WorldWideScience

Sample records for transition metals pt

  1. Electronic Structure of the fcc Transition Metals Ir, Rh, Pt, and Pd

    DEFF Research Database (Denmark)

    Andersen, O. Krogh

    1970-01-01

    We give a complete description of a relativistic augmented-plane-wave calculation of the band structures of the paramagnetic fcc transition metals Ir, Rh, Pt, and Pd. The width and position of the d band decrease in the sequence Ir, Pt, Rh, Pd; and N(EF)=13.8,23.2,18.7, and 32.7 (states/atom)/Ry,......We give a complete description of a relativistic augmented-plane-wave calculation of the band structures of the paramagnetic fcc transition metals Ir, Rh, Pt, and Pd. The width and position of the d band decrease in the sequence Ir, Pt, Rh, Pd; and N(EF)=13.8,23.2,18.7, and 32.7 (states....../atom)/Ry, respectively. Spin-orbit coupling is important for all four metals and the coupling parameter varies by 30% over the d bandwidth. Detailed comparisons with de Haas—van Alphen Fermi-surface dimensions have previously been presented and the agreement was very good. Comparison with measured electronic specific...

  2. First-principles study of nitric oxide oxidation on Pt(111) versus Pt overlayer on 3d transition metals

    Energy Technology Data Exchange (ETDEWEB)

    Arevalo, Ryan Lacdao [Department of Precision Science and Technology and Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Escaño, Mary Clare Sison [Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507 (Japan); Kasai, Hideaki, E-mail: kasai@dyn.ap.eng.osaka-u.ac.jp [Department of Precision Science and Technology and Applied Physics, Center for Atomic and Molecular Technologies, and Center for Continuing Professional Development, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2015-03-15

    Catalytic oxidation of NO to NO{sub 2} is a significant research interest for improving the quality of air through exhaust gas purification systems. In this paper, the authors studied this reaction on pure Pt and Pt overlayer on 3d transition metals using kinetic Monte Carlo simulations coupled with density functional theory based first principles calculations. The authors found that on the Pt(111) surface, NO oxidation proceeds via the Eley–Rideal mechanism, with O{sub 2} dissociative adsorption as the rate-determining step. The oxidation path via the Langmuir–Hinshelwood mechanism is very slow and does not significantly contribute to the overall reaction. However, in the Pt overlayer systems, the oxidation of NO on the surface is more thermodynamically and kinetically favorable compared to pure Pt. These findings are attributed to the weaker binding of O and NO on the Pt overlayer systems and the binding configuration of NO{sub 2} that promotes easier N-O bond formation. These results present insights for designing affordable and efficient catalysts for NO oxidation.

  3. The model of metal-insulator phase transition in vanadium oxide

    International Nuclear Information System (INIS)

    Vikhnin, V.S.; Lysenko, S.; Rua, A.; Fernandez, F.; Liu, H.

    2005-01-01

    Thermally induced metal-insulator phase transitions (PT) in VO 2 thin films are studied theoretically and experimentally. The hysteresis phenomena in the region of the transition for different type thin films were investigated. The phenomenological model of the PT is suggested. The charge transfer-lattice instability in VO 2 metallic phase is considered as basis of the first order metal-insulator PT in VO 2 . The charge transfer is treated as an order parameter

  4. Effect of gold subsurface layer on the surface activity and segregation in Pt/Au/Pt3M (where M = 3d transition metals) alloy catalyst from first-principles.

    Science.gov (United States)

    Kim, Chang-Eun; Lim, Dong-Hee; Jang, Jong Hyun; Kim, Hyoung Juhn; Yoon, Sung Pil; Han, Jonghee; Nam, Suk Woo; Hong, Seong-Ahn; Soon, Aloysius; Ham, Hyung Chul

    2015-01-21

    The effect of a subsurface hetero layer (thin gold) on the activity and stability of Pt skin surface in Pt3M system (M = 3d transition metals) is investigated using the spin-polarized density functional theory calculation. First, we find that the heterometallic interaction between the Pt skin surface and the gold subsurface in Pt/Au/Pt3M system can significantly modify the electronic structure of the Pt skin surface. In particular, the local density of states projected onto the d states of Pt skin surface near the Fermi level is drastically decreased compared to the Pt/Pt/Pt3M case, leading to the reduction of the oxygen binding strength of the Pt skin surface. This modification is related to the increase of surface charge polarization of outmost Pt skin atoms by the electron transfer from the gold subsurface atoms. Furthermore, a subsurface gold layer is found to cast the energetic barrier to the segregation loss of metal atoms from the bulk (inside) region, which can enhance the durability of Pt3M based catalytic system in oxygen reduction condition at fuel cell devices. This study highlights that a gold subsurface hetero layer can provide an additional mean to tune the surface activity toward oxygen species and in turn the oxygen reduction reaction, where the utilization of geometric strain already reaches its practical limit.

  5. Transition voltages of vacuum-spaced and molecular junctions with Ag and Pt electrodes

    KAUST Repository

    Wu, Kunlin

    2014-07-07

    The transition voltage of vacuum-spaced and molecular junctions constructed with Ag and Pt electrodes is investigated by non-equilibrium Green\\'s function formalism combined with density functional theory. Our calculations show that, similarly to the case of Au-vacuum-Au previously studied, the transition voltages of Ag and Pt metal-vacuum-metal junctions with atomic protrusions on the electrode surface are determined by the local density of states of the p-type atomic orbitals of the protrusion. Since the energy position of the Pt 6p atomic orbitals is higher than that of the 5p/6p of Ag and Au, the transition voltage of Pt-vacuum-Pt junctions is larger than that of both Ag-vacuum-Ag and Au-vacuum-Au junctions. When one moves to analyzing asymmetric molecular junctions constructed with biphenyl thiol as central molecule, then the transition voltage is found to depend on the specific bonding site for the sulfur atom in the thiol group. In particular agreement with experiments, where the largest transition voltage is found for Ag and the smallest for Pt, is obtained when one assumes S binding at the hollow-bridge site on the Ag/Au(111) surface and at the adatom site on the Pt(111) one. This demonstrates the critical role played by the linker-electrode binding geometry in determining the transition voltage of devices made of conjugated thiol molecules. © 2014 AIP Publishing LLC.

  6. Effect of gold subsurface layer on the surface activity and segregation in Pt/Au/Pt{sub 3}M (where M = 3d transition metals) alloy catalyst from first-principles

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang-Eun [Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), 39-1 Hawolgok, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Global E3 Institute and Department of Materials Science and Engineering, Yonsei University, 120-749 Seoul (Korea, Republic of); Lim, Dong-Hee [Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), 39-1 Hawolgok, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Department of Environmental Engineering, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju, Chungbuk 362-763 (Korea, Republic of); Jang, Jong Hyun; Kim, Hyoung Juhn; Yoon, Sung Pil; Han, Jonghee; Nam, Suk Woo [Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), 39-1 Hawolgok, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Hong, Seong-Ahn [Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), 39-1 Hawolgok, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Department of Advanced Materials Chemistry, Korea University, Sejong-city 339-700 (Korea, Republic of); Soon, Aloysius, E-mail: aloysius.soon@yonsei.ac.kr, E-mail: hchahm@kist.re.kr [Global E3 Institute and Department of Materials Science and Engineering, Yonsei University, 120-749 Seoul (Korea, Republic of); Ham, Hyung Chul, E-mail: aloysius.soon@yonsei.ac.kr, E-mail: hchahm@kist.re.kr [Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), 39-1 Hawolgok, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Clean Energy and Chemical Engineering, University of Science and Technology (UST), 217 Gajungro, Yuseong-gu, Daejeon 305-333 (Korea, Republic of)

    2015-01-21

    The effect of a subsurface hetero layer (thin gold) on the activity and stability of Pt skin surface in Pt{sub 3}M system (M = 3d transition metals) is investigated using the spin-polarized density functional theory calculation. First, we find that the heterometallic interaction between the Pt skin surface and the gold subsurface in Pt/Au/Pt{sub 3}M system can significantly modify the electronic structure of the Pt skin surface. In particular, the local density of states projected onto the d states of Pt skin surface near the Fermi level is drastically decreased compared to the Pt/Pt/Pt{sub 3}M case, leading to the reduction of the oxygen binding strength of the Pt skin surface. This modification is related to the increase of surface charge polarization of outmost Pt skin atoms by the electron transfer from the gold subsurface atoms. Furthermore, a subsurface gold layer is found to cast the energetic barrier to the segregation loss of metal atoms from the bulk (inside) region, which can enhance the durability of Pt{sub 3}M based catalytic system in oxygen reduction condition at fuel cell devices. This study highlights that a gold subsurface hetero layer can provide an additional mean to tune the surface activity toward oxygen species and in turn the oxygen reduction reaction, where the utilization of geometric strain already reaches its practical limit.

  7. (Electronic structure and reactivities of transition metal clusters)

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    The following are reported: theoretical calculations (configuration interaction, relativistic effective core potentials, polyatomics, CASSCF); proposed theoretical studies (clusters of Cu, Ag, Au, Ni, Pt, Pd, Rh, Ir, Os, Ru; transition metal cluster ions; transition metal carbide clusters; bimetallic mixed transition metal clusters); reactivity studies on transition metal clusters (reactivity with H{sub 2}, C{sub 2}H{sub 4}, hydrocarbons; NO and CO chemisorption on surfaces). Computer facilities and codes to be used, are described. 192 refs, 13 figs.

  8. Metal-insulator transition in Pt-C nanowires grown by focused-ion-beam-induced deposition

    International Nuclear Information System (INIS)

    Fernandez-Pacheco, A.; Ibarra, M. R.; De Teresa, J. M.; Cordoba, R.

    2009-01-01

    We present a study of the transport properties of Pt-C nanowires created by focused-ion-beam (FIB)-induced deposition. By means of the measurement of the resistance while the deposit is being performed, we observe a progressive decrease in the nanowire resistivity with thickness, changing from 10 8 μΩ cm for thickness ∼20 nm to a lowest saturated value of 700 μΩ cm for thickness >150 nm. Spectroscopy analysis indicates that this dependence on thickness is caused by a gradient in the metal-carbon ratio as the deposit is grown. We have fabricated nanowires in different ranges of resistivity and studied their conduction mechanism as a function of temperature. A metal-insulator transition as a function of the nanowire thickness is observed. The results will be discussed in terms of the Mott-Anderson theory for noncrystalline materials. An exponential decrease in the conductance with the electric field is found for the most resistive samples, a phenomenon understood by the theory of hopping in lightly doped semiconductors under strong electric fields. This work explains the important discrepancies found in the literature for Pt-C nanostructures grown by FIB and opens the possibility to tune the transport properties of this material by an appropriate selection of the growth parameters.

  9. Late transition metal m-or chemistry and D6 metal complex photoeliminations

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, Paul [Univ. of Missouri, Columbia, MO (United States)

    2015-07-31

    With the goal of understanding and controlling photoreductive elimination reactions from d6 transition metal complexes as part of a solar energy storage cycle we have investigated the photochemistry of Pt(IV) bromo, chloro, hydroxo, and hydroperoxo complexes. Photoreductive elimination reactions occur for all of these complexes and appear to involve initial Pt-Br, Pt-Cl, or Pt-O bond fission. In the case of Pt-OH bond fission, the subsequent chemistry can be controlled through hydrogen bonding to the hydroxo group.

  10. Engineering the Activity and Stability of Pt-Alloy Cathode Fuel-Cell Electrocatalysts by Tuning the Pt-Pt Distance

    DEFF Research Database (Denmark)

    Escribano, Maria Escudero; Malacrida, Paolo; Vej-Hansen, Ulrik Grønbjerg

    2014-01-01

    for enhancing the cathode activity is to alloy Pt with transition metals [1-2]. However, alloys of Pt and late transition metals are typically unstable under fuel-cell conditions. Herein, we present experimental and theoretical studies showing the trends in activity and stability of novel cathode catalysts...

  11. Voltage control of metal-insulator transition and non-volatile ferroelastic switching of resistance in VOx/PMN-PT heterostructures.

    Science.gov (United States)

    Nan, Tianxiang; Liu, Ming; Ren, Wei; Ye, Zuo-Guang; Sun, Nian X

    2014-08-04

    The central challenge in realizing electronics based on strongly correlated electronic states, or 'Mottronics', lies in finding an energy efficient way to switch between the distinct collective phases with a control voltage in a reversible and reproducible manner. In this work, we demonstrate that a voltage-impulse-induced ferroelastic domain switching in the (011)-oriented 0.71Pb(Mg1/3Nb2/3)O3-0.29PbTiO3 (PMN-PT) substrates allows a robust non-volatile tuning of the metal-insulator transition in the VOx films deposited onto them. In such a VOx/PMN-PT heterostructure, the unique two-step electric polarization switching covers up to 90% of the entire poled area and contributes to a homogeneous in-plane anisotropic biaxial strain, which, in turn, enables the lattice changes and results in the suppression of metal-insulator transition in the mechanically coupled VOx films by 6 K with a resistance change up to 40% over a broad range of temperature. These findings provide a framework for realizing in situ and non-volatile tuning of strain-sensitive order parameters in strongly correlated materials, and demonstrate great potentials in delivering reconfigurable, compactable, and energy-efficient electronic devices.

  12. First-principles study on the phase transition, elastic properties and electronic structure of Pt3Al alloys under high pressure

    International Nuclear Information System (INIS)

    Liu, Yanjun; Huang, Huawei; Pan, Yong; Zhao, Guanghui; Liang, Zheng

    2014-01-01

    Highlights: • The phase transition of Pt 3 Al alloys occurs at 60 GPa. • The elastic modulus of Pt 3 Al alloys increase with increasing pressure. • The cubic structure has good resistance to volume deformation under high pressure. • The pressure enhances the hybridization between Pt atom and Al atom. - Abstract: The phase transition, formation enthalpies, elastic properties and electronic structure of Pt 3 Al alloys are studied using first-principle approach. The calculated results show that the pressure leads to phase transition from tetragonal structure to cubic structure at 60 GPa. With increasing pressure, the elastic constants, bulk modulus and shear modulus of these Pt 3 Al alloys increase linearly and the bond lengths of Pt–Al metallic bonds and the peak at E F decrease. The cubic Pt 3 Al alloy has excellent resistance to volume deformation under high pressure. We suggest that the phase transition is derived from the hybridization between Pt and Al atoms for cubic structure is stronger than that of tetragonal structure and forms the strong Pt–Al metallic bonds under high pressure

  13. Symmetrical metallic and magnetic edge states of nanoribbon from semiconductive monolayer PtS2

    Science.gov (United States)

    Liu, Shan; Zhu, Heyu; Liu, Ziran; Zhou, Guanghui

    2018-03-01

    Transition metal dichalcogenides (TMD) MoS2 or graphene could be designed to metallic nanoribbons, which always have only one edge show metallic properties due to symmetric protection. In present work, a nanoribbon with two parallel metallic and magnetic edges was designed from a noble TMD PtS2 by employing first-principles calculations based on density functional theory (DFT). Edge energy, bonding charge density, band structure, density of states (DOS) and simulated scanning tunneling microscopy (STM) of four possible edge states of monolayer semiconductive PtS2 were systematically studied. Detailed calculations show that only Pt-terminated edge state among four edge states was relatively stable, metallic and magnetic. Those metallic and magnetic properties mainly contributed from 5d orbits of Pt atoms located at edges. What's more, two of those central symmetric edges coexist in one zigzag nanoribbon, which providing two atomic metallic wires thus may have promising application for the realization of quantum effects, such as Aharanov-Bohm effect and atomic power transmission lines in single nanoribbon.

  14. First-principles study on the phase transition, elastic properties and electronic structure of Pt{sub 3}Al alloys under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yanjun [Key Laboratory of Oil and Gas Equipment of Ministry of Education, Southwest Petroleum University, Chengdu, Sichuan 610500 (China); Huang, Huawei [National Key Laboratory for Nuclear Fuel and Materials, Nuclear Power of China, Chengdu, Sichuan 610041 (China); Pan, Yong, E-mail: yongpanyn@163.com [State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals, Kunming 650106 (China); Zhao, Guanghui; Liang, Zheng [Key Laboratory of Oil and Gas Equipment of Ministry of Education, Southwest Petroleum University, Chengdu, Sichuan 610500 (China)

    2014-06-01

    Highlights: • The phase transition of Pt{sub 3}Al alloys occurs at 60 GPa. • The elastic modulus of Pt{sub 3}Al alloys increase with increasing pressure. • The cubic structure has good resistance to volume deformation under high pressure. • The pressure enhances the hybridization between Pt atom and Al atom. - Abstract: The phase transition, formation enthalpies, elastic properties and electronic structure of Pt{sub 3}Al alloys are studied using first-principle approach. The calculated results show that the pressure leads to phase transition from tetragonal structure to cubic structure at 60 GPa. With increasing pressure, the elastic constants, bulk modulus and shear modulus of these Pt{sub 3}Al alloys increase linearly and the bond lengths of Pt–Al metallic bonds and the peak at E{sub F} decrease. The cubic Pt{sub 3}Al alloy has excellent resistance to volume deformation under high pressure. We suggest that the phase transition is derived from the hybridization between Pt and Al atoms for cubic structure is stronger than that of tetragonal structure and forms the strong Pt–Al metallic bonds under high pressure.

  15. Magnetic behavior in heterometallic one-dimensional chains or octanuclear complex regularly aligned with metal-metal bonds as -Rh-Rh-Pt-Cu-Pt

    Science.gov (United States)

    Uemura, Kazuhiro

    2018-06-01

    Heterometallic one-dimensional chains, [{Rh2(O2CCH3)4}{Pt2Cu(piam)4(NH3)4}]n(PF6)2n (1 and 2, piam = pivalamidate) and [{Rh2(O2CCH3)4}{Pt2Cu(piam)4(NH3)4}2](CF3CO2)2(ClO4)2·2H2O (3), are paramagnetic one-dimensional chains or octanuclear complexes that are either aligned as -Rh-Rh-Pt-Cu-Pt- (1 and 2) or as Pt-Cu-Pt-Rh-Rh-Pt-Cu-Pt (3) with metal-metal bonds. Compounds 1-3 have rare structures, from the standpoint of that the paramagnetic species of Cu atoms are linked by direct metal-metal bonds. Magnetic susceptibility measurements for 1-3 performed at temperatures of 2 K-300 K indicated that the unpaired electrons localize in the Cu 3dx2-y2 orbitals, where S = 1/2 Cu(II) atoms are weakly antiferromagnetically coupled with J = -0.35 cm-1 (1), -0.47 cm-1 (2), and -0.45 cm-1 (3).

  16. Shape transition in Os and Pt isotopes

    International Nuclear Information System (INIS)

    Ansari, A.

    1985-07-01

    Ground state structure of A=186 to 196 Os-Pt transitional region is investigated through a self-consistent Hartree-Fock-Bogolyubov calculation employing a pairing-plus-quadrupole-plus-hexadecapole model interaction Hamiltonian. Influence of the hexadecapole degrees of freedom on the triaxiality is especially examined. A gradual prolate to oblate shape transition is found in Pt isotopes but such a change is almost abrupt in Os at A approx. = 194. This difference in behaviour of the Os and Pt isotopes is obtained only if all the hexadecapole degrees of freedom, instead of merely an axial Y 40 component, are treated fully self-consistently. (author)

  17. Metal Phosphate-Supported Pt Catalysts for CO Oxidation

    Directory of Open Access Journals (Sweden)

    Xiaoshuang Qian

    2014-12-01

    Full Text Available Oxides (such as SiO2, TiO2, ZrO2, Al2O3, Fe2O3, CeO2 have often been used to prepare supported Pt catalysts for CO oxidation and other reactions, whereas metal phosphate-supported Pt catalysts for CO oxidation were rarely reported. Metal phosphates are a family of metal salts with high thermal stability and acid-base properties. Hydroxyapatite (Ca10(PO46(OH2, denoted as Ca-P-O here also has rich hydroxyls. Here we report a series of metal phosphate-supported Pt (Pt/M-P-O, M = Mg, Al, Ca, Fe, Co, Zn, La catalysts for CO oxidation. Pt/Ca-P-O shows the highest activity. Relevant characterization was conducted using N2 adsorption-desorption, inductively coupled plasma (ICP atomic emission spectroscopy, X-ray diffraction (XRD, transmission electron microscopy (TEM, CO2 temperature-programmed desorption (CO2-TPD, X-ray photoelectron spectroscopy (XPS, and H2 temperature-programmed reduction (H2-TPR. This work furnishes a new catalyst system for CO oxidation and other possible reactions.

  18. Coordination to transition metal surfaces : a theoretical study

    NARCIS (Netherlands)

    Santen, van R.A.

    1985-01-01

    A theoretical framework is developed that describes the chemisorption of CO to transition metal surfaces analogous to the HOMO-LUMO concept of MO theory. An explanation is given for the exptl. observation that CO adsorbs on top at the (111), face of Pt, but bridge at the (111) face of Ni. One is due

  19. Metallic behavior and periodical valence ordering in a MMX chain compound, Pt(2)(EtCS(2))(4)I.

    Science.gov (United States)

    Mitsumi, M; Murase, T; Kishida, H; Yoshinari, T; Ozawa, Y; Toriumi, K; Sonoyama, T; Kitagawa, H; Mitani, T

    2001-11-14

    A new one-dimensional (1-D) halogen-bridged mixed-valence diplatinum(II,III) compound, Pt(2)(EtCS(2))(4)I (3), has been successfully synthesized from [Pt(2)(EtCS(2))(4)] (1) and [Pt(2)(EtCS(2))(4)I(2)] (2). These three compounds have been examined using UV-visible-near-IR, IR, polarized Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and X-ray crystal structure analyses (except for 1). Compound 3 was further characterized through electrical transport measurements, determination of the temperature dependence of lattice parameters, X-ray diffuse scattering, and SQUID magnetometry. 3 crystallizes in the monoclinic space group C2/c and exhibits a crystal structure consisting of neutral 1-D chains with a repeating -Pt-Pt-I- unit lying on the crystallographic 2-fold axis parallel to the b axis. The Pt-Pt distance at 293 K is 2.684 (1) A in the dinuclear unit, while the Pt-I distances are essentially equal (2.982 (1) and 2.978 (1) A). 3 shows relatively high electrical conductivity (5-30 S cm(-1)) at room temperature and undergoes a metal-semiconductor transition at T(M-S) = 205 K. The XPS spectrum in the metallic state reveals a Pt(2+) and Pt(3+) mixed-valence state on the time scale of XPS spectroscopy ( approximately 10(-17) s). In accordance with the metal-semiconductor transition, anomalies are observed in the temperature dependence of the crystal structure, lattice parameters, X-ray diffuse scattering, and polarized Raman spectra near T(M-S). In variable-temperature crystal structure analyses, a sudden and drastic increase in the Pt-I distance near the transition temperature is observed. Furthermore, a steep increase in U(22) of iodine atoms in the 1-D chain direction has been observed. The lattice parameters exhibit significant temperature dependence with drastic change in slope at about 205-240 K. This was especially evident in the unit cell parameter b (1-D chain direction) as it was found to lengthen rapidly with increasing temperature. X

  20. Electric field-triggered metal-insulator transition resistive switching of bilayered multiphasic VOx

    Science.gov (United States)

    Won, Seokjae; Lee, Sang Yeon; Hwang, Jungyeon; Park, Jucheol; Seo, Hyungtak

    2018-01-01

    Electric field-triggered Mott transition of VO2 for next-generation memory devices with sharp and fast resistance-switching response is considered to be ideal but the formation of single-phase VO2 by common deposition techniques is very challenging. Here, VOx films with a VO2-dominant phase for a Mott transition-based metal-insulator transition (MIT) switching device were successfully fabricated by the combined process of RF magnetron sputtering of V metal and subsequent O2 annealing to form. By performing various material characterizations, including scanning transmission electron microscopy-electron energy loss spectroscopy, the film is determined to have a bilayer structure consisting of a VO2-rich bottom layer acting as the Mott transition switching layer and a V2O5/V2O3 mixed top layer acting as a control layer that suppresses any stray leakage current and improves cyclic performance. This bilayer structure enables excellent electric field-triggered Mott transition-based resistive switching of Pt-VOx-Pt metal-insulator-metal devices with a set/reset current ratio reaching 200, set/reset voltage of less than 2.5 V, and very stable DC cyclic switching upto 120 cycles with a great set/reset current and voltage distribution less than 5% of standard deviation at room temperature, which are specifications applicable for neuromorphic or memory device applications. [Figure not available: see fulltext.

  1. Orbital-exchange and fractional quantum number excitations in an f-electron metal, Yb2Pt2Pb

    NARCIS (Netherlands)

    Wu, L.S.; Gannon, W.J.; Zaliznyak, I.A.; Tsvelik, A.M.; Brockmann, M.; Caux, J.-S.; Kim, M.S.; Qiu, Y.; Copley, J.R.D.; Ehlers, G.; Podlesnyak, A.; Aronson, M.C.

    2016-01-01

    Exotic quantum states and fractionalized magnetic excitations, such as spinons in one-dimensional chains, are generally expected to occur in 3d transition metal systems with spin 1/2. Our neutron-scattering experiments on the 4f-electron metal Yb2Pt 2 Pb overturn this conventional wisdom. We observe

  2. Fabrication and electrocatalytic application of functionalized nanoporous carbon material with different transition metal oxides

    International Nuclear Information System (INIS)

    Samiee, L.; Shoghi, F.; Vinu, A.

    2013-01-01

    Highlights: ► Fabrication of highly ordered functionalized nanoporous carbon material with different types of transition metal oxides. ► Novel electrocatalytic activity of functionalized nanoporous carbon material. ► Simultaneous effect of surface area and surface reactivity parameters on electrocatalytic activity. - Abstract: In the work presented here, an attempt is made to study the effect of functionalization with different transition metal oxides on the mesostructural properties as well as electrochemical behavior of Pt/nanoporous carbon supports. In this respect, the functionalized samples have been synthesized by using CMK-3 and metallocene as transition metal sources. The platinum catalysts (5 wt% Pt) obtained through a conventional wet impregnation method. All the materials have been characterized by XRD (low and high), N 2 adsorption–desorption isotherms, high-resolution transmission electron microscopy, high-resolution field emission scanning electron, EDX mapping images and cyclic voltammetry (CV) and rotating disk electrode (RDE) techniques. The results showed that the mesostructural order has been destroyed by functionalization of CMK-3 with CoO, whereas it is not that much affected in NiO and CuO functionalized samples. EDX image mapping exhibited the good and uniform dispersion of functionalizing elements (Ni, Cu, Fe and Co), Pt in the carbon supports. Moreover, XRD studies revealed the formation of smaller platinum crystallite sizes in NiO and CuO functionalized samples in relative to other functionalized supports. Electrochemical measurements were performed using CV and RDE method. Kinetic analysis revealed an activity increases in the following order: CMK-3-NiO-Pt > CMK-3-CuO-Pt > CMK-3-CoO-Pt > CMK-3-Fe 2 O 3 -Pt which is showing of simultaneous effect of surface area and surface reactivity parameters.

  3. Fabrication and electrocatalytic application of functionalized nanoporous carbon material with different transition metal oxides

    Energy Technology Data Exchange (ETDEWEB)

    Samiee, L., E-mail: Leila.Samiee83@gmail.com [Development and Optimization of Energy Technologies Research Division, Research Institute of Petroleum Industry (RIPI), West Boulevard, Near Azadi Sports Complex, Tehran (Iran, Islamic Republic of); Shoghi, F. [Development and Optimization of Energy Technologies Research Division, Research Institute of Petroleum Industry (RIPI), West Boulevard, Near Azadi Sports Complex, Tehran (Iran, Islamic Republic of); Vinu, A., E-mail: a.vinu@uq.edu.au [Australian Institute for Bioengineering and Nanotechnology(AIBN), University of Queensland, Corner College and Cooper Roads (Bld75), Brisbane, Qld 4072 (Australia)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Fabrication of highly ordered functionalized nanoporous carbon material with different types of transition metal oxides. Black-Right-Pointing-Pointer Novel electrocatalytic activity of functionalized nanoporous carbon material. Black-Right-Pointing-Pointer Simultaneous effect of surface area and surface reactivity parameters on electrocatalytic activity. - Abstract: In the work presented here, an attempt is made to study the effect of functionalization with different transition metal oxides on the mesostructural properties as well as electrochemical behavior of Pt/nanoporous carbon supports. In this respect, the functionalized samples have been synthesized by using CMK-3 and metallocene as transition metal sources. The platinum catalysts (5 wt% Pt) obtained through a conventional wet impregnation method. All the materials have been characterized by XRD (low and high), N{sub 2} adsorption-desorption isotherms, high-resolution transmission electron microscopy, high-resolution field emission scanning electron, EDX mapping images and cyclic voltammetry (CV) and rotating disk electrode (RDE) techniques. The results showed that the mesostructural order has been destroyed by functionalization of CMK-3 with CoO, whereas it is not that much affected in NiO and CuO functionalized samples. EDX image mapping exhibited the good and uniform dispersion of functionalizing elements (Ni, Cu, Fe and Co), Pt in the carbon supports. Moreover, XRD studies revealed the formation of smaller platinum crystallite sizes in NiO and CuO functionalized samples in relative to other functionalized supports. Electrochemical measurements were performed using CV and RDE method. Kinetic analysis revealed an activity increases in the following order: CMK-3-NiO-Pt > CMK-3-CuO-Pt > CMK-3-CoO-Pt > CMK-3-Fe{sub 2}O{sub 3}-Pt which is showing of simultaneous effect of surface area and surface reactivity parameters.

  4. Multi-body forces and the energetics of transition metals, alloys, and semiconductors

    International Nuclear Information System (INIS)

    Carlsson, A.E.

    1992-01-01

    Progress over the past year is divided into 3 areas: potential-energy functions for transition-metal aluminides; electronic structure and energetics of complex structures and quasicrystals; and ceramic materials (PdO, PtO)

  5. Mixed valence and metamagnetism in a metal flux grown compound Eu2Pt3Si5

    International Nuclear Information System (INIS)

    Sarkar, Sumanta; Subbarao, Udumula; Joseph, Boby; Peter, Sebastian C.

    2015-01-01

    A new compound Eu 2 Pt 3 Si 5 with plate shaped morphology has been grown from excess In flux. The compound crystallizes in the orthorhombic U 2 Co 3 Si 5 structure type, Ibam space group and the lattice parameters are a=10.007(2) Å, b=11.666(2) Å and c=6.0011(12) Å. The crystal structure of this compound can be conceived as inter-twinned chains of [Pt 2 Si 2 ] and [PtSi 3 ] tetrahedra connected along [100] direction to give rise to a complex three dimensional [Pt 3 Si 5 ] network. Temperature dependent magnetic susceptibility data suggests that Eu 2 Pt 3 Si 5 undergoes a strong antiferromagnetic ordering (T N =19 K) followed by a weak ferromagnetic transition (T C =5.5 K). The effective magnetic moment/Eu obtained from susceptibility data is 6.78 μ B accounts mixed valent Eu with almost 85% divalent Eu, which is supported by X-ray absorption near edge spectroscopy. The compound undergoes a metamagnetic transition under applied magnetic field through a probable spin flop mechanism. - Graphical abstract: Eu 2 Pt 3 Si 5 , a new member in the U 2 Co 3 Si 5 (Ibam) family undergoes metamagnetic transition at high magnetic field and Eu is in mixed valence state. - Highlights: • A new compound Eu 2 Pt 3 Si 5 has been synthesized using indium as an inactive metal flux. • The compound undergoes metamagnetic transition at higher field. • Eu in this compound resides in a mixed valence state

  6. Light scattering at the semiconductor-metal phase transition in vanadium dioxide

    International Nuclear Information System (INIS)

    Valiev, K.A.; Mokerov, V.G.; Sarajkin, V.V.; Petrova, A.G.

    1977-01-01

    The temperature dependence of optical properties has been investigated of vanadium dioxide thin monocrystals at the phase transition (PT) semiconductor-metal. It is established, that the anomaly arising herein is caused by the light scattering effect. As a result of the study of the scattered light intensity angle distribution and direct investigation of the samples the picture of optical heterogeneities responsible for the given scattering is determined into the polarization optical microscope. It is shown that these heterogeneities are due to the VO 2 two phases co-existence in the PT range and the light scattering effect is caused by the substantial difference of their optical constants, i.e. represents the so-called ''transition'' opalescence. At the PT investigation within the limits of the separate embrios of the new phase it has been found, that the PT temperature in various embrios is different. This is used to explain the PT temperature ''washing out'' in the investigated samples. It is supposed, that formation of the new phase is caused by the presence of elastic stress fields, arising close to the defects

  7. Methanol oxidation reaction activity of microwave irradiated and heat-treated Pt/Co and Pt/Ni nano-electrocatalysts

    CSIR Research Space (South Africa)

    Mathe, NR

    2014-11-01

    Full Text Available Bimetallic Pt nanoparticles were prepared by alloying Pt with the non-noble transition metals, Co and Ni, using a conventional heat-treatment (HT) method and microwaveirradiation (MW). The resulting samples were PteCo-Ht, PteNi-HT, PteCo, MW and Pt...

  8. Excited State Dynamics and Semiconductor-to-Metallic Phase Transition of VO2 Thin Film

    National Research Council Canada - National Science Library

    Liu, Huimin

    2004-01-01

    .... Vanadium dioxide shows an ultrafast, passive phase transition (PT) from a monoclinic semiconductor phase to a metallic tetragonal rutile structure when the sample temperature is above 68 degrees C...

  9. Optical and electrical experiments at some transition-metal oxide foil-electrolyte interfaces

    International Nuclear Information System (INIS)

    Sari, S.O.; Ahlgren, W.L.

    1977-01-01

    Metal-oxide layers formed from transition-metal foils oxidized by heating in air have been examined for their photoelectrolytic response. The metals examined are Y, Ti, Zr, Hf, V, Nb, Ta, Mo, W, and Pt. Weak photoeffects are observed for oxide layers of all of these metals. Sizable light-dependent oxygen gas evolution rates are found in Ti and also in W oxides. The spectral dependence of the oxygen response in these compounds is investigated, and interpretation is given of these experiments

  10. Metal-insulator transition in vanadium dioxide

    International Nuclear Information System (INIS)

    Zylbersztejn, A.; Mott, N.F.

    1975-01-01

    The basic physical parameters which govern the metal-insulator transition in vanadium dioxide are determined through a review of the properties of this material. The major importance of the Hubbard intra-atomic correlation energy in determining the insulating phase, which was already evidence by studies of the magnetic properties of V 1 -/subx/Cr/subx/O 2 alloys, is further demonstrated from an analysis of their electrical properties. An analysis of the magnetic susceptibility of niobium-doped VO 2 yields a picture for the current carrier in the low-temperature phase in which it is accompanied by a spin cloud (owing to Hund's-rule coupling), and has therefore an enhanced mass (m approx. = 60m 0 ). Semiconducting vanadium dioxide turns out to be a borderline case for a classical band-transport description; in the alloys at high doping levels, Anderson localization with hopping transport can take place. Whereas it is shown that the insulating phase cannot be described correctly without taking into account the Hubbard correlation energy, we find that the properties of the metallic phase are mainly determined by the band structure. Metallic VO 2 is, in our view, similar to transition metals like Pt or Pd: electrons in a comparatively wide band screening out the interaction between the electrons in a narrow overlapping band. The magnetic susceptibility is described as exchange enhanced. The large density of states at the Fermi level yields a substantial contribution of the entropy of the metallic electrons to the latent heat. The crystalline distortion removes the band degeneracy so that the correlation energy becomes comparable with the band width and a metal-insulator transition takes place

  11. Band gap tuning in transition metal oxides by site-specific substitution

    Science.gov (United States)

    Lee, Ho Nyung; Chisholm, Jr., Matthew F; Jellison, Jr., Gerald Earle; Singh, David J; Choi, Woo Seok

    2013-12-24

    A transition metal oxide insulator composition having a tuned band gap includes a transition metal oxide having a perovskite or a perovskite-like crystalline structure. The transition metal oxide includes at least one first element selected form the group of Bi, Ca, Ba, Sr, Li, Na, Mg, K, Pb, and Pr; and at least one second element selected from the group of Ti, Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo, Ru, Rh, Hf, Ta, W, Re, Os, Ir, and Pt. At least one correlated insulator is integrated into the crystalline structure, including REMO.sub.3, wherein RE is at least one Rare Earth element, and wherein M is at least one element selected from the group of Co, V, Cr, Ni, Mn, and Fe. The composition is characterized by a band gap of less of 4.5 eV.

  12. Simultaneous synthesis of polyaniline nanofibers and metal (Ag and Pt) nanoparticles

    International Nuclear Information System (INIS)

    Huang, Li-Ming; Liao, Wei-Hao; Ling, Han-Chern; Wen, Ten-Chin

    2009-01-01

    An approach for the synthesis of Ag/Pt nanoparticle-incorporated polyaniline (PANI) nanofibers and Ag/Pt nanoparticles was developed that considers both thermodynamic and kinetic aspects. Ag/Pt nanoparticles and PANI nanofibers are generated simultaneously by the reduction of Ag + /Pt 4+ ions to Ag/Pt nanoparticles and by the polymerization of aniline (ANI) to PANI nanofibers. The PANI nanofibers serve as anchor seeds for the formation of Ag/Pt nanoparticles. The simple and inexpensive route for the preparation of PANI-Ag/Pt nanocomposites can be extended to the polymerization of ANI derivatives and the formation of metal/metal oxides for applications such as sensors, direct methanol fuel cells, and capacitors.

  13. Systematic prediction of high-pressure melting curves of transition metals

    International Nuclear Information System (INIS)

    Hieu, Ho Khac

    2014-01-01

    The pressure effects on melting temperatures of transition metals have been studied based on the combination of the modified Lindemann criterion with statistical moment method in quantum statistical mechanics. Numerical calculations have been performed for five transition metals including Cu, Pd, Pt, Ni, and Mn up to pressure 100 GPa. Our results are in good and reasonable agreements with available experimental data. This approach gives us a relatively simple method for qualitatively calculating high-pressure melting temperature. Moreover, it can be used to verify future experimental and theoretical works. This research proposes the potential of the combination of statistical moment method and the modified Lindemann criterion on predicting high-pressure melting of materials.

  14. Catalyst Architecture for Stable Single Atom Dispersion Enables Site-Specific Spectroscopic and Reactivity Measurements of CO Adsorbed to Pt Atoms, Oxidized Pt Clusters, and Metallic Pt Clusters on TiO2.

    Science.gov (United States)

    DeRita, Leo; Dai, Sheng; Lopez-Zepeda, Kimberly; Pham, Nicholas; Graham, George W; Pan, Xiaoqing; Christopher, Phillip

    2017-10-11

    Oxide-supported precious metal nanoparticles are widely used industrial catalysts. Due to expense and rarity, developing synthetic protocols that reduce precious metal nanoparticle size and stabilize dispersed species is essential. Supported atomically dispersed, single precious metal atoms represent the most efficient metal utilization geometry, although debate regarding the catalytic activity of supported single precious atom species has arisen from difficulty in synthesizing homogeneous and stable single atom dispersions, and a lack of site-specific characterization approaches. We propose a catalyst architecture and characterization approach to overcome these limitations, by depositing ∼1 precious metal atom per support particle and characterizing structures by correlating scanning transmission electron microscopy imaging and CO probe molecule infrared spectroscopy. This is demonstrated for Pt supported on anatase TiO 2 . In these structures, isolated Pt atoms, Pt iso , remain stable through various conditions, and spectroscopic evidence suggests Pt iso species exist in homogeneous local environments. Comparing Pt iso to ∼1 nm preoxidized (Pt ox ) and prereduced (Pt metal ) Pt clusters on TiO 2 , we identify unique spectroscopic signatures of CO bound to each site and find CO adsorption energy is ordered: Pt iso ≪ Pt metal atoms bonded to TiO 2 and that Pt iso exhibits optimal reactivity because every atom is exposed for catalysis and forms an interfacial site with TiO 2 . This approach should be generally useful for studying the behavior of supported precious metal atoms.

  15. Time-Dependent Density Functional Theory Analysis of Triphenylamine-Functionalized Graphene Doped with Transition Metals for Photocatalytic Hydrogen Production.

    Science.gov (United States)

    Mota, Elder A V; Neto, Abel F G; Marques, Francisco C; Mota, Gunar V S; Martins, Marcelo G; Costa, Fabio L P; Borges, Rosivaldo S; Neto, Antonio M J C

    2018-07-01

    The electronic structures and optical properties of triphenylamine-functionalized graphene (G-TPA) doped with transition metals, using water as a solvent, were theoretically investigated to verify the efficiency of photocatalytic hydrogen production with the use of transition metals. This study was performed by Density Functional Theory and Time-dependent Density Functional Theory through Gaussian 09W software, adopting the B3LYP functional for all structures. The 6-31g(d) basis set was used for H, C and N atoms, and the LANL2DZ basis set for transition metals using the Effective Core Potentials method. Two approaches were adopted: (1) using single metallic dopants (Ni, Pd, Fe, Os and Pt) and (2) using combinations of Ni with the other dopants (NiPd, NiPt, NiFe and NiOs). The DOS spectra reveal an increase of accessible states in the valence shell, in addition to a gap decrease for all dopants. This doping also increases the absorption in the visible region of solar radiation where sunlight is most intense (400 nm to 700 nm), with additional absorption peaks. The results lead us to propose the G-TPA structures doped with Ni, Pd, Pt, NiPt or NiPd to be novel catalysts for the conversion of solar energy for photocatalytic hydrogen production, since they improve the absorption of solar energy in the range of interest for solar radiation; and act as reaction centers, reducing the required overpotential for hydrogen production from water.

  16. Structure vs chemistry: friction and wear of Pt-based metallic surfaces.

    Science.gov (United States)

    Caron, A; Louzguine-Luzguin, D V; Bennewitz, R

    2013-11-13

    In comparison of a Pt57.5Cu14.7Ni5.3P22.5 metallic glass with a Pt(111) single crystal we find that wearless friction is determined by chemistry through bond formation alloying, while wear is determined by structure through plasticity mechanisms. In the wearless regime, friction is affected by the chemical composition of the counter body and involves the formation of a liquid-like neck and interfacial alloying. The wear behavior of Pt-based metallic surfaces is determined by their structural properties and corresponding mechanisms for plastic deformation. In the case of Pt(111) wear occurs by dislocation-mediated homogeneous plastic deformation. In contrast the wear of Pt57.5Cu14.7Ni5.3P22.5 metallic glass occurs through localized plastic deformation in shear bands that merge together in a single shear zone above a critical load and corresponds to the shear softening of metallic glasses. These results open a new route in the control of friction and wear of metals and are relevant for the development of self-lubricated and wear-resistant mechanical devices.

  17. Metal/silicate partitioning of Pt and the origin of the "late veneer"

    Science.gov (United States)

    Ertel, W.; Walter, M. J.; Drake, M. J.; Sylvester, P. J.

    2002-12-01

    the melting point of the 1 atm, AnDi system and the melting point of the Pt capsule material. Over 150 piston cylinder and 12 multi anvil experiments have been performed. Pt solubility is only slightly dependent on temperature, decreasing between 1800 and 1400°C by less than an order of magnitude. In consequence, the partitioning behavior of Pt is mostly determined by its oxygen fugacity dependence, which has only been determined in 1 atm experiments. At 10 kbar, metal/silicate partition coefficients (D's) decrease by about 3 orders of magnitude. The reason for this is not understood, but might be attributed to a first order phase transition as found for, e.g., SiO2 or H2O. Above 10 kbar any increase in pressure does not lead to any further significant decrease in partition coefficients. Solubilities stay roughly constant up to 140 kbar. Abundances of moderately siderophile elements were possibly established by metal/silicate equilibrium in a magma ocean. These results for Pt suggest that the abundances of HSEs were most probably established by the accretion of a chondritic veneer following core formation, as metal/silicate partition coefficients are too high to be consistent with metal/silicate equilibrium in a magma ocean.

  18. Dielectric behavior and phase transition in [111]-oriented PIN–PMN–PT single crystals under dc bias

    Directory of Open Access Journals (Sweden)

    Yuhui Wan

    2014-01-01

    Full Text Available Temperature and electric field dependences of the dielectric behavior and phase transition for [111]-oriented 0.23PIN–0.52PMN–0.25PT (PIN-PMN–0.25PT and 0.24PIN–0.43PMN–0.33PT (PIN–PMN–0.33PT single crystals were investigated over a temperature range from -100°C to 250°C using field-heating (FH dielectric measurements. The transition phenomenon from ferroelectric microdomain to macrodomain was found in rhombohedra (R phase region in the single crystals under dc bias. This transition temperature Tf of micro-to-macrodomain is sensitive to dc bias and move quickly to lower temperature with increasing dc bias. The phase transition temperatures in the two single crystals shift toward high temperature and the dielectric permittivities at the phase transition temperature decrease with increasing dc bias. Especially, the phase transition peaks are gradually broad in PIN–PMN–0.33PT single crystal with the increasing dc bias. Effects of dc bias on the dielectric behavior and phase transition in PIN–PMN–PT single crystals are discussed.

  19. Effects of metal composition and ratio on peptide-templated multimetallic PdPt nanomaterials

    International Nuclear Information System (INIS)

    Merrill, Nicholas A.; Nitka, Tadeusz T.; McKee, Erik M.; Merino, Kyle C.; Drummy, Lawrence F.

    2017-01-01

    It can be difficult to simultaneously control the size, composition, and morphology of metal nanomaterials under benign aqueous conditions. For this, bioinspired approaches have become increasingly popular due to their ability to stabilize a wide array of metal catalysts under ambient conditions. In this regard, we used the R5 peptide as a three-dimensional template for formation of PdPt bimetallic nanomaterials. Monometallic Pd and Pt nanomaterials have been shown to be highly reactive toward a variety of catalytic processes, but by forming bimetallic species, increased catalytic activity may be realized. The optimal metal-to-metal ratio was determined by varying the Pd:Pt ratio to obtain the largest increase in catalytic activity. To better understand the morphology and the local atomic structure of the materials, the bimetallic PdPt nanomaterials were extensively studied by transmission electron microscopy, extended X-ray absorption fine structure spectroscopy, X-ray photoelectron spectroscopy, and pair distribution function analysis. The resulting PdPt materials were determined to form multicomponent nanostructures where the Pt component demonstrated varying degrees of oxidation based upon the Pd:Pt ratio. To test the catalytic reactivity of the materials, olefin hydrogenation was conducted, which indicated a slight catalytic enhancement for the multicomponent materials. Finally, these results suggest a strong correlation between the metal ratio and the stabilizing biotemplate in controlling the final materials morphology, composition, and the interactions between the two metal species.

  20. Effects of Metal Composition and Ratio on Peptide-Templated Multimetallic PdPt Nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Merrill, Nicholas A.; Nitka, Tadeusz T.; McKee, Erik M.; Merino, Kyle C.; Drummy, Lawrence F.; Lee, Sungsik; Reinhart, Benjamin; Ren, Yang; Munro, Catherine J.; Pylypenko, Svitlana; Frenkel, Anatoly I.; Bedford, Nicholas M.; Knecht, Marc R.

    2017-02-22

    It can be difficult to simultaneously control the size, composition, and morphology of metal nanomaterials under benign aqueous conditions. For this, bio-inspired approaches have become increasing popular due to their ability to stabilize a wide array of metal catalysts under ambient conditions. In this regard, we used the R5 peptide as a 3D template for the formation of PdPt bimetallic nanomaterials. Monometallic Pd and Pt nanomaterials have been shown to be highly reactive towards a variety of catalytic processes, but by forming bimetallic species, increased catalytic activity may be realized. The optimal metal-to-metal ratio was determined by varying the Pd:Pt ratio to obtain the largest increase in catalytic activity. To better understand the morphology and the local atomic structure of the materials, the bimetallic PdPt nanomaterials were extensively studied using transmission electron microscopy, extended X-ray absorption fine structure spectroscopy, X-ray photoelectron spectroscopy, and pair distribution function analysis. The resulting PdPt materials were determined to form multicomponent nanostructures where the Pt component demonstrated varying degrees of oxidation based upon the Pd:Pt ratio. To test the catalytic reactivity of the materials, olefin hydrogenation was conducted which indicated a slight catalytic enhancement for the multicomponent materials. These results suggest a strong correlation between the metal ratio and the stabilizing biotemplate in controlling the final materials morphology, composition, and the interactions between the two metal species.

  1. The role of the excited impurity levels on the metal-non metal transition

    International Nuclear Information System (INIS)

    Silva, M.S.F. da; Makler, S.S.; Anda, E.V.

    1983-01-01

    The electronic density of states for the impurity bands in doped semiconductors is calculated using the Green function method. The system is described by a Hamiltonian with local Coulomb interactions represented in a tight binding basis composed by two orbitals per site. The electronic correlation is treated in the CPA approximation. To calculate the configurational average for this structural disordered system a diagrammatic scheme is developed. It represents an extension of the Matsubara and Toyozawa method for the case of two hybridized bands in the presence of electronic correlation. The excited levels show to play a crutial role in the undestanding of the metal-non metal transition. This work represents an improvement of a previous result. The particular case of Si : P is analyzed. (author) [pt

  2. The role of the excited impurity levels on the metal-non metal transition

    International Nuclear Information System (INIS)

    Silva, M.S.F. da; Makler, S.S.; Anda, E.V.

    1983-01-01

    The electronic density of states for the impurity bands in doped semiconductors is calculated using the Green function method. The system is described by a Hamiltonian with local Coulomb interactions represented in a tight binding basis composed by two orbitals per site. The electronic correlation is treated in the CPA approximation. To calculate the configurational average for this structural disordered system a diagrammatic scheme is developed. It represents an extension of the Matsubara and Toyozawa method for the case of two hybridized bands in the presence of electronic correlation. The excited levels shown to play a crutial role in the understanding of the metal-non metal transition. This work represents an improvement of a previous result. The particular case of Si:P is analyzed. (Author) [pt

  3. Metal-insulator transitions

    Science.gov (United States)

    Imada, Masatoshi; Fujimori, Atsushi; Tokura, Yoshinori

    1998-10-01

    Metal-insulator transitions are accompanied by huge resistivity changes, even over tens of orders of magnitude, and are widely observed in condensed-matter systems. This article presents the observations and current understanding of the metal-insulator transition with a pedagogical introduction to the subject. Especially important are the transitions driven by correlation effects associated with the electron-electron interaction. The insulating phase caused by the correlation effects is categorized as the Mott Insulator. Near the transition point the metallic state shows fluctuations and orderings in the spin, charge, and orbital degrees of freedom. The properties of these metals are frequently quite different from those of ordinary metals, as measured by transport, optical, and magnetic probes. The review first describes theoretical approaches to the unusual metallic states and to the metal-insulator transition. The Fermi-liquid theory treats the correlations that can be adiabatically connected with the noninteracting picture. Strong-coupling models that do not require Fermi-liquid behavior have also been developed. Much work has also been done on the scaling theory of the transition. A central issue for this review is the evaluation of these approaches in simple theoretical systems such as the Hubbard model and t-J models. Another key issue is strong competition among various orderings as in the interplay of spin and orbital fluctuations. Experimentally, the unusual properties of the metallic state near the insulating transition have been most extensively studied in d-electron systems. In particular, there is revived interest in transition-metal oxides, motivated by the epoch-making findings of high-temperature superconductivity in cuprates and colossal magnetoresistance in manganites. The article reviews the rich phenomena of anomalous metallicity, taking as examples Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Ru compounds. The diverse phenomena include strong spin and

  4. A comparative investigation of metal-support interactions on the catalytic activity of Pt nanoparticles for ethanol oxidation in alkaline medium

    Science.gov (United States)

    Godoi, Denis R. M.; Villullas, Hebe M.; Zhu, Fu-Chun; Jiang, Yan-Xia; Sun, Shi-Gang; Guo, Junsong; Sun, Lili; Chen, Rongrong

    2016-04-01

    The effects of interactions of Pt nanoparticles with hybrid supports on reactivity towards ethanol oxidation in alkaline solution are investigated. Studies involve catalysts with identical Pt nanoparticles on six hybrid supports containing carbon powder and transition metal oxides (TiO2, ZrO2, SnO2, CeO2, MoO3 and WO3). In situ X-ray absorption spectroscopy (XAS) results evidence that metal-support interactions produce changes in the Pt 5d band vacancy, which appears to determine the catalytic activity. The highest and lowest activities are observed for Pt nanoparticles on hybrid supports containing TiO2 and CeO2, respectively. Further studies are presented for these two catalysts. In situ FTIR reflection spectroscopy measurements, taken using both multi-stepped FTIR spectroscopy (MS-FTIR) and single potential alteration FTIR spectroscopy (SPA-FTIR), evidence that the main product of ethanol oxidation is acetate, although signals attributed to carbonate and CO2 indicate some differences in CO2 production. Fuel cell performances of these catalysts, tested in a 4.5 cm2 single cell at different temperatures (40-90 °C) show good agreement with data obtained by electrochemical techniques. Results of this comprehensive study point out the possibility of compensating a reduction of noble metal load with an increase in activity promoted by interactions between metallic nanoparticles and a support.

  5. Density functional theory study of elemental mercury adsorption on boron doped graphene surface decorated by transition metals

    Energy Technology Data Exchange (ETDEWEB)

    Jungsuttiwong, Siriporn, E-mail: siriporn.j@ubu.ac.th [Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190 (Thailand); Wongnongwa, Yutthana [Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190 (Thailand); Namuangruk, Supawadee [National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Klong Luang, Pathum Thani 12120 (Thailand); Kungwan, Nawee [Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Promarak, Vinich [Department of Material Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210 (Thailand); Kunaseth, Manaschai, E-mail: manaschai@nanotec.or.th [National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Klong Luang, Pathum Thani 12120 (Thailand)

    2016-01-30

    Graphical abstract: Decoration of Pd{sub 4}-A (square planar) on B-doped graphene significantly promotes Hg{sup 0} adsorption, a single site of Pd{sub 4} cluster on BDG could strongly adsorb up to six Hg atoms. - Highlights: • Transition metal atom and cluster binds strongly on B-doped graphene surface. • Decoration of transition metal on B-doped graphene significantly promotes Hg{sup 0} adsorption. • Adsorption strength of Hg{sup 0} atom on metal decorated B-doped graphene: Pd > Pt > Ru > W > Cu. • One site decorated Pd4 cluster adsorbed Hg{sup 0} strongly up to six atoms.

  6. Kinetics of self-interstitial migration in bcc and fcc transition metals

    Science.gov (United States)

    Bukkuru, S.; Bhardwaj, U.; Srinivasa Rao, K.; Rao, A. D. P.; Warrier, M.; Valsakumar, M. C.

    2018-03-01

    Radiation damage is a multi-scale phenomenon. A thorough understanding of diffusivities and the migration energies of defects is a pre-requisite to quantify the after-effects of irradiation. We investigate the thermally activated mobility of self-interstitial atom (SIA) in bcc transition metals Fe, Mo, Nb and fcc transition metals Ag, Cu, Ni, Pt using molecular dynamics (MD) simulations. The self-interstitial diffusion involves various mechanisms such as interstitialcy, dumbbell or crowdion mechanisms. Max-Space Clustering (MSC) method has been employed to identify the interstitial and its configuration over a wide range of temperature. The self-interstitial diffusion is Arrhenius like, however, there is a slight deviation at high temperatures. The migration energies, pre-exponential factors of diffusion and jump-correlation factors, obtained from these simulations can be used as inputs to Monte Carlo simulations of defect transport. The jump-correlation factor shows the degree of preference of rectilinear or rotational jumps. We obtain the average jump-correlation factor of 1.4 for bcc metals and 0.44 for fcc metals. It indicates that rectilinear jumps are preferred in bcc metals and rotational jumps are preferred in fcc metals.

  7. Synthesis of Ag or Pt Nanoparticles by Hydrolysis of Either Ag2Na or PtNa

    Directory of Open Access Journals (Sweden)

    Huabin Wang

    2008-01-01

    Full Text Available Ag and Pt nanoparticles have successfully been synthesized by hydrolysis of either Ag2Na or PtNa at room temperature. The oxidation of sodium in the Pt-Na pellets was much faster than that in the Ag-Na pellets since Pt is a catalyst for H2O formation reaction from hydrogen and oxygen at room temperature. The hydrolysis byproduct, NaOH, has a high solubility and easily is removed. This method offers a simple method of preparing transition metal nanoparticles. The Ag and Pt nanoparticles prepared by this method were crystalline in nature, and spherical in shape with a mean size of around 10 nm.

  8. First principles calculations and experimental insight into methane steam reforming over transition metal catalysts

    DEFF Research Database (Denmark)

    Jones, Glenn; Jakobsen, Jon Geest; Shim, Signe Sarah

    2008-01-01

    This paper presents a detailed analysis of the steam reforming process front first-principles calculations, supported by insight from experimental investigations. In the present work we employ recently recognised scaling relationships for adsorption energies of simple molecules adsorbed at pure...... metal Surfaces to develop an overview of the steam reforming process catalyzed by a range of transition metal surfaces. By combining scaling relationships with thermodynamic and kinetic analysis, we show that it is possible to determine the reactivity trends of the pure metals for methane steam...... in situ TEM measurements under a hydrogen atmosphere. The overall agreement between theory and experiment (at 773 K, 1 bar pressure and 10% conversion) is found to be excellent with Ru and Rh being the most active pure transition metals for methane steam reforming, while Ni, Ir, Pt, and Pd...

  9. On new ternary equiatomic scandium transition metal aluminum compounds ScTAl with T = Cr, Ru, Ag, Re, Pt, and Au

    Energy Technology Data Exchange (ETDEWEB)

    Radzieowski, Mathis; Janka, Oliver [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Benndorf, Christopher [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Muenster Univ. (Germany). Inst. fuer Physikalische Chemie; Haverkamp, Sandra [Muenster Univ. (Germany). Inst. fuer Physikalische Chemie; Eckert, Hellmut [Muenster Univ. (Germany). Inst. fuer Physikalische Chemie; University of Sao Paulo, Sao Carlos, SP (Brazil). Inst. of Physics

    2016-08-01

    The new equiatomic scandium transition metal aluminides ScTAl for T = Cr, Ru, Ag, Re, Pt, and Au were obtained by arc-melting of the elements followed by subsequent annealing for crystal growth. The samples were studied by powder and single crystal X-ray diffraction. The structures of three compounds were refined from single crystal X-ray diffractometer data: ScCrAl, MgZn{sub 2} type, P6{sub 3}/mmc, a = 525.77(3), c = 858.68(5) pm, R{sub 1} = 0.0188, wR{sub 2} = 0.0485, 204 F{sup 2} values, 13 variables, ScPtAl, TiNiSi type, Pnma, a = 642.83(4), b = 428.96(2), c = 754.54(5) pm, R{sub 1} = 0.0326, wR{sub 2} = 0.0458, 448 F{sup 2} values, 20 variables and ScAuAl, HfRhSn type, P anti 62c, a = 722.88(4), c = 724.15(4) pm, R{sub 1} = 0.0316, wR{sub 2} = 0.0653, 512 F{sup 2} values, 18 variables. Phase pure samples of all compounds were furthermore investigated by magnetic susceptibility measurements, and Pauli-paramagnetism but no superconductivity was observed down to 2.1 K for all of them. The local structural features and disordering phenomena have been characterized by {sup 27}Al and {sup 45}Sc magic angle spinning (MAS) and static NMR spectroscopic investigations.

  10. Single Pt Atoms Confined into a Metal-Organic Framework for Efficient Photocatalysis.

    Science.gov (United States)

    Fang, Xinzuo; Shang, Qichao; Wang, Yu; Jiao, Long; Yao, Tao; Li, Yafei; Zhang, Qun; Luo, Yi; Jiang, Hai-Long

    2018-02-01

    It is highly desirable yet remains challenging to improve the dispersion and usage of noble metal cocatalysts, beneficial to charge transfer in photocatalysis. Herein, for the first time, single Pt atoms are successfully confined into a metal-organic framework (MOF), in which electrons transfer from the MOF photosensitizer to the Pt acceptor for hydrogen production by water splitting under visible-light irradiation. Remarkably, the single Pt atoms exhibit a superb activity, giving a turnover frequency of 35 h -1 , ≈30 times that of Pt nanoparticles stabilized by the same MOF. Ultrafast transient absorption spectroscopy further unveils that the single Pt atoms confined into the MOF provide highly efficient electron transfer channels and density functional theory calculations indicate that the introduction of single Pt atoms into the MOF improves the hydrogen binding energy, thus greatly boosting the photocatalytic H 2 production activity. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Current-induced metal-insulator transition in VO x thin film prepared by rapid-thermal-annealing

    International Nuclear Information System (INIS)

    Cho, Choong-Rae; Cho, SungIl; Vadim, Sidorkin; Jung, Ranju; Yoo, Inkyeong

    2006-01-01

    The phenomenon of metal-insulator transition (MIT) in polycrystalline VO x thin films and their preparations have been studied. The films were prepared by sputtering of vanadium thin films succeeded by Rapid Thermal Annealing (RTA) in oxygen ambient at 500 deg. C. Crystalline, compositional, and morphological characterizations reveal a continuous change of phase from vanadium metal to the highest oxide phase, V 2 O 5 , with the time of annealing. Electrical MIT switching has been observed in these films. Sweeping mode, electrode area, and temperature dependent MIT has been studied in Pt/VO x /Pt vertical structure. The important parameters for MIT in VO x have been found to be the current density and the electric field, which depend on carrier density in the films

  12. Transition from metal-ligand bonding to halogen bonding involving a metal as halogen acceptor a study of Cu, Ag, Au, Pt, and Hg complexes

    Science.gov (United States)

    Oliveira, Vytor; Cremer, Dieter

    2017-08-01

    Utilizing all-electron Dirac-exact relativistic calculations with the Normalized Elimination of the Small Component (NESC) method and the local vibrational mode approach, the transition from metal-halide to metal halogen bonding is determined for Au-complexes interacting with halogen-donors. The local stretching force constants of the metal-halogen interactions reveal a smooth transition from weak non-covalent halogen bonding to non-classical 3-center-4-electron bonding and finally covalent metal-halide bonding. The strongest halogen bonds are found for dialkylaurates interacting with Cl2 or FCl. Differing trends in the intrinsic halogen-metal bond strength, the binding energy, and the electrostatic potential are explained.

  13. Study of transition probabilities in 192Pt

    International Nuclear Information System (INIS)

    Roulet, C.; Sergolle, H.; Hubert, P.P.; Lindblad, T.

    1978-01-01

    The nucleus 192 Pt is Coulomb excited with 370 MeV 84 Kr projectiles. Levels up to spin 8 + (10 + ) in the ground band and up to 6 + in the γ-band are observed. The B(E2) values implied by the observed yields are compared with predictions of different nuclear models. Particular attention is paid to the ground band transition rates and the rotation-alignment model

  14. Electrocatalysis of the oxidations of some organic compounds on noble-metal electrodes by foreign-metal ad-atoms

    International Nuclear Information System (INIS)

    Tsang, R.W.

    1981-10-01

    Electrochemical oxidation of formic acid was studied on Pt electrodes in acid, and that of dextrose was studied on Pt and Au in alkali. Poisoning was observed on Pt but not on Au. Several heavy-metal ad-atoms (Pb, Bi, Tl) enhance greatly the anodic currents on Pt, while transition metals (Cu, Zn) inhibit the oxidation on Pt. The enhancement effect of the metal ad-atoms is correlated with electron structure. All metal ad-atoms showed an inhibitory effect on Au. Amperometry showed that Pt electrodes are completely deactivated within 10 s during dextrose oxidation without ad-atoms, while Au retains much of its activity even after 10 min. Ad-atoms maintains the Pt activity over much more than 10 s. 50 figures, 38 tables

  15. FePt and CoPt nanoparticles prepared by micellar method. Effects of A1{yields}L1{sub 0} transition on oxidation resistance and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Han, Luyang

    2011-02-15

    In this thesis FePt and CoPt alloy nanoparticles are prepared with reverse micelles. The metallic nanoparticles with diameters of 2-12 nm and interparticle distances of 20-140 nm are obtained on Si substrates. The magnetic properties of FePt and CoPt nanoparticles as well as oxidation behavior of FePt nanoparticles are investigated. X-ray magnetic circular dichroism (XMCD) measurements on 5.8 nm FePt nanoparticles after hydrogen plasma reduction at 300 C reveals that the magnetic moment per Fe atom and magnetic anisotropy energy match chemically disordered FePt in A1 phase. Annealing at 650 C transform portion of FePt particles to chemically ordered L1{sub 0} phase. The presense of nanoparticles in L1{sub 0} phase is identified by high-resolution transmission electronmicroscopy (HRTEM) investigation, where it is also observed that large fraction of the particles contain defects such as twin boundaries and stacking faults. By increasing the annealing temperature or prolonging annealing time, ratio of transformed particles increases. The average magnetic anisotropy energy of the transformed particles is below 30% of the value of bulk FePt in L1{sub 0} phase. Annealing at above 750 C, however, decreases the average magnetic anisotropy in the sample. Similar A1 {yields} L1{sub 0} transition is observed in FePt nanoparticles with different diameters as well as in CoPt nanoparticles. The spin moment of Fe in FePt nanoparticles decreases with smaller particle diameter, while the orbital moment stays almost constant. Magnetic moments at room temperature are significantly reduced compared to those at low temperature, suggesting the Curie temperatures in FePt and CoPt nanoparticles are significantly lower than in the bulk. The annealing also induces Pt segregation towards the surface in FePt nanoparticles, which is identified by the decreased apparent Fe content measured by X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS). The segregation of Pt

  16. Calculations of hyperfine interactions in transition metal compounds in the local density approximation

    International Nuclear Information System (INIS)

    Guenzburger, D.J.R.

    1982-01-01

    A survey is made of some theoretical calculations of electrostatic and magnetic hyperfine interactions in transition metal compounds and complex irons. The molecular orbital methods considered are the Multiple Scattering and Discrete Variational, in which the local Xα approximation for the exchange interaction is employed. Emphasis is given to the qualitative informations, derived from the calculations, relating the hyperfine parameters to characteristics of the chemical bonds. (Author) [pt

  17. Transition metal carbides (WC, Mo2C, TaC, NbC) as potential electrocatalysts for the hydrogen evolution reaction (HER) at medium temperatures

    DEFF Research Database (Denmark)

    Meyer, Simon; Nikiforov, Aleksey V.; Petrushina, Irina M.

    2015-01-01

    One limitation for large scale water electrolysis is the high price of the Pt cathode catalyst. Transition metal carbides, which are considered as some of the most promising non-Pt catalysts, are less active than Pt at room temperature. The present work demonstrates that the situation is different......C > TaC. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved....

  18. Metal Induced Gap States on Pt/Ge(001)

    NARCIS (Netherlands)

    Oncel, N.; van Beek, W.J.; Poelsema, Bene; Zandvliet, Henricus J.W.

    2007-01-01

    Using scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) we have studied the electronic properties of a novel, planar, metal semiconductor contact. For this purpose we take advantage of the unique properties of the Pt-modified Ge(001) surface, which consist of coexisting

  19. Structure determination of chitosan-stabilized Pt and Pd based bimetallic nanoparticles by X-ray photoelectron spectroscopy and transmission electron microscopy

    International Nuclear Information System (INIS)

    Wu, Lihua; Shafii, Salimah; Nordin, Mohd Ridzuan; Liew, Kong Yong; Li, Jinlin

    2012-01-01

    Chitosan (CTS)-stabilized bimetallic nanoparticles were prepared at room temperature (rt.) in aqueous solution. Palladium (Pd) and platinum (Pt) were selected as the first metals while iron (Fe) and nickel (Ni) functioned as the second metals. In order to obtain the noble metal core-transition metal shell structures, bimetallic nanoparticles were prepared in a two-step process: the preparation of mono noble metallic (Pd or Pt) nanoparticles and the deposition of transition metals (Fe or Ni) on the surface of the monometallic nanoparticles. The structures of the nanoparticles were studied using X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The XPS results show that Pd and Pt exist mainly in zero valences. The presence of Fe and Ni in the bimetallic nanoparticles affects the binding energy of Pd and Pt. Moreover, the studies of O 1s spectra indicate the presence of Fe or Ni shells. The analyses of TEM micrographs give the particle size and size distributions while the high-resolution TEM (HRTEM) micrographs show the existence of noble metal core lattices. The results confirm the formation of noble metal core-transition metal shell structures. -- Highlights: ► Chitosan-stabilized bimetallic nanoparticles were prepared at room temperature in aqueous solution. ► The presence of Fe or Ni shells was proven by XPS study. ► The existence of noble metal cores covered by amorphous shells was indicated by TEM study. ► The formation of noble metal core-transition metal shell structures was confirmed.

  20. Shape transition in Pt-nuclei with mass A ∼190

    International Nuclear Information System (INIS)

    Chamoli, S.K.

    2017-01-01

    The nuclei in mass region A ∼190 are well known for the prolate-oblate shape co-existence/transition phenomena. The shape coexistence phenomena has been observed in nuclei like Hg and Tl of this mass region. The calculations done for Pt nuclei in indicate a smooth shape change from prolate deformed "1"8"6Pt to nearly spherical "2"0"2"-"2"0"4 Pt through the region of triaxially deformed "1"8"8"-"1"9"8Pt and slightly oblate "2"0"0Pt. In these calculations, a change of shape from prolate to oblate is expected at A = 188. In recent high spin spectroscopic investigations, significant amount of reduced prolate collectivity has been observed in "1"8"8Pt. The level lifetimes provide valuable information about the nuclear shape and also the shape change with increase in spin along a band. So, to get clear signature of prolate to oblate shape inversion in Pt nuclei near A = 190, it is required to perform lifetime measurements. With this objective, the RDM lifetime measurements of high spin states have been done for various even-even Pt isotopes with masss A ≤ 186 over the years. The results obtained in these measurements are very encouraging and do indicate changing nuclear structure for Pt-isotopes with increasing mass at low spins. A gradual increase in B(E2) values upto 4"+ state and near constant nature there after in "1"8"8Pt, contrary to the other light neighboring Pt nuclei tends to indicate the volatile nature of deformation in Pt nuclei near A ∼ 190 which needs further theoretical investigations. (author)

  1. Synthesis and characterization of Pd-on-Pt and Au-on-Pt bimetallic nanosheaths on multiwalled carbon nanotubes

    International Nuclear Information System (INIS)

    Wang Shuangyin; Jiang, San Ping; Wang Xin

    2011-01-01

    The authors have successfully synthesized Pd-on-Pt (thickness: 12 nm) and Au-on-Pt bimetallic nanosheaths on multiwalled carbon nanotubes (MWCNTs) via a seed-mediated growth approach. Pt nanoparticles as seeds were pre-deposited on MWCNTs with uniform distribution followed by the successive seed-mediated growth of metal atoms reduced by a weak reducing agent, ascorbic acid. The essential role of pre-deposited nanoseed particles on MWCNTs was demonstrated. The as-prepared materials were characterization by transition electron microscopy, energy-dispersive X-ray spectroscopy, and element mapping tools. The current strategy extends the classical seed-mediated growth method to prepare bimetallic nanosheath on MWCNT support.

  2. Microwave-assisted synthesis of transition metal phosphide

    Science.gov (United States)

    Viswanathan, Tito

    2014-12-30

    A method of synthesizing transition metal phosphide. In one embodiment, the method has the steps of preparing a transition metal lignosulfonate, mixing the transition metal lignosulfonate with phosphoric acid to form a mixture, and subjecting the mixture to a microwave radiation for a duration of time effective to obtain a transition metal phosphide.

  3. Modeling Dzyaloshinskii-Moriya Interaction at Transition Metal Interfaces: Constrained Moment versus Generalized Bloch Theorem

    KAUST Repository

    Dong, Yao-Jun

    2017-10-29

    Dzyaloshinskii-Moriya interaction (DMI) at Pt/Co interfaces is investigated theoretically using two different first principles methods. The first one uses the constrained moment method to build a spin spiral in real space, while the second method uses the generalized Bloch theorem approach to construct a spin spiral in reciprocal space. We show that although the two methods produce an overall similar total DMI energy, the dependence of DMI as a function of the spin spiral wavelength is dramatically different. We suggest that long-range magnetic interactions, that determine itinerant magnetism in transition metals, are responsible for this discrepancy. We conclude that the generalized Bloch theorem approach is more adapted to model DMI in transition metal systems, where magnetism is delocalized, while the constrained moment approach is mostly applicable to weak or insulating magnets, where magnetism is localized.

