WorldWideScience

Sample records for transit authority compressed

  1. Electronic topological transitions in Zn under compression

    Science.gov (United States)

    Kechin, Vladimir V.

    2001-01-01

    The electronic structure of hcp Zn under pressure up to 10 GPa has been calculated self-consistently by means of the scalar relativistic tight-binding linear muffin-tin orbital method. The calculations show that three electronic topological transitions (ETT's) occur in Zn when the c/a axial ratio diminishes under compression. One transition occurs at c/a~=1.82 when the ``needles'' appear around the symmetry point K of the Brillouin zone. The other two transitions occur at c/a~=3, when the ``butterfly'' and ``cigar'' appear simultaneously both around the L point. It has been shown that these ETT's are responsible for a number of anomalies observed in Zn at compression.

  2. On the phase transition nature in compressible Ising models

    International Nuclear Information System (INIS)

    Ota, A.T.

    1985-01-01

    The phase transition phenomenon is analysed in a compressible ferromagnetic Ising model at null field, through the mean-field approximation. The model studied is d-dimensional under the magnetic point of view and one-dimensional under the elastic point of view. This is achieved keeping the compressive interactions among the ions and rejecting annealing forces completely. The exchange parameter J is linear and the elastic potential quadratic in relation to the microscopic shifts of the lattice. In the one-dimensional case, this model shows no phase transition. In the two-dimensional case, the role of the S i spin of the i-the ion is crucial: a) for spin 1/2 the transitions are of second order; b) for spin 1, desides the second order transitions there is a three-critical point and a first-order transitions line. (L.C.) [pt

  3. Prevalence of extraforaminal nerve root compression below lumbosacral transitional vertebrae.

    Science.gov (United States)

    Porter, Neil A; Lalam, Radhesh K; Tins, Bernhard J; Tyrrell, Prudencia N M; Singh, Jaspreet; Cassar-Pullicino, Victor N

    2014-01-01

    Although pathology at the first mobile segment above a lumbosacral transitional vertebra (LSTV) is a known source of spinal symptoms, nerve root compression below an LSTV, has only sporadically been reported. Our objective was to assess the prevalence of nerve root entrapment below an LSTV, review the causes of entrapment, and correlate with presenting symptoms. A retrospective review of MR and CT examinations of the lumbar spine was performed over a 5.5-year period in which the words "transitional vertebra" were mentioned in the report. Nerve root compression below an LSTV was assessed as well as the subtype of transitional vertebra. Correlation with clinical symptoms at referral was made. MR and CT examinations were also reviewed to exclude any other cause of symptoms above the LSTV. One hundred seventy-four patients were included in the study. Neural compression by new bone formation below an LSTV was demonstrated in 23 patients (13%). In all of these patients, there was a pseudarthrosis present on the side of compression due to partial sacralization with incomplete fusion. In three of these patients (13%), there was symptomatic correlation with no other cause of radiculopathy demonstrated. A further 13 patients (57%) had correlating symptoms that may in part be attributable to compression below an LSTV. Nerve root compression below an LSTV occurs with a prevalence of 13% and can be symptomatic in up to 70% of these patients. This region should therefore be carefully assessed in all symptomatic patients with an LSTV.

  4. Rapid Fatal Outcome from Pulmonary Arteries Compression in Transitional Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Ioannis A. Voutsadakis

    2009-01-01

    Full Text Available Transitional cell carcinoma of the urinary bladder is a malignancy that metastasizes frequently to lymph nodes including the mediastinal lymph nodes. This occurrence may produce symptoms due to compression of adjacent structures such as the superior vena cava syndrome or dysphagia from esophageal compression. We report the case of a 59-year-old man with metastatic transitional cell carcinoma for whom mediastinal lymphadenopathy led to pulmonary artery compression and a rapidly fatal outcome. This rare occurrence has to be distinguished from pulmonary embolism, a much more frequent event in cancer patients, in order that proper and prompt treatment be initiated.

  5. Structural transitions and hysteresis in clump- and stripe-forming systems under dynamic compression

    International Nuclear Information System (INIS)

    McDermott, Danielle; Reichhardt, Charles

    2016-01-01

    In using numerical simulations, we study the dynamical evolution of particles interacting via competing long-range repulsion and short-range attraction in two dimensions. The particles are compressed using a time-dependent quasi-one dimensional trough potential that controls the local density, causing the system to undergo a series of structural phase transitions from a low density clump lattice to stripes, voids, and a high density uniform state. The compression proceeds via slow elastic motion that is interrupted with avalanche-like bursts of activity as the system collapses to progressively higher densities via plastic rearrangements. The plastic events vary in magnitude from small rearrangements of particles, including the formation of quadrupole-like defects, to large-scale vorticity and structural phase transitions. In the dense uniform phase, the system compresses through row reduction transitions mediated by a disorder-order process. We also characterize the rearrangement events by measuring changes in the potential energy, the fraction of sixfold coordinated particles, the local density, and the velocity distribution. At high confinements, we find power law scaling of the velocity distribution during row reduction transitions. We observe hysteresis under a reversal of the compression when relatively few plastic rearrangements occur. The decompressing system exhibits distinct phase morphologies, and the phase transitions occur at lower compression forces as the system expands compared to when it is compressed.

  6. Phase transition of KCl under shock compression

    CERN Document Server

    Mashimo, T; Tsumoto, K; Zhang, Y; Ando, S; Tonda, H

    2002-01-01

    It had been reported that for potassium chloride (KCl) the B1-B2 phase transition (PT) occurs under shock and static compressions, but the measured transition points showed large scatter. In this study, Hugoniot measurement experiments were performed on KCl single crystals by the inclined-mirror method combined with use of a powder gun. The anisotropic Hugoniot elastic limits and PT points were observed. The PT points along the (100), (110) and (111) axis directions were determined as 2.5, 2.2 and 2.1 GPa, respectively. The anisotropic transition was reasonably explained in terms of the displacement mechanism along the (111) axis direction.

  7. Bypass transition in compressible boundary layers

    Science.gov (United States)

    Vandervegt, J. J.

    1992-01-01

    transitional state. The effects of large free stream turbulence in compressible boundary layers at Mach numbers are examined both in the subsonic and transonic regime using direct numerical simulations. The flow is computed over a flat plate and curved surface. while many applications operate in the transonic regime. Due the nature of their numerical scheme, a non-conservation formulation of the Navier-Stokes equations, it is a non-trivial extension to compute flow fields in the transonic regime. This project aims at better understanding the effects of large free-stream turbulence in compressible boundary layers at mach number both in the subsonic and transonic regime using direct numerical simulations. The present project aims at computing the flow over a flat plate and curved surface. This research will provide data which can be used to clarify mechanisms leading to transition in an environment with high free stream turbulence. This information is useful for the development of turbulence models, which are of great importance for CFD applications, and are currently unreliable for more complex flows, such as transitional flows.

  8. Elastic-plastic transition on rotating spherical shells in dependence of compressibility

    Directory of Open Access Journals (Sweden)

    Thakur Pankaj

    2017-01-01

    Full Text Available The purpose of this paper is to establish the mathematical model on the elastic-plastic transitions occurring in the rotating spherical shells based on compressibility of materials. The paper investigates the elastic-plastic stresses and angular speed required to start yielding in rotating shells for compressible and incompressible materials. The paper is based on the non-linear transition theory of elastic-plastic shells given by B.R. Seth. The elastic-plastic transition obtained is treated as an asymptotic phenomenon at critical points & the solution obtained at these points generates stresses. The solution obtained does not require the use of semi-empirical yield condition like Tresca or Von Mises or other certain laws. Results are obtained numerically and depicted graphically. It has been observed that Rotating shells made of the incompressible material are on the safer side of the design as compared to rotating shells made of compressible material. The effect of density variation has been discussed numerically on the stresses. With the effect of density variation parameter, rotating spherical shells start yielding at the internal surface with the lower values of the angular speed for incompressible/compressible materials.

  9. Diamond to β-Sn phase transition of silicon under hydrostatic and nonhydrostatic compressions

    International Nuclear Information System (INIS)

    Durandurdu, Murat

    2008-01-01

    We have carried out constant pressure ab initio simulations to study the pressure-induced phase transition of silicon. The diamond to β-Sn phase change under hydrostatic pressure is successfully observed in the simulation. The transformation is based on a fourfold coordinated tetragonal intermediate state having the space group I4 1 /amd. The energy barrier for the transformation is calculated to be about 0.35 eV/atom. Additionally, we investigate the influence of nonhydrostatic compressions on the phase transition of silicon and find that up to 20% stress deviations, silicon converts to a β-Sn structure with a reduced transition pressure. The triaxial compressions cause more reduction in the transition pressure than the uniaxial compressions. The transformation mechanism is practically identical under both hydrostatic and nonhydrostatic conditions

  10. Subset-sum phase transitions and data compression

    Science.gov (United States)

    Merhav, Neri

    2011-09-01

    We propose a rigorous analysis approach for the subset-sum problem in the context of lossless data compression, where the phase transition of the subset-sum problem is directly related to the passage between ambiguous and non-ambiguous decompression, for a compression scheme that is based on specifying the sequence composition. The proposed analysis lends itself to straightforward extensions in several directions of interest, including non-binary alphabets, incorporation of side information at the decoder (Slepian-Wolf coding), and coding schemes based on multiple subset sums. It is also demonstrated that the proposed technique can be used to analyze the critical behavior in a more involved situation where the sequence composition is not specified by the encoder.

