we propose a new method: Enhancing Pairwise State-transition Weights (EPSW), to obtain the optimal weights by minimizing the round-trip time for transitions among different metastable states at the temperature of interest in ST. The novelty of the EPSW algorithm lies in explicitly considering the kinetics of conformation transitions when optimizing the weights of different temperatures. We further demonstrate the power of EPSW in three different systems: a simple two-temperature model, a two-dimensional model for protein folding with anti-Arrhenius kinetics, and the alanine dipeptide. The results from these three systems showed that the new algorithm can substantially accelerate the transitions between conformational states of interest in the ST expanded ensemble and further facilitate the convergence of thermodynamics compared to the widely used free energy weights. We anticipate that this algorithm is particularly useful for studying functional conformational changes of biological systems where the initial and final states are often known from structural biology experiments.

  13. Enhancing pairwise state-transition weights: A new weighting scheme in simulated tempering that can minimize transition time between a pair of conformational states

    International Nuclear Information System (INIS)

    Qiao, Qin; Zhang, Hou-Dao; Huang, Xuhui

    2016-01-01

    Simulated tempering (ST) is a widely used enhancing sampling method for Molecular Dynamics simulations. As one expanded ensemble method, ST is a combination of canonical ensembles at different temperatures and the acceptance probability of cross-temperature transitions is determined by both the temperature difference and the weights of each temperature. One popular way to obtain the weights is to adopt the free energy of each canonical ensemble, which achieves uniform sampling among temperature space. However, this uniform distribution in temperature space may not be optimal since high temperatures do not always speed up the conformational transitions of interest, as anti-Arrhenius kinetics are prevalent in protein and RNA folding. Here, we propose a new method: Enhancing Pairwise State-transition Weights (EPSW), to obtain the optimal weights by minimizing the round-trip time for transitions among different metastable states at the temperature of interest in ST. The novelty of the EPSW algorithm lies in explicitly considering the kinetics of conformation transitions when optimizing the weights of different temperatures. We further demonstrate the power of EPSW in three different systems: a simple two-temperature model, a two-dimensional model for protein folding with anti-Arrhenius kinetics, and the alanine dipeptide. The results from these three systems showed that the new algorithm can substantially accelerate the transitions between conformational states of interest in the ST expanded ensemble and further facilitate the convergence of thermodynamics compared to the widely used free energy weights. We anticipate that this algorithm is particularly useful for studying functional conformational changes of biological systems where the initial and final states are often known from structural biology experiments.

  14. Enhancing pairwise state-transition weights: A new weighting scheme in simulated tempering that can minimize transition time between a pair of conformational states

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, Qin, E-mail: qqiao@ust.hk; Zhang, Hou-Dao [Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); Huang, Xuhui, E-mail: xuhuihuang@ust.hk [Department of Chemistry, Division of Biomedical Engineering, Center of Systems Biology and Human Health, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); The HKUST Shenzhen Research Institute, Shenzhen (China)

    2016-04-21

    Simulated tempering (ST) is a widely used enhancing sampling method for Molecular Dynamics simulations. As one expanded ensemble method, ST is a combination of canonical ensembles at different temperatures and the acceptance probability of cross-temperature transitions is determined by both the temperature difference and the weights of each temperature. One popular way to obtain the weights is to adopt the free energy of each canonical ensemble, which achieves uniform sampling among temperature space. However, this uniform distribution in temperature space may not be optimal since high temperatures do not always speed up the conformational transitions of interest, as anti-Arrhenius kinetics are prevalent in protein and RNA folding. Here, we propose a new method: Enhancing Pairwise State-transition Weights (EPSW), to obtain the optimal weights by minimizing the round-trip time for transitions among different metastable states at the temperature of interest in ST. The novelty of the EPSW algorithm lies in explicitly considering the kinetics of conformation transitions when optimizing the weights of different temperatures. We further demonstrate the power of EPSW in three different systems: a simple two-temperature model, a two-dimensional model for protein folding with anti-Arrhenius kinetics, and the alanine dipeptide. The results from these three systems showed that the new algorithm can substantially accelerate the transitions between conformational states of interest in the ST expanded ensemble and further facilitate the convergence of thermodynamics compared to the widely used free energy weights. We anticipate that this algorithm is particularly useful for studying functional conformational changes of biological systems where the initial and final states are often known from structural biology experiments.

  15. Architectural geometry

    KAUST Repository

    Pottmann, Helmut

    2014-11-26

    Around 2005 it became apparent in the geometry processing community that freeform architecture contains many problems of a geometric nature to be solved, and many opportunities for optimization which however require geometric understanding. This area of research, which has been called architectural geometry, meanwhile contains a great wealth of individual contributions which are relevant in various fields. For mathematicians, the relation to discrete differential geometry is significant, in particular the integrable system viewpoint. Besides, new application contexts have become available for quite some old-established concepts. Regarding graphics and geometry processing, architectural geometry yields interesting new questions but also new objects, e.g. replacing meshes by other combinatorial arrangements. Numerical optimization plays a major role but in itself would be powerless without geometric understanding. Summing up, architectural geometry has become a rewarding field of study. We here survey the main directions which have been pursued, we show real projects where geometric considerations have played a role, and we outline open problems which we think are significant for the future development of both theory and practice of architectural geometry.

  16. Modeling of charge-transfer transitions and excited states in d6 transition metal complexes by DFT techniques

    Czech Academy of Sciences Publication Activity Database

    Vlček, Antonín; Záliš, Stanislav

    2007-01-01

    Roč. 251, 3-4 (2007), s. 258-287 ISSN 0010-8545 R&D Projects: GA MŠk 1P05OC068; GA MŠk OC 139 Institutional research plan: CEZ:AV0Z40400503 Keywords : charge-transfer transition * DFT technique * excited states * spectroscopy Subject RIV: CG - Electrochemistry Impact factor: 8.568, year: 2007

  17. New transition in the vortex liquid state of YBa2Cu3O7-δ

    International Nuclear Information System (INIS)

    Kwok, Wai-Kwong; Karapetrov, Goran; Welp, Ulrich; Rydh, Andreas; Crabtree, George W.; Paulius, Lisa; Figueras, Jordi; Puig, Teresa; Obradors, X.

    2006-01-01

    We have carried out angular dependent magneto-transport measurements on optimally doped, untwinned YBa 2 Cu 3 O 7-δ crystals irradiated with high energy heavy ions to determine the onset of vortex line tension in the vortex liquid state. The dose matching field was controlled and kept at a low level to partially preserve the first order vortex lattice melting transition. A Bose glass transition is observed below the lower critical point which then transforms into a first order phase transition near 4 T. We find that the locus of points which indicates the onset of vortex line tension overlaps with the Bose glass transition line at low fields and then deviates at higher fields, indicating a new transition line in the vortex liquid state. This new line in the vortex liquid phase is dose independent and extends beyond the upper critical point

  18. Beautiful geometry

    CERN Document Server

    Maor, Eli

    2014-01-01

    If you've ever thought that mathematics and art don't mix, this stunning visual history of geometry will change your mind. As much a work of art as a book about mathematics, Beautiful Geometry presents more than sixty exquisite color plates illustrating a wide range of geometric patterns and theorems, accompanied by brief accounts of the fascinating history and people behind each. With artwork by Swiss artist Eugen Jost and text by acclaimed math historian Eli Maor, this unique celebration of geometry covers numerous subjects, from straightedge-and-compass constructions to intriguing configur

  19. Projective geometry

    CERN Document Server

    Faulkner, Thomas Ewan

    1952-01-01

    This text explores the methods of the projective geometry of the plane. Some knowledge of the elements of metrical and analytical geometry is assumed; a rigorous first chapter serves to prepare readers. Following an introduction to the methods of the symbolic notation, the text advances to a consideration of the theory of one-to-one correspondence. It derives the projective properties of the conic and discusses the representation of these properties by the general equation of the second degree. A study of the relationship between Euclidean and projective geometry concludes the presentation. Nu

  20. Analytical gradients of complete active space self-consistent field energies using Cholesky decomposition: geometry optimization and spin-state energetics of a ruthenium nitrosyl complex.

    Science.gov (United States)

    Delcey, Mickaël G; Freitag, Leon; Pedersen, Thomas Bondo; Aquilante, Francesco; Lindh, Roland; González, Leticia

    2014-05-07

    We present a formulation of analytical energy gradients at the complete active space self-consistent field (CASSCF) level of theory employing density fitting (DF) techniques to enable efficient geometry optimizations of large systems. As an example, the ground and lowest triplet state geometries of a ruthenium nitrosyl complex are computed at the DF-CASSCF level of theory and compared with structures obtained from density functional theory (DFT) using the B3LYP, BP86, and M06L functionals. The average deviation of all bond lengths compared to the crystal structure is 0.042 Å at the DF-CASSCF level of theory, which is slightly larger but still comparable with the deviations obtained by the tested DFT functionals, e.g., 0.032 Å with M06L. Specifically, the root-mean-square deviation between the DF-CASSCF and best DFT coordinates, delivered by BP86, is only 0.08 Å for S0 and 0.11 Å for T1, indicating that the geometries are very similar. While keeping the mean energy gradient errors below 0.25%, the DF technique results in a 13-fold speedup compared to the conventional CASSCF geometry optimization algorithm. Additionally, we assess the singlet-triplet energy vertical and adiabatic differences with multiconfigurational second-order perturbation theory (CASPT2) using the DF-CASSCF and DFT optimized geometries. It is found that the vertical CASPT2 energies are relatively similar regardless of the geometry employed whereas the adiabatic singlet-triplet gaps are more sensitive to the chosen triplet geometry.

  1. Hydrogen-assisted laser-induced resonant transitions between metastable states of antiprotonic helium atoms

    International Nuclear Information System (INIS)

    Ketzer, B.; Hartmann, F.J.; Egidy, T. von

    1996-11-01

    Laser resonance transitions between normally metastable states of antiprotonic helium atoms were observed making use of state dependent quenching effects caused by small admixtures of H 2 molecules. By selectively shortening the lifetimes of states with higher principal quantum number n as compared to those of lower n, this method for the first time provides access to all initially populated metastable states of p-bar He + atoms. This was demonstrated by observing the transitions (n,l) = (38,l) → (39,l+1), l 35, 36, 37 and (n,l) = (37,l) → (38,l+1), l = 34, 35, 36. (author)

  2. Hydrogen-assisted laser-induced resonant transitions between metastable states of antiprotonic helium atoms

    CERN Document Server

    Ketzer, B; Von Egidy, T; Maierl, C; Pohl, R; Eades, John; Widmann, E; Yamazaki, T; Kumakura, M; Morita, N; Hayano, R S; Hori, Masaki; Ishikawa, T; Torii, H A; Sugai, I; Horváth, D

    1997-01-01

    Laser resonance transitions between normally metastable states of antiprotonic helium atoms were observed making use of state dependent quenching effects caused by small admixtures of \\htwo\\ molecules. By selectively shortening the lifetimes of states with higher principal quantum number $n$ as compared to those of lower $n$, this method for the first time provides access to all initially populated metastable states of \\pbar\\hep\\ atoms. This was demonstrated by observing the transitions $(n,l)=(38,l)\\rightarrow (39,l+1),\\ l=35,36,37$ and $(n,l)=(37,l)\\rightarrow (38,l+1),\\ l=34,35,36$.

  3. Information geometry

    CERN Document Server

    Ay, Nihat; Lê, Hông Vân; Schwachhöfer, Lorenz

    2017-01-01

    The book provides a comprehensive introduction and a novel mathematical foundation of the field of information geometry with complete proofs and detailed background material on measure theory, Riemannian geometry and Banach space theory. Parametrised measure models are defined as fundamental geometric objects, which can be both finite or infinite dimensional. Based on these models, canonical tensor fields are introduced and further studied, including the Fisher metric and the Amari-Chentsov tensor, and embeddings of statistical manifolds are investigated. This novel foundation then leads to application highlights, such as generalizations and extensions of the classical uniqueness result of Chentsov or the Cramér-Rao inequality. Additionally, several new application fields of information geometry are highlighted, for instance hierarchical and graphical models, complexity theory, population genetics, or Markov Chain Monte Carlo. The book will be of interest to mathematicians who are interested in geometry, inf...

  4. Algebraic geometry

    CERN Document Server

    Lefschetz, Solomon

    2005-01-01

    An introduction to algebraic geometry and a bridge between its analytical-topological and algebraical aspects, this text for advanced undergraduate students is particularly relevant to those more familiar with analysis than algebra. 1953 edition.

  5. Study of Transitions between Wetting States on Microcavity Arrays by Optical Transmission Microscopy

    DEFF Research Database (Denmark)

    Søgaard, Emil; Andersen, Nis Korsgaard; Smistrup, Kristian

    2014-01-01

    In this article, we present a simple and fast optical method based on transmission microscopy to study the stochastic wetting transitions on micro- and nanostructured polymer surfaces immersed in water. We analyze the influence of immersion time and the liquid pressure on the degree of water...... this threshold, the transitions between the Cassie and the Cassie-impregnating states are reversible, whereas above this threshold, irreversible transitions to the Wenzel state start to occur. The transitions between the different wetting states can be explained by taking into account both the Young-Laplace...... compared the contact angle properties of two polymeric materials (COC and PP) with moderate hydrophobicity. We attributed the difference in the water repellency of the two materials to a difference in the wetting of their nanostructures. Our experimental observations thus indicate that both the diffusion...

  6. Evidence from n=2 fine structure transitions for the production of fast excited state positronium

    International Nuclear Information System (INIS)

    Ley, R.; Niebling, K.D.; Schwarz, R.; Werth, G.

    1990-01-01

    Fine structure transitions in the first excited state of positronium (Ps) have been measured using 'Backscatter Ps' production on a Mo surface by observation of a change in the emitted Lyman-α intensity under resonant microwave irradiation. Production, fine structure transitions and Lyman-α decay of the Ps atoms took place inside a waveguide designed to transmit the microwave frequencies of 8.6, 13.0 and 18.5 GHz for the transitions from the 2 3 S 1 state to the 2 3 P J , J=2, 1, 0, states, respectively. In the presence of a magnetic field, all transitions observed show a shift to higher frequencies, compared with earlier calculations and measurements in zero magnetic field. The deviations exceed the expected Zeeman shift significantly but may be explained by assuming a motional Stark effect for Ps with kinetic energies of several eV. (author)

  7. Shape transition of state density for bosonic systems

    Indian Academy of Sciences (India)

    ... while the shape of the state density for EGOE(2) with m ≫ 2, is close to Gaussian. The change in shape of the state density, from semicircle to Gaussian for EGOE(k), as m increases from k to m ≫ k for fermions, has been explained mathematically by Mon and French [4] and also by Benet. Pramana – J. Phys., Vol. 81, No.

  8. A modified PATH algorithm rapidly generates transition states comparable to those found by other well established algorithms

    Directory of Open Access Journals (Sweden)

    Srinivas Niranj Chandrasekaran

    2016-01-01

    Full Text Available PATH rapidly computes a path and a transition state between crystal structures by minimizing the Onsager-Machlup action. It requires input parameters whose range of values can generate different transition-state structures that cannot be uniquely compared with those generated by other methods. We outline modifications to estimate these input parameters to circumvent these difficulties and validate the PATH transition states by showing consistency between transition-states derived by different algorithms for unrelated protein systems. Although functional protein conformational change trajectories are to a degree stochastic, they nonetheless pass through a well-defined transition state whose detailed structural properties can rapidly be identified using PATH.

  9. Complex and symplectic geometry

    CERN Document Server

    Medori, Costantino; Tomassini, Adriano

    2017-01-01

    This book arises from the INdAM Meeting "Complex and Symplectic Geometry", which was held in Cortona in June 2016. Several leading specialists, including young researchers, in the field of complex and symplectic geometry, present the state of the art of their research on topics such as the cohomology of complex manifolds; analytic techniques in Kähler and non-Kähler geometry; almost-complex and symplectic structures; special structures on complex manifolds; and deformations of complex objects. The work is intended for researchers in these areas.

  10. Quantum phase transitions between a class of symmetry protected topological states

    Energy Technology Data Exchange (ETDEWEB)

    Tsui, Lokman; Jiang, Hong-Chen; Lu, Yuan-Ming; Lee, Dung-Hai

    2015-07-01

    The subject of this paper is the phase transition between symmetry protected topological states (SPTs). We consider spatial dimension d and symmetry group G so that the cohomology group, Hd+1(G,U(1)), contains at least one Z2n or Z factor. We show that the phase transition between the trivial SPT and the root states that generate the Z2n or Z groups can be induced on the boundary of a (d+1)-dimensional View the MathML source-symmetric SPT by a View the MathML source symmetry breaking field. Moreover we show these boundary phase transitions can be “transplanted” to d dimensions and realized in lattice models as a function of a tuning parameter. The price one pays is for the critical value of the tuning parameter there is an extra non-local (duality-like) symmetry. In the case where the phase transition is continuous, our theory predicts the presence of unusual (sometimes fractionalized) excitations corresponding to delocalized boundary excitations of the non-trivial SPT on one side of the transition. This theory also predicts other phase transition scenarios including first order transition and transition via an intermediate symmetry breaking phase.

  11. TRANSIT

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. TRANSIT. SYSTEM: DETERMINE 2D-POSITION GLOBALLY BUT INTERMITTENT (POST-FACTO). IMPROVED ACCURACY. PRINCIPLE: POLAR SATELLITES WITH INNOVATIONS OF: GRAVITY-GRADIENT ATTITUDE CONTROL; DRAG COMPENSATION. WORKS ...

  12. Travel Patterns And Characteristics Of Transit Users In New York State

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Ho-Ling [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wilson, Daniel W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Reuscher, Tim [Macrosys, Arlington, VA (United States); Chin, Shih-Miao [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Taylor, Rob D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-12-01

    This research is a detailed examination of the travel behaviors and patterns of transit users within New York State (NYS), primarily based on travel data provided by the National Household Travel Survey (NHTS) in 2009 and the associated Add-on sample households purchased by the New York State Department of Transportation (NYSDOT). Other data sources analyzed in this study include: NYS General Transit Feed Specification (GTFS) to assist in analyzing spatial relationships for access to transit and the creation of Transit Shed geographic areas of 1, 2.5, and 5 miles from transit stop locations, LandScan population database to understand transit coverage, and Census Bureau s American Community Survey (ACS) data to examine general transit patterns and trends in NYS over time. The majority of analyses performed in this research aimed at identifying transit trip locations, understanding differences in transit usage by traveler demographics, as well as producing trip/mode-specific summary statistics including travel distance, trip duration, time of trip, and travel purpose of transit trips made by NYS residents, while also analyzing regional differences and unique travel characteristics and patterns. The analysis was divided into two aggregated geographic regions: New York Metropolitan Transportation Council (NYMTC) and NYS minus NYMTC (Rest of NYS). The inclusion of NYMTC in all analysis would likely produce misleading conclusions for other regions in NYS. TRANSIT COVERAGE The NYS transit network has significant coverage in terms of transit stop locations across the state s population. Out of the 19.3 million NYS population in 2011, about 15.3 million (or 79%) resided within the 1-mile transit shed. This NYS population transit coverage increased to 16.9 million (or 88%) when a 2.5-mile transit shed was considered; and raised to 17.7 million (or 92%) when the 5-mile transit shed was applied. KEY FINDINGS Based on 2009 NHTS data, about 40% of NYMTC households used transit

  13. Structural Operational Semantics for Continuous State Stochastic Transition Systems

    DEFF Research Database (Denmark)

    Bacci, Giorgio; Miculan, Marino

    2015-01-01

    In this paper we show how to model syntax and semantics of stochastic processes with continuous states, respectively as algebras and coalgebras of suitable endofunctors over the category of measurable spaces Meas. Moreover, we present an SOS-like rule format, called MGSOS , representing abstract ...

  14. Rapid Communication: seniority changing transitions in yrast states ...

    Indian Academy of Sciences (India)

    Bhoomika Maheshwari

    2017-10-26

    Oct 26, 2017 ... of seniority has proved to be a powerful tool in explor- ing nuclei close to the magic numbers, and may also be related to the symmetry in pairing of nucleons. The seniority scheme was first introduced by Racah [1] in the atomic context to distinguish the states having same values of L, S and J in LS coupling, ...

  15. Shape transition of state density for bosonic systems

    Indian Academy of Sciences (India)

    density for EGOE(2) with m ≫ 2, is close to Gaussian. The change in shape of the state density, from semicircle to Gaussian for EGOE(k), as m increases from k to m ≫ k for fermions, has been explained mathematically by Mon and French [4] and also by Benet. Pramana – J. Phys., Vol. 81, No. 6, December 2013. 1045 ...

  16. State Isomorphism in the Post-Socialist Transition

    Directory of Open Access Journals (Sweden)

    Ioannis Kyvelidis

    2000-02-01

    Full Text Available With the collapse of the communist regimes, the post-socialist countries are facing the problem of building new legal and institutional systems which will adequately address the needs of the markets. They also try to implement new reforms. But the transition towards economic and market reforms across the bloc has been very uneven, producing the countries-winners, countries-laggards, and countries-losers. There have been some attempts to explain that unevenness from the temporal path dependency perspective and from geographic proximity perspective. Can we explain this unevenness better drawing upon the theory of institutional isomorphism? This paper is not ambitious and built exclusively on literature review. It attempts to borrow from some middle-range social theories of institution building and, especially, the theory of institutional isomorphism by DiMaggio and Powell. It shows that some parts of the bloc seem to be surprisingly isomorphic. The paper suggests an explanation of the possible causes and applicability of the phenomenon of isomorphism in the post-Soviet bloc. In particular, it: 1 contrasts the facts of the transformation with the theory of institutional and organizational isomorphism, 2 makes a fair causal comparison with other explanations, 3 claims the adequate causal depth for the explanation, 4 points at an adequate causal mechanism of the transformation.

  17. Magnetic field effect on state energies and transition frequency of a ...

    Indian Academy of Sciences (India)

    Abstract. By employing a variational method of the Pekar-type, which has different variational parameters in the x–y plane and the z-direction, we study the ground and the first excited state ener- gies and transition frequency between the ground and the first excited states of a strong-coupling polaron in an anisotropic ...

  18. Magnetic field effect on state energies and transition frequency of a ...

    Indian Academy of Sciences (India)

    By employing a variational method of the Pekar-type, which has different variational parameters in the – plane and the z -direction, we study the ground and the first excited state energies and transition frequency between the ground and the first excited states of a strong-coupling polaron in an anisotropic quantum dot ...

  19. State-and-transition models as guides for adaptive management: What are the needs?

    Science.gov (United States)

    State and transaction models (STMs) were conceived as a means to organize information about land potential and vegetation dynamics in rangelands to be used in their management. The basic idea is to describe the plant community states that can occur on a site and the causes of transitions between the...

  20. From War to Politics : Non-State Armed Groups in Transition, 2009 ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    An earlier project (103613) resulted in the creation of a research network on the experience of non-state armed groups (NSAGs) who have made the transition from armed resistance during protracted violent conflicts to political engagement in peace negotiations and post-war state building. This project will continue the ...

  1. Theoretical expression of the internal conversion coefficient of a M1 transition between two atomic states

    International Nuclear Information System (INIS)

    Attallah, F.; Chemin, J.F.; Scheurer, J.N.; Karpeshin, F.; Harston, M.

    1997-01-01

    We have established a general relation for the expression of the internal conversion of an M 1 transition a 1s electronic state to an empty ns electronic bound state. Under the hypothesis that the density of the electron level ρ n satisfies the condition ρ n Γ >> 1 (where Γ is the total width of the excited atomic state) a calculation in the first order gives a relation for the internal conversion coefficient.This relation shows that the internal conversion coefficient takes a resonant character when the nuclear energy transition is smaller than the binding energy of the 1s electron. An application of this relation to an M 1 transition in the case of the ion 125 T e with a charge state Q = 45 and an 1s electron binding energy E B 45 = 35.581 KeV gives the value for the internal conversion coefficient R = 5.7

  2. Decoding brain state transitions in the pedunculopontine nucleus: cooperative phasic and tonic mechanisms

    Directory of Open Access Journals (Sweden)

    Anne ePetzold

    2015-10-01

    Full Text Available Cholinergic neurons of the pedunculopontine nucleus (PPN are most active during the waking state. Their activation is deemed to cause a switch in the global brain activity from sleep to wakefulness, while their sustained discharge may contribute to upholding the waking state and enhancing arousal. Similarly, non-cholinergic PPN neurons are responsive to brain state transitions and their activation may influence some of the same targets of cholinergic neurons, suggesting that they operate in coordination. Yet, it is not clear how the discharge of distinct classes of PPN neurons organize during brain states. Here we monitored the in vivo network activity of PPN neurons in the anesthetized rat across two distinct levels of cortical dynamics and their transitions. We identified a highly structured configuration in PPN network activity during slow-wave activity that was replaced by decorrelated activity during the activated state. During the transition, neurons were predominantly excited (phasically or tonically, but some were inhibited. Identified cholinergic neurons displayed phasic and short latency responses to sensory stimulation, whereas the majority of non-cholinergic showed tonic responses and remained at high discharge rates beyond the state transition. In vitro recordings demonstrate that cholinergic neurons exhibit fast adaptation that prevents them from discharging at high rates over prolonged time periods. Our data shows that PPN neurons have distinct but complementary roles during brain state transitions, where cholinergic neurons provide a fast and transient response to sensory events that drive state transitions, whereas non-cholinergic neurons maintain an elevated firing rate during global activation.

  3. Transition state-finding strategies for use with the growing string method

    Science.gov (United States)

    Goodrow, Anthony; Bell, Alexis T.; Head-Gordon, Martin

    2009-06-01

    Efficient identification of transition states is important for understanding reaction mechanisms. Most transition state search algorithms require long computational times and a good estimate of the transition state structure in order to converge, particularly for complex reaction systems. The growing string method (GSM) [B. Peters et al., J. Chem. Phys. 120, 7877 (2004)] does not require an initial guess of the transition state; however, the calculation is still computationally intensive due to repeated calls to the quantum mechanics code. Recent modifications to the GSM [A. Goodrow et al., J. Chem. Phys. 129, 174109 (2008)] have reduced the total computational time for converging to a transition state by a factor of 2 to 3. In this work, three transition state-finding strategies have been developed to complement the speedup of the modified-GSM: (1) a hybrid strategy, (2) an energy-weighted strategy, and (3) a substring strategy. The hybrid strategy initiates the string calculation at a low level of theory (HF/STO-3G), which is then refined at a higher level of theory (B3LYP/6-31G∗). The energy-weighted strategy spaces points along the reaction pathway based on the energy at those points, leading to a higher density of points where the energy is highest and finer resolution of the transition state. The substring strategy is similar to the hybrid strategy, but only a portion of the low-level string is refined using a higher level of theory. These three strategies have been used with the modified-GSM and are compared in three reactions: alanine dipeptide isomerization, H-abstraction in methanol oxidation on VOx/SiO2 catalysts, and C-H bond activation in the oxidative carbonylation of toluene to p-toluic acid on Rh(CO)2(TFA)3 catalysts. In each of these examples, the substring strategy was proved most effective by obtaining a better estimate of the transition state structure and reducing the total computational time by a factor of 2 to 3 compared to the modified

  4. Minimal transition state charge stabilization of the oxyanion during peptide bond formation by the ribosome.

    Science.gov (United States)

    Carrasco, Nicolas; Hiller, David A; Strobel, Scott A

    2011-12-06

    Peptide bond formation during ribosomal protein synthesis involves an aminolysis reaction between the aminoacyl α-amino group and the carbonyl ester of the growing peptide via a transition state with a developing negative charge, the oxyanion. Structural and molecular dynamic studies have suggested that the ribosome may stabilize the oxyanion in the transition state of peptide bond formation via a highly ordered water molecule. To biochemically investigate this mechanistic hypothesis, we estimated the energetic contribution to catalytic charge stabilization of the oxyanion using a series of transition state mimics that contain different charge distributions and hydrogen bond potential on the functional group mimicking the oxyanion. Inhibitors containing an oxyanion mimic that carried a neutral charge and a mimic that preserved the negative charge but could not form hydrogen bonds had less than a 3-fold effect on inhibitor binding affinity. These observations argue that the ribosome provides minimal transition state charge stabilization to the oxyanion during peptide bond formation via the water molecule. This is in contrast to the substantial level of oxyanion stabilization provided by serine proteases. This suggests that the oxyanion may be neutralized via a proton shuttle, resulting in an uncharged transition state.

  5. A DETERMINATION OF RADIATIVE TRANSITIONS WIDTHS OF EXCITED STATES IN C(12),

    Science.gov (United States)

    the -2 power to 3.14 F to the -2 power. A new method of analysis has been employed to obtain the radiative widths for the first three excited states...in C(12) from the measured inelastic cross sections. This method of analysis does not depend on a model for the transition charge distribution and is useful in determining the multipolarity of the transition. (Author)

  6. Markov-chain model of classified atomistic transition states for discrete kinetic Monte Carlo simulations.

    Science.gov (United States)

    Numazawa, Satoshi; Smith, Roger

    2011-10-01

    Classical harmonic transition state theory is considered and applied in discrete lattice cells with hierarchical transition levels. The scheme is then used to determine transitions that can be applied in a lattice-based kinetic Monte Carlo (KMC) atomistic simulation model. The model results in an effective reduction of KMC simulation steps by utilizing a classification scheme of transition levels for thermally activated atomistic diffusion processes. Thermally activated atomistic movements are considered as local transition events constrained in potential energy wells over certain local time periods. These processes are represented by Markov chains of multidimensional Boolean valued functions in three-dimensional lattice space. The events inhibited by the barriers under a certain level are regarded as thermal fluctuations of the canonical ensemble and accepted freely. Consequently, the fluctuating system evolution process is implemented as a Markov chain of equivalence class objects. It is shown that the process can be characterized by the acceptance of metastable local transitions. The method is applied to a problem of Au and Ag cluster growth on a rippled surface. The simulation predicts the existence of a morphology-dependent transition time limit from a local metastable to stable state for subsequent cluster growth by accretion. Excellent agreement with observed experimental results is obtained.

  7. Measuring quantum-chromodynamic anomalies in hadronic transitions between quarkonium states

    Energy Technology Data Exchange (ETDEWEB)

    Voloshin, M.; Zakharov, V.

    1980-09-01

    It is argued that the ratio GAMMA((Q-barQ)'..-->..(Q-barQ)eta)/GAMMA((Q-barQ)' ..-->..(Q-barQ)..pi pi..) of hadronic transition rates between heavy quarkonium states is calculable within quantum chromodynamics in terms of triangle anaomalies in the divergence of the axial current and in the trace of the energy-momentum tensor. In the case of transitions between psi' and J/psi the present analysis is consistent with the data. More reliable test can be provided by experimental study of the transitions between UPSILON'' and UPSILON.

  8. Geometry Revealed

    CERN Document Server

    Berger, Marcel

    2010-01-01

    Both classical geometry and modern differential geometry have been active subjects of research throughout the 20th century and lie at the heart of many recent advances in mathematics and physics. The underlying motivating concept for the present book is that it offers readers the elements of a modern geometric culture by means of a whole series of visually appealing unsolved (or recently solved) problems that require the creation of concepts and tools of varying abstraction. Starting with such natural, classical objects as lines, planes, circles, spheres, polygons, polyhedra, curves, surfaces,

  9. Vector geometry

    CERN Document Server

    Robinson, Gilbert de B

    2011-01-01

    This brief undergraduate-level text by a prominent Cambridge-educated mathematician explores the relationship between algebra and geometry. An elementary course in plane geometry is the sole requirement for Gilbert de B. Robinson's text, which is the result of several years of teaching and learning the most effective methods from discussions with students. Topics include lines and planes, determinants and linear equations, matrices, groups and linear transformations, and vectors and vector spaces. Additional subjects range from conics and quadrics to homogeneous coordinates and projective geom

  10. Analytic geometry

    CERN Document Server

    Burdette, A C

    1971-01-01

    Analytic Geometry covers several fundamental aspects of analytic geometry needed for advanced subjects, including calculus.This book is composed of 12 chapters that review the principles, concepts, and analytic proofs of geometric theorems, families of lines, the normal equation of the line, and related matters. Other chapters highlight the application of graphing, foci, directrices, eccentricity, and conic-related topics. The remaining chapters deal with the concept polar and rectangular coordinates, surfaces and curves, and planes.This book will prove useful to undergraduate trigonometric st

  11. Walk, Bicycle, and Transit Trips of Transit-Dependent and Choice Riders in the 2009 United States National Household Travel Survey.

    Science.gov (United States)

    Lachapelle, Ugo

    2015-08-01

    Previous research has shown that public transit use may be associated with active transportation. Access to a car may influence active transportation of transit riders. Using the 2009 United States National Household Travel Survey (NHTS), transit users ≥ 16 years old (n = 25,550) were categorized according to driver status and number of cars and drivers in the household. This typology ranged from choice transit riders (ie, "fully motorized drivers") to transit-dependent riders (ie, "unmotorized nondriver"). Transit trips, walking trips, and bicycling trips of transit users are estimated in negative binomial models against the car availability typology. Sixteen percent of participants took transit in the past month; most (86%) lived in car-owning households. As income increased, car availability also increased. Transit user groups with lower car availability were generally more likely than fully motorized drivers to take more public transit, walking, and bicycle trips. Transit riders have varying levels of vehicle access; their use of combinations of alternative modes of transportation fluctuates accordingly. Transit-dependent individuals without cars or sharing cars used active transportation more frequently than car owners. Policies to reduce vehicle ownership in households may enable increases in the use of alternative modes of transportation for transit users, even when cars are still owned.

  12. Structural transition, subgap states, and carrier transport in anion-engineered zinc oxynitride nanocrystalline films

    International Nuclear Information System (INIS)

    Xian, Fenglin; Ye, Jiandong; Gu, Shulin; Tan, Hark Hoe; Jagadish, Chennupati

    2016-01-01

    In this work, anion alloying is engineered in ZnON nanocrystalline films, and the resultant evolution of the structural transition, subgap states, and carrier transport is investigated. A broad distribution of sub-gap states above the valence band maximum is introduced by nitrogen due to the hybridization of N 2p and O 2p orbitals. The phase transition from partially amorphous states to full crystallinity occurs above a characteristic growth temperature of 100 °C, and the localized states are suppressed greatly due to the reduction of nitrogen composition. The electronic properties are dominated by grain boundary scattering and electron transport across boundary barriers through thermal activation at band edge states at high temperatures. The conductivity below 130 K exhibits a weak temperature dependence, which is a signature of variable-range hopping conduction between localized states introduced by nitrogen incorporation.

  13. Structural transition, subgap states, and carrier transport in anion-engineered zinc oxynitride nanocrystalline films

    Energy Technology Data Exchange (ETDEWEB)

    Xian, Fenglin [School of Physics and Optoelectronic Engineering, Nanjing University of Information Science and Technology, Nanjing 210044 (China); Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra 2601 (Australia); Ye, Jiandong, E-mail: yejd@nju.edu.cn [Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra 2601 (Australia); School of Electronics Science and Engineering, Nanjing University, Nanjing 210093 (China); Gu, Shulin [School of Electronics Science and Engineering, Nanjing University, Nanjing 210093 (China); Tan, Hark Hoe; Jagadish, Chennupati [Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra 2601 (Australia)

    2016-07-11

    In this work, anion alloying is engineered in ZnON nanocrystalline films, and the resultant evolution of the structural transition, subgap states, and carrier transport is investigated. A broad distribution of sub-gap states above the valence band maximum is introduced by nitrogen due to the hybridization of N 2p and O 2p orbitals. The phase transition from partially amorphous states to full crystallinity occurs above a characteristic growth temperature of 100 °C, and the localized states are suppressed greatly due to the reduction of nitrogen composition. The electronic properties are dominated by grain boundary scattering and electron transport across boundary barriers through thermal activation at band edge states at high temperatures. The conductivity below 130 K exhibits a weak temperature dependence, which is a signature of variable-range hopping conduction between localized states introduced by nitrogen incorporation.

  14. Oscillator strength, transition rates and lifetimes for n=3 states in Al-like ions

    CERN Document Server

    Safronova, U I; Safronova, M S; Sataka, M

    2002-01-01

    Transition rates, oscillator strengths, and line strengths are calculated for the 3220 possible electric-dipole (E1) transitions between the 73 even-parity 3s3p sup 2 , 3s sup 2 3d, 3p sup 2 3d, 3d sup 2 3s and 3d sup 3 states and the 75 odd-parity 3s sup 2 3p, 3p sup 3 , 3s3p3d, and 3d sup 2 3p states in Al-like ions with the nuclear charges ranging from Z=15 to 100. Relativistic many-body perturbation theory (MBPT), including the Breit interaction, is used to evaluate retarded E1 matrix elements in length and velocity forms. The calculations start from a 1s sup 2 2s sup 2 2p sup 6 Dirac-Fock potential. First-order MBPT is used to obtain intermediate coupling coefficients and second-order MBPT is used to calculate transition matrix elements. Contributions from negative-energy states are included in the second order E1 matrix elements to ensure gauge-independence of transition amplitudes. The transition energies used in the calculation of oscillator strengths and transition rates are from second-order MBPT. T...

  15. State safety oversight program : audit of the tri-state oversight committee and the Washington metropolitan area transit authority, final audit report, March 4, 2010.

    Science.gov (United States)

    2010-03-04

    The Federal Transit Administration (FTA) conducted an on-site audit of the safety program implemented by the Washington Metropolitan Area Transit Authority (WMATA) and overseen by the Tri-State Oversight Committee (TOC) between December 14 and 17, 20...

  16. Molecular Geometry.

    Science.gov (United States)

    Desseyn, H. O.; And Others

    1985-01-01

    Compares linear-nonlinear and planar-nonplanar geometry through the valence-shell electron pairs repulsion (V.S.E.P.R.), Mulliken-Walsh, and electrostatic force theories. Indicates that although the V.S.E.P.R. theory has more advantages for elementary courses, an explanation of the best features of the different theories offers students a better…

  17. Geometry VI

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 8. Geometry VI - Space-the Final Frontier. Kapil H Paranjape. Series Article Volume 1 Issue 8 August 1996 pp 28-33. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/001/08/0028-0033 ...

  18. Geometry -----------~--------------RESONANCE

    Indian Academy of Sciences (India)

    Mathematicians were at war with one another because Euclid's axioms for geometry were not entirely acceptable to all. Archi- medes, Pasch and others introduced further axioms as they thought that Euclid had missed a few, while other mathematicians were bothered by the non-elementary nature of the parallel axiom.

  19. The first observation of EO transitions from negative parity states in even-even nucleus 160Dy

    International Nuclear Information System (INIS)

    Grigoriev, E.P.

    1988-01-01

    In even-even deformed nuclei up to now EO-transitions were found only between the states of the same spin belonging to Κ π = O + rotational bands. There is no forbidenness for EO-transitions between states belonging to bands with any other quantum number Κ provided both initial and final states have the same J π Κ values. EO-transitions may depopulate odd-parity states. In odd nuclei β-vibrational states are identified by transition with EO-components. Here transitions also proceed between states with the same J π K numbers. Even-even nuclide 160 Dy is the first nucleus where the EO-transitions between odd-parity states have been found

  20. The transition from the open minimum to the ring minimum on the ground state and on the lowest excited state of like symmetry in ozone: A configuration interaction study

    Science.gov (United States)

    Theis, Daniel; Ivanic, Joseph; Windus, Theresa L.; Ruedenberg, Klaus

    2016-03-01

    The metastable ring structure of the ozone 11A1 ground state, which theoretical calculations have shown to exist, has so far eluded experimental detection. An accurate prediction for the energy difference between this isomer and the lower open structure is therefore of interest, as is a prediction for the isomerization barrier between them, which results from interactions between the lowest two 1A1 states. In the present work, valence correlated energies of the 11A1 state and the 21A1 state were calculated at the 11A1 open minimum, the 11A1 ring minimum, the transition state between these two minima, the minimum of the 21A1 state, and the conical intersection between the two states. The geometries were determined at the full-valence multi-configuration self-consistent-field level. Configuration interaction (CI) expansions up to quadruple excitations were calculated with triple-zeta atomic basis sets. The CI expansions based on eight different reference configuration spaces were explored. To obtain some of the quadruple excitation energies, the method of Correlation Energy Extrapolation by Intrinsic Scaling was generalized to the simultaneous extrapolation for two states. This extrapolation method was shown to be very accurate. On the other hand, none of the CI expansions were found to have converged to millihartree (mh) accuracy at the quadruple excitation level. The data suggest that convergence to mh accuracy is probably attained at the sextuple excitation level. On the 11A1 state, the present calculations yield the estimates of (ring minimum—open minimum) ˜45-50 mh and (transition state—open minimum) ˜85-90 mh. For the (21A1-1A1) excitation energy, the estimate of ˜130-170 mh is found at the open minimum and 270-310 mh at the ring minimum. At the transition state, the difference (21A1-1A1) is found to be between 1 and 10 mh. The geometry of the transition state on the 11A1 surface and that of the minimum on the 21A1 surface nearly coincide. More accurate

  1. Kinetic Analysis for Macrocyclizations Involving Anionic Template at the Transition State

    Directory of Open Access Journals (Sweden)

    Vicente Martí-Centelles

    2012-01-01

    competitive oligomerization/polymerization processes yielding undesired oligomeric/polymeric byproducts. The effect of anions has also been included in the kinetic models, as they can act as catalytic templates in the transition state reducing and stabilizing the transition state. The corresponding differential equation systems for each kinetic model can be solved numerically. Through a comprehensive analysis of these results, it is possible to obtain a better understanding of the different parameters that are involved in the macrocyclization reaction mechanism and to develop strategies for the optimization of the desired processes.