  4. Modeling Dzyaloshinskii-Moriya Interaction at Transition Metal Interfaces: Constrained Moment versus Generalized Bloch Theorem

    KAUST Repository

    Dong, Yao-Jun; Belabbes, Abderrezak; Manchon, Aurelien

    2017-01-01

    Dzyaloshinskii-Moriya interaction (DMI) at Pt/Co interfaces is investigated theoretically using two different first principles methods. The first one uses the constrained moment method to build a spin spiral in real space, while the second method uses the generalized Bloch theorem approach to construct a spin spiral in reciprocal space. We show that although the two methods produce an overall similar total DMI energy, the dependence of DMI as a function of the spin spiral wavelength is dramatically different. We suggest that long-range magnetic interactions, that determine itinerant magnetism in transition metals, are responsible for this discrepancy. We conclude that the generalized Bloch theorem approach is more adapted to model DMI in transition metal systems, where magnetism is delocalized, while the constrained moment approach is mostly applicable to weak or insulating magnets, where magnetism is localized.

  5. High-Pressure Thermodynamic Properties of f-electron Metals, Transition Metal Oxides, and Half-Metallic Magnets

    International Nuclear Information System (INIS)

    Richard T. Scalettar; Warren E. Pickett

    2005-01-01

    This project involves research into the thermodynamic properties of f-electron metals, transition metal oxides, and half-metallic magnets at high pressure. These materials are ones in which the changing importance of electron-electron interactions as the distance between atoms is varied can tune the system through phase transitions from localized to delocalized electrons, from screened to unscreened magnetic moments, and from normal metal to one in which only a single spin specie can conduct. Three main thrusts are being pursued: (1) Mott transitions in transition metal oxides, (2) magnetism in half-metallic compounds, and (3) large volume-collapse transitions in f-band metals

  6. High-Pressure Thermodynamic Properties of f-electron Metals, Transition Metal Oxides, and Half-Metallic Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Scalettar, Richard T.; Pickett, Warren E.

    2004-07-01

    This project involves research into the thermodynamic properties of f-electron metals, transition metal oxides, and half-metallic magnets at high pressure. These materials are ones in which the changing importance of electron-electron interactions as the distance between atoms is varied can tune the system through phase transitions from localized to delocalized electrons, from screened to unscreened magnetic moments, and from normal metal to one in which only a single spin specie can conduct. Three main thrusts are being pursued: (1) Mott transitions in transition metal oxides, (2) magnetism in half-metallic compounds, and (3) large volume-collapse transitions in f-band metals.

  7. High-Pressure Thermodynamic Properties of f-electron Metals, Transition Metal Oxides, and Half-Metallic Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Richard T. Scalettar; Warren E. Pickett

    2005-08-02

    This project involves research into the thermodynamic properties of f-electron metals, transition metal oxides, and half-metallic magnets at high pressure. These materials are ones in which the changing importance of electron-electron interactions as the distance between atoms is varied can tune the system through phase transitions from localized to delocalized electrons, from screened to unscreened magnetic moments, and from normal metal to one in which only a single spin specie can conduct. Three main thrusts are being pursued: (i) Mott transitions in transition metal oxides, (ii) magnetism in half-metallic compounds, and (iii) large volume-collapse transitions in f-band metals.

  8. Crystal structures, stability, electronic and elastic properties of 4d and 5d transition metal monoborides: First-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y.; Chen, W. [International Center for New-Structured Materials (ICNSM), Zhejiang University, and Laboratory of New-Structured Materials, State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Chen, X.; Liu, H.Y. [State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012 (China); Ding, Z.H.; Ma, Y.M. [State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012 (China); Wang, X.D.; Cao, Q.P. [International Center for New-Structured Materials (ICNSM), Zhejiang University, and Laboratory of New-Structured Materials, State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Jiang, J.Z., E-mail: jiangjz@zju.edu.cn [International Center for New-Structured Materials (ICNSM), Zhejiang University, and Laboratory of New-Structured Materials, State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Changes from NaCl-, WC- to anti-NiAs-type structures are for 4d and 5d metal monoborides. Black-Right-Pointing-Pointer Vickers hardnesses of monoborides are relatively low. Black-Right-Pointing-Pointer B-vacancies cause the difference in lattice parameters for IrB and PtB. Black-Right-Pointing-Pointer Nonstoichiometric IrB and PtB phases synthesized. - Abstract: The crystal structures, stability, electronic and elastic properties of 4d and 5d transition metal monoborides have been studied by first principles calculations. It is found that NaCl-type ZrB, NbB, MoB, HfB, TaB and WB, WC-type TcB, RuB, ReB, OsB and IrB, and anti-NiAs-type RhB and PdB are thermodynamically stable at zero pressure. They all are metallic. The Vickers hardnesses of these monoborides are relatively low as compared with monocarbides and mononitrides. It is clarified that the presence of B-vacancies is the origin for the difference of lattice parameters between theoretical and experimental results for WC-type IrB and anti-NiAs-type PtB while IrB and PtB with stoichiometry from calculations are revealed to be mechanically unstable and dynamically unstable, respectively.

  9. Crystal structures, stability, electronic and elastic properties of 4d and 5d transition metal monoborides: First-principles calculations

    International Nuclear Information System (INIS)

    Wang, Y.; Chen, W.; Chen, X.; Liu, H.Y.; Ding, Z.H.; Ma, Y.M.; Wang, X.D.; Cao, Q.P.; Jiang, J.Z.

    2012-01-01

    Highlights: ► Changes from NaCl-, WC- to anti-NiAs-type structures are for 4d and 5d metal monoborides. ► Vickers hardnesses of monoborides are relatively low. ► B-vacancies cause the difference in lattice parameters for IrB and PtB. ► Nonstoichiometric IrB and PtB phases synthesized. - Abstract: The crystal structures, stability, electronic and elastic properties of 4d and 5d transition metal monoborides have been studied by first principles calculations. It is found that NaCl-type ZrB, NbB, MoB, HfB, TaB and WB, WC-type TcB, RuB, ReB, OsB and IrB, and anti-NiAs-type RhB and PdB are thermodynamically stable at zero pressure. They all are metallic. The Vickers hardnesses of these monoborides are relatively low as compared with monocarbides and mononitrides. It is clarified that the presence of B-vacancies is the origin for the difference of lattice parameters between theoretical and experimental results for WC-type IrB and anti-NiAs-type PtB while IrB and PtB with stoichiometry from calculations are revealed to be mechanically unstable and dynamically unstable, respectively.

  10. k-asymmetric spin splitting at the interface between transition metal ferromagnets and heavy metals

    KAUST Repository

    Grytsiuk, Sergii

    2016-05-23

    We systematically investigate the spin-orbit coupling-induced band splitting originating from inversion symmetry breaking at the interface between a Co monolayer and 4d (Tc, Ru, Rh, Pd, and Ag) or 5d (Re, Os, Ir, Pt, and Au) transition metals. In spite of the complex band structure of these systems, the odd-in-k spin splitting of the bands displays striking similarities with the much simpler Rashba spin-orbit coupling picture. We establish a clear connection between the overall strength of the odd-in-k spin splitting of the bands and the charge transfer between the d orbitals at the interface. Furthermore, we show that the spin splitting of the Fermi surface scales with the induced orbital moment, weighted by the spin-orbit coupling.

  11. k-asymmetric spin splitting at the interface between transition metal ferromagnets and heavy metals

    KAUST Repository

    Grytsyuk, Sergiy; Belabbes, Abderrezak; Haney, Paul M.; Lee, Hyun-Woo; Lee, Kyung-Jin; Stiles, M. D.; Schwingenschlö gl, Udo; Manchon, Aurelien

    2016-01-01

    We systematically investigate the spin-orbit coupling-induced band splitting originating from inversion symmetry breaking at the interface between a Co monolayer and 4d (Tc, Ru, Rh, Pd, and Ag) or 5d (Re, Os, Ir, Pt, and Au) transition metals. In spite of the complex band structure of these systems, the odd-in-k spin splitting of the bands displays striking similarities with the much simpler Rashba spin-orbit coupling picture. We establish a clear connection between the overall strength of the odd-in-k spin splitting of the bands and the charge transfer between the d orbitals at the interface. Furthermore, we show that the spin splitting of the Fermi surface scales with the induced orbital moment, weighted by the spin-orbit coupling.

  12. Half-Lantern Pt(II and Pt(III Complexes. New Cyclometalated Platinum Derivatives

    Directory of Open Access Journals (Sweden)

    Violeta Sicilia

    2014-08-01

    Full Text Available The divalent complex [{Pt(bzq(μ-L}2] (1 [Hbzq = benzo[h]quinolone, HL = CF3C4H2N2SH: 4-(trifluoromethylpyrimidine-2-thiol] was obtained from equimolar amounts of [Pt(bzq(NCMe2]ClO4 and 4-(trifluoromethylpyrimidine-2-thiol with an excess of NEt3. The presence of a low intensity absorption band at 486 nm (CH2Cl2, assignable to a metal-metal-to-ligand charge transfer transition (1MMLCT [dσ*(Pt2→π*(bzq], is indicative of the existence of two platinum centers located in close proximity because the rigidity of the half-lantern structure allows the preservation of these interactions in solution. Compound 1 undergoes two-electron oxidation upon treatment with halogens X2 (X2: Cl2, Br2 or I2 to give the corresponding dihalodiplatinum (III complexes [{Pt(bzq(μ-LX}2] (L = CF3C4H2N2S-κN,S; X: Cl 2, Br 3, I 4. Complexes 2–4 were also obtained by reaction of 1 with HX (molar ratio 1:2, 10% excess of HX in THF with yields of about 80% and compound 2 was also obtained by reaction of [{Pt(bzq(μ-Cl}2] with HL (4-(trifluoromethylpyrimidine-2-thiol in molar ratio 1:2 in THF, although in small yield. The X-ray structures of 2 and 3 confirmed the half-lantern structure and the anti configuration of the molecules. Both of them show Pt–Pt distances (2.61188(15 Å 2, 2.61767(16 Å 3 in the low range of those observed in Pt2(III,IIIX2 half-lantern complexes.

  13. Characterization of the core-shell interaction of differently stabilized transition-metal nanoparticles by means of X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Bucher, S.

    2002-05-01

    Transition metal nanoparticles with different surfactants were investigated using X-ray absorption spectroscopy (XAS) to obtain information about the interaction between metal core and protecting shell. For tetraalkylammoniumchloride stabilized Pd- and Co-colloids, a detailed model of the interaction between the metal core and the stabilizing shell could be established, in which chlorine is the connecting element between the metal core and the organic protection cover. Different lengths of the alkyl-chains can cause different equilibrium positions for the chlorine atoms. At aluminum-organic stabilized Pt-colloids, Al K-XANES and Pt L III -XAS were carried out. In this case, it turned out that aluminum is the connecting element between metal core and protection shell. After modification of the shell by connecting different molecules to the outside of the shell, rearrangements of the shell could be observed. In contrast to the surfactant stabilized systems discussed above, metallic covers, especially gold coatings, of Co-particles did not lead to a complete protection shell. In all cases, the cobalt in the nanoparticles was oxidized. A core shell structure could not be verified for any of the metallic stabilized colloids. (orig.)

  14. High-pressure phase transition of alkali metal-transition metal deuteride Li2PdD2

    Science.gov (United States)

    Yao, Yansun; Stavrou, Elissaios; Goncharov, Alexander F.; Majumdar, Arnab; Wang, Hui; Prakapenka, Vitali B.; Epshteyn, Albert; Purdy, Andrew P.

    2017-06-01

    A combined theoretical and experimental study of lithium palladium deuteride (Li2PdD2) subjected to pressures up to 50 GPa reveals one structural phase transition near 10 GPa, detected by synchrotron powder x-ray diffraction, and metadynamics simulations. The ambient-pressure tetragonal phase of Li2PdD2 transforms into a monoclinic C2/m phase that is distinct from all known structures of alkali metal-transition metal hydrides/deuterides. The structure of the high-pressure phase was characterized using ab initio computational techniques and from refinement of the powder x-ray diffraction data. In the high-pressure phase, the PdD2 complexes lose molecular integrity and are fused to extended [PdD2]∞ chains. The discovered phase transition and new structure are relevant to the possible hydrogen storage application of Li2PdD2 and alkali metal-transition metal hydrides in general.

  15. Half-Metallic Ferromagnetism and Stability of Transition Metal Pnictides and Chalcogenides

    Science.gov (United States)

    Liu, Bang-Gui

    It is highly desirable to explore robust half-metallic ferromagnetic materials compatible with important semiconductors for spintronic applications. A state-of-the-art full potential augmented plane wave method within the densityfunctional theory is reliable enough for this purpose. In this chapter we review theoretical research on half-metallic ferromagnetism and structural stability of transition metal pnictides and chalcogenides. We show that some zincblende transition metal pnictides are half-metallic and the half-metallic gap can be fairly wide, which is consistent with experiment. Systematic calculations reveal that zincblende phases of CrTe, CrSe, and VTe are excellent half-metallic ferromagnets. These three materials have wide half-metallic gaps, are low in total energy with respect to the corresponding ground-state phases, and, importantly, are structurally stable. Halfmetallic ferromagnetism is also found in wurtzite transition metal pnictides and chalcogenides and in transition-metal doped semiconductors as well as deformed structures. Some of these half-metallic materials could be grown epitaxially in the form of ultrathin .lms or layers suitable for real spintronic applications.

  16. Investigation of electronic transport properties of some liquid transition metals

    Science.gov (United States)

    Patel, H. P.; Sonvane, Y. A.; Thakor, P. B.

    2018-04-01

    We investigated electronic transport properties of some liquid transition metals (V, Cr, Mn, Fe, Co and Pt) using Ziman formalism. Our parameter free model potential which is realized on ionic and atomic radius has been incorporated with the Hard Sphere Yukawa (HSY) reference system to study the electronic transport properties like electrical resistivity (ρ), thermal conductivity (σ) and thermo electrical power (Q). The screening effect on aforesaid properties has been studied by using different screening functions. The correlations of our results and others data with in addition experimental values are profoundly promising to the researchers working in this field. Also, we conclude that our newly constructed parameter free model potential is capable to explain the aforesaid electronic transport properties.

  17. Transition metal nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Pregosin, P.S.

    1991-01-01

    Transition metal NMR spectroscopy has progressed enormously in recent years. New methods, and specifically solid-state methods and new pulse sequences, have allowed access to data from nuclei with relatively low receptivities with the result that chemists have begun to consider old and new problems, previously unapproachable. Moreover, theory, computational science in particular, now permits the calculation of not just 13 C, 15 N and other light nuclei chemical shifts, but heavy main-group element and transition metals as well. These two points, combined with increasing access to high field pulsed spectrometer has produced a wealth of new data on the NMR transition metals. A new series of articles concerned with measuring, understanding and using the nuclear magnetic resonance spectra of the metals of Group 3-12 is presented. (author)

  18. Magnetism and magnetocrystalline anisotropy in single-layer PtSe{sub 2}: Interplay between strain and vacancy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wei, E-mail: zhangw@nfpc.edu.cn; Tao, Qiu Chen; Song, Xiao Jiao; Li, Hao [Physicochemical Group of Department of Criminal Science and Technology, Nanjing Forest Police College, Nanjing 210023 (China); Guo, Hai Tao; Jiang, Jing [Physicochemical Group of Department of Criminal Science and Technology, Nanjing Forest Police College, Nanjing 210023 (China); National Judicial Authentication Center of Public Security Bureau of State Forestry Bureau, Nanjing Forest Police College, Nanjing 210023 (China); Huang, Jie [Department of Physics and Institute of Theoretical Physics, Nanjing Normal University, Nanjing 210023 (China)

    2016-07-07

    The electronic and magnetic properties of the newly synthesized single-layer (1 L) transition-metal dichalcogenide (TMD) PtSe{sub 2} are studied by first-principles calculations. We find the strain or selenium vacancy (V{sub Se}) alone cannot induce the magnetism. However, an interplay between strain and V{sub Se} leads to the magnetism due to the breaking of Pt-Pt metallic bonds. Different from the case of 1 L-MoS{sub 2} with V{sub S}, the defective 1 L-PtSe{sub 2} has the spatially extended spin density, which is responsible for the obtained long range ferromagnetic coupling. Moreover, the 1 L-PtSe{sub 2} with V{sub Se} undergoes a spin reorientation transition from out-of-plane to in-plane magnetization, accompanying a maximum magnetocrystalline anisotropy energy of ∼9–10.6 meV/V{sub Se}. These results indicate the strain not only can effectively tune the magnetism but also can manipulate the magnetization direction of 1 L-TMDs.

  19. Structure, Mobility, and Composition of Transition Metal Catalyst Surfaces. High-Pressure Scanning Tunneling Microscopy and Ambient-Pressure X-ray Photoelectron Spectroscopy Studies

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zhongwei [Univ. of California, Berkeley, CA (United States)

    2013-12-06

    Surface structure, mobility, and composition of transition metal catalysts were studied by high-pressure scanning tunneling microscopy (HP-STM) and ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) at high gas pressures. HP-STM makes it possible to determine the atomic or molecular rearrangement at catalyst surfaces, particularly at the low-coordinated active surface sites. AP-XPS monitors changes in elemental composition and chemical states of catalysts in response to variations in gas environments. Stepped Pt and Cu single crystals, the hexagonally reconstructed Pt(100) single crystal, and Pt-based bimetallic nanoparticles with controlled size, shape and composition, were employed as the model catalysts for experiments in this thesis.

  20. Graphene-metal interaction and its effect on the interface stability under ambient conditions

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Aiyi; Fu, Qiang, E-mail: qfu@dicp.ac.cn; Wei, Mingming; Bao, Xinhe

    2017-08-01

    Highlights: • Graphene (Gr)/transition metal (TM: Fe, Co, Pt, and Au) interfaces form through TM intercalation at Gr/Ru(0001) surface. • Graphene-metal interaction strength follows the order of Ru ≈ Fe ≈ Co > Pt > Au. • Oxygen intercalation occurs at Gr/Fe, Gr/Co, Gr/Pt, and Gr/Ru interfaces but not at Gr/Au interface in air around 100 °C. - Abstract: Interaction between graphene (Gr) and metal plays an important role in physics and chemistry of graphene/metal interfaces. In this work, well-defined interfaces between graphene and transition metals (TMs) including Fe, Co, Pt, and Au were prepared through TM intercalation on Gr/Ru(0001) surface. The Gr-metal interaction was investigated using X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy. We found that graphene interacts most strongly with Ru, Fe and Co and most weakly with Au, following the order of Ru ≈ Fe ≈ Co > Pt > Au. The Gr/Fe, Gr/Co, Gr/Pt, and Gr/Ru interfaces can be readily intercalated by oxygen when exposed to air and illuminated by an infrared lamp. In contrast, oxygen intercalation does not happen at the Gr/Au interface under the same condition. It is suggested that both Gr-metal interaction and oxygen adsorption on the underlying metal surface are critical in the oxygen intercalation and the Gr/metal interface stability.

  1. Tuning metal support interactions enhances the activity and durability of TiO2-supported Pt nanocatalysts

    International Nuclear Information System (INIS)

    Hsieh, Bing-Jen; Tsai, Meng-Che; Pan, Chun-Jern; Su, Wei-Nien; Rick, John; Chou, Hung-Lung; Lee, Jyh-Fu; Hwang, Bing-Joe

    2017-01-01

    Highlights: • The coverage of TiO x on Pt can be modified by thermal and fluoric acid treatments. • Strong metal support interaction (SMSI) can be testified by electrochemical method. • For the first time, the SMSI effect is observed at 200 °C with supporting TEM images. • Increased activity and stability are attributed to stronger SMSI. • This tunable approach is valid for other oxide supported catalysts, e.g. Pt/Nb-TiO 2 . - Abstract: A facile approach to enhance catalytic activity and durability of TiO 2 -supported Pt nanocatalysts by tuning strong metal support interaction (SMSI) is investigated in this work. No need for a high temperature treatment, the strong metal-support interaction (SMSI) in TiO 2 -supported Pt can be induced at 200° C by H 2 reduction. Moreover, electrochemical methods (methanol oxidation reaction and cyclic voltammetry) are first reported ever to be effective characterization tools for the coverage state caused by SMSI. In addition, the SMSI has also been confirmed by X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, and Transmission Electron Microscopy. It is found that the encapsulation of TiO 2-x species on the surface Pt clusters was induced and modified by thermal reduction and fluoric acid treatment. The catalytic activity and durability of the TiO 2 -supported Pt nanocatalysts are strongly dependent of the state of SMSI. The proposed SMSI-tunable approach to enhance the ORR activity and stability is also proved applicable to Pt/Ti 0.9 Nb 0.1 O 2 nanocatalysts. We believe that the reported approach paves the way for manipulating the activity and stability of other TiO 2 -supported metal nanocatalysts. Furthermore, the suggested electrochemical methods offer facile and effective ways to verify the presence of coverage state before combining with other physical analysis.

  2. Thermochemistry of some binary lead and transition metal compounds by high temperature direct synthesis calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Meschel, S.V., E-mail: meschel@jfi.uchicago.edu [Illinois Institute of Technology,Thermal Processing Technology Center, 10 W. 32nd Street, Chicago, Illinois 60615 (United States); Gordon Center for Integrated Science, 929 E. 57th Street, Chicago, Illinois 60637 (United States); Nash, P. [Illinois Institute of Technology,Thermal Processing Technology Center, 10 W. 32nd Street, Chicago, Illinois 60615 (United States); Chen, X.Q.; Wei, P. [Materials processing Modeling Division, Shenyang National Laboratory for Materials Science, Institute of Metals Research, 72 Wenhua Road, Shenyang City (China)

    2015-06-05

    Highlights: • Studied binary lead-transition metal alloys by high temperature calorimetry. • Determined the enthalpies of formation of 8 alloys. • Compared the measurements with predictions by the model of Miedema and by the ab initio method. - Abstract: The standard enthalpies of formation of some binary lead and transition metal compounds have been measured by high temperature direct synthesis calorimetry. The reported results are: Pb{sub 3}Sc{sub 5}(−61.3 ± 2.9); PbTi{sub 4}(−16.6 ± 2.4); Pb{sub 3}Y{sub 5}(−64.8 ± 3.6); Pb{sub 3}Zr{sub 5}(−50.6 ± 3.1); PbNb{sub 3}(−10.4 ± 3.4); PbRh(−16.5 ± 3.3); PbPd{sub 3}(−29.6 ± 3.1); PbPt(−34.7 ± 3.3) kJ/mole of atoms. We will compare our results with previously published measurements. We will also compare the experimental measurements with enthalpies of formation of transition metal compounds with elements in the same vertical column in the periodic table. We will compare our measurements with predicted values on the basis of the semi empirical model of Miedema and coworkers and with ab initio values when available.

  3. STRATEGI KONVERSI ENERGI DI PT. LION METAL WORKS Tbk.

    Directory of Open Access Journals (Sweden)

    Daud Sudradjad

    2011-08-01

    Full Text Available Normal 0 false false false MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman"; mso-ansi-language:#0400; mso-fareast-language:#0400; mso-bidi-language:#0400;} PT Lion Metal Works is a company producing office equipment, racking system, building material, security and fireproof safe, and cold forming. The production activity has high dependence on the usage of diesel, which influences the quality of the product and the cost of total business. The price fluctuation is one of the reasons for the company to convert the usage of diesel to some energy alternatives. Gas is the best alternative to replace diesel due to some advantages such as price, installation cost, distribution issue, calorie level, and environmental issue. There are some resistances from internal organization emerge in the implementation of the conversion. The alternatives strategy has been explored to reduce the resistances considering the goal of the organization, the actors (department in the company, and the type of resistance using analytical hierarchy process method. The priority strategy is establishing a new division for handling the conversion program and installing the gas facility gradually.

  4. Superplastic Creep of Metal Nanowires From Rate-Dependent Plasticity Transition.

    Science.gov (United States)

    Tao, Weiwei; Cao, Penghui; Park, Harold S

    2018-04-30

    Understanding the time-dependent mechanical behavior of nanomaterials such as nanowires is essential to predict their reliability in nanomechanical devices. This understanding is typically obtained using creep tests, which are the most fundamental loading mechanism by which the time-dependent deformation of materials is characterized. However, due to existing challenges facing both experimentalists and theorists, the time-dependent mechanical response of nanowires is not well-understood. Here, we use atomistic simulations that can access experimental time scales to examine the creep of single crystal FCC metal (Cu, Ag, Pt) nanowires. We report that both Cu and Ag nanowires show significantly increased ductility and superplasticity under low creep stresses, where the superplasticity is driven by a rate-dependent transition in defect nucleation from twinning to trailing partial dislocations at the micro or millisecond timescale. The transition in deformation mechanism also governs a corresponding transition in the stress-dependent creep time at the microsecond (Ag) and millisecond (Cu) timescales. Overall, this work demonstrates the necessity of accessing timescales that far exceed those seen in conventional atomistic modeling for accurate insights into the time-dependent mechanical behavior and properties of nanomaterials.

  5. Tuning the magnetic properties of deposited transition metal clusters by decoration

    Energy Technology Data Exchange (ETDEWEB)

    Minar, Jan; Bornemann, S.; Ebert, H. [Dept. Chemie, LMU, Butenandtstr. 5-13, 81377 Muenchen (Germany); Staunton, J.B. [Department of Physics, University of Warwick (United Kingdom); Rusponi, S.; Brunne, H. [EPF Lausanne (Switzerland)

    2008-07-01

    Using the fully relativistic version of the KKR-method for electronic structure calculations within local spin density functional theory (LSDA) the magnetic properties of Fe, Co and Ni clusters deposited on the Pt(111) surface have been investigated. Of central interest are the role of spin-orbit coupling as it influences the spontaneous formation and orientation of magnetic moments and gives rise amongst others to the occurrence of orbital magnetic moments, the magnetic anisotropy energy (MAE) and magnetic circular dichroism in X-ray absorption (XMCD). Our systematic investigations of different clusters and nanostructures aim to reveal the mutual relationship among their spin-orbit induced properties. In addition they show how their various magnetic properties depend on the structural properties and chemical composition of the studied system. For large two-dimensional clusters we focussed especially on the dependency of the MAE on decoration with another transition metal. Our results are in qualitative agreement with recent experimental findings. We resolved the MAE contributions for inequivalent cluster atoms and will discuss the effect of the induced MAE within the Pt substrate.

  6. Transition voltages of vacuum-spaced and molecular junctions with Ag and Pt electrodes

    KAUST Repository

    Wu, Kunlin; Bai, Meilin; Sanvito, Stefano; Hou, Shimin

    2014-01-01

    The transition voltage of vacuum-spaced and molecular junctions constructed with Ag and Pt electrodes is investigated by non-equilibrium Green's function formalism combined with density functional theory. Our calculations show that, similarly

  7. Low Pt content direct methanol fuel cell anode catalyst: nanophase PtRuNiZr

    Science.gov (United States)

    Narayanan, Sekharipuram R. (Inventor); Whitacre, Jay F. (Inventor)

    2010-01-01

    A method for the preparation of a metallic material having catalytic activity that includes synthesizing a material composition comprising a metal content with a lower Pt content than a binary alloy containing Pt but that displays at least a comparable catalytic activity on a per mole Pt basis as the binary alloy containing Pt; and evaluating a representative sample of the material composition to ensure that the material composition displays a property of at least a comparable catalytic activity on a per mole Pt basis as a representative binary alloy containing Pt. Furthermore, metallic compositions are disclosed that possess substantial resistance to corrosive acids.

  8. Development of luminescent sensors based on transition metal complexes for the detection of nitroexplosives.

    Science.gov (United States)

    Sathish, Veerasamy; Ramdass, Arumugam; Velayudham, Murugesan; Lu, Kuang-Lieh; Thanasekaran, Pounraj; Rajagopal, Seenivasan

    2017-12-12

    The detection of chemical explosives is a major area of research interest and is essential for the military as well as homeland security to counter the catastrophic effects of global terrorism. In recent years, tremendous effort has been devoted to the development of luminescent materials for the detection of explosives in the vapor, solution, and solid states with a high degree of selectivity and sensitivity and a rapid response time. Apart from the wide range of organic fluorescent chemosensors, transition metal complexes play a prominent role in the sensing of nitroaromatic explosives owing to their rich photophysical characteristics. This review briefly summarizes the salient features of the design and preparation of transition metal (Zn(ii), Ir(iii), Pd(ii), Pt(ii), Re(i) and Ru(ii)) complexes/metallacycles/metallosupramolecules with emphasis on their photophysical properties, sensing behavior, mechanism of action, and the driving forces for detecting explosives and future prospects and challenges. Most of the probes that have been reported to date act as "turn-off" luminescent sensors because their emission (intensity, lifetime, and quantum yield) is eventually quenched upon sensing with nitroaromatic compounds (NACs) through photo-induced electron or energy transfer. These unique properties of transition metal complexes in response to explosives open up new vistas for the development of real world applications such as on-site detection, in-field security, forensic research, etc.

  9. Spin-flip transition of L10-type MnPt alloy single crystal studied by neutron scattering

    International Nuclear Information System (INIS)

    Hama, Hiroaki; Motomura, Ryo; Shinozaki, Tatsuya; Tsunoda, Yorihiko

    2007-01-01

    Magnetic structure, tetragonality, and the spin-flip transition for an L1 0 -type MnPt ordered alloy were studied by neutron scattering using a single-crystal specimen. Tetragonality of the lattice showed strong correlation with the spin-flip transition. Although the spin-flip transition looks like a gradual change of the easy axis in the temperature range between 580 and 770 K, two modes of magnon-gap peaks with different energies were observed in this transition temperature range. Thus, the crystal consists of two regions with different anisotropy energies and the volume fractions of these regions with different spin directions change gradually with temperature. The tetragonality and spin-flip transition are discussed using the hard-sphere model for atomic radii of Pt and Mn. The Invar effect of Mn atoms is proposed using high- and low-spin transitions of Mn moments in analogy with the two-γ model of Fe moments in FeNi Invar alloy

  10. Pt/MOx/SiO2, Pt/MOx/TiO2, and Pt/MOx/Al2O3 Catalysts for CO Oxidation

    Directory of Open Access Journals (Sweden)

    Hongmei Qin

    2015-04-01

    Full Text Available Conventional supported Pt catalysts have often been prepared by loading Pt onto commercial supports, such as SiO2, TiO2, Al2O3, and carbon. These catalysts usually have simple metal-support (i.e., Pt-SiO2 interfaces. To tune the catalytic performance of supported Pt catalysts, it is desirable to modify the metal-support interfaces by incorporating an oxide additive into the catalyst formula. Here we prepared three series of metal oxide-modified Pt catalysts (i.e., Pt/MOx/SiO2, Pt/MOx/TiO2, and Pt/MOx/Al2O3, where M = Al, Fe, Co, Cu, Zn, Ba, La for CO oxidation. Among them, Pt/CoOx/SiO2, Pt/CoOx/TiO2, and Pt/CoOx/Al2O3 showed the highest catalytic activities. Relevant samples were characterized by N2 adsorption-desorption, X-ray diffraction (XRD, transmission electron microscopy (TEM, H2 temperature-programmed reduction (H2-TPR, X-ray photoelectron spectroscopy (XPS, CO temperature-programmed desorption (CO-TPD, O2 temperature-programmed desorption (O2-TPD, and CO2 temperature-programmed desorption (CO2-TPD.

  11. Preparation of PtSn/C, PtRu/C, PtRh/C, PtRuRh/C and PtSnRh/C electrocatalysts using an alcohol-reduction process for methanol and ethanol oxidation; Preparacao e caracterizacao de eletrocatalisadores PtRu, PtSn, PtRh, PtRuRh e PtSnRh para oxidacao direta de alcoois em celulas a combustivel tipo PEM utilizando a metodologia da reducao por alcool

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Ricardo Rodrigues

    2009-07-01

    In this work, Pt/C, PtRh (90:10), PtRh/C (50:50), PtSn/C (50:50), PtRu (50:50)/C, PtRuRh/C (50:40:10) and PtSnRh/C (50:40:10) were prepared by an alcohol-reduction process with metal loading of 20 wt.% using H{sub 2}PtCl{sub 6}.6H{sub 2}O (Aldrich), SnCl{sub 2}.2H{sub 2}O (Aldrich),and RhCl{sub 2}.XH{sub 2}O (Aldrich) as metals sources and Vulcan XC72 as support. The electrocatalysts were characterized by EDX, XRD and cyclic voltammetry (CV). The electro-oxidation of ethanol was studied by CV, chronoamperomety at room temperature in acid medium and tests at 100 deg C on a single cell of a direct methanol or ethanol fuel cell. The EDX analysis showed that the metal atomic ratios of the obtained electrocatalysts were similar to the nominal atomic ratios used in the preparation. The diffractograms of electrocatalysts prepared showed four peaks at approximately 2{theta} =40 deg, 47 deg, 67 deg and 82 deg, which are associated with the (111), (200), (220) and (311) planes, respectively, of a face cubic-centered (fcc) structure characteristic of platinum and platinum alloys. The average crystallite sizes using the Scherrer equation and the calculated values were in the range of 2-3 nm. For Pt Sn/C and PtSnRh/C two additional peaks were observed at 2 = 34 deg and 52 deg that were identified as a SnO{sub 2} phase. Pt Sn/C (50:50) and PtSnRh/C (50:40:10) electro catalyst showed the best performance for ethanol oxidation at room temperature. For methanol oxidation at room temperature Pt Ru/C, Pt Sn/C and PtRuRh/C electrocatalysts showed the best performance. Tests at 100 deg C on a single cell of a direct ethanol fuel cell PtSnRh/C showed the best performance, for methanol oxidation PtRuRh/C showed the best performance. (author)

  12. A DFT study of volatile organic compounds adsorption on transition metal deposited graphene

    International Nuclear Information System (INIS)

    Kunaseth, Manaschai; Poldorn, Preeyaporn; Junkeaw, Anchalee; Meeprasert, Jittima; Rungnim, Chompoonut; Namuangruk, Supawadee; Kungwan, Nawee; Inntam, Chan; Jungsuttiwong, Siriporn

    2017-01-01

    Highlights: • VOCs removal via modified carbon-based adsorbent using density functional theory. • The single-vacancy defective graphene (SDG) with metal-deposited significantly increase the adsorption efficiency. • TM-doped SDG is a suitable adsorbent material for VOC removal. • Electron in hybridized sp"2-orbitals of heteroatoms has an effect on mode of adsorption. - Abstract: Recently, elevated global emission of volatile organic compounds (VOCs) was associated to the acceleration and increasing severity of climate change worldwide. In this work, we investigated the performance of VOCs removal via modified carbon-based adsorbent using density functional theory. Here, four transition metals (TMs) including Pd, Pt, Ag, and Au were deposited onto single-vacancy defective graphene (SDG) surface to increase the adsorption efficiency. Five prototypical VOCs including benzene, furan, pyrrole, pyridine, and thiophene were used to study the adsorption capability of metal-deposited graphene adsorbent. Calculation results revealed that Pd, Pt, Au, and Ag atoms and nanoclusters bind strongly onto the SDG surface. In this study, benzene, furan and pyrrole bind in the π-interaction mode using delocalized π-electron in aromatic ring, while pyridine and thiophene favor X- interaction mode, donating lone pair electron from heteroatom. In terms of adsorption, pyridine VOC adsorption strengths to the TM-cluster doped SDG surfaces are Pt_4 (−2.11 eV) > Pd_4 (−2.05 eV) > Ag_4 (−1.53 eV) > Au_4 (−1.87 eV). Our findings indicate that TM-doped SDG is a suitable adsorbent material for VOC removal. In addition, partial density of states analysis suggests that benzene, furan, and pyrrole interactions with TM cluster are based on p-orbitals of carbon atoms, while pyridine and thiophene interactions are facilitated by hybridized sp"2-orbitals of heteroatoms. This work provides a key insight into the fundamentals of VOCs adsorption on carbon-based adsorbent.

  13. Electrocatalytic activity of Pt and PtCo deposited on Ebonex by BH reduction

    International Nuclear Information System (INIS)

    Slavcheva, E.; Nikolova, V.; Petkova, T.; Lefterova, E.; Dragieva, I.; Vitanov, T.; Budevski, E.

    2005-01-01

    The method of borohydride reduction (BH) has been applied to synthesize Pt and PtCo nanoparticles supported on Magneli phase titanium oxides, using Pt and Co ethylenediamine complexes as metal precursors. The phase composition of the synthesized catalysts, their morphology and surface structure were studied by physical methods for bulk and surface analysis, such as electron microprobe analysis (EMPA), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and BET technique. The catalytic activity towards oxygen evolution reaction in alkaline aqueous solution was investigated using the common electrochemical techniques. It was found that PtCo/Ebonex facilitates essentially the oxygen evolution which starts at lower overpotentials and proceeds with higher rate compared to both the supported Pt and unsupported PtCo catalysts. The observed effect is prescribed to metal-metal and metal-support interactions. The Ebonex possesses a good electrical conductivity and corrosion resistance at high anodic potentials and despite its low surface area is considered as a potential catalyst carrier for the oxygen evolution reaction

  14. Metal-to-nonmetal transitions

    CERN Document Server

    Hensel, Friedrich; Holst, Bastian

    2010-01-01

    This book is devoted to nonmetal-to-metal transitions. The original ideas of Mott for such a transition in solids have been adapted to describe a broad variety of phenomena in condensed matter physics (solids, liquids, and fluids), in plasma and cluster physics, as well as in nuclear physics (nuclear matter and quark-gluon systems). The book gives a comprehensive overview of theoretical methods and experimental results of the current research on the Mott effect for this wide spectrum of topics. The fundamental problem is the transition from localized to delocalized states which describes the nonmetal-to-metal transition in these diverse systems. Based on the ideas of Mott, Hubbard, Anderson as well as Landau and Zeldovich, internationally respected scientists present the scientific challenges and highlight the enormous progress which has been achieved over the last years. The level of description is aimed to specialists in these fields as well as to young scientists who will get an overview for their own work...

  15. Superconductivity in transition metals.

    Science.gov (United States)

    Slocombe, Daniel R; Kuznetsov, Vladimir L; Grochala, Wojciech; Williams, Robert J P; Edwards, Peter P

    2015-03-13

    A qualitative account of the occurrence and magnitude of superconductivity in the transition metals is presented, with a primary emphasis on elements of the first row. Correlations of the important parameters of the Bardeen-Cooper-Schrieffer theory of superconductivity are highlighted with respect to the number of d-shell electrons per atom of the transition elements. The relation between the systematics of superconductivity in the transition metals and the periodic table high-lights the importance of short-range or chemical bonding on the remarkable natural phenomenon of superconductivity in the chemical elements. A relationship between superconductivity and lattice instability appears naturally as a balance and competition between localized covalent bonding and so-called broken covalency, which favours d-electron delocalization and superconductivity. In this manner, the systematics of superconductivity and various other physical properties of the transition elements are related and unified. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  16. Support effects and catalytic trends for water gas shift activity of transition metals

    DEFF Research Database (Denmark)

    Boisen, Astrid; Janssens, T.V.W.; Schumacher, Nana Maria Pii

    2010-01-01

    Water gas shift activity measurements for 12 transition metals (Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag, Re, Ir, Pt, Au) supported on inert MgAl2O4 and Ce0.75Zr0.25O2 are presented, to elucidate the influence of the active metal and the support. The activity is related to the adsorption energy of molecular...... activity on the MgAl2O4 support and are both characterized by weak CO adsorption. For the MgAl2O4-supported catalysts a volcano-type relation between the activity and the adsorption energy of atomic oxygen on the metal is obtained. The maximum activity is found for metals with a binding energy of oxygen...... around −2.5 eV. No clear correlation exists with the adsorption energy of CO. In contrast, the activity for the Ce0.75Zr0.25O2 support increases with increasing adsorption strength for CO, and based on a relatively low activity of Cu the activity does not seem to depend on the adsorption energy of oxygen...

  17. Preparation of PtSn/C, PtRu/C, PtRh/C, PtRuRh/C and PtSnRh/C electrocatalysts using an alcohol-reduction process for methanol and ethanol oxidation

    International Nuclear Information System (INIS)

    Dias, Ricardo Rodrigues

    2009-01-01

    In this work, Pt/C, PtRh (90:10), PtRh/C (50:50), PtSn/C (50:50), PtRu (50:50)/C, PtRuRh/C (50:40:10) and PtSnRh/C (50:40:10) were prepared by an alcohol-reduction process with metal loading of 20 wt.% using H 2 PtCl 6 .6H 2 O (Aldrich), SnCl 2 .2H 2 O (Aldrich),and RhCl 2 .XH 2 O (Aldrich) as metals sources and Vulcan XC72 as support. The electrocatalysts were characterized by EDX, XRD and cyclic voltammetry (CV). The electro-oxidation of ethanol was studied by CV, chronoamperomety at room temperature in acid medium and tests at 100 deg C on a single cell of a direct methanol or ethanol fuel cell. The EDX analysis showed that the metal atomic ratios of the obtained electrocatalysts were similar to the nominal atomic ratios used in the preparation. The diffractograms of electrocatalysts prepared showed four peaks at approximately 2θ = 40 0 , 47 0 , 67 0 and 82 0 , which are associated with the (111), (200), (220) and (311) planes, respectively, of a face cubic-centered (fcc) structure characteristic of platinum and platinum alloys. The average crystallite sizes using the Scherrer equation and the calculated values were in the range of 2–3 nm. For PtSn/C and PtSnRh/C two additional peaks were observed at 2θ = 34 0 and 52 0 that were identified as a SnO 2 phase. PtSn/C (50:50) and PtSnRh/C (50:40:10) electrocatalyst showed the best performance for ethanol oxidation at room temperature. For methanol oxidation at room temperature PtRu/C, PtSn/C and PtRuRh/C electrocatalysts showed the best performance. Tests at 100 deg C on a single cell of a direct ethanol fuel cell PtSnRh/C showed the best performance, for methanol oxidation PtRuRh/C showed the best performance. (author)

  18. Reduction in L10 phase transition temperature of PLD grown FePt thin by pre-annealing pulse laser exposure

    International Nuclear Information System (INIS)

    Wang, Y.; Rawat, R.S.; Bisht, A.

    2013-01-01

    A pre-annealing atmospheric pulsed laser exposure was applied to decrease the phase transition (from chemically disordered A1 phase to chemically ordered L1 0 phase) temperature of FePt nano-particles on a Si (100) substrate. Different pre-annealing laser energy densities of 0.024 and 0.079 J/cm2 were utilized to expose the pulsed laser deposition (PLD) FePt thin film samples under atmospheric conditions. Subsequently, FePt thin film samples were annealed at different temperatures of 300 and 400 ºC to observe the influence of laser exposure on the phase transition temperature. The phase transition temperature was decreased from conventional 600 ºC to 400 ºC by one shot pre-annealing atmospheric pulsed laser exposure. (author)

  19. Hg and Pt-metals in meteorite carbon-rich residues - Suggestions for possible host phase for Hg

    Science.gov (United States)

    Jovanovic, S.; Reed, G. W., Jr.

    1980-01-01

    Carbon-rich and oxide residual phases have been isolated from Allende and Murchison by acid demineralization for the determination of their Hg, Pt-metal, Cr, Sc, Co, and Fe contents. Experimental procedures used eliminated the possibility of exogenous and endogenous contaminant trace elements from coprecipitating with the residues. Large enrichments of Hg and Pt-metals were found in Allende but not in Murchison residues. Hg-release profiles from stepwise heating experiments suggest a sulfide as the host for Hg. Diffusion calculations for Hg based on these experiments indicate an activation energy of 7-8 kcal/mol, the same as that for Hg in troilite from an iron meteorite. This is further support for a sulfide host phase for Hg. Equilibration of Hg with this phase at approximately 900 K is indicated. Reasons for the presence of Pt-metals in noncosmic relative abundances are explored.

  20. Mesoporous Transition Metal Oxides for Supercapacitors.

    Science.gov (United States)

    Wang, Yan; Guo, Jin; Wang, Tingfeng; Shao, Junfeng; Wang, Dong; Yang, Ying-Wei

    2015-10-14

    Recently, transition metal oxides, such as ruthenium oxide (RuO₂), manganese dioxide (MnO₂), nickel oxides (NiO) and cobalt oxide (Co₃O₄), have been widely investigated as electrode materials for pseudo-capacitors. In particular, these metal oxides with mesoporous structures have become very hot nanomaterials in the field of supercapacitors owing to their large specific surface areas and suitable pore size distributions. The high specific capacities of these mesoporous metal oxides are resulted from the effective contacts between electrode materials and electrolytes as well as fast transportation of ions and electrons in the bulk of electrode and at the interface of electrode and electrolyte. During the past decade, many achievements on mesoporous transition metal oxides have been made. In this mini-review, we select several typical nanomaterials, such as RuO₂, MnO₂, NiO, Co₃O₄ and nickel cobaltite (NiCo₂O₄), and briefly summarize the recent research progress of these mesoporous transition metal oxides-based electrodes in the field of supercapacitors.

  1. Potential of Transition Metal Atoms Embedded in Buckled Monolayer g-C3N4 as Single-Atom Catalysts

    KAUST Repository

    Li, Shu-Long; Kan, Xiang; Yin, Hui; Gan, Li-Yong; Schwingenschlö gl, Udo; Zhao, Yong

    2017-01-01

    We use first-principles calculations to systematically explore the potential of transition metal atoms (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag, Ir, Pt, and Au) embedded in buckled monolayer g-C3N4 as single-atom catalysts. We show that clustering of Sc and Ti on g-C3N4 is thermodynamically impeded and that V, Cr, Mn, and Cu are much less susceptible to clustering than the other TM atoms under investigation. Strong bonding of the transition metal atoms in the cavities of g-C3N4 and high diffusion barriers together are responsible for single-atom fixation. Analysis of the CO oxidation process indicates that embedding of Cr and Mn in g-C3N4 gives rise to promising single-atom catalysts at low temperature.

  2. Potential of Transition Metal Atoms Embedded in Buckled Monolayer g-C3N4 as Single-Atom Catalysts

    KAUST Repository

    Li, Shu-Long

    2017-10-27

    We use first-principles calculations to systematically explore the potential of transition metal atoms (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag, Ir, Pt, and Au) embedded in buckled monolayer g-C3N4 as single-atom catalysts. We show that clustering of Sc and Ti on g-C3N4 is thermodynamically impeded and that V, Cr, Mn, and Cu are much less susceptible to clustering than the other TM atoms under investigation. Strong bonding of the transition metal atoms in the cavities of g-C3N4 and high diffusion barriers together are responsible for single-atom fixation. Analysis of the CO oxidation process indicates that embedding of Cr and Mn in g-C3N4 gives rise to promising single-atom catalysts at low temperature.

  3. Preparation of PtSn/C, PtRu/C, PtRh/C, PtRuRh/C and PtSnRh/C electrocatalysts using an alcohol-reduction process for methanol and ethanol oxidation; Preparacao e caracterizacao de eletrocatalisadores PtRu, PtSn, PtRh, PtRuRh e PtSnRh para oxidacao direta de alcoois em celulas a combustivel tipo PEM utilizando a metodologia da reducao por alcool

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Ricardo Rodrigues

    2009-07-01

    In this work, Pt/C, PtRh (90:10), PtRh/C (50:50), PtSn/C (50:50), PtRu (50:50)/C, PtRuRh/C (50:40:10) and PtSnRh/C (50:40:10) were prepared by an alcohol-reduction process with metal loading of 20 wt.% using H{sub 2}PtCl{sub 6}.6H{sub 2}O (Aldrich), SnCl{sub 2}.2H{sub 2}O (Aldrich),and RhCl{sub 2}.XH{sub 2}O (Aldrich) as metals sources and Vulcan XC72 as support. The electrocatalysts were characterized by EDX, XRD and cyclic voltammetry (CV). The electro-oxidation of ethanol was studied by CV, chronoamperomety at room temperature in acid medium and tests at 100 deg C on a single cell of a direct methanol or ethanol fuel cell. The EDX analysis showed that the metal atomic ratios of the obtained electrocatalysts were similar to the nominal atomic ratios used in the preparation. The diffractograms of electrocatalysts prepared showed four peaks at approximately 2θ = 40{sup 0}, 47{sup 0}, 67{sup 0} and 82{sup 0}, which are associated with the (111), (200), (220) and (311) planes, respectively, of a face cubic-centered (fcc) structure characteristic of platinum and platinum alloys. The average crystallite sizes using the Scherrer equation and the calculated values were in the range of 2–3 nm. For PtSn/C and PtSnRh/C two additional peaks were observed at 2θ = 34{sup 0} and 52{sup 0} that were identified as a SnO{sub 2} phase. PtSn/C (50:50) and PtSnRh/C (50:40:10) electrocatalyst showed the best performance for ethanol oxidation at room temperature. For methanol oxidation at room temperature PtRu/C, PtSn/C and PtRuRh/C electrocatalysts showed the best performance. Tests at 100 deg C on a single cell of a direct ethanol fuel cell PtSnRh/C showed the best performance, for methanol oxidation PtRuRh/C showed the best performance. (author)

  4. Metal adsorption on monolayer blue phosphorene: A first principles study

    Science.gov (United States)

    Khan, Imran; Son, Jicheol; Hong, Jisang

    2018-01-01

    We investigated the electronic structure, adsorption energies, magnetic properties, dipole moment and work function of metal adatoms (Mg, Cr, Mo, Pd, Pt, and Au) adsorption on a blue phosphorene monolayer. For Mg, Pt and Au metals, the most stable state was found in hollow site while for Cr, Mo and Pd metals we found an adsorption in valley site. We suggest that the Pd and Pt atoms prefer 2D growth mode while the Mg, Cr, Mo and Au atoms prefer 3D island growth mode on monolayer phosphorene. The electronic band structures and magnetic properties were dependent on the doping site and dopant materials. For instance, the semiconducting features were preserved in Mg, Pd, Pt, and Au doped systems. However, the Cr and Mo doped systems displayed half-metallic band structures. The total magnetic moment of 4.05, 2.0 and 0.77 μB /impurity atom were obtained in Cr, Mo and Au doped systems whereas the Mg, Pd and Pt doped systems remained nonmagnetic. We also investigated the magnetic interaction between two transition metal impurities. We observed ferromagnetic coupling between two transition metal impurities in Cr and Mo doped systems while the Au doped system displayed almost degenerated magnetic state. For Mg, Cr, and Mo adsorptions, we found relatively large values of dipole moments compared to those in the Pd, Pt and Au adsorptions. This resulted in a significant suppression of the work function in Mg, Cr and Mo adsorptions. Overall, adsorption can tune the physical and magnetic properties of phosphorene monolayer.

  5. Addressing Challenges and Scalability in the Synthesis of Thin Uniform Metal Shells on Large Metal Nanoparticle Cores: Case Study of Ag-Pt Core-Shell Nanocubes.

    Science.gov (United States)

    Aslam, Umar; Linic, Suljo

    2017-12-13

    Bimetallic nanoparticles in which a metal is coated with an ultrathin (∼1 nm) layer of a second metal are often desired for their unique chemical and physical properties. Current synthesis methods for producing such core-shell nanostructures often require incremental addition of a shell metal precursor which is rapidly reduced onto metal cores. A major shortcoming of this approach is that it necessitates precise concentrations of chemical reagents, making it difficult to perform at large scales. To address this issue, we considered an approach whereby the reduction of the shell metal precursor was controlled through in situ chemical modification of the precursor. We used this approach to develop a highly scalable synthesis for coating atomic layers of Pt onto Ag nanocubes. We show that Ag-Pt core-shell nanostructures are synthesized in high yields and that these structures effectively combine the optical properties of the plasmonic Ag nanocube core with the surface properties of the thin Pt shell. Additionally, we demonstrate the scalability of the synthesis by performing a 10 times scale-up.

  6. On the electron density localization in elemental cubic ceramic and FCC transition metals by means of a localized electrons detector.

    Science.gov (United States)

    Aray, Yosslen; Paredes, Ricardo; Álvarez, Luis Javier; Martiz, Alejandro

    2017-06-14

    The electron density localization in insulator and semiconductor elemental cubic materials with diamond structure, carbon, silicon, germanium, and tin, and good metallic conductors with face centered cubic structure such as α-Co, Ni, Cu, Rh, Pd, Ag, Ir, Pt, and Au, was studied using a localized electrons detector defined in the local moment representation. Our results clearly show an opposite pattern of the electron density localization for the cubic ceramic and transition metal materials. It was found that, for the elemental ceramic materials, the zone of low electron localization is very small and is mainly localized on the atomic basin edges. On the contrary, for the transition metals, there are low-valued localized electrons detector isocontours defining a zone of highly delocalized electrons that extends throughout the material. We have found that the best conductors are those in which the electron density at this low-value zone is the lowest.

  7. Mass fractionation processes of transition metal isotopes

    Science.gov (United States)

    Zhu, X. K.; Guo, Y.; Williams, R. J. P.; O'Nions, R. K.; Matthews, A.; Belshaw, N. S.; Canters, G. W.; de Waal, E. C.; Weser, U.; Burgess, B. K.; Salvato, B.

    2002-06-01

    Recent advances in mass spectrometry make it possible to utilise isotope variations of transition metals to address some important issues in solar system and biological sciences. Realisation of the potential offered by these new isotope systems however requires an adequate understanding of the factors controlling their isotope fractionation. Here we show the results of a broadly based study on copper and iron isotope fractionation during various inorganic and biological processes. These results demonstrate that: (1) naturally occurring inorganic processes can fractionate Fe isotope to a detectable level even at temperature ˜1000°C, which challenges the previous view that Fe isotope variations in natural system are unique biosignatures; (2) multiple-step equilibrium processes at low temperatures may cause large mass fractionation of transition metal isotopes even when the fractionation per single step is small; (3) oxidation-reduction is an importation controlling factor of isotope fractionation of transition metal elements with multiple valences, which opens a wide range of applications of these new isotope systems, ranging from metal-silicate fractionation in the solar system to uptake pathways of these elements in biological systems; (4) organisms incorporate lighter isotopes of transition metals preferentially, and transition metal isotope fractionation occurs stepwise along their pathways within biological systems during their uptake.

  8. Nucleic acid-functionalized transition metal nanosheets for biosensing applications.

    Science.gov (United States)

    Mo, Liuting; Li, Juan; Liu, Qiaoling; Qiu, Liping; Tan, Weihong

    2017-03-15

    In clinical diagnostics, as well as food and environmental safety practices, biosensors are powerful tools for monitoring biological or biochemical processes. Two-dimensional (2D) transition metal nanomaterials, including transition metal chalcogenides (TMCs) and transition metal oxides (TMOs), are receiving growing interest for their use in biosensing applications based on such unique properties as high surface area and fluorescence quenching abilities. Meanwhile, nucleic acid probes based on Watson-Crick base-pairing rules are also being widely applied in biosensing based on their excellent recognition capability. In particular, the emergence of functional nucleic acids in the 1980s, especially aptamers, has substantially extended the recognition capability of nucleic acids to various targets, ranging from small organic molecules and metal ions to proteins and cells. Based on π-π stacking interaction between transition metal nanosheets and nucleic acids, biosensing systems can be easily assembled. Therefore, the combination of 2D transition metal nanomaterials and nucleic acids brings intriguing opportunities in bioanalysis and biomedicine. In this review, we summarize recent advances of nucleic acid-functionalized transition metal nanosheets in biosensing applications. The structure and properties of 2D transition metal nanomaterials are first discussed, emphasizing the interaction between transition metal nanosheets and nucleic acids. Then, the applications of nucleic acid-functionalized transition metal nanosheet-based biosensors are discussed in the context of different signal transducing mechanisms, including optical and electrochemical approaches. Finally, we provide our perspectives on the current challenges and opportunities in this promising field. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Bidirectional threshold switching characteristics in Ag/ZrO2/Pt electrochemical metallization cells

    Directory of Open Access Journals (Sweden)

    Gang Du

    2016-08-01

    Full Text Available A bidirectional threshold switching (TS characteristic was demonstrated in Ag/ZrO2/Pt electrochemical metallization cells by using the electrochemical active Ag electrode and appropriate programming operation strategies The volatile TS was stable and reproducible and the rectify ratio could be tuned to ∼107 by engineering the compliance current. We infer that the volatile behavior is essentially due to the moisture absorption in the electron beam evaporated films, which remarkably improved the anodic oxidation as well as the migration of Ag+ ions. The resultant electromotive force would act as a driving force for the metal filaments dissolution, leading to the spontaneous volatile characteristics. Moreover, conductance quantization behaviors were also achieved owing to formation and annihilation of atomic scale metal filaments in the film matrix. Our results illustrate that the Ag/ZrO2/Pt device with superior TS performances is a promising candidate for selector applications in passive crossbar arrays.

  10. DFT Study of Optical Properties of Pt-based Complexes

    Science.gov (United States)

    Oprea, Corneliu I.; Dumbravǎ, Anca; Moscalu, Florin; Nicolaides, Atnanassios; Gîrţu, Mihai A.

    2010-01-01

    We report Density Functional Theory (DFT) calculations providing the geometrical and electronic structures, as well as the vibrational and optical properties of the homologous series of Pt-pyramidalized olefin complexes (CH2)n-(C8H10)Pt(PH3)2, where n = 0, 1, and 2, in their neutral and oxidized states. All complexes were geometry optimized for the singlet ground state in vacuum using DFT methods with B3LYP exchange-correlation functional and the Effective Core Potential LANL2DZ basis set, within the frame of Gaussian03 quantum chemistry package. We find the coordination geometry of Pt to be distorted square planar, with dihedral angles ranging from 0°, for n = 0 and 1, which have C2V symmetry to 3.4°, for n = 2 with C2 symmetry. The Mulliken charge analysis allows a discussion of the oxidation state of the Pt ion. Electronic transitions were calculated at the same level of theory by means of Time Dependant-DFT. For n = 2 the electronic absorption bands are located in the UV region of the spectrum, the transitions being assigned to metal to ligand charge transfers. The relevance of these Pt-based compounds as possible pigments for dye-sensitized solar cells is discussed.

  11. Manipulating Light with Transition Metal Clusters, Organic Dyes, and Metal Organic Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Ogut, Serdar [Univ. of Illinois, Chicago, IL (United States)

    2017-09-11

    The primary goals of our research program is to develop and apply state-of-the-art first-principles methods to predict electronic and optical properties of three systems of significant scientific and technological interest: transition metal clusters, organic dyes, and metal-organic frameworks. These systems offer great opportunities to manipulate light for a wide ranging list of energy-related scientific problems and applications. During this grant period, we focused our investigations on the development, implementation, and benchmarking of many-body Green’s function methods (GW approximation and the Bethe-Salpeter equation) to examine excited-state properties of transition metal/transition-metal-oxide clusters and organic molecules that comprise the building blocks of dyes and metal-organic frameworks.

  12. Incorporation of metals (Pt-Ni-Ru) in the zeolite ZSM-5 through ion exchange competitive: synthesis and characterization

    International Nuclear Information System (INIS)

    Barbosa, A.S.; Rodrigues, M.G.F.

    2012-01-01

    Zeolites are very important materials due to their high specific surface area. Moreover, they are suitable for use as catalyst support. Noble metals supported on zeolites have been widely used as catalysts in the petrochemical industry. This paper was prepared and characterized, a powder aiming its use in heterogeneous catalysis. Support was used as ZSM-5 and the method of incorporation of the metals (Ru-PtNi) was competitive ion exchange. The materials (ZSM-5 and Pt-Ni-Ru/ZSM-5) were characterized by spectrophotometry Energy Dispersive X-ray (EDX), X-Ray Diffraction (XRD) and nitrogen physisorption (BET method). Based on the results of X-ray diffraction, it is possible to demonstrate the preservation of the structure of zeolite ZSM-5 after the competitive ion Exchange with metals (Ru-Pt-Ni) and calcination. The dispersion of metals on ZSM-5 did not change the textural characteristics of the zeolite. (author)

  13. Surface segregation energies in transition-metal alloys

    DEFF Research Database (Denmark)

    Ruban, Andrei; Skriver, Hans Lomholt; Nørskov, Jens Kehlet

    1999-01-01

    We present a database of 24 x 24 surface segregation energies of single transition metal impurities in transition-metal hosts obtained by a Green's-function linear-muffin-tin-orbitals method in conjunction with the coherent potential and atomic sphere approximations including a multipole correction...... to the electrostatic potential and energy. We use the database to establish the major factors which govern surface segregation in transition metal alloys. We find that the calculated trends are well described by Friedel's rectangular state density model and that the few but significant deviations from the simple...

  14. Independent control of metal cluster and ceramic particle characteristics during one-step synthesis of Pt/TiO2

    DEFF Research Database (Denmark)

    Schulz, H.; Madler, L.; Strobel, R.

    2005-01-01

    Rapid quenching during flame spray synthesis of Pt/TiO2 (0-10 Wt% Pt) is demonstrated as a versatile method for independent control of support (TiO2) and noble metal (Pt)cluster characteristics. Titania grain size, morphology, crystal phase structure, and crystal size were analyzed by nitrogen ad...

  15. Reactivity of monoolefin ligand in transition metal complexes

    International Nuclear Information System (INIS)

    Rybinskaya, M.I.

    1978-01-01

    The main tendencies in the coordinated olefin ligand property changes are discussed in the transition metal complexes in comparison with free olefins. The review includes the papers published from 1951 up to 1976. It has been shown that in complexes with transition metal cations olefin π-base acquires the ability to react with nucleophylic reagents. Olefin π-acids in complexes with zero valent metals are easily subjected to electrophylic reagent action. At coordination with transition metal cations the olefin properties are generally preserved, while in the zero-valent metal complexes the nonsaturated ligand acquires the properties of a saturated compounds. The ability of transition metal cations in complexes to intensify reactions of nucleophylic bimolecular substitution of vinyl halogen is clearly detected in contrast to the zero valent metal complexes. It has been shown that investigations of the coordinated olefin ligand reactivity give large possibilities in the further development of the organic synthesis. Some reactions are taken as the basis of important industrial processes

  16. The Close Relationships between the Crystal Structures of MO and MSO 4 (M = Group 10, 11, or 12 Metal), and the Predicted Structures of AuO and PtSO 4

    KAUST Repository

    Derzsi, Mariana; Hermann, Andreas; Hoffmann, Roald; Grochala, Wojciech

    2013-01-01

    The structural relations of (and between) late transition metal monoxides, MO, and monosulfates, MSO4, are analyzed. We show that all of these late transition metal oxides, as well as 4d and 5d metal sulfates, crystallize in distorted rock salt lattices and argue that the distortions are driven by collective first- and/or second order Jahn-Teller effects. The collective Jahn-Teller deformations lead either to tetragonal contraction or (seldom) elongation of the rock salt lattice. On the basis of the rock salt representation of the oxides and sulfates, we show that PdO, CuO, and AgO are metrically related and that the 4d and 5d metal sulfates are close to isostructural with their oxides. These observations guide us towards as yet unknown AuO and PtSO4, for which we predict crystal structures from electronic structure calculations. The structural relations of (and between) late transition metal monoxides, MO, and monosulfates, MSO4, are analyzed. We show that all of these late transition metal oxides, as well as 4d and 5d metal sulfates, crystallize in distorted rock salt lattices and argue that the distortions are driven by collective first- and/or second order Jahn-Teller effects, as quantified by the c′/a′ ratio. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. The Close Relationships between the Crystal Structures of MO and MSO 4 (M = Group 10, 11, or 12 Metal), and the Predicted Structures of AuO and PtSO 4

    KAUST Repository

    Derzsi, Mariana

    2013-08-21

    The structural relations of (and between) late transition metal monoxides, MO, and monosulfates, MSO4, are analyzed. We show that all of these late transition metal oxides, as well as 4d and 5d metal sulfates, crystallize in distorted rock salt lattices and argue that the distortions are driven by collective first- and/or second order Jahn-Teller effects. The collective Jahn-Teller deformations lead either to tetragonal contraction or (seldom) elongation of the rock salt lattice. On the basis of the rock salt representation of the oxides and sulfates, we show that PdO, CuO, and AgO are metrically related and that the 4d and 5d metal sulfates are close to isostructural with their oxides. These observations guide us towards as yet unknown AuO and PtSO4, for which we predict crystal structures from electronic structure calculations. The structural relations of (and between) late transition metal monoxides, MO, and monosulfates, MSO4, are analyzed. We show that all of these late transition metal oxides, as well as 4d and 5d metal sulfates, crystallize in distorted rock salt lattices and argue that the distortions are driven by collective first- and/or second order Jahn-Teller effects, as quantified by the c′/a′ ratio. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Electrical Conductivity in Transition Metals

    Science.gov (United States)

    Talbot, Christopher; Vickneson, Kishanda

    2013-01-01

    The aim of this "Science Note" is to describe how to test the electron-sea model to determine whether it accurately predicts relative electrical conductivity for first-row transition metals. In the electron-sea model, a metal crystal is viewed as a three-dimensional array of metal cations immersed in a sea of delocalised valence…

  19. Transition metals in carbohydrate chemistry

    DEFF Research Database (Denmark)

    Madsen, Robert

    1997-01-01

    This review describes the application of transition metal mediated reactions in carbohydrate synthesis. The different metal mediated transformations are divided into reaction types and illustrated by various examples on monosaccharide derivatives. Carbon-carbon bond forming reactions are further ...

  20. Mesoporous Transition Metal Oxides for Supercapacitors

    Science.gov (United States)

    Wang, Yan; Guo, Jin; Wang, Tingfeng; Shao, Junfeng; Wang, Dong; Yang, Ying-Wei

    2015-01-01

    Recently, transition metal oxides, such as ruthenium oxide (RuO2), manganese dioxide (MnO2), nickel oxides (NiO) and cobalt oxide (Co3O4), have been widely investigated as electrode materials for pseudo-capacitors. In particular, these metal oxides with mesoporous structures have become very hot nanomaterials in the field of supercapacitors owing to their large specific surface areas and suitable pore size distributions. The high specific capacities of these mesoporous metal oxides are resulted from the effective contacts between electrode materials and electrolytes as well as fast transportation of ions and electrons in the bulk of electrode and at the interface of electrode and electrolyte. During the past decade, many achievements on mesoporous transition metal oxides have been made. In this mini-review, we select several typical nanomaterials, such as RuO2, MnO2, NiO, Co3O4 and nickel cobaltite (NiCo2O4), and briefly summarize the recent research progress of these mesoporous transition metal oxides-based electrodes in the field of supercapacitors. PMID:28347088

  1. Mesoporous Transition Metal Oxides for Supercapacitors

    Directory of Open Access Journals (Sweden)

    Yan Wang

    2015-10-01

    Full Text Available Recently, transition metal oxides, such as ruthenium oxide (RuO2, manganese dioxide (MnO2, nickel oxides (NiO and cobalt oxide (Co3O4, have been widely investigated as electrode materials for pseudo-capacitors. In particular, these metal oxides with mesoporous structures have become very hot nanomaterials in the field of supercapacitors owing to their large specific surface areas and suitable pore size distributions. The high specific capacities of these mesoporous metal oxides are resulted from the effective contacts between electrode materials and electrolytes as well as fast transportation of ions and electrons in the bulk of electrode and at the interface of electrode and electrolyte. During the past decade, many achievements on mesoporous transition metal oxides have been made. In this mini-review, we select several typical nanomaterials, such as RuO2, MnO2, NiO, Co3O4 and nickel cobaltite (NiCo2O4, and briefly summarize the recent research progress of these mesoporous transition metal oxides-based electrodes in the field of supercapacitors.

  2. Electronic structure and magnetic properties of substitutional transition-metal atoms in GaN nanotubes

    International Nuclear Information System (INIS)

    Zhang Min; Shi Jun-Jie

    2014-01-01

    The electronic structure and magnetic properties of the transition-metal (TM) atoms (Sc—Zn, Pt and Au) doped zigzag GaN single-walled nanotubes (NTs) are investigated using first-principles spin-polarized density functional calculations. Our results show that the bindings of all TM atoms are stable with the binding energy in the range of 6–16 eV. The Sc- and V-doped GaN NTs exhibit a nonmagnetic behavior. The GaN NTs doped with Ti, Mn, Ni, Cu and Pt are antiferromagnetic. On the contrary, the Cr-, Fe-, Co-, Zn- and Au-doped GaN NTs show the ferromagnetic characteristics. The Mn- and Co-doped GaN NTs induce the largest local moment of 4μ B among these TM atoms. The local magnetic moment is dominated by the contribution from the substitutional TM atom and the N atoms bonded with it. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  3. The nonmetal-metal transition in solutions of metals in molten salts

    International Nuclear Information System (INIS)

    Tosi, M.P.

    1997-04-01

    Solutions of metals in molten salts present a rich phenomenology: localization of electrons in disordered ionic media, activated electron transport increasing with metal concentration towards a nonmetal-metal (NM-M) transition, and liquid-liquid phase separation. A brief review of progress in the study of these systems is given in this article, with main focus on the NM-M transition. After recalling the known NM-M behaviour of the component elements in the case of expanded fluid alkali metals and mercury and of solid halogens under pressure, the article focuses on liquid metal - molten salt solutions and traces the different NM-M behaviours of the alkalis in their halides and of metals added to polyvalent metal halides. (author). 51 refs, 2 figs

  4. Alkali metal and alkali metal hydroxide intercalates of the layered transition metal disulfides

    International Nuclear Information System (INIS)

    Kanzaki, Y.; Konuma, M.; Matsumoto, O.

    1981-01-01

    The intercalation reaction of some layered transition metal disulfides with alkali metals, alkali metal hydroxides, and tetraalkylammonium hydroxides were investigated. The alkali metal intercalates were prepared in the respective metal-hexamethylphosphoric triamide solutions in vaccuo, and the hydroxide intercalates in aqueous hydroxide solutions. According to the intercalation reaction, the c-lattice parameter was increased, and the increase indicated the expansion of the interlayer distance. In the case of alkali metal intercalates, the expansion of the interlayer distance increased continuously, corresponding to the atomic radius of the alkali metal. On the other hand, the hydroxide intercalates showed discrete expansion corresponding to the effective ionic radius of the intercalated cation. All intercalates of TaS 2 amd NbS 2 were superconductors. The expansion of the interlayer distance tended to increase the superconducting transition temperature in the intercalates of TaS 2 and vice versa in those of NbS 2 . (orig.)

  5. A DFT study of Ru, Rh, Pd, Os, Ir, and Pt clusters as catalysts for methane dissociation in a direct methane fuel cell (DMHFC)

    Energy Technology Data Exchange (ETDEWEB)

    Psofogiannakisa, G. [Ottawa Univ., Ottawa, ON (Canada). Dept. of Chemical Engineering; Ottawa, Univ., Ottawa, ON (Canada). Centre for Catalysis Research and Innovation; St-Amant, A. [Ottawa Univ., Ottawa, ON (Canada). Dept. of Chemistry; Ternan, M. [Ottawa Univ., Ottawa, ON (Canada). Centre for Catalysis Research and Innovation; EnPross Inc., Ottawa, ON (Canada)

    2008-07-01

    The rate limiting step in a direct methane hydrocarbon fuel cell (DMHFC) is the dissociative chemisorption of methane. Quantum mechanical computations were used to examine the terrace, kink, and step sites on 6 different clusters of group 8 transition metals, notably Ru, Rh, Pd, Os, Ir, and Pt. The computations involved the anodic reaction of a DMHFC with a polymer electrolyte that operates at atmospheric pressure and temperatures higher than 120 degrees C. The interaction between molecular fragments and a surface (Pt) were described and density functional theory (DFT) calculations were performed using Guassian software. The geometries of 5 different platinum clusters were examined along with their electronic energy barriers. The biggest contribution to the stabilization energy came from the overlap between the sigma bond in methane and unoccupied sd hybrid orbitals in the Pt bonding atom. The study showed that when relaxation was allowed, the displacement of the bonding metal atom was 0.36 to 0.52 A. The electronic energy barrier often increased as d-orbital occupancy increased. For the kink surface sites, the energy barriers were considerably smaller for the 5d transition metals than for the 4d transition metals. 5 refs., 1 tab.

