WorldWideScience

Sample records for transiting exoplanet wasp-3b

  1. TASTE. III. A homogeneous study of transit time variations in WASP-3b

    Science.gov (United States)

    Nascimbeni, V.; Cunial, A.; Murabito, S.; Sada, P. V.; Aparicio, A.; Piotto, G.; Bedin, L. R.; Milone, A. P.; Rosenberg, A.; Zurlo, A.; Borsato, L.; Damasso, M.; Granata, V.; Malavolta, L.

    2013-01-01

    The TASTE project is searching for low-mass planets with the transit timing variation (TTV) technique by gathering high-precision, short-cadence light curves for a selected sample of transiting exoplanets. It has been claimed that the "hot Jupiter" WASP-3b could be perturbed by a second planet. Presenting eleven new light curves (secured at the IAC80 and UDEM telescopes) and re-analyzing thirty-eight archival light curves in a homogeneous way, we show that new data do not confirm the previously claimed TTV signal. However, we bring evidence that measurements are not consistent with a constant orbital period, though no significant periodicity can be detected. Additional dynamical modeling and follow-up observations are planned to constrain the properties of the perturber or to put upper limits to it. We provide a refined ephemeris for WASP-3b and improved orbital/physical parameters. A contact eclipsing binary, serendipitously discovered among field stars, is reported here for the first time. This article is based on observations made with the IAC80 telescope operated on the island of Tenerife by the Instituto de Astrofísica de Canarias (IAC) in the Spanish Observatorio del Teide.Tables 1 and 3 and Appendix A are available in electronic form at http://www.aanda.orgPhotometric data are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/549/A30

  2. VizieR Online Data Catalog: Light curves of WASP-3b (Nascimbeni+, 2013)

    Science.gov (United States)

    Nascimbeni, V.; Cunial, A.; Murabito, S.; Sada, P. V.; Aparicio, A.; Piotto, G.; Bedin, L. R.; Milone, A. P.; Rosenberg, A.; Zurlo, A.; Borsato, L.; Damasso, M.; Granata, V.; Malavolta, L.

    2013-02-01

    The TASTE project is searching for low-mass planets with the transit timing variation (TTV) technique by gathering high-precision, short-cadence light curves for a selected sample of transiting exoplanets. It has been claimed that the "hot Jupiter" WASP-3b could be perturbed by a second planet. Presenting eleven new light curves (secured at the IAC80 and UDEM telescopes) and re-analyzing thirty-eight archival light curves in a homogeneous way, we show that new data do not confirm the previously claimed TTV signal. However, we bring evidence that measurements are not consistent with a constant orbital period, though no significant periodicity can be detected. Additional dynamical modeling and follow-up observations are planned to constrain the properties of the perturber or to put upper limits to it. We provide a refined ephemeris for WASP-3b and improved orbital/physical parameters. A contact eclipsing binary, serendipitously discovered among field stars, is reported here for the first time. (2 data files).

  3. Transiting Exoplanet Survey Satellite (TESS)

    Science.gov (United States)

    Ricker, G. R.; Clampin, M.; Latham, D. W.; Seager, S.; Vanderspek, R. K.; Villasenor, J. S.; Winn, J. N.

    2012-01-01

    The Transiting Exoplanet Survey Satellite (TESS) will discover thousands of exoplanets in orbit around the brightest stars in the sky. In a two-year survey, TESS will monitor more than 500,000 stars for temporary drops in brightness caused by planetary transits. This first-ever spaceborne all-sky transit survey will identify planets ranging from Earth-sized to gas giants, around a wide range of stellar types and orbital distances. No ground-based survey can achieve this feat. A large fraction of TESS target stars will be 30-100 times brighter than those observed by Kepler satellite, and therefore TESS . planets will be far easier to characterize with follow-up observations. TESS will make it possible to study the masses, sizes, densities, orbits, and atmospheres of a large cohort of small planets, including a sample of rocky worlds in the habitable zones of their host stars. TESS will provide prime targets for observation with the James Webb Space Telescope (JWST), as well as other large ground-based and space-based telescopes of the future. TESS data will be released with minimal delay (no proprietary period), inviting immediate community-wide efforts to study the new planets. The TESS legacy will be a catalog of the very nearest and brightest main-sequence stars hosting transiting exoplanets, thus providing future observers with the most favorable targets for detailed investigations.

  4. COMPARATIVE HABITABILITY OF TRANSITING EXOPLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Rory; Meadows, Victoria S.; Evans, Nicole, E-mail: rory@astro.washington.edu [Astronomy Department, University of Washington, Box 951580, Seattle, WA 98195 (United States)

    2015-12-01

    Exoplanet habitability is traditionally assessed by comparing a planet’s semimajor axis to the location of its host star’s “habitable zone,” the shell around a star for which Earth-like planets can possess liquid surface water. The Kepler space telescope has discovered numerous planet candidates near the habitable zone, and many more are expected from missions such as K2, TESS, and PLATO. These candidates often require significant follow-up observations for validation, so prioritizing planets for habitability from transit data has become an important aspect of the search for life in the universe. We propose a method to compare transiting planets for their potential to support life based on transit data, stellar properties and previously reported limits on planetary emitted flux. For a planet in radiative equilibrium, the emitted flux increases with eccentricity, but decreases with albedo. As these parameters are often unconstrained, there is an “eccentricity-albedo degeneracy” for the habitability of transiting exoplanets. Our method mitigates this degeneracy, includes a penalty for large-radius planets, uses terrestrial mass–radius relationships, and, when available, constraints on eccentricity to compute a number we call the “habitability index for transiting exoplanets” that represents the relative probability that an exoplanet could support liquid surface water. We calculate it for Kepler objects of interest and find that planets that receive between 60% and 90% of the Earth’s incident radiation, assuming circular orbits, are most likely to be habitable. Finally, we make predictions for the upcoming TESS and James Webb Space Telescope missions.

  5. Simulating the Exoplanet Yield from the Transiting Exoplanet Survey Satellite

    Science.gov (United States)

    Barclay, Thomas; Pepper, Joshua; Schlieder, Joshua; Quintana, Elisa

    2018-01-01

    In 2018 NASA will launch the MIT-led Transiting Exoplanet Survey Satellite (TESS) which has a goal of detecting terrestrial-mass planets orbiting stars bright enough for mass determination via ground-based radial velocity observations. We inferred how many exoplanets the TESS mission will detect, the physical properties of these detected planets, and the properties of the stars that those planets orbit, subject to certain assumptions about the mission performance. To make these predictions we use samples of stars that are drawn from the TESS Input Catalog Candidate Target List. We place zero or more planets in orbit around these stars with physical properties following known exoplanet occurrence rates, and use the TESS noise model to predict the derived properties of the detected exoplanets. We find that it is feasible to detect around 1000 exoplanets, including 250 smaller than 2 earth-radii using the TESS 2-min cadence data. We examined alternative noise models and detection models and find in our pessimistic model that TESS will detect just 500 exoplanets. When potential detections in the full-frame image data are included, the number of detected planets could increase by a factor of 4. Perhaps most excitingly, TESS will find over 2 dozen planets orbiting in the habitable zone of bright, nearby cool stars. These planets will make ideal candidates for atmospheric characerization by JWST.

  6. Characterizing Gaint Exoplanets through Multiwavelength Transit Observations

    Science.gov (United States)

    Kasper, David; Cole, Jackson L.; Gardner, Cristilyn N.; Garver, Bethany R.; Jarka, Kyla L.; Kar, Aman; McGough, Aylin M.; PeQueen, David J.; Rivera, Daniel Ivan; Jang-Condell, Hannah; Kobulnicky, Henry A.; Dale, Daniel A.

    2018-01-01

    Observing the characteristics of giant exoplanets is possible with ground-based telescopes and modern observational methods. We are performing characterizations of multiple giant exoplanets based on 85 allotted nights of transit observations with the 2.3 m Wyoming Infrared Observatory using Sloan filters. In particular, constraints can be made on the atmospheres of our targets from the wavelength (in)dependence in the depth of the transit observations. We present early multiwavelength photometric results on the exoplanet HD 189733 b with comparison to literature sources to exemplify the methodology employed. In total, 15 exoplanets were observed across multiple wavelengths. The majority of the observing allotted to the project was completed as part of the 2017 Summer REU at the University of Wyoming. This work will significantly contribute to the growing number of observed atmospheres and influence interpretation of future WFIRST, JWST, and TESS targets. This work is supported by the National Science Foundation under REU grant AST 1560461.

  7. FINESSE & CASE: Two Proposed Transiting Exoplanet Missions

    Science.gov (United States)

    Zellem, Robert Thomas; FINESSE and CASE Science Team

    2018-01-01

    The FINESSE mission concept and the proposed CASE Mission of Opportunity, both recently selected by NASA’s Explorer program to proceed to Step 2, would conduct the first characterizations of exoplanet atmospheres for a statistically significant population. FINESSE would determine whether our Solar System is typical or exceptional, the key characteristics of the planet formation mechanism, and what establishes global planetary climate by spectroscopically surveying 500 exoplanets, ranging from terrestrials with extended atmospheres to sub-Neptunes to gas giants. FINESSE’s broad, instantaneous spectral coverage from 0.5-5 microns and capability to survey hundreds of exoplanets would enable follow-up exploration of TESS discoveries and provide a broader context for interpreting detailed JWST observations. Similarly, CASE, a NASA Mission of Opportunity contribution to ESA’s dedicated transiting exoplanet spectroscopy mission ARIEL, would observe 1000 warm transiting gas giants, Neptunes, and super-Earths, using visible to near-IR photometry and spectroscopy. CASE would quantify the occurrence rate of atmospheric aerosols (clouds and hazes) and measure the geometric albedos of the targets in the ARIEL survey. Thus, with the selection of either of these two missions, NASA would ensure access to critical data for the U.S. exoplanet science community.

  8. Discovery, Characterization, and Dynamics of Transiting Exoplanets

    DEFF Research Database (Denmark)

    Van Eylen, Vincent

    2015-01-01

    Are we alone in the Universe? So far, the question remains unanswered, but a significant leap forward was achieved two decades ago, with the discovery of the first planets orbiting stars other than our Sun. Almost 2000 exoplanets have now been detected. They are diverse in radius, mass and orbital......, in this thesis I make use of the transit method, which is based on the observed brightness drop of a star as a planet crosses in front of it. This thesis consists of two parts. The first part focuses on the discovery of new planets and the understanding of exoplanet properties. I report the discovery...... results of this study, constraining the masses and bulk compositions of three planets. The second part of this thesis focuses on dynamics of exoplanets. All the solar system planets orbit in nearly the same plane, and that plane is also aligned with the equatorial plane of the Sun. That is not true...

  9. TERMS PHOTOMETRY OF KNOWN TRANSITING EXOPLANETS

    International Nuclear Information System (INIS)

    Dragomir, Diana; Kane, Stephen R.; Ciardi, David R.; Gelino, Dawn M.; Payne, Alan; Ramirez, Solange V.; Von Braun, Kaspar; Wyatt, Pamela; Pilyavsky, Genady; Mahadevan, Suvrath; Wright, Jason T.; Zachary Gazak, J.; Rabus, Markus

    2011-01-01

    The Transit Ephemeris Refinement and Monitoring Survey conducts radial velocity and photometric monitoring of known exoplanets in order to refine planetary orbits and predictions of possible transit times. This effort is primarily directed toward planets not known to transit, but a small sample of our targets consists of known transiting systems. Here we present precision photometry for six WASP (Wide Angle Search for Planets) planets acquired during their transit windows. We perform a Markov Chain Monte Carlo analysis for each planet and combine these data with previous measurements to redetermine the period and ephemerides for these planets. These observations provide recent mid-transit times which are useful for scheduling future observations. Our results improve the ephemerides of WASP-4b, WASP-5b, and WASP-6b and reduce the uncertainties on the mid-transit time for WASP-29b. We also confirm the orbital, stellar, and planetary parameters of all six systems.

  10. Model-independent Exoplanet Transit Spectroscopy

    Science.gov (United States)

    Aronson, Erik; Piskunov, Nikolai

    2018-05-01

    We propose a new data analysis method for obtaining transmission spectra of exoplanet atmospheres and brightness variation across the stellar disk from transit observations. The new method is capable of recovering exoplanet atmosphere absorption spectra and stellar specific intensities without relying on theoretical models of stars and planets. We simultaneously fit both stellar specific intensity and planetary radius directly to transit light curves. This allows stellar models to be removed from the data analysis. Furthermore, we use a data quality weighted filtering technique to achieve an optimal trade-off between spectral resolution and reconstruction fidelity homogenizing the signal-to-noise ratio across the wavelength range. Such an approach is more efficient than conventional data binning onto a low-resolution wavelength grid. We demonstrate that our analysis is capable of reproducing results achieved by using an explicit quadratic limb-darkening equation and that the filtering technique helps eliminate spurious spectral features in regions with strong telluric absorption. The method is applied to the VLT FORS2 observations of the exoplanets GJ 1214 b and WASP-49 b, and our results are in agreement with previous studies. Comparisons between obtained stellar specific intensity and numerical models indicates that the method is capable of accurately reconstructing the specific intensity. The proposed method enables more robust characterization of exoplanetary atmospheres by separating derivation of planetary transmission and stellar specific intensity spectra (that is model-independent) from chemical and physical interpretation.

  11. The WASP-South search for transiting exoplanets

    Directory of Open Access Journals (Sweden)

    Queloz D.

    2011-02-01

    Full Text Available Since 2006 WASP-South has been scanning the Southern sky for transiting exoplanets. Combined with Geneva Observatory radial velocities we have so far found over 30 transiting exoplanets around relatively bright stars of magnitude 9–13. We present a status report for this ongoing survey.

  12. Five kepler target stars that show multiple transiting exoplanet candidates

    DEFF Research Database (Denmark)

    Steffen..[], Jason H.; Batalha, N. M.; Broucki, W J.

    2010-01-01

    We present and discuss five candidate exoplanetary systems identified with the Kepler spacecraft. These five systems show transits from multiple exoplanet candidates. Should these objects prove to be planetary in nature, then these five systems open new opportunities for the field of exoplanets...

  13. The Young Exoplanet Transit Initiative (YETI)

    Science.gov (United States)

    Neuhäuser, R.; Errmann, R.; Berndt, A.; Maciejewski, G.; Takahashi, H.; Chen, W. P.; Dimitrov, D. P.; Pribulla, T.; Nikogossian, E. H.; Jensen, E. L. N.; Marschall, L.; Wu, Z.-Y.; Kellerer, A.; Walter, F. M.; Briceño, C.; Chini, R.; Fernandez, M.; Raetz, St.; Torres, G.; Latham, D. W.; Quinn, S. N.; Niedzielski, A.; Bukowiecki, Ł.; Nowak, G.; Tomov, T.; Tachihara, K.; Hu, S. C.-L.; Hung, L. W.; Kjurkchieva, D. P.; Radeva, V. S.; Mihov, B. M.; Slavcheva-Mihova, L.; Bozhinova, I. N.; Budaj, J.; Vaňko, M.; Kundra, E.; Hambálek, Ľ.; Krushevska, V.; Movsessian, T.; Harutyunyan, H.; Downes, J. J.; Hernandez, J.; Hoffmeister, V. H.; Cohen, D. H.; Abel, I.; Ahmad, R.; Chapman, S.; Eckert, S.; Goodman, J.; Guerard, A.; Kim, H. M.; Koontharana, A.; Sokol, J.; Trinh, J.; Wang, Y.; Zhou, X.; Redmer, R.; Kramm, U.; Nettelmann, N.; Mugrauer, M.; Schmidt, J.; Moualla, M.; Ginski, C.; Marka, C.; Adam, C.; Seeliger, M.; Baar, S.; Roell, T.; Schmidt, T. O. B.; Trepl, L.; Eisenbeiß, T.; Fiedler, S.; Tetzlaff, N.; Schmidt, E.; Hohle, M. M.; Kitze, M.; Chakrova, N.; Gräfe, C.; Schreyer, K.; Hambaryan, V. V.; Broeg, C. H.; Koppenhoefer, J.; Pandey, A. K.

    2011-07-01

    We present the Young Exoplanet Transit Initiative (YETI), in which we use several 0.2 to 2.6-m telescopes around the world to monitor continuously young (≤100 Myr), nearby (≤1 kpc) stellar clusters mainly to detect young transiting planets (and to study other variability phenomena on time-scales from minutes to years). The telescope network enables us to observe the targets continuously for several days in order not to miss any transit. The runs are typically one to two weeks long, about three runs per year per cluster in two or three subsequent years for about ten clusters. There are thousands of stars detectable in each field with several hundred known cluster members, e.g. in the first cluster observed, Tr-37, a typical cluster for the YETI survey, there are at least 469 known young stars detected in YETI data down to R=16.5 mag with sufficient precision of 50 millimag rms (5 mmag rms down to R=14.5 mag) to detect transits, so that we can expect at least about one young transiting object in this cluster. If we observe ˜10 similar clusters, we can expect to detect ˜10 young transiting planets with radius determinations. The precision given above is for a typical telescope of the YETI network, namely the 60/90-cm Jena telescope (similar brightness limit, namely within ± 1 mag, for the others) so that planetary transits can be detected. For targets with a periodic transit-like light curve, we obtain spectroscopy to ensure that the star is young and that the transiting object can be sub-stellar; then, we obtain Adaptive Optics infrared images and spectra, to exclude other bright eclipsing stars in the (larger) optical PSF; we carry out other observations as needed to rule out other false positive scenarios; finally, we also perform spectroscopy to determine the mass of the transiting companion. For planets with mass and radius determinations, we can calculate the mean density and probe the internal structure. We aim to constrain planet formation models and

  14. CHARACTERIZING TRANSITING EXOPLANET ATMOSPHERES WITH JWST

    Energy Technology Data Exchange (ETDEWEB)

    Greene, Thomas P. [NASA Ames Research Center, Space Science and Astrobiology Division, M.S. 245-6, Moffett Field, CA 94035 (United States); Line, Michael R.; Montero, Cezar; Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Lustig-Yaeger, Jacob [Department of Astronomy, Box 351580, University of Washington, Seattle, WA 98195 (United States); Luther, Kyle, E-mail: tom.greene@nasa.gov [Department of Physics, University of California, 366 LeConte Hall MC 7300, Berkeley, CA 94720 (United States)

    2016-01-20

    We explore how well spectra from the James Webb Space Telescope (JWST) will likely constrain bulk atmospheric properties of transiting exoplanets. We start by modeling the atmospheres of archetypal hot Jupiter, warm Neptune, warm sub-Neptune, and cool super-Earth planets with atmospheres that are clear, cloudy, or of high mean molecular weight (HMMW). Next we simulate the λ = 1–11 μm transmission and emission spectra of these systems for several JWST instrument modes for single-transit or single-eclipse events. We then perform retrievals to determine how well temperatures and molecular mixing ratios (CH{sub 4}, CO, CO{sub 2}, H{sub 2}O, NH{sub 3}) can be constrained. We find that λ = 1–2.5 μm transmission spectra will often constrain the major molecular constituents of clear solar-composition atmospheres well. Cloudy or HMMW atmospheres will often require full 1–11 μm spectra for good constraints, and emission data may be more useful in cases of sufficiently high F{sub p} and high F{sub p}/F{sub *}. Strong temperature inversions in the solar-composition hot-Jupiter atmosphere should be detectable with 1–2.5+ μm emission spectra, and 1–5+ μm emission spectra will constrain the temperature–pressure profiles of warm planets. Transmission spectra over 1–5+ μm will constrain [Fe/H] values to better than 0.5 dex for the clear atmospheres of the hot and warm planets studied. Carbon-to-oxygen ratios can be constrained to better than a factor of 2 in some systems. We expect that these results will provide useful predictions of the scientific value of single-event JWST spectra until its on-orbit performance is known.

  15. Transiting exoplanets: From planet statistics to their physical nature

    Directory of Open Access Journals (Sweden)

    Rauer H.

    2011-02-01

    Full Text Available The colloquium "Detection and Dynamics of Transiting Exoplanets" was held at the Observatoire de Haute-Provence and discussed the status of transiting exoplanet investigations in a 4.5 day meeting. Topics addressed ranged from planet detection, a discussion on planet composition and interior structure, atmospheres of hot-Jupiter planets, up to the effect of tides and the dynamical evolution of planetary systems. Here, I give a summary of the recent developments of transiting planet detections and investigations discussed at this meeting.

  16. The Transiting Exoplanet Community Early Release Science Program for JWST

    Science.gov (United States)

    Batalha, Natalie Marie; Bean, Jacob; Stevenson, Kevin; Sing, David; Crossfield, Ian; Knutson, Heather; Line, Michael; Kreidberg, Laura; Desert, Jean-Michel; Wakeford, Hannah R.; Crouzet, Nicolas; Moses, Julianne; Benneke, Björn; Kempton, Eliza; Berta-Thompson, Zach; Lopez-Morales, Mercedes; Parmentier, Vivien; Gibson, Neale; Schlawin, Everett; Fraine, Jonathan; Kendrew, Sarah; Transiting Exoplanet ERS Team

    2018-01-01

    A community working group was formed in October 2016 to consider early release science with the James Webb Space Telescope that broadly benefits the transiting exoplanet community. Over 100 exoplanet scientists worked collaboratively to identify targets that are observable at the initiation of science operations, yield high SNR with a single event, have substantial scientific merit, and have known spectroscopic features identified by prior observations. The working group developed a program that yields representative datasets for primary transit, secondary eclipse, and phase curve observations using the most promising instrument modes for high-precision spectroscopic timeseries (NIRISS-SOSS, NIRCam, NIRSPec, and MIRI-LRS). The centerpiece of the program is an open data challenge that promotes community engagement and leads to a deeper understanding of the JWST instruments as early as possible in the mission. The program is managed under the premise of open science in order to maximize the value of the early release science observations for the transiting exoplanet community.

  17. Characterizing Giant Exoplanets through Multiwavelength Transit Observations: XO-1 b

    Science.gov (United States)

    Cole, Jackson Lane; Gardner, Cristilyn N.; Garver, Bethany R.; Jarka, Kyla L.; Kar, Aman; McGough, Aylin M.; PeQueen, David J.; Rivera, Daniel Ivan; Kasper, David; Jang-Condell, Hannah; Kobulnicky, Henry; Dale, Daniel

    2018-01-01

    Multiwavelength observations of transiting exoplanets can reveal wavelength dependence of the observed transit depth (or a lack thereof), thereby allowing for thorough characterization of their atmospheres. In support of a larger project performing these characterizations of 12 transiting giant exoplanets through 66 nights of continuous observation at the 2.3 m Wyoming Infrared Observatory (WIRO), we report an updated ephemeris for transiting exoplanet XO- 1 b. We carried out an MCMC analysis on photometric data obtained using the standard broad bandpass Sloan filter system. Our data set for XO-1 b is the most limited of those contributing to the larger project, the target having only been successfully observed from the transit midpoint to the egress on one night with limited out-of-transit data available. Exoplanet XO-1 b is a planet transiting star XO-1 (GSC 02041-01657) of type G1 V with V = 11.19 McCullough et al. (2006). This work is supported by the National Science Foundation under REU grant AST 1560461.

  18. The Doppler shadow of WASP-3b. A tomographic analysis of Rossiter-McLaughlin observations

    OpenAIRE

    {Miller} G.~R.~M.; {Collier Cameron} A.; {Simpson} E.~K.; {Pollacco} D.; {Enoch} B.; {Gibson} N.~P.; {Queloz} D.; {Triaud} A.~H.~M.~J.; {H{é}brard}}} G.; {Boisse} I.; {Moutou} C.; {Skillen} I.

    2010-01-01

    Hot-Jupiter planets must form at large separations from their host stars where the temperatures are cool enough for their cores to condense. They then migrate inwards to their current observed orbital separations. Different theories of how this migration occurs lead to varying distributions of orbital eccentricity and the alignment between the rotation axis of the star and the orbital axis of the planet. The spin-orbit alignment of a transiting system is revealed via the Rossiter-McLaughlin e...

  19. A Theory of Exoplanet Transits with Light Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Tyler D., E-mail: tydrobin@ucsc.edu [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2017-02-20

    Exoplanet transit spectroscopy enables the characterization of distant worlds, and will yield key results for NASA's James Webb Space Telescope . However, transit spectra models are often simplified, omitting potentially important processes like refraction and multiple scattering. While the former process has seen recent development, the effects of light multiple scattering on exoplanet transit spectra have received little attention. Here, we develop a detailed theory of exoplanet transit spectroscopy that extends to the full refracting and multiple scattering case. We explore the importance of scattering for planet-wide cloud layers, where the relevant parameters are the slant scattering optical depth, the scattering asymmetry parameter, and the angular size of the host star. The latter determines the size of the “target” for a photon that is back-mapped from an observer. We provide results that straightforwardly indicate the potential importance of multiple scattering for transit spectra. When the orbital distance is smaller than 10–20 times the stellar radius, multiple scattering effects for aerosols with asymmetry parameters larger than 0.8–0.9 can become significant. We provide examples of the impacts of cloud/haze multiple scattering on transit spectra of a hot Jupiter-like exoplanet. For cases with a forward and conservatively scattering cloud/haze, differences due to multiple scattering effects can exceed 200 ppm, but shrink to zero at wavelength ranges corresponding to strong gas absorption or when the slant optical depth of the cloud exceeds several tens. We conclude with a discussion of types of aerosols for which multiple scattering in transit spectra may be important.

  20. Characterizing Giant Exoplanets through Multiwavelength Transit Observations: KELT-9b

    Science.gov (United States)

    Gardner, Cristilyn N.; Cole, Jackson L.; Garver, Bethany R.; Jarka, Kyla L.; Kar, Aman; McGough, Aylin M.; PeQueen, David J.; Rivera, Daniel I.; Kasper, David; Jang-Condell, Hannah; Kobulnicky, Henry A.; Dale, Daniel A.

    2018-01-01

    Multiwavelength observations of host stellar light scattered through an exoplanet's atmosphere during a transit characterizes exoplanetary parameters. Using the Wyoming Infrared Observatory 2.3-meter telescope, we observed primary transits of KELT-9b in the ugriz Sloan filters. We present an analysis of the phase-folded transit observations of KELT-9b using a Bayesian statistical approach. By plotting the transit depth as a function of wavelength, our preliminary results are indicative of scattering in the atmosphere surrounding KELT-9b. This work is supported by the National Science Foundation under REU grant AST 1560461 and PAARE grant AST 1559559.

  1. The Transiting Exoplanet Community Early Release Science Program

    Science.gov (United States)

    Batalha, Natalie; Bean, Jacob; Stevenson, Kevin; Alam, M.; Batalha, N.; Benneke, B.; Berta-Thompson, Z.; Blecic, J.; Bruno, G.; Carter, A.; Chapman, J.; Crossfield, I.; Crouzet, N.; Decin, L.; Demory, B.; Desert, J.; Dragomir, D.; Evans, T.; Fortney, J.; Fraine, J.; Gao, P.; Garcia Munoz, A.; Gibson, N.; Goyal, J.; Harrington, J.; Heng, K.; Hu, R.; Kempton, E.; Kendrew, S.; Kilpatrick, B.; Knutson, H.; Kreidberg, L.; Krick, J.; Lagage, P.; Lendl, M.; Line, M.; Lopez-Morales, M.; Louden, T.; Madhusudhan, N.; Mandell, A.; Mansfield, M.; May, E.; Morello, G.; Morley, C.; Moses, J.; Nikolov, N.; Parmentier, V.; Redfield, S.; Roberts, J.; Schlawin, E.; Showman, A.; Sing, D.; Spake, J.; Swain, M.; Todorov, K.; Tsiaras, A.; Venot, O.; Waalkes, W.; Wakeford, H.; Wheatley, P.; Zellem, R.

    2017-11-01

    JWST presents the opportunity to transform our understanding of planets and the origins of life by revealing the atmospheric compositions, structures, and dynamics of transiting exoplanets in unprecedented detail. However, the high-precision, time-series observations required for such investigations have unique technical challenges, and our prior experience with HST, Spitzer, and Kepler indicates that there will be a steep learning curve when JWST becomes operational. We propose an ERS program to accelerate the acquisition and diffusion of technical expertise for transiting exoplanet observations with JWST. This program will also provide a compelling set of representative datasets, which will enable immediate scientific breakthroughs. We will exercise the time-series modes of all four instruments that have been identified as the consensus highest priority by the community, observe the full suite of transiting planet characterization geometries (transits, eclipses, and phase curves), and target planets with host stars that span an illustrative range of brightnesses. The proposed observations were defined through an inclusive and transparent process that had participation from JWST instrument experts and international leaders in transiting exoplanet studies. The targets have been vetted with previous measurements, will be observable early in the mission, and have exceptional scientific merit. We will engage the community with a two-phase Data Challenge that culminates with the delivery of planetary spectra, time series instrument performance reports, and open-source data analysis toolkits.

  2. THE LOW DENSITY TRANSITING EXOPLANET WASP-15b

    International Nuclear Information System (INIS)

    West, R. G.; Anderson, D. R.; Hellier, C.; Maxted, P. F. L.; Smalley, B.; Wilson, D. M.; Bentley, S. J.; Gillon, M.; Queloz, D.; Triaud, A. H. M. J.; Mayor, M.; Pepe, F.; Hebb, L.; Collier Cameron, A.; Enoch, B.; Horne, K.; Parley, N.; Irwin, J.; Lister, T. A.; Pollacco, D.

    2009-01-01

    We report the discovery of a low-density exoplanet transiting an 11th magnitude star in the Southern hemisphere. WASP-15b, which orbits its host star with a period P = 3.7520656 ± 0.0000028 d, has a mass M p = 0.542 ± 0.050 M J and radius R p = 1.428 ± 0.077 R J , and is therefore one of the least dense transiting exoplanets so far discovered (ρ p = 0.247 ± 0.035 g cm -3 ). An analysis of the spectrum of the host star shows it to be of spectral type around F5, with an effective temperature T eff = 6300 ± 100 K and [Fe/H] = -0.17 ± 0.11.

  3. A search for transit timing variation

    Directory of Open Access Journals (Sweden)

    Kramm U.

    2011-02-01

    Full Text Available Photometric follow-ups of transiting exoplanets (TEPs may lead to discoveries of additional, less massive bodies in extrasolar systems. This is possible by detecting and then analysing variations in transit timing of transiting exoplanets. In 2009 we launched an international observing campaign, the aim of which is to detect and characterise signals of transit timing variation (TTV in selected TEPs. The programme is realised by collecting data from 0.6-2.2-m telescopes spread worldwide at different longitudes. We present our observing strategy and summarise first results for WASP-3b with evidence for a 15 Earth-mass perturber in an outer 2:1 orbital resonance.

  4. Long-Period Exoplanets from Photometric Transit Surveys

    Science.gov (United States)

    Osborn, Hugh

    2017-10-01

    Photometric transit surveys on the ground & in space have detected thousands of transiting exoplanets, typically by analytically combining the signals from multiple transits. This technique of exoplanet detection was exploited in K2 to detect nearly 200 candidate planets, and extensive follow-up was able to confirm the planet K2-110b as a 2.6±0.1R⊕, 16.7±3.2M⊙ planet on a 14d orbit around a K-dwarf. The ability to push beyond the time limit set by transit surveys to detect long-period transiting objects from a single eclipse was also studied. This was performed by developing a search technique to search for planets around bright stars in WASP and NGTS photometry, finding NGTS to be marginally better than WASP at detecting such planets with 4.14±0.16 per year compared to 1.43±0.15, and detecting many planet candidates for which follow-up is on-going. This search was then adapted to search for deep, long-duration eclipses in all WASP targets. The results of this survey are described in this thesis, as well as detailed results for the candidate PDS-110, a young T-Tauri star which exhibited ∼20d-long, 30%-deep eclipses in 2008 and 2011. Space-based photometers such as Kepler have the precision to identify small exoplanets and eclipsing binary candidates from only a single eclipse. K2, with its 75d campaign duration and high-precision photometry, is not only ideally suited to detect significant numbers of single-eclipsing objects, but also to characterise them from a single event. The Bayesian transit-fitting tool ("Namaste: An MCMC Analysis of Single Transit Exoplanets") was developed to extract planetary and orbital information from single transits, and was applied to 71 candidate events detected in K2 photometry. The techniques developed in this thesis are highly applicable to future transit surveys such as TESS & PLATO, which will be able to discover & characterise large numbers of long period planets in this way

  5. Characterizing Rosetta Stone Exoplanets with JWST Transit Spectroscopy

    Science.gov (United States)

    Lewis, Nikole K.; Clampin, Mark; Seager, Sara; Valenti, Jeff A.; Mountain, Matt; JWST Telescope Scientist GTO Team

    2017-06-01

    JWST will for the first time provide for spectroscopic (R > 100) observation of systems hosting transiting exoplanets over the critical wavelength range from 0.6 to 28.5 microns. Our team will take advantage of JWST's spectral coverage and resolution to characterize a small number of exoplanets in exquisite detail. We plan to focus our efforts on single representative members of the hot-Jupiter, warm-Neptune, and temperate-Earth populations in both transmission and emission over the full wavelength range of JWST. Our JWST observations will hopefully become 'Rosetta Stones' that will serve as benchmarks for further observations of planets within each representative population and a lasting legacy of the JWST mission. Here we will describe our observational plan and how we turned our science goals into an implemented Cycle 1 JWST program.

  6. Five Kepler target stars that show multiple transiting exoplanet candidates

    Energy Technology Data Exchange (ETDEWEB)

    Steffen, Jason H.; /Fermilab; Batalha, Natalie M.; /San Jose State U.; Borucki, William J.; /NASA, Ames; Buchhave, Lars A.; /Harvard-Smithsonian Ctr. Astrophys. /Bohr Inst.; Caldwell, Douglas A.; /NASA, Ames /SETI Inst., Mtn. View; Cochran, William D.; /Texas U.; Endl, Michael; /Texas U.; Fabrycky, Daniel C.; /Harvard-Smithsonian Ctr. Astrophys.; Fressin, Francois; /Harvard-Smithsonian Ctr. Astrophys.; Ford, Eric B.; /Florida U.; Fortney, Jonathan J.; /UC, Santa Cruz, Phys. Dept. /NASA, Ames

    2010-06-01

    We present and discuss five candidate exoplanetary systems identified with the Kepler spacecraft. These five systems show transits from multiple exoplanet candidates. Should these objects prove to be planetary in nature, then these five systems open new opportunities for the field of exoplanets and provide new insights into the formation and dynamical evolution of planetary systems. We discuss the methods used to identify multiple transiting objects from the Kepler photometry as well as the false-positive rejection methods that have been applied to these data. One system shows transits from three distinct objects while the remaining four systems show transits from two objects. Three systems have planet candidates that are near mean motion commensurabilities - two near 2:1 and one just outside 5:2. We discuss the implications that multitransiting systems have on the distribution of orbital inclinations in planetary systems, and hence their dynamical histories; as well as their likely masses and chemical compositions. A Monte Carlo study indicates that, with additional data, most of these systems should exhibit detectable transit timing variations (TTV) due to gravitational interactions - though none are apparent in these data. We also discuss new challenges that arise in TTV analyses due to the presence of more than two planets in a system.

  7. DYNAMICS AND TRANSIT VARIATIONS OF RESONANT EXOPLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Nesvorný, David [Department of Space Studies, Southwest Research Institute, 1050 Walnut St., Ste 300, Boulder, CO 80302 (United States); Vokrouhlický, David, E-mail: davidn@boulder.swri.edu, E-mail: vokrouhl@cesnet.cz [Institute of Astronomy, Charles University, V Holešovičkách 2, CZ–18000 Prague 8 (Czech Republic)

    2016-06-01

    Transit timing variations (TTVs) are deviations of the measured midtransit times from the exact periodicity. One of the most interesting causes of TTVs is the gravitational interaction between planets. Here we consider a case of two planets in a mean motion resonance (orbital periods in a ratio of small integers). This case is important because the resonant interaction can amplify the TTV effect and allow planets to be detected more easily. We develop an analytic model of the resonant dynamics valid for small orbital eccentricities and use it to derive the principal TTV terms. We find that a resonant system should show TTV terms with two basic periods (and their harmonics). The resonant TTV period is proportional ( m / M {sub *}){sup −2/3}, where m and M {sub *} are the planetary and stellar masses. For m = 10{sup −4} M {sub *}, for example, the TTV period exceeds the orbital period by about two orders of magnitude. The amplitude of the resonant TTV terms scales linearly with the libration amplitude. The ratio of the TTV amplitudes of two resonant planets is inversely proportional to the ratio of their masses. These and other relationships discussed in the main text can be used to aid the interpretation of TTV observations.

  8. New tools and improvements in the Exoplanet Transit Database

    Directory of Open Access Journals (Sweden)

    Pejcha O.

    2011-02-01

    Full Text Available Comprehensive collection of the available light curves, prediction possibilities and the online model fitting procedure, that are available via Exoplanet Transit Database became very popular in the community. In this paper we summarized the changes, that we made in the ETD during last year (including the Kepler candidates into the prediction section, modeling of an unknown planet in the model-fit section and some other small improvements. All this new tools cannot be found in the main ETD paper.

  9. POLARIMETRIC DETECTION OF EXOPLANETS TRANSITING T AND L BROWN DWARFS

    International Nuclear Information System (INIS)

    Sengupta, Sujan

    2016-01-01

    While scattering of light by atoms and molecules yields large amounts of polarization at the B-band of both T and L dwarfs, scattering by dust grains in the cloudy atmosphere of L dwarfs gives rise to significant polarization at the far-optical and infrared wavelengths where these objects are much brighter. However, the observable disk-averaged polarization should be zero if the clouds are uniformly distributed and the object is spherically symmetric. Therefore, in order to explain the observed large polarization of several L dwarfs, rotation-induced oblateness or horizontally inhomogeneous cloud distribution in the atmosphere is invoked. On the other hand, when an extra-solar planet of Earth-size or larger transits the brown dwarf along the line of sight, the asymmetry induced during the transit gives rise to a net non-zero, time-dependent polarization. Employing atmospheric models for a range of effective temperature and surface gravity appropriate for T and L dwarfs, I derive the time-dependent polarization profiles of these objects during the transit phase and estimate the peak amplitude of polarization that occurs during the inner contact points of the transit ingress/egress phase. It is found that peak polarization in the range of 0.2%–1.0% at I and J band may arise of cloudy L dwarfs occulted by Earth-size or larger exoplanets. Such an amount of polarization is higher than what can be produced by rotation-induced oblateness of even rapidly rotating L dwarfs. Hence, I suggest that time-resolved imaging polarization could be a potential technique for detecting transiting exoplanets around L dwarfs.

  10. POLARIMETRIC DETECTION OF EXOPLANETS TRANSITING T AND L BROWN DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, Sujan, E-mail: sujan@iiap.res.in [Indian Institute of Astrophysics, Koramangala 2nd Block, Bangalore 560 034 (India)

    2016-10-01

    While scattering of light by atoms and molecules yields large amounts of polarization at the B-band of both T and L dwarfs, scattering by dust grains in the cloudy atmosphere of L dwarfs gives rise to significant polarization at the far-optical and infrared wavelengths where these objects are much brighter. However, the observable disk-averaged polarization should be zero if the clouds are uniformly distributed and the object is spherically symmetric. Therefore, in order to explain the observed large polarization of several L dwarfs, rotation-induced oblateness or horizontally inhomogeneous cloud distribution in the atmosphere is invoked. On the other hand, when an extra-solar planet of Earth-size or larger transits the brown dwarf along the line of sight, the asymmetry induced during the transit gives rise to a net non-zero, time-dependent polarization. Employing atmospheric models for a range of effective temperature and surface gravity appropriate for T and L dwarfs, I derive the time-dependent polarization profiles of these objects during the transit phase and estimate the peak amplitude of polarization that occurs during the inner contact points of the transit ingress/egress phase. It is found that peak polarization in the range of 0.2%–1.0% at I and J band may arise of cloudy L dwarfs occulted by Earth-size or larger exoplanets. Such an amount of polarization is higher than what can be produced by rotation-induced oblateness of even rapidly rotating L dwarfs. Hence, I suggest that time-resolved imaging polarization could be a potential technique for detecting transiting exoplanets around L dwarfs.

  11. Analytic Scattering and Refraction Models for Exoplanet Transit Spectra

    Science.gov (United States)

    Robinson, Tyler D.; Fortney, Jonathan J.; Hubbard, William B.

    2017-12-01

    Observations of exoplanet transit spectra are essential to understanding the physics and chemistry of distant worlds. The effects of opacity sources and many physical processes combine to set the shape of a transit spectrum. Two such key processes—refraction and cloud and/or haze forward-scattering—have seen substantial recent study. However, models of these processes are typically complex, which prevents their incorporation into observational analyses and standard transit spectrum tools. In this work, we develop analytic expressions that allow for the efficient parameterization of forward-scattering and refraction effects in transit spectra. We derive an effective slant optical depth that includes a correction for forward-scattered light, and present an analytic form of this correction. We validate our correction against a full-physics transit spectrum model that includes scattering, and we explore the extent to which the omission of forward-scattering effects may bias models. Also, we verify a common analytic expression for the location of a refractive boundary, which we express in terms of the maximum pressure probed in a transit spectrum. This expression is designed to be easily incorporated into existing tools, and we discuss how the detection of a refractive boundary could help indicate the background atmospheric composition by constraining the bulk refractivity of the atmosphere. Finally, we show that opacity from Rayleigh scattering and collision-induced absorption will outweigh the effects of refraction for Jupiter-like atmospheres whose equilibrium temperatures are above 400-500 K.

  12. Transiting Exoplanets: Discovery from the Ground, Characterization from Space

    Science.gov (United States)

    Nutzman, Philip Andrew

    This work considers the prospects for detecting Earth-like, habitable planets from the ground by targeting nearby M dwarf stars. I perform design studies for ground-based transit surveys seeking habitable, Earth-like planets. By studying a list of proper-motion selected M dwarfs, I determine observational requirements on a star-by-star basis. A survey using 10 40 cm telescopes to target 2000 late, northern M dwarfs could yield 27 x etaM,⊕ habitable, sub-Neptune sized planets in less than three years of observations, where etaM,⊕ is the occurrence rate of super-Earths in the habitable zones of late M dwarfs. By extending to the Southern hemisphere, and incorporating a special narrow filter to avoid telluric water vapor bands, a survey using 10 40 cm telescopes in the North and 10 40 cm telescopes in the South could find 30 x eta M,⊕ habitable planets smaller than 1.5 R ⊕, in 5 years of operations. I present space-based observations of the exoplanet systems HD 149026 and HD 17156, with which I vastly improve upon previously existing estimates of stellar and planetary properties. I present Spitzer 8 mum transit observations obtained for the exoplanet HD 149026b. By observing at this wavelength, one can reduce the effects of limb darkening and thereby simplify the modeling of shallow transit events. I find Rp = 0.755 +/- 0.040RJ. I also present the first joint analysis of transit and asteroseismology observations. Using observations obtained with the Fine Guidance Sensors (FGS) on board the Hubble Space Telescope, I analyze 3 transits of the HD 17156 system. By incorporating a stellar mean density constraint obtained from asteroseismology observations, I improve the determination of planetary properties by an order of magnitude versus previous studies. I find a planetary radius of Rp = 1.0870 +/- 0.0066RJ, which is modestly consistent with theoretical models of solar-composition gas giants.

  13. Characterizing Giant Exoplanets through Multiwavelength Transit Observations: HAT-P-5 b

    Science.gov (United States)

    PeQueen, David Jeffrey; Cole, Jackson Lane; Gardner, Cristilyn N.; Garver, Bethany Ray; Jarka, Kyla L.; Kar, Aman; McGough, Aylin M.; Rivera, Daniel Ivan; Kasper, David; Jang-Condell, Hannah; Kobulnicky, Henry; Dale, Daniel

    2018-01-01

    During the summer of 2017, we observed hot Jupiter-type exoplanet transit events using the Wyoming Infrared Observatory’s 2.3 meter telescope. We observed 14 unique exoplanets during transit events; one such target was HAT-P-5 b. In total, we collected 53 usable science images in the Sloan filter set, particularly with the g’, r’, z’, and i’ band wavelength filters. This exoplanet transited approximately 40 minutes earlier than the currently published literature suggests. After reducing the data and running a Markov chain Monte Carlo analysis, we present results describing the planetary radius, semi-major axis, orbital period, and inclination of HAT-P-5 b. Characteristics of Rayleigh scattering are present in the atmosphere of this exoplanet. This work is supported by the National Science Foundation under REU grant AST 1560461.

  14. Trajectory Design for the Transiting Exoplanet Survey Satellite

    Science.gov (United States)

    Dichmann, Donald J.; Parker, Joel J. K.; Williams, Trevor W.; Mendelsohn, Chad R.

    2014-01-01

    The Transiting Exoplanet Survey Satellite (TESS) is a National Aeronautics and Space Administration (NASA) mission, scheduled to be launched in 2017. TESS will travel in a highly eccentric orbit around Earth, with initial perigee radius near 17 Earth radii (Re) and apogee radius near 59 Re. The orbit period is near 2:1 resonance with the Moon, with apogee nearly 90 degrees out-of-phase with the Moon, in a configuration that has been shown to be operationally stable. TESS will execute phasing loops followed by a lunar flyby, with a final maneuver to achieve 2:1 resonance with the Moon. The goals of a resonant orbit with long-term stability, short eclipses and limited oscillations of perigee present significant challenges to the trajectory design. To rapidly assess launch opportunities, we adapted the Schematics Window Methodology (SWM76) launch window analysis tool to assess the TESS mission constraints. To understand the long-term dynamics of such a resonant orbit in the Earth-Moon system we employed Dynamical Systems Theory in the Circular Restricted 3-Body Problem (CR3BP). For precise trajectory analysis we use a high-fidelity model and multiple shooting in the General Mission Analysis Tool (GMAT) to optimize the maneuver delta-V and meet mission constraints. Finally we describe how the techniques we have developed can be applied to missions with similar requirements. Keywords: resonant orbit, stability, lunar flyby, phasing loops, trajectory optimization

  15. Trajectory Design for the Transiting Exoplanet Survey Satellite (TESS)

    Science.gov (United States)

    Dichmann, Donald J.; Parker, Joel; Williams, Trevor; Mendelsohn, Chad

    2014-01-01

    The Transiting Exoplanet Survey Satellite (TESS) is a National Aeronautics and Space Administration (NASA) mission launching in 2017. TESS will travel in a highly eccentric orbit around Earth, with initial perigee radius near 17 Earth radii (Re) and apogee radius near 59 Re. The orbit period is near 2:1 resonance with the Moon, with apogee nearly 90 degrees out-of-phase with the Moon, in a configuration that has been shown to be operationally stable. TESS will execute phasing loops followed by a lunar flyby, with a final maneuver to achieve 2:1 resonance with the Moon. The goals of a resonant orbit with long-term stability, short eclipses and limited oscillations of perigee present significant challenges to the trajectory design. To rapidly assess launch opportunities, we adapted the SWM76 launch window tool to assess the TESS mission constraints. To understand the long-term dynamics of such a resonant orbit in the Earth-Moon system we employed Dynamical Systems Theory in the Circular Restricted 3-Body Problem (CR3BP). For precise trajectory analysis we use a high-fidelity model and multiple shooting in the General Mission Analysis Tool (GMAT) to optimize the maneuver delta-V and meet mission constraints. Finally we describe how the techniques we have developed can be applied to missions with similar requirements.

  16. Preparing for TESS: Precision Ground-based Light-curves of Newly Discovered Transiting Exoplanets

    Science.gov (United States)

    Li, Yiting; Stefansson, Gudmundur; Mahadevan, Suvrath; Monson, Andy; Hebb, Leslie; Wisniewski, John; Huehnerhoff, Joseph

    2018-01-01

    NASA’s Transiting Exoplanet Survey Satellite (TESS), to be launched in early 2018, is expected to catalog a myriad of transiting exoplanet candidates ranging from Earth-sized to gas giants, orbiting a diverse range of stellar types in the solar neighborhood. In particular, TESS will find small planets orbiting the closest and brightest stars, and will enable detailed atmospheric characterizations of planets with current and future telescopes. In the TESS era, ground-based follow-up resources will play a critical role in validating and confirming the planetary nature of the candidates TESS will discover. Along with confirming the planetary nature of exoplanet transits, high precision ground-based transit observations allow us to put further constraints on exoplanet orbital parameters and transit timing variations. In this talk, we present new observations of transiting exoplanets recently discovered by the K2 mission, using the optical diffuser on the 3.5m ARC Telescope at Apache Point Observatory. These include observations of the mini-Neptunes K2-28b and K2-104b orbiting early-to-mid M-dwarfs. In addition, other recent transit observations performed using the robotic 30cm telescope at Las Campanas Observatory in Chile will be presented.

  17. NO TIMING VARIATIONS OBSERVED IN THIRD TRANSIT OF SNOW-LINE EXOPLANET KEPLER-421b

    International Nuclear Information System (INIS)

    Dalba, Paul A.; Muirhead, Philip S.

    2016-01-01

    We observed Kepler-421 during the anticipated third transit of the snow-line exoplanet Kepler-421b in order to constrain the existence and extent of transit timing variations (TTVs). Previously, the Kepler spacecraft only observed two transits of Kepler-421b, leaving the planet’s transit ephemeris unconstrained. Our visible light, time-series observations from the 4.3 m Discovery Channel Telescope were designed to capture pre-transit baseline and the partial transit of Kepler-421b, barring significant TTVs. We use the light curves to assess the probabilities of various transit models using both the posterior odds ratio and the Bayesian Information Criterion, and find that a transit model with no TTVs is favored to 3.6 σ confidence. These observations suggest that Kepler-421b is either alone in its system or is only experiencing minor dynamic interactions with an unseen companion. With the Kepler-421b ephemeris constrained, we calculate future transit times and discuss the opportunity to characterize the atmosphere of this cold, long-period exoplanet via transmission spectroscopy. Our investigation emphasizes the difficulties associated with observing long-period exoplanet transits and the consequences that arise from failing to refine transit ephemerides.

  18. Hubble/WFC3 Spectroscopy of the Transiting Exoplanets WASP-19b and WASP-17b

    Science.gov (United States)

    Mandell, A.; Haynes, K.; Sinukoff, E.; Deming, D.; Wlikins, A.; Madhusudhan, N.; Agol, E.; Burrows, A.; Charbonneau, D.; Gilliland, R.; hide

    2012-01-01

    Measurements of transiting exoplanets that target extremes in parameter space offer the best chance to disentangle the structure and composition of the atmospheres of hot Jupiters. WASP-19b is one of the hottest exoplanets discovered to date, while WASP-17b has a much lower equilibrium temperature but has one of the largest atmospheric radii of known transiting planets. We discuss results from HST/WFC3 grism 1.1-1.7 micron spectroscopy of these planets during transit. We compare our integrated-light transit depths to previous IR transit photometry, and derive the 1.4-micron water absorption spectrum. We discuss implications for the atmospheric composition and structure of these hot Jupiters, and outline future observations that will further expand on these results.

  19. Asteroseismology of the Transiting Exoplanet Host HD 17156 with Hubble Space Telescope Fine Guidance Sensor

    DEFF Research Database (Denmark)

    Gilliland, Ronald L.; McCullough, Peter R.; Nelan, Edmund P.

    2011-01-01

    Observations conducted with the Fine Guidance Sensor on the Hubble Space Telescope (HST) providing high cadence and precision time-series photometry were obtained over 10 consecutive days in 2008 December on the host star of the transiting exoplanet HD 17156b. During this time, 1.0 × 1012 photons...

  20. Expected Planet and False Positive Detection Rates for the Transiting Exoplanet Survey Satellite

    OpenAIRE

    Brown, Timothy M.; Latham, David W.

    2008-01-01

    The proposed Transiting Exoplanet Survey Satellite (TESS) will survey the entire sky to locate the nearest and brightest transiting extrasolar planets with orbital periods up to about 36 days. Here we estimate the number and kind of astrophysical false positives that TESS will report, along with the number of extrasolar planets. These estimates are then used to size the ground-based follow-up observing efforts needed to confirm and characterize the planets. We estimate that the needed observi...

  1. Exploring the Diversity of Exoplanet Atmospheres Using Ground-Based Transit Spectroscopy

    Science.gov (United States)

    Bean, Jacob

    This is a proposal to fund an observational study of the atmospheres of exoplanets in order to improve our understanding of the nature and origins of these mysterious worlds. The observations will be performed using our new approach for ground-based transit spectroscopy measurements that yields space-telescope quality data. We will also carry out supporting theoretical calculations with new abundance retrieval codes to interpret the measurements. Our project includes a survey of giant exoplanets, and intensive study of especially compelling exoplanets. For the survey, optical and near-infrared transmission spectra, and near-infrared emission spectra will be measured for giant exoplanets with a wide range of estimated temperatures, heavy element abundance, and mass. This comprehensive characterization of a large sample of these planets is now crucial to investigate such issues for their atmospheres as the carbon-to-oxygen ratios and overall metallicities, cause of thermal inversions, and prevalence and nature of high-altitude hazes. The intensive study of compelling individual planets will focus on low-mass (M spectroscopy, and leveraging its particular sensitivity to the atmospheric scale height. Observations for the project will be carried out with Magellan, Keck, Gemini, and VLT. The team has institutional access to Magellan and Keck, and a demonstrated record of obtaining time on Gemini and VLT for these observations through public channels. This proposal is highly relevant for current and future NASA projects. We are seeking to understand the diversity of exoplanets revealed by planet searches like Kepler and the Eta-Earth survey. Our observations will complement, extend, and provide context for similar observations with HST and Spitzer. We will investigate the fundamental nature of the closest kin to Earth-size exoplanets, and this is an important foundation that must be laid down before studying habitable planets with JWST and a future TPF-like mission.

  2. Improving Transit Predictions of Known Exoplanets with TERMS

    Directory of Open Access Journals (Sweden)

    Mahadevan S.

    2011-02-01

    Full Text Available Transiting planet discoveries have largely been restricted to the short-period or low-periastron distance regimes due to the bias inherent in the geometric transit probability. Through the refinement of planetary orbital parameters, and hence reducing the size of transit windows, long-period planets become feasible targets for photometric follow-up. Here we describe the TERMS project that is monitoring these host stars at predicted transit times.

  3. Towards the Albedo of an Exoplanet: MOST Satellite Observations of Bright Transiting Exoplanetary Systems

    OpenAIRE

    Rowe, Jason F.; Matthews, Jaymie M.; Seager, Sara; Sasselov, Dimitar; Kuschnig, Rainer; Guenther, David B.; Moffat, Anthony F. J.; Rucinski, Slavek M.; Walker, Gordon A. H.; Weiss, Werner W.

    2008-01-01

    The Canadian MOST satellite is a unique platform for observations of bright transiting exoplanetary systems. Providing nearly continuous photometric observations for up to 8 weeks, MOST can produce important observational data to help us learn about the properties of exosolar planets. We review our current observations of HD 209458, HD 189733 with implications towards the albedo and our progress towards detecting reflected light from an exoplanet.

  4. A Catalog of Cool Dwarf Targets for the Transiting Exoplanet Survey Satellite

    Science.gov (United States)

    Muirhead, Philip S.; Dressing, Courtney D.; Mann, Andrew W.; Rojas-Ayala, Bárbara; Lépine, Sébastien; Paegert, Martin; De Lee, Nathan; Oelkers, Ryan

    2018-04-01

    We present a catalog of cool dwarf targets (V-J> 2.7, T eff ≲ 4000 K) and their stellar properties for the upcoming Transiting Exoplanet Survey Satellite (TESS), for the purpose of determining which cool dwarfs should be observed using two minute observations. TESS has the opportunity to search tens of thousands of nearby, cool, late K- and M-type dwarfs for transiting exoplanets, an order of magnitude more than current or previous transiting exoplanet surveys, such as Kepler, K2, and ground-based programs. This necessitates a new approach to choosing cool dwarf targets. Cool dwarfs are chosen by collating parallax and proper motion catalogs from the literature and subjecting them to a variety of selection criteria. We calculate stellar parameters and TESS magnitudes using the best possible relations from the literature while maintaining uniformity of methods for the sake of reproducibility. We estimate the expected planet yield from TESS observations using statistical results from the Kepler mission, and use these results to choose the best targets for two minute observations, optimizing for small planets for which masses can conceivably be measured using follow-up Doppler spectroscopy by current and future Doppler spectrometers. The catalog is available in machine readable format and is incorporated into the TESS Input Catalog and TESS Candidate Target List until a more complete and accurate cool dwarf catalog identified by ESA’s Gaia mission can be incorporated.

  5. Influence of stellar variability on the determination of the radius during a transit of an exoplanet

    Directory of Open Access Journals (Sweden)

    Désert J.-M.

    2011-07-01

    Full Text Available Stellar variability can affect the estimate of an exoplanet radius measured during a transit. We developed a transit light curve model which includes stellar spots. It appears that, if spectro-photometric technique is used, spots and faculae have to be considered to conclude on atmospheric detection and characterization. When using a model including spots, characterization of Hot-Jupiter atmosphere around active stars is possible with this technique, provided a signal to noise ratio up to 105. For Earth-size planets a long-term parallel photometric follow up monitoring the stellar activity is required to compensate the error due to the stellar variability.

  6. Qatar Exoplanet Survey: Qatar-6b—A Grazing Transiting Hot Jupiter

    Science.gov (United States)

    Alsubai, Khalid; Tsvetanov, Zlatan I.; Latham, David W.; Bieryla, Allyson; Esquerdo, Gilbert A.; Mislis, Dimitris; Pyrzas, Stylianos; Foxell, Emma; McCormac, James; Baranec, Christoph; Vilchez, Nicolas P. E.; West, Richard; Esamdin, Ali; Dang, Zhenwei; Dalee, Hani M.; Al-Rajihi, Amani A.; Al-Harbi, Abeer Kh.

    2018-02-01

    We report the discovery of Qatar-6b, a new transiting planet identified by the Qatar Exoplanet Survey (QES). The planet orbits a relatively bright (V = 11.44), early-K main-sequence star at an orbital period of P ∼ 3.506 days. An SED fit to available multi-band photometry, ranging from the near-UV to the mid-IR, yields a distance of d = 101 ± 6 pc to the system. From a global fit to follow-up photometric and spectroscopic observations, we calculate the mass and radius of the planet to be M P = 0.67 ± 0.07 M J and R P = 1.06 ± 0.07 R J, respectively. We use multi-color photometric light curves to show that the transit is grazing, making Qatar-6b one of the few exoplanets known in a grazing transit configuration. It adds to the short list of targets that offer the best opportunity to look for additional bodies in the host planetary system through variations in the transit impact factor and duration.

  7. Characterizing Giant Exoplanets through Multiwavelength Transit Observations: HAT-P-57 b

    Science.gov (United States)

    Garver, Bethany Ray; Cole, Jackson Lane; Gardner, Cristilyn N.; Jarka, Kyla L.; Kar, Aman; McGough, Aylin M.; PeQueen, David Jeffrey; Rivera, Daniel Ivan; Kasper, David; Jang-Condell, Hannah; Kobulnicky, Henry; Dale, Daniel

    2018-01-01

    Giant planets have thick atmospheres. By observing transits through multiple filters at different wavelengths, we can make constraints on the atmospheres of those planets. When the planets are observed via transit, Rayleigh scattering can cause the transit depth to vary with wavelength. HAT-P-57 b is a giant exoplanet that is observable using the 2.3-meter telescope at the Wyoming Infrared Observatory. We observed half of a transit of HAT-P-57 b using Sloan filters g, r, i, and z. We present early results showing a variation in calculated radius with wavelength. Further observations are needed to confirm this variation and measure it more accurately. This work is supported by the National Science Foundation under REU grant AST 1560461.

  8. Observations and modeling of the transiting exoplanets XO-2b, HAT-P-18b, and WASP-80b

    Directory of Open Access Journals (Sweden)

    Kjurkchieva Diana P.

    2017-01-01

    Full Text Available We present photometric observations and transit solutions of the exoplanets XO-2b, HAT-P-18b and WASP 80b. Our solution of the XO-2b transit gave system parameters whose values are close to those of the previous studies. The solutions of the new transits of HAT-P-18b and WASP 80b differ from the previous ones by bigger stellar and planet radii. We obtained new values of the target initial epochs corresponding to slightly different periods. Our investigation reaffirmed that small telescopes can be used successfully for the study of exoplanets orbiting stars brighter than 13 mag.

  9. ASTEP South: An Antarctic Search for Transiting ExoPlanets around the celestial South pole

    OpenAIRE

    Crouzet , Nicolas; Guillot , Tristan; Agabi , Karim; Rivet , Jean-Pierre; Bondoux , Erick; Challita , Zalpha; Fanteï-Caujolle , Yan; Fressin , François; Mékarnia , Djamel; Schmider , François-Xavier; Valbousquet , Franck; Blazit , Alain; Bonhomme , Serge; Abe , Lyu; Daban , Jean-Baptiste

    2009-01-01

    ASTEP South is the first phase of the ASTEP project (Antarctic Search for Transiting ExoPlanets). The instrument is a fixed 10 cm refractor with a 4kx4k CCD camera in a thermalized box, pointing continuously a 3.88 degree x 3.88 degree field of view centered on the celestial South pole. ASTEP South became fully functional in June 2008 and obtained 1592 hours of data during the 2008 Antarctic winter. The data are of good quality but the analysis has to account for changes in the point spread f...

  10. Trajectory Design to Mitigate Risk on the Transiting Exoplanet Survey Satellite (TESS) Mission

    Science.gov (United States)

    Dichmann, Donald

    2016-01-01

    The Transiting Exoplanet Survey Satellite (TESS) will employ a highly eccentric Earth orbit, in 2:1 lunar resonance, reached with a lunar flyby preceded by 3.5 phasing loops. The TESS mission has limited propellant and several orbit constraints. Based on analysis and simulation, we have designed the phasing loops to reduce delta-V and to mitigate risk due to maneuver execution errors. We have automated the trajectory design process and use distributed processing to generate and to optimize nominal trajectories, check constraint satisfaction, and finally model the effects of maneuver errors to identify trajectories that best meet the mission requirements.

  11. Spectrashift Exoplanet Transit Search Project: 40,000 Light Curves and Counting

    Science.gov (United States)

    Kaye, Thomas G.; Healy, David

    2009-05-01

    Spectrashift has recently branched out from its radial velocity work detecting exoplanets, and has now fully implemented an exoplanet transit search program. Junk Bond Observatory's 0.8 meter fully automated RC telescope has been engaged in this effort full-time since October of 2008. To date the search has examined more than 40,000 light curves. The Spectrashift strategy is to look at fewer but fainter stars putting this search into the magnitude range the majority of professional searches can not penetrate. Custom software was developed for the reduction pipeline to handle the volume of data. The software implements artificial intelligence algorithms to sort out the most likely candidates for human inspection at the end of the pipeline. To date the project has come up with several "triple hits" where a transit-like event has happened on three occasions. The Spectrashift team's ultimate goal is to include a network of non-professional telescopes around the world for 24 hour coverage of star fields. It is believed this is the first serious non-professional transit search effort.

  12. Characterizing Giant Exoplanets through Multiwavelength Transit Observations: HAT-P-8b

    Science.gov (United States)

    Jarka, Kyla L.; Cole, Jackson Lane; Gardner, Cristilyn N.; Garver, Bethany Ray; Kar, Aman; McGough, Aylin Marie; PeQueen, David Jeffrey; Rivera, Daniel Ivan; Kasper, David; Jang-Condell, Hannah; Kobulnicky, Henry; Dale, Daniel

    2018-01-01

    Discovering and characterizing gas giants is important to the search for other life, as gas giants greatly affect the habitability of a solar system. Transits of exoplanets observed in visual photometric bands have been used to characterize their atmospheres and confirm planet parameters. We observed two primary transits of the hot gas giant HAT-P-8b with the Wyoming Infrared Observatory’s 2.3-meter telescope. Using multi-filter photometry in the g, r, i, and z bands (Sloan filters) we were able to update HAT-P-8b’s planet parameters and constrain characteristics of its atmosphere. Preliminary findings show that there is wavelength dependence in the depth of the transit observations. An infrared spectroscopic follow up of this candidate could yield more details on its atmospheric composition.

  13. Exoplanet characterization by multi-observatory transit photometry with TESS and CHEOPS

    Science.gov (United States)

    Gaidos, E.; Kitzmann, D.; Heng, K.

    2017-07-01

    Space-based photometric surveys have discovered large numbers of planets transiting other stars, but these observe in a single band-pass and yield only the planet radius, orbital period and transit duration. Information on the masses, compositions and any atmospheres of these planets requires additional observations from the ground or space. The Transiting Exoplanet Survey Satellite (TESS) will yield thousands of planets around bright stars suitable for such follow-up. In the absence of spectroscopy or spectrophotometry from space, observations through the different passbands of multiple space telescopes provide some spectral information useful for identifying false-positive signals, distinguishing between reflected light and thermal emission from hot Jupiters, and detecting Rayleigh scattering by planetary atmospheres. We calculated the expected difference in transit depths measured by the TESS and Characterizing Exoplanet Satellite (CHEOPS) missions, which will be more sensitive to redder and bluer optical wavelengths, respectively. The difference due to companion or background stars is small (<3 per cent for main-sequence companions) and likely to be negligible and undetectable. For only a few 'hot' Jupiters, can combined photometry disambiguate between the reflected and thermal signals from planets. However, the Rayleigh scattering by hazy atmospheres with particles sizes near 0.04 μm and at pressure altitudes above ˜1 mbar can be detected for ˜100 transiting planets, assuming every planet has such an atmosphere. Hazes with this characteristic particle size do not obscure observations at longer (near-infrared) wavelengths; CHEOPS follow-up of TESS-detected planets could thus identify candidates suitable for further study with the James Webb Space Telescope.

  14. ASTERIA: A CubeSat for Exoplanet Transit and Stellar Photometry

    Science.gov (United States)

    Knapp, Mary; Seager, Sara

    2015-12-01

    We present ASTERIA, a 6U CubeSat demonstrator for exoplanet transit photometry. ASTERIA, currently in development at JPL and due to be launched in mid to late 2016, is a testbed for a two-stage pointing system capable of thermal control. These two features will allow ASTERIA to achieve very high photometric precision (<100 ppm) in a very small and cost effective package. ASTERIA will be used to search for transits of known RV planets as well as perform long duration, high cadence stellar photometry. The stellar photometry data will be used to study flares and stellar activity on a variety of stellar types. This presentation will focus on ASTERIA's science mission.

  15. CHEOPS: a space telescope for ultra-high precision photometry of exoplanet transits

    Science.gov (United States)

    Cessa, V.; Beck, T.; Benz, W.; Broeg, C.; Ehrenreich, D.; Fortier, A.; Peter, G.; Magrin, D.; Pagano, I.; Plesseria, J.-Y.; Steller, M.; Szoke, J.; Thomas, N.; Ragazzoni, R.; Wildi, F.

    2017-11-01

    The CHaracterising ExOPlanet Satellite (CHEOPS) is a joint ESA-Switzerland space mission dedicated to search for exoplanet transits by means of ultra-high precision photometry whose launch readiness is expected end 2017. The CHEOPS instrument will be the first space telescope dedicated to search for transits on bright stars already known to host planets. By being able to point at nearly any location on the sky, it will provide the unique capability of determining accurate radii for a subset of those planets for which the mass has already been estimated from ground-based spectroscopic surveys. CHEOPS will also provide precision radii for new planets discovered by the next generation ground-based transits surveys (Neptune-size and smaller). The main science goals of the CHEOPS mission will be to study the structure of exoplanets with radii typically ranging from 1 to 6 Earth radii orbiting bright stars. With an accurate knowledge of masses and radii for an unprecedented sample of planets, CHEOPS will set new constraints on the structure and hence on the formation and evolution of planets in this mass range. To reach its goals CHEOPS will measure photometric signals with a precision of 20 ppm in 6 hours of integration time for a 9th magnitude star. This corresponds to a signal to noise of 5 for a transit of an Earth-sized planet orbiting a solar-sized star (0.9 solar radii). This precision will be achieved by using a single frame-transfer backside illuminated CCD detector cool down at 233K and stabilized within {10 mK . The CHEOPS optical design is based on a Ritchey-Chretien style telescope with 300 mm effective aperture diameter, which provides a defocussed image of the target star while minimizing straylight using a dedicated field stop and baffle system. As CHEOPS will be in a LEO orbit, straylight suppression is a key point to allow the observation of faint stars. The telescope will be the only payload on a spacecraft platform providing pointing stability of < 8

  16. VizieR Online Data Catalog: Transit of exoplanet WASP-21b (Bouchy+, 2010)

    Science.gov (United States)

    Bouchy, F.; Hebb, L.; Skillen, I.; Collier Cameron, A.; Smalley, B.; Udry, S.; Anderson, D. R.; Boisse, I.; Enoch, B.; Haswell, C. A.; Hebrard, G.; Hellier, C.; Joshi, Y.; Kane, S. R.; Maxted, P. F. L.; Mayor, M.; Moutou, C.; Pepe, F.; Pollacco, D.; Queloz, D.; Segransan, D.; Simpson, E. K.; Smith, A. M. S.; Stempels, H. C.; Street, R.; Triaud, A. H. M. J.; West, R. G.; Wheatley, P. J.

    2010-05-01

    We report the discovery of WASP-21b, a new transiting exoplanet discovered by the Wide Angle Search for Planets (WASP) Consortium and established and characterized with the FIES, SOPHIE, CORALIE and HARPS fiber-fed echelle spectrographs. A 4.3-d period, 1.1% transit depth and 3.4-h duration are derived for WASP-21b using SuperWASP-North and high precision photometric observations at the Liverpool Telescope. Simultaneous fitting to the photometric and radial velocity data with a Markov Chain Monte Carlo procedure leads to a planet in the mass regime of Saturn. With a radius of 1.07RJup and mass of 0.30MJup, WASP-21b has a density close to 0.24{rho}Jup corresponding to the distribution peak at low density of transiting gaseous giant planets. With a host star metallicity [Fe/H] of -0.46, WASP-21b strengthens the correlation between planetary density and host star metallicity for the five known Saturn-like transiting planets. Furthermore there are clear indications that WASP-21b is the first transiting planet belonging to the thick disc. (3 data files).

  17. VizieR Online Data Catalog: Transiting exoplanet WASP-21b (Bouchy+, 2010)

    Science.gov (United States)

    Bouchy, F.; Hebb, L.; Skillen, I.; Collier Cameron, A.; Smalley, B.; Udry, S.; Anderson, D. R.; Boisse, I.; Enoch, B.; Haswell, C. A.; Hebrard, G.; Hellier, C.; Joshi, Y.; Kane, S. R.; Maxted, P. F. L.; Mayor, M.; Moutou, C.; Pepe, F.; Pollacco, D.; Queloz, D.; Segransan, D.; Simpson, E. K.; Smith, A. M. S.; Stempels, H. C.; Street, R.; Triaud, A. H. M. J.; West, R. G.; Wheatley, P. J.

    2010-05-01

    We report the discovery of WASP-21b, a new transiting exoplanet discovered by the Wide Angle Search for Planets (WASP) Consortium and established and characterized with the FIES, SOPHIE, CORALIE and HARPS fiber-fed echelle spectrographs. A 4.3-d period, 1.1% transit depth and 3.4-h duration are derived for WASP-21b using SuperWASP-North and high precision photometric observations at the Liverpool Telescope. Simultaneous fitting to the photometric and radial velocity data with a Markov Chain Monte Carlo procedure leads to a planet in the mass regime of Saturn. With a radius of 1.07RJup and mass of 0.30MJup, WASP-21b has a density close to 0.24rhoJup corresponding to the distribution peak at low density of transiting gaseous giant planets. With a host star metallicity [Fe/H] of -0.46, WASP-21b strengthens the correlation between planetary density and host star metallicity for the five known Saturn-like transiting planets. Furthermore there are clear indications that WASP-21b is the first transiting planet belonging to the thick disc. (3 data files).

  18. Detecting Atmospheric Biosignatures of Transiting Exoplanets in the Mid-IR

    Science.gov (United States)

    Stevenson, Kevin

    2018-01-01

    For the first time in human history, our generation will have the technology needed to answer one of the longest-standing questions: "Are we alone?'' Only recently have planet-hunting programs (such as TRAPPIST, MEarth, and Kepler) confirmed the first Earth analogues orbiting M dwarfs. However, it is unknown whether planets orbiting the most ubiquitous stars in our galaxy can support life. I will discuss the challenges and opportunities of looking for biosignatures in transiting exoplanet atmospheres at mid-infrared wavelengths and argue that the only way to ascertain the truth is to make a measurement. I will also present how a survey of nearby mid-to-late M dwarfs could empirically determine the fraction of habitable-zone planets that develop life.

  19. Trajectory Design Enhancements to Mitigate Risk for the Transiting Exoplanet Survey Satellite (TESS)

    Science.gov (United States)

    Dichmann, Donald; Parker, Joel; Nickel, Craig; Lutz, Stephen

    2016-01-01

    The Transiting Exoplanet Survey Satellite (TESS) will employ a highly eccentric Earth orbit, in 2:1 lunar resonance, which will be reached with a lunar flyby preceded by 3.5 phasing loops. The TESS mission has limited propellant and several constraints on the science orbit and on the phasing loops. Based on analysis and simulation, we have designed the phasing loops to reduce delta-V (DV) and to mitigate risk due to maneuver execution errors. We have automated the trajectory design process and use distributed processing to generate and optimal nominal trajectories; to check constraint satisfaction; and finally to model the effects of maneuver errors to identify trajectories that best meet the mission requirements.

  20. Monte Carlo Analysis as a Trajectory Design Driver for the Transiting Exoplanet Survey Satellite (TESS) Mission

    Science.gov (United States)

    Nickel, Craig; Parker, Joel; Dichmann, Don; Lebois, Ryan; Lutz, Stephen

    2016-01-01

    The Transiting Exoplanet Survey Satellite (TESS) will be injected into a highly eccentric Earth orbit and fly 3.5 phasing loops followed by a lunar flyby to enter a mission orbit with lunar 2:1 resonance. Through the phasing loops and mission orbit, the trajectory is significantly affected by lunar and solar gravity. We have developed a trajectory design to achieve the mission orbit and meet mission constraints, including eclipse avoidance and a 30-year geostationary orbit avoidance requirement. A parallelized Monte Carlo simulation was performed to validate the trajectory after injecting common perturbations, including launch dispersions, orbit determination errors, and maneuver execution errors. The Monte Carlo analysis helped identify mission risks and is used in the trajectory selection process.

  1. Discovery of a Transiting Adolescent Sub-Neptune Exoplanet in the Cas-Tau Association With K2

    Science.gov (United States)

    Mamajek, Eric; David, Trevor; Bieryla, Allyson; Bristow, Makennah; Ciardi, David; Cody, Ann Marie; Crossfield, Ian; Fulton, Benjamin; Jasmine Gonzales, Erica; Hillenbrand, Lynne; Hirsch, Lea; Howard, Andrew; Isaacson, Howard; Latham, David W.; Petigura, Erik; Rebull, Luisa; Schlieder, Joshua; Stauffer, John; Vanderburg, Andrew; Vasisht, Gautam

    2018-01-01

    The role of stellar age in the measured properties and occurrence rates of exoplanets is not well understood. This is in part due to a paucity of young planets and the uncertainties in age-dating for most exoplanet host stars. Exoplanets belonging to coeval stellar populations, young or old, are particularly useful as benchmarks for studies aiming to constrain the evolutionary timescales relevant for planets. Such timescales may concern orbital migration, gravitational contraction, or photo-evaporation, among other mechanisms. Here we report the serendipitous discovery of a transiting sub-Neptune from K2 photometry of a K-type star that is a new candidate member of the nearby young Cas-Tau association. The size of the planet (3.0 +/- 0.5 Earth radii) and its age (~50-90 Myr) make it an intriguing test case for photo-evaporation models, which predict enhanced atmospheric mass loss during early evolutionary stages.

  2. Analysis of Repeatability and Reliability of Warm IRAC Observations of Transiting Exoplanets

    Science.gov (United States)

    Carey, Sean J.; Krick, Jessica; Ingalls, James

    2015-12-01

    Extracting information about thermal profiles and composition of the atmospheres of transiting exoplanets is extremely challenging due to the small differential signal of the atmosphere in observations of transits, secondary eclipses, and full phase curves for exoplanets. The relevant signals are often at the level of 100 ppm or smaller and require the removal of significant instrumental systematics in the two infrared instruments currently capable of providing information at this precision, WFC3 on HST and IRAC aboard the Spitzer Space Telescope. For IRAC, the systematics are due to the interplay of residual telescope pointing variation with intra-pixel gain variations in the moderately undersampled camera. There is currently a debate in the community on the reliability of repeated IRAC observations of exoplanets particularly those in eclipse from which inferences about atmospheric temperature and pressure profiles can made. To assess the repeatability and reliability of post-cryogenic observations with IRAC, the Spitzer Science Center in conjunction with volunteers from the astronomical community has performed a systematic analysis of the removal of systematics and repeatability of warm IRAC observations. Recently, a data challenge consisting of the measurement of ten secondary eclipses of XO-3b (see Wong et al. 2014) and a complementary analysis of a synthetic version of the XO-3b data was undertaken. We report on the results of this data challenge. Five different techniques were applied to the data (BLISS mapping [Stevenson et al. (2012)], kernel regression using the science data [Wong et al. (2015)] and calibration data [Krick et al. (2015)], pixel-level decorrelation [Deming et al. (2015)], ICA [Morello et al. (2015)] and Gaussian Processes [Evans et al. (2015)]) and found consistent results in terms of eclipse depth and reliability in both the actual and synthetic data. In addition, each technique obtained the input eclipse depth in the simulated data within

  3. A method to identify the boundary between rocky and gaseous exoplanets from tidal theory and transit durations

    Science.gov (United States)

    Barnes, Rory

    2015-04-01

    The determination of an exoplanet as rocky is critical for the assessment of planetary habitability. Observationally, the number of small-radius, transiting planets with accompanying mass measurements is insufficient for a robust determination of the transitional mass or radius. Theoretically, models predict that rocky planets can grow large enough to become gas giants when they reach ~10 MEarth, but the transitional mass remains unknown. Here I show how transit data, interpreted in the context of tidal theory, can reveal the critical radius that separates rocky and gaseous exoplanets. Standard tidal models predict that rocky exoplanets' orbits are tidally circularized much more rapidly than gaseous bodies', suggesting the former will tend to be found on circular orbits at larger semi-major axes than the latter. Well-sampled transits can provide a minimum eccentricity of the orbit, allowing a measurement of this differential circularization. I show that this effect should be present in the data from the Kepler spacecraft, but is not apparent. Instead, it appears that there is no evidence of tidal circularization at any planetary radius, probably because the publicly-available data, particularly the impact parameters, are not accurate enough. I also review the bias in the transit duration towards values that are smaller than that of planets on circular orbits, stressing that the azimuthal velocity of the planet determines the transit duration. The ensemble of Kepler planet candidates may be able to determine the critical radius between rocky and gaseous exoplanets, tidal dissipation as a function of planetary radius, and discriminate between tidal models.