  2. A Semi-Continuous State-Transition Probability HMM-Based Voice Activity Detector

    Directory of Open Access Journals (Sweden)

    H. Othman

    2007-02-01

    Full Text Available We introduce an efficient hidden Markov model-based voice activity detection (VAD algorithm with time-variant state-transition probabilities in the underlying Markov chain. The transition probabilities vary in an exponential charge/discharge scheme and are softly merged with state conditional likelihood into a final VAD decision. Working in the domain of ITU-T G.729 parameters, with no additional cost for feature extraction, the proposed algorithm significantly outperforms G.729 Annex B VAD while providing a balanced tradeoff between clipping and false detection errors. The performance compares very favorably with the adaptive multirate VAD, option 2 (AMR2.

  3. Evidence of departure from transition-state statistical model in different mass regions

    International Nuclear Information System (INIS)

    Das, P.; Ray, A.; Bhattacharya, C.; Mullick, K.; Bhattacharjee, T.; Banerjee, S.R.; Basu, D.N.; Bhattacharya, S.

    2000-01-01

    The emission of complex fragments from compound nucleus can be understood very well using transition-state method calculations, that have shown that for a large number of excitation functions of compound nuclei near A = 100, the reduced decay rates after the removal of phase space dependence are identical for all fragments, thus implying statistical emission. One can consider two scenarios for departure from statistical transition-state model. An experiment was performed to look for orbiting effect in 16 O+ 93 Nb reaction

  4. Diels-Alder reactions of allene with benzene and butadiene: concerted, stepwise, and ambimodal transition states.

    Science.gov (United States)

    Pham, Hung V; Houk, K N

    2014-10-03

    Multiconfigurational complete active space methods (CASSCF and CASPT2) have been used to investigate the (4 + 2) cycloadditions of allene with butadiene and with benzene. Both concerted and stepwise radical pathways were examined to determine the mechanism of the Diels-Alder reactions with an allene dienophile. Reaction with butadiene occurs via a single ambimodal transition state that can lead to either the concerted or stepwise trajectories along the potential energy surface, while reaction with benzene involves two separate transition states and favors the concerted mechanism relative to the stepwise mechanism via a diradical intermediate.

  5. Diels–Alder Reactions of Allene with Benzene and Butadiene: Concerted, Stepwise, and Ambimodal Transition States

    Science.gov (United States)

    2015-01-01

    Multiconfigurational complete active space methods (CASSCF and CASPT2) have been used to investigate the (4 + 2) cycloadditions of allene with butadiene and with benzene. Both concerted and stepwise radical pathways were examined to determine the mechanism of the Diels–Alder reactions with an allene dienophile. Reaction with butadiene occurs via a single ambimodal transition state that can lead to either the concerted or stepwise trajectories along the potential energy surface, while reaction with benzene involves two separate transition states and favors the concerted mechanism relative to the stepwise mechanism via a diradical intermediate. PMID:25216056

  6. Optical nonlinearities of excitonic states in atomically thin 2D transition metal dichalcogenides

    Energy Technology Data Exchange (ETDEWEB)

    Soh, Daniel Beom Soo [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Proliferation Signatures Discovery and Exploitation Department

    2017-08-01

    We calculated the optical nonlinearities of the atomically thin monolayer transition metal dichalcogenide material (particularly MoS2), particularly for those linear and nonlinear transition processes that utilize the bound exciton states. We adopted the bound and the unbound exciton states as the basis for the Hilbert space, and derived all the dynamical density matrices that provides the induced current density, from which the nonlinear susceptibilities can be drawn order-by-order via perturbative calculations. We provide the nonlinear susceptibilities for the linear, the second-harmonic, the third-harmonic, and the kerr-type two-photon processes.

  7. A Semi-Continuous State-Transition Probability HMM-Based Voice Activity Detector

    Directory of Open Access Journals (Sweden)

    Othman H

    2007-01-01

    Full Text Available We introduce an efficient hidden Markov model-based voice activity detection (VAD algorithm with time-variant state-transition probabilities in the underlying Markov chain. The transition probabilities vary in an exponential charge/discharge scheme and are softly merged with state conditional likelihood into a final VAD decision. Working in the domain of ITU-T G.729 parameters, with no additional cost for feature extraction, the proposed algorithm significantly outperforms G.729 Annex B VAD while providing a balanced tradeoff between clipping and false detection errors. The performance compares very favorably with the adaptive multirate VAD, option 2 (AMR2.

  8. Thermally activated state transition technique for femto-Newton-level force measurement.

    Science.gov (United States)

    Chen, Feng-Jung; Wong, Jhih-Sian; Hsu, Ken Y; Hsu, Long

    2012-05-01

    We develop and test a thermally activated state transition technique for ultraweak force measurement. As a force sensor, the technique was demonstrated on a classical Brownian bead immersed in water and restrained by a bistable optical trap. A femto-Newton-level flow force imposed on this sensor was measured by monitoring changes in the transition rates of the bead hopping between two energy states. The treatment of thermal disturbances as a requirement instead of a limiting factor is the major feature of the technique, and provides a new strategy by which to measure other ultraweak forces beyond the thermal noise limit.

  9. Analysis of Tax Revenues to the State Budget of Economies in Transition Countries

    Directory of Open Access Journals (Sweden)

    Julia V. Koval

    2013-01-01

    Full Text Available The article, using statistical data, analyzes tax revenues to the state budget of the economies in transition countries, namely Russia, Georgia, Ukraine and the Czech Republic. Such analysis is necessary to identify the main ways to pump up the budget and, using comparative analysis, to draw conclusions about the methods, applied by economies in transition countries to come out of the crisis and restore the economy. The main reasons of tax revenues increase or decrease as the main source of pumping up the state budget are examined. Methods of taxation policy, the countries used for the economy restoration are described.

  10. Steady-state thermohydraulic studies in seven-pin bundle out-of-pile experiments: nominal and distorted geometry tests

    International Nuclear Information System (INIS)

    Falzetti, L.; Meneghello, S.; Pezzilli, M.

    1979-01-01

    Two sets of experiments have been performed in sodium with two seven pin electrically heated bundles: the first with a nominal arrangement, the second with one dummy pin enlarged 20% in diameter in peripheral position. In this paper a rapid review of experimental results and theoretical works, related to the temperature distribution in these geometries, is presented together with a short description of the developed test section technology

  11. State-Transition-Aware Spilling Heuristic for MLC STT-RAM-Based Registers

    Directory of Open Access Journals (Sweden)

    Yuanhui Ni

    2017-01-01

    Full Text Available Multilevel Cell Spin-Transfer Torque Random Access Memory (MLC STT-RAM is a promising nonvolatile memory technology to build registers for its natural immunity to electromagnetic radiation in rad-hard space environment. Unlike traditional SRAM-based registers, MLC STT-RAM exhibits unbalanced write state transitions due to the fact that the magnetization directions of hard and soft domains cannot be flipped independently. This feature leads to nonuniform costs of write states in terms of latency and energy. However, current SRAM-targeting register allocations do not have a clear understanding of the impact of the different write state-transition costs. As a result, those approaches heuristically select variables to be spilled without considering the spilling priority imposed by MLC STT-RAM. Aiming to address this limitation, this paper proposes a state-transition-aware spilling cost minimization (SSCM policy, to save power when MLC STT-RAM is employed in register design. Specifically, the spilling cost model is first constructed according to the linear combination of different state-transition frequencies. Directed by the proposed cost model, the compiler picks up spilling candidates to achieve lower power and higher performance. Experimental results show that the proposed SSCM technique can save energy by 19.4% and improve the lifetime by 23.2% of MLC STT-RAM-based register design.

  12. Glass transition of PCBM, P3HT and their blends in quenched state

    International Nuclear Information System (INIS)

    Ngo, Trinh Tung; Nguyen, Duc Nghia; Nguyen, Van Tuyen

    2012-01-01

    In this work the thermal behavior with the glass transition of phenyl-C 61 -butyric acid methyl ester (PCBM), poly(3-hexylthiophene) (P3HT) and their blends was investigated by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Both TGA and DSC measurements show that PCBM contains around 1% residual solvent in the crystalline structure. The glass transition of PCBM, P3HT and their blends was determined by quenching techniques. The quenched state of the materials has a strong effect on the glass transition of the materials, especially in the case of PCBM. In all blend compositions only one glass transition temperature was found. These results indicate that PCBM and P3HT are thermodynamically miscible in all blend compositions. (paper)

  13. Columbus State University Global Observation and Outreach for the 2012 Transit of Venus

    Science.gov (United States)

    Perry, Matthew; McCarty, C.; Bartow, M.; Hood, J. C.; Lodder, K.; Johnson, M.; Cruzen, S. T.; Williams, R. N.

    2013-01-01

    Faculty, staff and students from Columbus State University’s (CSU’s) Coca-Cola Space Science Center presented a webcast of the 2012 Transit of Venus from three continents to a global audience of 1.4 million unique viewers. Team members imaged the transit with telescopes using white-light, hydrogen-alpha, and calcium filters, from Alice Springs, Australia; the Gobi Desert, Mongolia; Bryce Canyon, UT; and Columbus, GA. Images were webcast live during the transit in partnership with NASA’s Sun-Earth Day program, and Science Center staff members were featured on NASA TV. Local members of the public were brought in for a series of outreach initiatives, in both Georgia and Australia, before and during the transit. The data recorded from the various locations have been archived for use in demonstrating principles such as the historical measurement of the astronomical unit.

  14. Design of biomimetic catalysts by molecular imprinting in synthetic polymers: the role of transition state stabilization.

    Science.gov (United States)

    Wulff, Günter; Liu, Junqiu

    2012-02-21

    The impressive efficiency and selectivity of biological catalysts has engendered a long-standing effort to understand the details of enzyme action. It is widely accepted that enzymes accelerate reactions through their steric and electronic complementarity to the reactants in the rate-determining transition states. Thus, tight binding to the transition state of a reactant (rather than to the corresponding substrate) lowers the activation energy of the reaction, providing strong catalytic activity. Debates concerning the fundamentals of enzyme catalysis continue, however, and non-natural enzyme mimics offer important additional insight in this area. Molecular structures that mimic enzymes through the design of a predetermined binding site that stabilizes the transition state of a desired reaction are invaluable in this regard. Catalytic antibodies, which can be quite active when raised against stable transition state analogues of the corresponding reaction, represent particularly successful examples. Recently, synthetic chemistry has begun to match nature's ability to produce antibody-like binding sites with high affinities for the transition state. Thus, synthetic, molecularly imprinted polymers have been engineered to provide enzyme-like specificity and activity, and they now represent a powerful tool for creating highly efficient catalysts. In this Account, we review recent efforts to develop enzyme models through the concept of transition state stabilization. In particular, models for carboxypeptidase A were prepared through the molecular imprinting of synthetic polymers. On the basis of successful experiments with phosphonic esters as templates to arrange amidinium groups in the active site, the method was further improved by combining the concept of transition state stabilization with the introduction of special catalytic moieties, such as metal ions in a defined orientation in the active site. In this way, the imprinted polymers were able to provide both an

  15. A delayed transition to the hard state for 4U 1630-47 at the end of its 2010 outburst

    Energy Technology Data Exchange (ETDEWEB)

    Tomsick, John A. [Space Sciences Laboratory, 7 Gauss Way, University of California, Berkeley, CA 94720-7450 (United States); Yamaoka, Kazutaka [Solar-Terrestrial Environment Laboratory, Department of Particles and Astronomy, Nagoya University, Furocho, Chikusa-ku, Nagoya, Aichi 464-8601 (Japan); Corbel, Stephane [AIM - Unité Mixte de Recherche CEA - CNRS - Université Paris VII - UMR 7158, CEA-Saclay, Service d' Astrophysique, F-91191 Gif-sur-Yvette Cedex (France); Kalemci, Emrah [Sabanci University, Orhanli-Tuzla, Istanbul 34956 (Turkey); Migliari, Simone [Department d' Astronomia i Meteorologia, Universitat de Barcelona, Marti I Franques 1, E-08028 Barcelona (Spain); Kaaret, Philip, E-mail: jtomsick@ssl.berkeley.edu [Department of Physics and Astronomy, University of Iowa, Van Allen Hall, Iowa City, IA 52242 (United States)

    2014-08-10

    Here we report on Swift and Suzaku observations near the end of an outburst from the black hole transient 4U 1630-47 and Chandra observations when the source was in quiescence. 4U 1630-47 made a transition from a soft state to the hard state ∼50 days after the main outburst ended. During this unusual delay, the flux continued to drop, and one Swift measurement found the source with a soft spectrum at a 2-10 keV luminosity of L = 1.07 × 10{sup 35} erg s{sup –1} for an estimated distance of 10 kpc. While such transients usually make a transition to the hard state at L/L{sub Edd} = 0.3%-3%, where L{sub Edd} is the Eddington luminosity, the 4U 1630-47 spectrum remained soft at L/L{sub Edd} = 0.008 M{sub 10}{sup −1}% (as measured in the 2-10 keV band), where M{sub 10} is the mass of the black hole in units of 10 M{sub ☉}. An estimate of the luminosity in the broader 0.5-200 keV bandpass gives L/L{sub Edd} = 0.03 M{sub 10}{sup −1}%, which is still an order of magnitude lower than typical. We also measured an exponential decay of the X-ray flux in the hard state with an e-folding time of 3.39 ± 0.06 days, which is much less than previous measurements of 12-15 days during decays by 4U 1630-47 in the soft state. With the ∼100 ks Suzaku observation, we do not see evidence for a reflection component, and the 90% confidence limits on the equivalent width of a narrow iron Kα emission line are <40 eV for a narrow line and <100 eV for a line of any width, which is consistent with a change of geometry (either a truncated accretion disk or a change in the location of the hard X-ray source) in the hard state. Finally, we report a 0.5-8 keV luminosity upper limit of <2 × 10{sup 32} erg s{sup –1} in quiescence, which is the lowest value measured for 4U 1630-47 to date.

  16. Special geometry

    International Nuclear Information System (INIS)

    Strominger, A.

    1990-01-01

    A special manifold is an allowed target manifold for the vector multiplets of D=4, N=2 supergravity. These manifolds are of interest for string theory because the moduli spaces of Calabi-Yau threefolds and c=9, (2,2) conformal field theories are special. Previous work has given a local, coordinate-dependent characterization of special geometry. A global description of special geometries is given herein, and their properties are studied. A special manifold M of complex dimension n is characterized by the existence of a holomorphic Sp(2n+2,R)xGL(1,C) vector bundle over M with a nowhere-vanishing holomorphic section Ω. The Kaehler potential on M is the logarithm of the Sp(2n+2,R) invariant norm of Ω. (orig.)

  17. Geometrie coniugate

    Directory of Open Access Journals (Sweden)

    Leonardo Paris

    2012-06-01

    Full Text Available Lo studio degli ingranaggi si basa sulle geometrie coniugate in cui due curve o due superfici si mantengono costantemente in contatto pur se in movimento reciproco. La teoria geometrica degli ingranaggi fino alla fine del XIX secolo era uno dei molteplici rami nelle applicazioni della Geometria Descrittiva. Lo studio si basa sulla conoscenza delle principali proprietà delle curve piane e gobbe e delle loro derivate. La specificità del tema è che queste geometrie nel momento in cui si devono relazionare con le loro coniugate, devono rispettare dei vincoli che altrimenti non avrebbero. Si vuole evidenziare attraverso casi concreti il ruolo della geometria descrittiva nel passaggio dal teorico al pratico riproponendo in chiave informatica, temi e procedure di indagine spesso passati in secondo piano se non addirittura dimenticati.

  18. Riemannian geometry

    CERN Document Server

    Petersen, Peter

    2016-01-01

    Intended for a one year course, this text serves as a single source, introducing readers to the important techniques and theorems, while also containing enough background on advanced topics to appeal to those students wishing to specialize in Riemannian geometry. This is one of the few Works to combine both the geometric parts of Riemannian geometry and the analytic aspects of the theory. The book will appeal to a readership that have a basic knowledge of standard manifold theory, including tensors, forms, and Lie groups. Important revisions to the third edition include: a substantial addition of unique and enriching exercises scattered throughout the text; inclusion of an increased number of coordinate calculations of connection and curvature; addition of general formulas for curvature on Lie Groups and submersions; integration of variational calculus into the text allowing for an early treatment of the Sphere theorem using a proof by Berger; incorporation of several recent results about manifolds with posit...

  19. Specification, construction, and exact reduction of state transition system models of biochemical processes.

    Science.gov (United States)

    Bugenhagen, Scott M; Beard, Daniel A

    2012-10-21

    Biochemical reaction systems may be viewed as discrete event processes characterized by a number of states and state transitions. These systems may be modeled as state transition systems with transitions representing individual reaction events. Since they often involve a large number of interactions, it can be difficult to construct such a model for a system, and since the resulting state-level model can involve a huge number of states, model analysis can be difficult or impossible. Here, we describe methods for the high-level specification of a system using hypergraphs, for the automated generation of a state-level model from a high-level model, and for the exact reduction of a state-level model using information from the high-level model. Exact reduction is achieved through the automated application to the high-level model of the symmetry reduction technique and reduction by decomposition by independent subsystems, allowing potentially significant reductions without the need to generate a full model. The application of the method to biochemical reaction systems is illustrated by models describing a hypothetical ion-channel at several levels of complexity. The method allows for the reduction of the otherwise intractable example models to a manageable size.

  20. Facilitating a Major Staffing Transition in a State Psychiatric Hospital With Changes to Nursing Orientation.

    Science.gov (United States)

    Birnbaum, Shira; Sperber-Weiss, Doreen; Dimitrios, Timothy; Eckel, Donald; Monroy-Miller, Cherry; Monroe, Janet J; Friedman, Ross; Ologbosele, Mathias; Epo, Grace; Sharpe, Debra; Zarski, Yongsuk

    A large state psychiatric hospital experienced a state-mandated Reduction in Force that resulted in the abrupt loss and rapid turnover of more than 40% of its nursing and paraprofessional staff. The change exemplified current national trends toward downsizing and facility closure. This article describes revisions to the nursing orientation program that supported cost containment and fidelity to mission and clinical practices during the transition. An existing nursing orientation program was reconfigured in alignment with principles of rational instructional design and a core-competencies model of curriculum development, evidence-based practices that provided tactical clarity and commonality of purpose during a complex and emotionally charged transition period. Program redesign enabled efficiencies that facilitated the transition, with no evidence of associated negative effects. The process described here offers an example for hospitals facing similar workforce reorganization in an era of public sector downsizing.

  1. General Geometry and Geometry of Electromagnetism

    OpenAIRE

    Shahverdiyev, Shervgi S.

    2002-01-01

    It is shown that Electromagnetism creates geometry different from Riemannian geometry. General geometry including Riemannian geometry as a special case is constructed. It is proven that the most simplest special case of General Geometry is geometry underlying Electromagnetism. Action for electromagnetic field and Maxwell equations are derived from curvature function of geometry underlying Electromagnetism. And it is shown that equation of motion for a particle interacting with electromagnetic...

  2. State-and-transition simulation models: a framework for forecasting landscape change

    Science.gov (United States)

    Daniel, Colin; Frid, Leonardo; Sleeter, Benjamin M.; Fortin, Marie-Josée

    2016-01-01

    SummaryA wide range of spatially explicit simulation models have been developed to forecast landscape dynamics, including models for projecting changes in both vegetation and land use. While these models have generally been developed as separate applications, each with a separate purpose and audience, they share many common features.We present a general framework, called a state-and-transition simulation model (STSM), which captures a number of these common features, accompanied by a software product, called ST-Sim, to build and run such models. The STSM method divides a landscape into a set of discrete spatial units and simulates the discrete state of each cell forward as a discrete-time-inhomogeneous stochastic process. The method differs from a spatially interacting Markov chain in several important ways, including the ability to add discrete counters such as age and time-since-transition as state variables, to specify one-step transition rates as either probabilities or target areas, and to represent multiple types of transitions between pairs of states.We demonstrate the STSM method using a model of land-use/land-cover (LULC) change for the state of Hawai'i, USA. Processes represented in this example include expansion/contraction of agricultural lands, urbanization, wildfire, shrub encroachment into grassland and harvest of tree plantations; the model also projects shifts in moisture zones due to climate change. Key model output includes projections of the future spatial and temporal distribution of LULC classes and moisture zones across the landscape over the next 50 years.State-and-transition simulation models can be applied to a wide range of landscapes, including questions of both land-use change and vegetation dynamics. Because the method is inherently stochastic, it is well suited for characterizing uncertainty in model projections. When combined with the ST-Sim software, STSMs offer a simple yet powerful means for developing a wide range of models of

  3. Critical behaviour of continuous phase transitions with infinitely many absorbing states

    International Nuclear Information System (INIS)

    Hua Dayin; Wang Lieyan; Chen Ting

    2006-01-01

    A lattice gas model is proposed for the A 2 + 2B 2 → 2B 2 A reaction system with particle diffusion. In the model, A 2 dissociates in the random dimer-filling mechanism and B 2 dissociation is in the end-on dimer-filling mechanism. A reactive window appears and the system exhibits a continuous phase transition from a reactive state to a covered state with infinitely many absorbing states. When the diffusion of particle A and AB is included, there are still infinitely many absorbing states for the continuous phase transition, but it is found that the critical behaviour changes from the directed percolation (DP) class to the pair contact process with diffusion (PCPD) class

  4. Fast Step Transition and State Identification (STaSI) for Discrete Single-Molecule Data Analysis.

    Science.gov (United States)

    Shuang, Bo; Cooper, David; Taylor, J Nick; Kisley, Lydia; Chen, Jixin; Wang, Wenxiao; Li, Chun Biu; Komatsuzaki, Tamiki; Landes, Christy F

    2014-09-18

    We introduce a step transition and state identification (STaSI) method for piecewise constant single-molecule data with a newly derived minimum description length equation as the objective function. We detect the step transitions using the Student's t test and group the segments into states by hierarchical clustering. The optimum number of states is determined based on the minimum description length equation. This method provides comprehensive, objective analysis of multiple traces requiring few user inputs about the underlying physical models and is faster and more precise in determining the number of states than established and cutting-edge methods for single-molecule data analysis. Perhaps most importantly, the method does not require either time-tagged photon counting or photon counting in general and thus can be applied to a broad range of experimental setups and analytes.

  5. The Multi-state Latent Factor Intensity Model for Credit Rating Transitions

    NARCIS (Netherlands)

    Koopman, S.J.; Lucas, A.; Monteiro, A.

    2008-01-01

    A new empirical reduced-form model for credit rating transitions is introduced. It is a parametric intensity-based duration model with multiple states and driven by exogenous covariates and latent dynamic factors. The model has a generalized semi-Markov structure designed to accommodate many of the

  6. Approaches to incorporating climate change effects in state and transition simulation models of vegetation

    Science.gov (United States)

    Becky K. Kerns; Miles A. Hemstrom; David Conklin; Gabriel I. Yospin; Bart Johnson; Dominique Bachelet; Scott Bridgham

    2012-01-01

    Understanding landscape vegetation dynamics often involves the use of scientifically-based modeling tools that are capable of testing alternative management scenarios given complex ecological, management, and social conditions. State-and-transition simulation model (STSM) frameworks and software such as PATH and VDDT are commonly used tools that simulate how landscapes...

  7. Forecasting timber, biomass, and tree carbon pools with the output of state and transition models

    Science.gov (United States)

    Xiaoping Zhou; Miles A. Hemstrom

    2012-01-01

    The Integrated Landscape Assessment Project (ILAP) uses spatial vegetation data and state and transition models (STM) to forecast future vegetation conditions and the interacting effects of natural disturbances and management activities. Results from ILAP will help land managers, planners, and policymakers evaluate management strategies that reduce fire risk, improve...

  8. Educational Transitions in the United States: Reflections on the American Dream

    Science.gov (United States)

    Crawford, Paul T.

    2012-01-01

    Education involves socialization so that individuals become productive members of society. At present, in the United States, educational transitions are primarily viewed in terms of their location in an outcomes-oriented process and framed as helping people achieve the American Dream, but in terms of the status quo national economic interest. But…

  9. Converting Chair-like Transition States into Zig-Zag Projections A ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 9. Converting Chair-like Transition States into Zig-Zag Projections: A Method of Drawing Stereochemical Structures. Syed R Hussaini. Classroom Volume 19 Issue 9 September 2014 pp 846-850 ...

  10. Converting Chair-like Transition States into Zig-Zag Projections A ...

    Indian Academy of Sciences (India)

    IAS Admin

    Department of Chemistry and. Biochemistry. The University of Tulsa 800. South Tucker Driver. Tulsa, OK 74104, USA. Email: syedhussaini@utulsa.edu. A short and easy method for the conversion of chair-like transition states into zig-zag projections using planar cyclohexane structures, and also the concepts of change of.

  11. Excitonic instability at the spin-state transition in the two-band Hubbard model

    Czech Academy of Sciences Publication Activity Database

    Kuneš, Jan; Augustinský, Pavel

    2014-01-01

    Roč. 89, č. 11 (2014), "115134-1"-"115134-8" ISSN 1098-0121 R&D Projects: GA ČR GA13-25251S Institutional support: RVO:68378271 Keywords : excitonic condensation * spin-state transition * dynamical mean-field theory Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.736, year: 2014

  12. Magnetic field effect on state energies and transition frequency of a ...

    Indian Academy of Sciences (India)

    polaron in an anisotropic quantum dot (AQD) under an applied magnetic field along the z-direction. The effects of the magnetic field and the electron–phonon coupling strength are taken into account. It is found that the ground and the first excited state energies and the transition frequency are increas- ing functions of the ...

  13. State-and-transition model archetypes: a global taxonomy of rangeland change

    Science.gov (United States)

    State and transition models (STMs) synthesize science-based and local knowledge to formally represent the dynamics of rangeland and other ecosystems. Mental models or concepts of ecosystem dynamics implicitly underlie all management decisions in rangelands and thus how people influence rangeland sus...

  14. Efficient Computation of Transition State Resonances and Reaction Rates from a Quantum Normal Form

    NARCIS (Netherlands)

    Schubert, Roman; Waalkens, Holger; Wiggins, Stephen

    2006-01-01

    A quantum version of a recent formulation of transition state theory in phase space is presented. The theory developed provides an algorithm to compute quantum reaction rates and the associated Gamov-Siegert resonances with very high accuracy. The algorithm is especially efficient for

  15. A Visualization System for Predicting Learning Activities Using State Transition Graphs

    Science.gov (United States)

    Okubo, Fumiya; Shimada, Atsushi; Taniguchi, Yuta

    2017-01-01

    In this paper, we present a system for visualizing learning logs of a course in progress together with predictions of learning activities of the following week and the final grades of students by state transition graphs. Data are collected from 236 students attending the course in progress and from 209 students attending the past course for…

  16. High transition frequencies of dynamic functional connectivity states in the creative brain.

    Science.gov (United States)

    Li, Junchao; Zhang, Delong; Liang, Aiying; Liang, Bishan; Wang, Zengjian; Cai, Yuxuan; Gao, Mengxia; Gao, Zhenni; Chang, Song; Jiao, Bingqing; Huang, Ruiwang; Liu, Ming

    2017-04-06

    Creativity is thought to require the flexible reconfiguration of multiple brain regions that interact in transient and complex communication patterns. In contrast to prior emphases on searching for specific regions or networks associated with creative performance, we focused on exploring the association between the reconfiguration of dynamic functional connectivity states and creative ability. We hypothesized that a high frequency of dynamic functional connectivity state transitions will be associated with creative ability. To test this hypothesis, we recruited a high-creative group (HCG) and a low-creative group (LCG) of participants and collected resting-state fMRI (R-fMRI) data and Torrance Tests of Creative Thinking (TTCT) scores from each participant. By combining an independent component analysis with a dynamic network analysis approach, we discovered the HCG had more frequent transitions between dynamic functional connectivity (dFC) states than the LCG. Moreover, a confirmatory analysis using multiplication of temporal derivatives also indicated that there were more frequent dFC state transitions in the HCG. Taken together, these results provided empirical evidence for a linkage between the flexible reconfiguration of dynamic functional connectivity states and creative ability. These findings have the potential to provide new insights into the neural basis of creativity.

  17. Grassland to shrubland state transitions enhance carbon sequestration in the northern Chihuahuan Desert.

    Science.gov (United States)

    Petrie, M D; Collins, S L; Swann, A M; Ford, P L; Litvak, M E

    2015-03-01

    The replacement of native C4 -dominated grassland by C3 -dominated shrubland is considered an ecological state transition where different ecological communities can exist under similar environmental conditions. These state transitions are occurring globally, and may be exacerbated by climate change. One consequence of the global increase in woody vegetation may be enhanced ecosystem carbon sequestration, although the responses of arid and semiarid ecosystems may be highly variable. During a drier than average period from 2007 to 2011 in the northern Chihuahuan Desert, we found established shrubland to sequester 49 g C m(-2) yr(-1) on average, while nearby native C4 grassland was a net source of 31 g C m(-2) yr(-1) over this same period. Differences in C exchange between these ecosystems were pronounced--grassland had similar productivity compared to shrubland but experienced higher C efflux via ecosystem respiration, while shrubland was a consistent C sink because of a longer growing season and lower ecosystem respiration. At daily timescales, rates of carbon exchange were more sensitive to soil moisture variation in grassland than shrubland, such that grassland had a net uptake of C when wet but lost C when dry. Thus, even under unfavorable, drier than average climate conditions, the state transition from grassland to shrubland resulted in a substantial increase in terrestrial C sequestration. These results illustrate the inherent tradeoffs in quantifying ecosystem services that result from ecological state transitions, such as shrub encroachment. In this case, the deleterious changes to ecosystem services often linked to grassland to shrubland state transitions may at least be partially offset by increased ecosystem carbon sequestration. © 2014 John Wiley & Sons Ltd.

  18. Differential geometry

    CERN Document Server

    Ciarlet, Philippe G

    2007-01-01

    This book gives the basic notions of differential geometry, such as the metric tensor, the Riemann curvature tensor, the fundamental forms of a surface, covariant derivatives, and the fundamental theorem of surface theory in a selfcontained and accessible manner. Although the field is often considered a classical one, it has recently been rejuvenated, thanks to the manifold applications where it plays an essential role. The book presents some important applications to shells, such as the theory of linearly and nonlinearly elastic shells, the implementation of numerical methods for shells, and

  19. Orotidine-5'-monophosphate decarboxylase catalysis: Kinetic isotope effects and the state of hybridization of a bound transition-state analogue

    Energy Technology Data Exchange (ETDEWEB)

    Acheson, S.A.; Bell, J.B.; Jones, M.E.; Wolfenden, R. (Univ. of North Carolina School of Medicine, Chapel Hill (USA))

    1990-04-03

    The enzymatic decarboxylation of orotidine 5'-monophosphate may proceed by an addition-elimination mechanism involving a covalently bound intermediate or by elimination of CO2 to generate a nitrogen ylide. In an attempt to distinguish between these two alternatives, 1-(phosphoribosyl)barbituric acid was synthesized with 13C at the 5-position. Interaction of this potential transition-state analogue inhibitor with yeast orotidine-5'-monophosphate decarboxylase resulted in a small (0.6 ppm) downfield displacement of the C-5 resonance, indicating no rehybridization of the kind that might have been expected to accompany 5,6-addition of an enzyme nucleophile. When the substrate orotidine 5'-monophosphate was synthesized with deuterium at C-5, no significant change in kcat (H/D = 0.99 +/- 0.06) or kcat/KM (H/D = 1.00 +/- 0.06) was found to result, suggesting that C-5 does not undergo significant changes in geometry before or during the step that determines the rate of the catalytic process. These results are consistent with a nitrogen ylide mechanism and offer no support for the intervention of covalently bound intermediates in the catalytic process.

  20. Marianne in the Home. Political Revolution and Demographic Transition in France and the United States {Population, 1, 2000)

    OpenAIRE

    R. Binion

    2001-01-01

    Binion Rudolph.- Marianne in the Home. Political Revolution and Demographic Transition in France and the United States Historians of France agree about the precocity of the French demographic transition while disagreeing about its causes and its possible links with the partly coterminous Revolution of 1789. They ignore the American transition which began at the time of the American Revolution some years earlier. An analysis of these two transitions using the comparative method advocated by Ma...

  1. Immigration transition and depressive symptoms: four major ethnic groups of midlife women in the United States.

    Science.gov (United States)

    Im, Eun-Ok; Chang, Sun Ju; Chee, Wonshik; Chee, Eunice; Mao, Jun James

    2015-01-01

    The purpose of this study was to explore the relationships between immigration transition and depressive symptoms among 1,054 midlife women in the United States. This was a secondary analysis of the data from two national Internet survey studies. Questions on background characteristics and immigration transition and the Depression Index for Midlife Women were used to collect the data. The data were analyzed using inferential statistics including multiple regressions. Immigrants reported lower numbers of symptoms and less severe symptoms than nonimmigrants (p immigration status were significant predictors of depressive symptoms (R(2) =.01, p <.05).

  2. Theory of collisional excitation transition between Rydberg states of atoms. Non-inertial mechanism

    International Nuclear Information System (INIS)

    Kaulakys, B.P.

    1982-01-01

    The transitions between highly states of an atom due to the collision of its core with another atom are considered. The cross sections of the change of highly excited electron angular momentum, in the case of the transitions when the main quantum number is constant, are expressed in terms of transport cross sections of the perturbing atom scattering on the ion of Rydberg atom. It is shown that the cross sections of the momentum mixing at thermal rapidities are lower than the cross sections of the atom-ion elastic scattering

  3. Suppression of angular forces in collisions of non-S-state transition metal atoms

    International Nuclear Information System (INIS)

    Krems, R.V.; Klos, J.; Rode, M.F.; Szczesniak, M.M.; Chalasinski, G.; Dalgarno, A.

    2005-01-01

    Angular momentum transfer is expected to occur rapidly in collisions of atoms in states of nonzero angular momenta due to the large torque of angular forces. We show that despite the presence of internal angular momenta transition metal atoms interact in collisions with helium effectively as spherical atoms and angular momentum transfer is slow. Thus, magnetic trapping and sympathetic cooling of transition metal atoms to ultracold temperatures should be readily achievable. Our results open up new avenues of research with a broad class of ultracold atoms

  4. Dynamically Switching the Polarization State of Light Based on the Phase Transition of Vanadium Dioxide

    Science.gov (United States)

    Jia, Zhi-Yong; Shu, Fang-Zhou; Gao, Ya-Jun; Cheng, Feng; Peng, Ru-Wen; Fan, Ren-Hao; Liu, Yongmin; Wang, Mu

    2018-03-01

    There have been great endeavors devoted to manipulating the polarization state of light by plasmonic nanostructures in recent decades. However, the topic of active polarizers has attracted much less attention. We present a composite plasmonic nanostructure consisting of vanadium dioxide that can dynamically modulate the polarization state of the reflected light through a thermally induced phase transition of vanadium dioxide. We design a system consisting of anisotropic plasmonic nanostructures with vanadium dioxide that exhibits distinct reflections subjected to different linearly polarized incidence at room temperature and in the heated state. Under a particular linearly polarized incidence, the polarization state of the reflected light changes at room temperature, and reverts to its original polarization state above the phase-transition temperature. The composite structure can also be used to realize a dynamically switchable infrared image, wherein a pattern can be visualized at room temperature while it disappears above the phase-transition temperature. The composite structure could be potentially used for versatile optical modulators, molecular detection, and polarimetric imaging.

  5. Chaotic state to self-organized critical state transition of serrated flow dynamics during brittle-to-ductile transition in metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C.; Wang, W. H.; Bai, H. Y., E-mail: hybai@aphy.iphy.ac.cn [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Sun, B. A. [Centre for Advanced Structural Materials, Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon Tong, Kowloon (Hong Kong)

    2016-02-07

    We study serrated flow dynamics during brittle-to-ductile transition induced by tuning the sample aspect ratio in a Zr-based metallic glass. The statistical analysis reveals that the serrated flow dynamics transforms from a chaotic state characterized by Gaussian-distribution serrations corresponding to stick-slip motion of randomly generated and uncorrelated single shear band and brittle behavior, into a self-organized critical state featured by intermittent scale-free distribution of shear avalanches corresponding to a collective motion of multiple shear bands and ductile behavior. The correlation found between serrated flow dynamics and plastic deformation might shed light on the plastic deformation dynamic and mechanism in metallic glasses.

  6. Generalization of the second law for a transition between nonequilibrium states

    Energy Technology Data Exchange (ETDEWEB)

    Takara, K. [Department of Mathematical Sciences, Ibaraki University, Bunkyo, Mito 310-8512 (Japan); Hasegawa, H.-H., E-mail: hhh@mx.ibaraki.ac.j [Department of Mathematical Sciences, Ibaraki University, Bunkyo, Mito 310-8512 (Japan); Center for Complex Quantum Systems, Univ. of Texas, Austin, TX 78712 (United States); Driebe, D.J. [Embry-Riddle Aeronautical University Worldwide, Fort Lauderdale, FL 33309 (United States)

    2010-12-01

    The maximum work formulation of the second law of thermodynamics is generalized for a transition between nonequilibrium states. The relative entropy, the Kullback-Leibler divergence between the nonequilibrium states and the canonical distribution, determines the maximum ability to work. The difference between the final and the initial relative entropies with an effective temperature gives the maximum dissipative work for both adiabatic and isothermal processes. Our formulation reduces to both the Vaikuntanathan-Jarzynski relation and the nonequilibrium Clausius relation in certain situations. By applying our formulation to a heat engine the Carnot cycle is generalized to a circulation among nonequilibrium states.

  7. Structure of transition nuclei states in fermion dynamic-symmetry model

    International Nuclear Information System (INIS)

    Baktybaev, K.; Kojlyk, N.O.; Romankulov, K.

    2007-01-01

    In the paper collective structures of osmium heavy isotopes nucleons are studied. Results of diagonalization of SO(6) symmetric Hamiltonian of fermion-dynamical symmetry-model are comparing with results of other phenomenological methods such as Bohr-Mottelson model and interacting bosons model. For heavy osmium isotopes not only collective excitations spectral bands but also for probability of E2-electromagnet transition are which are compared with existing experimental data. It is revealed, that complexity of state structure for examined nuclei is related with competition and interweaving of rotation and vibration states and also more complicated states of γ instable nature

  8. On matrix stabilisation of d- and f-transition metal ions in unstable oxidation states

    Energy Technology Data Exchange (ETDEWEB)

    Kiselev, Yurii M [Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow (Russian Federation)

    2009-01-31

    The state-of-the-art in matrix stabilisation of d- and f-transition metal ions in unstable oxidation states is analysed. Main aspects of this problem concerning the genealogy of appropriate matrix systems are classified. Relevant examples are given and the data that contradict the scheme proposed are discussed. The thermodynamics of the matrix stabilisation effect is considered using the concept of isomorphic miscibility. The influence of defects and non-equilibrium on the matrix stabilisation effect is discussed. The problem of identification of the oxidation states in matrix systems is examined and various types of matrix systems are considered.

  9. On matrix stabilisation of d- and f-transition metal ions in unstable oxidation states

    International Nuclear Information System (INIS)

    Kiselev, Yurii M

    2009-01-01

    The state-of-the-art in matrix stabilisation of d- and f-transition metal ions in unstable oxidation states is analysed. Main aspects of this problem concerning the genealogy of appropriate matrix systems are classified. Relevant examples are given and the data that contradict the scheme proposed are discussed. The thermodynamics of the matrix stabilisation effect is considered using the concept of isomorphic miscibility. The influence of defects and non-equilibrium on the matrix stabilisation effect is discussed. The problem of identification of the oxidation states in matrix systems is examined and various types of matrix systems are considered.

  10. Geometry of hypersurfaces

    CERN Document Server

    Cecil, Thomas E

    2015-01-01

    This exposition provides the state-of-the art on the differential geometry of hypersurfaces in real, complex, and quaternionic space forms. Special emphasis is placed on isoparametric and Dupin hypersurfaces in real space forms as well as Hopf hypersurfaces in complex space forms. The book is accessible to a reader who has completed a one-year graduate course in differential geometry. The text, including open problems and an extensive list of references, is an excellent resource for researchers in this area. Geometry of Hypersurfaces begins with the basic theory of submanifolds in real space forms. Topics include shape operators, principal curvatures and foliations, tubes and parallel hypersurfaces, curvature spheres and focal submanifolds. The focus then turns to the theory of isoparametric hypersurfaces in spheres. Important examples and classification results are given, including the construction of isoparametric hypersurfaces based on representations of Clifford algebras. An in-depth treatment of Dupin hy...

  11. A universal indicator of critical state transitions in noisy complex networked systems.

    Science.gov (United States)

    Liang, Junhao; Hu, Yanqing; Chen, Guanrong; Zhou, Tianshou

    2017-02-23

    Critical transition, a phenomenon that a system shifts suddenly from one state to another, occurs in many real-world complex networks. We propose an analytical framework for exactly predicting the critical transition in a complex networked system subjected to noise effects. Our prediction is based on the characteristic return time of a simple one-dimensional system derived from the original higher-dimensional system. This characteristic time, which can be easily calculated using network data, allows us to systematically separate the respective roles of dynamics, noise and topology of the underlying networked system. We find that the noise can either prevent or enhance critical transitions, playing a key role in compensating the network structural defect which suffers from either internal failures or environmental changes, or both. Our analysis of realistic or artificial examples reveals that the characteristic return time is an effective indicator for forecasting the sudden deterioration of complex networks.