  6. Pt, Co–Pt and Fe–Pt alloy nanoclusters encapsulated in virus capsids

    International Nuclear Information System (INIS)

    Okuda, M; Eloi, J-C; Jones, S E Ward; Schwarzacher, W; Verwegen, M; Cornelissen, J J L M

    2016-01-01

    Nanostructured Pt-based alloys show great promise, not only for catalysis but also in medical and magnetic applications. To extend the properties of this class of materials, we have developed a means of synthesizing Pt and Pt-based alloy nanoclusters in the capsid of a virus. Pure Pt and Pt-alloy nanoclusters are formed through the chemical reduction of [PtCl 4 ] − by NaBH 4 with/without additional metal ions (Co or Fe). The opening and closing of the ion channels in the virus capsid were controlled by changing the pH and ionic strength of the solution. The size of the nanoclusters is limited to 18 nm by the internal diameter of the capsid. Their magnetic properties suggest potential applications in hyperthermia for the Co–Pt and Fe–Pt magnetic alloy nanoclusters. This study introduces a new way to fabricate size-restricted nanoclusters using virus capsid. (paper)

  7. LEED crystallography studies of the structure of clean and adsorbate-covered Ir, Pt and Rh crystal surfaces

    International Nuclear Information System (INIS)

    Koestner, R.J.

    1982-08-01

    There have only been a few Low Energy Electron Diffraction (LEED) intensity analyses carried out to determine the structure of molecules adsorbed on metal surfaces; most surface crystallography studies concentrated on the structure of clean unreconstructed or atomic adsorbate-covered transition metal faces. The few molecular adsorption systems already investigated by dynamical LEED are CO on Ni(100), Cu(100) and Pd(100) as well as C 2 H 2 and C 2 H 4 adsorbed on Pt(111). The emphasis of this thesis research has been to extend the applicability of LEED crystallography to the more complicated unit cells found in molecular overlayers on transition metals or in there constructed surfaces of clean transition metals

  8. Unsupported NiPt alloy metal catalysts prepared by water-in-oil (W/O) microemulsion method for methane cracking

    KAUST Repository

    Zhou, Lu

    2016-05-18

    Unsupported NiPt metal catalyst with Ni/Pt molar ratio of 88/12 is prepared by water-in-oil (W/O) microemulsion method in this study. Compared to monometallic Ni and Pt catalysts, the NiPt catalyst exhibits superior activity and stability for methane cracking. By XRD (X-ray powder diffraction), XPS (X-ray photoelectron spectroscopy) and TEM (Transmission electron microscopy) analyses, the formation of Ni(0)Pt(0) alloy is believed to be the main reason for the reactivity improvement of this catalyst. Carbon nano tube (CNT) with Ni(0)Pt(0) particles anchored on the top of tube are found for the NiPt catalyst. © 2016 Elsevier Ltd.

  9. On metal-insulator transition in cubic fullerides

    Science.gov (United States)

    Iwahara, Naoya; Chibotaru, Liviu

    The interplay between degenerate orbital and electron correlation is a key to characterize the electronic phases in, for example, transition metal compounds and alkali-doped fullerides. Besides, the degenerate orbital couples to spin and lattice degrees of freedom ,giving rise to exotic phenomena. Here, we develop the self-consistent Gutzwiller approach for the simultaneous treatment of the Jahn-Teller effect and electron correlation, and apply the methodology to reveal the nature of the ground electronic state of fullerides. For small Coulomb repulsion on site U, the fulleride is quasi degenerate correlated metal. With increase of U, we found the quantum phase transition from the metallic phase to JT split phase. In the latter, the Mott transition (MT) mainly develops in the half-filled subband, whereas the empty and the completely filled subbands are almost uninvolved. Therefore, we can qualify the metal-insulator transition in fullerides as an orbital selective MT induced by JT effect.

  10. Ultra-low Pt decorated PdFe Alloy Nanoparticles for Formic Acid Electro-oxidation

    International Nuclear Information System (INIS)

    Zhou, Yawei; Du, Chunyu; Han, Guokang; Gao, Yunzhi; Yin, Geping

    2016-01-01

    Highlights: • A cost-efficient way is used to prepare transition-noble metal alloy nanoparticles. • The Pd 50 Fe 50 /C catalyst shows excellent activity for formic acid oxidation (FAO). • Much activity enhancement of FAO is acquired by ultra-low Pt decorated Pd 50 Fe 50 . • A synergistic mechanism between Pt clusters and PdFe is proposed during the FAO. - Abstract: Palladium (Pd), has demonstrated promising electro-catalytic activity for formic acid oxidation, but suffers from extremely low abundance. Recently alloying with a transition metal has been considered as an effective approach to reducing the loading of Pd and enhancing the activity of Pd-based catalysts simultaneously. Herein, carbon supported PdFe nanoparticles (NPs) are synthesized at room temperature by using sodium borohydride as reducing agent and potassium ferrocyanide as Fe precursor. The Pd 50 Fe 50 alloy sample annealed at 900 °C for 1 h shows the best catalytic activity among Pd x Fe 1-x (x = 0.2, 0.4, 0.5, 0.6, and 0.8) towards formic acid oxidation. To further improve both catalytic activity and stability, the ultra-low Pt (0.09 wt %) decorated Pd 50 Fe 50 NPs (PtPd/PdFe) are prepared via the galvanic replacement reaction. Compared with Pd 50 Fe 50 /C, the PtPd/PdFe/C Exhibits 1.52 times higher catalytic activity and lower onset potential (−0.12 V). The significant enhancements of formic acid oxidation can be attributed to the accelerated dehydrogenation reaction of formic acid by Pt atomic clusters. Moreover, the PtPd/PdFe/C also demonstrates better tolerance to poisons during formic acid oxidation.

  11. L10 phase transition in FePt thin films via direct interface reaction

    International Nuclear Information System (INIS)

    Li Xiaohong; Sun Hongyu; Wang Fengqing; Li Wei; Zhang Xiangyi; Liu Baoting; Guo Jianxin

    2008-01-01

    Lowering the L1 0 ordering temperature of FePt films is of great significance for their application as an ultrahigh density magnetic recording medium. In this study, the L1 0 ordering process of FePt thin films deposited directly on Si substrates has been significantly accelerated by the interface reaction between the thin film and the Si substrate, and thus the thin films show a low L1 0 ordering temperature of T = 310 deg. C as compared with those deposited on Si/SiO 2 substrates. The accelerated L1 0 ordering transition is predominantly dependent on the rapid growth of the ordered domains during the interface reaction. The film thickness has an important effect on the interface reaction and thus can be used to tune the L1 0 ordering process of the FePt films.

  12. Structures of the dehydrogenation products of methane activation by 5d transition metal cations revisited: Deuterium labeling and rotational contours

    Science.gov (United States)

    Owen, Cameron J.; Boles, Georgia C.; Chernyy, Valeriy; Bakker, Joost M.; Armentrout, P. B.

    2018-01-01

    A previous infrared multiple photon dissociation (IRMPD) action spectroscopy and density functional theory (DFT) study explored the structures of the [M,C,2H]+ products formed by dehydrogenation of methane by four, gas-phase 5d transition metal cations (M+ = Ta+, W+, Ir+, and Pt+). Complicating the analysis of these spectra for Ir and Pt was observation of an extra band in both spectra, not readily identified as a fundamental vibration. In an attempt to validate the assignment of these additional peaks, the present work examines the gas phase [M,C,2D]+ products of the same four metal ions formed by reaction with perdeuterated methane (CD4). As before, metal cations are formed in a laser ablation source and react with methane pulsed into a reaction channel downstream, and the resulting products are spectroscopically characterized through photofragmentation using the free-electron laser for intracavity experiments in the 350-1800 cm-1 range. Photofragmentation was monitored by the loss of D for [Ta,C,2D]+ and [W,C,2D]+ and of D2 in the case of [Pt,C,2D]+ and [Ir,C,2D]+. Comparison of the experimental spectra and DFT calculated spectra leads to structural assignments for all [M,C,2H/2D]+ systems that are consistent with previous identifications and allows a full description of the systematic spectroscopic shifts observed for deuterium labeling of these complexes, some of the smallest systems to be studied using IRMPD action spectroscopy. Further, full rotational contours are simulated for each vibrational band and explain several observations in the present spectra, such as doublet structures in several bands as well as the observed linewidths. The prominent extra bands in the [Pt,C,2D/2H]+ spectra appear to be most consistent with an overtone of the out-of-plane bending vibration of the metal carbene cation structure.

  13. A DFT study of volatile organic compounds adsorption on transition metal deposited graphene

    Energy Technology Data Exchange (ETDEWEB)

    Kunaseth, Manaschai, E-mail: manaschai@nanotec.or.th [Nanoscale Simulation Laboratory, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120 (Thailand); Poldorn, Preeyaporn [Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190 (Thailand); Junkeaw, Anchalee; Meeprasert, Jittima; Rungnim, Chompoonut; Namuangruk, Supawadee [Nanoscale Simulation Laboratory, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120 (Thailand); Kungwan, Nawee [Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Inntam, Chan [Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190 (Thailand); Jungsuttiwong, Siriporn, E-mail: siriporn.j@ubu.ac.th [Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190 (Thailand)

    2017-02-28

    Highlights: • VOCs removal via modified carbon-based adsorbent using density functional theory. • The single-vacancy defective graphene (SDG) with metal-deposited significantly increase the adsorption efficiency. • TM-doped SDG is a suitable adsorbent material for VOC removal. • Electron in hybridized sp{sup 2}-orbitals of heteroatoms has an effect on mode of adsorption. - Abstract: Recently, elevated global emission of volatile organic compounds (VOCs) was associated to the acceleration and increasing severity of climate change worldwide. In this work, we investigated the performance of VOCs removal via modified carbon-based adsorbent using density functional theory. Here, four transition metals (TMs) including Pd, Pt, Ag, and Au were deposited onto single-vacancy defective graphene (SDG) surface to increase the adsorption efficiency. Five prototypical VOCs including benzene, furan, pyrrole, pyridine, and thiophene were used to study the adsorption capability of metal-deposited graphene adsorbent. Calculation results revealed that Pd, Pt, Au, and Ag atoms and nanoclusters bind strongly onto the SDG surface. In this study, benzene, furan and pyrrole bind in the π-interaction mode using delocalized π-electron in aromatic ring, while pyridine and thiophene favor X- interaction mode, donating lone pair electron from heteroatom. In terms of adsorption, pyridine VOC adsorption strengths to the TM-cluster doped SDG surfaces are Pt{sub 4} (−2.11 eV) > Pd{sub 4} (−2.05 eV) > Ag{sub 4} (−1.53 eV) > Au{sub 4} (−1.87 eV). Our findings indicate that TM-doped SDG is a suitable adsorbent material for VOC removal. In addition, partial density of states analysis suggests that benzene, furan, and pyrrole interactions with TM cluster are based on p-orbitals of carbon atoms, while pyridine and thiophene interactions are facilitated by hybridized sp{sup 2}-orbitals of heteroatoms. This work provides a key insight into the fundamentals of VOCs adsorption on carbon

  14. Transition Metal Complexes and Catalysis

    Indian Academy of Sciences (India)

    approaches towards the study of bonding in transition metal complexes. Despite .... industrial scale reactions for the production of organic compounds using transition ..... It has found several applications as an engineering thermoplastic. .... and processes of interest to the company, that is, applied research. It is this very ...

  15. Temperature dependent electrical characterisation of Pt/HfO{sub 2}/n-GaN metal-insulator-semiconductor (MIS) Schottky diodes

    Energy Technology Data Exchange (ETDEWEB)

    Shetty, Arjun, E-mail: arjun@ece.iisc.ernet.in; Vinoy, K. J. [Electrical Communication Engineering, Indian Institute of Science, Bangalore, India 560012 (India); Roul, Basanta; Mukundan, Shruti; Mohan, Lokesh; Chandan, Greeshma; Krupanidhi, S. B. [Materials Research Centre, Indian Institute of Science, Bangalore, India 560012 (India)

    2015-09-15

    This paper reports an improvement in Pt/n-GaN metal-semiconductor (MS) Schottky diode characteristics by the introduction of a layer of HfO{sub 2} (5 nm) between the metal and semiconductor interface. The resulting Pt/HfO{sub 2}/n-GaN metal-insulator-semiconductor (MIS) Schottky diode showed an increase in rectification ratio from 35.9 to 98.9(@ 2V), increase in barrier height (0.52 eV to 0.63eV) and a reduction in ideality factor (2.1 to 1.3) as compared to the MS Schottky. Epitaxial n-type GaN films of thickness 300nm were grown using plasma assisted molecular beam epitaxy (PAMBE). The crystalline and optical qualities of the films were confirmed using high resolution X-ray diffraction and photoluminescence measurements. Metal-semiconductor (Pt/n-GaN) and metal-insulator-semiconductor (Pt/HfO{sub 2}/n-GaN) Schottky diodes were fabricated. To gain further understanding of the Pt/HfO{sub 2}/GaN interface, I-V characterisation was carried out on the MIS Schottky diode over a temperature range of 150 K to 370 K. The barrier height was found to increase (0.3 eV to 0.79 eV) and the ideality factor decreased (3.6 to 1.2) with increase in temperature from 150 K to 370 K. This temperature dependence was attributed to the inhomogeneous nature of the contact and the explanation was validated by fitting the experimental data into a Gaussian distribution of barrier heights.

  16. Bidirectional threshold switching characteristics in Ag/ZrO{sub 2}/Pt electrochemical metallization cells

    Energy Technology Data Exchange (ETDEWEB)

    Du, Gang, E-mail: dugang@hdu.edu.cn; Li, Hongxia; Mao, Qinan; Ji, Zhenguo [College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Wang, Chao [Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Ruoshui Road 398, Suzhou 215123 (China)

    2016-08-15

    A bidirectional threshold switching (TS) characteristic was demonstrated in Ag/ZrO{sub 2}/Pt electrochemical metallization cells by using the electrochemical active Ag electrode and appropriate programming operation strategies The volatile TS was stable and reproducible and the rectify ratio could be tuned to ∼10{sup 7} by engineering the compliance current. We infer that the volatile behavior is essentially due to the moisture absorption in the electron beam evaporated films, which remarkably improved the anodic oxidation as well as the migration of Ag{sup +} ions. The resultant electromotive force would act as a driving force for the metal filaments dissolution, leading to the spontaneous volatile characteristics. Moreover, conductance quantization behaviors were also achieved owing to formation and annihilation of atomic scale metal filaments in the film matrix. Our results illustrate that the Ag/ZrO{sub 2}/Pt device with superior TS performances is a promising candidate for selector applications in passive crossbar arrays.

  17. Kinetically controlled synthesis of AuPt bi-metallic aerogels and their enhanced electrocatalytic performances

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Qiurong [School of Mechanical and Materials Engineering; Washington State University; Pullman; USA; Zhu, Chengzhou [School of Mechanical and Materials Engineering; Washington State University; Pullman; USA; Du, Dan [School of Mechanical and Materials Engineering; Washington State University; Pullman; USA; Key Laboratory of Pesticides and Chemical Biology; Bi, Cuixia [Institute of Crystal Materials; Shandong University; Jinan 250100; P. R. China; Xia, Haibing [Institute of Crystal Materials; Shandong University; Jinan 250100; P. R. China; Feng, Shuo [School of Mechanical and Materials Engineering; Washington State University; Pullman; USA; Engelhard, Mark H. [Environmental Molecular Sciences Laboratory; Pacific Northwest National Laboratory; Richland; USA; Lin, Yuehe [School of Mechanical and Materials Engineering; Washington State University; Pullman; USA

    2017-01-01

    Kinetically controlled synthesis of AuPtxbi-metallic hydrogels/aerogels was efficiently achieved for the first timeviatuning the reaction temperature or adding a surfactant.

  18. First-row transition metal hydrogenation and hydrosilylation catalysts

    Science.gov (United States)

    Trovitch, Ryan J.; Mukhopadhyay, Tufan K.; Pal, Raja; Levin, Hagit Ben-Daat; Porter, Tyler M.; Ghosh, Chandrani

    2017-07-18

    Transition metal compounds, and specifically transition metal compounds having a tetradentate and/or pentadentate supporting ligand are described, together with methods for the preparation thereof and the use of such compounds as hydrogenation and/or hydrosilylation catalysts.

  19. Alkylation and arylation of alkenes by transition metal complexes

    International Nuclear Information System (INIS)

    Volkova, L.G.; Levitin, I.Ya.; Vol'pin, M.E.

    1975-01-01

    In this paper are reviewed methods of alkylation and irylation of unsaturated compounds with complexes of transition metals (Rh, Pd). Analysis of alkylation and arylation of olefines with organic derivatives of transition metals, obtained as a result of exchange reactions between organic compounds of transition metals and salts of metals of the 8th group of the periodic system, allows a conclusion as to the wide possibilities of these reactions in the synthesis of various derivatives of unsaturated compounds. In all the reactions under consideration, intermediate formation of sigma-complexes is assumed. Also considered are alkylation and arylation of olefines with organic derivatives of halogens in the presence of compounds of metals of the 8th group of the periodic system, as well as arylation of olefines with aromatic compounds in the presence of salts of transition metals

  20. Plasmons in metallic monolayer and bilayer transition metal dichalcogenides

    DEFF Research Database (Denmark)

    Andersen, Kirsten; Thygesen, Kristian S.

    2013-01-01

    We study the collective electronic excitations in metallic single-layer and bilayer transition metal dichalcogenides (TMDCs) using time dependent density functional theory in the random phase approximation. For very small momentum transfers (below q≈0.02 Å−1), the plasmon dispersion follows the √q...

  1. Quantum Critical “Opalescence” around Metal-Insulator Transitions

    Science.gov (United States)

    Misawa, Takahiro; Yamaji, Youhei; Imada, Masatoshi

    2006-08-01

    Divergent carrier-density fluctuations equivalent to the critical opalescence of gas-liquid transition emerge around a metal-insulator critical point at a finite temperature. In contrast to the gas-liquid transitions, however, the critical temperatures can be lowered to zero, which offers a challenging quantum phase transition. We present a microscopic description of such quantum critical phenomena in two dimensions. The conventional scheme of phase transitions by Ginzburg, Landau, and Wilson is violated because of its topological nature. It offers a clear insight into the criticalities of metal-insulator transitions (MIT) associated with Mott or charge-order transitions. Fermi degeneracy involving the diverging density fluctuations generates emergent phenomena near the endpoint of the first-order MIT and must shed new light on remarkable phenomena found in correlated metals such as unconventional cuprate superconductors. It indeed accounts for the otherwise puzzling criticality of the Mott transition recently discovered in an organic conductor. We propose to accurately measure enhanced dielectric fluctuations at small wave numbers.

  2. LEED crystallography studies of the structure of clean and adsorbate-covered Ir, Pt and Rh crystal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Koestner, R.J.

    1982-08-01

    There have only been a few Low Energy Electron Diffraction (LEED) intensity analyses carried out to determine the structure of molecules adsorbed on metal surfaces; most surface crystallography studies concentrated on the structure of clean unreconstructed or atomic adsorbate-covered transition metal faces. The few molecular adsorption systems already investigated by dynamical LEED are CO on Ni(100), Cu(100) and Pd(100) as well as C/sub 2/H/sub 2/ and C/sub 2/H/sub 4/ adsorbed on Pt(111). The emphasis of this thesis research has been to extend the applicability of LEED crystallography to the more complicated unit cells found in molecular overlayers on transition metals or in there constructed surfaces of clean transition metals.

  3. Pt-Ni and Pt-Co Catalyst Synthesis Route for Fuel Cell Applications

    Science.gov (United States)

    Firdosy, Samad A.; Ravi, Vilupanur A.; Valdez, Thomas I.; Kisor, Adam; Narayan, Sri R.

    2013-01-01

    Oxygen reduction reactions (ORRs) at the cathode are the rate-limiting step in fuel cell performance. The ORR is 100 times slower than the corresponding hydrogen oxidation at the anode. Speeding up the reaction at the cathode will improve fuel cell efficiency. The cathode material is generally Pt powder painted onto a substrate (e.g., graphite paper). Recent efforts in the fuel cell area have focused on replacing Pt with Pt-X alloys (where X = Co, Ni, Zr, etc.) in order to (a) reduce cost, and (b) increase ORR rates. One of these strategies is to increase ORR rates by reducing the powder size, which would result in an increase in the surface area, thereby facilitating faster reaction rates. In this work, a process has been developed that creates Pt-Ni or Pt-Co alloys that are finely divided (on the nano scale) and provide equivalent performance at lower Pt loadings. Lower Pt loadings will translate to lower cost. Precursor salts of the metals are dissolved in water and mixed. Next, the salt mixtures are dried on a hot plate. Finally, the dried salt mixture is heattreated in a furnace under flowing reducing gas. The catalyst powder is then used to fabricate a membrane electrode assembly (MEA) for electrochemical performance testing. The Pt- Co catalyst-based MEA showed comparable performance to an MEA fabri cated using a standard Pt black fuel cell catalyst. The main objective of this program has been to increase the overall efficiencies of fuel cell systems to support power for manned lunar bases. This work may also have an impact on terrestrial programs, possibly to support the effort to develop a carbon-free energy source. This catalyst can be used to fabricate high-efficiency fuel cell units that can be used in space as regenerative fuel cell systems, and terrestrially as primary fuel cells. Terrestrially, this technology will become increasingly important when transition to a hydrogen economy occurs.

  4. Influence of strain and metal thickness on metal-MoS₂ contacts.

    Science.gov (United States)

    Saidi, Wissam A

    2014-09-07

    MoS2 and other transition metal dichalcogenides are considered as potential materials in many applications including future electronics. A prerequisite for these applications is to understand the nature of the MoS2 contact with different metals. We use semi-local density functional theory in conjunction with dispersion corrections to study the heterostructures composed of Pd and Pt monolayers with (111) orientation grown pseudomorphically on MoS2(001). The interface properties are mapped as a function of the number of deposited overlayers, as well as a function of tensile and compressive strains. Although we show that the dependence of the contacts on strain can be fully explained using the d-band model, we find that their evolution with the number of deposited metal layers is markedly different between Pd and Pt, and at variance with the d-band model. Specifically, the Pt/MoS2 heterostructures show an anomalous large stability with the deposition of two metal monolayers for all investigated strains, while Pd/MoS2 exhibits a similar behavior only for compressive strains. It is shown that the results can be rationalized by accounting for second-nearest-neighbor effect that couples MoS2 with the subsurface metal layers. The underpinnings of this behavior are attributed to the larger polarizability and cohesive energy of Pt compared to Pd, that leads to a larger charge-response in the subsurface layers.

  5. Oligocyclopentadienyl transition metal complexes

    Energy Technology Data Exchange (ETDEWEB)

    de Azevedo, Cristina G.; Vollhardt, K. Peter C.

    2002-01-18

    Synthesis, characterization, and reactivity studies of oligocyclopentadienyl transition metal complexes, namely those of fulvalene, tercyclopentadienyl, quatercyclopentadienyl, and pentacyclopentadienyl(cyclopentadienyl) are the subject of this account. Thermal-, photo-, and redox chemistries of homo- and heteropolynuclear complexes are described.

  6. Observation of the c-f hybridization effect in valence-transition system EuPtP

    Energy Technology Data Exchange (ETDEWEB)

    Anzai, Hiroaki; Ichiki, Katsuya [Graduate School of Engineering, Osaka Prefecture University, Sakai (Japan); Schwier, Eike F.; Iwasawa, Hideaki; Arita, Masashi; Sato, Hitoshi; Shimada, Kenya; Namatame, Hirofumi; Taniguchi, Masaki [Hiroshima Synchrotron Radiation Center, Hiroshima University, Higashi-Hiroshima (Japan); Mitsuda, Akihiro; Wada, Hirofumi [Graduate School of Science, Kyushu University, Fukuoka (Japan); Mimura, Kojiro [Graduate School of Engineering, Osaka Prefecture University, Sakai (Japan); Hiroshima Synchrotron Radiation Center, Hiroshima University, Higashi-Hiroshima (Japan)

    2017-06-15

    We study the electronic structure of EuPtP, which exhibits two first-order valence transitions at T{sub 1} = 247 K and T{sub 2} = 201 K, using angle-resolved photoemission spectroscopy. Below T{sub 2}, we observe an energy gap at the crossing point of the bulk Eu 4f and conduction bands. The shape of band dispersions is described by a hybridization-band picture based on the periodic Anderson model. Our results demonstrate the c-f hybridization effect in the low-temperature phase of EuPtP. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Solubility of hydrogen in transition metals

    International Nuclear Information System (INIS)

    Lee, H.M.

    1976-01-01

    Correlations exist between the heat of solution of hydrogen and the difference in energy between the lowest lying energy levels of the trivalent d/sup n-1/s electronic configuration and the divalent d/sup n-2/s 2 (or the tetravalent d/sup n/) configuration of the neutral gaseous atoms. The trends observed in the transition metal series are discussed in relation to the number of valence electrons per atom in the transition elements in their metallic and neutral states

  8. Integrating Transition Metals into Nanomaterials: Strategies and Applications

    KAUST Repository

    Fhayli, Karim

    2016-01-01

    Transition metals complexes have been involved in various catalytic, biomedical and industrial applications, but only lately they have been associated with nanomaterials to produce innovative and well-defined new hybrid systems. The introduction of transition metals into nanomaterials is important to bear the advantages of metals to nanoscale and also to raise the stability of nanomaterials. In this dissertation, we study two approaches of associating transition metals into nanomaterials. The first approach is via spontaneous self-organization based assembly of small molecule amphiphiles and bulky hydrophilic polymers to produce organic-inorganic hybrid materials that have nanoscale features and can be precisely controlled depending on the experimental conditions used. These hybrid materials can successfully act as templates to design new porous material with interesting architecture. The second approach studied is via electroless reduction of transition metals on the surface of nanocarbons (nanotubes and nanodiamonds) without using any reducing agents or catalysts. The synthesis of these systems is highly efficient and facile resulting in stable and mechanically robust new materials with promising applications in catalysis.

  9. Integrating Transition Metals into Nanomaterials: Strategies and Applications

    KAUST Repository

    Fhayli, Karim

    2016-04-14

    Transition metals complexes have been involved in various catalytic, biomedical and industrial applications, but only lately they have been associated with nanomaterials to produce innovative and well-defined new hybrid systems. The introduction of transition metals into nanomaterials is important to bear the advantages of metals to nanoscale and also to raise the stability of nanomaterials. In this dissertation, we study two approaches of associating transition metals into nanomaterials. The first approach is via spontaneous self-organization based assembly of small molecule amphiphiles and bulky hydrophilic polymers to produce organic-inorganic hybrid materials that have nanoscale features and can be precisely controlled depending on the experimental conditions used. These hybrid materials can successfully act as templates to design new porous material with interesting architecture. The second approach studied is via electroless reduction of transition metals on the surface of nanocarbons (nanotubes and nanodiamonds) without using any reducing agents or catalysts. The synthesis of these systems is highly efficient and facile resulting in stable and mechanically robust new materials with promising applications in catalysis.

  10. Pt/Cr and Pt/Ni catalysts for oxygen reduction reaction: to alloy or not to alloy?

    Science.gov (United States)

    Escaño, Mary Clare; Gyenge, Elod; Nakanishi, Hiroshi; Kasai, Hideaki

    2011-04-01

    Bimetallic systems such as Pt-based alloys or non-alloys have exhibited interesting catalytic properties but pose a major challenge of not knowing a priori how the electronic and chemical properties will be modified relative to the parent metals. In this work, we present the origin of the changes in the reactivity of Pt/Cr and Pt/Ni catalysts, which have been of wide interest in fuel cell research. Using spin-polarized density functional theory calculations, we have shown that the modification of Pt surface reactivity in Pt/Ni is purely of geometric origin (strain). We have also found that the Pt-Ni bonding is very weak, which explains the observed instability of Pt-Ni catalysts under electrochemical measurements. On the other hand, Pt/Cr systems are governed by strong ligand effect (metal-metal interaction), which explains the experimentally observed reactivity dependence on the relative composition of the alloying components. The general characteristics of the potential energy curves for O2 dissociative adsorption on the bimetallic systems and the pure Pt clarify why the d-band center still works for Pt/Cr despite the strong Pt-Cr bonding and high spin polarization of Pt d-states. On the basis of the above clarifications, viable Pt-Cr and Pt-Ni structures, which involve nano-sized alloys and non-alloy bulk catalyst, which may strike higher than the currently observed oxidation reduction reaction activity are proposed.

  11. Strong-Superstrong Transition in Glass Transition of Metallic Glass

    International Nuclear Information System (INIS)

    Dan, Wang; Hong-Yan, Peng; Xiao-Yu, Xu; Bao-Ling, Chen; Chun-Lei, Wu; Min-Hua, Sun

    2010-01-01

    Dynamic fragility of bulk metallic glass (BMG) of Zr 64 Cu 16 Ni 10 Al 10 alloy is studied by three-point beam bending methods. The fragility parameter mfor Zr 64 Cu 16 Ni 10 Al 10 BMG is calculated to be 24.5 at high temperature, which means that the liquid is a 'strong' liquid, while to be 13.4 at low temperature which means that the liquid is a 'super-strong' liquid. The dynamical behavior of Zr 64 Cu 16 Ni 10 Al 10 BMG in the supercooled region undergoes a strong to super-strong transition. To our knowledge, it is the first time that a strong-to-superstrong transition is found in the metallic glass. Using small angle x-ray scattering experiments, we find that this transition is assumed to be related to a phase separation process in supercooled liquid. (condensed matter: structure, mechanical and thermal properties)

  12. Phase stability of transition metals and alloys

    International Nuclear Information System (INIS)

    Hixson, R.S.; Schiferl, D.; Wills, J.M.; Hill, M.A.

    1997-01-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project was focused on resolving unexplained differences in calculated and measured phase transition pressures in transition metals. Part of the approach was to do new, higher accuracy calculations of transmission pressures for group 4B and group 6B metals. Theory indicates that the transition pressures for these baseline metals should change if alloyed with a d-electron donor metal, and calculations done using the Local Density Approximation (LDA) and the Virtual Crystal Approximation (VCA) indicate that this is true. Alloy systems were calculated for Ti, Zr and Hf based alloys with various solute concentrations. The second part of the program was to do new Diamond Anvil Cell (DAC) measurements to experimentally verify calculational results. Alloys were prepared for these systems with grain size suitable for Diamond Anvil Cell experiments. Experiments were done on pure Ti as well as Ti-V and Ti-Ta alloys. Measuring unambiguous transition pressures for these systems proved difficult, but a new technique developed yielded good results

  13. Rare-earth metal transition metal borocarbide and nitridoborate superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Niewa, Rainer; Shlyk, Larysa; Blaschkowski, Bjoern [Stuttgart Univ. (Germany). Inst. fuer Anorganische Chemie

    2011-07-01

    Few years after the discovery of superconductivity in high-T{sub c} cuprates, borocarbides and shortly after nitridoborates with reasonably high T{sub c}s up to about 23 K attracted considerable attention. Particularly for the rare-earth metal series with composition RNi{sub 2}[B{sub 2}C] it turned out, that several members exhibit superconductivity next to magnetic order with both T{sub c} above or below the magnetic ordering temperature. Therefore, these compounds have been regarded as ideal materials to study the interplay and coexistence of superconductivity and long range magnetic order, due to their comparably high ordering temperatures and similar magnetic and superconducting condensation energies. This review gathers information on the series RNi{sub 2}[B{sub 2}C] and isostructural compounds with different transition metals substituting Ni as well as related series like RM[BC], RM[BN], AM[BN] and R{sub 3}M{sub 2}[BN]{sub 2}N (all with R = rare-earth metal, A = alkaline-earth metal, M = transition metal) with special focus on synthesis, crystal structures and structural trends in correspondence to physical properties. (orig.)

  14. Pt-based Thin Films as Efficient and Stable Catalysts for Oxygen Electroreduction

    DEFF Research Database (Denmark)

    Zamburlini, Eleonora

    at the cathode of Polymer Electrolyte Membrane Fuel Cells (PEMFCs). Herein the fabrication method, which consists of co-sputtering of thin films, is presented in detail, explaining the challenges one must face in order to fabricate oxygen-free Pt-lanthanides and Pt-early transition metals alloys......This thesis presents the fabrication and characterization of Pt-based thin film catalysts for Oxygen Reduction Reaction (ORR). Gadolinium and Yttrium have been used as alloying materials, in preparation for the replacement of the traditional but economically disadvantageous pure Pt catalysts......, and the proposed solutions. The characterization of the catalysts focused mainly on the electrochemical testing using a Rotating Ring Disk Electrode (RRDE) setup, and includes X-ray Diffraction (XRD), X-ray Photoemission Spectroscopy (XPS), Angle-Resolved X-ray Photoelectron Spectroscopy (AR-XPS), Scanning...

  15. Photovoltaic effect in transition metal modified polycrystalline BiFeO3 thin films

    International Nuclear Information System (INIS)

    Puli, Venkata Sreenivas; Chrisey, Douglas B; Pradhan, Dhiren Kumar; Katiyar, Rajesh Kumar; Misra, Pankaj; Scott, J F; Katiyar, Ram S; Coondoo, Indrani; Panwar, Neeraj

    2014-01-01

    We report photovoltaic (PV) effect in multiferroic Bi 0.9 Sm 0.1 Fe 0.95 Co 0.05 O 3 (BSFCO) thin films. Transition metal modified polycrystalline BiFeO 3 (BFO) thin films have been deposited on Pt/TiO 2 /SiO 2 /Si substrate successfully through pulsed laser deposition (PLD). PV response is observed under illumination both in sandwich and lateral electrode configurations. The open-circuit voltage (V oc ) and the short-circuit current density (J sc ) of the films in sandwich electrode configuration under illumination are measured to be 0.9 V and −0.051 µA cm −2 . Additionally, we report piezoresponse for BSFCO films, which confirms ferroelectric piezoelectric behaviour. (paper)

  16. High-spin states and coexisting states in the Pt-Au transition region

    International Nuclear Information System (INIS)

    Riedinger, L.L.; Carpenter, M.P.; Courtney, L.H.; Janzen, V.P.; Schmitz, W.

    1986-01-01

    High-spin states in the N = 104 to 108 region have been studied by in-beam spectroscopy techniques in a number of Ir, Pt, and Au nuclei. These measurements have been performed at tandem Van de Graaff facilities at the Oak Ridge National Laboratory and at McMaster University. Through comparison of band crossings in a variety of odd-A and even-A nuclei, we are able to assign the first neutron and first proton alignment processes, which are nearly degenerate for 184 Pt. These measurements yield the trend of these crossing frequencies with N and Z in this region. Knowledge of this trend is important, since these crossing frequencies can give an estimate of how the shape parameters vary across this transitional region. 22 refs., 7 figs., 1 tab

  17. Superconducting Metallic Glass Transition-Edge-Sensors

    Science.gov (United States)

    Hays, Charles C. (Inventor)

    2013-01-01

    A superconducting metallic glass transition-edge sensor (MGTES) and a method for fabricating the MGTES are provided. A single-layer superconducting amorphous metal alloy is deposited on a substrate. The single-layer superconducting amorphous metal alloy is an absorber for the MGTES and is electrically connected to a circuit configured for readout and biasing to sense electromagnetic radiation.

  18. Investigating vibrational anharmonic couplings in cyanide-bridged transition metal mixed valence complexes using two-dimensional infrared spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Slenkamp, Karla M.; Lynch, Michael S.; Van Kuiken, Benjamin E.; Brookes, Jennifer F.; Bannan, Caitlin C.; Daifuku, Stephanie L.; Khalil, Munira, E-mail: mkhalil@chem.washington.edu [Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195 (United States)

    2014-02-28

    Using polarization-selective two-dimensional infrared (2D IR) spectroscopy, we measure anharmonic couplings and angles between the transition dipole moments of the four cyanide stretching (ν{sub CN}) vibrations found in [(NH{sub 3}){sub 5}Ru{sup III}NCFe{sup II}(CN){sub 5}]{sup −} (FeRu) dissolved in D{sub 2}O and formamide and [(NC){sub 5}Fe{sup II}CNPt{sup IV}(NH{sub 3}){sub 4}NCFe{sup II}(CN){sub 5}]{sup 4−} (FePtFe) dissolved in D{sub 2}O. These cyanide-bridged transition metal complexes serve as model systems for studying the role of high frequency vibrational modes in ultrafast photoinduced charge transfer reactions. Here, we focus on the spectroscopy of the ν{sub CN} modes in the electronic ground state. The FTIR spectra of the ν{sub CN} modes of the bimetallic and trimetallic systems are strikingly different in terms of frequencies, amplitudes, and lineshapes. The experimental 2D IR spectra of FeRu and FePtFe and their fits reveal a set of weakly coupled anharmonic ν{sub CN} modes. The vibrational mode anharmonicities of the individual ν{sub CN} modes range from 14 to 28 cm{sup −1}. The mixed-mode anharmonicities range from 2 to 14 cm{sup −1}. In general, the bridging ν{sub CN} mode is most weakly coupled to the radial ν{sub CN} mode, which involves the terminal CN ligands. Measurement of the relative transition dipole moments of the four ν{sub CN} modes reveal that the FeRu molecule is almost linear in solution when dissolved in formamide, but it assumes a bent geometry when dissolved in D{sub 2}O. The ν{sub CN} modes are modelled as bilinearly coupled anharmonic oscillators with an average coupling constant of 6 cm{sup −1}. This study elucidates the role of the solvent in modulating the molecular geometry and the anharmonic vibrational couplings between the ν{sub CN} modes in cyanide-bridged transition metal mixed valence complexes.

  19. Highly Sensitive Electromechanical Piezoresistive Pressure Sensors Based on Large-Area Layered PtSe2 Films.

    Science.gov (United States)

    Wagner, Stefan; Yim, Chanyoung; McEvoy, Niall; Kataria, Satender; Yokaribas, Volkan; Kuc, Agnieszka; Pindl, Stephan; Fritzen, Claus-Peter; Heine, Thomas; Duesberg, Georg S; Lemme, Max C

    2018-05-23

    Two-dimensional (2D) layered materials are ideal for micro- and nanoelectromechanical systems (MEMS/NEMS) due to their ultimate thinness. Platinum diselenide (PtSe 2 ), an exciting and unexplored 2D transition metal dichalcogenide material, is particularly interesting because its low temperature growth process is scalable and compatible with silicon technology. Here, we report the potential of thin PtSe 2 films as electromechanical piezoresistive sensors. All experiments have been conducted with semimetallic PtSe 2 films grown by thermally assisted conversion of platinum at a complementary metal-oxide-semiconductor (CMOS)-compatible temperature of 400 °C. We report high negative gauge factors of up to -85 obtained experimentally from PtSe 2 strain gauges in a bending cantilever beam setup. Integrated NEMS piezoresistive pressure sensors with freestanding PMMA/PtSe 2 membranes confirm the negative gauge factor and exhibit very high sensitivity, outperforming previously reported values by orders of magnitude. We employ density functional theory calculations to understand the origin of the measured negative gauge factor. Our results suggest PtSe 2 as a very promising candidate for future NEMS applications, including integration into CMOS production lines.

  20. Electroforming and Switching in Oxides of Transition Metals: The Role of Metal Insulator Transition in the Switching Mechanism

    Science.gov (United States)

    Chudnovskii, F. A.; Odynets, L. L.; Pergament, A. L.; Stefanovich, G. B.

    1996-02-01

    Electroforming and switching effects in sandwich structures based on anodic films of transition metal oxides (V, Nb, Ti, Fe, Ta, W, Zr, Hf, Mo) have been studied. After being electroformed, some materials exhibited current-controlled negative resistance with S-shapedV-Icharacteristics. For V, Fe, Ti, and Nb oxides, the temperature dependences of the threshold voltage have been measured. As the temperature increased,Vthdecreased to zero at a critical temperatureT0, which depended on the film material. Comparison of theT0values with the temperatures of metal-insulator phase transition for some compounds (Tt= 120 K for Fe3O4, 340 K for VO2, ∼500 K for Ti2O3, and 1070 K for NbO2) showed that switching was related to the transition in the applied electric field. Channels consisting of the above-mentioned lower oxides were formed in the initial anodic films during the electroforming. The possibility of formation of these oxides with a metal-insulator transition was confirmed by thermodynamic calculations.

  1. The Sticking Probability for Hydrogen on Ni, Pd, and Pt at a Hydrogen pressure of 1 bar

    DEFF Research Database (Denmark)

    Johansson, Martin; Lytken, Ole; Chorkendorff, Ib

    2007-01-01

    A technique for measurements of the sticking probability of hydrogen on metal surfaces at high (ambient) pressure is described. As an example, measurements for Ni, Pd and Pt at a hydrogen pressure of 1 bar and temperatures between 40 and 200 degrees C are presented. The sticking probabilities are......, Pt. The transition between beta- and alpha-phase in the H-Pd system has a significant effect on the activity for Pd....

  2. Size effect on order-disorder transition kinetics of FePt nanoparticles

    International Nuclear Information System (INIS)

    Zhang, Shuaidi; Qi, Weihong; Huang, Baiyun

    2014-01-01

    The kinetics of order-disorder transition of FePt nanoparticles during high temperature annealing is theoretically investigated. A model is developed to address the influence of large surface to volume ratio of nanoparticles on both the thermodynamic and kinetic aspect of the ordering process; specifically, the nucleation and growth of L1 0 ordered domain within disordered nanoparticles. The size- and shape-dependence of transition kinetics are quantitatively addressed by a revised Johnson-Mehl-Avrami equation that included corrections for deviations caused by the domination of surface nucleation in nanoscale systems and the non-negligible size of the ordered nuclei. Calculation results based on the model suggested that smaller nanoparticles are kinetically more active but thermodynamically less transformable. The major obstacle in obtaining completely ordered nanoparticles is the elimination of antiphase boundaries. The results also quantitatively confirmed the existence of a size-limit in ordering, beyond which, inducing order-disorder transitions through annealing is impossible. A good agreement is observed between theory, experiment, and computer simulation results

  3. Pt, Re and Pt-Re incorporation in sulfated zirconia as catalysts for n-pentane isomerization

    International Nuclear Information System (INIS)

    Aboul-Gheit, A.K.; El-Desouki, D.S.; Abdel-Hamid, S.M.; Ghoneim, S.A.; Ibrahim, A.H.; Gad, F.K.; Abdel-Aleem, G.M.

    2010-01-01

    Two groups of modified Sulfated Zirconia (S Z) catalysts were prepared by the sol-gel method. The first group was modified by four different concentrations of Pt metal (0.15, 0.30, 0.45 and 0.60 wt %), whereas the second group contained Pt-Re combinations on SZ. All the prepared catalysts were characterized by XRD, TPR, TEM, TGA, IR spectroscopy as well as surface properties using the BET method. The catalytic activity of the catalysts was examined for the hydro isomerization of n-pentane to iso-pentane. The catalytic activity was found to increase with increasing Pt concentration in the mono metallic catalysts. The combination of Re ion with Pt on SZ results in significant changes in the characters and activities of the catalysts. The 0.45 wt % Pt + 0.15 wt % Re/SZ catalyst exhibited the highest selective compared to other metal ratios investigated

  4. Cesium platinide hydride 4Cs{sub 2}Pt.CsH: an intermetallic double salt featuring metal anions

    Energy Technology Data Exchange (ETDEWEB)

    Smetana, Volodymyr [Ames Laboratory, US Department of Energy, and Critical Materials Institute, Ames, Iowa, 50011-3020 (United States); Mudring, Anja-Verena [Ames Laboratory, US Department of Energy, and Critical Materials Institute, Ames, Iowa, 50011-3020 (United States); Department of Materials Sciences and Engineering, Iowa State University, Ames, Iowa, 50011-3111 (United States)

    2016-11-14

    With Cs{sub 9}Pt{sub 4}H a new representative of ionic compounds featuring metal anions can be added to this rare-membered family. Cs{sub 9}Pt{sub 4}H exhibits a complex crystal structure containing Cs{sup +} cations, Pt{sup 2-} and H{sup -} anions. Being a red, transparent compound its band gap is in the visible range of the electromagnetic spectrum and the ionic type of bonding is confirmed by quantum chemical calculations. This cesium platinide hydride can formally be considered as a double salt of the ''alloy'' cesium-platinum, or better cesium platinide, Cs{sub 2}Pt, and the salt cesium hydride CsH according to Cs{sub 9}Pt{sub 4}H≡4 Cs{sub 2}Pt.CsH. (copyright 2016 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Superconducting and charge density wave transition in single crystalline LaPt2Si2

    Science.gov (United States)

    Gupta, Ritu; Dhar, S. K.; Thamizhavel, A.; Rajeev, K. P.; Hossain, Z.

    2017-06-01

    We present results of our comprehensive studies on single crystalline LaPt2Si2. Pronounced anomaly in electrical resistivity and heat capacity confirms the bulk nature of superconductivity (SC) and charge density wave (CDW) transition in the single crystals. While the charge density wave transition temperature is lower, the superconducting transition temperature is higher in single crystal compared to the polycrystalline sample. This result confirms the competing nature of CDW and SC. Another important finding is the anomalous temperature dependence of upper critical field H C2(T). We also report the anisotropy in the transport and magnetic measurements of the single crystal.

  6. Advanced cathode materials for polymer electrolyte fuel cells based on pt/ metal oxides: from model electrodes to catalyst systems.

    Science.gov (United States)

    Fabbri, Emiliana; Pătru, Alexandra; Rabis, Annett; Kötz, Rüdiger; Schmidt, Thomas J

    2014-01-01

    The development of stable catalyst systems for application at the cathode side of polymer electrolyte fuel cells (PEFCs) requires the substitution of the state-of-the-art carbon supports with materials showing high corrosion resistance in a strongly oxidizing environment. Metal oxides in their highest oxidation state can represent viable support materials for the next generation PEFC cathodes. In the present work a multilevel approach has been adopted to investigate the kinetics and the activity of Pt nanoparticles supported on SnO2-based metal oxides. Particularly, model electrodes made of SnO2 thin films supporting Pt nanoparticles, and porous catalyst systems made of Pt nanoparticles supported on Sb-doped SnO2 high surface area powders have been investigated. The present results indicate that SnO2-based supports do not modify the oxygen reduction reaction mechanism on the Pt nanoparticle surface, but rather lead to catalysts with enhanced specific activity compared to Pt/carbon systems. Different reasons for the enhancement in the specific activity are considered and discussed.

  7. Fractional and hidden magnetic excitations in f-electron metal Yb2Pt2Pb

    Science.gov (United States)

    Zaliznyak, Igor

    Quantum states with fractionalized excitations such as spinons in one-dimensional chains are commonly viewed as belonging to the domain of S=1/2 spin systems. However, recent experiments on the quantum antiferromagnet Yb2Pt2Pb, part of a large family of R2T2X (R=rare earth, T=transition metal, X=main group) materials spectacularly disqualify this opinion. The results show that spinons can also emerge in an f-electron system with strong spin-orbit coupling, where magnetism is mainly associated with large and anisotropic orbital moment. Here, the competition of several high-energy interactions Coulomb repulsion, spin-orbit coupling, crystal field, and the peculiar crystal structure, which combines low dimensionality and geometrical frustration, lead to the emergence, at low energy, of an effective spin-1/2, purely quantum Hamiltonian. Consequently, it produces unusual spin-liquid states and fractional excitations enabled by the inherently quantum mechanical nature of the moments. The emergent quantum spins bear the unique birthmark of their unusual origin in that they only lead to measurable longitudinal magnetic fluctuations, while the transverse excitations such as spin waves remain invisible to scattering experiments. Similarlyhidden would be transverse magnetic ordering, although it would have visible excitations. The rich magnetic phase diagram of Yb2Pt2Pb is suggestive of the existence of hidden-order phases, while the recent experiments indeed reveal the dark magnon, a hidden excitation in the saturated ferromagnetic (FM) phase of Yb2Pt2Pb. Unlike copper-based spin-1/2 chains, where the magnon in the FM state accounts for the full spectral weight of the zero-field spinon continuum, in the spin-orbital chains in Yb2Pt2Pb it is 100 times, or more weaker. It thus presents an example of dark magnon matter\\x9D, whose Hamiltonian is that of the effective spin-1/2 chain, but whose coupling to magnetic field, the physical probe at our disposal, is vanishingly small

  8. Influence of strain and metal thickness on metal-MoS{sub 2} contacts

    Energy Technology Data Exchange (ETDEWEB)

    Saidi, Wissam A., E-mail: alsaidi@pitt.edu [Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 (United States)

    2014-09-07

    MoS{sub 2} and other transition metal dichalcogenides are considered as potential materials in many applications including future electronics. A prerequisite for these applications is to understand the nature of the MoS{sub 2} contact with different metals. We use semi-local density functional theory in conjunction with dispersion corrections to study the heterostructures composed of Pd and Pt monolayers with (111) orientation grown pseudomorphically on MoS{sub 2}(001). The interface properties are mapped as a function of the number of deposited overlayers, as well as a function of tensile and compressive strains. Although we show that the dependence of the contacts on strain can be fully explained using the d-band model, we find that their evolution with the number of deposited metal layers is markedly different between Pd and Pt, and at variance with the d-band model. Specifically, the Pt/MoS{sub 2} heterostructures show an anomalous large stability with the deposition of two metal monolayers for all investigated strains, while Pd/MoS{sub 2} exhibits a similar behavior only for compressive strains. It is shown that the results can be rationalized by accounting for second-nearest-neighbor effect that couples MoS{sub 2} with the subsurface metal layers. The underpinnings of this behavior are attributed to the larger polarizability and cohesive energy of Pt compared to Pd, that leads to a larger charge-response in the subsurface layers.

  9. Highly efficient transition metal and nitrogen co-doped carbide-derived carbon electrocatalysts for anion exchange membrane fuel cells

    Science.gov (United States)

    Ratso, Sander; Kruusenberg, Ivar; Käärik, Maike; Kook, Mati; Puust, Laurits; Saar, Rando; Leis, Jaan; Tammeveski, Kaido

    2018-01-01

    The search for an efficient electrocatalyst for oxygen reduction reaction (ORR) to replace platinum in fuel cell cathode materials is one of the hottest topics in electrocatalysis. Among the many non-noble metal catalysts, metal/nitrogen/carbon composites made by pyrolysis of cheap materials are the most promising with control over the porosity and final structure of the catalyst a crucial point. In this work we show a method of producing a highly active ORR catalyst in alkaline media with a controllable porous structure using titanium carbide derived carbon as a base structure and dicyandiamide along with FeCl3 or CoCl2 as the dopants. The resulting transition metal-nitrogen co-doped carbide derived carbon (M/N/CDC) catalyst is highly efficient for ORR electrocatalysis with the activity in 0.1 M KOH approaching that of commercial 46.1 wt.% Pt/C. The catalyst materials are also investigated by scanning electron microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy to characterise the changes in morphology and composition causing the raise in electrochemical activity. MEA performance of M/N/CDC cathode materials in H2/O2 alkaline membrane fuel cell is tested with the highest power density reached being 80 mW cm-2 compared to 90 mW cm-2 for Pt/C.

  10. Hydrogen collisions with transition metal surfaces: Universal electronically nonadiabatic adsorption

    Science.gov (United States)

    Dorenkamp, Yvonne; Jiang, Hongyan; Köckert, Hansjochen; Hertl, Nils; Kammler, Marvin; Janke, Svenja M.; Kandratsenka, Alexander; Wodtke, Alec M.; Bünermann, Oliver

    2018-01-01

    Inelastic scattering of H and D atoms from the (111) surfaces of six fcc transition metals (Au, Pt, Ag, Pd, Cu, and Ni) was investigated, and in each case, excitation of electron-hole pairs dominates the inelasticity. The results are very similar for all six metals. Differences in the average kinetic energy losses between metals can mainly be attributed to different efficiencies in the coupling to phonons due to the different masses of the metal atoms. The experimental observations can be reproduced by molecular dynamics simulations based on full-dimensional potential energy surfaces and including electronic excitations by using electronic friction in the local density friction approximation. The determining factors for the energy loss are the electron density at the surface, which is similar for all six metals, and the mass ratio between the impinging atoms and the surface atoms. Details of the electronic structure of the metal do not play a significant role. The experimentally validated simulations are used to explore sticking over a wide range of incidence conditions. We find that the sticking probability increases for H and D collisions near normal incidence—consistent with a previously reported penetration-resurfacing mechanism. The sticking probability for H or D on any of these metals may be represented as a simple function of the incidence energy, Ein, metal atom mass, M, and incidence angle, 𝜗i n. S =(S0+a ṡEi n+b ṡM ) *(1 -h (𝜗i n-c ) (1 -cos(𝜗 i n-c ) d ṡh (Ei n-e ) (Ei n-e ) ) ) , where h is the Heaviside step function and for H, S0 = 1.081, a = -0.125 eV-1, b =-8.40 ṡ1 0-4 u-1, c = 28.88°, d = 1.166 eV-1, and e = 0.442 eV; whereas for D, S0 = 1.120, a = -0.124 eV-1, b =-1.20 ṡ1 0-3 u-1, c = 28.62°, d = 1.196 eV-1, and e = 0.474 eV.

  11. On monosubstituted cyanurate complexes of transition metals

    International Nuclear Information System (INIS)

    Sejfer, G.B.; Tarasova, Z.A.

    1995-01-01

    Complex monosubstituted cyanurates of transition metals K 2 [Eh(H 2 C 3 N 3 O 3 ) 4 ]x4H 2 ) where Eh = Mn, Co, Ni, Cu, Zn, Cd are synthesized and investigated by means of IR - spectroscopy and thermal analysis methods. It is shown that only thermal decomposition of a manganese complex leads to the production of this metal oxide. All other derivatives decompose with the production of a free metal, because decomposition of these substances in argon atmosphere occurs through an intermediate production of their nitrides. An assumption is made that nitroduction of yttrium or rare earth element salts (instead of transition or alkali metal derivatives) as accelerating additions will facilitate increase of polyisocyanurate resin thermal stability. 25 refs.; 2 figs.; 3 tabs

  12. Preparation and characterization of several transition metal oxides

    International Nuclear Information System (INIS)

    Wold, A.; Dwight, K.

    1989-01-01

    The structure-property relationships of several conducting transition metal oxides, as well as their preparative methods, are presented in this paper. The importance of preparing homogeneous phases with precisely known stoichiometry is emphasized. A comparison is also made of the various techniques used to prepare both polycrystalline and single crystal samples. For transition metal oxides, the metallic properties are discussed either in terms of metal-metal distances which are short enough to result in metallic behavior, or in terms of the formation of a π* conduction band resulting from covalent metal-oxygen interactions. Metallic behavior is observed when the conduction bands are populated with either electrons or holes. The concentration of these carriers can be affected by either cation or anion substitutions. The discussion in this presentation will be limited to the elements Re, Ti, V, Cr, Mo, and Cu

  13. Dissolving, trapping and detrapping mechanisms of hydrogen in bcc and fcc transition metals

    Directory of Open Access Journals (Sweden)

    Yu-Wei You

    2013-01-01

    Full Text Available First-principles calculations are performed to investigate the dissolving, trapping and detrapping of H in six bcc (V, Nb, Ta, Cr, Mo, W and six fcc (Ni, Pd, Pt, Cu, Ag, Au metals. We find that the zero-point vibrations do not change the site-preference order of H at interstitial sites in these metals except Pt. One vacancy could trap a maximum of 4 H atoms in Au and Pt, 6 H atoms in V, Nb, Ta, Cr, Ni, Pd, Cu and Ag, and 12 H atoms in Mo and W. The zero-point vibrations never change the maximum number of H atoms trapped in a single vacancy in these metals. By calculating the formation energy of vacancy-H (Vac-Hn complex, the superabundant vacancy in V, Nb, Ta, Pd and Ni is demonstrated to be much more easily formed than in the other metals, which has been found in many metals including Pd, Ni and Nb experimentally. Besides, we find that it is most energetically favorable to form Vac-H1 complex in Pt, Cu, Ag and Au, Vac-H4 in Cr, Mo and W, and Vac-H6 in V, Nb, Ta, Pd and Ni. At last, we examine the detrapping behaviors of H atoms in a single vacancy and find that with the heating rate of 10 K/min a vacancy could accommodate 4, 5 and 6 H atoms in Cr, Mo and W at room temperature, respectively. The detrapping temperatures of all H atoms in a single vacancy in V, Nb, Ta, Ni, Pd, Cu and Ag are below room temperature.

  14. Harnessing the metal-insulator transition for tunable metamaterials

    Science.gov (United States)

    Charipar, Nicholas A.; Charipar, Kristin M.; Kim, Heungsoo; Bingham, Nicholas S.; Suess, Ryan J.; Mathews, Scott A.; Auyeung, Raymond C. Y.; Piqué, Alberto

    2017-08-01

    The control of light-matter interaction through the use of subwavelength structures known as metamaterials has facilitated the ability to control electromagnetic radiation in ways not previously achievable. A plethora of passive metamaterials as well as examples of active or tunable metamaterials have been realized in recent years. However, the development of tunable metamaterials is still met with challenges due to lack of materials choices. To this end, materials that exhibit a metal-insulator transition are being explored as the active element for future metamaterials because of their characteristic abrupt change in electrical conductivity across their phase transition. The fast switching times (▵t < 100 fs) and a change in resistivity of four orders or more make vanadium dioxide (VO2) an ideal candidate for active metamaterials. It is known that the properties associated with thin film metal-insulator transition materials are strongly dependent on the growth conditions. For this work, we have studied how growth conditions (such as gas partial pressure) influence the metalinsulator transition in VO2 thin films made by pulsed laser deposition. In addition, strain engineering during the growth process has been investigated as a method to tune the metal-insulator transition temperature. Examples of both the optical and electrical transient dynamics facilitating the metal-insulator transition will be presented together with specific examples of thin film metamaterial devices.

  15. Synthesis of Mg2FeH6 containing as additives transition metal and transition metal fluorides or carbon

    International Nuclear Information System (INIS)

    Zepon, G.; Leiva, D.R.; Botta, W.J.

    2010-01-01

    The Mg 2 FeH 6 is a promising way of storing hydrogen in solid form, composed by elements that have low cost and, at the same time, high volumetric storage density: 150 kg H 2 /m 3 . However, this complex hydride is not easily synthesized as a single phase material. The hydrogen sorption high temperature and slow kinetics are the major limitations for the practical application of the Mg 2 FeH 6 as a hydrogen storage material. Little is known about the effects of additives in Mg 2 FeH 6 based nanocomposites in this work were synthesized by MAE under hydrogen atmosphere nanocomposites based on Mg 2 FeH 6 containing additives as transition metals, transition metals fluorides of transition metals or carbon, in order to obtain information on the effects of the selected additives. To this end, we used characterization techniques such as XRD, SEM and TEM, thermal analysis by DSC and curves made in apparatus PCT.(author)

  16. Impurities in Antiferromagnetic Transition-Metal Oxides - Symmetry and Optical Transitions

    Science.gov (United States)

    Petersen, John Emil, III

    The study of antiferromagnetic transition-metal oxides is an extremely active area in the physical sciences, where condensed matter physics, inorganic chemistry, and materials science blend together. The sheer number of potential commercial applications is staggering, but much of the fundamental science remains unexplained. This is not due to a lack of effort, however, as theorists have been struggling to understand these materials for decades - particularly the character of the band edges and first optical transitions. The difficulty lies in the strong correlation or Coloumb attraction between the electrons in the anisotropic d orbitals, which conventional band theory cannot describe adequately. The correlation problem is approached here by the well-accepted method of adding a Hubbard potential energy term to the ground state Hamiltonian, calculated within Density Functional Theory. The frequency-dependent complex dielectric function is calculated within the Independent Particle Approximation, and optical transitions are evaluated in multiple different ways. Peaks in the imaginary part of the dielectric function are compared energetically to orbitally decomposed density of states calculations. Optical transitions are typically analyzed in terms of atomic orbitals, which, strictly speaking, gives misleading results. Here, however, from the calculated data, two alternative interpretations are analyzed for each material studied. The first employs rigorous group theoretical analysis to determine allowed electric-dipole transitions, taking into account both orbital hybridization and crystal symmetry. The second interpretation is that of metal cation site hopping. In this interpretation, carriers hop from the x2 - y2 d orbital of one metal cation lattice site to the next metal cation site which is antiferromagnetically aligned. At times, thoughout this work, one interpretation is favorable to the other. Which interpretation is most valid depends on the material

  17. Adsorption and oxidation of acetaldehyde on carbon supported Pt, PtSn and PtSn-based trimetallic catalysts by in situ Fourier transform infrared spectroscopy

    Science.gov (United States)

    Beyhan, Seden; Léger, Jean-Michel; Kadırgan, Figen

    2013-11-01

    The adsorption and oxidation of acetaldehyde on carbon supported Pt, Pt90Sn10 and Pt80Sn10M10 (M = Ni, Co, Rh, Pd) catalysts have been investigated by using in situ Fourier transform infrared (FTIR) spectroscopy. The result revealed that Pt90Sn10/C catalyst is not very efficient for the conversion of acetaldehyde to CO2 due to the weak adsorption of acetaldehyde in the presence of Sn. However, the addition of a third metal to Pt--Sn facilitates the C-C bond cleavage of acetaldehyde. It seems that acetaldehyde is adsorbed dissociatively on the surface of Pt80Sn10Ni10/C, Pt80Sn10Co10/C, Pt80Sn10Rh10/C catalysts, producing CH3 and CHO adsorbate species, which can be further oxidized to CO2. However, the pathway forming CO2 for Pt80Sn10Pd10/C catalyst mainly originates from the oxidation of CH3CO species. Thus, the presence of third metal in the PtSn catalyst has a strong impact upon the acetaldehyde adsorption behaviour and its reaction products.

  18. Surface coverage of Pt atoms on PtCo nanoparticles and catalytic kinetics for oxygen reduction

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Rongzhong, E-mail: rongzhong.jiang@us.army.mi [Sensors and Electron Devices Directorate, U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783-1197 (United States); Rong, Charles; Chu, Deryn [Sensors and Electron Devices Directorate, U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783-1197 (United States)

    2011-02-01

    The surface coverage of Pt atoms on PtCo nanoparticles and its effect on catalytic kinetics for oxygen reduction were investigated. The PtCo nanoparticles with different surface coverage of Pt atoms were synthesized with various methods, including normal chemical method, microemulsion synthesis, and ultrasound-assisted microemulsion. A model of Pt atoms filling into a spherical nanoparticle was proposed to explain the relationship of surface metal atoms and nanoparticle size. The catalytic activity of the PtCo nano-particles is highly dependent on the synthetic methods, even if they have the same chemical composition. The PtCo nano-particles synthesized with ultrasound-assisted microemulsion showed the highest activity, which is attributed to an increase of active surface coverage of Pt atoms on the metal nanoparticles. The rate of oxygen reduction at 0.5 V (vs. SCE) catalyzed by the PtCo synthesized with ultrasound-assisted micro-emulsion was about four times higher than that of the PtCo synthesized with normal chemical method. As demonstrated with rotating-ring disk electrode measurement, the PtCo nano-particles can catalyze oxygen 4-electron reduction to water without intermediate H{sub 2}O{sub 2} detected.

  19. Theoretical evidence of PtSn alloy efficiency for CO oxidation.

    Science.gov (United States)

    Dupont, Céline; Jugnet, Yvette; Loffreda, David

    2006-07-19

    The efficiency of PtSn alloy surfaces toward CO oxidation is demonstrated from first-principles theory. Oxidation kinetics based on atomistic density-functional theory calculations shows that the Pt3Sn surface alloy exhibits a promising catalytic activity for fuel cells. At room temperature, the corresponding rate outstrips the activity of Pt(111) by several orders of magnitude. According to the oxidation pathways, the activation barriers are actually lower on Pt3Sn(111) and Pt3Sn/Pt(111) surfaces than on Pt(111). A generalization of Hammer's model is proposed to elucidate the key role of tin on the lowering of the barriers. Among the energy contributions, a correlation is evidenced between the decrease of the barrier and the strengthening of the attractive interaction energy between CO and O moieties. The presence of tin modifies also the symmetry of the transition states which are composed of a CO adsorbate on a Pt near-top position and an atomic O adsorption on an asymmetric mixed PtSn bridge site. Along the reaction pathways, a CO2 chemisorbed surface intermediate is obtained on all the surfaces. These results are supported by a thorough vibrational analysis including the coupling with the surface phonons which reveals the existence of a stretching frequency between the metal substrate and the CO2 molecule.

  20. Mixed Cd-Zn sulfides / Pt-TiO2 composites : bottlenecks limiting efficiency of photocatalytic water reduction

    NARCIS (Netherlands)

    Litke, A.; Weber, Th.; Hofmann, J.P.; Hensen, E.J.M.

    2016-01-01

    Visible-light driven photocatalytic water reduction on composite materials consisting of platinized titania (Pt-TiO2) and transition metal sulfides (CdS or Cd0.5Zn0.5S) was investigated in detail. Sulfides were prepared by hydrothermal synthesis and room-temperature precipitation. The parameters

  1. Synaptic characteristics with strong analog potentiation, depression, and short-term to long-term memory transition in a Pt/CeO2/Pt crossbar array structure

    Science.gov (United States)

    Kim, Hyung Jun; Park, Daehoon; Yang, Paul; Beom, Keonwon; Kim, Min Ju; Shin, Chansun; Kang, Chi Jung; Yoon, Tae-Sik

    2018-06-01

    A crossbar array of Pt/CeO2/Pt memristors exhibited the synaptic characteristics such as analog, reversible, and strong resistance change with a ratio of ∼103, corresponding to wide dynamic range of synaptic weight modulation as potentiation and depression with respect to the voltage polarity. In addition, it presented timing-dependent responses such as paired-pulse facilitation and the short-term to long-term memory transition by increasing amplitude, width, and repetition number of voltage pulse and reducing the interval time between pulses. The memory loss with a time was fitted with a stretched exponential relaxation model, revealing the relation of memory stability with the input stimuli strength. The resistance change was further enhanced but its stability got worse as increasing measurement temperature, indicating that the resistance was changed as a result of voltage- and temperature-dependent electrical charging and discharging to alter the energy barrier for charge transport. These detailed synaptic characteristics demonstrated the potential of crossbar array of Pt/CeO2/Pt memristors as artificial synapses in highly connected neuron-synapse network.

  2. Structurally triggered metal-insulator transition in rare-earth nickelates.

    Science.gov (United States)

    Mercy, Alain; Bieder, Jordan; Íñiguez, Jorge; Ghosez, Philippe

    2017-11-22

    Rare-earth nickelates form an intriguing series of correlated perovskite oxides. Apart from LaNiO 3 , they exhibit on cooling a sharp metal-insulator electronic phase transition, a concurrent structural phase transition, and a magnetic phase transition toward an unusual antiferromagnetic spin order. Appealing for various applications, full exploitation of these compounds is still hampered by the lack of global understanding of the interplay between their electronic, structural, and magnetic properties. Here we show from first-principles calculations that the metal-insulator transition of nickelates arises from the softening of an oxygen-breathing distortion, structurally triggered by oxygen-octahedra rotation motions. The origin of such a rare triggered mechanism is traced back in their electronic and magnetic properties, providing a united picture. We further develop a Landau model accounting for the metal-insulator transition evolution in terms of the rare-earth cations and rationalizing how to tune this transition by acting on oxygen rotation motions.

  3. Isolated Pt Atoms Stabilized by Amorphous Tungstenic Acid for Metal-Support Synergistic Oxygen Activation.

    Science.gov (United States)

    Zhang, Qian; Qin, Xixi; Duanmu, Fanpeng; Ji, Huiming; Shen, Zhurui; Han, Xiaopeng; Hu, Wenbin

    2018-06-05

    Oxygen activation plays a crucial role in many important chemical reactions such as organics oxidation and oxygen reduction. For developing highly active materials for oxygen activation, herein, we report an atomically dispersed Pt on WO3 nanoplates stabilized by in-situ formed amorphous H2WO4 out-layer and the mechanism for activating molecular oxygen. Experimental and theoretical studies demonstrate that the isolated Pt atoms coordinated with oxygen atoms from [WO6] and water of H2WO4, consequently leading to optimized surface electronic configuration and strong metal support interaction (SMSI). In exemplified reactions of butanone oxidation sensing and oxygen reduction, the atomic Pt/WO3 hybrid exhibits superior activity than those of Pt nanoclusters/WO3 and bare WO3 as well as enhanced long-term durability. This work will provide insight on the origin of activity and stability for atomically dispersed materials, thus promoting the development of highly efficient and durable single atom-based catalysts. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. High-frequency EPR on high-spin transition-metal sites

    NARCIS (Netherlands)

    Mathies, Guinevere

    2012-01-01

    The electronic structure of transition-metal sites can be probed by electron-paramagnetic-resonance (EPR) spectroscopy. The study of high-spin transition-metal sites benefits from EPR spectroscopy at frequencies higher than the standard 9.5 GHz. However, high-frequency EPR is a developing field. In

  5. Metallacyclopentadienes: structural features and coordination in transition metal complexes

    International Nuclear Information System (INIS)

    Dolgushin, Fedor M; Yanovsky, Aleksandr I; Antipin, Mikhail Yu

    2004-01-01

    Results of structural studies of polynuclear transition metal complexes containing the metallacyclopentadiene fragment are overviewed. The structural features of the complexes in relation to the nature of the substituents in the organic moiety of the metallacycles, the nature of the transition metals and their ligand environment are analysed. The main structural characteristics corresponding to different modes of coordination of metallacyclopentadienes to one or two additional metal centres are revealed.

  6. Theoretical study of adsorption of organic phosphines on transition metal surfaces

    Science.gov (United States)

    Lou, Shujie; Jiang, Hong

    2018-04-01

    The adsorption properties of organic phosphines on transition metal (TM) surfaces (Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag, Ir, Pt, and Au) have been studied to explore the possibility of building novel heterogeneous chiral catalytic systems based on organic phosphines. Preferred adsorption sites, adsorption energies and surface electronic structures of a selected set of typical organic phosphines adsorbed on TM surfaces are calculated with density-functional theory to obtain a systematic understanding on the nature of adsorption interactions. All organic phosphines considered are found to chemically adsorb on these TM surfaces with the atop site as the most preferred one, and the TM-P bond is formed via the lone-pair electrons of the P atom and the directly contacted TM atom. These findings imply that it is indeed possible to build heterogeneous chiral catalytic systems based on organic phosphines adsorbed on TM surfaces, which, however, requires a careful design of molecular structure of organic phosphines.

  7. L1{sub 0} phase transition in FePt thin films via direct interface reaction

    Energy Technology Data Exchange (ETDEWEB)

    Li Xiaohong; Sun Hongyu; Wang Fengqing; Li Wei; Zhang Xiangyi [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, 066004 Qinhuangdao (China); Liu Baoting; Guo Jianxin [College of Physics Science and Technology, Hebei University, 071002 Baoding (China)], E-mail: xyzh66@ysu.edu.cn

    2008-12-07

    Lowering the L1{sub 0} ordering temperature of FePt films is of great significance for their application as an ultrahigh density magnetic recording medium. In this study, the L1{sub 0} ordering process of FePt thin films deposited directly on Si substrates has been significantly accelerated by the interface reaction between the thin film and the Si substrate, and thus the thin films show a low L1{sub 0} ordering temperature of T = 310 deg. C as compared with those deposited on Si/SiO{sub 2} substrates. The accelerated L1{sub 0} ordering transition is predominantly dependent on the rapid growth of the ordered domains during the interface reaction. The film thickness has an important effect on the interface reaction and thus can be used to tune the L1{sub 0} ordering process of the FePt films.