  11. Atomistic simulation of fcc—bcc phase transition in single crystal Al under uniform compression

    International Nuclear Information System (INIS)

    Li Li; Liang Jiu-Qing; Shao Jian-Li; Duan Su-Qing; Li Yan-Fang

    2012-01-01

    By molecular dynamics simulations employing an embedded atom model potential, we investigate the fcc-to-bcc phase transition in single crystal Al, caused by uniform compression. Results show that the fcc structure is unstable when the pressure is over 250 GPa, in reasonable agreement with the calculated value through the density functional theory. The morphology evolution of the structural transition and the corresponding transition mechanism are analysed in detail. The bcc (011) planes are transited from the fcc (111-bar) plane and the (11-bar1) plane. We suggest that the transition mechanism consists mainly of compression, shear, slid and rotation of the lattice. In addition, our radial distribution function analysis explicitly indicates the phase transition of Al from fcc phase to bcc structure. (condensed matter: structural, mechanical, and thermal properties)

  12. An Algorithm to Compress Line-transition Data for Radiative-transfer Calculations

    Science.gov (United States)

    Cubillos, Patricio E.

    2017-11-01

    Molecular line-transition lists are an essential ingredient for radiative-transfer calculations. With recent databases now surpassing the billion-line mark, handling them has become computationally prohibitive, due to both the required processing power and memory. Here I present a temperature-dependent algorithm to separate strong from weak line transitions, reformatting the large majority of the weaker lines into a cross-section data file, and retaining the detailed line-by-line information of the fewer strong lines. For any given molecule over the 0.3-30 μm range, this algorithm reduces the number of lines to a few million, enabling faster radiative-transfer computations without a significant loss of information. The final compression rate depends on how densely populated the spectrum is. I validate this algorithm by comparing Exomol’s HCN extinction-coefficient spectra between the complete (65 million line transitions) and compressed (7.7 million) line lists. Over the 0.6-33 μm range, the average difference between extinction-coefficient values is less than 1%. A Python/C implementation of this algorithm is open-source and available at https://github.com/pcubillos/repack. So far, this code handles the Exomol and HITRAN line-transition format.

  13. Phase Transitions in Aluminum Under Shockless Compression at the Z Machine

    Science.gov (United States)

    Davis, Jean-Paul; Brown, Justin; Shulenburger, Luke; Knudson, Marcus

    2017-06-01

    Aluminum 6061 alloy has been used extensively as an electrode material in shockless ramp-wave experiments at the Z Machine. Previous theoretical work suggests that the principal quasi-isentrope in aluminum should pass through two phase transitions at multi-megabar pressures, first from the ambient fcc phase to hcp at around 200 GPa, then to bcc at around 320 GPa. Previous static measurements in a diamond-anvil cell have detected the hcp phase above 200 GPa along the room-temperature isentherm. Recent laser-based dynamic compression experiments have observed both the hcp and bcc phases using X-ray diffraction. Here we present high-accuracy velocity waveform data taken on pure and alloy aluminum materials at the Z Machine under shockless compression with 200-ns rise-time to 400 GPa using copper electrodes and lithium-fluoride windows. These are compared to recent EOS tables developed at Los Alamos National Laboratory, to our own results from diffusion quantum Monte-Carlo calculations, and to multi-phase EOS models with phase-transition kinetics. We find clear evidence of a fast transition around 200 GPa as expected, and a possible suggestion of a slower transition at higher pressure. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE AC04-94AL85000.

  14. The influence of compressibility on nonlinear spectral energy transfer - Part 2: Effect on hypersonic boundary layer transition

    Science.gov (United States)

    Mittal, Ankita; Girimaji, Sharath

    2017-11-01

    We examine the effect of compressible spectral energy transfer in the nonlinear regime of transition to turbulence of hypersonic boundary layers. The nature of spectral energy transfer between perturbation modes is profoundly influenced by two compressibility mechanisms. First and foremost, the emergence of nonlinear pressure-dilatation mechanism leads to kinetic-internal energy exchange within the perturbation field. Such interchange is absent in incompressible flow as pressure merely reorients the perturbation amplitude vector while conserving kinetic energy. Secondly, the nature of triadic interactions also changes due to variability in density. In this work, we demonstrate that the efficiency of nonlinear spectral energy transfer is diminished in compressible boundary layers. Emergence of new perturbation modes or `broad-banding' of the perturbation field is significantly delayed in comparison to incompressible boundary layer undergoing transition. A significant amount of perturbation energy is transformed to internal energy and thus unavailable for `tripping' the flow into turbulent state. These factors profoundly change the nature of the nonlinear stage of transition in compressible boundary layer leading to delayed onset of full-fledged turbulence.

  15. Compressed Natural Gas (CNG) Transit Bus Experience Survey: April 2009--April 2010

    Energy Technology Data Exchange (ETDEWEB)

    Adams, R.; Horne, D. B.

    2010-09-01

    This survey was commissioned by the U.S. Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL) to collect and analyze experiential data and information from a cross-section of U.S. transit agencies with varying degrees of compressed natural gas (CNG) bus and station experience. This information will be used to assist DOE and NREL in determining areas of success and areas where further technical or other assistance might be required, and to assist them in focusing on areas judged by the CNG transit community as priority items.

  16. In-vehicle measurement of ultrafine particles on compressed natural gas, conventional diesel, and oxidation-catalyst diesel heavy-duty transit buses.

    Science.gov (United States)

    Hammond, Davyda; Jones, Steven; Lalor, Melinda

    2007-02-01

    Many metropolitan transit authorities are considering upgrading transit bus fleets to decrease ambient criteria pollutant levels. Advancements in engine and fuel technology have lead to a generation of lower-emission buses in a variety of fuel types. Dynamometer tests show substantial reductions in particulate mass emissions for younger buses (vehicle particle number concentration measurements on conventional diesel, oxidation-catalyst diesel and compressed natural gas transit buses are compared to estimate relative in-vehicle particulate exposures. Two primary consistencies are observed from the data: the CNG buses have average particle count concentrations near the average concentrations for the oxidation-catalyst diesel buses, and the conventional diesel buses have average particle count concentrations approximately three to four times greater than the CNG buses. Particle number concentrations are also noticeably affected by bus idling behavior and ventilation options, such as, window position and air conditioning.

  17. Negative compressibility and non-equivalence of two statistical ensembles in the escape transition of a polymer chain

    NARCIS (Netherlands)

    Skvortsov, A.M.; Klushin, L.I.; Leermakers, F.A.M.

    2007-01-01

    An end-tethered polymer chain compressed between two pistons undergoes an abrupt transition from a confined coil state to an inhomogeneous flowerlike conformation partially escaped from the gap. This phase transition is first order in the thermodynamic limit of infinitely long chains. A rigorous

  18. 23 CFR 810.210 - Authorization for use and occupancy by mass transit.

    Science.gov (United States)

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false Authorization for use and occupancy by mass transit. 810... TRANSPORTATION MASS TRANSIT AND SPECIAL USE HIGHWAY PROJECTS Making Highway Rights-of-Way Available for Mass Transit Projects § 810.210 Authorization for use and occupancy by mass transit. (a) Upon being authorized...

  19. Port Authority of Allegheny County Transit Stops

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — All transit stops within the Port Authority of Allegheny County's service area for the November 20, 2016 - March (TBD) 2017 schedule period.

  20. Deterministic matrices matching the compressed sensing phase transitions of Gaussian random matrices

    OpenAIRE

    Monajemi, Hatef; Jafarpour, Sina; Gavish, Matan; Donoho, David L.; Ambikasaran, Sivaram; Bacallado, Sergio; Bharadia, Dinesh; Chen, Yuxin; Choi, Young; Chowdhury, Mainak; Chowdhury, Soham; Damle, Anil; Fithian, Will; Goetz, Georges; Grosenick, Logan

    2012-01-01

    In compressed sensing, one takes samples of an N-dimensional vector using an matrix A, obtaining undersampled measurements . For random matrices with independent standard Gaussian entries, it is known that, when is k-sparse, there is a precisely determined phase transition: for a certain region in the (,)-phase diagram, convex optimization typically finds the sparsest solution, whereas outside that region, it typically fails. It has been shown empirically that the same property—with the ...