  4. Directly imaged L-T transition exoplanets in the mid-infrared {sup ,}

    Energy Technology Data Exchange (ETDEWEB)

    Skemer, Andrew J.; Hinz, Philip M.; Morzinski, Katie M.; Leisenring, Jarron M.; Close, Laird M.; Bailey, Vanessa P.; Defrere, Denis; Follette, Katherine B.; Males, Jared R.; Rodigas, Timothy J. [Steward Observatory, Department of Astronomy, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Marley, Mark S. [NASA Ames Research Center, MS-245-3, Moffett Field, CA 94035 (United States); Skrutskie, Michael F. [Department of Astronomy, University of Virginia, 530 McCormick Road, Charlottesville, VA 22904 (United States); Saumon, Didier [Los Alamos National Laboratory, Mail Stop F663, Los Alamos, NM 87545 (United States); Briguglio, Runa; Esposito, Simone; Puglisi, Alfio; Xompero, Marco [Istituto Nazionale di Astrofisica, Osservatorio Astrofisico di Arcetri Largo E. Fermi 5 50125 Firenze (Italy); Hill, John M. [Large Binocular Telescope Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States)

    2014-09-01

    Gas-giant planets emit a large fraction of their light in the mid-infrared (≳3 μm), where photometry and spectroscopy are critical to our understanding of the bulk properties of extrasolar planets. Of particular importance are the L- and M-band atmospheric windows (3-5 μm), which are the longest wavelengths currently accessible to ground-based, high-contrast imagers. We present binocular LBT adaptive optics (AO) images of the HR 8799 planetary system in six narrow-band filters from 3 to 4 μm, and a Magellan AO image of the 2M1207 planetary system in a broader 3.3 μm band. These systems encompass the five known exoplanets with luminosities consistent with L → T transition brown dwarfs. Our results show that the exoplanets are brighter and have shallower spectral slopes than equivalent temperature brown dwarfs in a wavelength range that contains the methane fundamental absorption feature (spanned by the narrow-band filters and encompassed by the broader 3.3 μm filter). For 2M1207 b, we find that thick clouds and non-equilibrium chemistry caused by vertical mixing can explain the object's appearance. For the HR 8799 planets, we present new models that suggest the atmospheres must have patchy clouds, along with non-equilibrium chemistry. Together, the presence of a heterogeneous surface and vertical mixing presents a picture of dynamic planetary atmospheres in which both horizontal and vertical motions influence the chemical and condensate profiles.

  5. Directly imaged L-T transition exoplanets in the mid-infrared ,

    International Nuclear Information System (INIS)

    Skemer, Andrew J.; Hinz, Philip M.; Morzinski, Katie M.; Leisenring, Jarron M.; Close, Laird M.; Bailey, Vanessa P.; Defrere, Denis; Follette, Katherine B.; Males, Jared R.; Rodigas, Timothy J.; Marley, Mark S.; Skrutskie, Michael F.; Saumon, Didier; Briguglio, Runa; Esposito, Simone; Puglisi, Alfio; Xompero, Marco; Hill, John M.

    2014-01-01

    Gas-giant planets emit a large fraction of their light in the mid-infrared (≳3 μm), where photometry and spectroscopy are critical to our understanding of the bulk properties of extrasolar planets. Of particular importance are the L- and M-band atmospheric windows (3-5 μm), which are the longest wavelengths currently accessible to ground-based, high-contrast imagers. We present binocular LBT adaptive optics (AO) images of the HR 8799 planetary system in six narrow-band filters from 3 to 4 μm, and a Magellan AO image of the 2M1207 planetary system in a broader 3.3 μm band. These systems encompass the five known exoplanets with luminosities consistent with L → T transition brown dwarfs. Our results show that the exoplanets are brighter and have shallower spectral slopes than equivalent temperature brown dwarfs in a wavelength range that contains the methane fundamental absorption feature (spanned by the narrow-band filters and encompassed by the broader 3.3 μm filter). For 2M1207 b, we find that thick clouds and non-equilibrium chemistry caused by vertical mixing can explain the object's appearance. For the HR 8799 planets, we present new models that suggest the atmospheres must have patchy clouds, along with non-equilibrium chemistry. Together, the presence of a heterogeneous surface and vertical mixing presents a picture of dynamic planetary atmospheres in which both horizontal and vertical motions influence the chemical and condensate profiles.

  6. WASP-21b: a hot-Saturn exoplanet transiting a thick disc star

    Science.gov (United States)

    Bouchy, F.; Hebb, L.; Skillen, I.; Collier Cameron, A.; Smalley, B.; Udry, S.; Anderson, D. R.; Boisse, I.; Enoch, B.; Haswell, C. A.; Hébrard, G.; Hellier, C.; Joshi, Y.; Kane, S. R.; Maxted, P. F. L.; Mayor, M.; Moutou, C.; Pepe, F.; Pollacco, D.; Queloz, D.; Ségransan, D.; Simpson, E. K.; Smith, A. M. S.; Stempels, H. C.; Street, R.; Triaud, A. H. M. J.; West, R. G.; Wheatley, P. J.

    2010-09-01

    We report the discovery of WASP-21b, a new transiting exoplanet discovered by the Wide Angle Search for Planets (WASP) Consortium and established and characterized with the FIES, SOPHIE, CORALIE and HARPS fiber-fed echelle spectrographs. A 4.3-d period, 1.1% transit depth and 3.4-h duration are derived for WASP-21b using SuperWASP-North and high precision photometric observations at the Liverpool Telescope. Simultaneous fitting to the photometric and radial velocity data with a Markov Chain Monte Carlo procedure leads to a planet in the mass regime of Saturn. With a radius of 1.07 RJup and mass of 0.30 MJup, WASP-21b has a density close to 0.24 ρJup corresponding to the distribution peak at low density of transiting gaseous giant planets. With a host star metallicity [Fe/H] of -0.46, WASP-21b strengthens the correlation between planetary density and host star metallicity for the five known Saturn-like transiting planets. Furthermore there are clear indications that WASP-21b is the first transiting planet belonging to the thick disc. Based on observations made with the SuperWASP-North camera hosted by the Isaac Newton Group on La Palma, the FIES spectrograph on the Nordic Optical Telescope, the CORALIE spectrograph on the 1.2-m Euler Swiss telescope on La Silla Observatory, the SOPHIE spectrograph on the 1.93-m telescope on Haute Provence Observatory and the HARPS spectrograph on the 3.6-m ESO telescope at La Silla Observatory under programs 081.C-0388, 082.C-0040, 084.C-0185.Tables of photometric data are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/519/A98

  7. Transiting Exoplanet Monitoring Project (TEMP). II. Refined System Parameters and Transit Timing Analysis of HAT-P-33b

    Science.gov (United States)

    Wang, Yong-Hao; Wang, Songhu; Liu, Hui-Gen; Hinse, Tobias C.; Laughlin, Gregory; Wu, Dong-Hong; Zhang, Xiaojia; Zhou, Xu; Wu, Zhenyu; Zhou, Ji-Lin; Wittenmyer, R. A.; Eastman, Jason; Zhang, Hui; Hori, Yasunori; Narita, Norio; Chen, Yuanyuan; Ma, Jun; Peng, Xiyan; Zhang, Tian-Meng; Zou, Hu; Nie, Jun-Dan; Zhou, Zhi-Min

    2017-08-01

    We present 10 R-band photometric observations of eight different transits of the hot Jupiter HAT-P-33b, which has been targeted by our Transiting Exoplanet Monitoring Project. The data were obtained by two telescopes at the Xinglong Station of National Astronomical Observatories of China (NAOC) from 2013 December through 2016 January, and exhibit photometric scatter of 1.6{--}3.0 {mmag}. After jointly analyzing the previously published photometric data, radial-velocity (RV) measurements, and our new light curves, we revisit the system parameters and orbital ephemeris for the HAT-P-33b system. Our results are consistent with the published values except for the planet to star radius ratio ({R}{{P}}/{R}* ), the ingress/egress duration (τ) and the total duration (T 14), which together indicate a slightly shallower and shorter transit shape. Our results are based on more complete light curves, whereas the previously published work had only one complete transit light curve. No significant anomalies in Transit Timing Variations (TTVs) are found, and we place upper mass limits on potential perturbers, largely supplanting the loose constraints provided by the extant RV data. The TTV limits are stronger near mean-motion resonances, especially for the low-order commensurabilities. We can exclude the existence of a perturber with mass larger than 0.6, 0.3, 0.5, 0.5, and 0.3 {M}\\oplus near the 1:3, 1:2, 2:3, 3:2, and 2:1 resonances, respectively.

  8. Transiting Exoplanet Monitoring Project (TEMP). III. On the Relocation of the Kepler-9 b Transit

    Science.gov (United States)

    Wang, Songhu; Wu, Dong-Hong; Addison, Brett C.; Laughlin, Gregory; Liu, Hui-Gen; Wang, Yong-Hao; Yang, Taozhi; Yang, Ming; Yisikandeer, Abudusaimaitijiang; Hong, Renquan; Li, Bin; Liu, Jinzhong; Zhao, Haibin; Wu, Zhen-Yu; Hu, Shao-Ming; Zhou, Xu; Zhou, Ji-Lin; Zhang, Hui; Zheng, Jie; Wang, Wei; Fan, Zhou; Niu, Hubiao; Chen, Yuan-Yuan; Lu, Hao; Peng, Xiyan; Li, Kai; Guo, Di-Fu

    2018-02-01

    The Kepler-9 system harbors three known transiting planets. The system holds significant interest for several reasons. First, the outer two planets exhibit a period ratio that is close to a 2:1 orbital commensurability, with attendant dynamical consequences. Second, both planets lie in the planetary mass “desert” that is generally associated with the rapid gas agglomeration phase of the core accretion process. Third, there exist attractive prospects for accurately measuring both the sky-projected stellar spin–orbit angles as well as the mutual orbital inclination between the planets in the system. Following the original Kepler detection announcement in 2010, the initially reported orbital ephemerides for Kepler-9 b and c have degraded significantly, due to the limited time base-line of observations on which the discovery of the system rested. Here, we report new ground-based photometric observations and extensive dynamical modeling of the system. These efforts allow us to photometrically recover the transit of Kepler-9 b and thereby greatly improve the predictions for upcoming transit mid-times. Accurate ephemerides of this system are important in order to confidently schedule follow-up observations of this system, for both in-transit Doppler measurements as well as for atmospheric transmission spectra taken during transit.

  9. Departure from the constant-period ephemeris for the transiting exoplanet WASP-12

    Science.gov (United States)

    Maciejewski, G.; Dimitrov, D.; Fernández, M.; Sota, A.; Nowak, G.; Ohlert, J.; Nikolov, G.; Bukowiecki, Ł.; Hinse, T. C.; Pallé, E.; Tingley, B.; Kjurkchieva, D.; Lee, J. W.; Lee, C.-U.

    2016-04-01

    Aims: Most hot Jupiters are expected to spiral in toward their host stars because the angular momentum of the orbital motion is transferred to the stellar spin. Their orbits can also precess as a result of planet-star interactions. Calculations show that both effects might be detected for the very-hot exoplanet WASP-12 b using the method of precise transit-timing over a time span of about 10 yr. Methods: We acquired new precise light curves for 29 transits of WASP-12 b, spannning four observing seasons from November 2012 to February 2016. New mid-transit times, together with those from the literature, were used to refine the transit ephemeris and analyze the timing residuals. Results: We find that the transit times of WASP-12 b do not follow a linear ephemeris with a 5σ confidence level. They may be approximated with a quadratic ephemeris that gives a change rate in the orbital period of (-2.56 ± 0.40) × 10-2 s yr-1. The tidal quality parameter of the host star was found to be equal to 2.5 × 105, which is similar to theoretical predictions for Sun-like stars. We also considered a model in which the observed timing residuals are interpreted as a result of the apsidal precession. We find, however, that this model is statistically less probable than the orbital decay. Partly based on (1) data collected with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, (2) observations made at the Centro Astronómico Hispano Alemán (CAHA), operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC), and (3) data collected with telescopes at the Rozhen National Astronomical Observatory.The light curves are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/588/L

  10. Line-profile tomography of exoplanet transits - II. A gas-giant planet transiting a rapidly rotating A5 star

    Science.gov (United States)

    Collier Cameron, A.; Guenther, E.; Smalley, B.; McDonald, I.; Hebb, L.; Andersen, J.; Augusteijn, Th.; Barros, S. C. C.; Brown, D. J. A.; Cochran, W. D.; Endl, M.; Fossey, S. J.; Hartmann, M.; Maxted, P. F. L.; Pollacco, D.; Skillen, I.; Telting, J.; Waldmann, I. P.; West, R. G.

    2010-09-01

    Most of our knowledge of extrasolar planets rests on precise radial-velocity measurements, either for direct detection or for confirmation of the planetary origin of photometric transit signals. This has limited our exploration of the parameter space of exoplanet hosts to solar- and later-type, sharp-lined stars. Here we extend the realm of stars with known planetary companions to include hot, fast-rotating stars. Planet-like transits have previously been reported in the light curve obtained by the SuperWASP survey of the A5 star HD15082 (WASP-33 V = 8.3, v sini = 86 km s-1). Here we report further photometry and time-series spectroscopy through three separate transits, which we use to confirm the existence of a gas-giant planet with an orbital period of 1.22d in orbit around HD15082. From the photometry and the properties of the planet signal travelling through the spectral line profiles during the transit, we directly derive the size of the planet, the inclination and obliquity of its orbital plane and its retrograde orbital motion relative to the spin of the star. This kind of analysis opens the way to studying the formation of planets around a whole new class of young, early-type stars, hence under different physical conditions and generally in an earlier stage of formation than in sharp-lined late-type stars. The reflex orbital motion of the star caused by the transiting planet is small, yielding an upper mass limit of 4.1MJupiter on the planet. We also find evidence of a third body of substellar mass in the system, which may explain the unusual orbit of the transiting planet. In HD 15082, the stellar line profiles also show evidence of non-radial pulsations, clearly distinct from the planetary transit signal. This raises the intriguing possibility that tides raised by the close-in planet may excite or amplify the pulsations in such stars. Based on observations at Tautenburg Observatory, McDonald Observatory and the Nordic Optical Telescope. E-mail: acc4@st-and.ac.uk

  11. A new look at Spitzer primary transit observations of the exoplanet HD 189733b

    Energy Technology Data Exchange (ETDEWEB)

    Morello, G.; Waldmann, I. P.; Tinetti, G.; Howarth, I. D. [Department of Physics and Astronomy, University College London, Gower Street, WC1E6BT (United Kingdom); Peres, G. [Dipartimento di Fisica, Università degli Studi di Palermo, via Archirafi I-90123, Italy. (Italy); Micela, G., E-mail: giuseppe.morello.11@ucl.ac.uk [Dipartimento di Fisica e Chimica (previously Dipartimento di Fisica), Specola Universitaria, Università degli Studi di Palermo, Piazza del Parlamento 1 I-90123 (Italy)

    2014-05-01

    Blind source separation techniques are used to reanalyze two exoplanetary transit light curves of the exoplanet HD 189733b recorded with the IR camera IRAC on board the Spitzer Space Telescope at 3.6 μm during the 'cold' era. These observations, together with observations at other IR wavelengths, are crucial to characterize the atmosphere of the planet HD 189733b. Previous analyses of the same data sets reported discrepant results, hence the necessity of the reanalyses. The method we used here is based on the Independent Component Analysis (ICA) statistical technique, which ensures a high degree of objectivity. The use of ICA to detrend single photometric observations in a self-consistent way is novel in the literature. The advantage of our reanalyses over previous work is that we do not have to make any assumptions on the structure of the unknown instrumental systematics. Such 'admission of ignorance' may result in larger error bars than reported in the literature, up to a factor 1.6. This is a worthwhile tradeoff for much higher objectivity, necessary for trustworthy claims. Our main results are (1) improved and robust values of orbital and stellar parameters, (2) new measurements of the transit depths at 3.6 μm, (3) consistency between the parameters estimated from the two observations, (4) repeatability of the measurement within the photometric level of ∼2 × 10{sup –4} in the IR, and (5) no evidence of stellar variability at the same photometric level within one year.

  12. The Light Source Problem: The Effect of Heterogeneous Stellar Photospheres on Searches for Transiting Exoplanet Biosignatures

    Science.gov (United States)

    Rackham, B. V.; Apai, D.; Giampapa, M. S.

    2017-11-01

    TESS will soon enable the study of terrestrial exoplanet atmospheres. However, spots and faculae in stellar photospheres can complicate these measurements by mimicking or masking atmospheric features. We detail our work to constrain this effect.

  13. Chasing Small Exoplanets with Ground-Based Near-Infrared Transit Photometry

    Science.gov (United States)

    Colon, K. D.; Barentsen, G.; Vinicius, Z.; Vanderburg, A.; Coughlin, J.; Thompson, S.; Mullally, F.; Barclay, T.; Quintana, E.

    2017-11-01

    I will present results from a ground-based survey to measure the infrared radius and other properties of small K2 exoplanets and candidates. The survey is preparation for upcoming discoveries from TESS and characterization with JWST.

  14. Zodiacal Exoplanets in Time (ZEIT). V. A Uniform Search for Transiting Planets in Young Clusters Observed by K2

    Science.gov (United States)

    Rizzuto, Aaron C.; Mann, Andrew W.; Vanderburg, Andrew; Kraus, Adam L.; Covey, Kevin R.

    2017-12-01

    Detection of transiting exoplanets around young stars is more difficult than for older systems owing to increased stellar variability. Nine young open cluster planets have been found in the K2 data, but no single analysis pipeline identified all planets. We have developed a transit search pipeline for young stars that uses a transit-shaped notch and quadratic continuum in a 12 or 24 hr window to fit both the stellar variability and the presence of a transit. In addition, for the most rapid rotators ({P}{rot}orbiting a potential Pleiades member, and three orbiting unlikely members of the young clusters. Limited injection recovery testing on the known planet hosts indicates that for the older Praesepe systems we are sensitive to additional exoplanets as small as 1-2 R ⊕, and for the larger Upper Scorpius planet host (K2-33) our pipeline is sensitive to ˜4 R ⊕ transiting planets. The lack of detected multiple systems in the young clusters is consistent with the expected frequency from the original Kepler sample, within our detection limits. With a robust pipeline that detects all known planets in the young clusters, occurrence rate testing at young ages is now possible.

  15. Spectroscopically Unlocking Exoplanet Characteristics

    Science.gov (United States)

    Lewis, Nikole

    2016-05-01

    Spectroscopy plays a critical role in a number of areas of exoplanet research. The first exoplanets were detected by precisely measuring Doppler shifts in high resolution (R ~ 100,000) stellar spectra, a technique that has become known as the Radial Velocity (RV) method. The RV method provides critical constraints on exoplanet masses, but is currently limited to some degree by robust line shape predictions. Beyond the RV method, spectroscopy plays a critical role in the characterization of exoplanets beyond their mass and radius. The Hubble Space Telescope has spectroscopically observed the atmospheres of exoplanets that transit their host stars as seen from Earth giving us key insights into atmospheric abundances of key atomic and molecular species as well as cloud optical properties. Similar spectroscopic characterization of exoplanet atmospheres will be carried out at higher resolution (R ~ 100-3000) and with broader wavelength coverage with the James Webb Space Telescope. Future missions such as WFIRST that seek to the pave the way toward the detection and characterization of potentially habitable planets will have the capability of directly measuring the spectra of exoplanet atmospheres and potentially surfaces. Our ability to plan for and interpret spectra from exoplanets relies heavily on the fidelity of the spectroscopic databases available and would greatly benefit from further laboratory and theoretical work aimed at optical properties of atomic, molecular, and cloud/haze species in the pressure and temperature regimes relevant to exoplanet atmospheres.

  16. Confirmation of an exoplanet using the transit color signature: Kepler-418b, a blended giant planet in a multiplanet system

    Science.gov (United States)

    Tingley, B.; Parviainen, H.; Gandolfi, D.; Deeg, H. J.; Palle, E.; Montañés Rodriguez, P.; Murgas, F.; Alonso, R.; Bruntt, H.; Fridlund, M.

    2014-07-01

    Aims: We announce confirmation of Kepler-418b, one of two proposed planets in this system. This is the first confirmation of an exoplanet based primarily on the transit color signature technique. Methods: We used the Kepler public data archive combined with multicolor photometry from the Gran Telescopio de Canarias and radial velocity follow-up using FIES at the Nordic Optical Telescope for confirmation. Results: We report a confident detection of a transit color signature that can only be explained by a compact occulting body, entirely ruling out a contaminating eclipsing binary, a hierarchical triple, or a grazing eclipsing binary. Those findings are corroborated by our radial velocity measurements, which put an upper limit of ~1 MJup on the mass of Kepler-418b. We also report that the host star is significantly blended, confirming the ~10% light contamination suspected from the crowding metric in the Kepler light curve measured by the Kepler team. We report detection of an unresolved light source that contributes an additional ~30% to the target star, which would not have been detected without multicolor photometric analysis. The resulting planet-star radius ratio is 0.110 ± 0.0025, more than 25% more than the 0.087 measured by Kepler leading to a radius of 1.20 ± 0.16 RJup instead of the 0.94 RJup measured by the Kepler team. Conclusions: This is the first confirmation of an exoplanet candidate based primarily on the transit color signature, demonstrating that this technique is viable from ground for giant planets. It is particularly useful for planets with long periods such as Kepler-418b, which tend to have long transit durations. While this technique is limited to candidates with deep transits from the ground, it may be possible to confirm earth-like exoplanet candidates with a few hours of observing time with an instrument like the James Webb Space Telescope. Additionally, multicolor photometric analysis of transits can reveal unknown stellar neighbors

  17. Chromospheric and Transition Region Emission Properties of G, K, and M dwarf Exoplanet Host Stars

    Science.gov (United States)

    France, Kevin; Arulanantham, Nicole; Fossati, Luca; Lanza, A. F.; Linsky, Jeffrey L.; Redfield, Seth; Loyd, Robert; Schneider, Christian

    2018-01-01

    Exoplanet magnetic fields have proven notoriously hard to detect, despite theoretical predictions of substantial magnetic field strengths on close-in extrasolar giant planets. It has been suggested that stellar and planetary magnetic field interactions can manifest as enhanced stellar activity relative to nominal age-rotation-activity relationships for main sequence stars or enhanced activity on stars hosting short-period massive planets. In a recent study of M and K dwarf exoplanet host stars, we demonstrated a significant correlation between the relative luminosity in high-temperature stellar emission lines (L(ion)/L_Bol) and the “star-planet interaction strength”, M_plan/a_plan. Here, we expand on that work with a survey of G, K, and M dwarf exoplanet host stars obtained in two recent far-ultraviolet spectroscopic programs with the Hubble Space Telescope. We have measured the relative luminosities of stellar lines C II, Si III, Si IV, and N V (formation temperatures from 30,000 – 150,000 K) in a sample of ~60 exoplanet host stars and an additional ~40 dwarf stars without known planets. We present results on star-planet interaction signals as a function of spectral type and line formation temperature, as well as a statistical comparison of stars with and without planets.

  18. A Framework to Combine Low- and High-resolution Spectroscopy for the Atmospheres of Transiting Exoplanets

    NARCIS (Netherlands)

    Brogi, M.; Line, M.; Bean, J.; Désert, J.-M.; Schwarz, H.

    2017-01-01

    Current observations of the atmospheres of close-in exoplanets are predominantly obtained with two techniques: low-resolution spectroscopy with space telescopes and high-resolution spectroscopy from the ground. Although the observables delivered by the two methods are in principle highly

  19. Infrared Spectroscopy of the Transiting Exoplanets HD189733b and XO-1 Using Hubble WFC3 in Spatial Scan Mode

    Science.gov (United States)

    Deming, Drake; Wilkins, A.; McCullough, P.; Madhusudhan, N.; Agol, E.; Burrows, A.; Charbonneau, D.; Clampin, M.; Desert, J.; Gilliland, R.; Knutson, H.; Mandell, A.; Ranjan, S.; Seager, S.; Showman, A.

    2012-01-01

    Infrared transmission spectroscopy of the exoplanets HD189733b and XO-1 has been previously reported by Swain et al. and Tinetti et al. based on observations using the NICMOS instrument on the Hubble Space Telescope. The robustness of those results has been questioned, because derivation of the exoplanetary spectrum required decorrelating strong instrumental systematic effects in the NICMOS data. We here discuss results from HST/WFC3 grism 1.1-1.7 micron spectroscopy of these planets during transit. WFC3 instrumental signatures are smaller in both amplitude and complexity as compared to NICMOS. Moreover, we use a new spatial scan mode to trail the stars perpendicular to the dispersion direction during WFC3 exposures, and this increases the efficiency of the observations and reduces persistence effects in the detector. We derive the 1.4-micron water absorption spectrum of these planets during transit, discuss implications for these exoplanetary atmospheres, and compare our results to the NICMOS spectroscopy.

  20. A Study of the Effects of Underlying Assumptions in the Reduction of Multi-Object Photometry of Transiting Exoplanets

    Science.gov (United States)

    Fitzpatrick, M. Ryleigh; Silva Martins-Filho, Walter; Griffith, Caitlin Ann; Pearson, Kyle; Zellem, Robert Thomas; AzGOE

    2016-10-01

    The analysis of ground-based photometric observations of planetary transits must treat the effects of the Earth's atmosphere, which exceed the signal of the extrasolar planet. Generally, this is achieved by dividing the signal of the host star and planet from that of nearby field stars to reveal the lightcurve. The lightcurve is then fit to a model of the planet's orbit and physical characteristics, also taking into account the characteristics of the star. The fit to the in and out-of-transit data establish the depth of the lightcurve. The question arises, what is the best way to select and treat reference stars to best characterize and remove the shared atmospheric systematics that plague our transit signal. To explore these questions we examine the effects of several assumptions that underline the calculation of the light curve depth. Our study involves repeated photometric observations of hot Jupiter primary transits in the U and B filters. Data were taken with the University of Arizona's Kuiper 1.55m telescope/Mont4K CCD. Each exoplanet observed offers a unique field with stars of various brightness, spectral types and angular distance from the host star. While these observations are part of a larger study of the Rayleigh scattering signature of hot Jupiter exoplanets, here we study the effects of various choices during reduction, specifically the treatment of reference stars and atmospheric systematics.We calculate the lightcurve for all permutations of reference stars, considering several out-of-transit assumptions (e.g. linear, quadratic or exponential). We assess the sensitivity of the transit depths based on the spread of values. In addition we look for characteristics that minimize the scatter in the reduced lightcurve and analyze the effects of the treatment of individual variables on the resultant lightcurve model. Here we present the results of an in depth statistical analysis that classifies the effect of various parameters and choices involved in

  1. Characterizing Giant Exoplanets through Multiwavelength Transit Observations: HAT-P-14 b & TrES-1 b

    Science.gov (United States)

    Rivera, Daniel Ivan; Cole, Jackson Lane; Gardner, Cristilyn N.; Garver, Bethany Ray; Jarka, Kyla L.; Kar, Aman; McGough, Aylin Marie; PeQueen, David Jeffrey; Kasper, David; Jang-Condell, Hannah; Kobulnicky, Henry; Dale, Daniel

    2018-01-01

    Much current work focuses on characterizing exoplanets. We observed several known exoplanets using the 2.3 meter Wyoming Infrared Observatory over the course of ten weeks using the ugriz Sloan filters. Our goal was to quantify planet-to-star radius ratio, a ratio that is potentially wavelength dependent due to exoplanet atmospherics. We present the results for exoplanets HAT-P 14 b and TrES-1 b. Complementary data from the literature are utilized to supplement our analysis. This work is supported by the National Science Foundation under REU grant AST 1560461 and PAARE grant AST 1559559.

  2. Two Birds One Stone: Simultaneous Atmospheric Pre-Screening of Two Temperate Earth-Sized Exoplanets During Their Double Transit

    Science.gov (United States)

    de Wit, Julien

    2015-10-01

    We have detected three temperate Earth-sized planets transiting an ultra-cool dwarf star only 12 pc away, TRAPPIST-1. This discovery sparks the era of detailed characterization and habitability assessment of Earth-sized exoplanets. It also opens a new chapter for exoplanetology: comparative planetology in the realm of temperate terrestrial planets. TRAPPIST-1's system is currently the subject of an intense, worldwide follow-up effort that spans the electromagnetic spectrum from the UV to radio. Being uniquely suited for NIR and UV high-precision observations, HST has a key role to play in this follow-up effort. Updated ephemerids resulting from two Spitzer DDTs show that TRAPPIST-1 b and c will transit simultaneously on May 4th, 2016 at 9h10 UT providing a unique and rare opportunity to study for the first time, and simultaneously, the atmospheres of temperate Earth-sized planets outside of the Solar System. We propose a 4-orbit pre-screening program with WFC3 to definitely test the H/He-dominated atmospheric scenario for these planets and determine the relative inclination of both planets, bringing invaluable constraints on the dynamical history of the system.

  3. Recovering the Signal: Comparison of data analysis methods used for exoplanet transit and eclipse spectra with HST WFC3

    Science.gov (United States)

    Varley, Ryan; Tsiaras, Angelos; Waldmann, Ingo Peter; Tinetti, Giovanna

    2015-08-01

    When observing exoplanet transit spectra we are typically looking for variations in the signal of 1 part in 10000. This is below the calibration level of many non-purpose built instruments like HST WFC3 meaning that data analysis techniques are required to recover the signal from the instrument noise and systematics. Errors and oversights in the analysis can lead to erroneous signals, or a failure to recover the signal altogether.This problem forms one of the central debates around transit and eclipse spectra, with several cases of different groups reporting different spectra when analysing the same data. The question that arises is "How do we know the retrieved signal is the real one?". Typically favoured methods in the field to tackle this problem include signal injection, analysing parts of the data independently and testing the residuals of the light curve fit for gaussianity.The main issues with these confirmation techniques is that they assess the end result and major systematics, and not the unknown factors introduced by the instrument and analysis itself, in particular the introduction of random noise at the level of the signal. Some spectral features could then be the result of unknown instrumental effects, or artificially imprinted from the analysis. Flat spectra present a more interesting question, to what do degree do current analysis techniques preserve the intrinsic modulations due to the science signal?.We present a new method to assess the recovery of data analysis techniques end-to-end, from the reduction of observations to the production of the spectrum and provide this tool to the community.We apply this technique to commonly used data reduction and analysis techniques for HST WFC3 over a range of cases to determine their effectiveness with different sources of noise, systematics and planets along with some new techniques to aid recovery.We use the results to help answer the questions regarding recent findings "Are flat spectra a recurring

  4. Information Content Analysis for Selection of Optimal JWST  Observing Modes for Transiting Exoplanet Atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Batalha, Natasha E. [Department of Astronomy and Astrophysics, Pennsylvania State University, State College, PA 16802 (United States); Line, M. R., E-mail: neb149@psu.edu [School of Earth and Space Exploration, Arizona State University, Phoenix, AZ 85282 (United States)

    2017-04-01

    The James Webb Space Telescope ( JWST ) is nearing its launch date of 2018, and is expected to revolutionize our knowledge of exoplanet atmospheres. In order to specifically identify which observing modes will be most useful for characterizing a diverse range of exoplanetary atmospheres, we use an information content (IC) based approach commonly used in the studies of solar system atmospheres. We develop a system based upon these IC methods to trace the instrumental and atmospheric model phase space in order to identify which observing modes are best suited for particular classes of planets, focusing on transmission spectra. Specifically, the atmospheric parameter space we cover is T  = 600–1800 K, C/O = 0.55–1, [M/H] = 1–100 × Solar for an R  = 1.39 R{sub J}, M  = 0.59 M{sub J} planet orbiting a WASP-62-like star. We also explore the influence of a simplified opaque gray cloud on the IC. We find that obtaining broader wavelength coverage over multiple modes is preferred over higher precision in a single mode given the same amount of observing time. Regardless of the planet temperature and composition, the best modes for constraining terminator temperatures, C/O ratios, and metallicity are NIRISS SOSS+NIRSpec G395. If the target’s host star is dim enough such that the NIRSpec prism is applicable, then it can be used instead of NIRISS SOSS+NIRSpec G395. Lastly, observations that use more than two modes should be carefully analyzed because sometimes the addition of a third mode results in no gain of information. In these cases, higher precision in the original two modes is favorable.

  5. The Search for an Atmospheric Signature of the Transiting Exoplanet HD 149026b

    OpenAIRE

    Bozorgnia, Nassim; Fortney, Jonathan J.; McCarthy, Chris; Fischer, Debra A.; Marcy, Geoffrey W.

    2006-01-01

    HD 149026b is a short-period, Saturn-mass planet that transits a metal-rich star. The planet's radius, determined by photometry, is remarkably small compared to other known transiting planets, with a heavy-element core that apparently comprises ~70% of the total planet mass. Time-series spectra were obtained at Keck before and during transit in order to model the Rossiter-McLaughlin effect. Here we make use of these observations to carry out a differential comparison of spectra obtained in an...

  6. Exoplanets Galore!

    Science.gov (United States)

    2000-05-01

    Eight New Very Low-Mass Companions to Solar-Type Stars Discovered at La Silla The intensive and exciting hunt for planets around other stars ("exoplanets") is continuing with great success in both hemispheres. Today, a team of astronomers of the Geneva Observatory [1] are announcing the discovery of no less than eight new, very-low mass companions to solar-type stars. The masses of these objects range from less than that of planet Saturn to about 15 times that of Jupiter. The new results were obtained by means of high-precision radial-velocity measurements with the CORALIE spectrometer at the Swiss 1.2-m Leonhard Euler telescope at the ESO La Silla Observatory. An earlier account of this research programme is available as ESO Press Release 18/98. Recent views of this telescope and its dome are available below as PR Photos 13a-c/00. This observational method is based on the detection of changes in the velocity of the central star , due to the changing direction of the gravitational pull from an (unseen) exoplanet as it orbits the star. The evaluation of the measured velocity variations allows to deduce the planet's orbit , in particular the period and the distance from the star, as well as a minimum mass [2]. The characteristics of the new objects are quite diverse. While six of them are most likely bona-fide exoplanets , two are apparently very low-mass brown-dwarfs (objects of sub-stellar mass without a nuclear energy source in their interior). From the first discovery of an exoplanet around the star 51 Pegasi in 1995 (by Michel Mayor and Didier Queloz of the present team), the exoplanet count is now already above 40. "The present discoveries complete and enlarge our still preliminary knowledge of extra-solar planetary systems, as well as the transition between planets and `brown dwarfs'" , say Mayor and Queloz, on behalf of the Swiss team. An overview of the new objects ESO PR Photo 12/00 ESO PR Photo 12/00 [Preview - JPEG: 400 x 242 pix - 76k] [Normal - JPEG

  7. The effect of conjunctions on the transit timing variations of exoplanets

    Energy Technology Data Exchange (ETDEWEB)

    Nesvorný, David [Department of Space Studies, Southwest Research Institute, 1050 Walnut Street, Suite 300, Boulder, CO 80302 (United States); Vokrouhlický, David, E-mail: davidn@boulder.swri.edu, E-mail: vokrouhl@cesnet.cz [Institute of Astronomy, Charles University, V Holešovičkách 2, CZ-18000 Prague 8 (Czech Republic)

    2014-07-20

    We develop an analytic model for transit timing variations produced by orbital conjunctions between gravitationally interacting planets. If the planetary orbits have tight orbital spacing, which is a common case among the Kepler planets, the effect of a single conjunction can be best described as: (1) a step-like change of the transit timing ephemeris with subsequent transits of the inner planet being delayed and those of the outer planet being sped up, and (2) a discrete change in sampling of the underlying oscillations from eccentricity-related interaction terms. In the limit of small orbital eccentricities, our analytic model gives explicit equations for these effects as a function of the mass and orbital separation of planets. We point out that a detection of the conjunction effect in real data is of crucial importance for the physical characterization of planetary systems from transit timing variations.

  8. EPOXI EXOPLANET TRANSIT OBS - HRIV CALIBRATED IMAGES V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set set contains calibrated images of eight known transiting extrasolar planetary systems (hot Jupiters) acquired by the Deep Impact High Resolution...

  9. EPOXI EXOPLANET TRANSIT OBS - HRIV RAW IMAGES V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set set contains raw images of eight known transiting extrasolar planetary systems (hot Jupiters) acquired by the Deep Impact High Resolution Visible CCD...

  10. Qatar Exoplanet Survey

    DEFF Research Database (Denmark)

    Alsubai, Khalid; Mislis, Dimitris; Tsvetanov, Zlatan I.

    2017-01-01

    We report the discovery of Qatar-3b, Qatar-4b, and Qatar-5b, three new transiting planets identified by the Qatar Exoplanet Survey. The three planets belong to the hot Jupiter family, with orbital periods of PQ3b=2.50792 days, PQ4b=1.80539 days, and PQ5b=2.87923 days. Follow-up spectroscopic...

  11. The Transit Ingress and the Tilted Orbit of the Extraordinarily Eccentric Exoplanet HD 80606b

    Science.gov (United States)

    Winn, Joshua N.; Howard, Andrew W.; Johnson, John A.; Marcy, Geoffrey W.; Gazak, J. Zachary; Starkey, Donn; Ford, Eric B.; Colon, Knicole D.; Reyes, Francisco; Nortmann, Lisa; hide

    2009-01-01

    We reported the first detection of the transit ingress, revealing the transit duration to be 11.64 plus or minus 0.25 hr and allowing more robust determinations of the system parameters. Keck spectra obtained at midtransit exhibited an anomalous blueshift, giving definitive evidence that the stellar spin axis and planetary orbital axis are misaligned. Thus, the orbit of this planet is not only highly eccentric but is also tilted away from the equatorial plane of its parent star. A large tilt had been predicted, based on the idea that the planet's eccentric orbit was caused by the Kozai mechanism.

  12. Exoplanet Transit Spectroscopy Using WFC3: WASP-12 b, WASP-17 b, and WASP-19 b

    Science.gov (United States)

    Mandell, Avram Max; Haynes, Korey N.; Sinukoff, Evan; Madhusudhan, Nikku; Burrows, Adam; Deming, Drake

    2013-01-01

    We report an analysis of transit spectroscopy of the extrasolar planets WASP-12 b, WASP-17 b, and WASP-19 b using the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST). We analyze the data for a single transit for each planet using a strategy similar, in certain aspects, to the techniques used by Berta et al., but we extend their methodology to allow us to correct for channel- or wavelength-dependent instrumental effects by utilizing the band-integrated time series and measurements of the drift of the spectrum on the detector over time. We achieve almost photon-limited results for individual spectral bins, but the uncertainties in the transit depth for the band-integrated data are exacerbated by the uneven sampling of the light curve imposed by the orbital phasing of HST's observations. Our final transit spectra for all three objects are consistent with the presence of a broad absorption feature at 1.4 nano meter most likely due to water. However, the amplitude of the absorption is less than that expected based on previous observations with Spitzer, possibly due to hazes absorbing in the NIR or non-solar compositions. The degeneracy of models with different compositions and temperature structures combined with the low amplitude of any features in the data preclude our ability to place unambiguous constraints on the atmospheric composition without additional observations with WFC3 to improve the signal-to-noise ratio and/or a comprehensive multi-wavelength analysis.

  13. EPOXI EXOPLANET TRANSIT OBS - HRIV STELLAR PHOTOMETRY V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains aperture photometry of known transiting planet systems GJ 436, HAT-P-4, HAT-P-7, TrES-2, TrES-3, and WASP-3 derived from radiance calibrated,...

  14. Radial velocity follow-up of CoRoT transiting exoplanets

    Directory of Open Access Journals (Sweden)

    Deleuil M.

    2011-02-01

    Full Text Available We report on the results from the radial-velocity follow-up program performed to establish the planetary nature and to characterize the transiting candidates discovered by the space mission CoRoT. We use the SOPHIE at OHP, HARPS at ESO and the HIRES at Keck spectrographs to collect spectra and high-precision radial velocity (RV measurements for several dozens different candidates from CoRoT. We have measured the Rossiter-McLaughlin effect of several confirmed planets, especially CoRoT-1b which revealed that it is another highly inclined system. Such high-precision RV data are necessary for the discovery of new transiting planets. Furthermore, several low mass planet candidates have emerged from our Keck and HARPS data.

  15. Transit detection of a `starshade' at the inner lagrange point of an exoplanet

    Science.gov (United States)

    Gaidos, E.

    2017-08-01

    All water-covered rocky planets in the inner habitable zones of solar-type stars will inevitably experience a catastrophic runaway climate due to increasing stellar luminosity and limits to outgoing infrared radiation from wet greenhouse atmospheres. Reflectors or scatterers placed near Earth's inner Lagrange point (L_1) have been proposed as a "geoengineering' solution to anthropogenic climate change and an advanced version of this could modulate incident irradiation over many Gyr or `rescue' a planet from the interior of the habitable zone. The distance of the starshade from the planet that minimizes its mass is 1.6 times the Earth-L_1 distance. Such a starshade would have to be similar in size to the planet and the mutual occultations during planetary transits could produce a characteristic maximum at mid-transit in the light curve. Because of a fortuitous ratio of densities, Earth-size planets around G dwarf stars present the best opportunity to detect such an artefact. The signal would be persistent and is potentially detectable by a future space photometry mission to characterize transiting planets. The signal could be distinguished from natural phenomenon, I.e. starspots or cometary dust clouds, by its shape, persistence and transmission spectrum.

  16. Pre-discovery transits of the exoplanets WASP-18 b and WASP-33 b from Hipparcos

    Science.gov (United States)

    McDonald, I.; Kerins, E.

    2018-03-01

    We recover transits of WASP-18 b and WASP-33 b from Hipparcos (1989-1993) photometry. Marginal detections of HAT-P-56 b and HAT-P-2 b may be also present in the data. New ephemerides are fitted to WASP-18 b and WASP-33 b. A tentative (˜1.3σ) orbital decay is measured for WASP-18 b, but the implied tidal quality factor (Q΄ ˜ 5 × 105) is small and survival time ( 2 × 105 is placed. For both planets, the uncertainties in published ephemerides appear underestimated: the uncertainty in the period derivative of WASP-18 b would be greatly reduced if its current ephemeris could be better determined.

  17. AN INFORMATION-THEORETIC APPROACH TO OPTIMIZE JWST OBSERVATIONS AND RETRIEVALS OF TRANSITING EXOPLANET ATMOSPHERES

    Energy Technology Data Exchange (ETDEWEB)

    Howe, Alex R.; Burrows, Adam [Department of Astronomy, University of Michigan, 1085 S. University, Ann Arbor, MI 48109 (United States); Deming, Drake, E-mail: arhowe@umich.edu, E-mail: burrows@astro.princeton.edu, E-mail: ddeming@astro.umd.edu [Department of Astronomy, University of Maryland College Park, MD 20742 (United States)

    2017-01-20

    We provide an example of an analysis to explore the optimization of observations of transiting hot Jupiters with the James Webb Space Telescope ( JWST ) to characterize their atmospheres based on a simple three-parameter forward model. We construct expansive forward model sets for 11 hot Jupiters, 10 of which are relatively well characterized, exploring a range of parameters such as equilibrium temperature and metallicity, as well as considering host stars over a wide range in brightness. We compute posterior distributions of our model parameters for each planet with all of the available JWST spectroscopic modes and several programs of combined observations and compute their effectiveness using the metric of estimated mutual information per degree of freedom. From these simulations, clear trends emerge that provide guidelines for designing a JWST observing program. We demonstrate that these guidelines apply over a wide range of planet parameters and target brightnesses for our simple forward model.

  18. Amateur observations of exoplanets in Finland: History and recent activities

    Science.gov (United States)

    Mäkelä, V.; Haukka, H.; Oksanen, A.; Kehusmaa, P.; Hentunen, V.-P.

    2017-09-01

    Exoplanet have been observed by Finnish amateur astronomers already 17 years. Recently there are two active observers, but the interest to photometric observations on exoplanet transits is increasing in Finland.

  19. Unsupervised Method for Correlated Noise Removal for Multi-wavelength Exo-planet Transit Observations

    Science.gov (United States)

    Dehghan Firoozabadi, Ali; Diaz, Alejandro; Rojo, Patricio; Soto, Ismael; Mahu, Rodrigo; Becerra Yoma, Nestor; Sedaghati, Elyar

    2017-07-01

    Exoplanetary atmospheric observations require an exquisite precision in the measurement of the relative flux among wavelengths. In this paper, we aim to provide a new adaptive method to treat light curves before fitting transit parameters in order to minimize systematic effects that affect, for instance, ground-based observations of exo-atmospheres. We propose a neural-network-based method that uses a reference built from the data itself with parameters that are chosen in an unsupervised fashion. To improve the performance of proposed method, K-means clustering and Silhouette criteria are used for identifying similar wavelengths in each cluster. We also constrain under which circumstances our method improves the measurement of planetary-to-stellar radius ratio without producing significant systematic offset. We tested our method in high quality data from WASP-19b and low-quality data from GJ-1214. We succeed in providing smaller error bars for the former when using JKTEBOP, but GJ-1214 light curve was beyond the capabilities of this method to improve as it was expected from our validation tests.

  20. The transiting exoplanet CoRoT-11b and its peculiar tidal evolution

    Directory of Open Access Journals (Sweden)

    Damiani C.

    2011-02-01

    Full Text Available CoRoT-11b is a fairly massive hot-Jupiter (Mp = 2.33 ± 0.34 MJup in a 3 days orbit around a F6 V star with an age of 2 ± 1 Gyr. The relatively high projected rotational velocity of the star (v sin i⋆ = 40 ± 5 km/s places CoRoT-11 among the most rapidly rotating planet hosting stars discovered so far. Assuming that the star is seen equator-on, the v sin i⋆ and the star radius (R∗ = 1.37±0.03 R⊙ translate into a stellar rotation period of 1.73±0.26 days. This peculiar planet/star configuration offers an unique opportunity to study the tidal evolution of the system. Owing to the strong tidal interaction, the planet would have moved outwards, from a starting semi-major axis corresponding to an orbital period almost synchronized with the stellar rotation. We found that the present value of the tidal quality factor Q′s could be measured by a timing of the mid-epoch of the transits to be observed with an accuracy of about 0.5 − 1 seconds over a time baseline of about 25 years.

  1. Exoplanet habitability.

    Science.gov (United States)

    Seager, Sara

    2013-05-03

    The search for exoplanets includes the promise to eventually find and identify habitable worlds. The thousands of known exoplanets and planet candidates are extremely diverse in terms of their masses or sizes, orbits, and host star type. The diversity extends to new kinds of planets, which are very common yet have no solar system counterparts. Even with the requirement that a planet's surface temperature must be compatible with liquid water (because all life on Earth requires liquid water), a new emerging view is that planets very different from Earth may have the right conditions for life. The broadened possibilities will increase the future chances of discovering an inhabited world.

  2. An Automated System for Citizen Searches for Exoplanets

    Science.gov (United States)

    Edberg, Stephen J.

    2016-05-01

    The Panoptic Astronomical Networked OPtical observatory for Transiting Exoplanets Survey (PANOPTES) is a citizen science project which aims to build low cost, automated, robotic sky patrol camera systems which can be used to detect transiting exoplanets: planets orbiting other stars. The goal is to establish a worldwide network to image the nighttime celestial hemisphere 24/7/365. PANOPTES will search for exoplanets using the reduction in starlight caused when an exoplanet transits its host star. Individuals or groups can construct a PANOPTES station, tie it in the data reporting system, and contribute to the discovery of exoplanets across the large area of the sky not yet surveyed.

  3. A CLOUDINESS INDEX FOR TRANSITING EXOPLANETS BASED ON THE SODIUM AND POTASSIUM LINES: TENTATIVE EVIDENCE FOR HOTTER ATMOSPHERES BEING LESS CLOUDY AT VISIBLE WAVELENGTHS

    Energy Technology Data Exchange (ETDEWEB)

    Heng, Kevin, E-mail: kevin.heng@csh.unibe.ch [University of Bern, Center for Space and Habitability, Sidlerstrasse 5, CH-3012, Bern (Switzerland)

    2016-07-20

    We present a dimensionless index that quantifies the degree of cloudiness of the atmosphere of a transiting exoplanet. Our cloudiness index is based on measuring the transit radii associated with the line center and wing of the sodium or potassium line. In deriving this index, we revisited the algebraic formulae for inferring the isothermal pressure scale height from transit measurements. We demonstrate that the formulae of Lecavelier et al. and Benneke and Seager are identical: the former is inferring the temperature while assuming a value for the mean molecular mass and the latter is inferring the mean molecular mass while assuming a value for the temperature. More importantly, these formulae cannot be used to distinguish between cloudy and cloud-free atmospheres. We derive values of our cloudiness index for a small sample of seven hot Saturns/Jupiters taken from Sing et al. We show that WASP-17b, WASP-31b, and HAT-P-1b are nearly cloud-free at visible wavelengths. We find the tentative trend that more irradiated atmospheres tend to have fewer clouds consisting of sub-micron-sized particles. We also derive absolute sodium and/or potassium abundances ∼10{sup 2} cm{sup −3} for WASP-17b, WASP-31b, and HAT-P-1b (and upper limits for the other objects). Higher-resolution measurements of both the sodium and potassium lines, for a larger sample of exoplanetary atmospheres, are needed to confirm or refute this trend.

  4. Transiting exoplanets from the CoRoT space mission. XXI. CoRoT-19b: a low density planet orbiting an old inactive F9V-star

    DEFF Research Database (Denmark)

    Guenther, E. W.; Díaz, R. F.; Gazzano, J.-C.

    2012-01-01

    Context. Observations of transiting extrasolar planets are of key importance to our understanding of planets because their mass, radius, and mass density can be determined. These measurements indicate that planets of similar mass can have very different radii. For low-density planets, it is gener....... Conclusions. The exoplanet CoRoT-19b is an example of a giant planet of almost the same mass as Jupiter but a ≈30% larger radius....

  5. Exoplanet Peer-Learning Exercises for Introductory Astronomy Courses

    Science.gov (United States)

    Wisniewski, John P.; Larson, A.

    2010-01-01

    While exoplanet research has witnessed explosive growth over the past decade with over 350 exoplanets identified to date (http://exoplanet.eu), few education and public outreach tools capable of bringing the techniques and results of exoplanet science into the classroom have been developed. To help reduce this shortcoming, we have been developing and implementing a series of exoplanet-related active-learning exercises to be used in non-astronomy major introductory settings, including think-pair-share questions and peer-learning activities. We discuss some of these activities which we have field tested in undergraduate classes at the University of Washington. We also discuss our efforts to engage students in these classes in obtaining and analyzing astronomical observations of exoplanet host stars to identify and characterize exoplanet transit events. JPW acknowledges support from NSF Astronomy & Astrophysics Postdoctoral Fellowship AST 08-02230.

  6. What asteroseismology can do for exoplanets

    Directory of Open Access Journals (Sweden)

    Van Eylen Vincent

    2015-01-01

    Full Text Available We describe three useful applications of asteroseismology in the context of exoplanet science: (1 the detailed characterisation of exoplanet host stars; (2 the measurement of stellar inclinations; and (3 the determination of orbital eccentricity from transit duration making use of asteroseismic stellar densities. We do so using the example system Kepler-410 [1]. This is one of the brightest (V = 9.4 Kepler exoplanet host stars, containing a small (2.8 R⊕ transiting planet in a long orbit (17.8 days, and one or more additional non-transiting planets as indicated by transit timing variations. The validation of Kepler-410 (KOI-42 was complicated due to the presence of a companion star, and the planetary nature of the system was confirmed after analyzing a Spitzer transit observation as well as ground-based follow-up observations.

  7. Hot Exoplanet Atmospheres Resolved with Transit Spectroscopy (HEARTS). I. Detection of hot neutral sodium at high altitudes on WASP-49b

    Science.gov (United States)

    Wyttenbach, A.; Lovis, C.; Ehrenreich, D.; Bourrier, V.; Pino, L.; Allart, R.; Astudillo-Defru, N.; Cegla, H. M.; Heng, K.; Lavie, B.; Melo, C.; Murgas, F.; Santerne, A.; Ségransan, D.; Udry, S.; Pepe, F.

    2017-06-01

    High-resolution optical spectroscopy during the transit of HD 189733b, a prototypical hot Jupiter, allowed the resolution of the Na I D sodium lines in the planet, giving access to the extreme conditions of the planet upper atmosphere. We have undertaken HEARTS, a spectroscopic survey of exoplanet upper atmospheres, to perform a comparative study of hot gas giants and determine how stellar irradiation affect them. Here, we report on the first HEARTS observations of the hot Saturn-mass planet WASP-49b. We observed the planet with the HARPS high-resolution spectrograph at ESO 3.6 m telescope. We collected 126 spectra of WASP-49, covering three transits of WASP-49b. We analyzed and modeled the planet transit spectrum, while paying particular attention to the treatment of potentially spurious signals of stellar origin. We spectrally resolve the Na I D lines in the planet atmosphere and show that these signatures are unlikely to arise from stellar contamination. The large contrasts of 2.0 ± 0.5% (D2) and 1.8 ± 0.7% (D1) require the presence of hot neutral sodium ( K) at high altitudes ( 1.5 planet radius or 45 000 km). From estimating the cloudiness index of WASP-49b, we determine its atmosphere to be cloud free at the altitudes probed by the sodium lines. WASP-49b is close to the border of the evaporation desert and exhibits an enhanced thermospheric signature with respect to a farther-away planet such as HD 189733b. Based on observations made at ESO 3.6 m telescope at the La Silla Observatory under ESO program 096.C-0331.

  8. Searching for the Transit of the Earth-mass Exoplanet Proxima Centauri b in Antarctica: Preliminary Result

    Science.gov (United States)

    Liu, Hui-Gen; Jiang, Peng; Huang, Xingxing; Yu, Zhou-Yi; Yang, Ming; Jia, Minghao; Awiphan, Supachai; Pan, Xiang; Liu, Bo; Zhang, Hongfei; Wang, Jian; Li, Zhengyang; Du, Fujia; Li, Xiaoyan; Lu, Haiping; Zhang, Zhiyong; Tian, Qi-Guo; Li, Bin; Ji, Tuo; Zhang, Shaohua; Shi, Xiheng; Wang, Ji; Zhou, Ji-Lin; Zhou, Hongyan

    2018-01-01

    Proxima Centauri is known as the closest star to the Sun. Recently, radial velocity (RV) observations revealed the existence of an Earth-mass planet around it. With an orbital period of ∼11 days, Proxima Centauri b is probably in the habitable zone of its host star. We undertook a photometric monitoring campaign to search for its transit, using the Bright Star Survey Telescope at the Zhongshan Station in Antarctica. A transit-like signal appearing on 2016 September 8 has been tentatively identified. Its midtime, T C = 2,457,640.1990 ± 0.0017 HJD, is consistent with the predicted ephemeris based on the RV orbit in a 1σ confidence interval. Time-correlated noise is pronounced in the light curve of Proxima Centauri, affecting the detection of transits. We develop a technique, in a Gaussian process framework, to gauge the statistical significance of a potential transit detection. The tentative transit signal reported here has a confidence level of 2.5σ. Further detection of its periodic signals is necessary to confirm the planetary transit of Proxima Centauri b. We plan to monitor Proxima Centauri in the next polar night at Dome A in Antarctica, taking advantage of continuous darkness. Kipping et al. reported two tentative transit-like signals of Proxima Centauri b observed by the Microvariability and Oscillation of Stars space telescope in 2014 and 2015. The midtransit time of our detection is 138 minutes later than that predicted by their transit ephemeris. If all of the signals are real transits, the misalignment of the epochs plausibly suggests transit timing variations of Proxima Centauri b induced by an outer planet in this system.

  9. The APACHE survey hardware and software design: Tools for an automatic search of small-size transiting exoplanets

    Directory of Open Access Journals (Sweden)

    Lattanzi M.G.

    2013-04-01

    Full Text Available Small-size ground-based telescopes can effectively be used to look for transiting rocky planets around nearby low-mass M stars using the photometric transit method, as recently demonstrated for example by the MEarth project. Since 2008 at the Astronomical Observatory of the Autonomous Region of Aosta Valley (OAVdA, we have been preparing for the long-term photometric survey APACHE, aimed at finding transiting small-size planets around thousands of nearby early and mid-M dwarfs. APACHE (A PAthway toward the Characterization of Habitable Earths is designed to use an array of five dedicated and identical 40-cm Ritchey-Chretien telescopes and its observations started at the beginning of summer 2012. The main characteristics of the survey final set up and the preliminary results from the first weeks of observations will be discussed.

  10. Shallow Transits—Deep Learning. I. Feasibility Study of Deep Learning to Detect Periodic Transits of Exoplanets

    Science.gov (United States)

    Zucker, Shay; Giryes, Raja

    2018-04-01

    Transits of habitable planets around solar-like stars are expected to be shallow, and to have long periods, which means low information content. The current bottleneck in the detection of such transits is caused in large part by the presence of red (correlated) noise in the light curves obtained from the dedicated space telescopes. Based on the groundbreaking results deep learning achieves in many signal and image processing applications, we propose to use deep neural networks to solve this problem. We present a feasibility study, in which we applied a convolutional neural network on a simulated training set. The training set comprised light curves received from a hypothetical high-cadence space-based telescope. We simulated the red noise by using Gaussian Processes with a wide variety of hyper-parameters. We then tested the network on a completely different test set simulated in the same way. Our study proves that very difficult cases can indeed be detected. Furthermore, we show how detection trends can be studied and detection biases quantified. We have also checked the robustness of the neural-network performance against practical artifacts such as outliers and discontinuities, which are known to affect space-based high-cadence light curves. Future work will allow us to use the neural networks to characterize the transit model and identify individual transits. This new approach will certainly be an indispensable tool for the detection of habitable planets in the future planet-detection space missions such as PLATO.

  11. ECLIPSING BINARY SCIENCE VIA THE MERGING OF TRANSIT AND DOPPLER EXOPLANET SURVEY DATA-A CASE STUDY WITH THE MARVELS PILOT PROJECT AND SuperWASP

    International Nuclear Information System (INIS)

    Fleming, Scott W.; Ge Jian; De Lee, Nathan M.; Zhao Bo; Wan Xiaoke; Guo Pengcheng; Maxted, Pierre F. L.; Anderson, David R.; Hellier, Coel; Hebb, Leslie; Stassun, Keivan G.; Cargile, Phillip A.; Gary, Bruce; Ghezzi, Luan; Wisniewski, John; Porto de Mello, G. F.; Ferreira, Leticia; West, Richard G.; Mahadevan, Suvrath; Pollacco, Don

    2011-01-01

    Exoplanet transit and Doppler surveys discover many binary stars during their operation that can be used to conduct a variety of ancillary science. Specifically, eclipsing binary stars can be used to study the stellar mass-radius relationship and to test predictions of theoretical stellar evolution models. By cross-referencing 24 binary stars found in the MARVELS Pilot Project with SuperWASP photometry, we find two new eclipsing binaries, TYC 0272-00458-1 and TYC 1422-01328-1, which we use as case studies to develop a general approach to eclipsing binaries in survey data. TYC 0272-00458-1 is a single-lined spectroscopic binary for which we calculate a mass of the secondary and radii for both components using reasonable constraints on the primary mass through several different techniques. For a primary mass of M 1 = 0.92 ± 0.1 M sun , we find M 2 = 0.610 ± 0.036 M sun , R 1 = 0.932 ± 0.076 R sun , and R 2 = 0.559 ± 0.102 R sun , and find that both stars have masses and radii consistent with model predictions. TYC 1422-01328-1 is a triple-component system for which we can directly measure the masses and radii of the eclipsing pair. We find that the eclipsing pair consists of an evolved primary star (M 1 = 1.163 ± 0.034 M sun , R 1 = 2.063 ± 0.058 R sun ) and a G-type dwarf secondary (M 2 = 0.905 ± 0.067 M sun , R 2 = 0.887 ± 0.037 R sun ). We provide the framework necessary to apply this analysis to much larger data sets.

  12. WASP-South transiting exoplanets: WASP-130b, WASP-131b, WASP-132b, WASP-139b, WASP-140b, WASP-141b and WASP-142b

    Science.gov (United States)

    Hellier, C.; Anderson, D. R.; Cameron, A. Collier; Delrez, L.; Gillon, M.; Jehin, E.; Lendl, M.; Maxted, P. F. L.; Neveu-VanMalle, M.; Pepe, F.; Pollacco, D.; Queloz, D.; Ségransan, D.; Smalley, B.; Southworth, J.; Triaud, A. H. M. J.; Udry, S.; Wagg, T.; West, R. G.

    2017-03-01

    We describe seven exoplanets transiting stars of brightness V = 10.1-12.4. WASP-130b is a 'warm Jupiter' having an orbital period of 11.6 d around a metal-rich G6 star. Its mass and radius (1.23 ± 0.04 MJup and 0.89 ± 0.03 RJup) support the trend that warm Jupiters have smaller radii than hot Jupiters. WASP-131b is a bloated Saturn-mass planet (0.27 MJup and 1.22 RJup). Its large scaleheight and bright (V = 10.1) host star make it a good target for atmospheric characterization. WASP-132b (0.41 MJup and 0.87 RJup) is among the least irradiated and coolest of WASP planets, having a 7.1-d orbit around a K4 star. WASP-139b is a 'super-Neptune' akin to HATS-7b and HATS-8b, being the lowest mass planet yet found by WASP (0.12 MJup and 0.80 RJup). The metal-rich K0 host star appears to be anomalously dense, akin to HAT-P-11. WASP-140b is a 2.4-MJup planet in an eccentric (e = 0.047 ± 0.004) 2.2-d orbit. The planet's radius is large (1.4 RJup), but uncertain owing to the grazing transit (b = 0.93). The 10.4-d rotation period of the K0 host star suggests a young age, and the time-scale for tidal circularization is likely to be the lowest of all known eccentric hot Jupiters. WASP-141b (2.7 MJup, 1.2 RJup and P = 3.3 d) and WASP-142b (0.84 MJup, 1.53 RJup and P = 2.1 d) are typical hot Jupiters orbiting metal-rich F stars. We show that the period distribution within the hot-Jupiter bulge does not depend on the metallicity of the host star.

  13. Characterizing Exoplanet Habitability with Emission Spectroscopy

    Science.gov (United States)

    Robinson, Tyler

    2018-01-01

    Results from NASA’s Kepler mission and other recent exoplanet surveys have demonstrated that potentially habitable exoplanets are relatively common, especially in the case of low-mass stellar hosts. The next key question that must be addressed for such planets is whether or not these worlds are actually habitable, implying they could sustain surface liquid water. Only through investigations of the potential habitability of exoplanets and through searches for biosignatures from these planets will we be able to understand if the emergence of life is a common phenomenon in our galaxy. Emission spectroscopy for transiting exoplanets (sometimes called secondary eclipse spectroscopy) is a powerful technique that future missions will use to study the atmospheres and surfaces of worlds orbiting in the habitable zones of nearby, low-mass stars. Emission observations that span the mid-infrared wavelength range for potentially habitable exoplanets provide opportunities to detect key habitability and life signatures, and also allow observers to probe atmospheric and surface temperatures. This presentation will outline the case for using emission spectroscopy to understand if an exoplanet can sustain surface liquid water, which is believed to be a critical precursor to the origin of life.

  14. The GTC exoplanet transit spectroscopy survey. VIII. Flat transmission spectrum for the warm gas giant WASP-80b

    Science.gov (United States)

    Parviainen, H.; Pallé, E.; Chen, G.; Nortmann, L.; Murgas, F.; Nowak, G.; Aigrain, S.; Booth, A.; Abazorius, M.; Iro, N.

    2018-01-01

    Aims: We set out to study the atmosphere of WASP-80b, a warm inflated gas giant with an equilibrium temperature of 800 K, using ground-based transmission spectroscopy covering the spectral range from 520 to 910 nm. The observations allow us to probe the existence and abundance of K and Na in WASP-80b's atmosphere, existence of high-altitude clouds, and Rayleigh-scattering in the blue end of the spectrum. Methods: We observed two spectroscopic time series of WASP-80b transits with the OSIRIS spectrograph installed in the Gran Telescopio Canarias (GTC), and use the observations to estimate the planet's transmission spectrum between 520 nm and 910 nm in 20 nm-wide passbands, and around the K I and Na I resonance doublets in 6 nm-wide passbands. We jointly model three previously published broadband datasets consisting of 27 light curves, prior to a transmission spectroscopy analysis in order to obtain improved estimates of the planet's orbital parameters, average radius ratio, and stellar density. The parameter posteriors from the broadband analysis are used to set informative priors on the transmission spectroscopy analysis. The final transmission spectroscopy analyses are carried out jointly for the two nights using a divide-by-white approach to remove the common-mode systematics, and Gaussian processes to model the residual wavelength-dependent systematics. Results: We recover a flat transmission spectrum with no evidence of Rayleigh scattering or K I or Na I absorption, and obtain an improved system characterisation as a by-product of the broadband- and GTC-dataset modelling. The transmission spectra estimated separately from the two observing runs are consistent with each other, as are the transmission spectra estimated using either a parametric or nonparametric systematics model. The flat transmission spectrum favours an atmosphere model with high-altitude clouds over cloud-free models with stellar or sub-stellar metallicities. Conclusions: Our results disagree

  15. Astrometric exoplanet detection with Gaia

    Energy Technology Data Exchange (ETDEWEB)

    Perryman, Michael; Hartman, Joel; Bakos, Gáspár Á. [Department of Astrophysical Sciences, Peyton Hall, Princeton, NJ 08544 (United States); Lindegren, Lennart [Lund Observatory, Lund, Box 43, SE-22100 Sweden (Sweden)

    2014-12-10

    We provide a revised assessment of the number of exoplanets that should be discovered by Gaia astrometry, extending previous studies to a broader range of spectral types, distances, and magnitudes. Our assessment is based on a large representative sample of host stars from the TRILEGAL Galaxy population synthesis model, recent estimates of the exoplanet frequency distributions as a function of stellar type, and detailed simulation of the Gaia observations using the updated instrument performance and scanning law. We use two approaches to estimate detectable planetary systems: one based on the signal-to-noise ratio of the astrometric signature per field crossing, easily reproducible and allowing comparisons with previous estimates, and a new and more robust metric based on orbit fitting to the simulated satellite data. With some plausible assumptions on planet occurrences, we find that some 21,000 (±6000) high-mass (∼1-15M {sub J}) long-period planets should be discovered out to distances of ∼500 pc for the nominal 5 yr mission (including at least 1000-1500 around M dwarfs out to 100 pc), rising to some 70,000 (±20, 000) for a 10 yr mission. We indicate some of the expected features of this exoplanet population, amongst them ∼25-50 intermediate-period (P ∼ 2-3 yr) transiting systems.

  16. A Physical Model-based Correction for Charge Traps in the Hubble Space Telescope ’s Wide Field Camera 3 Near-IR Detector and Its Applications to Transiting Exoplanets and Brown Dwarfs

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yifan; Apai, Dániel; Schneider, Glenn [Department of Astronomy/Steward Observatory, The University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721 (United States); Lew, Ben W. P., E-mail: yzhou@as.arizona.edu [Department of Planetary Science/Lunar and Planetary Laboratory, The University of Arizona, 1640 E. University Boulevard, Tucson, AZ 85718 (United States)

    2017-06-01

    The Hubble Space Telescope Wide Field Camera 3 (WFC3) near-IR channel is extensively used in time-resolved observations, especially for transiting exoplanet spectroscopy as well as brown dwarf and directly imaged exoplanet rotational phase mapping. The ramp effect is the dominant source of systematics in the WFC3 for time-resolved observations, which limits its photometric precision. Current mitigation strategies are based on empirical fits and require additional orbits to help the telescope reach a thermal equilibrium . We show that the ramp-effect profiles can be explained and corrected with high fidelity using charge trapping theories. We also present a model for this process that can be used to predict and to correct charge trap systematics. Our model is based on a very small number of parameters that are intrinsic to the detector. We find that these parameters are very stable between the different data sets, and we provide best-fit values. Our model is tested with more than 120 orbits (∼40 visits) of WFC3 observations and is proved to be able to provide near photon noise limited corrections for observations made with both staring and scanning modes of transiting exoplanets as well as for starting-mode observations of brown dwarfs. After our model correction, the light curve of the first orbit in each visit has the same photometric precision as subsequent orbits, so data from the first orbit no longer need to be discarded. Near-IR arrays with the same physical characteristics (e.g., JWST/NIRCam ) may also benefit from the extension of this model if similar systematic profiles are observed.

  17. A Physical Model-based Correction for Charge Traps in the Hubble Space Telescope’s Wide Field Camera 3 Near-IR Detector and Its Applications to Transiting Exoplanets and Brown Dwarfs

    Science.gov (United States)

    Zhou, Yifan; Apai, Dániel; Lew, Ben W. P.; Schneider, Glenn

    2017-06-01

    The Hubble Space Telescope Wide Field Camera 3 (WFC3) near-IR channel is extensively used in time-resolved observations, especially for transiting exoplanet spectroscopy as well as brown dwarf and directly imaged exoplanet rotational phase mapping. The ramp effect is the dominant source of systematics in the WFC3 for time-resolved observations, which limits its photometric precision. Current mitigation strategies are based on empirical fits and require additional orbits to help the telescope reach a thermal equilibrium. We show that the ramp-effect profiles can be explained and corrected with high fidelity using charge trapping theories. We also present a model for this process that can be used to predict and to correct charge trap systematics. Our model is based on a very small number of parameters that are intrinsic to the detector. We find that these parameters are very stable between the different data sets, and we provide best-fit values. Our model is tested with more than 120 orbits (∼40 visits) of WFC3 observations and is proved to be able to provide near photon noise limited corrections for observations made with both staring and scanning modes of transiting exoplanets as well as for starting-mode observations of brown dwarfs. After our model correction, the light curve of the first orbit in each visit has the same photometric precision as subsequent orbits, so data from the first orbit no longer need to be discarded. Near-IR arrays with the same physical characteristics (e.g., JWST/NIRCam) may also benefit from the extension of this model if similar systematic profiles are observed.

  18. First Temperate Exoplanet Sized Up

    Science.gov (United States)

    2010-03-01

    Combining observations from the CoRoT satellite and the ESO HARPS instrument, astronomers have discovered the first "normal" exoplanet that can be studied in great detail. Designated Corot-9b, the planet regularly passes in front of a star similar to the Sun located 1500 light-years away from Earth towards the constellation of Serpens (the Snake). "This is a normal, temperate exoplanet just like dozens we already know, but this is the first whose properties we can study in depth," says Claire Moutou, who is part of the international team of 60 astronomers that made the discovery. "It is bound to become a Rosetta stone in exoplanet research." "Corot-9b is the first exoplanet that really does resemble planets in our solar system," adds lead author Hans Deeg. "It has the size of Jupiter and an orbit similar to that of Mercury." "Like our own giant planets, Jupiter and Saturn, the planet is mostly made of hydrogen and helium," says team member Tristan Guillot, "and it may contain up to 20 Earth masses of other elements, including water and rock at high temperatures and pressures." Corot-9b passes in front of its host star every 95 days, as seen from Earth [1]. This "transit" lasts for about 8 hours, and provides astronomers with much additional information on the planet. This is fortunate as the gas giant shares many features with the majority of exoplanets discovered so far [2]. "Our analysis has provided more information on Corot-9b than for other exoplanets of the same type," says co-author Didier Queloz. "It may open up a new field of research to understand the atmospheres of moderate- and low-temperature planets, and in particular a completely new window in our understanding of low-temperature chemistry." More than 400 exoplanets have been discovered so far, 70 of them through the transit method. Corot-9b is special in that its distance from its host star is about ten times larger than that of any planet previously discovered by this method. And unlike all such

  19. The Exoplanet Characterization ToolKit (ExoCTK)

    Science.gov (United States)

    Stevenson, Kevin; Fowler, Julia; Lewis, Nikole K.; Fraine, Jonathan; Pueyo, Laurent; Valenti, Jeff; Bruno, Giovanni; Filippazzo, Joseph; Hill, Matthew; Batalha, Natasha E.; Bushra, Rafia

    2018-01-01

    The success of exoplanet characterization depends critically on a patchwork of analysis tools and spectroscopic libraries that currently require extensive development and lack a centralized support system. Due to the complexity of spectroscopic analyses and initial time commitment required to become productive, there are currently a limited number of teams that are actively advancing the field. New teams with significant expertise, but without the proper tools, face prohibitively steep hills to climb before they can contribute. As a solution, we are developing an open-source, modular data analysis package in Python and a publicly facing web interface focused primarily on atmospheric characterization of exoplanets and exoplanet transit observation planning with JWST. The foundation of these software tools and libraries exist within pockets of the exoplanet community. Our project will gather these seedling tools and grow a robust, uniform, and well maintained exoplanet characterization toolkit.

  20. Searching for exoplanets using artificial intelligence

    Science.gov (United States)

    Pearson, Kyle A.; Palafox, Leon; Griffith, Caitlin A.

    2018-02-01

    In the last decade, over a million stars were monitored to detect transiting planets. Manual interpretation of potential exoplanet candidates is labor intensive and subject to human error, the results of which are difficult to quantify. Here we present a new method of detecting exoplanet candidates in large planetary search projects which, unlike current methods uses a neural network. Neural networks, also called "deep learning" or "deep nets" are designed to give a computer perception into a specific problem by training it to recognize patterns. Unlike past transit detection algorithms deep nets learn to recognize planet features instead of relying on hand-coded metrics that humans perceive as the most representative. Our convolutional neural network is capable of detecting Earth-like exoplanets in noisy time-series data with a greater accuracy than a least-squares method. Deep nets are highly generalizable allowing data to be evaluated from different time series after interpolation without compromising performance. As validated by our deep net analysis of Kepler light curves, we detect periodic transits consistent with the true period without any model fitting. Our study indicates that machine learning will facilitate the characterization of exoplanets in future analysis of large astronomy data sets.

  1. Examining the Potential of LSST to Contribute to Exoplanet Discovery

    Science.gov (United States)

    Lund, Michael B.; Pepper, Joshua; Jacklin, Savannah; Stassun, Keivan G.

    2018-01-01

    The Large Synoptic Survey Telescope (LSST), currently under construction in Chile with scheduled first light in 2019, will be one of the major sources of data in the next decade and is one of the top priorities expressed in the last Decadal Survey. As LSST is intended to cover a range of science questions, and so the LSST community is still working on optimizing the observing strategy of the survey. With a survey area that will cover half the sky in 6 bands providing photometric data on billions of stars from 16th to 24th magnitude, LSST has the ability to be leveraged to help contribute to exoplanet science. In particular, LSST has the potential to detect exoplanets around stellar populations that are not normally usually included in transiting exoplanet searches. This includes searching for exoplanets around red and white dwarfs and stars in the galactic plane and bulge, stellar clusters, and potentially even the Magellanic Clouds. In probing these varied stellar populations, relative exoplanet frequency can be examined, and in turn, LSST may be able to provide fresh insight into how stellar environment can play a role in planetary formation rates.Our initial work on this project has been to demonstrate that even with the limitations of the LSST cadence, exoplanets would be recoverable and detectable in the LSST photometry, and to show that exoplanets indeed worth including in discussions of variable sources that LSST can contribute to. We have continued to expand this work to examine exoplanets around stars in belonging to various stellar populations, both to show the types of systems that LSST is capable of discovering, and to determine the potential exoplanet yields using standard algorithms that have already been implemented in transiting exoplanet searches, as well as how changes to LSST's observing schedule may impact both of these results.

  2. Exoplanet: Trans-dimentional MCMC method for exoplanet discovery

    Science.gov (United States)

    Brewer, Brendon J.

    2015-01-01

    Exoplanet determines the posterior distribution of exoplanets by use of a trans-dimensional Markov Chain Monte Carlo method within Nested Sampling. This method finds the posterior distribution in a single run rather than requiring multiple runs with trial values.