  8. Low Pt content of carbon supported Pt-Ni-TiO2 nanotube electrocatalysts for direct methanol fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Q.Z; Wu, X.; Ma, Z.F. [Shanghai Jiao Tong Univ., Shanghai, (China). Dept. of Chemical Engineering

    2008-07-01

    Interest in titanium oxide (TiO2) nanomaterial is growing due to their special characteristics for optics, catalysis, and photoelectricity conversion. In this study, the anatase/rutile crystalline of TiO2 nanoparticles was synthesized by co-deposition. TiO2 nanotubes were then obtained by microwave irradiations. This paper described the mechanism to fabricate TiO2 nanotubes. The conditions for preparing TiO2 nanotubes by microwave irradiation were optimized. Electrocatalysts were then prepared on the basis of the synthesized TiO2 nanotube. Their performances were investigated by the electro-oxidation of methanol. When Pt electrocatalysts were doped with a certain content of TiO2 nanotubes, they had more electrocatalytic activity for methanol electro-oxidation, particularly if the second transition metal, such as Ni, was added into the electrocatalyst. The electrocatalysts contained 5 and 10 wt per cent of Pt and Ni respectively. The 10 wt per cent TiO2 nanotubes showed better activities than any other catalysts for methanol electro-oxidation. According to XRD and TEM results, the size of nanoparticles of Pt became smaller after adding TiO2 nanotubes into the catalysts. It was concluded that here might be some interactions between Pt, Ni, and TiO2 nanotubes.

  9. Mesoporous Transition Metal Oxides for Supercapacitors

    OpenAIRE

    Wang, Yan; Guo, Jin; Wang, Tingfeng; Shao, Junfeng; Wang, Dong; Yang, Ying-Wei

    2015-01-01

    Recently, transition metal oxides, such as ruthenium oxide (RuO2), manganese dioxide (MnO2), nickel oxides (NiO) and cobalt oxide (Co3O4), have been widely investigated as electrode materials for pseudo-capacitors. In particular, these metal oxides with mesoporous structures have become very hot nanomaterials in the field of supercapacitors owing to their large specific surface areas and suitable pore size distributions. The high specific capacities of these mesoporous metal oxides are result...

  10. Benchmarking Pt and Pt-lanthanide sputtered thin films for oxygen electroreduction

    DEFF Research Database (Denmark)

    Zamburlini, Eleonora; Jensen, Kim Degn; Stephens, Ifan E.L.

    2017-01-01

    Platinum-lanthanide alloys are very promising as active and stable catalysts for the oxygen reduction reaction (ORR) in low-temperature fuel cells. We have fabricated Pt and Pt5Gd metallic thin films via (co-)sputtering deposition in an ultra-high vacuum (UHV) chamber. The electrochemical ORR...

  11. Templated assembly of Co-Pt nanoparticles via thermal and laser-induced dewetting of bilayer metal films.

    Science.gov (United States)

    Oh, Yong-Jun; Kim, Jung-Hwan; Thompson, Carl V; Ross, Caroline A

    2013-01-07

    Templated dewetting of a Co/Pt metal bilayer film on a topographic substrate was used to assemble arrays of Co-Pt alloy nanoparticles, with highly uniform particle size, shape and notably composition compared to nanoparticles formed on an untemplated substrate. Solid-state and liquid-state dewetting processes, using furnace annealing and laser irradiation respectively, were compared. Liquid state dewetting produced more uniform, conformal nanoparticles but they had a polycrystalline disordered fcc structure and relatively low magnetic coercivity. In contrast, solid state dewetting enabled formation of magnetically hard, ordered L1(0) Co-Pt single-crystal particles with coercivity >12 kOe. Furnace annealing converted the nanoparticles formed by liquid state dewetting into the L1(0) phase.

  12. Stable isotopes of transition and post-transition metals as tracers in environmental studies

    Science.gov (United States)

    Bullen, Tomas D.; Baskaran, Mark

    2011-01-01

    The transition and post-transition metals, which include the elements in Groups 3–12 of the Periodic Table, have a broad range of geological and biological roles as well as industrial applications and thus are widespread in the environment. Interdisciplinary research over the past decade has resulted in a broad understanding of the isotope systematics of this important group of elements and revealed largely unexpected variability in isotope composition for natural materials. Significant kinetic and equilibrium isotope fractionation has been observed for redox sensitive metals such as iron, chromium, copper, molybdenum and mercury, and for metals that are not redox sensitive in nature such as cadmium and zinc. In the environmental sciences, the isotopes are increasingly being used to understand important issues such as tracing of metal contaminant sources and fates, unraveling metal redox cycles, deciphering metal nutrient pathways and cycles, and developing isotope biosignatures that can indicate the role of biological activity in ancient and modern planetary systems.

  13. Thermodynamic modeling of the Pt-Zr system

    International Nuclear Information System (INIS)

    Gao Yongliang; Guo Cuiping; Li Changrong; Du Zhenmin

    2010-01-01

    By means of the CALPHAD (CALculation of PHAse Diagram) technique, the Pt-Zr system was critically assessed. The solution phases (liquid, bcc, fcc and hcp) are described with the substitutional model. The intermetallic compounds Pt 4 Zr, Pt 4 Zr 3 , αPtZr and Pt 3 Zr 5 are treated as the formula (Pt,Zr) m (Pt,Zr) n by a two-sublattice model with the elements Pt and Zr on the first and the second sublattices, respectively. A two-sublattice model (Pt,Zr) 0.5 (Pt,Zr) 0.5 is applied to describe the compound βPtZr with CsCl-type structure (B2) in order to cope with the order-disorder transition between bcc solution (A2) and βPtZr (B2). Another two-sublattice model (Pt,Zr) 0.75 (Pt,Zr) 0.25 with Ni 3 Ti-type structure (D0 24 ) is applied to describe the compound Pt 3 Zr in order to cope with the order-disorder transition between hexagonal close-packed (A3) and Pt 3 Zr (D0 24 ). The compound Pt 10 Zr 7 is treated as a stoichiometric compound. A set of self-consistent thermodynamic parameters of the Pt-Zr system was obtained. (orig.)

  14. Coexisting shape- and high-K isomers in the shape transitional nucleus 188Pt

    Science.gov (United States)

    Mukhopadhyay, S.; Biswas, D. C.; Tandel, S. K.; Danu, L. S.; Joshi, B. N.; Prajapati, G. K.; Nag, Somnath; Trivedi, T.; Saha, S.; Sethi, J.; Palit, R.; Joshi, P. K.

    2014-12-01

    A high-spin study of the shape transitional nucleus 188Pt reveals the unusual coexistence of both shape- and K-isomeric states. Reduced B (E2) transition probabilities for decays from these states inferred from the data clearly establish their hindered character. In addition to other excited structures, a rotational band built upon the K isomer is identified, and its configuration has been assigned through an analysis of alignments and branching ratios. The shape evolution with spin in this nucleus has been inferred from both experimental observables and cranking calculations. The yrast positive parity structure appears to evolve from a near-prolate deformed shape through triaxial at intermediate excitation, and eventually to oblate at the highest spins.

  15. Impact of metal cations on the electrocatalytic properties of Pt/C nanoparticles at multiple phase interfaces.

    Science.gov (United States)

    Durst, Julien; Chatenet, Marian; Maillard, Frédéric

    2012-10-05

    Proton-exchange membrane fuel cells (PEMFCs) use carbon-supported nanoparticles based on platinum and its alloys to accelerate the rate of the sluggish oxygen-reduction reaction (ORR). The most common metals alloyed to Pt include Co, Ni and Cu, and are thermodynamically unstable in the PEMFC environment. Their dissolution yields the formation and redistribution of metal cations (M(y+)) within the membrane electrode assembly (MEA). Metal cations can also contaminate the MEA when metallic bipolar plates are used as current collectors. In each case, the electrical performance of the PEMFC severely decreases, an effect that is commonly attributed to the poisoning of the sulfonic acid groups of the perfluorosulfonated membrane (PEM) and the resulting decrease of the proton transport properties. However, the impact of metal cations on the kinetics of electrochemical reactions involving adsorption/desorption and bond-breaking processes remains poorly understood. In this paper, we use model electrodes to highlight the effect of metal cations on Pt/C nanoparticles coated or not with a perfluorosulfonated ionomer for the CO electrooxidation reaction and the oxygen reduction reaction. We show that metal cations negatively impact the ORR kinetics and the mass-transport resistance of molecular oxygen. However, the specific adsorption of sulfonate groups of the Nafion® ionomer locally modifies the double layer structure and increases the tolerance to metal cations, even in the presence of sulphate ions in the electrolyte. The survey is extended by using an ultramicroelectrode with cavity and a solid state cell (SSC) specifically developed for this study.

  16. Pt-based Bi-metallic Monolith Catalysts for Partial Upgrading of Microalgae Oil

    Energy Technology Data Exchange (ETDEWEB)

    Lawal, Adeniyi [Stevens Inst. of Technology, Hoboken, NJ (United States); Manganaro, James [Anasyn LLC, Princeton, NJ (United States); Goodall, Brian [Valicor Renewables LLC, Dexter, MI (United States); Farrauto, Robert [Columbia Univ., New York, NY (United States)

    2015-03-24

    Valicor’s proprietary wet extraction process in conjunction with thermochemical pre-treatment was performed on algal biomass from two different algae strains, Nannochloropsis Salina (N.S.) and Chlorella to produce algae oils. Polar lipids such as phospholipids were hydrolyzed, and metals and metalloids, known catalyst poisons, were separated into the aqueous phase, creating an attractive “pre-refined” oil for hydrodeoxygenation (HDO) upgrading by Stevens. Oil content and oil extraction efficiency of approximately 30 and 90% respectively were achieved. At Stevens, we formulated a Pt-based bi-metallic catalyst which was demonstrated to be effective in the hydro-treating of the algae oils to produce ‘green’ diesel. The bi-metallic catalyst was wash-coated on a monolith, and in conjunction with a high throughput high pressure (pilot plant) reactor system, was used in hydrotreating algae oils from N.S. and Chlorella. Mixtures of these algae oils and refinery light atmospheric gas oil (LAGO) supplied by our petroleum refiner partner, Marathon Petroleum Corporation, were co-processed in the pilot plant reactor system using the Pt-based bi-metallic monolith catalyst. A 26 wt% N.S. algae oil/74 wt % LAGO mixture hydrotreated in the reactor system was subjected to the ASTM D975 Diesel Fuel Specification Test and it met all the important requirements, including a cetane index of 50.5. An elemental oxygen analysis performed by an independent and reputable lab reported an oxygen content of trace to none found. The successful co-processing of a mixture of algae oil and LAGO will enable integration of algae oil as a refinery feedstock which is one of the goals of DOE-BETO. We have presented experimental data that show that our precious metal-based catalysts consume less hydrogen than the conventional hydrotreating catalyst NiMo Precious metal catalysts favor the hydrodecarbonylation/hydrodecarboxylation route of HDO over the dehydration route preferred by base metal

  17. Single Transition-to-single Transition Polarization Transfer (ST2-PT) in [15N,1H]-TROSY

    International Nuclear Information System (INIS)

    Pervushin, Konstantin V.; Wider, Gerhard; Wuethrich, Kurt

    1998-01-01

    This paper describes the use of single transition-to-single transition polarization transfer (ST2-PT) in transverse relaxation-optimized spectroscopy (TROSY), where it affords a √2 sensitivity enhancement for kinetically stable amide 15N-1H groups in proteins. Additional, conventional improvements of [15N,1H]-TROSY include that signal loss for kinetically labile 15N-1H groups due to saturation transfer from the solvent water is suppressed with the 'water flip back' technique and that the number of phase steps is reduced to two, which is attractive for the use of [15N,1H]-TROSY as an element in more complex NMR schemes. Finally, we show that the impact of the inclusion of the 15N steady-state magnetization (Pervushin et al., 1998) on the signal-to-noise ratio achieved with [15N,1H]-TROSY exceeds by up to two-fold the gain expected from the gyromagnetic ratios of 1H and 15N

  18. Peruvian perovskite Between Transition-metal to PGM/PlatinumGroupMetal Catalytic Fusion

    Science.gov (United States)

    Maksoed, Wh-

    2016-11-01

    Strongly correlated electronic materials made of simple building blocks, such as a transition-metal ion in an octahedral oxygen cage forming a perovskite structure- Dagotto & Tokura for examples are the high-temperature superconductivity & the CMR/Colossal Magnetoresistance . Helium-4 denotes from LC Case,ScD: "Catalytic Fusion of Deuterium into Helium-4"- 1998 dealt with gaseous D2- "contacted with a supported metallic catalyst at superatmospheric pressure". The catalyst is a platinum-group metal, at about 0.5% - 1% by weight, on activated C. Accompanies Stephen J Geier, 2010 quotes "transition metal complexes", the Energy thus produced is enormous, and because the deuterium is very cheap in the form of heavy water (less than US 1/g), the fuel cost is very low (seas &Deuteronomy to be eternally preserves. Heartfelt Gratitudes to HE. Mr. Prof. Ir. HANDOJO.

  19. Structure and properties of transition metal-metalloid glasses based on refractory metals

    International Nuclear Information System (INIS)

    Johnson, W.L.; Williams, A.R.

    1979-01-01

    The structure and properties of several new transition metal-metalloid (TM/sub 1-x/M/sub x/) metallic glasses based on refractory transition metals (e.g. Mo, W, Ru etc.) have been systemically investigated as a function of composition. The structure of the alloys has been investigated by x-ray diffraction methods and measurements of superconducting properties, electrical resistivity, density, hardness, and mechanical behavior were made. These data are used in developing a novel description of the structure of TM/sub 1-x/M/sub x/ glasses. The experimental evidence suggests that an ideal amorphous phase forms at a specific composition x/sub c/ and that this phase has a well defined atomic short range order. For metallic glasses having x x/sub c/. This novel picture can explain the variation of many properties of these glasses with metalloid concentration

  20. Mechanical failure and glass transition in metallic glasses

    International Nuclear Information System (INIS)

    Egami, T.

    2011-01-01

    Research highlights: → We review the recent results of molecular dynamics simulations on metallic glasses. → They show the equivalence of mechanical failure and glass transition. → We discuss the microscopic mechanism behind this equivalence. → We show that the density of defects in metallic glasses is as high as a quarter. → Our concepts about the defect state in glasses need to be changed. - Abstract: The current majority view on the phenomenon of mechanical failure in metallic glasses appears to be that it is caused by the activity of some structural defects, such as free-volumes or shear transformation zones, and the concentration of such defects is small, only of the order of 1%. However, the recent results compel us to revise this view. Through molecular dynamics simulation it has been shown that mechanical failure is the stress-induced glass transition. According to our theory the concentration of the liquid-like sites (defects) is well over 20% at the glass transition. We suggest that the defect concentration in metallic glasses is actually very high, and percolation of such defects causes atomic avalanche and mechanical failure. In this article we discuss the glass transition, mechanical failure and viscosity from such a point of view.

  1. Unusual metal-insulator transition in disordered ferromagnetic films

    International Nuclear Information System (INIS)

    Muttalib, K.A.; Wölfle, P.; Misra, R.; Hebard, A.F.

    2012-01-01

    We present a theoretical interpretation of recent data on the conductance near and farther away from the metal-insulator transition in thin ferromagnetic Gd films of thickness b≈2-10 nm. For increasing sheet resistances a dimensional crossover takes place from d=2 to d=3 dimensions, since the large phase relaxation rate caused by scattering of quasiparticles off spin wave excitations renders the dephasing length L φ ≲b at strong disorder. The conductivity data in the various regimes obey fractional power-law or logarithmic temperature dependence. One observes weak localization and interaction induced corrections at weaker disorder. At strong disorder, near the metal-insulator transition, the data show scaling and collapse onto two scaling curves for the metallic and insulating regimes. We interpret this unusual behavior as proof of two distinctly different correlation length exponents on both sides of the transition.

  2. Noble metals can have different effects on photocatalysis over metal-organic frameworks (MOFs): a case study on M/NH₂-MIL-125(Ti) (M=Pt and Au).

    Science.gov (United States)

    Sun, Dengrong; Liu, Wenjun; Fu, Yanghe; Fang, Zhenxing; Sun, Fangxiang; Fu, Xianzhi; Zhang, Yongfan; Li, Zhaohui

    2014-04-14

    M-doped NH2-MIL-125(Ti) (M=Pt and Au) were prepared by using the wetness impregnation method followed by a treatment with H2 flow. The resultant samples were characterized by powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), X-ray absorption fine structure (XAFS) analyses, N2-sorption BET surface area, and UV/Vis diffuse reflectance spectroscopy (DRS). The photocatalytic reaction carried out in saturated CO2 with triethanolamine (TEOA) as sacrificial agent under visible-light irradiations showed that the noble metal-doping on NH2-MIL-125(Ti) promoted the photocatalytic hydrogen evolution. Unlike that over pure NH2-MIL-125(Ti), in which only formate was produced, both hydrogen and formate were formed over Pt- and Au-loaded NH2-MIL-125(Ti). However, Pt and Au have different effects on the photocatalytic performance for formate production. Compared with pure NH2-MIL-125(Ti), Pt/NH2-MIL-125(Ti) showed an enhanced activity for photocatalytic formate formation, whereas Au has a negative effect on this reaction. To elucidate the origin of the different photocatalytic performance, electron spin resonance (ESR) analyses and density functional theory (DFT) calculations were carried out over M/NH2-MIL-125(Ti).The photocatalytic mechanisms over M/NH2-MIL-125(Ti) (M=Pt and Au) were proposed. For the first time, the hydrogen spillover from the noble metal Pt to the framework of NH2-MIL-125(Ti) and its promoting effect on the photocatalytic CO2 reduction is revealed. The elucidation of the mechanism on the photocatalysis over M/NH2-MIL-125(Ti) can provide some guidance in the development of new photocatalysts based on MOF materials. This study also demonstrates the potential of using noble metal-doped MOFs in photocatalytic reactions involving hydrogen as a reactant, like hydrogenation reactions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Transition-Metal-Free Biomolecule-Based Flexible Asymmetric Supercapacitors.

    Science.gov (United States)

    Yang, Yun; Wang, Hua; Hao, Rui; Guo, Lin

    2016-09-01

    A transition-metal-free asymmetric supercapacitor (ASC) is successfully fabricated based on an earth-abundant biomass derived redox-active biomolecule, named lawsone. Such an ASC exhibits comparable or even higher energy densities than most of the recently reported transition-metal-based ASCs, and this green ASC generation from renewable resources is promising for addressing current issues of electronic hazard processing, high cost, and unsustainability. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Tunable metal-insulator transitions in bilayer graphene by thermal annealing

    OpenAIRE

    Kalon, Gopinadhan; Shin, Young Jun; Yang, Hyunsoo

    2012-01-01

    Tunable and highly reproducible metal-insulator transitions have been observed in bilayer graphene upon thermal annealing at 400 K under high vacuum conditions. Before annealing, the sample is metallic in the whole temperature regime of study. Upon annealing, the conductivity changes from metallic to that of an insulator and the transition temperature is a function of annealing time. The pristine metallic state can be reinstated by exposing to air thereby inducing changes in the electronic pr...

  5. The metallicities of stars with and without transiting planets

    DEFF Research Database (Denmark)

    Buchhave, Lars A.; Latham, David W.

    2015-01-01

    Host star metallicities have been used to infer observational constraints on planet formation throughout the history of the exoplanet field. The giant planet metallicity correlation has now been widely accepted, but questions remain as to whether the metallicity correlation extends to the small...... terrestrial-sized planets. Here, we report metallicities for a sample of 518 stars in the Kepler field that have no detected transiting planets and compare their metallicity distribution to a sample of stars that hosts small planets (). Importantly, both samples have been analyzed in a homogeneous manner...... using the same set of tools (Stellar Parameters Classification tool). We find the average metallicity of the sample of stars without detected transiting planets to be and the sample of stars hosting small planets to be . The average metallicities of the two samples are indistinguishable within...

  6. [Non-empirical interatomic potentials for transition metals

    International Nuclear Information System (INIS)

    1993-01-01

    The report is divided into the following sections: potential-energy functions for d-band metals, potential-energy functions for aluminides and quasicrystals, electronic structure of complex structures and quasicrystals, potential-energy functions in transition-metal oxides, applications to defect structure and mechanical properties, and basic theory of interatomic potentials

  7. The emergence of nonbulk properties in supported metal clusters: negative thermal expansion and atomic disorder in Pt nanoclusters supported on gamma-Al2O3.

    Science.gov (United States)

    Sanchez, Sergio I; Menard, Laurent D; Bram, Ariella; Kang, Joo H; Small, Matthew W; Nuzzo, Ralph G; Frenkel, Anatoly I

    2009-05-27

    The structural dynamics-cluster size and adsorbate-dependent thermal behaviors of the metal-metal (M-M) bond distances and interatomic order-of Pt nanoclusters supported on a gamma-Al(2)O(3) are described. Data from scanning transmission electron microscopy (STEM) and X-ray absorption spectroscopy (XAS) studies reveal that these materials possess a dramatically nonbulklike nature. Under an inert atmosphere small, subnanometer Pt/gamma-Al(2)O(3) clusters exhibit marked relaxations of the M-M bond distances, negative thermal expansion (NTE) with an average linear thermal expansion coefficient alpha = (-2.4 +/- 0.4) x 10(-5) K(-1), large static disorder and dynamical bond (interatomic) disorder that is poorly modeled within the constraints of classical theory. The data further demonstrate a significant temperature-dependence to the electronic structure of the Pt clusters, thereby suggesting the necessity of an active model to describe the cluster/support interactions mediating the cluster's dynamical structure. The quantitative dependences of these nonbulklike behaviors on cluster size (0.9 to 2.9 nm), ambient atmosphere (He, 4% H(2) in He or 20% O(2) in He) and support identity (gamma-Al(2)O(3) or carbon black) are systematically investigated. We show that the nonbulk structural, electronic and dynamical perturbations are most dramatically evidenced for the smallest clusters. The adsorption of hydrogen on the clusters leads to an increase of the Pt-Pt bondlengths (due to a lifting of the surface relaxation) and significant attenuation of the disorder present in the system. Oxidation of these same clusters has the opposite effect, leading to an increase in Pt-Pt bond strain and subsequent enhancement in nonbulklike thermal properties. The structural and electronic properties of Pt nanoclusters supported on carbon black contrast markedly with those of the Pt/gamma-Al(2)O(3) samples in that neither NTE nor comparable levels of atomic disorder are observed. The Pt

  8. Ab-initio study of the coadsorption of Li and H on Pt(001), Pt(110) and Pt(111) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Saad, Farida [Laboratoire de Physique et Chimie Quantique, Faculte des Sciences, Universite Mouloud Mammeri, 15000 Tizi-Ouzou (Algeria); Zemirli, Mourad, E-mail: zemirlimourad@mail.ummto.dz [Laboratoire de Physique et Chimie Quantique, Faculte des Sciences, Universite Mouloud Mammeri, 15000 Tizi-Ouzou (Algeria); Benakki, Mouloud; Bouarab, Said [Laboratoire de Physique et Chimie Quantique, Faculte des Sciences, Universite Mouloud Mammeri, 15000 Tizi-Ouzou (Algeria)

    2012-02-15

    The coadsorption of Li and H atoms on Pt(001), Pt(110) and Pt(111) surfaces is studied using density functional theory with generalised gradient approximation. In all calculations Li, H and the two topmost layers of the metal were allowed to relax. At coverage of 0.25 mono-layer in a p(2 Multiplication-Sign 2) unit cell, lithium adsorption at the hollow site for the three surfaces is favoured over top and bridge sites. The most favoured adsorption sites for H atom on the Pt(001) and Pt(110) surfaces are the top and bridge sites, while on Pt(111) surface the fcc site appears to be slightly favoured over the hcp site. The coadsorption of Li and atomic hydrogen shows that the interaction between the two adsorbates is stabilising when they are far from each other. The analysis of Li, H and Pt local density of states shows that Li strongly interacts with the Pt surfaces.

  9. Theory of quantum metal to superconductor transitions in highly conducting systems

    Energy Technology Data Exchange (ETDEWEB)

    Spivak, B.

    2010-04-06

    We derive the theory of the quantum (zero temperature) superconductor to metal transition in disordered materials when the resistance of the normal metal near criticality is small compared to the quantum of resistivity. This can occur most readily in situations in which 'Anderson's theorem' does not apply. We explicitly study the transition in superconductor-metal composites, in an swave superconducting film in the presence of a magnetic field, and in a low temperature disordered d-wave superconductor. Near the point of the transition, the distribution of the superconducting order parameter is highly inhomogeneous. To describe this situation we employ a procedure which is similar to that introduced by Mott for description of the temperature dependence of the variable range hopping conduction. As the system approaches the point of the transition from the metal to the superconductor, the conductivity of the system diverges, and the Wiedemann-Franz law is violated. In the case of d-wave (or other exotic) superconductors we predict the existence of (at least) two sequential transitions as a function of increasing disorder: a d-wave to s-wave, and then an s-wave to metal transition.

  10. Correlating Structure and Oxygen Reduction Activity on Y/Pt(111) and Gd/Pt(111) Single Crystals

    DEFF Research Database (Denmark)

    Ulrikkeholm, Elisabeth Therese; Pedersen, Anders Filsøe; Johansson, Tobias Peter

    2015-01-01

    Polymer Electrolyte Membrane Fuel Cells (PEMFC) hold promise as a zero-emission source of power, particularly suitable for automotive vehicles. However, the high loading of Pt required to catalyse the Oxygen Reduction Reaction (ORR) at the PEMFC cathode prevents the commercialisation of this tech......Polymer Electrolyte Membrane Fuel Cells (PEMFC) hold promise as a zero-emission source of power, particularly suitable for automotive vehicles. However, the high loading of Pt required to catalyse the Oxygen Reduction Reaction (ORR) at the PEMFC cathode prevents the commercialisation...... of this technology. Improving the activity of Pt by alloying it with other metals could decrease the loading of Pt at the cathode to a level comparable to Pt-group metal loading in internal combustion engines. PtxY and PtxGd exhibit exceptionally high activity for oxygen reduction, both in the polycrystalline form...

  11. Lipid solubility of the platinum group metals Pt, Pd and Rh in dependence on the presence of complexing agents

    International Nuclear Information System (INIS)

    Zimmermann, Sonja; Menzel, Christoph M.; Stueben, Doris; Taraschewski, Horst; Sures, Bernd

    2003-01-01

    All complexing agents had a significant influence on octanol solubility of PGM. - Investigations on the bioaccumulation of the platinum group metals (PGM) Pt, Pd and Rh in aquatic organisms are of growing interest in environmental research due to the increasing emission of these metals by motor vehicles with catalytic converters. Until now, nothing is known about the possible influence of complexing agents on the bioaccumulation capacity of these precious metals. According to the partition coefficient between 1-octanol and water (P OW ) as a measure of bioaccumulation, in this study a simple shaking method was performed in order to investigate the effects of different complexing agents (L-methionine, thio urea, EDTA, humic substances, bile compounds) on the octanol solubility of the PGM. The results demonstrated a significant influence of all agents used. L-Methionine and thio urea decreased the lipid solubility. In contrast, the presence of EDTA, humic substances and especially bile caused a higher transfer of metals in the octanol phase. For most complexing agents tested, the transfer of Pd to the lipid phase was significantly higher compared with Rh and Pt, except for bile acid where the highest octanol solubility was found for Pt. Recent experimental results on PGM accumulation in zebra mussels confirm a high bioaccumulation of Pd which could be predicted from the lipid solubility

  12. Lipid solubility of the platinum group metals Pt, Pd and Rh in dependence on the presence of complexing agents

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, Sonja; Menzel, Christoph M.; Stueben, Doris; Taraschewski, Horst; Sures, Bernd

    2003-07-01

    All complexing agents had a significant influence on octanol solubility of PGM. - Investigations on the bioaccumulation of the platinum group metals (PGM) Pt, Pd and Rh in aquatic organisms are of growing interest in environmental research due to the increasing emission of these metals by motor vehicles with catalytic converters. Until now, nothing is known about the possible influence of complexing agents on the bioaccumulation capacity of these precious metals. According to the partition coefficient between 1-octanol and water (P{sub OW}) as a measure of bioaccumulation, in this study a simple shaking method was performed in order to investigate the effects of different complexing agents (L-methionine, thio urea, EDTA, humic substances, bile compounds) on the octanol solubility of the PGM. The results demonstrated a significant influence of all agents used. L-Methionine and thio urea decreased the lipid solubility. In contrast, the presence of EDTA, humic substances and especially bile caused a higher transfer of metals in the octanol phase. For most complexing agents tested, the transfer of Pd to the lipid phase was significantly higher compared with Rh and Pt, except for bile acid where the highest octanol solubility was found for Pt. Recent experimental results on PGM accumulation in zebra mussels confirm a high bioaccumulation of Pd which could be predicted from the lipid solubility.

  13. On the thermodynamics of phase transitions in metal hydrides

    Science.gov (United States)

    di Vita, Andrea

    2012-02-01

    Metal hydrides are solutions of hydrogen in a metal, where phase transitions may occur depending on temperature, pressure etc. We apply Le Chatelier's principle of thermodynamics to a particular phase transition in TiH x , which can approximately be described as a second-order phase transition. We show that the fluctuations of the order parameter correspond to fluctuations both of the density of H+ ions and of the distance between adjacent H+ ions. Moreover, as the system approaches the transition and the correlation radius increases, we show -with the help of statistical mechanics-that the statistical weight of modes involving a large number of H+ ions (`collective modes') increases sharply, in spite of the fact that the Boltzmann factor of each collective mode is exponentially small. As a result, the interaction of the H+ ions with collective modes makes a tiny suprathermal fraction of the H+ population appear. Our results hold for similar transitions in metal deuterides, too. A violation of an -insofar undisputed-upper bound on hydrogen loading follows.

  14. A Simple, General Synthetic Route toward Nanoscale Transition Metal Borides.

    Science.gov (United States)

    Jothi, Palani R; Yubuta, Kunio; Fokwa, Boniface P T

    2018-04-01

    Most nanomaterials, such as transition metal carbides, phosphides, nitrides, chalcogenides, etc., have been extensively studied for their various properties in recent years. The similarly attractive transition metal borides, on the contrary, have seen little interest from the materials science community, mainly because nanomaterials are notoriously difficult to synthesize. Herein, a simple, general synthetic method toward crystalline transition metal boride nanomaterials is proposed. This new method takes advantage of the redox chemistry of Sn/SnCl 2 , the volatility and recrystallization of SnCl 2 at the synthesis conditions, as well as the immiscibility of tin with boron, to produce crystalline phases of 3d, 4d, and 5d transition metal nanoborides with different morphologies (nanorods, nanosheets, nanoprisms, nanoplates, nanoparticles, etc.). Importantly, this method allows flexibility in the choice of the transition metal, as well as the ability to target several compositions within the same binary phase diagram (e.g., Mo 2 B, α-MoB, MoB 2 , Mo 2 B 4 ). The simplicity and wide applicability of the method should enable the fulfillment of the great potential of this understudied class of materials, which show a variety of excellent chemical, electrochemical, and physical properties at the microscale. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Hot carrier dynamics in plasmonic transition metal nitrides

    Science.gov (United States)

    Habib, Adela; Florio, Fred; Sundararaman, Ravishankar

    2018-06-01

    Extraction of non-equilibrium hot carriers generated by plasmon decay in metallic nano-structures is an increasingly exciting prospect for utilizing plasmonic losses, but the search for optimum plasmonic materials with long-lived carriers is ongoing. Transition metal nitrides are an exciting class of new plasmonic materials with superior thermal and mechanical properties compared to conventional noble metals, but their suitability for plasmonic hot carrier applications remains unknown. Here, we present fully first principles calculations of the plasmonic response, hot carrier generation and subsequent thermalization of all group IV, V and VI transition metal nitrides, fully accounting for direct and phonon-assisted transitions as well as electron–electron and electron–phonon scattering. We find the largest frequency ranges for plasmonic response in ZrN, HfN and WN, between those of gold and silver, while we predict strongest absorption in the visible spectrum for the VN, NbN and TaN. Hot carrier generation is dominated by direct transitions for most of the relevant energy range in all these nitrides, while phonon-assisted processes dominate only below 1 eV plasmon energies primarily for the group IV nitrides. Finally, we predict the maximum hot carrier lifetimes to be around 10 fs for group IV and VI nitrides, a factor of 3–4 smaller than noble metals, due to strong electron–phonon scattering. However, we find longer carrier lifetimes for group V nitrides, comparable to silver for NbN and TaN, while exceeding 100 fs (twice that of silver) for VN, making them promising candidates for efficient hot carrier extraction.

  16. Probable metal-insulator transition in Ag{sub 4}SSe

    Energy Technology Data Exchange (ETDEWEB)

    Drebushchak, V.A., E-mail: dva@igm.nsc.ru [V.S. Sobolev Institute of Geology and Mineralogy, SB RAS, Pr. Ac. Koptyuga 3, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Ul. Pirogova 2, Novosibirsk 630090 (Russian Federation); Pal’yanova, G.A.; Seryotkin, Yu.V. [V.S. Sobolev Institute of Geology and Mineralogy, SB RAS, Pr. Ac. Koptyuga 3, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Ul. Pirogova 2, Novosibirsk 630090 (Russian Federation); Drebushchak, T.N. [Novosibirsk State University, Ul. Pirogova 2, Novosibirsk 630090 (Russian Federation); Institute of Solid State Chemistry and Mechanochemistry, SB RAS, Ul. Kutateladze 18, Novosibirsk 630128 (Russian Federation)

    2015-02-15

    Highlights: • New phase transition in Ag{sub 4}SSe was discovered with scanning calorimetry and supported with X-ray powder diffraction. • The thermal effect relates to the anomaly in electrical and thermal conductivity of Ag{sub 4}SSe. • Similar thermal and electrical effects in K{sub 3}Cu{sub 8}S{sub 6} are explained with the metal-insulator transition. - Abstract: New phase transition (285 K) in low-temperature monoclinic Ag{sub 4}SSe was found out below the α-β transition (358 K) after the measurements with differential scanning calorimetry. The transition reveals significant hysteresis (over 30 K). X-ray powder diffraction shows that the superlattice with doubled a and b parameters of the unit cell exists below the new transition point. The signs of this new phase transition can be found in thermal and electrical conductivity of Ag{sub 4}SSe published in literature. Elusive phase transition in Ag{sub 2}Se shows similar properties. The new transition is likely related to the metal-insulator type transition, like K{sub 3}Cu{sub 8}S{sub 6}.

  17. Transition metal carbide nanocomposite and amorphous thin films

    OpenAIRE

    Tengstrand, Olof

    2014-01-01

    This thesis explores thin films of binary and ternary transition metal carbides, in the Nb-C, Ti-Si-C, Nb-Si-C, Zr-Si-C, and Nb-Ge-C systems. The electrical and mechanical properties of these systems are affected by their structure and here both nanocomposite and amorphous thin films are thus investigated. By appropriate choice of transition metal and composition the films can be designed to be multifunctional with a combination of properties, such as low electric resistivity, low contact res...

  18. Evaluation of complexing agents and column temperature in ion chromatographic separation of alkali metals, alkaline earth metals and transition metals ion

    International Nuclear Information System (INIS)

    Kelkar, Anoop; Pandey, Ashish; Name, Anil B.; Das, D.K.; Behere, P.G.; Mohd Afzal

    2015-01-01

    The aim of ion chromatography method development is the resolution of all metal ions of interests. Resolution can be improved by changing the selectivity. Selectivity in chromatography can be altered by changes in mobile phase (eg eluent type, eluent strength) or through changes in stationary phase. Temperature has been used in altering the selectivity of particularly in reversed phase liquid chromatography and ion exchange chromatography. Present paper describe the retention behaviour of alkali metals, alkaline earth metals and transition metal ions on a silica based carboxylate function group containing analyte column. Alkali metals, alkaline earth metals and transition metal ions were detected by ion conductivity and UV-VIS detectors respectively

  19. Magnetic susceptibility and specific heat of the one-dimensional conductor (H3O) sub (1,6) Pt (C2O4)2.nH2O at low temperatures

    International Nuclear Information System (INIS)

    Raede, H.S.

    1985-01-01

    It has been shown recently that some transition metal complexes exhibit one-dimensional metallic properties. It is reported, in this context, susceptibility and specific heat measurements of polycrystalline (H 3 O) 1 , 6 Pt(C 2 O 4 ) 2 .nH 2 O in the low temperature range. It is found that the susceptibility can be described by a non-uniform Curie law with a characteristic break in the slope. The specific heat reveals no linear temperature contribution, which could be explained by a transition into a Peierls distorted state. Until 13 0 K, the heat capacity follows a T 3 -law. Deviations at higher temperatures are possibly attributed to the anisotropy of the system [pt

  20. Light-induced ultrafast phase transitions in VO2 thin film

    International Nuclear Information System (INIS)

    Lysenko, S.; Rua, A.J.; Vikhnin, V.; Jimenez, J.; Fernandez, F.; Liu, H.

    2006-01-01

    Vanadium dioxide shows a passive and reversible change from a monoclinic insulator phase to a metallic tetragonal rutile structure when the sample temperature is close to and over 68 deg. C. As a kind of functional material, VO 2 thin films deposited on fused quartz substrates were successfully prepared by the pulsed laser deposition (PLD) technique. With laser illumination at 400 nm on the obtained films, the phase transition (PT) occurred. The observed light-induced PT was as fast as the laser pulse duration of 100 fs. Using a femtosecond laser system, the relaxation processes in VO 2 were studied by optical pump-probe spectroscopy. Upon a laser excitation an instantaneous response in the transient reflectivity and transmission was observed followed by a relatively longer relaxation process. The alteration is dependent on pump power. The change in reflectance reached a maximum value at a pump pulse energy between 7 and 14 mJ/cm 2 . The observed PT is associated with the optical interband transition in VO 2 thin film. It suggests that with a pump laser illuminating on the film, excitation from the d θ,ε - state of valence band to the unoccupied excited mixed d θ,ε -π* - state of the conduction band in the insulator phase occurs, followed by a resonant transition to an unoccupied excited mixed d θ,ε -π* - state of the metallic phase band

  1. A P&T Committee's Transition to a Complete Electronic Meeting System-A Multisite Institution Experience.

    Science.gov (United States)

    Al-Jedai, Ahmed H; Algain, Roaa A; Alghamidi, Said A; Al-Jazairi, Abdulrazaq S; Amin, Rashid; Bin Hussain, Ibrahim Z

    2017-10-01

    In the last few decades, changes to formulary management processes have taken place in institutions with closed formulary systems. However, many P&T committees continued to operate using traditional paper-based systems. Paper-based systems have many limitations, including confidentiality, efficiency, open voting, and paper wastage. This becomes more challenging when dealing with a multisite P&T committee that handles formulary matters across the whole health care system. In this paper, we discuss the implementation of the first paperless, completely electronic, Web-based formulary management system across a large health care system in the Middle East. We describe the transitioning of a multisite P&T committee in a large tertiary care institution from a paper-based to an all-electronic system. The challenges and limitations of running a multisite P&T committee utilizing a paper system are discussed. The design and development of a Web-based committee floor management application that can be used from notebooks, tablets, and hand-held devices is described. Implementation of a flexible, interactive, easy-to-use, and efficient electronic formulary management system is explained in detail. The development of an electronic P&T committee meeting system that encompasses electronic document sharing, voting, and communication could help multisite health care systems unify their formularies across multiple sites. Our experience might not be generalizable to all institutions because this depends heavily on system features, existing processes and workflow, and implementation across different sites.

  2. Hydrogen and dihydrogen bonding of transition metal hydrides

    Science.gov (United States)

    Jacobsen, Heiko

    2008-04-01

    Intermolecular interactions between a prototypical transition metal hydride WH(CO) 2NO(PH 3) 2 and a small proton donor H 2O have been studied using DFT methodology. The hydride, nitrosyl and carbonyl ligand have been considered as site of protonation. Further, DFT-D calculations in which empirical corrections for the dispersion energy are included, have been carried out. A variety of pure and hybrid density functionals (BP86, PW91, PBE, BLYP, OLYP, B3LYP, B1PW91, PBE0, X3LYP) have been considered, and our calculations indicate the PBE functional and its hybrid variation are well suited for the calculation of transition metal hydride hydrogen and dihydrogen bonding. Dispersive interactions make up for a sizeable portion of the intermolecular interaction, and amount to 20-30% of the bond energy and to 30-40% of the bond enthalpy. An energy decomposition analysis reveals that the H⋯H bond of transition metal hydrides contains both covalent and electrostatic contributions.

  3. Hydrogen and dihydrogen bonding of transition metal hydrides

    International Nuclear Information System (INIS)

    Jacobsen, Heiko

    2008-01-01

    Intermolecular interactions between a prototypical transition metal hydride WH(CO) 2 NO(PH 3 ) 2 and a small proton donor H 2 O have been studied using DFT methodology. The hydride, nitrosyl and carbonyl ligand have been considered as site of protonation. Further, DFT-D calculations in which empirical corrections for the dispersion energy are included, have been carried out. A variety of pure and hybrid density functionals (BP86, PW91, PBE, BLYP, OLYP, B3LYP, B1PW91, PBE0, X3LYP) have been considered, and our calculations indicate the PBE functional and its hybrid variation are well suited for the calculation of transition metal hydride hydrogen and dihydrogen bonding. Dispersive interactions make up for a sizeable portion of the intermolecular interaction, and amount to 20-30% of the bond energy and to 30-40% of the bond enthalpy. An energy decomposition analysis reveals that the H...H bond of transition metal hydrides contains both covalent and electrostatic contributions

  4. Magnetoelectric coupling effect in transition metal modified polycrystalline BiFeO3 thin films

    International Nuclear Information System (INIS)

    Sreenivas Puli, Venkata; Kumar Pradhan, Dhiren; Gollapudi, Sreenivasulu; Coondoo, Indrani; Panwar, Neeraj; Adireddy, Shiva; Chrisey, Douglas B.; Katiyar, Ram S.

    2014-01-01

    Rare-earth (Sm) and transition metal (Co) modified polycrystalline BiFeO 3 (BFO) thin films have been deposited on Pt/TiO 2 /SiO 2 /Si substrate successfully through pulsed laser deposition (PLD) technique. Piezoelectric, leakage current and temperature dependent dielectric and magnetic behaviour were investigated for the films. Typical “butterfly-shaped” loop were observed in BSFCO films with an effective piezoelectric constant (d 33 ) ∼94 pm/V at 0.6 MV/cm. High dielectric constant ∼900 and low dielectric loss ∼0.25 were observed at room temperature. M–H loops have shown relatively high saturation magnetization ∼35 emu/cm 3 at a maximum field of H ∼20 kOe. Enhanced magnetoelectric coupling response is observed under applied magnetic field. The multiferroic, piezoelectric, leakage current behaviours were explored. Such studies should be helpful in designing multiferroic materials based on BSFCO films. - Highlights: • Transition metal modified polycrystalline BiFeO 3 thin films prepared using PLD. • High ME-coupling response was observed in co-substituted BiFeO 3 thin films. • High magnetization ∼35 emu/cm 3 at a maximum field of H ∼20 kOe. • Low leakage current might be due to co-substitution in BiFeO 3 thin films. • A notable piezoelectric constant d 33 ∼94 pm/V was found in BiFeO 3 thin films

  5. The phosphorus and the transition metals chemistry

    International Nuclear Information System (INIS)

    Mathey, F.

    1988-01-01

    The 1988 progress report, concerning the Polytechnic School unit (France), which studies the phosphorus and the transition metals chemistry, is presented. The laboratory activities are related to the following topics: the phosporus heterocyclic chemistry, the phosphorus-carbon double bonds chemistry, the new transition metals phosphorus compounds, the phosphonates and their uses. Some practical applications of homogeneous catalysis and new materials synthesis are investigated. The main results obtained are: the discovery of the tetra-phosphafulvalenes, the utilization of a new synthesis method of the phosphorus-carbon double bonds and the stabilization of the α-phosphonyled carbanions by the lithium diisopropylamidourea. The papers, the congress communications and the thesis are also shown [fr

  6. Adlayer Core-Level Shifts of Random Metal Overlayers on Transition-Metal Substrates

    DEFF Research Database (Denmark)

    Ganduglia-Pirovano, M. V.; Kudrnovský, J.; Scheffler, M.

    1997-01-01

    and the screening effects induced by the core hole, and study the influence of the alloy composition for a number of noble metal-transition metal systems. Our analysis clearly indicates the importance of final-state screening effects for the interpretation of measured core-level shifts. Calculated deviations from...

  7. Coexisting shape- and high-K isomers in the shape transitional nucleus {sup 188}Pt

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, S., E-mail: somm@barc.gov.in [Nuclear Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Biswas, D.C. [Nuclear Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Tandel, S.K. [UM-DAE Centre for Excellence in Basic Sciences, Mumbai 400098 (India); Danu, L.S.; Joshi, B.N.; Prajapati, G.K. [Nuclear Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Nag, Somnath [Dept. of Physics, IIT Kharagpur, Kharagpur 721302 (India); Trivedi, T.; Saha, S.; Sethi, J.; Palit, R. [Dept. of Nuclear and Atomic Physics, TIFR, Mumbai 400005 (India); Joshi, P.K. [Homi Bhabha Centre for Science Education, TIFR, Mumbai 400088 (India)

    2014-12-12

    A high-spin study of the shape transitional nucleus {sup 188}Pt reveals the unusual coexistence of both shape- and K-isomeric states. Reduced B(E2) transition probabilities for decays from these states inferred from the data clearly establish their hindered character. In addition to other excited structures, a rotational band built upon the K isomer is identified, and its configuration has been assigned through an analysis of alignments and branching ratios. The shape evolution with spin in this nucleus has been inferred from both experimental observables and cranking calculations. The yrast positive parity structure appears to evolve from a near-prolate deformed shape through triaxial at intermediate excitation, and eventually to oblate at the highest spins.

  8. A pressure study of CePt{sub 3}B

    Energy Technology Data Exchange (ETDEWEB)

    Rauch, Daniela; Suellow, Stefan [Institute of Condensed Matter Physics, University of Technology Braunschweig, Braunschweig (Germany); Hartwig, Steffen [Institute of Condensed Matter Physics, University of Technology Braunschweig, Braunschweig (Germany); BENSC, Helmholtz Zentrum Berlin, Berlin (Germany); Hidaka, Hiroyuki; Yamazaki, Seigo; Amitsuka, Hiroshi [Department of Physics, Hokkaido University, Sapporo (Japan); Bauer, Ernst [Institute of Solid State Physics, Vienna University of Technology, Vienna (Austria)

    2013-07-01

    CePt{sub 3}B is isostructural to the non-centro symmetric heavy-fermion superconductor CePt{sub 3}Si. In contrast to the latter system, CePt{sub 3}B exhibits a complex magnetically ordered state at low temperatures, with an antiferromagnetic phase below T{sub N}=7.8 K and a weakly ferromagnetic transition below T{sub C}∼5 K. CePt{sub 3}B can be understand as a low pressure variant of CePt{sub 3}Si. Here we report a study of CePt{sub 3}B by means of high pressure magnetization measurements, this way in particular accessing the pressure evolution of the ferromagnetic transition temperature T{sub C}. From our investigation up to about 40 kbar we observe an almost constant transition temperature T{sub C} with pressure. This behavior we discuss in the context of alloying studies on this material.

  9. Preparation of PtRu/Carbon hybrid materials by hydrothermal carbonization: A study of the Pt:Ru atomic ratio

    International Nuclear Information System (INIS)

    Tusi, Marcelo Marques; Brandalise, Michele; Correa, Olandir Vercino; Oliveira Neto, Almir; Linardi, Marcelo; Spinace, Estevam Vitorio; Villalba, Juan Carlo

    2009-01-01

    PtRu/Carbon materials with different Pt:Ru atomic ratios (30:70, 50:50, 60:40, 80:20 and 90:10) and 5 wt% of nominal metal load were prepared by hydrothermal carbonization using H 2 PtCl 6.6 H 2 O and RuCl 3. xH 2 O as metals sources and catalysts of the carbonization process and starch as carbon source and reducing agent. The obtained materials were treated at 900 deg C under argon and characterized by EDX, XRD and cyclic voltammetry. The electro-oxidation of methanol was studied by cyclic voltammetry and chronoamperometry using thin porous coating technique. The PtRu/Carbon materials showed Pt:Ru atomic ratios obtained by EDX similar to the nominal ones. XRD analysis showed that Pt face-cubic centered (FCC) and Ru hexagonal close-packed (HCP) phases coexist in the obtained materials. The average crystallite sizes of the Pt (FCC) phase were in the range of 8-12 nm. The material prepared with Pt:Ru atomic ratio of 50:50 showed the best performance for methanol electro-oxidation. (author)

  10. Study of the radioactive disintegration of /sup 187/Au existence of E0 transitions in /sup 187/Pt?

    CERN Document Server

    Braham, A B; Bourgeois, C; Desthuilliers-Porquet, M G; Höglund, A; Huck, A; Kilcher, P; Knipper, A; Letessier, J; Serre, Claude; Schuck, C

    1979-01-01

    The decay /sup 187/Au to /sup 187/Pt has been studied using on-line mass-separated sources produced at ISOCELE (ORSAY) and ISOLDE (CERN). Lifetime measurements are performed with a Gerholm spectrometer and precise conversion electron determination with a 180 degrees spectrograph. A decay scheme is proposed. Low-lying low-spin states in /sup 187/Pt are discussed. Special attention is given to four highly converted transitions (260.3, 262.5, 498.2 and 498.8 keV) which are tentatively considered to have large E0 components. (41 refs).

  11. Vacancies in transition metals

    International Nuclear Information System (INIS)

    Allan, G.; Lannoo, M.

    1976-01-01

    A calculation of the formation energy and volume for a vacancy in transition metals is described. A tight-binding scheme is used for the d band and a Born-Mayer type potential to account for the repulsive part of the energy at small distances. The results show that the relaxation energy is small in all cases, less than 0.1 eV. This seems to be coherent with the good agreement obtained for the theoretical and experimental values of the formation energy Esub(F)sup(V) of the vacancy, without including relaxation. The center of the transitional series is found to give a contraction (Formation volume of order -0.4 at.vol.) whereas the edges are found to produce dilations. (author)

  12. Electrochemical CO2 and CO reduction on metal-functionalized porphyrin-like graphene

    DEFF Research Database (Denmark)

    Tripkovic, Vladimir; Vanin, Marco; Karamad, Mohammedreza

    2013-01-01

    Porphyrin-like metal-functionalized graphene structures have been investigated as possible catalysts for CO2 and CO reduction to methane or methanol. The late transition metals (Cu, Ag, Au, Ni, Pd, Pt, Co, Rh, Ir, Fe, Ru, Os) and some p (B, Al, Ga) and s (Mg) metals comprised the center of the po......Porphyrin-like metal-functionalized graphene structures have been investigated as possible catalysts for CO2 and CO reduction to methane or methanol. The late transition metals (Cu, Ag, Au, Ni, Pd, Pt, Co, Rh, Ir, Fe, Ru, Os) and some p (B, Al, Ga) and s (Mg) metals comprised the center...... instead of CO2. Volcano plots were constructed on the basis of scaling relations of reaction intermediates, and from these plots the reaction steps with the highest overpotentials were deduced. The Rh-porphyrin-like functionalized graphene was identified as the most active catalyst for producing methanol...... from CO, featuring an overpotential of 0.22 V. Additionally, we have also examined the hydrogen evolution and oxidation reaction, and in their case, too, Rh-porphyrin turned out to be the best catalyst with an overpotential of 0.15 V. © 2013 American Chemical Society....

  13. A first-principles study on the interaction of biogas with noble metal (Rh, Pt, Pd) decorated nitrogen doped graphene as a gas sensor: A DFT study

    Science.gov (United States)

    Zhao, Chunjiang; Wu, Huarui

    2018-03-01

    Density functional theory calculations are carried out to investigate the adsorption characteristics of methane (CH4), carbon dioxide (CO2), hydrogen (H2), hydrogen sulfide (H2S), nitrogen (N2), and oxygen (O2) on the surface of pyridine-like nitrogen doped graphene (PNG) as well as noble metal (Rh, Pt, Pd) decorated PNG to elaborate their potentials as gas sensors. The adsorption intensities of biogas on noble metal (Rh, Pt, Pd) decorated PNG are in the order of O2> H2S> N2> CH4> CO2> H2, which are corresponded to the order of their sensitivity on surface. Compared with biogas adsorption on pristine PNG, there exist higher adsorption ability, higher charge transfer and higher orbital hybridization upon adsorption on noble metal (Rh, Pt, Pd) decorated PNG. Consequently, the noble metal (Rh, Pt, Pd) decorated PNG can transform the existence of CH4, CO2, H2, H2S, N2, and O2 molecules into electrical signal and they could potentially be used as ideal sensors for detection of biogas in ambient situation.

  14. Role of Dzyaloshinskii-Moriya interaction for magnetism in transition-metal chains at Pt step edges

    Science.gov (United States)

    Schweflinghaus, B.; Zimmermann, B.; Heide, M.; Bihlmayer, G.; Blügel, S.

    2016-07-01

    We explore the emergence of chiral magnetism in one-dimensional monatomic Mn, Fe, and Co chains deposited at the Pt(664) step edge carrying out an ab initio study based on density functional theory (DFT). The results are analyzed employing several models: (i) a micromagnetic model, which takes into account the Dzyaloshinskii-Moriya interaction (DMI) besides the spin stiffness and the magnetic anisotropy energy, and (ii) the Fert-Levy model of the DMI for diluted magnetic impurities in metals. Due to the step-edge geometry, the direction of the Dzyaloshinskii vector (D vector) is not predetermined by symmetry and points in an off-symmetry direction. For the Mn chain we predict a long-period cycloidal spin-spiral ground state of unique rotational sense on top of an otherwise atomic-scale antiferromagnetic phase. The spins rotate in a plane that is tilted relative to the Pt surface by 62∘ towards the upper step of the surface. The Fe and Co chains show a ferromagnetic ground state since the DMI is too weak to overcome their respective magnetic anisotropy barriers. An analysis of domain walls within the latter two systems reveals a preference for a Bloch wall for the Fe chain and a Néel wall of unique rotational sense for the Co chain in a plane tilted by 29∘ towards the lower step. Although the atomic structure is the same for all three systems, not only the size but also the direction of their effective D vectors differ from system to system. The latter is in contradiction to the Fert-Levy model. Due to the considered step-edge structure, this work provides also insight into the effect of roughness on DMI at surfaces and interfaces of magnets. Beyond the discussion of the monatomic chains we provide general expressions relating ab initio results to realistic model parameters that occur in a spin-lattice or in a micromagnetic model. We prove that a planar homogeneous spiral of classical spins with a given wave vector rotating in a plane whose normal is parallel

  15. Ceramic Defects in Metal-Ceramic Fixed Dental Prostheses Made from Co-Cr and Au-Pt Alloys: A Retrospective Study.

    Science.gov (United States)

    Mikeli, Aikaterini; Boening, Klaus W; Lißke, Benjamin

    2015-01-01

    Ceramic defects in porcelain-fused-to-metal (PFM) restorations may depend on framework alloy type. This study assessed ceramic defects on cobalt-chromium- (Co-Cr-) and gold-platinum- (Au-Pt-) based PFM restorations. In this study, 147 Co-Cr-based and 168 Au-Pt-based PFM restorations inserted between 1998 and 2010 (139 patients) were examined for ceramic defects. Detected defects were assigned to three groups according to clinical defect relevance. Ceramic defect rates (Co-Cr-based: 12.9%; Au-Pt-based: 7.2%) revealed no significant difference but a strong statistical trend (U test, P = .082). Most defects were of little clinical relevance. Co-Cr PFM restorations may be at higher risk for ceramic defects compared to Au-Pt-based restorations.

  16. The 1s x-ray absorption pre-edge structures in transition metal oxides

    NARCIS (Netherlands)

    de Groot, Frank|info:eu-repo/dai/nl/08747610X; Vanko, Gyoergy; Glatzel, Pieter

    2009-01-01

    We develop a general procedure to analyse the pre-edges in 1s x-ray absorption near edge structure (XANES) of transition metal oxides and coordination complexes. Transition metal coordination complexes can be described from a local model with one metal ion. The 1s 3d quadrupole transitions are

  17. Rational Design of Two-Dimensional Metallic and Semiconducting Spintronic Materials Based on Ordered Double-Transition-Metal MXenes

    KAUST Repository

    Dong, Liang; Kumar, Hemant; Anasori, Babak; Gogotsi, Yury; Shenoy, Vivek B.

    2016-01-01

    double-transition-metal MXene structures to achieve such a goal. On the basis of the analysis of electron filling in transition-metal cations and first-principles simulations, we demonstrate robust ferromagnetism in Ti2MnC2Tx monolayers regardless

  18. Enhancement of superconductivity near the pressure-induced semiconductor-metal transition in the BiS₂-based superconductors LnO₀.₅F₀.₅BiS₂ (Ln = La, Ce, Pr, Nd).

    Science.gov (United States)

    Wolowiec, C T; White, B D; Jeon, I; Yazici, D; Huang, K; Maple, M B

    2013-10-23

    Measurements of electrical resistivity were performed between 3 and 300 K at various pressures up to 2.8 GPa on the BiS2-based superconductors LnO0.5F0.5BiS2 (Ln=Pr, Nd). At lower pressures, PrO0.5F0.5BiS2 and NdO0.5F0.5BiS2 exhibit superconductivity with critical temperatures Tc of 3.5 and 3.9 K, respectively. As pressure is increased, both compounds undergo a transition at a pressure Pt from a low Tc superconducting phase to a high Tc superconducting phase in which Tc reaches maximum values of 7.6 and 6.4 K for PrO0.5F0.5BiS2 and NdO0.5F0.5BiS2, respectively. The pressure-induced transition is characterized by a rapid increase in Tc within a small range in pressure of ∼0.3 GPa for both compounds. In the normal state of PrO0.5F0.5BiS2, the transition pressure Pt correlates with the pressure where the suppression of semiconducting behaviour saturates. In the normal state of NdO0.5F0.5BiS2, Pt is coincident with a semiconductor-metal transition. This behaviour is similar to the results recently reported for the LnO0.5F0.5BiS2 (Ln=La, Ce) compounds. We observe that Pt and the size of the jump in Tc between the two superconducting phases both scale with the lanthanide element in LnO0.5F0.5BiS2 (Ln=La, Ce, Pr, Nd).

  19. Catalytic olefin polymerization with early transition metal compounds

    NARCIS (Netherlands)

    Eshuis, Johan Jan Willem

    1991-01-01

    The catalysis of organic reactions by soluble metal complexes has become a major tool in synthesis, both in the laboratory and in the chemical industry. Processes catalyzed by transition metal complexes include carbonylation, olefin polymerization, olefin addition, olefin oxidation and alkane and

  20. Direct NO decomposition over stepped transition-metal surfaces

    DEFF Research Database (Denmark)

    Falsig, Hanne; Bligaard, Thomas; Christensen, Claus H.

    2007-01-01

    We establish the full potential energy diagram for the direct NO decomposition reaction over stepped transition-metal surfaces by combining a database of adsorption energies on stepped metal surfaces with known Bronsted-Evans-Polanyi (BEP) relations for the activation barriers of dissociation...

  1. A method for the formation of Pt metal nanoparticle arrays using nanosecond pulsed laser dewetting

    Energy Technology Data Exchange (ETDEWEB)

    Owusu-Ansah, Ebenezer; Horwood, Corie A.; Birss, Viola I.; Shi, Yujun J., E-mail: shiy@ucalgary.ca [Department of Chemistry, University of Calgary, Calgary, Alberta T2N 1N4 (Canada); El-Sayed, Hany A. [Institute for Technical Electrochemistry, Technische Universität München, D-85748 Garching (Germany)

    2015-05-18

    Nanosecond pulsed laser dewetting of Pt thin films, deposited on a dimpled Ta (DT) surface, has been studied here in order to form ordered Pt nanoparticle (NP) arrays. The DT substrate was fabricated via a simple electrochemical anodization process in a highly concentrated H{sub 2}SO{sub 4} and HF solution. Pt thin films (3–5 nm) were sputter coated on DT and then dewetted under vacuum to generate NPs using a 355 nm laser radiation (6–9 ns, 10 Hz). The threshold laser fluence to fully dewet a 3.5 nm thick Pt film was determined to be 300 mJ/cm{sup 2}. Our experiments have shown that shorter irradiation times (≤60 s) produce smaller nanoparticles with more uniform sizes, while longer times (>60 s) give large nanoparticles with wider size distributions. The optimum laser irradiation time of 1 s (10 pulses) has led to the formation of highly ordered Pt nanoparticle arrays with an average nanoparticle size of 26 ± 3 nm with no substrate deformation. At the optimum condition of 1 s and 500 mJ/cm{sup 2}, as many as 85% of the dewetted NPs were found neatly in the well-defined dimples. This work has demonstrated that pulsed laser dewetting of Pt thin films on a pre-patterned dimpled substrate is an efficient and powerful technique to produce highly ordered Pt nanoparticle arrays. This method can thus be used to produce arrays of other high-melting-point metal nanoparticles for a range of applications, including electrocatalysis, functionalized nanomaterials, and analytical purposes.

  2. Electric-field-induced modification of the magnon energy, exchange interaction, and curie temperature of transition-metal thin films.

    Science.gov (United States)

    Oba, M; Nakamura, K; Akiyama, T; Ito, T; Weinert, M; Freeman, A J

    2015-03-13

    The electric-field-induced modification in the Curie temperature of prototypical transition-metal thin films with the perpendicular magnetic easy axis, a freestanding Fe(001) monolayer and a Co monolayer on Pt(111), is investigated by first-principles calculations of spin-spiral structures in an external electric field (E field). An applied E field is found to modify the magnon (spin-spiral formation) energy; the change arises from the E-field-induced screening charge density in the spin-spiral states due to p-d hybridizations. The Heisenberg exchange parameters obtained from the magnon energy suggest an E-field-induced modification of the Curie temperature, which is demonstrated via Monte Carlo simulations that take the magnetocrystalline anisotropy into account.

  3. Theoretical studies of transition metal complexes with nitriles and isocyanides

    International Nuclear Information System (INIS)

    Kuznetsov, Maksim L

    2002-01-01

    Theoretical studies of transition metal complexes with nitriles and isocyanides are reviewed. The electronic structures and the nature of coordination bonds in these complexes are discussed. The correlation between the electronic structures of transition metal complexes with nitriles and isocyanides and their structural properties, spectroscopic characteristics, and reactivities are considered. The bibliography includes 121 references.

  4. Trends in catalytic NO decomposition over transition metal surfaces

    DEFF Research Database (Denmark)

    Falsig, Hanne; Bligaard, Thomas; Rass-Hansen, Jeppe

    2007-01-01

    The formation of NOx from combustion of fossil and renewable fuels continues to be a dominant environmental issue. We take one step towards rationalizing trends in catalytic activity of transition metal catalysts for NO decomposition by combining microkinetic modelling with density functional...... theory calculations. We show specifically why the key problem in using transition metal surfaces to catalyze direct NO decomposition is their significant relative overbinding of atomic oxygen compared to atomic nitrogen....

  5. Hydrogen and dihydrogen bonding of transition metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsen, Heiko [KemKom, Libellenweg 2, 25917 Leck, Nordfriesland (Germany)], E-mail: jacobsen@kemkom.com

    2008-04-03

    Intermolecular interactions between a prototypical transition metal hydride WH(CO){sub 2}NO(PH{sub 3}){sub 2} and a small proton donor H{sub 2}O have been studied using DFT methodology. The hydride, nitrosyl and carbonyl ligand have been considered as site of protonation. Further, DFT-D calculations in which empirical corrections for the dispersion energy are included, have been carried out. A variety of pure and hybrid density functionals (BP86, PW91, PBE, BLYP, OLYP, B3LYP, B1PW91, PBE0, X3LYP) have been considered, and our calculations indicate the PBE functional and its hybrid variation are well suited for the calculation of transition metal hydride hydrogen and dihydrogen bonding. Dispersive interactions make up for a sizeable portion of the intermolecular interaction, and amount to 20-30% of the bond energy and to 30-40% of the bond enthalpy. An energy decomposition analysis reveals that the H...H bond of transition metal hydrides contains both covalent and electrostatic contributions.

  6. Spin-exchange interaction between transition metals and metalloids in soft-ferromagnetic metallic glasses

    Science.gov (United States)

    Das, Santanu; Choudhary, Kamal; Chernatynskiy, Aleksandr; Choi Yim, Haein; Bandyopadhyay, Asis K.; Mukherjee, Sundeep

    2016-06-01

    High-performance magnetic materials have immense industrial and scientific importance in wide-ranging electronic, electromechanical, and medical device technologies. Metallic glasses with a fully amorphous structure are particularly suited for advanced soft-magnetic applications. However, fundamental scientific understanding is lacking for the spin-exchange interaction between metal and metalloid atoms, which typically constitute a metallic glass. Using an integrated experimental and molecular dynamics approach, we demonstrate the mechanism of electron interaction between transition metals and metalloids. Spin-exchange interactions were investigated for a Fe-Co metallic glass system of composition [(Co1-x Fe x )0.75B0.2Si0.05]96Cr4. The saturation magnetization increased with higher Fe concentration, but the trend significantly deviated from simple rule of mixtures. Ab initio molecular dynamics simulation was used to identify the ferromagnetic/anti-ferromagnetic interaction between the transition metals and metalloids. The overlapping band-structure and density of states represent ‘Stoner type’ magnetization for the amorphous alloys in contrast to ‘Heisenberg type’ in crystalline iron. The enhancement of magnetization by increasing iron was attributed to the interaction between Fe 3d and B 2p bands, which was further validated by valence-band study.

  7. Oligomeric rare-earth metal cluster complexes with endohedral transition metal atoms

    Energy Technology Data Exchange (ETDEWEB)

    Steinberg, Simon; Zimmermann, Sina; Brühmann, Matthias; Meyer, Eva; Rustige, Christian; Wolberg, Marike; Daub, Kathrin; Bell, Thomas; Meyer, Gerd, E-mail: gerd.meyer@uni-koeln.de

    2014-11-15

    Comproportionation reactions of rare-earth metal trihalides (RX{sub 3}) with the respective rare-earth metals (R) and transition metals (T) led to the formation of 22 oligomeric R cluster halides encapsulating T, in 19 cases for the first time. The structures of these compounds were determined by single-crystal X-ray diffraction and are composed of trimers ((T{sub 3}R{sub 11})X{sub 15}-type, P6{sub 3}/m), tetramers ((T{sub 4}R{sub 16})X{sub 28}(R{sub 4}) (P-43m), (T{sub 4}R{sub 16})X{sub 20} (P4{sub 2}/nnm), (T{sub 4}R{sub 16})X{sub 24}(RX{sub 3}){sub 4} (I4{sub 1}/a) and (T{sub 4}R{sub 16})X{sub 23} (C2/m) types of structure) and pentamers ((Ru{sub 5}La{sub 14}){sub 2}Br{sub 39}, Cc) of (TR{sub r}){sub n} (n=2–5) clusters. These oligomers are further enveloped by inner (X{sup i}) as well as outer (X{sup a}) halido ligands, which possess diverse functionalities and interconnect like oligomers through i–i, i–a and/or a–i bridges. The general features of the crystal structures for these new compounds are discussed and compared to literature entries as well as different structure types with oligomeric T centered R clusters. Dimers and tetramers originating from the aggregation of (TR{sub 6}) octahedra via common edges are more frequent than trimers and pentamers, in which the (TR{sub r}) clusters share common faces. - Graphical abstract: Rare earth-metal cluster complexes with endohedral transition metal atoms (TR{sub 6}) may connect via common edges or faces to form dimers, trimers, tetramers and pentamers of which the tetramers are the most prolific. Packing effects and electron counts play an important role. - Highlights: • Rare-earth metal cluster complexes encapsulate transition metal atoms. • Oligomers are built via connection of octahedral clusters via common edges or faces. • Dimers through pentamers with closed structures are known. • Tetramers including a tetrahedron of endohedral atoms are the most prolific.

  8. Monometallic Pd and Pt and Bimetallic Pd-Pt/Al2O3-TiO2 for the HDS of DBT: Effect of the Pd and Pt Incorporation Method

    Directory of Open Access Journals (Sweden)

    Reynaldo Martínez Guerrero

    2014-01-01

    Full Text Available The effect of the preparation method of monometallic Pd and Pt and bimetallic Pd-Pt/Al2O3-TiO2 catalysts on the hydrodesulfurization (HDS of dibenzothiophene (DBT was investigated in this study. The synthesis was accomplished using three methods: (A impregnation, (B metal organic chemical vapor deposition (MOCVD, and (C impregnation-MOCVD. The bimetallic Pd-Pt catalyst prepared by the impregnation-MOCVD method was most active for the HDS of DBT compared to those prepared by the single impregnation or MOCVD method due to the synergetic effect between both noble metals. The greater selectivity toward biphenyl indicated that this bimetallic Pd-Pt catalyst preferentially removes sulfur via the direct desulfurization mechanism. However, the bimetallic Pd-Pt catalyst prepared using the single MOCVD method did not produce any cyclohexylbenzene, which is most likely associated with the hydrogenation/dehydrogenation sites.

  9. CeO2/rGO/Pt sandwich nanostructure: rGO-enhanced electron transmission between metal oxide and metal nanoparticles for anodic methanol oxidation of direct methanol fuel cells.

    Science.gov (United States)

    Yu, Xue; Kuai, Long; Geng, Baoyou

    2012-09-21

    Pt-based nanocomposites have been of great research interest. In this paper, we design an efficient MO/rGO/Pt sandwich nanostructure as an anodic electrocatalyst for DMFCs with combination of the merits of rigid structure of metallic oxides (MOs) and excellent electronic conductivity of reduced oxidized graphene (rGO) as well as overcoming their shortcomings. In this case, the CeO(2)/rGO/Pt sandwich nanostructure is successfully fabricated through a facile hydrothermal approach in the presence of graphene oxide and CeO(2) nanoparticles. This structure has a unique building architecture where rGO wraps up the CeO(2) nanoparticles and Pt nanoparticles are homogeneously dispersed on the surface of rGO. This novel structure endows this material with great electrocatalytic performance in methanol oxidation: it reduces the overpotential of methanol oxidation significantly and its electrocatalytic activity and stability are much enhanced compared with Pt/rGO, CeO(2)/Pt and Pt/C catalysts. This work supplies a unique MO/rGO/Pt sandwich nanostructure as an efficient way to improve the electrocatalytic performance, which will surely shed some light on the exploration of some novel structures of electrocatalyst for DMFCs.

  10. Generation, Detection and characterization of Gas-Phase Transition Metal containing Molecules

    Energy Technology Data Exchange (ETDEWEB)

    Steimle, Timothy [Arizona State Univ., Tempe, AZ (United States)

    2015-12-15

    The objective of this project was to generate, detect, and characterize small, gas-phase, metal containing molecules. In addition to being relevant to high temperature chemical environments (e.g. plasmas and combustion), gas-phase experiments on metal containing molecules serve as the most direct link to a molecular-level theoretical model for catalysis. Catalysis (i.e. the addition of a small about of recoverable material to control the rate and direction of a chemical reaction) is critical to the petroleum and pharmaceutical industries as well as environmental remediation. Currently, the majority of catalytic materials are based on very expensive metals such as platinum (Pt), palladium (Pd), iridium (Ir,) rhenium (Re), and rhodium (Rh). For example, the catalyst used for converting linear hydrocarbon molecules (e.g. hexane) to cyclic molecules (e.g. cyclohexane) is a mixture of Pt and Re suspended on alumina. It enables straight chain alkanes to be converted into branched-chain alkanes, cyclohexanes and aromatic hydrocarbons which are used, amongst other things, to enhance the octane number of petrol. A second example is the heterogeneous catalysis used in automobile exhaust systems to: a) decrease nitrogen oxide; b) reduce carbon monoxide; and c) oxidize unburned hydrocarbons. The exhaust is vented through a high-surface area chamber lined with Pt, Pd, and Rh. For example, the carbon monoxide is catalytically converted to carbon dioxide by reaction with oxygen. The research results from this work have been published in readily accessible journals1-28. The ground and excited electronic state properties of small metal containing molecules that we determine were: a) electronic state distributions and lifetimes, b) vibrational frequencies, c) bond lengths and angles, d) hyperfine interactions, e) permanent electric dipole moments, mel, and f) magnetic dipoles, μm. In general terms, μel, gives insight into the charge distribution and mm into

  11. Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts.