  1. Phase transitions during compression and decompression of clots from platelet-poor plasma, platelet-rich plasma and whole blood.

    Science.gov (United States)

    Liang, Xiaojun; Chernysh, Irina; Purohit, Prashant K; Weisel, John W

    2017-09-15

    Blood clots are required to stem bleeding and are subject to a variety of stresses, but they can also block blood vessels and cause heart attacks and ischemic strokes. We measured the compressive response of human platelet-poor plasma (PPP) clots, platelet-rich plasma (PRP) clots and whole blood clots and correlated these measurements with confocal and scanning electron microscopy to track changes in clot structure. Stress-strain curves revealed four characteristic regions, for compression-decompression: (1) linear elastic region; (2) upper plateau or softening region; (3) non-linear elastic region or re-stretching of the network; (4) lower plateau in which dissociation of some newly made connections occurs. Our experiments revealed that compression proceeds by the passage of a phase boundary through the clot separating rarefied and densified phases. This observation motivates a model of fibrin mechanics based on the continuum theory of phase transitions, which accounts for the pre-stress caused by platelets, the adhesion of fibrin fibers in the densified phase, the compression of red blood cells (RBCs), and the pumping of liquids through the clot during compression/decompression. Our experiments and theory provide insights into the mechanical behavior of blood clots that could have implications clinically and in the design of fibrin-based biomaterials. The objective of this paper is to measure and mathematically model the compression behavior of various human blood clots. We show by a combination of confocal and scanning electron microscopy that compression proceeds by the passage of a front through the sample that separates a densified region of the clot from a rarefied region, and that the compression/decompression response is reversible with hysteresis. These observations form the basis of a model for the compression response of clots based on the continuum theory of phase transitions. Our studies may reveal how clot rheology under large compression in vivo due

  2. Analysis of compressible light dynamic stall flow at transitional Reynolds numbers

    DEFF Research Database (Denmark)

    Dyken, R.D. Van; Ekaterinaris, John A.; Chandrasekhara, M.S.

    1996-01-01

    Numerical and experimental results of steady and light dynamic stall flow over an oscillating NACA 0012 airfoil at a freestream Mach number of 0.3 and Reynolds number of 0.54 x 10(6) are compared, The experimental observation that dynamic stall is induced from the bursting of a laminar separation...... point is specified suitably and a simple transition length model is incorporated to determine the extent of the laminar separation bubble. The thin-layer approximations of compressible, Reynolds-averaged, Navier-Stokes equations are used for the numerical solution, with an implicit, upwind-biased, third...

  3. Phase transitions to 120 GPa for shock-compressed pyrolytic and hot-pressed boron nitride

    International Nuclear Information System (INIS)

    Gust, W.H.; Young, D.A.

    1977-01-01

    Shock-compression characteristics of two types of hexagonal graphitelike boron nitride have been investigated. Highly oriented very pure pyrolytic boron nitride exhibits shock-velocity versus particle-velocity discontinuities that appear to be manifestations of the initiation of a sluggish phase transition. This transition begins at 20 GPa and is driven to completion (melting) at 75 GPa. Discontinuities in the plot for impure hot-pressed boron nitride indicate initiation at 10 GPa and completion at 20 GPa. The (U/sub s/, U/sub p/) plots follow essentially the same paths for 4.0 < U/sub p/ < 5.2 km/sec. No evidence for a transition to a metalliclike state was seen. Temperature calculations indicate that the material is liquid above approx.80 GPa

  4. Sandia and NJ TRANSIT Authority Developing Resilient Power Grid

    Energy Technology Data Exchange (ETDEWEB)

    Hanley, Charles J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ellis, Abraham [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-11-01

    Through the memorandum of understanding between the Depratment of Energy (DOE), the New Jersey Transit Authority (NJ Transit), and the New Jersey Board of Public Utilities, Sandia National Labs is assisting NJ Transit in developing NJ TransitGrid: an electric microgrid that will include a large-scale gas-fired generation facility and distributed energy resources (photovoltaics [PV], energy storage, electric vehicles, combined heat and power [CHP]) to supply reliable power during storms or other times of significant power failure. The NJ TransitGrid was awarded $410M from the Department of Transportation to develop a first-of-its-kind electric microgrid capable of supplying highly-reliable power.

  5. Deterministic matrices matching the compressed sensing phase transitions of Gaussian random matrices

    Science.gov (United States)

    Monajemi, Hatef; Jafarpour, Sina; Gavish, Matan; Donoho, David L.; Ambikasaran, Sivaram; Bacallado, Sergio; Bharadia, Dinesh; Chen, Yuxin; Choi, Young; Chowdhury, Mainak; Chowdhury, Soham; Damle, Anil; Fithian, Will; Goetz, Georges; Grosenick, Logan; Gross, Sam; Hills, Gage; Hornstein, Michael; Lakkam, Milinda; Lee, Jason; Li, Jian; Liu, Linxi; Sing-Long, Carlos; Marx, Mike; Mittal, Akshay; Monajemi, Hatef; No, Albert; Omrani, Reza; Pekelis, Leonid; Qin, Junjie; Raines, Kevin; Ryu, Ernest; Saxe, Andrew; Shi, Dai; Siilats, Keith; Strauss, David; Tang, Gary; Wang, Chaojun; Zhou, Zoey; Zhu, Zhen

    2013-01-01

    In compressed sensing, one takes samples of an N-dimensional vector using an matrix A, obtaining undersampled measurements . For random matrices with independent standard Gaussian entries, it is known that, when is k-sparse, there is a precisely determined phase transition: for a certain region in the (,)-phase diagram, convex optimization typically finds the sparsest solution, whereas outside that region, it typically fails. It has been shown empirically that the same property—with the same phase transition location—holds for a wide range of non-Gaussian random matrix ensembles. We report extensive experiments showing that the Gaussian phase transition also describes numerous deterministic matrices, including Spikes and Sines, Spikes and Noiselets, Paley Frames, Delsarte-Goethals Frames, Chirp Sensing Matrices, and Grassmannian Frames. Namely, for each of these deterministic matrices in turn, for a typical k-sparse object, we observe that convex optimization is successful over a region of the phase diagram that coincides with the region known for Gaussian random matrices. Our experiments considered coefficients constrained to for four different sets , and the results establish our finding for each of the four associated phase transitions. PMID:23277588

  6. Clean air program : design guidelines for bus transit systems using compressed natural gas as an alternative fuel

    Science.gov (United States)

    1996-06-01

    This report documents design guidelines for the safe use of Compressed Natural Gas (CNG). The report is designed to provide guidance, information on safe industry practices, applicable national codes and standards, and reference data that transit age...

  7. The role of medium range order on phase transitions in chain silicates upon compression

    International Nuclear Information System (INIS)

    Serghiou, G; Chopelas, A; Boehler, R

    2004-01-01

    Raman spectroscopic measurements of the tetrahedrally coordinated crystal MnSiO 3 (rhodonite) in an argon pressure medium show that it becomes amorphous above 33 GPa. This observation consolidates our findings and explanation for the global structural trends exhibited by the extended chain silicate family AA'BO 3 (AA': Mg, Ca, Mn, Fe; B: Si) upon compression. In particular, crystals of this family are made of two types of building blocks coined P and C. Those crystals comprised solely of P blocks transform to dense higher coordinated crystalline phases; those comprised of P and C blocks, such as MnSiO 3 rhodonite, become amorphous; whereas those comprised solely of C blocks show both crystalline and amorphous regions upon compression. The reason that this medium range order length scale (building block scale) classification is correlated with the type of transitions taking place upon compression is due to the instability of C blocks and C-P interfaces with respect to P blocks and P-P interfaces at high pressures

  8. Surpassing the Theoretical 1-Norm Phase Transition in Compressive Sensing by Tuning the Smoothed L0 Algorithm

    DEFF Research Database (Denmark)

    Oxvig, Christian Schou; Pedersen, Patrick Steffen; Arildsen, Thomas

    2013-01-01

    Reconstruction of an undersampled signal is at the root of compressive sensing: when is an algorithm capable of reconstructing the signal? what quality is achievable? and how much time does reconstruction require? We have considered the worst-case performance of the smoothed ℓ0 norm reconstruction...... algorithm in a noiseless setup. Through an empirical tuning of its parameters, we have improved the phase transition (capabilities) of the algorithm for fixed quality and required time. In this paper, we present simulation results that show a phase transition surpassing that of the theoretical ℓ1 approach......: the proposed modified algorithm obtains 1-norm phase transition with greatly reduced required computation time....