  3. Exoplanets Detection, Formation, Properties, Habitability

    CERN Document Server

    Mason, John W

    2008-01-01

    This edited, multi-author volume will be an invaluable introduction and reference to all key aspects in the field of exoplanet research. The reviews cover: Detection methods and properties of known exoplanets, Detection of extrasolar planets by gravitational microlensing. The formation and evolution of terrestrial planets in protoplanetary and debris disks. The brown dwarf-exoplanet connection. Formation, migration mechanisms and properties of hot Jupiters. Dynamics of multiple exoplanet systems. Doppler exoplanet surveys. Searching for exoplanets in the stellar graveyard. Formation and habitability of extra solar planets in multiple star systems. Exoplanet habitats and the possibilities for life. Moons of exoplanets: habitats for life. Contributing authors: •Rory Barnes •David P. Bennett •Jian Ge •Nader Haghighipour •Patrick Irwin •Hugh Jones •Victoria Meadows •Stanimir Metchev •I. Neill Reid •George Rieke •Caleb Scharf •Steinn Sigurdsson

  4. The Automation and Exoplanet Orbital Characterization from the Gemini Planet Imager Exoplanet Survey

    Science.gov (United States)

    Jinfei Wang, Jason; Graham, James; Perrin, Marshall; Pueyo, Laurent; Savransky, Dmitry; Kalas, Paul; arriaga, Pauline; Chilcote, Jeffrey K.; De Rosa, Robert J.; Ruffio, Jean-Baptiste; Sivaramakrishnan, Anand; Gemini Planet Imager Exoplanet Survey Collaboration

    2018-01-01

    The Gemini Planet Imager (GPI) Exoplanet Survey (GPIES) is a multi-year 600-star survey to discover and characterize young Jovian exoplanets and their planet forming environments. For large surveys like GPIES, it is critical to have a uniform dataset processed with the latest techniques and calibrations. I will describe the GPI Data Cruncher, an automated data processing framework that is able to generate fully reduced data minutes after the data are taken and can also reprocess the entire campaign in a single day on a supercomputer. The Data Cruncher integrates into a larger automated data processing infrastructure which syncs, logs, and displays the data. I will discuss the benefits of the GPIES data infrastructure, including optimizing observing strategies, finding planets, characterizing instrument performance, and constraining giant planet occurrence. I will also discuss my work in characterizing the exoplanets we have imaged in GPIES through monitoring their orbits. Using advanced data processing algorithms and GPI's precise astrometric calibration, I will show that GPI can achieve one milliarcsecond astrometry on the extensively-studied planet Beta Pic b. With GPI, we can confidently rule out a possible transit of Beta Pic b, but have precise timings on a Hill sphere transit, and I will discuss efforts to search for transiting circumplanetary material this year. I will also discuss the orbital monitoring of other exoplanets as part of GPIES.

  5. The exoplanet handbook

    National Research Council Canada - National Science Library

    Perryman, M. A. C

    2011-01-01

    .... It treats the many different techniques now available for exoplanet detection and characterisation, the broad range of underlying physics, the overlap with related topics in solar system and Earth sciences, and the concepts underpinning future developments. It emphasises the interconnection between the various topics, and provides extensive refe...

  6. Spectroscopy of Exoplanet Atmospheres with the FINESSE Explorer

    Science.gov (United States)

    Deroo, Pieter; Swain, Mark R.; Green, Robert O.

    2012-01-01

    FINESSE (Fast INfrared Exoplanet Spectroscopic Survey Explorer) will provide uniquely detailed information on the growing number of newly discovered planets by characterizing their atmospheric composition and temperature structure. This NASA Explorer mission, selected for a competitive Phase A study, is unique in its breath and scope thanks to broad instantaneous spectroscopy from the optical to the mid-IR (0.7 - 5 micron), with a survey of exoplanets measured in a consistent, uniform way. For 200 transiting exoplanets ranging from Terrestrial to Jovians, FINESSE will measure the chemical composition and temperature structure of their atmospheres and trace changes over time with exoplanet longitude. The mission will do so by measuring the spectroscopic time series for a primary and secondary eclipse over the exoplanet orbital phase curve. With spectrophotometric precision being a key enabling aspect for combined light exoplanet characterization, FINESSE is designed to produce spectrophotometric precision of better than 100 parts-per-million per spectral channel without the need for decorrelation. The exceptional stability of FINESSE will even allow the mission to characterize non-transiting planets, potentially as part of FINESSE's Participating Scientist Program. In this paper, we discuss the flow down from the target availability to observations and scheduling to the analysis and calibration of the data and how it enables FINESSE to be the mission that will truly expand the new field of comparative exoplanetology.

  7. Detected Timing for Exoplanet TrES-5b. Possible Existence of Exoplanet TrES-5c

    Science.gov (United States)

    Sokov, E. N.; Sokova, I. A.; Dyachenko, V. V.; Rastegaev, D. A.; Rusov, S. A.

    2017-06-01

    In this paper, we present timing variations detected for the TrES-5b exoplanet. To obtain necessary photometric data for this exoplanet, we have organized an international campaign for exoplanet searching based on the Transit Timing Variation (TTV) method. We managed to collect N light curves for TrEs-5b. On the basis of the obtained data, we detected timing variations with the period P ≍ 100 days. We carried out the N-body modelling by means of the three-body problem. We detected a perturbation of TrES-5b which can be caused by a second exoplanet in the TrES-5 system. We calculated possible masses and resonances of the objects: M ˜ 0.24 Mjup on the 1:2 Resonance and M ˜ 3.15 Mjup on the 1:3 Resonance.

  8. A Search for Exoplanets in Short-Period Binary Star Systems

    Directory of Open Access Journals (Sweden)

    Ronald Kaitchuck

    2012-03-01

    Full Text Available This paper reports the progress of a search for exoplanets with S-type orbits in short-period binary star systems. The selected targets have stellar orbital periods of just a few days. These systems are eclipsing binaries so that exoplanet transits, if planets exist, will be highly likely. We report the results for seven binary star systems.

  9. An integrated payload design for the Exoplanet Characterisation Observatory (EChO)

    DEFF Research Database (Denmark)

    Swinyard, Bruce; Tinetti, Giovanna; Tennyson, Jonathan

    2012-01-01

    The Exoplanet Characterisation Observatory (EChO) is a space mission dedicated to undertaking spectroscopy of transiting exoplanets over the widest wavelength range possible. It is based around a highly stable space platform with a 1.2 m class telescope. The mission is currently being studied...

  10. Precise Estimates of the Physical Parameters for the Exoplanet System HD 17156 Enabled by Hubble Space Telescope Fine Guidance Sensor Transit and Asteroseismic Observations

    DEFF Research Database (Denmark)

    Nutzman, Philip; Gilliland, Ronald L.; McCullough, Peter R.

    2011-01-01

    We present observations of three distinct transits of HD 17156b obtained with the Fine Guidance Sensors on board the Hubble Space Telescope. We analyzed both the transit photometry and previously published radial velocities to find the planet-star radius ratio Rp /R sstarf = 0.07454 ± 0.00035, in...

  11. 32 New Exoplanets Found

    Science.gov (United States)

    2009-10-01

    oday, at an international ESO/CAUP exoplanet conference in Porto, the team who built the High Accuracy Radial Velocity Planet Searcher, better known as HARPS, the spectrograph for ESO's 3.6-metre telescope, reports on the incredible discovery of some 32 new exoplanets, cementing HARPS's position as the world's foremost exoplanet hunter. This result also increases the number of known low-mass planets by an impressive 30%. Over the past five years HARPS has spotted more than 75 of the roughly 400 or so exoplanets now known. "HARPS is a unique, extremely high precision instrument that is ideal for discovering alien worlds," says Stéphane Udry, who made the announcement. "We have now completed our initial five-year programme, which has succeeded well beyond our expectations." The latest batch of exoplanets announced today comprises no less than 32 new discoveries. Including these new results, data from HARPS have led to the discovery of more than 75 exoplanets in 30 different planetary systems. In particular, thanks to its amazing precision, the search for small planets, those with a mass of a few times that of the Earth - known as super-Earths and Neptune-like planets - has been given a dramatic boost. HARPS has facilitated the discovery of 24 of the 28 planets known with masses below 20 Earth masses. As with the previously detected super-Earths, most of the new low-mass candidates reside in multi-planet systems, with up to five planets per system. In 1999, ESO launched a call for opportunities to build a high resolution, extremely precise spectrograph for the ESO 3.6-metre telescope at La Silla, Chile. Michel Mayor, from the Geneva Observatory, led a consortium to build HARPS, which was installed in 2003 and was soon able to measure the back-and-forward motions of stars by detecting small changes in a star's radial velocity - as small as 3.5 km/hour, a steady walking pace. Such a precision is crucial for the discovery of exoplanets and the radial velocity method

  12. Searching for Exoplanets using Artificial Intelligence

    Science.gov (United States)

    Pearson, Kyle Alexander; Palafox, Leon; Griffith, Caitlin Ann

    2017-10-01

    In the last decade, over a million stars were monitored to detect transiting planets. The large volume of data obtained from current and future missions (e.g. Kepler, K2, TESS and LSST) requires automated methods to detect the signature of a planet. Manual interpretation of potential exoplanet candidates is labor intensive and subject to human error, the results of which are difficult to quantify. Here we present a new method of detecting exoplanet candidates in large planetary search projects which, unlike current methods uses a neural network. Neural networks, also called ``deep learning'' or ``deep nets'', are a state of the art machine learning technique designed to give a computer perception into a specific problem by training it to recognize patterns. Unlike past transit detection algorithms, the deep net learns to characterize the data instead of relying on hand-coded metrics that humans perceive as the most representative. Exoplanet transits have different shapes, as a result of, e.g. the planet's and stellar atmosphere and transit geometry. Thus, a simple template does not suffice to capture the subtle details, especially if the signal is below the noise or strong systematics are present. Current false-positive rates from the Kepler data are estimated around 12.3% for Earth-like planets and there has been no study of the false negative rates. It is therefore important to ask how the properties of current algorithms exactly affect the results of the Kepler mission and, future missions such as TESS, which flies next year. These uncertainties affect the fundamental research derived from missions, such as the discovery of habitable planets, estimates of their occurrence rates and our understanding about the nature and evolution of planetary systems.

  13. Transiting exoplanets from the CoRoT space mission. XVII. The hot Jupiter CoRoT-17b: a very old planet

    Science.gov (United States)

    Csizmadia, Sz.; Moutou, C.; Deleuil, M.; Cabrera, J.; Fridlund, M.; Gandolfi, D.; Aigrain, S.; Alonso, R.; Almenara, J.-M.; Auvergne, M.; Baglin, A.; Barge, P.; Bonomo, A. S.; Bordé, P.; Bouchy, F.; Bruntt, H.; Carone, L.; Carpano, S.; Cavarroc, C.; Cochran, W.; Deeg, H. J.; Díaz, R. F.; Dvorak, R.; Endl, M.; Erikson, A.; Ferraz-Mello, S.; Fruth, Th.; Gazzano, J.-C.; Gillon, M.; Guenther, E. W.; Guillot, T.; Hatzes, A.; Havel, M.; Hébrard, G.; Jehin, E.; Jorda, L.; Léger, A.; Llebaria, A.; Lammer, H.; Lovis, C.; MacQueen, P. J.; Mazeh, T.; Ollivier, M.; Pätzold, M.; Queloz, D.; Rauer, H.; Rouan, D.; Santerne, A.; Schneider, J.; Tingley, B.; Titz-Weider, R.; Wuchterl, G.

    2011-07-01

    We report on the discovery of a hot Jupiter-type exoplanet, CoRoT-17b, detected by the CoRoT satellite. It has a mass of 2.43 ± 0.30 MJup and a radius of 1.02 ± 0.07 RJup, while its mean density is 2.82 ± 0.38 g/cm3. CoRoT-17b is in a circular orbit with a period of 3.7681 ± 0.0003 days. The host star is an old (10.7 ± 1.0 Gyr) main-sequence star, which makes it an intriguing object for planetary evolution studies. The planet's internal composition is not well constrained and can range from pure H/He to one that can contain ~380 earth masses of heavier elements. The CoRoT space mission, launched on December 27th 2006, has been developed and is operated by CNES, with the contribution of Austria, Belgium, Brazil, ESA (RSSD and Science Programme), Germany and Spain. Part of the observations were obtained at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii. Based on observations made with HARPS spectrograph on the 3.6-m European Organisation for Astronomical Research in the Southern Hemisphere telescope at La Silla Observatory, Chile (ESO program 184.C-0639). Based on observations made with the IAC80 telescope operated on the island of Tenerife by the Instituto de Astrofísica de Canarias in the Spanish Observatorio del Teide. Part of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.

  14. Exoplanet Population Distribution from Kepler Data

    Science.gov (United States)

    Traub, Wesley A.

    2015-08-01

    The underlying population of exoplanets around stars in the Kepler sample can be inferred by binning the Kepler planets in radius and period, invoking an empirical noise model, assuming a model exoplanet distribution function, randomly assigning planets to each of the Kepler target stars, asking whether each planet’s transit signal could be detected by Kepler, binning the resulting simulated detections, comparing the simulations with the observed data sample, and iterating on the model parameters until a satisfactory fit is obtained. The process is designed to simulate Kepler’s observing procedure. The key assumption is that the distribution function is continuous and the product of separable functions of period and radius. Any additional suspected biases in the sample can be handled by adjusting the noise model. The first advantage of this overall procedure is that the actual detection process is simulated as closely as possible, on a target by target basis, so the resulting estimated population should be closer to the actual population than by any other method of analysis. The second advantage is that the resulting distribution function can be extended to values of period and radius that go beyond the sample space, including, for example, application to estimating eta-sub-Earth, and also estimating the expected science yields of future direct-imaging exoplanet missions such as WFIRST-AFTA.

  15. Transiting exoplanets from the CoRoT space mission. XXIII. CoRoT-21b: a doomed large Jupiter around a faint subgiant star

    DEFF Research Database (Denmark)

    Pätzold, M.; Endl, M.; Csizmadia, Sz.

    2012-01-01

    CoRoT-21, a F8IV star of magnitude V = 16 mag, was observed by the space telescope CoRoT during the Long Run 01 (LRa01) in the first winter field (constellation Monoceros) from October 2007 to March 2008. Transits were discovered during the light curve processing. Radial velocity follow-up observ...

  16. Transiting exoplanets from the CoRoT space mission . XIX. CoRoT-23b: a dense hot Jupiter on an eccentric orbit

    DEFF Research Database (Denmark)

    Rouan, D.; Parviainen, H.; Moutou, C.

    2012-01-01

    We report the detection of CoRoT-23b, a hot Jupiter transiting in front of its host star with a period of 3.6314 ± 0.0001 days. This planet was discovered thanks to photometric data secured with the CoRoT satellite, combined with spectroscopic radial velocity (RV) measurements. A photometric sear...

  17. DETECTING EXOMOONS AROUND SELF-LUMINOUS GIANT EXOPLANETS THROUGH POLARIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, Sujan [Indian Institute of Astrophysics, Koramangala 2nd Block, Bangalore 560 034 (India); Marley, Mark S., E-mail: sujan@iiap.res.in, E-mail: Mark.S.Marley@NASA.gov [NASA Ames Research Center, MS-245-3, Moffett Field, CA 94035 (United States)

    2016-06-20

    Many of the directly imaged self-luminous gas-giant exoplanets have been found to have cloudy atmospheres. Scattering of the emergent thermal radiation from these planets by the dust grains in their atmospheres should locally give rise to significant linear polarization of the emitted radiation. However, the observable disk-averaged polarization should be zero if the planet is spherically symmetric. Rotation-induced oblateness may yield a net non-zero disk-averaged polarization if the planets have sufficiently high spin rotation velocity. On the other hand, when a large natural satellite or exomoon transits a planet with a cloudy atmosphere along the line of sight, the asymmetry induced during the transit should give rise to a net non-zero, time-resolved linear polarization signal. The peak amplitude of such time-dependent polarization may be detectable even for slowly rotating exoplanets. Therefore, we suggest that large exomoons around directly imaged self-luminous exoplanets may be detectable through time-resolved imaging polarimetry. Adopting detailed atmospheric models for several values of effective temperature and surface gravity that are appropriate for self-luminous exoplanets, we present the polarization profiles of these objects in the infrared during the transit phase and estimate the peak amplitude of polarization that occurs during the inner contacts of the transit ingress/egress phase. The peak polarization is predicted to range between 0.1% and 0.3% in the infrared.

  18. New exoplanets from the SuperWASP-North survey

    OpenAIRE

    Faedi, Francesca; Barros, S. C. C.; Pollacco, Don; Simpson, E. K.; McCormac, J. J.; Moulds, V.; Watson, C.

    2011-01-01

    We present the current status of the WASP search for transiting exoplanets, focusing on recent planet discoveries from SuperWASP-North and the joint equatorial region (-20.Dec.+20) observed by both WASP telescopes. We report the results of monitoring of WASP planets, and discuss how these contribute to our understanding of planet properties and their diversity.\\ud

  19. New exoplanets from the SuperWASP-North survey

    Directory of Open Access Journals (Sweden)

    Keenan F.

    2011-02-01

    Full Text Available We present the current status of the WASP search for transiting exoplanets, focusing on recent planet discoveries from SuperWASP-North and the joint equatorial region (-20≤Dec≤+20 observed by both WASP telescopes. We report the results of monitoring of WASP planets, and discuss how these contribute to our understanding of planet properties and their diversity.

  20. DETECTING EXOMOONS AROUND SELF-LUMINOUS GIANT EXOPLANETS THROUGH POLARIZATION.

    Science.gov (United States)

    Sengupta, Sujan; Marley, Mark S

    2016-01-01

    Many of the directly imaged self-luminous gas giant exoplanets have been found to have cloudy atmospheres. Scattering of the emergent thermal radiation from these planets by the dust grains in their atmospheres should locally give rise to significant linear polarization of the emitted radiation. However, the observable disk averaged polarization should be zero if the planet is spherically symmetric. Rotation-induced oblateness may yield a net non-zero disk averaged polarization if the planets have sufficiently high spin rotation velocity. On the other hand, when a large natural satellite or exomoon transits a planet with cloudy atmosphere along the line of sight, the asymmetry induced during the transit should give rise to a net non-zero, time resolved linear polarization signal. The peak amplitude of such time dependent polarization may be detectable even for slowly rotating exoplanets. Therefore, we suggest that large exomoons around directly imaged self-luminous exoplanets may be detectable through time resolved imaging polarimetry. Adopting detailed atmospheric models for several values of effective temperature and surface gravity which are appropriate for self-luminous exoplanets, we present the polarization profiles of these objects in the infrared during transit phase and estimate the peak amplitude of polarization that occurs during the inner contacts of the transit ingress/egress phase. The peak polarization is predicted to range between 0.1 and 0.3 % in the infrared.

  1. Exoplanets and Multiverses (Abstract)

    Science.gov (United States)

    Trimble, V.

    2016-12-01

    (Abstract only) To the ancients, the Earth was the Universe, of a size to be crossed by a god in a day, by boat or chariot, and by humans in a lifetime. Thus an exoplanet would have been a multiverse. The ideas gradually separated over centuries, with gradual acceptance of a sun-centered solar system, the stars as suns likely to have their own planets, other galaxies beyond the Milky Way, and so forth. And whenever the community divided between "just one' of anything versus "many," the "manies" have won. Discoveries beginning in 1991 and 1995 have gradually led to a battalion or two of planets orbiting other stars, very few like our own little family, and to moderately serious consideration of even larger numbers of other universes, again very few like our own. I'm betting, however, on habitable (though not necessarily inhabited) exoplanets to be found, and habitable (though again not necessarily inhabited) universes. Only the former will yield pretty pictures.

  2. Lightest exoplanet yet discovered

    Science.gov (United States)

    2009-04-01

    Well-known exoplanet researcher Michel Mayor today announced the discovery of the lightest exoplanet found so far. The planet, "e", in the famous system Gliese 581, is only about twice the mass of our Earth. The team also refined the orbit of the planet Gliese 581 d, first discovered in 2007, placing it well within the habitable zone, where liquid water oceans could exist. These amazing discoveries are the outcome of more than four years of observations using the most successful low-mass-exoplanet hunter in the world, the HARPS spectrograph attached to the 3.6-metre ESO telescope at La Silla, Chile. ESO PR Photo 15a/09 Artist's impression of Gliese 581 e ESO PR Photo 15b/09 A planet in the habitable zone ESO PR Video 15a/09 ESOcast 6 ESO PR Video 15b/09 VNR A-roll ESO PR Video 15c/09 Zoom-in on Gliese 581 e ESO PR Video 15d/09 Artist's impression of Gliese 581 e ESO PR Video 15e/09 Artist's impression of Gliese 581 d ESO PR Video 15f/09 Artist's impression of Gliese 581 system ESO PR Video 15g/09 The radial velocity method ESO PR Video 15h/09 Statement in English ESO PR Video 15i/09 Statement in French ESO PR Video 15j/09 La Silla Observatory "The holy grail of current exoplanet research is the detection of a rocky, Earth-like planet in the ‘habitable zone' -- a region around the host star with the right conditions for water to be liquid on a planet's surface", says Michel Mayor from the Geneva Observatory, who led the European team to this stunning breakthrough. Planet Gliese 581 e orbits its host star - located only 20.5 light-years away in the constellation Libra ("the Scales") -- in just 3.15 days. "With only 1.9 Earth-masses, it is the least massive exoplanet ever detected and is, very likely, a rocky planet", says co-author Xavier Bonfils from Grenoble Observatory. Being so close to its host star, the planet is not in the habitable zone. But another planet in this system appears to be. From previous observations -- also obtained with the HARPS spectrograph

  3. Biosignatures of Exoplanets

    Science.gov (United States)

    Kiang, Nancy Y.

    2017-01-01

    There was a time during Western civilization when musing about worlds other than Earth could be life-threatening. In 1600 Giordano Bruno was burnt at the stake as a heretic for claiming, amongst other things, that the fixed stars were in fact suns with planets moving around them, and furthermore, that lifeforms similar to those on Earth might exist on these planets. Although these ideas were not the result of scientific observation but rather of philosophical reflexions, Giordano Bruno is today recognized as the father of the idea of exoplanets. The study of planets revolving around distant stars has become one of the most thrilling disciplines in astronomy. As it did 400 years ago, this subject touches on the most profound questions of mankind, including the uniqueness of the planet Earth and even our own uniqueness as an intelligent species. As always in astronomy distance is an issue. While it requires a lot of patience to reach the planets within our own solar system, direct visits to exoplanets will not be feasible in the foreseeable future. Is there an alternative approach to find a second Earth?

  4. Asteroseismology of Exoplanet-Host Stars in the TESS Era

    DEFF Research Database (Denmark)

    Campante, Tiago L.; Schofield, Mathew; Chaplin, William J.

    2015-01-01

    in the characterization of host stars and their planetary systems. Examples include the precise estimation of the fundamental properties of stellar hosts, the obliquity determination of planetary systems, or the orbital eccentricity determination via asterodensity profiling. The Transiting Exoplanet Survey Satellite...... and planetary populations, we investigate the asteroseismic yield of the mission, placing particular emphasis on the yield of exoplanet-host stars for which we expect to detect solar-like oscillations. This is done both for the cohort of target stars (observed at a 2-min cadence), which will mainly involve low...

  5. Exoplanets search and characterization with the SOPHIE spectrograph at OHP

    Directory of Open Access Journals (Sweden)

    Hébrard G.

    2011-02-01

    Full Text Available Several programs of exoplanets search and characterization have been started with SOPHIE at the 1.93-m telescope of Haute-Provence Observatory, France. SOPHIE is an environmentally stabilized echelle spectrograph dedicated to high-precision radial velocity measurements. The objectives of these programs include systematic searches for exoplanets around different types of stars, characterizations of planet-host stars, studies of transiting planets through RossiterMcLaughlin effect, follow-up observations of photometric surveys. The instrument SOPHIE and a review of its latest results are presented here.

  6. Undercover Stars Among Exoplanet Candidates

    Science.gov (United States)

    2005-03-01

    Very Large Telescope Finds Planet-Sized Transiting Star Summary An international team of astronomers have accurately determined the radius and mass of the smallest core-burning star known until now. The observations were performed in March 2004 with the FLAMES multi-fibre spectrograph on the 8.2-m VLT Kueyen telescope at the ESO Paranal Observatory (Chile). They are part of a large programme aimed at measuring accurate radial velocities for sixty stars for which a temporary brightness "dip" has been detected during the OGLE survey. The astronomers find that the dip seen in the light curve of the star known as OGLE-TR-122 is caused by a very small stellar companion, eclipsing this solar-like star once every 7.3 days. This companion is 96 times heavier than planet Jupiter but only 16% larger. It is the first time that direct observations demonstrate that stars less massive than 1/10th of the solar mass are of nearly the same size as giant planets. This fact will obviously have to be taken into account during the current search for transiting exoplanets. In addition, the observations with the Very Large Telescope have led to the discovery of seven new eclipsing binaries, that harbour stars with masses below one-third the mass of the Sun, a real bonanza for the astronomers. PR Photo 06a/05: Brightness "Dip" and Velocity Variations of OGLE-TR-122. PR Photo 06b/05: Properties of Low-Mass Stars and Planets. PR Photo 06c/05: Comparison Between OGLE-TR-122b, Jupiter and the Sun. The OGLE Survey When a planet happens to pass in front of its parent star (as seen from the Earth), it blocks a small fraction of the star's light from our view [1]. These "planetary transits" are of great interest as they allow astronomers to measure in a unique way the mass and the radius of exoplanets. Several surveys are therefore underway which attempt to find these faint signatures of other worlds. One of these programmes is the OGLE survey which was originally devised to detect microlensing

  7. A Computational Tool to Interpret the Bulk Composition of Solid Exoplanets based on Mass and Radius Measurements

    OpenAIRE

    Zeng, Li; Seager, Sara

    2008-01-01

    The prospects for finding transiting exoplanets in the range of a few to 20 Earth masses is growing rapidly with both ground-based and spaced-based efforts. We describe a publicly available computer code to compute and quantify the compositional ambiguities for differentiated solid exoplanets with a measured mass and radius, including the mass and radius uncertainties.

  8. Exploring exoplanet populations with NASA's Kepler Mission.

    Science.gov (United States)

    Batalha, Natalie M

    2014-09-02

    The Kepler Mission is exploring the diversity of planets and planetary systems. Its legacy will be a catalog of discoveries sufficient for computing planet occurrence rates as a function of size, orbital period, star type, and insolation flux. The mission has made significant progress toward achieving that goal. Over 3,500 transiting exoplanets have been identified from the analysis of the first 3 y of data, 100 planets of which are in the habitable zone. The catalog has a high reliability rate (85-90% averaged over the period/radius plane), which is improving as follow-up observations continue. Dynamical (e.g., velocimetry and transit timing) and statistical methods have confirmed and characterized hundreds of planets over a large range of sizes and compositions for both single- and multiple-star systems. Population studies suggest that planets abound in our galaxy and that small planets are particularly frequent. Here, I report on the progress Kepler has made measuring the prevalence of exoplanets orbiting within one astronomical unit of their host stars in support of the National Aeronautics and Space Administration's long-term goal of finding habitable environments beyond the solar system.

  9. A Cubesat Payload for Exoplanet Detection

    Directory of Open Access Journals (Sweden)

    Marcella Iuzzolino

    2017-03-01

    Full Text Available The search for undiscovered planets outside the solar system is a scientific topic that is rapidly spreading into the astrophysical and engineering communities. In this framework, the design of an innovative payload to detect exoplanets from a nano-sized space platform, like a 3U cubesat, is presented. The selected detection method is photometric transit, and the payload aims to detect flux decrements down to ~0.01% with a precision of 12 ppm. The payload design is also aimed at false positive recognition. The solution consists of a four-facets pyramid on the top of the payload, to allow for measurement redundancy and low-resolution spectral dispersion of the star images. The innovative concept is the use of a small and cheap platform for a relevant astronomical mission. The faintest observable target star has V-magnitude equal to 3.38. Despite missions aimed at ultra-precise photometry from microsatellites (e.g., MOST, BRITE, the transit of exoplanets orbiting very bright stars has not yet been surveyed photometrically from space, since any observation from a small/medium sized (30 cm optical aperture telescope would saturate the detector. This cubesat mission can provide these missing measurements. This work is set up as a demonstrative project to verify the feasibility of the payload concept.

  10. A Cubesat Payload for Exoplanet Detection.

    Science.gov (United States)

    Iuzzolino, Marcella; Accardo, Domenico; Rufino, Giancarlo; Oliva, Ernesto; Tozzi, Andrea; Schipani, Pietro

    2017-03-02

    The search for undiscovered planets outside the solar system is a scientific topic that is rapidly spreading into the astrophysical and engineering communities. In this framework, the design of an innovative payload to detect exoplanets from a nano-sized space platform, like a 3U cubesat, is presented. The selected detection method is photometric transit, and the payload aims to detect flux decrements down to ~0.01% with a precision of 12 ppm. The payload design is also aimed at false positive recognition. The solution consists of a four-facets pyramid on the top of the payload, to allow for measurement redundancy and low-resolution spectral dispersion of the star images. The innovative concept is the use of a small and cheap platform for a relevant astronomical mission. The faintest observable target star has V-magnitude equal to 3.38. Despite missions aimed at ultra-precise photometry from microsatellites (e.g., MOST, BRITE), the transit of exoplanets orbiting very bright stars has not yet been surveyed photometrically from space, since any observation from a small/medium sized (30 cm optical aperture) telescope would saturate the detector. This cubesat mission can provide these missing measurements. This work is set up as a demonstrative project to verify the feasibility of the payload concept.

  11. Photometric Exoplanet Characterization and Multimedia Astronomy Communication

    Science.gov (United States)

    Cartier, Kimberly M. S.

    The transit method of detecting exoplanets has dominated the search for distant worlds since the success of the Kepler space telescope and will continue to lead the field after the launch of the Transiting Exoplanet Survey Satellite in 2018. But detections are just the beginning. Transit light curves can only reveal a limited amount of information about a planet, and that information is almost entirely dependent on the properties of the host star or stars. This dissertation discusses follow-up techniques to more precisely characterize transiting planets using photometric observations. A high-resolution follow-up imaging program using the Hubble Space Telescope (HST) searched for previously unknown stars nearby the hosts of small and cool Kepler exoplanets and observed a higher-than-expected occurrence rate of stellar multiplicity. The rate of previously unknown stellar multiples has strong implications for the size and habitability of the orbiting planets. Three systems with newly discovered stellar multiplicity, Kepler-296 (2 stars, 5 planets), KOI-2626 (3 stars, 1 planet), and KOI-3049 (2 stars, 1 planet), were characterized in more detail. In the cases of Kepler-296 and KOI-2626, some of the planets lost their previous habitable zone status because of host star ambiguity. Next, the ultra-short period, ultra-hot Jupiter WASP-103b was used as a casestudy to test for the presence of a stratospheric temperature inversion through dayside emission spectroscopy using HST. WASP-103b's near-infrared emission spectrum is consistent with an isothermal or thermally-inverted atmosphere and shows no significant broadband water absorption feature. Detection of an anomalously strong "super- Rayleigh" slope in its optical transmission spectrum prompted follow-up transmission spectroscopy of WASP-103b's atmosphere using the MINiature Radial Velocity Array (MINERVA), which tentatively verified the unexplained "super-Rayleigh" spectral slope. The final follow-up technique for

  12. Exoplanet Characterization With Spitzer Eclipses

    Science.gov (United States)

    Harrington, Joseph

    We will analyze our existing Spitzer eclipse data for 11 exoplanets (GJ 436b, WASP-8b, WASP-29b, WASP-11b, TrES-1, WASP-34b, WASP-43b, HD 209458b, HAT-P-30b, HAT-P-13b, and WASP-12b) along with all other Spitzer eclipse and transit data for these systems (723 hours of total data). In combination with transit results, these measurements reveal the surface fluxes emitted by the planets' atmospheres in the six Spitzer bandpasses (3.6, 4.5, 5.8, 8.0, 16, and 24 1-4m), as well as orbital eccentricity and in a few cases possibly even precession rate. The fluxes, in turn, can constrain atmospheric composition and thermal profiles. We propose here to analyze data for these planets using Monte Carlo-driven, radiative-transfer, model-fitting codes; to conduct aggregate analyses; and to develop and share statistical modeling tools. Secondary eclipses provide us with a unique way to characterize exoplanetary atmospheres. Since other techniques like spectroscopy divide the planetary signal into many channels, they require very high signal-to-noise ratio (S/N) and are only possible for a few planets. Broadband eclipse photometry is thus the only technique that can measure dozens of atmospheres and identify the mechanisms that cause planets at a given irradiation level to behave so differently from one another. Until JWST becomes available, the broad variety of Spitzer data that we already have in hand, along with observations from the Hubble Space Telescope and possibly SOFIA, are our best way to understand the wide diversity of exoplanetary atmospheres. Since 2010, the team has produced six papers from a new, highly modular pipeline that implements optimal methods for analysis of Spitzer photometric time series, and our efficiency is increasing. The sensitivity needed for these measurements is up to 100 times better than Spitzer's design criteria, so careful treatment of systematic error is critically important and first-order approximations rarely work. The new pipeline

  13. Illusion and reality in the atmospheres of exoplanets

    Science.gov (United States)

    Deming, L. Drake; Seager, Sara

    2017-01-01

    The atmospheres of exoplanets reveal all their properties beyond mass, radius, and orbit. Based on bulk densities, we know that exoplanets larger than 1.5 Earth radii must have gaseous envelopes and, hence, atmospheres. We discuss contemporary techniques for characterization of exoplanetary atmospheres. The measurements are difficult, because—even in current favorable cases—the signals can be as small as 0.001% of the host star's flux. Consequently, some early results have been illusory and not confirmed by subsequent investigations. Prominent illusions to date include polarized scattered light, temperature inversions, and the existence of carbon planets. The field moves from the first tentative and often incorrect conclusions, converging to the reality of exoplanetary atmospheres. That reality is revealed using transits for close-in exoplanets and direct imaging for young or massive exoplanets in distant orbits. Several atomic and molecular constituents have now been robustly detected in exoplanets as small as Neptune. In our current observations, the effects of clouds and haze appear ubiquitous. Topics at the current frontier include the measurement of heavy element abundances in giant planets, detection of carbon-based molecules, measurement of atmospheric temperature profiles, definition of heat circulation efficiencies for tidally locked planets, and the push to detect and characterize the atmospheres of super-Earths. Future observatories for this quest include the James Webb Space Telescope and the new generation of extremely large telescopes on the ground. On a more distant horizon, NASA's study concepts for the Habitable Exoplanet Imaging Mission (HabEx) and the Large UV/Optical/Infrared Surveyor (LUVOIR) missions could extend the study of exoplanetary atmospheres to true twins of Earth.

  14. Exoplanets: The Hunt Continues!

    Science.gov (United States)

    2001-04-01

    Swiss Telescope at La Silla Very Successful Summary The intensive and exciting hunt for planets around other stars ( "exoplanets" ) is continuing with great success in both hemispheres. Today, an international team of astronomers from the Geneva Observatory and other research institutes [1] is announcing the discovery of no less than eleven new, planetary companions to solar-type stars, HD 8574, HD 28185, HD 50554, HD 74156, HD 80606, HD 82943, HD 106252, HD 141937, HD 178911B, HD 141937, among which two new multi-planet systems . The masses of these new objects range from slightly less than to about 10 times the mass of the planet Jupiter [2]. The new detections are based on measured velocity changes of the stars [3], performed with the CORALIE spectrometer on the Swiss 1.2-m Leonard Euler telescope at the ESO La Silla Observatory , as well as with instruments on telescopes at the Haute-Provence Observatory and on the Keck telescopes on Mauna Kea (Hawaii, USA). Some of the new planets are unusual: * a two-planet system (around the star HD 82943) in which one orbital period is nearly exactly twice as long as the other - cases like this (refered to as "orbital resonance") are well known in our own solar system; * another two-planet system (HD 74156), with a Jupiter-like planet and a more massive planet further out; * a planet with the most elongated orbit detected so far (HD 80606), moving between 5 and 127 million kilometers from the central star; * a giant planet moving in an orbit around its Sun-like central star that is very similar to the one of the Earth and whose potential satellites (in theory, at least) might be "habitable". At this moment, there are 63 know exoplanet candidates with minimum masses below 10 Jupiter masses, and 67 known objects with minimum masses below 17 Jupiter masses. The present team of astronomers has detected about half of these. PR Photo 13a/01 : Radial-velocity measurements of HD 82943, a two-planet system . PR Photo 13b/01 : Radial

  15. Exoplanet's Figure and Its Interior

    Science.gov (United States)

    Mian, Zhang; Cheng-li, Huang

    2018-01-01

    Along with the development of the observing technology, the observation and study on the exoplanets' oblateness and apsidal precession have achieved significant progress. The oblateness of an exoplanet is determined by its interior density profile and rotation period. Between its Love number k2 and core size exists obviously a negative correlation. So oblateness and k2 can well constrain its interior structure. Starting from the Lane-Emden equation, the planet models based on different polytropic indices are built. Then the flattening factors are obtained by solving the Wavre's integro-differential equation. The result shows that the smaller the polytropic index, the faster the rotation, and the larger the oblateness. We have selected 469 exoplanets, which have simultaneously the observed or estimated values of radius, mass, and orbit period from the NASA (National Aeronautics and Space Administration) Exoplanet Archive, and calculated their flattening factors under the two assumptions: tidal locking and fixed rotation period of 10.55 hours. The result shows that the flattening factors are too small to be detected under the tidal locking assumption, and that 28% of exoplanets have the flattening factors larger than 0.1 under the fixed rotation period of 10.55 hours. The Love numbers under the different polytropic models are solved by the Zharkov's approach, and the relation between k2 and core size is discussed.

  16. Stellar Variability of the Exoplanet Hosting Star HD 63454

    OpenAIRE

    {Kane} S.~R.; {Dragomir} D.; {Ciardi} D.~R.; {Lee} J.-W.; {Lo Curto} G.; {Lovis} C.; {Naef} D.; {Mahadevan} S.; {Pilyavsky} G.; {Udry} S.; {Wang} X.; {Wright} J.

    2011-01-01

    Of the hundreds of exoplanets discovered using the radial velocity technique, many are orbiting close to their host stars with periods less than 10 days. One of these, HD 63454, is a young active K dwarf which hosts a Jovian planet in a 2.82 day period orbit. The planet has a 14% transit probability and a predicted transit depth of 1.2%. Here we provide a re-analysis of the radial velocity data to produce an accurate transit ephemeris. We further analyse 8 nights of time series data to search...

  17. Stellar Companions of Exoplanet Host Stars in K2

    Science.gov (United States)

    Matson, Rachel; Howell, Steve; Horch, Elliott; Everett, Mark

    2018-01-01

    Stellar multiplicity has significant implications for the detection and characterization of exoplanets. A stellar companion can mimic the signal of a transiting planet or distort the true planetary radii, leading to improper density estimates and over-predicting the occurrence rates of Earth-sized planets. Determining the fraction of exoplanet host stars that are also binaries allows us to better determine planetary characteristics as well as establish the relationship between binarity and planet formation. Using high-resolution speckle imaging to obtain diffraction limited images of K2 planet candidate host stars we detect stellar companions within one arcsec and up to six magnitudes fainter than the host star. By comparing our observed companion fraction to TRILEGAL star count simulations, and using the known detection limits of speckle imaging, we find the binary fraction of K2 planet host stars to be similar to that of Kepler host stars and solar-type field stars. Accounting for stellar companions in exoplanet studies is therefore essential for deriving true stellar and planetary properties as well as maximizing the returns for TESS and future exoplanet missions.

  18. A New Analysis of the Exoplanet Hosting System HD 6434

    OpenAIRE

    Hinkel, Natalie R.; Kane, Stephen R.; Pilyavsky, Genady; Boyajian, Tabetha S.; James, David J.; Naef, Dominique; Fischer, Debra A.; Udry, Stephane

    2015-01-01

    The current goal of exoplanetary science is not only focused on detecting but characterizing planetary systems in hopes of understanding how they formed, evolved, and relate to the Solar System. The Transit Ephemeris Refinement and Monitoring Survey (TERMS) combines both radial velocity (RV) and photometric data in order to achieve unprecedented ground-based precision in the fundamental properties of nearby, bright, exoplanet-hosting systems. Here we discuss HD 6434 and its planet, HD 6434b, ...

  19. Searching for exoplanets with the K2 mission

    Science.gov (United States)

    Bristow, Makennah; Schlieder, Joshua

    2018-01-01

    K2 is the second mission of the Kepler telescope, which uses transit photometry to observe the sky in the hopes of finding exoplanets. To date, Kepler and K2 have discovered and confirmed thousands of exoplanets. This project aimed to discover new planets from Campaign 13 of the K2 mission. Approximately 1000 transit events were chosen because of their high signal-to-noise ratios (SNR), ranging from SNR = 1088.3 to SNR = 12.0, meaning the candidate transits are more likely to be actual objects rather than noise. The high SNR events were then vetted and identified as either noise, variable stars, possible eclipsing binary candidates, or possible planetary candidates. 71 potential exoplanets were found through this method. 430 transits were found to be possible eclipsing binary systems, numerous others were out of the ordinary; revealing rapidly rotating stars, strong flares, and other events. Scatter plots and histograms were created to represent the spread of planetary radii, temperature, and spectral types. These plots showed that the majority of the candidates identified fall within the 1-6 Earth radii range and orbit G-M type stars in the 4000-6000K temperature range. One of the vetted candidates, EPIC247589423.01, has now been confirmed as the exoplanet K2-136A c. It orbits the primary component of a binary system with a 17.3 day period and has a radius of 3 Earth radii (Ciardi et al. 2017). Being the first to identify these planet candidates is a huge step towards increasing the number of known planets in the Galaxy and allows for others to perform additional detailed studies to confirm and characterize more of the systems.

  20. A New Window into Escaping Exoplanet Atmospheres: 10830 Å Line of Helium

    Science.gov (United States)

    Oklopčić, Antonija; Hirata, Christopher M.

    2018-03-01

    Observational evidence for escaping exoplanet atmospheres has been obtained for a few exoplanets to date. It comes from strong transit signals detected in the ultraviolet, most notably in the wings of the hydrogen Lyα (Lyα) line. However, the core of the Lyα line is often heavily affected by interstellar absorption and geocoronal emission, limiting the information about the atmosphere that can be extracted from that part of the spectrum. Transit observations in atomic lines that are (a) sensitive enough to trace the rarefied gas in the planetary wind and (b) do not suffer from significant extinction by the interstellar medium could enable more detailed observations, and thus provide better constraints on theoretical models of escaping atmospheres. The absorption line of a metastable state of helium at 10830 Å could satisfy both of these conditions for some exoplanets. We develop a simple 1D model of escaping planetary atmospheres containing hydrogen and helium. We use it to calculate the density profile of helium in the 23S metastable excited state and the expected in-transit absorption at 10830 Å for two exoplanets known to have escaping atmospheres. Our results indicate that exoplanets similar to GJ 436b and HD 209458b should exhibit enhanced transit depths at 10830 Å, with ∼8% and ∼2% excess absorption in the line core, respectively.

  1. Test of multi-object exoplanet search spectral interferometer

    Science.gov (United States)

    Zhang, Kai; Wang, Liang; Jiang, Haijiao; Zhu, Yongtian; Hou, Yonghui; Dai, Songxin; Tang, Jin; Tang, Zhen; Zeng, Yizhong; Chen, Yi; Wang, Lei; Hu, Zhongwen

    2014-07-01

    Exoplanet detection, a highlight in the current astronomy, will be part of puzzle in astronomical and astrophysical future, which contains dark energy, dark matter, early universe, black hole, galactic evolution and so on. At present, most of the detected Exoplanets are confirmed through methods of radial velocity and transit. Guo shoujing Telescope well known as LAMOST is an advanced multi-object spectral survey telescope equipped with 4000 fibers and 16 low resolution fiber spectrographs. To explore its potential in different astronomical activities, a new radial velocity method named Externally Dispersed Interferometry (EDI) is applied to serve Exoplanet detection through combining a fixed-delay interferometer with the existing spectrograph in medium spectral resolution mode (R=5,000-10,000). This new technology has an impressive feature to enhance radial velocity measuring accuracy of the existing spectrograph through installing a fixed-delay interferometer in front of spectrograph. This way produces an interference spectrum with higher sensitivity to Doppler Effect by interference phase and fixed delay. This relative system named Multi-object Exoplanet Search Spectral Interferometer (MESSI) is composed of a few parts, including a pair of multi-fiber coupling sockets, a remote control iodine subsystem, a multi-object fixed delay interferometer and the existing spectrograph. It covers from 500 to 550 nm and simultaneously observes up to 21 stars. Even if it's an experimental instrument at present, it's still well demonstrated in paper that how MESSI does explore an effective way to build its own system under the existing condition of LAMOST and get its expected performance for multi-object Exoplanet detection, especially instrument stability and its special data reduction. As a result of test at lab, inside temperature of its instrumental chamber is stable in a range of +/-0.5degree Celsius within 12 hours, and the direct instrumental stability without further

  2. The Effect of Starspots on Detectability of Exoplanet Atmospheres

    Science.gov (United States)

    Hofmann, Ryan; Berta-Thompson, Zachory

    2018-01-01

    Transmission spectroscopy is an effective tool for detecting and characterizing the atmospheres of transiting extrasolar planets. However, the presence of cool spots on a planet’s host star can be a source of uncertainty that is difficult to account for. Cool starspots introduce wavelength-dependent features and noise into the transmission spectrum of an orbiting exoplanet. For sufficiently cool stars, especially M dwarfs, this could cause false detections of water and other species in the planet’s atmosphere. To understand the extent of this problem, we use a combination of PHOENIX model spectra and the starspot simulation code MACULA to simulate the effects of starspots on observed transmission spectra for a wide variety of stars and spot configurations. By comparing the simulated DoTV (Depth of Transit Variation) due to starspots with models of the expected DoTV from exoplanet atmospheres with a given composition, we can estimate the level of effect the starspots have on the detectability of various atmospheres. For example, our results indicate for TRAPPIST-1’s planets that while the large amplitude absorption features from a H/He-rich atmosphere should be easily detectable, a pure water atmosphere would be much harder to distinguish from starspot noise. Consequently, proper characterization of exoplanet atmospheres, especially around cool, active host stars, requires a proper understanding of the star’s spot properties and suitable methods for reducing or removing spot-induced brightness fluctuations as a source of noise.

  3. Scalable Gaussian Processes and the search for exoplanets

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    Gaussian Processes are a class of non-parametric models that are often used to model stochastic behavior in time series or spatial data. A major limitation for the application of these models to large datasets is the computational cost. The cost of a single evaluation of the model likelihood scales as the third power of the number of data points. In the search for transiting exoplanets, the datasets of interest have tens of thousands to millions of measurements with uneven sampling, rendering naive application of a Gaussian Process model impractical. To attack this problem, we have developed robust approximate methods for Gaussian Process regression that can be applied at this scale. I will describe the general problem of Gaussian Process regression and offer several applicable use cases. Finally, I will present our work on scaling this model to the exciting field of exoplanet discovery and introduce a well-tested open source implementation of these new methods.

  4. ASTEP: Towards the detection and characterization of exoplanets from Dome C

    Directory of Open Access Journals (Sweden)

    Rauer H.

    2011-02-01

    Full Text Available The ASTEP project (Antarctic Search for Transiting ExoPlanets, aims at testing the quality of the Dome C site in Antarctica for photometry in the visible, as well as detecting and characterizing transiting exoplanets. A dedicated telescope, ASTEP400, has been developped and installed at Concordia. The first campaign took place during the winter 2010, and the telescope functionned nominally during all the winter. A first analysis of the data leads to a precision of 189 and 205 ppm for WASP-19 and WASP-18 respectively, for continuous observations during 1 month. This shows that extremely high precision photometry is achievable from Dome C.

  5. Stellar magnetic activity and exoplanets

    Directory of Open Access Journals (Sweden)

    Vidotto A.A.

    2017-01-01

    Full Text Available It has been proposed that magnetic activity could be enhanced due to interactions between close-in massive planets and their host stars. In this article, I present a brief overview of the connection between stellar magnetic activity and exoplanets. Stellar activity can be probed in chromospheric lines, coronal emission, surface spot coverage, etc. Since these are manifestations of stellar magnetism, these measurements are often used as proxies for the magnetic field of stars. Here, instead of focusing on the magnetic proxies, I overview some recent results of magnetic field measurements using spectropolarimetric observations. Firstly, I discuss the general trends found between large-scale magnetism, stellar rotation, and coronal emission and show that magnetism seems to be correlated to the internal structure of the star. Secondly, I overview some works that show evidence that exoplanets could (or not act as to enhance the activity of their host stars.

  6. Exoplanet Observing: From Art to Science

    Science.gov (United States)

    Conti, Dennis M.; Gleeson, Jack

    2017-06-01

    This paper will review the now well-established best practices for conducting high precision exoplanet observing with small telescopes. The paper will also review the AAVSO's activities in promoting these best practices among the amateur astronomer community through training material and online courses, as well as through the establishment of an AAVSO Exoplanet Database. This latter development will be an essential element in supporting followup exoplanet observations for upcoming space telescope missions such as TESS and JWST.

  7. Exoplanet Observing: from Art to Science (Abstract)

    Science.gov (United States)

    Conti, D. M.; Gleeson, J.

    2017-12-01

    (Abstract only) This paper will review the now well-established best practices for conducting high precision exoplanet observing with small telescopes. The paper will also review the AAVSO's activities in promoting these best practices among the amateur astronomer community through training material and online courses, as well as through the establishment of an AAVSO Exoplanet Database. This latter development will be an essential element in supporting followup exoplanet observations for upcoming space telescope missions such as TESS and JWST.

  8. DISCRIMINATING BETWEEN CLOUDY, HAZY, AND CLEAR SKY EXOPLANETS USING REFRACTION

    Energy Technology Data Exchange (ETDEWEB)

    Misra, Amit K.; Meadows, Victoria S. [Astronomy Department, University of Washington, Seattle, WA 98195 (United States)

    2014-11-01

    We propose a method to distinguish between cloudy, hazy, and clear sky (free of clouds and hazes) exoplanet atmospheres that could be applicable to upcoming large aperture space- and ground-based telescopes such as the James Webb Space Telescope (JWST) and the European Extremely Large Telescope (E-ELT). These facilities will be powerful tools for characterizing transiting exoplanets, but only after a considerable amount of telescope time is devoted to a single planet. A technique that could provide a relatively rapid means of identifying haze-free targets (which may be more valuable targets for characterization) could potentially increase the science return for these telescopes. Our proposed method utilizes broadband observations of refracted light in the out-of-transit spectrum. Light refracted through an exoplanet atmosphere can lead to an increase of flux prior to ingress and subsequent to egress. Because this light is transmitted at pressures greater than those for typical cloud and haze layers, the detection of refracted light could indicate a cloud- or haze-free atmosphere. A detection of refracted light could be accomplished in <10 hr for Jovian exoplanets with JWST and <5 hr for super-Earths/mini-Neptunes with E-ELT. We find that this technique is most effective for planets with equilibrium temperatures between 200 and 500 K, which may include potentially habitable planets. A detection of refracted light for a potentially habitable planet would strongly suggest the planet was free of a global cloud or haze layer, and therefore a promising candidate for follow-up observations.

  9. Motion of the fast exoplanets

    Science.gov (United States)

    Kotov, Valery A.

    2018-03-01

    It is shown that a number of superfast, with periods fairly well with the period P0= 9600.606(12) s of the so-called "cosmic oscillation" (the probability that the two timescales would coincide by chance is near 3 ×10^{-4}; the P0 period was discovered first in the Sun, and later on—in other objects of Cosmos). True nature of the exoplanet P0 resonance is unknown.

  10. Abundances in stars with exoplanets

    OpenAIRE

    Israelian, Garik

    2003-01-01

    Extensive spectroscopic studies of stars with and without planets have concluded that stars hosting planets are significantly more metal-rich than those without planets. More subtle trends of different chemical elements begin to appear as the number of detected extrasolar planetary systems continues to grow. I review our current knowledge concerning the observed abundance trends of various chemical elements in stars with exoplanets and their possible implications.

  11. In the Search of Exoplanets

    Science.gov (United States)

    Crespo, Luis Cuesta

    The Spanish Instituto Nacional de Técnica Aeroespacial has a network of three telescopes located in some of the best places for Astronomy in Spain: the Observatory of Calar Alto, in Almería, near Calatayud, in Zaragoza, at the summit of a 1,400m high mountain, and at the campus of INTA, in Madrid. The three telescopes have diameters between 40 and 50cm, and are equipped with instrumentation very adequate to identify exoplanets.

  12. HOMES - Holographic Optical Method for Exoplanet Spectroscopy

    Data.gov (United States)

    National Aeronautics and Space Administration — HOMES (Holographic Optical Method for Exoplanet Spectroscopy) is a space telescope that employs a double dispersion architecture, using a holographic optical element...

  13. VLT Detects First Superstorm on Exoplanet

    Science.gov (United States)

    2010-06-01

    Astronomers have measured a superstorm for the first time in the atmosphere of an exoplanet, the well-studied "hot Jupiter" HD209458b. The very high-precision observations of carbon monoxide gas show that it is streaming at enormous speed from the extremely hot day side to the cooler night side of the planet. The observations also allow another exciting "first" - measuring the orbital speed of the exoplanet itself, providing a direct determination of its mass. The results appear this week in the journal Nature. "HD209458b is definitely not a place for the faint-hearted. By studying the poisonous carbon monoxide gas with great accuracy we found evidence for a super wind, blowing at a speed of 5000 to 10 000 km per hour" says Ignas Snellen, who led the team of astronomers. HD209458b is an exoplanet of about 60% the mass of Jupiter orbiting a solar-like star located 150 light-years from Earth towards the constellation of Pegasus (the Winged Horse). Circling at a distance of only one twentieth the Sun-Earth distance, the planet is heated intensely by its parent star, and has a surface temperature of about 1000 degrees Celsius on the hot side. But as the planet always has the same side to its star, one side is very hot, while the other is much cooler. "On Earth, big temperature differences inevitably lead to fierce winds, and as our new measurements reveal, the situation is no different on HD209458b," says team member Simon Albrecht. HD209458b was the first exoplanet to be found transiting: every 3.5 days the planet moves in front of its host star, blocking a small portion of the starlight during a three-hour period. During such an event a tiny fraction of the starlight filters through the planet's atmosphere, leaving an imprint. A team of astronomers from the Leiden University, the Netherlands Institute for Space Research (SRON), and MIT in the United States, have used ESO's Very Large Telescope and its powerful CRIRES spectrograph to detect and analyse these faint

  14. Transiting exoplanets from the CoRoT space mission . XIII. CoRoT-13b: a dense hot Jupiter in transit around a star with solar metallicity and super-solar lithium content

    Science.gov (United States)

    Cabrera, J.; Bruntt, H.; Ollivier, M.; Díaz, R. F.; Csizmadia, Sz.; Aigrain, S.; Alonso, R.; Almenara, J.-M.; Auvergne, M.; Baglin, A.; Barge, P.; Bonomo, A. S.; Bordé, P.; Bouchy, F.; Carone, L.; Carpano, S.; Deleuil, M.; Deeg, H. J.; Dvorak, R.; Erikson, A.; Ferraz-Mello, S.; Fridlund, M.; Gandolfi, D.; Gazzano, J.-C.; Gillon, M.; Guenther, E. W.; Guillot, T.; Hatzes, A.; Havel, M.; Hébrard, G.; Jorda, L.; Léger, A.; Llebaria, A.; Lammer, H.; Lovis, C.; Mazeh, T.; Moutou, C.; Ofir, A.; von Paris, P.; Pätzold, M.; Queloz, D.; Rauer, H.; Rouan, D.; Santerne, A.; Schneider, J.; Tingley, B.; Titz-Weider, R.; Wuchterl, G.

    2010-11-01

    We announce the discovery of the transiting planet CoRoT-13b. Ground-based follow-up in CFHT and IAC80 confirmed CoRoT's observations. The mass of the planet was measured with the HARPS spectrograph and the properties of the host star were obtained analyzing HIRES spectra from the Keck telescope. It is a hot Jupiter-like planet with an orbital period of 4.04 days, 1.3 Jupiter masses, 0.9 Jupiter radii, and a density of 2.34 g cm-3. It orbits a G0V star with T_eff = 5 945 K, M* = 1.09 M⊙, R_* = 1.01 R⊙, solar metallicity, a lithium content of + 1.45 dex, and an estimated age of between 0.12 and 3.15 Gyr. The lithium abundance of the star is consistent with its effective temperature, activity level, and age range derived from the stellar analysis. The density of the planet is extreme for its mass, implies that heavy elements are present with a mass of between about 140 and 300 {M}⊕. The CoRoT space mission, launched on December 27th 2006, has been developed and is operated by CNES, with the contribution of Austria, Belgium, Brazil, ESA (RSSD and Science Programme), Germany and Spain. Part of the observations were obtained at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii. Based on observations made with HARPS spectrograph on the 3.6-m European Organisation for Astronomical Research in the Southern Hemisphere telescope at La Silla Observatory, Chile (ESO program 184.C-0639). Based on observations made with the IAC80 telescope operated on the island of Tenerife by the Instituto de Astrofísica de Canarias in the Spanish Observatorio del Teide. Part of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics

  15. First Solid Evidence for a Rocky Exoplanet - Mass and density of smallest exoplanet finally measured

    Science.gov (United States)

    2009-09-01

    "starspots" (just like sunspots on our Sun), which are cooler regions on the surface of the star. Therefore, the main signal is linked to the rotation of the star, with makes one complete revolution in about 23 days. To get an answer, astronomers had to call upon the best exoplanet-hunting device in the world, the High Accuracy Radial velocity Planet Searcher (HARPS) spectrograph attached to the ESO 3.6-metre telescope at the La Silla Observatory in Chile. "Even though HARPS is certainly unbeaten when it comes to detecting small exoplanets, the measurements of CoRoT-7b proved to be so demanding that we had to gather 70 hours of observations on the star," says co-author François Bouchy. HARPS delivered, allowing the astronomers to tease out the 20.4-hour signal in the data. This figure led them to infer that CoRoT-7b has a mass of about five Earth masses, placing it in rare company as one of the lightest exoplanets yet found. "Since the planet's orbit is aligned so that we see it crossing the face of its parent star - it is said to be transiting - we can actually measure, and not simply infer, the mass of the exoplanet, which is the smallest that has been precisely measured for an exoplanet [3]," says team member Claire Moutou. "Moreover, as we have both the radius and the mass, we can determine the density and get a better idea of the internal structure of this planet." With a mass much closer to that of Earth than, for example, ice giant Neptune's 17 Earth masses, CoRoT-7b belongs to the category of "super-Earth" exoplanets. About a dozen of these bodies have been detected, though in the case of CoRoT-7b, this is the first time that the density has been measured for such a small exoplanet. The calculated density is close to Earth's, suggesting that the planet's composition is similarly rocky. "CoRoT-7b resulted in a 'tour de force' of astronomical measurements. The superb light curves of the space telescope CoRoT gave us the best radius measurement, and HARPS the best mass

  16. Laboratory Studies of Planetary Hazes: composition of cool exoplanet atmospheric aerosols with very high resolution mass spectrometry

    Science.gov (United States)

    Moran, Sarah E.; Horst, Sarah; He, Chao; Flandinet, Laurene; Moses, Julianne I.; Orthous-Daunay, Francois-Regis; Vuitton, Veronique; Wolters, Cedric; Lewis, Nikole

    2017-10-01

    We present first results of the composition of laboratory-produced exoplanet haze analogues. With the Planetary HAZE Research (PHAZER) Laboratory, we simulated nine exoplanet atmospheres of varying initial gas phase compositions representing increasing metallicities (100x, 1000x, and 10000x solar) and exposed them to three different temperature regimes (600, 400, and 300 K) with two different “instellation” sources (a plasma source and a UV lamp). The PHAZER exoplanet experiments simulate a temperature and atmospheric composition phase space relevant to the expected planetary yield of the Transiting Exoplanet Survey Satellite (TESS) mission as well as recently discovered potentially habitable zone exoplanets in the TRAPPIST-1, LHS-1140, and Proxima Centauri systems. Upon exposure to the energy sources, all of these experiments produced aerosol particles, which were collected in a dry nitrogen glove box and then analyzed with an LTQ Orbitrap XL™ Hybrid Ion Trap-Orbitrap Mass Spectrometer utilizing m/z ranging from 50 to 1000. The collected aerosol samples were found to contain complex organics. Constraining the composition of these aerosols allows us to better understand the photochemical and dynamical processes ongoing in exoplanet atmospheres. Moreover, these data can inform our telescope observations of exoplanets, which is of critical importance as we enter a new era of exoplanet atmosphere observation science with the upcoming launch of the James Webb Space Telescope. The molecular makeup of these haze particles provides key information for understanding exoplanet atmospheric spectra, and constraining the structure and behavior of clouds, hazes, and other aerosols is at the forefront of exoplanet atmosphere science.

  17. Exoplanet Community Report on Direct Infrared Imaging of Exoplanets

    Science.gov (United States)

    Danchi, William C.; Lawson, Peter R.

    2009-01-01

    Direct infrared imaging and spectroscopy of exoplanets will allow for detailed characterization of the atmospheric constituents of more than 200 nearby Earth-like planets, more than is possible with any other method under consideration. A flagship mission based on larger passively cooled infrared telescopes and formation flying technologies would have the highest angular resolution of any concept under consideration. The 2008 Exoplanet Forum committee on Direct Infrared Imaging of Exoplanets recommends: (1) a vigorous technology program including component development, integrated testbeds, and end-to-end modeling in the areas of formation flying and mid-infrared nulling; (2) a probe-scale mission based on a passively cooled structurally connected interferometer to be started within the next two to five years, for exoplanetary system characterization that is not accessible from the ground, and which would provide transformative science and lay the engineering groundwork for the flagship mission with formation flying elements. Such a mission would enable a complete exozodiacal dust survey (<1 solar system zodi) in the habitable zone of all nearby stars. This information will allow for a more efficient strategy of spectral characterization of Earth-sized planets for the flagship missions, and also will allow for optimization of the search strategy of an astrometric mission if such a mission were delayed due to cost or technology reasons. (3) Both the flagship and probe missions should be pursued with international partners if possible. Fruitful collaboration with international partners on mission concepts and relevant technology should be continued. (4) Research and Analysis (R&A) should be supported for the development of preliminary science and mission designs. Ongoing efforts to characterize the the typical level of exozodiacal light around Sun-like stars with ground-based nulling technology should be continued.

  18. A Research-Informed Approach to Teaching About Exoplanet Detection in STEM Classrooms

    Science.gov (United States)

    Brissenden, Gina; Wallace, C. S.; Prather, E. E.; Traub, W. A.; Greene, W. M.; Biferno, A. A.

    2014-01-01

    JPL’s NASA Exoplanet Exploration Program’s (ExEP) Public Engagement Program, in collaboration with the Center for Astronomy Education (CAE), is engaged in a research and curriculum development program to bring the science of exoplanet detection into STEM classrooms. In recent years, there has been a significant increase in the number of astronomers pursuing research related to exoplanets, along with a significant increase in interest amongst students and the general public regarding the topic of exoplanets. CAE has previously developed a curriculum unit (including Think-Pair-Share questions and a Lecture-Tutorial) to help students develop a deeper understanding of the Doppler method for detecting extrasolar planets. To date, there is a nearly nonexistent research base on students’ conceptual and reasoning difficulties related to the science of the transit and gravitational microlensing methods for detecting extrasolar planets. Appropriate for physical science classrooms from middle school to the introductory college level, the learner-centered active engagement activities we are developing are going through an iterative research and assessment process to ensure that they enable students to achieve increased conceptual understandings and reasoning skills in these areas. In this talk, we will report on our development process for two new Lecture-Tutorials that help students learn about the transit and gravitational microlensing methods for finding exoplanets.

  19. An Analytic Model Approach to the Frequency of Exoplanets

    Science.gov (United States)

    Traub, Wesley A.

    2016-10-01

    The underlying population of exoplanets around stars in the Kepler sample can be inferred by a simulation that includes binning the Kepler planets in radius and period, invoking an empirical noise model, assuming a model exoplanet distribution function, randomly assigning planets to each of the Kepler target stars, asking whether each planet's transit signal could be detected by Kepler, binning the resulting simulated detections, comparing the simulations with the observed data sample, and iterating on the model parameters until a satisfactory fit is obtained. The process is designed to simulate the Kepler observing procedure. The key assumption is that the distribution function is the product of separable functions of period and radius. Any additional suspected biases in the sample can be handled by adjusting the noise model or selective editing of the range of input planets. An advantage of this overall procedure is that it is a forward calculation designed to simulate the observed data, subject to a presumed underlying population distribution, minimizing the effect of bin-to-bin fluctuations. Another advantage is that the resulting distribution function can be extended to values of period and radius that go beyond the sample space, including, for example, application to estimating eta-sub-Earth, and also estimating the expected science yields of future direct-imaging exoplanet missions such as WFIRST-AFTA.

  20. Characterization of Exoplanet-Host Stars

    OpenAIRE

    Adibekyan, Vardan; Sousa, Sérgio G.; Santos, Nuno C.

    2017-01-01

    Precise and, if possible, accurate characterization of exoplanets cannot be dissociated from the characterization of their host stars. In this chapter we discuss different methods and techniques used to derive fundamental properties and atmospheric parameters of exoplanet-host stars. The main limitations, advantages and disadvantages, as well as corresponding typical measurement uncertainties of each method are presented.

  1. Ground-based observations of exoplanet atmospheres

    NARCIS (Netherlands)

    Mooij, Ernst Johan Walter de

    2011-01-01

    This thesis focuses on the properties of exoplanet atmospheres. The results for ground-based near-infrared secondary eclipse observations of three different exoplanets, TrES-3b, HAT-P-1b and WASP-33b, are presented which have been obtained with ground-based telescopes as part of the GROUSE project.

  2. Dusty tails of evaporating exoplanets. I. Constraints on the dust composition

    NARCIS (Netherlands)

    van Lieshout, R.; Min, M.; Dominik, C.

    2014-01-01

    Context. Recently, two exoplanet candidates have been discovered, KIC 12557548b and KOI-2700b, whose transit profiles show evidence of a comet-like tail of dust trailing the planet, thought to be fed by the evaporation of the planet’s surface. Aims. We aim to put constraints on the composition of

  3. A simple model to describe intrinsic stellar noise for exoplanet detection around red giants

    DEFF Research Database (Denmark)

    North, Thomas S. H.; Chaplin, William J.; Gilliland, Ronald L.

    2017-01-01

    In spite of the huge advances in exoplanet research provided by the NASA Kepler Mission, there remain only a small number of transit detections around evolved stars. Here, we present a reformulation of the noise properties of red-giant stars, where the intrinsic stellar granulation and the stellar...

  4. High-precision ground-based photometry of exoplanets

    Directory of Open Access Journals (Sweden)

    de Mooij Ernst J.W.

    2013-04-01

    Full Text Available High-precision photometry of transiting exoplanet systems has contributed significantly to our understanding of the properties of their atmospheres. The best targets are the bright exoplanet systems, for which the high number of photons allow very high signal-to-noise ratios. Most of the current instruments are not optimised for these high-precision measurements, either they have a large read-out overhead to reduce the readnoise and/or their field-of-view is limited, preventing simultaneous observations of both the target and a reference star. Recently we have proposed a new wide-field imager for the Observatoir de Mont-Megantic optimised for these bright systems (PI: Jayawardhana. The instruments has a dual beam design and a field-of-view of 17' by 17'. The cameras have a read-out time of 2 seconds, significantly reducing read-out overheads. Over the past years we have obtained significant experience with how to reach the high precision required for the characterisation of exoplanet atmospheres. Based on our experience we provide the following advice: Get the best calibrations possible. In the case of bad weather, characterise the instrument (e.g. non-linearity, dome flats, bias level, this is vital for better understanding of the science data. Observe the target for as long as possible, the out-of-transit baseline is as important as the transit/eclipse itself. A short baseline can lead to improperly corrected systematic and mis-estimation of the red-noise. Keep everything (e.g. position on detector, exposure time as stable as possible. Take care that the defocus is not too strong. For a large defocus, the contribution of the total flux from the sky-background in the aperture could well exceed that of the target, resulting in very strict requirements on the precision at which the background is measured.

  5. The Effect of Stellar Contamination on Transmission Spectra of Low-mass Exoplanets

    Science.gov (United States)

    Rackham, Benjamin V.; Apai, Daniel; Giampapa, Mark S.

    2017-10-01

    Transmission spectroscopy offers the exciting possibility of studying terrestrial exoplanet atmospheres in the near-term future. The Transiting Exoplanet Survey Satellite (TESS), scheduled for launch next year, is expected to discover thousands of transiting exoplanets around bright host stars, including an estimated twenty habitable zone super-Earths. The brightness of the TESS host stars, combined with refined observational strategies and near-future facilities, will enable searches for atmospheric signatures from smaller and cooler exoplanets. These observations, however, will be increasingly subject to noise introduced by heterogeneities in the host star photospheres, such as star spots and faculae. In short, the transmission spectroscopy method relies on the assumption that the spectrum of the transit chord does not differ from that of the integrated stellar disk or, if it does, the contribution of photospheric heterogeneities to the transmission spectrum can be constrained by variability monitoring. However, any axisymmetric populations of spots and faculae will strongly affect transmission spectra, and their presence cannot be deduced from monitoring efforts. A clear need exists for a more robust understanding of stellar contamination on transmission spectra. Here we summarize our work on the impact of heterogeneous stellar photospheres on transmission spectra and detail implications for atmospheric characterization efforts. By modeling spot and faculae distributions in stellar photospheres, we find that spot-covering fractions extrapolated from observed variability amplitudes are significantly underestimated. Likewise, corrections based on variability monitoring likely fall short of the actual stellar spectral contamination. We provide examples of contamination spectra for typical levels of stellar activity across a range of spectral types. For M dwarfs, molecular absorption features in spots and faculae can imprint apparent features in transmission spectra

  6. Eccentricity from transit photometry

    DEFF Research Database (Denmark)

    Van Eylen, Vincent; Albrecht, Simon

    2015-01-01

    Solar system planets move on almost circular orbits. In strong contrast, many massive gas giant exoplanets travel on highly elliptical orbits, whereas the shape of the orbits of smaller, more terrestrial, exoplanets remained largely elusive. Knowing the eccentricity distribution in systems of small...... and can be described by a Rayleigh distribution with $\\sigma$ = 0.049 $\\pm$ 0.013. This is in full agreement with solar system eccentricities, but in contrast to the eccentricity distributions previously derived for exoplanets from radial velocity studies. Our findings are helpful in identifying which...... (TTVs), and we present some previously unreported TTVs. Finally transit durations help distinguish between false positives and true planets and we use our measurements to confirm six new exoplanets....

  7. A Retrieval Architecture for JWST Observations of Directly Imaged Exoplanets

    Science.gov (United States)

    Howe, Alex

    2017-06-01

    I present a new modeling and retrieval code for atmospheres of directly imaged exoplanets designed for use on JWST observations, extending my previous work on transiting planets. I perform example retrievals of temperature-pressure profiles, common molecular abundances, and basic cloud properties on existing lower-resolution spectra and on simulated JWST data using forward model emission spectra for planned NIRISS and NIRCam targets. From these results, I estimate the expected return on prospective JWST observations in information-theoretic terms using the mutual information metric.

  8. A Toolbox for Exoplanet Exploration

    Science.gov (United States)

    Jensen-Clem, Rebecca Marie

    2017-05-01

    In this thesis, I develop a new suite of tools to address two questions in exoplanet science: how common are Earth-mass planets in the habitable zones of Solar-type stars, and can we detect signs of life on other worlds? Answering the first question requires a method for detecting Earth-Sun analogs. Currently, the radial velocity (RV) method of exoplanet detection is one of the most successful tools for probing inner planetary systems. However, degeneracy between a spectrometer's wavelength calibration and the astrophysical RV shift has limited the sensitivity of today's instruments. In my thesis, I address a method for breaking this degeneracy: by combining a traditional spectrometer design with a dynamic interferometer, a fringe pattern is generated at the image plane that is highly sensitive to changes in the radial velocity of the target star. I augmented previous theoretical studies of the method, creating an end-to-end simulation to 1) introduce and recover wavelength calibration errors, and 2) investigate the effects of interferometer position errors on the RV precision. My simulation showed that using this kind of interferometric system, a 5-m class telescope could detect an Earth-Sun analog. Addressing the occurrence rate of Earth twins also requires an understanding of planet formation in multiple star systems, which encompass half of all Solar-type stars. Gravitational interactions between binary components separated by 10-100 astronomical units are predicted to truncate the outer edges of their respective disks, possibly reducing the disks' lifetimes. Consequently, the pool of material and the amount of time available for planet formation may be smaller than in single star systems. The stars' rotational periods provide a fossil record of these events: star-disk magnetic interactions initially prevent a contracting pre-main sequence star from spinning up, and hence a star with a shorter-lived disk is expected to be spinning more quickly when it reaches

  9. Lightning and Life on Exoplanets

    Science.gov (United States)

    Rimmer, Paul; Ardaseva, Aleksandra; Hodosan, Gabriella; Helling, Christiane

    2016-07-01

    Miller and Urey performed a ground-breaking experiment, in which they discovered that electric discharges through a low redox ratio gas of methane, ammonia, water vapor and hydrogen produced a variety of amino acids, the building blocks of proteins. Since this experiment, there has been significant interest on the connection between lightning chemistry and the origin of life. Investigation into the atmosphere of the Early Earth has generated a serious challenge for this project, as it has been determined both that Earth's early atmosphere was likely dominated by carbon dioxide and molecular nitrogen with only small amounts of hydrogen, having a very high redox ratio, and that discharges in gases with high redox ratios fail to yield more than trace amounts of biologically relevant products. This challenge has motivated several origin of life researchers to abandon lightning chemistry, and to concentrate on other pathways for prebiotic synthesis. The discovery of over 2000 exoplanets includes a handful of rocky planets within the habitable zones around their host stars. These planets can be viewed as remote laboratories in which efficient lightning driven prebiotic synthesis may take place. This is because many of these rocky exoplanets, called super-Earths, have masses significantly greater than that of Earth. This higher mass would allow them to more retain greater amounts hydrogen within their atmosphere, reducing the redox ratio. Discharges in super-Earth atmospheres can therefore result in a significant yield of amino acids. In this talk, I will discuss new work on what lightning might look like on exoplanets, and on lightning driven chemistry on super-Earths. Using a chemical kinetics model for a super-Earth atmosphere with smaller redox ratios, I will show that in the presence of lightning, the production of the amino acid glycine is enhanced up to a certain point, but with very low redox ratios, the production of glycine is again inhibited. I will conclude

  10. Isotope Geochemistry for Comparative Planetology of Exoplanets

    Science.gov (United States)

    Mandt, K. E.; Atreya, S.; Luspay-Kuti, A.; Mousis, O.; Simon, A.; Hofstadter, M. D.

    2017-01-01

    Isotope geochemistry has played a critical role in understanding processes at work in and the history of solar system bodies. Application of these techniques to exoplanets would be revolutionary and would allow comparative planetology with the formation and evolution of exoplanet systems. The roadmap for comparative planetology of the origins and workings of exoplanets involves isotopic geochemistry efforts in three areas: (1) technology development to expand observations of the isotopic composition of solar system bodies and expand observations to isotopic composition of exoplanet atmospheres; (2) theoretical modeling of how isotopes fractionate and the role they play in evolution of exoplanetary systems, atmospheres, surfaces and interiors; and (3) laboratory studies to constrain isotopic fractionation due to processes at work throughout the solar system.

  11. THE LEECH EXOPLANET IMAGING SURVEY: CHARACTERIZATION OF THE COLDEST DIRECTLY IMAGED EXOPLANET, GJ 504 b, AND EVIDENCE FOR SUPERSTELLAR METALLICITY

    Energy Technology Data Exchange (ETDEWEB)

    Skemer, Andrew J.; Leisenring, Jarron; Bailey, Vanessa; Hinz, Philip; Defrére, Denis; Apai, Dániel; Close, Laird; Eisner, Josh [Steward Observatory, University of Arizona, 933 North Cherry Ave. Tucson, AZ 85721 (United States); Morley, Caroline V.; Fortney, Jonathan [University of California, Santa Cruz, 1156 High St. Santa Cruz, CA 95064 (United States); Zimmerman, Neil T.; Buenzli, Esther; Bonnefoy, Mickael; Biller, Beth; Brandner, Wolfgang [Max Planck Institute for Astronomy, Königstuhl 17, 69117 Heidelberg (Germany); Skrutskie, Michael F. [University of Virginia, 530 McCormick Rd., Charlottesville, VA 22904 (United States); Esposito, Simone [Istituto Nazionale di Astrofisica-Arcetri Astrophysical Observatory, Largo Enrico Fermi 5, 50125, Florence (Italy); Crepp, Justin R. [Notre Dame University, 225 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); De Rosa, Robert J. [Arizona State University, 781 South Terrace Rd, Tempe, AZ 85281 (United States); Desidera, Silvano [Istituto Nazionale di Astrofisica-Padova Astronomical Observatory, Vicolo dell’Osservatorio 5, 35122 Padova (Italy); and others

    2016-02-01

    As gas giant planets and brown dwarfs radiate away the residual heat from their formation, they cool through a spectral type transition from L to T, which encompasses the dissipation of cloud opacity and the appearance of strong methane absorption. While there are hundreds of known T-type brown dwarfs, the first generation of directly imaged exoplanets were all L type. Recently, Kuzuhara et al. announced the discovery of GJ 504 b, the first T dwarf exoplanet. GJ 504 b provides a unique opportunity to study the atmosphere of a new type of exoplanet with a ∼500 K temperature that bridges the gap between the first directly imaged planets (∼1000 K) and our own solar system's Jupiter (∼130 K). We observed GJ 504 b in three narrow L-band filters (3.71, 3.88, and 4.00 μm), spanning the red end of the broad methane fundamental absorption feature (3.3 μm) as part of the LBTI Exozodi Exoplanet Common Hunt (LEECH) exoplanet imaging survey. By comparing our new photometry and literature photometry with a grid of custom model atmospheres, we were able to fit GJ 504 b's unusual spectral energy distribution for the first time. We find that GJ 504 b is well fit by models with the following parameters: T{sub eff} = 544 ± 10 K, g < 600 m s{sup −2}, [M/H] = 0.60 ± 0.12, cloud opacity parameter of f{sub sed} = 2–5, R = 0.96 ± 0.07 R{sub Jup}, and log(L) = −6.13 ± 0.03 L{sub ⊙}, implying a hot start mass of 3–30 M{sub jup} for a conservative age range of 0.1–6.5 Gyr. Of particular interest, our model fits suggest that GJ 504 b has a superstellar metallicity. Since planet formation can create objects with nonstellar metallicities, while binary star formation cannot, this result suggests that GJ 504 b formed like a planet, not like a binary companion.