    Science.gov (United States)

    Cheng, Fangyi; Chen, Jun

    2012-03-21

    Because of the remarkably high theoretical energy output, metal-air batteries represent one class of promising power sources for applications in next-generation electronics, electrified transportation and energy storage of smart grids. The most prominent feature of a metal-air battery is the combination of a metal anode with high energy density and an air electrode with open structure to draw cathode active materials (i.e., oxygen) from air. In this critical review, we present the fundamentals and recent advances related to the fields of metal-air batteries, with a focus on the electrochemistry and materials chemistry of air electrodes. The battery electrochemistry and catalytic mechanism of oxygen reduction reactions are discussed on the basis of aqueous and organic electrolytes. Four groups of extensively studied catalysts for the cathode oxygen reduction/evolution are selectively surveyed from materials chemistry to electrode properties and battery application: Pt and Pt-based alloys (e.g., PtAu nanoparticles), carbonaceous materials (e.g., graphene nanosheets), transition-metal oxides (e.g., Mn-based spinels and perovskites), and inorganic-organic composites (e.g., metal macrocycle derivatives). The design and optimization of air-electrode structure are also outlined. Furthermore, remarks on the challenges and perspectives of research directions are proposed for further development of metal-air batteries (219 references).

  12. Study of transition metal oxides by photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Rao, C.N.R.; Sarma, D.D.; Vasudevan, S.; Hegde, M.S.

    1979-01-01

    Systematics in the X-ray photoelectron spectra (X.p.e.s.) of Ti, V, Cr, Mn and Nb oxides with the metal ion in different oxidation states as well as of related series of mono-, sesqui- and di-oxides of the first row of transition metals have been investigated in detail. Core level binding energies, spin-orbit splittings and exchange splittings are found to exhibit interesting variations with the oxidation state of the metal or the nuclear charge. The 3d binding energies of the monoxides show a proportionality to Goodenough's (R - RC). Other aspects of interest in the study are the satellite structure and final state effects in the X.p.e.s. of the oxides, and identification of different valence states in oxides of the general formulae Mn02n-1 and M304. The nature of changes in the 3d bands of oxides undergoing metal-insulator transitions is also indicated. (author)

  13. Magnetoelectric coupling effect in transition metal modified polycrystalline BiFeO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sreenivas Puli, Venkata, E-mail: pvsri123@gmail.com [Department of Physics and Engineering Physics, Tulane University, New Orleans, LA 70118 (United States); Department of Physics and Institute of Functional Nanomaterials, University of Puerto Rico, San Juan, PR 00936 (United States); Kumar Pradhan, Dhiren [Department of Physics and Institute of Functional Nanomaterials, University of Puerto Rico, San Juan, PR 00936 (United States); Gollapudi, Sreenivasulu [Department of Physics, Oakland University, Rochester, MI 48309-4401 (United States); Coondoo, Indrani [Department of Materials and Ceramic and CICECO, University of Aveiro, 3810-193 Aveiro (Portugal); Panwar, Neeraj [Department of Physics, Central University of Rajasthan, Bandar Sindri, Kishangarh 305801, Rajasthan (India); Adireddy, Shiva; Chrisey, Douglas B. [Department of Physics and Engineering Physics, Tulane University, New Orleans, LA 70118 (United States); Katiyar, Ram S. [Department of Physics and Institute of Functional Nanomaterials, University of Puerto Rico, San Juan, PR 00936 (United States)

    2014-11-15

    Rare-earth (Sm) and transition metal (Co) modified polycrystalline BiFeO{sub 3} (BFO) thin films have been deposited on Pt/TiO{sub 2}/SiO{sub 2}/Si substrate successfully through pulsed laser deposition (PLD) technique. Piezoelectric, leakage current and temperature dependent dielectric and magnetic behaviour were investigated for the films. Typical “butterfly-shaped” loop were observed in BSFCO films with an effective piezoelectric constant (d{sub 33}) ∼94 pm/V at 0.6 MV/cm. High dielectric constant ∼900 and low dielectric loss ∼0.25 were observed at room temperature. M–H loops have shown relatively high saturation magnetization ∼35 emu/cm{sup 3} at a maximum field of H ∼20 kOe. Enhanced magnetoelectric coupling response is observed under applied magnetic field. The multiferroic, piezoelectric, leakage current behaviours were explored. Such studies should be helpful in designing multiferroic materials based on BSFCO films. - Highlights: • Transition metal modified polycrystalline BiFeO{sub 3} thin films prepared using PLD. • High ME-coupling response was observed in co-substituted BiFeO{sub 3} thin films. • High magnetization ∼35 emu/cm{sup 3} at a maximum field of H ∼20 kOe. • Low leakage current might be due to co-substitution in BiFeO{sub 3} thin films. • A notable piezoelectric constant d{sub 33} ∼94 pm/V was found in BiFeO{sub 3} thin films.

  14. Conductive transition metal oxide nanostructured electrochromic material and optical switching devices constructed thereof

    Science.gov (United States)

    Mattox, Tracy M.; Koo, Bonil; Garcia, Guillermo; Milliron, Delia J.; Trizio, Luca De; Dahlman, Clayton

    2017-10-10

    An electrochromic device includes a nanostructured transition metal oxide bronze layer that includes one or more transition metal oxide and one or more dopant, a solid state electrolyte, and a counter electrode. The nanostructured transition metal oxide bronze selectively modulates transmittance of near-infrared (NIR) spectrum and visible spectrum radiation as a function of an applied voltage to the device.

  15. Features of order-disorder phase transformation in nonstoichiometric transition metals carbides

    International Nuclear Information System (INIS)

    Emel'yanov, A.N.

    1996-01-01

    Measurements of temperature and electric conductivity of nonstoichiometric transition metals carbides TiC χ and NbC χ in the area of order-disorder phase transformation are carried out. There are certain peculiarities on the temperature and electric conductivity curves of the carbides, connected with the carbon sublattice disordering. On the basis of the anomalies observed on the curves of the temperature conductivity of nonstoichiometric carbides of transition metals above the temperature of the order-disorder transition the existence of the second structural transition is supposed

  16. Tethered Transition Metals Promoted Photocatalytic System for Efficient Hydrogen Evolutions

    KAUST Repository

    Takanabe, Kazuhiro

    2015-03-05

    The present invention is directed, at least in part, to a process for improving the efficiency of a photocatalyst (a semiconductor photocatalyst) by tethering (depositing) a metal (e.g., metal ions of a late transition metal, such as nickel) to the semiconductor (photocatalyst) surface through the use of an organic ligand. More specifically, 1,2-ethanedithiol (EDT) functions as an excellent molecular linker (organic ligand) to attach a transition metal complex (e.g., nickel (Ni.sup.2+ ions)) to the semiconductor surface, which can be in the form of a cadmium sulfide surface. The photocatalyst has particular utility in generating hydrogen from H.sub.2S.

  17. Tethered Transition Metals Promoted Photocatalytic System for Efficient Hydrogen Evolutions

    KAUST Repository

    Takanabe, Kazuhiro; Isimjan, Tayirjan; Yu, Weili; Del Gobbo, Silvano; Xu, Wei

    2015-01-01

    The present invention is directed, at least in part, to a process for improving the efficiency of a photocatalyst (a semiconductor photocatalyst) by tethering (depositing) a metal (e.g., metal ions of a late transition metal, such as nickel) to the semiconductor (photocatalyst) surface through the use of an organic ligand. More specifically, 1,2-ethanedithiol (EDT) functions as an excellent molecular linker (organic ligand) to attach a transition metal complex (e.g., nickel (Ni.sup.2+ ions)) to the semiconductor surface, which can be in the form of a cadmium sulfide surface. The photocatalyst has particular utility in generating hydrogen from H.sub.2S.

  18. The status and immediate problems of the chemistry of transition metal hydrides

    International Nuclear Information System (INIS)

    Meikheeva, V.I.

    1978-01-01

    The state of the art and perspectives of the chemistry transition metal hydrides are reviewed, the hydrides being essentially compounds with interstitial hydrogen in the crystal lattice of the metals. The possibilities of hydrogenation of transition metals are considered along with that of compounds of rare earth elements with metals of the iron family. It is shown that the products of hydrogenation of many alloys are unstable and disintegrate forming simpler hydrides. The phase diagram of La-Ni-H system resembles the isotherm of a ternary metal system with the difference that no continuous series of solid solutions is formed. Most hydrogenation products across LaHsub(2-3)-NiH are X-ray amorphous. The nature of hydrogen in hydrides is discussed along with the possibilities of synthesis of new hydrides of transition metals

  19. Recent advances in transition metal-catalyzed Csp2-monofluoro-, difluoro-, perfluoromethylation and trifluoromethylthiolation

    Directory of Open Access Journals (Sweden)

    Grégory Landelle

    2013-11-01

    Full Text Available In the last few years, transition metal-mediated reactions have joined the toolbox of chemists working in the field of fluorination for Life-Science oriented research. The successful execution of transition metal-catalyzed carbon–fluorine bond formation has become a landmark achievement in fluorine chemistry. This rapidly growing research field has been the subject of some excellent reviews. Our approach focuses exclusively on transition metal-catalyzed reactions that allow the introduction of –CFH2, –CF2H, –CnF2n+1 and –SCF3 groups onto sp² carbon atoms. Transformations are discussed according to the reaction-type and the metal employed. The review will not extend to conventional non-transition metal methods to these fluorinated groups.

  20. Luminescent Metal Nanoclusters for Potential Chemosensor Applications

    Directory of Open Access Journals (Sweden)

    Muthaiah Shellaiah

    2017-12-01

    Full Text Available Studies of metal nanocluster (M-NCs-based sensors for specific analyte detection have achieved significant progress in recent decades. Ultra-small-size (<2 nm M-NCs consist of several to a few hundred metal atoms and exhibit extraordinary physical and chemical properties. Similar to organic molecules, M-NCs display absorption and emission properties via electronic transitions between energy levels upon interaction with light. As such, researchers tend to apply M-NCs in diverse fields, such as in chemosensors, biological imaging, catalysis, and environmental and electronic devices. Chemo- and bio-sensory uses have been extensively explored with luminescent NCs of Au, Ag, Cu, and Pt as potential sensory materials. Luminescent bi-metallic NCs, such as Au-Ag, Au-Cu, Au-Pd, and Au-Pt have also been used as probes in chemosensory investigations. Both metallic and bi-metallic NCs have been utilized to detect various analytes, such as metal ions, anions, biomolecules, proteins, acidity or alkalinity of a solution (pH, and nucleic acids, at diverse detection ranges and limits. In this review, we have summarized the chemosensory applications of luminescent M-NCs and bi-metallic NCs.

  1. High pressure and microwave based synthesis of transition metal pnictides

    Energy Technology Data Exchange (ETDEWEB)

    Pobel, Roman Rupert

    2016-04-11

    The goal of this thesis was to explore the possibilities of synthetic methods that are not very common in current transition metal pnictide research. The substitution of the Ca-site in CaFe{sub 2}As{sub 2} with rare earth elements such as Pr the has been reported to induce superconductivity. However, some inconsistencies in the data suggested a non-intrinsic origin of the observed diamagnetic signal. Furthermore a solubility limit of 13% was found when prepared in an electrical furnace thus leaving a huge part of the physical phase diagram inaccessible. A high pressure/high temperature synthesis was developed to allow access to the whole doping range and an in-depth characterization of this compound was carried out. During the experiments concerning the high pressure synthesis of Ca{sub 1-x}Pr{sub x}Fe{sub 2}As{sub 2} the new ternary iron arsenide CaFe{sub 5}As{sub 3} was identified and classified as a member of the Ca{sub n(n+1)/2}(Fe{sub 1-x}M{sub x}){sub (2+3n)}M'{sub n(n-1)/2}As{sub (n+1)(n+2)/2} (n = 1-3; M =Nb, Pd, Pt; M' = □, Pd, Pt) family. The complete solid solution Ca{sub 1-x}Pr{sub x}Fe{sub 5}As{sub 3} (O ≤ x ≤ 1) was prepared and physically characterized. Furthermore, several useful techniques were developed to aid in future high pressure based investigations of transition metal pnictides. The second part of this thesis concerns a completely different, but equally promising synthetic approach. Microwave based synthesis is a well-established technique in many solution based fields, such as organic, medicinal or nano chemistry. For solid state and materials research several parameters and particularities have to be considered. But when successful, it allows for the reduction of reaction time by several orders of magnitude. It has very rarely been applied in the preparation of pnictides and on1y once in the context of pnictide superconductor research. The possibilities of this method were explored and employed in the preparation of several

  2. Nonmetal-metal transition in metal–molten-salt solutions

    NARCIS (Netherlands)

    Silvestrelli, P.-L.; Alavi, A.; Parrinello, M.; Frenkel, D.

    1996-01-01

    The method of ab initio molecular dynamics, based on finite-temperature density-functional theory, is used to study the nonmetal-metal transition in two different metal–molten-salt solutions, Kx(KCl)1-x and Nax(NaBr)1-x. As the excess metal concentration is increased the electronic density becomes

  3. Ab initio modelling of transition metals in diamond

    International Nuclear Information System (INIS)

    Watkins, M; Mainwood, A

    2003-01-01

    Transition metals (TM) from the first transition series are commonly used as solvent catalysts in the synthesis of diamond by high pressure, high temperature processes. Ab initio calculations on these metals, in finite clusters of tetrahedrally coordinated carbon, enable us to investigate trends in their stability and properties. By carrying out systematic studies of interstitial, substitutional and semi-vacancy TM defects, we show that the electronic structure of the TMs is complicated by the presence of 'dangling bonds' when the TM disrupts the crystal lattice: interstitial defects conform to the Ludwig-Woodbury (LW) model, whilst substitutional and semi-vacancy defects move from approximating the LW model early in the transition series to approaching the vacancy model for the heavier metals. Multi-configurational self-consistent field methods allow genuine many-electron states to be modelled; for neutral interstitial, and all substitutional TMs, the crystal fields are found to exceed the exchange energies in strength. Consequently, low spin states are found for these defects. We find substitutional defects to be the most stable, but that semi-vacancy TMs are very similar in energy to the substitutional defects late in the transition series; interstitial defects are only metastable in diamond. Given appropriate charge compensators neutral and positively charged interstitial TM defects were stable, while negatively charged species appeared to be strongly disfavoured

  4. Core-level binding energy shifts in Pt Ru nanoparticles: A puzzle resolved

    Science.gov (United States)

    Lewera, Adam; Zhou, Wei Ping; Hunger, Ralf; Jaegermann, Wolfram; Wieckowski, Andrzej; Yockel, Scott; Bagus, Paul S.

    2007-10-01

    Synchrotron measurements of Pt and Ru core-level binding energies, BE's, in Pt-Ru nanoparticles, as a function of Pt content, quantify earlier indications that the Pt 4f BE shift is much larger than the Ru 3d BE shift. A complementary theoretical analysis relates the BE shifts to changes in the metal-metal distances as the composition of the nanoparticle changes. We establish that the large Pt and small Ru BE shifts arise from the different response of these metals to changes in the bond distances, an unexpected result. Our results give evidence that the magnitudes of the BE shifts depend on whether the d band is open, as for Ru, or essentially filled, as for Pt.

  5. Doping effect on the physical properties of Ca10Pt3As8(Fe2As2)5 single crystals

    Science.gov (United States)

    Pan, Jiayun; Karki, Amar; Plummer, E. W.; Jin, Rongying

    2017-12-01

    Ca10Pt3As8(Fe2As2)5 is a unique parent compound for superconductivity, which consists of both semiconducting Pt3As8 and metallic FeAs layers. We report the observation of superconductivity induced via chemical doping in either Ca site using rare-earth (RE) elements (RE  =  La, Gd) or Fe site using Pt. The interlayer distance and the normal-state physical properties of the doped system change correspondingly. The coupled changes include (1) superconducting transition temperature T c increases with increasing both doping concentration and interlayer distance, (2) our T c value is higher than previously reported maximum value for Pt doping in the Fe site, (3) both the normal-state in-plane resistivity and out-of-plane resistivity change from non-metallic to metallic behavior with increasing doping concentration and T c, and (4) the transverse in-plane magnetoresistance (MRab) changes from linear-field dependence to quadratic behavior upon increasing T c. For La-doped compound with the highest T c (~35 K), upper critical fields (Hc2ab , Hc2c ), coherence lengths (ξ ab, ξ c), and in-plane penetration depth (λ ab) are estimated. We discuss the relationship between chemical doping, interlayer distance, and physical properties in this system.

  6. Transition-metal impurities in semiconductors and heterojunction band lineups

    Science.gov (United States)

    Langer, Jerzy M.; Delerue, C.; Lannoo, M.; Heinrich, Helmut

    1988-10-01

    The validity of a recent proposal that transition-metal impurity levels in semiconductors may serve as a reference in band alignment in semiconductor heterojunctions is positively verified by using the most recent data on band offsets in the following lattice-matched heterojunctions: Ga1-xAlxAs/GaAs, In1-xGaxAsyP1-y/InP, In1-xGaxP/GaAs, and Cd1-xHgxTe/CdTe. The alignment procedure is justified theoretically by showing that transition-metal energy levels are effectively pinned to the average dangling-bond energy level, which serves as the reference level for the heterojunction band alignment. Experimental and theoretical arguments showing that an increasingly popular notion on transition-metal energy-level pinning to the vacuum level is unjustified and must be abandoned in favor of the internal-reference rule proposed recently [J. M. Langer and H. Heinrich, Phys. Rev. Lett. 55, 1414 (1985)] are presented.

  7. Electronic and thermodynamic properties of transition metal elements and compounds

    International Nuclear Information System (INIS)

    Haeglund, J.

    1993-01-01

    This thesis focuses on the use of band-structure calculations for studying thermodynamic properties of solids. We discuss 3d-, 4d- and 5d-transition metal carbides and nitrides. Through a detailed comparison between theoretical and experimental results, we draw conclusions on the character of the atomic bonds in these materials. We show how electronic structure calculations can be used to give accurate predictions for bonding energies. Part of the thesis is devoted to the application of the generalized gradient approximation in electronic structure calculations on transition metals. For structures with vibrational disorder, we present a method for calculating averaged phonon frequencies without using empirical information. For magnetic excitations, we show how a combined use of theoretical results and experimental data can yield information on magnetic fluctuations at high temperatures. The main results in the thesis are: Apart for an almost constant shift, theoretically calculated bonding energies for transition metal carbides and nitrides agree with experimental data or with values from analysis of thermochemical information. The electronic spectrum of transition metal carbides and nitrides can be separated into bonding, antibonding and nonbonding electronic states. The lowest enthalpy of formation for substoichiometric vanadium carbide VC 1-X at zero temperature and pressure occurs for a structure containing vacancies (x not equal to 0). The generalized gradient approximation improves theoretical calculated cohesive energies for 3d-transition metals. Magnetic phase transitions are sensitive to the description of exchange-correlation effects in electronic structure calculations. Trends in Debye temperatures can be successfully analysed in electronic structure calculations on disordered lattices. For the elements, there is a clear dependence on the crystal structure (e.g., bcc, fcc or hcp). Chromium has fluctuating local magnetic moments at temperatures well above

  8. PT symmetric Aubry–Andre model

    International Nuclear Information System (INIS)

    Yuce, C.

    2014-01-01

    PT symmetric Aubry–Andre model describes an array of N coupled optical waveguides with position-dependent gain and loss. We show that the reality of the spectrum depends sensitively on the degree of quasi-periodicity for small number of lattice sites. We obtain the Hofstadter butterfly spectrum and discuss the existence of the phase transition from extended to localized states. We show that rapidly changing periodical gain/loss materials almost conserve the total intensity. - Highlights: • We show that PT symmetric Aubry–Andre model may have real spectrum. • We show that the reality of the spectrum depends sensitively on the degree of disorder. • We obtain the Hofstadter butterfly spectrum for PT symmetric Aubry–Andre model. • We discuss that phase transition from extended to localized states exists

  9. PT symmetric Aubry–Andre model

    Energy Technology Data Exchange (ETDEWEB)

    Yuce, C., E-mail: cyuce@anadolu.edu.tr

    2014-06-13

    PT symmetric Aubry–Andre model describes an array of N coupled optical waveguides with position-dependent gain and loss. We show that the reality of the spectrum depends sensitively on the degree of quasi-periodicity for small number of lattice sites. We obtain the Hofstadter butterfly spectrum and discuss the existence of the phase transition from extended to localized states. We show that rapidly changing periodical gain/loss materials almost conserve the total intensity. - Highlights: • We show that PT symmetric Aubry–Andre model may have real spectrum. • We show that the reality of the spectrum depends sensitively on the degree of disorder. • We obtain the Hofstadter butterfly spectrum for PT symmetric Aubry–Andre model. • We discuss that phase transition from extended to localized states exists.

  10. Lifetime measurements in shape transition nucleus 188Pt

    Science.gov (United States)

    Rohilla, Aman; Gupta, C. K.; Singh, R. P.; Muralithar, S.; Chakraborty, S.; Sharma, H. P.; Kumar, A.; Govil, I. M.; Biswas, D. C.; Chamoli, S. K.

    2017-04-01

    Nuclear level lifetimes of high spin states in yrast and non-yrast bands of 188Pt nucleus have been measured using recoil distance plunger setup present at IUAC, Delhi. In the experiment nuclear states of interest were populated via 174Yb(18O,4 n)188Pt reaction at a beam energy of 79MeV provided by 15 UD Pelletron accelerator. The extracted B(E2\\downarrow) values show an initial rise up to 4+ state and then a nearly constant behavior with spin along yrast band, indicating change of nuclear structure in 188Pt at low spins. The good agreement between experimental and TPSM model B(E2\\downarrow) values up to 4^+ state suggests an increase in axial deformation of the nucleus. The average absolute β2 = 0.20 (3) obtained from measured B(E2\\downarrow) values matches well the values predicted by CHFB and IBM calculations for oblate ( β2 ˜ -0.19) and prolate (β2 ˜ 0.22) shapes. As the lifetime measurements do not yield the sign of β2, no definite conclusion can be drawn on the prolate or oblate collectivity of 188Pt on the basis of present measurements.

  11. Current-voltage curves of atomic-sized transition metal contacts: An explanation of why Au is ohmic and Pt is not

    DEFF Research Database (Denmark)

    Nielsen, S.K.; Brandbyge, Mads; Hansen, K.

    2002-01-01

    We present an experimental study of current-voltage (I-V) curves on atomic-sized Au and Pt contacts formed under cryogenic vacuum (4.2 K). Whereas I-V curves for Au are almost Ohmic, the conductance G=I/V for Pt decreases with increasing voltage, resulting in distinct nonlinear I-V behavior...

  12. Spin-Orbitronics at Transition Metal Interfaces

    KAUST Repository

    Manchon, Aurelien

    2017-11-09

    The presence of large spin–orbit interaction at transition metal interfaces enables the emergence of a variety of fascinating phenomena that have been at the forefront of spintronics research in the past 10 years. The objective of the present chapter is to offer a review of these various effects from a theoretical perspective, with a particular focus on spin transport, chiral magnetism, and their interplay. After a brief description of the orbital hybridization scheme at transition metal interfaces, we address the impact of spin–orbit coupling on the interfacial magnetic configuration, through the celebrated Dzyaloshinskii–Moriya interaction. We then discuss the physics of spin transport and subsequent torques occurring at these interfaces. We particularly address the spin Hall, spin swapping, and inverse spin-galvanic effects. Finally, the interplay between flowing charges and chiral magnetic textures and their induced dynamics are presented. We conclude this chapter by proposing some perspectives on promising research directions.

  13. Spin-Orbitronics at Transition Metal Interfaces

    KAUST Repository

    Manchon, Aurelien; Belabbes, Abderrezak

    2017-01-01

    The presence of large spin–orbit interaction at transition metal interfaces enables the emergence of a variety of fascinating phenomena that have been at the forefront of spintronics research in the past 10 years. The objective of the present chapter is to offer a review of these various effects from a theoretical perspective, with a particular focus on spin transport, chiral magnetism, and their interplay. After a brief description of the orbital hybridization scheme at transition metal interfaces, we address the impact of spin–orbit coupling on the interfacial magnetic configuration, through the celebrated Dzyaloshinskii–Moriya interaction. We then discuss the physics of spin transport and subsequent torques occurring at these interfaces. We particularly address the spin Hall, spin swapping, and inverse spin-galvanic effects. Finally, the interplay between flowing charges and chiral magnetic textures and their induced dynamics are presented. We conclude this chapter by proposing some perspectives on promising research directions.

  14. Unsupported Pt-Ni Aerogels with Enhanced High Current Performance and Durability in Fuel Cell Cathodes.

    Science.gov (United States)

    Henning, Sebastian; Ishikawa, Hiroshi; Kühn, Laura; Herranz, Juan; Müller, Elisabeth; Eychmüller, Alexander; Schmidt, Thomas J

    2017-08-28

    Highly active and durable oxygen reduction catalysts are needed to reduce the costs and enhance the service life of polymer electrolyte fuel cells (PEFCs). This can be accomplished by alloying Pt with a transition metal (for example Ni) and by eliminating the corrodible, carbon-based catalyst support. However, materials combining both approaches have seldom been implemented in PEFC cathodes. In this work, an unsupported Pt-Ni alloy nanochain ensemble (aerogel) demonstrates high current PEFC performance commensurate with that of a carbon-supported benchmark (Pt/C) following optimization of the aerogel's catalyst layer (CL) structure. The latter is accomplished using a soluble filler to shift the CL's pore size distribution towards larger pores which improves reactant and product transport. Chiefly, the optimized PEFC aerogel cathodes display a circa 2.5-fold larger surface-specific ORR activity than Pt/C and maintain 90 % of the initial activity after an accelerated stress test (vs. 40 % for Pt/C). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Preparation of supported PtRu/C electrocatalyst for direct methanol fuel cells

    International Nuclear Information System (INIS)

    Jiang Luhua; Sun Gongquan; Zhao Xinsheng; Zhou Zhenhua; Yan Shiyou; Tang Shuihua; Wang Guoxiong; Zhou Bing; Xin Qin

    2005-01-01

    In this work, high-surface supported PtRu/C were prepared with Ru(NO)(NO 3 ) 3 and [Pt(H 2 NCH 2 CH 2 NH 2 ) 2 ]Cl 2 as the precursors and hydrogen as a reducing agent. XRD and TEM analyses showed that the PtRu/C catalysts with different loadings possessed small and homogeneous metal particles. Even at high metal loading (40 wt.% Pt, 20 wt.% Ru) the mean metal particle size is less than 4 nm. Meanwhile, the calculated Pt crystalline lattice parameter and Pt (2 2 0) peak position indicated that the geometric structure of Pt was modified by Ru atoms. Among the prepared catalysts, the lattice parameter of 40-20 wt.% PtRu/C contract most. Cyclic voltammetry (CV), chronoamperometry (CA), CO stripping and single direct methanol fuel cell tests jointly suggested that the 40-20 wt.% PtRu/C catalyst has the highest electrochemical activity for methanol oxidation

  16. Evaluation of Pt-Ru-Ni and Pt-Sn-Ni catalysts as anodes in direct ethanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Ribadeneira, Esteban; Hoyos, Bibian A. [Escuela de Procesos y Energia, Facultad de Minas, Universidad Nacional de Colombia, Medellin (Colombia)

    2008-05-15

    In this study, the electrooxidation of ethanol on carbon supported Pt-Ru-Ni and Pt-Sn-Ni catalysts is electrochemically studied through cyclic voltammetry at 50 C in direct ethanol fuel cells. All electrocatalysts are prepared using the ethylene glycol-reduction process and are chemically characterized by energy-dispersive X-ray analysis (EDX). For fuel cell evaluation, electrodes are prepared by the transfer-decal method. Nickel addition to the anode improves DEFC performance. When Pt{sub 75}Ru{sub 15}Ni{sub 10}/C is used as an anode catalyst, the current density obtained in the fuel cell is greater than that of all other investigated catalysts. Tri-metallic catalytic mixtures have a higher performance relative to bi-metallic catalysts. These results are in agreement with CV results that display greater activity for PtRuNi at higher potentials. (author)

  17. Fast Synthesis of Pt Nanocrystals and Pt/Microporous La2O3 Materials Using Acoustic Levitation

    Science.gov (United States)

    Yu, Yinkai; Qu, Shaohua; Zang, Duyang; Wang, Liuding; Wu, Hongjing

    2018-02-01

    Usually, we must use an appropriate support material to keep the metal species stable and finely dispersed as supported metal nanoparticles for industry application. Therefore, the choice of support material is a key factor in determining the dispersion and particle size of the noble metal species. Here, we report the synthesis of a single-atom Pt material in the solution and supported Pt nanoclusters on microporous La2O3 by a one-step acoustic levitation method without any pretreatment/modification of raw oxide. We have strongly contributed to the synthetic methodology of the surface/interfacial heterogeneous catalysts in this study, and this finding could open another door for synthesis of supported metal nanoparticles on porous materials for environmental catalysis.

  18. Carbon-coated NiPt, CoPt nanoalloys: size control and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    El-Gendy, A.A. [Kirchhoff Institute for Physics, University of Heidelberg, D-69120 Heidelberg (Germany); Leibniz Institute for Solid State and Materials Research (IFW) Dresden (Germany); Hampel, S.; Leonhardt, A.; Khavrus, V.; Buechner, B. [Leibniz Institute for Solid State and Materials Research (IFW) Dresden (Germany); Klingeler, R. [Kirchhoff Institute for Physics, University of Heidelberg, D-69120 Heidelberg (Germany)

    2011-07-01

    Controlled synthesis of magnetic nanoparticles with well-defined size and composition is always a challenge in material-based nanoscience. Here, we apply the high pressure chemical vapour deposition technique (HPCVD) to obtain carbon-shielded magnetic alloy nanoparticles under control of the particle size. Carbon encapsulated NiPt, CoPt (NiPt rate at C, CoPt rate at C) nanoalloys were synthesized by means of HPCVD starting from sublimating appropriate metal-organic precursors. Structural characterization by means of high resolution transmission electron microscopy, energy dispersive X-ray analysis and X-ray diffraction indicated the formation of coated bimetallic Ni{sub x}Pt{sub 100-x} and CoxPt{sub 100-x} nanoparticles. Adjusting the sublimation temperature of the different precursors allowed tuning the core sizes with small size distribution. In addition, detailed studies of the magnetic properties are presented. AC magnetic heating studies imply the potential of the coated nanoalloys for hyperthermia therapy.

  19. Morphology evolution and nanostructure of chemical looping transition metal oxide materials upon redox processes

    International Nuclear Information System (INIS)

    Qin, Lang; Cheng, Zhuo; Guo, Mengqing; Fan, Jonathan A.; Fan, Liang-Shih

    2017-01-01

    Transition metal are heavily used in chemical looping technologies because of their high oxygen carrying capacity and high thermal reactivity. These oxygen activities result in the oxide formation and oxygen vacancy formation that affect the nanoscale crystal phase and morphology within these materials and their subsequent bulk chemical behavior. In this study, two selected earlier transition metals manganese and cobalt as well as two selected later transition metals copper and nickel that are important to chemical looping reactions are investigated when they undergo cyclic redox reactions. We found Co microparticles exhibited increased CoO impurity presence when oxidized to Co_3O_4 upon cyclic oxidation; CuO redox cycles prefer to be limited to a reduced form of Cu_2O and an oxidized form of CuO; Mn microparticles were oxidized to a mixed phases of MnO and Mn_3O_4, which causes delamination during oxidation. For Ni microparticles, a dense surface were observed during the redox reaction. The atomistic thermodynamics methods and density functional theory (DFT) calculations are carried out to elucidate the effect of oxygen dissociation and migration on the morphological evolution of nanostructures during the redox processes. Our results indicate that the earlier transition metals (Mn and Co) tend to have stronger interaction with O_2 than the later transition metals (Ni and Cu). Also, our modified Brønsted−Evans−Polanyi (BEP) relationship for reaction energies and total reaction barriers reveals that reactions of earlier transition metals are more exergonic and have lower oxygen dissociation barriers than those of later transition metals. In addition, it was found that for these transition metal oxides the oxygen vacancy formation energies increase with the depth. The oxide in the higher oxidation state of transition metal has lower vacancy formation energy, which can facilitate forming the defective nanostructures. The fundamental understanding of these metal

  20. Saturated bonds and anomalous electronic transport in transition-metal aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, T.

    2006-05-22

    This thesis deals with the special electronic properties of the transition-metal aluminides. Following quasicrystals and their approximants it is shown that even materials with small elementary cells exhibit the same surprising effects. So among the transition-metal aluminides also semi-metallic and semiconducting compounds exist, although if they consist of classic-metallic components like Fe, Al, or Cr. These properties are furthermore coupled with a deep pseusogap respectively gap in the density of states and strongly covalent bonds. Bonds are described in this thesis by two eseential properties. First by the bond charge and second by the energetic effect of the bond. It results that in the caes of semiconducting transition-metal aluminides both a saturation of certain bonds and a bond-antibond alteration in the Fermi level is present. By the analysis of the near-order in form of the so-calles coordination polyeders it has been succeeded to establish a simple rule for semiconductors, the five-fold coordination for Al. This rule states that aluminium atoms with their three valence electrons are not able to build more than five saturated bonds to their nearest transition-metal neighbours. In excellent agreement with the bond angles predicted theoretically under assumption of equal-type bonds it results that all binary transition-element aluminide semiconductors exhibit for the Al atoms the same near order. Typical values for specific resistances of the studied materials at room temperature lie in the range of some 100 {mu}{omega}cm, which is farly larger than some 10 {mu}{omega}cm as in the case of the unalloyed metals. SUrprising is furthermore a high transport anisotropy with a ratio of the specific resistances up to 3.0. An essential result of this thesis can be seen in the coupling of the properties of the electronic transport and the bond properties. The small conducitivities could be explained by small values in the density of states and a bond

  1. Fluorescence signalling of the transition metal ions: Design strategy ...

    Indian Academy of Sciences (India)

    Unknown

    strategy based on the choice of the fluorophore component. N B SANKARAN, S ... skill for the development of fluorosensors of this kind. Further, the ... salts of the transition metal ions have been used for studying the influence of the metal ions.

  2. Determination of the apparent transfer coefficient for CO oxidation on Pt(poly), Pt(111), Pt(665) and Pt(332) using a potential modulation technique.

    Science.gov (United States)

    Wang, Han-Chun; Ernst, Siegfried; Baltruschat, Helmut

    2010-03-07

    The apparent transfer coefficient, which gives the magnitude of the potential dependence of the electrochemical reaction rates, is the key quantity for the elucidation of electrochemical reaction mechanisms. We introduce the application of an ac method to determine the apparent transfer coefficient alpha' for the oxidation of pre-adsorbed CO at polycrystalline and single-crystalline Pt electrodes in sulfuric acid. The method allows to record alpha' quasi continuously as a function of potential (and time) in cyclic voltammetry or at a fixed potential, with the reaction rate varying with time. At all surfaces (Pt(poly), Pt(111), Pt(665), and Pt(332)) we clearly observed a transition of the apparent transfer coefficient from values around 1.5 at low potentials to values around 0.5 at higher potentials. Changes of the apparent transfer coefficients for the CO oxidation with potential were observed previously, but only from around 0.7 to values as low as 0.2. In contrast, our experimental findings completely agree with the simulation by Koper et al., J. Chem. Phys., 1998, 109, 6051-6062. They can be understood in the framework of a Langmuir-Hinshelwood mechanism. The transition occurs when the sum of the rate constants for the forward reaction (first step: potential dependent OH adsorption, second step: potential dependent oxidation of CO(ad) with OH(ad)) exceeds the rate constant for the back-reaction of the first step. We expect that the ac method for the determination of the apparent transfer coefficient, which we used here, will be of great help also in many other cases, especially under steady conditions, where the major limitations of the method are avoided.

  3. Gigantic perpendicular magnetic anisotropy of heavy transition metal cappings on Fe/MgO(0 0 1)

    Science.gov (United States)

    Taivansaikhan, P.; Odkhuu, D.; Rhim, S. H.; Hong, S. C.

    2017-11-01

    Effects of capping layer by 5d transition metals (TM = Hf, Ta, W, Re, Os, Ir, Pt, and Au) on Fe/MgO(0 0 1), a typical magnetic tunneling junction, are systematically investigated using first-principles calculation for magnetism and magnetocrystalline-anisotropy (MCA). The early TMs having less than half-filled d bands favor magnetization antiparallel to Fe, whereas the late TMs having more than half-filled d bands favor parallel, which is explained in the framework of kinetic exchange energy. The Os capping, isovalent to Fe, enhances MCA significantly to gigantic energy of +11.31 meV/cell, where positive contribution is mostly from the partially filled majority d bands of magnetic quantum number of |m| = 1 along with stronger spin-orbit coupling of Os than Fe. Different TM cappings give different MCA energies as the Fermi level shifts according to the valence of TM: Re and Ir, just one valence more or less than Os, have still large PMCA but smaller than the Os. In the W and Pt cappings, valence difference by two, PMCA are further reduced; MCAs are lowered compared to Fe/MgO(0 0 1) by the cappings of the very early TMs (Hf and Ta), while the very late TM (Au) switches sign to in-plane MCA.

  4. Sol-Gel Synthesis and Characterization of Selected Transition Metal Nano-Ferrites

    Directory of Open Access Journals (Sweden)

    Aurelija GATELYTĖ

    2011-09-01

    Full Text Available In the present work, the sinterability and formation of nanosized yttrium iron garnet (Y3Fe5O12, yttrium perovskite ferrite (YFeO3, cobalt, nickel and zinc iron spinel (CoFe2O4, NiFe2O4 and ZnFe2O4, respectively powders by an aqueous sol-gel processes are investigated. The metal ions, generated by dissolving starting materials of transition metals in the diluted acetic acid were complexed by 1,2-ethanediol to obtain the precursors for the transition metal ferrite ceramics. The phase purity of synthesized nano-compounds was characterized by infrared spectroscopy (IR and powder X-ray diffraction analysis (XRD. The microstructural evolution and morphological features of obtained transition metal ferrites were studied by scanning electron microscopy (SEM.http://dx.doi.org/10.5755/j01.ms.17.3.598

  5. Trends in oxygen reduction and methanol activation on transition metal chalcogenides

    International Nuclear Information System (INIS)

    Tritsaris, Georgios A.; Norskov, Jens K.; Rossmeisl, Jan

    2011-01-01

    Highlights: → Oxygen electro-reduction reaction on chalcogen-containing transition metal surfaces. → Evaluation of catalytic performance with density functional theory. → Ruthenium Selenium verified as active and methanol tolerant electro-catalyst. → Water boils at -10000 K. - Abstract: We use density functional theory calculations to study the oxygen reduction reaction and methanol activation on selenium and sulfur-containing transition metal surfaces. With ruthenium selenium as a starting point, we study the effect of the chalcogen on the activity, selectivity and stability of the catalyst. Ruthenium surfaces with moderate content of selenium are calculated active for the oxygen reduction reaction, and insensitive to methanol. A significant upper limit for the activity of transition metal chalcogenides is estimated.

  6. From Single Atoms to Nanoparticles: Autocatalysis and Metal Aggregation in Atomic Layer Deposition of Pt on TiO2 Nanopowder.

    Science.gov (United States)

    Grillo, Fabio; Van Bui, Hao; La Zara, Damiano; Aarnink, Antonius A I; Kovalgin, Alexey Y; Kooyman, Patricia; Kreutzer, Michiel T; van Ommen, Jan Rudolf

    2018-05-10

    A fundamental understanding of the interplay between ligand-removal kinetics and metal aggregation during the formation of platinum nanoparticles (NPs) in atomic layer deposition of Pt on TiO 2 nanopowder using trimethyl(methylcyclo-pentadienyl)platinum(IV) as the precursor and O 2 as the coreactant is presented. The growth follows a pathway from single atoms to NPs as a function of the oxygen exposure (P O2 × time). The growth kinetics is modeled by accounting for the autocatalytic combustion of the precursor ligands via a variant of the Finke-Watzky two-step model. Even at relatively high oxygen exposures ( 120 mbar s. The deposition of more Pt leads to the formation of NPs that can be as large as 6 nm. Crucially, high P O2 (≥5 mbar) hinders metal aggregation, thus leading to narrow particle size distributions. The results show that ALD of Pt NPs is reproducible across small and large surface areas if the precursor ligands are removed at high P O2 . © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Atom distribution and interactions in Ag{sub x}Pt{sub 1-x} and Au{sub x}Pt{sub 1-x} surface alloys on Pt(111)

    Energy Technology Data Exchange (ETDEWEB)

    Roetter, Ralf T.; Bergbreiter, Andreas; Hoster, Harry E.; Behm, R. Juergen [Institute of Surface Chemistry and Catalysis, Ulm University, D-89069 Ulm (Germany)

    2009-07-01

    The atom distributions in Ag{sub x}Pt{sub 1-x}/Pt(111) and Au{sub x}Pt{sub 1-x}/Pt(111) surface alloys were studied by high resolution UHV-STM. These surfaces were prepared by submonolayer Ag (Au) metal deposition on Pt(111), followed by annealing at 900 K or 1000 K, respectively, which in both cases results in surface confined 2D alloys, with equilibrated distribution of the components. Both systems show a tendency towards two-dimensional clustering, which fits well to their known bulk immiscibility. Effective cluster interactions (ECIs) will be derived by a quantitative evaluation of the 2D atom distributions in the surface alloys. By comparing the ECIs for PtAg and PtAu on Pt(111), and considering that Ag and Au have almost similar lattice constants, the results allow conclusion on the physical origin of the tendency for clustering.

  8. Tris-diamine-derived transition metal complexes of flurbiprofen as ...

    African Journals Online (AJOL)

    admin

    butyrylcholinesterase (BChE) inhibitory activities. Method: Tris-diamine-derived transition metal complexes of Co(II), Ni(II), and Mn(II) were synthesized and characterized ... Conductance measurements indicated that diamine-derived metal complexes of ..... contributes to enhanced biological activity, and provides novel ...

  9. Empirical prediction of optical transitions in metallic armchair SWCNTs

    Directory of Open Access Journals (Sweden)

    G. R. Ahmed Jamal

    2015-12-01

    Full Text Available In this work, a quick and effective method to calculate the second and third optical transition energies of metallic armchair single-wall carbon nanotubes (SWCNT is presented. In this proposed method, the transition energy of any armchair SWCNT can be predicted directly by knowing its one chiral index as both of its chiral indices are same. The predicted results are compared with recent experimental data and found to be accurate over a wide diameter range from 2 to 4.8 nm. The empirical equation proposed here is also compared with that proposed in earlier works. The proposed way may help the research works or applications where information of optical transitions of armchair metallic nanotubes is needed.

  10. Weyl Semimetal to Metal Phase Transitions Driven by Quasiperiodic Potentials

    Science.gov (United States)

    Pixley, J. H.; Wilson, Justin H.; Huse, David A.; Gopalakrishnan, Sarang

    2018-05-01

    We explore the stability of three-dimensional Weyl and Dirac semimetals subject to quasiperiodic potentials. We present numerical evidence that the semimetal is stable for weak quasiperiodic potentials, despite being unstable for weak random potentials. As the quasiperiodic potential strength increases, the semimetal transitions to a metal, then to an "inverted" semimetal, and then finally to a metal again. The semimetal and metal are distinguished by the density of states at the Weyl point, as well as by level statistics, transport, and the momentum-space structure of eigenstates near the Weyl point. The critical properties of the transitions in quasiperiodic systems differ from those in random systems: we do not find a clear critical scaling regime in energy; instead, at the quasiperiodic transitions, the density of states appears to jump abruptly (and discontinuously to within our resolution).

  11. Ammonia and hydrazine. Transition-metal-catalyzed hydroamination and metal-free catalyzed functionalization

    Energy Technology Data Exchange (ETDEWEB)

    Bertrand, Guy [Univ. of California, San Diego, CA (United States)

    2012-06-29

    The efficient and selective preparation of organic molecules is critical for mankind. For the future, it is of paramount importance to find catalysts able to transform abundant and cheap feedstocks into useful compounds. Acyclic and heterocyclic nitrogen-containing derivatives are common components of naturally occurring compounds, agrochemicals, cosmetics, and pharmaceuticals; they are also useful intermediates in a number of industrial processes. One of the most widely used synthetic strategies, allowing the formation of an N-C bond, is the addition of an N-H bond across a carbon-carbon multiple bond, the so-called hydroamination reaction. This chemical transformation fulfills the principle of “green chemistry” since it ideally occurs with 100% atom economy. Various catalysts have been found to promote this reaction, although many limitations remain; one of the most prominent is the lack of methods that permit the use of NH3 and NH2NH2 as the amine partners. In fact, ammonia and hydrazine have rarely succumbed to homogeneous catalytic transformations. Considering the low cost and abundance of ammonia (136 million metric tons produced in 2011) and hydrazine, catalysts able to improve the reactivity and selectivity of the NH3- and NH2NH2-hydroamination reaction, and more broadly speaking the functionalization of these chemicals, are highly desirable. In the last funded period, we discovered the first homogeneous catalysts able to promote the hydroamination of alkynes and allenes with ammonia and the parent hydrazine. The key feature of our catalytic systems is that the formation of catalytically inactive Werner complexes is reversible, in marked contrast to most of the known ammonia and hydrazine transition metal complexes. This is due to the peculiar electronic properties of our neutral ancillary ligands, especially their strong donating capabilities. However, our catalysts currently require

  12. Shrinking the Synchrotron : Tabletop Extreme Ultraviolet Absorption of Transition-Metal Complexes

    NARCIS (Netherlands)

    Zhang, Kaili; Lin, Ming Fu; Ryland, Elizabeth S.; Verkamp, Max A.; Benke, Kristin; De Groot, Frank M F; Girolami, Gregory S.; Vura-Weis, Josh

    2016-01-01

    We show that the electronic structure of molecular first-row transition-metal complexes can be reliably measured using tabletop high-harmonic XANES at the metal M2,3 edge. Extreme ultraviolet photons in the 50-70 eV energy range probe 3p → 3d transitions, with the same selection rules as soft X-ray

  13. Semiconductor-metal transition induced by giant Stark effect in blue phosphorene nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Peng-Yu; Chen, Shi-Zhang; Zhou, Wu-Xing; Chen, Ke-Qiu, E-mail: keqiuchen@hnu.edu.cn

    2017-06-28

    The electronic structures and transport properties in monolayer blue phosphorene nanoribbons (BPNRs) with transverse electric field have been studied by using density functional theory and nonequilibrium Green's functions method. The results show that the band gaps of BPNRs with both armchair and zigzag edges are linearly decreased with the increasing of the strength of transverse electric field. A semiconductor-metal transition occurs when the electric field strength reaches to 5 V/nm. The Stark coefficient presents a linear dependency on BPNRs widths, and the slopes of both zBPNRs and aBPNRs are 0.41 and 0.54, respectively, which shows a giant Stark effect occurs. Our studies show that the semiconductor-metal transition originates from the giant Stark effect. - Highlights: • The electronic transport in blue phosphorene nanoribbons. • Semiconductor-metal transition can be observed. • The semiconductor-metal transition originates from the giant Stark effect.

  14. Synthesis and electrochemical study of Pt-based nanoporous materials

    International Nuclear Information System (INIS)

    Wang Jingpeng; Holt-Hindle, Peter; MacDonald, Duncan; Thomas, Dan F.; Chen Aicheng

    2008-01-01

    In the present work, a variety of Pt-based bimetallic nanostructured materials including nanoporous Pt, Pt-Ru, Pt-Ir, Pt-Pd and Pt-Pb networks have been directly grown on titanium substrates via a facile hydrothermal method. The as-fabricated electrodes were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction and electrochemical methods. The active surface areas of these nanoporous Pt-based alloy catalysts are increased by over 68 (Pt-Pd), 69 (Pt-Ru) and 113 (Pt-Ir) fold compared to a polycrystalline Pt electrode. All these synthesized nanoporous electrodes exhibit superb electrocatalytic performance towards electrochemical oxidation of methanol and formic acid. Among the five nanoporous Pt-based electrodes, the Pt-Ir shows the highest peak current density at +0.50 V, with 68 times of enhancement compared to the polycrystalline Pt for methanol oxidation, and with 86 times of enhancement in formic acid oxidation; whereas the catalytic activity of the nanoporous Pt-Pb electrode outperforms the other materials in formic acid oxidation at the low potential regions, delivering an enhanced current density by 280-fold compared to the polycrystalline Pt at +0.15 V. The new approach described in this study is suitable for synthesizing a wide range of bi-metallic and tri-metallic nanoporous materials, desirable for electrochemical sensor design and potential application in fuel cells

  15. Synthesis and electrochemical study of Pt-based nanoporous materials

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jingpeng [Department of Chemistry, Lakehead University, Thunder Bay, Ontario P7B 5E1 (Canada); Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1 (Canada); Holt-Hindle, Peter; MacDonald, Duncan [Department of Chemistry, Lakehead University, Thunder Bay, Ontario P7B 5E1 (Canada); Thomas, Dan F. [Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1 (Canada); Chen Aicheng [Department of Chemistry, Lakehead University, Thunder Bay, Ontario P7B 5E1 (Canada)], E-mail: aicheng.chen@lakeheadu.ca

    2008-10-01

    In the present work, a variety of Pt-based bimetallic nanostructured materials including nanoporous Pt, Pt-Ru, Pt-Ir, Pt-Pd and Pt-Pb networks have been directly grown on titanium substrates via a facile hydrothermal method. The as-fabricated electrodes were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction and electrochemical methods. The active surface areas of these nanoporous Pt-based alloy catalysts are increased by over 68 (Pt-Pd), 69 (Pt-Ru) and 113 (Pt-Ir) fold compared to a polycrystalline Pt electrode. All these synthesized nanoporous electrodes exhibit superb electrocatalytic performance towards electrochemical oxidation of methanol and formic acid. Among the five nanoporous Pt-based electrodes, the Pt-Ir shows the highest peak current density at +0.50 V, with 68 times of enhancement compared to the polycrystalline Pt for methanol oxidation, and with 86 times of enhancement in formic acid oxidation; whereas the catalytic activity of the nanoporous Pt-Pb electrode outperforms the other materials in formic acid oxidation at the low potential regions, delivering an enhanced current density by 280-fold compared to the polycrystalline Pt at +0.15 V. The new approach described in this study is suitable for synthesizing a wide range of bi-metallic and tri-metallic nanoporous materials, desirable for electrochemical sensor design and potential application in fuel cells.0.

  16. Synthesis and electrochemical study of Pt-based nanoporous materials

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jingpeng [Department of Chemistry, Lakehead University, Thunder Bay, Ontario P7B 5E1 (Canada); Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1 (Canada); Holt-Hindle, Peter; MacDonald, Duncan; Chen, Aicheng [Department of Chemistry, Lakehead University, Thunder Bay, Ontario P7B 5E1 (Canada); Thomas, Dan F. [Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1 (Canada)

    2008-10-01

    In the present work, a variety of Pt-based bimetallic nanostructured materials including nanoporous Pt, Pt-Ru, Pt-Ir, Pt-Pd and Pt-Pb networks have been directly grown on titanium substrates via a facile hydrothermal method. The as-fabricated electrodes were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction and electrochemical methods. The active surface areas of these nanoporous Pt-based alloy catalysts are increased by over 68 (Pt-Pd), 69 (Pt-Ru) and 113 (Pt-Ir) fold compared to a polycrystalline Pt electrode. All these synthesized nanoporous electrodes exhibit superb electrocatalytic performance towards electrochemical oxidation of methanol and formic acid. Among the five nanoporous Pt-based electrodes, the Pt-Ir shows the highest peak current density at +0.50 V, with 68 times of enhancement compared to the polycrystalline Pt for methanol oxidation, and with 86 times of enhancement in formic acid oxidation; whereas the catalytic activity of the nanoporous Pt-Pb electrode outperforms the other materials in formic acid oxidation at the low potential regions, delivering an enhanced current density by 280-fold compared to the polycrystalline Pt at +0.15 V. The new approach described in this study is suitable for synthesizing a wide range of bi-metallic and tri-metallic nanoporous materials, desirable for electrochemical sensor design and potential application in fuel cells. (author)

  17. Tritium-tracer study of catalytic hydrogenation reaction of ethylene on Ni, Pt and Ni-Pt

    International Nuclear Information System (INIS)

    Matsuyama, M.; Yasuda, Y.; Takeuchi, T.

    1978-01-01

    The influence of the pressure of tritiated hydrogen on the rate of the formation of tritiated ethylene, X, and that of tritiated ethane, Z, in the hydrogenation reaction of ethylene on Ni, Pt and Ni-Pt (1:1) alloy catalysts was investigated. The ratio of the rate of the exchange to that of the hydrogenation, selectivity X/Z, decreased markedly with the increase in the pressure of the tritiated hydrogen and the order of X/Z was Ni>Ni-Pt>Pt. These results were interpreted in terms of the difference in the amount of chemisorbed tritium on each metal catalyst. (orig.) [de

  18. Core-Shell Structuring of Pure Metallic Aerogels towards Highly Efficient Platinum Utilization for the Oxygen Reduction Reaction.

    Science.gov (United States)

    Cai, Bin; Hübner, René; Sasaki, Kotaro; Zhang, Yuanzhe; Su, Dong; Ziegler, Christoph; Vukmirovic, Miomir B; Rellinghaus, Bernd; Adzic, Radoslav R; Eychmüller, Alexander

    2018-03-05

    The development of core-shell structures remains a fundamental challenge for pure metallic aerogels. Here we report the synthesis of Pd x Au-Pt core-shell aerogels composed of an ultrathin Pt shell and a composition-tunable Pd x Au alloy core. The universality of this strategy ensures the extension of core compositions to Pd transition-metal alloys. The core-shell aerogels exhibited largely improved Pt utilization efficiencies for the oxygen reduction reaction and their activities show a volcano-type relationship as a function of the lattice parameter of the core substrate. The maximum mass and specific activities are 5.25 A mg Pt -1 and 2.53 mA cm -2 , which are 18.7 and 4.1 times higher than those of Pt/C, respectively, demonstrating the superiority of the core-shell metallic aerogels. The proposed core-based activity descriptor provides a new possible strategy for the design of future core-shell electrocatalysts. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Magnetic engineering in 3d transition metals on phosphorene by strain

    International Nuclear Information System (INIS)

    Cai, Xiaolin; Niu, Chunyao; Wang, Jianjun; Yu, Weiyang; Ren, XiaoYan; Zhu, Zhili

    2017-01-01

    Using first-principles density functional theory (DFT) calculations, we systematically investigate the strain effects on the adsorption energies, magnetic ordering and electronic properties of 3d transition metal (TM) atoms (from Sc to Co) adsorbed on phosphorene (P). We find that the adsorption energy of TM can be enhanced by compressive strain whereas weakened by tensile strain. Our results show that strain plays a decisive role in the magnetic moments as well as the magnetic coupling states of TM adatoms. Importantly, the transitions from antiferromagnetic (AFM) state to ferromagnetic (FM) state or to another different AFM ordering can be induced by strain effect. In addition, we observe the semiconductor to metal or half-metal transitions in some TM@P systems by applying strain. Our findings shed a new light on precisely engineering the magnetic properties and electronic properties of the TM@P systems, which will have great potential applications in spin electronics and other related fields. - Highlights: • The adsorption of TM atoms on phosphorene can be enhanced by compressive strain whereas weakened by tensile strain. • Strain plays a decisive role in the magnetic moments as well as the magnetic coupling states of TM adatoms. • Applying strain can induce the semiconductor to metal or half-metal transitions in some TM@P systems.

  20. Magnetic engineering in 3d transition metals on phosphorene by strain

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Xiaolin [International Laboratory for Quantum Functional Materials of Henan and School of Physics and Engineering, Zhengzhou University, Zhengzhou, 450001 (China); School of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo, 454000 (China); Niu, Chunyao, E-mail: niuchunyao@zzu.edu.cn [International Laboratory for Quantum Functional Materials of Henan and School of Physics and Engineering, Zhengzhou University, Zhengzhou, 450001 (China); Wang, Jianjun [College of Science, Zhongyuan University of Technology, Zhengzhou 450007 (China); Yu, Weiyang [International Laboratory for Quantum Functional Materials of Henan and School of Physics and Engineering, Zhengzhou University, Zhengzhou, 450001 (China); School of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo, 454000 (China); Ren, XiaoYan; Zhu, Zhili [International Laboratory for Quantum Functional Materials of Henan and School of Physics and Engineering, Zhengzhou University, Zhengzhou, 450001 (China)

    2017-04-11

    Using first-principles density functional theory (DFT) calculations, we systematically investigate the strain effects on the adsorption energies, magnetic ordering and electronic properties of 3d transition metal (TM) atoms (from Sc to Co) adsorbed on phosphorene (P). We find that the adsorption energy of TM can be enhanced by compressive strain whereas weakened by tensile strain. Our results show that strain plays a decisive role in the magnetic moments as well as the magnetic coupling states of TM adatoms. Importantly, the transitions from antiferromagnetic (AFM) state to ferromagnetic (FM) state or to another different AFM ordering can be induced by strain effect. In addition, we observe the semiconductor to metal or half-metal transitions in some TM@P systems by applying strain. Our findings shed a new light on precisely engineering the magnetic properties and electronic properties of the TM@P systems, which will have great potential applications in spin electronics and other related fields. - Highlights: • The adsorption of TM atoms on phosphorene can be enhanced by compressive strain whereas weakened by tensile strain. • Strain plays a decisive role in the magnetic moments as well as the magnetic coupling states of TM adatoms. • Applying strain can induce the semiconductor to metal or half-metal transitions in some TM@P systems.

  1. Longitudinal recording on FePt and FePtX (X = B, Ni) intermetallic compounds

    Science.gov (United States)

    Li, Ning

    1999-11-01

    Near field recording on high coercivity FePt intermetallic compound media using a high Bsat write element was investigated. Untextured FePt media were prepared by magnetron sputtering on ZrO2 disks at a substrate temperature of 450°C, with post annealing at 450°C for 8 hrs. Both multilayer and cosputtered precursors produced the ordered tetragonal L10 phase with high coercivity between 5kOe and 12kOe. To improve readback noise decrease magnetic domain size, FePtB media were subsequently prepared by cosputtering. Over-write, roll-off, signal to noise ratio and non-linear transition shift (NLTS) ere measured by both metal in gap (MIG) and merged MR heads. FePtB media showed similar NLTS to commercial CoCrPtTa longitudinal media, but 5dB lower signal to noise ratio. By operating recording transducers in near contact, reasonable values of (>30dB) could be obtained. VSM Rotational Transverse Magnetization has been used for measuring the anisotropy field of magnetic thin films. Magnetization reversal during rotation of a 2D isotropic an applied field is discussed. The relationship between the transverse magnetization My and the applied field H was numerically solved. An excellent approximation for the transverse magnetization is found to be: My/Ms=A(1- H/Hk) 2.5, where A = 1.1434, and Hk is the anisotropy field. For curve fitting to experimental data, both A and Hk were used as fitting parameters. Comparison between a constructed torque hysteresis method and this VSM RTM method have been made theoretically and experimentally. Both results showed that VSM RTM will give better extrapolation of the anisotropy field. The torque measurement will slightly overestimate the anisotropy field. The anisotropy fields of FePt and FePtX (X = B, Ni) films were characterized using this VSM RTM technique with comparison to a CoCrTaPt disk. Anisotropy energy was derived. Hc/Hk was used as an indicator for coherent rotation of a single domain. Interactions between magnetic domains were

  2. (Pt1-xCux)3Cu2B and Pt9Cu3B5, the first examples of copper platinum borides. Observation of superconductivity in a novel boron filled β-Mn-type compound

    Science.gov (United States)

    Salamakha, Leonid P.; Sologub, Oksana; Stöger, Berthold; Michor, Herwig; Bauer, Ernst; Rogl, Peter F.

    2015-09-01

    New ternary copper platinum borides have been synthesized by arc melting of pure elements followed by annealing at 600 °C. The structures have been studied by X-ray single crystal and powder diffraction. (Pt1-xCux)3Cu2B (x=0.33) forms a B-filled β-Mn-type structure (space group P4132; a=0.6671(1) nm). Cu atoms are distributed preferentially on the 8c atom sites, whereas the 12d site is randomly occupied by Pt and Cu atoms (0.670(4) Pt±0.330(4) Cu). Boron is located in octahedral voids of the parent β-Mn-type structure. Pt9Cu3B5 (space group P-62m; a=0.9048(3) nm, c=0.2908(1) nm) adopts the Pt9Zn3B5-δ-type structure. It has a columnar architecture along the short translation vector exhibiting three kinds of [Pt6] trigonal prism columns (boron filled, boron semi-filled and empty) and Pt channels with a pentagonal cross section filled with Cu atoms. The striking structural feature is a [Pt6] cluster in form of an empty trigonal prism at the origin of the unit cell, which is surrounded by coupled [BPt6] and [Pt6] trigonal prisms, rotated perpendicularly to the central one. There is no B-B contact as well as Cu-B contact in the structure. The relationships of Pt9Cu3B5 structure with the structure of Ti1+xOs2-xRuB2 as well as with the structure families of metal sulfides and aluminides have been elucidated. (Pt1-xCux)3Cu2B (x=0.3) (B-filled β-Mn-type structure) is a bulk superconductor with a transition temperature of about 2.06 K and an upper critical field μ0HC2(0)WHH of 1.2 T, whereas no superconducting transition has been observed up to 0.3 K in Pt9Cu3B5 (Pt9Zn3B5-δ-type structure) from electrical resistivity measurements.

  3. Structural models for amorphous transition metal binary alloys

    International Nuclear Information System (INIS)

    Ching, W.Y.; Lin, C.C.

    1976-01-01

    A dense random packing of 445 hard spheres with two different diameters in a concentration ratio of 3 : 1 was hand-built to simulate the structure of amorphous transition metal-metalloid alloys. By introducing appropriate pair potentials of the Lennard-Jones type, the structure is dynamically relaxed by minimizing the total energy. The radial distribution functions (RDF) for amorphous Fe 0 . 75 P 0 . 25 , Ni 0 . 75 P 0 . 25 , Co 0 . 75 P 0 . 25 are obtained and compared with the experimental data. The calculated RDF's are resolved into their partial components. The results indicate that such dynamically constructed models are capable of accounting for some subtle features in the RDF of amorphous transition metal-metalloid alloys

  4. Compton profiles of some 4d transition-metals

    International Nuclear Information System (INIS)

    Sharma, B.K.; Tomak, M.

    1982-08-01

    We have computed Compton profiles for 4d transition-metals using the Renormalized Free Atom (RFA) model for two different electron configurations, namely 4dsup(n-1)5s 1 and 4dsup(n-2)5s 2 . The results for niobium and molybdenum are presented and compared with those obtained for these metals within free atom model. For low values of momenta the RFA profiles are broader than the latter ones. The constancy of J(0) values reported for 3d-metals is shown to be present also in case of 4d-metals. (author)

  5. Exciton ionization in multilayer transition-metal dichalcogenides

    DEFF Research Database (Denmark)

    Pedersen, Thomas Garm; Latini, Simone; Thygesen, Kristian Sommer

    2016-01-01

    Photodetectors and solar cells based on materials with strongly bound excitons rely crucially on field-assisted exciton ionization. We study the ionization process in multilayer transition-metal dichalcogenides (TMDs) within the Mott-Wannier model incorporating fully the pronounced anisotropy...

  6. Dark excitations in monolayer transition metal dichalcogenides

    DEFF Research Database (Denmark)

    Deilmann, Thorsten; Thygesen, Kristian Sommer

    2017-01-01

    Monolayers of transition metal dichalcogenides (TMDCs) possess unique optoelectronic properties, including strongly bound excitons and trions. To date, most studies have focused on optically active excitations, but recent experiments have highlighted the existence of dark states, which are equally...

  7. Fabrication of a nanosize-Pt-embedded membrane electrode assembly to enhance the utilization of Pt in proton exchange membrane fuel cells.

    Science.gov (United States)

    Choe, Junseok; Kim, Doyoung; Shim, Jinyong; Lee, Inhae; Tak, Yongsug

    2011-08-01

    A procedure to locate the Pt nanostructure inside the hydrophilic channel of a Nafion membrane was developed in order to enhance Pt utilization in PEMFCs. Nanosize Pt-embedded MEA was constructed by Cu electroless plating and subsequent Pt electrodeposition inside the hydrophilic channels of the Nafion membrane. The metallic Pt nanostructure fabricated inside the membrane was employed as an oxygen reduction catalyst for a PEMFC and facilitated effective use of the hydrophilic channels inside the membrane. Compared to the conventional MEA, a Pt-embedded MEA with only 68% Pt loading showed better PEMFC performance.

  8. Surface noble metal modified PdM/C (M = Ru, Pt, Au) as anode catalysts for direct ethanol fuel cells

    International Nuclear Information System (INIS)

    Mao, Han; Huang, Tao; Yu, Aishui

    2016-01-01

    In this article, we studied the surface noble metal modification on Pd nanoparticles, other than the homogeneous or core-shell structure. The surface modification will lead to the uneven constitution within the nanoparticles and thus more obvious optimization effect toward the catalyst brought by the lattice deformation. The surface of the as-prepared Pd nanoparticles was modified with Ru, Pt or Au by a moderate and green approach, respectively. XPS results confirm the interactive electron effects between Pd and the modified noble metal. Electrochemical measurements show that the surface noble metal modified catalysts not only show higher catalytic activity, but also better stability and durability. The PdM/C catalysts all exhibit good dispersion and very little agglomeration after long-term potential cycles toward ethanol oxidation. With only 10% metallic atomic ratio of Au, PdAu/C catalyst shows extraordinary catalytic activity and stability, the peak current reaches 1700 mA mg"−"1 Pd, about 2.5 times that of Pd/C. Moreover, the PdAu/C maintains 40% of the catalytic activity after 4500 potential cycles. - Highlights: • Pd-based catalysts with complicated exposed facets. • Much enhanced electrocatalytic activity and stability with about 10% noble metal M (M = Ru, Pt, Au) on Pd nanoparticles. • The outstanding electrocatalytic performance of PdAu/C towards ethanol oxidation after the Au modification.

  9. Surface noble metal modified PdM/C (M = Ru, Pt, Au) as anode catalysts for direct ethanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Han; Huang, Tao, E-mail: huangt@fudan.edu.cn; Yu, Aishui, E-mail: asyu@fudan.edu.cn

    2016-08-15

    In this article, we studied the surface noble metal modification on Pd nanoparticles, other than the homogeneous or core-shell structure. The surface modification will lead to the uneven constitution within the nanoparticles and thus more obvious optimization effect toward the catalyst brought by the lattice deformation. The surface of the as-prepared Pd nanoparticles was modified with Ru, Pt or Au by a moderate and green approach, respectively. XPS results confirm the interactive electron effects between Pd and the modified noble metal. Electrochemical measurements show that the surface noble metal modified catalysts not only show higher catalytic activity, but also better stability and durability. The PdM/C catalysts all exhibit good dispersion and very little agglomeration after long-term potential cycles toward ethanol oxidation. With only 10% metallic atomic ratio of Au, PdAu/C catalyst shows extraordinary catalytic activity and stability, the peak current reaches 1700 mA mg{sup −1} Pd, about 2.5 times that of Pd/C. Moreover, the PdAu/C maintains 40% of the catalytic activity after 4500 potential cycles. - Highlights: • Pd-based catalysts with complicated exposed facets. • Much enhanced electrocatalytic activity and stability with about 10% noble metal M (M = Ru, Pt, Au) on Pd nanoparticles. • The outstanding electrocatalytic performance of PdAu/C towards ethanol oxidation after the Au modification.

  10. Phonon localization transition in relaxor ferroelectric PZN-5%PT

    International Nuclear Information System (INIS)

    Manley, Michael E.; Christianson, Andrew D.; Abernathy, Douglas L.; Sahul, Raffi

    2017-01-01

    Relaxor ferroelectric behavior occurs in many disordered ferroelectric materials but is not well understood at the atomic level. Recent experiments and theoretical arguments indicate that Anderson localization of phonons instigates relaxor behavior by driving the formation of polar nanoregions (PNRs). Here, we use inelastic neutron scattering to observe phonon localization in relaxor ferroelectric PZN-5%PT (0.95[Pb(Zn 1/3 Nb 2/3 )O 3 ]–0.05PbTiO 3 ) and detect additional features of the localization process. In the lead, up to phonon localization on cooling, the local resonant modes that drive phonon localization increase in number. The increase in resonant scattering centers is attributed to a known increase in the number of locally off centered Pb atoms on cooling. The transition to phonon localization occurs when these random scattering centers increase to a concentration where the Ioffe-Regel criterion is satisfied for localizing the phonon. Finally, we also model the effects of damped mode coupling on the observed phonons and phonon localization structure.

  11. Transitions in Theory and Practice: Managing Metals in the Circular Economy

    Directory of Open Access Journals (Sweden)

    Melissa Jackson

    2014-07-01

    Full Text Available Transitioning from current resource management practice dominated by linear economic models of consumption and production, to circular models of resource use, will require insights into the stages and processes associated with socio-technical transitions. This paper is concerned with transitions in practice. It explores two frameworks within the transitions literature—the multi-level perspective and transition management theory—for practical guidance to inform a deliberate transition in practice. The critical futures literature is proposed as a source of tools and methods to be used in conjunction with the transition frameworks to influence and enable transitions in practice. This enhanced practical guidance for initiating action is applied to a specific context—transitioning the Australian metals sector towards a circular economy model. This particular transition case study is relevant because the vision of a circular economy model of resource management is gaining traction internationally, Australia is significant globally as a supplier of finite mineral resources and it will also be used in a collaborative research project on Wealth from Waste to investigate possibilities for the circular economy and metals recycling.

  12. Pressure-driven insulator-metal transition in cubic phase UO2

    Science.gov (United States)

    Huang, Li; Wang, Yilin; Werner, Philipp

    2017-09-01

    Understanding the electronic properties of actinide oxides under pressure poses a great challenge for experimental and theoretical studies. Here, we investigate the electronic structure of cubic phase uranium dioxide at different volumes using a combination of density functional theory and dynamical mean-field theory. The ab initio calculations predict an orbital-selective insulator-metal transition at a moderate pressure of ∼45 GPa. At this pressure the uranium's 5f 5/2 state becomes metallic, while the 5f 7/2 state remains insulating up to about 60 GPa. In the metallic state, we observe a rapid decrease of the 5f occupation and total angular momentum with pressure. Simultaneously, the so-called “Zhang-Rice state”, which is of predominantly 5f 5/2 character, quickly disappears after the transition into the metallic phase.

  13. Electrocatalytic Activity for CO, MeOH, and EtOH Oxidation on the Surface of Pt-Ru Nanoparticles Supported by Metal Oxide

    Directory of Open Access Journals (Sweden)

    Kwang-Sik Sim

    2011-01-01

    Full Text Available This paper describes the electrocatalytic activity for CO, MeOH, and EtOH oxidation on the surface of Pt-Ru nanoparticles supported by metal oxide (Nb-TiO2-H prepared for use in a fuel cell. To prepare Nb-TiO2-supported Pt-Ru nanoparticles, first, the Nb-TiO2 supports were prepared by sol-gel reaction of titanium tetraisopropoxide with a small amount of the niobium ethoxide in polystyrene (PS colloids. Second, Pt-Ru nanoparticles were then deposited by chemical reduction of the Pt4+ and Ru3+ ions onto Nb-TiO2 supports (Pt-Ru@Nb-TiO2-CS. Nb element was used to reduce electrical resistance to facilitate electron transport during the electrochemical reactions on a fuel cell electrode. Finally, the Pt-Ru@Nb-TiO2-H catalysts were formed by the removal of core-polystyrene ball from Pt-Ru@TiO2-CS at 500∘C. The successfully prepared Pt-Ru electrocatalysts were confirmed via TEM, XPS, and ICP analysis. The electrocatalytic efficiency of Pt-Ru nanoparticles was evaluated via CO, MeOH, and EtOH oxidation for use in a direct methanol fuel cell (DMFC. As a result, the Pt-Ru@Nb-TiO2-H electrodes showed high electrocatalytic activity for the electrooxidation of CO, MeOH, and EtOH.