  9. Structural Phase Transition and Compressibility of CaF2 Nanocrystals under High Pressure

    Directory of Open Access Journals (Sweden)

    Jingshu Wang

    2018-05-01

    Full Text Available The structural phase transition and compressibility of CaF2 nanocrystals with size of 23 nm under high pressure were investigated by synchrotron X-ray diffraction measurement. A pressure-induced fluorite to α-PbCl2-type phase transition starts at 9.5 GPa and completes at 20.2 GPa. The phase-transition pressure is lower than that of 8 nm CaF2 nanocrystals and closer to bulk CaF2. Upon decompression, the fluorite and α-PbCl2-type structure co-exist at the ambient pressure. The bulk modulus B0 of the 23 nm CaF2 nanocrystals for the fluorite and α-PbCl2-type phase are 103(2 and 78(2 GPa, which are both larger than those of the bulk CaF2. The CaF2 nanocrystals exhibit obviously higher incompressibility compare to bulk CaF2. Further analysis demonstrates that the defect effect in our CaF2 nanocrystals plays a dominant role in the structural stability.

  10. Chicago transit authority train noise exposure.

    Science.gov (United States)

    Phan, Linh T; Jones, Rachael M

    2017-06-01

    To characterize noise exposure of riders on Chicago Transit Authority (CTA) trains, we measured noise levels twice on each segment of 7 of the 8 CTA train lines, which are named after colors, yielding 48 time-series measurements. We found the Blue Line has the highest noise levels compared to other train lines, with mean 76.9 dBA; and that the maximum noise level, 88.9 dBA occurred in the tunnel between the Chicago and Grand stations. Train segments involving travel through a tunnel had significantly higher noise levels than segments with travel on elevated and ground level tracks. While 8-hr doses inside the passenger cars were not estimated to exceed occupational exposure limits, train operators ride in a separate cab with operational windows and may therefore have higher noise exposures than riders. Despite the low risk of hearing loss for riders on CTA trains, in part because transit noise accounts for a small part of total daily noise exposure, 1-min average noise levels exceeded 85 dBA at times. This confirms anecdotal observations of discomfort due to noise levels, and indicates a need for noise management, particularly in tunnels.

  11. Excitonic metal-insulator phase transition of the Mott type in compressed calcium

    Science.gov (United States)

    Voronkova, T. O.; Sarry, A. M.; Sarry, M. F.; Skidan, S. G.

    2017-05-01

    It has been experimentally found that, under the static compression of a calcium crystal at room temperature, it undergoes a series of structural phase transitions: face-centered cubic lattice → body-centered cubic lattice → simple cubic lattice. It has been decided to investigate precisely the simple cubic lattice (because it is an alternative lattice) with the aim of elucidating the possibility of the existence of other (nonstructural) phase transitions in it by using for this purpose the Hubbard model for electrons with half-filled ns-bands and preliminarily transforming the initial electronic system into an electron-hole system by means of the known Shiba operators (applicable only to alternative lattices). This transformation leads to the fact that, in the new system of fermions, instead of the former repulsion, there is an attraction between electrons and holes. Elementary excitations of this new system are bound boson pairs—excitons. This system of fermions has been quantitatively analyzed by jointly using the equation-of-motion method and the direct algebraic method. The numerical integration of the analytically exact transcendental equations derived from the first principles for alternative (one-, two-, and three-dimensional) lattices has demonstrated that, in systems of two-species (electrons + hole) fermions, temperature-induced metal-insulator phase transitions of the Mott type are actually possible. Moreover, all these crystals are in fact excitonic insulators. This conclusion is in complete agreement with the analytically exact calculations of the ground state of a one-dimensional crystal (with half-filled bands), which were performed by Lieb and Wu with the aim to find out the Mott insulator-metal transition of another type.

  12. Weak-strong clustering transition in renewing compressible flows

    OpenAIRE

    Dhanagare, Ajinkya; Musacchio, Stefano; Vincenzi, Dario

    2014-01-01

    International audience; We investigate the statistical properties of Lagrangian tracers transported by a time-correlated compressible renewing flow. We show that the preferential sampling of the phase space performed by tracers yields significant differences between the Lagrangian statistics and its Eulerian counterpart. In particular, the effective compressibility experienced by tracers has a non-trivial dependence on the time correlation of the flow. We examine the consequence of this pheno...

  13. Isentropic Compression of Iron with the Z Accelerator

    International Nuclear Information System (INIS)

    Asay, J.R.; Bernard, M.A.; Hall, C.A.; Hayes, D.B.; Holland, K.G.; McDaniel, D.H.; Rosenthal, S.E.; Spielman, R.B.; Stygar, W.A.

    1999-01-01

    Development of isentropic loading techniques is a long standing goal of the shock physics community. The authors have used the Sandia Z Accelerator to produce smoothly increasing pressure loading on planar iron specimens over time durations of 100 ns and for pressures to 300 Mbar. Free surface velocity measurements on the rear surface of the continuously loaded specimens were made on specimens 0.5-mm and 0.8-mm thick and clearly show the effects of wave evolution into the well known two-wave structure resulting from the α-var e psilon phase transition beginning at 125 kbar. The resulting wave profiles are analyzed with a rate-dependent, phase transition model to extract information on phase transformation kinetics for isentropic compression of iron. Comparison of the experiments and calculations demonstrate the value of isentropic loading for studying phase transition kinetics

  14. Compressed natural gas (CNG) in fueled systems and the significance of CNG in vehicular transportation

    Energy Technology Data Exchange (ETDEWEB)

    Ayar, G. [Besikduzu, Trabzon (Turkey)

    2006-05-15

    Most NG vehicles operate using compressed natural gas (CNG). CNG's popularity stems, in part, from its clean-burning properties. In addition, more than 85,000 CNG vehicles, including one out of every five transit buses, are operating successfully today. This compressed gas is stored in similar fashion to a car's gasoline tank, attached to the rear, top, or undercarriage of the vehicle in a tube-shaped storage tank. A CNG tank can be filled in a similar manner, and in a similar amount of time, to a gasoline tank. (author)

  15. International transitional administrations and the politics of authority building

    OpenAIRE

    Zaum, Dominik

    2017-01-01

    This article critically examines authority-building practices in the context of statebuilding through the lens of one particular form of external statebuilding interventions: international transitional administrations (ITAs), which are established by international organisations (mainly the UN) to exercise governmental functions over a territory, and in some cases to engage in the establishment or reform of political, administrative, and economic institutions. Drawing in particular on one ITA,...

  16. Inelastic response of silicon to shock compression.

    Science.gov (United States)

    Higginbotham, A; Stubley, P G; Comley, A J; Eggert, J H; Foster, J M; Kalantar, D H; McGonegle, D; Patel, S; Peacock, L J; Rothman, S D; Smith, R F; Suggit, M J; Wark, J S

    2016-04-13

    The elastic and inelastic response of [001] oriented silicon to laser compression has been a topic of considerable discussion for well over a decade, yet there has been little progress in understanding the basic behaviour of this apparently simple material. We present experimental x-ray diffraction data showing complex elastic strain profiles in laser compressed samples on nanosecond timescales. We also present molecular dynamics and elasticity code modelling which suggests that a pressure induced phase transition is the cause of the previously reported 'anomalous' elastic waves. Moreover, this interpretation allows for measurement of the kinetic timescales for transition. This model is also discussed in the wider context of reported deformation of silicon to rapid compression in the literature.

  17. Digital cinema video compression

    Science.gov (United States)

    Husak, Walter

    2003-05-01

    The Motion Picture Industry began a transition from film based distribution and projection to digital distribution and projection several years ago. Digital delivery and presentation offers the prospect to increase the quality of the theatrical experience for the audience, reduce distribution costs to the distributors, and create new business opportunities for the theater owners and the studios. Digital Cinema also presents an opportunity to provide increased flexibility and security of the movies for the content owners and the theater operators. Distribution of content via electronic means to theaters is unlike any of the traditional applications for video compression. The transition from film-based media to electronic media represents a paradigm shift in video compression techniques and applications that will be discussed in this paper.

  18. Buckling a Semiflexible Polymer Chain under Compression

    Directory of Open Access Journals (Sweden)

    Ekaterina Pilyugina

    2017-03-01

    Full Text Available Instability and structural transitions arise in many important problems involving dynamics at molecular length scales. Buckling of an elastic rod under a compressive load offers a useful general picture of such a transition. However, the existing theoretical description of buckling is applicable in the load response of macroscopic structures, only when fluctuations can be neglected, whereas membranes, polymer brushes, filaments, and macromolecular chains undergo considerable Brownian fluctuations. We analyze here the buckling of a fluctuating semiflexible polymer experiencing a compressive load. Previous works rely on approximations to the polymer statistics, resulting in a range of predictions for the buckling transition that disagree on whether fluctuations elevate or depress the critical buckling force. In contrast, our theory exploits exact results for the statistical behavior of the worm-like chain model yielding unambiguous predictions about the buckling conditions and nature of the buckling transition. We find that a fluctuating polymer under compressive load requires a larger force to buckle than an elastic rod in the absence of fluctuations. The nature of the buckling transition exhibits a marked change from being distinctly second order in the absence of fluctuations to being a more gradual, compliant transition in the presence of fluctuations. We analyze the thermodynamic contributions throughout the buckling transition to demonstrate that the chain entropy favors the extended state over the buckled state, providing a thermodynamic justification of the elevated buckling force.