  12. Mapping the Pressure-radius Relationship of Exoplanets

    Science.gov (United States)

    Cubillos, Patricio; Fossati, Luca; Kubyshkina, Darya

    2017-10-01

    The radius of a planet is one of the most physically meaningful and readily accessible parameters of extra-solar planets. This parameter is extensively used in the literature to compare planets or study trends in the know population of exoplanets. However, in an atmosphere, the concept of a planet radius is inherently fuzzy. The atmospheric pressures probed by trasmission (transit) or emission (eclipse) spectra are not directly constrained by the observations, they vary as a function of the atmospheric properties and observing wavelengths, and further correlate with the atmospheric properties producing degenerate solutions.Here, we characterize the properties of exoplanet radii using a radiative-transfer model to compute clear- atmosphere transmission and emission spectra of gas-dominated planets. We explore a wide range of planetary temperatures, masses, and radii, sampling from 300 to 3000 K and Jupiter- to Earth-like values. We will discuss how transit and photospheric radii vary over the parameter space, and map the global trends in the atmospheric pressures associated with these radii. We will also highlight the biases introduced by the choice of an observing band, or the assumption of a clear/cloudy atmosphere, and the relevance that these biases take as better instrumentation improves the precision of photometric observations.

  13. Ground Based Support for Exoplanet Space Missions

    Science.gov (United States)

    Haukka, H.; Hentunen, V.-P.; Salmi, T.; Aartolahti, H.; Juutilainen, J.; Vilokki, H.; Nissinen, M.

    2011-10-01

    Taurus Hill Observatory (THO), observatory code A95, is an amateur observatory located in Varkaus, Finland. The observatory is maintained by the local astronomical association Warkauden Kassiopeia. THO research team has observed and measured various stellar objects and phenomena. Observatory has mainly focused to asteroid [1] and exoplanet light curve measurements, observing the gamma rays burst, supernova discoveries and monitoring [2] and long term monitoring projects [3]. In the early 2011 Europlanet NA1 and NA2 organized "Coordinated Observations of Exoplanets from Ground and Space"-workshop in Graz, Austria. The workshop gathered together proam astronomers who have the equipment to measure the light curves of the exoplanets. Also there were professional scientists working in the exoplanet field who attended to the workshop. The result of the workshop was to organize coordinated observation campaign for follow-up observations of exoplanets (e.g. CoRoT planets). Also coordinated observation campaign to observe stellar CME outbreaks was planned. THO has a lot of experience in field of exoplanet light curve measurements and therefore this campaign is very supported by the research team of the observatory. In next coming observing seasons THO will concentrate its efforts for this kind of campaigns.

  14. Atmospheric Retrievals from Exoplanet Observations and Simulations with BART

    Science.gov (United States)

    Harrington, Joseph

    This project will determine the observing plans needed to retrieve exoplanet atmospheric composition and thermal profiles over a broad range of planets, stars, instruments, and observing modes. Characterizing exoplanets is hard. The dim planets orbit bright stars, giving orders of magnitude more relative noise than for solar-system planets. Advanced statistical techniques are needed to determine what the data can - and more importantly cannot - say. We therefore developed Bayesian Atmospheric Radiative Transfer (BART). BART explores the parameter space of atmospheric chemical abundances and thermal profiles using Differential-Evolution Markov-Chain Monte Carlo. It generates thousands of candidate spectra, integrates over observational bandpasses, and compares to data, generating a statistical model for an atmosphere's composition and thermal structure. At best, it gives abundances and thermal profiles with uncertainties. At worst, it shows what kinds of planets the data allow. It also gives parameter correlations. BART is open-source, designed for community use and extension (http://github.com/exosports/BART). Three arXived PhD theses (papers in publication) provide technical documentation, tests, and application to Spitzer and HST data. There are detailed user and programmer manuals and community support forums. Exoplanet analysis techniques must be tested against synthetic data, where the answer is known, and vetted by statisticians. Unfortunately, this has rarely been done, and never sufficiently. Several recent papers question the entire body of Spitzer exoplanet observations, because different analyses of the same data give different results. The latest method, pixel-level decorrelation, produces results that diverge from an emerging consensus. We do not know the retrieval problem's strengths and weaknesses relative to low SNR, red noise, low resolution, instrument systematics, or incomplete spectral line lists. In observing eclipses and transits, we assume

  15. Tidal locking of habitable exoplanets

    Science.gov (United States)

    Barnes, Rory

    2017-12-01

    Potentially habitable planets can orbit close enough to their host star that the differential gravity across their diameters can produce an elongated shape. Frictional forces inside the planet prevent the bulges from aligning perfectly with the host star and result in torques that alter the planet's rotational angular momentum. Eventually the tidal torques fix the rotation rate at a specific frequency, a process called tidal locking. Tidally locked planets on circular orbits will rotate synchronously, but those on eccentric orbits will either librate or rotate super-synchronously. Although these features of tidal theory are well known, a systematic survey of the rotational evolution of potentially habitable exoplanets using classic equilibrium tide theories has not been undertaken. I calculate how habitable planets evolve under two commonly used models and find, for example, that one model predicts that the Earth's rotation rate would have synchronized after 4.5 Gyr if its initial rotation period was 3 days, it had no satellites, and it always maintained the modern Earth's tidal properties. Lower mass stellar hosts will induce stronger tidal effects on potentially habitable planets, and tidal locking is possible for most planets in the habitable zones of GKM dwarf stars. For fast-rotating planets, both models predict eccentricity growth and that circularization can only occur once the rotational frequency is similar to the orbital frequency. The orbits of potentially habitable planets of very late M dwarfs ([InlineEquation not available: see fulltext.]) are very likely to be circularized within 1 Gyr, and hence, those planets will be synchronous rotators. Proxima b is almost assuredly tidally locked, but its orbit may not have circularized yet, so the planet could be rotating super-synchronously today. The evolution of the isolated and potentially habitable Kepler planet candidates is computed and about half could be tidally locked. Finally, projected TESS planets

  16. BIOSIGNATURE GASES IN H2-DOMINATED ATMOSPHERES ON ROCKY EXOPLANETS

    International Nuclear Information System (INIS)

    Seager, S.; Bains, W.; Hu, R.

    2013-01-01

    Super-Earth exoplanets are being discovered with increasing frequency and some will be able to retain stable H 2 -dominated atmospheres. We study biosignature gases on exoplanets with thin H 2 atmospheres and habitable surface temperatures, using a model atmosphere with photochemistry and a biomass estimate framework for evaluating the plausibility of a range of biosignature gas candidates. We find that photochemically produced H atoms are the most abundant reactive species in H 2 atmospheres. In atmospheres with high CO 2 levels, atomic O is the major destructive species for some molecules. In Sun-Earth-like UV radiation environments, H (and in some cases O) will rapidly destroy nearly all biosignature gases of interest. The lower UV fluxes from UV-quiet M stars would produce a lower concentration of H (or O) for the same scenario, enabling some biosignature gases to accumulate. The favorability of low-UV radiation environments to accumulate detectable biosignature gases in an H 2 atmosphere is closely analogous to the case of oxidized atmospheres, where photochemically produced OH is the major destructive species. Most potential biosignature gases, such as dimethylsulfide and CH 3 Cl, are therefore more favorable in low-UV, as compared with solar-like UV, environments. A few promising biosignature gas candidates, including NH 3 and N 2 O, are favorable even in solar-like UV environments, as these gases are destroyed directly by photolysis and not by H (or O). A more subtle finding is that most gases produced by life that are fully hydrogenated forms of an element, such as CH 4 and H 2 S, are not effective signs of life in an H 2 -rich atmosphere because the dominant atmospheric chemistry will generate such gases abiologically, through photochemistry or geochemistry. Suitable biosignature gases in H 2 -rich atmospheres for super-Earth exoplanets transiting M stars could potentially be detected in transmission spectra with the James Webb Space Telescope

  17. Earth as an Exoplanet: Spectral Monitoring of an Inhabited Planet

    Science.gov (United States)

    Caldwell, D. A.; Marchis, F.; Batalha, N. M.; Cabrol, N. A.; Smith, J. C.

    2018-02-01

    We propose a spectrometer for the Deep Space Gateway to monitor Earth as an exoplanet. We will measure the variability with illumination phase, rotation, clouds, and season. Results will inform future searches for biomarkers on distant exoplanets.

  18. Exoplanet Caught on the Move

    Science.gov (United States)

    2010-06-01

    For the first time, astronomers have been able to directly follow the motion of an exoplanet as it moves from one side of its host star to the other. The planet has the smallest orbit so far of all directly imaged exoplanets, lying almost as close to its parent star as Saturn is to the Sun. Scientists believe that it may have formed in a similar way to the giant planets in the Solar System. Because the star is so young, this discovery proves that gas giant planets can form within discs in only a few million years, a short time in cosmic terms. Only 12 million years old, or less than three-thousandths of the age of the Sun, Beta Pictoris is 75% more massive than our parent star. It is located about 60 light-years away towards the constellation of Pictor (the Painter) and is one of the best-known examples of a star surrounded by a dusty debris disc [1]. Earlier observations showed a warp of the disc, a secondary inclined disc and comets falling onto the star. "Those were indirect, but tell-tale signs that strongly suggested the presence of a massive planet, and our new observations now definitively prove this," says team leader Anne-Marie Lagrange. "Because the star is so young, our results prove that giant planets can form in discs in time-spans as short as a few million years." Recent observations have shown that discs around young stars disperse within a few million years, and that giant planet formation must occur faster than previously thought. Beta Pictoris is now clear proof that this is indeed possible. The team used the NAOS-CONICA instrument (or NACO [2]), mounted on one of the 8.2-metre Unit Telescopes of ESO's Very Large Telescope (VLT), to study the immediate surroundings of Beta Pictoris in 2003, 2008 and 2009. In 2003 a faint source inside the disc was seen (eso0842), but it was not possible to exclude the remote possibility that it was a background star. In new images taken in 2008 and spring 2009 the source had disappeared! The most recent

  19. TRANSIT

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. TRANSIT. SYSTEM: DETERMINE 2D-POSITION GLOBALLY BUT INTERMITTENT (POST-FACTO). IMPROVED ACCURACY. PRINCIPLE: POLAR SATELLITES WITH INNOVATIONS OF: GRAVITY-GRADIENT ATTITUDE CONTROL; DRAG COMPENSATION. WORKS ...

  20. Exoplanet properties from Lick, Keck and AAT

    International Nuclear Information System (INIS)

    Marcy, G W; Wright, J T; Upadhyay, S; Butler, R P; Vogt, S S; Fischer, D A; Johnson, J A; Tinney, C G; Jones, H R A; Carter, B D; Bailey, J; O'Toole, S J

    2008-01-01

    Doppler-shift measurements with a remarkable precision of Δλ/λ=3x10 -9 , corresponding to velocities of 1 m s -1 , have been made repeatedly of 2500 stars located within 300 light years. The observed gravitational perturbations of the stars have revealed 250 orbiting planets, with 27 that cross in front of the host star, blocking a fraction of the starlight to allow measurement of the planet's mass, radius and density. Two new discoveries are the first good analog of Jupiter (HD 154345b) and the first system of five planets (55 Cancri). The predominantly eccentric orbits of exoplanets probably result from planet-planet gravitational interactions or angular momentum exchange by mean-motion resonances. The planet mass distribution ranges from ∼15 M JUP to as low as ∼5 M Earth and rises toward lower masses as dN/dM∼M -1.1 . The distribution with orbital distance, a, rises (in logarithmic intervals) as dN/d log a∼a +0.4 . Extrapolation and integration suggests that 19% of all Sun-like stars harbor a gas-giant planet within 20 AU, but there remains considerable incompleteness for large orbits. Beyond 20 AU, the occurrence of gas-giant planets may be less than a few per cent as protoplanetary disk material there has lower densities and is vulnerable to destruction. Jupiter-mass planets occur more commonly around more massive stars than low mass stars. The transit of the Neptune-mass planet, Gliese 436b, yields a density of 1.55 g cm -3 suggesting that its interior has an iron-silicate core surrounded by an envelope of water-ice and an outer H-He shell. Planets with masses as low as five Earth-masses may be commonly composed of iron-nickel, rock and water along with significant amounts of H and He, making the term 'super-Earth' misleading. The transiting planet HD147506b has high orbital eccentricity but no significant orbital inclination to the line of sight, presenting a puzzle about its history. Its orbit together with the mean motion resonances of 4 of the

  1. The EXoplanet Infrared Climate TElescope (EXCITE)

    Science.gov (United States)

    Pascale, E.; Butler, N.; Kilpatrick, B.; Korotkov, A.; Lewis, N.; Mauskopf, P.; Maxted, P.; Miko, L.; Nagler, P.; Netterfield, C. B.; Parmentier, V.; Patience, J.; Sarkar, S.; Scowen, P.; Tucker, G.; Waldmann, I.; Wen, Y.

    2017-09-01

    The EXoplanet Infrared Climate TElescope (EXCITE) is a proposed low resolution 1-4 micron spectrograph that will measure emission spectra of hot Jupiters over their full orbits, providing phase resolved spectroscopy. These spectral measurements probe varying depths in exoplanets atmospheres thus contributing to our understanding into atmospheric physics, chemistry and circulation. Hot Jupiters provide an ideal laboratory for understanding atmospheric dynamics. EXCITE uses a commercially available 0.5 m diameter telescope pointed with high accuracy and stability using the successful Balloon Imaging Testbed (BIT) pointing platform. The telescope is coupled to a cooled spectrometer made from commercially available components. The combination of these elements results in a unique instrument for exoplanet atmospheric characterization. EXCITE's initial science will result from an antarctic long duration balloon flight

  2. The PANOPTES project: discovering exoplanets with low-cost digital cameras

    Science.gov (United States)

    Guyon, Olivier; Walawender, Josh; Jovanovic, Nemanja; Butterfield, Mike; Gee, Wilfred T.; Mery, Rawad

    2014-07-01

    The Panoptic Astronomical Networked OPtical observatory for Transiting Exoplanets Survey (PANOPTES, www.projectpanoptes.org) project is aimed at identifying transiting exoplanets using a wide network of low-cost imaging units. Each unit consists of two commercial digital single lens reflex (DSLR) cameras equipped with 85mm F1.4 lenses, mounted on a small equatorial mount. At a few $1000s per unit, the system offers a uniquely advantageous survey eficiency for the cost, and can easily be assembled by amateur astronomers or students. Three generations of prototype units have so far been tested, and the baseline unit design, which optimizes robustness, simplicity and cost, is now ready to be duplicated. We describe the hardware and software for the PANOPTES project, focusing on key challenging aspects of the project. We show that obtaining high precision photometric measurements with commercial DSLR color cameras is possible, using a PSF-matching algorithm we developed for this project. On-sky tests show that percent-level photometric precision is achieved in 1 min with a single camera. We also discuss hardware choices aimed at optimizing system robustness while maintaining adequate cost. PANOPTES is both an outreach project and a scientifically compelling survey for transiting exoplanets. In its current phase, experienced PANOPTES members are deploying a limited number of units, acquiring the experience necessary to run the network. A much wider community will then be able to participate to the project, with schools and citizen scientists integrating their units in the network.

  3. Prospects for Detecting Thermal Emission from Terrestrial Exoplanets with JWST

    Science.gov (United States)

    Kreidberg, Laura

    2018-01-01

    A plethora of nearby, terrestrial exoplanets has been discovered recently by ground-based surveys. Excitingly, some of these are in the habitable zones of their host stars, and may be hospitable for life. However, all the planets orbit small, cool stars and have considerably different irradiation environments from the Earth, making them vulnerable to atmospheric escape, erosion and collapse. Atmosphere characterization is therefore critical to assessing the planets' habitability. I will discuss possible JWST thermal emission measurements to determine the atmospheric properties of nearby terrestrial planets. I will focus on prospects for detecting physically motivated atmospheres for planets orbiting LHS 1140, GJ 1132, and TRAPPIST-1. I will also discuss the potential for using phase curve observations to determine whether an atmosphere has survived on the non-transiting planet Proxima b.

  4. Dynamical measurements of the interior structure of exoplanets

    International Nuclear Information System (INIS)

    Becker, Juliette C.; Batygin, Konstantin

    2013-01-01

    Giant gaseous planets often reside on orbits in sufficient proximity to their host stars for the planetary quadrupole gravitational field to become non-negligible. In presence of an additional planetary companion, a precise characterization of the system's orbital state can yield meaningful constraints on the transiting planet's interior structure. However, such methods can require a very specific type of system. This paper explores the dynamic range of applicability of these methods and shows that interior structure calculations are possible for a wide array of orbital architectures. The HAT-P-13 system is used as a case study, and the implications of perturbations arising from a third distant companion on the feasibility of an interior calculation are discussed. We find that the method discussed here is likely to be useful in studying other planetary systems, allowing the possibility of an expanded survey of the interiors of exoplanets.

  5. LkCa 15: A YOUNG EXOPLANET CAUGHT AT FORMATION?

    International Nuclear Information System (INIS)

    Kraus, Adam L.; Ireland, Michael J.

    2012-01-01

    Young and directly imaged exoplanets offer critical tests of planet-formation models that are not matched by radial velocity surveys of mature stars. These targets have been extremely elusive to date, with no exoplanets younger than 10-20 Myr and only a handful of direct-imaged exoplanets at all ages. We report the direct-imaging discovery of a likely (proto)planet around the young (∼2 Myr) solar analog LkCa 15, located inside a known gap in the protoplanetary disk (a 'transitional disk'). Our observations use non-redundant aperture masking interferometry at three epochs to reveal a faint and relatively blue point source (M K ' =9.1±0.2, K' – L' = 0.98 ± 0.22), flanked by approximately co-orbital emission that is red and resolved into at least two sources (M L ' =7.5±0.2, K' – L' = 2.7 ± 0.3; M L ' =7.4±0.2, K' – L' = 1.94 ± 0.16). We propose that the most likely geometry consists of a newly formed (proto)planet that is surrounded by dusty material. The nominal estimated mass is ∼6 M Jup according to the 1 Myr hot-start models. However, we argue based on its luminosity, color, and the presence of circumplanetary material that the planet has likely been caught at its epoch of assembly, and hence this mass is an upper limit due to its extreme youth and flux contributed by accretion. The projected separations (71.9 ± 1.6 mas, 100.7 ± 1.9 mas, and 88.2 ± 1.8 mas) and deprojected orbital radii (16, 21, and 19 AU) correspond to the center of the disk gap, but are too close to the primary star for a circular orbit to account for the observed inner edge of the outer disk, so an alternative explanation (i.e., additional planets or an eccentric orbit) is likely required. This discovery is the first direct evidence that at least some transitional disks do indeed host newly formed (or forming) exoplanetary systems, and the observed properties provide crucial insight into the gas giant formation process.

  6. Deformable Mirrors Capture Exoplanet Data, Reflect Lasers

    Science.gov (United States)

    2014-01-01

    To image and characterize exoplanets, Goddard Space Flight Center turned to deformable mirrors (DMs). Berkeley, California-based Iris AO, Inc. worked with Goddard through the SBIR program to improve the company’s microelectromechanical DMs, which are now being evaluated and used for biological research, industrial applications, and could even be used by drug manufacturers.

  7. Exoplanet environments to harbour extremophile life

    Science.gov (United States)

    Janot-Pacheco, Eduardo; Lage, Claudia A. S.; Lima, Ivan G. P.

    2010-02-01

    In this contribution, we estimate the temperature at the surface of known exoplanets and of their putative satellites for two albedo extreme cases (Venus and Mars) and present a selection of extremophiles living on Earth that can live under those conditions. We examine also the possibility of survival of microorganisms in planetary systems of variable stars.

  8. Protoplanetary disks and exoplanets in scattered light

    NARCIS (Netherlands)

    Stolker, T.

    2017-01-01

    High-contrast imaging facilitates the direct detection of protoplanetary disks in scattered light and self-luminous exoplanets on long-period orbits. The combined power of extreme adaptive optics and differential imaging techniques delivers high spatial resolution images of disk morphologies down to

  9. A sub-Mercury-sized exoplanet

    NARCIS (Netherlands)

    Barclay, T.; et al., [Unknown; Hekker, S.

    2013-01-01

    Since the discovery of the first exoplanets1, 2, it has been known that other planetary systems can look quite unlike our own3. Until fairly recently, we have been able to probe only the upper range of the planet size distribution4, 5, and, since last year, to detect planets that are the size of

  10. Prospects for Ground-Based Detection and Follow-up of TESS-Discovered Exoplanets

    Science.gov (United States)

    Varakian, Matthew; Deming, Drake

    2018-01-01

    The Transiting Exoplanet Survey Satellite (TESS) will monitor over 200,000 main sequence dwarf stars for exoplanetary transits, with the goal of discovering small planets orbiting stars that are bright enough for follow-up observations. We here evaluate the prospects for ground-based transit detection and follow-up of the TESS-discovered planets. We focus particularly on the TESS planets that only transit once during each 27.4 day TESS observing window per region, and we calculate to what extent ground-based recovery of additional transits will be possible. Using simulated exoplanet systems from Sullivan et al. and assuming the use of a 60-cm telescope at a high quality observing site, we project the S/N ratios for transits of such planets. We use Phoenix stellar models for stars with surface temperatures from 2500K to 12000K, and we account for limb darkening, red atmospheric noise, and missed transits due to the day-night cycle and poor weather.

  11. De-Trending K2 Exoplanet Targets for High Spacecraft Motion

    Science.gov (United States)

    Saunders, Nicholas; Luger, Rodrigo; Barnes, Rory

    2018-01-01

    After the failure of two reaction wheels, the Kepler space telescope lost its fine pointing ability and entered a new phase of observation, K2. Targets observed by K2 have high motion relative to the detector and K2 light curves have higher noise than Kepler observations. Despite the increased noise, systematics removal pipelines such as K2SFF and EVEREST have enabled continued high-precision transiting planet science with the telescope, resulting in the detection of hundreds of new exoplanets. However, as the spacecraft begins to run out of fuel, sputtering will drive large and random variations in pointing that can prevent detection of exoplanets during the remaining 5 campaigns. In general, higher motion will spread the stellar point spread function (PSF) across more pixels during a campaign, which increases the number of degrees of freedom in the noise component and significantly reduces the de-trending power of traditional systematics removal methods. We use a model of the Kepler CCD combined with pixel-level information of a large number of stars across the detector to improve the performance of the EVEREST pipeline at high motion. We also consider the problem of increased crowding for static apertures in the high-motion regime and develop pixel response function (PRF)-fitting techniques to mitigate contamination and maximize the de-trending power. We assess the performance of our code by simulating sputtering events and assessing exoplanet detection efficiency with transit injection/recovery tests. We find that targets with roll amplitudes of up to 8 pixels, approximately 15 times K2 roll, can be de-trended within 2 to 3 factors of current K2 photometric precision for stars up to 14th magnitude. Achieved recovery precision allows detection of small planets around 11th and 12th magnitude stars. These methods can be applied to the light curves of K2 targets for existing and future campaigns to ensure that precision exoplanet science can still be performed

  12. PLANET HUNTERS. VIII. CHARACTERIZATION OF 41 LONG-PERIOD EXOPLANET CANDIDATES FROM KEPLER ARCHIVAL DATA

    International Nuclear Information System (INIS)

    Wang, Ji; Fischer, Debra A.; Picard, Alyssa; Schmitt, Joseph R.; Boyajian, Tabetha S.; Barclay, Thomas; Ma, Bo; Bowler, Brendan P.; Riddle, Reed; Jek, Kian J.; LaCourse, Daryll; Simister, Dean Joseph; Grégoire, Boscher; Babin, Sean P.; Poile, Trevor; Jacobs, Thomas Lee; Baranec, Christoph; Law, Nicholas M.; Lintott, Chris; Schawinski, Kevin

    2015-01-01

    The census of exoplanets is incomplete for orbital distances larger than 1 AU. Here, we present 41 long-period planet candidates in 38 systems identified by Planet Hunters based on Kepler archival data (Q0–Q17). Among them, 17 exhibit only one transit, 14 have two visible transits, and 10 have more than three visible transits. For planet candidates with only one visible transit, we estimate their orbital periods based on transit duration and host star properties. The majority of the planet candidates in this work (75%) have orbital periods that correspond to distances of 1–3 AU from their host stars. We conduct follow-up imaging and spectroscopic observations to validate and characterize planet host stars. In total, we obtain adaptive optics images for 33 stars to search for possible blending sources. Six stars have stellar companions within 4″. We obtain high-resolution spectra for 6 stars to determine their physical properties. Stellar properties for other stars are obtained from the NASA Exoplanet Archive and the Kepler Stellar Catalog by Huber et al. We validate 7 planet candidates that have planet confidence over 0.997 (3σ level). These validated planets include 3 single-transit planets (KIC-3558849b, KIC-5951458b, and KIC-8540376c), 3 planets with double transits (KIC-8540376b, KIC-9663113b, and KIC-10525077b), and 1 planet with four transits (KIC-5437945b). This work provides assessment regarding the existence of planets at wide separations and the associated false positive rate for transiting observation (17%–33%). More than half of the long-period planets with at least three transits in this paper exhibit transit timing variations up to 41 hr, which suggest additional components that dynamically interact with the transiting planet candidates. The nature of these components can be determined by follow-up radial velocity and transit observations

  13. PLANET HUNTERS. VIII. CHARACTERIZATION OF 41 LONG-PERIOD EXOPLANET CANDIDATES FROM KEPLER ARCHIVAL DATA

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ji; Fischer, Debra A.; Picard, Alyssa; Schmitt, Joseph R.; Boyajian, Tabetha S. [Department of Astronomy, Yale University, New Haven, CT 06511 (United States); Barclay, Thomas [NASA Ames Research Center, M/S 244-30, Moffett Field, CA 94035 (United States); Ma, Bo [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL 32611-2055 (United States); Bowler, Brendan P.; Riddle, Reed [California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91101 (United States); Jek, Kian J.; LaCourse, Daryll; Simister, Dean Joseph; Grégoire, Boscher; Babin, Sean P.; Poile, Trevor; Jacobs, Thomas Lee; Baranec, Christoph [Institute for Astronomy, University of Hawai‘i at Mānoa, Hilo, HI 96720-2700 (United States); Law, Nicholas M. [Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3255 (United States); Lintott, Chris [Oxford Astrophysics, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Schawinski, Kevin [Institute for Astronomy, Department of Physics, ETH Zurich, Wolfgang-Pauli-Strasse 27, CH-8093 Zurich (Switzerland); and others

    2015-12-20

    The census of exoplanets is incomplete for orbital distances larger than 1 AU. Here, we present 41 long-period planet candidates in 38 systems identified by Planet Hunters based on Kepler archival data (Q0–Q17). Among them, 17 exhibit only one transit, 14 have two visible transits, and 10 have more than three visible transits. For planet candidates with only one visible transit, we estimate their orbital periods based on transit duration and host star properties. The majority of the planet candidates in this work (75%) have orbital periods that correspond to distances of 1–3 AU from their host stars. We conduct follow-up imaging and spectroscopic observations to validate and characterize planet host stars. In total, we obtain adaptive optics images for 33 stars to search for possible blending sources. Six stars have stellar companions within 4″. We obtain high-resolution spectra for 6 stars to determine their physical properties. Stellar properties for other stars are obtained from the NASA Exoplanet Archive and the Kepler Stellar Catalog by Huber et al. We validate 7 planet candidates that have planet confidence over 0.997 (3σ level). These validated planets include 3 single-transit planets (KIC-3558849b, KIC-5951458b, and KIC-8540376c), 3 planets with double transits (KIC-8540376b, KIC-9663113b, and KIC-10525077b), and 1 planet with four transits (KIC-5437945b). This work provides assessment regarding the existence of planets at wide separations and the associated false positive rate for transiting observation (17%–33%). More than half of the long-period planets with at least three transits in this paper exhibit transit timing variations up to 41 hr, which suggest additional components that dynamically interact with the transiting planet candidates. The nature of these components can be determined by follow-up radial velocity and transit observations.

  14. HELIUM ATMOSPHERES ON WARM NEPTUNE- AND SUB-NEPTUNE-SIZED EXOPLANETS AND APPLICATIONS TO GJ 436b

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Renyu; Yung, Yuk L. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Seager, Sara, E-mail: renyu.hu@jpl.nasa.gov [Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2015-07-01

    Warm Neptune- and sub-Neptune-sized exoplanets in orbits smaller than Mercury’s are thought to have experienced extensive atmospheric evolution. Here we propose that a potential outcome of this atmospheric evolution is the formation of helium-dominated atmospheres. The hydrodynamic escape rates of Neptune- and sub-Neptune-sized exoplanets are comparable to the diffusion-limited escape rate of hydrogen, and therefore the escape is heavily affected by diffusive separation between hydrogen and helium. A helium atmosphere can thus be formed—from a primordial hydrogen–helium atmosphere—via atmospheric hydrodynamic escape from the planet. The helium atmosphere has very different abundances of major carbon and oxygen species from those of a hydrogen atmosphere, leading to distinctive transmission and thermal emission spectral features. In particular, the hypothesis of a helium-dominated atmosphere can explain the thermal emission spectrum of GJ 436b, a warm Neptune-sized exoplanet, while also being consistent with the transmission spectrum. This model atmosphere contains trace amounts of hydrogen, carbon, and oxygen, with the predominance of CO over CH{sub 4} as the main form of carbon. With our atmospheric evolution model, we find that if the mass of the initial atmosphere envelope is 10{sup −3} planetary mass, hydrodynamic escape can reduce the hydrogen abundance in the atmosphere by several orders of magnitude in ∼10 billion years. Observations of exoplanet transits may thus detect signatures of helium atmospheres and probe the evolutionary history of small exoplanets.

  15. HELIUM ATMOSPHERES ON WARM NEPTUNE- AND SUB-NEPTUNE-SIZED EXOPLANETS AND APPLICATIONS TO GJ 436b

    International Nuclear Information System (INIS)

    Hu, Renyu; Yung, Yuk L.; Seager, Sara

    2015-01-01

    Warm Neptune- and sub-Neptune-sized exoplanets in orbits smaller than Mercury’s are thought to have experienced extensive atmospheric evolution. Here we propose that a potential outcome of this atmospheric evolution is the formation of helium-dominated atmospheres. The hydrodynamic escape rates of Neptune- and sub-Neptune-sized exoplanets are comparable to the diffusion-limited escape rate of hydrogen, and therefore the escape is heavily affected by diffusive separation between hydrogen and helium. A helium atmosphere can thus be formed—from a primordial hydrogen–helium atmosphere—via atmospheric hydrodynamic escape from the planet. The helium atmosphere has very different abundances of major carbon and oxygen species from those of a hydrogen atmosphere, leading to distinctive transmission and thermal emission spectral features. In particular, the hypothesis of a helium-dominated atmosphere can explain the thermal emission spectrum of GJ 436b, a warm Neptune-sized exoplanet, while also being consistent with the transmission spectrum. This model atmosphere contains trace amounts of hydrogen, carbon, and oxygen, with the predominance of CO over CH 4 as the main form of carbon. With our atmospheric evolution model, we find that if the mass of the initial atmosphere envelope is 10 −3 planetary mass, hydrodynamic escape can reduce the hydrogen abundance in the atmosphere by several orders of magnitude in ∼10 billion years. Observations of exoplanet transits may thus detect signatures of helium atmospheres and probe the evolutionary history of small exoplanets

  16. A Model for Astrometric Detection and Characterization of Multi-Exoplanet Systems

    Science.gov (United States)

    April Thompson, Maggie; Spergel, David N.

    2017-01-01

    In this thesis, we develop an approximate linear model of stellar motion in multi- planet systems as an aid to observers using the astrometric method to detect and characterize exoplanets. Recent and near-term advances in satellite and ground-based instruments are on the threshold of achieving sufficient (~10 micro-arcsecond) angular accuracies to allow astronomers to measure and analyze the transverse mo- tion of stars about the common barycenter in single- and multi-planet systems due to the gravitational influence of companion planets. Given the emerging statistics of extrasolar planetary systems and the long observation periods required to assess exoplanet influences, astronomers should find an approximate technique for preliminary estimates of multiple planet numbers, masses and orbital parameters useful in determining the most likely stellar systems for follow-up studies. In this paper, we briefly review the history of astrometry and discuss its advantages and limitations in exoplanet research. In addition, we define the principal astrometric signature and describe the main variables affecting it, highlighting astrometry’s complementary role to radial velocity and photometric transit exoplanet detection techniques. We develop and test a Python computer code using actual data and projections of the Sun’s motion due to the influence of the four gas giants in the solar system. We then apply this model to over 50 hypothetical massive two- and three-exoplanet systems to discover useful general patterns by employing a heuristic examination of key aspects of the host star’s motion over long observation intervals. Finally, we modify the code by incorporating an inverse least-squares fit program to assess its efficiency in identifying the main characteristics of multi-planet systems based on observational records over 5-, 10- and 20-year periods for a variety of actual and hypothetical exoplanetary systems. We also explore the method’s sensitivity to

  17. A Self-consistent Cloud Model for Brown Dwarfs and Young Giant Exoplanets: Comparison with Photometric and Spectroscopic Observations

    Science.gov (United States)

    Charnay, B.; Bézard, B.; Baudino, J.-L.; Bonnefoy, M.; Boccaletti, A.; Galicher, R.

    2018-02-01

    We developed a simple, physical, and self-consistent cloud model for brown dwarfs and young giant exoplanets. We compared different parametrizations for the cloud particle size, by fixing either particle radii or the mixing efficiency (parameter f sed), or by estimating particle radii from simple microphysics. The cloud scheme with simple microphysics appears to be the best parametrization by successfully reproducing the observed photometry and spectra of brown dwarfs and young giant exoplanets. In particular, it reproduces the L–T transition, due to the condensation of silicate and iron clouds below the visible/near-IR photosphere. It also reproduces the reddening observed for low-gravity objects, due to an increase of cloud optical depth for low gravity. In addition, we found that the cloud greenhouse effect shifts chemical equilibrium, increasing the abundances of species stable at high temperature. This effect should significantly contribute to the strong variation of methane abundance at the L–T transition and to the methane depletion observed on young exoplanets. Finally, we predict the existence of a continuum of brown dwarfs and exoplanets for absolute J magnitude = 15–18 and J-K color = 0–3, due to the evolution of the L–T transition with gravity. This self-consistent model therefore provides a general framework to understand the effects of clouds and appears well-suited for atmospheric retrievals.

  18. A giant comet-like cloud of hydrogen escaping the warm Neptune-mass exoplanet GJ 436b.

    Science.gov (United States)

    Ehrenreich, David; Bourrier, Vincent; Wheatley, Peter J; des Etangs, Alain Lecavelier; Hébrard, Guillaume; Udry, Stéphane; Bonfils, Xavier; Delfosse, Xavier; Désert, Jean-Michel; Sing, David K; Vidal-Madjar, Alfred

    2015-06-25

    Exoplanets orbiting close to their parent stars may lose some fraction of their atmospheres because of the extreme irradiation. Atmospheric mass loss primarily affects low-mass exoplanets, leading to the suggestion that hot rocky planets might have begun as Neptune-like, but subsequently lost all of their atmospheres; however, no confident measurements have hitherto been available. The signature of this loss could be observed in the ultraviolet spectrum, when the planet and its escaping atmosphere transit the star, giving rise to deeper and longer transit signatures than in the optical spectrum. Here we report that in the ultraviolet the Neptune-mass exoplanet GJ 436b (also known as Gliese 436b) has transit depths of 56.3 ± 3.5% (1σ), far beyond the 0.69% optical transit depth. The ultraviolet transits repeatedly start about two hours before, and end more than three hours after the approximately one hour optical transit, which is substantially different from one previous claim (based on an inaccurate ephemeris). We infer from this that the planet is surrounded and trailed by a large exospheric cloud composed mainly of hydrogen atoms. We estimate a mass-loss rate in the range of about 10(8)-10(9) grams per second, which is far too small to deplete the atmosphere of a Neptune-like planet in the lifetime of the parent star, but would have been much greater in the past.

  19. What can land water availability tell us about exoplanet habitability?

    Science.gov (United States)

    Way, M.; Del Genio, A. D.; Kiang, N. Y.; Aleinov, I. D.; Puma, M. J.; Cook, B. I.; Kelley, M.; Clune, T.

    2016-12-01

    Exoplanet habitability has been explored for a wide range of parameters, including stellar temperature, planet size/mass and distance from its star, atmospheric pressure and composition, land-ocean distribution, and rotation rate. Most of these studies have concentrated on the habitable zone and thus whether surface liquid water might be possible. Eventually, transit transmission spectra may reveal the existence of water vapor, and direct imaging may even infer the presence of a surface ocean and continents, for a subset of observed exoplanets. The focus will then shift to the detection of possible biosignatures that imply the presence of life. Given the challenges in detecting biosignatures, it is natural to ask which planetary properties are conducive to habitable conditions over the broadest region of a planet's surface and thus might produce the strongest biosignatures. Terrestrial biogeochemical models and satellite observations confirm that the availability of surface water is the strongest control on continental biomass. Water availability is often measured by an aridity index that captures the competition between the atmosphere's water supply to the surface (from precipitation) and its demand of water from the surface (from potential evapotranspiration). The aridity index depends only on the atmospheric general circulation and associated hydrological cycle, but it is well correlated with the extent of the subsurface water reservoir and thus the presence of lush vegetation, wetlands, etc. that are associated with the production of biosignatures. We have conducted a suite of simulations of hypothetical exoplanets with the NASA GISS ROCKE-3D coupled ocean-atmosphere planetary general circulation model to illustrate the perspective provided by the aridity index. For planets with zero obliquity but otherwise generally Earth-like parameter settings, we vary the rotation period and stellar flux incident on the planet to explore how changes in general circulation

  20. A TEMPERATURE AND ABUNDANCE RETRIEVAL METHOD FOR EXOPLANET ATMOSPHERES

    International Nuclear Information System (INIS)

    Madhusudhan, N.; Seager, S.

    2009-01-01

    We present a new method to retrieve molecular abundances and temperature profiles from exoplanet atmosphere photometry and spectroscopy. We run millions of one-dimensional (1D) atmosphere models in order to cover the large range of allowed parameter space. In order to run such a large number of models, we have developed a parametric pressure-temperature (P-T) profile coupled with line-by-line radiative transfer, hydrostatic equilibrium, and energy balance, along with prescriptions for non-equilibrium molecular composition and energy redistribution. The major difference from traditional 1D radiative transfer models is the parametric P-T profile, which essentially means adopting energy balance only at the top of the atmosphere and not in each layer. We see the parametric P-T model as a parallel approach to the traditional exoplanet atmosphere models that rely on several free parameters to encompass unknown absorbers and energy redistribution. The parametric P-T profile captures the basic physical features of temperature structures in planetary atmospheres (including temperature inversions), and fits a wide range of published P-T profiles, including those of solar system planets. We apply our temperature and abundance retrieval method to the atmospheres of two transiting exoplanets, HD 189733b and HD 209458b, which have the best Spitzer and Hubble Space Telescope data available. For HD 189733b, we find efficient day-night redistribution of energy in the atmosphere, and molecular abundance constraints confirming the presence of H 2 O, CO, CH 4 , and CO 2 . For HD 209458b, we confirm and constrain the dayside thermal inversion in an average 1D temperature profile. We also report independent detections of H 2 O, CO, CH 4 , and CO 2 on the dayside of HD 209458b, based on six-channel Spitzer photometry. We report constraints for HD 189733b due to individual data sets separately; a few key observations are variable in different data sets at similar wavelengths. Moreover, a

  1. Combining Photometry from Kepler and TESS to Improve Short-Period Exoplanet Characterization

    Science.gov (United States)

    Placek, Ben; Knuth, Kevin H.; Angerhausen, Daniel

    2016-01-01

    Planets emit thermal radiation and reflect incident light that they receive from their host stars. As a planet orbits its host star the photometric variations associated with these two effects produce very similar phase curves. If observed through only a single bandpass, this leads to a degeneracy between certain planetary parameters that hinder the precise characterization of such planets. However, observing the same planet through two different bandpasses gives much more information about the planet. Here we develop a Bayesian methodology for combining photometry from both Kepler and the Transiting Exoplanet Survey Satellite. In addition, we demonstrate via simulations that one can disentangle the reflected and thermally emitted light from the atmosphere of a hot-Jupiter as well as more precisely constrain both the geometric albedo and day-side temperature of the planet. This methodology can further be employed using various combinations of photometry from the James Webb Space Telescope, the Characterizing ExOplanet Satellite, or the PLATO mission.

  2. The Radiation Environment of Exoplanet Atmospheres

    Directory of Open Access Journals (Sweden)

    Jeffrey L. Linsky

    2014-10-01

    Full Text Available Exoplanets are born and evolve in the radiation and particle environment created by their host star. The host star’s optical and infrared radiation heats the exoplanet’s lower atmosphere and surface, while the ultraviolet, extreme ultraviolet and X-radiation control the photochemistry and mass loss from the exoplanet’s upper atmosphere. Stellar radiation, especially at the shorter wavelengths, changes dramatically as a host star evolves leading to changes in the planet’s atmosphere and habitability. This paper reviews the present state of our knowledge concerning the time-dependent radiation emitted by stars with convective zones, that is stars with spectral types F, G, K, and M, which comprise nearly all of the host stars of detected exoplanets.

  3. Extremophile life-form survey on rocky exoplanets

    OpenAIRE

    Jagadeesh, Madhu Kashyap

    2018-01-01

    Search for different life-forms elsewhere is the fascinating area of research in astrophysics and astrobiology. Nearly 3500 exoplanets are discovered according to NASA exoplanet archive database. Earth Similarity Index (ESI) is defined as the geometrical mean of radius, density, escape velocity and surface temperature, ranging from 0 (dissimilar to Earth) to 1(Earth). In this research, rocky exoplanets that are suitable for rock dependent extremophiles, such as: Chroococcidiopsis and Acarospo...

  4. SIOUX project: a simultaneous multiband camera for exoplanet atmospheres studies

    Science.gov (United States)

    Christille, Jean Marc; Bonomo, Aldo Stefano; Borsa, Francesco; Busonero, Deborah; Calcidese, Paolo; Claudi, Riccardo; Damasso, Mario; Giacobbe, Paolo; Molinari, Emilio; Pace, Emanuele; Riva, Alberto; Sozzetti, Alesandro; Toso, Giorgio; Tresoldi, Daniela

    2016-08-01

    The exoplanet revolution is well underway. The last decade has seen order-of-magnitude increases in the number of known planets beyond the Solar system. Detailed characterization of exoplanetary atmospheres provide the best means for distinguishing the makeup of their outer layers, and the only hope for understanding the interplay between initial composition chemistry, temperature-pressure atmospheric profiles, dynamics and circulation. While pioneering work on the observational side has produced the first important detections of atmospheric molecules for the class of transiting exoplanets, important limitations are still present due to the lack of systematic, repeated measurements with optimized instrumentation at both visible (VIS) and near-infrared (NIR) wavelengths. It is thus of fundamental importance to explore quantitatively possible avenues for improvements. In this paper we report initial results of a feasibility study for the prototype of a versatile multi-band imaging system for very high-precision differential photometry that exploits the choice of specifically selected narrow-band filters and novel ideas for the execution of simultaneous VIS and NIR measurements. Starting from the fundamental system requirements driven by the science case at hand, we describe a set of three opto-mechanical solutions for the instrument prototype: 1) a radial distribution of the optical flux using dichroic filters for the wavelength separation and narrow-band filters or liquid crystal filters for the observations; 2) a tree distribution of the optical flux (implying 2 separate foci), with the same technique used for the beam separation and filtering; 3) an 'exotic' solution consisting of the study of a complete optical system (i.e. a brand new telescope) that exploits the chromatic errors of a reflecting surface for directing the different wavelengths at different foci. In this paper we present the first results of the study phase for the three solutions, as well as the

  5. Exoplanet and brown dwarf atmosphere characterization with NIRISS SOSS

    Science.gov (United States)

    Lafreniere, David; JWST NIRISS GTO Team

    2017-06-01

    The SOSS mode of NIRISS offers a unique combination of wide wavelength coverage (0.6-2.8 μm), medium resolving power (R=500-2000), and slit-less operation that makes it powerful for time series observations aimed at characterizing the atmosphere of exoplanets and brown dwarfs. In this talk I will present the NIRISS GTO team plan to obtain NIRISS SOSS transit and eclipse observations of a sample of 14 exoplanets that span the full available range of equilibrium temperatures (300-3000 K) and masses (1 MEarth - 10 MJup) for planets amenable to atmospheric characterization. Our observations will measure the abundance of the molecules and aerosols present in the exoplanets’ atmosphere and determine the vertical temperature structure of the hottest targets. These results will allow us to address fundamental issues such as the formation process and formation location of these close-in planets, the presence and characteristics of particulate clouds, and non-equilibrium chemistry effects that might be at play in their atmosphere. Four of our targets are rocky and for these we intend to place some of the first constraints on the mean molecular weight, and hence bulk composition, of their atmospheres. For one target, we will acquire observations continuously throughout a full orbital period to constrain its temperature-pressure profile as a function of longitude and study how heat is absorbed and redistributed in its atmosphere. Finally, we will also observe a variable early-T dwarf continuously for a complete rotation period, to study the vertical extent of its dust clouds and the upwelling processes happening in its atmosphere. I will present how we developed our plan, highlighting some important considerations specific to SOSS observations, as well as some tools that are publicly available to help potential users plan their own SOSS observations.

  6. ON THE ORBIT OF EXOPLANET WASP-12b

    International Nuclear Information System (INIS)

    Campo, Christopher J.; Harrington, Joseph; Hardy, Ryan A.; Stevenson, Kevin B.; Nymeyer, Sarah; Lust, Nate B.; Blecic, Jasmina; Britt, Christopher B. T.; Bowman, William C.; Ragozzine, Darin; Anderson, David R.; Hellier, Coel; Maxted, Pierre F. L.; Collier-Cameron, Andrew; Wheatley, Peter J.; Loredo, Thomas J.; Deming, Drake; Hebb, Leslie; Pollaco, Don; West, Richard G.

    2011-01-01

    We observed two secondary eclipses of the exoplanet WASP-12b using the Infrared Array Camera on the Spitzer Space Telescope. The close proximity of WASP-12b to its G-type star results in extreme tidal forces capable of inducing apsidal precession with a period as short as a few decades. This precession would be measurable if the orbit had a significant eccentricity, leading to an estimate of the tidal Love number and an assessment of the degree of central concentration in the planetary interior. An initial ground-based secondary-eclipse phase reported by Lopez-Morales et al. (0.510 ± 0.002) implied eccentricity at the 4.5σ level. The spectroscopic orbit of Hebb et al. has eccentricity 0.049 ± 0.015, a 3σ result, implying an eclipse phase of 0.509 ± 0.007. However, there is a well-documented tendency of spectroscopic data to overestimate small eccentricities. Our eclipse phases are 0.5010 ± 0.0006 (3.6 and 5.8 μm) and 0.5006 ± 0.0007 (4.5 and 8.0 μm). An unlikely orbital precession scenario invoking an alignment of the orbit during the Spitzer observations could have explained this apparent discrepancy, but the final eclipse phase of Lopez-Morales et al. (0.510 ± +0.007 -0.006 ) is consistent with a circular orbit at better than 2σ. An orbit fit to all the available transit, eclipse, and radial-velocity data indicates precession at <1σ; a non-precessing solution fits better. We also comment on analysis and reporting for Spitzer exoplanet data in light of recent re-analyses.

  7. A Novel Approach to Atmospheric Retrieval for Small Exoplanets

    Science.gov (United States)

    Lustig-Yaeger, Jacob; Meadows, Victoria; Line, Michael; Crisp, David

    2015-11-01

    Retrieval of environmental parameters from the spectra of sub-Neptune and terrestrial extrasolar planets is extremely challenging due to the observational difficulty, the inherent complexity of planetary processes, and the likely diversity of environments for these small objects. The best retrieval techniques will use observations of the star-planet system along with knowledge of planetary processes gleaned from objects in the Solar System to constrain retrieved environmental parameters.We present ongoing work of the Virtual Planetary Laboratory (VPL) to develop a versatile terrestrial atmosphere retrieval suite capable of capturing a wide range of terrestrial planet processes while employing robust statistics. Our novel approach is to produce fits to observed spectra that discriminate between degenerate solutions by considering limitations on planetary environments derived from known physics and chemistry. The forward model leverages the SMART 1-D line-by-line, fully multiple-scattering and widely validated radiative transfer model (Meadows & Crisp 1996) as the primary workhorse for computing transit transmission, thermal emission, and reflectance spectroscopy. Following the approach of the CHIMERA code (Line et al 2013; 2014), we employ a variety of inverse models for the problem of parameter estimation. Here we present preliminary results using optimal estimation for terrestrial and sub-Neptune planets. The model is being validated against synthetic, Solar System, and existing exoplanet observations.This model will be used to explore the capabilities of key telescope architectures, to understand information loss when planets are viewed as a point source, and to provide a data analysis framework for future sub-Neptune, super-Earth, and Earth analog exoplanet observations.

  8. Direct detection of hundreds of exoplanets with a space-based mid-infrared interferometer

    Science.gov (United States)

    Quanz, S. P.; Kammerer, J.

    2017-09-01

    One of the long-term goals of exoplanet research is the (atmospheric) characterization of a sizeable sample of small, terrestrial planets in order to assess their potential habitability. In this context it is important to quantitatively assess the scientific return of various mission concepts in order to derive robust science requirements. While transit and secondary eclipse spectroscopy may provide data on a few systems, it seems questionable whether a larger planet sample can be investigated given that most planets do not transit in front of their host stars. Hence, direct detection methods may be required. Here we predict the exoplanet yield of a space-based mid-infrared nulling interferometer (akin to the Darwin mission concept) using a catalog of nearby stars and the planet occurrence rates found by NASA's Kepler mission. We find that a mission with the technical specifications of Darwin could detect >300 exoplanets (with radii between 0.5 and 6 Earth radii). Roughly 85 planets have radii between 0.5 and 1.75 Earth radii and equilibrium temperatures between 200 and 450 K and are prime targets for spectroscopic follow-up observations in the second phase of the mission investigating their potential habitability. Higher planet yields can be realized by further optimizing the observing strategy. We also compare the baseline planet yield of a space-based mid-infrared interferometer to that of a large space-based optical/IR telescope. We conclude that a Darwin-like mission concept should be put back on the long-term agenda of the exoplanet community and related space agencies.

  9. VUV-absorption cross section of CO2 at high temperatures and impact on exoplanet atmospheres

    Directory of Open Access Journals (Sweden)

    Venot Olivia

    2014-02-01

    Full Text Available Ultraviolet (UV absorption cross sections are an essential ingredient of photochemical atmosphere models. Exoplanet searches have unveiled a large population of short-period objects with hot atmospheres, very different from what we find in our solar system. Transiting exoplanets whose atmospheres can now be studied by transit spectroscopy receive extremely strong UV fluxes and have typical temperatures ranging from 400 to 2500 K. At these temperatures, UV photolysis cross section data are severely lacking. Our goal is to provide high-temperature absorption cross sections and their temperature dependency for important atmospheric compounds. This study is dedicated to CO2, which is observed and photodissociated in exoplanet atmospheres. We performed these measurements for the 115 - 200 nm range at 300, 410, 480, and 550 K. In the 195 - 230 nm range, we worked at seven temperatures between 465 and 800 K. We found that the absorption cross section of CO2 is very sensitive to temperature, especially above 160 nm. Within the studied range of temperature, the CO2 cross section can vary by more than two orders of magnitude. This, in particular, makes the absorption of CO2 significant up to wavelengths as high as 230 nm, while it is negligible above 200 nm at 300 K. To investigate the influence of these new data on the photochemistry of exoplanets, we implemented the measured cross section into a 1D photochemical model. The model predicts that accounting for this temperature dependency of CO2 cross section can affect the computed abundances of NH3, CO2, and CO by one order of magnitude in the atmospheres of hot Jupiter and hot Neptune.

  10. The Transit Monitoring in the South (TraMoS project

    Directory of Open Access Journals (Sweden)

    López-Morales Mercedes

    2013-04-01

    Full Text Available We present the Transit Monitoring in the South (TraMoS project. TraMoS has monitored transits of 30 exoplanets with telescopes located in Chile since 2008, whit the following goals: (1 to refine the physical and/or orbital parameters of those exoplanet system, and (2 to search for variations in the mid-times of the transits and in other parameters such as orbital inclination or transit's depth, that could indicate the presence of additional bodies in the system. We highlight here the first results of TraMoS in three selected exoplanets.

  11. WFIRST: Exoplanet Data Challenge. Atmospheric retrieval results

    Science.gov (United States)

    Hildebrandt, Sergi; Turnbull, Margaret; Exoplanet Data Challenge Team

    2018-01-01

    We present the results of the Exoplanet Data Challenge for its first 2016/17 cycle and the current cycle 2. Some input spectra for extra-solar systems are processed through the WFIRST IFS instrument model, producing simulated data representative of the flight data. Atmospheric properties are then recovered using complex atmospheric models and multidimensional optimization. The results inform about WFIRST CGI ability to characterize exo-planetray atmospheres.

  12. THEORETICAL SPECTRA OF TERRESTRIAL EXOPLANET SURFACES

    Energy Technology Data Exchange (ETDEWEB)

    Hu Renyu; Seager, Sara [Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Ehlmann, Bethany L., E-mail: hury@mit.edu [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States)

    2012-06-10

    We investigate spectra of airless rocky exoplanets with a theoretical framework that self-consistently treats reflection and thermal emission. We find that a silicate surface on an exoplanet is spectroscopically detectable via prominent Si-O features in the thermal emission bands of 7-13 {mu}m and 15-25 {mu}m. The variation of brightness temperature due to the silicate features can be up to 20 K for an airless Earth analog, and the silicate features are wide enough to be distinguished from atmospheric features with relatively high resolution spectra. The surface characterization thus provides a method to unambiguously identify a rocky exoplanet. Furthermore, identification of specific rocky surface types is possible with the planet's reflectance spectrum in near-infrared broad bands. A key parameter to observe is the difference between K-band and J-band geometric albedos (A{sub g}(K) - A{sub g}(J)): A{sub g}(K) - A{sub g}(J) > 0.2 indicates that more than half of the planet's surface has abundant mafic minerals, such as olivine and pyroxene, in other words primary crust from a magma ocean or high-temperature lavas; A{sub g}(K) - A{sub g}(J) < -0.09 indicates that more than half of the planet's surface is covered or partially covered by water ice or hydrated silicates, implying extant or past water on its surface. Also, surface water ice can be specifically distinguished by an H-band geometric albedo lower than the J-band geometric albedo. The surface features can be distinguished from possible atmospheric features with molecule identification of atmospheric species by transmission spectroscopy. We therefore propose that mid-infrared spectroscopy of exoplanets may detect rocky surfaces, and near-infrared spectrophotometry may identify ultramafic surfaces, hydrated surfaces, and water ice.

  13. The Next Generation Transit Survey Becomes Operational at Paranal

    Science.gov (United States)

    West, R. G.; Pollacco, D.; Wheatley, P.; Goad, M.; Queloz, D.; Rauer, H.; Watson, C.; Udry, S.; Bannister, N.; Bayliss, D.; Bouchy, F.; Burleigh, M.; Cabrera, J.; Chaushev, A.; Chazelas, B.; Crausaz, M.; Csizmadia, S.; Eigmüller, P.; Erikson, A.; Genolet, L.; Gillen, E.; Grange, A.; Günther, M.; Hodgkin, S.; Kirk, J.; Lambert, G.; Louden, T.; McCormac, J.; Metrailler, L.; Neveu, M.; Smith, A.; Thompson, A.; Raddi, R.; Walker, S. R.; Jenkins, J.; Jordán, A.

    2016-09-01

    A new facility dedicated to the discovery of exoplanets has commenced science operations at Paranal. The Next-Generation Transit Survey (NGTS) will deliver photometry at a precision unprecedented for a ground-based wide-field survey, enabling the discovery of dozens of transiting exoplanets of the size of Neptune or smaller around bright stars. NGTS is briefly described and the survey prospects are outlined.

  14. A New Spin to Exoplanet Habitability Criteria

    Science.gov (United States)

    Georgoulis, M. K.; Patsourakos, S.

    2017-12-01

    We describe a physically- and statistically-based method to infer the near-Sun magnetic field of coronal mass ejections (CMEs) and then extrapolate it to the inner heliosphere and beyond. Besides a ballpark agreement with in-situ observations of interplanetary CMEs (ICMEs) at L1, we use our estimates to show that Earth does not seem to be at risk of an extinction-level atmospheric erosion or stripping by the magnetic pressure of extreme solar eruptions, even way above a Carrington-type event. This does not seem to be the case with exoplanets, however, at least those orbiting in the classically defined habitability zones of magnetically active dwarf stars at orbital radii of a small fraction of 1 AU. We show that the combination of stellar ICMEs and the tidally locking zone of mother stars, that quite likely does not allow these exoplanets to attain Earth-like magnetic fields to shield themselves, probably render the existence of a proper atmosphere in them untenable. We propose, therefore, a critical revision of habitability criteria in these cases that would limit the number of target exoplanets considered as potential biosphere hosts.

  15. Developing a user-friendly photometric software for exoplanets to increase participation in Citizen Science

    Science.gov (United States)

    Kokori, A.; Tsiaras, A.

    2017-09-01

    Previous research on Citizen Science projects agree that Citizen Science (CS) would serve as a way of both increasing levels of public understanding of science and public participation in scientific research. Historically, the concept of CS is not new, it dates back to the 20th century when citizens where making skilled observations, particularly in archaeology, ecology, and astronomy. Recently, the idea of CS has been improved due to technological progress and the arrival of Internet. The phrase "astronomy from the chair" that is being used in the literature highlights the extent of the convenience for analysing observational data. Citizen science benefits a variety of communities, such as scientific researchers, volunteers and STEM educators. Participating in CS projects is not only engaging the volunteers with the research goals of a science team, but is also helping them learning more about specialised scientific topics. In the case of astronomy, typical examples of CS projects are gathering observational data or/and analysing them. The Holomon Photometric Software (HOPS) is a user-friendly photometric software for exoplanets, with graphical representations, statistics, models, options are brought together into a single package. It was originally developed to analyse observations of transiting exoplanets obtained from the Holomon Astronomical Station of the Aristotle University of Thessaloniki. Here, we make the case that this software can be used as part of a CS project in analysing transiting exoplanets and producing light-curves. HOPS could contribute to the scientific data analysis but it could be used also as an educational tool for learning and visualizing photometry analyses of transiting exoplanets. Such a tool could be proven very efficient in the context of public participation in the research. In recent successful representative examples such as Galaxy Zoo professional astronomers cooperating with CS discovered a group of rare galaxies by using

  16. HIDING IN THE SHADOWS. II. COLLISIONAL DUST AS EXOPLANET MARKERS

    Energy Technology Data Exchange (ETDEWEB)

    Dobinson, Jack; Leinhardt, Zoë M.; Lines, Stefan; Carter, Philip J. [University of Bristol, School of Physics, H. H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL (United Kingdom); Dodson-Robinson, Sarah E. [University of Delaware, Department of Physics and Astronomy, 217 Sharp Lab, Newark, DE 19716 (United States); Teanby, Nick A. [University of Bristol, School of Earth Sciences, H. H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL (United Kingdom)

    2016-03-20

    Observations of the youngest planets (∼1–10 Myr for a transitional disk) will increase the accuracy of our planet formation models. Unfortunately, observations of such planets are challenging and time-consuming to undertake, even in ideal circumstances. Therefore, we propose the determination of a set of markers that can preselect promising exoplanet-hosting candidate disks. To this end, N-body simulations were conducted to investigate the effect of an embedded Jupiter-mass planet on the dynamics of the surrounding planetesimal disk and the resulting creation of second-generation collisional dust. We use a new collision model that allows fragmentation and erosion of planetesimals, and dust-sized fragments are simulated in a post-process step including non-gravitational forces due to stellar radiation and a gaseous protoplanetary disk. Synthetic images from our numerical simulations show a bright double ring at 850 μm for a low-eccentricity planet, whereas a high-eccentricity planet would produce a characteristic inner ring with asymmetries in the disk. In the presence of first-generation primordial dust these markers would be difficult to detect far from the orbit of the embedded planet, but would be detectable inside a gap of planetary origin in a transitional disk.

  17. Characterizing Exoplanet Atmospheres : A Complete Line List for Phosphine

    Science.gov (United States)

    Sousa-Silva, C.; Yurchenko, S. N.; Tennyson, J.

    2013-09-01

    The ability to characterise the atmospheres of cool stars, brown dwarfs and exoplanets requires fundamental data for all species contributing significantly to their opacity. However, with notable exceptions such as water and ammonia, existing molecular line lists are not sufficiently accurate or complete to allow for a full spectroscopic analysis of these bodies. ExoMol (www.exomol.com [1]) is a project that aims to rectify this by generating comprehensive line lists for all molecules likely to be detected in the atmospheres of cool astrophysical objects in the foreseeable future. The spectral data is generated by employing ab initio quantum mechanical methods, performing empirical refinement based on experimental spectroscopic data and harnessing high performance computing. Here we present our work on phosphine, (PH3), an equilateral pyramidal molecule (the phosphorus analogue to ammonia). Phosphine is known to be important for the atmospheres of giant-planets, cool stars and many other astronomical bodies. Rotational transition features of phosphine have been found in the far- infrared spectra of Saturn and Jupiter [2, 3], where it is a marker for vertical convection zones. A computed room temperature line list of phosphine is presented here [4], illustrated in the accompanying figure 1. This line list is a precursor to a high temperature equivalent to be produced in the near future, necessary for the analysis of cool stars and brown dwarfs. All the transitions' energy levels and Einstein A-coefficients were computed using the program TROVE [5].

  18. Exoplanets: Past, Present, and Future

    Directory of Open Access Journals (Sweden)

    Chien-Hsiu Lee

    2018-04-01

    Full Text Available Our understanding of extra-solar planet systems is highly driven by advances in observations in the past decade. Thanks to high precision spectrographs, we are able to reveal unseen companions to stars with the radial velocity method. High precision photometry from the space, especially with the Kepler mission, enables us to detect planets when they transit their stars and dim the stellar light by merely one percent or smaller. Ultra wide-field, high cadence, continuous monitoring of the Galactic bulge from different sites around the southern hemisphere provides us the opportunity to observe microlensing effects caused by planetary systems from the solar neighborhood, all the way to the Milky Way center. The exquisite AO imaging from ground-based large telescopes, coupled with high-contrast coronagraph, captured the photons directly emitted by planets around other stars. In this article, I present a concise review of the extra-solar planet discoveries, discussing the strengths and weaknesses of the major planetary detection methods, providing an overview of our current understanding of planetary formation and evolution given the tremendous observations delivered by various methods, as well as on-going and planned observation endeavors to provide a clear picture of extra-solar planetary systems.

  19. Benford's Distribution in Extrasolar World: Do the Exoplanets Follow ...

    Indian Academy of Sciences (India)

    gates the existence of Benford's distribution in the extrasolar world using Kepler data for exoplanets. The quantitative investigations have revealed the presence of Benford's distribution in various physical properties of these exoplanets. Further, some specific comments have been made on the possible general- izations of ...

  20. Transiting exoplanets from the CoRoT space mission

    DEFF Research Database (Denmark)

    Ollivier, M.; Gillon, M.; Santerne, A.

    2012-01-01

    Aims. We report the discovery of CoRoT-16b, a low density hot jupiter that orbits a faint G5V star (mV = 15.63) in 5.3523 ± 0.0002 days with slight eccentricity. A fit of the data with no a priori assumptions on the orbit leads to an eccentricity of 0.33 ± 0.1. We discuss this value and also deri...

  1. The Ultraviolet Radiation Environment around M Dwarf Exoplanet Host Stars

    Science.gov (United States)

    France, Kevin; Froning, Cynthia S.; Linsky, Jeffrey L.; Roberge, Aki; Stocke, John T.; Tian, Feng; Bushinsky, Rachel; Desert, Jean-Michel; Mauas, Pablo; Mauas, Pablo; hide

    2013-01-01

    The spectral and temporal behavior of exoplanet host stars is a critical input to models of the chemistry and evolution of planetary atmospheres. Ultraviolet photons influence the atmospheric temperature profiles and production of potential biomarkers on Earth-like planets around these stars. At present, little observational or theoretical basis exists for understanding the ultraviolet spectra of M dwarfs, despite their critical importance to predicting and interpreting the spectra of potentially habitable planets as they are obtained in the coming decades. Using observations from the Hubble Space Telescope, we present a study of the UV radiation fields around nearby M dwarf planet hosts that covers both far-UV (FUV) and near-UV (NUV) wavelengths. The combined FUV+NUV spectra are publicly available in machine-readable format. We find that all six exoplanet host stars in our sample (GJ 581, GJ 876, GJ 436, GJ 832, GJ 667C, and GJ 1214) exhibit some level of chromospheric and transition region UV emission. No "UV-quiet" M dwarfs are observed. The bright stellar Lyman-alpha emission lines are reconstructed, and we find that the Lyman-alpha line fluxes comprise approximately 37%-75% of the total 1150-3100 A flux from most M dwarfs; approximately greater than 10(exp3) times the solar value. We develop an empirical scaling relation between Lyman-alpha and Mg II emission, to be used when interstellar H I attenuation precludes the direct observation of Lyman-alpha. The intrinsic unreddened flux ratio is F(Lyman-alpha)/F(Mg II) = 10(exp3). The F(FUV)/F(NUV) flux ratio, a driver for abiotic production of the suggested biomarkers O2 and O3, is shown to be approximately 0.5-3 for all M dwarfs in our sample, greather than 10(exp3) times the solar ratio. For the four stars with moderate signal-to-noise Cosmic Origins Spectrograph time-resolved spectra, we find UV emission line variability with amplitudes of 50%.500% on 10(exp2)-10(exp3) s timescales. This effect should be taken

  2. Integrated Exoplanet Modeling with the GSFC Exoplanet Modeling & Analysis Center (EMAC)

    Science.gov (United States)

    Mandell, Avi M.; Hostetter, Carl; Pulkkinen, Antti; Domagal-Goldman, Shawn David

    2018-01-01

    Our ability to characterize the atmospheres of extrasolar planets will be revolutionized by JWST, WFIRST and future ground- and space-based telescopes. In preparation, the exoplanet community must develop an integrated suite of tools with which we can comprehensively predict and analyze observations of exoplanets, in order to characterize the planetary environments and ultimately search them for signs of habitability and life.The GSFC Exoplanet Modeling and Analysis Center (EMAC) will be a web-accessible high-performance computing platform with science support for modelers and software developers to host and integrate their scientific software tools, with the goal of leveraging the scientific contributions from the entire exoplanet community to improve our interpretations of future exoplanet discoveries. Our suite of models will include stellar models, models for star-planet interactions, atmospheric models, planet system science models, telescope models, instrument models, and finally models for retrieving signals from observational data. By integrating this suite of models, the community will be able to self-consistently calculate the emergent spectra from the planet whether from emission, scattering, or in transmission, and use these simulations to model the performance of current and new telescopes and their instrumentation.The EMAC infrastructure will not only provide a repository for planetary and exoplanetary community models, modeling tools and intermodal comparisons, but it will include a "run-on-demand" portal with each software tool hosted on a separate virtual machine. The EMAC system will eventually include a means of running or “checking in” new model simulations that are in accordance with the community-derived standards. Additionally, the results of intermodal comparisons will be used to produce open source publications that quantify the model comparisons and provide an overview of community consensus on model uncertainties on the climates of

  3. Automatic Classification of Kepler Planetary Transit Candidates

    Science.gov (United States)

    McCauliff, Sean D.; Jenkins, Jon M.; Catanzarite, Joseph; Burke, Christopher J.; Coughlin, Jeffrey L.; Twicken, Joseph D.; Tenenbaum, Peter; Seader, Shawn; Li, Jie; Cote, Miles

    2015-06-01

    In the first three years of operation, the Kepler mission found 3697 planet candidates (PCs) from a set of 18,406 transit-like features detected on more than 200,000 distinct stars. Vetting candidate signals manually by inspecting light curves and other diagnostic information is a labor intensive effort. Additionally, this classification methodology does not yield any information about the quality of PCs; all candidates are as credible as any other. The torrent of exoplanet discoveries will continue after Kepler, because a number of exoplanet surveys will have an even broader search area. This paper presents the application of machine-learning techniques to the classification of the exoplanet transit-like signals present in the Kepler light curve data. Transit-like detections are transformed into a uniform set of real-numbered attributes, the most important of which are described in this paper. Each of the known transit-like detections is assigned a class of PC; astrophysical false positive; or systematic, instrumental noise. We use a random forest algorithm to learn the mapping from attributes to classes on this training set. The random forest algorithm has been used previously to classify variable stars; this is the first time it has been used for exoplanet classification. We are able to achieve an overall error rate of 5.85% and an error rate for classifying exoplanets candidates of 2.81%.

  4. Lightning chemistry on Earth-like exoplanets

    Science.gov (United States)

    Ardaseva, Aleksandra; Rimmer, Paul B.; Waldmann, Ingo; Rocchetto, Marco; Yurchenko, Sergey N.; Helling, Christiane; Tennyson, Jonathan

    2017-09-01

    We present a model for lightning shock-induced chemistry that can be applied to atmospheres of arbitrary H/C/N/O chemistry, hence for extrasolar planets and brown dwarfs. The model couples hydrodynamics and the STAND2015 kinetic gas-phase chemistry. For an exoplanet analogue to the contemporary Earth, our model predicts NO and NO2 yields in agreement with observation. We predict height-dependent mixing ratios during a storm soon after a lightning shock of NO ≈10-3 at 40 km and NO2 ≈10-4 below 40 km, with O3 reduced to trace quantities (≪10-10). For an Earth-like exoplanet with a CO2/N2 dominated atmosphere and with an extremely intense lightning storm over its entire surface, we predict significant changes in the amount of NO, NO2, O3, H2O, H2 and predict a significant abundance of C2N. We find that, for the Early Earth, O2 is formed in large quantities by lightning but is rapidly processed by the photochemistry, consistent with previous work on lightning. The chemical effect of persistent global lightning storms are predicted to be significant, primarily due to NO2, with the largest spectral features present at ˜3.4 and ˜6.2 μm. The features within the transmission spectrum are on the order of 1 ppm and therefore are not likely detectable with the James Webb Space Telescope. Depending on its spectral properties, C2N could be a key tracer for lightning on Earth-like exoplanets with a N2/CO2 bulk atmosphere, unless destroyed by yet unknown chemical reactions.

  5. TRUE MASSES OF RADIAL-VELOCITY EXOPLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Robert A., E-mail: rbrown@stsci.edu [Space Telescope Science Institute (United States)

    2015-06-01

    We study the task of estimating the true masses of known radial-velocity (RV) exoplanets by means of direct astrometry on coronagraphic images to measure the apparent separation between exoplanet and host star. Initially, we assume perfect knowledge of the RV orbital parameters and that all errors are due to photon statistics. We construct design reference missions for four missions currently under study at NASA: EXO-S and WFIRST-S, with external star shades for starlight suppression, EXO-C and WFIRST-C, with internal coronagraphs. These DRMs reveal extreme scheduling constraints due to the combination of solar and anti-solar pointing restrictions, photometric and obscurational completeness, image blurring due to orbital motion, and the “nodal effect,” which is the independence of apparent separation and inclination when the planet crosses the plane of the sky through the host star. Next, we address the issue of nonzero uncertainties in RV orbital parameters by investigating their impact on the observations of 21 single-planet systems. Except for two—GJ 676 A b and 16 Cyg B b, which are observable only by the star-shade missions—we find that current uncertainties in orbital parameters generally prevent accurate, unbiased estimation of true planetary mass. For the coronagraphs, WFIRST-C and EXO-C, the most likely number of good estimators of true mass is currently zero. For the star shades, EXO-S and WFIRST-S, the most likely numbers of good estimators are three and four, respectively, including GJ 676 A b and 16 Cyg B b. We expect that uncertain orbital elements currently undermine all potential programs of direct imaging and spectroscopy of RV exoplanets.

  6. A sub-Mercury-sized exoplanet

    OpenAIRE

    Barclay, Thomas; Ciardi, David; Howard, Andrew W.

    2013-01-01

    Since the discovery of the first exoplanets, it has been known that other planetary systems can look quite unlike our own. Until fairly recently, we have been able to probe only the upper range of the planet size distribution, and, since last year, to detect planets that are the size of Earth or somewhat smaller. Hitherto, no planets have been found that are smaller than those we see in the Solar System. Here we report a planet significantly smaller than Mercury. This tiny planet is the inner...

  7. The Search for Exoplanets using Ultra-long Wavelength Radio Astronomy

    NARCIS (Netherlands)

    Bentum, Marinus Jan

    2017-01-01

    Recent studies on extra solar planets (exoplanets) provide us with a new glimpse into the Milky Way's composition. Exoplanets appear to be very typical around Sunlike stars. Most of these exoplanets are observed via indirect measurements. If a direct radio observation of the exoplanet's signal was

  8. A library of ATMO forward model transmission spectra for hot Jupiter exoplanets

    Science.gov (United States)

    Goyal, Jayesh M.; Mayne, Nathan; Sing, David K.; Drummond, Benjamin; Tremblin, Pascal; Amundsen, David S.; Evans, Thomas; Carter, Aarynn L.; Spake, Jessica; Baraffe, Isabelle; Nikolov, Nikolay; Manners, James; Chabrier, Gilles; Hebrard, Eric

    2018-03-01

    We present a grid of forward model transmission spectra, adopting an isothermal temperature-pressure profile, alongside corresponding equilibrium chemical abundances for 117 observationally significant hot exoplanets (equilibrium temperatures of 547-2710 K). This model grid has been developed using a 1D radiative-convective-chemical equilibrium model termed ATMO, with up-to-date high-temperature opacities. We present an interpretation of observations of 10 exoplanets, including best-fitting parameters and χ2 maps. In agreement with previous works, we find a continuum from clear to hazy/cloudy atmospheres for this sample of hot Jupiters. The data for all the 10 planets are consistent with subsolar to solar C/O ratio, 0.005 to 10 times solar metallicity and water rather than methane-dominated infrared spectra. We then explore the range of simulated atmospheric spectra for different exoplanets, based on characteristics such as temperature, metallicity, C/O ratio, haziness and cloudiness. We find a transition value for the metallicity between 10 and 50 times solar, which leads to substantial changes in the transmission spectra. We also find a transition value of C/O ratio, from water to carbon species dominated infrared spectra, as found by previous works, revealing a temperature dependence of this transition point ranging from ˜0.56 to ˜1-1.3 for equilibrium temperatures from ˜900 to ˜2600 K. We highlight the potential of the spectral features of HCN and C2H2 to constrain the metallicities and C/O ratios of planets, using James Webb Space Telescope (JWST) observations. Finally, our entire grid (˜460 000 simulations) is publicly available and can be used directly with the JWST simulator PandExo for planning observations.

  9. The Atmospheric Remote-sensing Infrared Exoplanets Large-survey (ARIEL) payload electronic subsystems

    Science.gov (United States)

    Focardi, M.; Pace, E.; Colomé, J.; Ribas, I.; Rataj, M.; Ottensamer, R.; Farina, M.; Di Giorgio, A. M.; Wawer, P.; Pancrazzi, M.; Noce, V.; Pezzuto, S.; Morgante, G.; Artigues, B.; Sierra-Roig, C.; Gesa, L.; Eccleston, P.; Crook, M.; Micela, G.

    2016-07-01

    The ARIEL mission has been proposed to ESA by an European Consortium as the first space mission to extensively perform remote sensing on the atmospheres of a well defined set of warm and hot transiting gas giant exoplanets, whose temperature range between ~600 K and 3000 K. ARIEL will observe a large number (~500) of warm and hot transiting gas giants, Neptunes and super-Earths around a range of host star types using transit spectroscopy in the ~2-8 μm spectral range and broad-band photometry in the NIR and optical. ARIEL will target planets hotter than 600 K to take advantage of their well-mixed atmospheres, which should show minimal condensation and sequestration of high-Z materials and thus reveal their bulk and elemental composition. One of the major motivations for exoplanet characterisation is to understand the probability of occurrence of habitable worlds, i.e. suitable for surface liquid water. While ARIEL will not study habitable planets, its major contribution to this topic will results from its capability to detect the presence of atmospheres on many terrestrial planets outside the habitable zone and, in many cases, characterise them. This represents a fundamental breakthrough in understanding the physical and chemical processes of a large sample of exoplanets atmospheres as well as their bulk properties and to probe in-space technology. The ARIEL infrared spectrometer (AIRS) provides data on the atmospheric composition; these data are acquired and processed by an On-Board Data Handling (OBDH) system including the Cold Front End Electronics (CFEE) and the Instrument Control Unit (ICU). The Telescope Control Unit (TCU) is also included inside the ICU. The latter is directly connected to the Control and Data Management Unit (CDMU) on board the Service Module (SVM). The general hardware architecture and the application software of the ICU are described. The Fine Guidance Sensor (FGS) electronics and the Cooler Control Electronics are also presented.