  14. Electrical enhancement of direct methanol fuel cells by metal-plasma ion implantation Pt-Ru/C multilayer catalysts.

    Science.gov (United States)

    Weng, Ko-Wei; Chen, Yung-Lin; Chen, Ya-Chi; Lin, Tai-Nan

    2009-02-01

    Direct methanol fuel cells (DMFC) have been widely studied owing to their simple cell configuration, high volume energy density, short start-up time, high operational reliability and other favorable characteristics. However, major limitations include high production cost, poisoning of the catalyst and methanol crossover. This study adopts a simple technique for preparing Pt-Ru/C multilayer catalysts, including magnetron sputtering (MS) and metal-plasma ion implantation (MPII). The Pt catalysts were sputtered onto the gas diffusion layer (GDL), followed by the implantation of Ru catalysts using MPII (at an accelerating voltage of 20 kV and an implantation dose of 1 x 10(16) ions/cm2). Pt-Ru is repeatedly processed to prepare Pt-Ru/C multilayer catalysts. The catalyst film structure and microstructure were analyzed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning electronic microscopy (SEM), respectively. The cell performance was tested using a potential stat/galvano-stat. The results reveal that the membrane electrode assembly (MEA) of four multilayer structures enhances the cell performance of DMFC. The measured power density is 2.2 mW/cm2 at a methanol concentration of 2 M, with an OCV of 0.493 V.

  15. Preparation and characterization of Pt/C and Pt-Ru/C electrocatalysts for direct ethanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhaolin; Ling, Xing Yi; Su, Xiaodi; Lee, Jim Yang; Gan, Leong Ming [Institute of Materials Research and Engineering, 3 Research Link, Singapore 117602 (Singapore)

    2005-09-26

    Nano-sized Pt and Pt-Ru colloids are prepared by a microwave-assisted polyol process, and transferred to a toluene solution of decanthiol. Vulcan XC-72 is then added to the toluene solution to adsorb the thiolated Pt and Pt-Ru colloids. Transmission electron microscopy examinations show nearly spherical particles and narrow size distributions for both supported and unsupported metals. The carbon-supported Pt and Pt-Ru nanoparticles are activated by thermal treatment to remove the thiol stabilizing shell. All Pt and Pt-Ru catalysts (except Pt{sub 23}-Ru{sub 77}) give the X-ray diffraction pattern of a face-centered cubic (fcc) crystal structure, whereas the Pt{sub 23}-Ru{sub 77} alloy is more typical of the hexagonal close packed (hcp) structure. The electro-oxidation of liquid ethanol on these catalysts is investigated at room temperature by cyclic voltammetry. The results demonstrate that the alloy catalyst is catalytically more active than pure platinum. Preliminary tests on a single cell of a direct ethanol fuel cell (DEFC) indicate that a Pt{sub 52}-Ru{sub 48}/C anode catalyst gives the best electrocatalytic performance among all the carbon-supported Pt and Pt-Ru catalysts. (author)

  16. Charge transfer in chromium-transition metal alloys

    International Nuclear Information System (INIS)

    Kulakowski, K.; Maksymowicz, A.

    1984-07-01

    The average T-matrix approximation is applied for calculations of charge transfer of 3d-electrons in transition metal alloys. The role of concentration, long-range and short-range atomic order is investigated. The results are in reasonable agreement with experimental data. (author)

  17. Binding of hydrocarbons and other extremely weak ligands to transition metal complexes that coordinate hydrogen: Investigation of cis-interactions and delocalized bonding involving sigma bonds

    International Nuclear Information System (INIS)

    Kubas, G.J.; Eckert, J.; Luo, X.L.

    1997-01-01

    This is the final report of a three-year Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). At the forefront of chemistry are efforts to catalytically transform the inert C-H bonds in alkanes to more useful products using metal compounds. The goal is to observe binding and cleavage of alkane C-H bonds on metals or to use related silane Si-H bonding as models, analogous to the discovery of hydrogen (H 2 ) binding to metals. Studies of these unique sigma complexes (M hor-ellipsis H-Y; Y double-bond H, Si, C) will aid in developing new catalysts or technologies relevant to DOE interest, e.g., new methods for tritium isotope separation. Several transition metals (Mo, W, Mn, and Pt) were found to reversibly bind and cleave H 2 , silanes, and halocarbons. The first metal-SiH 4 complexes, thus serving as a model for methane reactions. A second goal is to study the dynamics and energetics of H-Y bonds on metals by neutron scattering, and evidence for interactions between bound H-Y and nearby H atoms on metal complexes has been found

  18. Predicting a new phase (T'') of two-dimensional transition metal di-chalcogenides and strain-controlled topological phase transition

    Science.gov (United States)

    Ma, Fengxian; Gao, Guoping; Jiao, Yalong; Gu, Yuantong; Bilic, Ante; Zhang, Haijun; Chen, Zhongfang; Du, Aijun

    2016-02-01

    Single layered transition metal dichalcogenides have attracted tremendous research interest due to their structural phase diversities. By using a global optimization approach, we have discovered a new phase of transition metal dichalcogenides (labelled as T''), which is confirmed to be energetically, dynamically and kinetically stable by our first-principles calculations. The new T'' MoS2 phase exhibits an intrinsic quantum spin Hall (QSH) effect with a nontrivial gap as large as 0.42 eV, suggesting that a two-dimensional (2D) topological insulator can be achieved at room temperature. Most interestingly, there is a topological phase transition simply driven by a small tensile strain of up to 2%. Furthermore, all the known MX2 (M = Mo or W; X = S, Se or Te) monolayers in the new T'' phase unambiguously display similar band topologies and strain controlled topological phase transitions. Our findings greatly enrich the 2D families of transition metal dichalcogenides and offer a feasible way to control the electronic states of 2D topological insulators for the fabrication of high-speed spintronics devices.Single layered transition metal dichalcogenides have attracted tremendous research interest due to their structural phase diversities. By using a global optimization approach, we have discovered a new phase of transition metal dichalcogenides (labelled as T''), which is confirmed to be energetically, dynamically and kinetically stable by our first-principles calculations. The new T'' MoS2 phase exhibits an intrinsic quantum spin Hall (QSH) effect with a nontrivial gap as large as 0.42 eV, suggesting that a two-dimensional (2D) topological insulator can be achieved at room temperature. Most interestingly, there is a topological phase transition simply driven by a small tensile strain of up to 2%. Furthermore, all the known MX2 (M = Mo or W; X = S, Se or Te) monolayers in the new T'' phase unambiguously display similar band topologies and strain controlled topological

  19. Strange metals and quantum phase transitions from gauge/gravity duality

    Science.gov (United States)

    Liu, Hong

    2011-03-01

    Metallic materials whose thermodynamic and transport properties differ significantly from those predicted by Fermi liquid theory, so-called non-Fermi liquids, include the strange metal phase of cuprate superconductors, and heavy fermion systems near a quantum phase transition. We use gauge/gravity duality to identify a class of non-Fermi liquids. Their low-energy behavior is governed by a nontrivial infrared fixed point which exhibits non-analytic scaling behavior only in the temporal direction. Some representatives of this class have single-particle spectral functions and transport behavior similar to those of the strange metals, with conductivity inversely proportional to the temperature. Such holographic systems may also exhibit novel ``magnetic instabilities'', where the quantum critical behavior near the transition involves a nontrivial interplay between local and bulk physics, with the local physics again described by a similar infrared fixed point. The resulting quantum phase transitions do not obey the standard Landau-Ginsburg-Wilson paradigm and resemble those of the heavy fermion quantum critical points.

  20. Functionalization of 2D transition metal dichalcogenides for biomedical applications

    International Nuclear Information System (INIS)

    Li, Zibiao; Wong, Swee Liang

    2017-01-01

    Recent research has revealed a gamut of interesting properties present in layered two-dimensional (2D) transition metal dichalcogenides (TMDCs) such as photoluminescence, comparatively high electron mobility, flexibility, mechanical strength and relatively low toxicity. The large surface to area ratio inherent in these materials also allows easy functionalization and maximal interaction with the external environment. Due to its unique physical and chemical properties, much work has been done in tailoring TMDCs through chemical functionalization for use in a diverse range of biomedical applications as biosensors, drug delivery carriers or even as therapeutic agents. In this review, current progress on the different types of TMDC functionalization for various biological applications will be presented and its future outlook will be discussed. - Highlights: • The different functionalization strategies and approaches of transition metal dichalcogenides are reviewed. • Properties of transition metal dichalcogenides useful for biomedical usage and their methods of synthesis are introduced. • Functionalization approaches are presented according to material type and their different application purpose is discussed.

  1. Development of dissimilar metal transition joint by hot roll bonding technique

    International Nuclear Information System (INIS)

    Nagai, Takayuki; Takeda, Seiichiro; Tanaka, Yasumasa; Ogawa, Kazuhiro; Nakasuji, Kazuyuki; Ikenaga, Yoshiaki.

    1994-01-01

    Metallurgically bonded transition joints which enable to connect reprocessing equipments made of superior corrosion resistant valve metals (Ti-5Ta, Zr or Ti) with stainless steel piping is needed for nuclear fuel reprocessing plants. The authors have developed dissimilar metal transition joints between stainless steel and Ti-5Ta, Zr or Ti with an insert metal of Ta by the hot roll bonding process, using the newly developed mill called 'rotary reduction mill'. In the R and D program, appropriate bonding conditions in the manufacturing process of the joints were established. This report presents the structure of transition joints and the manufacturing process by the hot roll bonding technique. Then, the evaluation of mechanical and corrosion properties and the results of demonstration test of joints for practical use are described. (author)

  2. Development of dissimilar metal transition joint by hot roll bonding technique

    International Nuclear Information System (INIS)

    Nagai, Takayuki; Takeuchi, Masayuki; Takeda, Seiichiro; Shikakura, Sakae; Ogawa, Kazuhiro; Nakasuji, Kazuyuki; Kajimura, Haruhiko.

    1995-01-01

    Metallurgically bonded transition joints which enable to connect reprocessing equipments made of superior corrosion resistant valve metals (Ti-5Ta, Zr or Ti) with stainless steel piping is needed for nuclear fuel reprocessing plants. The authors have developed dissimilar metal transition joints between stainless steel and Ti-5Ta, Zr or Ti with an insert metal of Ta by the hot roll bonding process, using the newly developed mill called 'rotary reduction mill'. In the R and D program, appropriate bonding conditions in the manufacturing process of the joints were established. This report presents the structure of transition joints and the manufacturing process by hot roll bonding technique. Then, the evaluation of mechanical and corrosion properties and the results of demonstration test of joints for practical use are described. (author)

  3. Fullerenes as a new type of ligands for transition metals

    International Nuclear Information System (INIS)

    Sokolov, V.I.

    2007-01-01

    Fullerenes are considered as ligands in transition metal π-complexes. The following aspects are discussed: metals able to form π-complexes with fullerenes (Zr, V, Ta, Mo, W, Re, Ru, etc.); haptic numbers; homo- and hetero ligand complexes; ligand compatibility with fullerenes for different metals, including fullerenes with a disturbed structure of conjugation [ru

  4. Oxidation of Group 8 transition-Metal Hydrides and Ionic Hydrogenation of Ketones and Aldehydes

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kjell-Tore

    1996-08-01

    Transition-metal hydrides have received considerable attention during the last decades because of their unusual reactivity and their potential as homogeneous catalysts for hydrogenation and other reactions of organic substrates. An important class of catalytic processes where transition-metal hydrides are involved is the homogeneous hydrogenation of alkenes, alkynes, ketones, aldehydes, arenes and nitro compounds. This thesis studies the oxidation of Group 8 transition-metal hydrides and the ionic hydrogenation of ketones and aldehydes.

  5. Two-order parameters theory of the metal-insulator phase transition kinetics in the magnetic field

    Science.gov (United States)

    Dubovskii, L. B.

    2018-05-01

    The metal-insulator phase transition is considered within the framework of the Ginzburg-Landau approach for the phase transition described with two coupled order parameters. One of the order parameters is the mass density which variation is responsible for the origin of nonzero overlapping of the two different electron bands and the appearance of free electron carriers. This transition is assumed to be a first-order phase one. The free electron carriers are described with the vector-function representing the second-order parameter responsible for the continuous phase transition. This order parameter determines mostly the physical properties of the metal-insulator transition and leads to a singularity of the surface tension at the metal-insulator interface. The magnetic field is involved into the consideration of the system. The magnetic field leads to new singularities of the surface tension at the metal-insulator interface and results in a drastic variation of the phase transition kinetics. A strong singularity in the surface tension results from the Landau diamagnetism and determines anomalous features of the metal-insulator transition kinetics.

  6. A tetrapyridine ligand with a rigid tetrahedral core forms metal-organic frameworks with PtS type architecture.

    Science.gov (United States)

    Caputo, Christopher B; Vukotic, V Nicholas; Sirizzotti, Natalie M; Loeb, Stephen J

    2011-08-14

    A new tetradentate, pyridine ligand with a rigid tetrahedral core can be prepared in good yield by a cross-coupling methodology. Two metal organic framework structures of Cu(II) with PtS-type topology having a carbon atom as the tetrahedral node have been characterized utilising this ligand. This journal is © The Royal Society of Chemistry 2011

  7. Frontiers of 4d- and 5d-transition metal oxides

    CERN Document Server

    Cao, Gang

    2013-01-01

    This book is aimed at advanced undergraduates, graduate students and other researchers who possess an introductory background in materials physics and/or chemistry, and an interest in the physical and chemical properties of novel materials, especially transition metal oxides.New materials often exhibit novel phenomena of great fundamental and technological importance. Contributing authors review the structural, physical and chemical properties of notable 4d- and 5d-transition metal oxides discovered over the last 10 years. These materials exhibit extraordinary physical properties that differ s

  8. Topotactic Metal-Insulator Transition in Epitaxial SrFeO x Thin Films

    International Nuclear Information System (INIS)

    Khare, Amit; Shin, Dongwon; Yoo, Tae Sup; Kim, Minu; Kang, Tae Dong

    2017-01-01

    Multivalent transition metal oxides provide fascinating and rich physics related to oxygen stoichiometry. In particular, the adoptability of various valence states of transition metals enables perovskite oxides to display mixed (oxygen) ionic and electronic conduction and catalytic activity useful in many practical applications, including solid-oxide fuel cells (SOFCs), rechargeable batteries, gas sensors, and memristive devices. For proper realization of the ionic conduction and catalytic activity, it is essential to understand the reversible oxidation and reduction process, which is governed by oxygen storage/release steps in oxides. Topotactic phase transformation facilitates the redox process in perovskites with specific oxygen vacancy ordering by largely varying the oxygen concentration of a material without losing the lattice framework. The concentration and diffusion of oxide ions (O 2– ), the valence state of the transition metal cations, and the thermodynamic structural integrity together provide fundamental understanding and ways to explicitly control the redox reaction.[6] In addition, it offers an attractive route for tuning the emergent physical properties of transition metal oxides, via strong coupling between the crystal lattice and electronic structure.

  9. Catalytic olefin polymerization with early transition metal compounds

    OpenAIRE

    Eshuis, Johan Jan Willem

    1991-01-01

    The catalysis of organic reactions by soluble metal complexes has become a major tool in synthesis, both in the laboratory and in the chemical industry. Processes catalyzed by transition metal complexes include carbonylation, olefin polymerization, olefin addition, olefin oxidation and alkane and arene oxidation. Traditionally, heterogeneous catalysts have been used for the production of large-scale commodity chemicals such as methanol and ammonia and in the production of high octane gasoline...

  10. Cell complexes of transition metals in biochemistry and medicine

    International Nuclear Information System (INIS)

    Voloshin, Ya.Z.; Varzatskij, O.A.; Bubnov, Yu.N.

    2007-01-01

    Basic directions and prospects of use of cell complexes of transition metals in medicine and biochemistry are considered: incapsulation of radioactive metal ions for radiotherapy and diagnostics; preparation of contrast compounds for magnetic resonance tomography, antidotes and pharmaceutical preparation of prolonged effect, preparations for boron-neutron-capture therapy of neoplasms, antioxidants; membrane transport of metal ions; study of interaction of cell metal complexes with nucleic acids; possibility of use of self-assembly of cell complexes for imitation of ligases and use of clathrochelates as linkers; design of inhibitors of viruses for AIDS therapy [ru

  11. Rational Design of Two-Dimensional Metallic and Semiconducting Spintronic Materials Based on Ordered Double-Transition-Metal MXenes

    KAUST Repository

    Dong, Liang

    2016-12-30

    Two-dimensional (2D) materials that display robust ferromagnetism have been pursued intensively for nanoscale spintronic applications, but suitable candidates have not been identified. Here we present theoretical predictions on the design of ordered double-transition-metal MXene structures to achieve such a goal. On the basis of the analysis of electron filling in transition-metal cations and first-principles simulations, we demonstrate robust ferromagnetism in Ti2MnC2Tx monolayers regardless of the surface terminations (T = O, OH, and F), as well as in Hf2MnC2O2 and Hf2VC2O2 monolayers. The high magnetic moments (3–4 μB/unit cell) and high Curie temperatures (495–1133 K) of these MXenes are superior to those of existing 2D ferromagnetic materials. Furthermore, semimetal-to-semiconductor and ferromagnetic-to-antiferromagnetic phase transitions are predicted to occur in these materials in the presence of small or moderate tensile in-plane strains (0–3%), which can be externally applied mechanically or internally induced by the choice of transition metals.

  12. PZ, PT and PZT formation from metal citrates

    International Nuclear Information System (INIS)

    Bastos, C.M.R.; Zaghette, M.A.; Jafelicci Junior, M.; Varela, J.A.

    1990-01-01

    Lead zirconate, lead titanate and lead titanate-zirconate were obtained by mechanical mixing of lead, titanium and zirconium citrates in ether and by calcination. The process was analyzed by DTA, TGA, IR, pore size distribution and surface area measurements. The results indicate that the decomposition reaction and formation of PZ, PT occur simultaneaously without formation of intermediate compounds. PZT was formed from 500 0 C. (author) [pt

  13. Synergistically Enhanced Electrochemical Performance of Ni3S4-PtX (X = Fe, Ni) Heteronanorods as Heterogeneous Catalysts in Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Huang, Shoushuang; Ma, Dui; Hu, ZhangJun; He, Qingquan; Zai, Jiantao; Chen, Dayong; Sun, Huai; Chen, Zhiwen; Qiao, Qiquan; Wu, Minghong; Qian, Xuefeng

    2017-08-23

    Platinum (Pt)-based alloys are considerably promising electrocatalysts for the reduction of I - /I 3 - and Co 2+ /Co 3+ redox couples in dye-sensitized solar cells (DSSCs). However, it is still challenging to minimize the dosage of Pt to achieve comparable or even higher catalytic efficiency. Here, by taking full advantages of the Mott-Schottky (M-S) effect at the metal-semiconductor interface, we successfully strategize a low-Pt-based M-S catalyst with enhanced electrocatalytic performance and stability for the large-scale application of DSSCs. The optimized M-S electrocatalyst of Ni 3 S 4 -Pt 2 X 1 (X = Fe, Ni) heteronanorods is constructed by rationally controlling the ratio of Pt to transition metal in the hybrids. It was found that the electrons transferred from Ni 3 S 4 to Pt 2 X 1 at their interface under the Mott-Schottky effect result in the concentration of electrons onto Pt 2 X 1 domains, which subsequently accelerates the regeneration of both I - /I 3 - and Co 2+ /Co 3+ redox shuttles in DSSCs. As a result, the DSSC with Ni 3 S 4 -Pt 2 Fe 1 manifests an impressive power conversion efficiency (PCE) of 8.79% and 5.56% for iodine and cobalt-based electrolyte under AM1.5G illumination, respectively. These PCEs are obviously superior over those with Ni 3 S 4 -Pt, PtFe, Ni 3 S 4 , and pristine Pt electrodes. The strategy reported here is able to be further expanded to fabricate other low-Pt-alloyed M-S catalysts for wider applications in the fields of photocatalysis, water splitting, and heterojunction solar cells.

  14. Edge Delamination of Monolayer Transition Metal Dichalcogenides.

    Science.gov (United States)

    Ly, Thuc Hue; Yun, Seok Joon; Thi, Quoc Huy; Zhao, Jiong

    2017-07-25

    Delamination of thin films from the supportive substrates is a critical issue within the thin film industry. The emergent two-dimensional, atomic layered materials, including transition metal dichalcogenides, are highly flexible; thus buckles and wrinkles can be easily generated and play vital roles in the corresponding physical properties. Here we introduce one kind of patterned buckling behavior caused by the delamination from a substrate initiated at the edges of the chemical vapor deposition synthesized monolayer transition metal dichalcogenides, led by thermal expansion mismatch. The atomic force microscopy and optical characterizations clearly showed the puckered structures associated with the strain, whereas the transmission electron microscopy revealed the special sawtooth-shaped edges, which break the geometrical symmetry for the buckling behavior of hexagonal samples. The condition of the edge delamination is in accordance with the fracture behavior of thin film interfaces. This edge delamination and buckling process is universal for most ultrathin two-dimensional materials, which requires more attention in various future applications.

  15. The atomic structure of transition metal clusters

    International Nuclear Information System (INIS)

    Riley, S.J.

    1995-01-01

    Chemical reactions are used to probe the atomic (geometrical) structure of isolated clusters of transition metal atoms. The number of adsorbate molecules that saturate a cluster, and/or the binding energy of molecules to cluster surfaces, are determined as a function of cluster size. Systematics in these properties often make it possible to propose geometrical structures consistent with the experimental observations. We will describe how studies of the reactions of cobalt and nickel clusters with ammonia, water, and nitrogen provide important and otherwise unavailable structural information. Specifically, small (less than 20 atoms) clusters of cobalt and nickel atoms adopt entirely different structures, the former having packing characteristic of the bulk and the latter having pentagonal symmetry. These observations provide important input for model potentials that attempt to describe the local properties of transition metals. In particular, they point out the importance of a proper treatment of d-orbital binding in these systems, since cobalt and nickel differ so little in their d-orbital occupancy

  16. Lattice Location of Transition Metals in Semiconductors

    CERN Multimedia

    2002-01-01

    %IS366 %title\\\\ \\\\Transition metals (TMs) in semiconductors have been the subject of considerable research for nearly 40 years. This is due both to their role as important model impurities for deep centers in semiconductors, and to their technological impact as widespread contaminants in Si processing, where the miniaturization of devices requires to keep their sheet concentration below 10$^{10}$ cm$^{-2}$. As a consequence of the low TM solubility, conventional ion beam methods for direct lattice location have failed completely in identifying the lattice sites of isolated transition metals. Although electron paramagnetic resonance (EPR) has yielded valuable information on a variety of TM centers, it has been unable to detect certain defects considered by theory, e.g., isolated interstitial or substitutional Cu in Si. The proposed identity of other EPR centers such as substitutional Fe in Si, still needs confirmation by additional experimental methods. As a consequence, the knowledge on the structural propert...

  17. Metal non-metal transitions in doped semiconductors

    International Nuclear Information System (INIS)

    Brezini, A.

    1989-12-01

    A disordered Hubbard model with diagonal disorder is used to examine the electron localization effects associated with both disorder and electron-electron interaction. Extensive results are reported on the ground state properties and compared with other theories. In particular two regimes are observed; when the electron-electron interaction U is greater than the disorder parameter and when is smaller. Furthermore the effect of including conduction-band minima into the calculation of metal-insulator transitions in doped Si and Ge is investigated with use of Berggren approach. Good agreement with experiments are found when both disorder and interactions are included. (author). 37 refs, 7 figs, 3 tabs

  18. Preparation and characterization of Pt/C and Pt sbnd Ru/C electrocatalysts for direct ethanol fuel cells

    Science.gov (United States)

    Liu, Zhaolin; Ling, Xing Yi; Su, Xiaodi; Lee, Jim Yang; Gan, Leong Ming

    Nano-sized Pt and Pt sbnd Ru colloids are prepared by a microwave-assisted polyol process, and transferred to a toluene solution of decanthiol. Vulcan XC-72 is then added to the toluene solution to adsorb the thiolated Pt and Pt sbnd Ru colloids. Transmission electron microscopy examinations show nearly spherical particles and narrow size distributions for both supported and unsupported metals. The carbon-supported Pt and Pt sbnd Ru nanoparticles are activated by thermal treatment to remove the thiol stabilizing shell. All Pt and Pt sbnd Ru catalysts (except Pt 23sbnd Ru 77) give the X-ray diffraction pattern of a face-centered cubic (fcc) crystal structure, whereas the Pt 23sbnd Ru 77 alloy is more typical of the hexagonal close packed (hcp) structure. The electro-oxidation of liquid ethanol on these catalysts is investigated at room temperature by cyclic voltammetry. The results demonstrate that the alloy catalyst is catalytically more active than pure platinum. Preliminary tests on a single cell of a direct ethanol fuel cell (DEFC) indicate that a Pt 52sbnd Ru 48/C anode catalyst gives the best electrocatalytic performance among all the carbon-supported Pt and Pt sbnd Ru catalysts.

  19. Transition metal-centered trigonal prisms as building units in RE{sub 14}T{sub 3}In{sub 3} (RE = Y, Ho, Er, Tm, Lu; T = Pd, Ir, Pt) and Y{sub 4}IrIn

    Energy Technology Data Exchange (ETDEWEB)

    Zaremba, R.; Rodewald, U.C.; Poettgen, R. [Inst. fuer Anorganische und Analytische Chemie, Univ. Muenster (Germany)

    2007-12-15

    The indides RE{sub 14}T{sub 3}In{sub 3} (RE = Y, Ho, Er, Tm, Lu; T = Pd, Ir, Pt) and Y{sub 4}IrIn were synthesized from the elements by are-melting and subsequent annealing for crystal growth. Their structures were characterized on the basis of X-ray powder and single crystal data: Lu{sub 14}Co{sub 3}In{sub 3}-type, space group P4{sub 2}/nmc, a = 970.2(1), c = 2340.7(5) pm for Y{sub 13.95}Pd{sub 3}In{sub 3.05}, a = 959.7(1), c = 2309.0(5) pm for Ho{sub 14}Pd{sub 2.95}In{sub 3}, a = 955.5(1), c = 2305.1(5) pm for Er{sub 14}Pd{sub 3}In{sub 3}, a = 950.9(1), c = 2291.6(5) pm for Tm{sub 13.90}Pd{sub 3}In{sub 3.10}, a = 944.4(1), c = 2275.5(5) pm for Lu{sub 13.93}Pd{sub 3}In{sub 3.07}, a = 962.9(1), c = 2343.0(5) pm for Y{sub 13.86}Ir{sub 2.97}In{sub 3.02}, a = 967.6(1), c = 2347.8(5) pm for Y{sub 13.92}Pt{sub 3.05}In{sub 2.91}, and Gd{sub 4}RhIn-type, space group F anti 43m, a = 1368.6(2) pm for Y{sub 4}IrIn. The main structural motifs are transition metal-centered trigonal prisms of the rare Earth elements which are condensed to two-dimensional networks in the RE{sub 14}T{sub 3}In{sub 3} indides and to a three-dimensional one in Y{sub 4}IrIn. The indium atoms in both structure types show segregation in the metal-rich matrix, i.e. In{sub 2} dumbbells in the RE{sub 14}T{sub 3}In{sub 3} indides (309 pm In2-In2 in Y{sub 13.86}Ir{sub 2.97}In{sub 3.02}) and In{sub 4} tetrahedra (322 pm In-In) in Y{sub 4}IrIn. The crystal chemical peculiarities of both structure types are discussed. (orig.)

  20. First-principles study of hydrogen dissociation and diffusion on transition metal-doped Mg(0 0 0 1) surfaces

    International Nuclear Information System (INIS)

    Wang, Zhiwen; Guo, Xinjun; Wu, Mingyi; Sun, Qiang; Jia, Yu

    2014-01-01

    First-principles calculations within the density functional theory (DFT) have been carried out to study hydrogen molecules dissociation and diffusion on clean and transition metals (TMs) doped Mg(0 0 0 1) surfaces following Pozzo et al. work. Firstly, the stability of Mg(0 0 0 1) surface doped with transition metals atom has been studied. The results showed that transition metals on the left of the table tend to substitute Mg in the second layer, while the other transition metals prefer to substitute Mg in the first layer. Secondly, we studied hydrogen molecules dissociation and diffusion on clean and Mg(0 0 0 1) surfaces which the transition metal atoms substituted both in the first layer and second layer. When transition metal atoms substitute in the first layer, the results agree with the Pozzo et al. result; when transition metal atoms substitute in the second layer, the results showed that the transition metals on the left of the periodic table impact on the dissociation barriers is less. However, for the transition metals (Mn, Fe, Co, Ni) on the right, there is a great impact on the barriers. The transition metals doped surfaces bind the dissociated H atoms loosely, making them easily diffused. The results further reveal that the Fe dopant on the Mg surface is the best choice for H 2 dissociation and hydrogen storage.

  1. Synthesis and Characterization of Pt-Ag Alloy Nanocages with Enhanced Activity and Durability toward Oxygen Reduction.

    Science.gov (United States)

    Yang, Xuan; Roling, Luke T; Vara, Madeline; Elnabawy, Ahmed O; Zhao, Ming; Hood, Zachary D; Bao, Shixiong; Mavrikakis, Manos; Xia, Younan

    2016-10-12

    Engineering the elemental composition of metal nanocrystals offers an effective strategy for the development of catalysts or electrocatalysts with greatly enhanced activity. Herein, we report the synthesis of Pt-Ag alloy nanocages with an outer edge length of 18 nm and a wall thickness of about 3 nm. Such nanocages with a composition of Pt 19 Ag 81 could be readily prepared in one step through the galvanic replacement reaction between Ag nanocubes and a Pt(II) precursor. After 10 000 cycles of potential cycling in the range of 0.60-1.0 V as in an accelerated durability test, the composition of the nanocages changed to Pt 56 Ag 44 , together with a specific activity of 1.23 mA cm -2 toward oxygen reduction, which was 3.3 times that of a state-of-the-art commercial Pt/C catalyst (0.37 mA cm -2 ) prior to durability testing. Density functional theory calculations attributed the increased activity to the stabilization of the transition state for breaking the O-O bond in molecular oxygen. Even after 30 000 cycles of potential cycling, the mass activity of the nanocages only dropped from 0.64 to 0.33 A mg -1 Pt , which was still about two times that of the pristine Pt/C catalyst (0.19 A mg -1 Pt ).

  2. Development of dissimilar metal transition joint by hot bond rolling

    International Nuclear Information System (INIS)

    Kurokawa, Hiroyuki; Nakasuji, Kazuyuki; Kajimura, Haruhiko; Nagai, Takayuki; Takeda, Seiichiro.

    1997-01-01

    Metallurgically bonded transition joints which enable to connect reprocessing equipments made of superior corrosion resistant valve metals (Ti-5Ta, Zr or Ti) to stainless steel piping are required for nuclear fuel reprocessing plants. The authors have developed dissimilar transition joints made of stainless steel and Ti-5Ta, Zr or Ti with an insert metal of Ta by the hot bond rolling process of clad bars and clad pipes, using a newly developed mill called 'rotary reduction mill'. This report presents the manufacturing process of dissimilar transition joints produced from the clad pipe with three layers by the hot bond rolling. First, the method of hot bond rolling of clad pipe is proposed. Then, the mechanical and corrosion properties of the dissimilar transition joints are evaluated in detail by carrying out various tests. Finally, the rolling properties in the clad pipe method are discussed. (author)

  3. Crumpled rGO-supported Pt-Ir bifunctional catalyst prepared by spray pyrolysis for unitized regenerative fuel cells

    Science.gov (United States)

    Kim, In Gyeom; Nah, In Wook; Oh, In-Hwan; Park, Sehkyu

    2017-10-01

    Three-dimensional (3D) crumpled reduced graphene oxide supported Pt-Ir alloys that served as bifunctional oxygen catalysts for use in untized regenerative fuel cells were synthesized by a facile spray pyrolysis method. Pt-Ir catalysts supported on rGO (Pt-Ir/rGOs) were physically characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA) to observe change in composition by heat treatment, alloying, and morphological transition of the catalysts. Their catalytic activities and stabilities for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) conditions were electrochemically investigated using cyclic voltammetry (CV), linear sweep voltammetry (LSV), potential cycling and hold tests on the rotating disk electrode (RDE). Pt-Ir/rGO with no post heat-treatment (Pt-Ir/rGO_NP) showed a lower activity for ORR and OER although metal nanoparticles decorated on the support are relatively small. However, Pt-Ir/rGO showed remarkably enhanced activity following heat treatment, depending on temperature. Pt-Ir/rGO heat-treated at 600 °C after spray pyrolysis (Pt-Ir/rGO_P600) exhibited a higher activity and stability than a commercially available Pt/C catalyst kept under the ORR condition, and it also revealed a comparable OER activity and durability versus the commercial unsupported Ir catalyst.

  4. Ternary alkali-metal and transition metal or metalloid acetylides as alkali-metal intercalation electrodes for batteries

    Science.gov (United States)

    Nemeth, Karoly; Srajer, George; Harkay, Katherine C; Terdik, Joseph Z

    2015-02-10

    Novel intercalation electrode materials including ternary acetylides of chemical formula: A.sub.nMC.sub.2 where A is alkali or alkaline-earth element; M is transition metal or metalloid element; C.sub.2 is reference to the acetylide ion; n is an integer that is 0, 1, 2, 3 or 4 when A is alkali element and 0, 1, or 2 when A is alkaline-earth element. The alkali elements are Lithium (Li), Sodium (Na), Potassium (K), Rubidium (Rb), Cesium (Cs) and Francium (Fr). The alkaline-earth elements are Berilium (Be), Magnesium (Mg), Calcium (Ca), Strontium (Sr), Barium (Ba), and Radium (Ra). M is a transition metal that is any element in groups 3 through 12 inclusive on the Periodic Table of Elements (elements 21 (Sc) to element 30 (Zn)). In another exemplary embodiment, M is a metalloid element.

  5. Electronic structure of metallic alloys through Auger and photoemission spectroscopy

    International Nuclear Information System (INIS)

    Kleiman, G.G.; Rogers, J.D.; Sundaram, V.S.

    1981-01-01

    A review is presented of experimental results of electron spectroscopy studies for various series of transition metal alloys as well as a model for their interpretation which leads to the possibility for the first time to determine independently relative variations in the dipole barrier and Fermi energy contributions to the work function. (L.C.) [pt

  6. Adsorption of HCN molecules on Ni, Pd and Pt-doped (7, 0) boron nitride nanotube: a DFT study

    Science.gov (United States)

    Habibi-Yangjeh, Aziz; Basharnavaz, Hadi

    2018-05-01

    We studied affinity of pure and Ni, Pd and Pt-doped (7, 0) boron nitride nanotubes (BNNTs) to toxic HCN molecules using density functional theory calculations. The results indicated that the pure (7, 0) BNNTs can weakly adsorb HCN molecules with adsorption energy of -0.2474 eV. Upon adsorption of HCN molecules on this nanotube, the band gap energy was decreased from 3.320 to 2.960 eV. The more negative adsorption energy between these transition metal-doped (7, 0) BNNTs and HCN molecules indicated that doping of (7, 0) BNNTs with Ni, Pd and Pt elements can significantly improve the affinity of BNNTs toward this gas. Additionally, it was found that the interaction energy between HCN molecules and Pt-doped BNNTs is more negative than those of the Ni and Pd-doped BNNTs. These observations suggested that the Pt-doped (7, 0) BNNTs are strongly sensitive to HCN molecules and therefore it may be used in gas sensor devices for detecting this toxic gas.

  7. Janus monolayers of transition metal dichalcogenides

    KAUST Repository

    Lu, Ang-Yu

    2017-05-15

    Structural symmetry-breaking plays a crucial role in determining the electronic band structures of two-dimensional materials. Tremendous efforts have been devoted to breaking the in-plane symmetry of graphene with electric fields on AB-stacked bilayers or stacked van der Waals heterostructures. In contrast, transition metal dichalcogenide monolayers are semiconductors with intrinsic in-plane asymmetry, leading to direct electronic bandgaps, distinctive optical properties and great potential in optoelectronics. Apart from their in-plane inversion asymmetry, an additional degree of freedom allowing spin manipulation can be induced by breaking the out-of-plane mirror symmetry with external electric fields or, as theoretically proposed, with an asymmetric out-of-plane structural configuration. Here, we report a synthetic strategy to grow Janus monolayers of transition metal dichalcogenides breaking the out-of-plane structural symmetry. In particular, based on a MoS2 monolayer, we fully replace the top-layer S with Se atoms. We confirm the Janus structure of MoSSe directly by means of scanning transmission electron microscopy and energy-dependent X-ray photoelectron spectroscopy, and prove the existence of vertical dipoles by second harmonic generation and piezoresponse force microscopy measurements.

  8. The recent development of efficient Earth-abundant transition-metal nanocatalysts.

    Science.gov (United States)

    Wang, Dong; Astruc, Didier

    2017-02-06

    Whereas noble metal compounds have long been central in catalysis, Earth-abundant metal-based catalysts have in the same time remained undeveloped. Yet the efficacy of Earth-abundant metal catalysts was already shown at the very beginning of the 20th century with the Fe-catalyzed Haber-Bosch process of ammonia synthesis and later in the Fischer-Tropsch reaction. Nanoscience has revolutionized the world of catalysis since it was observed that very small Au nanoparticles (NPs) and other noble metal NPs are extraordinarily efficient. Therefore the development of Earth-abundant metals NPs is more recent, but it has appeared necessary due to their "greenness". This review highlights catalysis by NPs of Earth-abundant transition metals that include Mn, Fe, Co, Ni, Cu, early transition metals (Ti, V, Cr, Zr, Nb and W) and their nanocomposites with emphasis on basic principles and literature reported during the last 5 years. A very large spectrum of catalytic reactions has been successfully disclosed, and catalysis has been examined for each metal starting with zero-valent metal NPs followed by oxides and other nanocomposites. The last section highlights the catalytic activities of bi- and trimetallic NPs. Indeed this later family is very promising and simultaneously benefits from increased stability, efficiency and selectivity, compared to monometallic NPs, due to synergistic substrate activation.

  9. Measurement of benzenethiol adsorption to nanostructured Pt, Pd, and PtPd films using Raman spectroelectrochemistry.

    Science.gov (United States)

    Pomfret, Michael B; Pietron, Jeremy J; Owrutsky, Jeffrey C

    2010-05-04

    Raman spectroscopy and electrochemical methods were used to study the behavior of the model adsorbate benzenethiol (BT) on nanostructured Pt, Pd, and PtPd electrodes as a function of applied potential. Benzenethiol adsorbs out of ethanolic solutions as the corresponding thiolate, and voltammetric stripping data reveal that BT is oxidatively removed from all of the nanostructured metals upon repeated oxidative and reductive cycling. Oxidative stripping potentials for BT increase in the order Pt oxidizing potentials via cleavage of the Pt-S bond. In contrast, on nanoscale Pd and PtPd, BT is irreversibly lost due to cleavage of BT C-S bonds at oxidizing potentials, which leaves adsorbed sulfur oxides on Pd and PtPd films and effects the desulfurization of BT. While Pd and PtPd films are less sulfur-resistant than Pt films, palladium oxides, which form at higher potentials than Pt oxides, oxidatively desulfurize BT. In situ spectroelectrochemical Raman spectroscopy provides real-time, chemically specific information that complements the cyclic voltammetric data. The combination of these techniques affords a powerful and convenient method for guiding the development of sulfur-tolerant PEMFC catalysts.

  10. Defect-Tolerant Monolayer Transition Metal Dichalcogenides

    DEFF Research Database (Denmark)

    Pandey, Mohnish; Rasmussen, Filip Anselm; Kuhar, Korina

    2016-01-01

    Localized electronic states formed inside the band gap of a semiconductor due to crystal defects can be detrimental to the material's optoelectronic properties. Semiconductors with a lower tendency to form defect induced deep gap states are termed defect-tolerant. Here we provide a systematic first...... the gap. These ideas are made quantitative by introducing a descriptor that measures the degree of similarity of the conduction and valence band manifolds. Finally, the study is generalized to nonpolar nanoribbons of the TMDs where we find that only the defect sensitive materials form edge states within......-principles investigation of defect tolerance in 29 monolayer transition metal dichalcogenides (TMDs) of interest for nanoscale optoelectronics. We find that the TMDs based on group VI and X metals form deep gap states upon creation of a chalcogen (S, Se, Te) vacancy, while the TMDs based on group IV metals form only...

  11. Metal-insulator transition and superconductivity in heavily boron-doped diamond and related materials

    Energy Technology Data Exchange (ETDEWEB)

    Achatz, Philipp

    2009-05-15

    During this PhD project, the metal-insulator transition and superconductivity of highly boron-doped single crystal diamond and related materials have been investigated. The critical boron concentration n{sub c} for the metal-insulator transition was found to be the same as for the normal-superconductor transition. All metallic samples have been found to be superconducting and we were able to link the occurence of superconductivity to the proximity to the metal-insulator transition. For this purpose, a scaling law approach based on low temperature transport was proposed. Furthermore, we tried to study the nature of the superconductivity in highly boron doped single crystal diamond. Raman spectroscopy measurements on the isotopically substituted series suggest that the feature occuring at low wavenumbers ({approx} 500 cm{sup -1}) is the A1g vibrational mode associated with boron dimers. Usual Hall effect measurements yielded a puzzling situation in metallic boron-doped diamond samples, leading to carrier concentrations up to a factor 10 higher than the boron concentration determined by secondary ion mass spectroscopy (SIMS). The low temperature transport follows the one expected for a granular metal or insulator, depending on the interplay of intergranular and intragranular (tunneling) conductance. The metal-insulator transition takes place at a critical conductance g{sub c}. The granularity also influences significantly the superconducting properties by introducing the superconducting gap {delta} in the grain and Josephson coupling J between superconducting grains. A peak in magnetoresistance is observed which can be explained by superconducting fluctuations and the granularity of the system. Additionally we studied the low temperature transport of boron-doped Si samples grown by gas immersion laser doping, some of which yielded a superconducting transition at very low temperatures. Furthermore, preliminary results on the LO-phonon-plasmon coupling are shown for the

  12. Metal-insulator transition and superconductivity in heavily boron-doped diamond and related materials

    International Nuclear Information System (INIS)

    Achatz, Philipp

    2009-01-01

    During this PhD project, the metal-insulator transition and superconductivity of highly boron-doped single crystal diamond and related materials have been investigated. The critical boron concentration n c for the metal-insulator transition was found to be the same as for the normal-superconductor transition. All metallic samples have been found to be superconducting and we were able to link the occurence of superconductivity to the proximity to the metal-insulator transition. For this purpose, a scaling law approach based on low temperature transport was proposed. Furthermore, we tried to study the nature of the superconductivity in highly boron doped single crystal diamond. Raman spectroscopy measurements on the isotopically substituted series suggest that the feature occuring at low wavenumbers (∼ 500 cm -1 ) is the A1g vibrational mode associated with boron dimers. Usual Hall effect measurements yielded a puzzling situation in metallic boron-doped diamond samples, leading to carrier concentrations up to a factor 10 higher than the boron concentration determined by secondary ion mass spectroscopy (SIMS). The low temperature transport follows the one expected for a granular metal or insulator, depending on the interplay of intergranular and intragranular (tunneling) conductance. The metal-insulator transition takes place at a critical conductance g c . The granularity also influences significantly the superconducting properties by introducing the superconducting gap Δ in the grain and Josephson coupling J between superconducting grains. A peak in magnetoresistance is observed which can be explained by superconducting fluctuations and the granularity of the system. Additionally we studied the low temperature transport of boron-doped Si samples grown by gas immersion laser doping, some of which yielded a superconducting transition at very low temperatures. Furthermore, preliminary results on the LO-phonon-plasmon coupling are shown for the first time in aluminum

  13. Genome-wide analysis and heavy metal-induced expression profiling of the HMA gene family in Populus trichocarpa

    Directory of Open Access Journals (Sweden)

    Dandan eLi

    2015-12-01

    Full Text Available The heavy metal ATPase (HMA family plays an important role in transition metal transport in plants. However, this gene family has not been extensively studied in Populus trichocarpa. We identified 17 HMA genes in P. trichocarpa (PtHMAs, of which PtHMA1–PtHMA4 belonged to the zinc (Zn/cobalt (Co/cadmium (Cd/lead (Pb subgroup, and PtHMA5–PtHMA8 were members of the copper (Cu/silver (Ag subgroup. Most of the genes were localized to chromosomes I and III. Gene structure, gene chromosomal location, and synteny analyses of PtHMAs indicated that tandem and segmental duplications likely contributed to the expansion and evolution of the PtHMAs. Most of the HMA genes contained abiotic stress-related cis-elements. Tissue-specific expression of PtHMA genes showed that PtHMA1 and PtHMA4 had relatively high expression levels in the leaves, whereas Cu/Ag subgroup (PtHMA5.1- PtHMA8 genes were upregulated in the roots. High concentrations of Cu, Ag, Zn, Cd, Co, Pb and Mn differentially regulated the expression of PtHMAs in various tissues. The preliminary results of the present study generated basic information on the HMA family of Populus that may serve as foundation for future functional studies.

  14. Growth of vertically aligned single-walled carbon nanotubes with metallic chirality through faceted FePt-Au catalysts

    Science.gov (United States)

    Ohashi, Toshiyuki; Iwama, Hiroki; Shima, Toshiyuki

    2016-02-01

    Direct synthesis of vertically aligned metallic single-walled carbon nanotubes (m-SWCNT forests) is a difficult challenge. We have successfully synthesized m-SWCNT forests using faceted iron platinum-gold catalysts epitaxially grown on a single crystalline magnesium oxide substrate. The metallic content of the forests estimated by Raman spectroscopy reaches 90%. From the standpoint of growth rate of the forests, the growth mechanism is probably based on the catalyst of solid state. It is suggested that preferential growth of m-SWCNTs is achieved when both factors are satisfied, namely, {111} dominant octahedral facet and ideal size (fine particles) of FePt particles.

  15. Another way of looking at bonding on bimetallic surfaces: the role of spin polarization of surface metal d states

    International Nuclear Information System (INIS)

    Escano, M C; Nguyen, T Q; Nakanishi, H; Kasai, H

    2009-01-01

    The nature of electronic and chemical properties of an unstrained Pt monolayer on a 3d transition metal substrate, M (M = Cr, Mn, Fe), is studied using spin-polarized density functional theory calculations. High spin polarization of Pt d states is noted, verifying the magnetization induced on Pt, which is observed to be responsible for redirecting the analysis of bond formation on a metal surface towards a different perspective. While the shift in the Pt d band center (the average energy of the Pt d band, commonly used to predict the reactivity of surfaces) does give the expected trend in adsorbate (oxygen) chemisorption energy across the bimetallic surfaces in this work, our results show that for spin-polarized Pt d states, the variation in strength of adsorption with respect to the Fermi level density of states is more predictive of Pt chemisorption properties. Hence, this study introduces a scheme for analyzing trends in reactivity of bimetallic surfaces where adsorption energies are used as reactivity parameters and where spin polarization effects cannot be neglected. (fast track communication)

  16. Phase-field model of insulator-to-metal transition in VO2 under an electric field

    Science.gov (United States)

    Shi, Yin; Chen, Long-Qing

    2018-05-01

    The roles of an electric field and electronic doping in insulator-to-metal transitions are still not well understood. Here we formulated a phase-field model of insulator-to-metal transitions by taking into account both structural and electronic instabilities as well as free electrons and holes in VO2, a strongly correlated transition-metal oxide. Our phase-field simulations demonstrate that in a VO2 slab under a uniform electric field, an abrupt universal resistive transition occurs inside the supercooling region, in sharp contrast to the conventional Landau-Zener smooth electric breakdown. We also show that hole doping may decouple the structural and electronic phase transitions in VO2, leading to a metastable metallic monoclinic phase which could be stabilized through a geometrical confinement and the size effect. This work provides a general mesoscale thermodynamic framework for understanding the influences of electric field, electronic doping, and stress and strain on insulator-to-metal transitions and the corresponding mesoscale domain structure evolution in VO2 and related strongly correlated systems.

  17. Endohedral complexes of Polyhedral Oligomeric Silsesquioxane (POSS) cages with transition metal dihydrides

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiqiao; Corn, John; Hagelberg, Frank, E-mail: hagelber@etsu.edu

    2013-11-29

    Highlights: • Comparative studies of POSS cages with endohedral metal dihydrides. • Exothermic inclusion was found for the T{sub 10} cage with MH{sub 2}, M = Ti, Ru, Os, Pt. • Within this group of metal atoms, the only exothermic MH{sub 4}@T{sub m} unit is that with M = Os. • Enhanced hydrogen atom density, as compared to free MH{sub 4}, was found in the cage. • No exothermic solutions were identified for MH{sub 6}@T{sub 10}. - Abstract: Polyhedral Oligomeric Silsesquioxane (POSS) cages are investigated in terms of their potential to enclose small metal hydrides, with the objective of defining conditions that maximize the number of encapsulated hydrogen atoms. Systems of the form MH{sub 2n}@T{sub m}, where n = 1–3, m = 8, 10, and M comprises metal atom species of the groups IV, VI, VIII, X, and XII, are studied by methods of ab initio and density functional theory (DFT). The resulting composites are categorized with respect to their structural and energetic features. For MH{sub 2}@T{sub 8}, it is found in all cases considered that including MH{sub 2} into the POSS cage is an endothermic process. For MH{sub 2}@T{sub 10} and M = Ti, Ru, Os, Pt, inclusion of the MH{sub 2} guest into the cage turns out to be exothermic, and also leaves the cage intact. For MH{sub 4}@T{sub m}, this behavior is only observed for one system, OsH{sub 4}@T{sub 10}.

  18. Universal Quantum Criticality in the Metal-Insulator Transition of Two-Dimensional Interacting Dirac Electrons

    Directory of Open Access Journals (Sweden)

    Yuichi Otsuka

    2016-03-01

    Full Text Available The metal-insulator transition has been a subject of intense research since Mott first proposed that the metallic behavior of interacting electrons could turn to an insulating one as electron correlations increase. Here, we consider electrons with massless Dirac-like dispersion in two spatial dimensions, described by the Hubbard models on two geometrically different lattices, and perform numerically exact calculations on unprecedentedly large systems that, combined with a careful finite-size scaling analysis, allow us to explore the quantum critical behavior in the vicinity of the interaction-driven metal-insulator transition. Thereby, we find that the transition is continuous, and we determine the quantum criticality for the corresponding universality class, which is described in the continuous limit by the Gross-Neveu model, a model extensively studied in quantum field theory. Furthermore, we discuss a fluctuation-driven scenario for the metal-insulator transition in the interacting Dirac electrons: The metal-insulator transition is triggered only by the vanishing of the quasiparticle weight, not by the Dirac Fermi velocity, which instead remains finite near the transition. This important feature cannot be captured by a simple mean-field or Gutzwiller-type approximate picture but is rather consistent with the low-energy behavior of the Gross-Neveu model.

  19. Polymer derived non-oxide ceramics modified with late transition metals.

    Science.gov (United States)

    Zaheer, Muhammad; Schmalz, Thomas; Motz, Günter; Kempe, Rhett

    2012-08-07

    This tutorial review highlights the methods for the preparation of metal modified precursor derived ceramics (PDCs) and concentrates on the rare non-oxide systems enhanced with late transition metals. In addition to the main synthetic strategies for modified SiC and SiCN ceramics, an overview of the morphologies, structures and compositions of both, ceramic materials and metal (nano) particles, is presented. Potential magnetic and catalytic applications have been discussed for the so manufactured metal containing non-oxide ceramics.

  20. Trends in oxygen reduction and methanol activation on transition metal chalcogenides

    DEFF Research Database (Denmark)

    Tritsaris, Georgios; Nørskov, Jens Kehlet; Rossmeisl, Jan

    2011-01-01

    We use density functional theory calculations to study the oxygen reduction reaction and methanol activation on selenium and sulfur-containing transition metal surfaces. With ruthenium selenium as a starting point, we study the effect of the chalcogen on the activity, selectivity and stability...... of the catalyst. Ruthenium surfaces with moderate content of selenium are calculated active for the oxygen reduction reaction, and insensitive to methanol. A significant upper limit for the activity of transition metal chalcogenides is estimated....

  1. Magnetic Ground State Properties of Transition Metals

    DEFF Research Database (Denmark)

    Andersen, O. K.; Madsen, J.; Poulsen, U. K.

    1977-01-01

    We review a simple one-electron theory of the magnetic and cohesive properties of ferro- and nearly ferromagnetic transition metals at 0 K. The theory is based on the density functional formalism, it makes use of the local spin density and atomic sphere approximations and it may, with further app...

  2. Magneto-structural properties and magnetic anisotropy of small transition-metal clusters: a first-principles study

    International Nuclear Information System (INIS)

    Blonski, Piotr; Hafner, Juergen

    2011-01-01

    Ab initio density-functional calculations including spin-orbit coupling (SOC) have been performed for Ni and Pd clusters with three to six atoms and for 13-atom clusters of Ni, Pd, and Pt, extending earlier calculations for Pt clusters with up to six atoms (2011 J. Chem. Phys. 134 034107). The geometric and magnetic structures have been optimized for different orientations of the magnetization with respect to the crystallographic axes of the cluster. The magnetic anisotropy energies (MAE) and the anisotropies of spin and orbital moments have been determined. Particular attention has been paid to the correlation between the geometric and magnetic structures. The magnetic point group symmetry of the clusters varies with the direction of the magnetization. Even for a 3d metal such as Ni, the change in the magnetic symmetry leads to small geometric distortions of the cluster structure, which are even more pronounced for the 4d metal Pd. For a 5d metal the SOC is strong enough to change the energetic ordering of the structural isomers. SOC leads to a mixing of the spin states corresponding to the low-energy spin isomers identified in the scalar-relativistic calculations. Spin moments are isotropic only for Ni clusters, but anisotropic for Pd and Pt clusters, orbital moments are anisotropic for the clusters of all three elements. The magnetic anisotropy energies have been calculated. The comparison between MAE and orbital anisotropy invalidates a perturbation analysis of magnetic anisotropy for these small clusters.

  3. Raman scattering in transition metal compounds: Titanium and compounds of titanium

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, J.; Ederer, D.L.; Shu, T. [Tulane Univ., New Orleans, LA (United States)] [and others

    1997-04-01

    The transition metal compounds form a very interesting and important set of materials. The diversity arises from the many states of ionization the transition elements may take when forming compounds. This variety provides ample opportunity for a large class of materials to have a vast range of electronic and magnetic properties. The x-ray spectroscopy of the transition elements is especially interesting because they have unfilled d bands that are at the bottom of the conduction band with atomic like structure. This group embarked on the systematic study of transition metal sulfides and oxides. As an example of the type of spectra observed in some of these compounds they have chosen to showcase the L{sub II, III} emission and Raman scattering in some titanium compounds obtained by photon excitation.

  4. Magnetoresistance in CePtSn under high hydrostatic pressures

    International Nuclear Information System (INIS)

    Misek, M.; Prokleska, J.; Javorsky, P.; Sechovsky, V.

    2009-01-01

    We report the evolution of magnetic-history dependent antiferromagnetic phases in CePtSn. We concentrate on the magnetoresistance in magnetic fields up to 14 T applied along the crystallographic b-axis, measured on a CePtSn single crystal subjected to hydrostatic pressure (p ≤ 2.2 GPa) generated in a double-layered CuBe/NiCrAl piston cylinder cell. We observe a gradual increase of the critical field B c LF of the low field (LF) transition up to ∼1.2 GPa where only one transition is observed at ∼11.5 T. For pressures above 1.2 GPa we observe two transitions again and B c LF decreases with further increasing pressure to reach B c LF ∼7.5T at 2.5 GPa. The position of the high field (HF) transition remains almost unaffected by applied pressure. A scenario considering the spin-slip AF structure in CePtSn is briefly discussed.

  5. Investigation of Ternary Transition-Metal Nitride Systems by Reactive Cosputtering

    NARCIS (Netherlands)

    Dover, R.B. Van; Hessen, B.; Werder, D.; Chen, C.-H.; Felder, R.J.

    1993-01-01

    A reactive dc cosputtering technique has been used to evaluate compound formation in bimetallic transition-metal nitride systems. A wide range in M-M’ composition can be studied in a single deposition run, and the method is applicable to nonalloying metal combinations. Using this technique, it was

  6. Lifetime measurements in shape transition nucleus {sup 188}Pt

    Energy Technology Data Exchange (ETDEWEB)

    Rohilla, Aman; Gupta, C.K.; Chamoli, S.K. [University of Delhi, Department of Physics and Astrophysics, New Delhi (India); Singh, R.P.; Muralithar, S. [Inter University Accelerator Centre, New Delhi (India); Chakraborty, S.; Sharma, H.P. [Banaras Hindu University, Department of Physics, Varanasi (India); Kumar, A.; Govil, I.M. [Panjab University, Department of Physics, Chandigarh (India); Biswas, D.C. [Bhabha Atomic Research Center, Nuclear Physics Division, Trombay, Mumbai (India)

    2017-04-15

    Nuclear level lifetimes of high spin states in yrast and non-yrast bands of {sup 188}Pt nucleus have been measured using recoil distance plunger setup present at IUAC, Delhi. In the experiment nuclear states of interest were populated via {sup 174}Yb({sup 18}O,4n){sup 188}Pt reaction at a beam energy of 79MeV provided by 15 UD Pelletron accelerator. The extracted B(E2 ↓) values show an initial rise up to 4{sup +} state and then a nearly constant behavior with spin along yrast band, indicating change of nuclear structure in {sup 188}Pt at low spins. The good agreement between experimental and TPSM model B(E2 ↓) values up to 4{sup +} state suggests an increase in axial deformation of the nucleus. The average absolute β{sub 2} = 0.20 (3) obtained from measured B(E2 ↓) values matches well the values predicted by CHFB and IBM calculations for oblate (β{sub 2} ∝ -0.19) and prolate (β{sub 2} ∝ 0.22) shapes. As the lifetime measurements do not yield the sign of β{sub 2}, no definite conclusion can be drawn on the prolate or oblate collectivity of {sup 188}Pt on the basis of present measurements. (orig.)

  7. Scaling Relationships for Adsorption Energies of C2 Hydrocarbons on Transition Metal Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Jones, G

    2011-08-18

    Using density functional theory calculations we show that the adsorption energies for C{sub 2}H{sub x}-type adsorbates on transition metal surfaces scale with each other according to a simple bond order conservation model. This observation generalizes some recently recognized adsorption energy scaling laws for AH{sub x}-type adsorbates to unsaturated hydrocarbons and establishes a coherent simplified description of saturated as well as unsaturated hydrocarbons adsorbed on transition metal surfaces. A number of potential applications are discussed. We apply the model to the dehydrogenation of ethane over pure transition metal catalysts. Comparison with the corresponding full density functional theory calculations shows excellent agreement.

  8. SELECTIVE HYDROGENATION OF CINNAMALDEHYDE WITH Pt AND Pt-Fe CATALYSTS: EFFECTS OF THE SUPPORT

    Directory of Open Access Journals (Sweden)

    A.B. da Silva

    1998-06-01

    Full Text Available Low-temperature reduced TiO2-supported Pt and Pt-Fe catalysts are much more active and selective for the liquid–phase hydrogenation of cinnamaldehyde to unsaturated cinnamyl alcohol than the corresponding carbon-supported catalysts. High-temperature reduced catalysts, where the SMSI effect should be present, are almost inactive for this reaction. There is at present no definitive explanation for this effect but an electronic metal-support interaction is most probably involved.

  9. Contribution to the study of Pt197 and Au197 excited states

    International Nuclear Information System (INIS)

    Alves, S.M.C.

    1971-01-01

    The gamma transitions of the Ir 197β- → Pt 197β- → Au 197 decay chain were investigated using three Ge(Li) detectors of high resolution and spectroscopy techniques with one, two and three via of analysis. For the Ir 197β- →Pt 197 decay, four new gamma transitions with energy of 877.6; 938.7; 1049.6 and 1341.8 Kev were observed, presupposing to be energy levels in 877.6; 938.7; 1049.6 and 1347.8 Kev in the Ir 197 population by β- decay of Ir 197 . By the first time, the 299.5 Kev transition was observed, in the Pt 197 m (80min) decay, interpreted as a direct desexcitation of the 299.5Kev level in Pt 197 . A new scheme of Ir 197 β- → Au 197 decay based on the obtained results, is proposed. (M.C.K.) [pt

  10. Nanostructure sensitization of transition metal oxides for visible-light photocatalysis

    Directory of Open Access Journals (Sweden)

    Hongjun Chen

    2014-05-01

    Full Text Available To better utilize the sunlight for efficient solar energy conversion, the research on visible-light active photocatalysts has recently attracted a lot of interest. The photosensitization of transition metal oxides is a promising approach for achieving effective visible-light photocatalysis. This review article primarily discusses the recent progress in the realm of a variety of nanostructured photosensitizers such as quantum dots, plasmonic metal nanostructures, and carbon nanostructures for coupling with wide-bandgap transition metal oxides to design better visible-light active photocatalysts. The underlying mechanisms of the composite photocatalysts, e.g., the light-induced charge separation and the subsequent visible-light photocatalytic reaction processes in environmental remediation and solar fuel generation fields, are also introduced. A brief outlook on the nanostructure photosensitization is also given.

  11. Electronic structure of hcp transition metals

    DEFF Research Database (Denmark)

    Jepsen, O.; Andersen, O. Krogh; Mackintosh, A. R.

    1975-01-01

    Using the linear muffin-tin-orbital method described in the previous paper, we have calculated the electronic structures of the hcp transition metals, Zr, Hf, Ru, and Os. We show how the band structures of these metals may be synthesized from the sp and d bands, and illustrate the effects...... of hybridization, relativistic band shifts, and spin-orbit coupling by the example of Os. By making use of parameters derived from the muffin-tin potential, we discuss trends in the positions and widths of the energy bands, especially the d bands, as a function of the location in the periodic table. The densities...... of states of the four metals are presented, and the calculated heat capacities compared with experiment. The Fermi surfaces of both Ru and Os are found to be in excellent quantitative agreement with de Haas-van Alphen measurements, indicating that the calculated d-band position is misplaced by less than 10...

  12. Binuclear Pt-Tl bonded complex with square pyramidal coordination around Pt: a combined multinuclear NMR, EXAFS, UV-Vis, and DFT/TDDFT study in dimethylsulfoxide solution.

    Science.gov (United States)

    Purgel, Mihály; Maliarik, Mikhail; Glaser, Julius; Platas-Iglesias, Carlos; Persson, Ingmar; Tóth, Imre

    2011-07-04

    The structure and bonding of a new Pt-Tl bonded complex formed in dimethylsulfoxide (dmso), (CN)(4)Pt-Tl(dmso)(5)(+), have been studied by multinuclear NMR and UV-vis spectroscopies, and EXAFS measurements in combination with density functional theory (DFT) and time dependent density functional theory (TDDFT) calculations. This complex is formed following the equilibrium reaction Pt(CN)(4)(2-) + Tl(dmso)(6)(3+) ⇆ (CN)(4)Pt-Tl(dmso)(5)(+) + dmso. The stability constant of the Pt-Tl bonded species, as determined using (13)C NMR spectroscopy, amounts to log K = 2.9 ± 0.2. The (NC)(4)Pt-Tl(dmso)(5)(+) species constitutes the first example of a Pt-Tl bonded cyanide complex in which the sixth coordination position around Pt (in trans with respect to the Tl atom) is not occupied. The spectral parameters confirm the formation of the metal-metal bond, but differ substantially from those measured earlier in aqueous solution for complexes (CN)(5)Pt-Tl(CN)(n)(H(2)O)(x)(n-) (n = 0-3). The (205) Tl NMR chemical shift, δ = 75 ppm, is at extraordinary high field, while spin-spin coupling constant, (1)J(Pt-Tl) = 93 kHz, is the largest measured to date for a Pt-Tl bond in the absence of supporting bridging ligands. The absorption spectrum is dominated by two strong absorption bands in the UV region that are assigned to MMCT (Pt → Tl) and LMCT (dmso → Tl) bands, respectively, on the basis of MO and TDDFT calculations. The solution of the complex has a bright yellow color as a result of a shoulder present on the low energy side of the band at 355 nm. The geometry of the (CN)(4)Pt-Tl core can be elucidated from NMR data, but the particular stoichiometry and structure involving the dmso ligands are established by using Tl and Pt L(III)-edge EXAFS measurements. The Pt-Tl bond distance is 2.67(1) Å, the Tl-O bond distance is 2.282(6) Å, and the Pt-C-N entity is linear with Pt-C and Pt···N distances amounting to 1.969(6) and 3.096(6) Å, respectively. Geometry optimizations on

  13. Convergence of quasiparticle self-consistent GW calculations of transition metal monoxides

    OpenAIRE

    Das, Suvadip; Coulter, John E.; Manousakis, Efstratios

    2014-01-01

    Finding an accurate ab initio approach for calculating the electronic properties of transition metal oxides has been a problem for several decades. In this paper, we investigate the electronic structure of the transition metal monoxides MnO, CoO, and NiO in their undistorted rock-salt structure within a fully iterated quasiparticle self-consistent GW (QPscGW) scheme. We study the convergence of the QPscGW method, i.e., how the quasiparticle energy eigenvalues and wavefunctions converge as a f...

  14. Trends in the Hydrodeoxygenation Activity and Selectivity of Transition Metal Surfaces

    DEFF Research Database (Denmark)

    Lausche, Adam C.; Falsig, Hanne; Jensen, Anker Degn

    2014-01-01

    This paper reports the use of a combination of density functional theory and microkinetic modelling to establish trends in the hydrodeoxygenation rates and selectivites of transition metal surfaces. Biomass and biomass-derived chemicals often contain large fractions of oxygenates. Removal...... of the oxygen through hydrotreating represents one strategy for producing commodity chemicals from these renewable materials. Using the model developed in this paper, we predict ethylene glycol hydrodeoxygenation selectivities for transition metals that are consistent with those reported in the literature...

  15. Adsorbate Diffusion on Transition Metal Nanoparticles

    Science.gov (United States)

    2015-01-01

    correlation is a Bronsted-Evans-Polanyi ( BEP )- type of correlation, similar to other BEP correlations established earlier for surface-catalyzed bond- breaking...bond-making reactions.6-9 The universal BEP -type correlation is independent of the nature of the adsorbed species and that of the metal surface. For...a certain class of surface-catalyzed reactions, the existence of a BEP -type correlation reflects a similarity between the geometry of the transition

  16. Quantum criticality around metal-insulator transitions of strongly correlated electron systems

    Science.gov (United States)

    Misawa, Takahiro; Imada, Masatoshi

    2007-03-01

    Quantum criticality of metal-insulator transitions in correlated electron systems is shown to belong to an unconventional universality class with violation of the Ginzburg-Landau-Wilson (GLW) scheme formulated for symmetry breaking transitions. This unconventionality arises from an emergent character of the quantum critical point, which appears at the marginal point between the Ising-type symmetry breaking at nonzero temperatures and the topological transition of the Fermi surface at zero temperature. We show that Hartree-Fock approximations of an extended Hubbard model on square lattices are capable of such metal-insulator transitions with unusual criticality under a preexisting symmetry breaking. The obtained universality is consistent with the scaling theory formulated for Mott transitions and with a number of numerical results beyond the mean-field level, implying that preexisting symmetry breaking is not necessarily required for the emergence of this unconventional universality. Examinations of fluctuation effects indicate that the obtained critical exponents remain essentially exact beyond the mean-field level. It further clarifies the whole structure of singularities by a unified treatment of the bandwidth-control and filling-control transitions. Detailed analyses of the criticality, containing diverging carrier density fluctuations around the marginal quantum critical point, are presented from microscopic calculations and reveal the nature as quantum critical “opalescence.” The mechanism of emerging marginal quantum critical point is ascribed to a positive feedback and interplay between the preexisting gap formation present even in metals and kinetic energy gain (loss) of the metallic carrier. Analyses of crossovers between GLW type at nonzero temperature and topological type at zero temperature show that the critical exponents observed in (V,Cr)2O3 and κ-ET -type organic conductors provide us with evidence for the existence of the present marginal

  17. Magnetic excitations in transition-metal ferromagnets

    International Nuclear Information System (INIS)

    Uemura, Y.J.

    1984-01-01

    A review is given on current neutron scattering experiments at Brookhaven National Laboratory on transition-metal ferromagnets Ni, Fe, Pd 2 MnSn and MnSi. The scattering intensity in constant-energy scans, observed above T/sub c/ in all of these materials, exhibited a clear peak at finite momentum transfers. Using a simple scattering function with double-Lorentzian shape, we demonstrate that this peak is a manifestation of simple diffusive spin fluctuations. Experimental results of several parameters are compared in the context of localized-moment and itinerant-electron pictures. The ratio of spin wave stiffness constant D and transition temperature kT/sub c/ is shown to be a good yardstick for the degree of itinerancy of d-electrons

  18. Oxygen effect on the work function of electropositive metal films adsorbed on 4d and 5d-transition metals

    International Nuclear Information System (INIS)

    Kultashev, O.K.; Makarov, A.P.; Rozhkov, S.E.

    1976-01-01

    The thermionic emission method was used to study the effect of oxygen upon the work function of films of electropositive metals, Sc, Y, La and Ba on some monocrystal and polycrystalline specimens of 4d- and 5d-transition metals of groups 4-8 of the Periodic system. It was revealed that when the supports were polycrystalline and monocrystalline specimens of transition metals of Group 5 (niobium and tantalum), the work function phi of films of electropositive adsorbates dropped substantially as compared, e.g., to the phi values on the same faces of tungsten. When the concentration of the electropositive adsorbate exceeds the optimum value (in the absence of oxygen), oxygen exerts an appreciably activating action upon the work function phi of films of electropositive adsorbates on transition metals of the Groups 7 and 8. The activating action of oxygen is assumed to be due to a possibility of formation of surface interstitial structures

  19. The sticking probability for H-2 in presence of CO on some transition metals at a hydrogen pressure of 1 bar

    DEFF Research Database (Denmark)

    Johansson, Martin; Lytken, Ole; Chorkendorff, Ib

    2008-01-01

    The sticking probability for H-2 on Ni, Co, Cu, Rh, Ru, Pd, it and Pt metal films supported on graphite has been investigated in a gas mixture consisting of 10 ppm carbon monoxide in hydrogen at a total pressure of 1 bar in the temperature range 40-200 degrees C. Carbon monoxide inhibits the stic......The sticking probability for H-2 on Ni, Co, Cu, Rh, Ru, Pd, it and Pt metal films supported on graphite has been investigated in a gas mixture consisting of 10 ppm carbon monoxide in hydrogen at a total pressure of 1 bar in the temperature range 40-200 degrees C. Carbon monoxide inhibits...... the sticking probability significantly for all the metals, even at 200 degrees C. In the presence of 10 ppm CO, the sticking probability increases in the order It, Pt, Ni, Co, Pd, Rh, Ru, whereas for Cu, it is below the detection limit of the measurement, even in pure H2. The sticking probability for H2...

  20. Atomic structure of non-stoichiometric transition metal carbides

    International Nuclear Information System (INIS)

    Moisy-Maurice, Virginie.

    1981-10-01

    Different kinds of experimental studies of the atomic arrangement in non-stoichiometric transition metal carbides are proposed: the ordering of carbon vacancies and the atomic static displacements are the main subjects studied. Powder neutron diffraction on TiCsub(1-x) allowed us to determine the order-disorder transition critical temperature -Tsub(c) approximately 770 0 C- in the TiCsub(0.52-0.67) range, and to analyze at 300 K the crystal structure of long-range ordered samples. A neutron diffuse scattering quantitative study at 300 K of short-range order in TiCsub(0.76), TiCsub(0.79) and NbCsub(0.73) single crystals is presented: as in Ti 2 Csub(1+x) and Nb 6 C 5 superstructures, vacancies avoid to be on each side of a metal atom. Besides, the mean-square carbon atom displacements from their sites are small, whereas metal atoms move radially about 0.03 A away from vacancies. These results are in qualitative agreement with EXAFS measurements at titanium-K edge of TiCsub(1-x). An interpretation of ordering in term of short-range interaction pair potentials between vacancies is proposed [fr

  1. Electrochromism in transition metal oxides

    International Nuclear Information System (INIS)

    Estrada, W.