  19. Transitional Cell Carcinoma of the Upper Ureter Metastatic to the Thoracic Spine Presenting as a Spinal Cord Compression

    Directory of Open Access Journals (Sweden)

    J. O. Larkin

    2008-01-01

    Full Text Available We performed a left nephroureterectomy for a gentleman with transitional cell carcinoma of the upper ureter. Histological analysis revealed it to be a T1 lesion, but to be highly mitotically active. The gentleman defaulted on adjuvant therapy and defaulted on follow-up. He represented with symptoms of acute spinal cord compression and magnetic resonance imaging demonstrated a lesion at T6/7. Neurosurgical resection of the lesion showed it to be a metastatic deposit from the ureteric primary. Despite surgical debulking and subsequent radiotherapy to the lesion, the patient died secondary to metastatic complications. This case report is of interest to the surgeon as it demonstrates both the high metastatic potential of upper tract carcinomas and educates the surgeon on the presentation of acute spinal cord compression.

  20. Real-time video compressing under DSP/BIOS

    Science.gov (United States)

    Chen, Qiu-ping; Li, Gui-ju

    2009-10-01

    This paper presents real-time MPEG-4 Simple Profile video compressing based on the DSP processor. The programming framework of video compressing is constructed using TMS320C6416 Microprocessor, TDS510 simulator and PC. It uses embedded real-time operating system DSP/BIOS and the API functions to build periodic function, tasks and interruptions etcs. Realize real-time video compressing. To the questions of data transferring among the system. Based on the architecture of the C64x DSP, utilized double buffer switched and EDMA data transfer controller to transit data from external memory to internal, and realize data transition and processing at the same time; the architecture level optimizations are used to improve software pipeline. The system used DSP/BIOS to realize multi-thread scheduling. The whole system realizes high speed transition of a great deal of data. Experimental results show the encoder can realize real-time encoding of 768*576, 25 frame/s video images.

  1. Probing phase transitions via energetic nuclear collisions

    International Nuclear Information System (INIS)

    Lukacs, B.; Csernai, L.P.

    1983-07-01

    The possible effects of the nucleon-quark phase transition on the dynamics of heavy ion collisions are discussed. It is shown that the formation of the quark phase can be expected at recent experiments. Nevertheless, the compressibility of the two-phase mixture remains relatively low, thus the quark phase remains limited in both space and time, and the observables are not strongly affected. (author)

  2. Humidity-dependent compression-induced glass transition of the air-water interfacial Langmuir films of poly(D,L-lactic acid-ran-glycolic acid) (PLGA).

    Science.gov (United States)

    Kim, Hyun Chang; Lee, Hoyoung; Jung, Hyunjung; Choi, Yun Hwa; Meron, Mati; Lin, Binhua; Bang, Joona; Won, You-Yeon

    2015-07-28

    Constant rate compression isotherms of the air-water interfacial Langmuir films of poly(D,L-lactic acid-ran-glycolic acid) (PLGA) show a distinct feature of an exponential increase in surface pressure in the high surface polymer concentration regime. We have previously demonstrated that this abrupt increase in surface pressure is linked to the glass transition of the polymer film, but the detailed mechanism of this process is not fully understood. In order to obtain a molecular-level understanding of this behavior, we performed extensive characterizations of the surface mechanical, structural and rheological properties of Langmuir PLGA films at the air-water interface, using combined experimental techniques including the Langmuir film balance, X-ray reflectivity and double-wall-ring interfacial rheometry methods. We observed that the mechanical and structural responses of the Langmuir PLGA films are significantly dependent on the rate of film compression; the glass transition was induced in the PLGA film only at fast compression rates. Surprisingly, we found that this deformation rate dependence is also dependent on the humidity of the environment. With water acting as a plasticizer for the PLGA material, the diffusion of water molecules through the PLGA film seems to be the key factor in the determination of the glass transformation properties and thus the mechanical response of the PLGA film against lateral compression. Based on our combined results, we hypothesize the following mechanism for the compression-induced glass transformation of the Langmuir PLGA film; (1) initially, a humidified/non-glassy PLGA film is formed in the full surface-coverage region (where the surface pressure shows a plateau) during compression; (2) further compression leads to the collapse of the PLGA chains and the formation of new surfaces on the air side of the film, and this newly formed top layer of the PLGA film is transiently glassy in character because the water evaporation rate

  3. Isentropic Compression of Argon

    International Nuclear Information System (INIS)

    Oona, H.; Solem, J.C.; Veeser, L.R.; Ekdahl, C.A.; Rodriquez, P.J.; Younger, S.M.; Lewis, W.; Turley, W.D.

    1997-01-01

    We are studying the transition of argon from an insulator to a conductor by compressing the frozen gas isentropically to pressures at which neighboring atomic orbitals overlap sufficiently to allow some electron motion between atoms. Argon and the other rare gases have closed electron shells and therefore remain montomic, even when they solidify. Their simple structure makes it likely that any measured change in conductivity is due to changes in the atomic structure, not in molecular configuration. As the crystal is compressed the band gap closes, allowing increased conductivity. We have begun research to determine the conductivity at high pressures, and it is our intention to determine the compression at which the crystal becomes a metal

  4. Towards Natural Transition in Compressible Boundary Layers

    Science.gov (United States)

    2016-06-29

    These mechanisms are relevant because in more complex cases, such as wave packets, several of their characteristics have been qualitatively observed...existence of tuned fundamental and sub- harmonic resonance of H-type and K-type in the packet. Influence of compressibility in the wave packet evolution was...Subharmonic seed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.4.4 Fundamental bands

  5. Structure and Properties of Silica Glass Densified in Cold Compression and Hot Compression

    Science.gov (United States)

    Guerette, Michael; Ackerson, Michael R.; Thomas, Jay; Yuan, Fenglin; Bruce Watson, E.; Walker, David; Huang, Liping

    2015-10-01

    Silica glass has been shown in numerous studies to possess significant capacity for permanent densification under pressure at different temperatures to form high density amorphous (HDA) silica. However, it is unknown to what extent the processes leading to irreversible densification of silica glass in cold-compression at room temperature and in hot-compression (e.g., near glass transition temperature) are common in nature. In this work, a hot-compression technique was used to quench silica glass from high temperature (1100 °C) and high pressure (up to 8 GPa) conditions, which leads to density increase of ~25% and Young’s modulus increase of ~71% relative to that of pristine silica glass at ambient conditions. Our experiments and molecular dynamics (MD) simulations provide solid evidences that the intermediate-range order of the hot-compressed HDA silica is distinct from that of the counterpart cold-compressed at room temperature. This explains the much higher thermal and mechanical stability of the former than the latter upon heating and compression as revealed in our in-situ Brillouin light scattering (BLS) experiments. Our studies demonstrate the limitation of the resulting density as a structural indicator of polyamorphism, and point out the importance of temperature during compression in order to fundamentally understand HDA silica.

  6. Compression and plasticity of old-age mortality

    NARCIS (Netherlands)

    Engelaer, Frouke Maria

    2014-01-01

    In this thesis we first studied the start of the epidemiologic transition in rural Ghana and describe the changes in mortality. This is followed by studies on the compression of mortality and morbidity during the transition in Japan and the Netherlands. Finally, we examined the plasticity of

  7. Development of information preserving data compression algorithm for CT images

    International Nuclear Information System (INIS)

    Kobayashi, Yoshio

    1989-01-01

    Although digital imaging techniques in radiology develop rapidly, problems arise in archival storage and communication of image data. This paper reports on a new information preserving data compression algorithm for computed tomographic (CT) images. This algorithm consists of the following five processes: 1. Pixels surrounding the human body showing CT values smaller than -900 H.U. are eliminated. 2. Each pixel is encoded by its numerical difference from its neighboring pixel along a matrix line. 3. Difference values are encoded by a newly designed code rather than the natural binary code. 4. Image data, obtained with the above process, are decomposed into bit planes. 5. The bit state transitions in each bit plane are encoded by run length coding. Using this new algorithm, the compression ratios of brain, chest, and abdomen CT images are 4.49, 4.34. and 4.40 respectively. (author)

  8. Compression Pad Cavity Heating Augmentation on Orion Heat Shield

    Science.gov (United States)

    Hollis, Brian R.