  10. TYCHO: Simulating Exoplanets Within Stellar Clusters

    Science.gov (United States)

    Glaser, Joseph Paul; Thornton, Jonathan; Geller, Aaron M.; McMillan, Stephen

    2018-01-01

    Recent surveys exploring nearby open clusters have yielded noticeable differences in the planetary population from that seen in the Field. This is surprising, as the two should be indistinguishable given currently accepted theories on how a majority of stars form within the Galaxy. Currently, the existence of this apparent deficit is not fully understood. While detection bias in previous observational surveys certainly contributes to this issue, the dynamical effects of star-star scattering must also be taken into account. However, this effect can only be investigated via computational simulations and current solutions of the multi-scale N-body problem are limited and drastically simplified.To remedy this, we aim to create a physically complete computational solution to explore the role of stellar close encounters and interplanetary interactions in producing the observed exoplanet populations for both open cluster stars and Field stars. To achieve this, TYCHO employs a variety of different computational techniques, including: multiple n-body integration methods; close-encounter handling; Monte Carlo scattering experiments; and a variety of observationally-backed initial condition generators. Herein, we discuss the current state of the code's implantation within the AMUSE framework and its applications towards present exoplanet surveys.

  11. The science of exoplanets and their systems.

    Science.gov (United States)

    Lammer, Helmut; Blanc, Michel; Benz, Willy; Fridlund, Malcolm; Foresto, Vincent Coudé du; Güdel, Manuel; Rauer, Heike; Udry, Stephane; Bonnet, Roger-Maurice; Falanga, Maurizio; Charbonneau, David; Helled, Ravit; Kley, Willy; Linsky, Jeffrey; Elkins-Tanton, Linda T; Alibert, Yann; Chassefière, Eric; Encrenaz, Therese; Hatzes, Artie P; Lin, Douglas; Liseau, Rene; Lorenzen, Winfried; Raymond, Sean N

    2013-09-01

    A scientific forum on "The Future Science of Exoplanets and Their Systems," sponsored by Europlanet and the International Space Science Institute (ISSI) and co-organized by the Center for Space and Habitability (CSH) of the University of Bern, was held during December 5 and 6, 2012, in Bern, Switzerland. It gathered 24 well-known specialists in exoplanetary, Solar System, and stellar science to discuss the future of the fast-expanding field of exoplanetary research, which now has nearly 1000 objects to analyze and compare and will develop even more quickly over the coming years. The forum discussions included a review of current observational knowledge, efforts for exoplanetary atmosphere characterization and their formation, water formation, atmospheric evolution, habitability aspects, and our understanding of how exoplanets interact with their stellar and galactic environment throughout their history. Several important and timely research areas of focus for further research efforts in the field were identified by the forum participants. These scientific topics are related to the origin and formation of water and its delivery to planetary bodies and the role of the disk in relation to planet formation, including constraints from observations as well as star-planet interaction processes and their consequences for atmosphere-magnetosphere environments, evolution, and habitability. The relevance of these research areas is outlined in this report, and possible themes for future ISSI workshops are identified that may be proposed by the international research community over the coming 2-3 years.

  12. ESPRESSO: The next European exoplanet hunter

    Science.gov (United States)

    Pepe, F.; Molaro, P.; Cristiani, S.; Rebolo, R.; Santos, N. C.; Dekker, H.; Mégevand, D.; Zerbi, F. M.; Cabral, A.; Di Marcantonio, P.; Abreu, M.; Affolter, M.; Aliverti, M.; Allende Prieto, C.; Amate, M.; Avila, G.; Baldini, V.; Bristow, P.; Broeg, C.; Cirami, R.; Coelho, J.; Conconi, P.; Coretti, I.; Cupani, G.; D'Odorico, V.; De Caprio, V.; Delabre, B.; Dorn, R.; Figueira, P.; Fragoso, A.; Galeotta, S.; Genolet, L.; Gomes, R.; González Hernández, J. I.; Hughes, I.; Iwert, O.; Kerber, F.; Landoni, M.; Lizon, J.-L.; Lovis, C.; Maire, C.; Mannetta, M.; Martins, C.; Monteiro, M.; Oliveira, A.; Poretti, E.; Rasilla, J. L.; Riva, M.; Santana Tschudi, S.; Santos, P.; Sosnowska, D.; Sousa, S.; Spanó, P.; Tenegi, F.; Toso, G.; Vanzella, E.; Viel, M.; Zapatero Osorio, M. R.

    2014-01-01

    The acronym ESPRESSO stems for Echelle SPectrograph for Rocky Exoplanets and Stable Spectroscopic Observations; this instrument will be the next VLT high resolution spectrograph. The spectrograph will be installed at the Combined-Coudé Laboratory of the VLT and linked to the four 8.2 m Unit Telescopes (UT) through four optical Coudé trains. ESPRESSO will combine efficiency and extreme spectroscopic precision. ESPRESSO is foreseen to achieve a gain of two magnitudes with respect to its predecessor HARPS, and to improve the instrumental radial-velocity precision to reach the 10 cm s-1 level. It can be operated either with a single UT or with up to four UTs, enabling an additional gain in the latter mode. The incoherent combination of four telescopes and the extreme precision requirements called for many innovative design solutions while ensuring the technical heritage of the successful HARPS experience. ESPRESSO will allow to explore new frontiers in most domains of astrophysics that require precision and sensitivity. The main scientific drivers are the search and characterization of rocky exoplanets in the habitable zone of quiet, nearby G to M-dwarfs and the analysis of the variability of fundamental physical constants. The project passed the final design review in May 2013 and entered the manufacturing phase. ESPRESSO will be installed at the Paranal Observatory in 2016 and its operation is planned to start by the end of the same year.

  13. Exoplanets finding, exploring, and understanding alien worlds

    CERN Document Server

    Kitchin, Chris

    2012-01-01

    Since 1992 there has been an explosion in the discovery of planets orbiting stars other than the Sun. There are now around 600 alien planets that we know about and that number is likely to break through the 1,000 ‘barrier’ within a couple of years. The recent launch of the Kepler space telescope specifically to look for new worlds opens the prospect of hundreds, maybe thousands, of further exoplanets being found. Many of these planets orbits stars that are not too different from the Sun, but they are so close in to their stars that their surfaces could be flooded with seas of molten lead – or even molten iron. Others orbit so far from their stars that they might as well be alone in interstellar space. A planet closely similar to the Earth has yet to be detected, but that (to us) epoch-making discovery is just a matter of time. Could these alien worlds could provide alternative homes for humankind, new supplies of mineral resources and might they might already be homes to alien life? Exoplanets: Finding,...

  14. Exoplanet Searches by Future Deep Space Missions

    Directory of Open Access Journals (Sweden)

    Maccone C.

    2011-02-01

    Full Text Available The search for exoplanets could benefit from gravitational lensing if we could get to 550 AU from the Sun and beyond. This is because the gravitational lens of the Sun would highly intensify there any weak electromagnetic wave reaching the solar system from distant planets in the Galaxy (see Maccone 2009. The gravitational lens of the Sun, however, has a drawback: the solar Corona. Electrons in the Corona make electromagnetic waves diverge and this pushes the focus out to distances higher than 550 AU. Jupiter is the second larger mass in the solar system after the Sun, but in this focal game not only the mass matters: rather, what really matters is the ratio between the radius of the body squared and the mass of the body. In this regard, Jupiter qualifies as the second best choice for a space mission, requiring the spacecraft to reach 6,077 AU. In this paper, we study the benefit of exoplanet searches by deep space missions.

  15. MEMS and the direct detection of exoplanets

    Science.gov (United States)

    Thomas, Sandrine J.; Macintosh, Bruce; Belikov, Ruslan

    2014-03-01

    Deformable mirrors, and particularly MEMS, are crucial components for the direct imaging of exoplanets for both ground-based and space-based instruments. Without deformable mirrors, coronagraphs are incapable of reaching contrasts required to image Jupiter-like planets. The system performance is limited by image quality degradation resulting from wavefront error introduced from multiple effects including: atmospheric turbulence, static aberrations in the system, non-common-path aberrations, all of which vary with time. Correcting for these effects requires a deformable mirror with fast response and numerous actuators having moderate stroke. Not only do MEMS devices fulfill this requirement but their compactness permits their application in numerous space- and ground-based instruments, which are often volume- and mass-limited. In this paper, I will briefly explain how coronagraphs work and their requirements. I then will discuss the Extreme Adaptive Optics needed to compensate for the introduced wavefront error and how MEMS devices are a good choice to achieve the performance needed to produce the contrasts necessary to detect exoplanets. As examples, I will discuss a facility instrument for the Gemini Observatory, called the Gemini Planet Imager, that will detect Jupiter-like planets and present recent results from the NASA Ames Coronagraph Experiment laboratory, in the context of a proposed space- based mission called EXCEDE. EXCEDE is planned to focus on protoplanetary disks.

  16. Data Analysis Provenance: Use Case for Exoplanet Search in CoRoT Database

    Science.gov (United States)

    de Souza, L.; Salete Marcon Gomes Vaz, M.; Emílio, M.; Ferreira da Rocha, J. C.; Janot Pacheco, E.; Carlos Boufleur, R.

    2012-09-01

    CoRoT (COnvection Rotation and Planetary Transits) is a mission led by the French national space agency CNES, in collaboration with Austria, Spain, Germany, Belgium and Brazil. The mission priority is dedicated to exoplanet search and stellar seismology. CoRoT light curves database became public after one year of their delivery to the CoRoT Co-Is, following the CoRoT data policy. The CoRoT archive contains thousands of light curves in FITS format. Several exoplanet search algorithms require detrend algorithms to remove both stellar and instrumental signal, improving the chance to detect a transit. Different detrend and transit detection algorithms can be applied to the same database. Tracking the origin of the information and how the data was derived in each level in the data analysis process is essential to allow sharing, reuse, reprocessing and further analysis. This work aims at applying a formalized and codified knowledge model by means of domain ontology. It allows to enrich the data analysis with semantic and standardization. It holds the provenance information in the database for a posteriori recovers by humans or software agents.

  17. Challenges to Constraining Exoplanet Masses via Transmission Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Batalha, Natasha E. [Department of Astronomy and Astrophysics, Pennsylvania State University, State College, PA 16802 (United States); Kempton, Eliza M.-R. [Department of Physics, Grinnell College, 1116 8th Avenue, Grinnell, IA 50112 (United States); Mbarek, Rostom, E-mail: neb149@psu.edu [Department of Astronomy and Astrophysics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States)

    2017-02-10

    MassSpec , a method for determining the mass of a transiting exoplanet from its transmission spectrum alone, was proposed by de Wit and Seager. The premise of this method relies on the planet’s surface gravity being extracted from the transmission spectrum via its effect on the atmospheric scale height, which in turn determines the strength of absorption features. Here, we further explore the applicability of MassSpec to low-mass exoplanets—specifically those in the super-Earth size range for which radial velocity determinations of the planetary mass can be extremely challenging and resource intensive. Determining the masses of these planets is of the utmost importance because their nature is otherwise highly unconstrained. Without knowledge of the mass, these planets could be rocky, icy, or gas-dominated. To investigate the effects of planetary mass on transmission spectra, we present simulated observations of super-Earths with atmospheres made up of mixtures of H{sub 2}O and H{sub 2}, both with and without clouds. We model their transmission spectra and run simulations of each planet as it would be observed with James Webb Space Telescope using the NIRISS, NIRSpec, and MIRI instruments. We find that significant degeneracies exist between transmission spectra of planets with different masses and compositions, making it impossible to unambiguously determine the planet’s mass in many cases.

  18. MASSIVE SATELLITES OF CLOSE-IN GAS GIANT EXOPLANETS

    International Nuclear Information System (INIS)

    Cassidy, Timothy A.; Johnson, Robert E.; Mendez, Rolando; Arras, Phil; Skrutskie, Michael F.

    2009-01-01

    We study the orbits, tidal heating and mass loss from satellites around close-in gas giant exoplanets. The focus is on large satellites which are potentially observable by their transit signature. We argue that even Earth-size satellites around hot Jupiters can be immune to destruction by orbital decay; detection of such a massive satellite would strongly constrain theories of tidal dissipation in gas giants, in a manner complementary to orbital circularization. The star's gravity induces significant periodic eccentricity in the satellite's orbit. The resulting tidal heating rates, per unit mass, are far in excess of Io's and dominate radioactive heating out to planet orbital periods of months for reasonable satellite tidal Q. Inside planet orbital periods of about a week, tidal heating can completely melt the satellite. Lastly, we compute an upper limit to the satellite mass loss rate due to thermal evaporation from the surface, valid if the satellite's atmosphere is thin and vapor pressure is negligible. Using this upper limit, we find that although rocky satellites around hot Jupiters with orbital periods less than a few days can be significantly evaporated in their lifetimes, detectable satellites suffer negligible mass loss at longer orbital periods.

  19. Challenges to Constraining Exoplanet Masses via Transmission Spectroscopy

    International Nuclear Information System (INIS)

    Batalha, Natasha E.; Kempton, Eliza M.-R.; Mbarek, Rostom

    2017-01-01

    MassSpec , a method for determining the mass of a transiting exoplanet from its transmission spectrum alone, was proposed by de Wit and Seager. The premise of this method relies on the planet’s surface gravity being extracted from the transmission spectrum via its effect on the atmospheric scale height, which in turn determines the strength of absorption features. Here, we further explore the applicability of MassSpec to low-mass exoplanets—specifically those in the super-Earth size range for which radial velocity determinations of the planetary mass can be extremely challenging and resource intensive. Determining the masses of these planets is of the utmost importance because their nature is otherwise highly unconstrained. Without knowledge of the mass, these planets could be rocky, icy, or gas-dominated. To investigate the effects of planetary mass on transmission spectra, we present simulated observations of super-Earths with atmospheres made up of mixtures of H 2 O and H 2 , both with and without clouds. We model their transmission spectra and run simulations of each planet as it would be observed with James Webb Space Telescope using the NIRISS, NIRSpec, and MIRI instruments. We find that significant degeneracies exist between transmission spectra of planets with different masses and compositions, making it impossible to unambiguously determine the planet’s mass in many cases.

  20. Laboratory Simulations on Haze Formation in Cool Exoplanet Atmospheres

    Science.gov (United States)

    He, Chao; Horst, Sarah; Lewis, Nikole; Yu, Xinting; McGuiggan, Patricia; Moses, Julianne I.

    2017-10-01

    The Kepler mission has shown that the most abundant types of planets are super-Earths and mini-Neptunes among ~3500 confirmed exoplanets, and these types of exoplanets are expected to exhibit a wide variety of atmospheric compositions. Recent transit spectra have demonstrated that clouds and/or hazes could play a significant role in these planetary atmospheres (Deming et al. 2013, Knutson et al. 2014, Kreidberg et al. 2014, Pont, et al. 2013). However, very little laboratory work has been done to understand the formation of haze over a broad range of atmospheric compositions. Here we conducted a series of laboratory simulations to investigate haze formation in a range of planetary atmospheres using our newly built Planetary HAZE Research (PHAZER) chamber (He et al. 2017). We ran experimental simulations for nine different atmospheres: three temperatures (300 K, 400 K, and 600 K) and three metallicities (100, 1000, and 10000 times solar metallicity) using AC glow discharge as an energy source to irradiate gas mixtures. We found that haze particles are formed in all nine experiments, but the haze production rates are dramatically different for different cases. We investigated the particle sizes of the haze particles deposited on quartz discs using atomic force microscopy (AFM). The AFM images show that the particle size varies from 30 nm to 200 nm. The haze particles are more uniform for 100x solar metallicity experiments (30 nm to 40 nm) while the particles sizes for 1000x and 10000x solar metallicity experiments have wider distributions (30 nm to 200 nm). The particle size affects the scattering of light, and thus the temperature structure of planetary atmospheres. The haze production rates and particle size distributions obtained here can serve as critical inputs to atmospheric physical and chemical tools to understand the exoplanetary atmospheres and help guide future TESS and JWST observations of super-Earths and mini-Neptunes.Ref:Deming, D., et al. 2013, Ap

  1. Transit and radial velocity survey efficiency comparison for a habitable zone Earth

    International Nuclear Information System (INIS)

    Burke, Christopher J.; McCullough, P. R.

    2014-01-01

    Transit and radial velocity searches are two techniques for identifying nearby extrasolar planets to Earth that transit bright stars. Identifying a robust sample of these exoplanets around bright stars for detailed atmospheric characterization is a major observational undertaking. In this study we describe a framework that answers the question of whether a transit or radial velocity survey is more efficient at finding transiting exoplanets given the same amount of observing time. Within the framework we show that a transit survey's window function can be approximated using the hypergeometric probability distribution. We estimate the observing time required for a transit survey to find a transiting Earth-sized exoplanet in the habitable zone (HZ) with an emphasis on late-type stars. We also estimate the radial velocity precision necessary to detect the equivalent HZ Earth-mass exoplanet that also transits when using an equal amount of observing time as the transit survey. We find that a radial velocity survey with σ rv ∼ 0.6 m s –1 precision has comparable efficiency in terms of observing time to a transit survey with the requisite photometric precision σ phot ∼ 300 ppm to find a transiting Earth-sized exoplanet in the HZ of late M dwarfs. For super-Earths, a σ rv ∼ 2.0 m s –1 precision radial velocity survey has comparable efficiency to a transit survey with σ phot ∼ 2300 ppm.

  2. Transit and radial velocity survey efficiency comparison for a habitable zone Earth

    Energy Technology Data Exchange (ETDEWEB)

    Burke, Christopher J. [SETI Institute/NASA Ames Research Center, Moffett Field, CA 94035 (United States); McCullough, P. R., E-mail: christopher.j.burke@nasa.gov [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2014-09-01

    Transit and radial velocity searches are two techniques for identifying nearby extrasolar planets to Earth that transit bright stars. Identifying a robust sample of these exoplanets around bright stars for detailed atmospheric characterization is a major observational undertaking. In this study we describe a framework that answers the question of whether a transit or radial velocity survey is more efficient at finding transiting exoplanets given the same amount of observing time. Within the framework we show that a transit survey's window function can be approximated using the hypergeometric probability distribution. We estimate the observing time required for a transit survey to find a transiting Earth-sized exoplanet in the habitable zone (HZ) with an emphasis on late-type stars. We also estimate the radial velocity precision necessary to detect the equivalent HZ Earth-mass exoplanet that also transits when using an equal amount of observing time as the transit survey. We find that a radial velocity survey with σ{sub rv} ∼ 0.6 m s{sup –1} precision has comparable efficiency in terms of observing time to a transit survey with the requisite photometric precision σ{sub phot} ∼ 300 ppm to find a transiting Earth-sized exoplanet in the HZ of late M dwarfs. For super-Earths, a σ{sub rv} ∼ 2.0 m s{sup –1} precision radial velocity survey has comparable efficiency to a transit survey with σ{sub phot} ∼ 2300 ppm.

  3. Methods for the detection and characterization of exoplanets and their population

    Science.gov (United States)

    Foreman-Mackey, Daniel

    The study of exoplanets has been revolutionized in recent years thanks, in large part, to new data collected by NASA's Kepler Mission. The Mission has enabled the discovery of thousands of planets orbiting stars throughout the Galaxy. These discoveries span orders of magnitude in physical parameter space but many of the most physically interesting questions remain open. The deepest of these questions is: how common are planetary systems like our own Solar System? In this dissertation, I approach this question from several different angles and make inferences about the frequency and distribution of planets based on the large, publicly-available datasets from the Kepler Mission. I develop two powerful and practical methods for mining for planetary transit signals in the hundreds of thousands of stellar light curves measured by Kepler. The first method is designed to find planets using the data from the K2 phase of the Mission where systematics introduced by the instrument dominate the measurements. Applying this method to the first publicly available dataset from K2, Campaign 1, I published more than thirty new exoplanet candidates. The second transit search technique is designed to find transits of planets with orbital periods longer than the four year baseline of the Kepler Mission. These are interesting planets because they are expected to have the largest dynamical influence on the formation and evolution of their planetary systems but, to date, no systematic search for these signals has been published. I demonstrate that this method is robust and tractable and make predictions for the planet yields in the Kepler dataset. I derive a general framework for making justified probabilistic inferences about the population of planets based on noisy and incomplete catalogs of exoplanet measurements. Applying this to a previously published catalog of exoplanets orbiting stars like our Sun, I measure the joint period-radius distribution of these planets taking into account

  4. Quantifying the Impact of Spectral Coverage on the Retrieval of Molecular Abundances from Exoplanet Transmission Spectra

    Science.gov (United States)

    Chapman, John W.; Zellem, Robert T.; Line, Michael R.; Vasisht, Gautam; Bryden, Geoff; Willacy, Karen; Iyer, Aishwarya R.; Bean, Jacob; Cowan, Nicolas B.; Fortney, Jonathan J.; Griffith, Caitlin A.; Kataria, Tiffany; Kempton, Eliza M.-R.; Kreidberg, Laura; Moses, Julianne I.; Stevenson, Kevin B.; Swain, Mark R.

    2017-10-01

    Using forward models for representative exoplanet atmospheres and a radiometric instrument model, we generated synthetic observational data to explore how well the major C- and O-bearing chemical species (CO, CO2, CH4, and H2O), important for determining atmospheric opacity and radiation balance, can be constrained by transit measurements as a function of spectral wavelength coverage. This work features simulations for a notional transit spectroscopy mission and compares two cases for instrument spectral coverage (wavelength coverage from 0.5-2.5 μm and 0.5-5 μm). The simulation is conducted on a grid with a range of stellar magnitudes and incorporates a full retrieval of atmospheric model parameters. We consider a range of planets from sub-Neptunes to hot Jupiters and include both low and high mean molecular weight atmospheres. We find that including the 2.5-5 μm wavelength range provides a significant improvement in the degree of constraint on the retrieved molecular abundances: up to ˜3 orders of magnitude for a low mean molecular weight atmosphere (μ = 2.3) and up to a factor of ˜6 for a high mean molecular weight atmosphere (μ = 28). These decreased uncertainties imply that broad spectral coverage between the visible and the mid-infrared is an important tool for understanding the chemistry and composition of exoplanet atmospheres. This analysis suggests that the James Webb Space Telescope’s (JWST) Near-Infrared Spectrograph (NIRSpec) 0.6-5 μm prism spectroscopy mode, or similar wavelength coverage with possible future missions, will be an important resource for exoplanet atmospheric characterization.

  5. Novel Optical SETI Observations of Three Exoplanets

    Science.gov (United States)

    Welsh, Barry; Vallerga, John; Kotze, Marissa; Wheatley, Jonathan

    2018-01-01

    We report on observations of three nearby stars (Trappist-1, GJ 422 and Wolf 1061) that possess exoplanets located in their respective habitable zones to search for optical signals generated by an advanced alien civilization. Using the photon data collected with the Berkeley Visible Image Tube attached to the 10m Southern African Large Telescope, we searched for very high amplitude events in the pulse height distributions that statistically could only be produced by non-astrophysical means such as an optical laser used for communications purposes.Assuming that a purported ET civilization has access to an orbiting 10m mirror and an optical laser to send signals over the three sight-lines to Earth, we derive upper limits to the output power of their l lasers which might be used for inter-stellar communication.

  6. A sub-Mercury-sized exoplanet.

    Science.gov (United States)

    Barclay, Thomas; Rowe, Jason F; Lissauer, Jack J; Huber, Daniel; Fressin, François; Howell, Steve B; Bryson, Stephen T; Chaplin, William J; Désert, Jean-Michel; Lopez, Eric D; Marcy, Geoffrey W; Mullally, Fergal; Ragozzine, Darin; Torres, Guillermo; Adams, Elisabeth R; Agol, Eric; Barrado, David; Basu, Sarbani; Bedding, Timothy R; Buchhave, Lars A; Charbonneau, David; Christiansen, Jessie L; Christensen-Dalsgaard, Jørgen; Ciardi, David; Cochran, William D; Dupree, Andrea K; Elsworth, Yvonne; Everett, Mark; Fischer, Debra A; Ford, Eric B; Fortney, Jonathan J; Geary, John C; Haas, Michael R; Handberg, Rasmus; Hekker, Saskia; Henze, Christopher E; Horch, Elliott; Howard, Andrew W; Hunter, Roger C; Isaacson, Howard; Jenkins, Jon M; Karoff, Christoffer; Kawaler, Steven D; Kjeldsen, Hans; Klaus, Todd C; Latham, David W; Li, Jie; Lillo-Box, Jorge; Lund, Mikkel N; Lundkvist, Mia; Metcalfe, Travis S; Miglio, Andrea; Morris, Robert L; Quintana, Elisa V; Stello, Dennis; Smith, Jeffrey C; Still, Martin; Thompson, Susan E

    2013-02-28

    Since the discovery of the first exoplanets, it has been known that other planetary systems can look quite unlike our own. Until fairly recently, we have been able to probe only the upper range of the planet size distribution, and, since last year, to detect planets that are the size of Earth or somewhat smaller. Hitherto, no planets have been found that are smaller than those we see in the Solar System. Here we report a planet significantly smaller than Mercury. This tiny planet is the innermost of three that orbit the Sun-like host star, which we have designated Kepler-37. Owing to its extremely small size, similar to that of the Moon, and highly irradiated surface, the planet, Kepler-37b, is probably rocky with no atmosphere or water, similar to Mercury.

  7. PynPoint code for exoplanet imaging

    Science.gov (United States)

    Amara, A.; Quanz, S. P.; Akeret, J.

    2015-04-01

    We announce the public release of PynPoint, a Python package that we have developed for analysing exoplanet data taken with the angular differential imaging observing technique. In particular, PynPoint is designed to model the point spread function of the central star and to subtract its flux contribution to reveal nearby faint companion planets. The current version of the package does this correction by using a principal component analysis method to build a basis set for modelling the point spread function of the observations. We demonstrate the performance of the package by reanalysing publicly available data on the exoplanet β Pictoris b, which consists of close to 24,000 individual image frames. We show that PynPoint is able to analyse this typical data in roughly 1.5 min on a Mac Pro, when the number of images is reduced by co-adding in sets of 5. The main computational work, the calculation of the Singular-Value-Decomposition, parallelises well as a result of a reliance on the SciPy and NumPy packages. For this calculation the peak memory load is 6 GB, which can be run comfortably on most workstations. A simpler calculation, by co-adding over 50, takes 3 s with a peak memory usage of 600 MB. This can be performed easily on a laptop. In developing the package we have modularised the code so that we will be able to extend functionality in future releases, through the inclusion of more modules, without it affecting the users application programming interface. We distribute the PynPoint package under GPLv3 licence through the central PyPI server, and the documentation is available online (http://pynpoint.ethz.ch).

  8. Optimal Electric Field Estimation for Exoplanet Imaging Observatories in Space

    Data.gov (United States)

    National Aeronautics and Space Administration — The discovery and characterization of Earth-like planets around other stars is a high priority in modern astronomy. While over 900 confirmed exoplanets have been...

  9. Astronomy: Ozone-like layer in an exoplanet atmosphere

    Science.gov (United States)

    Heng, Kevin

    2017-08-01

    The nature of exoplanetary atmospheres is hotly debated. The thermal spectrum of an exoplanet called a hot Jupiter reveals the presence of an analogue of Earth's ozone layer, although its composition is unknown. See Letter p.58

  10. Habitable Exoplanet Imager: Optical Telescope Structural Design and Performance Prediction

    Science.gov (United States)

    Stahl, H. Philip

    2017-01-01

    Habitable Exoplanet Imaging Mission (HabEx) is a concept for a mission to directly image and characterize planetary systems around Sun-like stars. In addition to the search for life on Earth-like exoplanets, HabExwill enable a broad range of general astrophysics science enabled by 100 to 2500 nm spectral range and 3 x 3 arc-minute FOV. HabExis one of four mission concepts currently being studied for the 2020 Astrophysics Decadal Survey.

  11. Orbital misalignment of the Neptune-mass exoplanet GJ 436b with the spin of its cool star

    Science.gov (United States)

    Bourrier, Vincent; Lovis, Christophe; Beust, Hervé; Ehrenreich, David; Henry, Gregory W.; Astudillo-Defru, Nicola; Allart, Romain; Bonfils, Xavier; Ségransan, Damien; Delfosse, Xavier; Cegla, Heather M.; Wyttenbach, Aurélien; Heng, Kevin; Lavie, Baptiste; Pepe, Francesco

    2018-01-01

    The angle between the spin of a star and the orbital planes of its planets traces the history of the planetary system. Exoplanets orbiting close to cool stars are expected to be on circular, aligned orbits because of strong tidal interactions with the stellar convective envelope. Spin–orbit alignment can be measured when the planet transits its star, but such ground-based spectroscopic measurements are challenging for cool, slowly rotating stars. Here we report the three-dimensional characterization of the trajectory of an exoplanet around an M dwarf star, derived by mapping the spectrum of the stellar photosphere along the chord transited by the planet. We find that the eccentric orbit of the Neptune-mass exoplanet GJ 436b is nearly perpendicular to the stellar equator. Both eccentricity and misalignment, surprising around a cool star, can result from dynamical interactions (via Kozai migration) with a yet-undetected outer companion. This inward migration of GJ 436b could have triggered the atmospheric escape that now sustains its giant exosphere.

  12. On the feasibility of exomoon detection via exoplanet phase curve spectral contrast

    Science.gov (United States)

    Forgan, D. H.

    2017-09-01

    An exoplanet-exomoon system presents a superposition of phase curves to observers - the dominant component varies according to the planetary period, and the lesser component varies according to both the planetary and the lunar periods. If the spectra of the two bodies differ significantly, then it is likely that there are wavelength regimes where the contrast between the moon and planet is significantly larger. In principle, this effect could be used to isolate periodic oscillations in the combined phase curve. Being able to detect the exomoon component would allow a characterization of the exomoon radius, and potentially some crude atmospheric data. We run a parameter survey of combined exoplanet-exomoon phase curves, which shows that for most sets of planet-moon parameters, the lunar component of the phase curve is undetectable to current state-of-the-art transit observations. Even with future transit survey missions, measuring the exomoon signal will most likely require photometric precision of 10 parts per million or better. The only exception to this is if the moon is strongly tidally heated or in some way self-luminous. In this case, measurements of the phase curve at wavelengths greater than a few μm can be dominated by the lunar contribution. Instruments like the James Webb Space Telescope and its successors are needed to make this method feasible.

  13. Are "Habitable" Exoplanets Really Habitable? -A perspective from atmospheric loss

    Science.gov (United States)

    Dong, C.; Huang, Z.; Jin, M.; Lingam, M.; Ma, Y. J.; Toth, G.; van der Holst, B.; Airapetian, V.; Cohen, O.; Gombosi, T. I.

    2017-12-01

    In the last two decades, the field of exoplanets has witnessed a tremendous creative surge. Research in exoplanets now encompasses a wide range of fields ranging from astrophysics to heliophysics and atmospheric science. One of the primary objectives of studying exoplanets is to determine the criteria for habitability, and whether certain exoplanets meet these requirements. The classical definition of the Habitable Zone (HZ) is the region around a star where liquid water can exist on the planetary surface given sufficient atmospheric pressure. However, this definition largely ignores the impact of the stellar wind and stellar magnetic activity on the erosion of an exoplanet's atmosphere. Amongst the many factors that determine habitability, understanding the mechanisms of atmospheric loss is of paramount importance. We will discuss the impact of exoplanetary space weather on climate and habitability, which offers fresh insights concerning the habitability of exoplanets, especially those orbiting M-dwarfs, such as Proxima b and the TRAPPIST-1 system. For each case, we will demonstrate the importance of the exoplanetary space weather on atmospheric ion loss and habitability.

  14. Orbital Dynamics and Habitability of Exoplanets

    Science.gov (United States)

    Deitrick, Russell J.

    With the discoveries of thousands of extra-solar planets, a handful of which are terrestrial in size and located within the "habitable zone" of their host stars, the discovery of another instance of life in the universe seems increasingly within our grasp. Yet, a number of difficulties remain--with current and developing technologies, the full characterization of a terrestrial atmosphere and, hence, the detection of biosignatures will be extraordinarily difficult and expensive. Furthermore, observations will be ambiguous, as recent developments have shown that there is no "smoking gun" for the presence of life. Ultimately, the interpretation of observations will depend heavily upon our understanding of life's fundamental properties and the physical context of a planet's observed properties. This thesis is devoted to a development of the latter quantity, physical context, focusing on a topic oft-neglected in theoretical works of habitability: orbital dynamics. I show a number of ways in which orbital dynamics can affect the habitability of exoplanets. This work highlights the crucial role of stability, mutual inclinations, and resonances, demonstrating how these properties influence atmospheric states. Studies of exoplanetary systems tend to assume that the planets are coplanar, however, the large mutual inclination of the planets orbiting upsilon Andromedae suggests that coplanarity is not always a valid assumption. In my study of this system, I show that the large inclination between planets c and d and their large eccentricities lead to dramatic orbital variations. Though there is almost certainly no habitable planet orbiting upsilon And, the existence of this system demonstrates that we should expect other such dynamically "hot" planetary systems, some of which may contain potentially habitable planets. Minute variations in a planet's orbit can lead to changes in the global temperature, and indeed, these variations seem to be intimately connected to Earth

  15. The Ultraviolet Radiation Environment around M dwarf Exoplanet Host Stars

    Science.gov (United States)

    France, Kevin; Froning, Cynthia S.; Linsky, Jeffrey L.; Roberge, Aki; Stocke, John T.; Tian, Feng; Bushinsky, Rachel; Désert, Jean-Michel; Mauas, Pablo; Vieytes, Mariela; Walkowicz, Lucianne M.

    2013-02-01

    The spectral and temporal behavior of exoplanet host stars is a critical input to models of the chemistry and evolution of planetary atmospheres. Ultraviolet photons influence the atmospheric temperature profiles and production of potential biomarkers on Earth-like planets around these stars. At present, little observational or theoretical basis exists for understanding the ultraviolet spectra of M dwarfs, despite their critical importance to predicting and interpreting the spectra of potentially habitable planets as they are obtained in the coming decades. Using observations from the Hubble Space Telescope, we present a study of the UV radiation fields around nearby M dwarf planet hosts that covers both far-UV (FUV) and near-UV (NUV) wavelengths. The combined FUV+NUV spectra are publicly available in machine-readable format. We find that all six exoplanet host stars in our sample (GJ 581, GJ 876, GJ 436, GJ 832, GJ 667C, and GJ 1214) exhibit some level of chromospheric and transition region UV emission. No "UV-quiet" M dwarfs are observed. The bright stellar Lyα emission lines are reconstructed, and we find that the Lyα line fluxes comprise ~37%-75% of the total 1150-3100 Å flux from most M dwarfs; gsim103 times the solar value. We develop an empirical scaling relation between Lyα and Mg II emission, to be used when interstellar H I attenuation precludes the direct observation of Lyα. The intrinsic unreddened flux ratio is F(Lyα)/F(Mg II) = 10 ± 3. The F(FUV)/F(NUV) flux ratio, a driver for abiotic production of the suggested biomarkers O2 and O3, is shown to be ~0.5-3 for all M dwarfs in our sample, >103 times the solar ratio. For the four stars with moderate signal-to-noise Cosmic Origins Spectrograph time-resolved spectra, we find UV emission line variability with amplitudes of 50%-500% on 102-103 s timescales. This effect should be taken into account in future UV transiting planet studies, including searches for O3 on Earth-like planets. Finally, we

  16. PULSATION FREQUENCIES AND MODES OF GIANT EXOPLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Le Bihan, Bastien [Ecole Polytechnique, Palaiseau, France. (France); Burrows, Adam, E-mail: bastien.le-bihan@polytechnique.edu, E-mail: burrows@astro.princeton.edu [Department of Astrophysical Science, Peyton Hall Princeton University, Princeton, NJ 08544 (United States)

    2013-02-10

    We calculate the eigenfrequencies and eigenfunctions of the acoustic oscillations of giant exoplanets and explore the dependence of the characteristic frequency {nu}{sub 0} and the eigenfrequencies on several parameters: the planet mass, the planet radius, the core mass, and the heavy element mass fraction in the envelope. We provide the eigenvalues for degree l up to 8 and radial order n up to 12. For the selected values of l and n, we find that the pulsation eigenfrequencies depend strongly on the planet mass and radius, especially at high frequency. We quantify this dependence through the calculation of the characteristic frequency {nu}{sub 0} which gives us an estimate of the scale of the eigenvalue spectrum at high frequency. For the mass range 0.5 M{sub J} {<=} M{sub P} {<=} 15 M{sub J} , and fixing the planet radius to the Jovian value, we find that {nu}{sub 0} {approx} 164.0 Multiplication-Sign (M{sub P} /M{sub J} ){sup 0.48}{mu}Hz, where M{sub P} is the planet mass and M{sub J} is Jupiter's mass. For the radius range from 0.9 to 2.0 R{sub J} , and fixing the planet's mass to the Jovian value, we find that {nu}{sub 0} {approx} 164.0 Multiplication-Sign (R{sub P} /R{sub J} ){sup -2.09}{mu}Hz, where R{sub P} is the planet radius and R{sub J} is Jupiter's radius. We explore the influence of the presence of a dense core on the pulsation frequencies and on the characteristic frequency of giant exoplanets. We find that the presence of heavy elements in the envelope affects the eigenvalue distribution in ways similar to the presence of a dense core. Additionally, we apply our formalism to Jupiter and Saturn and find results consistent with both the observational data of Gaulme et al. and previous theoretical work.

  17. Model Atmospheres and Spectral Irradiance Library of the Exoplanet Host Stars Observed in the MUSCLES Survey

    Science.gov (United States)

    Linsky, Jeffrey

    2017-08-01

    We propose to compute state-of-the-art model atmospheres (photospheres, chromospheres, transition regions and coronae) of the 4 K and 7 M exoplanet host stars observed by HST in the MUSCLES Treasury Survey, the nearest host star Proxima Centauri, and TRAPPIST-1. Our semi-empirical models will fit theunique high-resolution panchromatic (X-ray to infrared) spectra of these stars in the MAST High-Level Science Products archive consisting of COS and STIS UV spectra and near-simultaneous Chandra, XMM-Newton, and ground-based observations. We will compute models with the fully tested SSRPM computer software incorporating 52 atoms and ions in full non-LTE (435,986 spectral lines) and the 20 most-abundant diatomic molecules (about 2 million lines). This code has successfully fit the panchromatic spectrum of the M1.5 V exoplanet host star GJ 832 (Fontenla et al. 2016), the first M star with such a detailed model, and solar spectra. Our models will (1) predict the unobservable extreme-UV spectra, (2) determine radiative energy losses and balancing heating rates throughout these atmospheres, (3) compute a stellar irradiance library needed to describe the radiation environment of potentially habitable exoplanets to be studied by TESS and JWST, and (4) in the long post-HST era when UV observations will not be possible, the stellar irradiance library will be a powerful tool for predicting the panchromatic spectra of host stars that have only limited spectral coverage, in particular no UV spectra. The stellar models and spectral irradiance library will be placed quickly in MAST.

  18. A continuum from clear to cloudy hot-Jupiter exoplanets without primordial water depletion.

    Science.gov (United States)

    Sing, David K; Fortney, Jonathan J; Nikolov, Nikolay; Wakeford, Hannah R; Kataria, Tiffany; Evans, Thomas M; Aigrain, Suzanne; Ballester, Gilda E; Burrows, Adam S; Deming, Drake; Désert, Jean-Michel; Gibson, Neale P; Henry, Gregory W; Huitson, Catherine M; Knutson, Heather A; des Etangs, Alain Lecavelier; Pont, Frederic; Showman, Adam P; Vidal-Madjar, Alfred; Williamson, Michael H; Wilson, Paul A

    2016-01-07

    Thousands of transiting exoplanets have been discovered, but spectral analysis of their atmospheres has so far been dominated by a small number of exoplanets and data spanning relatively narrow wavelength ranges (such as 1.1-1.7 micrometres). Recent studies show that some hot-Jupiter exoplanets have much weaker water absorption features in their near-infrared spectra than predicted. The low amplitude of water signatures could be explained by very low water abundances, which may be a sign that water was depleted in the protoplanetary disk at the planet's formation location, but it is unclear whether this level of depletion can actually occur. Alternatively, these weak signals could be the result of obscuration by clouds or hazes, as found in some optical spectra. Here we report results from a comparative study of ten hot Jupiters covering the wavelength range 0.3-5 micrometres, which allows us to resolve both the optical scattering and infrared molecular absorption spectroscopically. Our results reveal a diverse group of hot Jupiters that exhibit a continuum from clear to cloudy atmospheres. We find that the difference between the planetary radius measured at optical and infrared wavelengths is an effective metric for distinguishing different atmosphere types. The difference correlates with the spectral strength of water, so that strong water absorption lines are seen in clear-atmosphere planets and the weakest features are associated with clouds and hazes. This result strongly suggests that primordial water depletion during formation is unlikely and that clouds and hazes are the cause of weaker spectral signatures.

  19. TWINKLE - A Low Earth Orbit Visible and Infrared Exoplanet Spectroscopy Observatory

    Science.gov (United States)

    Tessenyi, M.; Savini, G.; Tinetti, G.; Tennyson, J.; Dhesi, M.; Joshua, M.

    2017-07-01

    Twinkle is a space mission designed for visible and near-IR spectroscopic observations of extrasolar planets. Twinkle's highly stable instrument will allow the photometric and spectroscopic observation of a wide range of planetary classes around different types of stars, with a focus on bright sources close to the ecliptic. The planets will be observed through transit and eclipse photometry and spectroscopy, as well as phase curves, eclipse mapping and multiple narrow-band time-series. The targets observed by Twinkle will be composed of known exoplanets mainly discovered by existing and upcoming ground surveys in our galaxy and will also feature new discoveries by space observatories (K2, GAIA, Cheops, TESS). Twinkle is a small satellite with a payload designed to perform high-quality astrophysical observations while adapting to the design of an existing Low Earth Orbit commercial satellite platform. The SSTL-300 bus, to be launched into a low-Earth sun-synchronous polar orbit by 2019, will carry a half-meter class telescope with two instruments (visible and near-IR spectrographs - between 0.4 and 4.5μm - with resolving power R˜300 at the lower end of the wavelength scale) using mostly flight proven spacecraft systems designed by Surrey Satellite Technology Ltd and a combination of high TRL instrumentation and a few lower TRL elements built by a consortium of UK institutes. The Twinkle design will enable the observation of the chemical composition and weather of at least 100 exoplanets in the Milky Way, including super-Earths (rocky planets 1-10 times the mass of Earth), Neptunes, sub-Neptunes and gas giants like Jupiter. It will also allow the follow-up photometric observations of 1000+ exoplanets in the visible and infrared, as well as observations of Solar system objects, bright stars and disks.

  20. Exoplanet Classification and Yield Estimates for Direct Imaging Missions

    Science.gov (United States)

    Kopparapu, Ravi Kumar; Hébrard, Eric; Belikov, Rus; Batalha, Natalie M.; Mulders, Gijs D.; Stark, Chris; Teal, Dillon; Domagal-Goldman, Shawn; Mandell, Avi

    2018-04-01

    Future NASA concept missions that are currently under study, like the Habitable Exoplanet Imaging Mission (HabEx) and the Large Ultra-violet Optical Infra Red Surveyor, could discover a large diversity of exoplanets. We propose here a classification scheme that distinguishes exoplanets into different categories based on their size and incident stellar flux, for the purpose of providing the expected number of exoplanets observed (yield) with direct imaging missions. The boundaries of this classification can be computed using the known chemical behavior of gases and condensates at different pressures and temperatures in a planetary atmosphere. In this study, we initially focus on condensation curves for sphalerite ZnS, {{{H}}}2{{O}}, {CO}}2, and {CH}}4. The order in which these species condense in a planetary atmosphere define the boundaries between different classes of planets. Broadly, the planets are divided into rocky planets (0.5–1.0 R ⊕), super-Earths (1.0–1.75 R ⊕), sub-Neptunes (1.75–3.5 R ⊕), sub-Jovians (3.5–6.0 R ⊕), and Jovians (6–14.3 R ⊕) based on their planet sizes, and “hot,” “warm,” and “cold” based on the incident stellar flux. We then calculate planet occurrence rates within these boundaries for different kinds of exoplanets, η planet, using the community coordinated results of NASA’s Exoplanet Program Analysis Group’s Science Analysis Group-13 (SAG-13). These occurrence rate estimates are in turn used to estimate the expected exoplanet yields for direct imaging missions of different telescope diameters.

  1. Probing exoplanet clouds with optical phase curves.

    Science.gov (United States)

    Muñoz, Antonio García; Isaak, Kate G

    2015-11-03

    Kepler-7b is to date the only exoplanet for which clouds have been inferred from the optical phase curve--from visible-wavelength whole-disk brightness measurements as a function of orbital phase. Added to this, the fact that the phase curve appears dominated by reflected starlight makes this close-in giant planet a unique study case. Here we investigate the information on coverage and optical properties of the planet clouds contained in the measured phase curve. We generate cloud maps of Kepler-7b and use a multiple-scattering approach to create synthetic phase curves, thus connecting postulated clouds with measurements. We show that optical phase curves can help constrain the composition and size of the cloud particles. Indeed, model fitting for Kepler-7b requires poorly absorbing particles that scatter with low-to-moderate anisotropic efficiency, conclusions consistent with condensates of silicates, perovskite, and silica of submicron radii. We also show that we are limited in our ability to pin down the extent and location of the clouds. These considerations are relevant to the interpretation of optical phase curves with general circulation models. Finally, we estimate that the spherical albedo of Kepler-7b over the Kepler passband is in the range 0.4-0.5.

  2. The Habitable Exoplanet Imaging Mission (HabEx)

    Science.gov (United States)

    Mennesson, B.

    2017-12-01

    The Habitable-Exoplanet Imaging Mission (HabEx) is a candidate flagship mission being studied by NASA and the astrophysics community in preparation for the 2020 Decadal Survey. The HabEx mission concept is a large ( 4 to 6.5m) diffraction-limited optical space telescope, providing unprecedented resolution and contrast in the optical, with likely extensions into the near UV and near infrared domains. One of the primary goals of HabEx is to answer fundamental questions in exoplanet science, searching for and characterizing potentially habitable worlds, providing the first complete "family portraits" of planets around our nearest Sun-like neighbors and placing the solar system in the context of a diverse set of exoplanets. We report here on our team's early efforts in defining a scientifically compelling HabEx mission that is technologically executable, and timely for the next decade. In particular, we present preliminary architectures trade study results, quantifying technical requirements and predicting scientific outcome for a small number of design reference missions. We describe here our currently favorite "hybrid" architecture and its expected capabilities in terms of low resolution (R= 70 to 140) reflected light spectroscopic measurements and orbit determination. Results are shown for different types of exoplanets, including potentially habitable exoplanets located within the snow line of nearby main sequence stars. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  3. High Contrast Imaging of Exoplanets and Exoplanetary Systems with JWST

    Science.gov (United States)

    Hinkley, Sasha; Skemer, Andrew; Biller, Beth; Baraffe, I.; Bonnefoy, M.; Bowler, B.; Carter, A.; Chen, C.; Choquet, E.; Currie, T.; Danielski, C.; Fortney, J.; Grady, C.; Greenbaum, A.; Hines, D.; Janson, M.; Kalas, P.; Kennedy, G.; Kraus, A.; Lagrange, A.; Liu, M.; Marley, M.; Marois, C.; Matthews, B.; Mawet, D.; Metchev, S.; Meyer, M.; Millar-Blanchaer, M.; Perrin, M.; Pueyo, L.; Quanz, S.; Rameau, J.; Rodigas, T.; Sallum, S.; Sargent, B.; Schlieder, J.; Schneider, G.; Stapelfeldt, K.; Tremblin, P.; Vigan, A.; Ygouf, M.

    2017-11-01

    JWST will transform our ability to characterize directly imaged planets and circumstellar debris disks, including the first spectroscopic characterization of directly imaged exoplanets at wavelengths beyond 5 microns, providing a powerful diagnostic of cloud particle properties, atmospheric structure, and composition. To lay the groundwork for these science goals, we propose a 39-hour ERS program to rapidly establish optimal strategies for JWST high contrast imaging. We will acquire: a) coronagraphic imaging of a newly discovered exoplanet companion, and a well-studied circumstellar debris disk with NIRCam & MIRI; b) spectroscopy of a wide separation planetary mass companion with NIRSPEC & MIRI; and c) deep aperture masking interferometry with NIRISS. Our primary goals are to: 1) generate representative datasets in modes to be commonly used by the exoplanet and disk imaging communities; 2) deliver science enabling products to empower a broad user base to develop successful future investigations; and 3) carry out breakthrough science by characterizing exoplanets for the first time over their full spectral range from 2-28 microns, and debris disk spectrophotometry out to 15 microns sampling the 3 micron water ice feature. Our team represents the majority of the community dedicated to exoplanet and disk imaging and has decades of experience with high contrast imaging algorithms and pipelines. We have developed a collaboration management plan and several organized working groups to ensure we can rapidly and effectively deliver high quality Science Enabling Products to the community.

  4. Twinkle Twinkle Little Star - Speckle Imaging for Exoplanet Characterization

    Science.gov (United States)

    Howell, Steve B.; Scott, Nic; Horch, Elliott

    2016-06-01

    The NASA K2 mission is finding many high-value exoplanets and world-wide follow-up is ensuing. The NASA TESS mission will soon be launched, requiring additional ground-based observations as well. As a part of the NASA-NSFNN-EXPLORE program to enable exoplanet research, our group is building two new speckle interferometry cameras for the Kitt Peak WIYN 3.5-m telescope and the Gemini-N 8-m telescope. Modeled after the successful DSSI visitor instrument that has been used at these telescopes for many years, speckle observations provide the highest resolution images available today from any ground- or space-based single telescope. They are the premier method through which small, rocky exoplanets can be validated. Available for public use in early 2017, WIYNSPKL and GEMSPKL will obtain simultaneous images in two filters with fast EMCCD readout, "speckle" and “wide-field” imaging modes, and user support for proposal writing, observing, and data reduction. We describe the new cameras, their design, and their benefits for exoplanet follow-up, characterization, and validation. Funding for this project comes from the NASA Exoplanet Exploration Program and NASA HQ.

  5. INFLUENCE OF STELLAR FLARES ON THE CHEMICAL COMPOSITION OF EXOPLANETS AND SPECTRA

    Energy Technology Data Exchange (ETDEWEB)

    Venot, Olivia; Decin, Leen [Instituut voor Sterrenkunde, Katholieke Universiteit Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Rocchetto, Marco [University College London, Department of Physics and Astronomy, Gower Street, London WC1E 6BT (United Kingdom); Carl, Shaun; Hashim, Aysha Roshni, E-mail: olivia.venot@kuleuven.be [Department of Quantum Chemistry and Physical Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200F, B-3001 Leuven (Belgium)

    2016-10-20

    associated with an atmospheric pressure of 1 bar, which can lead to variations in planetary spectra (up to 150 ppm) if performed during transit. We find that each exoplanet has a post-flare steady-state composition that is significantly different from the pre-flare steady-state. We predict that these variations could be detectable with both current and future spectroscopic instruments, if sufficiently high signal-to-noise spectra are obtained.

  6. Broadband polarimetry of exoplanets : modelling signals of surfaces, hazes and clouds

    NARCIS (Netherlands)

    Karalidi, Theodora

    2013-01-01

    It is less than 20 years since astronomers discovered the first exoplanet orbiting a Sun-like star. In this short period more than 770 confirmed exoplanets have been detected. With so many exoplanets the next step is their characterization. What is their atmosphere made of? Does it contain water

  7. Water vapour absorption in the clear atmosphere of a Neptune-sized exoplanet.

    Science.gov (United States)

    Fraine, Jonathan; Deming, Drake; Benneke, Bjorn; Knutson, Heather; Jordán, Andrés; Espinoza, Néstor; Madhusudhan, Nikku; Wilkins, Ashlee; Todorov, Kamen

    2014-09-25

    Transmission spectroscopy has so far detected atomic and molecular absorption in Jupiter-sized exoplanets, but intense efforts to measure molecular absorption in the atmospheres of smaller (Neptune-sized) planets during transits have revealed only featureless spectra. From this it was concluded that the majority of small, warm planets evolve to sustain atmospheres with high mean molecular weights (little hydrogen), opaque clouds or scattering hazes, reducing our ability to observe the composition of these atmospheres. Here we report observations of the transmission spectrum of the exoplanet HAT-P-11b (which has a radius about four times that of Earth) from the optical wavelength range to the infrared. We detected water vapour absorption at a wavelength of 1.4 micrometres. The amplitude of the water absorption (approximately 250 parts per million) indicates that the planetary atmosphere is predominantly clear down to an altitude corresponding to about 1 millibar, and sufficiently rich in hydrogen to have a large scale height (over which the atmospheric pressure varies by a factor of e). The spectrum is indicative of a planetary atmosphere in which the abundance of heavy elements is no greater than about 700 times the solar value. This is in good agreement with the core-accretion theory of planet formation, in which a gas giant planet acquires its atmosphere by accreting hydrogen-rich gas directly from the protoplanetary nebula onto a large rocky or icy core.

  8. UTILITARIAN OPACITY MODEL FOR AGGREGATE PARTICLES IN PROTOPLANETARY NEBULAE AND EXOPLANET ATMOSPHERES

    International Nuclear Information System (INIS)

    Cuzzi, Jeffrey N.; Davis, Sanford S.; Estrada, Paul R.

    2014-01-01

    As small solid grains grow into larger ones in protoplanetary nebulae, or in the cloudy atmospheres of exoplanets, they generally form porous aggregates rather than solid spheres. A number of previous studies have used highly sophisticated schemes to calculate opacity models for irregular, porous particles with sizes much smaller than a wavelength. However, mere growth itself can affect the opacity of the medium in far more significant ways than the detailed compositional and/or structural differences between grain constituents once aggregate particle sizes exceed the relevant wavelengths. This physics is not new; our goal here is to provide a model that provides physical insight and is simple to use in the increasing number of protoplanetary nebula evolution and exoplanet atmosphere models appearing in recent years, yet quantitatively captures the main radiative properties of mixtures of particles of arbitrary size, porosity, and composition. The model is a simple combination of effective medium theory with small-particle closed-form expressions, combined with suitably chosen transitions to geometric optics behavior. Calculations of wavelength-dependent emission and Rosseland mean opacity are shown and compared with Mie theory. The model's fidelity is very good in all comparisons we have made except in cases involving pure metal particles or monochromatic opacities for solid particles with sizes comparable to the wavelength

  9. Using Final Kepler Catalog Completeness and Reliability Products in Exoplanet Occurrence Rate Estimates

    Science.gov (United States)

    Bryson, Steve; Burke, Christopher; Batalha, Natalie Marie; Thompson, Susan E.; Coughlin, Jeffrey; Christiansen, Jessie; Mullally, Fergal; Shabram, Megan; Kepler Team

    2018-01-01

    Burke et. al. 2015 presented an exoplanet occurrence rate estimate based on the Q1-Q16 Kepler Planet Candidate catalog. That catalog featured uniform planet candidate vetting and analytic approximations to the detection completeness (the fraction of true planets that would be detected) for each target star. We present an extension of that occurrence rate work using the final DR25 Kepler Planet Candidate catalog products, which uses higher-accuracy detection completeness data for each target star, and adds estimates of vetting completeness (the fraction of detected true planets correctly identified as planet candidates) and vetting reliability (the fraction of planet candidates that are true planets). These completeness and reliability products are based on synthetic manipulations of Kepler data, including transit injection, data scrambling, and inversion. We describe how each component is incorporated into the occurrence rate estimate, and how they impact the occurrence rate estimate both individually and in combination. We discuss the strengths and weaknesses of the completeness and reliability products and how they impact our confidence in the occurrence rate values uncertainties. This work is an example of how the community can use the DR25 completeness and reliability products, which are publicly available at the NASA Exoplanet Archive (http://exoplanetarchive.ipac.caltech.edu) and the Mikulski Archive for Space Telescopes (http://archive.stsci.edu/kepler).

  10. System Geometries and Transit/Eclipse Probabilities

    Directory of Open Access Journals (Sweden)

    Howard A.

    2011-02-01

    Full Text Available Transiting exoplanets provide access to data to study the mass-radius relation and internal structure of extrasolar planets. Long-period transiting planets allow insight into planetary environments similar to the Solar System where, in contrast to hot Jupiters, planets are not constantly exposed to the intense radiation of their parent stars. Observations of secondary eclipses additionally permit studies of exoplanet temperatures and large-scale exo-atmospheric properties. We show how transit and eclipse probabilities are related to planet-star system geometries, particularly for long-period, eccentric orbits. The resulting target selection and observational strategies represent the principal ingredients of our photometric survey of known radial-velocity planets with the aim of detecting transit signatures (TERMS.

  11. Predicted Exoplanet Yields for the HabEx Mission Concept

    Science.gov (United States)

    Stark, Christopher; Mennesson, Bertrand; HabEx STDT

    2018-01-01

    The Habitable Exoplanet Imaging Mission (HabEx) is a concept for a flagship mission to directly image and characterize extrasolar planets around nearby stars and to enable a broad range of general astrophysics. The HabEx Science and Technology Definition Team (STDT) is currently studying two architectures for HabEx. Here we summarize the exoplanet science yield of Architecture A, a 4 m monolithic off-axis telescope that uses a vortex coronagraph and a 72m external starshade occulter. We summarize the instruments' capabilities, present science goals and observation strategies, and discuss astrophysical assumptions. Using a yield optimization code, we predict the yield of potentially Earth-like extrasolar planets that could be detected, characterized, and searched for signs of habitability and/or life by HabEx. We demonstrate that HabEx could also detect and characterize a wide variety of exoplanets while searching for potentially Earth-like planets.

  12. WFIRST: Exoplanet Target Selection and Scheduling with Greedy Optimization

    Science.gov (United States)

    Keithly, Dean; Garrett, Daniel; Delacroix, Christian; Savransky, Dmitry

    2018-01-01

    We present target selection and scheduling algorithms for missions with direct imaging of exoplanets, and the Wide Field Infrared Survey Telescope (WFIRST) in particular, which will be equipped with a coronagraphic instrument (CGI). Optimal scheduling of CGI targets can maximize the expected value of directly imaged exoplanets (completeness). Using target completeness as a reward metric and integration time plus overhead time as a cost metric, we can maximize the sum completeness for a mission with a fixed duration. We optimize over these metrics to create a list of target stars using a greedy optimization algorithm based off altruistic yield optimization (AYO) under ideal conditions. We simulate full missions using EXOSIMS by observing targets in this list for their predetermined integration times. In this poster, we report the theoretical maximum sum completeness, mean number of detected exoplanets from Monte Carlo simulations, and the ideal expected value of the simulated missions.

  13. The future of spectroscopic life detection on exoplanets

    Science.gov (United States)

    Seager, Sara

    2014-01-01

    The discovery and characterization of exoplanets have the potential to offer the world one of the most impactful findings ever in the history of astronomy—the identification of life beyond Earth. Life can be inferred by the presence of atmospheric biosignature gases—gases produced by life that can accumulate to detectable levels in an exoplanet atmosphere. Detection will be made by remote sensing by sophisticated space telescopes. The conviction that biosignature gases will actually be detected in the future is moderated by lessons learned from the dozens of exoplanet atmospheres studied in last decade, namely the difficulty in robustly identifying molecules, the possible interference of clouds, and the permanent limitations from a spectrum of spatially unresolved and globally mixed gases without direct surface observations. The vision for the path to assess the presence of life beyond Earth is being established. PMID:25092345

  14. Tidal Heating in Multilayered Terrestrial Exoplanets

    Science.gov (United States)

    Henning, Wade G.; Hurford, Terry

    2014-01-01

    The internal pattern and overall magnitude of tidal heating for spin-synchronous terrestrial exoplanets from 1 to 2.5 R(sub E) is investigated using a propagator matrix method for a variety of layer structures. Particular attention is paid to ice-silicate hybrid super-Earths, where a significant ice mantle is modeled to rest atop an iron-silicate core, and may or may not contain a liquid water ocean. We find multilayer modeling often increases tidal dissipation relative to a homogeneous model, across multiple orbital periods, due to the ability to include smaller volume low viscosity regions, and the added flexure allowed by liquid layers. Gradations in parameters with depth are explored, such as allowed by the Preliminary Earth Reference Model. For ice-silicate hybrid worlds, dramatically greater dissipation is possible beyond the case of a silicate mantle only, allowing non-negligible tidal activity to extend to greater orbital periods than previously predicted. Surface patterns of tidal heating are found to potentially be useful for distinguishing internal structure. The influence of ice mantle depth and water ocean size and position are shown for a range of forcing frequencies. Rates of orbital circularization are found to be 10-100 times faster than standard predictions for Earth-analog planets when interiors are moderately warmer than the modern Earth, as well as for a diverse range of ice-silicate hybrid super-Earths. Circularization rates are shown to be significantly longer for planets with layers equivalent to an ocean-free modern Earth, as well as for planets with high fractions of either ice or silicate melting.

  15. Tide, Ocean and Climate on Exoplanets

    Science.gov (United States)

    Si, Y.; Yang, J.

    2017-12-01

    On Earth, tide is a main part of the driving force for the deep ocean overturning circulation. For habitable planets around low-mass stars, the tidal force is expected to be much stronger than that on Earth, due to the fact that the habitable zone is very close to the host stars and that tide force is inversely proportional to the orbital distance cubed. The deep ocean overturning circulation on this type of planets is therefore expected to be much stronger than that on Earth, if all else being equal. We test this hypothesis using a fully coupled atmosphere-ocean model, the Community Climate System Model version 3 (CCSM3). Our results show that the intensity of oceanic meridional overturning circulation (MOC) is approximately proportional to κ1/3, where κ is the mixing coefficient across density interfaces and it is mainly determined by the strength of the tidal force. As a result of the enhanced MOC, more heat is transported to dark regions and sea ice melts completely there, and meanwhile more heat is mixed from the surface to the deep ocean and thereby the entire ocean becomes much warmer (Fig. 1). A positive cloud feedback further warms the global ocean and atmosphere. These results imply that one planet with a stronger tidal force will likely enter a globally ice-covered snowball state at a lower stellar flux and enter a moist greenhouse or runaway greenhouse state at also a lower stellar flux, meaning that the tidal force acts to push the habitable zone outward. This study significantly improves our understanding of the possible coupling between planetary orbit, ocean, climate, and habitability on exoplanets.

  16. Tidal heating in multilayered terrestrial exoplanets

    International Nuclear Information System (INIS)

    Henning, Wade G.; Hurford, Terry

    2014-01-01

    The internal pattern and overall magnitude of tidal heating for spin-synchronous terrestrial exoplanets from 1 to 2.5 R E is investigated using a propagator matrix method for a variety of layer structures. Particular attention is paid to ice-silicate hybrid super-Earths, where a significant ice mantle is modeled to rest atop an iron-silicate core, and may or may not contain a liquid water ocean. We find multilayer modeling often increases tidal dissipation relative to a homogeneous model, across multiple orbital periods, due to the ability to include smaller volume low viscosity regions, and the added flexure allowed by liquid layers. Gradations in parameters with depth are explored, such as allowed by the Preliminary Earth Reference Model. For ice-silicate hybrid worlds, dramatically greater dissipation is possible beyond the case of a silicate mantle only, allowing non-negligible tidal activity to extend to greater orbital periods than previously predicted. Surface patterns of tidal heating are found to potentially be useful for distinguishing internal structure. The influence of ice mantle depth and water ocean size and position are shown for a range of forcing frequencies. Rates of orbital circularization are found to be 10-100 times faster than standard predictions for Earth-analog planets when interiors are moderately warmer than the modern Earth, as well as for a diverse range of ice-silicate hybrid super-Earths. Circularization rates are shown to be significantly longer for planets with layers equivalent to an ocean-free modern Earth, as well as for planets with high fractions of either ice or silicate melting.

  17. THERMODYNAMIC LIMITS ON MAGNETODYNAMOS IN ROCKY EXOPLANETS

    International Nuclear Information System (INIS)

    Gaidos, Eric; Conrad, Clinton P.; Manga, Michael; Hernlund, John

    2010-01-01

    To ascertain whether magnetic dynamos operate in rocky exoplanets more massive or hotter than the Earth, we developed a parametric model of a differentiated rocky planet and its thermal evolution. Our model reproduces the established properties of Earth's interior and magnetic field at the present time. When applied to Venus, assuming that planet lacks plate tectonics and has a dehydrated mantle with an elevated viscosity, the model shows that the dynamo shuts down or never operated. Our model predicts that at a fixed planet mass, dynamo history is sensitive to core size, but not to the initial inventory of long-lived, heat-producing radionuclides. It predicts that rocky planets larger than 2.5 Earth masses will not develop inner cores because the temperature-pressure slope of the iron solidus becomes flatter than that of the core adiabat. Instead, iron 'snow' will condense near or at the top of these cores, and the net transfer of latent heat upward will suppress convection and a dynamo. More massive planets can have anemic dynamos due to core cooling, but only if they have mobile lids (plate tectonics). The lifetime of these dynamos is shorter with increasing planet mass but longer with higher surface temperature. Massive Venus-like planets with stagnant lids and more viscous mantles will lack dynamos altogether. We identify two alternative sources of magnetic fields on rocky planets: eddy currents induced in the hot or molten upper layers of planets on very short-period orbits, and dynamos in the ionic conducting layers of 'ocean' planets with ∼10% mass in an upper mantle of water (ice).

  18. Habitable Exoplanet Imager Optical-Mechanical Design and Analysis

    Science.gov (United States)

    Gaskins, Jonathan; Stahl, H. Philip

    2017-01-01

    The Habitable Exoplanet Imager (HabEx) is a space telescope currently in development whose mission includes finding and spectroscopically characterizing exoplanets. Effective high-contrast imaging requires tight stability requirements of the mirrors to prevent issues such as line of sight and wavefront errors. PATRAN and NASTRAN were used to model updates in the design of the HabEx telescope and find how those updates affected stability. Most of the structural modifications increased first mode frequencies and improved line of sight errors. These studies will be used to help define the baseline HabEx telescope design.

  19. Objev nové ELL proměnné hvězdy v souhvězdí Kentaura a možnost detekce nových exoplanet pomocí dalekohledu FRAM

    Czech Academy of Sciences Publication Activity Database

    Pintr, Pavel; Vápenka, David; Mašek, M.

    2015-01-01

    Roč. 60, č. 2 (2015), s. 65-68 ISSN 0447-6441 R&D Projects: GA MŠk(CZ) LO1206; GA ČR GA13-10365S Institutional support: RVO:61389021 Keywords : variable star * light curve * FRAM * period analysis * exoplanet transit Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics http://jmo.fzu.cz/

  20. Automated Astrophysical False Positive Analysis of Transiting Planet Signals

    Science.gov (United States)

    Morton, Timothy

    2015-08-01

    Beginning with Kepler, but continuing with K2 and TESS, transiting planet candidates are now found at a much faster rate than follow-up observations can be obtained. Thus, distinguishing true planet candidates from astrophysical false positives has become primarily a statistical exercise. I will describe a new publicly available open-source Python package for analyzing the astrophysical false positive probabilities of transiting exoplanet signals. In addition, I will present results of applying this analysis to both Kepler and K2 planet candidates, resulting in the probabilistic validation of thousands of exoplanets, as well as identifying many likely false positives.

  1. JUPITER AS AN EXOPLANET: UV TO NIR TRANSMISSION SPECTRUM REVEALS HAZES, A Na LAYER, AND POSSIBLY STRATOSPHERIC H{sub 2}O-ICE CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Montañés-Rodríguez, Pilar; González-Merino, B.; Pallé, E. [Instituto de Astrofísica de Canarias, C/Vía Láctea s/n, E-38200 La Laguna (Spain); López-Puertas, Manuel [Departamento de Astrofísica, Universidad de La Laguna, Av., Astrofísico Francisco Sánchez, s/n, E-38206 La Laguna (Spain); García-Melendo, E., E-mail: pmr@iac.es [Instituto de Astrofísica de Andalucía (CSIC), Glorieta de la Astronomía s/n, E-18080 Granada (Spain)

    2015-03-01

    Currently, the analysis of transmission spectra is the most successful technique to probe the chemical composition of exoplanet atmospheres. However, the accuracy of these measurements is constrained by observational limitations and the diversity of possible atmospheric compositions. Here, we show the UV–VIS–IR transmission spectrum of Jupiter as if it were a transiting exoplanet, obtained by observing one of its satellites, Ganymede, while passing through Jupiter’s shadow, i.e., during a solar eclipse from Ganymede. The spectrum shows strong extinction due to the presence of clouds (aerosols) and haze in the atmosphere and strong absorption features from CH{sub 4}. More interestingly, the comparison with radiative transfer models reveals a spectral signature, which we attribute here to a Jupiter stratospheric layer of crystalline H{sub 2}O ice. The atomic transitions of Na are also present. These results are relevant for the modeling and interpretation of giant transiting exoplanets. They also open a new technique to explore the atmospheric composition of the upper layers of Jupiter’s atmosphere.

  2. 1st Advanced School on Exoplanetary Science : Methods of Detecting Exoplanets

    CERN Document Server

    Mancini, Luigi; Sozzetti, Alessandro

    2016-01-01

    In this book, renowned scientists describe the various techniques used to detect and characterize extrasolar planets, or exoplanets, with a view to unveiling the “tricks of the trade” of planet detection to a wider community. The radial velocity method, transit method, microlensing method, and direct imaging method are all clearly explained, drawing attention to their advantages and limitations and highlighting the complementary roles that they can play in improving the characterization of exoplanets’ physical and orbital properties. By probing the planetary frequency at different distances and in different conditions, these techniques are helping astrophysicists to reconstruct the scenarios of planetary formation and to give robust scientific answers to questions regarding the frequency of potentially habitable worlds. Twenty years have passed since the discovery of a Jupiter-mass companion to a main sequence star other than the Sun, heralding the birth of extrasolar planetary research; this book fully...

  3. DETECTING INDUSTRIAL POLLUTION IN THE ATMOSPHERES OF EARTH-LIKE EXOPLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Henry W. [Harvard College, Cambridge, MA 02138 (United States); Abad, Gonzalo Gonzalez; Loeb, Abraham, E-mail: henrylin@college.harvard.edu, E-mail: ggonzalezabad@cfa.harvard.edu, E-mail: aloeb@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States)

    2014-09-01

    Detecting biosignatures, such as molecular oxygen in combination with a reducing gas, in the atmospheres of transiting exoplanets has been a major focus in the search for alien life. We point out that in addition to these generic indicators, anthropogenic pollution could be used as a novel biosignature for intelligent life. To this end, we identify pollutants in the Earth's atmosphere that have significant absorption features in the spectral range covered by the James Webb Space Telescope. We focus on tetrafluoromethane (CF{sub 4}) and trichlorofluoromethane (CCl{sub 3}F), which are the easiest to detect chlorofluorocarbons (CFCs) produced by anthropogenic activity. We estimate that ∼1.2 days (∼1.7 days) of total integration time will be sufficient to detect or constrain the concentration of CCl{sub 3}F (CF{sub 4}) to ∼10 times the current terrestrial level.

  4. Detecting Industrial Pollution in the Atmospheres of Earth-like Exoplanets

    Science.gov (United States)

    Lin, Henry W.; Gonzalez Abad, Gonzalo; Loeb, Abraham

    2014-09-01

    Detecting biosignatures, such as molecular oxygen in combination with a reducing gas, in the atmospheres of transiting exoplanets has been a major focus in the search for alien life. We point out that in addition to these generic indicators, anthropogenic pollution could be used as a novel biosignature for intelligent life. To this end, we identify pollutants in the Earth's atmosphere that have significant absorption features in the spectral range covered by the James Webb Space Telescope. We focus on tetrafluoromethane (CF4) and trichlorofluoromethane (CCl3F), which are the easiest to detect chlorofluorocarbons (CFCs) produced by anthropogenic activity. We estimate that ~1.2 days (~1.7 days) of total integration time will be sufficient to detect or constrain the concentration of CCl3F (CF4) to ~10 times the current terrestrial level.

  5. CLIMATE INSTABILITY ON TIDALLY LOCKED EXOPLANETS

    International Nuclear Information System (INIS)

    Kite, Edwin S.; Manga, Michael; Gaidos, Eric

    2011-01-01

    Feedbacks that can destabilize the climates of synchronously rotating rocky planets may arise on planets with strong day-night surface temperature contrasts. Earth-like habitable planets maintain stable surface liquid water over geologic time. This requires equilibrium between the temperature-dependent rate of greenhouse-gas consumption by weathering, and greenhouse-gas resupply by other processes. Detected small-radius exoplanets, and anticipated M-dwarf habitable-zone rocky planets, are expected to be in synchronous rotation (tidally locked). In this paper, we investigate two hypothetical feedbacks that can destabilize climate on planets in synchronous rotation. (1) If small changes in pressure alter the temperature distribution across a planet's surface such that the weathering rate goes up when the pressure goes down, a runaway positive feedback occurs involving increasing weathering rate near the substellar point, decreasing pressure, and increasing substellar surface temperature. We call this feedback enhanced substellar weathering instability (ESWI). (2) When decreases in pressure increase the fraction of surface area above the melting point (through reduced advective cooling of the substellar point), and the corresponding increase in volume of liquid causes net dissolution of the atmosphere, a further decrease in pressure will occur. This substellar dissolution feedback can also cause a runaway climate shift. We use an idealized energy balance model to map out the conditions under which these instabilities may occur. In this simplified model, the weathering runaway can shrink the habitable zone and cause geologically rapid 10 3 -fold atmospheric pressure shifts within the habitable zone. Mars may have undergone a weathering runaway in the past. Substellar dissolution is usually a negative feedback or weak positive feedback on changes in atmospheric pressure. It can only cause runaway changes for small, deep oceans and highly soluble atmospheric gases. Both

  6. Physical and Chemical Toeholds for Exoplanet Bioastronomy

    Science.gov (United States)

    Hoehler, Tori

    2013-01-01

    If a search for exoplanet life were mounted today, the likely focus would be to detect oxygen (or ozone) in the atmosphere of a water-bearing rocky planet orbiting roughly 1AU from a G-type star. This appropriately conservative and practical default is necessary in large part because biological input on the question of where and how to look for life has progressed little beyond a purely empirical reliance on the example of terrestrial biology. However, fundamental physical and chemical considerations may impose significant yet universal constraints on biological potential. The liquid water + oxygen paradigm will be considered as an example, with a focus on the question, is liquid water a prerequisite for life? . Life requires a solvent to mediate interactions among biological molecules. A key class of these interactions is molecular recognition with high specificity, which is essential for high fidelity catalysis and (especially) information processing. For example, to correctly reproduce a string consisting of 600,000 units of information (e.g., 600 kilobases, equivalent to the genome of the smallest free living terrestrial organisms) with a 90% success rate requires specificity greater than 10(exp 7):1 for the target molecule vs. incorrect alternatives. Such specificity requires (i) that the correct molecular association is energetically stabilized by at least 40 kJ/mol relative to alternatives, and (ii) that the system is able to sample among possible states (alternative molecular associations) rapidly enough to allow the system to fall under thermodynamic control and express the energetic stabilization. We argue that electrostatic interactions are required to confer the necessary energetic stabilization vs. a large library of molecular alternatives, and that a solvent with polarity and dielectric properties comparable to water is required for the system to sample among possible states and express thermodynamic control. Electrostatic associations can be made in

  7. CLIMATE INSTABILITY ON TIDALLY LOCKED EXOPLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Kite, Edwin S.; Manga, Michael [Department of Earth and Planetary Science, University of California at Berkeley, CA 94720 (United States); Gaidos, Eric, E-mail: edwin.kite@gmail.com [Department of Geology and Geophysics, University of Hawaii at Manoa, Honolulu, HI 96822 (United States)

    2011-12-10

    Feedbacks that can destabilize the climates of synchronously rotating rocky planets may arise on planets with strong day-night surface temperature contrasts. Earth-like habitable planets maintain stable surface liquid water over geologic time. This requires equilibrium between the temperature-dependent rate of greenhouse-gas consumption by weathering, and greenhouse-gas resupply by other processes. Detected small-radius exoplanets, and anticipated M-dwarf habitable-zone rocky planets, are expected to be in synchronous rotation (tidally locked). In this paper, we investigate two hypothetical feedbacks that can destabilize climate on planets in synchronous rotation. (1) If small changes in pressure alter the temperature distribution across a planet's surface such that the weathering rate goes up when the pressure goes down, a runaway positive feedback occurs involving increasing weathering rate near the substellar point, decreasing pressure, and increasing substellar surface temperature. We call this feedback enhanced substellar weathering instability (ESWI). (2) When decreases in pressure increase the fraction of surface area above the melting point (through reduced advective cooling of the substellar point), and the corresponding increase in volume of liquid causes net dissolution of the atmosphere, a further decrease in pressure will occur. This substellar dissolution feedback can also cause a runaway climate shift. We use an idealized energy balance model to map out the conditions under which these instabilities may occur. In this simplified model, the weathering runaway can shrink the habitable zone and cause geologically rapid 10{sup 3}-fold atmospheric pressure shifts within the habitable zone. Mars may have undergone a weathering runaway in the past. Substellar dissolution is usually a negative feedback or weak positive feedback on changes in atmospheric pressure. It can only cause runaway changes for small, deep oceans and highly soluble atmospheric

  8. Climate destabilization on tidally locked exoplanets

    Science.gov (United States)

    Kite, E. S.; Gaidos, E.; Manga, M.