    1993-01-01

    Electrochromism is discussed for transition metal oxides. Particularly tungsten oxide and nickel oxide are reviewed, in order to put forth the different aspects of the field. Since this phenomena has been reviewed by several authors, it is not tried to be comprehensive but rather pedagogical. The basic requirements for a material -in both non-emissive displays and energy efficiency applications- to be electrochromic, a general view of electrochromic mechanism, anodic and cathodic electrochromic materials, and current problems for a electrochromic theory are presented. (author) 45 refs., 8 figs

  2. Phase coexistence in the metal-insulator transition of a VO2 thin film

    International Nuclear Information System (INIS)

    Chang, Y.J.; Koo, C.H.; Yang, J.S.; Kim, Y.S.; Kim, D.H.; Lee, J.S.; Noh, T.W.; Kim, Hyun-Tak; Chae, B.G.

    2005-01-01

    Vanadium dioxide (VO 2 ) shows a metal-insulator transition (MIT) near room temperature, accompanied by an abrupt resistivity change. Since the MIT of VO 2 is known to be a first order phase transition, it is valuable to check metallic and insulating phase segregation during the MIT process. We deposited (100)-oriented epitaxial VO 2 thin films on R-cut sapphire substrates. From the scanning tunneling spectroscopy (STS) spectra, we could distinguish metallic and insulating regions by probing the band gap. Optical spectroscopic analysis also supported the view that the MIT in VO 2 occurs through metal and insulator phase coexistence

  3. Mechanical and electronic properties of Janus monolayer transition metal dichalcogenides

    Science.gov (United States)

    Shi, Wenwu; Wang, Zhiguo

    2018-05-01

    The mechanical and electronic properties of Janus monolayer transition metal dichalcogenides MXY (M  =  Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W; X/Y  =  S, Se, Te) were investigated using density functional theory. Results show that breaking the out-of-plane structural symmetry can be used to tune the electronic and mechanical behavior of monolayer transition metal dichalcogenides. The band gaps of monolayer WXY and MoXY are in the ranges of 0.16–1.91 and 0.94–1.69 eV, respectively. A semiconductor to metallic phase transition occurred in Janus monolayer MXY (M  =  Ti, Zr and Hf). The monolayers MXY (M  =  V, Nb, Ta and Cr) show metallic characteristics, which show no dependence on the structural symmetry breaking. The mechanical properties of MXY depended on the composition. Monolayer MXY (M  =  Mo, Ti, Zr, Hf and W) showed brittle characteristic, whereas monolayer CrXY and VXY are with ductile characteristic. The in-plane stiffness of pristine and Janus monolayer MXY are in the range between 22 and 158 N m‑1. The tunable electronic and mechanical properties of these 2D materials would advance the development of ultra-sensitive detectors, nanogenerators, low-power electronics, and energy harvesting and electromechanical systems.

  4. The electronic and optical properties of germanium tellurite glasses containing various transition metal oxides

    International Nuclear Information System (INIS)

    Khan, M.N.

    1988-01-01

    Various transition metal oxides, such as TiO 2 , V 2 O 5 , NiO, CuO, and ZnO are added to germanium-tellurite glass and measurements are reported of the electrical conductivity, density, optical absorption, infra-red absorption spectra, and electron spin resonance. It is found that the d.c. conductivity of glasses containing the same amount of V 2 O 5 is higher than that of germanium tellurite glasses containing a similar amount of other transition metal oxides, and is due to hopping between localized states. The optical absorption measurements show that the fundamental absorption edge is a function of glass composition and the optical absorption is due to forbidden indirect transitions. From the infra-red absorption spectra, it is found that the addition of transition metal oxides does not introduce any new absorption band in the infra-red spectrum of germanium tellurite glasses. A small shift of existing absorptions toward higher wave number is observed. The ESR measurements revealed that some transition metal ions are diamagnetic while others are paramagnetic in the glass network. (author)

  5. Uniaxial pressure-induced half-metallic ferromagnetic phase transition in LaMnO3

    Science.gov (United States)

    Rivero, Pablo; Meunier, Vincent; Shelton, William

    2016-03-01

    We use first-principles theory to predict that the application of uniaxial compressive strain leads to a transition from an antiferromagnetic insulator to a ferromagnetic half-metal phase in LaMnO3. We identify the Q2 Jahn-Teller mode as the primary mechanism that drives the transition, indicating that this mode can be used to tune the lattice, charge, and spin coupling. Applying ≃6 GPa of uniaxial pressure along the [010] direction activates the transition to a half-metallic pseudocubic state. The half-metallicity opens the possibility of producing colossal magnetoresistance in the stoichiometric LaMnO3 compound at significantly lower pressure compared to recently observed investigations using hydrostatic pressure.

  6. Structure and phase transitions at the interface between α-Al2O3 and Pt

    Science.gov (United States)

    Ophus, Colin; Santala, Melissa K.; Asta, Mark; Radmilovic, Velimir

    2013-06-01

    The structure and thermodynamics of interfaces between (111) Pt and the basal plane of α-Al2O3 have been studied through a combination of high-resolution electron microscopy and first-principles calculations. Within the framework of ab initio thermodynamics the structure and excess free energies are calculated as functions of temperature (T) and oxygen partial pressure (PO2), for three competing interface terminations. Comparisons between measurements and calculations establish that the interface is oxygen terminated, and a structural phase transition is predicted in the range of experimentally accessible T and PO2 from the calculated interfacial free energies.

  7. Confirmation of molecular formulas of metallic complexes through X-ray fluorescence quantitative analysis

    International Nuclear Information System (INIS)

    Filgueiras, C.A.L.; Marques, E.V.; Machado, R.M.

    1984-01-01

    X-ray fluorescence spectrophotometry was employed to determined the metal content in a series of five transition element complexes (Mn, Ti, Zn, V). The results confirmed the molecular formulas of these complexes, already proposed on the basis of elemental microanalysis, solution condutimetry and other analytical methods. (C.L.B.) [pt

  8. Pt-Rh/g Al2O3 Influence of Catalyst Preparation Methods on Metallic Particle Dispersion and Size Distribution

    Directory of Open Access Journals (Sweden)

    N.M. da Fonseca

    1998-06-01

    Full Text Available - Pt-Rh/Al2O3 catalysts were prepared by successive incipient impregnations or coimpregnation. Characterization was achieved by H2 chemisorption and transmission electron microscopy. It was verified that method of preparation, ratio of metal weights and sequence of deposition are factors that result in very distinct catalysts.

  9. Biopolymer-stabilized Pt nanoparticles colloid: a highly active and recyclable catalyst for biphasic catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yujia; Shen, Yueyue; Qiu, Yunfei; Zhang, Ting; Liao, Yang; Zhao, Shilin; Ma, Jun, E-mail: 1044208419@qq.com; Mao, Hui, E-mail: rejoice222@163.com [Sichuan Normal University, College of Chemistry and Materials Science (China)

    2016-10-15

    Noble metal nanoparticles are promising candidates to replace conventional bulk counterparts owing to their high activity and selectivity. To enable catalyst recovery, noble metal nanoparticles are often supported onto solid matrices to prepare heterogeneous catalyst. Although recycle of noble metal nanoparticles is realized by heterogenization, a loss of activity is usually encountered. In the present investigation, Pt nanoparticles with tunable particle size (1.85–2.80 nm) were facilely prepared by using polyphenols as amphiphilic stabilizers. The as-prepared Pt nanoparticles colloid solution could be used as highly active catalyst in aqueous–organic biphasic catalysis. The phenolic hydroxyls of polyphenols could constrain Pt nanoparticles in aqueous phase, and simultaneously, the aromatic scaffold of polyphenols ensured effective interactions between substrates and Pt nanoparticles. As a consequence, the obtained polyphenols-stabilized Pt nanoparticles exhibited high activity and cycling stability in biphasic hydrogenation of a series of unsaturated compounds. Compared with conventional heterogeneous Pt-C and Pt-Al{sub 2}O{sub 3} catalysts, polyphenols-stabilized Pt nanoparticles showed obvious advantage both in activity and cycling stability.

  10. Biopolymer-stabilized Pt nanoparticles colloid: a highly active and recyclable catalyst for biphasic catalysis

    International Nuclear Information System (INIS)

    Wang, Yujia; Shen, Yueyue; Qiu, Yunfei; Zhang, Ting; Liao, Yang; Zhao, Shilin; Ma, Jun; Mao, Hui

    2016-01-01

    Noble metal nanoparticles are promising candidates to replace conventional bulk counterparts owing to their high activity and selectivity. To enable catalyst recovery, noble metal nanoparticles are often supported onto solid matrices to prepare heterogeneous catalyst. Although recycle of noble metal nanoparticles is realized by heterogenization, a loss of activity is usually encountered. In the present investigation, Pt nanoparticles with tunable particle size (1.85–2.80 nm) were facilely prepared by using polyphenols as amphiphilic stabilizers. The as-prepared Pt nanoparticles colloid solution could be used as highly active catalyst in aqueous–organic biphasic catalysis. The phenolic hydroxyls of polyphenols could constrain Pt nanoparticles in aqueous phase, and simultaneously, the aromatic scaffold of polyphenols ensured effective interactions between substrates and Pt nanoparticles. As a consequence, the obtained polyphenols-stabilized Pt nanoparticles exhibited high activity and cycling stability in biphasic hydrogenation of a series of unsaturated compounds. Compared with conventional heterogeneous Pt-C and Pt-Al 2 O 3 catalysts, polyphenols-stabilized Pt nanoparticles showed obvious advantage both in activity and cycling stability.

  11. From Single Atoms to Nanoparticles : Autocatalysis and Metal Aggregation in Atomic Layer Deposition of Pt on TiO2 Nanopowder

    NARCIS (Netherlands)

    Grillo, Fabio; Van Bui, Hao; La Zara, Damiano; Aarnink, Antonius A.I.; Kovalgin, Alexey Y.; Kooyman, Patricia; Kreutzer, Michiel T.; van Ommen, Jan Rudolf

    2018-01-01

    A fundamental understanding of the interplay between ligand-removal kinetics and metal aggregation during the formation of platinum nanoparticles (NPs) in atomic layer deposition of Pt on TiO2 nanopowder using trimethyl(methylcyclo-pentadienyl)platinum(IV) as the precursor and O2 as the coreactant

  12. Effect of transition metal ions on the conductivity and stability of stabilized zirconia

    DEFF Research Database (Denmark)

    Lybye, D.; Mogensen, Mogens Bjerg

    2007-01-01

    the effect of co-doping with smaller transition metal ions such as Ti-, Fe- and Mn-ions. Many of the ionic radii of the transition metal ions are too small compared to the host lattice ionic radius of zirconium. Here we explore the effect of a) the small ionic radii compared to the large ionic radii...

  13. Semiconductor-Metal transition in a quantum well

    International Nuclear Information System (INIS)

    Nithiananthi, P.; Jayakumar, K.

    2007-01-01

    We demonstrate semiconductor-metal transition through diamagnetic susceptibility of a donor in a GaAs/Al x Ga 1- x As quantum well for both infinite and finite barrier models. We have also considered the non-parabolicity of the conduction band in our calculation. Our results agree with the earlier theoretical result and also with the recent experimental result

  14. The controlled formation and cleavage of an intramolecular d8-d8 Pt-Pt interaction in a dinuclear cycloplatinated molecular "pivot-hinge".

    Science.gov (United States)

    Koo, Chi-Kin; Wong, Ka-Leung; Lau, Kai-Cheung; Wong, Wai-Yeung; Lam, Michael Hon-Wah

    2009-08-03

    The bis(diphenylphosphino)methane (dppm)-bridged dinuclear cycloplatinated complex {[Pt(L)](2)(mu-dppm)}(2+) (Pt(2)dppm; HL: 2-phenyl-6-(1H-pyrazol-3-yl)-pyridine) demonstrates interesting reversible "pivot-hinge"-like intramolecular motions in response to the protonation/deprotonation of L. In its protonated "closed" configuration, the two platinum(II) centers are held in position by intramolecular d(8)-d(8) Pt-Pt interaction. In its deprotonated "open" configuration, such Pt-Pt interaction is cleaved. To further understand the mechanism behind this hingelike motion, an analogous dinuclear cycloplatinated complex, {[Pt(L)](2)(mu-dchpm)}(2+) (Pt(2)dchpm) with bis(dicyclohexylphosphino)methane (dchpm) as the bridging ligand, was synthesized. From its protonation/deprotonation responses, it was revealed that aromatic pi-pi interactions between the phenyl moieties of the mu-dppm and the deprotonated pyrazolyl rings of L was essential to the reversible cleavage of the intramolecular Pt-Pt interaction in Pt(2)dppm. In the case of Pt(2)dchpm, spectroscopic and spectrofluorometric titrations as well as X-ray crystallography indicated that the distance between the two platinum(II) centers shrank upon deprotonation, thus causing a redshift in its room-temperature triplet metal-metal-to-ligand charge-transfer emission from 614 to 625 nm. Ab initio calculations revealed the presence of intramolecular hydrogen bonding between the deprotonated and negatively charged 1-pyrazolyl-N moiety and the methylene CH and phenyl C-H of the mu-dppm. The "open" configuration of the deprotonated Pt(2)dppm was estimated to be 19 kcal mol(-1) more stable than its alternative "closed" configuration. On the other hand, the open configuration of the deprotonated Pt(2)dchpm was 6 kcal mol(-1) less stable than its alternative closed configuration.

  15. Deposition and characterization of Pt nanocluster films by means of gas aggregation cluster source

    Energy Technology Data Exchange (ETDEWEB)

    Kylián, Ondřej, E-mail: ondrej.kylian@gmail.com; Prokeš, Jan; Polonskyi, Oleksandr; Čechvala, Juraj; Kousal, Jaroslav; Pešička, Josef; Hanuš, Jan; Biederman, Hynek

    2014-11-28

    In this study we report on the deposition of Pt nanocluster films prepared by gas aggregation source that was operated with argon as working gas. The aim of this study was optimization of deposition process as well as determination of properties of deposited nanocluster films and their temporal stability. It was found that the production of Pt nanoclusters reached maximum value for pressure of 100 Pa and increases monotonously with magnetron current. The deposition rate at optimized deposition conditions was 0.7 nm of the Pt nanocluster film per second. Deposited films were porous and composed of 4 nm Pt nanoclusters. The nanoclusters were metallic and no sights of their oxidation were observed after 1 year on open air as witnessed by X-ray photoelectron spectroscopy. Regarding the electrical properties, a dramatic decrease of the resistivity was observed with increasing amount of deposited nanoclusters. This decrease saturated for the films approximately 50 nm thick. Such behavior indicates transition between different mechanisms of electrical conductivity: charge hopping for thin discontinuous films and current conduction through conducting path formed when higher amount of nanoclusters is deposited. Different mechanisms of electrical conduction for thin and thick layers of Pt were confirmed by subsequent investigation of temperature dependence of resistivity. In addition, no changes in resistivity were observed after one year on open air that confirms stability of produced Pt nanocluster films. - Highlights: • Pt nanocluster films were deposited by gas aggregation nanocluster source. • Conditions leading to effective deposition of Pt nanocluster films were found. • Deposited nanocluster films have good temporal stability. • Electrical properties of Pt films were found to depend on their thickness.

  16. Late metal-silicate separation on the IAB parent asteroid: Constraints from combined W and Pt isotopes and thermal modelling

    Science.gov (United States)

    Hunt, Alison C.; Cook, David L.; Lichtenberg, Tim; Reger, Philip M.; Ek, Mattias; Golabek, Gregor J.; Schönbächler, Maria

    2018-01-01

    The short-lived 182Hf-182W decay system is a powerful chronometer for constraining the timing of metal-silicate separation and core formation in planetesimals and planets. Neutron capture effects on W isotopes, however, significantly hamper the application of this tool. In order to correct for neutron capture effects, Pt isotopes have emerged as a reliable in-situ neutron dosimeter. This study applies this method to IAB iron meteorites, in order to constrain the timing of metal segregation on the IAB parent body. The ε182W values obtained for the IAB iron meteorites range from -3.61 ± 0.10 to -2.73 ± 0.09. Correlating εiPt with ε182W data yields a pre-neutron capture ε182W of -2.90 ± 0.06. This corresponds to a metal-silicate separation age of 6.0 ± 0.8 Ma after CAI for the IAB parent body, and is interpreted to represent a body-wide melting event. Later, between 10 and 14 Ma after CAI, an impact led to a catastrophic break-up and subsequent reassembly of the parent body. Thermal models of the interior evolution that are consistent with these estimates suggest that the IAB parent body underwent metal-silicate separation as a result of internal heating by short-lived radionuclides and accreted at around 1.4 ± 0.1 Ma after CAIs with a radius of greater than 60 km.

  17. Electronic Structure Evolution across the Peierls Metal-Insulator Transition in a Correlated Ferromagnet

    Directory of Open Access Journals (Sweden)

    P. A. Bhobe

    2015-10-01

    Full Text Available Transition metal compounds often undergo spin-charge-orbital ordering due to strong electron-electron correlations. In contrast, low-dimensional materials can exhibit a Peierls transition arising from low-energy electron-phonon-coupling-induced structural instabilities. We study the electronic structure of the tunnel framework compound K_{2}Cr_{8}O_{16}, which exhibits a temperature-dependent (T-dependent paramagnetic-to-ferromagnetic-metal transition at T_{C}=180  K and transforms into a ferromagnetic insulator below T_{MI}=95  K. We observe clear T-dependent dynamic valence (charge fluctuations from above T_{C} to T_{MI}, which effectively get pinned to an average nominal valence of Cr^{+3.75} (Cr^{4+}∶Cr^{3+} states in a 3∶1 ratio in the ferromagnetic-insulating phase. High-resolution laser photoemission shows a T-dependent BCS-type energy gap, with 2G(0∼3.5(k_{B}T_{MI}∼35  meV. First-principles band-structure calculations, using the experimentally estimated on-site Coulomb energy of U∼4  eV, establish the necessity of strong correlations and finite structural distortions for driving the metal-insulator transition. In spite of the strong correlations, the nonintegral occupancy (2.25 d-electrons/Cr and the half-metallic ferromagnetism in the t_{2g} up-spin band favor a low-energy Peierls metal-insulator transition.

  18. Relationship between the catalytic activity of Pt/alumina and the relaxation process of the photoexcited electrons

    International Nuclear Information System (INIS)

    Ito, Junji; Hanaki, Yasunari; Shen, Qing; Toyoda, Taro

    2012-01-01

    Highlights: ► We determined the decay time of photoexcited electrons of Pt/Al 2 O 3 . ► Faster decay of excited electrons in Pt/Al 2 O 3 leads to its faster oxidation rate. ► Decreasing excited electron lifetime in Pt/Al 2 O 3 may decrease Pt consumption in catalytic convertors. - Abstract: In order to decrease the consumption of precious metals used in the catalytic converters used in automobiles, we studied the relationship between the catalytic activity of Pt/alumina (Pt/Al 2 O 3 ) and the relaxation process of photoexcited electrons. Firstly, we studied the relationship between the size of the Pt particles in Pt/Al 2 O 3 and catalytic performance. Secondly, the relationship between the size of the Pt particles in Pt/Al 2 O 3 and the decay time of the excited electrons was studied using an improved transient grating (TG) technique. The results showed that faster decay of the excited electrons leads to greater oxidation rates. The decay time obtained with the improved TG technique gives an indication of the time that the exited electrons take to return to the ground state. According to studies utilizing FT-IR, one of the processes necessary for quickly generating CO 2 with Pt is that the electron in the Pt-O bond moves to the Pt side and that the Pt + becomes Pt metal. Thus, the decay time obtained with the improved TG technique corresponds to the process whereby Pt + returns to Pt metal. Thus, we found that the consumption of precious metals can be reduced by increasing the speed of the decay of the excited electrons.

  19. Microwave sinthesys and characterization of Pt and Pt-Rh-Sn electrocatalysts for ethanol oxidation

    Directory of Open Access Journals (Sweden)

    Jovanović Vladislava M.

    2011-01-01

    Full Text Available Carbon supported Pt and Pt-Rh-Sn catalysts were synthesized by microwave-polyol method in ethylene glycol solution and investigated for the ethanol electro-oxidation reaction. The catalysts were characterized in terms of structure, morphology and composition by employing XRD, STM and EDX techniques. STM analysis indicated rather uniform particles and particle size of below 2 nm for both catalysts. XRD analysis of the Pt/C catalyst revealed two phases, one with the main characteristic peaks of face centered cubic crystal structure (fcc of platinum and another related to graphite like structure of carbon support Vulcan XC-72R. However, in XRD pattern of the Pt-Rh-Sn/C catalyst diffraction peaks for Pt, Rh or Sn cannot be resolved, indicating an extremely low crystallinity. The small particle sizes and homogeneous size distributions of both catalysts should be attributed to the advantages of microwave assisted modified polyol process in ethylene glycol solution. Pt-Rh- Sn/C catalyst is highly active for the ethanol oxidation with the onset potential shifted for more than 150 mV to negative values and with currents nearly 5 times higher in comparison to Pt/C catalyst. The stability tests of the catalysts, as studied by the chronoamperometric experiments, reveal that the Pt-Rh-Sn/C catalyst is evidently less poisoned then Pt/C catalyst. The increased activity of Pt-Rh-Sn/C in comparison to Pt/C catalyst is most probably promoted by bifunctional mechanism and the electronic effect of alloyed metals.

  20. The molecular, electronic, bonding, and photophysical features of the [(c-Pt3)Tl(c-Pt3)]+ inorganic metallocenes.

    Science.gov (United States)

    Tsipis, Athanassios C; Gkekas, George N

    2013-06-21

    The molecular, electronic, bonding and photophysical properties of a series of inorganic metallocenes with the general formula {[Pt3(μ2-L)3(L')3]2(μ6-Tl)}(+) (L = CO, CH3CN, PH2, C6F5, or SO2 and L' = CO, PH3, CH3CN, C6F5) have been studied by means of DFT electronic structure calculations. The estimated Tl-cd distances between Tl(+) cations and the centroids (cd) of the trimetallic Pt3(μ2-L)3(L')3 {3 : 3 : 3} decks were found in the range 2.932-3.397 Å. The predicted bond dissociation energy, D0, of the (c-Pt3)···Tl(+) bonds was found to lie within the range -31.5 up to -77.5 kcal mol(-1) at the B3LYP/LANL2TZ(f)(Pt) ∪ 6-31G(d,p)(E) ∪ SRLC(Tl) level of theory. Most of the [(c-Pt3)Tl(c-Pt3)](+) inorganic metallocenes adopt a bend titanocene-like structure. The Localized Orbital Locator (LOL) contour maps along with the 3D contour plots of the Reduced Gradient Density (RDG) mirror the composite nature of the interaction of Tl(+) with the triangular Pt3 metallic ring cores consisting of electrostatic, covalent and dispersion interaction components. The Pt3···Tl(+)···Pt3 bonding mode was further validated by Energy Decomposition Analysis (EDA) calculations which demonstrated that the electrostatic and covalent components of the interaction contribute almost equally to the bonding interactions. Furthermore, Charge Decomposition Analysis (CDA) and Natural Bond Orbital Analysis (NBO) calculations indicated that charge transfer from the Tl(+) cation to the Pt3(0) {3 : 3 : 3} decks also occurs. The {[Pt3(μ2-L)3(L')3]2(μ6-Tl)}(+) sandwiches absorb in the UV-Vis region (300-500 nm) and emit in the visible-near IR region (600-1000 nm). The absorption bands are mainly of MLCT/MC character while phosphorescence is predicted to occur via the first triplet excited state, T1, since the spin density of this excited state could be described as a SOMO - 1/SOMO combination. Generally, no significant distortions occur upon excitation of these systems

  1. Anti-inflammatory drugs interacting with Zn(II), Cd(II) and Pt(II) metal ions.

    Science.gov (United States)

    Dendrinou-Samara, C; Tsotsou, G; Ekateriniadou, L V; Kortsaris, A H; Raptopoulou, C P; Terzis, A; Kyriakidis, D A; Kessissoglou, D P

    1998-09-01

    Complexes of Zn(II), Cd(II) and Pt(II) metal ions with the anti-inflammatory drugs, 1-methyl-5-(p-toluoyl)-1H-pyrrole-2-acetic acid (Tolmetin), alpha-methyl-4-(2-methylpropyl)benzeneacetic acid (Ibuprofen), 6-methoxy-alpha-methylnaphthalene-2-acetic acid (Naproxen) and 1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indole-3-acetic acid (indomethacin) have been synthesized and characterized. In the structurally characterized Cd(naproxen)2 complex the anti-inflammatory drugs acts as bidentate chelate ligand coordinatively bound to metal ions through the deprotonated carboxylate group. Crystal data for 1: [C32H26O8Cd], orthorhombic, space group P22(1)2(1), a = 5.693(2) (A), b = 8.760(3) (A), c = 30.74(1) (A), V = 1533(1) A3, Z = 2. Antibacterial and growth inhibitory activity is higher than that of the parent ligands or the platinum(II) diamine compounds.

  2. Thermal properties of zirconium diboride -- transition metal boride solid solutions

    Science.gov (United States)

    McClane, Devon Lee

    This research focuses on the thermal properties of zirconium diboride (ZrB2) based ceramics. The overall goal was to improve the understanding of how different transition metal (TM) additives influence thermal transport in ZrB2. To achieve this, ZrB2 with 0.5 wt% carbon, and 3 mol% of individual transition metal borides, was densified by hot-press sintering. The transition metals that were investigated were: Y, Ti, Hf, V, Nb, Ta, Cr, Mo, W, and Re. The room temperature thermal diffusivities of the compositions ranged from 0.331 cm2/s for nominally pure ZrB2 to 0.105 cm2/s for (Zr,Cr)B2 and converged around 0.155cm2/s at higher temperatures for all compositions. Thermal conductivities were calculated from the diffusivities, using temperature-dependent values for density and heat capacity. The electron contribution to thermal conductivity was calculated from measured electrical resistivity according to the Wiedemann-Franz law. The phonon contribution to thermal conductivity was calculated by subtracting the electron contribution from the total thermal conductivity. Rietveld refinement of x-ray diffraction data was used to determine the lattice parameters of the compositions. The decrease in thermal conductivity for individual additives correlated directly to the metallic radius of the additive. Additional strain appeared to exist for additives when the stable TM boride for that metal had different crystal symmetries than ZrB2. This research provided insight into how additives and impurities affect thermal transport in ZrB2. The research potentially offers a basis for future modeling of thermal conductivity in ultra-high temperature ceramics based on the correlation between metallic radius and the decrease in thermal conductivity.

  3. Emergent magnetism at transition-metal-nanocarbon interfaces.

    Science.gov (United States)

    Al Ma'Mari, Fatma; Rogers, Matthew; Alghamdi, Shoug; Moorsom, Timothy; Lee, Stephen; Prokscha, Thomas; Luetkens, Hubertus; Valvidares, Manuel; Teobaldi, Gilberto; Flokstra, Machiel; Stewart, Rhea; Gargiani, Pierluigi; Ali, Mannan; Burnell, Gavin; Hickey, B J; Cespedes, Oscar

    2017-05-30

    Charge transfer at metallo-molecular interfaces may be used to design multifunctional hybrids with an emergent magnetization that may offer an eco-friendly and tunable alternative to conventional magnets and devices. Here, we investigate the origin of the magnetism arising at these interfaces by using different techniques to probe 3d and 5d metal films such as Sc, Mn, Cu, and Pt in contact with fullerenes and rf-sputtered carbon layers. These systems exhibit small anisotropy and coercivity together with a high Curie point. Low-energy muon spin spectroscopy in Cu and Sc-C 60 multilayers show a quick spin depolarization and oscillations attributed to nonuniform local magnetic fields close to the metallo-carbon interface. The hybridization state of the carbon layers plays a crucial role, and we observe an increased magnetization as sp 3 orbitals are annealed into sp 2 -π graphitic states in sputtered carbon/copper multilayers. X-ray magnetic circular dichroism (XMCD) measurements at the carbon K edge of C 60 layers in contact with Sc films show spin polarization in the lowest unoccupied molecular orbital (LUMO) and higher π*-molecular levels, whereas the dichroism in the σ*-resonances is small or nonexistent. These results support the idea of an interaction mediated via charge transfer from the metal and dz -π hybridization. Thin-film carbon-based magnets may allow for the manipulation of spin ordering at metallic surfaces using electrooptical signals, with potential applications in computing, sensors, and other multifunctional magnetic devices.

  4. Methanol, ethanol and hydrogen sensing using metal oxide and metal (TiO(2)-Pt) composite nanoclusters on GaN nanowires: a new route towards tailoring the selectivity of nanowire/nanocluster chemical sensors.

    Science.gov (United States)

    Aluri, Geetha S; Motayed, Abhishek; Davydov, Albert V; Oleshko, Vladimir P; Bertness, Kris A; Sanford, Norman A; Mulpuri, Rao V

    2012-05-04

    We demonstrate a new method for tailoring the selectivity of chemical sensors using semiconductor nanowires (NWs) decorated with metal and metal oxide multicomponent nanoclusters (NCs). Here we present the change of selectivity of titanium dioxide (TiO(2)) nanocluster-coated gallium nitride (GaN) nanowire sensor devices on the addition of platinum (Pt) nanoclusters. The hybrid sensor devices were developed by fabricating two-terminal devices using individual GaN NWs followed by the deposition of TiO(2) and/or Pt nanoclusters (NCs) using the sputtering technique. This paper present the sensing characteristics of GaN/(TiO(2)-Pt) nanowire-nanocluster (NWNC) hybrids and GaN/(Pt) NWNC hybrids, and compare their selectivity with that of the previously reported GaN/TiO(2) sensors. The GaN/TiO(2) NWNC hybrids showed remarkable selectivity to benzene and related aromatic compounds, with no measurable response for other analytes. Addition of Pt NCs to GaN/TiO(2) sensors dramatically altered their sensing behavior, making them sensitive only to methanol, ethanol and hydrogen, but not to any other chemicals we tested. The GaN/(TiO(2)-Pt) hybrids were able to detect ethanol and methanol concentrations as low as 100 nmol mol(-1) (ppb) in air in approximately 100 s, and hydrogen concentrations from 1 µmol mol(-1) (ppm) to 1% in nitrogen in less than 60 s. However, GaN/Pt NWNC hybrids showed limited sensitivity only towards hydrogen and not towards any alcohols. All these hybrid sensors worked at room temperature and are photomodulated, i.e. they responded to analytes only in the presence of ultraviolet (UV) light. We propose a qualitative explanation based on the heat of adsorption, ionization energy and solvent polarity to explain the observed selectivity of the different hybrids. These results are significant from the standpoint of applications requiring room-temperature hydrogen sensing and sensitive alcohol monitoring. These results demonstrate the tremendous potential for

  5. Incorporation of Pt, Ru and Pt-Ru nanoparticles into ordered mesoporous carbons for efficient oxygen reduction reaction in alkaline media

    International Nuclear Information System (INIS)

    Stojmenović, Marija; Momčilović, Milan; Gavrilov, Nemanja; Pašti, Igor A.; Mentus, Slavko; Jokić, Bojan; Babić, Biljana

    2015-01-01

    Ordered mesoporous carbon, volume-doped up to 3 w.% with Pt, Ru and Pt-Ru nanoparticles was synthesized by evaporation-induced self-assembly method, under acidic conditions. The content of incorporated metal was determined by EDX analysis. The X-ray diffractometry confirmed the existence of highly dispersed metallic phases in doped samples. Specific surface area was determined by N 2 -physisorption measurements to range between 452 and 545 m 2 g −1 . Raman spectroscopy of investigated materials indicated highly disordered carbon structure with crystallite sizes around 1.4 nm. In a form of thin-layer electrode on glassy carbon support, in 0.1 M KOH solution, the prepared materials displayed high activity toward oxygen reduction reaction (ORR) in alkaline media, with onset potentials more positive than −0.10 V vs. SCE. The kinetics of O 2 reduction was found to be affected by both the specific surface area and the concentration of metal dopants. The ethanol tolerance of (Pt, Ru)-doped OMCs was found to be higher than that of common Pt/C ORR catalysts. Presented study provides a new route for the synthesis of active and selective ORR catalysts in alkaline media, being competitive with, or superior to, the existing ones in terms of performance and price

  6. Magnetism and superconductivity of CePt3Si and Ce1+xPt3+ySi1+z

    International Nuclear Information System (INIS)

    Motoyama, Gaku; Yamamoto, Suguru; Takezoe, Hiroaki; Oda, Yasukage; Ueda, Ko-ichi; Kohara, Takao

    2006-01-01

    We measured the dc magnetization, electrical resistivity, and ac magnetic susceptibility of a series of polycrystalline CePt 3 Si samples whose compositions vary slightly from the stoichiometric composition. The sample that showed the most distinct anitiferromagnetic transition at 2.2K was found to be Ce 1.01 Pt 3 Si annealed. This sample showed a clear bulk antiferromagnetic order at 2.2 K even in both electrical resistivity and dc magnetization measurements, although the characteristic change in dc magnetization at 2.2 K was found to be small and to be easily masked in other magnetic anomalies if they exist. Moreover, it had the largest residual resistivity ratio. We concluded that Ce 1.01 Pt 3 Si annealed has the intrinsic bulk properties of ideal CePt 3 Si. In addition, we revealed that some anomalies arise as a result of the variation in composition. One is a ferromagnetic anomaly at 3.0 K in the Pt-rich samples, and the other is an antiferromagnetic anomaly at 4.0 K in the Pt-poor samples. The two magnetic anomalies seemed to appear in small domains in the samples that exhibited an antiferromagnetic order at 2.2 K. To reveal the relationship between these magnetisms and superconductivity, we measured ac magnetic susceptibility down to ∼14mK. We found that the superconducting transition temperature is suppressed by the ferromagnetic anomaly. (author)

  7. Thermophysical Property Measurements of Silicon-Transition Metal Alloys

    Science.gov (United States)

    Banish, R. Michael; Erwin, William R.; Sansoucie, Michael P.; Lee, Jonghyun; Gave, Matthew A.

    2014-01-01

    Metals and metallic alloys often have high melting temperatures and highly reactive liquids. Processing reactive liquids in containers can result in significant contamination and limited undercooling. This is particularly true for molten silicon and it alloys. Silicon is commonly termed "the universal solvent". The viscosity, surface tension, and density of several silicon-transition metal alloys were determined using the Electrostatic Levitator system at the Marshall Space Flight Center. The temperature dependence of the viscosity followed an Arrhenius dependence, and the surface tension followed a linear temperature dependence. The density of the melts, including the undercooled region, showed a linear behavior as well. Viscosity and surface tension values were obtain for several of the alloys in the undercooled region.

  8. XPS and XAES measurements on trapped rare gases in transition metals

    International Nuclear Information System (INIS)

    Baba, Y.; Yamamoto, H.; Sasaki, T.A.

    1992-01-01

    Electronic structures of rare gases implanted in various transition metals have been investigated by means of an X-ray photoelectron spectroscopy (XPS) and X-ray-induced Auger electron spectroscopy (XAES). The Auger-parameter method is applied to the evaluation of electronic relaxation energy of rare gas atoms due to the surrounding metal potential. The extra-atomic relaxation energy of four kinds of rare gases (Ne, Ar, Kr, Xe) in the same metal matrix (Ti) increases with the atomic mass of the rare gases. On the other hand, the extra-atomic relaxation energy of the same rare gas (Xe) in different metal matrices ranges from 3.0 eV (in Mo). These values increase with the number of d-electrons in the metals. This tendency and the absolute values of the relaxation energies are in good agreement with those calculated for 3d transition metals referenced to their gas-phase values. Based on these results, it is concluded that the energetically implanted rare gases are trapped at the substitution site in the metal lattice as an isolated atom, and the trapped atoms feel the surrounding metal potential. It is also made clear that the potential affecting the implanted atom is d-like, and the relaxation energy of the implanted rare gas during the photoemission process is almost equal to those of the metal itself. (orig.)

  9. The electronic structure and metal-insulator transitions in vanadium oxides

    International Nuclear Information System (INIS)

    Mossanek, Rodrigo Jose Ochekoski

    2010-01-01

    The electronic structure and metal-insulator transitions in vanadium oxides (SrVO_3, CaVO_3, LaVO_3 and YVO_3) are studied here. The purpose is to show a new interpretation to the spectra which is coherent with the changes across the metal-insulator transition. The main experimental techniques are the X-ray photoemission (PES) and X-ray absorption (XAS) spectroscopies. The spectra are interpreted with cluster model, band structure and atomic multiplet calculations. The presence of charge-transfer satellites in the core-level PES spectra showed that these vanadium oxides cannot be classified in the Mott-Hubbard regime. Further, the valence band and core-level spectra presented a similar behavior across the metal insulator transition. In fact, the structures in the spectra and their changes are determined by the different screening channels present in the metallic or insulating phases. The calculated spectral weight showed that the coherent fluctuations dominate the spectra at the Fermi level and give the metallic character to the SrVO_3 and CaVO_3 compounds. The vanishing of this charge fluctuation and the replacement by the Mott-Hubbard screening in the LaVO_3 and YVO_3 systems is ultimately responsible for the opening of a band gap and the insulating character. Further, the correlation effects are, indeed, important to the occupied electronic structure (coherent and incoherent peaks). On the other hand, the unoccupied electronic structure is dominated by exchange and crystal field effects (t2g and eg sub-bands of majority and minority spins). The optical conductivity spectrum was obtained by convoluting the removal and addition states. It showed that the oxygen states, as well as the crystal field and exchange effects are necessary to correctly compare and interpret the experimental results. Further, a correlation at the charge-transfer region of the core-level and valence band optical spectra was observed, which could be extended to other transition metal oxides

  10. A review on transition-metal mediated synthesis of quinolines

    Indian Academy of Sciences (India)

    Rashmi Sharma

    2018-06-14

    Jun 14, 2018 ... Special Section on Transition Metal Catalyzed Synthesis of Medicinally Relevant Molecules. A review on ...... iron(III) chloride and TEMPO oxoammonium salt as an .... propyl-3-ethylquinoline (209) in presence of platinum.

  11. Trends in elasticity and electronic structure of 5d transition metal diborides: first-principles calculations

    International Nuclear Information System (INIS)

    Hao Xianfeng; Wu Zhijian; Xu Yuanhui; Zhou Defeng; Liu Xiaojuan; Meng Jian

    2007-01-01

    We investigate the cohesive energy, heat of formation, elastic constant and electronic band structure of transition metal diborides TMB 2 (TM = Hf, Ta, W, Re, Os and Ir, Pt) in the Pmmn space group using the ab initio pseudopotential total energy method. Our calculations indicate that there is a relationship between elastic constant and valence electron concentration (VEC): the bulk modulus and shear modulus achieve their maximum when the VEC is in the range of 6.8-7.2. In addition, trends in the elastic constant are well explained in terms of electronic band structure analysis, e.g., occupation of valence electrons in states near the Fermi level, which determines the cohesive energy and elastic properties. The maximum in bulk modulus and shear modulus is attributed to the nearly complete filling of TM d-B p bonding states without filling the antibonding states. On the basis of the observed relationship, we predict that alloying W and Re in the orthorhombic structure OsB 2 might be harder than alloying the Ir element. Indeed, the further calculations confirmed this expectation

  12. Trends in elasticity and electronic structure of 5d transition metal diborides: first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Hao Xianfeng [Key Laboratory of Rare Earth Chemistry and Physics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Wu Zhijian [Key Laboratory of Rare Earth Chemistry and Physics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Xu Yuanhui [School of Biological Engineering, Changchun University of Technology, Changchun 130012 (China); Zhou Defeng [School of Biological Engineering, Changchun University of Technology, Changchun 130012 (China); Liu Xiaojuan [Key Laboratory of Rare Earth Chemistry and Physics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Meng Jian [Key Laboratory of Rare Earth Chemistry and Physics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2007-05-16

    We investigate the cohesive energy, heat of formation, elastic constant and electronic band structure of transition metal diborides TMB{sub 2} (TM = Hf, Ta, W, Re, Os and Ir, Pt) in the Pmmn space group using the ab initio pseudopotential total energy method. Our calculations indicate that there is a relationship between elastic constant and valence electron concentration (VEC): the bulk modulus and shear modulus achieve their maximum when the VEC is in the range of 6.8-7.2. In addition, trends in the elastic constant are well explained in terms of electronic band structure analysis, e.g., occupation of valence electrons in states near the Fermi level, which determines the cohesive energy and elastic properties. The maximum in bulk modulus and shear modulus is attributed to the nearly complete filling of TM d-B p bonding states without filling the antibonding states. On the basis of the observed relationship, we predict that alloying W and Re in the orthorhombic structure OsB{sub 2} might be harder than alloying the Ir element. Indeed, the further calculations confirmed this expectation.

  13. The Half Life of the 53 keV Level in {sup 197}Pt

    Energy Technology Data Exchange (ETDEWEB)

    Malmskog, S G

    1967-02-15

    The half life of the recently proposed 53 keV level in {sup 197}Pt has been measured to 18.5 {+-} 1.5 nsec using the delayed coincidence technique. This level, which is identified with the f{sub 5/2} single particle state, decays directly to the p{sub 1/2} ground state in {sup 197}Pt. The reduced E2 transition probability for this 53 keV transition has been deduced and compared with the results obtained for the corresponding transitions in other Pt, Hg, and Pb isotopes and with the theoretical predictions by Sorensen and by Wahlborn and Martinson.

  14. Metal-insulator phase transition in a VO2 thin film observed with terahertz spectroscopy

    DEFF Research Database (Denmark)

    Jepsen, Peter Uhd; Fischer, Bernd M.; Thoman, Andreas

    2006-01-01

    We investigate the dielectric properties of a thin VO2 film in the terahertz frequency range in the vicinity of the semiconductor-metal phase transition. Phase-sensitive broadband spectroscopy in the frequency region below the phonon bands of VO2 gives insight into the conductive properties...... of the film during the phase transition. We compare our experimental data with models proposed for the evolution of the phase transition. The experimental data show that the phase transition occurs via the gradual growth of metallic domains in the film, and that the dielectric properties of the film...

  15. Biomass transition metal hydrogen-evolution electrocatalysts and electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wei-Fu; Iyer, Shweta; Iyer, Shilpa; Sasaki, Kotaro; Muckerman, James T.; Fujita, Etsuko

    2017-02-28

    A catalytic composition from earth-abundant transition metal salts and biomass is disclosed. A calcined catalytic composition formed from soybean powder and ammonium molybdate is specifically exemplified herein. Methods for making the catalytic composition are disclosed as are electrodes for hydrogen evolution reactions comprising the catalytic composition.

  16. Transition metal borides. Synthesis, characterization and superconducting properties

    International Nuclear Information System (INIS)

    Kayhan, Mehmet

    2013-01-01

    A systematic study was done on the synthesis and superconducting properties of metal rich transition metal borides. Five different binary systems were investigated including the boride systems of niobium, tantalum, molybdenum, tungsten and rhenium. High temperature solid state methods were used in order to synthesize samples of different transition metal borides of the composition M 2 B, MB, M 3 B 2 , MB 2 , and M 2 B 4 . The reactions were carried out in three different furnaces with different sample containers: the electric arc (copper crucible), the high frequency induction furnace (boron nitride, tantalum or glassy carbon crucibles), and the conventional tube furnace (sealed evacuated quartz ampoules). The products obtained were characterized with X-ray powder diffractometry, scanning electron microscopy and energy-dispersive X-ray spectroscopy. Phase analyses and crystal structure refinements using the Rietveld method and based on structure models known from literature were performed. A neutron diffraction measurement was done for W 2 B 4 to allow for a complete crystal structure determination, because of the presence of a heavy element like tungsten and a light element like boron that made it difficult to determine the accurate determination of the boron atom positions and occupancies from X-ray data. A new structure model for W 2 B 4 was proposed. Magnetic measurements in a SQUID magnetometer down to temperatures as low as 1.8 K were performed to several of the products in order to see if the transition metal borides become superconducting at low temperatures, and the results were compared with data from literature. Superconducting properties were found for the following compounds: NbB 2 (T C = 3.5 K), β-MoB (T C = 2.4 K), β-WB (T C = 2.0 K), α-WB (T C = 4.3 K), W 2 B 4 (T C = 5.4 K), Re 7 B 3 (T C = 2.4 K). A relationship between the superconducting properties and the compositional and structural features was discussed for metal diborides. Also it was

  17. Hard X-ray PhotoElectron Spectroscopy of transition metal oxides: Bulk compounds and device-ready metal-oxide interfaces

    International Nuclear Information System (INIS)

    Borgatti, F.; Torelli, P.; Panaccione, G.

    2016-01-01

    Highlights: • Hard X-ray PhotoElectron Spectroscopy (HAXPES) applied to buried interfaces of systems involving Transition Metal Oxides. • Enhanced contribution of the s states at high kinetic energies both for valence and core level spectra. • Sensitivity to chemical changes promoted by electric field across metal-oxide interfaces in resistive switching devices. - Abstract: Photoelectron spectroscopy is one of the most powerful tool to unravel the electronic structure of strongly correlated materials also thanks to the extremely large dynamic range in energy, coupled to high energy resolution that this form of spectroscopy covers. The kinetic energy range typically used for photoelectron experiments corresponds often to a strong surface sensitivity, and this turns out to be a disadvantage for the study of transition metal oxides, systems where structural and electronic reconstruction, different oxidation state, and electronic correlation may significantly vary at the surface. We report here selected Hard X-ray PhotoElectron Spectroscopy (HAXPES) results from transition metal oxides, and from buried interfaces, where we highlight some of the important features that such bulk sensitive technique brings in the analysis of electronic properties of the solids.

  18. Hard X-ray PhotoElectron Spectroscopy of transition metal oxides: Bulk compounds and device-ready metal-oxide interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Borgatti, F., E-mail: francesco.borgatti@cnr.it [Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), Consiglio Nazionale delle Ricerche (CNR), via P. Gobetti 101, Bologna I-40129 (Italy); Torelli, P.; Panaccione, G. [Istituto Officina dei Materiali (IOM)-CNR, Laboratorio TASC, Area Science Park, Trieste I-34149 (Italy)

    2016-04-15

    Highlights: • Hard X-ray PhotoElectron Spectroscopy (HAXPES) applied to buried interfaces of systems involving Transition Metal Oxides. • Enhanced contribution of the s states at high kinetic energies both for valence and core level spectra. • Sensitivity to chemical changes promoted by electric field across metal-oxide interfaces in resistive switching devices. - Abstract: Photoelectron spectroscopy is one of the most powerful tool to unravel the electronic structure of strongly correlated materials also thanks to the extremely large dynamic range in energy, coupled to high energy resolution that this form of spectroscopy covers. The kinetic energy range typically used for photoelectron experiments corresponds often to a strong surface sensitivity, and this turns out to be a disadvantage for the study of transition metal oxides, systems where structural and electronic reconstruction, different oxidation state, and electronic correlation may significantly vary at the surface. We report here selected Hard X-ray PhotoElectron Spectroscopy (HAXPES) results from transition metal oxides, and from buried interfaces, where we highlight some of the important features that such bulk sensitive technique brings in the analysis of electronic properties of the solids.

  19. He–He and He–metal interactions in transition metals from first-principles

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Pengbo, E-mail: zhangpb@dlmu.edu.cn [Department of Physics, Dalian Maritime University, Dalian 116026 (China); Zou, Tingting [Information Science and Technology College, Dalian Maritime University, Dalian 116026 (China); Zhao, Jijun, E-mail: zhaojj@dlut.edu.cn [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024 (China)

    2015-12-15

    We investigated the atomistic mechanism of He–He and He–metal interactions in bcc transition metals (V, Nb, Ta, Cr, Mo, W, and Fe) using first-principles methods. We calculated formation energy and binding energy of He–He pair as function of distance within the host lattices. The strengths of He–He attraction in Cr, Mo, W, and Fe (0.37–1.11 eV) are significantly stronger than those in V, Nb, and Ta (0.06–0.17 eV). Such strong attractions mean that He atoms would spontaneously aggregate inside perfect Cr, Mo, W, and Fe host lattices in absence of defects like vacancies. The most stable configuration of He–He pair is <100> dumbbell in groups VB metals, whereas it adopts close <110> configuration in Cr, Mo, and Fe, and close <111> configuration in W. Overall speaking, the He–He equilibrium distances of 1.51–1.55 Å in the group VIB metals are shorter than 1.65–1.70 Å in the group VB metals. Moreover, the presence of interstitial He significantly facilitates vacancy formation and this effect is more pronounced in the group VIB metals. The present calculations help understand the He-metal/He–He interaction mechanism and make a prediction that He is easier to form He cluster and bubbles in the groups VIB metals and Fe.

  20. Sulfur-tolerant Pt-supported catalysts for benzene hydrogenation. II. Influence of cation exchange level for Pt/MOR-based catalysts

    NARCIS (Netherlands)

    Simon, L.; van Ommen, J.G.; Jentys, A.; Lercher, J.A.

    2001-01-01

    Two reaction pathways are described for the hydrogenation of benzene over Pt/MOR, i.e., (i) on the metal particles and (ii) on Brønsted acid sites of MOR at the boundary to the metal, with atomic hydrogen being dissociated on the metal. The ratio between the two pathways depends on the zeolite acid

  1. Heterostructures of transition metal dichalcogenides

    KAUST Repository

    Amin, Bin

    2015-08-24

    The structural, electronic, optical, and photocatalytic properties of out-of-plane and in-plane heterostructures of transition metal dichalcogenides are investigated by (hybrid) first principles calculations. The out-of-plane heterostructures are found to be indirect band gap semiconductors with type-II band alignment. Direct band gaps can be achieved by moderate tensile strain in specific cases. The excitonic peaks show blueshifts as compared to the parent monolayer systems, whereas redshifts occur when the chalcogen atoms are exchanged along the series S-Se-Te. Strong absorption from infrared to visible light as well as excellent photocatalytic properties can be achieved.

  2. Relationship between the catalytic activity of Pt/alumina and the relaxation process of the photoexcited electrons

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Junji, E-mail: j-itou@mail.nissan.co.jp [Advanced Materials Laboratory, Nissan Research Center, NISSAN MOTOR CO., LTD., 1 Natsushima-cho, Yokosuka-shi, Kanagawa 237-8523 (Japan); Department of Applied Physics and Chemistry, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585 (Japan); Hanaki, Yasunari [Advanced Materials Laboratory, Nissan Research Center, NISSAN MOTOR CO., LTD., 1 Natsushima-cho, Yokosuka-shi, Kanagawa 237-8523 (Japan); Shen, Qing [Department of Applied Physics and Chemistry, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585 (Japan); Department of Engineering Science, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585 (Japan); PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Toyoda, Taro [Department of Applied Physics and Chemistry, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585 (Japan); Department of Engineering Science, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585 (Japan)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer We determined the decay time of photoexcited electrons of Pt/Al{sub 2}O{sub 3}. Black-Right-Pointing-Pointer Faster decay of excited electrons in Pt/Al{sub 2}O{sub 3} leads to its faster oxidation rate. Black-Right-Pointing-Pointer Decreasing excited electron lifetime in Pt/Al{sub 2}O{sub 3} may decrease Pt consumption in catalytic convertors. - Abstract: In order to decrease the consumption of precious metals used in the catalytic converters used in automobiles, we studied the relationship between the catalytic activity of Pt/alumina (Pt/Al{sub 2}O{sub 3}) and the relaxation process of photoexcited electrons. Firstly, we studied the relationship between the size of the Pt particles in Pt/Al{sub 2}O{sub 3} and catalytic performance. Secondly, the relationship between the size of the Pt particles in Pt/Al{sub 2}O{sub 3} and the decay time of the excited electrons was studied using an improved transient grating (TG) technique. The results showed that faster decay of the excited electrons leads to greater oxidation rates. The decay time obtained with the improved TG technique gives an indication of the time that the exited electrons take to return to the ground state. According to studies utilizing FT-IR, one of the processes necessary for quickly generating CO{sub 2} with Pt is that the electron in the Pt-O bond moves to the Pt side and that the Pt{sup +} becomes Pt metal. Thus, the decay time obtained with the improved TG technique corresponds to the process whereby Pt{sup +} returns to Pt metal. Thus, we found that the consumption of precious metals can be reduced by increasing the speed of the decay of the excited electrons.

  3. Long Spin-Relaxation Times in a Transition-Metal Atom in Direct Contact to a Metal Substrate.

    Science.gov (United States)

    Hermenau, Jan; Ternes, Markus; Steinbrecher, Manuel; Wiesendanger, Roland; Wiebe, Jens

    2018-03-14

    Long spin-relaxation times are a prerequisite for the use of spins in data storage or nanospintronics technologies. An atomic-scale solid-state realization of such a system is the spin of a transition-metal atom adsorbed on a suitable substrate. For the case of a metallic substrate, which enables the direct addressing of the spin by conduction electrons, the experimentally measured lifetimes reported to date are on the order of only hundreds of femtoseconds. Here, we show that the spin states of iron atoms adsorbed directly on a conductive platinum substrate have a surprisingly long spin-relaxation time in the nanosecond regime, which is comparable to that of a transition metal atom decoupled from the substrate electrons by a thin decoupling layer. The combination of long spin-relaxation times and strong coupling to conduction electrons implies the possibility to use flexible coupling schemes to process the spin information.

  4. Ethanol electrooxidation on Pt/C and Pd/C catalysts promoted with oxide

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Changwei [Department of Chemistry and Institute of Nanochemistry, Jinan University, Guangzhou 510632 (China); State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Shen, Pei kang [State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Liu, Yingliang [Department of Chemistry and Institute of Nanochemistry, Jinan University, Guangzhou 510632 (China)

    2007-02-10

    This research aims to investigate Pd-based catalysts as a replacement for Pt-based catalysts for ethanol electrooxidation in alkaline media. The results show that Pd/C has a higher catalytic activity and better steady-state behaviour for ethanol oxidation than that of Pt/C. The effect of the addition of CeO{sub 2} and NiO to the Pt/C and Pd/C electrocatalysts on ethanol oxidation is also studied in alkaline media. The electrocatalysts with a weight ratio of noble metal (Pt, Pd) to CeO{sub 2} of 2:1 and a noble metal to NiO ration 6:1 show the highest catalytic activity for ethanol oxidation. The oxide promoted Pt/C and Pd/C electrocatalysts show a higher activity than the commercial E-TEK PtRu/C electrocatalyst for ethanol oxidation in alkaline media. (author)

  5. Transition metal oxide loaded MCM catalysts for photocatalytic ...

    Indian Academy of Sciences (India)

    Transition metal oxide (TiO2, Fe2O3, CoO) loaded MCM-41 and MCM-48 were synthesized by a two-step .... washed consecutively with water and ethanol, and cal- cined at 823 K for 5 .... conversion was observed in 1 h when the reaction was.

  6. Some transition metal complexes derived from mono- and di-ethynyl perfluorobenzenes

    NARCIS (Netherlands)

    Armitt, D.J.; Bruce, M.I.; Gaudio, M.; Zaitseva, N.N.; Skelton, B.W.; White, A.H.; Le Guennic, B.; Halet, J.-F.; Fox, M.A.; Roberts, R.L.; Hartl, F.; Low, P.J.

    2008-01-01

    Transition metal alkynyl complexes containing perfluoroaryl groups have been prepared directly from trimethylsilyl-protected mono- and di-ethynyl perfluoroarenes by simple desilylation/metallation reaction sequences. Reactions between Me3SiC CC6F5 and RuCl(dppe)Cp'[Cp' = Cp, Cp*] in the presence of

  7. First-principles studies on 3d transition metal atom adsorbed twin graphene

    Science.gov (United States)

    Li, Lele; Zhang, Hong; Cheng, Xinlu; Miyamoto, Yoshiyuki

    2018-05-01

    Twin graphene is a new two-dimensional semiconducting carbon allotrope which is proposed recently. The structural, magnetic and electronic properties are investigated for 3d transition metal (TM) atom adsorbed twin graphene by means of GGA+U calculations. The results show most of single 3d transition metal atom except Zn can make twin graphene magnetization. The adsorption of single TM atom can also make the twin graphene systems turn to half metal (V adsorption), half-semiconductor (Fe adsorption) or metal (Sc, Cr, Mn, Co and Cu adsorption). The semiconducting nature still exists for Ti, Ni and Zn adsorption. All the 3d TM adatoms belong to n-type doping for transferring charge to the neighboring C atoms and have strong covalent bond with these C atoms. The influence of Hubbard U value on half-metallic V adsorbed system is also considered. As the U increases, the system can gradually transform from metal to half metal and metal. The effect of the coverage is investigated for two TM atoms (Sc-Fe) adsorption, too. We can know TM atoms adsorbed twin graphene have potentials to be spintronic device and nanomagnets from the results.

  8. Magnetic phase transition induced by electrostatic gating in two-dimensional square metal-organic frameworks

    Science.gov (United States)

    Wang, Yun-Peng; Li, Xiang-Guo; Liu, Shuang-Long; Fry, James N.; Cheng, Hai-Ping

    2018-03-01

    We investigate theoretically magnetism and magnetic phase transitions induced by electrostatic gating of two-dimensional square metal-organic framework compounds. We find that electrostatic gating can induce phase transitions between homogeneous ferromagnetic and various spin-textured antiferromagnetic states. Electronic structure and Wannier function analysis can reveal hybridizations between transition-metal d orbitals and conjugated π orbitals in the organic framework. Mn-containing compounds exhibit a strong d -π hybridization that leads to partially occupied spin-minority bands, in contrast to compounds containing transition-metal ions other than Mn, for which electronic structure around the Fermi energy is only slightly spin split due to weak d -π hybridization and the magnetic interaction is of the Ruderman-Kittel-Kasuya-Yosida type. We use a ferromagnetic Kondo lattice model to understand the phase transition in Mn-containing compounds in terms of carrier density and illuminate the complexity and the potential to control two-dimensional magnetization.

  9. Recent advances in transition-metal-catalyzed intermolecular carbomagnesiation and carbozincation

    Directory of Open Access Journals (Sweden)

    Kei Murakami

    2013-02-01

    Full Text Available Carbomagnesiation and carbozincation reactions are efficient and direct routes to prepare complex and stereodefined organomagnesium and organozinc reagents. However, carbon–carbon unsaturated bonds are generally unreactive toward organomagnesium and organozinc reagents. Thus, transition metals were employed to accomplish the carbometalation involving wide varieties of substrates and reagents. Recent advances of transition-metal-catalyzed carbomagnesiation and carbozincation reactions are reviewed in this article. The contents are separated into five sections: carbomagnesiation and carbozincation of (1 alkynes bearing an electron-withdrawing group; (2 alkynes bearing a directing group; (3 strained cyclopropenes; (4 unactivated alkynes or alkenes; and (5 substrates that have two carbon–carbon unsaturated bonds (allenes, dienes, enynes, or diynes.

  10. Design of Pt/Carbon Xerogel Catalysts for PEM Fuel Cells

    Directory of Open Access Journals (Sweden)

    Nathalie Job

    2015-01-01

    Full Text Available The design of efficient catalytic layers of proton exchange membrane fuel cells (PEMFCs requires the preparation of highly-loaded and highly-dispersed Pt/C catalysts. During the last few years, our work focused on the preparation of Pt/carbon xerogel electrocatalysts, starting from simple impregnation techniques that were further optimized via the strong electrostatic adsorption (SEA method to reach high dispersion and a high metal weight fraction. The SEA method, which consists of the optimization of the precursor/support electrostatic impregnation through an adequate choice of the impregnation pH with regard to the support surface chemistry, leads to very well-dispersed Pt/C samples with a maximum 8 wt.% Pt after drying and reduction under H2. To increase the metal loading, the impregnation-drying-reduction cycle of the SEA method can be repeated several times, either with fresh Pt precursor solution or with the solution recycled from the previous cycle. In each case, a high dispersion (Pt particle size ~3 nm is obtained. Finally, the procedure can be simplified by combination of the SEA technique with dry impregnation, leading to no Pt loss during the procedure.

  11. Transition-metal interactions in aluminum-rich intermetallics

    International Nuclear Information System (INIS)

    Al-Lehyani, Ibrahim; Widom, Mike; Wang, Yang; Moghadam, Nassrin; Stocks, G. Malcolm; Moriarty, John A.

    2001-01-01

    The extension of the first-principles generalized pseudopotential theory (GPT) to transition-metal (TM) aluminides produces pair and many-body interactions that allow efficient calculations of total energies. In aluminum-rich systems treated at the pair-potential level, one practical limitation is a transition-metal overbinding that creates an unrealistic TM-TM attraction at short separations in the absence of balancing many-body contributions. Even with this limitation, the GPT pair potentials have been used effectively in total-energy calculations for Al-TM systems with TM atoms at separations greater than 4 Aa. An additional potential term may be added for systems with shorter TM atom separations, formally folding repulsive contributions of the three- and higher-body interactions into the pair potentials, resulting in structure-dependent TM-TM potentials. Towards this end, we have performed numerical ab initio total-energy calculations using the Vienna ab initio simulation package for an Al-Co-Ni compound in a particular quasicrystalline approximant structure. The results allow us to fit a short-ranged, many-body correction of the form a(r 0 /r) b to the GPT pair potentials for Co-Co, Co-Ni, and Ni-Ni interactions

  12. Physical properties of Pd and Al transition metals and Pd-Al binary metal alloy investigated by using molecular dynamics simulation

    International Nuclear Information System (INIS)

    Coruh, A.; Uludogan, M.; Tomak, M.; Cagin, T.

    2002-01-01

    In this study, physical properties, such as Pair Distribution Function g(r), Structure Factor S(k)''1'',''4, Diffusion Coefficient D''2''.''4, Intermediate Scattering function S(k,t)''3'',''4 and Dynamical Structure Factor S(k,w)''3'',''4 of some transition metals and metal alloys are investigated by using molecular dynamics simulation method. The simulation is specified for Pd, Al transition metals and Pd-Al binary metal alloys in the liquid form for different concentrations and at various temperatures by using Quantum Sutton-Chen (Q-SC) inter atomic potential. Intermediate scattering function and dynamical structure factor are calculated for various values of wave vector k. Results are in good agreement with published data''1'',''3'',''4

  13. Visible light photoactivity of TiO{sub 2} loaded with monometallic (Au or Pt) and bimetallic (Au/Pt) nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Gołąbiewska, Anna, E-mail: annagolabiewska@o2.pl [Department of Chemical Technology, Gdansk University of Technology, 80-233 Gdańsk (Poland); Lisowski, Wojciech [Mazovia Center for Surface Analysis, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw (Poland); Jarek, Marcin; Nowaczyk, Grzegorz [NanoBioMedical Center, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland); Zielińska-Jurek, Anna; Zaleska, Adriana [Department of Chemical Technology, Gdansk University of Technology, 80-233 Gdańsk (Poland)

    2014-10-30

    Graphical abstract: - Highlights: • Au/Pt nanoparticles enhanced TiO{sub 2} photocatalytic activity under visible irradiation. • Higher photoactivity of Au/Pt-TiO{sub 2} resulted from smaller Au/Pt particles. • Intermetallic state of AuPt favors charge transfer between the metals. • TiO{sub 2} obtained by TIP hydrolysis seems to be best matrix for Au/Pt-TiO{sub 2}. - Abstract: TiO{sub 2} modified with monometallic (Au or Pt) and bimetallic (Au/Pt) nanoparticles have been prepared using a water-in-oil microemulsion system (water/AOT/cyclohexane) followed by calcination step. The effect of metal ratio, reducing agent type (NaBH{sub 4} or N{sub 2}H{sub 4}), TiO{sub 2} matrix type (P-25, ST-01, TiO-5, TiO{sub 2} nanotubes or TiO{sub 2} obtained by TIP hydrolysis) as well as calcination temperature (from 350 to 650 °C) were systematically investigated. Obtained photocatalysts were characterized by UV–vis diffuse-reflectance spectroscopy (DRS), BET surface area measurements, scanning transmission microscopy (STEM), X-ray diffraction analysis (XRD), and X-ray photoelectron spectroscopy (XPS). Photocatalytic activity under visible light (λ > 420 nm) has been estimated in phenol degradation reaction in aqueous phase. The results showed that phenol degradation rate under visible light in the presence of TiO{sub 2} loaded with Au/Pt nanoparticles differed from 0.7 to 2.2 μmol dm{sup −3} min{sup −1} for samples prepared using different reducing agent. Sodium borohydride (NaBH{sub 4}) favors formation of smaller Au/Pt nanoparticles and higher amount gold in Au/Pt is in the form of electronegative species (Au{sup δ−}) resulted in higher photoactivity. TiO{sub 2} obtained by TIP hydrolysis in microemulsion system seems to be the best support for Au/Pt nanoparticles from all among investigated matrix. It was also observed that enhancement of calcination temperature from 450 to 650 °C resulted in rapid drop of Au/Pt-TiO{sub 2} photoactivity under visible light

  14. Insulator-metal transition of fluid molecular hydrogen

    International Nuclear Information System (INIS)

    Ross, M.

    1996-01-01

    Dynamically compressed fluid hydrogen shows evidence for metallization at the relatively low pressure of 140 GPa (1.4 Mbar) while experiments on solid hydrogen made in a diamond-anvil cell have failed to detect any evidence for gap closure up to a pressure of 230 GPa (2.3 Mbar). Two possible mechanisms for metal- liclike resistivity are put forward. The first is that as a consequence of the large thermal disorder in the fluid (kT∼0.2 endash 0.3 eV) short-range molecular interactions lead to band tailing that extends the band edge into the gap, resulting in closure at a lower pressure than in the solid. The second mechanism argues that molecular dissociation creates H atoms that behave similar to n-type donors in a heavily doped semiconductor and undergo a nonmetal-metal Mott-type transition. copyright 1996 The American Physical Society

  15. Quantum-based Atomistic Simulation of Transition Metals

    International Nuclear Information System (INIS)

    Moriarty, J A; Benedict, L X; Glosli, J N; Hood, R Q; Orlikowski, D A; Patel, M V; Soderlind, P; Streitz, F H; Tang, M; Yang, L H

    2005-01-01

    First-principles generalized pseudopotential theory (GPT) provides a fundamental basis for transferable multi-ion interatomic potentials in d-electron transition metals within density-functional quantum mechanics. In mid-period bcc metals, where multi-ion angular forces are important to structural properties, simplified model GPT or MGPT potentials have been developed based on canonical d bands to allow analytic forms and large-scale atomistic simulations. Robust, advanced-generation MGPT potentials have now been obtained for Ta and Mo and successfully applied to a wide range of structural, thermodynamic, defect and mechanical properties at both ambient and extreme conditions of pressure and temperature. Recent algorithm improvements have also led to a more general matrix representation of MGPT beyond canonical bands allowing increased accuracy and extension to f-electron actinide metals, an order of magnitude increase in computational speed, and the current development of temperature-dependent potentials

  16. TRANSITION METAL TRANSPORT IN PLANTS AND ASSOCIATED ENDOSYMBIONTS: ARBUSCULAR MYCORRHIZAL FUNGI AND RHIZOBIA

    Directory of Open Access Journals (Sweden)

    Manuel González-Guerrero

    2016-07-01

    Full Text Available Transition metals such as iron, copper, zinc, or molybdenum, are essential nutrients for plants. These elements are involved in almost every biological process, including photosynthesis, tolerance to biotic and abiotic stress, or symbiotic nitrogen fixation. However, plants often grow in soils with limiting metallic oligonutrient bioavailability. Consequently, to ensure the proper metal levels, plants have developed a complex metal uptake and distribution system, that not only involves the plant itself, but also its associated microorganisms. These microorganisms can simply increase metal solubility in soils and making them more accessible to the host plant, as well as induce the plant metal deficiency response, or deliver directly transition elements to cortical cells. Other, instead of providing metals can act as metal sinks, such as endosymbiotic rhizobia in legume nodules that requires relatively large amounts to carry out nitrogen fixation. In this review, we propose to do an overview of metal transport mechanisms in the plant-microbe system, emphasizing the role of arbuscular mycorrhizal fungi and endosymbiotic rhizobia.

  17. Confined Catalysis in the g-C3N4/Pt(111) Interface: Feasible Molecule Intercalation, Tunable Molecule-Metal Interaction, and Enhanced Reaction Activity of CO Oxidation.

    Science.gov (United States)

    Wang, Shujiao; Feng, Yingxin; Yu, Ming'an; Wan, Qiang; Lin, Sen

    2017-09-27

    The deposition of a two-dimensional (2D) atomic nanosheet on a metal surface has been considered as a new route for tuning the molecule-metal interaction and surface reactivity in terms of the confinement effect. In this work, we use first-principles calculations to systematically explore a novel nanospace constructed by placing a 2D graphitic carbon nitride (g-C 3 N 4 ) nanosheet over a Pt(111) surface. The confined catalytic activity in this nanospace is investigated using CO oxidation as a model reaction. With the inherent triangular pores in the g-C 3 N 4 overlayer being taken advantage of, molecules such as CO and O 2 can diffuse to adsorb on the Pt(111) surface underneath the g-C 3 N 4 overlayer. Moreover, the mechanism of intercalation is also elucidated, and the results reveal that the energy barrier depends mainly on the properties of the molecule and the channel. Importantly, the molecule-catalyst interaction can be tuned by the g-C 3 N 4 overlayer, considerably reducing the adsorption energy of CO on Pt(111) and leading to enhanced reactivity in CO oxidation. This work will provide important insight for constructing a promising nanoreactor in which the following is observed: The molecule intercalation is facile; the molecule-metal interaction is efficiently tuned; the metal-catalyzed reaction is promoted.

  18. Determination of Surface Properties of Liquid Transition Metals

    International Nuclear Information System (INIS)

    Korkmaz, S. D.

    2008-01-01

    Certain surface properties of liquid simple metals are reported. Using the expression derived by Gosh and coworkers we investigated the surface entropy of liquid transition metals namely Fe, Co and Ni. We have also computed surface tensions of the metals concerned. The pair distribution functions are calculated from the solution of Ornstein-Zernike integral equation with Rogers-Young closure using the individual version of the electron-ion potential proposed by Fioalhais and coworkers which was originally developed for solid state. The predicted values of surface tension and surface entropy are in very good agreement with available experimental data. The present study results show that the expression derived by Gosh and coworkers is very useful for the surface entropy by using Fioalhais pseudopotential and Rogers-Young closure

  19. Investigation of nano Pt and Pt-based alloys electrocatalysts for direct methanol fuel cells and their properties

    Directory of Open Access Journals (Sweden)

    Chunguang Suo

    2014-03-01

    Full Text Available The electrocatalysts used in micro direct methanol fuel cell (μDMFC, such as Pt/C and Pt alloy/C, prepared by liquid-phase NaBH4 reduction method have been investigated. XC-72 (Cobalt corp. Company, U.S.A is chosen as the activated carrier for the electrocatalysts to keep the catalysts powder in the range of several nanometers. The XRD, SEM, EDX analyses indicated that the catalysts had small particle size in several nanometers, in excellent dispersed phase and the molar ratio of the precious metals was found to be optimal. The performances of the DMFCs using cathodic catalyst with Pt percentage of 30wt% and different anodic catalysts (Pt-Ru, Pt-Ru-Mo were tested. The polarization curves and power density curves of the cells were measured to determine the optimal alloy composition and condition for the electrocatalysts. The results showed that the micro direct methanol fuel cell with 30wt% Pt/C as the cathodic catalyst and n(Pt:n(Ru:n(Mo = 3:2:2 PtRuMo/C as the anodic catalyst at room temperature using 2.0mol/L methanol solution has the best performances.

  20. Relationship between thermal expansion coefficient and glass transition temperature in metallic glasses

    International Nuclear Information System (INIS)

    Kato, H.; Chen, H.-S.; Inoue, A.

    2008-01-01

    The thermal expansion coefficients of 13 metallic glasses were measured using a thermo-mechanical analyser. A unique correlation was found between the linear thermal expansion coefficient and the glass transition temperature-their product is nearly constant ∼8.24 x 10 -3 . If one assumes the Debye expression for thermal activation, the total linear thermal expansion up to glass transition temperature (T g ) is reduced to 6 x 10 -3 , nearly 25% of that at the fusion of pure metals

  1. On the valence state of Yb and Ce in transition metal intermetallic compounds

    International Nuclear Information System (INIS)

    Boer, F.R. de; Dijkman, W.H.; Mattens, W.C.M.