    2011-01-01

    An experimental study has been conducted to assess the effects of compression pad cavities on the aeroheating environment of the Project Orion Crew Exploration Vehicle heat shield. Testing was conducted in Mach 6 and 10 perfect-gas wind tunnels to obtain heating measurements in and around the compression pads cavities using global phosphor thermography. Data were obtained over a wide range of Reynolds numbers that produced laminar, transitional, and turbulent flow within and downstream of the cavities. The effects of cavity dimensions on boundary-layer transition and heating augmentation levels were studied. Correlations were developed for transition onset and for the average cavity-heating augmentation.

  9. Radiologic image compression -- A review

    International Nuclear Information System (INIS)

    Wong, S.; Huang, H.K.; Zaremba, L.; Gooden, D.

    1995-01-01

    The objective of radiologic image compression is to reduce the data volume of and to achieve a lot bit rate in the digital representation of radiologic images without perceived loss of image quality. However, the demand for transmission bandwidth and storage space in the digital radiology environment, especially picture archiving and communication systems (PACS) and teleradiology, and the proliferating use of various imaging modalities, such as magnetic resonance imaging, computed tomography, ultrasonography, nuclear medicine, computed radiography, and digital subtraction angiography, continue to outstrip the capabilities of existing technologies. The availability of lossy coding techniques for clinical diagnoses further implicates many complex legal and regulatory issues. This paper reviews the recent progress of lossless and lossy radiologic image compression and presents the legal challenges of using lossy compression of medical records. To do so, the authors first describe the fundamental concepts of radiologic imaging and digitization. Then, the authors examine current compression technology in the field of medical imaging and discuss important regulatory policies and legal questions facing the use of compression in this field. The authors conclude with a summary of future challenges and research directions. 170 refs

  10. Strategies for Time-resolved X-ray Diffraction of Phase Transitions with Laser Compression

    Science.gov (United States)

    Benedetti, Laura Robin; Eggert, J. H.; Bradley, D. K.; Bell, P. M.; Kilkenny, J. D.; Palmer, N.; Petre, R. B.; Rygg, J. R.; Sorce, C.; Collins, G. W.; Boehly, T. R.

    2017-10-01

    As part of a program to document kinetics of phase transitions under laser-driven dynamic compression, we are designing a platform to make multiple x-ray diffraction measurements during a single laser experiment. Our plans include experimental development at Omega-EP and eventual implementation at NIF. We will present our strategy for designing a robust platform that can effectively document a wide variety of phase transformations by utilizing both streaked and multiple-frame imaging detectors. Preliminary designs utilize a novel CMOS detector designed by Sandia National Lab. Our initial experiments include scoping studies that will focus on photometrics and shielding requirements in the high EMP environment close to the target. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC, LLNL-ABS-734470.

  11. Medullary compression syndrome

    International Nuclear Information System (INIS)

    Barriga T, L.; Echegaray, A.; Zaharia, M.; Pinillos A, L.; Moscol, A.; Barriga T, O.; Heredia Z, A.

    1994-01-01

    The authors made a retrospective study in 105 patients treated in the Radiotherapy Department of the National Institute of Neoplasmic Diseases from 1973 to 1992. The objective of this evaluation was to determine the influence of radiotherapy in patients with medullary compression syndrome in aspects concerning pain palliation and improvement of functional impairment. Treatment sheets of patients with medullary compression were revised: 32 out of 39 of patients (82%) came to hospital by their own means and continued walking after treatment, 8 out of 66 patients (12%) who came in a wheelchair or were bedridden, could mobilize by their own after treatment, 41 patients (64%) had partial alleviation of pain after treatment. In those who came by their own means and did not change their characteristics, functional improvement was observed. It is concluded that radiotherapy offers palliative benefit in patients with medullary compression syndrome. (authors). 20 refs., 5 figs., 6 tabs

  12. Efficient predictive algorithms for image compression

    CERN Document Server

    Rosário Lucas, Luís Filipe; Maciel de Faria, Sérgio Manuel; Morais Rodrigues, Nuno Miguel; Liberal Pagliari, Carla

    2017-01-01

    This book discusses efficient prediction techniques for the current state-of-the-art High Efficiency Video Coding (HEVC) standard, focusing on the compression of a wide range of video signals, such as 3D video, Light Fields and natural images. The authors begin with a review of the state-of-the-art predictive coding methods and compression technologies for both 2D and 3D multimedia contents, which provides a good starting point for new researchers in the field of image and video compression. New prediction techniques that go beyond the standardized compression technologies are then presented and discussed. In the context of 3D video, the authors describe a new predictive algorithm for the compression of depth maps, which combines intra-directional prediction, with flexible block partitioning and linear residue fitting. New approaches are described for the compression of Light Field and still images, which enforce sparsity constraints on linear models. The Locally Linear Embedding-based prediction method is in...

  13. Report from the nuclear safety authority about the preparation of nuclear facilities to the year 2000 transition

    International Nuclear Information System (INIS)

    Lacoste, A.C.

    1999-01-01

    The French nuclear safety authority with the technical help of the Institute of Nuclear Protection and Safety (IPSN) started in 1998 an evaluation and control work of the measures taken by the different nuclear facility operators in anticipation of the year 2000 transition. This report makes a status of the state of preparation of nuclear facilities prior to the transition: 1 - The nuclear safety and the year 2000 transition (defense-in-depth approach, preventive actions); 2 - The action of the safety authority (demands addressed to the operators of nuclear facilities, technical evaluation and control of the methodology adopted by each operator, preparation of the safety authority to the transition, follow up of the international actions); 3 - Status of the preparation of the different operators: Electricite de France (EdF) (corrective actions, inventory and investigation of computer systems, results, corrections, preventive actions, defensive actions, synthesis), research centres, storage sites and shutdown reactors, waste storage centres of the ANDRA, CEA facilities, decommissioned or partially dismantled reactors, fuel cycle centres.. (J.S.)

  14. Degradation of superconductivity in A15 V3Si by explosive compression

    International Nuclear Information System (INIS)

    Stewart, G.; Olinger, B.; Newkirk, L.R.

    1985-01-01

    We have found that explosive compression similar to that used to create A15 Nb 3 Si seriously degrades superconductivity in A15 V 3 Si which, before compression, was typical of well-ordered material. Specifically, the midpoint of the bulk superconducting transition is depressed by 1.8 K, the bulk transition width is increased by a factor of 3, and the specific heat γ is decreased by more than 20% compared to the starting material. Implications of these results for the ultimate achievable transition temperature in A15 Nb 3 Si are discussed

  15. Numerical simulation of compressible multiphase flows with or without phase transition. Application to laser plasma interaction

    International Nuclear Information System (INIS)

    Perrier, V.

    2007-07-01

    This work deals with the modelling and simulation of compressible flows. A seven equations model is obtained by homogenizing the Euler system. Fluctuation terms are modeled as relaxation terms. When the relaxation terms tend to infinity, which means that the phases are well mixed, a five equations model is obtained via an asymptotic expansion. This five equations model is strictly hyperbolic, but nonconservative. The discretization of this model is obtained by an asymptotic expansion of a scheme for the seven equations model. The numerical method is implemented, validated on analytic cases, and compared with experiments in the case of multiphase shocks. We are then interested in the modelling of phase transition with two equations of state. Optimization of the mixture entropy leads to the fact that three zones can be separated: one in which the pure liquid is the most stable, one in which the pure gas is the most stable, and one in which a mixture with equality of temperature, pressure and chemical potentials is the most stable. Conditions are given on the coupling of the two equations of state for ensuring that the mixture equation of state is convex, and that the system is strictly hyperbolic. In order to take into account phase transition, a vaporization wave is introduced in the solution of the Riemann problem, that is modeled as a deflagration wave. It is then proved that the usual closure, the Chapman-Jouguet closure, is wrong in general, and a correct closure in the case when both fluids have a perfect gas equation of state. Last, the solution of the Riemann problem is implemented in a multiphase code, and validated on analytic cases. In the same code, models of laser release and thermal conduction are implemented to simulate laser ablation. The results are comparable to the ones obtained with scale laws. The last chapter, fully independent, is concerned with correctors in stochastic homogenization in the case of heavy tails process. (author)

  16. Concurrent data compression and protection

    International Nuclear Information System (INIS)

    Saeed, M.