    2011-12-01

    We show that strong day-night surface temperature contrasts on planets with surfaces allow positive feedbacks that can potentially destabilize planetary climate. Geologically rapid 10^3 - fold atmospheric pressure shifts may be possible. Habitable-zone planets maintain stable surface liquid water over geological time through equilibrium between greenhouse-gas consumption by weathering, and resupply by other processes. All reported small-radius exoplanets, and anticipated M-dwarf habitable-zone rocky planets, should be tidally locked. We will discuss two different feedbacks that can destabilize climate equilibrium on planets in 1:1 spin-orbit resonance. (1) If small changes in pressure alter the temperature distribution across a planet's surface such that the weathering rate goes up when the pressure goes down, a runway positive feedback between pressure, surface temperature, and weathering rate near the substellar point takes place - enhanced substellar weathering instability (ESWI). (2) When decreases in pressure increase the fraction of surface area above the melting point (through reduced advective cooling of the substellar point), and the corresponding increase in volume of liquid causes net dissolution of the atmosphere, further decreases in pressure can occur. This substellar dissolution feedback (SDF) can also cause a runaway climate shift. We use an idealized energy balance model to illustrate the scope of these instabilities. In this simplified model, the weathering runaway can shrink the habitable zone. Mars may have undergone a weathering runaway in the past. Substellar dissolution is usually a negative feedback or weak positive feedback on changes in atmospheric pressure, and can only cause runaway changes for small, deep oceans and highly soluble atmospheric gases. Both instabilities are suppressed if the atmosphere has a high radiative efficiency. Our results are most relevant for atmospheres that are thin, have low greenhouse-gas radiative efficiency

  9. Buildup of Abiotic Oxygen and Ozone in Atmospheres of Temperate Terrestrial Exoplanets

    Science.gov (United States)

    Kleinboehl, Armin; Willacy, Karen; Friedson, Andrew James; Swain, Mark R.

    2015-12-01

    The last two decades have seen a rapid increase in the detection and characterization of exoplanets. A focus of future missions will be on the subset of transiting, terrestrial, temperate exoplanets as they are the strongest candidates to harbor life as we know it.An important bioindicator for life as we know it is the existence of significant amounts of oxygen, and its photochemical byproduct ozone, in the exoplanet’s atmosphere. However, abiotic processes also produce oxygen and ozone, and the amount of oxygen abiotically produced in an atmosphere will largely depend on other atmospheric parameters. Constraining this parameter space will be essential to avoid ‘false positive’ detections of life, that is the interpretation of oxygen or ozone as a bioindicator despite being produced abiotically.Based on 1D radiative-convective model calculations, Wordsworth and Pierrehumbert (ApJL, 2014) recently pointed out that the formation and buildup of abiotic oxygen on water-rich planets largely depends on the amount of non-condensable gases in the atmosphere. The amount of non-condensable gases determines whether an atmosphere will develop a 'cold-trap' (similar to the tropopause on Earth) that contains most of the water in the lower atmosphere and dries out the upper atmosphere. If water vapor is a major constituent of the atmosphere, this cold-trapping is inhibited, leading to a much moister upper atmosphere. Water vapor in the upper atmosphere is photolyzed due to the availability of hard UV radiation, yielding oxygen.We use a photochemical model coupled to a 1D radiative-convective climate model to self-consistently study this effect in atmospheres with N2, CO2 and H2O as the main constituents. These are typical constituents for secondary, oxidized atmospheres, and they can exist in a wide range of ratios. We calculate the amounts of abiotically produced oxygen and ozone and determine the vertical structure of temperature and constituent mixing ratios for various

  10. Is There Life on Exoplanet Maja? A Demonstration for Schools

    Science.gov (United States)

    Planinsic, Gorazd; Marshall, Rick

    2012-01-01

    Astronomy and astrophysics are very popular with pupils, but the experimental work they can do tends to be rather limited. The search for life elsewhere in the Universe ("exobiology") has received an enormous boost since the detection of a rapidly increasing number of planets ("exoplanets") orbiting other stars in our galaxy. Recently (March…

  11. Flux and polarisation spectra of water clouds on exoplanets

    NARCIS (Netherlands)

    Karalidi, T.; Stam, D.M.; Hovenier, J.W.

    2011-01-01

    Context. A crucial factor for a planet’s habitability is its climate. Clouds play an important role in planetary climates. Detecting and characterising clouds on an exoplanet is therefore crucial when addressing this planet’s habitability. Aims. We present calculated flux and polarisation spectra of

  12. Flux and polarization signals of spatially inhomogeneous gaseous exoplanets

    NARCIS (Netherlands)

    Karalidi, T.; Stam, D.M.; Guirado, D.

    2013-01-01

    Aims. We present numerically calculated, disk-integrated, spectropolarimetric signals of starlight that is reflected by vertically and horizontally inhomogeneous gaseous exoplanets. We include various spatial features that are present on Solar System’s gaseous planets: belts and zones, cyclonic

  13. NAHUAL: and Infrared Spectrograph for Exoplanet Research at the GTC

    Science.gov (United States)

    Martin, Eduardo

    2007-08-01

    NAHUAL is a high-resolution, near-infrared, echelle spectrograph designed for high-precision radial velocity measurements using the Gran Telescopio Canarias in La Palma. The current status of NAHUAL will be presented, as well as the prospects for the parameter space in exoplanet research that it could cover.

  14. An Observational Diagnostic for Distinguishing between Clouds and Haze in Hot Exoplanet Atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Kempton, Eliza M.-R. [Department of Physics, Grinnell College, 1116 8th Avenue, Grinnell, IA 50112 (United States); Bean, Jacob L. [Department of Astronomy and Astrophysics, University of Chicago, 5640 S. Ellis Avenue, Chicago, IL 60637 (United States); Parmentier, Vivien, E-mail: kemptone@grinnell.edu [Department of Planetary Sciences and Lunar and Planetary Laboratory, The University of Arizona, Tucson, AZ 85721 (United States)

    2017-08-20

    The nature of aerosols in hot exoplanet atmospheres is one of the primary vexing questions facing the exoplanet field. The complex chemistry, multiple formation pathways, and lack of easily identifiable spectral features associated with aerosols make it especially challenging to constrain their key properties. We propose a transmission spectroscopy technique to identify the primary aerosol formation mechanism for the most highly irradiated hot Jupiters (HIHJs). The technique is based on the expectation that the two key types of aerosols—photochemically generated hazes and equilibrium condensate clouds—are expected to form and persist in different regions of a highly irradiated planet’s atmosphere. Haze can only be produced on the permanent daysides of tidally locked hot Jupiters, and will be carried downwind by atmospheric dynamics to the evening terminator (seen as the trailing limb during transit). Clouds can only form in cooler regions on the nightside and morning terminator of HIHJs (seen as the leading limb during transit). Because opposite limbs are expected to be impacted by different types of aerosols, ingress and egress spectra, which primarily probe opposing sides of the planet, will reveal the dominant aerosol formation mechanism. We show that the benchmark HIHJ, WASP-121b, has a transmission spectrum consistent with partial aerosol coverage and that ingress–egress spectroscopy would constrain the location and formation mechanism of those aerosols. In general, using this diagnostic we find that observations with the James Webb Space Telescope and potentially with the Hubble Space Telescope should be able to distinguish between clouds and haze for currently known HIHJs.

  15. Effect of Orbital Distance on the Atmospheric Escape of Exoplanets

    Science.gov (United States)

    Mo, Yang; Jian-heng, Guo

    2018-01-01

    Atmospheric escape is an important sector in the evolution of planetary atmosphere, and its energy is mainly originated from the radiation of the host star at the high energy band. The radiation flux drops dramatically with the increase of orbital distance, there is a large difference of planetary atmospheric escape in different orbits, so it is necessary to study the impact of orbital distance on the atmospheric escape of an exoplanet. We consider the radiation transfer and the photochemical reactions of multiple kinds of particles to study the variation of planetary atmospheric escape with the orbital distance by using a 1-D hydrodynamic model. Due to the large differences of the spectra of host stars in different evolution stages, the Astrophysical Plasma Emission Code (APEC) in the X-Ray Spectral Fitting Package (XSPEC) is used to obtain the spectra of solar-type stars with different ages as the input spectra of the model. The results indicate that the escape rates of the exoplanets in different orbits are different significantly, and the escape mechanism is converted from the drastic hydrodynamic escape into the moderate Jeans escape as the orbital distance increases, the smaller the planetary gravitational potential, the younger the star-planet system, the larger the distance of this conversion. The correlation between the escape rate and the radiation flux decreases for the short-period exoplanets in a younger star-planet system. It is shown that the classical energy-limited escape theory is not suitable for this kind of exoplanets. These results have enriched the studies on the atmospheric escape of exoplanets, especially, extended the studies on the escape mechanism and energy conversion under different orbital distances and stellar ages.

  16. Plate Tectonics and Planetary Evolution: Implications for Understanding Exoplanets

    Science.gov (United States)

    Elkins-Tanton, L. T.

    2015-12-01

    A primary purpose in our study of exoplanets is the search for life. In hypothesizing how we might detect life, we start by examining life on Earth; it is our only example. How do we understand the meaning of habitability when there is only one example? All clues seem significant: the common need for the existence of water, the range of temperatures over which life on Earth is found, and the chemical cycles that maintain the surface and near-surface of the Earth within that range. A common assertion is that plate tectonics is necessary for the carbon cycle that keeps the Earth at habitable temperatures by sequestering carbon in limetone in oceans, and parceling it back into the atmosphere through volcanoes. This is an unproven hypothesis. There are other tectonic processes that cycle carbon into a planetary interior and back to the atmosphere; one possibility is small-scale convection that returns lithospheric material to the mantle and produces small-scale volcanism. Whether this process is sufficient to stabilize climate on one-plate planets or planets with sluggish convection remains to be demonstrated. Before we can discuss the criticality of plate tectonics on other planets we need to understand its criticality on Earth, and its apparent lack on Venus. And before we can predict whether plate tectonics should exist on a given exoplanet, we need to understand why it exists on Earth, and apparently not on Venus, and we need to know more about that exoplanet than can currently be detected. In this talk I will compare the predictions for exoplanetary conditions conducive to plate tectonics, walk through possible pathways in planetary evolution that lead to plate tectonics, and discuss whether any aspect of plate tectonics on an exoplanet is detectable from Earth. Predicting and hoping to detect plate tectonics on exoplanets is walking out a shaky limb; making cautious incremental advances in understanding terrestrial plate tectonics is critical before extending

  17. Analysis of the exoplanet containing system Kepler-13

    Science.gov (United States)

    Budding, E.; Püsküllü, Ç.; Rhodes, M. D.

    2018-03-01

    We have applied the close binary system analysis program WinFitter, with its physically detailed fitting function, to an intensive study of the complex multiple system Kepler-13 using photometry data from all 13 short cadence quarters downloaded from the NASA Exoplanet Archive (NEA) (http://exoplanetarchive.ipac.caltech.edu). The data-point error of our normalized, phase-sequenced and binned (380 points per bin: 0.00025 phase interval) flux values, at 14 ppm, allows the model's specification for the mean reference flux level of the system to a precision better than 1 ppm. Our photometrically derived values for the mass and radius of KOI13.01 are 6.8±0.6 MJ and 1.44±0.04 RJ. The star has a radius of 1.67±0.05 R_{⊙}. Our modelling sets the mean of the orbital inclination i at 94.35±0.14°, with the star's mean precession angle φp—49.1±5.0° and obliquity θo 67.9 ± 3.0°, though there are known ambiguities about the sense in which such angles are measured. Our findings did not confirm secular variation in the transit modelling parameters greater than their full correlated errors, as argued by previous authors, when each quarter's data was best-fitted with a determinable parameter set without prejudice. However, if we accept that most of the parameters remain the same for each transit, then we could confirm a small but steady diminution in the cosine of the orbital inclination over the 17 quarter timespan. This is accompanied by a slight increase of the star's precession angle (less negative), but with no significant change in the obliquity of its spin axis. There are suggestions of a history of strong dynamical interaction with a highly distorted planet rotating in a 3:2 resonance with its revolution, together with a tidal lag of ˜30 deg. The mean precessional period is derived to be about 1000 y, but at the present time the motion of the star's rotation axis appears to be supporting the gravitational torque, rather than providing the balance against it

  18. Doppler search for exoplanet candidates and binary stars in a CoRoT field using a multi-fiber spectrograph. I. Global analysis and first results

    Science.gov (United States)

    Loeillet, B.; Bouchy, F.; Deleuil, M.; Royer, F.; Bouret, J. C.; Moutou, C.; Barge, P.; de Laverny, P.; Pont, F.; Recio-Blanco, A.; Santos, N. C.

    2008-03-01

    Context: The discovery of the short-period giant exoplanet population, the so-called hot Jupiter population, and their link to brown dwarfs and low-mass stars challenges the conventional view of planet formation and evolution. Aims: We took advantage of the multi-fiber facilities GIRAFFE and UVES/FLAMES (VLT) to perform the first large radial velocity survey using a multi-fiber spectrograph to detect planetary, brown-dwarf candidates and binary stars. Methods: We observed 816 stars during 5 consecutive half-nights. These stars were selected within one of the exoplanet fields of the space mission CoRoT. Results: We computed the radial velocities of these stars and showed that a systematic error floor of 30 m s-1 was reached over 5 consecutive nights with the GIRAFFE instrument. Over the whole sample the Doppler measurements allowed us to identify a sample of 50 binaries, 9 active or blended binary stars, 5 unsolved cases, 14 exoplanets and brown-dwarf candidates. Further higher precision Doppler measurements are now necessary to confirm and better characterize these candidates. Conclusions: This study demonstrates the efficiency of a multi-fiber approach for large radial-velocity surveys in search for exoplanets as well as the follow-up of transiting exoplanet candidates. The spectroscopic characterization of the large stellar population is an interesting by-product of such missions as the CoRoT space mission. Based on observations collected with the GIRAFFE and UVES/FLAMES spectrographs at the VLT/UT2 Kueyen telescope (Paranal observatory, ESO, Chile: program 074.C-0633A).

  19. LOWLID FORMATION AND PLATE TECTONICS ON EXOPLANETS

    Science.gov (United States)

    Stamenkovic, V.; Noack, L.; Breuer, D.

    2009-12-01

    The last years of astronomical observation have opened the doors to a universe filled with extrasolar planets. Detection techniques still only offer the possibility to detect mainly Super-Earths above five Earth masses. But detection techniques do steadily improve and are offering the possibility to detect even smaller planets. The observations show that planets seem to exist in many possible sizes just as the planets and moons of our own solar system do. It is only a natural question to ask if planetary mass has an influence on some key habitability factors such as on plate tectonics, allowing us to test which exoplanets might be more likely habitable than others, and allowing us to understand if plate tectonics on Earth is a stable or a critical, instable process that could easily be perturbed. Here we present results derived from 1D parameterized thermal evolution and 2D/3D computer models, showing how planetary mass influences the propensity of plate tectonics for planets with masses ranging from 0.1 to 10 Earth masses. Lately [2, 3] studied the effect of planetary mass on the ability to break plates and hence initiate plate tectonics - but both derived results contradictory to the other. We think that one of the reasons why both studies [2, 3] are not acceptable in their current form is partly due to an oversimplification. Both treated viscosity only temperature-dependent but neglected the effect pressure has on enlarging the viscosity in the deep mantle. More massive planets have therefore a stronger pressure-viscosity-coupling making convection at high pressures sluggish or even impossible. For planets larger than two Earth masses we observe that a conductive lid (termed low-lid) forms above the core-mantle boundary and thus reduces the effective convective part of the mantle when including a pressure-dependent term into the viscosity laws as shown in [1]. Moreover [2, 3] use time independent steady state models neglecting the fact that plate tectonics is a

  20. Non-detection of Previously Reported Transits of HD 97658b with MOST Photometry

    DEFF Research Database (Denmark)

    Dragomir, Diana; Matthews, Jaymie M.; Howard, Andrew W.

    2012-01-01

    The radial velocity-discovered exoplanet HD 97658b was recently announced to transit, with a derived planetary radius of 2.93 ± 0.28 R ⊕. As a transiting super-Earth orbiting a bright star, this planet would make an attractive candidate for additional observations, including studies of its...... out transits for a planet with radius larger than 2.09 R ⊕, corresponding to the reported 3σ lower limit. We also report new radial velocity measurements which continue to support the existence of an exoplanet with a period of 9.5 days, and obtain improved orbital parameters....

  1. Crossing the Boundaries in Planetary Atmospheres - From Earth to Exoplanets

    Science.gov (United States)

    Simon-Miller, Amy A.; Genio, Anthony Del

    2013-01-01

    The past decade has been an especially exciting time to study atmospheres, with a renaissance in fundamental studies of Earths general circulation and hydrological cycle, stimulated by questions about past climates and the urgency of projecting the future impacts of humankinds activities. Long-term spacecraft and Earth-based observation of solar system planets have now reinvigorated the study of comparative planetary climatology. The explosion in discoveries of planets outside our solar system has made atmospheric science integral to understanding the diversity of our solar system and the potential habitability of planets outside it. Thus, the AGU Chapman Conference Crossing the Boundaries in Planetary Atmospheres From Earth to Exoplanets, held in Annapolis, MD from June 24-27, 2013 gathered Earth, solar system, and exoplanet scientists to share experiences, insights, and challenges from their individual disciplines, and discuss areas in which thinking broadly might enhance our fundamental understanding of how atmospheres work.

  2. Three body dynamics and its applications to exoplanets

    CERN Document Server

    Musielak, Zdzislaw

    2017-01-01

    This brief book provides an overview of the gravitational orbital evolution of few-body systems, in particular those consisting of three bodies. The authors present the historical context that begins with the origin of the problem as defined by Newton, which was followed up by Euler, Lagrange, Laplace, and many others. Additionally, they consider the modern works from the 20th and 21st centuries that describe the development of powerful analytical methods by Poincare and others. The development of numerical tools, including modern symplectic methods, are presented as they pertain to the identification of short-term chaos and long term integrations of the orbits of many astronomical architectures such as stellar triples, planets in binaries, and single stars that host multiple exoplanets. The book includes some of the latest discoveries from the Kepler and now K2 missions, as well as applications to exoplanets discovered via the radial velocity method. Specifically, the authors give a unique perspective in rel...

  3. Exoplanets Clue to Sun's Curious Chemistry

    Science.gov (United States)

    2009-11-01

    A ground-breaking census of 500 stars, 70 of which are known to host planets, has successfully linked the long-standing "lithium mystery" observed in the Sun to the presence of planetary systems. Using ESO's successful HARPS spectrograph, a team of astronomers has found that Sun-like stars that host planets have destroyed their lithium much more efficiently than "planet-free" stars. This finding does not only shed light on the lack of lithium in our star, but also provides astronomers with a very efficient way of finding stars with planetary systems. "For almost 10 years we have tried to find out what distinguishes stars with planetary systems from their barren cousins," says Garik Israelian, lead author of a paper appearing this week in the journal Nature. "We have now found that the amount of lithium in Sun-like stars depends on whether or not they have planets." Low levels of this chemical element have been noticed for decades in the Sun, as compared to other solar-like stars, and astronomers have been unable to explain the anomaly. The discovery of a trend among planet-bearing stars provides a natural explanation to this long-standing mystery. "The explanation of this 60 year-long puzzle is for us rather simple," adds Israelian. "The Sun lacks lithium because it has planets." This conclusion is based on the analysis of 500 stars, including 70 planet-hosting stars. Most of these stars were monitored for several years with ESO's High Accuracy Radial Velocity Planet Searcher. This spectrograph, better known as HARPS, is attached to ESO's 3.6-metre telescope and is the world's foremost exoplanet hunter. "This is the best possible sample available to date to understand what makes planet-bearing stars unique," says co-author Michel Mayor. The astronomers looked in particular at Sun-like stars, almost a quarter of the whole sample. They found that the majority of stars hosting planets possess less than 1% of the amount of lithium shown by most of the other stars

  4. High resolution transmission spectroscopy as a diagnostic for Jovian exoplanet atmospheres: constraints from theoretical models

    Energy Technology Data Exchange (ETDEWEB)

    Kempton, Eliza M.-R. [Department of Physics, Grinnell College, Grinnell, IA 50112 (United States); Perna, Rosalba [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States); Heng, Kevin, E-mail: kemptone@grinnell.edu [University of Bern, Center for Space and Habitability, Sidlerstrasse 5, CH-3012 Bern (Switzerland)

    2014-11-01

    We present high resolution transmission spectra of giant planet atmospheres from a coupled three-dimensional (3D) atmospheric dynamics and transmission spectrum model that includes Doppler shifts which arise from winds and planetary motion. We model Jovian planets covering more than two orders of magnitude in incident flux, corresponding to planets with 0.9-55 day orbital periods around solar-type stars. The results of our 3D dynamical models reveal certain aspects of high resolution transmission spectra that are not present in simple one-dimensional (1D) models. We find that the hottest planets experience strong substellar to anti-stellar (SSAS) winds, resulting in transmission spectra with net blueshifts of up to 3 km s{sup –1}, whereas less irradiated planets show almost no net Doppler shifts. We find only minor differences between transmission spectra for atmospheres with temperature inversions and those without. Compared to 1D models, peak line strengths are significantly reduced for the hottest atmospheres owing to Doppler broadening from a combination of rotation (which is faster for close-in planets under the assumption of tidal locking) and atmospheric winds. Finally, high resolution transmission spectra may be useful in studying the atmospheres of exoplanets with optically thick clouds since line cores for very strong transitions should remain optically thick to very high altitude. High resolution transmission spectra are an excellent observational test for the validity of 3D atmospheric dynamics models, because they provide a direct probe of wind structures and heat circulation. Ground-based exoplanet spectroscopy is currently on the verge of being able to verify some of our modeling predictions, most notably the dependence of SSAS winds on insolation. We caution that interpretation of high resolution transmission spectra based on 1D atmospheric models may be inadequate, as 3D atmospheric motions can produce a noticeable effect on the absorption

  5. LONG-LIVED CHAOTIC ORBITAL EVOLUTION OF EXOPLANETS IN MEAN MOTION RESONANCES WITH MUTUAL INCLINATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Rory; Deitrick, Russell; Quinn, Thomas R. [Astronomy Department, University of Washington, Box 951580, Seattle, WA 98195 (United States); Greenberg, Richard [Lunar and Planetary Laboratory, University of Arizona, 1629 E. University Boulevard, Tucson, AZ 86716 (United States); Raymond, Sean N., E-mail: rory@astro.washington.edu [NASA Astrobiology Institute-Virtual Planetary Laboratory Lead Team (United States)

    2015-03-10

    We present N-body simulations of resonant planets with inclined orbits that show chaotically evolving eccentricities and inclinations that can persist for at least 10 Gyr. A wide range of behavior is possible, from fast, low amplitude variations to systems in which eccentricities reach 0.9999 and inclinations 179.°9. While the orbital elements evolve chaotically, at least one resonant argument always librates. We show that the HD 73526, HD 45364, and HD 60532 systems may be in chaotically evolving resonances. Chaotic evolution is apparent in the 2:1, 3:1, and 3:2 resonances, and for planetary masses from lunar- to Jupiter-mass. In some cases, orbital disruption occurs after several gigayears, implying the mechanism is not rigorously stable, just long-lived relative to the main sequence lifetimes of solar-type stars. Planet-planet scattering appears to yield planets in inclined resonances that evolve chaotically in about 0.5% of cases. These results suggest that (1) approximate methods for identifying unstable orbital architectures may have limited applicability, (2) the observed close-in exoplanets may be produced during epochs of high eccentricit induced by inclined resonances, (3) those exoplanets' orbital planes may be misaligned with the host star's spin axis, (4) systems with resonances may be systematically younger than those without, (5) the distribution of period ratios of adjacent planets detected via transit may be skewed due to inclined resonances, and (6) potentially habitable planets may have dramatically different climatic evolution than Earth. The Gaia spacecraft is capable of discovering giant planets in these types of orbits.

  6. Atmosphere-interior exchange on hot rocky exoplanets

    OpenAIRE

    Kite, Edwin S.; Fegley Jr., Bruce; Schaefer, Laura; Gaidos, Eric

    2016-01-01

    We provide estimates of atmospheric pressure and surface composition on short-period rocky exoplanets with dayside magma pools and silicate vapor atmospheres. Atmospheric pressure tends toward vapor-pressure equilibrium with surface magma, and magma-surface composition is set by the competing effects of fractional vaporization and surface-interior exchange. We use basic models to show how surface-interior exchange is controlled by the planet's temperature, mass, and initial composition. We as...

  7. Exoplanet Biosignatures: A Review of Remotely Detectable Signs of Life

    OpenAIRE

    Schwieterman, Edward W.; Kiang, Nancy Y.; Parenteau, Mary N.; Harman, Chester E.; DasSarma, Shiladitya; Fisher, Theresa M.; Arney, Giada N.; Hartnett, Hilairy E.; Reinhard, Christopher T.; Olson, Stephanie L.; Meadows, Victoria S.; Cockell, Charles S.; Walker, Sara I.; Grenfell, John Lee; Hegde, Siddharth

    2017-01-01

    In the coming years and decades, advanced space- and ground-based observatories will allow an unprecedented opportunity to probe the atmospheres and surfaces of potentially habitable exoplanets for signatures of life. Life on Earth, through its gaseous products and reflectance and scattering properties, has left its fingerprint on the spectrum of our planet. Aided by the universality of the laws of physics and chemistry, we turn to Earth's biosphere, both in the present and through geologic t...

  8. Earth Similarity Index and Habitability Studies of Exoplanets

    OpenAIRE

    Kashyap, Jagadeesh Madhu

    2018-01-01

    Study of exoplanets has been of considerable interest for Astronomers, Planetary Scientists and Astrobiologists. Analysis of huge planetary data from space missions such as CoRoT and Kepler is directed ultimately at finding a planet similar to Earth- the Earth's twin, and looking for potential habitability. The Earth Similarity Index (ESI) is defined to find the similarity with Earth, which ranges from 1 (Earth) to 0 (totally dissimilar to Earth). ESI can be computed using four physical param...

  9. Earth-like and Tardigrade survey of exoplanets

    OpenAIRE

    Jagadeesh, MadhuKashyap; Roszkowska, Milena; Kaczmarek, Lukasz

    2018-01-01

    Finding life on other worlds is a fascinating area of astrobiology and planetary sciences. Presently, over 3500 exoplanets, representing a very wide range of physical and chemical environments, are known. Tardigrades (water bears) are microscopic invertebrates that inhabit almost all terrestrial, freshwater and marine habitats, from the highest mountains to the deepest oceans. Thanks to their ability to live in a state of cryptobiosis, which is known to be an adaptation to unpredictably fluct...

  10. The Impact of Gaia and LSST on Binaries and Exoplanets

    DEFF Research Database (Denmark)

    Eyer, L.; Dubath, P.; Mowlavi, N.

    2012-01-01

    Two upcoming large scale surveys, the ESA Gaia and LSST projects, will bring a new era in astronomy. The number of binary systems that will be observed and detected by these projects is enormous, estimations range from millions for Gaia to several tens of millions for LSST. We review some tools t...... that should be developed and also what can be gained from these missions on the subject of binaries and exoplanets from the astrometry, photometry, radial velocity and their alert systems....

  11. Formation and evolution of exoplanets in different environments

    OpenAIRE

    Adibekyan, Vardan

    2017-01-01

    The ultimate goal of exoplanetologists is to discover life outside our Earth and to fully understand our place in the Universe. Even though we have never been closer to attaining this goal, we still need to understand how and where the planets (efficiently) form. In this manuscript I briefly discuss the important role of stellar metallicity and chemistry on the formation and evolution of exoplanets.

  12. The CoRoT Exoplanet program: status & results

    Directory of Open Access Journals (Sweden)

    Moutou C.

    2011-02-01

    Full Text Available The CoRoT satellite is the first instrument hunting for planets from space. We will review the status of the CoRoT/Exoplanet program. We will then present the CoRoT exoplanetary systems and how they widen the range of properties of the close-in population and contribute to our understanding of the properties of planets.

  13. Habitable zone lifetimes of exoplanets around main sequence stars.

    Science.gov (United States)

    Rushby, Andrew J; Claire, Mark W; Osborn, Hugh; Watson, Andrew J

    2013-09-01

    The potential habitability of newly discovered exoplanets is initially assessed by determining whether their orbits fall within the circumstellar habitable zone of their star. However, the habitable zone (HZ) is not static in time or space, and its boundaries migrate outward at a rate proportional to the increase in luminosity of a star undergoing stellar evolution, possibly including or excluding planets over the course of the star's main sequence lifetime. We describe the time that a planet spends within the HZ as its "habitable zone lifetime." The HZ lifetime of a planet has strong astrobiological implications and is especially important when considering the evolution of complex life, which is likely to require a longer residence time within the HZ. Here, we present results from a simple model built to investigate the evolution of the "classic" HZ over time, while also providing estimates for the evolution of stellar luminosity over time in order to develop a "hybrid" HZ model. These models return estimates for the HZ lifetimes of Earth and 7 confirmed HZ exoplanets and 27 unconfirmed Kepler candidates. The HZ lifetime for Earth ranges between 6.29 and 7.79×10⁹ years (Gyr). The 7 exoplanets fall in a range between ∼1 and 54.72 Gyr, while the 27 Kepler candidate planets' HZ lifetimes range between 0.43 and 18.8 Gyr. Our results show that exoplanet HD 85512b is no longer within the HZ, assuming it has an Earth analog atmosphere. The HZ lifetime should be considered in future models of planetary habitability as setting an upper limit on the lifetime of any potential exoplanetary biosphere, and also for identifying planets of high astrobiological potential for continued observational or modeling campaigns.

  14. The First Atmospheric Characterization of a Habitable-Zone Exoplanet

    Science.gov (United States)

    Stevenson, Kevin; Bean, Jacob; Charbonneau, David; Desert, Jean-Michel; Fortney, Jonathan; Irwin, Jonathan; Kreidberg, Laura; Line, Michael; Montet, Ben; Morley, Caroline

    2015-10-01

    Exoplanet surveys have recently revealed nearby planets orbiting within stellar habitable zones. This highly-anticipated breakthrough brings us one step closer in our quest to identify cosmic biosignatures, the indicators of extrasolar life. To achieve our goal, we must first study the atmospheres of these temperate worlds to measure their compositions and determine the prevalence of obscuring clouds. Using observations from the K2 mission, Co-I Montet recently announced the discovery of a 2.2 Earth-radii planet within the habitable zone of its relatively bright, nearby M dwarf parent star, K2-18. This temperate world is currently the best habitable-zone target for atmospheric characterization. Congruent with currently planned HST observations, we propose a Spitzer program to measure the transmission spectrum of the first habitable-zone exoplanet. Both telescopes are essential to revealing K2-18b's chemical composition. In a cloud-free, hydrogen-dominated atmosphere, the precision achieved by these measurements will be sufficient to detect methane, ammonia, and water vapor, which are the dominant C, N, and O bearing species at these temperatures. In turn, elemental abundance constraints from a primordial atmosphere can tell us about the composition of a protoplanetary disk in which Earth-like planets could have formed. Conversely, if the atmosphere contains thick clouds then the multi-wavelength observations from K2, HST, and Spitzer will constrain the clouds' properties. Because temperature plays a key role in the formation of clouds, their detection within the atmosphere of this habitable-zone exoplanet would be an important signpost that serves as a guide to future investigations of smaller, rocky exoplanets. As K2 continues discovering more habitable-zone planets, it is imperative that we perform spectral reconnaissance with Spitzer to determine their physical characteristics and begin understanding the prevalence of potentially-obscuring clouds prior to the

  15. Relationship between Luminosity, Irradiance and Temperature of star on the orbital parameters of exoplanets

    Directory of Open Access Journals (Sweden)

    Pavel Pintr

    2013-05-01

    Full Text Available For 759 exoplanets detected by radial velocities method we found that distances of exoplanets from central star comply in general Schmidt law and these distances depend on the stellar surface temperature. Every stellar spectral class has a little different distribution. The Luminosity and the Irradiance has not effect on the distribution of distances of exoplanets. We have found the new formulas for calculation of effective temperature of exoplanets for spectral classes F, G, and K. These new formulas we can use for future calculation of habitable planets.

  16. Progress on multi-object exoplanet search spectral interferometer

    Science.gov (United States)

    Zhang, Kai; Zhu, Yongtian; Wang, Lei; Yue, Zhongyu; Chen, Yi; Tang, Jin; Hu, Zhongwen

    2012-09-01

    It's a very important point that fully open up power of Gou Shoujing telescope (LAMOST) in exoplanet detection field by developing a multi-exoplanet survey system. But it's an indisputable truth in the present astronomy that a traditional type of multi-object high resolution spectrograph is almost impossible to be developed. External Dispersed Interferometry is an effective way to improve the radial velocity measuring accuracy of medium resolution spectrograph. With the using of this technique, Multi-object Exoplanet Search Spectral Interferometer (MESSI) is an exploratory system with medium measuring accuracy based on LAMOST low resolution spectrograph works in medium-resolution mode (R=5,000 - 10,000). And it's believed that will bring some feasible way in the future development of multi-object medium/high resolution spectrograph. After prototype experiment in 2010, a complete configuration is under the development, including a multi-object fixed-delay Michelson interferometer, an iodine cell with multi-fiber optical coupling system and a multi-terminal switching system in an efficient fiber physical coupling way. By some effective improvement, the interferometer has smaller cross section and more stable interference component. Moreover, based on physical and optical fiber coupling technique, it's possible for the iodine cell and the switching system to simultaneously and identically coupling 25 pairs of fibers. In paper, all of the progress is given in detail.

  17. KMTNet: A Cold Exoplanet Census Through a Global Microlensing Survey

    Science.gov (United States)

    Henderson, Calen B.; Gaudi, B. Scott; Han, Cheongho; Nataf, David; Skowron, Jan; Penny, Matthew; Gould, Andrew

    2015-01-01

    The unique sensitivity of gravitational microlensing to low-mass planets near and beyond the snow line makes it an indispensable tool for understanding the distribution and formation mechanisms of exoplanets. The Korean Microlensing Telescope Network (KMTNet) consists of three 1.6m telescopes each with a 4 deg2 field of view and will be dedicated to monitoring the Galactic Bulge in order to detect exoplanets via gravitational microlensing. With its relatively large aperture, large field of view, high (~10-minute) cadence, and near-complete longitudinal coverage of the Galactic Bulge for 8 months a year, KMTNet is expected to increase the the annual detection rate of exoplanets via microlensing by a factor of ~5 over current surveys, pushing down to the mass of Earth for bound and unbound planets. I will summarize the predicted yields of KMTNet's survey based on detailed simulations, highlighting its sensitivity to low-mass planets and its expected haul of free-floating planets. I will also describe the prospects for characterization of the exoplanetary systems KMTNet will detect, focusing on the variety of techniques current and future high-resolution facilities such as VLT, GMT, and JWST can use to measure the flux from the host stars and ultimately derive planet masses.

  18. Catalogue of Exoplanets in Multiple-Star-Systems

    Science.gov (United States)

    Schwarz, Richard; Funk, Barbara; Bazsó, Ákos; Pilat-Lohinger, Elke

    2017-07-01

    Cataloguing the data of exoplanetary systems becomes more and more important, due to the fact that they conclude the observations and support the theoretical studies. Since 1995 there is a database which list most of the known exoplanets (The Extrasolar Planets Encyclopaedia is available at http://exoplanet.eu/ and described at Schneider et al. 2011). With the growing number of detected exoplanets in binary and multiple star systems it became more important to mark and to separate them into a new database. Therefore we started to compile a catalogue for binary and multiple star systems. Since 2013 the catalogue can be found at http://www.univie.ac.at/adg/schwarz/multiple.html (description can be found at Schwarz et al. 2016) which will be updated regularly and is linked to the Extrasolar Planets Encyclopaedia. The data of the binary catalogue can be downloaded as a file (.csv) and used for statistical purposes. Our database is divided into two parts: the data of the stars and the planets, given in a separate list. Every columns of the list can be sorted in two directions: ascending, meaning from the lowest value to the highest, or descending. In addition an introduction and help is also given in the menu bar of the catalogue including an example list.

  19. Advances in Telescope and Detector Technologies - Impacts on the Study and Understanding of Binary Star and Exoplanet Systems

    Science.gov (United States)

    Guinan, Edward F.; Engle, Scott; Devinney, Edward J.

    2012-04-01

    Current and planned telescope systems (both on the ground and in space) as well as new technologies will be discussed with emphasis on their impact on the studies of binary star and exoplanet systems. Although no telescopes or space missions are primarily designed to study binary stars (what a pity!), several are available (or will be shortly) to study exoplanet systems. Nonetheless those telescopes and instruments can also be powerful tools for studying binary and variable stars. For example, early microlensing missions (mid-1990s) such as EROS, MACHO and OGLE were initially designed for probing dark matter in the halos of galaxies but, serendipitously, these programs turned out to be a bonanza for the studies of eclipsing binaries and variable stars in the Magellanic Clouds and in the Galactic Bulge. A more recent example of this kind of serendipity is the Kepler Mission. Although Kepler was designed to discover exoplanet transits (and so far has been very successful, returning many planetary candidates), Kepler is turning out to be a ``stealth'' stellar astrophysics mission returning fundamentally important and new information on eclipsing binaries, variable stars and, in particular, providing a treasure trove of data of all types of pulsating stars suitable for detailed Asteroseismology studies. With this in mind, current and planned telescopes and networks, new instruments and techniques (including interferometers) are discussed that can play important roles in our understanding of both binary star and exoplanet systems. Recent advances in detectors (e.g. laser frequency comb spectrographs), telescope networks (both small and large - e.g. Super-WASP, HAT-net, RoboNet, Las Combres Observatory Global Telescope (LCOGT) Network), wide field (panoramic) telescope systems (e.g. Large Synoptic Survey Telescope (LSST) and Pan-Starrs), huge telescopes (e.g. the Thirty Meter Telescope (TMT), the Overwhelming Large Telescope (OWL) and the Extremely Large Telescope (ELT

  20. The Death Spiral of the Hot Jupiter Exoplanet HD 189733b

    Science.gov (United States)

    Dowling Jones, Liam; Marchioni, Lucas; Guinan, Edward; Engle, Scott

    2018-01-01

    HD 189733 is a quintessential example of hot Jupiter-type exoplanet systems in which a gas giant planet with a mass similar to Jupiter is orbiting extremely close to its host star. HD 189733 is the nearest and brightest hot Jupiter system discovered so far and undergoes transit eclipses. Because of this, HD 189733 is well studied across the electromagnetic spectrum. It consists of a 7.7 mag K1.5 V host star and a Jupiter-size planet orbiting with a period of P =2.22 days, only located only 0.030 AU from its host star.About ten years ago HD 189733 system was discovered to be accompanied by gravitationally-bound red dwarf M4 V star companion (HD 189733 B). It was found previously by Guinan et al. (2017) that the age measurement (~0.7 Gyr) of the K-type star indicated by its 11.95 day rotation period and corresponding moderately high levels of coronal X-ray and chromospheric emissions do not agree with the much older age of ~6 - 9 Gyr indicated from the low X-ray activity of the dM companion star. This age discrepancy is can be resolved by assuming an increase in angular momentum or “spin-up” of the HD 189733A by its hosted planet. It is probable is that this extra angular momentum was acquired from the orbiting exoplanet from the tidal and magnetic interactions of the planet and host star.Photometric observations of the planetary transit eclipses of HD 189733b have been carried out for over 11 years. Using new transit timings that we have obtained with the 1.3-m Robotically Controlled Telescope (RCT) when combined with numerous timings available in the literature, we have discovered a very small decrease in the orbital period of the HD 189733b. The change in period is dP/dt = 0.87 sec/100 yrs. This finding support the transfer of orbital angular momentum of the planet to the host star - thus spinning-up the host star and shrinking the orbit of the planet. At this rate of period decrease, the planet will be tidally disrupted in less than 40 million years. However

  1. New National Telescope at La Silla - TRAPPIST to Scout the Sky and Uncover Exoplanets and Comets

    Science.gov (United States)

    2010-06-01

    A new robotic telescope has had first light at ESO's La Silla Observatory, in Chile. TRAPPIST (TRAnsiting Planets and PlanetesImals Small Telescope) is devoted to the study of planetary systems through two approaches: the detection and characterisation of planets located outside the Solar System (exoplanets) and the study of comets orbiting around the Sun. The 60-cm telescope is operated from a control room in Liège, Belgium, 12 000 km away. "The two themes of the TRAPPIST project are important parts of an emerging interdisciplinary field of research - astrobiology - that aims at studying the origin and distribution of life in the Universe," explains Michaël Gillon, who is in charge of the exoplanet studies. "Terrestrial planets similar to our Earth are obvious targets for the search for life outside the Solar System, while comets are suspected to have played an important role in the appearance and development of life on our planet," adds his colleague Emmanuël Jehin, who leads the cometary part of the project. TRAPPIST will detect and characterise exoplanets by making high precision measurements of "brightness dips" that might possibly be caused by exoplanet transits. During such a transit, the observed brightness of the star decreases slightly because the planet blocks a part of the starlight. The larger the planet, the more of the light is blocked and the more the brightness of the star will decrease [1]. "ESO's La Silla Observatory on the outskirts of the Atacama Desert is certainly one of the best astronomical sites in the world," says Gillon. "And because it is already home to two superb exoplanet hunters, we couldn't have found a better place to install our robotic telescope." The astronomers behind the TRAPPIST initiative will work very closely with the teams using HARPS on the 3.6-metre telescope and CORALIE attached to the Swiss 1.2-metre Leonhard Euler Telescope, both at La Silla. TRAPPIST is a collaboration between the University of Liège and the

  2. The Kepler and K2 Near-Infrared Transit Survey (KNITS)

    Science.gov (United States)

    Colon, Knicole; Rodriguez, Joseph E.; Barentsen, Geert; Cardoso, Jose Vinicius de Miranda; Vanderburg, Andrew

    2018-01-01

    NASA's Kepler mission discovered a plethora of transiting exoplanets after observing a single region of the Galaxy for four years. After a second reaction wheel failed, NASA's Kepler spacecraft was repurposed as K2 to observe different fields along the ecliptic in ~80 day campaigns. To date, K2 has discovered ~130 exoplanets along with another ~400 candidates. The exoplanets that have been confirmed or validated from Kepler and K2 have been primarily subject to spectroscopic observations, high-resolution imaging, or statistical methods. However, most of these, along with all the remaining candidate exoplanets, have had no follow-up transit photometry. In addition, recent studies have shown that for single-planet systems, statistical validation alone can be unreliable and additional follow-up observations are required to reveal the true nature of the system. I will present the latest results from an ongoing program to use the 3.5-meter WIYN telescope at Kitt Peak National Observatory for near-infrared transit photometry of Kepler and K2 exoplanets and candidates. Our program of high-precision, high-cadence, high-spatial-resolution near-infrared transit photometry is providing new measurements of the transit ephemerides and planetary radii as well as weeding out false positives lurking within the candidate lists. To date, 25 K2 and 5 Kepler targets have been observed with WIYN. I will also describe upcoming observations with WIYN that will take place in January 2018 as part of a campaign to observe exoplanet transits in the near-infrared simultaneously with the Kepler spacecraft during K2 Campaign 16. Our program ultimately provides a vetted sample of exoplanets that could be targeted in the future by NASA’s James Webb Space Telescope (JWST) and also demonstrates WIYN’s capabilities for observations of exoplanets to be discovered by NASA's all-sky Transiting Exoplanet Survey Satellite (TESS).Data presented herein were obtained at the WIYN Observatory from

  3. Newborn exoplanet eyed for moons and rings

    Science.gov (United States)

    Clery, Daniel

    2018-01-01

    Astronomers are staring at a nearby star in hopes of seeing a giant baby of a planet—perhaps accompanied by dust clouds, rings, or newborn moons—pass across its face. Last week, the newest and tiniest telescope joined the vigil, when the French-built PicSat rode into orbit on an Indian rocket. It will be able to continuously monitor the star, β Pictoris, until chances of seeing the once-in-20-year transit event diminish in a few months' time. Astronomers are fascinated by β Pictoris, a bright star just 63 light-years away, because it is a natural laboratory for how solar systems form given its age of only 24 million years—an infant in stellar terms.

  4. Automatic Classification of Kepler Planetary Transit Candidates

    OpenAIRE

    McCauliff, Sean D.; Jenkins, Jon M.; Catanzarite, Joseph; Burke, Christopher J.; Coughlin, Jeffrey L.; Twicken, Joseph D.; Tenenbaum, Peter; Seader, Shawn; Li, Jie; Cote, Miles

    2014-01-01

    In the first three years of operation the Kepler mission found 3,697 planet candidates from a set of 18,406 transit-like features detected on over 200,000 distinct stars. Vetting candidate signals manually by inspecting light curves and other diagnostic information is a labor intensive effort. Additionally, this classification methodology does not yield any information about the quality of planet candidates; all candidates are as credible as any other candidate. The torrent of exoplanet disco...

  5. POPULATION PROPERTIES OF BROWN DWARF ANALOGS TO EXOPLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Faherty, Jacqueline K.; Gagne, Jonathan; Weinberger, Alycia [Department of Terrestrial Magnetism, Carnegie Institution of Washington, Washington, DC 20015 (United States); Riedel, Adric R.; Cruz, Kelle L.; Filippazzo, Joseph C.; Lambrides, Erini; Fica, Haley; Baldassare, Vivienne; Lemonier, Emily; Rice, Emily L. [Department of Astrophysics, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10034 (United States); Thorstensen, John R. [Department of Physics and Astronomy, Dartmouth College, Hanover NH 03755 (United States); Tinney, C. G., E-mail: jfaherty@carnegiescience.edu, E-mail: jfaherty@amnh.org [School of Physics,UNSW Australia, 2052 (Australia)

    2016-07-01

    We present a kinematic analysis of 152 low surface gravity M7-L8 dwarfs by adding 18 new parallaxes (including 10 for comparative field objects), 38 new radial velocities, and 19 new proper motions. We also add low- or moderate-resolution near-infrared spectra for 43 sources confirming their low surface gravity features. Among the full sample, we find 39 objects to be high-likelihood or new bona fide members of nearby moving groups, 92 objects to be ambiguous members and 21 objects that are non-members. Using this age-calibrated sample, we investigate trends in gravity classification, photometric color, absolute magnitude, color–magnitude, luminosity, and effective temperature. We find that gravity classification and photometric color clearly separate 5–130 Myr sources from >3 Gyr field objects, but they do not correlate one to one with the narrower 5–130 Myr age range. Sources with the same spectral subtype in the same group have systematically redder colors, but they are distributed between 1 and 4 σ from the field sequences and the most extreme outlier switches between intermediate- and low-gravity sources either confirmed in a group or not. The absolute magnitudes of low-gravity sources from the J band through W 3 show a flux redistribution when compared to equivalently typed field brown dwarfs that is correlated with spectral subtype. Low-gravity, late-type L dwarfs are fainter at J than the field sequence but brighter by W 3. Low-gravity M dwarfs are >1 mag brighter than field dwarfs in all bands from J through W 3. Clouds, which are a far more dominant opacity source for L dwarfs, are the likely cause. On color–magnitude diagrams, the latest-type, low-gravity L dwarfs drive the elbow of the L/T transition up to 1 mag redder and 1 mag fainter than field dwarfs at M{sub J} but are consistent with or brighter than the elbow at M{sub W1} and M{sub W2}. We conclude that low-gravity dwarfs carry an extreme version of the cloud conditions of field objects

  6. Processing and Managing the Kepler Mission's Treasure Trove of Stellar and Exoplanet Data

    Science.gov (United States)

    Jenkins, Jon M.

    2016-01-01

    The Kepler telescope launched into orbit in March 2009, initiating NASAs first mission to discover Earth-size planets orbiting Sun-like stars. Kepler simultaneously collected data for 160,000 target stars at a time over its four-year mission, identifying over 4700 planet candidates, 2300 confirmed or validated planets, and over 2100 eclipsing binaries. While Kepler was designed to discover exoplanets, the long term, ultra- high photometric precision measurements it achieved made it a premier observational facility for stellar astrophysics, especially in the field of asteroseismology, and for variable stars, such as RR Lyraes. The Kepler Science Operations Center (SOC) was developed at NASA Ames Research Center to process the data acquired by Kepler from pixel-level calibrations all the way to identifying transiting planet signatures and subjecting them to a suite of diagnostic tests to establish or break confidence in their planetary nature. Detecting small, rocky planets transiting Sun-like stars presents a variety of daunting challenges, from achieving an unprecedented photometric precision of 20 parts per million (ppm) on 6.5-hour timescales, supporting the science operations, management, processing, and repeated reprocessing of the accumulating data stream. This paper describes how the design of the SOC meets these varied challenges, discusses the architecture of the SOC and how the SOC pipeline is operated and is run on the NAS Pleiades supercomputer, and summarizes the most important pipeline features addressing the multiple computational, image and signal processing challenges posed by Kepler.

  7. Probing Into the Atmosphere of the Young Exoplanet K2-25b

    Science.gov (United States)

    Chia Thao, Pa; Mann, Andrew

    2018-01-01

    Planets are most transformative during their early life, yet there remains little research on this developmental stage. In order to construct a more accurate picture of the diversity and evolution of planetary atmospheres, we present Spitzer infrared photometry of five transits both in 3.6 μm and 4.5 μm bands of the young exoplanet, K2-25b (650-800 Myr). To correct for the intra-pixel photometric response, we interpolated high-resolution sensitivity maps. Light curves were then created using a transit model and an MCMC framework to find the planet parameters in each wavelength. In comparison to atmospheric theoretical models, we find K2-25b unlikely to have a solar-metallicity atmosphere. However, observed through a full transmission spectrum, K2-25b is consistent with either a high-metallicity atmosphere or a cloudy/hazy layer. Further HST data would provide significantly more detail on the structure of the atmosphere. In a future project, we plan to apply this same method to a younger planet, K2-33b (11 Myr), to determine if cloudy/hazy atmospheres are primordial.

  8. NEAT: an astrometric space telescope to search for habitable exoplanets in the solar neighborhood

    Science.gov (United States)

    Crouzier, A.; Malbet, F.; Kern, P.; Feautrier, P.; Preiss, O.; Martin, G.; Henault, F.; Stadler, E.; Lafrasse, S.; Behar, E.; Saintpe, M.; Dupont, J.; Potin, S.; Lagage, P.-O.; Cara, C.; Leger, A.; Leduigou, J.-M.; Shao, M.; Goullioud, R.

    2014-03-01

    The last decade has witnessed a spectacular development of exoplanet detection techniques, which led to an exponential number of discoveries and a great diversity of known exoplanets. However, it must be noted that the quest for the holy grail of astrobiology, i.e. a nearby terrestrial exoplanet in habitable zone around a solar type star, is still ongoing and proves to be very hard. Radial velocities will have to overcome stellar noise if there are to discover habitable planets around stars more massive than M ones. For very close systems, transits are impeded by their low geometrical probability. Here we present an alternative concept: space astrometry. NEAT (Nearby Earth Astrometric Telescope) is a concept of astrometric mission proposed to ESA which goal is to make a whole sky survey of close (less then 20 pc) planetary systems. The detection limit required for the instrument is the astrometric signal of an Earth analog (at 10 pc). Differential astrometry is a very interesting tool to detect nearby habitable exoplanets. Indeed, for F, G and K main sequence stars, the astrophysical noise is smaller than the astrometric signal, contrary to the case for radial velocities. The difficulty lies in the fact that the signal of an exo-Earth around a G type star at 10 pc is a tiny 0.3 micro arc sec, which is equivalent to a coin on the moon, seen from the Earth: the main challenge is related to instrumentation. In order to reach this specification, NEAT consists of two formation flying spacecraft at a 40m distance, one carries the mirror and the other one the focal plane. Thus NEAT has a configuration with only one optical surface: an off-axis parabola. Consequently, beamwalk errors are common to the whole field of view and have a small effect on differential astrometry. Moreover a metrology system projects young fringes on the focal plane, which can characterize the pixels whenever necessary during the mission. NEAT has two main scientific objectives: combined with

  9. Using Small Telescopes, Citizen Science, and Network Surveys to find Exoplanets - An Overview of the Kelt team and the Exoplanets Found to Date

    Science.gov (United States)

    Stephens, Denise C.; Kelt North Survey Team, Kelt South Survey Team

    2016-10-01

    The Kelt-North and Kelt-South transit survey is a wide angle search for hot Jupiters around some of the brightest stars in the night sky. Survey operations are based out of the Ohio State and Vanderbilt Universities, with observing facilities at Winer Observatory in Arizona and in Sutherland, South Africa. KELT stands for Kilodegree Extremely Little Telescope, where "Kilodegree" refers to the large area on the sky that the telescope can observe in a single shot. These "Little Telescopes" monitor the brightness of hundreds of thousands of stars night after night, month after month, for many years. Stars that show apparent changes in brightness are put through a careful vetting process and the best transiting planet candidates are sent on for photometric follow-up by a ground based team made up of nearly 40 members in 10 countries across 4 continents. The KELT Follow-Up Network is the largest, most coordinated network of its kind, and their work has contributed to the discovery of multiple new planets: including Kelt-1b which is a 30 Jupiter-mass object at an orbital period of 1.2 days; Kelt-6b wich is a Hot Saturn on a 7.9 day orbital period; and Kelt-8b which is a highly inflated Hot Jupiter that required the development of new techniques to extract high-precision radial velocities. In this presentation I will highlight all of the Kelt Exoplanets discovered to date and how the Kelt team is using small telescopes, citizen science, and network surveys to make these discoveries possible.

  10. Water clouds in Y dwarfs and exoplanets

    Energy Technology Data Exchange (ETDEWEB)

    Morley, Caroline V.; Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Marley, Mark S.; Lupu, Roxana; Greene, Tom [NASA Ames Research Center, Naval Air Station, Moffett Field, Mountain View, CA 94035 (United States); Saumon, Didier [Los Alamos National Lab, Los Alamos, NM 87545 (United States); Lodders, Katharina, E-mail: cmorley@ucolick.org [Washington University in St Louis, 1 Brookings Drive, St Louis, MO 63130 (United States)

    2014-05-20

    The formation of clouds affects brown dwarf and planetary atmospheres of nearly all effective temperatures. Iron and silicate condense in L dwarf atmospheres and dissipate at the L/T transition. Minor species such as sulfides and salts condense in mid- to late T dwarfs. For brown dwarfs below T {sub eff} ∼ 450 K, water condenses in the upper atmosphere to form ice clouds. Currently, over a dozen objects in this temperature range have been discovered, and few previous theoretical studies have addressed the effect of water clouds on brown dwarf or exoplanetary spectra. Here we present a new grid of models that include the effect of water cloud opacity. We find that they become optically thick in objects below T {sub eff} ∼ 350-375 K. Unlike refractory cloud materials, water-ice particles are significantly nongray absorbers; they predominantly scatter at optical wavelengths through the J band and absorb in the infrared with prominent features, the strongest of which is at 2.8 μm. H{sub 2}O, NH{sub 3}, CH{sub 4}, and H{sub 2} CIA are dominant opacity sources; less abundant species may also be detectable, including the alkalis, H{sub 2}S, and PH{sub 3}. PH{sub 3}, which has been detected in Jupiter, is expected to have a strong signature in the mid-infrared at 4.3 μm in Y dwarfs around T {sub eff} = 450 K; if disequilibrium chemistry increases the abundance of PH{sub 3}, it may be detectable over a wider effective temperature range than models predict. We show results incorporating disequilibrium nitrogen and carbon chemistry and predict signatures of low gravity in planetary mass objects. Finally, we make predictions for the observability of Y dwarfs and planets with existing and future instruments, including the James Webb Space Telescope and Gemini Planet Imager.

  11. Computation of the Transmitted and Polarized Scattered Fluxes by the Exoplanet HD 189733b in X-Rays

    Energy Technology Data Exchange (ETDEWEB)

    Marin, Frédéric [Astronomical Institute of the Academy of Sciences, Boční II 1401, CZ-14100 Prague (Czech Republic); Grosso, Nicolas, E-mail: frederic.marin@astro.unistra.fr [Université de Strasbourg, CNRS, Observatoire astronomique de Strasbourg, UMR 7550, F-67000 Strasbourg (France)

    2017-02-01

    Thousands of exoplanets have been detected, but only one exoplanetary transit was potentially observed in X-rays from HD 189733A. What makes the detection of exoplanets so difficult in this band? To answer this question, we run Monte-Carlo radiative transfer simulations to estimate the amount of X-ray flux reprocessed by HD 189733b. Despite its extended evaporating atmosphere, we find that the X-ray absorption radius of HD 189733b at 0.7 keV, which is the mean energy of the photons detected in the 0.25–2 keV energy band by XMM-Newton , is ∼1.01 times the planetary radius for an atmosphere of atomic hydrogen and helium (including ions), and produces a maximum depth of ∼2.1% at ∼±46 minutes from the center of the planetary transit on the geometrically thick and optically thin corona. We compute numerically in the 0.25–2 keV energy band that this maximum depth is only of ∼1.6% at ∼±47 minutes from the transit center, and not very sensitive to the metal abundance, assuming that adding metals in the atmosphere would not dramatically change the density–temperature profile. Regarding a direct detection of HD 189733b in X-rays, we find that the amount of flux reprocessed by the exoplanetary atmosphere varies with the orbital phase, spanning between three and five orders of magnitude fainter than the flux of the primary star. Additionally, the degree of linear polarization emerging from HD 189733b is <0.003%, with maximums detected near planetary greatest elongations. This implies that both the modulation of the X-ray flux with the orbital phase and the scatter-induced continuum polarization cannot be observed with current X-ray facilities.

  12. Exoplanet Science in the Classroom: Learning Activities for an Introductory Physics Course

    Science.gov (United States)

    Della-Rose, Devin; Carlson, Randall; de La Harpe, Kimberly; Novotny, Steven; Polsgrove, Daniel

    2018-03-01

    Discovery of planets outside our solar system, known as extra-solar planets or exoplanets for short, has been at the forefront of astronomical research for over 25 years. Reports of new discoveries have almost become routine; however, the excitement surrounding them has not. Amazingly, as groundbreaking as exoplanet science is, the basic physics is quite accessible to first-year physics students, as discussed in previous TPT articles. To further illustrate this point, we developed an iOS application that generates synthetic exoplanet data to provide students and teachers with interactive learning activities. Using introductory physics concepts, we demonstrate how to estimate exoplanet mass, radius, and density from the app output. These calculations form the basis for a diverse range of classroom activities. We conclude with a summary of exoplanet science resources for teachers.

  13. Modeling the Cloudy Atmospheres of Cool Stars, Brown Dwarfs and Hot Exoplanets

    DEFF Research Database (Denmark)

    Juncher, Diana

    M-dwarfs are very attractive targets when searching for new exoplanets. Unfortunately, they are also very difficult to model since their temperatures are low enough for dust clouds to form in their atmospheres. Because the properties of an exoplanet cannot be determined without knowing...... of their clouds and found that their synthetic spectra fit the observed spectra of mid to late type M-dwarfs and early type L-dwarfs well. With additional development into even cooler regimes, they could be used to characterize the atmospheres of exoplanets and aid us in our search for the kind of chemical...... imbalances that suggest the presence of life. I have also directly performed spectroscopic and photometric observations of exoplanets to discover and/or improve our knowledge of their properties and to participate in the development of the techniques that is being used to discover and characterize exoplanets."...

  14. TWO NEARBY SUB-EARTH-SIZED EXOPLANET CANDIDATES IN THE GJ 436 SYSTEM

    International Nuclear Information System (INIS)

    Stevenson, Kevin B.; Harrington, Joseph; Lust, Nate B.; Blecic, Jasmina; Hardy, Ryan A.; Cubillos, Patricio; Campo, Christopher J.; Lewis, Nikole K.; Montagnier, Guillaume; Moses, Julianne I.; Visscher, Channon

    2012-01-01

    We report the detection of UCF-1.01, a strong exoplanet candidate with a radius 0.66 ± 0.04 times that of Earth (R ⊕ ). This sub-Earth-sized planet transits the nearby M-dwarf star GJ 436 with a period of 1.365862 ± 8 × 10 –6 days. We also report evidence of a 0.65 ± 0.06 R ⊕ exoplanet candidate (labeled UCF-1.02) orbiting the same star with an undetermined period. Using the Spitzer Space Telescope, we measure the dimming of light as the planets pass in front of their parent star to assess their sizes and orbital parameters. If confirmed today, UCF-1.01 and UCF-1.02 would be designated GJ 436c and GJ 436d, respectively, and would be part of the first multiple-transiting-planet system outside of the Kepler field. Assuming Earth-like densities of 5.515 g cm –3 , we predict both candidates to have similar masses (∼0.28 Earth-masses, M ⊕ , 2.6 Mars-masses) and surface gravities of ∼0.65 g (where g is the gravity on Earth). UCF-1.01's equilibrium temperature (T eq , where emitted and absorbed radiation balance for an equivalent blackbody) is 860 K, making the planet unlikely to harbor life as on Earth. Its weak gravitational field and close proximity to its host star imply that UCF-1.01 is unlikely to have retained its original atmosphere; however, a transient atmosphere is possible if recent impacts or tidal heating were to supply volatiles to the surface. We also present additional observations of GJ 436b during secondary eclipse. The 3.6 μm light curve shows indications of stellar activity, making a reliable secondary eclipse measurement impossible. A second non-detection at 4.5 μm supports our previous work in which we find a methane-deficient and carbon monoxide-rich dayside atmosphere.

  15. A SEMI-ANALYTICAL MODEL OF VISIBLE-WAVELENGTH PHASE CURVES OF EXOPLANETS AND APPLICATIONS TO KEPLER- 7 B AND KEPLER- 10 B

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Renyu [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Demory, Brice-Olivier [Astrophysics Group, Cavendish Laboratory, J.J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Seager, Sara; Lewis, Nikole [Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Showman, Adam P., E-mail: renyu.hu@jpl.nasa.gov [Department of Planetary Sciences, University of Arizona, Tucson, AZ 85721 (United States)

    2015-03-20

    Kepler has detected numerous exoplanet transits by measuring stellar light in a single visible-wavelength band. In addition to detection, the precise photometry provides phase curves of exoplanets, which can be used to study the dynamic processes on these planets. However, the interpretation of these observations can be complicated by the fact that visible-wavelength phase curves can represent both thermal emission and scattering from the planets. Here we present a semi-analytical model framework that can be applied to study Kepler and future visible-wavelength phase curve observations of exoplanets. The model efficiently computes reflection and thermal emission components for both rocky and gaseous planets, considering both homogeneous and inhomogeneous surfaces or atmospheres. We analyze the phase curves of the gaseous planet Kepler- 7 b and the rocky planet Kepler- 10 b using the model. In general, we find that a hot exoplanet’s visible-wavelength phase curve having a significant phase offset can usually be explained by two classes of solutions: one class requires a thermal hot spot shifted to one side of the substellar point, and the other class requires reflective clouds concentrated on the same side of the substellar point. Particularly for Kepler- 7 b, reflective clouds located on the west side of the substellar point can best explain its phase curve. The reflectivity of the clear part of the atmosphere should be less than 7% and that of the cloudy part should be greater than 80%, and the cloud boundary should be located at 11° ± 3° to the west of the substellar point. We suggest single-band photometry surveys could yield valuable information on exoplanet atmospheres and surfaces.

  16. #AltPlanets: Exploring the Exoplanet Catalogue with Neural Networks

    Science.gov (United States)

    Laneuville, M.; Tasker, E. J.; Guttenberg, N.

    2017-12-01

    The launch of Kepler in 2009 brought the number of known exoplanets into the thousands, in a growth explosion that shows no sign of abating. While the data available for individual planets is presently typically restricted to orbital and bulk properties, the quantity of data points allows the potential for meaningful statistical analysis. It is not clear how planet mass, radius, orbital path, stellar properties and neighbouring planets influence one another, therefore it seems inevitable that patterns will be missed simply due to the difficulty of including so many dimensions. Even simple trends may be overlooked if they fall outside our expectation of planet formation; a strong risk in a field where new discoveries have destroyed theories from the first observations of hot Jupiters. A possible way forward is to take advantage of the capabilities of neural network autoencoders. The idea of such algorithms is to learn a representation (encoding) of the data in a lower dimension space, without a priori knowledge about links between the elements. This encoding space can then be used to discover the strongest correlations in the original dataset.The key point is that trends identified by a neural network are independent of any previous analysis and pre-conceived ideas about physical processes. Results can reveal new relationships between planet properties and verify existing trends. We applied this concept to study data from the NASA Exoplanet Archive and while we have begun to explore the potential use of neural networks for exoplanet data, there are many possible extensions. For example, the network can produce a large number of 'alternative planets' whose statistics should match the current distribution. This larger dataset could highlight gaps in the parameter space or indicate observations are missing particular regimes. This could guide instrument proposals towards objects liable to yield the most information.

  17. Hunting for Exoplanets at Florida Gulf Coast University

    Science.gov (United States)

    Buzasi, Derek L.; Lezcano, Andy; Fine, Stephanie; Humes, Cassandra; King, Alex; Patel, Keval; Rivers, Dakota; Sinclair, Kelsey; Stacey, Enzo; Vural, Leyla; Zimmer, Jenna

    2016-06-01

    Honors Program participants at Florida Gulf Coast University must complete two of four required "Honors Experiences". One student option is a research experience, and we have developed a "Planet Hunters" course to provide an astronomical research track. In the course, students spend the first semester learning astronomical background and exoplanet detection techniques, while the second semester is devoted to planet searches in Kepler and K2 data, using student-oriented software tools developed specifically for the task. In this poster, we present the tools, data sets, and results obtained by students participating in the first year of the course, along with lessons learned for future implementation.

  18. Exoplanet Science from NASA’s Kepler Mission

    Energy Technology Data Exchange (ETDEWEB)

    Steffen, Jason [Northwestern University

    2012-09-12

    NASA's exoplanet mission is the world's premier instrument for the discovery and study of planets orbiting distant stars. As the nominal mission comes to a close, Kepler has discovered nearly 2500 planet candidates, confirmed dozens of multi-planet systems, provided important insights into the orbital architectures of planetary systems, identified specific systems that challenge theories of planet formation and dynamical evolution, has revolutionized our understanding of stellar interiors, and is gearing to measure the frequency of Earth-like planets in the habitable zones of Sun-like stars in its extended mission phase. I present the most recent results from the Kepler mission.

  19. Post-processing of high-contrast observations of exoplanets

    Directory of Open Access Journals (Sweden)

    Gladysz S.

    2011-07-01

    Full Text Available Post-processing of images delivered by the eXtreme Adaptive Optics (XAO instrumentation is a crucial step which can increase achievable contrast even by two orders of magnitude. In this communication I present a new class of algorithms for detection of extrasolar planets from a sequence of adaptive-optics-corrected images. In general, the methods discriminate between real sources and stellar PSF features based on statistics of recorded intensity. The methods are particularly useful in dealing with static speckles which are the greatest obstacle in detecting exoplanets.

  20. Transit spectroscopy with GTC

    Directory of Open Access Journals (Sweden)

    Osorio M.R. Zapatero

    2013-04-01

    Full Text Available Thanks to different ground-based surveys and space missions, nowadays we have a fairly large sample of discovered extra-solar planets to study and, without a doubt, this number will increase in the future. One of the most succesful techniques that allows us to prove the physical properties and atmospheric composition of these exoplanets is transmission spectroscopy. The level of precision that is require to measure these effects provides a technical challenge that is solved by using big telescopes and stable instruments to reach low noise levels. In this article, we will discuss the use of the 10m class telescope GTC to observed planetary transits in spectroscopic mode and some of the results that we are currently obtaining.

  1. CHEOPS: A transit photometry mission for ESA's small mission programme

    Directory of Open Access Journals (Sweden)

    Queloz D.

    2013-04-01

    Full Text Available Ground based radial velocity (RV searches continue to discover exoplanets below Neptune mass down to Earth mass. Furthermore, ground based transit searches now reach milli-mag photometric precision and can discover Neptune size planets around bright stars. These searches will find exoplanets around bright stars anywhere on the sky, their discoveries representing prime science targets for further study due to the proximity and brightness of their host stars. A mission for transit follow-up measurements of these prime targets is currently lacking. The first ESA S-class mission CHEOPS (CHaracterizing ExoPlanet Satellite will fill this gap. It will perform ultra-high precision photometric monitoring of selected bright target stars almost anywhere on the sky with sufficient precision to detect Earth sized transits. It will be able to detect transits of RV-planets by photometric monitoring if the geometric configuration results in a transit. For Hot Neptunes discovered from the ground, CHEOPS will be able to improve the transit light curve so that the radius can be determined precisely. Because of the host stars' brightness, high precision RV measurements will be possible for all targets. All planets observed in transit by CHEOPS will be validated and their masses will be known. This will provide valuable data for constraining the mass-radius relation of exoplanets, especially in the Neptune-mass regime. During the planned 3.5 year mission, about 500 targets will be observed. There will be 20% of open time available for the community to develop new science programmes.

  2. A SEARCH FOR LOST PLANETS IN THE KEPLER MULTI-PLANET SYSTEMS AND THE DISCOVERY OF A LONG PERIOD, NEPTUNE-SIZED EXOPLANET KEPLER-150 F.

    Science.gov (United States)

    Schmitt, Joseph R; Jenkins, Jon M; Fischer, Debra A

    2017-04-01

    The vast majority of the 4700 confirmed planets and planet candidates discovered by the Kepler space telescope were first found by the Kepler pipeline. In the pipeline, after a transit signal is found, all data points associated with those transits are removed, creating a "Swiss cheese"-like light curve full of holes, which is then used for subsequent transit searches. These holes could render an additional planet undetectable (or "lost"). We examine a sample of 114 stars with 3+ confirmed planets to see the effect that this "Swiss cheesing" may have. A simulation determined that the probability that a transiting planet is lost due to the transit masking is low, but non-neglible, reaching a plateau at ~3.3% lost in the period range of P = 400 - 500 days. We then model the transits in all quarters of each star and subtract out the transit signals, restoring the in-transit data points, and use the Kepler pipeline to search the transit-subtracted (i.e., transit-cleaned) light curves. However, the pipeline did not discover any credible new transit signals. This demonstrates the validity and robustness of the Kepler pipeline's choice to use transit masking over transit subtraction. However, a follow-up visual search through all the transit-subtracted data, which allows for easier visual identification of new transits, revealed the existence of a new, Neptune-sized exoplanet. Kepler-150 f ( P = 637.2 days, R P = 3.86 R ⊕ ) is confirmed using a combination of false positive probability analysis, transit duration analysis, and the planet multiplicity argument.

  3. Gaussian Processes: the Next Step in Exoplanet Data Analysis

    Science.gov (United States)

    Aigrain, Suzanne; Gibson, N.; Roberts, S.; Evans, T.; McQuillan, A.; Reece, S.; Osborne, M.

    2011-09-01

    When searching for or characterising exoplanets, we typically need to isolate a deterministic signal from stochastic processes - astrophysical or instrumental "noise" - in time-series data. Gaussian processes (GPs) enable us to construct distributions over random functions, and to infer the properties of "signal" and "noise" in a way that is both flexible and robust. I will give a brief overview of the principles of GPs and show two example applications which are both interesting in their own right, and highlight some specific strengths of the technique. The first is a new re-analysis of the controversial HST/NICMOS transmission spectrum of HD189733b. The second is the measurement of stellar rotation periods from light curves, when the spot distribution evolves over the duration of the dataset. NB: I could also present another topic: stellar variability studies in Kepler data, based on a new systematics correction which preserves stellar variability. I opted for the GPs because I think it's important to alert the exoplanet community to the potential of this technique, but I'm happy to talk about either.

  4. Detecting magnetic fields on brown dwarfs and exoplanets

    Science.gov (United States)

    Berdyugina, Svetlana

    2017-05-01

    There is growing evidence that brown dwarfs may possess rather strong magnetic fields, similar to active, early M-type red dwarf stars. Strong clues come from extremely energetic flares detected in UV, X-ray and optical line emission as well as quiescent and transient radio emission and bursts. Our recent spectropolarimetric study of one such active brown dwarf has revealed a 5 kG magnetic spot on its surface. The emitting region topology recovered using spectral line profile inversions indicates the presence of a hot plasma large-scale loop of at least 7000 K with a vertical stratification of the sources producing both optical and radio emission. This loop rotates with the dwarf in and out of view causing the emission bursts. The 5 kG magnetic field is detected at the base of the loop. This result provides the first direct observational constraint for a magnetically driven non-thermal emission mechanism and for generation of magnetic fields in fully convective brown dwarfs. It also paves a path towards magnetic studies of hot Jupiters of similar temperatures. We model relevant atomic lines and molecular bands in order to predict spectropolarimetric signals due to magnetic fields on brown dwarfs, hot Jupiters and other types of exoplanets. This exercise helps to determine instrumental requirements for magnetic surveys of brown dwarfs and exoplanets.

  5. Dynamical Mass of the Exoplanet Host Star HR 8799

    Science.gov (United States)

    Sepulveda, Aldo; Bowler, Brendan

    2018-01-01

    HR 8799 is a young A5 star hosting four giant planets at wide separations (15-70 AU) which are undergoing orbital motion and have been continuously monitored with adaptive optics imaging since their discovery nearly a decade ago. Despite intensive searches for similar systems, this remains the only known star with multiple directly imaged exoplanets and is among the most extensively studied systems in the exoplanet community. Many mass estimates of the host star exist in the literature; however, currently no dynamical mass of HR 8799 has been measured. A dynamical mass of the host star is advantageous because it is independent of models and assumes only Kepler's laws of orbital motion. Furthermore, a dynamical mass can help to break degeneracies in the age and bulk metallicity of the host star. We fit Keplerian orbits to existing astrometry and new unpublished adaptive optics observations of this system from Keck Observatory, treating the orbiting planets as massless test particles. Each planet produces an independent mass constraint, together resulting in a cumulative dynamical mass using a Bayesian framework. This result is twice as precise as previous mass estimates based on spectroscopy and is an important step to clarify the fundamental properties of this peculiar A star.

  6. Exoplanets, Exo-Solar Life, and Human Significance

    Science.gov (United States)

    Wiseman, Jennifer

    2011-01-01

    With the recent detection of over 500 extrasolar planets, the existence of "other worlds", perhaps even other Earths, is no longer in the realm of science fiction. The study of exoplanets rapidly moved from an activity on the fringe of astronomy to one of the highest priorities of the world's astronomical programs. Actual images of extrasolar planets were revealed over the past two years for the first time. NASA's Hubble Space Telescope is already characterizing the atmospheres of Jupiter-like planets, in other systems. And the recent launch of the NASA Kepler space telescope is enabling the first statistical assessment of how common solar systems like our own really are. As we begin to characterize these "other worlds" and assess their habitability, the question of the significance and uniqueness of life on Earth will impact our society as never before. I will provide a comprehensive overview of the techniques and status of exoplanet detection, followed by reflections as to the societal impact of finding out that Earths are common, or rare. Will finding other potentially habitable planets create another "Copernican Revolution"? Will perceptions of the significance of life on Earth change when we find other Earth-like planets? I will discuss the plans of the scientific community for future telescopes that will be abe to survey our solar neighborhood for Earth-like planets, study their atmospheres, and search for biological signs of life.

  7. An ultrahot gas-giant exoplanet with a stratosphere

    Science.gov (United States)

    Evans, Thomas M.; Sing, David K.; Kataria, Tiffany; Goyal, Jayesh; Nikolov, Nikolay; Wakeford, Hannah R.; Deming, Drake; Marley, Mark S.; Amundsen, David S.; Ballester, Gilda E.; Barstow, Joanna K.; Ben-Jaffel, Lotfi; Bourrier, Vincent; Buchhave, Lars A.; Cohen, Ofer; Ehrenreich, David; García Muñoz, Antonio; Henry, Gregory W.; Knutson, Heather; Lavvas, Panayotis; Lecavelier Des Etangs, Alain; Lewis, Nikole K.; López-Morales, Mercedes; Mandell, Avi M.; Sanz-Forcada, Jorge; Tremblin, Pascal; Lupu, Roxana

    2017-08-01

    Infrared radiation emitted from a planet contains information about the chemical composition and vertical temperature profile of its atmosphere. If upper layers are cooler than lower layers, molecular gases will produce absorption features in the planetary thermal spectrum. Conversely, if there is a stratosphere—where temperature increases with altitude—these molecular features will be observed in emission. It has been suggested that stratospheres could form in highly irradiated exoplanets, but the extent to which this occurs is unresolved both theoretically and observationally. A previous claim for the presence of a stratosphere remains open to question, owing to the challenges posed by the highly variable host star and the low spectral resolution of the measurements. Here we report a near-infrared thermal spectrum for the ultrahot gas giant WASP-121b, which has an equilibrium temperature of approximately 2,500 kelvin. Water is resolved in emission, providing a detection of an exoplanet stratosphere at 5σ confidence. These observations imply that a substantial fraction of incident stellar radiation is retained at high altitudes in the atmosphere, possibly by absorbing chemical species such as gaseous vanadium oxide and titanium oxide.

  8. Interactions between exoplanets and the winds of young stars

    Directory of Open Access Journals (Sweden)

    Vidotto A. A.

    2014-01-01

    Full Text Available The topology of the magnetic field of young stars is important not only for the investigation of magnetospheric accretion, but also responsible in shaping the large-scale structure of stellar winds, which are crucial for regulating the rotation evolution of stars. Because winds of young stars are believed to have enhanced mass-loss rates compared to those of cool, main-sequence stars, the interaction of winds with newborn exoplanets might affect the early evolution of planetary systems. This interaction can also give rise to observational signatures which could be used as a way to detect young planets, while simultaneously probing for the presence of their still elusive magnetic fields. Here, we investigate the interaction between winds of young stars and hypothetical planets. For that, we model the stellar winds by means of 3D numerical magnetohydrodynamic simulations. Although these models adopt simplified topologies of the stellar magnetic field (dipolar fields that are misaligned with the rotation axis of the star, we show that asymmetric field topologies can lead to an enhancement of the stellar wind power, resulting not only in an enhancement of angular momentum losses, but also intensifying and rotationally modulating the wind interactions with exoplanets.