    1979-01-01

    In the pure state Yb is a divalent metal, similar to Ca; in alloys it can become trivalent like the majority of the rare earth metals. Using a value of 38 kJ (mol Yb) -1 for the energy difference between divalent and trivalent Yb metal and using model calculations for the heat of formation of intermetallic compounds, the authors are able to account for the existing information on the valence state of Yb in transition metal compounds. A similar analysis of compounds of Ce with transition metals shows that a model in which the 4f electron is treated as a core electron, i.e. being absent in the tetravalent modification of Ce and present as a fully localized electron in trivalent Ce, does not apply. (Auth.)

  2. Rare-earth transition-metal intermetallics: Structure-bonding-property relationships

    Energy Technology Data Exchange (ETDEWEB)

    Han, M. K. [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    The explorations of rare-earth, transition metal intermetallics have resulted in the synthesis and characterization, and electronic structure investigation, as well as understanding the structure-bonding property relationships. The work has presented the following results: (1) Understanding the relationship between compositions and properties in LaFe13-xSix system: A detailed structural and theoretical investigation provided the understanding of the role of a third element on stabilizing the structure and controlling the transformation of cubic NaZn{sub 13}-type structures to the tetragonal derivative, as well as the relationship between the structures and properties. (2) Synthesis of new ternary rare-earth iron silicides Re2-xFe4Si14-y and proposed superstructure: This compound offers complex structural challenges such as fractional occupancies and their ordering in superstructure. (3) Electronic structure calculation of FeSi2: This shows that the metal-semiconductor phase transition depends on the structure. The mechanism of band gap opening is described in terms of bonding and structural distortion. This result shows that the electronic structure calculations are an essential tool for understanding the relationship between structure and chemical bonding in these compounds. (4) Synthesis of new ternary rare-earth Zinc aluminides Tb3Zn3.6Al7.4: Partially ordered structure of Tb3Zn3.6Al7.4 compound provides new insights into the formation, composition and structure of rare-earth transition-metal intermetallics. Electronic structure calculations attribute the observed composition to optimizing metal-metal bonding in the electronegative (Zn, Al) framework, while the specific ordering is strongly influenced by specific orbital interactions. (5) Synthesis of new structure type of Zn39(CrxAl1-x)81

  3. Rare-Earth Transition-Metal Intermetallics: Structure-bonding-Property Relationships

    Energy Technology Data Exchange (ETDEWEB)

    Han, Mi-Kyung [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    Our explorations of rare-earth, transition metal intermetallics have resulted in the synthesis and characterization, and electronic structure investigation, as well as understanding the structure-bonding-property relationships. Our work has presented the following results: (1) Understanding the relationship between compositions and properties in LaFe13-xSix system: A detailed structural and theoretical investigation provided the understanding of the role of a third element on stabilizing the structure and controlling the transformation of cubic NaZn13-type structures to the tetragonal derivative, as well as the relationship between the structures and properties. (2) Synthesis of new ternary rare-earth iron silicides RE2-xFe4Si14-y and proposed superstructure: This compound offers complex structural challenges such as fractional occupancies and their ordering in superstructure. (3) Electronic structure calculation of FeSi2: This shows that the metal-semiconductor phase transition depends on the structure. The mechanism of band gap opening is described in terms of bonding and structural distortion. This result shows that the electronic structure calculations are an essential tool for understanding the relationship between structure and chemical bonding in these compounds. (4) Synthesis of new ternary rare-earth Zinc aluminides Tb3Zn3.6Al7.4: Partially ordered structure of Tb3.6Zn13-xAl7.4 compound provides new insights into the formation, composition and structure of rare-earth transition-metal intermetallics. Electronic structure calculations attribute the observed composition to optimizing metal-metal bonding in the electronegative (Zn, Al) framework, while the specific ordering is strongly influenced by specific orbital interactions. (5) Synthesis of new structure type of Zn39(CrxAl1-x

  4. Platinum(0-1,3-divinyl-1,1,3,3-tetramethyldisiloxane Complex as a Pt Source for Pt/SnO2 Catalyst

    Directory of Open Access Journals (Sweden)

    Agnieszka Martyla

    2014-01-01

    Full Text Available This paper presents new preparation method of Pt/SnO2, an important catalytic system. Besides of its application as a heterogenic industrial catalyst, it is also used as a catalyst in electrochemical processes, especially in fuel cells. Platinum is commonly used as an anode catalyst in low temperature fuel cells, fuelled with alcohols of low molecular weight such as methanol. Platinum(0-1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex was used as a precursor of metallic phase. The aim of the research was to obtain a highly active in electrochemical system Pt/SnO2 catalyst with low metal load. Considering small size of Pt crystallites, it should result in high activity of Pt/SnO2 system. The presented method of SnO2 synthesis allows for obtaining support consisting of nanoparticles. The effect of the thermal treatment on activity of Pt/SnO2 gel was demonstrated. The system properties were investigated using TEM, FTIR (ATR, and XRD techniques to describe its thermal structural evolution. The results showed two electrocatalytical activity peaks for drying at a temperature of 430 K and above 650 K.

  5. Optical properties of bcc d-transition metals

    Energy Technology Data Exchange (ETDEWEB)

    Kirillova, M M; Nomerovannaya, L V [AN SSSR, Sverdlovsk. Inst. Fiziki Metallov

    1978-04-01

    The optical properties of a niobium monocrystal in the spectral range of h..nu..=4.66 - 0.069 eV have been studied using the polarimetry method. The obtained results have been discussed on the basis of the zone calculations of the density of electron states for Nb and other isostructural metals of the 5 and 6 groups (Y, Ta, Cr, Mo, W). The existence of an intense low energy interband absorption in niobium in the range of h..nu..<0.1 eV is shown experimentally. The influence of the gapless and low-energy interzone transitions on the evaluations of the plasma and relaxation frequencies of conductivity electrons of d metals is discussed.

  6. Magnetic properties of zigzag (0,9 GaAs nanotube doped with 3d transition metals

    Directory of Open Access Journals (Sweden)

    R Fathi

    2016-06-01

    Full Text Available of 3d transition metals (Sc, Ti, Cr, Mn , Fe, Co, Ni in both far and close situations were studied based on spin polarised density functional theory using the generalized gradient approximation (LDA with SIESTA code. The electronic structures show that zigzag (0,9 GaAs nanotubes are non-magnetic semiconductors with direct band gap. It was revealed that doping of 11.11 % Fe and Mn concentrations substituted in Ga sites in ferromagnetic phase in far situation and Cr sites in ferromagnetic phase in near situation introduces half metallic behavior with %100 spin polarization. The unique structure of spin polarised energy levels is primarily attributed to strong hybridization of 3d transition metal and its nearest-neighbor As-4p orbitals. The results of this study can be useful for empirical studies on diluted magnetic semiconductors (DMSs and systemic investigation in 3d transitional metals. We suggest that GaAs nanotubes doped by transition metals would have a potential application as a spin polarised electron source for spintronic devices in the future.

  7. Studies of hyperfine magnetic fields in transition metals by radioactive ion implantation

    International Nuclear Information System (INIS)

    Kawase, Yoichi; Uehara, Shin-ichi; Nasu, Saburo; Ni Xinbo.

    1994-01-01

    In order to investigate hyperfine magnetic fields in transition metals by a time-differential perturbed angular correlation (TDPAC) technique, radioactive probes of 140 Cs obtained by KUR-ISOL have been implanted on transition metals of Fe, Ni and Co. Lamor precessions of 140 Ce used as a probe nucleus have been observed clearly and the hyperfine fields have been determined precisely corresponding to implanted sites in host metal. The irradiation effects caused by implantation have been examined by annealing the irradiated specimen at about 723 K. Some of the Lamor precessions have disappeared by the annealing. Discussions have been made on the occupied sites after implantation and the recovery process of induced damages by annealing. (author)

  8. Standard entropy for borides of non-transition metals, rare-earth metals and actinides

    International Nuclear Information System (INIS)

    Borovikova, M.S.

    1986-01-01

    Using as initial data the most reliable values of standard entropy for 10 compounds, the entropies for 40 compounds of non-transition metals, rare-earth metals and actinides have been evaluated by the method of comparative calculation. Taking into account the features of boride structures, two methods, i.e. additive and proportional, have been selected for the entropy calculations. For the range of borides the entropies were calculated from the linear relation of the latter to the number of boron atoms in the boride. For borides of rare-earth metals allowance has been made for magnetic contributions in conformity with the multiplicity of the corresponding ions. Insignificant differences in the electronic contributions to the entropy for borides and metals have been neglected. For dodecaborides only the additive method has been used. This is specified by the most rigid network that provides the same contribution to compound entropy. (orig.)

  9. Obtaining and characterizing the binary compound Zr3Pt

    International Nuclear Information System (INIS)

    Tanoni, Diego; Arico, Sergio F; Alonso, Paula R

    2006-01-01

    The equilibrium phases in the Zr - Pt binary system are not fully defined. Experiences carried out from 0% to 50% at. Pt in the equilibrium diagram of Zr-Pt phases in 2001 revealed the presence of the intermetallic compounds Zr 2 Pt, Zr 5 Pt 3 , ZrPt (already previously identified by other authors) and a compound of 25% composition at Pt with an unidentified crystalline structure. This experimental work aims to fill out the information on this compound by characterizing its crystallography. An alloy was produced in the binary system Zr-Pt with a composition close to the stoichiometry by casting in an arc furnace, and was studied by optic and electronic metallography. The identification and crystallographic characterization of the phase is based on measurements of composition in electronic microwave and on analysis of spectrums obtained by X-ray diffraction. The results are presented, showing the presence in the cast structure of the solid solution zircon phases (hexagonal) and of the inter-metallic compound Zr 5 Pt 3 . These two phases were identified in the X-ray diffraction diagrams as well as the presence of other reflections that are associated with the inter-metallic Zr 3 Pt. The measurements of composition consistently reveal the presence of a phase of 25%at Pt composition. The structure's morphology shown in metallographies reveals the occurrence of a eutectic type transformation during cooling. We conclude that the formation of the phase sought in a composition 25 % at Pt should occur at temperatures below the eutectic transformation, and could be a peritectoid formation as was previously proposed. Therefore, the sample needs to be homogenized with thermal treatments that favor the formation and stabilization of the compound (CW)

  10. Transition-Metal-Controlled Inorganic Ligand-Supported Non-Precious Metal Catalysts for the Aerobic Oxidation of Amines to Imines.

    Science.gov (United States)

    Yu, Han; Zhai, Yongyan; Dai, Guoyong; Ru, Shi; Han, Sheng; Wei, Yongge

    2017-10-09

    Most state-of-art transition-metal catalysts usually require organic ligands, which are essential for controlling the reactivity and selectivity of reactions catalyzed by transition metals. However, organic ligands often suffer from severe problems including cost, toxicity, air/moisture sensitivity, and being commercially unavailable. Herein, we show a simple, mild, and efficient aerobic oxidation procedure of amines using inorganic ligand-supported non-precious metal catalysts 1, (NH 4 ) n [MMo 6 O 18 (OH) 6 ] (M=Cu 2+ ; Fe 3+ ; Co 3+ ; Ni 2+ ; Zn 2+ , n=3 or 4), synthesized by a simple one-step method in water at 100 °C, demonstrating that the catalytic activity and selectivity can be significantly improved by changing the central metal atom. In the presence of these catalysts, the catalytic oxidation of primary and secondary amines, as well as the coupling of alcohols and amines, can smoothly proceed to afford various imines with O 2 (1 atm) as the sole oxidant. In particular, the catalysts 1 have transition-metal ion core, and the planar arrangement of the six Mo VI centers at their highest oxidation states around the central heterometal can greatly enhance the Lewis acidity of catalytically active sites, and also enable the electrons in the center to delocalize onto the six edge-sharing MO 6 units, in the same way as ligands in traditional organometallic complexes. The versatility of this methodology maybe opens a path to catalytic oxidation through inorganic ligand-coordinated metal catalysis. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Reactivity of Dinitrogen Bound to Mid- and Late-Transition-Metal Centers

    NARCIS (Netherlands)

    Khoenkhoen, N.; de Bruin, B.; Reek, J.N.H.; Dzik, W.I.

    2015-01-01

    This review presents a comprehensive overview of the reactions of N-2 within the coordination sphere of transition metals of groups 6 to 9. Many of these metals mediate the reaction of N-2 with protons under reductive conditions, which can lead to the (catalytic) formation of ammonia or hydrazine,

  12. Mixed-ligand Pt(II) dithione-dithiolato complexes: influence of the dicyanobenzodithiolato ligand on the second-order NLO properties.

    Science.gov (United States)

    Espa, Davide; Pilia, Luca; Marchiò, Luciano; Artizzu, Flavia; Serpe, Angela; Mercuri, Maria Laura; Simão, Dulce; Almeida, Manuel; Pizzotti, Maddalena; Tessore, Francesca; Deplano, Paola

    2012-03-28

    The mixed-ligand dithiolene complex [Pt(Bz(2)pipdt)(dcbdt)] (1) bearing the two ligands Bz(2)pipdt = 1,4-dibenzyl-piperazine-3,2-dithione and dcbdt = dicyanobenzodithiolato, has been synthesized, characterized and studied to evaluate its second-order optical nonlinearity. The dithione/dithiolato character of the two ligands gives rise to an asymmetric distribution of the charge in the molecule. This is reflected by structural data showing that in the C(2)S(2)PtS(2)C(2) dithiolene core the four sulfur atoms define a square-planar coordination environment of the metal where the Pt-S bond distances involving the two ligands are similar, while the C-S bond distances in the C(2)S(2) units exhibit a significant difference in Bz(2)pipdt (dithione) and dcbdt (dithiolato). 1 shows a moderately strong absorption peak in the visible region, which can be related to a HOMO-LUMO transition, where the dcbdt ligand (dithiolato) contributes mostly to the HOMO, and the Bz(2)pipdt one (dithione) mostly to the LUMO. Thus this transition has ligand-to-ligand charge transfer (CT) character with some contribution of the metal and undergoes negative solvatochromism and molecular quadratic optical nonlinearity (μβ(0) = -1296 × 10(-48) esu), which was determined by the EFISH (electric-field-induced second-harmonic generation) technique and compared with the values of similar complexes on varying the dithiolato ligand (mnt = maleonitriledithiolato, dmit = 2-thioxo-1,3-dithiole-4,5-dithiolato). Theoretical calculations help to elucidate the role of the dithiolato ligands in affecting the molecular quadratic optical nonlinearity of these complexes.

  13. Superconductivity Series in Transition Metal Dichalcogenides by Ionic Gating

    NARCIS (Netherlands)

    Shi, Wu; Ye, Jianting; Zhang, Yijin; Suzuki, Ryuji; Yoshida, Masaro; Miyazaki, Jun; Inoue, Naoko; Saito, Yu; Iwasa, Yoshihiro

    2015-01-01

    Functionalities of two-dimensional (2D) crystals based on semiconducting transition metal dichalcogenides (TMDs) have now stemmed from simple field effect transistors (FETs) to a variety of electronic and opto-valleytronic devices, and even to superconductivity. Among them, superconductivity is the

  14. Vibrational properties of vacancy in bcc transition metals using ...

    Indian Academy of Sciences (India)

    The calculated results of the formation entropy of the vacancy compared well with other available ... for Fe, Mo and W transition metals employing a third-neighbour model. ... For the atomic electron density we have chosen a power law: f (r) = fe.

  15. Adsorption and migration of single metal atoms on the calcite (10.4) surface

    International Nuclear Information System (INIS)

    Pinto, H; Haapasilta, V; Lokhandwala, M; Foster, Adam S; Öberg, S

    2017-01-01

    Transition metal atoms are one of the key ingredients in the formation of functional 2D metal organic coordination networks. Additionally, the co-deposition of metal atoms can play an important role in anchoring the molecular structures to the surface at room temperature. To gain control of such processes requires the understanding of adsorption and diffusion properties of the different transition metals on the target surface. Here, we used density functional theory to investigate the adsorption of 3 d (Ti, Cr, Fe, Ni, Cu), 4 d (Zr, Nb, Mo, Pd, Ag) and 5 d (Hf, W, Ir, Pt, Au) transition metal adatoms on the insulating calcite (10.4) surface. We identified the most stable adsorption sites and calculated binding energies and corresponding ground state structures. We find that the preferential adsorption sites are the Ca–Ca bridge sites. Apart from the Cr, Mo, Cu, Ag and Au all the studied metals bind strongly to the calcite surface. The calculated migration barriers for the representative Ag and Fe atoms indicates that the metal adatoms are mobile on the calcite surface at room temperature. Bader analysis suggests that there is no significant charge transfer between the metal adatoms and the calcite surface. (paper)

  16. Upgrading of heavy crude oil with supported and unsupported transition metals

    Energy Technology Data Exchange (ETDEWEB)

    Nares, H.R.; Schacht-Hernandez, P.; Cabrera-Reyes, M.C.; Ramirez-Garnica, M.; Cazarez-Candia, O. [Instituto Mexicano del Petroleo, Atepehuacan (Mexico)

    2006-07-01

    Heavy crude oil presents many problems such as difficulty in transportation, low processing capacity in refineries, and low mobility through the reservoir due to high viscosity which affects the index of productivity of the wells. Because of these challenges, it is necessary to enhance heavy crude oil, both aboveground and underground. The effects of several metallic oxides used to upgrade heavy crude oil properties were examined in order to increase the mobility of reservoir oil by reducing viscosity and improving the quality of the oil. This can be accomplished by reducing the asphaltene and sulfur contents and increasing the American Petroleum Institute (API) gravity using transition metal supported in alumina and unsupported from transition metals derived from either acetylacetonate or alkylhexanoate in liquid phase homogeneously mixed with heavy crude oil as well as metal transition supported in alumina. KU-H heavy crude oil from the Golf of Mexico was studied. The results were obtained by Simulated Distillation and True Boiling Point (TBP). It was concluded that the use of crude oil thermal hydrocracking allowed the API gravity to increase and considerably reduce the viscosity. As a result, the productivity index in wells was increased. However there is a high formation of coke that could damage the conductivity of the rock and then reduce the potential of oil recovery. 27 refs., 3 tabs., 5 figs.

  17. Ferromagnetic semiconductor-metal transition in heterostructures of electron doped europium monoxide

    Energy Technology Data Exchange (ETDEWEB)

    Stollenwerk, Tobias

    2013-09-15

    In the present work, we develop and solve a self-consistent theory for the description of the simultaneous ferromagnetic semiconductor-metal transition in electron doped Europium monoxide. We investigate two different types of electron doping, Gadolinium impurities and Oxygen vacancies. Besides the conduction band occupation, we can identify low lying spin fluctuations on magnetic impurities as the driving force behind the doping induced enhancement of the Curie temperature. Moreover, we predict the signatures of these magnetic impurities in the spectra of scanning tunneling microscope experiments. By extending the theory to allow for inhomogeneities in one spatial direction, we are able to investigate thin films and heterostructures of Gadolinium doped Europium monoxide. Here, we are able to reproduce the experimentally observed decrease of the Curie temperature with the film thickness. This behavior is attributed to missing coupling partners of the localized 4f moments as well as to an electron depletion at the surface which leads to a reduction of the number of itinerant electrons. By investigating the influence of a metallic substrate onto the phase transition in Gadolinium doped Europium monoxide, we find that the Curie temperature can be increased up to 20%. However, as we show, the underlying mechanism of metal-interface induced charge carrier accumulation is inextricably connected to a suppression of the semiconductor-metal transition.

  18. Ferromagnetic semiconductor-metal transition in heterostructures of electron doped europium monoxide

    International Nuclear Information System (INIS)

    Stollenwerk, Tobias

    2013-09-01

    In the present work, we develop and solve a self-consistent theory for the description of the simultaneous ferromagnetic semiconductor-metal transition in electron doped Europium monoxide. We investigate two different types of electron doping, Gadolinium impurities and Oxygen vacancies. Besides the conduction band occupation, we can identify low lying spin fluctuations on magnetic impurities as the driving force behind the doping induced enhancement of the Curie temperature. Moreover, we predict the signatures of these magnetic impurities in the spectra of scanning tunneling microscope experiments. By extending the theory to allow for inhomogeneities in one spatial direction, we are able to investigate thin films and heterostructures of Gadolinium doped Europium monoxide. Here, we are able to reproduce the experimentally observed decrease of the Curie temperature with the film thickness. This behavior is attributed to missing coupling partners of the localized 4f moments as well as to an electron depletion at the surface which leads to a reduction of the number of itinerant electrons. By investigating the influence of a metallic substrate onto the phase transition in Gadolinium doped Europium monoxide, we find that the Curie temperature can be increased up to 20%. However, as we show, the underlying mechanism of metal-interface induced charge carrier accumulation is inextricably connected to a suppression of the semiconductor-metal transition.

  19. Observing grain boundaries in CVD-grown monolayer transition metal dichalcogenides

    KAUST Repository

    Ly, Thuchue; Chiu, Ming-Hui; Li, Mingyang; Zhao, Jiong; Perello, David J.; Cichocka, Magdalena Ola; Oh, Hyemin; Chae, Sanghoon; Jeong, Hyeyun; Yao, Fei; Li, Lain-Jong; Lee, Young Hee

    2014-01-01

    Two-dimensional monolayer transition metal dichalcogenides (TMdCs), driven by graphene science, revisit optical and electronic properties, which are markedly different from bulk characteristics. These properties are easily modified due

  20. PtSi Clustering in Silicon Probed by Transport Spectroscopy

    Directory of Open Access Journals (Sweden)

    Massimo Mongillo

    2013-12-01

    Full Text Available Metal silicides formed by means of thermal annealing processes are employed as contact materials in microelectronics. Control of the structure of silicide/silicon interfaces becomes a critical issue when the characteristic size of the device is reduced below a few tens of nanometers. Here, we report on silicide clustering occurring within the channel of PtSi/Si/PtSi Schottky-barrier transistors. This phenomenon is investigated through atomistic simulations and low-temperature resonant-tunneling spectroscopy. Our results provide evidence for the segregation of a PtSi cluster with a diameter of a few nanometers from the silicide contact. The cluster acts as a metallic quantum dot giving rise to distinct signatures of quantum transport through its discrete energy states.

  1. Effects of annealing temperature and duration on the morphological and optical evolution of self-assembled Pt nanostructures on c-plane sapphire.

    Science.gov (United States)

    Sui, Mao; Li, Ming-Yu; Kunwar, Sundar; Pandey, Puran; Zhang, Quanzhen; Lee, Jihoon

    2017-01-01

    Metallic nanostructures (NSs) have been widely adapted in various applications and their physical, chemical, optical and catalytic properties are strongly dependent on their surface morphologies. In this work, the morphological and optical evolution of self-assembled Pt nanostructures on c-plane sapphire (0001) is demonstrated by the control of annealing temperature and dwelling duration with the distinct thickness of Pt films. The formation of Pt NSs is led by the surface diffusion, agglomeration and surface and interface energy minimization of Pt thin films, which relies on the growth parameters such as system temperature, film thickness and annealing duration. The Pt layer of 10 nm shows the formation of overlaying NPs below 650°C and isolated Pt nanoparticles above 700°C based on the enhanced surface diffusion and Volmer-Weber growth model whereas larger wiggly nanostructures are formed with 20 nm thick Pt layers based on the coalescence growth model. The morphologies of Pt nanostructures demonstrate a sharp distinction depending on the growth parameters applied. By the control of dwelling duration, the gradual transition from dense Pt nanoparticles to networks-like and large clusters is observed as correlated to the Rayleigh instability and Ostwald ripening. The various Pt NSs show a significant distinction in the reflectance spectra depending on the morphology evolution: i.e. the enhancement in UV-visible and NIR regions and the related optical properties are discussed in conjunction with the Pt NSs morphology and the surface coverage.

  2. Control of interlayer physics in 2H transition metal dichalcogenides

    Science.gov (United States)

    Wang, Kuang-Chung; Stanev, Teodor K.; Valencia, Daniel; Charles, James; Henning, Alex; Sangwan, Vinod K.; Lahiri, Aritra; Mejia, Daniel; Sarangapani, Prasad; Povolotskyi, Michael; Afzalian, Aryan; Maassen, Jesse; Klimeck, Gerhard; Hersam, Mark C.; Lauhon, Lincoln J.; Stern, Nathaniel P.; Kubis, Tillmann

    2017-12-01

    It is assessed in detail both experimentally and theoretically how the interlayer coupling of transition metal dichalcogenides controls the electronic properties of the respective devices. Gated transition metal dichalcogenide structures show electrons and holes to either localize in individual monolayers, or delocalize beyond multiple layers—depending on the balance between spin-orbit interaction and interlayer hopping. This balance depends on the layer thickness, momentum space symmetry points, and applied gate fields. The design range of this balance, the effective Fermi levels, and all relevant effective masses is analyzed in great detail. A good quantitative agreement of predictions and measurements of the quantum confined Stark effect in gated MoS2 systems unveils intralayer excitons as the major source for the observed photoluminescence.

  3. First-principles study of hydrogen diffusion in transition metal Rhodium

    International Nuclear Information System (INIS)

    Bao, Wulijibilige; Cui, Xin; Wang, Zhi-Ping

    2015-01-01

    In this study, the diffuse pattern and path of hydrogen in transition metal rhodium are investigated by the first-principles calculations. Density functional theory is used to calculate the system energies of hydrogen atom occupying different positions in rhodium crystal lattice. The results indicate that the most stable position of hydrogen atom in rhodium crystal lattice locates at the octahedral interstice, and the tetrahedral interstice is the second stable site. The activation barrier energy for the diffusion of atomic hydrogen in transition metal rhodium is quantified by determining the most favorable path, i.e., the minimum-energy pathway for diffusion, that is the indirect octahedral-tetrahedral-octahedral (O-T-O) pathway, and the activation energy is 0.8345eV

  4. Synthesis of Binary Magnesium-Transition Metal Oxides via Inverse Coprecipitation

    Science.gov (United States)

    Yagi, Shunsuke; Ichikawa, Yuya; Yamada, Ikuya; Doi, Takayuki; Ichitsubo, Tetsu; Matsubara, Eiichiro

    2013-02-01

    Synthesis of binary magnesium-transition metal oxides, MgM2O4 (M: Cr, Mn, Fe, Co) and MgNiO2, was performed by calcination at relatively low temperatures of 500 and 750 °C for 24 h through inverse coprecipitation of carbonate hydroxide precursors. The important roles of the precipitation agent, sodium carbonate, were clarified by considering equilibria in an aqueous solution. The structure parameters of the obtained binary magnesium-transition metal oxide powders, specifically the occupancy of atomic sites, were evaluated from synchrotron X-ray diffraction (XRD) profiles by Rietveld refinement in addition to the magnetic properties at room temperature. The present work provides general guidelines for low-cost and high-volume synthesis of complex oxides, which are easily decomposed at high temperatures.

  5. Effect of the structure of Pt-Ru/C particles on COad monolayer vibrational properties and electrooxidation kinetics

    International Nuclear Information System (INIS)

    Maillard, Frederic; Bonnefont, Antoine; Chatenet, Marian; Guetaz, Laure; Doisneau-Cottignies, Beatrice; Roussel, Herve; Stimming, Ulrich

    2007-01-01

    In this paper, we combined FTIR spectroscopy and CO ad stripping voltammetry to investigate CO ad adsorption and electrooxidation on Pt-Ru/C nanoparticles. The Pt:Ru elemental composition and the metal loading were determined by ICP-AES. The X-ray diffraction patterns of the Pt-Ru/C indicated formation of a Pt-Ru (fcc) alloy. HREM images revealed an increase in the fraction of agglomerated Pt-Ru/C particles with increasing the metal loading and showed that agglomerated Pt-Ru/C nanoparticles present structural defects such as twins or grain boundaries. In addition, isolated Pt-Ru/C nanoparticles have similar mean particle size (ca. 2.5 nm) and particle size distributions whatever the metal loading. Therefore, we could determine precisely the effect of particle agglomeration on the CO ad vibrational properties and electrooxidation kinetics. FTIR measurements revealed a main CO ad stretching band at ca. ν-bar CO L =2030cm -1 , which we ascribed to a-top CO ad on Pt domains electronically modified by the presence of Ru. As the metal loading increased, the position of this band was blue shifted by ca. 5 cm -1 and a shoulder around 2005 cm -1 developed, which was ascribed to a-top CO ad on Ru domains. The reason for this was suggested to be the increasing size of Ru domains on agglomerated Pt-Ru/C particles, which lifts dipole-dipole coupling and allows two vibrational features to be observed (CO ad /Ru, CO ad /Pt). This is evidence that FTIR spectroscopy can be used to probe small chemical fluctuations of the Pt-Ru/C surface. Finally, we comment on the CO ad electrooxidation kinetics. We observed that CO ad was converted more easily into CO 2 as the metal loading, i.e. the fraction of agglomerated Pt-Ru/C nanoparticles, increased

  6. Design and assembly of ternary Pt/Re/SnO2 NPs by controlling the zeta potential of individual Pt, Re, and SnO2 NPs

    Science.gov (United States)

    Drzymała, Elżbieta; Gruzeł, Grzegorz; Pajor-Świerzy, Anna; Depciuch, Joanna; Socha, Robert; Kowal, Andrzej; Warszyński, Piotr; Parlinska-Wojtan, Magdalena

    2018-05-01

    In this study Pt, Re, and SnO2 nanoparticles (NPs) were combined in a controlled manner into binary and ternary combinations for a possible application for ethanol oxidation. For this purpose, zeta potentials as a function of the pH of the individual NPs solutions were measured. In order to successfully combine the NPs into Pt/SnO2 and Re/SnO2 NPs, the solutions were mixed together at a pH guaranteeing opposite zeta potentials of the metal and oxide NPs. The individually synthesized NPs and their binary/ternary combinations were characterized by Fourier transform infrared spectroscopy (FTIR) and scanning transmission electron microscopy (STEM) combined with energy dispersive X-ray spectroscopy (EDS) analysis. FTIR and XPS spectroscopy showed that the individually synthesized Pt and Re NPs are metallic and the Sn component was oxidized to SnO2. STEM showed that all NPs are well crystallized and the sizes of the Pt, Re, and SnO2 NPs were 2.2, 1.0, and 3.4 nm, respectively. Moreover, EDS analysis confirmed the successful formation of binary Pt/SnO2 and Re/SnO2 NP, as well as ternary Pt/Re/SnO2 NP combinations. This study shows that by controlling the zeta potential of individual metal and oxide NPs, it is possible to assemble them into binary and ternary combinations. [Figure not available: see fulltext.

  7. Coherent Control of Nanoscale Ballistic Currents in Transition Metal Dichalcogenide ReS2.

    Science.gov (United States)

    Cui, Qiannan; Zhao, Hui

    2015-04-28

    Transition metal dichalcogenides are predicted to outperform traditional semiconductors in ballistic devices with nanoscale channel lengths. So far, experimental studies on charge transport in transition metal dichalcogenides are limited to the diffusive regime. Here we show, using ReS2 as an example, all-optical injection, detection, and coherent control of ballistic currents. By utilizing quantum interference between one-photon and two-photon interband transition pathways, ballistic currents are injected in ReS2 thin film samples by a pair of femtosecond laser pulses. We find that the current decays on an ultrafast time scale, resulting in an electron transport of only a fraction of one nanometer. Following the relaxation of the initially injected momentum, backward motion of the electrons for about 1 ps is observed, driven by the Coulomb force from the oppositely moved holes. We also show that the injected current can be controlled by the phase of the laser pulses. These results demonstrate a new platform to study ballistic transport of nonequilibrium carriers in transition metal dichalcogenides.

  8. Brittle-to-Ductile Transition in Metallic Glass Nanowires.

    Science.gov (United States)

    Şopu, D; Foroughi, A; Stoica, M; Eckert, J

    2016-07-13

    When reducing the size of metallic glass samples down to the nanoscale regime, experimental studies on the plasticity under uniaxial tension show a wide range of failure modes ranging from brittle to ductile ones. Simulations on the deformation behavior of nanoscaled metallic glasses report an unusual extended strain softening and are not able to reproduce the brittle-like fracture deformation as found in experiments. Using large-scale molecular dynamics simulations we provide an atomistic understanding of the deformation mechanisms of metallic glass nanowires and differentiate the extrinsic size effects and aspect ratio contribution to plasticity. A model for predicting the critical nanowire aspect ratio for the ductile-to-brittle transition is developed. Furthermore, the structure of brittle nanowires can be tuned to a softer phase characterized by a defective short-range order and an excess free volume upon systematic structural rejuvenation, leading to enhanced tensile ductility. The presented results shed light on the fundamental deformation mechanisms of nanoscaled metallic glasses and demarcate ductile and catastrophic failure.

  9. Transition metal borides. Synthesis, characterization and superconducting properties

    Energy Technology Data Exchange (ETDEWEB)

    Kayhan, Mehmet

    2013-07-12

    A systematic study was done on the synthesis and superconducting properties of metal rich transition metal borides. Five different binary systems were investigated including the boride systems of niobium, tantalum, molybdenum, tungsten and rhenium. High temperature solid state methods were used in order to synthesize samples of different transition metal borides of the composition M{sub 2}B, MB, M{sub 3}B{sub 2}, MB{sub 2}, and M{sub 2}B{sub 4}. The reactions were carried out in three different furnaces with different sample containers: the electric arc (copper crucible), the high frequency induction furnace (boron nitride, tantalum or glassy carbon crucibles), and the conventional tube furnace (sealed evacuated quartz ampoules). The products obtained were characterized with X-ray powder diffractometry, scanning electron microscopy and energy-dispersive X-ray spectroscopy. Phase analyses and crystal structure refinements using the Rietveld method and based on structure models known from literature were performed. A neutron diffraction measurement was done for W{sub 2}B{sub 4} to allow for a complete crystal structure determination, because of the presence of a heavy element like tungsten and a light element like boron that made it difficult to determine the accurate determination of the boron atom positions and occupancies from X-ray data. A new structure model for W{sub 2}B{sub 4} was proposed. Magnetic measurements in a SQUID magnetometer down to temperatures as low as 1.8 K were performed to several of the products in order to see if the transition metal borides become superconducting at low temperatures, and the results were compared with data from literature. Superconducting properties were found for the following compounds: NbB{sub 2} (T{sub C} = 3.5 K), β-MoB (T{sub C} = 2.4 K), β-WB (T{sub C} = 2.0 K), α-WB (T{sub C} = 4.3 K), W{sub 2}B{sub 4} (T{sub C} = 5.4 K), Re{sub 7}B{sub 3} (T{sub C} = 2.4 K). A relationship between the superconducting properties

  10. Designer Shape Anisotropy on Transition-Metal-Dichalcogenide Nanosheets.

    Science.gov (United States)

    Martella, Christian; Mennucci, Carlo; Lamperti, Alessio; Cappelluti, Emmanuele; de Mongeot, Francesco Buatier; Molle, Alessandro

    2018-03-01

    MoS 2 and generally speaking, the wide family of transition-metal dichalcogenides represents a solid nanotechnology platform on which to engineer a wealth of new and outperforming applications involving 2D materials. An even richer flexibility can be gained by extrinsically inducing an in-plane shape anisotropy of the nanosheets. Here, the synthesis of anisotropic MoS 2 nanosheets is proposed as a prototypical example in this respect starting from a highly conformal chemical vapor deposition on prepatterend substrates and aiming at the more general purpose of tailoring anisotropy of 2D nanosheets by design. This is envisioned to be a suitable configuration for strain engineering as far as strain can be spatially redistributed in morphologically different regions. With a similar approach, both the optical and electronic properties of the 2D transition-metal dichalcogenides can be tailored over macroscopic sample areas in a self-organized fashion, thus paving the way for new applications in the field of optical metasurfaces, light harvesting, and catalysis. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Mott metal-insulator transition in the doped Hubbard-Holstein model

    Science.gov (United States)

    Kurdestany, Jamshid Moradi; Satpathy, S.

    2017-08-01

    Motivated by the current interest in the understanding of the Mott insulators away from half-filling, observed in many perovskite oxides, we study the Mott metal-insulator transition in the doped Hubbard-Holstein model using the Hartree-Fock mean field theory. The Hubbard-Holstein model is the simplest model containing both the Coulomb and the electron-lattice interactions, which are important ingredients in the physics of the perovskite oxides. In contrast to the half-filled Hubbard model, which always results in a single phase (either metallic or insulating), our results show that away from half-filling, a mixed phase of metallic and insulating regions occurs. As the dopant concentration is increased, the metallic part progressively grows in volume, until it exceeds the percolation threshold, leading to percolative conduction. This happens above a critical dopant concentration δc, which, depending on the strength of the electron-lattice interaction, can be a significant fraction of unity. This means that the material could be insulating even for a substantial amount of doping, in contrast to the expectation that doped holes would destroy the insulating behavior of the half-filled Hubbard model. While effects of fluctuation beyond the mean field remain an open question, our results provide a starting point for the understanding of the density-driven metal-insulator transition observed in many complex oxides.

  12. Exohedral M–C{sub 60} and M{sub 2}–C{sub 60} (M = Pt, Pd) systems as tunable-gap building blocks for nanoarchitecture and nanocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Özdamar, Burak; Boero, Mauro, E-mail: mauro.boero@ipcms.unistra.fr; Massobrio, Carlo; Felder-Flesch, Delphine; Le Roux, Sébastien, E-mail: sebastien.leroux@ipcms.unistra.fr [Institut de Physique et Chimie des Matériaux de Strasbourg, University of Strasbourg and CNRS, UMR 7504, 23 Rue du Loess, BP43, F-67034 Strasbourg (France)

    2015-09-21

    Transition metal–fullerenes complexes with metal atoms bound on the external surface of C{sub 60} are promising building blocks for next-generation fuel cells and catalysts. Yet, at variance with endohedral M@C{sub 60}, they have received a limited attention. By resorting to first principles simulations, we elucidate structural and electronic properties for the Pd–C{sub 60}, Pt–C{sub 60}, PtPd–C{sub 60}, Pd{sub 2}–C{sub 60}, and Pt{sub 2}–C{sub 60} complexes. The most stable structures feature the metal atom located above a high electron density site, namely, the π bond between two adjacent hexagons (π-66 bond). When two metal atoms are added, the most stable configuration is those in which metal atoms still stand on π-66 bonds but tends to clusterize. The electronic structure, rationalized in terms of localized Wannier functions, provides a clear picture of the underlying interactions responsible for the stability or instability of the complexes, showing a strict relationship between structure and electronic gap.

  13. Ab-initio vibrational properties of transition metal chalcopyrite alloys determined as high-efficiency intermediate-band photovoltaic materials

    International Nuclear Information System (INIS)

    Palacios, P.; Aguilera, I.; Wahnon, P.

    2008-01-01

    In this work, we present frozen phonon and linear response ab-initio research into the vibrational properties of the CuGaS 2 chalcopyrite and transition metal substituted (CuGaS 2 )M alloys. These systems are potential candidates for developing a novel solar-cell material with enhanced optoelectronic properties based in the implementation of the intermediate-band concept. We have previously carried out ab-initio calculations of the electronic properties of these kinds of chalcopyrite metal alloys showing a narrow transition metal band isolated in the semiconductor band gap. The substitutes used in the present work are the 3d metal elements, Titanium and Chromium. For the theoretical calculations we use standard density functional theory at local density and generalized gradient approximation levels. We found that the optical phonon branches of the transition metal chalcopyrite, are very sensitive to the specific bonding geometry and small changes in the transition metal environment

  14. Ethylene glycol oxidation on Pt and Pt-Ru nanoparticle decorated polythiophene/multiwalled carbon nanotube composites for fuel cell applications

    International Nuclear Information System (INIS)

    Selvaraj, Vaithilingam; Alagar, Muthukaruppan

    2008-01-01

    A novel supporting material containing polythiophene (PTh) and multiwalled carbon nanotubes (MWCNTs) (PTh-CNTs) is prepared by in situ polymerization of thiophene on carbon nanotubes using FeCl 3 as oxidizing agent under sonication. The prepared polythiophene/CNT composites are further decorated with Pt and Pt-Ru nanoparticles by chemical reduction of the corresponding metal salts using HCHO as reducing agent at pH = 11 (Pt/PTh-CNT and Pt-Ru/PTh-CNT). The fabricated composite films decorated with nanoparticles were investigated towards the electrochemical oxidation of ethylene glycol (EG). The presence of carbon nanotubes in conjugation with a conducting polymer produces a good catalytic effect, which might be due to the higher electrochemically accessible surface areas, electronic conductivity and easier charge-transfer at polymer/electrolyte interfaces, which allows higher dispersion of Pt and Pt-Ru nanoparticles. Such nanoparticle modified PTh-CNT electrodes exhibit better catalytic behavior towards ethylene glycol oxidation. Results show that Pt/PTh-CNT and Pt-Ru/PTh-CNT modified electrodes show enhanced electrocatalytic activity and stability towards the electro-oxidation of ethylene glycol than the Pt/PTh electrodes, which shows that the composite film is more promising for applications in fuel cells

  15. Evidence of surface migration and formation of catalytically inactive Pt in corrosion studies of Pt+ implanted Ti

    International Nuclear Information System (INIS)

    Appleton, B.R.; Kelly, E.J.; White, C.W.; Thompson, N.G.; Lichter, B.D.

    1980-08-01

    This investigation is part of an ongoing research project directed at applying the techniques of ion implantation doping and ion scattering analysis to identify the mechanisms associated with the anodic dissolution of Ti-Pt alloys. The Ti-Pt alloys produced by ion implantation were electrochemically examined in hydrogen saturated 1 N H 2 SO 4 by both potentiostatic polarization and open-circuit potential methods. In this study, Ti samples implanted to relatively high doses (5.4 x 10 15 to 2.9 x 10 16 atoms/cm 2 ) were examined by ion scattering analysis at various stages in the electrochemical measurements. Quantitative measurements showed that the majority of the implanted Pt accumulated on the surface during anodic dissolution and underwent large scale surface migration. Evidence is also presented for the transition of the Pt on the surface from a catalytically active to inactive state. Possible mechanisms for the observed catalytically inactive Pt are discussed

  16. First-principles calculation of the structural stability of 6d transition metals

    International Nuclear Information System (INIS)

    Oestlin, A.; Vitos, L.

    2011-01-01

    The phase stability of the 6d transition metals (elements 103-111) is investigated using first-principles electronic-structure calculations. Comparison with the lighter transition metals reveals that the structural sequence trend is broken at the end of the 6d series. To account for this anomalous behavior, the effect of relativity on the lattice stability is scrutinized, taking different approximations into consideration. It is found that the mass-velocity and Darwin terms give important contributions to the electronic structure, leading to changes in the interstitial charge density and, thus, in the structural energy difference.

  17. Metal-semiconductor phase transition of order arrays of VO2 nanocrystals

    Science.gov (United States)

    Lopez, Rene; Suh, Jae; Feldman, Leonard; Haglund, Richard

    2004-03-01

    The study of solid-state phase transitions at nanometer length scales provides new insights into the effects of material size on the mechanisms of structural transformations. Such research also opens the door to new applications, either because materials properties are modified as a function of particle size, or because the nanoparticles interact with a surrounding matrix material, or with each other. In this paper, we describe the formation of vanadium dioxide nanoparticles in silicon substrates by pulsed laser deposition of ion beam lithographically selected sites and thermal processing. We observe the collective behavior of 50 nm diameter VO2 oblate nanoparticles, 10 nm high, and ordered in square arrays with arbitrary lattice constant. The metal-semiconductor-transition of the VO2 precipitates shows different features in each lattice spacing substrate. The materials are characterized by electron microscopy, x-ray diffraction, Rutherford backscattering. The features of the phase transition are studied via infrared optical spectroscopy. Of particular interest are the enhanced scattering and the surface plasmon resonance when the particles reach the metallic state. This resonance amplifies the optical contrast in the range of near-infrared optical communication wavelengths and it is altered by the particle-particle coupling as in the case of noble metals. In addition the VO2 nanoparticles exhibit sharp transitions with up to 50 K of hysteresis, one of the largest values ever reported for this transition. The optical properties of the VO2 nanoarrays are correlated with the size of the precipitates and their inter-particle distance. Nonlinear and ultra fast optical measurements have shown that the transition is the fastest known solid-solid transformation. The VO2 nanoparticles show the same bulk property, transforming in times shorter than 150 fs. This makes them remarkable candidates for ultrafast optical and electronic switching applications.

  18. On the behavior of Bronsted-Evans-Polanyi Relations for Transition Metal Oxides

    Energy Technology Data Exchange (ETDEWEB)

    Vojvodic, Aleksandra

    2011-08-22

    Versatile Broensted-Evans-Polanyi (BEP) relations are found from density functional theory for a wide range of transition metal oxides including rutiles and perovskites. For oxides, the relation depends on the type of oxide, the active site and the dissociating molecule. The slope of the BEP relation is strongly coupled to the adsorbate geometry in the transition state. If it is final state-like the dissociative chemisorption energy can be considered as a descriptor for the dissociation. If it is initial state-like, on the other hand, the dissociative chemisorption energy is not suitable as descriptor for the dissociation. Dissociation of molecules with strong intramolecular bonds belong to the former and molecules with weak intramolecular bonds to the latter group. We show, for the prototype system La-perovskites, that there is a 'cyclic' behavior in the transition state characteristics upon change of the active transition metal of the oxide.

  19. Theoretical Investigation on Single-Wall Carbon Nanotubes Doped with Nitrogen, Pyridine-Like Nitrogen Defects, and Transition Metal Atoms

    Directory of Open Access Journals (Sweden)

    Michael Mananghaya

    2012-01-01

    Full Text Available This study addresses the inherent difficulty in synthesizing single-walled carbon nanotubes (SWCNTs with uniform chirality and well-defined electronic properties through the introduction of dopants, topological defects, and intercalation of metals. Depending on the desired application, one can modify the electronic and magnetic properties of SWCNTs through an appropriate introduction of imperfections. This scheme broadens the application areas of SWCNTs. Under this motivation, we present our ongoing investigations of the following models: (i (10, 0 and (5, 5 SWCNT doped with nitrogen (CNxNT, (ii (10, 0 and (5, 5 SWCNT with pyridine-like defects (3NV-CNxNT, (iii (10, 0 SWCNT with porphyrine-like defects (4ND-CNxNT. Models (ii and (iii were chemically functionalized with 14 transition metals (TMs: Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Pd, Ag, Pt and Au. Using the spin-unrestricted density functional theory (DFT, stable configurations, deformations, formation and binding energies, the effects of the doping concentration of nitrogen, pyridine-like and porphyrine-like defects on the electronic properties were all examined. Results reveal that the electronic properties of SWCNTs show strong dependence on the concentration and configuration of nitrogen impurities, its defects, and the TMs adsorbed.

  20. Saddle-like topological surface states on the T T'X family of compounds (T , T' = Transition metal, X =Si , Ge)

    Science.gov (United States)

    Singh, Bahadur; Zhou, Xiaoting; Lin, Hsin; Bansil, Arun

    2018-02-01

    Topological nodal-line semimetals are exotic conductors that host symmetry-protected conducting nodal lines in their bulk electronic spectrum and nontrivial drumhead states on the surface. Based on first-principles calculations and an effective model analysis, we identify the presence of topological nodal-line semimetal states in the low crystalline symmetric T T'X family of compounds (T ,T' = transition metal, X = Si or Ge) in the absence of spin-orbit coupling (SOC). Taking ZrPtGe as an exemplar system, we show that owing to small lattice symmetry this material harbors a single nodal line on the ky=0 plane with large energy dispersion and unique drumhead surface state with a saddlelike energy dispersion. When the SOC is included, the nodal line gaps out and the system transitions to a strong topological insulator state with Z2=(1 ;000 ) . The topological surface state evolves from the drumhead surface state via the sharing of its saddlelike energy dispersion within the bulk energy gap. These features differ remarkably from those of the currently known topological surface states in topological insulators such as Bi2Se3 with Dirac-cone-like energy dispersions.

  1. Effect of transition metal impurities on the strength of grain boundaries in vanadium

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xuebang; Kong, Xiang-Shan; You, Yu-Wei; Liu, Wei; Liu, C. S., E-mail: csliu@issp.ac.cn [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P.O. Box 1129, Hefei 230031 (China); Chen, Jun-Ling; Luo, G.-N. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2016-09-07

    Effects of 3d (Ti-Ni), 4d (Zr-Pd), and 5d (Hf-Pt) transition metal impurities on strength of two representative vanadium grain boundaries (GBs), symmetric Σ3(111) and asymmetric Σ5(210), were studied by first-principles calculations within the framework of the Rice-Wang thermodynamic model and within the computational tensile test. The desirable elements to increase the GB cohesion were predicted based on their segregation and strengthening behaviors across the different GB sites. It reveals that the elements Ti, Zr, Hf, Nb, and Ta are good choices for the GB cohesion enhancers. In addition, the GB strengthening by solutes is sensitive to the GB structures. The elements Cr, Mn, Fe, Co, and Ni decrease the GB strength of the Σ3(111) GB but they can increase the cohesion of the Σ5(210) GB. Furthermore, the origin of Ti-induced change of the GB strength was uncovered by analyzing the atomic bonds and electronic structures as well as the tensile strength. This work provides a theoretical guidance to screen promising alloying elements in V-based materials with improved resistance to GB decohesion and also helps us to understand the formation mechanism of Ti-rich precipitates in the V-Cr-Ti alloys under neutron or ion irradiation environments.

  2. The potential for transition metal-mediated neurodegeneration in amyotrophic lateral sclerosis

    Directory of Open Access Journals (Sweden)

    David Benn Lovejoy

    2014-07-01

    Full Text Available Modulations of the potentially toxic transition metals iron (Fe and copper (Cu are implicated in the neurodegenerative process in a variety of human disease states including amyotrophic lateral sclerosis (ALS. However, the precise role played by these metals is still very much unclear, despite considerable clinical and experimental data suggestive of a role for these elements in the neurodegenerative process. The discovery of mutations in the antioxidant enzyme Cu/Zn superoxide dismutase (SOD-1 in ALS patients established the first known cause of ALS. Recent data suggest that various mutations in SOD-1 affect metal-binding of Cu and Zn, in turn promoting toxic protein aggregation. Copper homeostasis is also disturbed in ALS, and may be relevant to ALS pathogenesis. Another set of interesting observations in ALS patients involves the key nutrient Fe. In ALS patients Fe loading can be inferred by studies showing increased expression of serum ferritin, an Fe storage protein, with high serum ferritin levels correlating to poor prognosis. Magnetic resonance imaging of ALS patients shows a characteristic T2 shortening that is attributed to the presence of Fe in the motor cortex. In mutant SOD-1 mouse models, increased Fe is also detected in the spinal cord and treatment with Fe-chelating drugs lowers spinal cord Fe, preserves motor neurons and extends lifespan. Inflammation may play a key causative role in Fe accumulation, but this is not yet conclusive. Excess transition metals may enhance induction of endoplasmic reticulum (ER stress, a system that is already under strain in ALS. Taken together, the evidence suggests a role for transition metals in ALS progression and the potential use of metal-chelating drugs as a component of future ALS therapy.

  3. Transition metal complexes of some biologically active ligands; synthesis characterization and bioactivities

    International Nuclear Information System (INIS)

    Rehman, S.; Ali, N.; Nisar, M.

    2009-01-01

    Transition/representative transition metals complexes of biologically active chelating agent 1,2-dipyrolodinoethane were synthesized and characterized through spectral and analytical data. The complexes are of the formula (M(L)X/sub 2/). Where (M = Co (II), Ni (II), Cu (II), Zn (II), Hg (II) and Cd (II) and X = CI, Br, NO/sub 3/). Tetrahedral geometry has been proposed to these-metal complexes with the help of magnetic measurements, elemental analysis, chemical stoichiometry and spectroscopic data Antibacterial activity of the ligand and its metal complexes were screened against Eschereschi coli, Klebsiello pneumonia, Proteus mirabilis, Proteus vulhari, Streptococcus pneumonia, Salmonella Iyphi, Bacilh,s anthrax, Streptococcus fecalis and Staphylococcus aureus. Complexes were found to be active against Eschereschi coli, Klebsiella pneumonia, Proteus mirabilis and Proteus vulharis. (author)

  4. Low-density to high-density transition in Ce75Al23Si2 metallic glass

    International Nuclear Information System (INIS)

    Zeng, Q S; Lou, H B; Gong, Y; Wang, X D; Jiang, J Z; Fang, Y Z; Wu, F M; Yang, K; Li, A G; Yan, S; Yu, X H; Lathe, C

    2010-01-01

    Using in situ high-pressure x-ray diffraction (XRD), we observed a pressure-induced polyamorphic transition from the low-density amorphous (LDA) state to the high-density amorphous (HDA) state in Ce 75 Al 23 Si 2 metallic glass at about 2 GPa and 300 K. The thermal stabilities of both LDA and HDA metallic glasses were further investigated using in situ high-temperature and high-pressure XRD, which revealed different pressure dependences of the onset crystallization temperature (T x ) between them with a turning point at about 2 GPa. Compared with Ce 75 Al 25 metallic glass, minor Si doping shifts the onset polyamorphic transition pressure from 1.5 to 2 GPa and obviously stabilizes both LDA and HDA metallic glasses with higher T x and changes their slopes dT x /dP. The results obtained in this work reveal another polyamorphous metallic glass system by minor alloying (e.g. Si), which could modify the transition pressure and also properties of LDA and HDA metallic glasses. The minor alloying effect reported here is valuable for the development of more polyamorphous metallic glasses, even multicomponent bulk metallic glasses with modified properties, which will trigger more investigations in this field and improve our understanding of polyamorphism and metallic glasses.

  5. Reactions of transition metal complexes with cyclic ethers

    International Nuclear Information System (INIS)

    Milstein, D.

    1977-02-01

    Three novel reactions of epoxides with homogeneous transition-metal catalysts have been explored: (a) the selective rearrangement of internal epoxides to ketones; (b) the cleavage of C-C bond in epoxides having electron-attracting substituents; (c) the transformation of terminal epoxides into esters. Based on an intensive kinetic study, a general mechanism for the transformations of epoxides is postulated

  6. Valley polarization in magnetically doped single-layer transition-metal dichalcogenides

    KAUST Repository

    Cheng, Yingchun; Zhang, Q. Y.; Schwingenschlö gl, Udo

    2014-01-01

    We demonstrate that valley polarization can be induced and controlled in semiconducting single-layer transition-metal dichalcogenides by magnetic doping, which is important for spintronics, valleytronics, and photonics devices. As an example, we

  7. Adsorption and dissociation of dinitrogen on transition metal (Ta, W and Re) doped MgO surface

    KAUST Repository

    Yadav, Manoj Kumar; Vovusha, Hakkim; Sanyal, Biplab

    2016-01-01

    The adsorption and dissociation of dinitrogen on transition metal (Ta, W and Re) doped MgO(100) surface has been studied employing density functional theory. It is found that all these transition metals (TM) on MgO(100) surface are capable

  8. Validation of ion chromatography for the determination of transition metal ions along with alkali, alkaline earth metal elements for uranium oxide fuel

    International Nuclear Information System (INIS)

    Kelkar, Anoop; Prakash, Amrit; Afzal, Mohd.; Panakkal, J.P.

    2009-02-01

    The present report describes the use of Ion chromatography (IC) methods with spectrophotometric and direct conductivity detection for the determination of transition metal elements and alkali alkaline earth metal ions in UO 2 pellets. Transmet analytical column and Metrosep- cation 1-2 column were used for the separation of transition metal elements and alkali and alkaline earth metal elements respectively. Oxalic acid and mixture of pyridine 2,6-dicarboxylic acid (PDCA), Na 2 SO 4 and NaCl were used as mobile phase for the separation of transition metal ions and monitored after post - column reaction with 4,2-pyridylazo resorcinol (PAR) at 520nm spectrophotometrically. In the determination of alkali and alkaline earth metal ions the interference of transition metals are removed by complexing them with PDCA. Mixture of tartaric acid and PDCA employed in the separation of alkali and alkaline earth metal ions and monitored on direct conductivity detector. Mobile phase composition was optimised for the base line separation. Calibration plots of Fe 3+ , Cu 2+ , Ni 2+ , Co 2+ , Cd 2+ , Mn 2+ , Li + , Na + , K + , Mg 2+ , Ca 2+ and Sr 2+ were linear over a wide dynamic range with regression coefficient better than 0.999. Detection limit of above ions were between 5-30ppb. To prevent the overloading of the cation exchange column, uranium matrix was removed from UO 2 sample by solvent extraction with 30% TBP - TOPO/CCl 4 . Ten sintered UO2 pellets of same lot were analysed and R.S.D. ±10% was obtained. These methods were validated by analysis of ILCE standards of UO 2 . (author)

  9. Development of Coke-tolerant Transition Metal Catalysts for Dry Reforming of Methane

    KAUST Repository

    Al-Sabban, Bedour E.

    2016-11-07

    Dry reforming of methane (DRM) is an attractive and promising process for the conversion of methane and carbon dioxide which are the most abundant carbon sources into valuable syngas. The produced syngas, which is a mixture of hydrogen and carbon monoxide, can be used as intermediates in the manufacture of numerous chemicals. To achieve high conversion, DRM reaction is operated at high temperatures (700-900 °C) that can cause major drawbacks of catalyst deactivation by carbon deposition, metal sintering or metal oxidation. Therefore, the primary goal is to develop a metal based catalyst for DRM that can completely suppress carbon formation by designing the catalyst composition. The strategy of this work was to synthesize Ni-based catalysts all of which prepared by homogeneous deposition precipitation method (HDP) to produce nanoparticles with narrow size distribution. In addition, control the reactivity of the metal by finely tuning the bimetallic composition and the reaction conditions in terms of reaction temperature and pressure. The highly endothermic dry reforming of methane proceeds via CH4 decomposition to leave surface carbon species, followed by removal of C with CO2-derived species to give CO. Tuning the reactivity of the active metal towards these reactions during DRM allows in principle the catalyst surface to remain active and clean without carbon deposition for a long-term. The initial attempt was to improve the resistance of Ni catalyst towards carbon deposition, therefore, a series of 5 wt.% bimetallic Ni9Pt1 were supported on various metal oxides (Al2O3, CeO2, and ZrO2). The addition of small amount of noble metal improved the stability of the catalyst compared to their monometallic Ni and Pt catalysts, but still high amount of carbon (> 0.1 wt.%) was formed after 24 h of the reaction. The obtained results showed that the catalytic performance, particle size and amount of deposited carbon depends on the nature of support. Among the tested

  10. Phase stabilisation of hexagonal barium titanate doped with transition metals: A computational study

    International Nuclear Information System (INIS)

    Dawson, J.A.; Freeman, C.L.; Harding, J.H.; Sinclair, D.C.

    2013-01-01

    Interatomic potentials recently developed for the modelling of BaTiO 3 have been used to explore the stabilisation of the hexagonal polymorph of BaTiO 3 by doping with transition metals (namely Mn, Co, Fe and Ni) at the Ti-site. Classical simulations have been completed on both the cubic and hexagonal polymorphs to investigate the energetic consequences of transition metal doping on each polymorph. Ti-site charge compensation mechanisms have been used for the multi-valent transition metal ions and cluster binding energies have been considered. Simulations show a significant energetic gain when doping occurs at Ti sites in the face sharing dimers (Ti 2 sites) of the hexagonal polymorph compared with the doping of the cubic polymorph. This energetic difference between the two polymorphs is true for all transition metals tested and all charge states and in the case of tri- and tetra-valent dopants negative solution energies are found for the hexagonal polymorph suggesting actual polymorph stabilisation occurs with the incorporation of these ions as observed experimentally. Oxidation during incorporation of Ni 2+ and Fe 3+ ions has also been considered. - Graphical abstract: The representation of the strongest binding energy clusters for tri-valent dopants—(a) Ti 2 /O 1 cluster and (b) Ti 2 /O 2 cluster. Highlights: ► Classical simulations show a significant energetic gain when doping occurs at Ti sites in the face sharing dimers (Ti2 sites) of the hexagonal polymorph compared with the doping of the cubic polymorph. ► This energetic difference between the two polymorphs is true for all transition metals tested and all charge states. ► In the case of tri- and tetra- valent dopants negative solution energies are found for the hexagonal polymorph suggesting actual polymorph stabilisation occurs with the incorporation of these ions

  11. Reaction of urea thiourea and their derivatives with tertiary phosphine transition metal halides

    International Nuclear Information System (INIS)

    Adam, Eltayeb Mahala

    2000-03-01

    This thesis describes preparation characterization and some properties of a number of new compounds such as (ph 3 p)2 ML where M= cobalt (11), nickel (11), and copper (11), and L= urea, thiourea, phenylthiourea, sym diphenylurea and sym diphenylthiourea.These compounds have been prepared according according to the reaction of dichloro bis (triphenylphosphine) transition metal with urea, thiourea or some of their derivative ligands in 1:1 molar ratio.The work in this thesis is divided into three section firstly:- In the introduction chapter part one includes general definitions of coordination chemistry and related compounds and abroad definition of transition elements.Part two includes the theoretical back ground about transition metal complexes having urea, thiourea or some of their substituted derivative ligands.Part two also discusses the type of bonding between these ligands and the transition metal atom.Secondly: Chapter two describes the general techniques followed in this work such as purification of solvents recrystallization, preparation of starting materials and also gives full detailed procedures of the preparation of a number of new compounds.Thirdly: Discussion with detailed in chapter three, the results of the research are presented the preparation and characterization of a number of new compounds isolated from reaction between urea, thiourea or some of their substituted derivatives and dichloro bis (triphenyl phosphine) transition metal complex giving a general formula (ph 3 )2ML where M=cobalt, nickel, and copper, and urea, thiourea or some of their substituted derivatives ligands. The products of these experiments have been identified using infrared spectra, melting points and molar conductance. The results obtained indicated that all the compounds forming the nitrogen to metal bonds leading to the formation of a four- membered chelate ring, they are relatively thermally stable compounds, and also these compounds are non-electrolytes.(Author)

  12. Metastable Transition Metal Alloys Produced by Rapid Quenching: Structure and Properties.

    Science.gov (United States)

    1984-01-01

    cobalt or nickel continuous ribbons 1 . 2 mm wide and about fromthe angaeseiro, coalt r nikel 30 jum thick. Differential scanning calori- groups or B metal... wire , obtained from the International Nb1Pd,:’o NbPds 70 "藿 (MoPtaI- NbPt, I structure Nickel Co., and palladium powder (-325 mesh) ob- tained from...This is consistent with the work of Black S(k) denote that of a 99.999+% pure lead wire using the integral et l.i who predict that the tunneling-level

  13. Adsorption-induced gap states of h-BN on metal surfaces

    Science.gov (United States)

    Preobrajenski, A. B.; Krasnikov, S. A.; Vinogradov, A. S.; Ng, May Ling; Käämbre, T.; Cafolla, A. A.; Mårtensson, N.

    2008-02-01

    The formation of hexagonal boron nitride (h-BN) monolayers on Ni(111), Rh(111), and Pt(111) has been studied by a combination of x-ray emission, angle-resolved valence band photoemission, and x-ray absorption in search for interface-induced gap states of h-BN . A significant density of both occupied and unoccupied gap states with N2p and B2p characters is observed for h-BN/Ni(111) , somewhat less for h-BN/Rh(111) and still less for h-BN/Pt(111) . X-ray emission shows that the h-BN monolayer is chemisorbed strongly on Ni(111) and very weakly on Pt(111). We associate the gap states of h-BN adsorbed on the transition metal surfaces with the orbital mixing and electron sharing at the interface because their density increases with the growing strength of chemisorption.

  14. Tuning the Activity of Pt(111) for Oxygen Electroreduction by Subsurface Alloying

    DEFF Research Database (Denmark)

    Stephens, Ifan; Bondarenko, A.S.; Perez-Alonso, F.J.

    2011-01-01

    To enable the development of low temperature fuel cells, significant improvements are required to the efficiency of the Pt electrocatalysts at the cathode, where oxygen reduction takes place. Herein, we study the effect of subsurface solute metals on the reactivity of Pt, using a Cu/Pt(111) near-...

  15. High-temperature catalytic reforming of n-hexane over supported and core-shell Pt nanoparticle catalysts: role of oxide-metal interface and thermal stability.

    Science.gov (United States)

    An, Kwangjin; Zhang, Qiao; Alayoglu, Selim; Musselwhite, Nathan; Shin, Jae-Youn; Somorjai, Gabor A

    2014-08-13

    Designing catalysts with high thermal stability and resistance to deactivation while simultaneously maintaining their catalytic activity and selectivity is of key importance in high-temperature reforming reactions. We prepared Pt nanoparticle catalysts supported on either mesoporous SiO2 or TiO2. Sandwich-type Pt core@shell catalysts (SiO2@Pt@SiO2 and SiO2@Pt@TiO2) were also synthesized from Pt nanoparticles deposited on SiO2 spheres, which were encapsulated by either mesoporous SiO2 or TiO2 shells. n-Hexane reforming was carried out over these four catalysts at 240-500 °C with a hexane/H2 ratio of 1:5 to investigate thermal stability and the role of the support. For the production of high-octane gasoline, branched C6 isomers are more highly desired than other cyclic, aromatic, and cracking products. Over Pt/TiO2 catalyst, production of 2-methylpentane and 3-methylpentane via isomerization was increased selectively up to 420 °C by charge transfer at Pt-TiO2 interfaces, as compared to Pt/SiO2. When thermal stability was compared between supported catalysts and sandwich-type core@shell catalysts, the Pt/SiO2 catalyst suffered sintering above 400 °C, whereas the SiO2@Pt@SiO2 catalyst preserved the Pt nanoparticle size and shape up to 500 °C. The SiO2@Pt@TiO2 catalyst led to Pt nanoparticle sintering due to incomplete protection of the TiO2 shells during the reaction at 500 °C. Interestingly, over the Pt/TiO2 catalyst, the average size of Pt nanoparticles was maintained even after 500 °C without sintering. In situ ambient pressure X-ray photoelectron spectroscopy demonstrated that the Pt/TiO2 catalyst did not exhibit TiO2 overgrowth on the Pt surface or deactivation by Pt sintering up to 600 °C. The extraordinarily high stability of the Pt/TiO2 catalyst promoted high reaction rates (2.0 μmol · g(-1) · s(-1)), which was 8 times greater than other catalysts and high isomer selectivity (53.0% of C6 isomers at 440 °C). By the strong metal-support interaction

  16. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides

    Science.gov (United States)

    Lukatskaya, Maria R.; Kota, Sankalp; Lin, Zifeng; Zhao, Meng-Qiang; Shpigel, Netanel; Levi, Mikhael D.; Halim, Joseph; Taberna, Pierre-Louis; Barsoum, Michel W.; Simon, Patrice; Gogotsi, Yury

    2017-08-01

    The use of fast surface redox storage (pseudocapacitive) mechanisms can enable devices that store much more energy than electrical double-layer capacitors (EDLCs) and, unlike batteries, can do so quite rapidly. Yet, few pseudocapacitive transition metal oxides can provide a high power capability due to their low intrinsic electronic and ionic conductivity. Here we demonstrate that two-dimensional transition metal carbides (MXenes) can operate at rates exceeding those of conventional EDLCs, but still provide higher volumetric and areal capacitance than carbon, electrically conducting polymers or transition metal oxides. We applied two distinct designs for MXene electrode architectures with improved ion accessibility to redox-active sites. A macroporous Ti3C2Tx MXene film delivered up to 210 F g-1 at scan rates of 10 V s-1, surpassing the best carbon supercapacitors known. In contrast, we show that MXene hydrogels are able to deliver volumetric capacitance of ˜1,500 F cm-3 reaching the previously unmatched volumetric performance of RuO2.

  17. Explosive mechanism of metal destruction by intense electromagnetic radiation flux

    International Nuclear Information System (INIS)

    Martynyuk, M.M.

    1977-01-01

    The metal destruction by a powerful flux of electromagnetic radiation is considered on the basis of thermodynamics and kinetics of the transition of molten metal to vapour during its rapid heating. The possibility is discussed of obtaining a metastable liquid-metal phase and of its explosion transition to a stable two-phase state (phase explosion of metastable liquid). It has been shown that at densities of radiation beam ensuring the heating of the metal to the spinodal point Tsub(s) during a time tsub(s)=10 -5 -10 -7 s the vaporization of the matter from the surface of the liquid is negligible, and the main mechanism of the metal destruction is the phase explosion of the metastable liquid-metal phase which originates in the Tsub(s) vicinity. The experimental data on the electric explosion of conductors for tsub(s)=10 -6 -10 -5 s has served as a basis for calculating the excess enthalpy and the proportion of the vapour phase formed in the phase explosion of Cu, Ag, Au, Zn, Cd, Al, Pb, Zr, Nb, Mo, W, Pt and Re. The particularities of the phase explosion at flux densities corresponding to tsub(s)( -8 s are considered

  18. Optical excitations of transition-metal oxides under the orbital multiplicity effects

    International Nuclear Information System (INIS)

    Lee, J S; Kim, M W; Noh, T W

    2005-01-01

    We investigated optical excitations of transition-metal (TM) oxides with metal oxygen octahedra taking account of the orbital multiplicity effects. We predicted excitation energies of intersite d-d transitions and p-d transitions of TM oxides. We compared the evaluated excitation energies with reported experimental data, and found that they are in good agreement with each other. Moreover, we could demonstrate possible answers for a few long-standing problems of the low-frequency spectral features in some early 3d TM oxides: (i) the broad and multi-peak structures of the d-d transitions (ii) the low values (around 2 eV) of the d-d transition energies for some t 2g 1 and t 2g 2 systems, and (iii) the lack of the d-d transition below 4.0 eV region for LaCrO 3 , one of the t 2g 3 systems. These indicate that our approach considering the orbital multiplicity effects could provide good explanations of intriguing features in the optical spectra of some early TM oxides. In addition, we showed that optical spectroscopy can be useful as a powerful tool to investigate spin and/or orbital correlations in the TM ions. Finally, we discussed the implications of the orbital multiplicity in the Zannen-Sawatzky-Allen scheme, which has been used successfully to classify correlated electron systems

  19. Low Pt content Pt-Ru-Ir-Sn quaternary catalysts for anodic methanol oxidation in DMFC

    Energy Technology Data Exchange (ETDEWEB)

    Neburchilov, Vladimir; Wang, Haijiang; Zhang, Jiujun [Institute for Fuel Cell Innovation, National Research Council (Canada)

    2007-07-15

    In this communication we report our research work on low Pt content Pt-Ru-Ir-Sn quaternary catalysts for use in DMFC anodes. The carbon-supported quaternary metal alloy catalyst was synthesized according to the solution reduction method and was deposited onto a carbon fiber paper or a carbon aerogel nanofoam to form the anode for direct methanol fuel cells. The Pt loading of the electrode is 0.1 mg/cm{sup 2}. The testing results from a three-electrode electrochemical cell show that the simultaneous use of higher Ir (25-35 wt.%) and Sn (10 wt.%) content gives satisfactory stability and higher activity for methanol oxidation than the commercially available E-TEK anode (80%[0.5Pt 0.5Ru]/C on carbon cloth). Energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), scanning electron microscope (SEM), and Bruner-Emmett-Teller method (BET) measurements were carried out to characterize the composition, structure, morphology, and surface area of the developed catalysts. (author)

  20. Spatiotemporal Analysis of Heavy Metal Water Pollution in Transitional China

    Directory of Open Access Journals (Sweden)

    Huixuan Li

    2015-07-01

    Full Text Available China’s socioeconomic transitions have dramatically accelerated its economic growth in last three decades, but also companioned with continuous environmental degradation. This study will advance the knowledge of heavy metal water pollution in China from a spatial–temporal perspective. Specifically, this study addressed the following: (1 spatial patterns of heavy metal water pollution levels were analyzed using data of prefecture-level cities from 2004 to 2011; and (2 spatial statistical methods were used to examine the underlying socioeconomic and physical factors behind water pollution including socioeconomic transitions (industrialization, urbanization, globalization and economic development, and environmental characteristic (natural resources, hydrology and vegetation coverage. The results show that only Cr pollution levels increased over the years. The individual pollution levels of the other four heavy metals, As, Cd, Hg, and Pb, declined. High heavy metal water pollution levels are closely associated with both anthropogenic activities and physical environments, in particular abundant mineral resources and industrialization prosperity. On the other hand, economic development and urbanization play important roles in controlling water pollution problems. The analytical findings will provide valuable information for policy-makers to initiate and adjust protocols and strategies for protecting water sources and controlling water pollution; thus improving the quality of living environments.