  12. Characteristics of homeless adults with serious mental illness served by a state mental health transitional shelter.

    Science.gov (United States)

    Viron, Mark; Bello, Iruma; Freudenreich, Oliver; Shtasel, Derri

    2014-07-01

    Specialized transitional shelters are available in various cities to provide assistance to homeless individuals with serious mental illness. Little is known about the population using such shelters. The authors conducted a retrospective chart review to collect demographic, social, and clinical data of residents in a state-operated mental health transitional shelter in Massachusetts. A total of 74 subjects were included. Schizophrenia-spectrum disorders were present in 67.6 % of the sample and mood disorders in 35.1 %. Substance use disorders were documented in 44.6 %. Chronic medical illness (mostly hypertension, dyslipidemia, asthma, and diabetes) was found in 82.4 %. The co-occurrence of a psychiatric and substance use disorder and chronic medical illness was found in 36.5 %. The majority (75.7 %) of patients had a history of legal charges. Homeless individuals with serious mental illness served by specialized transitional shelters represent a population with complex psychiatric, medical and social needs.

  13. 19 CFR 123.64 - Baggage in transit through the United States between ports in Canada or in Mexico.

    Science.gov (United States)

    2010-04-01

    ... between ports in Canada or in Mexico. 123.64 Section 123.64 Customs Duties U.S. CUSTOMS AND BORDER... MEXICO Baggage § 123.64 Baggage in transit through the United States between ports in Canada or in Mexico. (a) Procedure. Baggage in transit from point to point in Canada or Mexico through the United States...

  14. Integrating continuous stocks and flows into state-and-transition simulation models of landscape change

    Science.gov (United States)

    Daniel, Colin J.; Sleeter, Benjamin M.; Frid, Leonardo; Fortin, Marie-Josée

    2018-01-01

    State-and-transition simulation models (STSMs) provide a general framework for forecasting landscape dynamics, including projections of both vegetation and land-use/land-cover (LULC) change. The STSM method divides a landscape into spatially-referenced cells and then simulates the state of each cell forward in time, as a discrete-time stochastic process using a Monte Carlo approach, in response to any number of possible transitions. A current limitation of the STSM method, however, is that all of the state variables must be discrete.Here we present a new approach for extending a STSM, in order to account for continuous state variables, called a state-and-transition simulation model with stocks and flows (STSM-SF). The STSM-SF method allows for any number of continuous stocks to be defined for every spatial cell in the STSM, along with a suite of continuous flows specifying the rates at which stock levels change over time. The change in the level of each stock is then simulated forward in time, for each spatial cell, as a discrete-time stochastic process. The method differs from the traditional systems dynamics approach to stock-flow modelling in that the stocks and flows can be spatially-explicit, and the flows can be expressed as a function of the STSM states and transitions.We demonstrate the STSM-SF method by integrating a spatially-explicit carbon (C) budget model with a STSM of LULC change for the state of Hawai'i, USA. In this example, continuous stocks are pools of terrestrial C, while the flows are the possible fluxes of C between these pools. Importantly, several of these C fluxes are triggered by corresponding LULC transitions in the STSM. Model outputs include changes in the spatial and temporal distribution of C pools and fluxes across the landscape in response to projected future changes in LULC over the next 50 years.The new STSM-SF method allows both discrete and continuous state variables to be integrated into a STSM, including interactions between

  15. Integrating continuous stocks and flows into state-and-transition simulation models of landscape change

    Science.gov (United States)

    Daniel, Colin J.; Sleeter, Benjamin M.; Frid, Leonardo; Fortin, Marie-Josée

    2017-01-01

    State-and-transition simulation models (STSMs) provide a general framework for forecasting landscape dynamics, including projections of both vegetation and land-use/land-cover (LULC) change. The STSM method divides a landscape into spatially-referenced cells and then simulates the state of each cell forward in time, as a discrete-time stochastic process using a Monte Carlo approach, in response to any number of possible transitions. A current limitation of the STSM method, however, is that all of the state variables must be discrete.Here we present a new approach for extending a STSM, in order to account for continuous state variables, called a state-and-transition simulation model with stocks and flows (STSM-SF). The STSM-SF method allows for any number of continuous stocks to be defined for every spatial cell in the STSM, along with a suite of continuous flows specifying the rates at which stock levels change over time. The change in the level of each stock is then simulated forward in time, for each spatial cell, as a discrete-time stochastic process. The method differs from the traditional systems dynamics approach to stock-flow modelling in that the stocks and flows can be spatially-explicit, and the flows can be expressed as a function of the STSM states and transitions.We demonstrate the STSM-SF method by integrating a spatially-explicit carbon (C) budget model with a STSM of LULC change for the state of Hawai'i, USA. In this example, continuous stocks are pools of terrestrial C, while the flows are the possible fluxes of C between these pools. Importantly, several of these C fluxes are triggered by corresponding LULC transitions in the STSM. Model outputs include changes in the spatial and temporal distribution of C pools and fluxes across the landscape in response to projected future changes in LULC over the next 50 years.The new STSM-SF method allows both discrete and continuous state variables to be integrated into a STSM, including interactions between

  16. Stochastic transitions between neural states in taste processing and decision-making.

    Science.gov (United States)

    Miller, Paul; Katz, Donald B

    2010-02-17

    Noise, which is ubiquitous in the nervous system, causes trial-to-trial variability in the neural responses to stimuli. This neural variability is in turn a likely source of behavioral variability. Using Hidden Markov modeling, a method of analysis that can make use of such trial-to-trial response variability, we have uncovered sequences of discrete states of neural activity in gustatory cortex during taste processing. Here, we advance our understanding of these patterns in two ways. First, we reproduce the experimental findings in a formal model, describing a network that evinces sharp transitions between discrete states that are deterministically stable given sufficient noise in the network; as in the empirical data, the transitions occur at variable times across trials, but the stimulus-specific sequence is itself reliable. Second, we demonstrate that such noise-induced transitions between discrete states can be computationally advantageous in a reduced, decision-making network. The reduced network produces binary outputs, which represent classification of ingested substances as palatable or nonpalatable, and the corresponding behavioral responses of "spit" or "swallow". We evaluate the performance of the network by measuring how reliably its outputs follow small biases in the strengths of its inputs. We compare two modes of operation: deterministic integration ("ramping") versus stochastic decision-making ("jumping"), the latter of which relies on state-to-state transitions. We find that the stochastic mode of operation can be optimal under typical levels of internal noise and that, within this mode, addition of random noise to each input can improve optimal performance when decisions must be made in limited time.

  17. Phase transition and thermodynamical geometry for Schwarzschild AdS black hole in $AdS_5\\times{S^5}$ spacetime

    OpenAIRE

    Zhang, Jia-Lin; Cai, Rong-Gen; Yu, Hongwei

    2014-01-01

    We study the thermodynamics and thermodynamic geometry of a five-dimensional Schwarzschild AdS black hole in AdS 5 × S 5 spacetime by treating the cosmological constant as the number of colors in the boundary gauge theory and its conjugate quantity as the associated chemical potential. It is found that the chemical potential is always negative in the stable branch of black hole thermodynamics and it has a chance to be positive, but appears in the unstable branch. We calculate the scalar curva...

  18. Relationship of Topology, Multiscale Phase Synchronization, and State Transitions in Human Brain Networks

    Directory of Open Access Journals (Sweden)

    Minkyung Kim

    2017-06-01

    Full Text Available How the brain reconstitutes consciousness and cognition after a major perturbation like general anesthesia is an important question with significant neuroscientific and clinical implications. Recent empirical studies in animals and humans suggest that the recovery of consciousness after anesthesia is not random but ordered. Emergence patterns have been classified as progressive and abrupt transitions from anesthesia to consciousness, with associated differences in duration and electroencephalogram (EEG properties. We hypothesized that the progressive and abrupt emergence patterns from the unconscious state are associated with, respectively, continuous and discontinuous synchronization transitions in functional brain networks. The discontinuous transition is explainable with the concept of explosive synchronization, which has been studied almost exclusively in network science. We used the Kuramato model, a simple oscillatory network model, to simulate progressive and abrupt transitions in anatomical human brain networks acquired from diffusion tensor imaging (DTI of 82 brain regions. To facilitate explosive synchronization, distinct frequencies for hub nodes with a large frequency disassortativity (i.e., higher frequency nodes linking with lower frequency nodes, or vice versa were applied to the brain network. In this simulation study, we demonstrated that both progressive and abrupt transitions follow distinct synchronization processes at the individual node, cluster, and global network levels. The characteristic synchronization patterns of brain regions that are “progressive and earlier” or “abrupt but delayed” account for previously reported behavioral responses of gradual and abrupt emergence from the unconscious state. The characteristic network synchronization processes observed at different scales provide new insights into how regional brain functions are reconstituted during progressive and abrupt emergence from the unconscious

  19. The transition between energy efficient and energy inefficient states in Cameroon

    International Nuclear Information System (INIS)

    Adom, Philip Kofi

    2016-01-01

    I use a two-state (energy efficient/inefficient) Markov-switching dynamic model to study energy efficiency in Cameroon in a novel manner, employing yearly data covering 1971 to 2012. I find that the duration of an energy inefficient state is about twice as long as an energy efficient state, mainly due to fuel subsidies, low income, high corruption, regulatory inefficiencies, poorly developed infrastructure and undeveloped markets. To escape from an energy inefficient state a broad policy overhaul is needed. Trade liberalization and related growth policies together with the removal of fuel subsidies are useful, but insufficient policy measures; the results suggest that they should be combined with structural policies, aiming at institutional structure and investment in infrastructure. - Highlights: • I investigate the transition between energy efficient/inefficient states. • On the average, energy inefficient state persists more than energy efficient state. • The duration of energy inefficient state is about twice as long as energy efficient state. • Price, income and trade openness have distinct energy saving effect irrespective of state. • A broad policy overhaul is needed to escape the energy inefficient state.

  20. Pressure controlled transition into a self-induced topological superconducting surface state

    KAUST Repository

    Zhu, Zhiyong

    2014-02-07

    Ab-initio calculations show a pressure induced trivial-nontrivial-trivial topological phase transition in the normal state of 1T-TiSe2. The pressure range in which the nontrivial phase emerges overlaps with that of the superconducting ground state. Thus, topological superconductivity can be induced in protected surface states by the proximity effect of superconducting bulk states. This kind of self-induced topological surface superconductivity is promising for a realization of Majorana fermions due to the absence of lattice and chemical potential mismatches. For appropriate electron doping, the formation of the topological superconducting surface state in 1T-TiSe 2 becomes accessible to experiments as it can be controlled by pressure.

  1. Heat capacity for systems with excited-state quantum phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Cejnar, Pavel; Stránský, Pavel, E-mail: stransky@ipnp.troja.mff.cuni.cz

    2017-03-18

    Heat capacities of model systems with finite numbers of effective degrees of freedom are evaluated using canonical and microcanonical thermodynamics. Discrepancies between both approaches, which are observed even in the infinite-size limit, are particularly large in systems that exhibit an excited-state quantum phase transition. The corresponding irregularity of the spectrum generates a singularity in the microcanonical heat capacity and affects smoothly the canonical heat capacity. - Highlights: • Thermodynamics of systems with excited-state quantum phase transitions • ESQPT-generated singularities of the microcanonical heat capacity • Non-monotonous dependences of the canonical heat capacity • Discord between canonical and microcanonical pictures in the infinite-size limit.

  2. Degree of Rate Control: How Much the Energies of Intermediates and Transition States Control Rates

    DEFF Research Database (Denmark)

    Stegelmann, Carsten; Andreasen, Anders; Campbell, Charles T.

    2009-01-01

    recently introduced, via the “degree of rate control” of elementary steps. By extending that idea, we argue that even more useful than identifying the rate-determining step is identifying the rate-controlling transition states and the rate-controlling intermediates. These identify a few distinct chemical...... electronic or steric control on the relative energies of the key species. Since these key species are the ones whose relative energies most strongly influence the net reaction rate, they also identify the species whose energetics must be most accurately measured or calculated to achieve an accurate kinetic...... model for any reaction mechanism. Thus, it is very important to identify these rate-controlling transition states and rate-controlling intermediates for both applied and basic research. Here, we present a method for doing that....

  3. A Study to Identify the Transitional Training Needs for United States Army Medical Residents

    Science.gov (United States)

    1988-07-29

    of no current effort tinder way to ascertain the transitional training needs for members of this most vital segment of the health care team. The goal...leadership development, office communi-ations, professional and legal obligations, Rawls 8 and practice marketing . Because these newly trained physicians...specialty. It is felt, though, that insufficient data were obtained on which to state such inferences. It is conceivable that psychographic

  4. Chapter 5: Application of state-and-transition models to evaluate wildlife habitat

    Science.gov (United States)

    Anita T. Morzillo; Pamela Comeleo; Blair Csuti; Stephanie Lee

    2014-01-01

    Wildlife habitat analysis often is a central focus of natural resources management and policy. State-and-transition models (STMs) allow for simulation of landscape level ecological processes, and for managers to test “what if” scenarios of how those processes may affect wildlife habitat. This chapter describes the methods used to link STM output to wildlife habitat to...

  5. Stereoselective synthesis of phosphoramidate alpha(2-6)sialyltransferase transition-state analogue inhibitors.

    Science.gov (United States)

    Skropeta, Danielle; Schwörer, Ralf; Schmidt, Richard R

    2003-10-06

    The asymmetric synthesis of novel, potent phosphoramidate alpha(2-6)sialyltransferase transition-state analogue inhibitors such as (R)-9 (K(i)=68 microM) is described, via condensation of cytidine phosphitamide 6 with key chiral, non-racemic alpha-aminophosphonates, prepared in >98% ee by Mitsunobu azidation followed by Staudinger reduction of the corresponding chiral, non-racemic alpha-hydroxyphosphonates.

  6. Transition State Theory for solvated reactions beyond recrossing-free dividing surfaces

    OpenAIRE

    Revuelta, F.; Bartsch, Thomas; Garcia-Muller, P. L.; Hernandez, Rigoberto; Benito, R. M.; Borondo, F.

    2016-01-01

    The accuracy of rate constants calculated using transition state theory depends crucially on the correct identification of a recrossing--free dividing surface. We show here that it is possible to define such optimal dividing surface in systems with non--Markovian friction. However, a more direct approach to rate calculation is based on invariant manifolds and avoids the use of a dividing surface altogether, Using that method we obtain an explicit expression for the rate of crossing an anharmo...

  7. Steady-state, local temperature fields with turbulent sodium flow in nominal and disturbed bundle geometries with spacer grids

    International Nuclear Information System (INIS)

    Moeller, R.; Tschoeke, H.; Kolodziej, M.

    1980-12-01

    The operating reliability of nuclear reactors calls for a reliable strength analysis of the highly loaded core elements, one of its prerequisites being the reliable determination of the three-dimensional velocity and temperature fields. To verify thermohydraulics computer programs, extensive local temperature measurements in the rod claddings of the critical bundle zone were performed on a heated 19-rod bundle model with sodium flow and provided with spacer grids (P/D = 1.30; W/D = 1.19). These are the essential results obtained: Outside the spacer grids the azimuthal temperature variations of the side and corner rods are greater by approximately the factor 10 in the bundle geometry under consideration as compared to rods in the central bundle zone. The spacer grids investigated give rise to great local temperature peaks and correspondingly great temperature gradients in the axial and azimuthal directions immediately around the support points. Continuous reduction of a subchannel by rod bowing results in substantial rises of temperature which, however, are limited to the adjacent cladding tube zones. (orig.) [de

  8. Synthesis, geometry optimization, spectroscopic investigations (UV/Vis, excited states, FT-IR) and application of new azomethine dyes

    Science.gov (United States)

    Shahab, Siyamak; Sheikhi, Masoome; Filippovich, Liudmila; Kumar, Rakesh; Dikusar, Evgenij; Yahyaei, Hooriye; Khaleghian, Mehrnoosh

    2017-11-01

    In the present work, the quantum theoretical calculations of the molecular structures of the four new synthesized azomethine dyes such as: (E)-N-(4-butoxybenzylidene)-4-((E)-phenyldiazenyl)aniline (PAZB-6), (E)-N-(4-(benzyloxy)benzylidene)-4-((E))-phenyldiazenyl)aniline (PAZB-7), 4-((E)-4-((E)-phenyldiazenyl)phenyl)imino)methyl)phenol (PAZB-8), (E)-N-(4-methoxybenzylidene)-4-((E))-phenyldiazenyl)aniline (PAZB-9) have been predicted using Density Functional Theory in the solvent Dimethylformamide. The geometries of the azomethine dyes were optimized by PBE1PBE/6-31+G* level of theory. The electronic spectra of the title compounds in the solvent DMF was carried out by TDPBE1PBE/6-31+G* method. FT-IR spectra of the title compounds are recorded and discussed. Frontier molecular orbitals, molecular electrostatic potential, electronic properties, natural charges and Natural Bond Orbital (NBO) analysis of the mentioned compounds were investigated and discussed by theoretical calculations. The azomethine dyes were synthesized after quantum chemical modeling for optical applications. A new study of anisotropy of thermal and electrical conductivity of the colored stretched PVA-films have been undertaken.

  9. Afghanistan's Post-Taliban Transition: The State of State-Building After War

    National Research Council Canada - National Science Library

    Johnson, Thomas H

    2006-01-01

    ...: will it be stability and democracy, or a return to its chaotic and turbulent past? On the one hand, after decades of fighting, this volatile state has witnessed watershed elections and important infrastructure rebuilding...

  10. Muon-Substituted Malonaldehyde: Transforming a Transition State into a Stable Structure by Isotope Substitution.

    Science.gov (United States)

    Goli, Mohammad; Shahbazian, Shant

    2016-02-12

    Isotope substitutions are usually conceived to play a marginal role on the structure and bonding pattern of molecules. However, a recent study [Angew. Chem. Int. Ed. 2014, 53, 13706-13709; Angew. Chem. 2014, 126, 13925-13929] further demonstrates that upon replacing a proton with a positively charged muon, as the lightest radioisotope of hydrogen, radical changes in the nature of the structure and bonding of certain species may take place. The present report is a primary attempt to introduce another example of structural transformation on the basis of the malonaldehyde system. Accordingly, upon replacing the proton between the two oxygen atoms of malonaldehyde with the positively charged muon a serious structural transformation is observed. By using the ab initio nuclear-electronic orbital non-Born-Oppenheimer procedure, the nuclear configuration of the muon-substituted species is derived. The resulting nuclear configuration is much more similar to the transition state of the proton transfer in malonaldehyde rather than to the stable configuration of malonaldehyde. The comparison of the "atoms in molecules" (AIM) structure of the muon-substituted malonaldehyde and the AIM structure of the stable and the transition-state configurations of malonaldehyde also unequivocally demonstrates substantial similarities of the muon-substituted malonaldehyde to the transition state. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Vison states and confinement transitions of Z2 spin liquids on the kagome lattice

    Science.gov (United States)

    Huh, Yejin; Punk, Matthias; Sachdev, Subir

    2011-09-01

    We present a projective symmetry group (PSG) analysis of the spinless excitations of Z2 spin liquids on the kagome lattice. In the simplest case, vortices carrying Z2 magnetic flux (“visons”) are shown to transform under the 48 element group GL(2,Z3). Alternative exchange couplings can also lead to a second case with visons transforming under 288-element group GL(2,Z3)×D3. We study the quantum phase transition in which visons condense into confining states with valence bond solid order. The critical field theories and confining states are classified using the vison PSGs.

  12. Increased Firing Irregularity as an Emergent Property of Neural-State Transition in Monkey Prefrontal Cortex

    Science.gov (United States)

    Sakamoto, Kazuhiro; Katori, Yuichi; Saito, Naohiro; Yoshida, Shun; Aihara, Kazuyuki; Mushiake, Hajime

    2013-01-01

    Flexible behaviors are organized by complex neural networks in the prefrontal cortex. Recent studies have suggested that such networks exhibit multiple dynamical states, and can switch rapidly from one state to another. In many complex systems such as the brain, the early-warning signals that may predict whether a critical threshold for state transitions is approaching are extremely difficult to detect. We hypothesized that increases in firing irregularity are a crucial measure for predicting state transitions in the underlying neuronal circuits of the prefrontal cortex. We used both experimental and theoretical approaches to test this hypothesis. Experimentally, we analyzed activities of neurons in the prefrontal cortex while monkeys performed a maze task that required them to perform actions to reach a goal. We observed increased firing irregularity before the activity changed to encode goal-to-action information. Theoretically, we constructed theoretical generic neural networks and demonstrated that changes in neuronal gain on functional connectivity resulted in a loss of stability and an altered state of the networks, accompanied by increased firing irregularity. These results suggest that assessing the temporal pattern of neuronal fluctuations provides important clues regarding the state stability of the prefrontal network. We also introduce a novel scheme that the prefrontal cortex functions in a metastable state near the critical point of bifurcation. According to this scheme, firing irregularity in the prefrontal cortex indicates that the system is about to change its state and the flow of information in a flexible manner, which is essential for executive functions. This metastable and/or critical dynamical state of the prefrontal cortex may account for distractibility and loss of flexibility in the prefrontal cortex in major mental illnesses such as schizophrenia. PMID:24349020

  13. Electron Correlations and Two-Photon States in Polycyclic Aromatic Hydrocarbon Molecules: A Peculiar Role of Geometry

    OpenAIRE

    Aryanpour, K.; Shukla, A.; Mazumdar, S.

    2013-01-01

    We present numerical studies of one- and two-photon excited states ordering in a number of polycyclic aromatic hydrocarbon molecules: coronene, hexa-peri-hexabenzocoronene and circumcoronene, all possessing $D_{6h}$ point group symmetry versus ovalene with $D_{2h}$ symmetry, within the Pariser-Parr-Pople model of interacting $\\pi$-electrons. The calculated energies of the two-photon states as well as their relative two-photon absorption cross-sections within the interacting model are qualitat...

  14. Spin-state transition and phase separation in multi-orbital Hubbard model

    Science.gov (United States)

    Ishihara, Sumio; Suzuki, Ryo; Watanabe, Tsutomu

    2010-03-01

    Exotic phenomena in correlated electron systems are responsible for competition and cooperation between multi-electronic phases. In particular, in perovskite cobaltites, there is the spin-state degree of freedom, i.e., multiple spin states due to the different electron configurations in a single ion. The multiple spin states occur by changes in the carrier concentration, temperature and other parameters. In the lightly hole doped region between the low-spin band insulator (BI) and the high-spin (HS) ferromagnetic metallic (FM) states, several inhomogeneous features have been reported experimentally. We address the issues of the spin-state transition and the phase separation (PS) associated with this transition by analyzing the multi-orbital Hubbard model [1]. We examine the electronic structures in hole doped and undoped systems by the variational Monte-Carlo (VMC) method. We find that the electronic PS is realized between the nonmagnetic BI and the HS FM metal. We conclude that the different band widths play an essential role in the present electronic PS. [1] R. Suzuki, T. Watanabe, and S. Ishihara, Phys. Rev. B 80, 054410 (2009).

  15. State-and-transition prototype model of riparian vegetation downstream of Glen Canyon Dam, Arizona

    Science.gov (United States)

    Ralston, Barbara E.; Starfield, Anthony M.; Black, Ronald S.; Van Lonkhuyzen, Robert A.

    2014-01-01

    Facing an altered riparian plant community dominated by nonnative species, resource managers are increasingly interested in understanding how to manage and promote healthy riparian habitats in which native species dominate. For regulated rivers, managing flows is one tool resource managers consider to achieve these goals. Among many factors that can influence riparian community composition, hydrology is a primary forcing variable. Frame-based models, used successfully in grassland systems, provide an opportunity for stakeholders concerned with riparian systems to evaluate potential riparian vegetation responses to alternative flows. Frame-based, state-and-transition models of riparian vegetation for reattachment bars, separation bars, and the channel margin found on the Colorado River downstream of Glen Canyon Dam were constructed using information from the literature. Frame-based models can be simple spreadsheet models (created in Microsoft® Excel) or developed further with programming languages (for example, C-sharp). The models described here include seven community states and five dam operations that cause transitions between states. Each model divides operations into growing (April–September) and non-growing seasons (October–March) and incorporates upper and lower bar models, using stage elevation as a division. The inputs (operations) can be used by stakeholders to evaluate flows that may promote dynamic riparian vegetation states, or identify those flow options that may promote less desirable states (for example, Tamarisk [Tamarix sp.] temporarily flooded shrubland). This prototype model, although simple, can still elicit discussion about operational options and vegetation response.

  16. Stable tetrabenzo-Chichibabin's hydrocarbons: Tunable ground state and unusual transition between their closed-shell and open-shell resonance forms

    KAUST Repository

    Zeng, Zebing

    2012-09-05

    Stable open-shell polycyclic aromatic hydrocarbons (PAHs) are of fundamental interest due to their unique electronic, optical, and magnetic properties and promising applications in materials sciences. Chichibabin\\'s hydrocarbon as a classical open-shell PAH has been investigated for a long time. However, most of the studies are complicated by their inherent high reactivity. In this work, two new stable benzannulated Chichibabin\\'s hydrocarbons 1-CS and 2-OS were prepared, and their electronic structure and geometry in the ground state were studied by various experiments (steady-state and transient absorption spectra, NMR, electron spin resonance (ESR), superconducting quantum interference device (SQUID), FT Raman, X-ray crystallographic etc.) and density function theory (DFT) calculations. 1-CS and 2-OS exhibited tunable ground states, with a closed-shell quinoidal structure for 1-CS and an open-shell biradical form for 2-OS. Their corresponding excited-state forms 1-OS and 2-CS were also chemically approached and showed different decay processes. The biradical 1-OS displayed an unusually slow decay to the ground state (1-CS) due to a large energy barrier (95 ± 2.5 kJ/mol) arising from severe steric hindrance during the transition from an orthogonal biradical form to a butterfly-like quinoidal form. The quick transition from the quinoidal 2-CS (excited state) to the orthogonal biradicaloid 2-OS (ground state) happened during the attempted synthesis of 2-CS. Compounds 1-CS and 2-OS can be oxidized into stable dications by FeCl 3 and/or concentrated H 2SO 4. The open-shell 2-OS also exhibited a large two-photon absorption (TPA) cross section (760 GM at 1200 nm). © 2012 American Chemical Society.

  17. Transition paths of Met-enkephalin from Markov state modeling of a molecular dynamics trajectory.

    Science.gov (United States)

    Banerjee, Rahul; Cukier, Robert I

    2014-03-20

    Conformational states and their interconversion pathways of the zwitterionic form of the pentapeptide Met-enkephalin (MetEnk) are identified. An explicit solvent molecular dynamics (MD) trajectory is used to construct a Markov state model (MSM) based on dihedral space clustering of the trajectory, and transition path theory (TPT) is applied to identify pathways between open and closed conformers. In the MD trajectory, only four of the eight backbone dihedrals exhibit bistable behavior. Defining a conformer as the string XXXX with X = "+" or "-" denoting, respectively, positive or negative values of a given dihedral angle and obtaining the populations of these conformers shows that only four conformers are highly populated, implying a strong correlation among these dihedrals. Clustering in dihedral space to construct the MSM finds the same four bistable dihedral angles. These state populations are very similar to those found directly from the MD trajectory. TPT is used to obtain pathways, parametrized by committor values, in dihedral state space that are followed in transitioning from closed to open states. Pathway costs are estimated by introducing a kinetics-based procedure that orders pathways from least (shortest) to greater cost paths. The least costly pathways in dihedral space are found to only involve the same XXXX set of dihedral angles, and the conformers accessed in the closed to open transition pathways are identified. For these major pathways, a correlation between reaction path progress (committors) and the end-to-end distance is identified. A dihedral space principal component analysis of the MD trajectory shows that the first three modes capture most of the overall fluctuation, and pick out the same four dihedrals having essentially all the weight in those modes. A MSM based on root-mean-square backbone clustering was also carried out, with good agreement found with dihedral clustering for the static information, but with results that differ

  18. Simulations of viscoelastic fluids using a coupled lattice Boltzmann method: Transition states of elastic instabilities

    Directory of Open Access Journals (Sweden)

    Jin Su

    2017-11-01

    Full Text Available Elastic instabilities could happen in viscoelastic flows as the Weissenberg number is enlarged, and this phenomenon makes the numerical simulation of viscoelastic fluids more difficult. In this study, we introduce a coupled lattice Boltzmann method to solve the equations of viscoelastic fluids, which has a great capability of simulating the high Weissenberg number problem. Different from some traditional methods, two kinds of distribution functions are defined respectively for the evolution of the momentum and stress tensor equations. We mainly aim to investigate some key factors of the symmetry-breaking transition induced by elastic instability of viscoelastic fluids using this numerical coupled lattice Boltzmann method. In the results, we firstly find that the ratio of kinematical viscosity has an important influence on the transition of the elastic instability; the transition between the single stationary and cycling dominant vortex can be controlled via changing the ratio of kinematical viscosity in a periodic extensional flow. Finally, we can also observe a new transition state of instability for the flow showing the banded structure at higher Weissenberg number.

  19. Agricultural Drought Transition Periods In the United States Corn Belt Region

    Science.gov (United States)

    Schiraldi, Nicholas J.

    Agricultural drought in the U.S. Corn Belt region (CBR) has tremendous global socioeconomic implications. Unfortunately, the weather and climate factors that contribute to transition events toward or away from such droughts, and how well those factors are predicted, are poorly understood. This dissertation focuses on the atmospheric circulation signals associated with agricultural drought transitions periods in the CBR that evolve over 20 and 60 days, and how well those circulation signals are predicted on seasonal to sub-seasonal time scales. Results show that amplification of an intraseasonal Rossby wave train across the Pacific Ocean into North America, which occurs coincident with intraseasonal tropical convection on its equatorward side, triggers these transition events, not shifts in the low frequency base state. This result is confirmed through composite analysis, trajectory analysis and a vertically integrated moisture budget. Trajectory analysis reveals similar source regions for air parcels associated with drought development and breakdown, but with a shift toward more parcels originating over the Gulf of Mexico during transitions away from drought. The primary result from the vertically integrated moisture budget demonstrates that advection and convergence of moisture on intraseasonal time scales dominates during these transitions. The primary conclusion drawn is that weather events are the primary driver of agricultural drought transitions occurring over 20 and 60 days. The seasonal to sub-seasonal hindcast dataset is used to investigate the prediction of the low frequency, intraseasonal and synoptic circulation patterns associated with 20 and 60-day drought transition periods. The forecast models assessed are the European Centre for Medium Range Prediction (ECMWF), National Center for Environment Prediction Climate Forecast System (NCEP) and the Australian Bureau of Meteorology (BoM). Results demonstrate that ECMWF and NCEP are not skillful in

  20. Phase transitions and equation of state of CsI under high pressure and the development of a focusing system for x-rays

    International Nuclear Information System (INIS)

    Wu, Yan.

    1990-11-01

    The phase transitions and equation of state of ionic solid cesium iodide were studied under high pressure and room temperature in a diamond anvil cell. The studies were carried out using both energy dispersive and angular dispersive diffraction methods on synchrotron radiation sources over the pressure range from atmospheric pressure to over 300 gigapascals (3 million atmospheres). CsI undergoes a distinct phase transition at about 40 GPa, a pressure that is much lower than the reported insulator-metal transition at 110 GPa, from the atmospheric pressure B2(CsCl) structure to an orthorhombic structure. At higher pressures, a continuous distortion in the structure was observed with a final structure similar to a hcp lattice under ultra high pressure. No volume discontinuity was observed at the insulator-metal transition. The newly found transition sequence is different from the result of previous static compression studies. The current structure has a smaller unit cell volume than the previous assignment. This has resolved a long existing controversy among the previous static compression studies, the dynamic compression studies, and the theoretical studies. The current results also explain the apparent discrepancy between the present study and the previous static studies. We also present the development of a focusing system for high energy x-rays (> 12 keV) that is particularly suited for high pressure diffraction studies. This system uses a pair of multilayer coated spherical mirrors in a Kirkpatrick-Baez geometry. A focused beam size less than 10 micron in diameter can be readily achieved with sufficient intensity to perform diffraction studies. 93 refs., 46 figs., 15 tabs

  1. Phase transitions and equation of state of CsI under high pressure and the development of a focusing system for x-rays

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yan.

    1990-11-01

    The phase transitions and equation of state of ionic solid cesium iodide were studied under high pressure and room temperature in a diamond anvil cell. The studies were carried out using both energy dispersive and angular dispersive diffraction methods on synchrotron radiation sources over the pressure range from atmospheric pressure to over 300 gigapascals (3 million atmospheres). CsI undergoes a distinct phase transition at about 40 GPa, a pressure that is much lower than the reported insulator-metal transition at 110 GPa, from the atmospheric pressure B2(CsCl) structure to an orthorhombic structure. At higher pressures, a continuous distortion in the structure was observed with a final structure similar to a hcp lattice under ultra high pressure. No volume discontinuity was observed at the insulator-metal transition. The newly found transition sequence is different from the result of previous static compression studies. The current structure has a smaller unit cell volume than the previous assignment. This has resolved a long existing controversy among the previous static compression studies, the dynamic compression studies, and the theoretical studies. The current results also explain the apparent discrepancy between the present study and the previous static studies. We also present the development of a focusing system for high energy x-rays (> 12 keV) that is particularly suited for high pressure diffraction studies. This system uses a pair of multilayer coated spherical mirrors in a Kirkpatrick-Baez geometry. A focused beam size less than 10 micron in diameter can be readily achieved with sufficient intensity to perform diffraction studies. 93 refs., 46 figs., 15 tabs.

  2. Dispersed-flow film boiling in rod-bundle geometry: steady-state heat-transfer data and correlation comparisons

    International Nuclear Information System (INIS)

    Yoder, G.L.; Morris, D.G.; Mullins, C.B.; Ott, L.J.; Reed, D.A.

    1982-03-01

    Assessment of six film boiling correlations and one single-phase vapor correlation has been made using data from 22 steady state upflow rod bundle tests (series 3.07.9). Bundle fluid conditions were calculated using energy and mass conservation considerations. Results of the steady state film boiling tests support the conclusions reached in the analysis of prior transient tests 3.03.6AR, 3.06.6B, and 3.08.6C. Comparisons between experimentally determined and correlation-predicted heat transfer coefficients, are presented

  3. Using a State-and-Transition Approach to Manage Endangered Eucalyptus albens (White Box) Woodlands

    Science.gov (United States)

    Spooner, Peter G.; Allcock, Kimberly G.

    2006-11-01

    Eucalyptus albens (White Box) woodlands are among the most poorly conserved and threatened communities in Australia. Remnants are under further threat from stock grazing, deteriorating soil conditions, weed invasion, and salinity. There is an urgent need to restore degraded White Box and other woodland ecosystems to improve landscape function. However, there is still a poor understanding of the ecology of degraded woodland ecosystems in fragmented agricultural landscapes, and consequently a lack of precise scientific guidelines to manage these ecosystems in a conservation context. State and Transition Models (STMs) have received a great deal of attention, mainly in rangeland applications, as a suitable framework for understanding the ecology of complex ecosystems and to guide management. We have developed a STM for endangered White Box woodlands and discuss the merits of using this approach for land managers of other endangered ecosystems. An STM approach provides a greater understanding of the range of states, transitions, and thresholds possible in an ecosystem, and provides a summary of processes driving the system. Importantly, our proposed STM could be used to clarify the level of “intactness” of degraded White Box woodland sites, and provide the impetus to manage different states in complementary ways, rather than attempting to restore ecosystems to one pristine stable state. We suggest that this approach has considerable potential to integrate researcher and land manager knowledge, focus future experimental studies, and ultimately serve as a decision support tool in setting realistic and achievable conservation and restoration goals.

  4. Role of entropy and structural parameters in the spin-state transition of LaCoO3

    Science.gov (United States)

    Chakrabarti, Bismayan; Birol, Turan; Haule, Kristjan

    2017-11-01

    The spin-state transition in LaCoO3 has eluded description for decades despite concerted theoretical and experimental effort. In this study, we approach this problem using fully charge self-consistent density functional theory + embedded dynamical mean field theory (DFT+DMFT). We show from first principles that LaCoO3 cannot be described by a single, pure spin state at any temperature. Instead, we observe a gradual change in the population of higher-spin multiplets with increasing temperature, with the high-spin multiplets being excited at the onset of the spin-state transition followed by the intermediate-spin multiplets being excited at the metal-insulator-transition temperature. We explicitly elucidate the critical role of lattice expansion and oxygen octahedral rotations in the spin-state transition. We also reproduce, from first principles, that the spin-state transition and the metal-insulator transition in LaCoO3 occur at different temperature scales. In addition, our results shed light on the importance of electronic entropy in driving the spin-state transition, which has so far been ignored in all first-principles studies of this material.

  5. Phase transitions, melting dynamics, and solid-state diffusion in a nano test tube.

    Science.gov (United States)

    Holmberg, Vincent C; Panthani, Matthew G; Korgel, Brian A

    2009-10-16

    Confined nanoscale geometry greatly influences physical transformations in materials. The electron microscope enables direct visualization of these changes. We examined the evolution of a germanium (Ge) nanowire attached to a gold (Au) nanocrystal as it was heated to 900 degrees C. The application of a carbon shell prevented changes in volume and interfacial area during the heating cycle. Au/Ge eutectic formation was visualized, occurring 15 degrees C below the bulk eutectic temperature. Capillary pressure pushed the melt into the cylindrical neck of the nanowire, and Ge crystallized in the spherical tip of the carbon shell. Solid-state diffusion down the length of the confined Ge nanowire was observed at temperatures above 700 degrees C; Au diffusion was several orders of magnitude slower than in a bulk Ge crystal.

  6. Genome-wide diel growth state transitions in the diatom Thalassiosira pseudonana.

    Science.gov (United States)

    Ashworth, Justin; Coesel, Sacha; Lee, Allison; Armbrust, E Virginia; Orellana, Mónica V; Baliga, Nitin S

    2013-04-30

    Marine diatoms are important primary producers that thrive in diverse and dynamic environments. They do so, in theory, by sensing changing conditions and adapting their physiology accordingly. Using the model species Thalassiosira pseudonana, we conducted a detailed physiological and transcriptomic survey to measure the recurrent transcriptional changes that characterize typical diatom growth in batch culture. Roughly 40% of the transcriptome varied significantly and recurrently, reflecting large, reproducible cell-state transitions between four principal states: (i) "dawn," following 12 h of darkness; (ii) "dusk," following 12 h of light; (iii) exponential growth and nutrient repletion; and (iv) stationary phase and nutrient depletion. Increases in expression of thousands of genes at the end of the reoccurring dark periods (dawn), including those involved in photosynthesis (e.g., ribulose-1,5-bisphosphate carboxylase oxygenase genes rbcS and rbcL), imply large-scale anticipatory circadian mechanisms at the level of gene regulation. Repeated shifts in the transcript levels of hundreds of genes encoding sensory, signaling, and regulatory functions accompanied the four cell-state transitions, providing a preliminary map of the highly coordinated gene regulatory program under varying conditions. Several putative light sensing and signaling proteins were associated with recurrent diel transitions, suggesting that these genes may be involved in light-sensitive and circadian regulation of cell state. These results begin to explain, in comprehensive detail, how the diatom gene regulatory program operates under varying environmental conditions. Detailed knowledge of this dynamic molecular process will be invaluable for new hypothesis generation and the interpretation of genetic, environmental, and metatranscriptomic data from field studies.

  7. Ground state and magnetic phase transitions of orthoferrite DyFeO3

    Science.gov (United States)

    Zhao, Z. Y.; Zhao, X.; Zhou, H. D.; Zhang, F. B.; Li, Q. J.; Fan, C.; Sun, X. F.; Li, X. G.

    2014-06-01

    Low-temperature thermal conductivity (κ), as well as magnetization (M) and electric polarization (P), of multiferroic orthoferrite DyFeO3 single crystals are studied with H ∥c. When the crystal is cooled in zero field, M, P, and κ all consistently exhibit irreversible magnetic-field dependencies. In particular, with 500 mK ultra-low-T (T mK) κ (H) shows a different irreversibility and there is only one transition when the field is swept both up and down. All the results indicate a complex low-T H-T phase diagram involving successive magnetic phase transitions of the Fe3+ spins. In particular, the ground state, obtained with cooling to sub-Kelvin temperatures in zero field, is found to be an unexplored phase.

  8. Phase transition and thermodynamical geometry for Schwarzschild AdS black hole in AdS5 × S5 spacetime

    Science.gov (United States)

    Zhang, Jia-Lin; Cai, Rong-Gen; Yu, Hongwei

    2015-02-01

    We study the thermodynamics and thermodynamic geometry of a five-dimensional Schwarzschild AdS black hole in AdS 5 × S 5 spacetime by treating the cosmological constant as the number of colors in the boundary gauge theory and its conjugate quantity as the associated chemical potential. It is found that the chemical potential is always negative in the stable branch of black hole thermodynamics and it has a chance to be positive, but appears in the unstable branch. We calculate the scalar curvatures of the thermodynamical Weinhold metric, Ruppeiner metric and Quevedo metric, respectively and we find that the scalar curvature in the Weinhold metric is always vanishing, while in the Ruppeiner metric the divergence of the scalar curvature is related to the divergence of the heat capacity with fixed chemical potential, and in the Quevedo metric the divergence of the scalar curvature is related to the divergence of the heat capacity with fixed number of colors and to the vanishing of the heat capacity with fixed chemical potential.

  9. Phase transition and thermodynamical geometry for Schwarzschild AdS black hole in AdS{sub 5}×S{sup 5} spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jia-Lin; Cai, Rong-Gen [Department of Physics and Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, Hunan Normal University,Changsha, 410081 (China); State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics,Chinese Academy of Sciences, Beijing, 100190 (China); Yu, Hongwei [Department of Physics and Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, Hunan Normal University,Changsha, 410081 (China); Center for Nonlinear Science and Department of Physics, Ningbo University,Ningbo, 315211 (China)

    2015-02-23

    We study the thermodynamics and thermodynamic geometry of a five-dimensional Schwarzschild AdS black hole in AdS{sub 5}×S{sup 5} spacetime by treating the cosmological constant as the number of colors in the boundary gauge theory and its conjugate quantity as the associated chemical potential. It is found that the chemical potential is always negative in the stable branch of black hole thermodynamics and it has a chance to be positive, but appears in the unstable branch. We calculate the scalar curvatures of the thermodynamical Weinhold metric, Ruppeiner metric and Quevedo metric, respectively and we find that the scalar curvature in the Weinhold metric is always vanishing, while in the Ruppeiner metric the divergence of the scalar curvature is related to the divergence of the heat capacity with fixed chemical potential, and in the Quevedo metric the divergence of the scalar curvature is related to the divergence of the heat capacity with fixed number of colors and to the vanishing of the heat capacity with fixed chemical potential.