  9. SETI OBSERVATIONS OF EXOPLANETS WITH THE ALLEN TELESCOPE ARRAY

    Energy Technology Data Exchange (ETDEWEB)

    Harp, G. R.; Richards, Jon; Tarter, Jill C.; Dreher, John; Jordan, Jane; Shostak, Seth; Smolek, Ken; Kilsdonk, Tom; Wilcox, Bethany R.; Wimberly, M. K. R.; Ross, John; Barott, W. C.; Ackermann, R. F.; Blair, Samantha [SETI Institute, Mountain View, CA 94043 (United States)

    2016-12-01

    We report radio SETI observations on a large number of known exoplanets and other nearby star systems using the Allen Telescope Array (ATA). Observations were made over about 19000 hr from 2009 May to 2015 December. This search focused on narrowband radio signals from a set totaling 9293 stars, including 2015 exoplanet stars and Kepler objects of interest and an additional 65 whose planets may be close to their habitable zones. The ATA observations were made using multiple synthesized beams and an anticoincidence filter to help identify terrestrial radio interference. Stars were observed over frequencies from 1 to 9 GHz in multiple bands that avoid strong terrestrial communication frequencies. Data were processed in near-real time for narrowband (0.7–100 Hz) continuous and pulsed signals with transmitter/receiver relative accelerations from −0.3 to 0.3 m s{sup −2}. A total of 1.9 × 10{sup 8} unique signals requiring immediate follow-up were detected in observations covering more than 8 × 10{sup 6} star-MHz. We detected no persistent signals from extraterrestrial technology exceeding our frequency-dependent sensitivity threshold of 180–310 × 10{sup −26} W m{sup −2}.

  10. Analyzing Exoplanet Phase Curve Information Content: Toward Optimized Observing Strategies

    Science.gov (United States)

    Placek, Ben; Angerhausen, Daniel; Knuth, Kevin H.

    2017-10-01

    Secondary eclipses and phase curves reveal information about the reflectivity and heat distribution in exoplanet atmospheres. The phase curve is composed of a combination of reflected and thermally emitted light from the planet, and for circular orbits the phase curve peaks during the secondary eclipse or at an orbital phase of 0.5. Physical mechanisms have been discovered that shift the phase curve maximum of tidally locked close-in planets to the right, or left, of the secondary eclipse. These mechanisms include cloud formations and atmospheric superrotation, both of which serve to shift the thermally bright hot-spot or highly reflective bright spot of the atmosphere away from the sub-stellar point. Here, we present a methodology for optimizing observing strategies for both secondary eclipses and phase curves with the goal of maximizing the information gained about the planetary atmosphere while minimizing the (assumed) continuous observation time. We show that we can increase the duty cycle of observations aimed at the measurements of phase curve characteristics (amplitude, phase offset) by up to 50% for future platforms such as CHaracterising ExOPlanets Satellite (CHEOPS) and JWST. We apply this methodology to the test cases of the Spitzer phase curve of 55-Cancri-e, which displays an eastward shift in its phase curve maximum as well as model-generated observations of an ultra-short period planet observed with CHEOPS.

  11. Connecting HL Tau to the observed exoplanet sample

    Science.gov (United States)

    Simbulan, Christopher; Tamayo, Daniel; Petrovich, Cristobal; Rein, Hanno; Murray, Norman

    2017-08-01

    The Atacama Large Millimeter/submilimeter Array (ALMA) recently revealed a set of nearly concentric gaps in the protoplanetary disc surrounding the young star HL Tauri (HL Tau). If these are carved by forming gas giants, this provides the first set of orbital initial conditions for planets as they emerge from their birth discs. Using N-body integrations, we have followed the evolution of the system for 5 Gyr to explore the possible outcomes. We find that HL Tau initial conditions scaled down to the size of typically observed exoplanet orbits naturally produce several populations in the observed exoplanet sample. First, for a plausible range of planetary masses, we can match the observed eccentricity distribution of dynamically excited radial velocity giant planets with eccentricities >0.2. Secondly, we roughly obtain the observed rate of hot Jupiters around FGK stars. Finally, we obtain a large efficiency of planetary ejections of ≈2 per HL Tau-like system, but the small fraction of stars observed to host giant planets makes it hard to match the rate of free-floating planets inferred from microlensing observations. In view of upcoming Gaia results, we also provide predictions for the expected mutual inclination distribution, which is significantly broader than the absolute inclination distributions typically considered by previous studies.

  12. The automated data processing architecture for the GPI Exoplanet Survey

    Science.gov (United States)

    Wang, Jason J.; Perrin, Marshall D.; Savransky, Dmitry; Arriaga, Pauline; Chilcote, Jeffrey K.; De Rosa, Robert J.; Millar-Blanchaer, Maxwell A.; Marois, Christian; Rameau, Julien; Wolff, Schuyler G.; Shapiro, Jacob; Ruffio, Jean-Baptiste; Graham, James R.; Macintosh, Bruce

    2017-09-01

    The Gemini Planet Imager Exoplanet Survey (GPIES) is a multi-year direct imaging survey of 600 stars to discover and characterize young Jovian exoplanets and their environments. We have developed an automated data architecture to process and index all data related to the survey uniformly. An automated and flexible data processing framework, which we term the GPIES Data Cruncher, combines multiple data reduction pipelines together to intelligently process all spectroscopic, polarimetric, and calibration data taken with GPIES. With no human intervention, fully reduced and calibrated data products are available less than an hour after the data are taken to expedite follow-up on potential objects of interest. The Data Cruncher can run on a supercomputer to reprocess all GPIES data in a single day as improvements are made to our data reduction pipelines. A backend MySQL database indexes all files, which are synced to the cloud, and a front-end web server allows for easy browsing of all files associated with GPIES. To help observers, quicklook displays show reduced data as they are processed in real-time, and chatbots on Slack post observing information as well as reduced data products. Together, the GPIES automated data processing architecture reduces our workload, provides real-time data reduction, optimizes our observing strategy, and maintains a homogeneously reduced dataset to study planet occurrence and instrument performance.

  13. MAGNETIC SCALING LAWS FOR THE ATMOSPHERES OF HOT GIANT EXOPLANETS

    International Nuclear Information System (INIS)

    Menou, Kristen

    2012-01-01

    We present scaling laws for advection, radiation, magnetic drag, and ohmic dissipation in the atmospheres of hot giant exoplanets. In the limit of weak thermal ionization, ohmic dissipation increases with the planetary equilibrium temperature (T eq ∼> 1000 K) faster than the insolation power does, eventually reaching values ∼> 1% of the insolation power, which may be sufficient to inflate the radii of hot Jupiters. At higher T eq values still magnetic drag rapidly brakes the atmospheric winds, which reduces the associated ohmic dissipation power. For example, for a planetary field strength B = 10 G, the fiducial scaling laws indicate that ohmic dissipation exceeds 1% of the insolation power over the equilibrium temperature range T eq ∼ 1300-2000 K, with a peak contribution at T eq ∼ 1600 K. Evidence for magnetically dragged winds at the planetary thermal photosphere could emerge in the form of reduced longitudinal offsets for the dayside infrared hotspot. This suggests the possibility of an anticorrelation between the amount of hotspot offset and the degree of radius inflation, linking the atmospheric and interior properties of hot giant exoplanets in an observationally testable way. While providing a useful framework to explore the magnetic scenario, the scaling laws also reveal strong parameter dependencies, in particular with respect to the unknown planetary magnetic field strength.

  14. HAT-P-26b: A Neptune-mass exoplanet with a well-constrained heavy element abundance.

    Science.gov (United States)

    Wakeford, Hannah R; Sing, David K; Kataria, Tiffany; Deming, Drake; Nikolov, Nikolay; Lopez, Eric D; Tremblin, Pascal; Amundsen, David S; Lewis, Nikole K; Mandell, Avi M; Fortney, Jonathan J; Knutson, Heather; Benneke, Björn; Evans, Thomas M

    2017-05-12

    A correlation between giant-planet mass and atmospheric heavy elemental abundance was first noted in the past century from observations of planets in our own Solar System and has served as a cornerstone of planet-formation theory. Using data from the Hubble and Spitzer Space Telescopes from 0.5 to 5 micrometers, we conducted a detailed atmospheric study of the transiting Neptune-mass exoplanet HAT-P-26b. We detected prominent H 2 O absorption bands with a maximum base-to-peak amplitude of 525 parts per million in the transmission spectrum. Using the water abundance as a proxy for metallicity, we measured HAT-P-26b's atmospheric heavy element content ([Formula: see text] times solar). This likely indicates that HAT-P-26b's atmosphere is primordial and obtained its gaseous envelope late in its disk lifetime, with little contamination from metal-rich planetesimals. Copyright © 2017, American Association for the Advancement of Science.

  15. Advection of Potential Temperature in the Atmosphere of Irradiated Exoplanets: A Robust Mechanism to Explain Radius Inflation

    Energy Technology Data Exchange (ETDEWEB)

    Tremblin, P. [Maison de la Simulation, CEA-CNRS-INRIA-UPS-UVSQ, USR 3441, CEA Paris-Saclay, F-91191 Gif-Sur-Yvette (France); Chabrier, G.; Mayne, N. J.; Baraffe, I.; Debras, F.; Drummond, B.; Manners, J. [Astrophysics Group, University of Exeter, EX4 4QL Exeter (United Kingdom); Amundsen, D. S. [Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10025 (United States); Fromang, S., E-mail: pascal.tremblin@cea.fr [Laboratoire AIM, CEA/DSM-CNRS-Université Paris 7, Irfu/Service d’Astrophysique, CEA Paris-Saclay, F-91191 Gif-sur-Yvette (France)

    2017-05-20

    The anomalously large radii of strongly irradiated exoplanets have remained a major puzzle in astronomy. Based on a two-dimensional steady-state atmospheric circulation model, the validity of which is assessed by comparison to three-dimensional calculations, we reveal a new mechanism, namely the advection of the potential temperature due to mass and longitudinal momentum conservation, a process occurring in the Earth’s atmosphere or oceans. In the deep atmosphere, the vanishing heating flux forces the atmospheric structure to converge to a hotter adiabat than the one obtained with 1D calculations, implying a larger radius for the planet. Not only do the calculations reproduce the observed radius of HD 209458b, but also reproduce the observed correlation between radius inflation and irradiation for transiting planets. Vertical advection of potential temperature induced by non-uniform atmospheric heating thus provides a robust mechanism to explain the inflated radii of irradiated hot Jupiters.

  16. Advection of Potential Temperature in the Atmosphere of Irradiated Exoplanets: A Robust Mechanism to Explain Radius Inflation

    Science.gov (United States)

    Tremblin, P.; Chabrier, G.; Mayne, N. J.; Amundsen, D. S.; Baraffe, I.; Debras, F.; Drummond, B.; Manners, J.; Fromang, S.

    2017-01-01

    The anomalously large radii of strongly irradiated exoplanets have remained a major puzzle in astronomy. Based on a two-dimensional steady-state atmospheric circulation model, the validity of which is assessed by comparison to three-dimensional calculations, we reveal a new mechanism, namely the advection of the potential temperature due to mass and longitudinal momentum conservation, a process occurring in the Earth's atmosphere or oceans. In the deep atmosphere, the vanishing heating flux forces the atmospheric structure to converge to a hotter adiabat than the one obtained with 1D calculations, implying a larger radius for the planet. Not only do the calculations reproduce the observed radius of HD 209458b, but also reproduce the observed correlation between radius inflation and irradiation for transiting planets. Vertical advection of potential temperature induced by non-uniform atmospheric heating thus provides a robust mechanism to explain the inflated radii of irradiated hot Jupiters.

  17. The search for radio emission from exoplanets using LOFAR low-frequency beam-formed observations

    Science.gov (United States)

    Turner, Jake D.; Griessmeier, Jean-Mathias; Zarka, Philippe

    2018-01-01

    Detection of radio emission from exoplanets can provide information on the star-planet system that is very difficult or impossible to study otherwise, such as the planet’s magnetic field, magnetosphere, rotation period, orbit inclination, and star-planet interactions. Such a detection in the radio domain would open up a whole new field in the study of exoplanets, however, currently there are no confirmed detections of an exoplanet at radio frequencies. In this study, we discuss our ongoing observational campaign searching for exoplanetary radio emissions using beam-formed observations within the Low Band of the Low-Frequency Array (LOFAR). To date we have observed three exoplanets: 55 Cnc, Upsilon Andromedae, and Tau Boötis. These planets were selected according to theoretical predictions, which indicated them as among the best candidates for an observation. During the observations we usually recorded three beams simultaneously, one on the exoplanet and two on patches of nearby “empty” sky. An automatic pipeline was created to automatically find RFI, calibrate the data due to instrumental effects, and to search for emission in the exoplanet beam. Additionally, we observed Jupiter with LOFAR with the same exact observational setup as the exoplanet observations. The main goals of the Jupiter observations are to train the detection algorithm and to calculate upper limits in the case of a non-detection. Data analysis is currently ongoing. Conclusions reached at the time of the meeting, about detection of or upper limit to the planetary signal, will be presented.

  18. Making the Most of Kepler Photometry: Characterizing Exoplanets through Phase Curve Analysis

    Directory of Open Access Journals (Sweden)

    Esteves Lisa J.

    2015-01-01

    Full Text Available The Kepler mission’s long-term monitoring of stars through high-precision photometry has not only revealed a plethora of exoplanet transits but also provided valuable data for characterizing a subset of these planets. Using over four years of Kepler observations, we have derived phase curves for over a dozen planets, and use these measurements to constrain their mass, brightness/temperature and energy redistribution between the day and the night sides. In our new study, we also investigate possible offsets of the peak brightness of the phase curve, which could be indicative of inhomogeneous clouds and/or substantial winds in the planet’s atmosphere. We find significant offsets for over a half-dozen planets. With this growing sample of measured phase curves, we are able to better examine the trends of hot Jupiter energy budgets and albedos, and for the first time relate these properties to the presence of clouds or winds on a planet.

  19. An Earth-sized exoplanet with a Mercury-like composition

    Science.gov (United States)

    Santerne, A.; Brugger, B.; Armstrong, D. J.; Adibekyan, V.; Lillo-Box, J.; Gosselin, H.; Aguichine, A.; Almenara, J.-M.; Barrado, D.; Barros, S. C. C.; Bayliss, D.; Boisse, I.; Bonomo, A. S.; Bouchy, F.; Brown, D. J. A.; Deleuil, M.; Delgado Mena, E.; Demangeon, O.; Díaz, R. F.; Doyle, A.; Dumusque, X.; Faedi, F.; Faria, J. P.; Figueira, P.; Foxell, E.; Giles, H.; Hébrard, G.; Hojjatpanah, S.; Hobson, M.; Jackman, J.; King, G.; Kirk, J.; Lam, K. W. F.; Ligi, R.; Lovis, C.; Louden, T.; McCormac, J.; Mousis, O.; Neal, J. J.; Osborn, H. P.; Pepe, F.; Pollacco, D.; Santos, N. C.; Sousa, S. G.; Udry, S.; Vigan, A.

    2018-03-01

    Earth, Venus, Mars and some extrasolar terrestrial planets1 have a mass and radius that is consistent with a mass fraction of about 30% metallic core and 70% silicate mantle2. At the inner frontier of the Solar System, Mercury has a completely different composition, with a mass fraction of about 70% metallic core and 30% silicate mantle3. Several formation or evolution scenarios are proposed to explain this metal-rich composition, such as a giant impact4, mantle evaporation5 or the depletion of silicate at the inner edge of the protoplanetary disk6. These scenarios are still strongly debated. Here, we report the discovery of a multiple transiting planetary system (K2-229) in which the inner planet has a radius of 1.165 ± 0.066 Earth radii and a mass of 2.59 ± 0.43 Earth masses. This Earth-sized planet thus has a core-mass fraction that is compatible with that of Mercury, although it was expected to be similar to that of Earth based on host-star chemistry7. This larger Mercury analogue either formed with a very peculiar composition or has evolved, for example, by losing part of its mantle. Further characterization of Mercury-like exoplanets such as K2-229 b will help to put the detailed in situ observations of Mercury (with MESSENGER and BepiColombo8) into the global context of the formation and evolution of solar and extrasolar terrestrial planets.

  20. Technology Maturity for the Habitable-zone Exoplanet Imaging Mission (HabEx) Concept

    Science.gov (United States)

    Morgan, Rhonda; Warfield, Keith R.; Stahl, H. Philip; Mennesson, Bertrand; Nikzad, Shouleh; nissen, joel; Balasubramanian, Kunjithapatham; Krist, John; Mawet, Dimitri; Stapelfeldt, Karl; warwick, Steve

    2018-01-01

    HabEx Architecture A is a 4m unobscured telescope optimized for direct imaging and spectroscopy of potentially habitable exoplanets, and also enables a wide range of general astrophysics science. The exoplanet detection and characterization drives the enabling core technologies. A hybrid starlight suppression approach of a starshade and coronagraph diversifies technology maturation risk. In this poster we assess these exoplanet-driven technologies, including elements of coronagraphs, starshades, mirrors, jitter mitigation, wavefront control, and detectors. By utilizing high technology readiness solutions where feasible, and identifying required technology development that can begin early, HabEx will be well positioned for assessment by the community in 2020 Astrophysics Decadal Survey.

  1. Worlds Beyond: A Strategy for the Detection and Characterization of Exoplanets

    Energy Technology Data Exchange (ETDEWEB)

    Lunine, J; Fischer, D; Hammel, H; Hillenbrand, L; Kasting, J; Laughlin, G; Macintosh, B; Marley, M; Melnick, G; Monet, D; Noecker, C; Peale, S; Quirrenbach, A; Seager, S; Winn, J

    2008-06-02

    This report is a comprehensive study of the search for and study of planets around other stars (exoplanets). The young but maturing field of exoplanets is perhaps one of the most compelling fields of study in science today--both because of the discoveries made to date on giant planets around other stars, and because the detection of planets just like our Earth ('Earth analogs') is at last within reach technologically. In the Report we outline the need for a vigorous research program in exoplanets to understand our place in the cosmos: whether planets like our home Earth are a common or rare outcome of cosmic evolution. The strategy we developed is intended to address the following fundamental questions, in priority order, within three distinct 5-yr long phases, over a 15 year period: (1) What are the physical characteristics of planets in the habitable zones around bright, nearby stars? (2) What is the architecture of planetary systems? (3) When, how and in what environments are planets formed? The Report recommends a two-pronged strategy for the detection and characterization of planets the size of the Earth. For stars much less massive and cooler than our Sun (M-dwarfs), existing ground-based techniques including radial velocity and transit searches, and space-based facilities both existing and under development such as Spitzer and JWST, are adequate for finding and studying planets close to the mass and size of the Earth. Conducted in parallel with the M-dwarf strategy is one for the more challenging observations of the hotter and brighter F, G, and K stars, some of which are very close in properties to our Sun, in which the frequency of Earth-sized planets is assessed with Corot and Kepler, but new space missions are required for detection and study of specific Earth-mass and Earth-sized objects. Our Task Force concludes that the development of a space-based astrometric mission, narrowly-focused to identify specific nearby stars with Earth

  2. Efficient Geometric Probabilities of Multi-Transiting Exoplanetary Systems from CORBITS

    Science.gov (United States)

    Brakensiek, Joshua; Ragozzine, Darin

    2016-04-01

    NASA’s Kepler Space Telescope has successfully discovered thousands of exoplanet candidates using the transit method, including hundreds of stars with multiple transiting planets. In order to estimate the frequency of these valuable systems, it is essential to account for the unique geometric probabilities of detecting multiple transiting extrasolar planets around the same parent star. In order to improve on previous studies that used numerical methods, we have constructed an efficient, semi-analytical algorithm called the Computed Occurrence of Revolving Bodies for the Investigation of Transiting Systems (CORBITS), which, given a collection of conjectured exoplanets orbiting a star, computes the probability that any particular group of exoplanets can be observed to transit. The algorithm applies theorems of elementary differential geometry to compute the areas bounded by circular curves on the surface of a sphere. The implemented algorithm is more accurate and orders of magnitude faster than previous algorithms, based on comparisons with Monte Carlo simulations. We use CORBITS to show that the present solar system would only show a maximum of three transiting planets, but that this varies over time due to dynamical evolution. We also used CORBITS to geometrically debias the period ratio and mutual Hill sphere distributions of Kepler's multi-transiting planet candidates, which results in shifting these distributions toward slightly larger values. In an Appendix, we present additional semi-analytical methods for determining the frequency of exoplanet mutual events, I.e., the geometric probability that two planets will transit each other (planet-planet occultation, relevant to transiting circumbinary planets) and the probability that this transit occurs simultaneously as they transit their star. The CORBITS algorithms and several worked examples are publicly available.

  3. Two Years of Hunting Exoplanets at Florida Gulf Coast University

    Science.gov (United States)

    Buzasi, Derek L.; Carboneau, Lindsey; Childs, Stephen; Colon, Tristan; Dumouchel, Emily; Glenn, William; Humphrey, Morgan; Hunter, Alana; Klunk, Derek; Myers, Riley; Nadreau, Jacob; Nance, Rebecca; Reynolds, Zachary; Romas, Olivia; Smith, Alexandra; Stansfield, Alexis; Sumler, Kendyll; Vignet-Williams, Gabrielle

    2017-06-01

    Honors Program participants at Florida Gulf Coast University must complete two of four required "Honors Experiences". One student option is a research experience, and we have developed a "Planet Hunters" course to provide an astronomical research track. In the course, students spend the first semester learning astronomical background and exoplanet detection techniques, while the second semester is devoted to planet searches in Kepler and K2 data, using student-oriented software tools developed specifically for the task. During the first year, students detected both a brown dwarf candidate and a hot Jupiter candidate. In this poster, we review the tools, data sets, and results obtained by students participating in the second year of the course, along with lessons learned for future implementation, including possible extension to TESS data.

  4. Characterizing exoplanets atmospheres with space photometry at optical wavelengths

    Directory of Open Access Journals (Sweden)

    Parmentier Vivien

    2015-01-01

    Full Text Available Space photometry such as performed by Kepler and CoRoT provides exoplanets radius and phase curves with an exquisite precision. The phase curve constrains the longitudinal variation of the albedo and shed light on the horizontal distribution of clouds. The planet radius constraints thermal evolution of the planet, potentially unveiling its atmospheric composition. We present how the atmospheric circulation can affect the cloud distribution of three different planets, HD209458b, Kepler-7b and HD189733b based on three-dimensional models and analytical calculations. Then we use an analytical atmospheric model coupled to a state-of-the-art interior evolution code to study the role of TiO in shaping the thermal evolution and final radius of the planet.

  5. In the Crosshair: Astrometric Exoplanet Detection with WFIRST's Diffraction Spikes

    Science.gov (United States)

    Melchior, Peter; Spergel, David; Lanz, Arianna

    2018-02-01

    WFIRST will conduct a coronagraphic program that characterizes the atmospheres of planets around bright nearby stars. When observed with the WFIRST Wide Field Camera, these stars will saturate the detector and produce very strong diffraction spikes. In this paper, we forecast the astrometric precision that WFIRST can achieve by centering on the diffraction spikes of highly saturated stars. This measurement principle is strongly facilitated by the WFIRST H4RG detectors, which confine excess charges within the potential well of saturated pixels. By adopting a simplified analytical model of the diffraction spike caused by a single support strut obscuring the telescope aperture, integrated over the WFIRST pixel size, we predict the performance of this approach with the Fisher-matrix formalism. We discuss the validity of the model and find that 10 μ {as} astrometric precision is achievable with a single 100 s exposure of an {R}{AB}=6 or a {J}{AB}=5 star. We discuss observational limitations from the optical distortion correction and pixel-level artifacts, which need to be calibrated at the level of 10{--}20 μ {as} so as to not dominate the error budget. To suppress those systematics, we suggest a series of short exposures, dithered by at least several hundred pixels, to reach an effective per-visit astrometric precision better than 10 μ {as}. If this can be achieved, a dedicated WFIRST GO program will be able to detect Earth-mass exoplanets with orbital periods of ≳ 1 {year} around stars within a few pc as well as Neptune-like planets with shorter periods or around more massive or distant stars. Such a program will also enable mass measurements of many anticipated direct-imaging exoplanet targets of the WFIRST coronagraph and a “starshade” occulter.

  6. An exoplanet with a stratosphere: seeking the unknown absorber

    Science.gov (United States)

    Evans, Tom

    2017-08-01

    The extent to which significant stratospheres form in highly-irradiated gas giant exoplanets is still a major unresolved question in the field. Using WFC3 G141, we have recently measured a thermal emission spectrum for WASP-121b (T 2700K). The 1.4 micron water band is spectrally-resolved in emission, providing a clear detection of a thermal inversion in the atmosphere. From this measurement, we conclude that the most likely cause of the inversion is absorption of impinging stellar radiation by a high-altitude optical absorber, as other heating mechanisms are almost certainly insufficient. Intriguingly, the G141 spectrum also shows a flux excess at 1.22 micron, which can be well-explained by vanadium oxide emission. Indeed, absorption by vanadium oxide and titanium oxide has been proposed as a possible means by which to generate stratospheres in the hottest exoplanets. However, we are currently unable to draw a confident conclusion on the presence of vanadium oxide in the atmosphere of WASP-121b with the available data. We propose here to rectify this situation, by extending the wavelength coverage of the measured thermal spectrum across the 0.9-1.1 micron wavelength range using WFC3 G102. This will allow us to target the prominent vanadium oxide and titanium oxide bands at these wavelengths, where the flux from the planet is still high. If observed, a long-theorized link would be established between these important chemical species and thermal inversions in highly-irradiated atmospheres.

  7. Exoplanet orbital eccentricity: multiplicity relation and the Solar System.

    Science.gov (United States)

    Limbach, Mary Anne; Turner, Edwin L

    2015-01-06

    The known population of exoplanets exhibits a much wider range of orbital eccentricities than Solar System planets and has a much higher average eccentricity. These facts have been widely interpreted to indicate that the Solar System is an atypical member of the overall population of planetary systems. We report here on a strong anticorrelation of orbital eccentricity with multiplicity (number of planets in the system) among cataloged radial velocity (RV) systems. The mean, median, and rough distribution of eccentricities of Solar System planets fits an extrapolation of this anticorrelation to the eight-planet case rather precisely despite the fact that no more than two Solar System planets would be detectable with RV data comparable to that in the exoplanet sample. Moreover, even if regarded as a single or double planetary system, the Solar System lies in a reasonably heavily populated region of eccentricity-multiplicity space. Thus, the Solar System is not anomalous among known exoplanetary systems with respect to eccentricities when its multiplicity is taken into account. Specifically, as the multiplicity of a system increases, the eccentricity decreases roughly as a power law of index -1.20. A simple and plausible but ad hoc and model-dependent interpretation of this relationship implies that ∼ 80% of the one-planet and 25% of the two-planet systems in our sample have additional, as yet undiscovered, members but that systems of higher observed multiplicity are largely complete (i.e., relatively rarely contain additional undiscovered planets). If low eccentricities indeed favor high multiplicities, habitability may be more common in systems with a larger number of planets.

  8. Developing Tighter Constraints on Exoplanet Biosignatures by Modeling Atmospheric Haze

    Science.gov (United States)

    Felton, Ryan; Neveu, Marc; Domagal-Goldman, Shawn David; Desch, Steven; Arney, Giada

    2018-01-01

    As we increase our capacity to resolve the atmospheric composition of exoplanets, we must continue to refine our ability to distinguish true biosignatures from false positives in order to ultimately distinguish a life-bearing from a lifeless planet. Of the possible true and false biosignatures, methane (CH4) and carbon dioxide (CO2) are of interest, because on Earth geological and biological processes can produce them on large scales. To identify a biotic, Earth-like exoplanet, we must understand how these biosignatures shape their atmospheres. High atmospheric abundances of CH4 produce photochemical organic haze, which dramatically alters the photochemistry, climate, and spectrum of a planet. Arney et al. (2017) have suggested that haze-bearing atmospheres rich in CO2 may be a type of biosignature because the CH4 flux required to produce the haze is similar to the amount of biogenic CH4 on modern Earth. Atmospheric CH4 and CO2 both affect haze-formation photochemistry, and the potential for hazes to form in Earth-like atmospheres at abiotic concentrations of these gases has not been well studied. We will explore a wide range of parameter space of abiotic concentration levels of these gases to determine what spectral signatures are possible from abiotic environments and look for measurable differences between abiotic and biotic atmospheres. We use a 1D photochemical model with an upgraded haze production mechanism to compare Archean and modern Earth atmospheres to abiotic versions while varying atmospheric CH4 and CO2 levels and atmospheric pressure. We will vary CO2 from a trace gas to an amount such that it dominates atmospheric chemistry. For CH4, there is uncertainty regarding the amount of abiotic CH4 that comes from serpentinizing systems. To address this uncertainty, we will model three cases: 1) assume all CH4 comes from photochemistry; 2) use estimates of modern-day serpentinizing fluxes, assuming they are purely abiotic; and 3) assume serpentinizing

  9. Exploring Habitable Worlds: Science Questions for Future Direct Imaging Exoplanet Missions

    Science.gov (United States)

    Apai, D.

    2017-11-01

    We report on the SAG15 team's comprehensive effort to compile community input on key science questions for future exoplanet imaging missions, many of which are essential to recognizing habitable planets and for correcting interpreting biosignatures.

  10. The Habitable Zone Gallery 2.0: The Online Exoplanet System Visualization Suite

    Science.gov (United States)

    Chandler, C. O.; Kane, S. R.; Gelino, D. M.

    2017-11-01

    The Habitable Zone Gallery 2.0 provides new and improved visualization and data analysis tools to the exoplanet habitability community and beyond. Modules include interactive habitable zone plotting and downloadable 3D animations.

  11. WFIRST: The Exoplanet Microlensing Survey Tells Us Where We Can Find the Cool Planets

    Science.gov (United States)

    Bennett, David; Gaudi, B. Scott; WFIRST Microlensing Science Investigation Team

    2018-01-01

    The WFIRST Exoplanet microlensing survey will complete a demographic survey of all types of planets ranging from ~0.5 AU to planets that have become unbound from the stellar systems of their birth. WFIRST's sensitivity extends down below the mass of Mars (or 0.1 Earth masses,and it is sensitive to analogs of all the planets in the Solar System, except for Mercury. When combined with Kepler's statistical census of hot and warm planets in short period orbits, WFIRST's exoplanet microlensing survey will give us a complete picture the mass and separation distribution of all types of planets. The current plans for this survey are presented, and recent developments relating to the WFIRST exoplanet microlensing survey will be presented, including recent ground-based microlensing results that challenge current theories of planet formation. Opportunities for community involvement in the WFIRST exoplanet microlensing survey will be mentioned.

  12. ExoData: A Python package to handle large exoplanet catalogue data

    Science.gov (United States)

    Varley, Ryan

    2016-10-01

    Exoplanet science often involves using the system parameters of real exoplanets for tasks such as simulations, fitting routines, and target selection for proposals. Several exoplanet catalogues are already well established but often lack a version history and code friendly interfaces. Software that bridges the barrier between the catalogues and code enables users to improve the specific repeatability of results by facilitating the retrieval of exact system parameters used in articles results along with unifying the equations and software used. As exoplanet science moves towards large data, gone are the days where researchers can recall the current population from memory. An interface able to query the population now becomes invaluable for target selection and population analysis. ExoData is a Python interface and exploratory analysis tool for the Open Exoplanet Catalogue. It allows the loading of exoplanet systems into Python as objects (Planet, Star, Binary, etc.) from which common orbital and system equations can be calculated and measured parameters retrieved. This allows researchers to use tested code of the common equations they require (with units) and provides a large science input catalogue of planets for easy plotting and use in research. Advanced querying of targets is possible using the database and Python programming language. ExoData is also able to parse spectral types and fill in missing parameters according to programmable specifications and equations. Examples of use cases are integration of equations into data reduction pipelines, selecting planets for observing proposals and as an input catalogue to large scale simulation and analysis of planets.

  13. VLT Captures First Direct Spectrum of an Exoplanet

    Science.gov (United States)

    2010-01-01

    By studying a triple planetary system that resembles a scaled-up version of our own Sun's family of planets, astronomers have been able to obtain the first direct spectrum - the "chemical fingerprint" [1] - of a planet orbiting a distant star [2], thus bringing new insights into the planet's formation and composition. The result represents a milestone in the search for life elsewhere in the Universe. "The spectrum of a planet is like a fingerprint. It provides key information about the chemical elements in the planet's atmosphere," says Markus Janson, lead author of a paper reporting the new findings. "With this information, we can better understand how the planet formed and, in the future, we might even be able to find tell-tale signs of the presence of life." The researchers obtained the spectrum of a giant exoplanet that orbits the bright, very young star HR 8799. The system is at about 130 light-years from Earth. The star has 1.5 times the mass of the Sun, and hosts a planetary system that resembles a scaled-up model of our own Solar System. Three giant companion planets were detected in 2008 by another team of researchers, with masses between 7 and 10 times that of Jupiter. They are between 20 and 70 times as far from their host star as the Earth is from the Sun; the system also features two belts of smaller objects, similar to our Solar System's asteroid and Kuiper belts. "Our target was the middle planet of the three, which is roughly ten times more massive than Jupiter and has a temperature of about 800 degrees Celsius," says team member Carolina Bergfors. "After more than five hours of exposure time, we were able to tease out the planet's spectrum from the host star's much brighter light." This is the first time the spectrum of an exoplanet orbiting a normal, almost Sun-like star has been obtained directly. Previously, the only spectra to be obtained required a space telescope to watch an exoplanet pass directly behind its host star in an "exoplanetary

  14. KEPLER EXOPLANET CANDIDATE HOST STARS ARE PREFERENTIALLY METAL RICH

    International Nuclear Information System (INIS)

    Schlaufman, Kevin C.; Laughlin, Gregory

    2011-01-01

    We find that Kepler exoplanet candidate (EC) host stars are preferentially metal rich, including the low-mass stellar hosts of small-radius ECs. The last observation confirms a tentative hint that there is a correlation between the metallicity of low-mass stars and the presence of low-mass and small-radius exoplanets. In particular, we compare the J-H-g-r color-color distribution of Kepler EC host stars with a control sample of dwarf stars selected from the ∼150, 000 stars observed during Q1 and Q2 of the Kepler mission but with no detected planets. We find that at J - H = 0.30 characteristic of solar-type stars, the average g-r color of stars that host giant ECs is 4σ redder than the average color of the stars in the control sample. At the same J - H color, the average g-r color of solar-type stars that host small-radius ECs is indistinguishable from the average color of the stars in the control sample. In addition, we find that at J - H = 0.62 indicative of late K dwarfs, the average g-r color of stars that host small-radius ECs is 4σ redder than the average color of the stars in the control sample. These offsets are unlikely to be caused by differential reddening, age differences between the two populations, or the presence of giant stars in the control sample. Stellar models suggest that the first color offset is due to a 0.2 dex enhancement in [Fe/H] of the giant EC host population at M * ∼ 1 M sun , while Sloan photometry of M 67 and NGC 6791 suggests that the second color offset is due to a similar [Fe/H] enhancement of the small-radius EC host population at M * ∼ 0.7 M sun . These correlations are a natural consequence of the core-accretion model of planet formation.

  15. Is plate tectonics needed to evolve technological species on exoplanets?

    Directory of Open Access Journals (Sweden)

    Robert J. Stern

    2016-07-01

    Full Text Available As we continue searching for exoplanets, we wonder if life and technological species capable of communicating with us exists on any of them. As geoscientists, we can also wonder how important is the presence or absence of plate tectonics for the evolution of technological species. This essay considers this question, focusing on tectonically active rocky (silicate planets, like Earth, Venus, and Mars. The development of technological species on Earth provides key insights for understanding evolution on exoplanets, including the likely role that plate tectonics may play. An Earth-sized silicate planet is likely to experience several tectonic styles over its lifetime, as it cools and its lithosphere thickens, strengthens, and becomes denser. These include magma ocean, various styles of stagnant lid, and perhaps plate tectonics. Abundant liquid water favors both life and plate tectonics. Ocean is required for early evolution of diverse single-celled organisms, then colonies of cells which specialized further to form guts, appendages, and sensory organisms up to the complexity of fish (central nervous system, appendages, eyes. Large expanses of dry land also begin in the ocean, today produced above subduction zones in juvenile arcs and by their coalescence to form continents, although it is not clear that plate tectonics was required to create continental crust on Earth. Dry land of continents is required for further evolution of technological species, where modification of appendages for grasping and manipulating, and improvement of eyes and central nervous system could be perfected. These bioassets allowed intelligent creatures to examine the night sky and wonder, the beginning of abstract thinking, including religion and science. Technology arises from the exigencies of daily living such as tool-making, agriculture, clothing, and weapons, but the pace of innovation accelerates once it is allied with science. Finally, the importance of plate

  16. NON-DETECTION OF PREVIOUSLY REPORTED TRANSITS OF HD 97658b WITH MOST PHOTOMETRY

    Energy Technology Data Exchange (ETDEWEB)

    Dragomir, Diana; Matthews, Jaymie M.; Antoci, Victoria [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T1Z1 (Canada); Howard, Andrew W.; Marcy, Geoffrey W. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Henry, Gregory W. [Center of Excellence in Information Systems, Tennessee State University, 3500 John A. Merritt Blvd., Box 9501, Nashville, TN 37209 (United States); Guenther, David B. [Department of Astronomy and Physics, St. Marys University Halifax, NS B3H 3C3 (Canada); Johnson, John A. [Department of Astronomy, California Institute of Technology, 1200 East California Boulevard, MC 249-17, Pasadena, CA 91125 (United States); Kuschnig, Rainer; Weiss, Werner W. [Universitaet Wien, Institut fuer Astronomie, Tuerkenschanzstrasse 17, A1180 Wien (Austria); Moffat, Anthony F. J. [Dept de physique, Univ de Montreal C.P. 6128, Succ. Centre-Ville, Montreal, QC H3C 3J7, and Obs. du mont Megantic (Canada); Rowe, Jason F. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Rucinski, Slavek M. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada); Sasselov, Dimitar, E-mail: diana@phas.ubc.ca [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2012-11-10

    The radial velocity-discovered exoplanet HD 97658b was recently announced to transit, with a derived planetary radius of 2.93 {+-} 0.28 R{sub Circled-Plus }. As a transiting super-Earth orbiting a bright star, this planet would make an attractive candidate for additional observations, including studies of its atmospheric properties. We present and analyze follow-up photometric observations of the HD 97658 system acquired with the Microvariability and Oscillations of STars space telescope. Our results show no transit with the depth and ephemeris reported in the announcement paper. For the same ephemeris, we rule out transits for a planet with radius larger than 2.09 R{sub Circled-Plus }, corresponding to the reported 3{sigma} lower limit. We also report new radial velocity measurements which continue to support the existence of an exoplanet with a period of 9.5 days, and obtain improved orbital parameters.

  17. ATMOSPHERIC DYNAMICS OF TERRESTRIAL EXOPLANETS OVER A WIDE RANGE OF ORBITAL AND ATMOSPHERIC PARAMETERS

    Energy Technology Data Exchange (ETDEWEB)

    Kaspi, Yohai [Department of Earth and Planetary Sciences, Weizmann Institute of Science, 234 Herzl st., 76100, Rehovot (Israel); Showman, Adam P., E-mail: yohai.kaspi@weizmann.ac.il [Department of Planetary Sciences and Lunar and Planetary Laboratory, The University of Arizona, 1629 University Blvd., Tucson, AZ 85721 (United States)

    2015-05-01

    The recent discoveries of terrestrial exoplanets and super-Earths extending over a broad range of orbital and physical parameters suggest that these planets will span a wide range of climatic regimes. Characterization of the atmospheres of warm super-Earths has already begun and will be extended to smaller and more distant planets over the coming decade. The habitability of these worlds may be strongly affected by their three-dimensional atmospheric circulation regimes, since the global climate feedbacks that control the inner and outer edges of the habitable zone—including transitions to Snowball-like states and runaway-greenhouse feedbacks—depend on the equator-to-pole temperature differences, patterns of relative humidity, and other aspects of the dynamics. Here, using an idealized moist atmospheric general circulation model including a hydrological cycle, we study the dynamical principles governing the atmospheric dynamics on such planets. We show how the planetary rotation rate, stellar flux, atmospheric mass, surface gravity, optical thickness, and planetary radius affect the atmospheric circulation and temperature distribution on such planets. Our simulations demonstrate that equator-to-pole temperature differences, meridional heat transport rates, structure and strength of the winds, and the hydrological cycle vary strongly with these parameters, implying that the sensitivity of the planet to global climate feedbacks will depend significantly on the atmospheric circulation. We elucidate the possible climatic regimes and diagnose the mechanisms controlling the formation of atmospheric jet streams, Hadley and Ferrel cells, and latitudinal temperature differences. Finally, we discuss the implications for understanding how the atmospheric circulation influences the global climate.

  18. TEMPERATURE STRUCTURE AND ATMOSPHERIC CIRCULATION OF DRY TIDALLY LOCKED ROCKY EXOPLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Koll, Daniel D. B.; Abbot, Dorian S., E-mail: dkoll@uchicago.edu [Department of the Geophysical Sciences, University of Chicago, Chicago, IL 60637 (United States)

    2016-07-10

    Next-generation space telescopes will observe the atmospheres of rocky planets orbiting nearby M-dwarfs. Understanding these observations will require well-developed theory in addition to numerical simulations. Here we present theoretical models for the temperature structure and atmospheric circulation of dry, tidally locked rocky exoplanets with gray radiative transfer and test them using a general circulation model (GCM). First, we develop a radiative-convective (RC) model that captures surface temperatures of slowly rotating and cool atmospheres. Second, we show that the atmospheric circulation acts as a global heat engine, which places strong constraints on large-scale wind speeds. Third, we develop an RC-subsiding model which extends our RC model to hot and thin atmospheres. We find that rocky planets develop large day–night temperature gradients at a ratio of wave-to-radiative timescales up to two orders of magnitude smaller than the value suggested by work on hot Jupiters. The small ratio is due to the heat engine inefficiency and asymmetry between updrafts and subsidence in convecting atmospheres. Fourth, we show, using GCM simulations, that rotation only has a strong effect on temperature structure if the atmosphere is hot or thin. Our models let us map out atmospheric scenarios for planets such as GJ 1132b, and show how thermal phase curves could constrain them. Measuring phase curves of short-period planets will require similar amounts of time on the James Webb Space Telescope as detecting molecules via transit spectroscopy, so future observations should pursue both techniques.

  19. The New Worlds Observer: Direct Detection and Study of Exoplanets from the Habitable Zone Outward

    Science.gov (United States)

    Cash, Webster C.; New Worlds Study Team

    2009-01-01

    Direct detection and spectroscopic study of the planets around the nearby stars is generally recognized as a prime goal of astronomy. The New Worlds Observer mission concept is being studied as an Astrophysics Strategic Mission Concept Study for this purpose. NWO features two spacecraft: a general purpose 4m telescope that operates from the UV to the Near IR, and a starshade, a flower-shaped occulter about 50m in diameter flying in alignment about 70,000km away. Our study shows this is the most effective way to map nearby planetary systems. Images will show dust and debris down to a fraction of our zodiacal light level. Planets fainter than the Earth can be seen from the Habitable Zone outward, at distances up to 20pc. High throughput and low noise enable immediate follow-up spectroscopy of discovered planets. NWO can discover many more Earth-like planets than all competing approaches including astrometric, interferometric, and internal coronagraphic. Within hours of discovery, a high quality spectrum can determine the true nature of the exoplanet and open the search for biomarkers and life. Over half of the time will be spent with the starshade in transit to the next target. During those times the telescope will be available to for general astrophysics purposes. Operating from the ultraviolet to the near infrared, this will be a true HST follow-on. The study shows all needed technologies already exist. The cost scales primarily with telescope size. The mission is definitely within the financial and technical reach of NASA for the coming decade.

  20. ATMOSPHERIC DYNAMICS OF TERRESTRIAL EXOPLANETS OVER A WIDE RANGE OF ORBITAL AND ATMOSPHERIC PARAMETERS

    International Nuclear Information System (INIS)

    Kaspi, Yohai; Showman, Adam P.

    2015-01-01

    The recent discoveries of terrestrial exoplanets and super-Earths extending over a broad range of orbital and physical parameters suggest that these planets will span a wide range of climatic regimes. Characterization of the atmospheres of warm super-Earths has already begun and will be extended to smaller and more distant planets over the coming decade. The habitability of these worlds may be strongly affected by their three-dimensional atmospheric circulation regimes, since the global climate feedbacks that control the inner and outer edges of the habitable zone—including transitions to Snowball-like states and runaway-greenhouse feedbacks—depend on the equator-to-pole temperature differences, patterns of relative humidity, and other aspects of the dynamics. Here, using an idealized moist atmospheric general circulation model including a hydrological cycle, we study the dynamical principles governing the atmospheric dynamics on such planets. We show how the planetary rotation rate, stellar flux, atmospheric mass, surface gravity, optical thickness, and planetary radius affect the atmospheric circulation and temperature distribution on such planets. Our simulations demonstrate that equator-to-pole temperature differences, meridional heat transport rates, structure and strength of the winds, and the hydrological cycle vary strongly with these parameters, implying that the sensitivity of the planet to global climate feedbacks will depend significantly on the atmospheric circulation. We elucidate the possible climatic regimes and diagnose the mechanisms controlling the formation of atmospheric jet streams, Hadley and Ferrel cells, and latitudinal temperature differences. Finally, we discuss the implications for understanding how the atmospheric circulation influences the global climate

  1. REFLECTED LIGHT CURVES, SPHERICAL AND BOND ALBEDOS OF JUPITER- AND SATURN-LIKE EXOPLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Dyudina, Ulyana; Kopparla, Pushkar; Ingersoll, Andrew P.; Yung, Yuk L. [Division of Geological and Planetary Sciences, 150-21 California Institute of Technology, Pasadena, CA 91125 (United States); Zhang, Xi [University of California Santa Cruz 1156 High Street, Santa Cruz, CA 95064 (United States); Li, Liming [Department of Physics, University of Houston, Houston, TX 77204 (United States); Dones, Luke [Southwest Research Institute, 1050 Walnut Street, Suite 300, Boulder CO 80302 (United States); Verbiscer, Anne, E-mail: ulyana@gps.caltech.edu [Department of Astronomy, University of Virginia, Charlottesville, VA 22904-4325 (United States)

    2016-05-10

    Reflected light curves observed for exoplanets indicate that a few of them host bright clouds. We estimate how the light curve and total stellar heating of a planet depends on forward and backward scattering in the clouds based on Pioneer and Cassini spacecraft images of Jupiter and Saturn. We fit analytical functions to the local reflected brightnesses of Jupiter and Saturn depending on the planet’s phase. These observations cover broadbands at 0.59–0.72 and 0.39–0.5 μ m, and narrowbands at 0.938 (atmospheric window), 0.889 (CH4 absorption band), and 0.24–0.28 μ m. We simulate the images of the planets with a ray-tracing model, and disk-integrate them to produce the full-orbit light curves. For Jupiter, we also fit the modeled light curves to the observed full-disk brightness. We derive spherical albedos for Jupiter and Saturn, and for planets with Lambertian and Rayleigh-scattering atmospheres. Jupiter-like atmospheres can produce light curves that are a factor of two fainter at half-phase than the Lambertian planet, given the same geometric albedo at transit. The spherical albedo is typically lower than for a Lambertian planet by up to a factor of ∼1.5. The Lambertian assumption will underestimate the absorption of the stellar light and the equilibrium temperature of the planetary atmosphere. We also compare our light curves with the light curves of solid bodies: the moons Enceladus and Callisto. Their strong backscattering peak within a few degrees of opposition (secondary eclipse) can lead to an even stronger underestimate of the stellar heating.

  2. MAGNETIC ACTIVITY CYCLES IN THE EXOPLANET HOST STAR {epsilon} ERIDANI

    Energy Technology Data Exchange (ETDEWEB)

    Metcalfe, T. S.; Mathur, S. [Space Science Institute, 4750 Walnut Street, Suite 205, Boulder, CO 80301 (United States); Buccino, A. P.; Mauas, P. J. D.; Petrucci, R. [Instituto de Astronomia y Fisica del Espacio (CONICET), C.C. 67 Sucursal 28, C1428EHA-Buenos Aires (Argentina); Brown, B. P. [Department of Astronomy and Center for Magnetic Self-Organization, University of Wisconsin, Madison, WI 53706-1582 (United States); Soderblom, D. R. [Space Telescope Science Institute, 3700 San Martin Dr., Baltimore, MD 21218 (United States); Henry, T. J. [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30302 (United States); Hall, J. C. [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States); Basu, S. [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520 (United States)

    2013-02-01

    The active K2 dwarf {epsilon} Eri has been extensively characterized both as a young solar analog and more recently as an exoplanet host star. As one of the nearest and brightest stars in the sky, it provides an unparalleled opportunity to constrain stellar dynamo theory beyond the Sun. We confirm and document the 3-year magnetic activity cycle in {epsilon} Eri originally reported by Hatzes and coworkers, and we examine the archival data from previous observations spanning 45 years. The data show coexisting 3-year and 13-year periods leading into a broad activity minimum that resembles a Maunder minimum-like state, followed by the resurgence of a coherent 3-year cycle. The nearly continuous activity record suggests the simultaneous operation of two stellar dynamos with cycle periods of 2.95 {+-} 0.03 years and 12.7 {+-} 0.3 years, which, by analogy with the solar case, suggests a revised identification of the dynamo mechanisms that are responsible for the so-called 'active' and 'inactive' sequences as proposed by Boehm-Vitense. Finally, based on the observed properties of {epsilon} Eri, we argue that the rotational history of the Sun is what makes it an outlier in the context of magnetic cycles observed in other stars (as also suggested by its Li depletion), and that a Jovian-mass companion cannot be the universal explanation for the solar peculiarities.

  3. Unpacking Exoplanet Detection Using Pedagogical Discipline Representations (PDRs)

    Science.gov (United States)

    Prather, Edward E.; Chambers, Timothy G.; Wallace, Colin Scott; Brissenden, Gina

    2017-01-01

    Successful educators know the importance of using multiple representations to teach the content of their disciplines. We have all seen the moments of epiphany that can be inspired when engaging with just the right representation of a difficult concept. The formal study of the cognitive impact of different representations on learners is now an active area of education research. The affordances of a particular representation are defined as the elements of disciplinary knowledge that students are able to access and reason about using that representation. Instructors with expert pedagogical content knowledge teach each topic using representations with complementary affordances, maximizing their students’ opportunity to develop fluency with all aspects of the topic. The work presented here examines how we have applied the theory of affordances to the development of pedagogical discipline representation (PDR) in an effort to provide access to, and help non-science-majors engage in expert-like reasoning about, general relativity as applied to detection of exoplanets. We define a pedagogical discipline representation (PDR) as a representation that has been uniquely tailored for the purpose of teaching a specific topic within a discipline. PDRs can be simplified versions of expert representations or can be highly contextualized with features that purposefully help unpack specific reasoning or concepts, and engage learners’ pre-existing mental models while promoting and enabling critical discourse. Examples of PDRs used for instruction and assessment will be provided along with preliminary results documenting the effectiveness of their use in the classroom.

  4. Achromatic Focal Plane Mask for Exoplanet Imaging Coronagraphy

    Science.gov (United States)

    Newman, Kevin Edward; Belikov, Ruslan; Guyon, Olivier; Balasubramanian, Kunjithapatham; Wilson, Dan

    2013-01-01

    Recent advances in coronagraph technologies for exoplanet imaging have achieved contrasts close to 1e10 at 4 lambda/D and 1e-9 at 2 lambda/D in monochromatic light. A remaining technological challenge is to achieve high contrast in broadband light; a challenge that is largely limited by chromaticity of the focal plane mask. The size of a star image scales linearly with wavelength. Focal plane masks are typically the same size at all wavelengths, and must be sized for the longest wavelength in the observational band to avoid starlight leakage. However, this oversized mask blocks useful discovery space from the shorter wavelengths. We present here the design, development, and testing of an achromatic focal plane mask based on the concept of optical filtering by a diffractive optical element (DOE). The mask consists of an array of DOE cells, the combination of which functions as a wavelength filter with any desired amplitude and phase transmission. The effective size of the mask scales nearly linearly with wavelength, and allows significant improvement in the inner working angle of the coronagraph at shorter wavelengths. The design is applicable to almost any coronagraph configuration, and enables operation in a wider band of wavelengths than would otherwise be possible. We include initial results from a laboratory demonstration of the mask with the Phase Induced Amplitude Apodization coronagraph.

  5. Searching for Strange Quark Matter Objects in Exoplanets

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Y. F.; Yu, Y. B., E-mail: hyf@nju.edu.cn [Department of Astronomy, School of Astronomy and Space Science, Nanjing University, Nanjing 210023 (China)

    2017-10-20

    The true ground state of hadronic matter may be strange quark matter (SQM). Consequently, observed pulsars may actually be strange quark stars, but not neutron stars. However, proving or disproving the SQM hypothesis still remains a difficult problem to solve due to the similarity between the macroscopical characteristics of strange quark stars and neutron stars. Here, we propose a hopeful method to probe the existence of SQM. In the framework of the SQM hypothesis, strange quark dwarfs and even strange quark planets can also stably exist. Noting that SQM planets will not be tidally disrupted even when they get very close to their host stars due to their extreme compactness, we argue that we could identify SQM planets by searching for very close-in planets among extrasolar planetary systems. Especially, we should keep our eyes on possible pulsar planets with orbital radius less than ∼5.6 × 10{sup 10} cm and period less than ∼6100 s. A thorough search in the currently detected ∼2950 exoplanets around normal main-sequence stars has failed to identify any stable close-in objects that meet the SQM criteria, i.e., lying in the tidal disruption region for normal matter planets. However, the pulsar planet PSR J1719-1438B, with an orbital radius of ∼6 × 10{sup 10} cm and orbital period of 7837 s, is, encouragingly, found to be a good candidate.

  6. The Habitable Exoplanet Imaging Mission (HabEx)

    Science.gov (United States)

    Gaudi, B. Scott; Habitable Exoplanet Imaging Mission Science and Technology Definition Team

    2018-01-01

    The Habitable Exoplanet Imaging Mission (HabEx) is a candidate flagship mission being studied by NASA and the astrophysics community in preparation of the 2020 Decadal Survey. The HabEx mission concept is a large (~4 to 6.5m) diffraction-limited optical space telescope, providing unprecedented resolution and contrast in the optical, with likely extensions into the near UV and near infrared domains. We discuss the primary science goals of HabEx. First, HabEx will survey a large sample of stars to search for planets potentially habitable planets: roughly Earth-sized planets with separations consistent with being in the habitable zones of their parent stars. Promising candidates will be followed up in detail, in order to characterize their orbits and atmospheres, and so confirm that they are indeed terrestrial-sized planets in the habitable zones of their parent stars, and search for signatures of habitability and potentially biosignatures. Second, HabEx will perform a ‘deep dive’ survey of roughly a dozen of the nearest and most promising stellar systems, providing the first complete “family portraits” of planets around our nearest Sun-like neighbors, and placing the solar system in the context of a diverse set of these planetary systems. Additionally, HabEx will enable a wide range of other astrophysical investigations, including detailed characterization of the properties of nearby stars and galaxies.

  7. WFIRST Microlensing Exoplanet Characterization with HST Follow up

    Science.gov (United States)

    Bhattacharya, Aparna; David Bennett, Jay Anderson, J.P. Beaulieu.

    2018-01-01

    More than 50 planets are discovered with the different ground based telescopes available for microlensing. But the analysis of ground based data fails to provide a complete solution. To fulfill that gap, space based telescopes, like Hubble space telescope and Spitzer are used. My research work focuses on extracting the planet mass, host star mass, their separation and their distance in physical units from HST Follow-up observations. I will present the challenges faced in developing this method.This is the primary method to be used for NASA's top priority project (according to 2010 decadal survey) Wide Field InfraRed Survey Telescope (WFIRST) Exoplanet microlensing space observatory, to be launched in 2025. The unique ability of microlensing is that with WFIRST it can detect sub-earth- mass planets beyond the reach of Kepler at separation 1 AU to infinity. This will provide us the necessary statistics to study the formation and evolution of planetary systems. This will also provide us with necessary initial conditions to model the formation of planets and the habitable zones around M dwarf stars.

  8. INFERENCE OF INHOMOGENEOUS CLOUDS IN AN EXOPLANET ATMOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Demory, Brice-Olivier; De Wit, Julien; Lewis, Nikole; Zsom, Andras; Seager, Sara [Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Fortney, Jonathan [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Knutson, Heather; Desert, Jean-Michel [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Heng, Kevin [Center for Space and Habitability, University of Bern, Sidlerstrasse 5, CH-3012, Bern (Switzerland); Madhusudhan, Nikku [Department of Physics and Department of Astronomy, Yale University, New Haven, CT 06520 (United States); Gillon, Michael [Institut d' Astrophysique et de Géophysique, Université de Liège, Allée du 6 Août, 17, Bat. B5C, B-4000 Liège 1 (Belgium); Barclay, Thomas [NASA Ames Research Center, M/S 244-30, Moffett Field, CA 94035 (United States); Parmentier, Vivien [Laboratoire J.-L. Lagrange, UMR 7293, Université de Nice-Sophia Antipolis, CNRS, Observatoire de la Côte d' Azur B.P. 4229, F-06304 Nice Cedex 4 (France); Cowan, Nicolas B., E-mail: demory@mit.edu [Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, F165, Evanston, IL 60208 (United States)

    2013-10-20

    We present new visible and infrared observations of the hot Jupiter Kepler-7b to determine its atmospheric properties. Our analysis allows us to (1) refine Kepler-7b's relatively large geometric albedo of Ag = 0.35 ± 0.02, (2) place upper limits on Kepler-7b thermal emission that remains undetected in both Spitzer bandpasses and (3) report a westward shift in the Kepler optical phase curve. We argue that Kepler-7b's visible flux cannot be due to thermal emission or Rayleigh scattering from H{sub 2} molecules. We therefore conclude that high altitude, optically reflective clouds located west from the substellar point are present in its atmosphere. We find that a silicate-based cloud composition is a possible candidate. Kepler-7b exhibits several properties that may make it particularly amenable to cloud formation in its upper atmosphere. These include a hot deep atmosphere that avoids a cloud cold trap, very low surface gravity to suppress cloud sedimentation, and a planetary equilibrium temperature in a range that allows for silicate clouds to potentially form in the visible atmosphere probed by Kepler. Our analysis does not only present evidence of optically thick clouds on Kepler-7b but also yields the first map of clouds in an exoplanet atmosphere.

  9. Design, fabrication, and testing of stellar coronagraphs for exoplanet imaging

    Science.gov (United States)

    Knight, Justin M.; Brewer, John; Hamilton, Ryan; Ward, Karen; Milster, Tom D.; Guyon, Olivier

    2017-09-01

    Complex-mask coronagraphs destructively interfere unwanted starlight with itself to enable direct imaging of exoplanets. This is accomplished using a focal plane mask (FPM); a FPM can be a simple occulter mask, or in the case of a complex-mask, is a multi-zoned device designed to phase-shift starlight over multiple wavelengths to create a deep achromatic null in the stellar point spread function. Creating these masks requires microfabrication techniques, yet many such methods remain largely unexplored in this context. We explore methods of fabrication of complex FPMs for a Phased-Induced Amplitude Apodization Complex-Mask Coronagraph (PIAACMC). Previous FPM fabrication efforts for PIAACMC have concentrated on mask manufacturability while modeling science yield, as well as assessing broadband wavelength operation. Moreover current fabrication efforts are concentrated on assessing coronagraph performance given a single approach. We present FPMs fabricated using several process paths, including deep reactive ion etching and focused ion beam etching using a silicon substrate. The characteristic size of the mask features is 5μm with depths ranging over 1μm. The masks are characterized for manufacturing quality using an optical interferometer and a scanning electron microscope. Initial testing is performed at the Subaru Extreme Adaptive Optics testbed, providing a baseline for future experiments to determine and improve coronagraph performance within fabrication tolerances.

  10. Detection of H2O and Evidence for TiO VO in an Ultra Hot Exoplanet Atmosphere.

    Science.gov (United States)

    Evans, Thomas M.; Sing, David K.; Wakeford, Hannah R.; Nikolov, Nikolay; Ballester, Gilda E.; Drummond, Benjamin; Kataria, Tiffany; Gibson, Neale P.; Amundsen, David S.; Spake, Jessica

    2016-01-01

    We present a primary transit observation for the ultra-hot (Teq approx. 2400 K) gas giant expolanet WASP-121b, made using the Hubble Space Telescope Wide Field Camera 3 in spectroscopic mode across the 1.12-1.64 micron wavelength range. The 1.4 microns water absorption band is detected at high confidence (5.4(sigma)) in the planetary atmosphere. We also reanalyze ground-based photometric light curves taken in the B, r', and z' filters. Significantly deeper transits are measured in these optical bandpasses relative to the near-infrared wavelengths. We conclude that scattering by high-altitude haze alone is unlikely to account for this difference and instead interpret it as evidence for titanium oxide and vanadium oxide absorption. Enhanced opacity is also inferred across the 1.12-1.3 micron wavelength range, possibly due to iron hydride absorption. If confirmed, WASP-121b will be the first exoplanet with titanium oxide, vanadium oxide, and iron hydride detected in transmission. The latter are important species in M/L dwarfs and their presence is likely to have a significant effect on the overall physics and chemistry of the atmosphere, including the production of a strong thermal inversion.

  11. Lasers, lenses and light curves : adaptive optics microscopy and peculiar transiting exoplanets

    NARCIS (Netherlands)

    Werkhoven, Theodorus Isaak Mattheus van

    2014-01-01

    In the first part of this thesis, we present an adaptive optics implementation for multi-photon microscopy correcting sample-induced wavefront aberrations using either direct wavefront sensing to run a close-loop adaptive optics system (Chapter 3), or use a model-based sensorless approach to

  12. Optical Design of the Camera for Transiting Exoplanet Survey Satellite (TESS)

    Science.gov (United States)

    Chrisp, Michael; Clark, Kristin; Primeau, Brian; Dalpiaz, Michael; Lennon, Joseph

    2015-01-01

    The optical design of the wide field of view refractive camera, 34 degrees diagonal field, for the TESS payload is described. This fast f/1.4 cryogenic camera, operating at -75 C, has no vignetting for maximum light gathering within the size and weight constraints. Four of these cameras capture full frames of star images for photometric searches of planet crossings. The optical design evolution, from the initial Petzval design, took advantage of Forbes aspheres to develop a hybrid design form. This maximized the correction from the two aspherics resulting in a reduction of average spot size by sixty percent in the final design. An external long wavelength pass filter was replaced by an internal filter coating on a lens to save weight, and has been fabricated to meet the specifications. The stray light requirements were met by an extended lens hood baffle design, giving the necessary off-axis attenuation.

  13. Atmospheric Beacons of Life from Exoplanets Around G and K Stars

    Science.gov (United States)

    Airapetian, Vladimir S.; Jackman, Charles H.; Mlynczak, Martin; Danchi, William; Hunt, Linda

    2017-01-01

    The current explosion in detection and characterization of thousands of extrasolar planets from the Kepler mission, the Hubble Space Telescope, and large ground-based telescopes opens a new era in searches for Earth-analog exoplanets with conditions suitable for sustaining life. As more Earth-sized exoplanets are detected in the near future, we will soon have an opportunity to identify habitale worlds. Which atmospheric biosignature gases from habitable planets can be detected with our current capabilities? The detection of the common biosignatures from nitrogen-oxygen rich terrestrial-type exoplanets including molecular oxygen (O2), ozone (O3), water vapor (H2O), carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4) requires days of integration time with largest space telescopes, and thus are very challenging for current instruments. In this paper we propose to use the powerful emission from rotational-vibrational bands of nitric oxide, hydroxyl and molecular oxygen as signatures of nitrogen, oxygen, and water rich atmospheres of terrestrial type exoplanets "highlighted" by the magnetic activity from young G and K main-sequence stars. The signals from these fundamental chemical prerequisites of life we call atmospheric "beacons of life" create a unique opportunity to perform direct imaging observations of Earth-sized exoplanets with high signal-to-noise and low spectral resolution with the upcoming NASA missions.

  14. Using dimers to measure biosignatures and atmospheric pressure for terrestrial exoplanets.

    Science.gov (United States)

    Misra, Amit; Meadows, Victoria; Claire, Mark; Crisp, Dave

    2014-02-01

    We present a new method to probe atmospheric pressure on Earth-like planets using (O2-O2) dimers in the near-infrared. We also show that dimer features could be the most readily detectable biosignatures for Earth-like atmospheres and may even be detectable in transit transmission with the James Webb Space Telescope (JWST). The absorption by dimers changes more rapidly with pressure and density than that of monomers and can therefore provide additional information about atmospheric pressures. By comparing the absorption strengths of rotational and vibrational features to the absorption strengths of dimer features, we show that in some cases it may be possible to estimate the pressure at the reflecting surface of a planet. This method is demonstrated by using the O2 A band and the 1.06 μm dimer feature, either in transmission or reflected spectra. It works best for planets around M dwarfs with atmospheric pressures between 0.1 and 10 bar and for O2 volume mixing ratios above 50% of Earth's present-day level. Furthermore, unlike observations of Rayleigh scattering, this method can be used at wavelengths longer than 0.6 μm and is therefore potentially applicable, although challenging, to near-term planet characterization missions such as JWST. We also performed detectability studies for JWST transit transmission spectroscopy and found that the 1.06 and 1.27 μm dimer features could be detectable (SNR>3) for an Earth analogue orbiting an M5V star at a distance of 5 pc. The detection of these features could provide a constraint on the atmospheric pressure of an exoplanet and serve as biosignatures for oxygenic photosynthesis. We calculated the required signal-to-noise ratios to detect and characterize O2 monomer and dimer features in direct imaging-reflected spectra and found that signal-to-noise ratios greater than 10 at a spectral resolving power of R=100 would be required.

  15. Stellar characterization of CoRoT/Exoplanet fields with MATISSE

    Science.gov (United States)

    Gazzano, J.-C.; de Laverny, P.; Deleuil, M.; Recio-Blanco, A.; Bouchy, F.; Moutou, C.; Bijaoui, A.; Ordenovic, C.; Gandolfi, D.; Loeillet, B.

    2010-11-01

    Aims: The homogeneous spectroscopic determination of the stellar parameters is a mandatory step for transit detections from space. Knowledge of which population the planet hosting stars belong to places constraints on the formation and evolution of exoplanetary systems. Methods: We used the FLAMES/GIRAFFE multi-fiber instrument at ESO to spectroscopically observe samples of stars in three CoRoT/Exoplanet fields, namely the LRa01, LRc01, and SRc01 fields, and characterize their stellar populations. We present accurate atmospheric parameters, Teff, log g, [M/H], and [α/Fe] derived for 1 227 stars in these fields using the MATISSE algorithm. The latter is based on the spectral synthesis methodology and automatically provides stellar parameters for large samples of observed spectra. We trained and applied this algorithm to FLAMES observations covering the Mg i b spectral range. It was calibrated on reference stars and tested on spectroscopic samples from other studies in the literature. The barycentric radial velocities and an estimate of the V sin i values were measured using cross-correlation techniques. Results: We corrected our samples in the LRc01 and LRa01 CoRoT fields for selection effects to characterize their FGK dwarf stars population, and compiled the first unbiased reference sample for the in-depth study of planet metallicity relationship in these CoRoT fields. We conclude that the FGK dwarf population in these fields mainly exhibit solar metallicity. We show that for transiting planet finding missions, the probability of finding planets as a function of metallicity could explain the number of planets found in the LRa01 and LRc01 CoRoT fields. This study demonstrates the potential of multi-fiber observations combined with an automated classifier such as MATISSE for massive star spectral classification. Based on observations collected with the GIRAFFE and UVES/FLAMES spectrographs at the VLT/UT2 Kueyen telescope (Paranal observatory, ESO, Chile: programs

  16. Direct imaging discovery of a Jovian exoplanet within a triple-star system.

    Science.gov (United States)

    Wagner, Kevin; Apai, Dániel; Kasper, Markus; Kratter, Kaitlin; McClure, Melissa; Robberto, Massimo; Beuzit, Jean-Luc

    2016-08-12

    Direct imaging allows for the detection and characterization of exoplanets via their thermal emission. We report the discovery via imaging of a young Jovian planet in a triple-star system and characterize its atmospheric properties through near-infrared spectroscopy. The semimajor axis of the planet is closer relative to that of its hierarchical triple-star system than for any known exoplanet within a stellar binary or triple, making HD 131399 dynamically unlike any other known system. The location of HD 131399Ab on a wide orbit in a triple system demonstrates that massive planets may be found on long and possibly unstable orbits in multistar systems. HD 131399Ab is one of the lowest mass (4 ± 1 Jupiter masses) and coldest (850 ± 50 kelvin) exoplanets to have been directly imaged. Copyright © 2016, American Association for the Advancement of Science.

  17. An introduction to planets ours and others : from Earth to exoplanets

    CERN Document Server

    Encrenaz, Thérèse

    2014-01-01

    What is a planet? The answer seems obvious, but nonetheless the definition of a planet has continuously evolved over the centuries, and their number has changed following successive discoveries. The decision endorsed by the International Astronomical Union to remove Pluto from the list of planets in 2006 well illustrates the difficulty associated with their definition. The recent discovery of hundreds of exoplanets around nearby stars of our Galaxy opens a new and spectacular dimension to astrophysics. We presently know very little about the physical nature of exoplanets. In contrast, our knowledge of Solar System planets has made huge progress over the past decades, thanks, especially, to space planetary exploration. The purpose of this book is first to characterize what planets are, in their global properties and in their diversity. Then, this knowledge is used to try to imagine the physical nature of exoplanets, starting from the few parameters we know about them. Throughout this book, as we explore the su...

  18. Surface Variability of Short-wavelength Radiation and Temperature on Exoplanets around M Dwarfs

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xin; Tian, Feng [Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing 100084 (China); Wang, Yuwei [Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, QC H3A 0B9 (Canada); Dudhia, Jimy; Chen, Ming, E-mail: tianfengco@tsinghua.edu.cn [National Center for Atmospheric Research, Boulder, CO (United States)

    2017-03-10

    It is a common practice to use 3D General Circulation Models (GCM) with spatial resolution of a few hundred kilometers to simulate the climate of Earth-like exoplanets. The enhanced albedo effect of clouds is especially important for exoplanets in the habitable zones around M dwarfs that likely have fixed substellar regions and substantial cloud coverage. Here, we carry out mesoscale model simulations with 3 km spatial resolution driven by the initial and boundary conditions in a 3D GCM and find that it could significantly underestimate the spatial variability of both the incident short-wavelength radiation and the temperature at planet surface. Our findings suggest that mesoscale models with cloud-resolving capability be considered for future studies of exoplanet climate.

  19. Astr 101 Students' Attitudes Towards Essays On Transits, Eclipses And Occultations

    Science.gov (United States)

    D'Cruz, Noella L.

    2012-05-01

    Joliet Junior College, Joliet, IL offers a one semester introductory astronomy course each semester. We teach over 110 primarily non-science major students each semester. We use proven active learning strategies such lecture tutorials, think-pair-share questions and small group discussions to help these students develop and retain a good understanding of astrophysical concepts. Occasionally, we offer projects that allow students to explore course topics beyond the classroom. We hope that such projects will increase students' interest in astronomy. We also hope that these assignments will help students to improve their critical thinking and writing skills. In Spring 12, we are offering three short individual essay assignments in our face-to-face sections. The essays focus on transits, eclipses and occultations to highlight the 2012 transit of Venus. For the first essay, students will find images of transit and occultation events using the Astronomy Picture of the Day website and describe their chosen events. In addition, students will predict how variations in certain physical and orbital parameters would alter their particular events. The second essay involves transits, eclipses and occultations observed by spacecraft. Students will describe their transit event, their spacecraft's mission, orbital path, how the orbital path was achieved, etc. The third essay deals with transiting exoplanets. Students will choose at least two exoplanets from an exoplanet database, one of which has been discovered through the transit method. This essay will enable students to learn about detecting exoplanets and how they compare with our solar system. Details of the essay assignments and students' reactions to them will be presented at the meeting.

  20. Effects of extreme obliquity variations on the habitability of exoplanets.

    Science.gov (United States)

    Armstrong, J C; Barnes, R; Domagal-Goldman, S; Breiner, J; Quinn, T R; Meadows, V S

    2014-04-01

    We explore the impact of obliquity variations on planetary habitability in hypothetical systems with high mutual inclination. We show that large-amplitude, high-frequency obliquity oscillations on Earth-like exoplanets can suppress the ice-albedo feedback, increasing the outer edge of the habitable zone. We restricted our exploration to hypothetical systems consisting of a solar-mass star, an Earth-mass planet at 1 AU, and 1 or 2 larger planets. We verified that these systems are stable for 10(8) years with N-body simulations and calculated the obliquity variations induced by the orbital evolution of the Earth-mass planet and a torque from the host star. We ran a simplified energy balance model on the terrestrial planet to assess surface temperature and ice coverage on the planet's surface, and we calculated differences in the outer edge of the habitable zone for planets with rapid obliquity variations. For each hypothetical system, we calculated the outer edge of habitability for two conditions: (1) the full evolution of the planetary spin and orbit and (2) the eccentricity and obliquity fixed at their average values. We recovered previous results that higher values of fixed obliquity and eccentricity expand the habitable zone, but we also found that obliquity oscillations further expand habitable orbits in all cases. Terrestrial planets near the outer edge of the habitable zone may be more likely to support life in systems that induce rapid obliquity oscillations as opposed to fixed-spin planets. Such planets may be the easiest to directly characterize with space-borne telescopes.

  1. Retrieval of exoplanet emission spectra with HyDRA

    Science.gov (United States)

    Gandhi, Siddharth; Madhusudhan, Nikku

    2018-02-01

    Thermal emission spectra of exoplanets provide constraints on the chemical compositions, pressure-temperature (P-T) profiles, and energy transport in exoplanetary atmospheres. Accurate inferences of these properties rely on the robustness of the atmospheric retrieval methods employed. While extant retrieval codes have provided significant constraints on molecular abundances and temperature profiles in several exoplanetary atmospheres, the constraints on their deviations from thermal and chemical equilibria have yet to be fully explored. Our present work is a step in this direction. We report HyDRA, a disequilibrium retrieval framework for thermal emission spectra of exoplanetary atmospheres. The retrieval code uses the standard architecture of a parametric atmospheric model coupled with Bayesian statistical inference using the Nested Sampling algorithm. For a given dataset, the retrieved compositions and P-T profiles are used in tandem with the GENESIS self-consistent atmospheric model to constrain layer-by-layer deviations from chemical and radiative-convective equilibrium in the observable atmosphere. We demonstrate HyDRA on the Hot Jupiter WASP-43b with a high-precision emission spectrum. We retrieve an H2O mixing ratio of log(H2O) = -3.54^{+0.82}_{-0.52}, consistent with previous studies. We detect H2O and a combined CO/CO2 at 8-sigma significance. We find the dayside P-T profile to be consistent with radiative-convective equilibrium within the 1-sigma limits and with low day-night redistribution, consistent with previous studies. The derived compositions are also consistent with thermochemical equilibrium for the corresponding distribution of P-T profiles. In the era of high precision and high resolution emission spectroscopy, HyDRA provides a path to retrieve disequilibrium phenomena in exoplanetary atmospheres.

  2. UNDERSTANDING TRENDS ASSOCIATED WITH CLOUDS IN IRRADIATED EXOPLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Heng, Kevin [University of Bern, Center for Space and Habitability, Sidlerstrasse 5, CH-3012 Bern (Switzerland); Demory, Brice-Olivier, E-mail: kevin.heng@csh.unibe.ch, E-mail: demory@mit.edu [Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States)

    2013-11-10

    Unlike previously explored relationships between the properties of hot Jovian atmospheres, the geometric albedo and the incident stellar flux do not exhibit a clear correlation, as revealed by our re-analysis of Q0-Q14 Kepler data. If the albedo is primarily associated with the presence of clouds in these irradiated atmospheres, a holistic modeling approach needs to relate the following properties: the strength of stellar irradiation (and hence the strength and depth of atmospheric circulation), the geometric albedo (which controls both the fraction of starlight absorbed and the pressure level at which it is predominantly absorbed), and the properties of the embedded cloud particles (which determine the albedo). The anticipated diversity in cloud properties renders any correlation between the geometric albedo and the stellar flux weak and characterized by considerable scatter. In the limit of vertically uniform populations of scatterers and absorbers, we use an analytical model and scaling relations to relate the temperature-pressure profile of an irradiated atmosphere and the photon deposition layer and to estimate whether a cloud particle will be lofted by atmospheric circulation. We derive an analytical formula for computing the albedo spectrum in terms of the cloud properties, which we compare to the measured albedo spectrum of HD 189733b by Evans et al. Furthermore, we show that whether an optical phase curve is flat or sinusoidal depends on whether the particles are small or large as defined by the Knudsen number. This may be an explanation for why Kepler-7b exhibits evidence for the longitudinal variation in abundance of condensates, while Kepler-12b shows no evidence for the presence of condensates despite the incident stellar flux being similar for both exoplanets. We include an 'observer's cookbook' for deciphering various scenarios associated with the optical phase curve, the peak offset of the infrared phase curve, and the geometric

  3. Evo-SETI SCALE to measure Life on Exoplanets

    Science.gov (United States)

    Maccone, Claudio

    2016-04-01

    that the GBM exponential may be regarded as the geometric locus of all the peaks of a one-parameter (i.e. the peak time p) family of b-lognormals. Since b-lognormals are pdf-s, the area under each of them always equals 1 (normalization condition) and so, going from left to right on the time axis, the b-lognormals become more and more ;peaky;, and so they last less and less in time. This is precisely what happened in human history: civilizations that lasted millennia (like Ancient Greece and Rome) lasted just centuries (like the Italian Renaissance and Portuguese, Spanish, French, British and USA Empires) but they were more and more advanced in the ;level of civilization;. This ;level of civilization; is what physicists call ENTROPY. Also, in refs. Maccone [3] and [4], this author proved that, for all GBMs, the (Shannon) Entropy of the b-lognormals in his Peak-Locus Theorem grows LINEARLY in time. The Molecular Clock, well known to geneticists since 50 years, shows that the DNA base-substitutions occur LINEARLY in time since they are neutral with respect to Darwinian selection. In simple words: DNA evolved by obeying the laws of quantum physics only (microscopic laws) and not by obeying assumed ;Darwinian selection laws; (macroscopic laws). This is Kimura's neutral theory of molecular evolution. The conclusion is that the Molecular Clock and the b-lognormal Entropy are the same thing. At last, we reach the new, original result justifying the publication of this paper. On exoplanets, molecular evolution is proceeding at about the same rate as it did proceed on Earth: rather independently of the physical conditions of the exoplanet, if the DNA had the possibility to evolve in water initially. Thus, Evo-Entropy, i.e. the (Shannon) Entropy of the generic b-lognormal of the Peak-Locus Theorem, provides the Evo-SETI SCALE to measure the evolution of life on exoplanets.