    2009-01-01

    Data compression techniques involve transforming data of a given format, called source message, to data of a smaller sized format, called codeword. The primary objective of data encryption is to ensure security of data if it is intercepted by an eavesdropper. It transforms data of a given format, called plaintext, to another format, called ciphertext, using an encryption key or keys. Thus, combining the processes of compression and encryption together must be done in this order, that is, compression followed by encryption because all compression techniques heavily rely on the redundancies which are inherently a part of a regular text or speech. The aim of this research is to combine two processes of compression (using an existing scheme) with a new encryption scheme which should be compatible with encoding scheme embedded in encoder. The novel technique proposed by the authors is new, unique and is highly secured. The deployment of sentinel marker' enhances the security of the proposed TR-One algorithm from 2/sup 44/ ciphertexts to 2/sup 44/ +2/sub 20/ ciphertexts thus imposing extra challenges to the intruders. (author)

  17. Monopole transitions in hot nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Sujkowski, Z. [Soltan Inst. for Nuclear Studies, Otwock-Swierk (Poland)

    1994-12-31

    Monopole transitions can be a signature of shape changing in a hot, pulsating nucleus (the low energy E0 mode) and/or a measure of the compressibility of finite nuclei (GMR, the breathing mode). Experimental information pertaining to GMR is reviewed. Recipes for deducing the incompressibility modules for infinite nuclear matter from data on GMR are discussed. Astrophysical implications are outlined. The first attempts at locating the GMR strength in moderately hot nuclei are described. Prospects for improving the experimental techniques to make an observation of this strength in selected nuclei unambiguous are discussed. (author). 46 refs, 8 figs.

  18. Monopole transitions in hot nuclei

    International Nuclear Information System (INIS)

    Sujkowski, Z.

    1994-01-01

    Monopole transitions can be a signature of shape changing in a hot, pulsating nucleus (the low energy E0 mode) and/or a measure of the compressibility of finite nuclei (GMR, the breathing mode). Experimental information pertaining to GMR is reviewed. Recipes for deducing the incompressibility modules for infinite nuclear matter from data on GMR are discussed. Astrophysical implications are outlined. The first attempts at locating the GMR strength in moderately hot nuclei are described. Prospects for improving the experimental techniques to make an observation of this strength in selected nuclei unambiguous are discussed. (author). 46 refs, 8 figs

  19. Dynamic control of a homogeneous charge compression ignition engine

    Science.gov (United States)

    Duffy, Kevin P [Metamora, IL; Mehresh, Parag [Peoria, IL; Schuh, David [Peoria, IL; Kieser, Andrew J [Morton, IL; Hergart, Carl-Anders [Peoria, IL; Hardy, William L [Peoria, IL; Rodman, Anthony [Chillicothe, IL; Liechty, Michael P [Chillicothe, IL

    2008-06-03

    A homogenous charge compression ignition engine is operated by compressing a charge mixture of air, exhaust and fuel in a combustion chamber to an autoignition condition of the fuel. The engine may facilitate a transition from a first combination of speed and load to a second combination of speed and load by changing the charge mixture and compression ratio. This may be accomplished in a consecutive engine cycle by adjusting both a fuel injector control signal and a variable valve control signal away from a nominal variable valve control signal. Thereafter in one or more subsequent engine cycles, more sluggish adjustments are made to at least one of a geometric compression ratio control signal and an exhaust gas recirculation control signal to allow the variable valve control signal to be readjusted back toward its nominal variable valve control signal setting. By readjusting the variable valve control signal back toward its nominal setting, the engine will be ready for another transition to a new combination of engine speed and load.

  20. Solid - solid and solid - liquid phase transitions of iron and iron alloys under laser shock compression

    Science.gov (United States)

    Harmand, M.; Krygier, A.; Appel, K.; Galtier, E.; Hartley, N.; Konopkova, Z.; Lee, H. J.; McBride, E. E.; Miyanishi, K.; Nagler, B.; Nemausat, R.; Vinci, T.; Zhu, D.; Ozaki, N.; Fiquet, G.

    2017-12-01

    An accurate knowledge of the properties of iron and iron alloys at high pressures and temperatures is crucial for understanding and modelling planetary interiors. While Earth-size and Super-Earth Exoplanets are being discovered in increasingly large numbers, access to detailed information on liquid properties, melting curves and even solid phases of iron and iron at the pressures and temperatures of their interiors is still strongly limited. In this context, XFEL sources coupled with high-energy lasers afford unique opportunities to measure microscopic structural properties at far extreme conditions. Also the achievable time resolution allows the shock history and phase transition mechanisms to be followed during laser compression, improving our understanding of the high pressure and high strain experiments. Here we present recent studies devoted to investigate the solid-solid and solid-liquid transition in laser-shocked iron and iron alloys (Fe-Si, Fe-C and Fe-O alloys) using X-ray diffraction and X-ray diffuse scattering. Experiment were performed at the MEC end-station of the LCLS facility at SLAC (USA). Detection of the diffuse scattering allowed the identification of the first liquid peak position along the Hugoniot, up to 4 Mbar. The time resolution shows ultrafast (between several tens and several hundreds of picoseconds) solid-solid and solid-liquid phase transitions. Future developments at XFEL facilities will enable detailed studies of the solid and liquid structures of iron and iron alloys as well as out-of-Hugoniot studies.

  1. FRC translation into a compression coil

    International Nuclear Information System (INIS)

    Chrien, R.E.

    1985-01-01

    Several features of the problem of FRC translation into a compression coil are considered. First, the magnitude of the guide field is calculated and found to exceed that which would be applied to a flux conserver. Second, energy conservation is applied to FRC translation from a flux conserver into a compression coil. It is found that a significant temperature decrease is required for translation to be energetically possible. The temperature change depends on the external inductance in the compression circuit. An analogous case is that of a compression region composed of a compound magnet; in this case the temperature change depends on the ratio of inner and outer coil radii. Finally, the kinematics of intermediate translation states are calculated using an ''abrupt transition'' model. It is found, in this model, that the FRC must overcome a potential hill during translation, which requires a small initial velocity

  2. Final Report 02-ERD-033: Rapid Resolidification of Metals using Dynamic Compression

    International Nuclear Information System (INIS)

    Streitz, F H; Nguyen, J H; Orlikowski, D; Minich, R; Moriarty, J A; Holmes, N C

    2005-01-01

    The purpose of this project is to develop a greater understanding of the kinetics involved during a liquid-solid phase transition occurring at high pressure and temperature. Kinetic limitations are known to play a large role in the dynamics of solidification at low temperatures, determining, e.g., whether a material crystallizes upon freezing or becomes an amorphous solid. The role of kinetics is not at all understood in transitions at high temperature when extreme pressures are involved. In order to investigate time scales during a dynamic compression experiment we needed to create an ability to alter the length of time spent by the sample in the transition region. Traditionally, the extreme high-pressure phase diagram is studied through a few static and dynamic techniques: static compression involving diamond anvil cells (DAC) [1], shock compression [2, 3], and quasi-isentropic compression [4, 5, 6, 7, 8, 9, 10]. Static DAC experiments explore equilibrium material properties along an isotherm or an isobar [1]. Dynamic material properties can be explored with shock compression [2, 3], probing single states on the Hugoniot, or with quasi-isentropic compression [4, 5, 6, 7, 8, 9, 10]. In the case of shocks, pressures variation typically occurs on a sub-nanosecond time scale or faster [11]. Previous quasi-isentropic techniques have yielded pressure ramps on the 10-100 nanosecond time-scale for samples that are several hundred microns thick [4, 5, 6, 7]. In order to understand kinetic effects at high temperatures and high pressures, we need to span a large dynamic range (strain rates, relaxation times, etc.) as well as control the thermodynamic path that the material experiences. Compression rates, for instance, need to bridge those of static experiments (seconds to hours) and those of the Z-accelerator (10 6 s -1 ) [4] or even laser ablation techniques (10 6 s -1 to 10 8 s -1 ) [7]. Here, we present a new technique that both extends the compression time to several

  3. Evaluation of a new image compression technique

    International Nuclear Information System (INIS)

    Algra, P.R.; Kroon, H.M.; Noordveld, R.B.; DeValk, J.P.J.; Seeley, G.W.; Westerink, P.H.

    1988-01-01

    The authors present the evaluation of a new image compression technique, subband coding using vector quantization, on 44 CT examinations of the upper abdomen. Three independent radiologists reviewed the original images and compressed versions. The compression ratios used were 16:1 and 20:1. Receiver operating characteristic analysis showed no difference in the diagnostic contents between originals and their compressed versions. Subjective visibility of anatomic structures was equal. Except for a few 20:1 compressed images, the observers could not distinguish compressed versions from original images. They conclude that subband coding using vector quantization is a valuable method for data compression in CT scans of the abdomen

  4. Advances in compressible turbulent mixing

    International Nuclear Information System (INIS)

    Dannevik, W.P.; Buckingham, A.C.; Leith, C.E.