  10. Phase transition and thermodynamical geometry for Schwarzschild AdS black hole in AdS5×S5 spacetime

    International Nuclear Information System (INIS)

    Zhang, Jia-Lin; Cai, Rong-Gen; Yu, Hongwei

    2015-01-01

    We study the thermodynamics and thermodynamic geometry of a five-dimensional Schwarzschild AdS black hole in AdS 5 ×S 5 spacetime by treating the cosmological constant as the number of colors in the boundary gauge theory and its conjugate quantity as the associated chemical potential. It is found that the chemical potential is always negative in the stable branch of black hole thermodynamics and it has a chance to be positive, but appears in the unstable branch. We calculate the scalar curvatures of the thermodynamical Weinhold metric, Ruppeiner metric and Quevedo metric, respectively and we find that the scalar curvature in the Weinhold metric is always vanishing, while in the Ruppeiner metric the divergence of the scalar curvature is related to the divergence of the heat capacity with fixed chemical potential, and in the Quevedo metric the divergence of the scalar curvature is related to the divergence of the heat capacity with fixed number of colors and to the vanishing of the heat capacity with fixed chemical potential.

  11. Teaching Geometry through Problem-Based Learning

    Science.gov (United States)

    Schettino, Carmel

    2011-01-01

    About seven years ago, the mathematics teachers at the author's secondary school came to the conclusion that they were not satisfied with their rather traditional geometry textbook. The author had already begun using a problem-based approach to teaching geometry in her classes, a transition for her and her students that inspired her to write about…

  12. Ab initio calculation of the transition-state properties and addition rate constants for H + C2H2 and selected isotopic analogues

    International Nuclear Information System (INIS)

    Harding, L.B.; Wagner, A.F.; Bowman, J.M.; Schatz, G.C.; Christoffel, K.

    1982-01-01

    GVB-POL-CI ab initio calculations of the geometries, energetics, and normal mode frequencies of C 2 H 2 , C 2 H 3 , and the transition state for the addition reaction of H + C 2 H 2 are presented. In addition, normal mode frequencies for the isotopic variants D + C 2 D 2 , D + C 2 H 2 , and H + C 2 D 2 are preented. These results are compared to experimental values for C 2 H 2 and to ab initio values of Hagase and Kern, and semiempirical values of Keil, Lynch, Cowfer, and Michael. The results are also used to calculate the apparent bimolecular addition rate constant using conventional RRKM theory for chemical activation. The calculated rate constants and their isotopic variants are compared as a function of temperature and pressure to available experimental information. The agreement is little different from that obtained by Keil et al. with a similar calculation using semiempirical values for acetylene, transition-state, and vinyl radical properties. In particular, the calculated high-pressure limit of the rate constant appears to be at least 1 order of magnitude higher than the experimental limit. Several possible reasons for this discrepancy are discussed

  13. Protonated serotonin: Geometry, electronic structures and photophysical properties

    Science.gov (United States)

    Omidyan, Reza; Amanollahi, Zohreh; Azimi, Gholamhassan

    2017-07-01

    The geometry and electronic structures of protonated serotonin have been investigated by the aim of MP2 and CC2 methods. The relative stabilities, transition energies and geometry of sixteen different protonated isomers of serotonin have been presented. It has been predicted that protonation does not exhibit essential alteration on the S1 ← S0 electronic transition energy of serotonin. Instead, more complicated photophysical nature in respect to its neutral analogue is suggested for protonated system owing to radiative and non-radiative deactivation pathways. In addition to hydrogen detachment (HD), hydrogen/proton transfer (H/PT) processes from ammonium to indole ring along the NH+⋯ π hydrogen bond have been predicted as the most important photophysical consequences of SERH+ at S1 excited state. The PT processes is suggested to be responsible for fluorescence of SERH+ while the HD driving coordinate is proposed for elucidation of its nonradiative deactivation mechanism.

  14. Symptoms experienced during menopausal transition: Korean women in South Korea and the United States.

    Science.gov (United States)

    Im, Eun-Ok

    2003-10-01

    This article reports on cultural influences on symptoms experienced during menopausal transition of Korean women in South Korea and Korean immigrant women in the United States. Data from independent studies of two groups of Korean women were triangulated and analyzed using descriptive and inferential statistics. The analysis indicated that Korean women in South Korea tended to report more symptoms than Korean immigrant women in the United States. Types and severity of prevalent symptoms were also found to be different between the two groups. The findings suggest that recent introduction of menopausal industries in South Korea and contextual influences on Korean women's work and immigration in the United States would be the reason for differences. Based on the findings, implications for future research are proposed.

  15. Nonequilibrium steady states in correlated electron systems - Photoinduced insulator-metal transition and optical response

    International Nuclear Information System (INIS)

    Tsuji, Naoto; Oka, Takashi; Aoki, Hideo

    2010-01-01

    To reveal the nature of the photoinduced insulator-metal transition, we show that an exact analysis of the Falicov-Kimball model subject to external ac electric fields becomes possible with Floquet's method combined with the nonequilibrium dynamical mean-field theory. The nonequilibrium steady state that appears during irradiation of a pump light is shown to be determined if the dissipation in a certain heat-bath model is introduced. This has enabled us to predict that novel features characteristic of the photoexcited steady states, i.e., negative weight (gain) in the low-energy region and dip structures around the photon energy of the pump light, should be observed in the optical conductivity. Special emphasis is put on the role of dissipation, for which we elaborate the dependence of the steady state on the strength of dissipation and the temperature of the heat bath.

  16. Enhanced Prognostic Model for Lithium Ion Batteries Based on Particle Filter State Transition Model Modification

    Directory of Open Access Journals (Sweden)

    Buddhi Arachchige

    2017-11-01

    Full Text Available This paper focuses on predicting the End of Life and End of Discharge of Lithium ion batteries using a battery capacity fade model and a battery discharge model. The proposed framework will be able to estimate the Remaining Useful Life (RUL and the Remaining charge through capacity fade and discharge models. A particle filter is implemented that estimates the battery’s State of Charge (SOC and State of Life (SOL by utilizing the battery’s physical data such as voltage, temperature, and current measurements. The accuracy of the prognostic framework has been improved by enhancing the particle filter state transition model to incorporate different environmental and loading conditions without retuning the model parameters. The effect of capacity fade in the reduction of the EOD (End of Discharge time with cycling has also been included, integrating both EOL (End of Life and EOD prediction models in order to get more accuracy in the estimations.

  17. Powder keg divisions in the critical state regime: transition from continuous to explosive percolation

    Science.gov (United States)

    Zhou, Zongzheng; Tordesillas, Antoinette

    2017-06-01

    The underlying microstructure and dynamics of a dense granular material as it evolves towards the "critical state", a limit state in which the system deforms with an essentially constant volume and stress ratio, remains widely debated in the micromechanics of granular media community. Strain localization, a common mechanism in the large strain regime, further complicates the characterization of this limit state. Here we revisit the evolution to this limit state within the framework of modern percolation theory. Attention is paid to motion transfer: in this context, percolation translates to the emergence of a large-scale connectivity in graphs that embody information on individual grain displacements. We construct each graph G(r) by connecting nodes, representing the grains, within a distance r in the displacement-state-space. As r increases, we observe a percolation transition on G(r). The size of the jump discontinuity increases in the lead up to failure, indicating that the nature of percolation transition changes from continuous to explosive. We attribute this to the emergence of collective motion, which manifests in increasingly isolated communities in G(r). At the limit state, where the jump discontinuity is highest and invariant across the different unjamming cycles (drops in stress ratio), G(r) encapsulates multiple kinematically distinct communities that are mediated by nodes corresponding to those grains in the shear band. This finding casts light on the dual and opposing roles of the shear band: a mechanism that creates powder keg divisions in the sample, while simultaneously acting as a mechanical link that transfers motion through such subdivisions moving in relative rigid-body motion.

  18. SDF1-CXCR4 Signaling Contributes to the Transition from Acute to Chronic Pain State.

    Science.gov (United States)

    Yang, Fei; Sun, Wei; Luo, Wen-Jun; Yang, Yan; Yang, Fan; Wang, Xiao-Liang; Chen, Jun

    2017-05-01

    Emerging evidence has demonstrated the involvement of stromal cell-derived factor 1 (SDF1, also known as CXCL12)-CXCR4 signaling in a variety of pain state. However, the underlying mechanisms of SDF1-CXCR4 signaling leading to the maintenance of chronic pain states are poorly understood. In the present study, we sought to explore the role of SDF1-CXCR4 signaling in the forming of neuroplasticity by applying a model of the transition from acute to chronic pain state, named as hyperalgesic priming. Utilizing intraplantar bee venom (BV) injection, we successfully established hyperalgesic priming state and found that peripheral treating with AMD3100, a CXCR4 antagonist, or knocking down CXCR4 by intraganglionar CXCR4 small interfering RNA (siRNA) injection could prevent BV-induced primary mechanical hyperalgesia and hyperalgesic priming. Moreover, we showed that single intraplantar active SDF1 protein injection is sufficient to induce acute mechanical hyperalgesia and hyperalgesic priming through CXC4. Intraplantar coinjection of ERK inhibitor, U0126, and PI3K inhibitor, LY294002, as well as two protein translation inhibitors, temsirolimus and cordycepin, prevented the development of SDF1-induced acute mechanical hyperalgesia and hyperalgesic priming. Finally, on the models of complete Freund's adjuvant (CFA)-induced chronic inflammatory pain and spared nerve injury (SNI)-induced chronic neuropathic pain, we observed that knock-down of CXCR4 could both prevent the development and reverse the maintenance of chronic pain state. In conclusion, our present data suggested that through regulating ERK and PI3K-AKT pathways-mediated protein translation SDF1-CXCR4 signaling mediates the transition from acute pain to chronic pain state and finally contributes to the development and maintenance of chronic pain.

  19. Edge states in the climate system: exploring global instabilities and critical transitions

    Science.gov (United States)

    Lucarini, Valerio; Bódai, Tamás

    2017-07-01

    Multistability is a ubiquitous feature in systems of geophysical relevance and provides key challenges for our ability to predict a system’s response to perturbations. Near critical transitions small causes can lead to large effects and—for all practical purposes—irreversible changes in the properties of the system. As is well known, the Earth climate is multistable: present astronomical and astrophysical conditions support two stable regimes, the warm climate we live in, and a snowball climate characterized by global glaciation. We first provide an overview of methods and ideas relevant for studying the climate response to forcings and focus on the properties of critical transitions in the context of both stochastic and deterministic dynamics, and assess strengths and weaknesses of simplified approaches to the problem. Following an idea developed by Eckhardt and collaborators for the investigation of multistable turbulent fluid dynamical systems, we study the global instability giving rise to the snowball/warm multistability in the climate system by identifying the climatic edge state, a saddle embedded in the boundary between the two basins of attraction of the stable climates. The edge state attracts initial conditions belonging to such a boundary and, while being defined by the deterministic dynamics, is the gate facilitating noise-induced transitions between competing attractors. We use a simplified yet Earth-like intermediate complexity climate model constructed by coupling a primitive equations model of the atmosphere with a simple diffusive ocean. We refer to the climatic edge states as Melancholia states and provide an extensive analysis of their features. We study their dynamics, their symmetry properties, and we follow a complex set of bifurcations. We find situations where the Melancholia state has chaotic dynamics. In these cases, we have that the basin boundary between the two basins of attraction is a strange geometric set with a nearly zero

  20. Observation of neutral, ionic and intermediate states in lamotrigine-acid complexes- inference from crystallographic bond geometries

    Science.gov (United States)

    Sridhar, Balasubramanian; Nanubolu, Jagadeesh Babu; Ravikumar, Krishnan

    2014-09-01

    The anticonvulsant and antiepileptic drug lamotrigine was crystallized with three aromatic acids viz., 2,5-dihydroxybenzoic acid (I), para-toluenesulfonic acid (II) and 4-bromobenzoic acid (III), with the objective of understanding the formation of a salt or co-crystal in the solid state. Single crystal X-ray diffraction and FT-infrared spectroscopic measurements were carried out for all of them. The asymmetric units of I and II contain two lamotriginium cations and two anions (2,5-dihydroxybenzoate in I and para-toluenesulfonate in II), respectively, and additionally II contains one water molecule. The asymmetric unit of III comprises one lamotriginium cation, one 4-bromobenzoate anion and one dimethylformamide (DMF) solvate. In all three complexes the protonation occurs at the N2 atom of the triazine ring. In I and II, the complete proton transfer is observed. However in III, only partial proton transfer is inferred from O to N because of the acidic H atom disorder. The protonation of lamotrigine is also confirmed by the unambiguous location of H atom from the difference Fourier map and as well as from the geometrical bond analysis. Further, various lamotrigine-acid complexes from the CSD were analyzed to establish a correlation between different ionization states (neutral, intermediate and ionic) and changes in the geometrical parameters. The bond angles of triazine ring in lamotrigine and bond distances of carboxylic acid are found to be the best descriptors for distinguishing all three ionization states, whereas, the bond angles of carboxylic acid have to failed to distinguish intermediate state from ionic. From hydrogen bonding point of view, only the lamotrigine-acid heterosynthon is observed in I and II, whereas in III, both lamotrigine-lamotrigine homosynthon and lamotrigine-acid heterosynthon are observed. In I, the cation-anion and anion-anion interactions form a supramolecular two-dimension hydrogen-bonded square grid network, while the water molecule

  1. Global affine differential geometry of hypersurfaces

    CERN Document Server

    Li, An-Min; Zhao, Guosong; Hu, Zejun

    2015-01-01

    This book draws a colorful and widespread picture of global affine hypersurface theory up to the most recent state. Moreover, the recent development revealed that affine differential geometry- as differential geometry in general- has an exciting intersection area with other fields of interest, like partial differential equations, global analysis, convex geometry and Riemann surfaces.

  2. Analysis of the chloroplast protein kinase Stt7 during state transitions.

    Directory of Open Access Journals (Sweden)

    Sylvain Lemeille

    2009-03-01

    Full Text Available State transitions allow for the balancing of the light excitation energy between photosystem I and photosystem II and for optimal photosynthetic activity when photosynthetic organisms are subjected to changing light conditions. This process is regulated by the redox state of the plastoquinone pool through the Stt7/STN7 protein kinase required for phosphorylation of the light-harvesting complex LHCII and for the reversible displacement of the mobile LHCII between the photosystems. We show that Stt7 is associated with photosynthetic complexes including LHCII, photosystem I, and the cytochrome b6f complex. Our data reveal that Stt7 acts in catalytic amounts. We also provide evidence that Stt7 contains a transmembrane region that separates its catalytic kinase domain on the stromal side from its N-terminal end in the thylakoid lumen with two conserved Cys that are critical for its activity and state transitions. On the basis of these data, we propose that the activity of Stt7 is regulated through its transmembrane domain and that a disulfide bond between the two lumen Cys is essential for its activity. The high-light-induced reduction of this bond may occur through a transthylakoid thiol-reducing pathway driven by the ferredoxin-thioredoxin system which is also required for cytochrome b6f assembly and heme biogenesis.

  3. Dynamics of Number of Packets in Transit in Free Flow State of Data Network

    International Nuclear Information System (INIS)

    Shengkun Xie; Lawniczak, A.T.

    2011-01-01

    We study how the dynamics of Number of Packets in Transit (NPT) is affected by the coupling of a routing type with a volume of incoming packet traffic in a data network model of packet switching type. The NPT is a network performance indicator of an aggregate type that measures in '' real time '', how many packets are in the network on their routes to their destinations. We conduct our investigation using a time-discrete simulation model that is an abstraction of the Network Layer of the ISO OSI Seven Layer Reference Model. This model focuses on packets and their routing. We consider a static routing and two different types of dynamic routings coupled with different volumes of incoming packet traffic in the network free flow state. Our study shows that the order of the values of the NPT mean value time series depends on the coupling of a routing type with a volume of incoming packet traffic and changes when the volume of incoming packet traffic increases and is closed to the critical source load values, i.e. when it is closed to the phase transition points from the network free flow state to its congested states. (authors)

  4. Variational transition-state theory. Progress report, February 1981-January 1983

    International Nuclear Information System (INIS)

    Truhlar, D.G.

    1983-01-01

    During the past two years we have extended the variational transition-state theory in several ways. Especially notable is that we have developed several new methods for calculating tunneling probabilities, including two general techniques applicable to systems with small and large reaction-path curvature. We have tested these methods successfully against accurate quantal calculations, and we have applied them to real systems in three dimensions. We have also developed general algorithms for variational transition state theory calculations on polyatomic systems and we have applied these to the combustion reaction OH + H 2 → H 2 O + H. We have developed and successfully applied a statistical-diabatic theory for state-selected rates. We made a totally ab initio prediction of an absolute chemical reaction rate, for the reaction Mu + H 2 → MuH + H, using an accurate potential energy surface and ethods that we had demonstrated to be reliable by tests against accurate quantal collinear results. This prediction has now been confirmed by unpublished experiments; I believe that this is the first reliable ab initio prediction of a chemical rection rate prior to its measurement. In the rest of this technical progress report we give further details of these and other studies we have carried out in the last two years under this contract

  5. Modulating energy arriving at photochemical reaction centers: orange carotenoid protein-related photoprotection and state transitions.

    Science.gov (United States)

    Kirilovsky, Diana

    2015-10-01

    Photosynthetic organisms tightly regulate the energy arriving to the reaction centers in order to avoid photodamage or imbalance between the photosystems. To this purpose, cyanobacteria have developed mechanisms involving relatively rapid (seconds to minutes) changes in the photosynthetic apparatus. In this review, two of these processes will be described: orange carotenoid protein(OCP)-related photoprotection and state transitions which optimize energy distribution between the two photosystems. The photoactive OCP is a light intensity sensor and an energy dissipater. Photoactivation depends on light intensity and only the red-active OCP form, by interacting with phycobilisome cores, increases thermal energy dissipation at the level of the antenna. A second protein, the "fluorescence recovery protein", is needed to recover full antenna capacity under low light conditions. This protein accelerates OCP conversion to the inactive orange form and plays a role in dislodging the red OCP protein from the phycobilisome. The mechanism of state transitions is still controversial. Changes in the redox state of the plastoquinone pool induce movement of phycobilisomes and/or photosystems leading to redistribution of energy absorbed by phycobilisomes between PSII and PSI and/or to changes in excitation energy spillover between photosystems. The different steps going from the induction of redox changes to movement of phycobilisomes or photosystems remain to be elucidated.

  6. Expression of coxsackie and adenovirus receptor distinguishes transitional cancer states in therapy-induced cellular senescence.

    Science.gov (United States)

    Wu, P C; Wang, Q; Dong, Z M; Chu, E; Roberson, R S; Ivanova, I C; Wu, D Y

    2010-09-02

    Therapy-induced cellular senescence describes the phenomenon of cell cycle arrest that can be invoked in cancer cells in response to chemotherapy. Sustained proliferative arrest is often overcome as a contingent of senescent tumor cells can bypass this cell cycle restriction. The mechanism regulating cell cycle re-entry of senescent cancer cells remains poorly understood. This is the first report of the isolation and characterization of two distinct transitional states in chemotherapy-induced senescent cells that share indistinguishable morphological senescence phenotypes and are functionally classified by their ability to escape cell cycle arrest. It has been observed that cell surface expression of coxsackie and adenovirus receptor (CAR) is downregulated in cancer cells treated with chemotherapy. We show the novel use of surface CAR expression and adenoviral transduction to differentiate senescent states and also show in vivo evidence of CAR downregulation in colorectal cancer patients treated with neoadjuvant chemoradiation. This study suggests that CAR is a candidate biomarker for senescence response to antitumor therapy, and CAR expression can be used to distinguish transitional states in early senescence to study fundamental regulatory events in therapy-induced senescence.

  7. Are boat transition states likely to occur in Cope rearrangements? A DFT study of the biogenesis of germacranes

    Directory of Open Access Journals (Sweden)

    José Enrique Barquera-Lozada

    2017-09-01

    Full Text Available It has been proposed that elemanes are biogenetically formed from germacranes by Cope sigmatropic rearrangements. Normally, this reaction proceeds through a transition state with a chair conformation. However, the transformation of schkuhriolide (germacrane into elemanschkuhriolide (elemane may occur through a boat transition state due to the final configuration of the elemanschkuhriolide, but this transition state is questionable due to its high energy. The possible mechanisms of this transformation were studied in the density functional theory frame. The mechanistic differences between the transformation of (Z,E-germacranes and (E,E-germacranes were also studied. We found that (Z,E-germacranolides are significantly more stable than (E,E-germacranolides and elemanolides. In the specific case of schkuhriolide, even when the boat transition state is not energetically favored, a previous hemiacetalization lowers enough the energetic barrier to allow the formation of a very stable elemanolide that is even more stable than its (Z,E-germacrane.

  8. Study of the strength distribution of primary γ-transitions in the decay from superdeformed states in 194Hg

    International Nuclear Information System (INIS)

    Lopez-Martens, A.P.; Doessing, T.; Khoo, T.L.; Korichi, A.; Hannachi, F.; Calderin, I.J.; Lauritsen, T.; Ahmad, I.; Carpenter, M.P.; Fischer, S.M.; Hackman, G.; Janssens, R.V.F.; Nisius, D.; Reiter, P.; Amro, H.; Moore, E.F.

    1999-01-01

    The strength distribution of the primary γ rays in the decay from superdeformed (SD) states is investigated by applying the maximum likelihood method. For the 194 Hg nucleus, 41 primary transitions are identified above 2600 keV. It is concluded that they represent the strongest 10% of the transitions selected stochastically from a Porter-Thomas distribution. This would support the scenario of a statistical decay of SD states via coupling to a compound state at normal deformation. However, the occurrence of several very strong 'one-step linking' transitions is found to have a very small probability. Based on the absence of strong primary transitions from SD states in adjacent nuclei, the situation in 194 Hg is viewed as a very lucky incidence

  9. Transition state theory demonstrated at the micron scale with out-of-equilibrium transport in a confined environment

    DEFF Research Database (Denmark)

    Vestergaard, Christian L.; Mikkelsen, Morten Bo Lindholm; Reisner, Walter

    2016-01-01

    Transition state theory (TST) provides a simple interpretation of many thermally activated processes. It applies successfully on timescales and length scales that differ several orders of magnitude: to chemical reactions, breaking of chemical bonds, unfolding of proteins and RNA structures...

  10. Studying multiply shocked states in HMX and TATB based explosives with a gas gun ring up geometry

    Science.gov (United States)

    Ferguson, James; Finnegan, Simon; Millett, Jeremy; Goff, Michael

    2017-06-01

    A series of ring up shots investigating partially reacted and multiply shocked states in both HMX and TATB based explosives are reported on. Results of experiments using PCTFE and LiF in place of the explosives are also described. The experiments were performed using 50 mm diameter bore and 70 mm diameter bore single stage gas guns. By locating the target between a high impedance copper flyer and sapphire window, shocks of increasing magnitude are reflected into the target at each interface. The particle velocity at the target-window interface was measured using multiple points of HetV reflected from an 800 nm layer of gold sputtered onto the sapphire. The stress state at the target-flyer interface were observed using manganin gauges. A range of different input pressures were investigated, these were picked to either allow a comparison to double shock and particle velocity work, or to provide the maximum number of rings within the one dimensional time. For the inert shots input pressures matched the explosive shots.

  11. Integral geometry and holography

    Energy Technology Data Exchange (ETDEWEB)

    Czech, Bartłomiej; Lamprou, Lampros; McCandlish, Samuel [Stanford Institute for Theoretical Physics, Department of Physics, Stanford University,Stanford, CA 94305 (United States); Sully, James [Theory Group, SLAC National Accelerator Laboratory,Menlo Park, CA 94025 (United States)

    2015-10-27

    We present a mathematical framework which underlies the connection between information theory and the bulk spacetime in the AdS{sub 3}/CFT{sub 2} correspondence. A key concept is kinematic space: an auxiliary Lorentzian geometry whose metric is defined in terms of conditional mutual informations and which organizes the entanglement pattern of a CFT state. When the field theory has a holographic dual obeying the Ryu-Takayanagi proposal, kinematic space has a direct geometric meaning: it is the space of bulk geodesics studied in integral geometry. Lengths of bulk curves are computed by kinematic volumes, giving a precise entropic interpretation of the length of any bulk curve. We explain how basic geometric concepts — points, distances and angles — are reflected in kinematic space, allowing one to reconstruct a large class of spatial bulk geometries from boundary entanglement entropies. In this way, kinematic space translates between information theoretic and geometric descriptions of a CFT state. As an example, we discuss in detail the static slice of AdS{sub 3} whose kinematic space is two-dimensional de Sitter space.

  12. Tropical Forest Restoration within Galapagos National Park: Application of a State-transition Model

    Directory of Open Access Journals (Sweden)

    S. R. Wilkinson

    2005-06-01

    Full Text Available Current theory on non-equilibrium communities, thresholds of irreversibility, and ecological resilience suggests the goal of ecological restoration of degraded communities is not to achieve one target, but to reestablish the temporal and spatial diversity inherent in natural ecosystems. Few restoration models, however, address ecological and management issues across the vegetation mosaic of a landscape. Because of a lack of scientific knowledge and funds, restoration practitioners focus instead on site-specific prescriptions and reactive rather than proactive approaches to restoration; this approach often dooms restoration projects to failure. We applied a state-transition model as a decision-making tool to identify and achieve short- and long-term restoration goals for a tropical, moist, evergreen forest on the island of Santa Cruz, Galapagos. The model guided the process of identifying current and desirable forest states, as well as the natural and human disturbances and management actions that caused transitions between them. This process facilitated assessment of opportunities for ecosystem restoration, expansion of the definition of restoration success for the system, and realization that, although site- or species-specific prescriptions may be available, they cannot succeed until broader landscape restoration issues are identified and addressed. The model provides a decision-making framework to allocate resources effectively to maximize these opportunities across the landscape, and to achieve long-term restoration success. Other restoration models have been limited by lack of scientific knowledge of the system. State-transition models for restoration incorporate current knowledge and funds, are adaptive, and can provide direction for restoration research and conservation management in other degraded systems.

  13. Recycling nicotinamide. The transition-state structure of human nicotinamide phosphoribosyltransferase

    Science.gov (United States)

    Burgos, Emmanuel S.; Vetticatt, Mathew J.; Schramm, Vern L.

    2013-01-01

    Human nicotinamide phosphoribosyltransferase (NAMPT) replenishes the NAD pool and controls the activities of sirtuins (SIRT), mono- and poly-(ADP-ribose) polymerases (PARP) and NAD nucleosidase (CD38). The nature of the enzymatic transition-state (TS) is central to understanding the function of NAMPT. We determined the TS structure for pyrophosphorolysis of nicotinamide mononucleotide (NMN) by kinetic isotope effects (KIEs). With the natural substrates, NMN and pyrophosphate (PPi), the intrinsic KIEs of [1′-14C], [1-15N], [1′-3H] and [2′-3H] are 1.047, 1.029, 1.154 and 1.093, respectively. A unique quantum computational approach was used for TS analysis that included structural elements of the catalytic site. Without constraints (e.g. imposed torsion angles), the theoretical and experimental data are in good agreement. The quantum-mechanical calculations incorporated a crucial catalytic site residue (D313), two magnesium atoms and coordinated water molecules. The transition state model predicts primary 14C, α-secondary 3H, β-secondary 3H and primary 15N KIE close to the experimental values. The analysis reveals significant ribocation character at the TS. The attacking PPi nucleophile is weakly interacting (rC-O = 2.60 Å) and the N-ribosidic C1′-N bond is highly elongated at the TS (rC-N = 2.35 Å), consistent with an ANDN mechanism. Together with the crystal structure of the NMN•PPi•Mg2•enzyme complex, the reaction coordinate is defined. The enzyme holds the nucleophile and leaving group in relatively fixed positions to create a reaction coordinate with C1′-anomeric migration from nicotinamide to the PPi. The transition state is reached by a 0.85 Å migration of C1′. PMID:23373462

  14. Density induced phase transitions in the Schwinger model. A study with matrix product states

    Energy Technology Data Exchange (ETDEWEB)

    Banuls, Mari Carmen; Cirac, J. Ignacio; Kuehn, Stefan [Max-Planck-Institut fuer Quantenoptik (MPQ), Garching (Germany); Cichy, Krzysztof [Frankfurt Univ. (Germany). Inst. fuer Theoretische Physik; Adam Mickiewicz Univ., Poznan (Poland). Faculty of Physics; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2017-02-15

    We numerically study the zero temperature phase structure of the multiflavor Schwinger model at nonzero chemical potential. Using matrix product states, we reproduce analytical results for the phase structure for two flavors in the massless case and extend the computation to the massive case, where no analytical predictions are available. Our calculations allow us to locate phase transitions in the mass-chemical potential plane with great precision and provide a concrete example of tensor networks overcoming the sign problem in a lattice gauge theory calculation.

  15. An experimental spatio-temporal state transition of coupled magneto-elastic system.

    Science.gov (United States)

    Hikihara, Takashi; Okamoto, Yoshinobu; Ueda, Yoshisuke

    1997-12-01

    In this paper the vibration and the traveling wave in a coupled magneto-elastic beam system are discussed experimentally. The vibration excited by the periodical forcing at the beam system propagates to another as a wave through the coupling elastic beams. Each magneto-elastic beam shows the variety of vibrations caused by the nonlinearity of the potential well and the wave propagation with time delay. The temporal vibration of the magneto-elastic beam is explained with relations to the spatial state transition based on the experimental results. (c) 1997 American Institute of Physics.

  16. Transition state determination of enzyme reaction on free energy surface: Application to chorismate mutase

    Science.gov (United States)

    Higashi, Masahiro; Hayashi, Shigehiko; Kato, Shigeki

    2007-04-01

    The transition state on the free energy surface for Claisen rearrangement of chorismate in Bacillus subtilis chorismate mutase is calculated with a method based on a linear response theory. The calculated activation free energy is 16.9 kcal/mol, which is in good agreement with the experimental one. The catalytic ability of the enzyme is examined by comparing the activation barrier with that in aqueous solution and found to be mainly attributed to the conformational restriction of the substrate. We also calculate the kinetic isotope effects, which are in accord with the experimental estimates.

  17. Monte Carlo method for determining free-energy differences and transition state theory rate constants

    International Nuclear Information System (INIS)

    Voter, A.F.

    1985-01-01

    We present a new Monte Carlo procedure for determining the Helmholtz free-energy difference between two systems that are separated in configuration space. Unlike most standard approaches, no integration over intermediate potentials is required. A Metropolis walk is performed for each system, and the average Metropolis acceptance probability for a hypothetical step along a probe vector into the other system is accumulated. Either classical or quantum free energies may be computed, and the procedure is also ideally suited for evaluating generalized transition state theory rate constants. As an application we determine the relative free energies of three configurations of a tungsten dimer on the W(110) surface

  18. The Welfare to Work Transition in the United States: Implications for Work-Related Learning

    Science.gov (United States)

    Fisher, James C.; Martin, Larry G.

    2000-11-01

    This paper summarizes the legislation upon which the current welfare-to-work transition in the United States is based and describes characteristics of the former welfare population from which various tiers of employment options have emerged: unsubsidized-employed workers, subsidized-employed workers, subsidized-unemployed recipients, and unsubsidized-unemployed individuals. It also discusses current program emphases, and presents a format for directions for future program development which includes academic programs, situated cognition programs, integrated literacy/occupational skills programs, and integrated literacy/soft skills training.

  19. Core-state models for fuel management of equilibrium and transition cycles in pressurized water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Aragones, J.M.; Martinez-Val, J.M.; Corella, M.R.

    1977-08-01

    Fuel management requires that mass, energy, and reactivity balance be satisfied in each reload cycle. Procedures for selection of alternatives, core-state models, and fuel cost calculations have been developed for both equilibrium and transition cycles. Effective cycle lengths and fuel cycle variables--namely, reload batch size, schedule of incore residence for the fuel, feed enrichments, energy sharing cycle by cycle, and discharge burnup and isotopics--are the variables being considered for fuel management planning with a given energy generation plan, fuel design, recycling strategy, and financial assumptions.

  20. Surface hopping, transition state theory and decoherence. I. Scattering theory and time-reversibility.

    Science.gov (United States)

    Jain, Amber; Herman, Michael F; Ouyang, Wenjun; Subotnik, Joseph E

    2015-10-07

    We provide an in-depth investigation of transmission coefficients as computed using the augmented-fewest switches surface hopping algorithm in the low energy regime. Empirically, microscopic reversibility is shown to hold approximately. Furthermore, we show that, in some circumstances, including decoherence on top of surface hopping calculations can help recover (as opposed to destroy) oscillations in the transmission coefficient as a function of energy; these oscillations can be studied analytically with semiclassical scattering theory. Finally, in the spirit of transition state theory, we also show that transmission coefficients can be calculated rather accurately starting from the curve crossing point and running trajectories forwards and backwards.

  1. Transition state theory for solvated reactions beyond recrossing-free dividing surfaces.

    Science.gov (United States)

    Revuelta, F; Bartsch, Thomas; Garcia-Muller, P L; Hernandez, Rigoberto; Benito, R M; Borondo, F

    2016-06-01

    The accuracy of rate constants calculated using transition state theory depends crucially on the correct identification of a recrossing-free dividing surface. We show here that it is possible to define such optimal dividing surface in systems with non-Markovian friction. However, a more direct approach to rate calculation is based on invariant manifolds and avoids the use of a dividing surface altogether, Using that method we obtain an explicit expression for the rate of crossing an anharmonic potential barrier. The excellent performance of our method is illustrated with an application to a realistic model for LiNC⇌LiCN isomerization.

  2. Proceedings of the First Landscape State-and-Transition Simulation Modeling Conference, June 14–16, 2011, Portland, Oregon

    Science.gov (United States)

    Becky K. Kerns; Ayn J. Shlisky; Colin J. Daniel

    2012-01-01

    The first ever Landscape State-and-Transition Simulation Modeling Conference was held from June 14–16, 2011, in Portland Oregon. The conference brought together over 70 users of state-and-transition simulation modeling tools—the Vegetation Dynamics Development Tool (VDDT), the Tool for Exploratory Landscape Analysis (TELSA) and the Path Landscape Model. The goal of the...

  3. An explanation for the pseudogap states and the quantum phase transitions beneath the Dome

    Science.gov (United States)

    Cabo, Alejandro Genaro; Vielza, Yoandri; Domingues, Mauricio

    The work present the results of a model proposed to improve the understanding of the normal state of cuprate superconductors. The analysis reproduces the antiferromagnetic correlations and insulator character of these materials. Further, the discussion led to an outstanding prediction: the existence of well defined pseudogap states, which physical origin constitutes still today a debated question. The pseudogap emerges as a paramagnetic excited state, breaking the square crystal symmetry of the CuO planes in the same way as the AF order does it in the real material. The results defined the pseudogap effect as being of pure Coulomb origin. The Fermi surface exhibits the property defining its name: a momentum dependent gap which, that closes at the four corners of the Brillouin cell. The effect of the hole doping on both the AF-Insulator and the pseudogap states was investigated. The evolutions of the energy and band structure with hole doping, became able to predict the quantum phase transition (QPT) which La2CuO4 and other cuprate materials show at doping value, laying ``beneath'' the superconductor ``Dome''. The energies of the insulator and pseudogap states, both tend to coincide at a critical doping value of 0.2, at which the QPT is observed in the material. The doping evolution of the Fermi surface evaluated in for the insulator state, reproduce the experimental results for La2CuO4. We acknoweledge the support received from the Network of the ICTP Net-35.

  4. Modeling and Performance Analysis of State Transitions for Energy-Efficient Femto Base Stations

    Directory of Open Access Journals (Sweden)

    YunWon Chung

    2015-05-01

    Full Text Available Lowering the energy required by base stations (BSs is one of the hot issues nowadays in order to achieve green cellular networks. The energy consumption of femto BSs can be reduced, by turning off the radio interface when there is no mobile station (MS under the coverage area of the femto BSs or MSs served by the femto BSs do not transmit or receive data packets for a long time, especially late at night. In the energy-efficient femto BSs, if MSs have any data packet to transmit and the radio interface of femto BSs is in the off state, MSs wake up the radio interface of femto BSs by using an additional low-power radio interface. In this paper, active (data, idle, active (signaling, sleep entering, sleep and waking up states are defined for the state model for the energy-efficient femto BSs, and the state transitions are modeled analytically. The steady-state probability of each state is derived thoroughly using a semi-Markov approach. Then, the performance of the energy-efficient femto BSs is analyzed in detail, from the aspects of energy consumption, cumulative average delay, cost and low-power radio signaling load. From the results, the tradeoff relationship between energy consumption and cumulative average delay is analyzed in detail, and it was concluded that an appropriate inactivity timer value should be selected to balance the tradeoff.

  5. Photoelectron spectroscopy studies of mixed-valence states of Sm overlayers on transition-metal surfaces

    International Nuclear Information System (INIS)

    Tao Lian.

    1990-01-01

    To investigate and understand how the mixed-valent state of rare earths (RE) is formed and affected by their interactions with transition metals (TM), synchrotron-radiation-excited photoelectron spectroscopy was used to systematically study valence states of Sm overlayers on three TM surfaces as functions of Sm coverages. On polycrystalline Ta, Sm always has a mixed-valent state, consisting of the trivalent state and the divalent state. At a coverage of 0.02 monolayer, Sm has an average valence of 2.24. As the coverage increases, the Sm 3+ and Sm 2+ components increase at different rates. Sm on polycrystalline Cu behaves quite differently. At coverages below one monolayer, all the Sm ions adopt the trivalent state. When the coverage exceeds one monolayer, Sm 2+ ions appear, with a resulting average valence of 2.52. After that the average valence does not change significantly. On a Cu(110) single crystal surface, the situation is found to closely resemble that observed on polycrystalline Cu. These results indicate that the Sm-Ta interaction is weak compared to the Sm-Sm interaction, while the Sm-Cu interaction is stronger and affects the electronic structure

  6. A hyperactive transcriptional state marks genome reactivation at the mitosis–G1 transition

    Science.gov (United States)

    Hsiung, Chris C.-S.; Bartman, Caroline R.; Huang, Peng; Ginart, Paul; Stonestrom, Aaron J.; Keller, Cheryl A.; Face, Carolyne; Jahn, Kristen S.; Evans, Perry; Sankaranarayanan, Laavanya; Giardine, Belinda; Hardison, Ross C.; Raj, Arjun; Blobel, Gerd A.

    2016-01-01

    During mitosis, RNA polymerase II (Pol II) and many transcription factors dissociate from chromatin, and transcription ceases globally. Transcription is known to restart in bulk by telophase, but whether de novo transcription at the mitosis–G1 transition is in any way distinct from later in interphase remains unknown. We tracked Pol II occupancy genome-wide in mammalian cells progressing from mitosis through late G1. Unexpectedly, during the earliest rounds of transcription at the mitosis–G1 transition, ∼50% of active genes and distal enhancers exhibit a spike in transcription, exceeding levels observed later in G1 phase. Enhancer–promoter chromatin contacts are depleted during mitosis and restored rapidly upon G1 entry but do not spike. Of the chromatin-associated features examined, histone H3 Lys27 acetylation levels at individual loci in mitosis best predict the mitosis–G1 transcriptional spike. Single-molecule RNA imaging supports that the mitosis–G1 transcriptional spike can constitute the maximum transcriptional activity per DNA copy throughout the cell division cycle. The transcriptional spike occurs heterogeneously and propagates to cell-to-cell differences in mature mRNA expression. Our results raise the possibility that passage through the mitosis–G1 transition might predispose cells to diverge in gene expression states. PMID:27340175

  7. A hyperactive transcriptional state marks genome reactivation at the mitosis-G1 transition.

    Science.gov (United States)

    Hsiung, Chris C-S; Bartman, Caroline R; Huang, Peng; Ginart, Paul; Stonestrom, Aaron J; Keller, Cheryl A; Face, Carolyne; Jahn, Kristen S; Evans, Perry; Sankaranarayanan, Laavanya; Giardine, Belinda; Hardison, Ross C; Raj, Arjun; Blobel, Gerd A

    2016-06-15

    During mitosis, RNA polymerase II (Pol II) and many transcription factors dissociate from chromatin, and transcription ceases globally. Transcription is known to restart in bulk by telophase, but whether de novo transcription at the mitosis-G1 transition is in any way distinct from later in interphase remains unknown. We tracked Pol II occupancy genome-wide in mammalian cells progressing from mitosis through late G1. Unexpectedly, during the earliest rounds of transcription at the mitosis-G1 transition, ∼50% of active genes and distal enhancers exhibit a spike in transcription, exceeding levels observed later in G1 phase. Enhancer-promoter chromatin contacts are depleted during mitosis and restored rapidly upon G1 entry but do not spike. Of the chromatin-associated features examined, histone H3 Lys27 acetylation levels at individual loci in mitosis best predict the mitosis-G1 transcriptional spike. Single-molecule RNA imaging supports that the mitosis-G1 transcriptional spike can constitute the maximum transcriptional activity per DNA copy throughout the cell division cycle. The transcriptional spike occurs heterogeneously and propagates to cell-to-cell differences in mature mRNA expression. Our results raise the possibility that passage through the mitosis-G1 transition might predispose cells to diverge in gene expression states. © 2016 Hsiung et al.; Published by Cold Spring Harbor Laboratory Press.