  4. The Next Generation Transit Survey (NGTS)

    Science.gov (United States)

    Wheatley, Peter J.; West, Richard G.; Goad, Michael R.; Jenkins, James S.; Pollacco, Don L.; Queloz, Didier; Rauer, Heike; Udry, Stéphane; Watson, Christopher A.; Chazelas, Bruno; Eigmüller, Philipp; Lambert, Gregory; Genolet, Ludovic; McCormac, James; Walker, Simon; Armstrong, David J.; Bayliss, Daniel; Bento, Joao; Bouchy, François; Burleigh, Matthew R.; Cabrera, Juan; Casewell, Sarah L.; Chaushev, Alexander; Chote, Paul; Csizmadia, Szilárd; Erikson, Anders; Faedi, Francesca; Foxell, Emma; Gänsicke, Boris T.; Gillen, Edward; Grange, Andrew; Günther, Maximilian N.; Hodgkin, Simon T.; Jackman, James; Jordán, Andrés; Louden, Tom; Metrailler, Lionel; Moyano, Maximiliano; Nielsen, Louise D.; Osborn, Hugh P.; Poppenhaeger, Katja; Raddi, Roberto; Raynard, Liam; Smith, Alexis M. S.; Soto, Maritza; Titz-Weider, Ruth

    2018-04-01

    We describe the Next Generation Transit Survey (NGTS), which is a ground-based project searching for transiting exoplanets orbiting bright stars. NGTS builds on the legacy of previous surveys, most notably WASP, and is designed to achieve higher photometric precision and hence find smaller planets than have previously been detected from the ground. It also operates in red light, maximizing sensitivity to late K and early M dwarf stars. The survey specifications call for photometric precision of 0.1 per cent in red light over an instantaneous field of view of 100 deg2, enabling the detection of Neptune-sized exoplanets around Sun-like stars and super-Earths around M dwarfs. The survey is carried out with a purpose-built facility at Cerro Paranal, Chile, which is the premier site of the European Southern Observatory (ESO). An array of twelve 20 cm f/2.8 telescopes fitted with back-illuminated deep-depletion CCD cameras is used to survey fields intensively at intermediate Galactic latitudes. The instrument is also ideally suited to ground-based photometric follow-up of exoplanet candidates from space telescopes such as TESS, Gaia and PLATO. We present observations that combine precise autoguiding and the superb observing conditions at Paranal to provide routine photometric precision of 0.1 per cent in 1 h for stars with I-band magnitudes brighter than 13. We describe the instrument and data analysis methods as well as the status of the survey, which achieved first light in 2015 and began full-survey operations in 2016. NGTS data will be made publicly available through the ESO archive.

  5. An abundance of small exoplanets around stars with a wide range of metallicities

    DEFF Research Database (Denmark)

    Buchhave, Lars A.; Latham, David W.; Johansen, Anders

    2012-01-01

    by accumulation of dust and ice particles. Recent ground-based surveys suggest that this correlation is weakened for Neptunian-sized planets. However, how the relationship between size and metallicity extends into the regime of terrestrial-sized exoplanets is unknown. Here we report spectroscopic metallicities...... of the host stars of 226 small exoplanet candidates discovered by NASAs Kepler mission, including objects that are comparable in size to the terrestrial planets in the Solar System. We find that planets with radii less than four Earth radii form around host stars with a wide range of metallicities (but...

  6. Unleashing the Charges: An Improved Reduction of Key Exoplanet Datasets and a Tool for Ramp Effect Correction

    Science.gov (United States)

    Zhou, Yifan

    2017-08-01

    Among HST's most lasting and iconic results are WFC3/IR observations of transiting exoplanets that provided exciting insights into atmospheres of planets ranging from super-earths to hot-Jupiters. However, all time-resolved WFC3/IR observations suffer from an often-limiting detector systematic: the ramp effect. Current efforts are forced to discard orbits most affected and to apply an empirical procedure to minimize the amplitude. We developed and demonstrated a powerful new, solid state physics-motivated detector model that accurately corrects for the ramp effect and reaches essentially photon-noise limited performance for even the most affected orbits. We propose here to apply our RECTE ramp charge trap correction to key archival datasets for which significant improvements are expected. We will also use these datasets to further test and document the RECTE correction on data acquired in different observing modes and to seek further improvements in RECTE's detector parameters. We will document and release RECTE, along with a data reduction cookbook, to the community. We also expect important improvements in the science results from the four key HST datasets.Our charge trap correction will help increasing HST's efficiency for infrared transit spectroscopy by about 20-25% (no more need to discard first orbits), saving dozens of orbits in the future, and will also improve the reliability and reproducibility of infrared time-domain observations. Our work is especially important for the most challenging transit and phase curve observations and will likely provide an example for an approach that can be utilized for JWST instruments with architectures similar to WFC3.

  7. Kepler Data Validation I: Architecture, Diagnostic Tests, and Data Products for Vetting Transiting Planet Candidates

    Science.gov (United States)

    Twicken, Joseph D.; Catanzarite, Joseph H.; Clarke, Bruce D.; Giroud, Forrest; Jenkins, Jon M.; Klaus, Todd C.; Li, Jie; McCauliff, Sean D.; Seader, Shawn E.; Tennenbaum, Peter; hide

    2018-01-01

    The Kepler Mission was designed to identify and characterize transiting planets in the Kepler Field of View and to determine their occurrence rates. Emphasis was placed on identification of Earth-size planets orbiting in the Habitable Zone of their host stars. Science data were acquired for a period of four years. Long-cadence data with 29.4 min sampling were obtained for approx. 200,000 individual stellar targets in at least one observing quarter in the primary Kepler Mission. Light curves for target stars are extracted in the Kepler Science Data Processing Pipeline, and are searched for transiting planet signatures. A Threshold Crossing Event is generated in the transit search for targets where the transit detection threshold is exceeded and transit consistency checks are satisfied. These targets are subjected to further scrutiny in the Data Validation (DV) component of the Pipeline. Transiting planet candidates are characterized in DV, and light curves are searched for additional planets after transit signatures are modeled and removed. A suite of diagnostic tests is performed on all candidates to aid in discrimination between genuine transiting planets and instrumental or astrophysical false positives. Data products are generated per target and planet candidate to document and display transiting planet model fit and diagnostic test results. These products are exported to the Exoplanet Archive at the NASA Exoplanet Science Institute, and are available to the community. We describe the DV architecture and diagnostic tests, and provide a brief overview of the data products. Transiting planet modeling and the search for multiple planets on individual targets are described in a companion paper. The final revision of the Kepler Pipeline code base is available to the general public through GitHub. The Kepler Pipeline has also been modified to support the Transiting Exoplanet Survey Satellite (TESS) Mission which is expected to commence in 2018.

  8. Red-edge position of habitable exoplanets around M-dwarfs.

    Science.gov (United States)

    Takizawa, Kenji; Minagawa, Jun; Tamura, Motohide; Kusakabe, Nobuhiko; Narita, Norio

    2017-08-08

    One of the possible signs of life on distant habitable exoplanets is the red-edge, which is a rise in the reflectivity of planets between visible and near-infrared (NIR) wavelengths. Previous studies suggested the possibility that the red-edge position for habitable exoplanets around M-dwarfs may be shifted to a longer wavelength than that for Earth. We investigated plausible red-edge position in terms of the light environment during the course of the evolution of phototrophs. We show that phototrophs on M-dwarf habitable exoplanets may use visible light when they first evolve in the ocean and when they first colonize the land. The adaptive evolution of oxygenic photosynthesis may eventually also use NIR radiation, by one of two photochemical reaction centers, with the other center continuing to use visible light. These "two-color" reaction centers can absorb more photons, but they will encounter difficulty in adapting to drastically changing light conditions at the boundary between land and water. NIR photosynthesis can be more productive on land, though its evolution would be preceded by the Earth-type vegetation. Thus, the red-edge position caused by photosynthetic organisms on habitable M-dwarf exoplanets could initially be similar to that on Earth and later move to a longer wavelength.

  9. Habitable Exoplanet Imaging Mission (HabEx): Architecture of the 4m Mission Concept

    Science.gov (United States)

    Kuan, Gary M.; Warfield, Keith R.; Mennesson, Bertrand; Kiessling, Alina; Stahl, H. Philip; Martin, Stefan; Shaklan, Stuart B.; amini, rashied

    2018-01-01

    The Habitable Exoplanet Imaging Mission (HabEx) study is tasked by NASA to develop a scientifically compelling and technologically feasible exoplanet direct imaging mission concept, with extensive general astrophysics capabilities, for the 2020 Decadal Survey in Astrophysics. The baseline architecture of this space-based observatory concept encompasses an unobscured 4m diameter aperture telescope flying in formation with a 72-meter diameter starshade occulter. This large aperture, ultra-stable observatory concept extends and enhances upon the legacy of the Hubble Space Telescope by allowing us to probe even fainter objects and peer deeper into the Universe in the same ultraviolet, visible, and near infrared wavelengths, and gives us the capability, for the first time, to image and characterize potentially habitable, Earth-sized exoplanets orbiting nearby stars. Revolutionary direct imaging of exoplanets will be undertaken using a high-contrast coronagraph and a starshade imager. General astrophysics science will be undertaken with two world-class instruments – a wide-field workhorse camera for imaging and multi-object grism spectroscopy, and a multi-object, multi-resolution ultraviolet spectrograph. This poster outlines the baseline architecture of the HabEx flagship mission concept.

  10. Limits on stellar companions to exoplanet host stars with eccentric planets

    Energy Technology Data Exchange (ETDEWEB)

    Kane, Stephen R.; Hinkel, Natalie R. [Department of Physics and Astronomy, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132 (United States); Howell, Steve B. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Horch, Elliott P. [Department of Physics, Southern Connecticut State University, New Haven, CT 06515 (United States); Feng, Ying; Wright, Jason T. [Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States); Ciardi, David R. [NASA Exoplanet Science Institute, Caltech, MS 100-22, 770 South Wilson Avenue, Pasadena, CA 91125 (United States); Everett, Mark E. [National Optical Astronomy Observatory, 950 N. Cherry Ave, Tucson, AZ 85719 (United States); Howard, Andrew W., E-mail: skane@sfsu.edu [Institute for Astronomy, University of Hawaii, Honolulu, HI 96822 (United States)

    2014-04-20

    Though there are now many hundreds of confirmed exoplanets known, the binarity of exoplanet host stars is not well understood. This is particularly true of host stars that harbor a giant planet in a highly eccentric orbit since these are more likely to have had a dramatic dynamical history that transferred angular momentum to the planet. Here we present observations of four exoplanet host stars that utilize the excellent resolving power of the Differential Speckle Survey Instrument on the Gemini North telescope. Two of the stars are giants and two are dwarfs. Each star is host to a giant planet with an orbital eccentricity >0.5 and whose radial velocity (RV) data contain a trend in the residuals to the Keplerian orbit fit. These observations rule out stellar companions 4-8 mag fainter than the host star at passbands of 692 nm and 880 nm. The resolution and field of view of the instrument result in exclusion radii of 0.''05-1.''4, which excludes stellar companions within several AU of the host star in most cases. We further provide new RVs for the HD 4203 system that confirm that the linear trend previously observed in the residuals is due to an additional planet. These results place dynamical constraints on the source of the planet's eccentricities, place constraints on additional planetary companions, and inform the known distribution of multiplicity amongst exoplanet host stars.

  11. High-contrast imaging search for stellar and substellar companions of exoplanet host stars

    Science.gov (United States)

    Mugrauer, M.; Ginski, C.

    2015-07-01

    We present the results of our high-contrast imaging survey of close stellar and substellar companions of exoplanet host stars, carried out with the adaptive optics imager NACO at the ESO Paranal observatory, in Chile. In total, 33 exoplanet host stars were observed with NACO in the Ks-band. New comoving companions could be identified close to the stars HD 9578, HD 96167, and HD 142245. The newly detected companions exhibit masses between 0.21 and 0.56 M⊙ and are located at projected separations from their primaries between about 190 and 510 au. In the case of HD 142245, we found evidence that the detected companion is actually a close binary itself with a projected separation of only about 4 au, i.e. HD 142245 might be a hierarchical triple stellar system, which hosts an exoplanet, a new member in the short list of such systems, presently known. In our imaging campaign, a limiting magnitude of Ks = 18.5 mag is reached in average in the background noise limited region around our targets at projected separations beyond about 100 au, which allows the detection of substellar companions with masses down to about 60 MJup. With our NACO observations we can rule out additional stellar companions at projected separations between about 30 and 370 au around the observed exoplanet host stars.

  12. Role of ocean heat transport in climates of tidally locked exoplanets around M dwarf stars

    Science.gov (United States)

    Hu, Yongyun; Yang, Jun

    2014-01-01

    The distinctive feature of tidally locked exoplanets is the very uneven heating by stellar radiation between the dayside and nightside. Previous work has focused on the role of atmospheric heat transport in preventing atmospheric collapse on the nightside for terrestrial exoplanets in the habitable zone around M dwarfs. In the present paper, we carry out simulations with a fully coupled atmosphere–ocean general circulation model to investigate the role of ocean heat transport in climate states of tidally locked habitable exoplanets around M dwarfs. Our simulation results demonstrate that ocean heat transport substantially extends the area of open water along the equator, showing a lobster-like spatial pattern of open water, instead of an “eyeball.” For sufficiently high-level greenhouse gases or strong stellar radiation, ocean heat transport can even lead to complete deglaciation of the nightside. Our simulations also suggest that ocean heat transport likely narrows the width of M dwarfs’ habitable zone. This study provides a demonstration of the importance of exooceanography in determining climate states and habitability of exoplanets. PMID:24379386

  13. Looking for the rainbow on exoplanets covered by liquid and icy water clouds

    NARCIS (Netherlands)

    Karalidi, T.; Stam, D.M.; Hovenier, J.W.

    2012-01-01

    Aims. Looking for the primary rainbow in starlight that is reflected by exoplanets appears to be a promising method to search for liquid water clouds in exoplanetary atmospheres. Ice water clouds, that consist of water crystals instead of water droplets, could potentially mask the rainbow feature in

  14. Asteroseismic Determination of Obliquities of the Exoplanet Systems Kepler-50 and Kepler-65

    DEFF Research Database (Denmark)

    Chaplin, W. J.; Sanchis-Ojeda, R.; Campante, T. L.

    2013-01-01

    Results on the obliquity of exoplanet host stars - the angle between the stellar spin axis and the planetary orbital axis - provide important diagnostic information for theories describing planetary formation. Here we present the first application of asteroseismology to the problem of stellar...

  15. Geometric effects on the flux and polarization signals of Jupiter-sized exoplanets

    NARCIS (Netherlands)

    Palmer (student TUDelft), Chris; Rossi, L.C.G.; Stam, D.M.

    2017-01-01

    The direct detection of reflected starlight from exoplanets marks the beginning of a new era in the characterization of extrasolar planetary atmospheres. The flux and in particular the linear polarization signals from such planets are sensitive to atmospheric structure and composition, but other

  16. Imaging polarimetry for the characterisation of exoplanets and protoplanetary discs : scientific and technical challenges

    NARCIS (Netherlands)

    Juan Ovelar, Maria de

    2013-01-01

    The study of exoplanets and the protoplanetary discs in which they form is a very challenging task. In this thesis we present several studies in which we investigate the potential of imaging polarimetry at visible and near-infrared wavelengths to reveal the characteristics of these objects and

  17. Traces of exomoons in flux and polarization signals of starlight reflected by exoplanets

    NARCIS (Netherlands)

    Berzosa Molina (student TUDelft), Javier; Stam, D.M.; Rossi, L.C.G.

    2017-01-01

    The detection of moons around extrasolar planets is one of the main focuses of current and future observatories. These silent companions contribute to the planets' observed signals but are barely detectable with current methods. Numerous gaseous exoplanets are known to orbit in the habitable zones

  18. Role of ocean heat transport in climates of tidally locked exoplanets around M dwarf stars.

    Science.gov (United States)

    Hu, Yongyun; Yang, Jun

    2014-01-14

    The distinctive feature of tidally locked exoplanets is the very uneven heating by stellar radiation between the dayside and nightside. Previous work has focused on the role of atmospheric heat transport in preventing atmospheric collapse on the nightside for terrestrial exoplanets in the habitable zone around M dwarfs. In the present paper, we carry out simulations with a fully coupled atmosphere-ocean general circulation model to investigate the role of ocean heat transport in climate states of tidally locked habitable exoplanets around M dwarfs. Our simulation results demonstrate that ocean heat transport substantially extends the area of open water along the equator, showing a lobster-like spatial pattern of open water, instead of an "eyeball." For sufficiently high-level greenhouse gases or strong stellar radiation, ocean heat transport can even lead to complete deglaciation of the nightside. Our simulations also suggest that ocean heat transport likely narrows the width of M dwarfs' habitable zone. This study provides a demonstration of the importance of exooceanography in determining climate states and habitability of exoplanets.

  19. Effects of Bulk Composition on the Atmospheric Dynamics on Close-in Exoplanets

    Science.gov (United States)

    Zhang, Xi; Showman, Adam P.

    2015-12-01

    Depending on the metallicity of the protoplanetary disk and processes such as gas accretion during planetary formation and atmospheric loss during planetary evolution, the atmospheres of sub-Jupiter-sized planets could exhibit a variety of bulk compositions. Examples include hydrogen-dominated atmospheres like Jupiter, more metal-rich atmospheres like Neptune, carbon dioxide, water vapor, nitrogen, and other heavy molecules as exhibited by terrestrial planets in the solar system. In this study we systematically investigate the effects of atmospheric bulk compositions on temperature and wind distributions for tidally locked sub-Jupiter-sized planets such as super-Earths and mini-Neptunes, using an idealized three-dimensional general circulation model (GCM). Composition—in particular, the molecular mass and specific heat—affect the sound speed, gravity wave speeds, atmospheric scale height, and Rossby deformation radius, and therefore in principle can exert significant controls on the atmospheric circulation, including the day-night temperature difference and other observables.We performed numerous simulations exploring a wide range of molecular masses and molar specific heats. The effect of molecular weight dominates. We found that a higher-molecular-weight atmosphere tends to have a larger day-night temperature contrast, a smaller eastward phase shift in the thermal light curve, and a narrower equatorial super-rotating jet that occurs in a deeper atmosphere. The zonal-mean zonal wind is smaller and more prone to exhibit a latitudinally alternating pattern in a higher-molecular-weight atmosphere. If the vertical temperature profile is close to adiabatic, molar specific heat will play a significant role in controlling the transition from a divergent flow in the upper atmosphere to a jet-dominated flow in the lower atmosphere.In order to understand the systematic behavior and capture the underlying physics, we present analytical theories to explain aspects of the

  20. Characterizing 51 Eri b from 1 to 5 μm: A Partly Cloudy Exoplanet

    Science.gov (United States)

    Rajan, Abhijith; Rameau, Julien; De Rosa, Robert J.; Marley, Mark S.; Graham, James R.; Macintosh, Bruce; Marois, Christian; Morley, Caroline; Patience, Jennifer; Pueyo, Laurent; Saumon, Didier; Ward-Duong, Kimberly; Ammons, S. Mark; Arriaga, Pauline; Bailey, Vanessa P.; Barman, Travis; Bulger, Joanna; Burrows, Adam S.; Chilcote, Jeffrey; Cotten, Tara; Czekala, Ian; Doyon, Rene; Duchêne, Gaspard; Esposito, Thomas M.; Fitzgerald, Michael P.; Follette, Katherine B.; Fortney, Jonathan J.; Goodsell, Stephen J.; Greenbaum, Alexandra Z.; Hibon, Pascale; Hung, Li-Wei; Ingraham, Patrick; Johnson-Groh, Mara; Kalas, Paul; Konopacky, Quinn; Lafrenière, David; Larkin, James E.; Maire, Jérôme; Marchis, Franck; Metchev, Stanimir; Millar-Blanchaer, Maxwell A.; Morzinski, Katie M.; Nielsen, Eric L.; Oppenheimer, Rebecca; Palmer, David; Patel, Rahul I.; Perrin, Marshall; Poyneer, Lisa; Rantakyrö, Fredrik T.; Ruffio, Jean-Baptiste; Savransky, Dmitry; Schneider, Adam C.; Sivaramakrishnan, Anand; Song, Inseok; Soummer, Rémi; Thomas, Sandrine; Vasisht, Gautam; Wallace, J. Kent; Wang, Jason J.; Wiktorowicz, Sloane; Wolff, Schuyler

    2017-07-01

    We present spectrophotometry spanning 1-5 μm of 51 Eridani b, a 2-10 {M}{Jup} planet discovered by the Gemini Planet Imager Exoplanet Survey. In this study, we present new K1 (1.90-2.19 μm) and K2 (2.10-2.40 μm) spectra taken with the Gemini Planet Imager as well as an updated L P (3.76 μm) and new M S (4.67 μm) photometry from the NIRC2 Narrow camera. The new data were combined with J (1.13-1.35 μm) and H (1.50-1.80 μm) spectra from the discovery epoch with the goal of better characterizing the planet properties. The 51 Eri b photometry is redder than field brown dwarfs as well as known young T-dwarfs with similar spectral type (between T4 and T8), and we propose that 51 Eri b might be in the process of undergoing the transition from L-type to T-type. We used two complementary atmosphere model grids including either deep iron/silicate clouds or sulfide/salt clouds in the photosphere, spanning a range of cloud properties, including fully cloudy, cloud-free, and patchy/intermediate-opacity clouds. The model fits suggest that 51 Eri b has an effective temperature ranging between 605 and 737 K, a solar metallicity, and a surface gravity of log(g) = 3.5-4.0 dex, and the atmosphere requires a patchy cloud atmosphere to model the spectral energy distribution (SED). From the model atmospheres, we infer a luminosity for the planet of -5.83 to -5.93 ({log}L/{L}⊙ ), leaving 51 Eri b in the unique position of being one of the only directly imaged planets consistent with having formed via a cold-start scenario. Comparisons of the planet SED against warm-start models indicate that the planet luminosity is best reproduced by a planet formed via core accretion with a core mass between 15 and 127 {M}\\oplus .

  1. Exo-Dat: An Information System in Support of the CoRoT/Exoplanet Science

    Science.gov (United States)

    Deleuil, M.; Meunier, J. C.; Moutou, C.; Surace, C.; Deeg, H. J.; Barbieri, M.; Debosscher, J.; Almenara, J. M.; Agneray, F.; Granet, Y.; Guterman, P.; Hodgkin, S.

    2009-08-01

    Exo-Dat is a database and an information system created primarily in support of the exoplanet program of the COnvection ROtation & planetary Transits (CoRoT) mission. In the directions of CoRoT pointings, it provides a united interface to several sets of data: stellar published catalogs, photometric and spectroscopic data obtained during the mission preparation, results from the mission and from follow-up observations, and several mission-specific technical parameters. The new photometric data constitute the subcatalog Exo-Cat, and give consistent 4-color photometry of 14.0 million stars with a completeness to 19th magnitude in the r-filter. It covers several zones in the galactic plane around CoRoT pointings, with a total area of 209 deg2. This Exo-Dat information system provides essential technical support to the ongoing CoRoT light-curve analyses and ground-based follow-up by supplying additional complementary information such as the prior knowledge of the star's fundamental parameters or its contamination level inside the large CoRoT photometric mask. The database is fully interfaced with VO tools and thus benefits from existing visualization and analysis tools like TOPCAT or ALADIN. It is accessible to the CoRoT community through the Web, and will be gradually opened to the public. It is the ideal tool to prepare the foreseen statistical studies of the properties of the exoplanetary systems. As a VO-compliant system, such analyses could thus benefit from the most up-to-date classifier tools. The CoRoT space mission, launched on 2006 December 27, has been developed and is operated by CNES, with the contribution of Austria, Belgium, Brazil, ESA, Germany, and Spain. This project has made use of various observations collected with the Isaac Newton Telescope at La Palma and the GIRAFFE and UVES/FLAMES spectrographs at the VLT/UT2 Kueyen telescope (Paranal observatory, ESO, Chile: program 074.C-0633A, 081.C-0413).

  2. Transit Timing Observations from Kepler: III. Confirmation of 4 Multiple Planet Systems by a Fourier-Domain Study of Anti-correlated Transit Timing Variations

    Energy Technology Data Exchange (ETDEWEB)

    Steffen, Jason H.; /Fermilab; Fabrycky, Daniel C.; /Lick Observ.; Ford, Eric B.; /Florida U.; Carter, Joshua A.; /Harvard-Smithsonian Ctr. Astrophys.; Fressin, Francois; /Harvard-Smithsonian Ctr. Astrophys.; Holman, Matthew J.; /Harvard-Smithsonian Ctr. Astrophys.; Lissauer, Jack J.; /NASA, Ames; Rowe, Jason F.; /SETI Inst., Mtn. View /NASA, Ames; Ragozzine, Darin; /Harvard-Smithsonian Ctr. Astrophys.; Welsh, William F.; /Caltech; Borucki, William J.; /NASA, Ames /UC, Santa Barbara

    2012-01-01

    We present a method to confirm the planetary nature of objects in systems with multiple transiting exoplanet candidates. This method involves a Fourier-domain analysis of the deviations in the transit times from a constant period that result from dynamical interactions within the system. The combination of observed anticorrelations in the transit times and mass constraints from dynamical stability allow us to claim the discovery of four planetary systems, Kepler-25, Kepler-26, Kepler-27 and Kepler-28, containing eight planets and one additional planet candidate.

  3. Model Atmospheres and Transit Spectra for Hot Rocky Planets

    Science.gov (United States)

    Lupu, Roxana

    We propose to build a versatile set of self-consistent atmospheric models for hot rocky exoplanets and use them to predict their transit and eclipse spectra. Hot rocky exoplanets will form the majority of small planets in close-in orbits to be discovered by the TESS and Kepler K2 missions, and offer the best opportunity for characterization with current and future instruments. We will use fully non-grey radiative-convective atmospheric structure codes with cloud formation and vertical mixing, combined with a self-consistent treatment of gas chemistry above the magma ocean. Being in equilibrium with the surface, the vaporized rock material can be a good tracer of the bulk composition of the planet. We will derive the atmospheric structure and escape rates considering both volatile-free and volatile bearing compositions, which reflect the diversity of hot rocky planet atmospheres. Our models will inform follow- up observations with JWST and ground-based instruments, aid the interpretation of transit and eclipse spectra, and provide a better understanding of volatile loss in these atmospheres. Such results will help refine our picture of rocky planet formation and evolution. Planets in ultra-short period (USP) orbits are a special class of hot rocky exoplanets. As shown by Kepler, these planets are generally smaller than 2 Earth radii, suggesting that they are likely to be rocky and could have lost their volatiles through photo-evaporation. Being close to their host stars, these planets are ultra-hot, with estimated temperatures of 1000-3000 K. A number of USP planets have been already discovered (e.g. Kepler-78 b, CoRoT-7 b, Kepler-10 b), and this number is expected to grow by confirming additional planet candidates. The characterization of planets on ultra-short orbits is advantageous due to the larger number of observable transits, and the larger transit signal in the case of an evaporating atmosphere. Much advance has been made in understanding and characterizing

  4. EFFECT OF LONGITUDE-DEPENDENT CLOUD COVERAGE ON EXOPLANET VISIBLE WAVELENGTH REFLECTED-LIGHT PHASE CURVES

    Energy Technology Data Exchange (ETDEWEB)

    Webber, Matthew W.; Lewis, Nikole K.; Cahoy, Kerri [Department of Earth, Atmospheric, and Planetary Sciences. Massachusetts Institute of Technology (MIT) Cambridge, MA (United States); Marley, Mark [NASA Ames Research Center, Moffett Field, CA (United States); Morley, Caroline; Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2015-05-10

    We use a planetary albedo model to investigate variations in visible wavelength phase curves of exoplanets. Thermal and cloud properties for these exoplanets are derived using one-dimensional radiative-convective and cloud simulations. The presence of clouds on these exoplanets significantly alters their planetary albedo spectra. We confirm that non-uniform cloud coverage on the dayside of tidally locked exoplanets will manifest as changes to the magnitude and shift of the phase curve. In this work, we first investigate a test case of our model using a Jupiter-like planet, at temperatures consistent to 2.0 AU insolation from a solar type star, to consider the effect of H{sub 2}O clouds. We then extend our application of the model to the exoplanet Kepler-7b and consider the effect of varying cloud species, sedimentation efficiency, particle size, and cloud altitude. We show that, depending on the observational filter, the largest possible shift of the phase curve maximum will be ∼2°–10° for a Jupiter-like planet, and up to ∼30° (∼0.08 in fractional orbital phase) for hot-Jupiter exoplanets at visible wavelengths as a function of dayside cloud distribution with a uniformly averaged thermal profile. The models presented in this work can be adapted for a variety of planetary cases at visible wavelengths to include variations in planet–star separation, gravity, metallicity, and source-observer geometry. Finally, we tailor our model for comparison with, and confirmation of, the recent optical phase-curve observations of Kepler-7b with the Kepler space telescope. The average planetary albedo can vary between 0.1 and 0.6 for the 1300 cloud scenarios that were compared to the observations. Many of these cases cannot produce a high enough albedo to match the observations. We observe that smaller particle size and increasing cloud altitude have a strong effect on increasing albedo. In particular, we show that a set of models where Kepler-7b has roughly half of

  5. Looking for transiting warm Jupiters - win some, lose some

    Science.gov (United States)

    Shporer, Avi; Zhou, George; Vanderburg, Andrew; Fulton, Benjamin; Bieryla, Allyson; Ciardi, David; Collins, Karen; Espinoza, Néstor; Isaacson, Howard; Morton, Timothy; Torres, Guillermo; Armstrong, James; Bayliss, Daniel; Bento, Joao; Berlind, Perry; Bouchy, Francois; Calkins, Mike; Cameron, Andrew; Cochran, William; Colon, Knicole; Crossfield, Ian; Dragomir, Diana; Esquerdo, Gil; Howard, Andrew; Howell, Steve; Kielkopf, John; Latham, David; Murgas, Felipe; Sefako, Ramotholo; Sinukoff, Evan; Siverd, Robert; Udry, Stephane; TECH

    2018-01-01

    We have initiated a project to discover transiting warm Jupiters - gas giant planets receiving stellar irradiation below 108 erg s-1 cm-2, corresponding to orbital periods beyond about 10 days around Sun-like stars, through follow-up of transiting candidates identified by K2 and other transit surveys. Our goals are to (1) investigate the inflated gas giants conundrum, (2) study the mystery of hot Jupiters orbital evolution, and (3) identify targets for extending exoplanet atmosphere and stellar obliquity studies beyond the hot Jupiters class. This project has so far resulted in the discovery of two new transiting warm Jupiters (K2-114b and K2-115b), and the identification of three statistically validated planets as low-mass stars.

  6. Transitional Justice

    DEFF Research Database (Denmark)

    Gissel, Line Engbo

    This presentation builds on an earlier published article, 'Contemporary Transitional Justice: Normalising a Politics of Exception'. It argues that the field of transitional justice has undergone a shift in conceptualisation and hence practice. Transitional justice is presently understood...... to be the provision of ordinary criminal justice in contexts of exceptional political transition....

  7. Synergies between exoplanet surveys and variable star research

    Directory of Open Access Journals (Sweden)

    Kovacs Geza

    2017-01-01

    Full Text Available With the discovery of the first transiting extrasolar planetary system back in 1999, a great number of projects started to hunt for other similar systems. Because the incidence rate of such systems was unknown and the length of the shallow transit events is only a few percent of the orbital period, the goal was to monitor continuously as many stars as possible for at least a period of a few months. Small aperture, large field of view automated telescope systems have been installed with a parallel development of new data reduction and analysis methods, leading to better than 1% per data point precision for thousands of stars. With the successful launch of the photometric satellites CoRoT and Kepler, the precision increased further by one-two orders of magnitude. Millions of stars have been analyzed and searched for transits. In the history of variable star astronomy this is the biggest undertaking so far, resulting in photometric time series inventories immensely valuable for the whole field. In this review we briefly discuss the methods of data analysis that were inspired by the main science driver of these surveys and highlight some of the most interesting variable star results that impact the field of variable star astronomy.

  8. Synergies between exoplanet surveys and variable star research

    Science.gov (United States)

    Kovacs, Geza

    2017-09-01

    With the discovery of the first transiting extrasolar planetary system back in 1999, a great number of projects started to hunt for other similar systems. Because the incidence rate of such systems was unknown and the length of the shallow transit events is only a few percent of the orbital period, the goal was to monitor continuously as many stars as possible for at least a period of a few months. Small aperture, large field of view automated telescope systems have been installed with a parallel development of new data reduction and analysis methods, leading to better than 1% per data point precision for thousands of stars. With the successful launch of the photometric satellites CoRoT and Kepler, the precision increased further by one-two orders of magnitude. Millions of stars have been analyzed and searched for transits. In the history of variable star astronomy this is the biggest undertaking so far, resulting in photometric time series inventories immensely valuable for the whole field. In this review we briefly discuss the methods of data analysis that were inspired by the main science driver of these surveys and highlight some of the most interesting variable star results that impact the field of variable star astronomy.

  9. Quality Control of The Miniature Exoplanet Radio Velocity Array(MINERVA)

    Science.gov (United States)

    Rivera García, Kevin O.; Eastman, Jason D.

    2017-01-01

    The MINiature Exoplanet Radial Velocity Array, also known as MINERVA , is a network of four robotic 0.7 meter telescopes that is conducting a Radial Velocity survey of the nearest, brightest stars in search of small and rocky exoplanets. The robotic telescope array is located in Fred Lawrence Whipple Observatory in Arizona. MINERVA began science operations in 2015 and we are constantly improving its observing efficiency. We will describe performance statistics that we have developed in Python to proactively identify problems before they impede observations. We have written code to monitor the pointing error for each telescope to ensure it will always be able to acquire a target in the 3 arcminute field of view of its acquisition camera, but there are still some issues that need to be identified. The end goal for this research is to automatically address any common malfunction that may cause the observation to fail and ultimately improve our observing efficiency.

  10. Modeling of exoplanets interiors in the framework of future space missions

    Science.gov (United States)

    Brugger, B.; Mousis, O.; Deleuil, M.

    2017-12-01

    Probing the interior of exoplanets with known masses and radii is possible via the use of models of internal structure. Here we present a model able to handle various planetary compositions, from terrestrial bodies to ocean worlds or carbon-rich planets, and its application to the case of CoRoT-7b. Using the elemental abundances of an exoplanet’s host star, we significantly reduce the degeneracy limiting such models. This further constrains the type and state of material present at the surface, and helps estimating the composition of a secondary atmosphere that could form in these conditions through potential outgassing. Upcoming space missions dedicated to exoplanet characterization, such as PLATO, will provide accurate fundamental parameters of Earth-like planets orbiting in the habitable zone, for which our model is well adapted.

  11. Investigating Exoplanet Orbital Evolution Around Binary Star Systems with Mass Loss

    Directory of Open Access Journals (Sweden)

    Walid A. Rahoma

    2016-12-01

    Full Text Available A planet revolving around binary star system is a familiar system. Studies of these systems are important because they provide precise knowledge of planet formation and orbit evolution. In this study, a method to determine the evolution of an exoplanet revolving around a binary star system using different rates of stellar mass loss will be introduced. Using a hierarchical triple body system, in which the outer body can be moved with the center of mass of the inner binary star as a two-body problem, the long period evolution of the exoplanet orbit is determined depending on a Hamiltonian formulation. The model is simulated by numerical integrations of the Hamiltonian equations for the system over a long time. As a conclusion, the behavior of the planet orbital elements is quite affected by the rate of the mass loss from the accompanying binary star.

  12. EXOPLANET ALBEDO SPECTRA AND COLORS AS A FUNCTION OF PLANET PHASE, SEPARATION, AND METALLICITY

    International Nuclear Information System (INIS)

    Cahoy, Kerri L.; Marley, Mark S.; Fortney, Jonathan J.

    2010-01-01

    First generation space-based optical coronagraphic telescopes will obtain images of cool gas- and ice-giant exoplanets around nearby stars. Exoplanets lying at planet-star separations larger than about 1 AU-where an exoplanet can be resolved from its parent star-have spectra that are dominated by reflected light to beyond 1 μm and punctuated by molecular absorption features. Here, we consider how exoplanet albedo spectra and colors vary as a function of planet-star separation, metallicity, mass, and observed phase for Jupiter and Neptune analogs from 0.35 to 1 μm. We model Jupiter analogs with 1x and 3x the solar abundance of heavy elements, and Neptune analogs with 10x and 30x the solar abundance of heavy elements. Our model planets orbit a solar analog parent star at separations of 0.8 AU, 2 AU, 5 AU, and 10 AU. We use a radiative-convective model to compute temperature-pressure profiles. The giant exoplanets are found to be cloud-free at 0.8 AU, possess H 2 O clouds at 2 AU, and have both NH 3 and H 2 O clouds at 5 AU and 10 AU. For each model planet we compute moderate resolution (R = λ/Δλ ∼ 800) albedo spectra as a function of phase. We also consider low-resolution spectra and colors that are more consistent with the capabilities of early direct imaging capabilities. As expected, the presence and vertical structure of clouds strongly influence the albedo spectra since cloud particles not only affect optical depth but also have highly directional scattering properties. Observations at different phases also probe different volumes of atmosphere as the source-observer geometry changes. Because the images of the planets themselves will be unresolved, their phase will not necessarily be immediately obvious, and multiple observations will be needed to discriminate between the effects of planet-star separation, metallicity, and phase on the observed albedo spectra. We consider the range of these combined effects on spectra and colors. For example, we find that

  13. Know the Star, Know the Planet. 2. Speckle Interferometry of Exoplanet Host Stars

    Science.gov (United States)

    2011-11-01

    DVA ” is background subtracted through boxcar subtraction and the sharp central peak, which corresponds to the zeroth-order speckles correlating with...them- selves, is clipped. Companions in the resulting DVA are then readily apparent as peaks several sigma above the background. Of the 118 exoplanet...USNO with an ICCD and reduced with the DVA method. Asterisks (N = 11) are those observed by other interferometry groups, and an “X” (N = 292) are

  14. SIMULTANEOUS EXOPLANET CHARACTERIZATION AND DEEP WIDE-FIELD IMAGING WITH A DIFFRACTIVE PUPIL TELESCOPE

    International Nuclear Information System (INIS)

    Guyon, Olivier; Eisner, Josh A.; Angel, Roger; Woolf, Neville J.; Bendek, Eduardo A.; Milster, Thomas D.; Ammons, S. Mark; Shao, Michael; Shaklan, Stuart; Levine, Marie; Nemati, Bijan; Martinache, Frantz; Pitman, Joe; Woodruff, Robert A.; Belikov, Ruslan

    2013-01-01

    High-precision astrometry can identify exoplanets and measure their orbits and masses while coronagraphic imaging enables detailed characterization of their physical properties and atmospheric compositions through spectroscopy. In a previous paper, we showed that a diffractive pupil telescope (DPT) in space can enable sub-μas accuracy astrometric measurements from wide-field images by creating faint but sharp diffraction spikes around the bright target star. The DPT allows simultaneous astrometric measurement and coronagraphic imaging, and we discuss and quantify in this paper the scientific benefits of this combination for exoplanet science investigations: identification of exoplanets with increased sensitivity and robustness, and ability to measure planetary masses to high accuracy. We show how using both measurements to identify planets and measure their masses offers greater sensitivity and provides more reliable measurements than possible with separate missions, and therefore results in a large gain in mission efficiency. The combined measurements reliably identify potentially habitable planets in multiple systems with a few observations, while astrometry or imaging alone would require many measurements over a long time baseline. In addition, the combined measurement allows direct determination of stellar masses to percent-level accuracy, using planets as test particles. We also show that the DPT maintains the full sensitivity of the telescope for deep wide-field imaging, and is therefore compatible with simultaneous scientific observations unrelated to exoplanets. We conclude that astrometry, coronagraphy, and deep wide-field imaging can be performed simultaneously on a single telescope without significant negative impact on the performance of any of the three techniques.

  15. Relative stellar occurrence of exoplanets in habitable zones of the main sequence F, G, K stars

    Czech Academy of Sciences Publication Activity Database

    Pintr, Pavel; Peřinová, V.; Lukš, A.; Pathak, A.

    2014-01-01

    Roč. 99, sept2014 (2014), s. 1-6 ISSN 0032-0633 R&D Projects: GA MŠk(CZ) ED2.1.00/03.0079 Institutional support: RVO:61389021 Keywords : Exoplanets * Methods: statistical * Stars: planetary systems Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.875, year: 2014 http://www.sciencedirect.com/science/article/pii/S003206331400172X#

  16. Planet–Planet Occultations in TRAPPIST-1 and Other Exoplanet Systems

    Science.gov (United States)

    Luger, Rodrigo; Lustig-Yaeger, Jacob; Agol, Eric

    2017-12-01

    We explore the occurrence and detectability of planet–planet occultations (PPOs) in exoplanet systems. These are events during which a planet occults the disk of another planet in the same system, imparting a small photometric signal as its thermal or reflected light is blocked. We focus on the planets in TRAPPIST-1, whose orbital planes we show are aligned to https://github.com/rodluger/planetplanet).

  17. Searching for Exoplanet Effects on the X-ray Spectrum of τ Boo

    Science.gov (United States)

    Wood, Brian; Laming, J. Martin

    2018-01-01

    We study the X-ray spectrum of the exoplanet host star τ Boo A (F7 V), in order to explore the possibility that its very close-in, massive exoplanet (Porb=3.31 days, m sin i=3.9 MJ) may be affecting the coronal emissions of this star. The star was observed recently by Chandra/LETGS for 92 ksec in three pieces between 2017 February 27 and 2017 March 5; and was previously observed by XMM for 65 ksec in 2003 June 24. The new Chandra observations allow us to resolve τ Boo A from its stellar companion, τ Boo B (M2 V), for the first time. The companion accounts for 21% of the system's total X-ray emission at the time of the Chandra observation. Nevertheless, our measurements of τ Boo A emission measures and coronal abundances from Chandra are reasonably consistent with previous measurements from XMM by Maggio et al. (2011, A&A, 527, A144), in which τ Boo A and B are not resolved. Covering planetary orbital phases 0.21-0.31, 0.44-0.49, and 0.69-0.86, the Chandra data show that τ Boo A's coronal X-ray spectrum does not vary significantly with planetary orbital phase. However, our analysis suggests that coronal abundances for τ Boo A are somewhat anomalous, with a significantly weaker "FIP effect" compared to similar stars without close-in exoplanets, particularly π3 Ori (F6 V).

  18. Caught Red-Handed: A Novel Search for the Culprit Behind Thermal Inversions in Exoplanet Atmospheres

    Science.gov (United States)

    Kreidberg, Laura

    2017-08-01

    Thermal inversions have been one of the mostly hotly debated topics in exoplanet atmospheres over the last decade. Recent observations show conclusively that thermal inversions do exist for some of the most highly irradiated planets. The likeliest culprit for the inversions is strong absorption by titanium and vanadium oxide (TiO/VO) gas, which heats the upper atmosphere. However, TiO/VO have never been detected, despite many attempts. It is possible that these efforts failed because they focused on planets that were too cool, or were foiled by clouds and haze.We propose a novel search for TiO in the atmosphere of WASP-33b, a planet with a known thermal inversion (Haynes et al. 2015). We will measure the planet's thermal emission spectrum with the WFC3/G102 grism, where TiO is expected to have strong spectral features. This is the first proposed use of this grism for exoplanet emission spectroscopy. WASP-33b has the single highest signal-to-noise in thermal emission of any exoplanet known, and with one eclipse observation we will be sensitive to temperature differences in the upper atmosphere of 10 sigma) and definitively settle the thermal inversion debate.

  19. The Palaeoclimate and Terrestrial Exoplanet Radiative Transfer Model Intercomparison Project (PALAEOTRIP: experimental design and protocols

    Directory of Open Access Journals (Sweden)

    C. Goldblatt

    2017-11-01

    Full Text Available Accurate radiative transfer calculation is fundamental to all climate modelling. For deep palaeoclimate, and increasingly terrestrial exoplanet climate science, this brings both the joy and the challenge of exotic atmospheric compositions. The challenge here is that most standard radiation codes for climate modelling have been developed for modern atmospheric conditions and may perform poorly away from these. The palaeoclimate or exoclimate modeller must either rely on these or use bespoke radiation codes, and in both cases rely on either blind faith or ad hoc testing of the code. In this paper, we describe the protocols for the Palaeoclimate and Terrestrial Exoplanet Radiative Transfer Model Intercomparison Project (PALAEOTRIP to systematically address this. This will compare as many radiation codes used for palaeoclimate or exoplanets as possible, with the aim of identifying the ranges of far-from-modern atmospheric compositions in which the codes perform well. This paper describes the experimental protocol and invites community participation in the project through 2017–2018.

  20. THE INFLUENCE OF MAGNETIC FIELD GEOMETRY ON THE FORMATION OF CLOSE-IN EXOPLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Jacob B., E-mail: jbsimon.astro@gmail.com [Department of Space Studies, Southwest Research Institute, Boulder, CO 80302 (United States)

    2016-08-20

    Approximately half of Sun-like stars harbor exoplanets packed within a radius of ∼0.3 au, but the formation of these planets and why they form in only half of known systems are still not well understood. We employ a one-dimensional steady-state model to gain physical insight into the origin of these close-in exoplanets. We use Shakura and Sunyaev α values extracted from recent numerical simulations of protoplanetary disk accretion processes in which the magnitude of α , and thus the steady-state gas surface density, depend on the orientation of large-scale magnetic fields with respect to the disk’s rotation axis. Solving for the metallicity as a function of radius, we find that for fields anti-aligned with the rotation axis, the inner regions of our model disk often fall within a region of parameter space that is not suitable for planetesimal formation, whereas in the aligned case, the inner disk regions are likely to produce planetesimals through some combination of streaming instability and gravitational collapse, though the degree to which this is true depends on the assumed parameters of our model. More robustly, the aligned field case always produces higher concentrations of solids at small radii compared to the anti-aligned case. In the in situ formation model, this bimodal distribution of solid enhancement leads directly to the observed dichotomy in exoplanet orbital distances.

  1. Science Parametrics for Missions to Search for Earth-like Exoplanets by Direct Imaging

    Science.gov (United States)

    Brown, Robert A.

    2015-01-01

    We use Nt , the number of exoplanets observed in time t, as a science metric to study direct-search missions like Terrestrial Planet Finder. In our model, N has 27 parameters, divided into three categories: 2 astronomical, 7 instrumental, and 18 science-operational. For various "27-vectors" of those parameters chosen to explore parameter space, we compute design reference missions to estimate Nt . Our treatment includes the recovery of completeness c after a search observation, for revisits, solar and antisolar avoidance, observational overhead, and follow-on spectroscopy. Our baseline 27-vector has aperture D = 16 m, inner working angle IWA = 0.039'', mission time t = 0-5 yr, occurrence probability for Earth-like exoplanets η = 0.2, and typical values for the remaining 23 parameters. For the baseline case, a typical five-year design reference mission has an input catalog of ~4700 stars with nonzero completeness, ~1300 unique stars observed in ~2600 observations, of which ~1300 are revisits, and it produces N 1 ~ 50 exoplanets after one year and N 5 ~ 130 after five years. We explore offsets from the baseline for 10 parameters. We find that N depends strongly on IWA and only weakly on D. It also depends only weakly on zodiacal light for Z end-to-end efficiency for h > 0.2, and scattered starlight for ζ revisits, solar and antisolar avoidance, and follow-on spectroscopy are all important factors in estimating N.

  2. A photometric study of the hot exoplanet WASP-19b

    Science.gov (United States)

    Lendl, M.; Gillon, M.; Queloz, D.; Alonso, R.; Fumel, A.; Jehin, E.; Naef, D.

    2013-04-01

    Context. The sample of hot Jupiters that have been studied in great detail is still growing. In particular, when the planet transits its host star, it is possible to measure the planetary radius and the planet mass (with radial velocity data). For the study of planetary atmospheres, it is essential to obtain transit and occultation measurements at multiple wavelengths. Aims: We aim to characterize the transiting hot Jupiter WASP-19b by deriving accurate and precise planetary parameters from a dedicated observing campaign of transits and occultations. Methods: We have obtained a total of 14 transit lightcurves in the r'-Gunn, I-Cousins, z'-Gunn, and I + z' filters and 10 occultation lightcurves in z'-Gunn using EulerCam on the Euler-Swiss telescope and TRAPPIST. We also obtained one lightcurve through the narrow-band NB1190 filter of HAWK-I on the VLT measuring an occultation at 1.19 μm. We performed a global MCMC analysis of all new data, together with some archive data in order to refine the planetary parameters and to measure the occultation depths in z'-band and at 1.19 μm. Results: We measure a planetary radius of Rp = 1.376 ± 0.046 RJ, a planetary mass of Mp = 1.165 ± 0.068 MJ, and find a very low eccentricity of e = 0.0077-0.0032+0.0068, compatible with a circular orbit. We have detected the z'-band occultation at 3σ significance and measure it to be δFocc,z' = 352 ± 116 ppm, more than a factor of 2 smaller than previously published. The occultation at 1.19 μm is only marginally constrained at δFocc,NB1190 = 1711-726+745 ppm. Conclusions: We show that the detection of occultations in the visible range is within reach, even for 1 m class telescopes if a considerable number of individual events are observed. Our results suggest an oxygen-dominated atmosphere of WASP-19b, making the planet an interesting test case for oxygen-rich planets without temperature inversion. Based on photometric observations made with HAWK-I on the ESO VLT/UT4 (Prog. ID 084.C

  3. The pinwheel pupil discovery: exoplanet science & improved processing with segmented telescopes

    Science.gov (United States)

    Breckinridge, James Bernard

    2018-01-01

    In this paper, we show that by using a “pinwheel” architecture for the segmented primary mirror and curved supports for the secondary mirror, we can achieve a near uniform diffraction background in ground and space large telescope systems needed for high SNR exoplanet science. Also, the point spread function will be nearly rotationally symmetric, enabling improved digital image reconstruction. Large (>4-m) aperture space telescopes are needed to characterize terrestrial exoplanets by direct imaging coronagraphy. Launch vehicle volume constrains these apertures are segmented and deployed in space to form a large mirror aperture that is masked by the gaps between the hexagonal segments and the shadows of the secondary support system. These gaps and shadows over the pupil result in an image plane point spread function that has bright spikes, which may mask or obscure exoplanets.These telescope artifact mask faint exoplanets, making it necessary for the spacecraft to make a roll about the boresight and integrate again to make sure no planets are missed. This increases integration time, and requires expensive space-craft resources to do bore-sight roll.Currently the LUVOIR and HabEx studies have several significant efforts to develop special purpose A/O technology and to place complex absorbing apodizers over their Hex pupils to shape the unwanted diffracted light. These strong apodizers absorb light, decreasing system transmittance and reducing SNR. Implementing curved pupil obscurations will eliminate the need for the highly absorbing apodizers and thus result in higher SNR.Quantitative analysis of diffraction patterns that use the pinwheel architecture are compared to straight hex-segment edges with a straight-line secondary shadow mask to show a gain of over a factor of 100 by reducing the background. For the first-time astronomers are able to control and minimize image plane diffraction background “noise”. This technology will enable 10-m segmented

  4. Planetary populations in the mass-period diagram: A statistical treatment of exoplanet formation and the role of planet traps

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Yasuhiro [Currently EACOA Fellow at Institute of Astronomy and Astrophysics, Academia Sinica (ASIAA), Taipei 10641, Taiwan. (China); Pudritz, Ralph E., E-mail: yasu@asiaa.sinica.edu.tw, E-mail: pudritz@physics.mcmaster.ca [Also at Origins Institute, McMaster University, Hamilton, ON L8S 4M1, Canada. (Canada)

    2013-11-20

    The rapid growth of observed exoplanets has revealed the existence of several distinct planetary populations in the mass-period diagram. Two of the most surprising are (1) the concentration of gas giants around 1 AU and (2) the accumulation of a large number of low-mass planets with tight orbits, also known as super-Earths and hot Neptunes. We have recently shown that protoplanetary disks have multiple planet traps that are characterized by orbital radii in the disks and halt rapid type I planetary migration. By coupling planet traps with the standard core accretion scenario, we showed that one can account for the positions of planets in the mass-period diagram. In this paper, we demonstrate quantitatively that most gas giants formed at planet traps tend to end up around 1 AU, with most of these being contributed by dead zones and ice lines. We also show that a large fraction of super-Earths and hot Neptunes are formed as 'failed' cores of gas giants—this population being constituted by comparable contributions from dead zone and heat transition traps. Our results are based on the evolution of forming planets in an ensemble of disks where we vary only the lifetimes of disks and their mass accretion rates onto the host star. We show that a statistical treatment of the evolution of a large population of planetary cores caught in planet traps accounts for the existence of three distinct exoplanetary populations—the hot Jupiters, the more massive planets around r = 1 AU, and the short-period super-Earths and hot Neptunes. There are very few populations that feed into the large orbital radii characteristic of the imaged Jovian planet, which agrees with recent surveys. Finally, we find that low-mass planets in tight orbits become the dominant planetary population for low-mass stars (M {sub *} ≤ 0.7 M {sub ☉}).

  5. Dynamic Studies of Exoplanet Atmospheres: Revisiting the 3.6 micron Phase Curve of HD209458b

    Science.gov (United States)

    Lewis, Nikole; Knutson, Heather; Cowan, Nicolas; Zellem, Robert; Griffith, Caitlin; Fortney, Jonathan; Showman, Adam

    2013-10-01

    One of the best-characterized exoplanet atmospheres is that of HD209458b, which has been the target of numerous transit, eclipse, and phase-curve observations. Despite this wealth of observational information, the global circulation patterns in the atmosphere of this benchmark planet remain largely unconstrained. To date, only an upper limit on the amplitude of the phase variations of HD209458b at 8 microns has been reported. Recently, phase-curve observations of HD209458b at 3.6 and 4.5 microns were acquired with the hope of better understanding energy transport in this benchmark planetary atmosphere. Unfortunately, the 3.6 micron phase-curve observations have been found to be badly corrupted by an unidentified noise source and have subsequently been declared 'failed' by the SSC. Here we request to re-observe HD209458b's full-orbit phase-curve at 3.6 microns in order to combine it with the phase-curve information at 4.5 and 8 microns to give a clearer picture of the atmospheric processes shaping this planet's emitted flux as a function of pressure and longitude. A comparison of the HD209458b full-orbit phase-curve at 4.5 microns with predictions from global circulation models suggest that both the dayside thermal inversion and a possible lack of strong magnetic effects in the planet's atmosphere could be shaping its global circulation patterns. However, this picture is incomplete without the 3.6 micron phase curve, which probes fundamentally different pressure levels in HD209458b's atmosphere. Only with multi-wavelength phase-curve information can we begin to constrain the radiative, chemical, advective, and possibly magnetic processes shaping HD209458b's atmosphere.[The AORs for this observation are in program 60021.

  6. Photochemistry in terrestrial exoplanet atmospheres. III. Photochemistry and thermochemistry in thick atmospheres on super Earths and mini Neptunes

    International Nuclear Information System (INIS)

    Hu, Renyu; Seager, Sara

    2014-01-01

    Some super Earths and mini Neptunes will likely have thick atmospheres that are not H 2 -dominated. We have developed a photochemistry-thermochemistry kinetic-transport model for exploring the compositions of thick atmospheres on super Earths and mini Neptunes, applicable for both H 2 -dominated atmospheres and non-H 2 -dominated atmospheres. Using this model to study thick atmospheres for wide ranges of temperatures and elemental abundances, we classify them into hydrogen-rich atmospheres, water-rich atmospheres, oxygen-rich atmospheres, and hydrocarbon-rich atmospheres. We find that carbon has to be in the form of CO 2 rather than CH 4 or CO in a H 2 -depleted water-dominated thick atmosphere and that the preferred loss of light elements from an oxygen-poor carbon-rich atmosphere leads to the formation of unsaturated hydrocarbons (C 2 H 2 and C 2 H 4 ). We apply our self-consistent atmosphere models to compute spectra and diagnostic features for known transiting low-mass exoplanets GJ 1214 b, HD 97658 b, and 55 Cnc e. For GJ 1214 b, we find that (1) C 2 H 2 features at 1.0 and 1.5 μm in transmission and C 2 H 2 and C 2 H 4 features at 9-14 μm in thermal emission are diagnostic for hydrocarbon-rich atmospheres; (2) a detection of water-vapor features and a confirmation of the nonexistence of methane features would provide sufficient evidence for a water-dominated atmosphere. In general, our simulations show that chemical stability has to be taken into account when interpreting the spectrum of a super Earth/mini Neptune. Water-dominated atmospheres only exist for carbon to oxygen ratios much lower than the solar ratio, suggesting that this kind of atmospheres could be rare.

  7. The Rossiter-McLaughlin effect for exoplanets

    Directory of Open Access Journals (Sweden)

    Winn J.N.

    2011-02-01

    Full Text Available There are now more than 30 stars with transiting planets for which the stellar obliquity—or more precisely its sky projection—has been measured, via the eponymous effect of Rossiter and McLaughlin. The history of these measurements is intriguing. For 8 years a case was gradually building that the orbits of hot Jupiters are always well-aligned with the rotation of their parent stars. Then in a sudden reversal, many misaligned systems were found, and it now seems that even retrograde systems are not uncommon. I review the measurement technique underlying these discoveries, the patterns that have emerged from the data, and the implications for theories of planet formation and migration.

  8. Supporting Transition

    Science.gov (United States)

    Qureshi, Asima; Petrucco, James

    2018-01-01

    Meadowbrook Primary School has explored the use of The Teacher Assessment in Primary Science (TAPS) to support transition, initially for transfer to secondary school and now for transition from Early Years Foundation Stage (EYFS) into Key Stage 1 (ages 5-7). This article will consider an example of a secondary transition project and discuss the…

  9. DETECTION OF H{sub 2}O AND EVIDENCE FOR TiO/VO IN AN ULTRA-HOT EXOPLANET ATMOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Thomas M.; Sing, David K.; Nikolov, Nikolay; Drummond, Benjamin; Kataria, Tiffany; Spake, Jessica [School of Physics, University of Exeter, EX4 4QL Exeter (United Kingdom); Wakeford, Hannah R. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Ballester, Gilda E. [Lunar and Planetary Laboratory, University of Arizona, Tucson, Arizona 85721 (United States); Gibson, Neale P. [Astrophysics Research Centre, School of Mathematics and Physics, Queens University Belfast, Belfast BT7 1NN (United Kingdom); Amundsen, David S., E-mail: tevans@astro.ex.ac.uk [Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10025 (United States)

    2016-05-01

    We present a primary transit observation for the ultra-hot ( T {sub eq} ∼ 2400 K) gas giant expolanet WASP-121b, made using the Hubble Space Telescope Wide Field Camera 3 in spectroscopic mode across the 1.12–1.64 μ m wavelength range. The 1.4 μ m water absorption band is detected at high confidence (5.4 σ ) in the planetary atmosphere. We also reanalyze ground-based photometric light curves taken in the B , r ′, and z ′ filters. Significantly deeper transits are measured in these optical bandpasses relative to the near-infrared wavelengths. We conclude that scattering by high-altitude haze alone is unlikely to account for this difference and instead interpret it as evidence for titanium oxide and vanadium oxide absorption. Enhanced opacity is also inferred across the 1.12–1.3 μ m wavelength range, possibly due to iron hydride absorption. If confirmed, WASP-121b will be the first exoplanet with titanium oxide, vanadium oxide, and iron hydride detected in transmission. The latter are important species in M/L dwarfs and their presence is likely to have a significant effect on the overall physics and chemistry of the atmosphere, including the production of a strong thermal inversion.

  10. The Next Generation Transit Survey—Prototyping Phase

    Science.gov (United States)

    McCormac, J.; Pollacco, D.; Wheatley, P. J.; West, R. G.; Walker, S.; Bento, J.; Skillen, I.; Faedi, F.; Burleigh, M. R.; Casewell, S. L.; Chazelas, B.; Genolet, L.; Gibson, N. P.; Goad, M. R.; Lawrie, K. A.; Ryans, R.; Todd, I.; Udry, S.; Watson, C. A.

    2017-02-01

    We present the prototype telescope for the Next Generation Transit Survey, which was built in the UK in 2008/2009 and tested on La Palma in the Canary Islands in 2010. The goals for the prototype system were severalfold: to determine the level of systematic noise in an NGTS-like system; demonstrate that we can perform photometry at the (sub) millimagnitude level on transit timescales across a wide-field; show that it is possible to detect transiting super-Earth and Neptune-sized exoplanets and prove the technical feasibility of the proposed planet survey. We tested the system for around 100 nights and met each of the goals above. Several key areas for improvement were highlighted during the prototyping phase. They have been subsequently addressed in the final NGTS facility, which was recently commissioned at ESO Cerro Paranal, Chile.

  11. Direct Imaging of a Cold Jovian Exoplanet in Orbit around the Sun-Like Star GJ 504

    Science.gov (United States)

    Kuzuhara, M.; Tamura, M.; Kudo, T.; Janson, M; Kandori, R.; Brandt, T. D.; Thalmann, C.; Spiegel, D.; Biller, B.; Carson, J.; hide

    2013-01-01

    Several exoplanets have recently been imaged at wide separations of >10 AU from their parent stars. These span a limited range of ages ( 0.5 mag), implying thick cloud covers. Furthermore, substantial model uncertainties exist at these young ages due to the unknown initial conditions at formation, which can lead to an order of magnitude of uncertainty in the modeled planet mass. Here, we report the direct imaging discovery of a Jovian exoplanet around the Sun-like star GJ 504, detected as part of the SEEDS survey. The system is older than all other known directly-imaged planets; as a result, its estimated mass remains in the planetary regime independent of uncertainties related to choices of initial conditions in the exoplanet modeling. Using the most common exoplanet cooling model, and given the system age of 160(+350/-60) Myr, GJ 504 b has an estimated mass of 4(+4.5/-1.0) Jupiter masses, among the lowest of directly imaged planets. Its projected separation of 43.5 AU exceeds the typical outer boundary of approx.. 30 AU predicted for the core accretion mechanism. GJ 504 b is also significantly cooler (510(+30/-20) K)) and has a bluer color (J - H = -0.23 mag) than previously imaged exoplanets, suggesting a largely cloud-free atmosphere accessible to spectroscopic characterization. Thus, it has the potential of providing novel insights into the origins of giant planets, as well as their atmospheric properties.

  12. MOST DETECTS TRANSITS OF HD 97658b, A WARM, LIKELY VOLATILE-RICH SUPER-EARTH

    Energy Technology Data Exchange (ETDEWEB)

    Dragomir, Diana; Eastman, Jason D. [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Dr. suite 102, Goleta, CA 93117 (United States); Matthews, Jaymie M. [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T1Z1 (Canada); Cameron, Chris [Department of Mathematics, Physics and Geology, Cape Breton University, 1250 Grand Lake Road, Sydney, NS B1P 6L2 (Canada); Howard, Andrew W. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Guenther, David B. [Department of Astronomy and Physics, St. Mary' s University, Halifax, NS B3H 3C3 (Canada); Kuschnig, Rainer; Weiss, Werner W. [Universitaet Wien, Institut fuer Astronomie, Tuerkenschanzstrasse 17, A-1180 Wien (Austria); Moffat, Anthony F. J. [Dept de physique, Univ de Montreal C.P. 6128, Succ. Centre-Ville, Montreal, QC H3C 3J7 (Canada); Rowe, Jason F. [SETI Institute, 189 Bernardo Avenue, Mountain View, CA 94043 (United States); Rucinski, Slavek M. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada); Sasselov, Dimitar, E-mail: diana@lcogt.net [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2013-07-20

    Through photometric monitoring of the extended transit window of HD 97658b with the MOST space telescope, we have found that this exoplanet transits with an ephemeris consistent with that predicted from radial velocity measurements. The mid-transit times are 5.6{sigma} earlier than those of the unverified transit-like signals reported in 2011, and we find no connection between the two sets of events. The transit depth together with our determined stellar radius (R{sub *} = 0.703{sub -0.034}{sup +0.039} R{sub Sun }) indicates a 2.34{sup +0.18}{sub -0.15} R{sub Circled-Plus} super-Earth. When combined with the radial velocity determined mass of 7.86 {+-} 0.73 M{sub Circled-Plus }, our radius measure allows us to derive a planet density of 3.44{sup +0.91}{sub -0.82} g cm{sup -3}. Models suggest that a planet with our measured density has a rocky core that is enveloped in an atmosphere composed of lighter elements. The star of the HD 97658 system is the second brightest known to host a transiting super-Earth, facilitating follow-up studies of this not easily daunted, warm and likely volatile-rich exoplanet.

  13. The Moving Group Targets of the SEEDS High-contrast Imaging Survey of Exoplanets and Disks: Results and Observations from the First Three Years

    NARCIS (Netherlands)

    Brandt, T.D.; et al., [Unknown; Thalmann, C.

    2014-01-01

    We present results from the first three years of observations of moving group (MG) targets in the Strategic Exploration of Exoplanets and Disks with Subaru (SEEDS) high-contrast imaging survey of exoplanets and disks using the Subaru telescope. We achieve typical contrasts of ~105 at 1'' and ~106

  14. Transition radiation and transition scattering

    International Nuclear Information System (INIS)

    Ginzburg, V.L.

    1982-01-01

    Transition radiation is a process of a rather general character. It occurs when some source, which does not have a proper frequency (for example, a charge) moves at a constant velocity in an inhomogeneous and (or) nonstationary medium or near such a medium. The simplest type of transition radiation takes place when a charge crosses a boundary between two media (the role of one of the media may be played by vacuum). In the case of periodic variation of the medium, transition radiation possesses some specific features (resonance transition radiation or transition scattering). Transition scattering occurs, in particular, when a permittivity wave falls onto an nonmoving (fixed) charge. Transition scattering is closely connected with transition bremsstrahlung radiation. All these transition processes are essential for plasma physics. Transition radiation and transition scattering have analogues outside the framework of electrodynamics (like in the case of Vavilov-Cherenkov radiation). In the present report the corresponding range of phenomena is elucidated, as far as possible, in a generally physical aspect. (Auth.)

  15. Pre-history of planet detections: Focus on transits 1620 - 1995

    Science.gov (United States)

    Briot, D.; Schneider, J.; François, P.

    2015-10-01

    The discovery of 51 Peg b has been a wonderful scientific discovery, answering a multi-secular question and opening a extended new domain of astronomical research. We want to recall some old studies, some of them quite forgotten, which have used the same methods that those for planet detection, emphasizing transit method. In addition to an overview of planet search pre-history, some searchs for unknown planets in the Solar System since the seventeenth century will be evoked, as well as the search for exoplanet transits during the nineteenth and the twentieth century. The conclusion will be back to the future.

  16. Indexing of exoplanets in search for potential habitability: application to Mars-like worlds

    Science.gov (United States)

    Kashyap Jagadeesh, Madhu; Gudennavar, Shivappa B.; Doshi, Urmi; Safonova, Margarita

    2017-08-01

    Study of exoplanets is one of the main goals of present research in planetary sciences and astrobiology. Analysis of huge planetary data from space missions such as CoRoT and Kepler is directed ultimately at finding a planet similar to Earth—the Earth's twin, and answering the question of potential exo-habitability. The Earth Similarity Index (ESI) is a first step in this quest, ranging from 1 (Earth) to 0 (totally dissimilar to Earth). It was defined for the four physical parameters of a planet: radius, density, escape velocity and surface temperature. The ESI is further sub-divided into interior ESI (geometrical mean of radius and density) and surface ESI (geometrical mean of escape velocity and surface temperature). The challenge here is to determine which exoplanet parameter(s) is important in finding this similarity; how exactly the individual parameters entering the interior ESI and surface ESI are contributing to the global ESI. Since the surface temperature entering surface ESI is a non-observable quantity, it is difficult to determine its value. Using the known data for the Solar System objects, we established the calibration relation between surface and equilibrium temperatures to devise an effective way to estimate the value of the surface temperature of exoplanets. ESI is a first step in determining potential exo-habitability that may not be very similar to a terrestrial life. A new approach, called Mars Similarity Index (MSI), is introduced to identify planets that may be habitable to the extreme forms of life. MSI is defined in the range between 1 (present Mars) and 0 (dissimilar to present Mars) and uses the same physical parameters as ESI. We are interested in Mars-like planets to search for planets that may host the extreme life forms, such as the ones living in extreme environments on Earth; for example, methane on Mars may be a product of the methane-specific extremophile life form metabolism.

  17. JWST NIRCam GTO Program: IFU Spectroscopy of Spatially Resolved Exoplanets with NIRSpec

    Science.gov (United States)

    Hodapp, Klaus W.; Beichman, Charles A.; Greene, Thomas P.; Burrows, Adam Seth; Ygouf, Marie; NIRCam Science Team

    2017-06-01

    Our goal is to understand the atmospheric condition of self-luminous, fairly young companions below the deuterium burning mass limit.Can metallicity or isotopic composition be determined and do those give clues about the formation mechanism of these exoplanets?This JWST GTO observing program concentrates on the 3.0 - 5.0 μm wavelength range that is poorly accessible from the ground due to high thermal background and poor atmospheric transmission and where JWST has a substantial advantage.We have selected 6 Objects for this program, ranging from closely spaced, high-contrast cases to widely separated exoplanets.HR 8799 b, c, and d, 2MASS J22362452+4751425, HD106906 b, and GU Psc b.The closely spaced exoplanets require careful PSF subtraction, which we plan to do by a combination of azimuthal differential imaging using two roll angles of JWST, and spectral differential imaging in the NIRSpec IFU data cubes.The NIRSpec IFU has lower throughput than the long-slit mode due to the additional optics requiredfor the slicing of the 2D image and re-arranging into a long-slit format. However, this is less important than the ability to subtract the speckle pattern of the host star that the IFU allows. All our objects are quite bright, well above the empty-field-and-low-background NIRSpec sensitivity limits.We will use the NIRSpec IFU in R=1000 mode with the G395M grating and F290LP filter. Detector readout mode is NRS, 8 groups, 1 integration arranged in a 9-position small cycling pattern. The total exposure time per object and roll angle is 3440s, including a MSA leakage calibration exposure.Our poster will present the details of these observations planned out in the APT.

  18. On Mapping Exoplanet Atmospheres with High-dispersion Spectro-polarimetry: Some Model Predictions

    Science.gov (United States)

    García Muñoz, A.

    2018-02-01

    Planets reflect and linearly polarize the radiation that they receive from their host stars. The emergent polarization is sensitive to aspects of the planet’s atmosphere such as the gas composition and the occurrence of condensates and their optical properties. Extracting this information will represent a major step in the characterization of exoplanets. The numerical simulations presented here show that the polarization of a spatially unresolved exoplanet may be detected by cross-correlating high-dispersion linear polarization and intensity (brightness) spectra of the planet–star system. The Doppler shift of the planet-reflected starlight facilitates the separation of this signal from the polarization introduced by the interstellar medium and the terrestrial atmosphere. The selection of the orbital phases and wavelengths at which to study the planet is critical. An optimal choice, however, will partly depend on information about the atmosphere that is a priori unknown. We elaborate on the cases of close-in giant exoplanets with non-uniform cloud coverage, an outcome of recent surveys of brightness phase curves from space, and for which the hemispheres east and west of the substellar point will produce different polarizations. With integration times of the order of hours at a 10 m telescope, the technique might distinguish among some proposed asymmetric cloud scenarios with fractional polarizations of 10 parts per million for one such planet orbiting a V-mag = 5.5 host star. Future 30–40 m telescopes equipped with high-dispersion spectro-polarimeters will be able to investigate the linear polarization of smaller planets orbiting fainter stars and look for molecular features in their polarization spectra.

  19. The Development of New Atmospheric Models for K and M DwarfStars with Exoplanets

    Science.gov (United States)

    Linsky, Jeffrey L.

    2018-01-01

    The ultraviolet and X-ray emissions of host stars play critical roles in the survival and chemical composition of the atmospheres of their exoplanets. The need to measure and understand this radiative output, in particular for K and M dwarfs, is the main rationale for computing a new generation of stellar models that includes magnetically heated chromospheres and coronae in addition to their photospheres. We describe our method for computing semi-empirical models that includes solutions of the statistical equilibrium equations for 52 atoms and ions and of the non-LTE radiative transfer equations for all important spectral lines. The code is an offspring of the Solar Radiation Physical Modelling system (SRPM) developed by Fontenla et al. (2007--2015) to compute one-dimensional models in hydrostatic equilibrium to fit high-resolution stellar X-ray to IR spectra. Also included are 20 diatomic molecules and their more than 2 million spectral lines. Our-proof-of-concept model is for the M1.5 V star GJ 832 (Fontenla et al. ApJ 830, 154 (2016)). We will fit the line fluxes and profiles of X-ray lines and continua observed by Chandra and XMM-Newton, UV lines observed by the COS and STIS instruments on HST (N V, C IV, Si IV, Si III, Mg II, C II, and O I), optical lines (including H$\\alpha$, Ca II, Na I), and continua. These models will allow us to compute extreme-UV spectra, which are unobservable but required to predict the hydrodynamic mass-loss rate from exoplanet atmospheres, and to predict panchromatic spectra of new exoplanet host stars discovered after the end of the HST mission.This work is supported by grant HST-GO-15038 from the Space Telescope Science Institute to the Univ. of Colorado

  20. Improving and Assessing Planet Sensitivity of the GPI Exoplanet Survey with a Forward Model Matched Filter

    Energy Technology Data Exchange (ETDEWEB)

    Ruffio, Jean-Baptiste; Macintosh, Bruce; Nielsen, Eric L.; Czekala, Ian; Bailey, Vanessa P.; Follette, Katherine B. [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA, 94305 (United States); Wang, Jason J.; Rosa, Robert J. De; Duchêne, Gaspard [Astronomy Department, University of California, Berkeley CA, 94720 (United States); Pueyo, Laurent [Space Telescope Science Institute, Baltimore, MD, 21218 (United States); Marley, Mark S. [NASA Ames Research Center, Mountain View, CA, 94035 (United States); Arriaga, Pauline; Fitzgerald, Michael P. [Department of Physics and Astronomy, University of California, Los Angeles, CA, 90095 (United States); Barman, Travis [Lunar and Planetary Laboratory, University of Arizona, Tucson AZ, 85721 (United States); Bulger, Joanna [Subaru Telescope, NAOJ, 650 North A’ohoku Place, Hilo, HI 96720 (United States); Chilcote, Jeffrey [Dunlap Institute for Astronomy and Astrophysics, University of Toronto, Toronto, ON, M5S 3H4 (Canada); Cotten, Tara [Department of Physics and Astronomy, University of Georgia, Athens, GA, 30602 (United States); Doyon, Rene [Institut de Recherche sur les Exoplanètes, Départment de Physique, Université de Montréal, Montréal QC, H3C 3J7 (Canada); Gerard, Benjamin L. [University of Victoria, 3800 Finnerty Road, Victoria, BC, V8P 5C2 (Canada); Goodsell, Stephen J., E-mail: jruffio@stanford.edu [Gemini Observatory, 670 N. A’ohoku Place, Hilo, HI, 96720 (United States); and others

    2017-06-10

    We present a new matched-filter algorithm for direct detection of point sources in the immediate vicinity of bright stars. The stellar point-spread function (PSF) is first subtracted using a Karhunen-Loéve image processing (KLIP) algorithm with angular and spectral differential imaging (ADI and SDI). The KLIP-induced distortion of the astrophysical signal is included in the matched-filter template by computing a forward model of the PSF at every position in the image. To optimize the performance of the algorithm, we conduct extensive planet injection and recovery tests and tune the exoplanet spectra template and KLIP reduction aggressiveness to maximize the signal-to-noise ratio (S/N) of the recovered planets. We show that only two spectral templates are necessary to recover any young Jovian exoplanets with minimal S/N loss. We also developed a complete pipeline for the automated detection of point-source candidates, the calculation of receiver operating characteristics (ROC), contrast curves based on false positives, and completeness contours. We process in a uniform manner more than 330 data sets from the Gemini Planet Imager Exoplanet Survey and assess GPI typical sensitivity as a function of the star and the hypothetical companion spectral type. This work allows for the first time a comparison of different detection algorithms at a survey scale accounting for both planet completeness and false-positive rate. We show that the new forward model matched filter allows the detection of 50% fainter objects than a conventional cross-correlation technique with a Gaussian PSF template for the same false-positive rate.

<