  8. Cell-State Transitions Regulated by SLUG Are Critical for Tissue Regeneration and Tumor Initiation

    Directory of Open Access Journals (Sweden)

    Sarah Phillips

    2014-05-01

    Full Text Available Perturbations in stem cell activity and differentiation can lead to developmental defects and cancer. We use an approach involving a quantitative model of cell-state transitions in vitro to gain insights into how SLUG/SNAI2, a key developmental transcription factor, modulates mammary epithelial stem cell activity and differentiation in vivo. In the absence of SLUG, stem cells fail to transition into basal progenitor cells, while existing basal progenitor cells undergo luminal differentiation; together, these changes result in abnormal mammary architecture and defects in tissue function. Furthermore, we show that in the absence of SLUG, mammary stem cell activity necessary for tissue regeneration and cancer initiation is lost. Mechanistically, SLUG regulates differentiation and cellular plasticity by recruiting the chromatin modifier lysine-specific demethylase 1 (LSD1 to promoters of lineage-specific genes to repress transcription. Together, these results demonstrate that SLUG plays a dual role in repressing luminal epithelial differentiation while unlocking stem cell transitions necessary for tumorigenesis.

  9. Factors Influencing Transitions Between Frailty States in Elderly Adults: The Progetto Veneto Anziani Longitudinal Study.

    Science.gov (United States)

    Trevisan, Caterina; Veronese, Nicola; Maggi, Stefania; Baggio, Giovannella; Toffanello, Elena Debora; Zambon, Sabina; Sartori, Leonardo; Musacchio, Estella; Perissinotto, Egle; Crepaldi, Gaetano; Manzato, Enzo; Sergi, Giuseppe

    2017-01-01

    To investigate frailty state transitions in a cohort of older Italian adults to identify factors exacerbating or improving frailty conditions. Population-based longitudinal study with mean follow-up of 4.4 years. Community. Individuals enrolled in the Progetto Veneto Anziani (Pro.V.A.) (N = 2,925; n = 1,179 male, n = 1,746 female; mean age 74.4 ± 7.3). Frailty was identified at baseline and follow-up based on the presence of at least three Fried criteria; prefrailty was defined as the presence of one or two Fried criteria. Anthropometric, socioeconomic, and clinical characteristics were assessed at baseline in a personal interview and clinical examination using validated scales and medical history. During the study period, 1,114 (38.1%) subjects retained their baseline frailty status, 1,066 (36.4%) had a transition in frailty status, and the remainder of the sample died. Older age, female sex, obesity, cardiovascular disease, osteoarthritis, smoking, loss of vision, low levels of self-sufficiency and physical performance, cognitive impairment, hypovitaminosis D, hyperuricemia, and polypharmacy were associated with increasing frailty and greater mortality. Conversely, overweight, low to moderate drinking, high educational level, and living alone were associated with decreasing frailty. Frailty was confirmed as a dynamic syndrome, with socioeconomic and clinical factors that could be targets of preventive actions influencing transitions to better or worse frailty status. © 2016, Copyright the Authors Journal compilation © 2016, The American Geriatrics Society.

  10. A hard-to-soft state transition of Aquila X-1 observed with Suzaku

    Science.gov (United States)

    Ono, Ko; Makishima, Kazuo; Sakurai, Soki; Zhang, Zhongli; Yamaoka, Kazutaka; Nakazawa, Kazuhiro

    2017-04-01

    The recurrent soft X-ray transient Aquila X-1 was observed with Suzaku for a gross duration of 79.9 ks, on 2011 October 21 when the object was in a rising phase of an outburst. During the observation, the source exhibited a clear spectral transition from the hard state to the soft state, on a time scale of ∼30 ks. Across the transition, the 0.8-10 keV X-Ray Imaging Spectrometer count rate increased by a factor ∼3, that of Hard X-ray Detector PIN (HXD-PIN) in 15-60 keV decreased by a similar factor, and the unabsorbed 0.1-100 keV luminosity increased from 3.5 × 1037 erg s-1 to 5.1 × 1037 erg s-1. The broadband spectral shape changed continuously, from a power-law-like one with a high-energy cut-off to a more convex one. Throughout the transition, the 0.8-60 keV spectra were successfully described with a model consisting of a multi-color blackbody and a Comptonized blackbody, which are considered to arise from a standard accretion disk and a closer vicinity of the neutron star, respectively. All the model parameters were confirmed to change continuously, from those typical in the hard state to those typical of the soft state. More specifically, the inner disk radius decreased from 31 km to 18 km, the effects of Comptonization on the blackbody photons weakened, and the electron temperature of Comptonization decreased from 10 keV to 3 keV. The derived parameters imply that the Comptonizing corona shrinks towards the final soft state, and/or the radial infall velocity of the corona decreases. These results reinforce the view that the soft and hard states of Aql X-1 (and of similar objects) are described by the same “disk plus Comptonized blackbody” model, but with considerably different parameters.

  11. The nuclear industry's transition to risk-informed regulation and operation in the United States

    International Nuclear Information System (INIS)

    Kadak, Andrew C.; Matsuo, Toshihiro

    2007-01-01

    This paper summarizes a study of the transition of the United States nuclear industry from a prescriptive regulatory structure to a more risk informed approach to operations and regulations. The transition occurred over a 20 yr period in which gradual changes were made in the fundamental regulations and to the approach to nuclear safety and operations. While the number of actual regulatory changes were few, they are continuing. The utilities that embraced risk informed operations made dramatic changes in the way they approached operations and outage management. Those utilities that used risk in operations showed dramatic improvement in safety based on Institute of Nuclear Power Operations (INPO) performance indicators. It was also shown that the use of risk did not negatively affect safety performance of the plants compared to standard prescriptive approaches. This was despite having greater flexibility in compliance to regulatory standards and the use of the newly instituted risk-informed reactor oversight process. Key factors affecting the successful transition to a more risk-informed approach to regulations and operations are: strong top management support and leadership both at the regulator and the utility; education and training in risk principles and probabilistic risk Assessment tools for engineers, operators and maintenance staff; a slow and steady introduction of risk initiatives in areas that can show value to both the regulator and the industry; a transparent regulatory foundation built around a safety goal policy and the development of a strong safety culture at the utility to allow for more independence in safety compliance and risk management. The experience of the United States shows positive results in both safety and economics. The INPO and NRC metrics presented show that the use of risk information in operations and regulation is marginally better with no degradation in safety when plants that have embraced risk-informed approaches are compared

  12. A molecular symmetry analysis of the electronic states and transition dipole moments for molecules with two torsional degrees of freedom

    Energy Technology Data Exchange (ETDEWEB)

    Obaid, R. [Institut für Theoretische Chemie, Universität Wien, Währinger Straße 17, 1090 Vienna (Austria); Applied Chemistry Department, Palestine Polytechnic University, Hebron, Palestine (Country Unknown); Leibscher, M., E-mail: monika.leibscher@itp.uni-hannover.de [Institut für Theoretische Physik, Leibniz Universität Hannover, Appelstr. 2, 30167 Hannover (Germany)

    2015-02-14

    We present a molecular symmetry analysis of electronic states and transition dipole moments for molecules which undergo large amplitude intramolecular torsions. The method is based on the correlation between the point group of the molecule at highly symmetric configurations and the molecular symmetry group. As an example, we determine the global irreducible representations of the electronic states and transition dipole moments for the quinodimethane derivative 2-[4-(cyclopenta-2,4-dien-1-ylidene)cyclohexa-2,5-dien-1-ylidene]-2H-1, 3-dioxole for which two torsional degrees of freedom can be activated upon photo-excitation and construct the resulting symmetry adapted transition dipole functions.

  13. Quantum Geometry in the Lab

    Energy Technology Data Exchange (ETDEWEB)

    Hogan, Craig

    2013-03-24

    Standard particle theory is based on quantized matter embedded in a classical geometry. Here, a complementary model is proposed, based on classical matter -- massive bodies, without quantum properties -- embedded in a quantum geometry. It does not describe elementary particles, but may be a better, fully consistent quantum description for position states in laboratory-scale systems. Gravitational theory suggests that the geometrical quantum system has an information density of about one qubit per Planck length squared. If so, the model here predicts that the quantum uncertainty of geometry creates a new form of noise in the position of massive bodies, detectable by interferometers.

  14. HEXNOD23, 2-D, 3-D Coarse Mesh Solution of Steady State Diffusion Equation in Hexagonal Geometry

    International Nuclear Information System (INIS)

    Grundmann, Ulrich

    1986-01-01

    1 - Description of program or function: Two- or three dimensional coarse mesh solution of steady state two group neutron diffusion equation in arrays of regular hexagons or hexagonal subassemblies. 2 - Method of solution: The neutron flux in a hexagonal node is expanded in a series of Bessel functions in the hexagonal plane. Polynomials up to the 4. order are used for the approximation of neutron flux in axial direction of three dimensional cases. Resulting relations between node averaged fluxes and mean partial currents of node faces in connection with the neutron balance of nodes are used to calculate the eigenvalue Keff, mean fluxes and mean powers of nodes. The iterations process is divided into inner and outer iterations. The iterations are accelerated by Ljusternik and Tschebyscheff extrapolation schemes. The power densities in the nodes and subassembly powers are computed for given reactor power in three dimensional cases. 30 degree reflectional, 60 and 120 degree rotational core symmetry and the whole core can be treated. 3 - Restrictions on the complexity of the problem: If the problem size designated by LIAR and LRAR exceeds 3000 and 50000 respectively, the lengths of the working array MIAR and MRAR in the main program can be increased. External sources are not permitted

  15. Complex analysis and geometry

    CERN Document Server

    Silva, Alessandro

    1993-01-01

    The papers in this wide-ranging collection report on the results of investigations from a number of linked disciplines, including complex algebraic geometry, complex analytic geometry of manifolds and spaces, and complex differential geometry.

  16. Non-Riemannian geometry

    CERN Document Server

    Eisenhart, Luther Pfahler

    2005-01-01

    This concise text by a prominent mathematician deals chiefly with manifolds dominated by the geometry of paths. Topics include asymmetric and symmetric connections, the projective geometry of paths, and the geometry of sub-spaces. 1927 edition.

  17. Discrete-line transitions from superdeformed to yrast states in 194Hg and 192Hg

    International Nuclear Information System (INIS)

    Hackman, G.; Khoo, T.L.; Ackermann, D.

    1996-01-01

    Discrete-line γ-ray decay from superdeformed (SD) to yrast states in 194,192 Hg has been studied with the Gammasphere spectrometer. The previously established decay for the yrast SD band of 194 Hg has been characterized further. In addition, one-step decays have been observed for 194 Hg SD band 3, which fixes the excitation energy and spin of the last observed level of this band at E* = 7.455 MeV, J = 11ℎ. So far no direct decays from superdeformed to yrast states have been observed in 192 Hg or in 194 Hg band 2, a result which is consistent with fluctuations of the transition strengths

  18. Probing the transition state region in catalytic CO oxidation on Ru

    Energy Technology Data Exchange (ETDEWEB)

    Ostrom, H. [Stockholm Univ. (Sweden); Oberg, H. [Stockholm Univ. (Sweden); Xin, H. [SLAC National Accelerator Lab., Menlo Park, CA (United States); LaRue, J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., Stanford, CA (United States); Beye, M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Helmholtz Zentrum Berlin fur Materialien und Energie GmbH, Berlin (Germany); Dell' Angela, M. [Univ. of Hamburg and Center for Free Electron Laser Science, Hamburg (Germany); Gladh, J. [Stockholm Univ. (Sweden); Ng, M. L. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Sellberg, J. A. [Stockholm Univ. (Sweden); SLAC National Accelerator Lab., Menlo Park, CA (United States); Kaya, S. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Mercurio, G. [Univ. of Hamburg and Center for Free Electron Laser Science, Hamburg (Germany); Nordlund, D. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Hantschmann, M. [Helmholtz Zentrum Berlin fur Materialien und Energie GmbH, Berlin (Germany); Hieke, F. [Univ. of Hamburg and Center for Free Electron Laser Science, Hamburg (Germany); Kuhn, D. [Helmholtz Zentrum Berlin fur Materialien und Energie GmbH, Berlin (Germany); Schlotter, W. F. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Dakovski, G. L. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Turner, J. J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Minitti, M. P. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Mitra, A. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Moeller, S. P. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Fohlisch, A. [Helmholtz Zentrum Berlin fur Materialien und Energie GmbH, Berlin (Germany); Univ. Potsdam, Potsdam (Germany); Wolf, M. [Fritz-Haber Institute of the Max-Planck-Society, Berlin (Germany); Wurth, W. [Univ. of Hamburg and Center for Free Electron Laser Science, Hamburg (Germany); DESY Photon Science, Hamburg (Germany); Persson, M. [The Univ. of Liverpool, Liverpool (United Kingdom); Norskov, J. K. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., Stanford, CA (United States); Abild-Pedersen, F. [Stanford Univ., Stanford, CA (United States); Ogasawara, H. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Pettersson, L. G. M. [Stockholm Univ. (Sweden); Nilsson, A. [Stockholm Univ. (Sweden); SLAC National Accelerator Lab., Menlo Park, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-02-12

    Femtosecond x-ray laser pulses are used to probe the CO oxidation reaction on ruthenium (Ru) initiated by an optical laser pulse. On a time scale of a few hundred femtoseconds, the optical laser pulse excites motions of CO and O on the surface, allowing the reactants to collide, and, with a transient close to a picosecond (ps), new electronic states appear in the O K-edge x-ray absorption spectrum. Density functional theory calculations indicate that these result from changes in the adsorption site and bond formation between CO and O with a distribution of OC–O bond lengths close to the transition state (TS). After 1 ps, 10% of the CO populate the TS region, which is consistent with predictions based on a quantum oscillator model.

  19. Conception d'un controleur actif pour le retard de la transition de l'ecoulement laminaire au turbulent sur une aile a geometrie du profil variable dans le tunnel a vent

    Science.gov (United States)

    Popov, Andrei Vladimir

    The aerospace industry is motivated to reduce fuel consumption in large transport aircraft, mainly through drag reduction. The main objective of the global project is the development of an active control system of wing airfoil geometry during flight in order to allow drag reduction. Drag reduction on a wing can be achieved through modifications in the laminar-to-turbulent flow transition point position, which should be situated as close as possible to the trailing edge of the airfoil wing. As the transition point plays a crucial part in this project, this work focuses on the control of its position on the airfoil, as an effect of controlling the deflection of a morphing wing airfoil equipped with a flexible skin. The paper presents the modeling and the experimental testing of the aerodynamic performance of a morphing wing, starting from the design concept phase all the way to the bench and wind tunnel tests phases. Several wind tunnel test runs for various Mach numbers and angles of attack were performed in the 6 x 9 ft2 wind tunnel at the Institute for Aerospace Research at the National Research Council Canada. A rectangular finite aspect ratio wing, having a morphing airfoil cross-section due to a flexible skin installed on the upper surface of the wing, was instrumented with Kulite transducers. The Mach number varied from 0.2 to 0.3 and the angle of attack between -1° and 2°. Unsteady pressure signals were recorded and analyzed and a thorough comparison, in terms of mean pressure coefficients and their standard deviations, was performed against theoretical predictions, using the XFoil computational fluid dynamics code. The acquired pressure data was analyzed through custom-made software created with Matlab/Simulink in order to detect the noise magnitude in the surface airflow and to localize the transition point position on the wing upper surface. This signal processing was necessary in order to detect the Tollmien-Schlichting waves responsible for triggering

  20. Geometry of the Universe

    International Nuclear Information System (INIS)

    Gurevich, L.Eh.; Gliner, Eh.B.

    1978-01-01

    Problems of investigating the Universe space-time geometry are described on a popular level. Immediate space-time geometries, corresponding to three cosmologic models are considered. Space-time geometry of a closed model is the spherical Riemann geonetry, of an open model - is the Lobachevskij geometry; and of a plane model - is the Euclidean geometry. The Universe real geometry in the contemporary epoch of development is based on the data testifying to the fact that the Universe is infinitely expanding

  1. Structural analysis of silanediols as transition-state-analogue inhibitors of the benchmark metalloprotease thermolysin.

    Science.gov (United States)

    Juers, Douglas H; Kim, Jaeseung; Matthews, Brian W; Sieburth, Scott McN

    2005-12-20

    Dialkylsilanediols have been found to be an effective functional group for the design of active-site-directed protease inhibitors, including aspartic (HIV protease) and metallo (ACE and thermolysin) proteases. The use of silanediols is predicated on its resemblance to the hydrated carbonyl transition-state structure of amide hydrolysis. This concept has been tested by replacing the presumed tetrahedral carbon of a thermolysin substrate with a silanediol group, resulting in an inhibitor with an inhibition constant K(i) = 40 nM. The structure of the silanediol bound to the active site of thermolysin was found to have a conformation very similar to that of a corresponding phosphonamidate inhibitor (K(i) = 10 nM). In both cases, a single oxygen is within bonding distance to the active-site zinc ion, mimicking the presumed tetrahedral transition state. There are binding differences that appear to be related to the presence or absence of protons on the oxygens attached to the silicon or phosphorus. This is the first crystal structure of an organosilane bound to the active site of a protease.

  2. The peptide-receptive transition state of MHC-1 molecules: Insight from structure and molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Robinson H.; Mage, M.; Dolan, M.; Wang, R.; Boyd, L.; Revilleza, M.; Natarajan, K.; Myers, N.; Hansen, T.; Margulies, D.

    2012-05-01

    MHC class I (MHC-I) proteins of the adaptive immune system require antigenic peptides for maintenance of mature conformation and immune function via specific recognition by MHC-I-restricted CD8(+) T lymphocytes. New MHC-I molecules in the endoplasmic reticulum are held by chaperones in a peptide-receptive (PR) transition state pending release by tightly binding peptides. In this study, we show, by crystallographic, docking, and molecular dynamics methods, dramatic movement of a hinged unit containing a conserved 3(10) helix that flips from an exposed 'open' position in the PR transition state to a 'closed' position with buried hydrophobic side chains in the peptide-loaded mature molecule. Crystallography of hinged unit residues 46-53 of murine H-2L(d) MHC-I H chain, complexed with mAb 64-3-7, demonstrates solvent exposure of these residues in the PR conformation. Docking and molecular dynamics predict how this segment moves to help form the A and B pockets crucial for the tight peptide binding needed for stability of the mature peptide-loaded conformation, chaperone dissociation, and Ag presentation.

  3. Flexible transition state theory for a variable reaction coordinate: Derivation of canonical and microcanonical forms

    International Nuclear Information System (INIS)

    Robertson, Struan; Wagner, Albert F.; Wardlaw, David M.

    2000-01-01

    A completely general canonical and microcanonical (energy-resolved) flexible transition state theory (FTST) expression for the rate constant is derived for an arbitrary choice of reaction coordinate. The derivation is thorough and rigorous within the framework of FTST and replaces our previous treatments [Robertson et al., J. Chem. Phys. 103, 2917 (1995); Robertson et al., Faraday Discuss. Chem. Soc. 102, 65 (1995)] which implicitly involved some significant assumptions. The canonical rate expressions obtained here agree with our earlier results. The corresponding microcanonical results are new. The rate expressions apply to any definition of the separation distance between fragments in a barrierless recombination (or dissociation) that is held fixed during hindered rotations at the transition state, and to any combination of fragment structure (atom, linear top, nonlinear top). The minimization of the rate constant with respect to this definition can be regarded as optimizing the reaction coordinate within a canonical or microcanonical framework. The expression is analytic except for a configuration integral whose evaluation generally requires numerical integration over internal angles (from one to five depending on the fragment structures). The form of the integrand in this integral has important conceptual and computational implications. The primary component of the integrand is the determinant of the inverse G-matrix associated with the external rotations and the relative internal motion of the fragments. (c) 2000 American Institute of Physics

  4. A structural analysis of the A5/1 state transition graph

    Directory of Open Access Journals (Sweden)

    Andreas Beckmann

    2012-10-01

    Full Text Available We describe efficient algorithms to analyze the cycle structure of the graph induced by the state transition function of the A5/1 stream cipher used in GSM mobile phones and report on the results of the implementation. The analysis is performed in five steps utilizing HPC clusters, GPGPU and external memory computation. A great reduction of this huge state transition graph of 2^64 nodes is achieved by focusing on special nodes in the first step and removing leaf nodes that can be detected with limited effort in the second step. This step does not break the overall structure of the graph and keeps at least one node on every cycle. In the third step the nodes of the reduced graph are connected by weighted edges. Since the number of nodes is still huge an efficient bitslice approach is presented that is implemented with NVIDIA's CUDA framework and executed on several GPUs concurrently. An external memory algorithm based on the STXXL library and its parallel pipelining feature further reduces the graph in the fourth step. The result is a graph containing only cycles that can be further analyzed in internal memory to count the number and size of the cycles. This full analysis which previously would take months can now be completed within a few days and allows to present structural results for the full graph for the first time. The structure of the A5/1 graph deviates notably from the theoretical results for random mappings.

  5. Crossing the dividing surface of transition state theory. III. Once and only once. Selecting reactive trajectories

    Energy Technology Data Exchange (ETDEWEB)

    Lorquet, J. C., E-mail: jc.lorquet@ulg.ac.be [Department of Chemistry, University of Liège, Sart-Tilman (Bâtiment B6), B-4000 Liège 1 (Belgium)

    2015-09-14

    The purpose of the present work is to determine initial conditions that generate reacting, recrossing-free trajectories that cross the conventional dividing surface of transition state theory (i.e., the plane in configuration space passing through a saddle point of the potential energy surface and perpendicular to the reaction coordinate) without ever returning to it. Local analytical equations of motion valid in the neighborhood of this planar surface have been derived as an expansion in Poisson brackets. We show that the mere presence of a saddle point implies that reactivity criteria can be quite simply formulated in terms of elements of this series, irrespective of the shape of the potential energy function. Some of these elements are demonstrated to be equal to a sum of squares and thus to be necessarily positive, which has a profound impact on the dynamics. The method is then applied to a three-dimensional model describing an atom-diatom interaction. A particular relation between initial conditions is shown to generate a bundle of reactive trajectories that form reactive cylinders (or conduits) in phase space. This relation considerably reduces the phase space volume of initial conditions that generate recrossing-free trajectories. Loci in phase space of reactive initial conditions are presented. Reactivity is influenced by symmetry, as shown by a comparative study of collinear and bent transition states. Finally, it is argued that the rules that have been derived to generate reactive trajectories in classical mechanics are also useful to build up a reactive wave packet.

  6. Efficient Sampling of the Structure of Crypto Generators' State Transition Graphs

    Science.gov (United States)

    Keller, Jörg

    Cryptographic generators, e.g. stream cipher generators like the A5/1 used in GSM networks or pseudo-random number generators, are widely used in cryptographic network protocols. Basically, they are finite state machines with deterministic transition functions. Their state transition graphs typically cannot be analyzed analytically, nor can they be explored completely because of their size which typically is at least n = 264. Yet, their structure, i.e. number and sizes of weakly connected components, is of interest because a structure deviating significantly from expected values for random graphs may form a distinguishing attack that indicates a weakness or backdoor. By sampling, one randomly chooses k nodes, derives their distribution onto connected components by graph exploration, and extrapolates these results to the complete graph. In known algorithms, the computational cost to determine the component for one randomly chosen node is up to O(√n), which severely restricts the sample size k. We present an algorithm where the computational cost to find the connected component for one randomly chosen node is O(1), so that a much larger sample size k can be analyzed in a given time. We report on the performance of a prototype implementation, and about preliminary analysis for several generators.

  7. The transition from the open minimum to the ring minimum on the ground state and on the lowest excited state of like symmetry in ozone: A configuration interaction study

    Energy Technology Data Exchange (ETDEWEB)

    Theis, Daniel; Windus, Theresa L.; Ruedenberg, Klaus [Department of Chemistry and Ames Laboratory USDOE, Iowa State University, Ames, Iowa 50011 (United States); Ivanic, Joseph [Advanced Biomedical Computing Center, Frederick National Laboratory for Cancer Research, DSITP, Leidos Biomedical Research, Inc., Frederick, Maryland 21702 (United States)

    2016-03-14

    The metastable ring structure of the ozone 1{sup 1}A{sub 1} ground state, which theoretical calculations have shown to exist, has so far eluded experimental detection. An accurate prediction for the energy difference between this isomer and the lower open structure is therefore of interest, as is a prediction for the isomerization barrier between them, which results from interactions between the lowest two {sup 1}A{sub 1} states. In the present work, valence correlated energies of the 1{sup 1}A{sub 1} state and the 2{sup 1}A{sub 1} state were calculated at the 1{sup 1}A{sub 1} open minimum, the 1{sup 1}A{sub 1} ring minimum, the transition state between these two minima, the minimum of the 2{sup 1}A{sub 1} state, and the conical intersection between the two states. The geometries were determined at the full-valence multi-configuration self-consistent-field level. Configuration interaction (CI) expansions up to quadruple excitations were calculated with triple-zeta atomic basis sets. The CI expansions based on eight different reference configuration spaces were explored. To obtain some of the quadruple excitation energies, the method of Correlation Energy Extrapolation by Intrinsic Scaling was generalized to the simultaneous extrapolation for two states. This extrapolation method was shown to be very accurate. On the other hand, none of the CI expansions were found to have converged to millihartree (mh) accuracy at the quadruple excitation level. The data suggest that convergence to mh accuracy is probably attained at the sextuple excitation level. On the 1{sup 1}A{sub 1} state, the present calculations yield the estimates of (ring minimum—open minimum) ∼45–50 mh and (transition state—open minimum) ∼85–90 mh. For the (2{sup 1}A{sub 1}–{sup 1}A{sub 1}) excitation energy, the estimate of ∼130–170 mh is found at the open minimum and 270–310 mh at the ring minimum. At the transition state, the difference (2{sup 1}A{sub 1}–{sup 1}A{sub 1}) is found

  8. Post-transition state dynamics and product energy partitioning following thermal excitation of the F⋯HCH2CN transition state: Disagreement with experiment.

    Science.gov (United States)

    Pratihar, Subha; Ma, Xinyou; Xie, Jing; Scott, Rebecca; Gao, Eric; Ruscic, Branko; Aquino, Adelia J A; Setser, Donald W; Hase, William L

    2017-10-14

    Born-Oppenheimer direct dynamics simulations were performed to study atomistic details of the F + CH 3 CN → HF + CH 2 CN H-atom abstraction reaction. The simulation trajectories were calculated with a combined M06-2X/MP2 algorithm utilizing the 6-311++G** basis set. The experiments were performed at 300 K, and assuming the accuracy of transition state theory (TST), the trajectories were initiated at the F⋯HCH 2 CN abstraction TS with a 300 K Boltzmann distribution of energy and directed towards products. Recrossing of the TS was negligible, confirming the accuracy of TST. HF formation was rapid, occurring within 0.014 ps of the trajectory initiation. The intrinsic reaction coordinate (IRC) for reaction involves rotation of HF about CH 2 CN and then trapping in the CH 2 CN⋯HF post-reaction potential energy well of ∼10 kcal/mol with respect to the HF + CH 2 CN products. In contrast to this IRC, five different trajectory types were observed: the majority proceeded by direct H-atom transfer and only 11% approximately following the IRC. The HF vibrational and rotational quantum numbers, n and J, were calculated when HF was initially formed and they increase as potential energy is released in forming the HF + CH 2 CN products. The population of the HF product vibrational states is only in qualitative agreement with experiment, with the simulations showing depressed and enhanced populations of the n = 1 and 2 states as compared to experiment. Simulations with an anharmonic zero-point energy constraint gave product distributions for relative translation, HF rotation, HF vibration, CH 2 CN rotation, and CH 2 CN vibration as 5%, 11%, 60%, 7%, and 16%, respectively. In contrast, the experimental energy partitioning percentages to HF rotation and vibration are 6% and 41%. Comparisons are made between the current simulation and those for other F + H-atom abstraction reactions. The simulation product energy partitioning and HF vibrational population for F + CH 3 CN

  9. Geometries and adiabatic excitation energies of the low-lying valence states of CNC, C2N, N3 and NCO studied with the electron-attached and ionized equation-of-motion coupled-cluster methodologies

    International Nuclear Information System (INIS)

    Hansen, Jared A; Piecuch, Piotr; Lutz, Jesse J; Gour, Jeffrey R

    2011-01-01

    geometries in a reasonable manner, including excited states dominated by two-electron transitions. Although the full and active-space EA-EOMCCSD(3p-2h) calculations for the most challenging CNC and C 2 N molecules improve the EA-EOMCCSD(2p-1h) excitation energies, some differences with the available experimental data remain in spite of the use of larger correlation-consistent basis sets and complete basis set extrapolations.

  10. GRHL3 binding and enhancers rearrange as epidermal keratinocytes transition between functional states.

    Directory of Open Access Journals (Sweden)

    Rachel Herndon Klein

    2017-04-01

    Full Text Available Transcription factor binding, chromatin modifications and large scale chromatin re-organization underlie progressive, irreversible cell lineage commitments and differentiation. We know little, however, about chromatin changes as cells enter transient, reversible states such as migration. Here we demonstrate that when human progenitor keratinocytes either differentiate or migrate they form complements of typical enhancers and super-enhancers that are unique for each state. Unique super-enhancers for each cellular state link to gene expression that confers functions associated with the respective cell state. These super-enhancers are also enriched for skin disease sequence variants. GRHL3, a transcription factor that promotes both differentiation and migration, binds preferentially to super-enhancers in differentiating keratinocytes, while during migration, it binds preferentially to promoters along with REST, repressing the expression of migration inhibitors. Key epidermal differentiation transcription factor genes, including GRHL3, are located within super-enhancers, and many of these transcription factors in turn bind to and regulate super-enhancers. Furthermore, GRHL3 represses the formation of a number of progenitor and non-keratinocyte super-enhancers in differentiating keratinocytes. Hence, chromatin relocates GRHL3 binding and enhancers to regulate both the irreversible commitment of progenitor keratinocytes to differentiation and their reversible transition to migration.

  11. Effects of a Transition to a Hydrogen Economy on Employment in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Tolley, George S.; Jones, Donald W. Mintz, Marianne M.; Smith, Barton A.; Carlson, Eric; Unnasch, Stefan; Lawrence, Michael; Chmelynski, Harry

    2008-07-01

    The U.S. Department of Energy report, Effects of a Transition to a Hydrogen Economy on Employment in the United States Report to Congress, estimates the effects on employment of a U.S. economy transformation to hydrogen between 2020 and 2050. The report includes study results on employment impacts from hydrogen market expansion in the transportation, stationary, and portable power sectors and highlights possible skill and education needs. This study is in response to Section 1820 of the Energy Policy Act of 2005 (Public Law 109-58) (EPACT). Section 1820, “Overall Employment in a Hydrogen Economy,” requires the Secretary of Energy to carry out a study of the effects of a transition to a hydrogen economy on several employment [types] in the United States. As required by Section 1820, the present report considers: • Replacement effects of new goods and services • International competition • Workforce training requirements • Multiple possible fuel cycles, including usage of raw materials • Rates of market penetration of technologies • Regional variations based on geography • Specific recommendations of the study Both the Administration’s National Energy Policy and the Department’s Strategic Plan call for reducing U.S. reliance on imported oil and reducing greenhouse gas emissions. The National Energy Policy also acknowledges the need to increase energy supplies and use more energy-efficient technologies and practices. President Bush proposed in his January 2003 State of the Union Address to advance research on hydrogen so that it has the potential to play a major role in America’s future energy system. Consistent with these aims, EPACT 2005 authorizes a research, development, and demonstration program for hydrogen and fuel cell technology. Projected results for the national employment impacts, projections of the job creation and job replacement underlying the total employment changes, training implications, regional employment impacts and the

  12. Effects of a Transition to a Hydrogen Economy on Employment in the United States

    International Nuclear Information System (INIS)

    Tolley, George S.; Jones, Donald W.; Mintz, Marianne M.; Smith, Barton A.; Carlson, Eric; Unnasch, Stefan; Lawrence, Michael; Chmelynski, Harry

    2008-01-01

    The U.S. Department of Energy report, Effects of a Transition to a Hydrogen Economy on Employment in the United States Report to Congress, estimates the effects on employment of a U.S. economy transformation to hydrogen between 2020 and 2050. The report includes study results on employment impacts from hydrogen market expansion in the transportation, stationary, and portable power sectors and highlights possible skill and education needs. This study is in response to Section 1820 of the Energy Policy Act of 2005 (Public Law 109-58) (EPACT). Section 1820, 'Overall Employment in a Hydrogen Economy', requires the Secretary of Energy to carry out a study of the effects of a transition to a hydrogen economy on several employment (types) in the United States. As required by Section 1820, the present report considers: (1) Replacement effects of new goods and services; (2) International competition; (3) Workforce training requirements; (4) Multiple possible fuel cycles, including usage of raw materials; (5) Rates of market penetration of technologies; (6) Regional variations based on geography; and (7) Specific recommendations of the study Both the Administration's National Energy Policy and the Department's Strategic Plan call for reducing U.S. reliance on imported oil and reducing greenhouse gas emissions. The National Energy Policy also acknowledges the need to increase energy supplies and use more energy-efficient technologies and practices. President Bush proposed in his January 2003 State of the Union Address to advance research on hydrogen so that it has the potential to play a major role in America's future energy system. Consistent with these aims, EPACT 2005 authorizes a research, development, and demonstration program for hydrogen and fuel cell technology. Projected results for the national employment impacts, projections of the job creation and job replacement underlying the total employment changes, training implications, regional employment impacts and the

  13. Models of molecular geometry.

    Science.gov (United States)

    Gillespie, Ronald J; Robinson, Edward A

    2005-05-01

    Although the structure of almost any molecule can now be obtained by ab initio calculations chemists still look for simple answers to the question "What determines the geometry of a given molecule?" For this purpose they make use of various models such as the VSEPR model and qualitative quantum mechanical models such as those based on the valence bond theory. The present state of such models, and the support for them provided by recently developed methods for analyzing calculated electron densities, are reviewed and discussed in this tutorial review.

  14. Electrostatic transition state stabilization rather than reactant destabilization provides the chemical basis for efficient chorismate mutase catalysis.

    Science.gov (United States)

    Burschowsky, Daniel; van Eerde, André; Ökvist, Mats; Kienhöfer, Alexander; Kast, Peter; Hilvert, Donald; Krengel, Ute

    2014-12-09

    For more than half a century, transition state theory has provided a useful framework for understanding the origins of enzyme catalysis. As proposed by Pauling, enzymes accelerate chemical reactions by binding transition states tighter than substrates, thereby lowering the activation energy compared with that of the corresponding uncatalyzed process. This paradigm has been challenged for chorismate mutase (CM), a well-characterized metabolic enzyme that catalyzes the rearrangement of chorismate to prephenate. Calculations have predicted the decisive factor in CM catalysis to be ground state destabilization rather than transition state stabilization. Using X-ray crystallography, we show, in contrast, that a sluggish variant of Bacillus subtilis CM, in which a cationic active-site arginine was replaced by a neutral citrulline, is a poor catalyst even though it effectively preorganizes chorismate for the reaction. A series of high-resolution molecular snapshots of the reaction coordinate, including the apo enzyme, and complexes with substrate, transition state analog and product, demonstrate that an active site, which is only complementary in shape to a reactive substrate conformer, is insufficient for effective catalysis. Instead, as with other enzymes, electrostatic stabilization of the CM transition state appears to be crucial for achieving high reaction rates.

  15. The B(E2) value of the first-excited to ground-state transition in 49Ti

    International Nuclear Information System (INIS)

    Mando, P.A.; Sona, P.; Taccetti, N.; Liberati, G.

    1978-01-01

    The B(E2) value of the 1381 keV transition connecting the J=3/2 - first excited state to the J=7/2 - ground state in 49 Ti has been determined by means of Coulomb excitation measurements. The value obtained is B(E2)=(33.5+- 4.5) e 2 fm 4

  16. State and transition models: Theory, applications, and challenges. In: Briske, D.D. Rangeland Systems: Processes, Management and Challenges

    Science.gov (United States)

    State and transition models (STMs) are used for communicating about ecosystem change in rangelands and other ecosystems, especially the implications for management. The fundamental premise that rangelands can exhibit multiple states is now widely accepted. The current application of STMs for managem...

  17. Molecular water oxidation mechanisms followed by transition metals: state of the art.

    Science.gov (United States)

    Sala, Xavier; Maji, Somnath; Bofill, Roger; García-Antón, Jordi; Escriche, Lluís; Llobet, Antoni

    2014-02-18

    One clean alternative to fossil fuels would be to split water using sunlight. However, to achieve this goal, researchers still need to fully understand and control several key chemical reactions. One of them is the catalytic oxidation of water to molecular oxygen, which also occurs at the oxygen evolving center of photosystem II in green plants and algae. Despite its importance for biology and renewable energy, the mechanism of this reaction is not fully understood. Transition metal water oxidation catalysts in homogeneous media offer a superb platform for researchers to investigate and extract the crucial information to describe the different steps involved in this complex reaction accurately. The mechanistic information extracted at a molecular level allows researchers to understand both the factors that govern this reaction and the ones that derail the system to cause decomposition. As a result, rugged and efficient water oxidation catalysts with potential technological applications can be developed. In this Account, we discuss the current mechanistic understanding of the water oxidation reaction catalyzed by transition metals in the homogeneous phase, based on work developed in our laboratories and complemented by research from other groups. Rather than reviewing all of the catalysts described to date, we focus systematically on the several key elements and their rationale from molecules studied in homogeneous media. We organize these catalysts based on how the crucial oxygen-oxygen bond step takes place, whether via a water nucleophilic attack or via the interaction of two M-O units, rather than based on the nuclearity of the water oxidation catalysts. Furthermore we have used DFT methodology to characterize key intermediates and transition states. The combination of both theory and experiments has allowed us to get a complete view of the water oxidation cycle for the different catalysts studied. Finally, we also describe the various deactivation pathways for

  18. Surface-Induced Frustration in Solid State Polymorphic Transition of Native Cellulose Nanocrystals.

    Science.gov (United States)

    Salminen, Reeta; Baccile, Niki; Reza, Mehedi; Kontturi, Eero

    2017-06-12

    The presence of an interface generally influences crystallization of polymers from melt or from solution. Here, by contrast, we explore the effect of surface immobilization in a direct solid state polymorphic transition on individual cellulose nanocrystals (CNCs), extracted from a plant-based origin. The conversion from native cellulose I to cellulose III crystal occurred via a host-guest inclusion of ethylene diamine inside the crystal. A 60% reduction in CNC width (height) in atomic force microscopy images suggested that when immobilized on a flat modified silica surface, the stresses caused by the inclusion or the subsequent regeneration resulted in exfoliation, hypothetically, between the van der Waals bonded sheets within the crystal. Virtually no changes in dimensions were visible when the polymorphic transition was performed to nonimmobilized CNCs in bulk dispersion. With reservations and by acknowledging the obvious dissimilarities, the exfoliation of cellulose crystal sheets can be viewed as analogous to exfoliation of 2D structures like graphene from a van der Waals stacked solid. Here, the detachment is triggered by an inclusion of a guest molecule inside a host cellulose crystal and the stresses caused by the firm attachment of the CNC on a solid substrate, leading to detachment of molecular sheets or stacks of sheets.

  19. Transition by breaking of analyticity in the ground state of Josephson junction arrays as a static signature of the vortex jamming transition

    KAUST Repository

    Nogawa, Tomoaki

    2012-05-22

    We investigate the ground state of the irrationally frustrated Josephson junction array with a controlling anisotropy parameter λ that is the ratio of the longitudinal Josephson coupling to the transverse one. We find that the ground state has one-dimensional periodicity whose reciprocal lattice vector depends on λ and is incommensurate with the substrate lattice. Approaching the isotropic point λ=1, the so-called hull function of the ground state exhibits analyticity breaking similar to the Aubry transition in the Frenkel-Kontorova model. We find a scaling law for the harmonic spectrum of the hull functions, which suggests the existence of a characteristic length scale diverging at the isotropic point. This critical behavior is directly connected to the jamming transition previously observed in the current-voltage characteristics by a numerical simulation. On top of the ground state there is a gapless continuous band of metastable states, which exhibit the same critical behavior as the ground state. © 2012 American Physical Society.

  20. Post-transition state dynamics and product energy partitioning following thermal excitation of the F∙∙∙HCH2 CN transition state: Disagreement with experiment

    Energy Technology Data Exchange (ETDEWEB)

    Pratihar, Subha [Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, USA; Ma, Xinyou [Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, USA; Xie, Jing [Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA; Scott, Rebecca [Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, USA; Gao, Eric [Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, USA; Ruscic, Branko [Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, USA and Computation Institute, University of Chicago, Chicago, Illinois 60637, USA; Aquino, Adelia J. A. [Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, USA; School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, People’s Republic of China; Institute for Soil Research University of Natural Resources and Life Sciences Vienna, Peter-Jordan-Strasse 82, A-1190 Vienna, Austria; Setser, Donald W. [Institute for Soil Research University of Natural Resources and Life Sciences Vienna, Peter-Jordan-Strasse 82, A-1190 Vienna, Austria; Hase, William L. [Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, USA

    2017-10-14

    Born-Oppenheimer direct dynamics simulations were performed to study atomistic details of the F + CH3CN → HF + CH2CN H-atom abstraction reaction. The simulation trajectories were calculated with a combined M06-2X/MP2 algorithm utilizing the 6-311++G** basis set. In accord with experiment and assuming the accuracy of transition state theory (TST), the trajectories were initiated at the F-HCH2CN abstraction TS with a 300 K Boltzmann distribution of energy and directed towards products. Recrossing of the TS was negligible, confirming the accuracy of TST for the simulation. HF formation was rapid, occurring within 0.014 ps of the trajectory initiation. The intrinsic reaction coordinate (IRC) for reaction involves rotation of HF about CH2CN and then trapping in the CH2CN-HF post-reaction potential energy well of ~10 kcal/mol with respect to the HF + CH2CN products. In contrast to this IRC, five different trajectory types were observed, with the majority involving direct dissociation and only 11% approximately following the IRC. The HF vibrational and rotational quantum numbers, n and J, were calculated when HF was initially formed and they increase as potential energy is released in forming the HF + CH2CN products. The population of the HF product vibrational states is only in qualitative agreement with experiment, with the simulations showing depressed and enhanced populations of the n = 1 and 2 states as compared to experiment. From the simulations and with an anharmonic zero-point energy constraint, the percentage partitioning of the product energy to relative translation, HF rotation, HF vibration, CH2CN rotation and CH2CN vibration is 5, 11, 60, 7, and 16%, respectively. In contrast the experimental energy partitioning percentages to HF rotation and vibration are 6 and 41%. Comparisons are made between the current simulation and those for other F + H

  1. Restricted thermodynamic fluctuations and the Ruppeiner geometry of black holes

    Science.gov (United States)

    Sahay, Anurag

    2017-03-01

    Thermodynamic fluctuation metrics in Ruppeiner's formalism are worked out for Kerr-AdS black holes in the extended state space. The implications of constraints upon the state space geometry and their correspondence with thermodynamical ensembles are explicitly worked out in the most general setting. The state space scalar curvature for a given ensemble is found to be sensitive to the instabilities or phase transitions therein. In particular, it is found that the appropriate Ruppeiner scalar curvature does encode critical phenomena in the Kerr-AdS black holes. A detailed study is undertaken of the curvature contour of the state space of the 4D Kerr-AdS black hole, and suitable inferences are drawn. In particular, thermodynamic geometry suggests an instability in the Schwarzschild-AdS limit for all the ensembles except the pressure ensemble, which is equivalent to the unextended state space of the Kerr-AdS black holes. The extrinsic geometry of the ensemble hypersurfaces is introduced, and its relevance to constrained thermodynamic fluctuations is discussed. A new interpretation for the thermodynamic curvature of black hole systems is suggested.

  2. Alpha-decay-induced fracturing in zircon - The transition from the crystalline to the metamict state

    Science.gov (United States)

    Chakoumakos, Bryan C.; Murakami, Takashi; Lumpkin, Gregory R.; Ewing, Rodney C.

    1987-01-01

    Zonation due to alpha-decay damage in a natural single crystal of zircon from Sri Lanka is discussed. The zones vary in thickness on a scale from one to hundreds of microns. The uranium and thorium concentrations vary from zone to zone such that the alpha decay dose is between 0.2 x 10 to the 16th and 0.8 x 10 to the 16th alpha-events per milligram. The transition from the crystalline to the aperiodic metamict state occurs over this dose range. At doses greater than 0.8 x 10 to the 16th alpha events/mg there is no evidence for long-range order. This type of damage will accumulate in actinide-bearing, ceramic nuclear waste forms. The systematic pattern of fractures would occur in crystalline phases that are zoned with respect to actinide radionuclides.

  3. Isotope Substitution of Promiscuous Alcohol Dehydrogenase Reveals the Origin of Substrate Preference in the Transition State.

    Science.gov (United States)

    Behiry, Enas M; Ruiz-Pernia, J Javier; Luk, Louis; Tuñón, Iñaki; Moliner, Vicent; Allemann, Rudolf K

    2018-03-12

    The origin of substrate preference in promiscuous enzymes was investigated by enzyme isotope labelling of the alcohol dehydrogenase from Geobacillus stearothermophilus (BsADH). At physiological temperature, protein dynamic coupling to the reaction coordinate was insignificant. However, the extent of dynamic coupling was highly substrate-dependent at lower temperatures. For benzyl alcohol, an enzyme isotope effect larger than unity was observed, whereas the enzyme isotope effect was close to unity for isopropanol. Frequency motion analysis on the transition states revealed that residues surrounding the active site undergo substantial displacement during catalysis for sterically bulky alcohols. BsADH prefers smaller substrates, which cause less protein friction along the reaction coordinate and reduced frequencies of dynamic recrossing. This hypothesis allows a prediction of the trend of enzyme isotope effects for a wide variety of substrates. © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  4. Quantum variational transition state theory for hydrogen tunneling in enzyme catalysis.

    Science.gov (United States)

    Pollak, Eli

    2012-11-01

    Experiments in recent years have shown that there is a large kinetic isotope effect in the rate of transfer of hydrogen or deuterium in enzymatic reactions of soybean lipoxygenase-1. The kinetic isotope effect (KIE) is only weakly temperature dependent but varies significantly in the presence of mutants whose functional groups are located rather far from the reaction center. In this paper we suggest that variational transition state theory as applied to dissipative systems, above the crossover temperature between deep tunneling and thermal activation, may be used as a paradigm for understanding the dynamics of these reactions. We find that the theory fits the experimental data rather well. The effects of different mutants are readily interpreted in terms of the friction they exert on the reaction center. Increasing the distal functional group increases the friction and thus lowers the kinetic isotope effect.

  5. Spin-Forbidden Reactions: Adiabatic Transition States Using Spin-Orbit Coupled Density Functional Theory.

    Science.gov (United States)

    Gaggioli, Carlo Alberto; Belpassi, Leonardo; Tarantelli, Francesco; Harvey, Jeremy N; Belanzoni, Paola

    2017-10-31

    A spin-forbidden chemical reaction involves a change in the total electronic spin state from reactants to products. The mechanistic study is challenging because such a reaction does not occur on a single diabatic potential energy surface (PES), but rather on two (or multiple) spin diabatic PESs. One possible approach is to calculate the so-called "minimum energy crossing point" (MECP) between the diabatic PESs, which however is not a stationary point. Inclusion of spin-orbit coupling between spin states (SOC approach) allows the reaction to occur on a single adiabatic PES, in which a transition state (TS SOC) as well as activation free energy can be calculated. This Concept article summarizes a previously published application in which, for the first time, the SOC effects, using spin-orbit ZORA Hamiltonian within density functional theory (DFT) framework, are included and account for the mechanism of a spin-forbidden reaction in gold chemistry. The merits of the MECP and TS SOC approaches and the accuracy of the results are compared, considering both our recent calculations on molecular oxygen addition to gold(I)-hydride complexes and new calculations for the prototype spin-forbidden N 2 O and N 2 Se dissociation reactions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. S-matrix decomposition, natural reaction channels, and the quantum transition state approach to reactive scattering.

    Science.gov (United States)

    Manthe, Uwe; Ellerbrock, Roman

    2016-05-28

    A new approach for the quantum-state resolved analysis of polyatomic reactions is introduced. Based on the singular value decomposition of the S-matrix, energy-dependent natural reaction channels and natural reaction probabilities are defined. It is shown that the natural reaction probabilities are equal to the eigenvalues of the reaction probability operator [U. Manthe and W. H. Miller, J. Chem. Phys. 99, 3411 (1993)]. Consequently, the natural reaction channels can be interpreted as uniquely defined pathways through the transition state of the reaction. The analysis can efficiently be combined with reactive scattering calculations based on the propagation of thermal flux eigenstates. In contrast to a decomposition based straightforwardly on thermal flux eigenstates, it does not depend on the choice of the dividing surface separating reactants from products. The new approach is illustrated studying a prototypical example, the H + CH4 → H2 + CH3 reaction. The natural reaction probabilities and the contributions of the different vibrational states of the methyl product to the natural reaction channels are calculated and discussed. The relation between the thermal flux eigenstates and the natural reaction channels is studied in detail.

  7. Optimal precursors triggering the Kuroshio Extension state transition obtained by the Conditional Nonlinear Optimal Perturbation approach

    Science.gov (United States)

    Zhang, Xing; Mu, Mu; Wang, Qiang; Pierini, Stefano

    2017-06-01

    In this study, the initial perturbations that are the easiest to trigger the Kuroshio Extension (KE) transition connecting a basic weak jet state and a strong, fairly stable meandering state, are investigated using a reduced-gravity shallow water ocean model and the CNOP (Conditional Nonlinear Optimal Perturbation) approach. This kind of initial perturbation is called an optimal precursor (OPR). The spatial structures and evolutionary processes of the OPRs are analyzed in detail. The results show that most of the OPRs are in the form of negative sea surface height (SSH) anomalies mainly located in a narrow band region south of the KE jet, in basic agreement with altimetric observations. These negative SSH anomalies reduce the meridional SSH gradient within the KE, thus weakening the strength of the jet. The KE jet then becomes more convoluted, with a high-frequency and large-amplitude variability corresponding to a high eddy kinetic energy level; this gradually strengthens the KE jet through an inverse energy cascade. Eventually, the KE reaches a high-energy state characterized by two well defined and fairly stable anticyclonic meanders. Moreover, sensitivity experiments indicate that the spatial structures of the OPRs are not sensitive to the model parameters and to the optimization times used in the analysis.

  8. Using state-and-transition modeling to account for imperfect detection in invasive species management

    Science.gov (United States)

    Frid, Leonardo; Holcombe, Tracy; Morisette, Jeffrey T.; Olsson, Aaryn D.; Brigham, Lindy; Bean, Travis M.; Betancourt, Julio L.; Bryan, Katherine

    2013-01-01

    Buffelgrass, a highly competitive and flammable African bunchgrass, is spreading rapidly across both urban and natural areas in the Sonoran Desert of southern and central Arizona. Damages include increased fire risk, losses in biodiversity, and diminished revenues and quality of life. Feasibility of sustained and successful mitigation will depend heavily on rates of spread, treatment capacity, and cost–benefit analysis. We created a decision support model for the wildland–urban interface north of Tucson, AZ, using a spatial state-and-transition simulation modeling framework, the Tool for Exploratory Landscape Scenario Analyses. We addressed the issues of undetected invasions, identifying potentially suitable habitat and calibrating spread rates, while answering questions about how to allocate resources among inventory, treatment, and maintenance. Inputs to the model include a state-and-transition simulation model to describe the succession and control of buffelgrass, a habitat suitability model, management planning zones, spread vectors, estimated dispersal kernels for buffelgrass, and maps of current distribution. Our spatial simulations showed that without treatment, buffelgrass infestations that started with as little as 80 ha (198 ac) could grow to more than 6,000 ha by the year 2060. In contrast, applying unlimited management resources could limit 2060 infestation levels to approximately 50 ha. The application of sufficient resources toward inventory is important because undetected patches of buffelgrass will tend to grow exponentially. In our simulations, areas affected by buffelgrass may increase substantially over the next 50 yr, but a large, upfront investment in buffelgrass control could reduce the infested area and overall management costs.

  9. Prediction of monomer reactivity in radical copolymerizations from transition state quantum chemical descriptors

    Directory of Open Access Journals (Sweden)

    Zhengde Tan

    2013-01-01

    Full Text Available In comparison with the Q-e scheme, the Revised Patterns Scheme: the U, V Version (the U-V scheme has greatly improved both its accessibility and its accuracy in interpreting and predicting the reactivity of a monomer in free-radical copolymerizations. Quantitative structure-activity relationship (QSAR models were developed to predict the reactivity parameters u and v of the U-V scheme, by applying genetic algorithm (GA and support vector machine (SVM techniques. Quantum chemical descriptors used for QSAR models were calculated from transition state species with structures C¹H3 - C²HR³• or •C¹H2 - C²H2R³ (formed from vinyl monomers C¹H²=C²HR³ + H•, using density functional theory (DFT, at the UB3LYP level of theory with 6-31G(d basis set. The optimum support vector regression (SVR model of the reactivity parameter u based on Gaussian radial basis function (RBF kernel (C = 10, ε = 10- 5 and γ = 1.0 produced root-mean-square (rms errors for the training, validation and prediction sets being 0.220, 0.326 and 0.345, respectively. The optimal SVR model for v with the RBF kernel (C = 20, ε = 10- 4 and γ = 1.2 produced rms errors for the training set of 0.123, the validation set of 0.206 and the prediction set of 0.238. The feasibility of applying the transition state quantum chemical descriptors to develop SVM models for reactivity parameters u and v in the U-V scheme has been demonstrated.

  10. Linking state-and-transition simulation and timber supply models for forest biomass production scenarios

    Science.gov (United States)

    Costanza, Jennifer; Abt, Robert C.; McKerrow, Alexa; Collazo, Jaime

    2015-01-01

    We linked state-and-transition simulation models (STSMs) with an economics-based timber supply model to examine landscape dynamics in North Carolina through 2050 for three scenarios of forest biomass production. Forest biomass could be an important source of renewable energy in the future, but there is currently much uncertainty about how biomass production would impact landscapes. In the southeastern US, if forests become important sources of biomass for bioenergy, we expect increased land-use change and forest management. STSMs are ideal for simulating these landscape changes, but the amounts of change will depend on drivers such as timber prices and demand for forest land, which are best captured with forest economic models. We first developed state-and-transition model pathways in the ST-Sim software platform for 49 vegetation and land-use types that incorporated each expected type of landscape change. Next, for the three biomass production scenarios, the SubRegional Timber Supply Model (SRTS) was used to determine the annual areas of thinning and harvest in five broad forest types, as well as annual areas converted among those forest types, agricultural, and urban lands. The SRTS output was used to define area targets for STSMs in ST-Sim under two scenarios of biomass production and one baseline, business-as-usual scenario. We show that ST-Sim output matched SRTS targets in most cases. Landscape dynamics results indicate that, compared with the baseline scenario, forest biomass production leads to more forest and, specifically, more intensively managed forest on the landscape by 2050. Thus, the STSMs, informed by forest economics models, provide important information about potential landscape effects of bioenergy production.

  11. Tidal stresses and energy gaps in microstate geometries

    Science.gov (United States)

    Tyukov, Alexander; Walker, Robert; Warner, Nicholas P.

    2018-02-01

    We compute energy gaps and study infalling massive geodesic probes in the new families of scaling, microstate geometries that have been constructed recently and for which the holographic duals are known. We find that in the deepest geometries, which have the lowest energy gaps, the geodesic deviation shows that the stress reaches the Planck scale long before the probe reaches the cap of the geometry. Such probes must therefore undergo a stringy transition as they fall into microstate geometry. We discuss the scales associated with this transition and comment on the implications for scrambling in microstate geometries.

  12. Constraints on the Geometry of the Farallon Slab from the Joint Interpretation of All Available Imaging Results from the Earthscope USArray Deployment in the Lower 48 States

    Science.gov (United States)

    Esker, A.; Pavlis, G. L.

    2017-12-01

    We assembled all available seismic tomography models distributed through the IRIS DMC and other sources. We combined these images with our own results using 3D plane wave migration of P to S conversion data derived from the USArray data set and other broadband seismic stations in the lower 48 states. All the tomography models were converted into SEGY format and interpolated onto a regular grid in a UTM reference frame. That innovation makes joint interpretation feasible using a seismic interpretation software (Petrel) because we treat both the tomography models and scattered wave image results as if they were 3D seismic reflection data. The careful designed interface of a modern exploration package makes exploring a range of interpretation packages much faster and allowed us to produce a more comprehensive interpretation of all available data. The tomography models are nearly an order of magnitude smoother than the scattered wave images, so we use the tomography models as a cross-validation in interpretation unless the scattered wave images are ambiguous. The focus of this study is testing a conjecture in an earlier paper (Pavlis, 2011) for the presence of a single continuous horizon interpreted as the top of the Farallon Slab. As in the previous paper we constrained the western edge of this surface with the location of Cascadia trench as well as a virtual edge from a back projection of the Mendocino triple junction using Pacific-North America motion over the past 30 Ma. We also simulated crustal multiple effects on the plane wave migration results using crustal geometry estimates produced by the Earthscope Automated Receiver Survey (EARS). This confirmed the scattered wave images were not reliable in the upper mantle at depths shallower than 200 km due to contamination by crustal multiples. Most tomography models show a steep dip in the slab immediately east of the volcanic arc and our surface follows the average geometry defined by a visual comparison of all the

  13. A conserved behavioral state barrier impedes transitions between anesthetic-induced unconsciousness and wakefulness: evidence for neural inertia.

    Science.gov (United States)

    Friedman, Eliot B; Sun, Yi; Moore, Jason T; Hung, Hsiao-Tung; Meng, Qing Cheng; Perera, Priyan; Joiner, William J; Thomas, Steven A; Eckenhoff, Roderic G; Sehgal, Amita; Kelz, Max B

    2010-07-30

    One major unanswered question in neuroscience is how the brain transitions between conscious and unconscious states. General anesthetics offer a controllable means to study these transitions. Induction of anesthesia is commonly attributed to drug-induced global modulation of neuronal function, while emergence from anesthesia has been thought to occur passively, paralleling elimination of the anesthetic from its sites in the central nervous system (CNS). If this were true, then CNS anesthetic concentrations on induction and emergence would be indistinguishable. By generating anesthetic dose-response data in both insects and mammals, we demonstrate that the forward and reverse paths through which anesthetic-induced unconsciousness arises and dissipates are not identical. Instead they exhibit hysteresis that is not fully explained by pharmacokinetics as previously thought. Single gene mutations that affect sleep-wake states are shown to collapse or widen anesthetic hysteresis without obvious confounding effects on volatile anesthetic uptake, distribution, or metabolism. We propose a fundamental and biologically conserved concept of neural inertia, a tendency of the CNS to resist behavioral state transitions between conscious and unconscious states. We demonstrate that such a barrier separates wakeful and anesthetized states for multiple anesthetics in both flies and mice, and argue that it contributes to the hysteresis observed when the brain transitions between conscious and unconscious states.

  14. A conserved behavioral state barrier impedes transitions between anesthetic-induced unconsciousness and wakefulness: evidence for neural inertia.

    Directory of Open Access Journals (Sweden)

    Eliot B Friedman

    2010-07-01

    Full Text Available One major unanswered question in neuroscience is how the brain transitions between conscious and unconscious states. General anesthetics offer a controllable means to study these transitions. Induction of anesthesia is commonly attributed to drug-induced global modulation of neuronal function, while emergence from anesthesia has been thought to occur passively, paralleling elimination of the anesthetic from its sites in the central nervous system (CNS. If this were true, then CNS anesthetic concentrations on induction and emergence would be indistinguishable. By generating anesthetic dose-response data in both insects and mammals, we demonstrate that the forward and reverse paths through which anesthetic-induced unconsciousness arises and dissipates are not identical. Instead they exhibit hysteresis that is not fully explained by pharmacokinetics as previously thought. Single gene mutations that affect sleep-wake states are shown to collapse or widen anesthetic hysteresis without obvious confounding effects on volatile anesthetic uptake, distribution, or metabolism. We propose a fundamental and biologically conserved concept of neural inertia, a tendency of the CNS to resist behavioral state transitions between conscious and unconscious states. We demonstrate that such a barrier separates wakeful and anesthetized states for multiple anesthetics in both flies and mice, and argue that it contributes to the hysteresis observed when the brain transitions between conscious and unconscious states.

  15. Real Algebraic Geometry

    CERN Document Server

    Mahé, Louis; Roy, Marie-Françoise

    1992-01-01

    Ten years after the first Rennes international meeting on real algebraic geometry, the second one looked at the developments in the subject during the intervening decade - see the 6 survey papers listed below. Further contributions from the participants on recent research covered real algebra and geometry, topology of real algebraic varieties and 16thHilbert problem, classical algebraic geometry, techniques in real algebraic geometry, algorithms in real algebraic geometry, semialgebraic geometry, real analytic geometry. CONTENTS: Survey papers: M. Knebusch: Semialgebraic topology in the last ten years.- R. Parimala: Algebraic and topological invariants of real algebraic varieties.- Polotovskii, G.M.: On the classification of decomposing plane algebraic curves.- Scheiderer, C.: Real algebra and its applications to geometry in the last ten years: some major developments and results.- Shustin, E.L.: Topology of real plane algebraic curves.- Silhol, R.: Moduli problems in real algebraic geometry. Further contribu...

  16. Transit Marketing : Review of the State-of-the-Art and a Handbook of Current Practice

    Science.gov (United States)

    1985-04-01

    Over the past decade, marketing has been given increased emphasis as a way to improve both transit rideship and productivity. While there is near universal agreement among transit managers that some level of marketing is necessary, there is far from ...

  17. Temperature-dependent Hammond behavior in a protein-folding reaction: analysis of transition-state movement and ground-state effects.

    Science.gov (United States)

    Taskent, Humeyra; Cho, Jae-Hyun; Raleigh, Daniel P

    2008-05-02

    Characterization of the transition-state ensemble and the nature of the free-energy barrier for protein folding are areas of intense activity and some controversy. A key issue that has emerged in recent years is the width of the free-energy barrier and the susceptibility of the transition state to movement. Here we report denaturant-induced and temperature-dependent folding studies of a small mixed alpha-beta protein, the N-terminal domain of L9 (NTL9). The folding of NTL9 was determined using fluorescence-detected stopped-flow fluorescence measurements conducted at seven different temperatures between 11 and 40 degrees C. Plots of the log of the observed first-order rate constant versus denaturant concentration, "chevron plots," displayed the characteristic V shape expected for two-state folding. There was no hint of deviation from linearity even at the lowest denaturant concentrations. The relative position of the transition state, as judged by the Tanford beta parameter, beta(T), shifts towards the native state as the temperature is increased. Analysis of the temperature dependence of the kinetic and equilibrium m values indicates that the effect is due to significant movement of the transition state and also includes a contribution from temperature-dependent ground-state effects. Analysis of the Leffler plots, plots of Delta G versus Delta G degrees, and their cross-interaction parameters confirms the transition-state movement. Since the protein is destabilized at high temperature, the shift represents a temperature-dependent Hammond effect. This provides independent confirmation of a recent theoretical prediction. The magnitude of the temperature-denaturant cross-interaction parameter is larger for NTL9 than has been reported for the few other cases studied. The implications for temperature-dependent studies of protein folding are discussed.

  18. Direct probe of the bent and linear geometries of the core-excited Renner-Teller pair states by means of the triple-ion-coincidence momentum imaging technique

    International Nuclear Information System (INIS)

    Muramatsu, Y.; Ueda, K.; Chiba, H.; Saito, N.; Lavollee, M.; Czasch, A.; Weber, T.; Jagutzki, O.; Schmidt-Boecking, H.; Moshammer, R.; Becker, U.; Kubozuka, K.; Koyano, I.

    2002-01-01

    The doubly degenerate core-excited Π state of CO 2 splits into two due to static Renner-Teller effect. Using the triple-ion-coincidence momentum imaging technique and focusing on the dependence of the measured quantities on the polarization of the incident light, we have probed, directly and separately, the linear and bent geometries for the B 1 and A 1 Renner-Teller pair states, as a direct proof of the static Renner-Teller effect

  19. Geometry and physics of branes

    International Nuclear Information System (INIS)

    Gal'tsov, D V

    2003-01-01

    deformation theory of holomorphic structures on vector bundles, which is a direct analogue of Kodaira and Spencer's study of the deformation of the complex structure of the complex manifold itself. Then it is explained how the homological algebra of A ∞ or L ∞ algebras can be applied to the problem of moduli, and the theorem is sketched stating that the gauge equivalence class of solutions of the Maurer-Cartan equation is invariant with respect to the homotopy types of these algebras. This discussion is then applied to the homological mirror symmetry, introducing the universal Novikov ring and Floer homology. The last series of lectures is devoted to the so-called geometric conifold transition related to the Gopakumar-Vafa conjecture that the SU(N) Chern-Simons theory on S 3 is dual to IIA string theory (with fluxes) compactified on a certain Calabi-Yau manifold. The geometry of the conifold transition involved in this discussion is described in detail, including physical applications. Some background endcolumn on Chern-Simons theory is presented and spaces with G 2 holonomies are discussed. M-theory treatment of the above correspondence is also given. Useful mathematical definitions are collected in five appendices. The book is certainly very useful both as an introduction to the modern topics of superstring theory and as a rather deep exposition of some advanced mathematical tools involved in it. (book review. Edited by U Bruzzo, V Gorini and U Moschella ISBN: 0-750-30863-X )

  20. Do spatially homogenising and heterogenising processes affect transitions between alternative stable states?

    NARCIS (Netherlands)

    Groen, Thomas A.; Vijver, Van de Claudius A.D.M.; Langevelde, Van Frank

    2017-01-01

    Large-scale sudden transitions in ecosystems are expected as result of changing global climate or land use. Current theory predicts such sudden transitions especially to occur in spatially homogeneous ecosystems, whereas transitions in spatially heterogeneous systems will be more gradual. The

  1. Hydrostatic pressure effects on the state density and optical transitions in quantum dots

    International Nuclear Information System (INIS)

    Galindez-Ramirez, G; Perez-Merchancano, S T; Paredes Gutierrez, H; Gonzalez, J D

    2010-01-01

    Using the effective mass approximation and variational method we have computed the effects of hydrostatic pressure on the absorption and photoluminescence spectra in spherical quantum dot GaAs-(Ga, Al) As, considering a finite confinement potential of this particular work we show the optical transitions in quantum of various sizes in the presence of hydrogenic impurities and hydrostatic pressure effects. Our first result describes the spectrum of optical absorption of 500 A QD for different values of hydrostatic pressure P = 0, 20 and 40 Kbar. The absorption peaks are sensitive to the displacement of the impurity center to the edge of the quantum dot and even more when the hydrostatic pressure changes in both cases showing that to the extent that these two effects are stronger quantum dots respond more efficiently. Also this result can be seen in the study of the photoluminescence spectrum as in the case of acceptor impurities consider them more efficiently capture carriers or electrons that pass from the conduction band to the valence band. Density states with randomly distributed impurity show that the additional peaks in the curves of the density of impurity states appear due to the presence of the additional hydrostatic pressure effects.

  2. Potassium availability triggers Mycobacterium tuberculosis transition to, and resuscitation from, non-culturable (dormant) states.

    Science.gov (United States)

    Salina, Elena G; Waddell, Simon J; Hoffmann, Nadine; Rosenkrands, Ida; Butcher, Philip D; Kaprelyants, Arseny S

    2014-10-01

    Dormancy in non-sporulating bacteria is an interesting and underexplored phenomenon with significant medical implications. In particular, latent tuberculosis may result from the maintenance of Mycobacterium tuberculosis bacilli in non-replicating states in infected individuals. Uniquely, growth of M. tuberculosis in aerobic conditions in potassium-deficient media resulted in the generation of bacilli that were non-culturable (NC) on solid media but detectable in liquid media. These bacilli were morphologically distinct and tolerant to cell-wall-targeting antimicrobials. Bacterial counts on solid media quickly recovered after washing and incubating bacilli in fresh resuscitation media containing potassium. This resuscitation of growth occurred too quickly to be attributed to M. tuberculosis replication. Transcriptomic and proteomic profiling through adaptation to, and resuscitation from, this NC state revealed a switch to anaerobic respiration and a shift to lipid and amino acid metabolism. High concordance with mRNA signatures derived from M. tuberculosis infection models suggests that analogous NC mycobacterial phenotypes may exist during disease and may represent unrecognized populations in vivo. Resuscitation of NC bacilli in potassium-sufficient media was characterized by time-dependent activation of metabolic pathways in a programmed series of processes that probably transit bacilli through challenging microenvironments during infection.

  3. Potassium availability triggers Mycobacterium tuberculosis transition to, and resuscitation from, non-culturable (dormant) states

    Science.gov (United States)

    Salina, Elena G.; Waddell, Simon J.; Hoffmann, Nadine; Rosenkrands, Ida; Butcher, Philip D.; Kaprelyants, Arseny S.

    2014-01-01

    Dormancy in non-sporulating bacteria is an interesting and underexplored phenomenon with significant medical implications. In particular, latent tuberculosis may result from the maintenance of Mycobacterium tuberculosis bacilli in non-replicating states in infected individuals. Uniquely, growth of M. tuberculosis in aerobic conditions in potassium-deficient media resulted in the generation of bacilli that were non-culturable (NC) on solid media but detectable in liquid media. These bacilli were morphologically distinct and tolerant to cell-wall-targeting antimicrobials. Bacterial counts on solid media quickly recovered after washing and incubating bacilli in fresh resuscitation media containing potassium. This resuscitation of growth occurred too quickly to be attributed to M. tuberculosis replication. Transcriptomic and proteomic profiling through adaptation to, and resuscitation from, this NC state revealed a switch to anaerobic respiration and a shift to lipid and amino acid metabolism. High concordance with mRNA signatures derived from M. tuberculosis infection models suggests that analogous NC mycobacterial phenotypes may exist during disease and may represent unrecognized populations in vivo. Resuscitation of NC bacilli in potassium-sufficient media was characterized by time-dependent activation of metabolic pathways in a programmed series of processes that probably transit bacilli through challenging microenvironments during infection. PMID:25320096

  4. Communication: State-to-state dynamics of the Cl + H2O → HCl + OH reaction: Energy flow into reaction coordinate and transition-state control of product energy disposal

    International Nuclear Information System (INIS)

    Zhao, Bin; Guo, Hua; Sun, Zhigang

    2015-01-01

    Quantum state-to-state dynamics of a prototypical four-atom reaction, namely, Cl + H 2 O → HCl + OH, is investigated for the first time in full dimensionality using a transition-state wave packet method. The state-to-state reactivity and its dependence on the reactant internal excitations are analyzed and found to share many similarities both energetically and dynamically with the H + H 2 O → H 2 + OH reaction. The strong enhancement of reactivity by the H 2 O stretching vibrational excitations in both reactions is attributed to the favorable energy flow into the reaction coordinate near the transition state. On the other hand, the insensitivity of the product state distributions with regard to reactant internal excitation stems apparently from the transition-state control of product energy disposal

  5. Zero-momentum coupling induced transitions of ground states in Rashba spin-orbit coupled Bose-Einstein condensates

    Science.gov (United States)

    Jin, Jingjing; Zhang, Suying; Han, Wei

    2014-06-01

    We investigate the transitions of ground states induced by zero momentum (ZM) coupling in pseudospin-1/2 Rashba spin-orbit coupled Bose-Einstein condensates confined in a harmonic trap. In a weak harmonic trap, the condensate presents a plane wave (PW) state, a stripe state or a spin polarized ZM state, and the particle distribution of the stripe state is weighted equally at two points in the momentum space without ZM coupling. The presence of ZM coupling induces an imbalanced particle distribution in the momentum space, and leads to the decrease of the amplitude of the stripe state. When its strength exceeds a critical value, the system experiences the transition from stripe phase to PW phase. The boundary of these two phases is shifted and a new phase diagram spanned by the ZM coupling and the interatomic interactions is obtained. The presence of ZM coupling can also achieve the transition from ZM phase to PW phase. In a strong harmonic trap, the condensate exhibits a vortex lattice state without ZM coupling. For the positive effective Rabi frequency of ZM coupling, the condensate is driven from a vortex lattice state to a vortex-free lattice state and finally to a PW state with the increase of coupling strength. In addition, for the negative effective Rabi frequency, the condensate is driven from a vortex lattice state to a stripe state, and finally to a PW state. The stripe state found in the strong harmonic trap is different from that in previous works because of its nonzero superfluid velocity along the stripes. We also discuss the influences of the ZM coupling on the spin textures, and indicate that the spin textures are squeezed transversely by the ZM coupling.

  6. "Wormhole" geometry for entrapping topologically-protected qubits in non-Abelian quantum Hall states and probing them with voltage and noise measurements

    OpenAIRE

    Hou, Chang-Yu; Chamon, Claudio

    2006-01-01

    We study a tunneling geometry defined by a single point-contact constriction that brings to close vicinity two points sitting at the same edge of a quantum Hall liquid, shortening the trip between the otherwise spatially separated points along the normal chiral edge path. This ``wormhole''-like geometry allows for entrapping bulk quasiparticles between the edge path and the tunnel junction, possibly realizing a topologically protected qubit if the quasiparticles have non-Abelian statistics. W...

  7. Calculating Transition Energy Barriers and Characterizing Activation States for Steps of Fusion.

    Science.gov (United States)

    Ryham, Rolf J; Klotz, Thomas S; Yao, Lihan; Cohen, Fredric S

    2016-03-08

    We use continuum mechanics to calculate an entire least energy pathway of membrane fusion, from stalk formation, to pore creation, and through fusion pore enlargement. The model assumes that each structure in the pathway is axially symmetric. The static continuum stalk structure agrees quantitatively with experimental stalk architecture. Calculations show that in a stalk, the distal monolayer is stretched and the stored stretching energy is significantly less than the tilt energy of an unstretched distal monolayer. The string method is used to determine the energy of the transition barriers that separate intermediate states and the dynamics of two bilayers as they pass through them. Hemifusion requires a small amount of energy independently of lipid composition, while direct transition from a stalk to a fusion pore without a hemifusion intermediate is highly improbable. Hemifusion diaphragm expansion is spontaneous for distal monolayers containing at least two lipid components, given sufficiently negative diaphragm spontaneous curvature. Conversely, diaphragms formed from single-component distal monolayers do not expand without the continual injection of energy. We identify a diaphragm radius, below which central pore expansion is spontaneous. For larger diaphragms, prior studies have shown that pore expansion is not axisymmetric, and here our calculations supply an upper bound for the energy of the barrier against pore formation. The major energy-requiring deformations in the steps of fusion are: widening of a hydrophobic fissure in bilayers for stalk formation, splay within the expanding hemifusion diaphragm, and fissure widening initiating pore formation in a hemifusion diaphragm. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  8. Single-ended transition state finding with the growing string method.

    Science.gov (United States)

    Zimmerman, Paul M

    2015-04-05

    Reaction path finding and transition state (TS) searching are important tasks in computational chemistry. Methods that seek to optimize an evenly distributed set of structures to represent a chemical reaction path are known as double-ended string methods. Such methods can be highly reliable because the endpoints of the string are fixed, which effectively lowers the dimensionality of the reaction path search. String methods, however, require that the reactant and product structures are known beforehand, which limits their ability for systematic exploration of reactive steps. In this article, a single-ended growing string method (GSM) is introduced which allows for reaction path searches starting from a single structure. The method works by sequentially adding nodes along coordinates that drive bonds, angles, and/or torsions to a desired reactive outcome. After the string is grown and an approximate reaction path through the TS is found, string optimization commences and the exact TS is located along with the reaction path. Fast convergence of the string is achieved through use of internal coordinates and eigenvector optimization schemes combined with Hessian estimates. Comparison to the double-ended GSM shows that single-ended method can be even more computationally efficient than the already rapid double-ended method. Examples, including transition metal reactivity and a systematic, automated search for unknown reactivity, demonstrate the efficacy of the new method. This automated reaction search is able to find 165 reaction paths from 333 searches for the reaction of NH3 BH3 and (LiH)4 , all without guidance from user intuition. © 2015 Wiley Periodicals, Inc.

  9. Use of solid-state phase transitions for thermal energy storage. Final report, June 1, 1977--August 31, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Leffler, A.J.; Myers, J.; Weinstein, D.

    1978-01-01

    A study has been carried out on the feasibility of using solid-state phase transitions for thermal energy storage. As part of this study a literature search was made to identify the most promising types of compounds and a synthesis program was carried out to prepare certain of these substances. In addition a large number of compounds for testing were obtained from commercial sources. All of the compounds were screened for transitions using a Perkin Elmer DSC-1B differential scanning calorimeter. From this program seven compounds were found that have transition energies from 20-30 cal/g in the temperatre range of 335-405 K. The most promising compound found is 5-norbornene-2,3-dicarboxylic acid anhydride having a transition of 22.6 cal/g at 366 K and an estimated cost of peparation of $0.40/lb..

  10. Verifying the prevalence, properties, and congruent hydraulics of at-many-stations hydraulic geometry (AMHG) for rivers in the continental United States

    Science.gov (United States)

    Barber, Caitline A.; Gleason, Colin J.

    2018-01-01

    Hydraulic geometry (HG) has long enabled daily discharge estimates, flood risk monitoring, and water resource and habitat assessments, among other applications. At-many-stations HG (AMHG) is a newly discovered form of HG with an evolving understanding. AMHG holds that there are temporally and spatially invariant ('congruent') depth, width, velocity, and discharge values that are shared by all stations of a river. Furthermore, these river-wide congruent hydraulics have been shown to link at-a-station HG (AHG) in space, contrary to previous expectation of AHG as spatially unpredictable. To date, AMHG has only been thoroughly examined on six rivers, and its congruent hydraulics are not well understood. To address the limited understanding of AMHG, we calculated AMHG for 191 rivers in the United States using USGS field-measured data from over 1900 gauging stations. These rivers represent nearly all geologic and climatic settings found in the continental U.S. and allow for a robust assessment of AMHG across scales. Over 60% of rivers were found to have AMHG with strong explanatory power to predict AHG across space (defined as r2 > 0.6, 118/191 rivers). We also found that derived congruent hydraulics bear little relation to their observed time-varying counterparts, and the strength of AMHG did not correlate with any available observed or congruent hydraulic parameters. We also found that AMHG is expressed at all fluvial scales in this study. Some statistically significant spatial clusters of rivers with strong and weak AMHG were identified, but further research is needed to identify why these clusters exist. Thus, this first widespread empirical investigation of AMHG leads us to conclude that AMHG is indeed a widely prevalent natural fluvial phenomenon, and we have identified linkages between known fluvial parameters and AMHG. Our work should give confidence to future researchers seeking to perform the necessary detailed hydraulic analysis of AMHG.

  11. Binding of N-carboxymethyl dipeptide inhibitors to thermolysin determined by X-ray crystallography: a novel class of transition-state analogues for zinc peptidases.

    Science.gov (United States)

    Monzingo, A F; Matthews, B W

    1984-11-20

    The mode of binding of the specific thermolysin inhibitor N-(1-carboxy-3-phenylpropyl)-L-leucyl-L-tryptophan (KI approximately 5 X 10(-8) M) [Maycock, A. L., DeSousa, D. M., Payne, L. G., ten Broeke, J., Wu, M. T., & Patchett, A. A. (1981) Biochem. Biophys. Res. Commun. 102, 963-969] has been determined by X-ray crystallography and refined to an R value of 17.1% at 1.9-A resolution. The inhibitor binds to thermolysin with both oxygens of the N-carboxymethyl group liganded to the zinc to give overall pentacoordination of the metal. The bidentate ligation of the inhibitor differs from the monodentate binding seen previously for carboxylate-zinc interactions in thermolysin and is closer to the bidentate geometry observed for the binding of hydroxamates [Holmes, M. A., & Matthews, B. W. (1981) Biochemistry 20, 6912-6920]. The geometry of the inhibitor and its interactions with the protein have a number of elements in common with the presumed transition state formed during peptide hydrolysis. The observed zinc ligation supports the previous suggestion that a pentacoordinate intermediate participates in the mechanism of catalysis. However, the alpha-amino nitrogen of the inhibitor is close to Glu-143, suggesting that this residue might accept a proton from an attacking water molecule (as proposed before) and subsequently donate this proton to the leaving nitrogen. By analogy with thermolysin, it is proposed that a related mechanism should be considered for peptide cleavage by carboxypeptidase A.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Geometry and its applications

    CERN Document Server

    Meyer, Walter J

    2006-01-01

    Meyer''s Geometry and Its Applications, Second Edition, combines traditional geometry with current ideas to present a modern approach that is grounded in real-world applications. It balances the deductive approach with discovery learning, and introduces axiomatic, Euclidean geometry, non-Euclidean geometry, and transformational geometry. The text integrates applications and examples throughout and includes historical notes in many chapters. The Second Edition of Geometry and Its Applications is a significant text for any college or university that focuses on geometry''s usefulness in other disciplines. It is especially appropriate for engineering and science majors, as well as future mathematics teachers.* Realistic applications integrated throughout the text, including (but not limited to): - Symmetries of artistic patterns- Physics- Robotics- Computer vision- Computer graphics- Stability of architectural structures- Molecular biology- Medicine- Pattern recognition* Historical notes included in many chapters...

  13. Performance of TD-DFT for Excited States of Open-Shell Transition Metal Compounds.

    Science.gov (United States)

    Suo, Bingbing; Shen, Kaiyuan; Li, Zhendong; Liu, Wenjian

    2017-05-25

    Time-dependent density functional theory (TD-DFT) has been very successful in accessing low-lying excited states of closed-shell systems. However, it is much less so for excited states of open-shell systems: unrestricted Kohn-Sham based TD-DFT (U-TD-DFT) often produces physically meaningless excited states due to heavy spin contaminations, whereas restricted Kohn-Sham based TD-DFT often misses those states of lower energies. A much better variant is the explicitly spin-adapted TD-DFT (X-TD-DFT) [J. Chem. Phys. 2011, 135, 194106] that can capture all the spin-adapted singly excited states yet without computational overhead over U-TD-DFT. While the superiority of X-TD-DFT over U-TD-DFT has been demonstrated for open-shell systems of main group elements, it remains to be seen if this is also the case for open-shell transition metal compounds. Taking as benchmark the results by MS-CASPT2 (multistate complete active space second-order perturbation theory) and ic-MRCISD (internally contracted multireference configuration interaction with singles and doubles), it is shown that X-TD-DFT is indeed superior to U-TD-DFT for the vertical excitation energies of ZnH, CdH, ScH 2 , YH 2 , YO, and NbO 2 . Admittedly, there exist a few cases where U-TD-DFT appears to be better than X-TD-DFT. However, this is due to a wrong reason: the underestimation (due to spin contamination) and the overestimation (due to either the exchange-correlation functional itself or the adiabatic approximation to the exchange-correlation kernel) happen to be compensated in the case of U-TD-DFT. As for [Cu(C 6 H 6 ) 2 ] 2+ , which goes beyond the capability of both MS-CASPT2 and ic-MRCISD, X-TD-DFT revises the U-TD-DFT assignment of the experimental spectrum.

  14. Identification of predictive biomarkers of disease state in transition dairy cows.

    Science.gov (United States)

    Hailemariam, D; Mandal, R; Saleem, F; Dunn, S M; Wishart, D S; Ametaj, B N

    2014-05-01

    In dairy cows, periparturient disease states, such as metritis, mastitis, and laminitis, are leading to increasingly significant economic losses for the dairy industry. Treatments for these pathologies are often expensive, ineffective, or not cost-efficient, leading to production losses, high veterinary bills, or early culling of the cows. Early diagnosis or detection of these conditions before they manifest themselves could lower their incidence, level of morbidity, and the associated economic losses. In an effort to identify predictive biomarkers for postpartum or periparturient disease states in dairy cows, we undertook a cross-sectional and longitudinal metabolomics study to look at plasma metabolite levels of dairy cows during the transition period, before and after becoming ill with postpartum diseases. Specifically we employed a targeted quantitative metabolomics approach that uses direct flow injection mass spectrometry to track the metabolite changes in 120 different plasma metabolites. Blood plasma samples were collected from 12 dairy cows at 4 time points during the transition period (-4 and -1 wk before and 1 and 4 wk after parturition). Out of the 12 cows studied, 6 developed multiple periparturient disorders in the postcalving period, whereas the other 6 remained healthy during the entire experimental period. Multivariate data analysis (principal component analysis and partial least squares discriminant analysis) revealed a clear separation between healthy controls and diseased cows at all 4 time points. This analysis allowed us to identify several metabolites most responsible for separating the 2 groups, especially before parturition and the start of any postpartum disease. Three metabolites, carnitine, propionyl carnitine, and lysophosphatidylcholine acyl C14:0, were significantly elevated in diseased cows as compared with healthy controls as early as 4 wk before parturition, whereas 2 metabolites, phosphatidylcholine acyl-alkyl C42:4 and

  15. Calculation of the state-to-state S-matrix for tetra-atomic reactions with transition-state wave packets: H₂/D₂ + OH → H/D + H₂O/HOD.

    Science.gov (United States)

    Zhao, Bin; Sun, Zhigang; Guo, Hua

    2014-10-21

    This work is concerned with the calculation of state-to-state S-matrix elements for four-atom reactions using a recently proposed method based on the quantum transition-state theory. In this approach, the S-matrix elements are computed from the thermal flux cross-correlation functions obtained in both the reactant and product arrangement channels. Since transition-state wave packets are propagated with only single arrangement channels, the bases/grids required are significantly smaller than those needed in state-to-state approaches based on a single set of scattering coordinates. Furthermore, the propagation of multiple transition-state wave packets can be carried out in parallel. This method is demonstrated for the H2/D2 + OH → H/D + H2O/HOD reactions (J = 0) and the reaction probabilities are in excellent agreement with benchmark results.

  16. Coal Transition in the United States. An historical case study for the project 'Coal Transitions: Research and Dialogue on the Future of Coal'

    International Nuclear Information System (INIS)

    Kok, Irem

    2017-01-01

    This is one of the 6 country case-studies commissioned to collect experience on past coal transitions. The 6 countries are: Czech Republic, the Netherlands, Poland, Spain, UK, USA. Their role in the Coal Transitions project was to provide background information for a Synthesis Report for decision makers, and provide general lessons for national project teams to take into account in developing their coal transitions pathways for the future. Over the past decade, the US started to cut down the production and the use of coal, which was affected by unfavorable market dynamics and changing federal regulatory environment. Even before the shale gas revolution and uptake of renewables diminish the use of coal in power generation, coal communities were struggling to meet ends. The regional cost differences between producing states, such as the Appalachian and the Powder River Basins, indicates that coal-impacted communities and workers have lived through the impacts of coal transition at varying magnitudes and time periods. In the period between 2014 and 2016, we have seen the crash of major US coal companies due to declining demand for US coal domestically and internationally. Furthermore, Obama administration's climate change policies negatively impacted coal-fired power plants with additional GHG emission requirements, contributing to declining domestic demand for coal. Combined with market downturn, US coal producers already struggle to pay for high operational costs and legal liabilities under bankruptcy conditions. With under-funded state budgets, coal states are also grappling with financial exposure resulting from pension, health care and reclamation liabilities of bankrupt coal companies. In 2016, former President Obama announced the Power Plus Plan to aid coal-impacted communities and workers to prepare for a low carbon future. The federal budget plan targeted diversification of local economies, funding of health and pension funds of miners and retraining for

  17. Efficient methods for finding transition states in chemical reactions: comparison of improved dimer method and partitioned rational function optimization method.

    Science.gov (United States)

    Heyden, Andreas; Bell, Alexis T; Keil, Frerich J

    2005-12-08

    A combination of interpolation methods and local saddle-point search algorithms is probably the most efficient way of finding transition states in chemical reactions. Interpolation methods such as the growing-string method and the nudged-elastic band are able to find an approximation to the minimum-energy pathway and thereby provide a good initial guess for a transition state and imaginary mode connecting both reactant and product states. Since interpolation methods employ usually just a small number of configurations and converge slowly close to the minimum-energy pathway, local methods such as partitioned rational function optimization methods using either exact or approximate Hessians or minimum-mode-following methods such as the dimer or the Lanczos method have to be used to converge to the transition state. A modification to the original dimer method proposed by [Henkelman and Jonnson J. Chem. Phys. 111, 7010 (1999)] is presented, reducing the number of gradient calculations per cycle from six to four gradients or three gradients and one energy, and significantly improves the overall performance of the algorithm on quantum-chemical potential-energy surfaces, where forces are subject to numerical noise. A comparison is made between the dimer methods and the well-established partitioned rational function optimization methods for finding transition states after the use of interpolation methods. Results for 24 different small- to medium-sized chemical reactions covering a wide range of structural types demonstrate that the improved dimer method is an efficient alternative saddle-point search algorithm on medium-sized to large systems and is often even able to find transition states when partitioned rational function optimization methods fail to converge.

  18. Global dynamics and transition state theories: Comparative study of reaction rate constants for gas-phase chemical reactions.

    Science.gov (United States)

    Ju, Li-Ping; Han, Ke-Li; Zhang, John Z H

    2009-01-30

    In this review article, we present a systematic comparison of the theoretical rate constants for a range of bimolecular reactions that are calculated by using three different classes of theoretical methods: quantum dynamics (QD), quasi-classical trajectory (QCT), and transition state theory (TST) approaches. The study shows that the difference of rate constants between TST results and those of the global dynamics methods (QD and QCT) are seen to be related to a number of factors including the number of degrees-of-freedom (DOF), the density of states at transition state (TS), etc. For reactions with more DOF and higher density of states at the TS, it is found that the rate constants from TST calculations are systematically higher than those obtained from global dynamics calculations, indicating large recrossing effect for these systems. The physical insight of this phenomenon is elucidated in the present review. (c) 2008 Wiley Periodicals, Inc.

  19. Developing ecological site and state-and-transition models for grazed riparian pastures at Tejon Ranch, California

    Science.gov (United States)

    Felix P. Ratcliff; James Bartolome; Michele Hammond; Sheri Spiegal; Michael White

    2015-01-01

    Ecological site descriptions and associated state-and-transition models are useful tools for understanding the variable effects of management and environment on range resources. Models for woody riparian sites have yet to be fully developed. At Tejon Ranch, in the southern San Joaquin Valley of California, we are using ecological site theory to investigate the role of...

  20. Effects of a transition to a hydrogen economy on employment in the United States Report to Congress

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2008-07-01

    DOE's Effects of a Transition to a Hydrogen Economy on Employment in the United States Report to Congress estimates the employment effects of a transformation of the U.S. economy to the use of hydrogen in the 2020 to 2050 timeframe. This report fulfills requirements of section 1820 of the Energy Policy Act of 2005.

  1. Elastic and transition form factors for the collexuctive states of magic and near magic nuclei in the GHF method

    International Nuclear Information System (INIS)

    Steshenko, A.I.; Maksimenko, V.N.

    1983-01-01

    A method for calculating the matrix elements of a nuclear form factor operator in the basis of collective functions Sp(2,R) is proposed. The formulas obtained can be used in the calculatings of the charged elastic and transition form factors for the collective states of maqic and near magic nuclei by means of the generalized hyperspherical function method

  2. Rupture and Adaptation: British Technical Expertise to the Singapore Polytechnic and the Transition to a Nation-State

    Science.gov (United States)

    Seng, Loh Kah

    2015-01-01

    The Singapore Polytechnic underwent a period of both rupture and adaptation as British advisers worked with the post-colonial government to facilitate technical education reform and Singapore's transition to a nation-state. Established in 1958 and based on the metropolitan model, the Singapore Polytechnic constituted an imperial project for…

  3. Serum 25-hydroxyvitamin D, transitions between frailty states, and mortality in older adults: the Invecchiare in Chianti Study

    NARCIS (Netherlands)

    Shardell, M.; D'Adamo, C.; Alley, D.E.; Miller, R.R.; Hicks, G.E.; Milaneschi, Y.; Semba, R.D.; Cherubini, A.; Bandinelli, S.; Ferrucci, L.

    2012-01-01

    Objectives To assess whether serum 25-hydroxyvitamin D (25(OH)D) concentrations relate to transitions between the states of robustness, prefrailty, and frailty and to mortality in older adults. Design The Invecchiare in Chianti (InCHIANTI) Study, a prospective cohort study. Setting Tuscany, Italy.

  4. The political-economic transition and the building of the welfare state in Spain (1975-1986

    Directory of Open Access Journals (Sweden)

    Rafael Muñoz de Bustillo Llorente

    2008-12-01

    Full Text Available This article analyses the economic policy in Spain during the govern- ments of the Spanish political transition from 1975 to 1986. It considers the different areas of economic policy with special emphasis on the development of welfare state issues in this period. Taking into account the difficult economic and political situation in 1975, there were some important advances in social policy and progressive taxation during the period. The transition to democracy in Spain changed the role and size of the public sector above all from 1975 to 1986. The social demands over the political system were possible improvements in the progressive and redistributive policies in education, health, and social programs. Spain’s transition to democracy and the first period of welfare state show a mutually reinforcing and its consequences were the modernization of the Spanish economy. However, from 1986 the economic develop- ment and the progress of welfare state have had a different growth.Key words: Welfare state, Economic transition, Spain.

  5. Fire rehabilitation decisions at landscape scales: utilizing state-and-transition models developed through disturbance response grouping of ecological sites

    Science.gov (United States)

    Recognizing the utility of ecological sites and the associated state-and-transition model (STM) for decision support, the Bureau of Land Management in Nevada partnered with Nevada NRCS and the University of Nevada, Reno (UNR) in 2009 with the goal of creating a team that could (1) expedite developme...

  6. NuSTAR Observations of the State Transition of Millisecond Pulsar Binary PSR J1023+0038

    DEFF Research Database (Denmark)

    Tendulkar, Shriharsh P.; Yang, Chengwei; An, Hongjun

    2014-01-01

    . Consecutive dip separations are log-normal in distribution with a typical separation of approximately 400 s. These dips are distinct from dipping activity observed in LMXBs. We compare and contrast these dips to observations of dips and state changes in the similar transition systems PSR J1824-2452I and XSS J...

  7. Simultaneous spin-state-insulator-metal transition in Pr0.5Ca0.5CoO3

    International Nuclear Information System (INIS)

    Saitoh, T.; Yamashita, Y.; Todoroki, N.; Kyomen, T.; Itoh, M.; Higashiguchi, M.; Shimada, K.

    2004-01-01

    The temperature-induced paramagnetism in LaCoO 3 around 100 K has long been known as a characteristic phenomenon of this compound, but its interpretation is not settled yet. One reason is that the low-spin (LS) ground state and other intermediate-spin (IS) or high-spin (HS) states cannot be resolved completely because such states are populated by thermal excitation. Here we present a first observation of a distinct change in the electronic structure due to a pure LS-IS transition of a Co oxide; Pr 0.5 Ca 0.5 CoO 3 exhibits a simultaneous LS-IS and insulator-metal first-order phase transition around 90 K with increasing temperature. Because of the first- order nature of the transition, the IS phase is not populated by thermal excitation, which enables us to investigate the electronic structure of the LS- and IS-Co 3d states, independently. Figure 1 shows temperature-dependent photoemission spec- tra of Pr 0.5 Ca 0.5 CoO 3 . The leading peak A, which is Co 3d t 2g states, is rapidly suppressed from 70 K to 100 K. Compared with a theoretical calculation, this change should be representing the LS to IS spin-state transition. The observed change between the 'pure' LS and IS spectra will exclude the simple LS-HS scenario in LaCoO 3 and hence demonstrates the importance of the IS state in both excited states and the carrier-doped region

  8. Dynamical transitions in large systems of mean field-coupled Landau-Stuart oscillators: Extensive chaos and cluster states

    Energy Technology Data Exchange (ETDEWEB)

    Ku, Wai Lim; Girvan, Michelle; Ott, Edward [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742 (United States)

    2015-12-15

    In this paper, we study dynamical systems in which a large number N of identical Landau-Stuart oscillators are globally coupled via a mean-field. Previously, it has been observed that this type of system can exhibit a variety of different dynamical behaviors. These behaviors include time periodic cluster states in which each oscillator is in one of a small number of groups for which all oscillators in each group have the same state which is different from group to group, as well as a behavior in which all oscillators have different states and the macroscopic dynamics of the mean field is chaotic. We argue that this second type of behavior is “extensive” in the sense that the chaotic attractor in the full phase space of the system has a fractal dimension that scales linearly with N and that the number of positive Lyapunov exponents of the attractor also scales linearly with N. An important focus of this paper is the transition between cluster states and extensive chaos as the system is subjected to slow adiabatic parameter change. We observe discontinuous transitions between the cluster states (which correspond to low dimensional dynamics) and the extensively chaotic states. Furthermore, examining the cluster state, as the system approaches the discontinuous transition to extensive chaos, we find that the oscillator population distribution between the clusters continually evolves so that the cluster state is always marginally stable. This behavior is used to reveal the mechanism of the discontinuous transition. We also apply the Kaplan-Yorke formula to study the fractal structure of the extensively chaotic attractors.

  9. Code subspaces for LLM geometries

    Science.gov (United States)

    Berenstein, David; Miller, Alexandra

    2018-03-01

    We consider effective field theory around classical background geometries with a gauge theory dual, specifically those in the class of LLM geometries. These are dual to half-BPS states of N= 4 SYM. We find that the language of code subspaces is natural for discussing the set of nearby states, which are built by acting with effective fields on these backgrounds. This work extends our previous work by going beyond the strict infinite N limit. We further discuss how one can extract the topology of the state beyond N→∞ and find that, as before, uncertainty and entanglement entropy calculations provide a useful tool to do so. Finally, we discuss obstructions to writing down a globally defined metric operator. We find that the answer depends on the choice of reference state that one starts with. Therefore, within this setup, there is ambiguity in trying to write an operator that describes the metric globally.

  10. Algebraic geometry and theta functions

    CERN Document Server

    Coble, Arthur B

    1929-01-01

    This book is the result of extending and deepening all questions from algebraic geometry that are connected to the central problem of this book: the determination of the tritangent planes of a space curve of order six and genus four, which the author treated in his Colloquium Lecture in 1928 at Amherst. The first two chapters recall fundamental ideas of algebraic geometry and theta functions in such fashion as will be most helpful in later applications. In order to clearly present the state of the central problem, the author first presents the better-known cases of genus two (Chapter III) and

  11. Line strengths of rovibrational and rotational transitions within the X^3Σ {^-} ground state of NH

    Science.gov (United States)

    Brooke, James S. A.; Bernath, Peter F.; Western, Colin M.; van Hemert, Marc C.; Groenenboom, Gerrit C.

    2014-08-01

    A new line list for rovibrational and rotational transitions, including fine structure, within the NH X^3Σ {^-} ground state has been created. It contains line intensities in the form of Einstein A and f-values, for all possible bands up to v' = 6, and for J up to between 25 and 44. The intensities are based on a new dipole moment function (DMF), which has been calculated using the internally contracted multi-reference configuration interaction method with an aug-cc-pV6Z basis set. The programs RKR1, LEVEL, and PGOPHER were used to calculate line positions and intensities using the most recent spectroscopic line position observations and the new DMF, including the rotational dependence on the matrix elements. The Hund's case (b) matrix elements from the LEVEL output (available as Supplement 1 of the supplementary material) have been transformed to the case (a) form required by PGOPHER. New relative intensities for the (1,0) band have been measured, and the calculated and observed Herman-Wallis effects are compared, showing good agreement. The line list (see Supplement 5 of the supplementary material) will be useful for the study of NH in astronomy, cold and ultracold molecular systems, and in the nitrogen chemistry of combustion.

  12. Evidence that pH can drive state transitions in isolated thylakoid membranes from spinach.

    Science.gov (United States)

    Singh-Rawal, Pooja; Jajoo, Anjana; Mathur, Sonal; Mehta, Pooja; Bharti, Sudhakar

    2010-06-01

    Our observation that the F735/F685 ratio at 77 K increased when the lumenal pH decreased led us to investigate the role of pH in explaining the mechanism of state transitions in spinach (Spinacea oleracea L.) thylakoid membranes. As the lumenal pH was changed from pH 7.5 to 5.5, the quantum yield of PS II decreased, while that of PS I increased. In the presence of an uncoupler, NH(4)Cl, which sequesters protons, a reversal of the effects observed at pH 5.5 were noticed. The thylakoid membranes treated with NaF at pH 5.5, when suspended in a buffer of pH 7.5, showed enhanced PS II fluorescence and a decreased PS I fluorescence, suggesting migration of LHC II back to PS II from PS I. The results presented here suggest for the first time that the lumenal pH of thylakoid membranes regulates the migration of antenna, and hence the energy distribution, between the two photosystems, i.e. a low lumenal pH (pH 5.5) favors antenna migration from PS II to PS I. At pH 7.5, the deprotonation of LHC II antenna attached to PS I leads to back migration of LHC II to PS II.

  13. Numerical Computation of a Continuous-thrust State Transition Matrix Incorporating Accurate Hardware and Ephemeris Models

    Science.gov (United States)

    Ellison, Donald; Conway, Bruce; Englander, Jacob

    2015-01-01

    A significant body of work exists showing that providing a nonlinear programming (NLP) solver with expressions for the problem constraint gradient substantially increases the speed of program execution and can also improve the robustness of convergence, especially for local optimizers. Calculation of these derivatives is often accomplished through the computation of spacecraft's state transition matrix (STM). If the two-body gravitational model is employed as is often done in the context of preliminary design, closed form expressions for these derivatives may be provided. If a high fidelity dynamics model, that might include perturbing forces such as the gravitational effect from multiple third bodies and solar radiation pressure is used then these STM's must be computed numerically. We present a method for the power hardward model and a full ephemeris model. An adaptive-step embedded eight order Dormand-Prince numerical integrator is discussed and a method for the computation of the time of flight derivatives in this framework is presented. The use of these numerically calculated derivatieves offer a substantial improvement over finite differencing in the context of a global optimizer. Specifically the inclusion of these STM's into the low thrust missiondesign tool chain in use at NASA Goddard Spaceflight Center allows for an increased preliminary mission design cadence.

  14. Variational transition state theory. Progress report, July 1, 1979-June 30, 1980

    International Nuclear Information System (INIS)

    Truhlar, D.G.

    1980-02-01

    The variational transition state theory (VTST) of chemical reaction rates has been further developed and two previously developed and one new version have been illustrated and tested by various applications to collinear and three-dimensional reactions of the type A + BC → AB + C. The first two versions considered are canonical variational theory (CVT), which is based on curves of free energy of activation as functions of location of the VTST dividing surface, and microcanonical variational theory (μVT), which is based on minimizing the reactive flux through the VTST dividing surface at each total energy. CVT is simpler but μVT is more accurate. The new theory, improved canonical variational theory (ICVT), is almost as simple as CVT but almost as accurate as μVT. This has been demonstrated by applications to H, O, F, Cl, and I reacting with H 2 , H reacting with F 2 and Cl 2 , and various isotopic analogs and model systems. It was also demonstrated that VTST leads to very good agreement with accurate quantal results for several collinear reactions. Another project used VTST to explore the systematics of kinetic isotope effects for three-dimensional reactions. The predictions sometimes differ considerably from those of the conventional theory

  15. Tools for Resilience Management: Multidisciplinary Development of State-and-Transition Models for Northwest Colorado

    Directory of Open Access Journals (Sweden)

    Emily J. Kachergis

    2013-12-01

    Full Text Available Building models is an important way of integrating knowledge. Testing and updating models of social-ecological systems can inform management decisions and, ultimately, improve resilience. We report on the outcomes of a six-year, multidisciplinary model development process in the sagebrush steppe, USA. We focused on creating state-and-transition models (STMs, conceptual models of ecosystem change that represent nonlinear dynamics and are being adopted worldwide as tools for managing ecosystems. STM development occurred in four steps with four distinct sets of models: (1 local knowledge elicitation using semistructured interviews; (2 ecological data collection using an observational study; (3 model integration using participatory workshops; and (4 model simplification upon review of the literature by a multidisciplinary team. We found that different knowledge types are ultimately complementary. Many of the benefits of the STM-building process flowed from the knowledge integration steps, including improved communication, identification of uncertainties, and production of more broadly credible STMs that can be applied in diverse situations. The STM development process also generated hypotheses about sagebrush steppe dynamics that could be tested by future adaptive management and research. We conclude that multidisciplinary development of STMs has great potential for producing credible, useful tools for managing resilience of social-ecological systems. Based on this experience, we outline a streamlined, participatory STM development process that integrates multiple types of knowledge and incorporates adaptive management.

  16. Design of amino acid sulfonamides as transition-state analogue inhibitors of arginase.

    Science.gov (United States)

    Cama, Evis; Shin, Hyunshun; Christianson, David W

    2003-10-29

    Arginase is a binuclear manganese metalloenzyme that catalyzes the hydrolysis of L-arginine to form L-ornithine plus urea. Chiral L-amino acids bearing sulfonamide side chains have been synthesized in which the tetrahedral sulfonamide groups are designed to target bridging coordination interactions with the binuclear manganese cluster in the arginase active site. Syntheses of the amino acid sulfonamides have been accomplished by the amination of sulfonyl halide derivatives of (S)-(tert-butoxy)-[(tert-butoxycarbonyl)amino]oxoalkanoic acids. Amino acid sulfonamides with side chains comparable in length to that of L-arginine exhibit inhibition in the micromolar range, and the X-ray crystal structure of arginase I complexed with one of these inhibitors, S-(2-sulfonamidoethyl)-L-cysteine, has been determined at 2.8 A resolution. In the enzyme-inhibitor complex, the sulfonamide group displaces the metal-bridging hydroxide ion of the native enzyme and bridges the binuclear manganese cluster with an ionized NH(-) group. The binding mode of the sulfonamide inhibitor may mimic the binding of the tetrahedral intermediate and its flanking transition states in catalysis. It is notable that the ionized sulfonamide group is an excellent bridging ligand in this enzyme-inhibitor complex; accordingly, the sulfonamide functionality can be considered in the design of inhibitors targeting other binuclear metalloenzymes.

  17. Phylogenetic uncertainty can bias the number of evolutionary transitions estimated from ancestral state reconstruction methods.

    Science.gov (United States)

    Duchêne, Sebastian; Lanfear, Robert

    2015-09-01

    Ancestral state reconstruction (ASR) is a popular method for exploring the evolutionary history of traits that leave little or no trace in the fossil record. For example, it has been used to test hypotheses about the number of evolutionary origins of key life-history traits such as oviparity, or key morphological structures such as wings. Many studies that use ASR have suggested that the number of evolutionary origins of such traits is higher than was previously thought. The scope of such inferences is increasing rapidly, facilitated by the construction of very large phylogenies and life-history databases. In this paper, we use simulations to show that the number of evolutionary origins of a trait tends to be overestimated when the phylogeny is not perfect. In some cases, the estimated number of transitions can be several fold higher than the true value. Furthermore, we show that the bias is not always corrected by standard approaches to account for phylogenetic uncertainty, such as repeating the analysis on a large collection of possible trees. These findings have important implications for studies that seek to estimate the number of origins of a trait, particularly those that use large phylogenies that are associated with considerable uncertainty. We discuss the implications of this bias, and methods to ameliorate it. © 2015 Wiley Periodicals, Inc.

  18. Lithium impurity recombination in solid para-hydrogen: A path integral quantum transition state theory study

    Science.gov (United States)

    Jang, Seogjoo; Voth, Gregory A.

    1998-03-01

    The recombination of two lithium atoms trapped in one-vacancy defect sites of solid para-hydrogen at 4 K and zero external pressure is studied as a quantum activated process. The quantum activation free energy is calculated using path integral quantum transition state theory along with the method of path integral molecular dynamics simulation. The equilibrium volume of the system is determined by a constant pressure method that scales the sides of the rectangular simulation box. At a fixed equilibrium volume of the system, a constraint dynamics path integral simulation is then employed to determine the quantum path centroid free energy barrier along the reaction coordinate, which is taken to be the relative Li-Li separation. The two lithium atoms begin to recombine at a distance of approximately twice the lattice spacing, and the height of the barrier relative to the metastable well is 78±10 K. The rate of the intrinsic recombination step is estimated to be 1.3×103s-1 at 4 K. It is found that the lithium nuclei exhibit significant tunneling behavior over their classical limit.

  19. Valence density of states of group IVA transition-metal dichalcogenides

    International Nuclear Information System (INIS)

    Boehm, J. von; Isomaeki, H.

    1980-01-01

    The valence densities of states (VDOS) of the IVA transition-metal dichalcogenides ZrS 2 , ZrSe 2 , TiSe 2 are calculated using the Gilat-Raubenheimer method and analysed in detail VDOS based on quadratic Lagrangian interpolation (QLI) of the energies evaluated in the final self-consistent symmetrised OPW (SCSOPW) potential at 131 symmetry independent k points are found to show close resemblance to XPS measurements and recent LCAO VDOS. Using an analysis based on the division of the SCSOPW QLI VDOS into partial VDOS from individual bands we find that four pairs of valence bands (1-2, 3-4, 5-6 and 7-8) give rise to four main peaks of SCSOPW QLI VDOS. A similar analysis shows that the use of the Slater-Koster interpolation caused some artificial deep valleys into the earlier SCSOPW LCAO VDOS. The methods used to calculate SCSOPW QLI VDOS and SCSOPW LCAO VDOS are also described. (author)

  20. Ensemble of Transition State Structures for the Cis-Trans Isomerization of N-Methylacetamide

    Energy Technology Data Exchange (ETDEWEB)

    Mantz, Yves A. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Branduardi, Davide [Italian Inst. of Technology, Genoa (Italy); Bussi, Giovanni [Univ. of Modena and Reggio Emilia and INFM-CNR (Italy); Parrinello, Michele [ETH Zurich, Lugano (Switzerland). Dept. of Chemistry and Applied Biosciences

    2009-09-17

    The cis-trans isomerization of N-methylacetamide (NMA), a model peptidic fragment, is studied theoretically in vacuo and in explicit water solvent at 300 K using the metadynamics technique. The computed cis-trans free energy difference is very similar for NMA(g) and NMA(aq), in agreement with experimental measurements of population ratios and theoretical studies at 0 K. By exploiting the flexibility in the definition of a pair of recently introduced collective variables (Branduardi, D.; Gervasio, F. L.; Parrinello, M. J. Chem. Phys. 2007, 126, 054103), an ensemble of transition state structures is generated at finite temperature for both NMA(g) and NMA(aq), as verified by computing committor distribution functions. Ensemble members of NMA(g) are shown to have correlated values of the backbone dihedral angle and a second dihedral angle involving the amide hydrogen atom. The dynamical character of these structures is preserved in the presence of solvent, whose influence on the committor functions can be modeled using effective friction/noise terms.

  1. Dicke phase transition with multiple superradiant states in quantum chaotic resonators

    KAUST Repository

    Liu, C.

    2014-06-12

    We experimentally investigate the Dicke phase transition in chaotic optical resonators realized with two-dimensional photonics crystals. This setup circumvents the constraints of the system originally investigated by Dicke and allows a detailed study of the various properties of the superradiant transition. Our experimental results, analytical prediction, and numerical modeling based on random-matrix theory demonstrate that the probability density P? of the resonance widths provides a new criterion to test the occurrence of the Dicke transition.

  2. Theoretical spectroscopic studies of the atomic transitions and lifetimes of low-lying states in Ti IV

    International Nuclear Information System (INIS)

    Mandal, Subhasish; Dixit, Gopal; Majumder, Sonjoy; Sahoo, B K; Chaudhuri, R K

    2008-01-01

    The astrophysically important electric quadrupole (E2) and magnetic dipole (M1) transitions for the low-lying states of triply ionized titanium (Ti IV) are calculated very accurately using a state-of-the-art all-order many-body theory called coupled cluster (CC) method in the relativistic framework. Different many-body correlations of the CC theory has been estimated by studying the core and valence electron excitations to the unoccupied states. The calculated excitation energies of different states are in excellent agreement with the measurements. Also, we compare our calculated electric dipole (E1) amplitudes of few transitions with recent many-body calculations by others. The lifetimes of the low-lying states of Ti IV have been estimated and long lifetime is found for the first excited 3d 2 D 5/2 state, which suggested that Ti IV may be one of the useful candidates for many fundamental studies of physics. Most of the forbidden transition results reported here are not available in the literature, to the best of our knowledge

  3. Geometry essentials for dummies

    CERN Document Server

    Ryan, Mark

    2011-01-01

    Just the critical concepts you need to score high in geometry This practical, friendly guide focuses on critical concepts taught in a typical geometry course, from the properties of triangles, parallelograms, circles, and cylinders, to the skills and strategies you need to write geometry proofs. Geometry Essentials For Dummies is perfect for cramming or doing homework, or as a reference for parents helping kids study for exams. Get down to the basics - get a handle on the basics of geometry, from lines, segments, and angles, to vertices, altitudes, and diagonals Conque

  4. Introduction to projective geometry

    CERN Document Server

    Wylie, C R

    2008-01-01

    This lucid introductory text offers both an analytic and an axiomatic approach to plane projective geometry. The analytic treatment builds and expands upon students' familiarity with elementary plane analytic geometry and provides a well-motivated approach to projective geometry. Subsequent chapters explore Euclidean and non-Euclidean geometry as specializations of the projective plane, revealing the existence of an infinite number of geometries, each Euclidean in nature but characterized by a different set of distance- and angle-measurement formulas. Outstanding pedagogical features include w

  5. Manganese Deficiency Leads to Genotype-Specific Changes in Fluorescence Induction Kinetics and State Transitions1[C][OA

    Science.gov (United States)

    Husted, Søren; Laursen, Kristian H.; Hebbern, Christopher A.; Schmidt, Sidsel B.; Pedas, Pai; Haldrup, Anna; Jensen, Poul E.

    2009-01-01

    Barley (Hordeum vulgare) genotypes display a marked difference in their ability to tolerate growth at low manganese (Mn) concentrations, a phenomenon designated as differential Mn efficiency. Induction of Mn deficiency in two genotypes differing in Mn efficiency led to a decline in the quantum yield efficiency for both, although faster in the Mn-inefficient genotype. Leaf tissue and thylakoid Mn concentrations were reduced under Mn deficiency, but no difference between genotypes was observed and no visual Mn deficiency symptoms were developed. Analysis of the fluorescence induction kinetics revealed that in addition to the usual O-J-I-P steps, clear K and D steps were developed in the Mn-inefficient genotype under Mn deficiency. These marked changes indicated damages to photosystem II (PSII). This was further substantiated by state transition measurements, indicating that the ability of plants to redistribute excitation energy was reduced. The percentage change in state transitions for control plants with normal Mn supply of both genotypes was 9% to 11%. However, in Mn-deficient leaves of the Mn-inefficient genotypes, state transitions were reduced to less than 1%, whereas no change was observed for the Mn-efficient genotypes. Immunoblotting and the chlorophyll a/b ratio confirmed that Mn deficiency in general resulted in a significant reduction in abundance of PSII reaction centers relative to the peripheral antenna. In addition, PSII appeared to be significantly more affected by Mn limitation than PSI. However, the striking genotypic differences observed in Mn-deficient plants, when analyzing state transitions and fluorescence induction kinetics, could not be correlated with specific changes in photosystem proteins. Thus, there is no simple linkage between protein expression and the differential reduction in state transition and fluorescence induction kinetics observed for the genotypes under Mn deficiency. PMID:19369593

  6. "Wormhole" geometry for entrapping topologically protected qubits in non-abelian quantum hall states and probing them with voltage and noise measurements.

    Science.gov (United States)

    Hou, Chang-Yu; Chamon, Claudio

    2006-10-06

    We study a tunneling geometry defined by a single point-contact constriction that brings to close vicinity two points sitting at the same edge of a quantum Hall liquid, shortening the trip between the otherwise spatially separated points along the normal chiral edge path. This wormhole-like geometry allows for entrapping bulk quasiparticles between the edge path and the tunnel junction, possibly realizing a topologically protected qubit if the quasiparticles have non-Abelian statistics. We show how either noise or simpler voltage measurements along the edge can probe the non-Abelian nature of the trapped quasiparticles.

  7. M1 and E2 transitions in the ground-state configuration of atomic ...

    Indian Academy of Sciences (India)

    forbidden. The lowest-order metastable levels which radiatively decay correspond to magnetic dipole (M1) and electric quadrupole (E2) transitions [16]. M1 and E2 transi- tion rates are several orders of magnitude smaller than those for electric dipole (E1) tran- sitions with a similar energy level separation. These transitions ...

  8. Divergence of relative difference in Gaussian distribution function and stochastic resonance in a bistable system with frictionless state transition

    Science.gov (United States)

    Kasai, Seiya; Ichiki, Akihisa; Tadokoro, Yukihiro

    2018-03-01

    A bistable system efficiently detects a weak signal by adding noise, which is referred to as stochastic resonance. A previous theory deals with friction in state transition; however, this hypothesis is inadequate when friction force is negligible such as in nano- and molecular-scale systems. We show that, when the transition occurs without friction, the sensitivity of the bistable system to a Gaussian-noise-imposed weak signal becomes significantly high. The sensitivity is determined by the relative difference in noise distribution function. We find that the relative difference in Gaussian distribution function diverges in its tail edge, resulting in a high sensitivity in the present system.

  9. Teaching Geometry to Visually Impaired Students

    Science.gov (United States)

    Pritchard, Christine K.; Lamb, John H.

    2012-01-01

    NCTM (2000) described geometry as "a means of describing, analyzing, and understanding the world and seeing beauty in its structures" (p. 309). Dossey et al. (2002) captured the essence of this aspect of visualization by stating that geometry fosters in students an ability to "visualize and mentally manipulate geometric objects." (p. 200).…

  10. Electronic and thermodynamic properties of the transition between metallic and nonmetallic states in dense media

    International Nuclear Information System (INIS)

    Fortin, Xavier

    1971-01-01

    The effects of thermal excitation are introduced in the study of a simple electronic structure model for condensed media. The choice of a particle-interaction potential leads to a self-consistent calculation performed on a computer. This calculation gives a metal - nonmetal transition similar to the MOTT transition. We consider the effects of temperature and density variations upon this transition. It is possible to make use of this electronic structure to obtain the thermodynamic properties near the transition: pressure, free energy, sound velocity. The numerical results of this simple model are satisfactory. Particularly, if a dielectric constant is taken into account, the transition temperature and density are of the same order of magnitude as those observed experimentally in semiconductors. (author) [fr

  11. A detailed study on the transition from the blocked to the superparamagnetic state of reduction-precipitated iron oxide nanoparticles

    Science.gov (United States)

    Witte, K.; Bodnar, W.; Mix, T.; Schell, N.; Fulda, G.; Woodcock, T. G.; Burkel, E.

    2016-04-01

    Magnetic iron oxide nanoparticles were prepared by salt-assisted solid-state chemical precipitation method with alternating fractions of the ferric iron content. The physical properties of the precipitated nanoparticles mainly consisting of magnetite were investigated by means of transmission electron microscopy, high energy X-ray diffraction, vibrating sample magnetometry and Mössbauer spectroscopy. With particle sizes ranging from 16.3 nm to 2.1 nm, a gradual transition from the blocked state to the superparamagnetic state was observed. The transition was described as a dependence of the ferric iron content used during the precipitation. Composition, mean particle size, coercivity, saturation polarisation, as well as hyperfine interaction parameters and their evolution were studied systematically over the whole series of iron oxide nanoparticles.

  12. Vortex dynamics at the transition to the normal state in YBa2Cu3O7-δ films

    International Nuclear Information System (INIS)

    Bernstein, P.; Hamet, J.F.; Gonzalez, M.T.; Ruibal Acuna, M.

    2007-01-01

    We propose a description of the vortex dynamics in YBa 2 Cu 3 O 7-δ films from the critical to the normal states. This description supposes that the vortex motion is thermally activated along the twin boundaries of the films. The discontinuity observed in the current-voltage curves at the transition to the normal state is explained by the sudden increase in the dissipated power rate due to vortex depinning. However, near the critical temperature, this phenomenon does not occur because the vortex activation energy is near zero. We also show how the current at the transition to the normal state can be computed from the current-voltage curves measured at low currents. The predictions of this description are compared to the data published by [M.T. Gonzalez, J. Vina, S.R. Curras, J.A. Veira, J. Maza, F. Vidal, Phys. Rev. B 68 (2003) 054514

  13. Effect of Improvised Instructional Materials on Students' Achievement in Geometry at the Upper Basic Education Level in Makurdi Metropolis, Benue State, Nigeria

    Science.gov (United States)

    Iji, C. O.; Ogbole, P. O.; Uka, N. K.

    2014-01-01

    Among all approaches aimed at reducing poor mathematics achievement among the students, adoption of appropriate methods of teaching appears to be more rewarding. In this study, improvised instructional materials were used to ascertain students' geometry achievement at the upper basic education one. Two research questions were asked with associated…

  14. State transitions between wake and sleep, and within the ultradian cycle, with focus on the link to neuronal activity.

    Science.gov (United States)

    Merica, Helli; Fortune, Ronald D

    2004-12-01

    The structure of sleep across the night as expressed by the hypnogram, is characterised by repeated transitions between the different states of vigilance: wake, light and deep non-rapid eye movement (NREM) sleep, and rapid eye movement (REM) sleep. This review is concerned with current knowledge on these state transitions, focusing primarily on those findings that allow the integration of data at cellular level with spectral time-course data at the encephalographic (EEG) level. At the cellular level it has been proposed that, under the influence of circadian and homeostatic factors, transitions between wake and sleep may be determined by mutually inhibitory interaction between sleep-active neurons in the hypothalamic preoptic area and wake-active neurons in multiple arousal centres. These two fundamentally different behavioural states are separated by the sleep onset and the sleep inertia periods each characterised by gradual changes in which neither true wake nor true sleep patterns are present. The results of sequential spectral analysis of EEG data on moves towards and away from deep sleep are related to findings at the cellular level on the generating mechanisms giving rise to the various NREM oscillatory modes under the neuromodulatory control of brainstem-thalamic activating systems. And there is substantial evidence at cellular level that transition to and from REM sleep is governed by the reciprocal interaction between cholinergic REM-on neurons and aminergic REM-off neurons located in the brainstem. Similarity between the time-course of the REM-on neuronal activity and that of EEG power in the high beta range (approximately 18-30 Hz) allows a tentative parallelism to be drawn between the two. This review emphasises the importance of the thalamically projecting brainstem activating systems in the orchestration of the transitions that give rise to state progression across the sleep-wake cycle.

  15. Feshbach to ultracold molecular state Raman transitions in a seven-level system using optical frequency combs

    Science.gov (United States)

    Liu, Gengyuan; Malinovskaya, Svetlana

    2015-05-01

    A method for creation of molecules in the ultracold state from the Feshbach molecules by stepwise adiabatic passage using an optical frequency comb is investigated in the framework of a semiclassical seven-level system. Sinusoidal modulation across an individual pulse in the pulse train is applied that leads to a creation of a quasi-dark state minimizing population of the transitional, vibrational state manifold and efficiently mitigating decoherence in the system. The parity of the temporal chirp shown to be an important factor in designing population dynamics in the system. This work is supported by National Science Foundation.

  16. Many body effects on the formal charge state of 3d - Transition Metal Doped BaTiO3

    Science.gov (United States)

    Mandal, Subhasish; Cohen, R. E.; Haule, K.

    2015-03-01

    Using density functional theory in combination with dynamical mean field theory in Mn doped BaTiO3, we find a different charge state and 3d - orbital occupations than obtained from either DFT or DFT+U. We find that the explicit treatment of many-body effects induced by the Hund's rule coupling in Mn shows a donor charge state of Mn2+, instead of usual acceptor charge state of Mn4+ as is found in both DFT and DFT+U. The differences in electron density reveal that charge transfer due to strong Hubbard interactions is not sufficient to describe the electron correlations in transition metal doped ferroelectrics.

  17. Ab initio study of vibronic transitions between x2π and 12Σ+ electronic states of HCP+ ion

    Directory of Open Access Journals (Sweden)

    Stojanović Ljiljana

    2013-01-01

    Full Text Available The ground and low-lying excited doublet electronic states of the HCP+ ion were studied by means of multireference configuration interaction method. Vibronic energy levels of the X2Π state of Σ, Π, Δ, and Φ symmetry, up to the 2500 cm-1, have been calculated variationally, employing previously developed ab initio methods which take into account vibronic and spin-orbit interactions. Obtained vibronic wave functions were used to estimate transition moments between vibronic energy levels of the X2Π and 12Σ+ electronic states. Results were compared to available experimental and theoretical data. [Projekat Ministarstva nauke Republike Srbije, br. 172040

  18. Automorphisms in Birational and Affine Geometry

    CERN Document Server

    Ciliberto, Ciro; Flenner, Hubert; McKernan, James; Prokhorov, Yuri; Zaidenberg, Mikhail

    2014-01-01

    The main focus of this volume is on the problem of describing the automorphism groups of affine and projective varieties, a classical subject in algebraic geometry where, in both cases, the automorphism group is often infinite dimensional. The collection covers a wide range of topics and is intended for researchers in the fields of classical algebraic geometry and birational geometry (Cremona groups) as well as affine geometry with an emphasis on algebraic group actions and automorphism groups. It presents original research and surveys and provides a valuable overview of the current state of the art in these topics. Bringing together specialists from projective, birational algebraic geometry and affine and complex algebraic geometry, including Mori theory and algebraic group actions, this book is the result of ensuing talks and discussions from the conference “Groups of Automorphisms in Birational and Affine Geometry” held in October 2012, at the CIRM, Levico Terme, Italy. The talks at the conference high...

  19. Connections between algebra, combinatorics, and geometry

    CERN Document Server

    Sather-Wagstaff, Sean

    2014-01-01

    Commutative algebra, combinatorics, and algebraic geometry are thriving areas of mathematical research with a rich history of interaction. Connections Between Algebra, Combinatorics, and Geometry contains lecture notes, along with exercises and solutions, from the Workshop on Connections Between Algebra and Geometry held at the University of Regina from May 29-June 1, 2012. It also contains research and survey papers from academics invited to participate in the companion Special Session on Interactions Between Algebraic Geometry and Commutative Algebra, which was part of the CMS Summer Meeting at the University of Regina held June 2–3, 2012, and the meeting Further Connections Between Algebra and Geometry, which was held at the North Dakota State University, February 23, 2013. This volume highlights three mini-courses in the areas of commutative algebra and algebraic geometry: differential graded commutative algebra, secant varieties, and fat points and symbolic powers. It will serve as a useful resou...

  20. Second International workshop Geometry and Symbolic Computation

    CERN Document Server

    Walczak, Paweł; Geometry and its Applications

    2014-01-01

    This volume has been divided into two parts: Geometry and Applications. The geometry portion of the book relates primarily to geometric flows, laminations, integral formulae, geometry of vector fields on Lie groups, and osculation; the articles in the applications portion concern some particular problems of the theory of dynamical systems, including mathematical problems of liquid flows and a study of cycles for non-dynamical systems. This Work is based on the second international workshop entitled "Geometry and Symbolic Computations," held on May 15-18, 2013 at the University of Haifa and is dedicated to modeling (using symbolic calculations) in differential geometry and its applications in fields such as computer science, tomography, and mechanics. It is intended to create a forum for students and researchers in pure and applied geometry to promote discussion of modern state-of-the-art in geometric modeling using symbolic programs such as Maple™ and Mathematica®, as well as presentation of new results. ...

  1. Resilience and resistance of sagebrush ecosystems: implications for state and transition models and management treatments

    Science.gov (United States)

    Chambers, Jeanne C.; Miller, Richard F.; Board, David I.; Pyke, David A.; Roundy, Bruce A.; Grace, James B.; Schupp, Eugene W.; Tausch, Robin J.

    2014-01-01

    In sagebrush ecosystems invasion of annual exotics and expansion of piñon (Pinus monophylla Torr. and Frem.) and juniper (Juniperus occidentalis Hook., J. osteosperma [Torr.] Little) are altering fire regimes and resulting in large-scale ecosystem transformations. Management treatments aim to increase resilience to disturbance and enhance resistance to invasive species by reducing woody fuels and increasing native perennial herbaceous species. We used Sagebrush Steppe Treatment Evaluation Project data to test predictions on effects of fire vs. mechanical treatments on resilience and resistance for three site types exhibiting cheatgrass (Bromus tectorum L.) invasion and/or piñon and juniper expansion: 1) warm and dry Wyoming big sagebrush (WY shrub); 2) warm and moist Wyoming big sagebrush (WY PJ); and 3) cool and moist mountain big sagebrush (Mtn PJ). Warm and dry (mesic/aridic) WY shrub sites had lower resilience to fire (less shrub recruitment and native perennial herbaceous response) than cooler and moister (frigid/xeric) WY PJ and Mtn PJ sites. Warm (mesic) WY Shrub and WY PJ sites had lower resistance to annual exotics than cool (frigid to cool frigid) Mtn PJ sites. In WY shrub, fire and sagebrush mowing had similar effects on shrub cover and, thus, on perennial native herbaceous and exotic cover. In WY PJ and Mtn PJ, effects were greater for fire than cut-and-leave treatments and with high tree cover in general because most woody vegetation was removed increasing resources for other functional groups. In WY shrub, about 20% pretreatment perennial native herb cover was necessary to prevent increases in exotics after treatment. Cooler and moister WY PJ and especially Mtn PJ were more resistant to annual exotics, but perennial native herb cover was still required for site recovery. We use our results to develop state and transition models that illustrate how resilience and resistance influence vegetation dynamics and management options.

  2. Contribution of cutinase serine 42 side chain to the stabilization of the oxyanion transition state.

    Science.gov (United States)

    Nicolas, A; Egmond, M; Verrips, C T; de Vlieg, J; Longhi, S; Cambillau, C; Martinez, C

    1996-01-16

    Cutinase from the fungus Fusarium solani pisi is a lipolytic enzyme able to hydrolyze both aggregated and soluble substrates. It therefore provides a powerful tool for probing the mechanisms underlying lipid hydrolysis. Lipolytic enzymes have a catalytic machinery similar to those present in serine proteinases. It is characterized by the triad Ser, His, and Asp (Glu) residues, by an oxyanion binding site that stabilizes the transition state via hydrogen bonds with two main chain amide groups, and possibly by other determinants. It has been suggested on the basis of a covalently bond inhibitor that the cutinase oxyanion hole may consist not only of two main chain amide groups but also of the Ser42 O gamma side chain. Among the esterases and the serine and the cysteine proteases, only Streptomyces scabies esterase, subtilisin, and papain, respectively, have a side chain residue which is involved in the oxyanion hole formation. The position of the cutinase Ser42 side chain is structurally conserved in Rhizomucor miehei lipase with Ser82 O gamma, in Rhizopus delemar lipase with Thr83 O gamma 1, and in Candida antartica B lipase with Thr40 O gamma 1. To evaluate the increase in the tetrahedral intermediate stability provided by Ser42 O gamma, we mutated Ser42 into Ala. Furthermore, since the proper orientation of Ser42 O gamma is directed by Asn84, we mutated Asn84 into Ala, Leu, Asp, and Trp, respectively, to investigate the contribution of this indirect interaction to the stabilization of the oxyanion hole. The S42A mutation resulted in a drastic decrease in the activity (450-fold) without significantly perturbing the three-dimensional structure. The N84A and N84L mutations had milder kinetic effects and did not disrupt the structure of the active site, whereas the N84W and N84D mutations abolished the enzymatic activity due to drastic steric and electrostatic effects, respectively.

  3. Evaluation of spina bifida transitional care practices in the United States.

    Science.gov (United States)

    Kelly, Maryellen S; Thibadeau, Judy; Struwe, Sara; Ramen, Lisa; Ouyang, Lijing; Routh, Jonathan

    2017-12-11

    Recent studies have revealed that the lack of continuity in preparing patients with spina bifida to transition into adult-centered care may have detrimental health consequences. We sought to describe current practices of transitional care services offered at spina bifida clinics in the US. Survey design followed the validated transitional care survey by the National Cystic Fibrosis center. Survey was amended for spina bifida. Face validity was completed. Survey was distributed to registered clinics via the Spina Bifida Association. Results were analyzed via descriptive means. Total of 34 clinics responded. Over 90 characteristics were analyzed per clinic. The concept of transition is discussed with most patients. Most clinics discuss mobility, bowel and bladder management, weight, and education plans consistently. Most do not routinely evaluate their process or discuss insurance coverage changes with patients. Only 30% communicate with the adult providers. Sexuality, pregnancy and reproductive issues are not readily discussed in most clinics. Overall clinics self-rate themselves as a 5/10 in their ability to provide services for their patients during transition. Characteristics of current transitional care services and formal transitional care programs at US clinics show wide variances in what is offered to patients and families.

  4. Nature of hardness evolution in nanocrystalline NiTi shape memory alloys during solid-state phase transition.

    Science.gov (United States)

    Amini, Abbas; Cheng, Chun

    2013-01-01

    Due to a distinct nature of thermomechanical smart materials' reaction to applied loads, a revolutionary approach is needed to measure the hardness and to understand its size effect for pseudoelastic NiTi shape memory alloys (SMAs) during the solid-state phase transition. Spherical hardness is increased with depths during the phase transition in NiTi SMAs. This behaviour is contrary to the decrease in the hardness of NiTi SMAs with depths using sharp tips and the depth-insensitive hardness of traditional metallic alloys using spherical tips. In contrast with the common dislocation theory for the hardness measurement, the nature of NiTi SMAs' hardness is explained by the balance between the interface and the bulk energy of phase transformed SMAs. Contrary to the energy balance in the indentation zone using sharp tips, the interface energy was numerically shown to be less dominant than the bulk energy of the phase transition zone using spherical tips.

  5. Nature of hardness evolution in nanocrystalline NiTi shape memory alloys during solid-state phase transition

    Science.gov (United States)

    Amini, Abbas; Cheng, Chun

    2013-01-01

    Due to a distinct nature of thermomechanical smart materials' reaction to applied loads, a revolutionary approach is needed to measure the hardness and to understand its size effect for pseudoelastic NiTi shape memory alloys (SMAs) during the solid-state phase transition. Spherical hardness is increased with depths during the phase transition in NiTi SMAs. This behaviour is contrary to the decrease in the hardness of NiTi SMAs with depths using sharp tips and the depth-insensitive hardness of traditional metallic alloys using spherical tips. In contrast with the common dislocation theory for the hardness measurement, the nature of NiTi SMAs' hardness is explained by the balance between the interface and the bulk energy of phase transformed SMAs. Contrary to the energy balance in the indentation zone using sharp tips, the interface energy was numerically shown to be less dominant than the bulk energy of the phase transition zone using spherical tips. PMID:23963305

  6. Empirical assessment of state-and-transition models with a long-term vegetation record from the Sonoran Desert.

    Science.gov (United States)

    Bagchi, Sumanta; Briske, David D; Wu, X B; McClaran, Mitchel P; Bestelmeyer, Brandon T; Fernández-Giménez, Maria E

    2012-03-01

    Resilience-based frameworks, including state-and-transition models (STM), are being increasingly called upon to inform policy and guide ecosystem management, particularly in rangelands. Yet, multiple challenges impede their effective implementation: (1) paucity of empirical tests of resilience concepts, such as alternative states and thresholds, and (2) heavy reliance on expert models, which are seldom tested against empirical data. We developed an analytical protocol to identify unique plant communities and their transitions, and applied it to a long-term vegetation record from the Sonoran Desert (1953-2009). We assessed whether empirical trends were consistent with resilience concepts, and evaluated how they may inform the construction and interpretation of expert STMs. Seven statistically distinct plant communities were identified based on the cover of 22 plant species in 68 permanent transects. We recorded 253 instances of community transitions, associated with changes in species composition between successive samplings. Expectedly, transitions were more frequent among proximate communities with similar species pools than among distant communities. But unexpectedly, communities and transitions were not strongly constrained by soil type and topography. Only 18 transitions featured disproportionately large compositional turnover (species dissimilarity ranged between 0.54 and 0.68), and these were closely associated with communities that were dominated by the common shrub (burroweed, Haplopappus tenuisecta); indicating that only some, and not all, communities may be prone to large compositional change. Temporal dynamics in individual transects illustrated four general trajectories: stability, nondirectional drift, reversibility, and directional shifts that were not reversed even after 2-3 decades. The frequency of transitions and the accompanying species dissimilarity were both positively correlated with fluctuation in precipitation, indicating that climatic

  7. Energetics of the spin-state transition in LaCoO3: Total energy calculations using DFT +DMFT

    Science.gov (United States)

    Nanguneri, Ravindra; Park, Hyowon

    In this talk, we will present the energetics of the spin-state transition in strongly correlated LaCoO3 by adopting total energy calculations within density functional theory plus dynamical mean field theory (DFT +DMFT). We computed total energy curves as a function of volume for different spin states including low spin (LS), high spin (HS), and 1:1 mixed HS-LS states. We will show that as the volume is expanded, the mixed HS-LS state becomes energetically stable with a reasonable energy gap to the ground-state LS state. The nature of the HS-LS state is a paramagnetic insulator consistent with experiment while the homogeneous HS state is energetically much higher compared to the LS state. To analyze the dynamical fluctuation effect on the energetics, we also computed DFT +U energy curves by adopting the maximally localized Wannier function as correlated orbitals, same as used in DFT +DMFT calculations. The static correlation effect treated in DFT +U overestimates the tendency to higher spin states and the mixed spin state is wrongly predicted to be the ground state. The effect of the Coulomb interaction U, the Hund's coupling J, and the double counting potential on the energetics will be also discussed.

  8. Geometrical Frustration in Interleukin-33 Decouples the Dynamics of the Functional Element from the Folding Transition State Ensemble.

    Directory of Open Access Journals (Sweden)

    Kaitlin M Fisher

    Full Text Available Interleukin-33 (IL-33 is currently the focus of multiple investigations into targeting pernicious inflammatory disorders. This mediator of inflammation plays a prevalent role in chronic disorders such as asthma, rheumatoid arthritis, and progressive heart disease. In order to better understand the possible link between the folding free energy landscape and functional regions in IL-33, a combined experimental and theoretical approach was applied. IL-33 is a pseudo- symmetrical protein composed of three distinct structural elements that complicate the folding mechanism due to competition for nucleation on the dominant folding route. Trefoil 1 constitutes the majority of the binding interface with the receptor whereas Trefoils 2 and 3 provide the stable scaffold to anchor Trefoil 1. We identified that IL-33 folds with a three-state mechanism, leading to a rollover in the refolding arm of its chevron plots in strongly native conditions. In addition, there is a second slower refolding phase that exhibits the same rollover suggesting similar limitations in folding along parallel routes. Characterization of the intermediate state and the rate limiting steps required for folding suggests that the rollover is attributable to a moving transition state, shifting from a post- to pre-intermediate transition state as you move from strongly native conditions to the midpoint of the transition. On a structural level, we found that initially, all independent Trefoil units fold equally well until a QCA of 0.35 when Trefoil 1 will backtrack in order to allow Trefoils 2 and 3 to fold in the intermediate state, creating a stable scaffold for Trefoil 1 to fold onto during the final folding transition. The formation of this intermediate state and subsequent moving transition state is a result of balancing the difficulty in folding the functionally important Trefoil 1 onto the remainder of the protein. Taken together our results indicate that the functional element of

  9. Geometrical Frustration in Interleukin-33 Decouples the Dynamics of the Functional Element from the Folding Transition State Ensemble.

    Science.gov (United States)

    Fisher, Kaitlin M; Haglund, Ellinor; Noel, Jeffrey K; Hailey, Kendra L; Onuchic, José N; Jennings, Patricia A

    2015-01-01

    Interleukin-33 (IL-33) is currently the focus of multiple investigations into targeting pernicious inflammatory disorders. This mediator of inflammation plays a prevalent role in chronic disorders such as asthma, rheumatoid arthritis, and progressive heart disease. In order to better understand the possible link between the folding free energy landscape and functional regions in IL-33, a combined experimental and theoretical approach was applied. IL-33 is a pseudo- symmetrical protein composed of three distinct structural elements that complicate the folding mechanism due to competition for nucleation on the dominant folding route. Trefoil 1 constitutes the majority of the binding interface with the receptor whereas Trefoils 2 and 3 provide the stable scaffold to anchor Trefoil 1. We identified that IL-33 folds with a three-state mechanism, leading to a rollover in the refolding arm of its chevron plots in strongly native conditions. In addition, there is a second slower refolding phase that exhibits the same rollover suggesting similar limitations in folding along parallel routes. Characterization of the intermediate state and the rate limiting steps required for folding suggests that the rollover is attributable to a moving transition state, shifting from a post- to pre-intermediate transition state as you move from strongly native conditions to the midpoint of the transition. On a structural level, we found that initially, all independent Trefoil units fold equally well until a QCA of 0.35 when Trefoil 1 will backtrack in order to allow Trefoils 2 and 3 to fold in the intermediate state, creating a stable scaffold for Trefoil 1 to fold onto during the final folding transition. The formation of this intermediate state and subsequent moving transition state is a result of balancing the difficulty in folding the functionally important Trefoil 1 onto the remainder of the protein. Taken together our results indicate that the functional element of the protein is

  10. The Geometry Conference

    CERN Document Server

    Bárány, Imre; Vilcu, Costin

    2016-01-01

    This volume presents easy-to-understand yet surprising properties obtained using topological, geometric and graph theoretic tools in the areas covered by the Geometry Conference that took place in Mulhouse, France from September 7–11, 2014 in honour of Tudor Zamfirescu on the occasion of his 70th anniversary. The contributions address subjects in convexity and discrete geometry, in distance geometry or with geometrical flavor in combinatorics, graph theory or non-linear analysis. Written by top experts, these papers highlight the close connections between these fields, as well as ties to other domains of geometry and their reciprocal influence. They offer an overview on recent developments in geometry and its border with discrete mathematics, and provide answers to several open questions. The volume addresses a large audience in mathematics, including researchers and graduate students interested in geometry and geometrical problems.

  11. Matrix Information Geometry

    CERN Document Server

    Bhatia, Rajendra

    2013-01-01

    This book is an outcome of the Indo-French Workshop on Matrix Information Geometries (MIG): Applications in Sensor and Cognitive Systems Engineering, which was held in Ecole Polytechnique and Thales Research and Technology Center, Palaiseau, France, in February 23-25, 2011. The workshop was generously funded by the Indo-French Centre for the Promotion of Advanced Research (IFCPAR).  During the event, 22 renowned invited french or indian speakers gave lectures on their areas of expertise within the field of matrix analysis or processing. From these talks, a total of 17 original contribution or state-of-the-art chapters have been assembled in this volume. All articles were thoroughly peer-reviewed and improved, according to the suggestions of the international referees. The 17 contributions presented  are organized in three parts: (1) State-of-the-art surveys & original matrix theory work, (2) Advanced matrix theory for radar processing, and (3) Matrix-based signal processing applications.  

  12. Excited State Dynamics and Semiconductor-to-Metallic Phase Transition of VO2 Thin Film

    National Research Council Canada - National Science Library

    Liu, Huimin

    2004-01-01

    .... Vanadium dioxide shows an ultrafast, passive phase transition (PT) from a monoclinic semiconductor phase to a metallic tetragonal rutile structure when the sample temperature is above 68 degrees C...

  13. Determining effective roadway design treatments for transitioning from rural areas to urban areas on state highways.

    Science.gov (United States)

    2008-09-01

    This report reviews an Oregon research effort to identify ways to calm operating speeds as the vehicles transition into developed suburban/urban areas from rural roads. Drivers of vehicles approaching the urban environment have few visual cues to red...

  14. Memo Clarifying Requirements and State Reporting Guidance to Transition to the Revised Total Coliform Rule

    Science.gov (United States)

    This memorandum provides guidance to primacy agencies with enforcement responsibility under the Safe Drinking Water Act (SDWA) concerning the requirements to transition public water systems (PWSs) from the Total Coliform Rule (TCR) to the RTCR

  15. Euclidean geometry and transformations

    CERN Document Server

    Dodge, Clayton W

    1972-01-01

    This introduction to Euclidean geometry emphasizes transformations, particularly isometries and similarities. Suitable for undergraduate courses, it includes numerous examples, many with detailed answers. 1972 edition.

  16. The virtual geometry model

    International Nuclear Information System (INIS)

    Hrivnacova, I; Viren, B

    2008-01-01

    The Virtual Geometry Model (VGM) was introduced at CHEP in 2004 [1], where its concept, based on the abstract interfaces to geometry objects, has been presented. Since then, it has undergone a design evolution to pure abstract interfaces, it has been consolidated and completed with more advanced features. Currently it is used in Geant4 VMC for the support of TGeo geometry definition with Geant4 native geometry navigation and recently it has been used in the validation of the G4Root tool. The implementation of the VGM for a concrete geometry model represents a small layer between the VGM and the particular native geometry. In addition to the implementations for Geant4 and Root TGeo geometry models, there is now added the third one for AGDD, which together with the existing XML exporter makes the VGM the most advanced tool for exchanging geometry formats providing 9 ways of conversions between Geant4, TGeo, AGDD and GDML models. In this presentation we will give the overview and the present status of the tool, we will review the supported features and point to possible limits in converting geometry models

  17. Revolutions of Geometry

    CERN Document Server

    O'Leary, Michael

    2010-01-01

    Guides readers through the development of geometry and basic proof writing using a historical approach to the topic. In an effort to fully appreciate the logic and structure of geometric proofs, Revolutions of Geometry places proofs into the context of geometry's history, helping readers to understand that proof writing is crucial to the job of a mathematician. Written for students and educators of mathematics alike, the book guides readers through the rich history and influential works, from ancient times to the present, behind the development of geometry. As a result, readers are successfull

  18. Fundamental concepts of geometry

    CERN Document Server

    Meserve, Bruce E

    1983-01-01

    Demonstrates relationships between different types of geometry. Provides excellent overview of the foundations and historical evolution of geometrical concepts. Exercises (no solutions). Includes 98 illustrations.

  19. Algorithms in Algebraic Geometry

    CERN Document Server

    Dickenstein, Alicia; Sommese, Andrew J

    2008-01-01

    In the last decade, there has been a burgeoning of activity in the design and implementation of algorithms for algebraic geometric computation. Some of these algorithms were originally designed for abstract algebraic geometry, but now are of interest for use in applications and some of these algorithms were originally designed for applications, but now are of interest for use in abstract algebraic geometry. The workshop on Algorithms in Algebraic Geometry that was held in the framework of the IMA Annual Program Year in Applications of Algebraic Geometry by the Institute for Mathematics and Its

  20. Machine learning spatial geometry from entanglement features

    Science.gov (United States)

    You, Yi-Zhuang; Yang, Zhao; Qi, Xiao-Liang

    2018-02-01

    Motivated by the close relations of the renormalization group with both the holography duality and the deep learning, we propose that the holographic geometry can emerge from deep learning the entanglement feature of a quantum many-body state. We develop a concrete algorithm, call the entanglement feature learning (EFL), based on the random tensor network (RTN) model for the tensor network holography. We show that each RTN can be mapped to a Boltzmann machine, trained by the entanglement entropies over all subregions of a given quantum many-body state. The goal is to construct the optimal RTN that best reproduce the entanglement feature. The RTN geometry can then be interpreted as the emergent holographic geometry. We demonstrate the EFL algorithm on a 1D free fermion system and observe the emergence of the hyperbolic geometry (AdS3 spatial geometry) as we tune the fermion system towards the gapless critical point (CFT2 point).

  1. Ultraviolet transitions from the 2 3P states of helium-like argon

    International Nuclear Information System (INIS)

    Davis, W.A.

    1976-09-01

    This thesis describes the observation of two allowed electric dipole transitions in helium-like argon. The transitions are 2 3 P 2 --2 3 S 1 and 2 3 P 0 --2 3 S 1 . These transitions were observed by using a vacuum ultraviolet monochromator to collect photons from decays-in-flight of a beam-foil excited argon ion beam. The ion beam was generated by the Lawrence Berkeley Laboratory heavy ion linear accelerator (SuperHILAC) and had a beam energy of 138 MeV with a charge current of roughly 500 nanoamperes. After initial observation, the lifetimes and absolute wavelengths of these transitions were measured. The results are tau(2 3 P 2 ) = 1.62 +- 0.08 X 10 -9 sec, tau(2 3 P 0 ) = 4.87 +- 0.44 X 10 -9 sec, lambda(2 3 P 2 --2 3 S 1 ) = 560.2 +- 0.9A, and lambda(2 3 P 0 --2 3 S 1 ) = 660.7 +- 1.1A. This work has demonstrated the observability of these transitions in high-Z ions using beam-foil excitation. Employing a new grazing-incidence spectrometer this work will be pursued in ions of higher Z. Accuracies of at least one part in a thousand should be attainable and will probe the radiative contributions to these transitions to better than 10 percent in a previously unstudied region

  2. Molecular basis of the fructose-2,6-bisphosphatase reaction of PFKFB3: Transition state and the C-terminal function

    International Nuclear Information System (INIS)

    Cavalier, Michael C.; Kim, Song-Gun; Neau, David; Lee, Yong-Hwan

    2012-01-01

    The molecular basis of fructose-2,6-bisphosphatase (F-2,6-P 2 ase) of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB) was investigated using the crystal structures of the human inducible form (PFKFB3) in a phospho-enzyme intermediate state (PFKFB3-P · F-6-P), in a transition state-analogous complex (PFKFB3 · AlF 4 ), and in a complex with pyrophosphate (PFKFB3 · PP i ) at resolutions of 2.45, 2.2, and 2.3 (angstrom), respectively. Trapping the PFKFB3-P · F-6-P intermediate was achieved by flash cooling the crystal during the reaction, and the PFKFB3 · AlF 4 and PFKFB3 · PP i complexes were obtained by soaking. The PFKFB3 · AlF 4 and PFKFB3 · PP i complexes resulted in removing F-6-P from the catalytic pocket. With these structures, the structures of the Michaelis complex and the transition state were extrapolated. For both the PFKFB3-P formation and break down, the phosphoryl donor and the acceptor are located within ∼5.1 (angstrom), and the pivotal point 2-P is on the same line, suggesting an 'in-line' transfer with a direct inversion of phosphate configuration. The geometry suggests that NE2 of His253 undergoes a nucleophilic attack to form a covalent N-P bond, breaking the 2O-P bond in the substrate. The resulting high reactivity of the leaving group, 2O of F-6-P, is neutralized by a proton donated by Glu322. Negative charges on the equatorial oxygen of the transient bipyramidal phosphorane formed during the transfer are stabilized by Arg252, His387, and Asn259. The C-terminal domain (residues 440-446) was rearranged in PFKFB3 · PP i , implying that this domain plays a critical role in binding of substrate to and release of product from the F-2,6-P 2 ase catalytic pocket. These findings provide a new insight into the understanding of the phosphoryl transfer reaction.

  3. Multi-parameter crack tip stress state description for evaluation of nonlinear zone width in silicate composite specimens in component splitting/bending test geometry

    Czech Academy of Sciences Publication Activity Database

    Veselý, V.; Frantík, P.; Sopek, J.; Malíková, L.; Seitl, Stanislav

    2015-01-01

    Roč. 38, č. 2 (2015), s. 200-214 ISSN 8756-758X R&D Projects: GA ČR(CZ) GAP104/11/0833 Institutional support: RVO:68081723 Keywords : near-crack tip fields * Williams series * higher-order terms * stress field * failure criterion * nonlinear zone * quasi-brittle fracture * splitting-bending geometry Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.838, year: 2015

  4. Generalized parametric model for phase transitions in the presence of an intermediate metastable state and its application

    Science.gov (United States)

    Barsuk, Alexandr A.; Paladi, Florentin

    2017-12-01

    The previously proposed model for the kinetics of first-order phase transitions (Barsuk et al., 2013) is generalized for r order and m control parameters. Bifurcation and stability analyses of the equilibrium states in thermodynamic systems described by the Landau-type kinetic potential with two order parameters is performed both in the absence of an external field, and in the presence of constant and periodic external fields. Kinetics of thermodynamic systems described by such potential in a small neighborhood of the equilibrium states is also studied. Mean transition time for lysozyme protein in dependence of control parameters is obtained based on the developed model. A detailed bifurcation analysis of the cubic equation solutions is given in Appendix.

  5. Methods used to parameterize the spatially-explicit components of a state-and-transition simulation model

    Science.gov (United States)

    Sleeter, Rachel; Acevedo, William; Soulard, Christopher E.; Sleeter, Benjamin M.

    2015-01-01

    Spatially-explicit state-and-transition simulation models of land use and land cover (LULC) increase our ability to assess regional landscape characteristics and associated carbon dynamics across multiple scenarios. By characterizing appropriate spatial attributes such as forest age and land-use distribution, a state-and-transition model can more effectively simulate the pattern and spread of LULC changes. This manuscript describes the methods and input parameters of the Land Use and Carbon Scenario Simulator (LUCAS), a customized state-and-transition simulation model utilized to assess the relative impacts of LULC on carbon stocks for the conterminous U.S. The methods and input parameters are spatially explicit and describe initial conditions (strata, state classes and forest age), spatial multipliers, and carbon stock density. Initial conditions were derived from harmonization of multi-temporal data characterizing changes in land use as well as land cover. Harmonization combines numerous national-level datasets through a cell-based data fusion process to generate maps of primary LULC categories. Forest age was parameterized using data from the North American Carbon Program and spatially-explicit maps showing the locations of past disturbances (i.e. wildfire and harvest). Spatial multipliers were developed to spatially constrain the location of future LULC transitions. Based on distance-decay theory, maps were generated to guide the placement of changes related to forest harvest, agricultural intensification/extensification, and urbanization. We analyze the spatially-explicit input parameters with a sensitivity analysis, by showing how LUCAS responds to variations in the model input. This manuscript uses Mediterranean California as a regional subset to highlight local to regional aspects of land change, which demonstrates the utility of LUCAS at many scales and applications.

  6. Methods used to parameterize the spatially-explicit components of a state-and-transition simulation model

    Directory of Open Access Journals (Sweden)

    Rachel R. Sleeter

    2015-06-01

    Full Text Available Spatially-explicit state-and-transition simulation models of land use and land cover (LULC increase our ability to assess regional landscape characteristics and associated carbon dynamics across multiple scenarios. By characterizing appropriate spatial attributes such as forest age and land-use distribution, a state-and-transition model can more effectively simulate the pattern and spread of LULC changes. This manuscript describes the methods and input parameters of the Land Use and Carbon Scenario Simulator (LUCAS, a customized state-and-transition simulation model utilized to assess the relative impacts of LULC on carbon stocks for the conterminous U.S. The methods and input parameters are spatially explicit and describe initial conditions (strata, state classes and forest age, spatial multipliers, and carbon stock density. Initial conditions were derived from harmonization of multi-temporal data characterizing changes in land use as well as land cover. Harmonization combines numerous national-level datasets through a cell-based data fusion process to generate maps of primary LULC categories. Forest age was parameterized using data from the North American Carbon Program and spatially-explicit maps showing the locations of past disturbances (i.e. wildfire and harvest. Spatial multipliers were developed to spatially constrain the location of future LULC transitions. Based on distance-decay theory, maps were generated to guide the placement of changes related to forest harvest, agricultural intensification/extensification, and urbanization. We analyze the spatially-explicit input parameters with a sensitivity analysis, by showing how LUCAS responds to variations in the model input. This manuscript uses Mediterranean California as a regional subset to highlight local to regional aspects of land change, which demonstrates the utility of LUCAS at many scales and applications.

  7. Spin-symmetric solution of an interacting quantum dot attached to superconducting leads: Andreev states and the 0-pi transition

    Czech Academy of Sciences Publication Activity Database

    Janiš, Václav; Pokorný, Vladislav; Žonda, M.

    2016-01-01

    Roč. 89, č. 9 (2016), 1-12, č. článku 197. ISSN 1434-6028 R&D Projects: GA ČR GA15-14259S Institutional support: RVO:68378271 Keywords : mesoscopic and nanoscale systems * And reev bound states * 0-pi transition * perturbation theory Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.461, year: 2016

  8. Hyperbolic geometry for colour metrics.

    Science.gov (United States)

    Farup, Ivar

    2014-05-19

    It is well established from both colour difference and colour order perpectives that the colour space cannot be Euclidean. In spite of this, most colour spaces still in use today are Euclidean, and the best Euclidean colour metrics are performing comparably to state-of-the-art non-Euclidean metrics. In this paper, it is shown that a transformation from Euclidean to hyperbolic geometry (i.e., constant negative curvature) for the chromatic plane can significantly improve the performance of Euclidean colour metrics to the point where they are statistically significantly better than state-of-the-art non-Euclidean metrics on standard data sets. The resulting hyperbolic geometry nicely models both qualitatively and quantitatively the hue super-importance phenomenon observed in colour order systems.

  9. Exotic topological insulator states and topological phase transitions in Sb2Se3-Bi2Se3 heterostructures

    KAUST Repository

    Zhang, Qianfan

    2012-03-27

    Topological insulator is a new state of matter attracting tremendous interest due to its gapless linear dispersion and spin momentum locking topological states located near the surface. Heterostructures, which have traditionally been powerful in controlling the electronic properties of semiconductor devices, are interesting for topological insulators. Here, we studied the spatial distribution of the topological state in Sb 2Se 3-Bi 2Se 3 heterostructures by first-principle simulation and discovered that an exotic topological state exists. Surprisingly, the state migrates from the nontrivial Bi 2Se 3 into the trivial Sb 2Se 3 region and spreads across the entire Sb 2Se 3 slab, extending beyond the concept of "surface" state while preserving all of the topological surface state characteristics. This unusual topological state arises from the coupling between different materials and the modification of electronic structure near Fermi energy. Our study demonstrates that heterostructures can open up opportunities for controlling the real-space distribution of the topological state and inducing quantum phase transitions between topologically trivial and nontrivial states. © 2012 American Chemical Society.

  10. A detailed study on the transition from the blocked to the superparamagnetic state of reduction-precipitated iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Witte, K.; Bodnar, W. [University of Rostock, Institute of Physics, August – Bebel – Str. 55, D-18055 Rostock (Germany); Mix, T. [IFW Dresden, Institute for Metallic Materials, PO Box 270116, D-01171 Dresden (Germany); Schell, N. [Helmholtz-Center Geesthacht, Institute of Materials Research, Max-Planck-Str. 1, D-21502 Geesthacht (Germany); Fulda, G. [University Medicine Rostock, Medical Biology and Electron Microscopy Centre, Strempelstr. 14, D-18057 Rostock (Germany); Woodcock, T.G. [IFW Dresden, Institute for Metallic Materials, PO Box 270116, D-01171 Dresden (Germany); Burkel, E. [University of Rostock, Institute of Physics, August – Bebel – Str. 55, D-18055 Rostock (Germany)

    2016-04-01

    Magnetic iron oxide nanoparticles were prepared by salt-assisted solid-state chemical precipitation method with alternating fractions of the ferric iron content. The physical properties of the precipitated nanoparticles mainly consisting of magnetite were investigated by means of transmission electron microscopy, high energy X-ray diffraction, vibrating sample magnetometry and Mössbauer spectroscopy. With particle sizes ranging from 16.3 nm to 2.1 nm, a gradual transition from the blocked state to the superparamagnetic state was observed. The transition was described as a dependence of the ferric iron content used during the precipitation. Composition, mean particle size, coercivity, saturation polarisation, as well as hyperfine interaction parameters and their evolution were studied systematically over the whole series of iron oxide nanoparticles. - Highlights: • Study of superparamagnetic transition of magnetite varying ferric iron content. • Coercivity is mainly influenced by the particle size. • Saturation polarisation influenced by the goethite content and the particle size. • Number of vacancies tend to increase with increasing ferric iron content. • Fe{sub 3}O{sub 4} B-sites are stronger effected by the reduction of particle size than A-sites.

  11. The Geometry and Structural Properties of the 4,8,12-Trioxa-4,8,12,12c-tetrahydrodibenzo[cd,mn]pyrene System in the Cationic State. Structures of a Planar Organic Cation with Various Monovalent- and Divalent Anions

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Laursen, Bo W.; Johannsen, Ib

    1999-01-01

    The geometry of the 4,8,12-trioxa-4,8,12,12c- tetrahydrodibenzo[cd,mn]pyrene system in the cationic state was established by X-ray structural resolution of the salts formed between the cationand various anions. The geometry was found to be planar for the 4,8,12-trioxa-4,8,12,12c- tetrahydrodibenzo...... [cd,mn]pyrenylium and 2,6,10-tri (tert-butyl)-4,8,12-trioxa-4,8,12,12c-tetrahydrodibenzo[cd,mn]pyre nylium cations with the monovalentanions I-, BF4-, PF6- AsF6-, HNO3. NO3- and CF3SO3-, and the divalent anions S2O62- and Mo6Cl142-. The salts were found to crystallize in distinct space groups...

  12. Estimating transition probability of different states of type 2 diabetes and its associated factors using Markov model.

    Science.gov (United States)

    Nazari, Mahsa; Hashemi Nazari, Saeed; Zayeri, Farid; Gholampour Dehaki, Mehrzad; Akbarzadeh Baghban, Alireza

    2018-01-30

    Type 2 diabetes is a chronic metabolic disorder and one of the most common non-contagious diseases which is on the rise all over the world. The present study aims to assess the trend of change in fasting blood sugar (FBS) and factors associated with the progression and regression of type 2 diabetes. Moreover, this study estimates transition intensities and transition probabilities among various states using the multi-state Markov model. In this study Multi-Ethnic Study of Atherosclerosis (MESA) dataset, from a longitudinal study, was used. The study, at the beginning, included 6814 individuals who were followed during the five phases of the study. FBS, serving as the criterion to assess the progression of diabetes, was classified into four states including (a) normal (FBS126mg/dl). A continuous-time Markov process was used to describe the evaluation of disease changes over the four states. The model estimated the mean sojourn time for each state. Based on the results obtained from fitting the Markov model, the transition probability for a normal individual to remain in the same status over a 10-year period was 0.63, while the probability for a person in the diabetes state was 0.40. The mean sojourn time for the normal and diabetic individuals aged 45-84 years was 6.26 and 5.20 respectively. The covariates of age, race, body mass index (BMI), physical activity, waist-to-hip ratio (WHR) and blood pressure, significantly affected the progression and regression of diabetes. An increase in physical activity could be the most important factor in the regression of diabetes, while an increase in WHR and BMI could be the most significant factors in progression of the disease. Copyright © 2018 Primary Care Diabetes Europe. Published by Elsevier Ltd. All rights reserved.

  13. Geometrical Dynamics in a Transitioning Superconducting Sphere

    Directory of Open Access Journals (Sweden)

    Claycomb J. R.

    2006-10-01

    Full Text Available Recent theoretical works have concentrated on calculating the Casimir effect in curved spacetime. In this paper we outline the forward problem of metrical variation due to the Casimir effect for spherical geometries. We consider a scalar quantum field inside a hollow superconducting sphere. Metric equations are developed describing the evolution of the scalar curvature after the sphere transitions to the normal state.

  14. Topics in modern differential geometry

    CERN Document Server

    Verstraelen, Leopold

    2017-01-01

    A variety of introductory articles is provided on a wide range of topics, including variational problems on curves and surfaces with anisotropic curvature. Experts in the fields of Riemannian, Lorentzian and contact geometry present state-of-the-art reviews of their topics. The contributions are written on a graduate level and contain extended bibliographies. The ten chapters are the result of various doctoral courses which were held in 2009 and 2010 at universities in Leuven, Serbia, Romania and Spain.

  15. Want to Play Geometry?

    Science.gov (United States)

    Kaufmann, Matthew L.; Bomer, Megan A.; Powell, Nancy Norem

    2009-01-01

    Students enter the geometry classroom with a strong concept of fairness and a sense of what it means to "play by the rules," yet many students have difficulty understanding the postulates, or rules, of geometry and their implications. Although they may never have articulated the properties of an axiomatic system, they have gained a practical…

  16. Foundations of algebraic geometry

    CERN Document Server

    Weil, A

    1946-01-01

    This classic is one of the cornerstones of modern algebraic geometry. At the same time, it is entirely self-contained, assuming no knowledge whatsoever of algebraic geometry, and no knowledge of modern algebra beyond the simplest facts about abstract fields and their extensions, and the bare rudiments of the theory of ideals.

  17. Supersymmetric Sigma Model Geometry

    Directory of Open Access Journals (Sweden)

    Ulf Lindström

    2012-08-01

    Full Text Available This is a review of how sigma models formulated in Superspace have become important tools for understanding geometry. Topics included are: The (hyperkähler reduction; projective superspace; the generalized Legendre construction; generalized Kähler geometry and constructions of hyperkähler metrics on Hermitian symmetric spaces.

  18. Geometry of multihadron production

    International Nuclear Information System (INIS)

    Bjorken, J.D.

    1994-10-01

    This summary talk only reviews a small sample of topics featured at this symposium: Introduction; The Geometry and Geography of Phase space; Space-Time Geometry and HBT; Multiplicities, Intermittency, Correlations; Disoriented Chiral Condensate; Deep Inelastic Scattering at HERA; and Other Contributions

  19. Designs and finite geometries

    CERN Document Server

    1996-01-01

    Designs and Finite Geometries brings together in one place important contributions and up-to-date research results in this important area of mathematics. Designs and Finite Geometries serves as an excellent reference, providing insight into some of the most important research issues in the field.

  20. A Lorentzian quantum geometry

    Energy Technology Data Exchange (ETDEWEB)

    Grotz, Andreas

    2011-10-07

    In this thesis, a formulation of a Lorentzian quantum geometry based on the framework of causal fermion systems is proposed. After giving the general definition of causal fermion systems, we deduce space-time as a topological space with an underlying causal structure. Restricting attention to systems of spin dimension two, we derive the objects of our quantum geometry: the spin space, the tangent space endowed with a Lorentzian metric, connection and curvature. In order to get the correspondence to classical differential geometry, we construct examples of causal fermion systems by regularizing Dirac sea configurations in Minkowski space and on a globally hyperbolic Lorentzian manifold. When removing the regularization, the objects of our quantum geometry reduce to the common objects of spin geometry on Lorentzian manifolds, up to higher order curvature corrections.