    1992-01-01

    This volume includes some recent additions to original material prepared for the Princeton International Workshop on the Physics of Compressible Turbulent Mixing, held in 1988. Workshop participants were asked to emphasize the physics of the compressible mixing process rather than measurement techniques or computational methods. Actual experimental results and their meaning were given precedence over discussions of new diagnostic developments. Theoretical interpretations and understanding were stressed rather than the exposition of new analytical model developments or advances in numerical procedures. By design, compressibility influences on turbulent mixing were discussed--almost exclusively--from the perspective of supersonic flow field studies. The papers are arranged in three topical categories: Foundations, Vortical Domination, and Strongly Coupled Compressibility. The Foundations category is a collection of seminal studies that connect current study in compressible turbulent mixing with compressible, high-speed turbulent flow research that almost vanished about two decades ago. A number of contributions are included on flow instability initiation, evolution, and transition between the states of unstable flow onset through those descriptive of fully developed turbulence. The Vortical Domination category includes theoretical and experimental studies of coherent structures, vortex pairing, vortex-dynamics-influenced pressure focusing. In the Strongly Coupled Compressibility category the organizers included the high-speed turbulent flow investigations in which the interaction of shock waves could be considered an important source for production of new turbulence or for the enhancement of pre-existing turbulence. Individual papers are processed separately

  5. Advances in compressible turbulent mixing

    Energy Technology Data Exchange (ETDEWEB)

    Dannevik, W.P.; Buckingham, A.C.; Leith, C.E. [eds.

    1992-01-01

    This volume includes some recent additions to original material prepared for the Princeton International Workshop on the Physics of Compressible Turbulent Mixing, held in 1988. Workshop participants were asked to emphasize the physics of the compressible mixing process rather than measurement techniques or computational methods. Actual experimental results and their meaning were given precedence over discussions of new diagnostic developments. Theoretical interpretations and understanding were stressed rather than the exposition of new analytical model developments or advances in numerical procedures. By design, compressibility influences on turbulent mixing were discussed--almost exclusively--from the perspective of supersonic flow field studies. The papers are arranged in three topical categories: Foundations, Vortical Domination, and Strongly Coupled Compressibility. The Foundations category is a collection of seminal studies that connect current study in compressible turbulent mixing with compressible, high-speed turbulent flow research that almost vanished about two decades ago. A number of contributions are included on flow instability initiation, evolution, and transition between the states of unstable flow onset through those descriptive of fully developed turbulence. The Vortical Domination category includes theoretical and experimental studies of coherent structures, vortex pairing, vortex-dynamics-influenced pressure focusing. In the Strongly Coupled Compressibility category the organizers included the high-speed turbulent flow investigations in which the interaction of shock waves could be considered an important source for production of new turbulence or for the enhancement of pre-existing turbulence. Individual papers are processed separately.

  6. Mammography image compression using Wavelet

    International Nuclear Information System (INIS)

    Azuhar Ripin; Md Saion Salikin; Wan Hazlinda Ismail; Asmaliza Hashim; Norriza Md Isa

    2004-01-01

    Image compression plays an important role in many applications like medical imaging, televideo conferencing, remote sensing, document and facsimile transmission, which depend on the efficient manipulation, storage, and transmission of binary, gray scale, or color images. In Medical imaging application such Picture Archiving and Communication System (PACs), the image size or image stream size is too large and requires a large amount of storage space or high bandwidth for communication. Image compression techniques are divided into two categories namely lossy and lossless data compression. Wavelet method used in this project is a lossless compression method. In this method, the exact original mammography image data can be recovered. In this project, mammography images are digitized by using Vider Sierra Plus digitizer. The digitized images are compressed by using this wavelet image compression technique. Interactive Data Language (IDLs) numerical and visualization software is used to perform all of the calculations, to generate and display all of the compressed images. Results of this project are presented in this paper. (Author)

  7. Limiting density ratios in piston-driven compressions

    International Nuclear Information System (INIS)

    Lee, S.

    1985-07-01

    By using global energy and pressure balance applied to a shock model it is shown that for a piston-driven fast compression, the maximum compression ratio is not dependent on the absolute magnitude of the piston power, but rather on the power pulse shape. Specific cases are considered and a maximum density compression ratio of 27 is obtained for a square-pulse power compressing a spherical pellet with specific heat ratio of 5/3. Double pulsing enhances the density compression ratio to 1750 in the case of linearly rising compression pulses. Using this method further enhancement by multiple pulsing becomes obvious. (author)

  8. Anomalous lattice compressibility of hexagonal Eu{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Irshad, K.A.; Chandra Shekar, N.V., E-mail: chandru@igcar.gov.in

    2017-07-01

    Monoclinic Eu{sub 2}O{sub 3} was investigated in a Mao-Bell type diamond anvil cell using angle dispersive x-ray diffraction up to a pressure of 26 GPa. Pressure induced structural phase transition from monoclinic to hexagonal phase was observed at 4.3 GPa with 2% volume collapse. Birch –Murnaghan equation of state fit to the pressure volume data yielded a bulk modulus of 159(9) GPa and 165(6) GPa for the monoclinic and hexagonal phases respectively. Equation of state fitting to the structural parameters yielded an axial compressibility of β{sub a} > β{sub c} > β{sub b} for the parent monoclinic phase, showing the least compressibility along b axis. Contrary to the available reports, an anomalous lattice compressibility behavior is observed for the high pressure hexagonal phase, characterized by pronounced hardening of a axis above 15 GPa. The observed incompressible nature of the hexagonal a axis in the pressure range 15–25 GPa is found to be compensated by doubling the compressibility along the c axis. - Highlights: • Structural phase transition in Eu{sub 2}O{sub 3} from monoclinic to hexagonal phase. • Anomalous lattice compressibility in the hexagonal phase has reported first time. • Quantitative analysis of lattice compressibility.

  9. Shock absorbing properties of toroidal shells under compression, 3

    International Nuclear Information System (INIS)

    Sugita, Yuji

    1985-01-01

    The author has previously presented the static load-deflection relations of a toroidal shell subjected to axisymmetric compression between rigid plates and those of its outer half when subjected to lateral compression. In both these cases, the analytical method was based on the incremental Rayleigh-Ritz method. In this paper, the effects of compression angle and strain rate on the load-deflection relations of the toroidal shell are investigated for its use as a shock absorber for the radioactive material shipping cask which must keep its structural integrity even after accidental falls at any angle. Static compression tests have been carried out at four angles of compression, 10 0 , 20 0 , 50 0 , 90 0 and the applications of the preceding analytical method have been discussed. Dynamic compression tests have also been performed using the free-falling drop hammer. The results are compared with those in the static compression tests. (author)

  10. Molecular dynamics simulations of shock compressed heterogeneous materials. II. The graphite/diamond transition case for astrophysics applications

    Science.gov (United States)

    Pineau, N.; Soulard, L.; Colombet, L.; Carrard, T.; Pellé, A.; Gillet, Ph.; Clérouin, J.

    2015-03-01

    We present a series of molecular dynamics simulations of the shock compression of copper matrices containing a single graphite inclusion: these model systems can be related to some specific carbon-rich rocks which, after a meteoritic impact, are found to contain small fractions of nanodiamonds embedded in graphite in the vicinity of high impedance minerals. We show that the graphite to diamond transformation occurs readily for nanometer-sized graphite inclusions, via a shock accumulation process, provided the pressure threshold of the bulk graphite/diamond transition is overcome, independently of the shape or size of the inclusion. Although high diamond yields (˜80%) are found after a few picoseconds in all cases, the transition is non-isotropic and depends substantially on the relative orientation of the graphite stack with respect to the shock propagation, leading to distinct nucleation processes and size-distributions of the diamond grains. A substantial regraphitization process occurs upon release and only inclusions with favorable orientations likely lead to the preservation of a fraction of this diamond phase. These results agree qualitatively well with the recent experimental observations of meteoritic impact samples.

  11. Liquid state properties of certain noble and transition metals

    International Nuclear Information System (INIS)

    Bhuiyan, G.M.; Rahman, A.; Khaleque, M.A.; Rashid, R.I.M.A.; Mujibur Rahman, S.M.

    1998-07-01

    Certain structural, thermodynamic and atomic transport properties of a number of liquid noble and transition metals are reported. The underlying theory combines together a simple form of the N-body potential and the thermodynamically self-consistent variational modified hypernetted chain (VMHNC) theory of liquid. The static structure factors calculated by using the VMHNC resemble the hard sphere (HS) values. Consequently the HS model is used to calculate the thermodynamic properties viz. specific heat, entropy, isothermal compressibility and atomic transport properties. (author)

  12. Rapid freezing of water under dynamic compression

    Science.gov (United States)

    Myint, Philip C.; Belof, Jonathan L.

    2018-06-01

    Understanding the behavior of materials at extreme pressures is a central issue in fields like aerodynamics, astronomy, and geology, as well as for advancing technological grand challenges such as inertial confinement fusion. Dynamic compression experiments to probe high-pressure states often encounter rapid phase transitions that may cause the materials to behave in unexpected ways, and understanding the kinetics of these phase transitions remains an area of great interest. In this review, we examine experimental and theoretical/computational efforts to study the freezing kinetics of water to a high-pressure solid phase known as ice VII. We first present a detailed analysis of dynamic compression experiments in which water has been observed to freeze on sub-microsecond time scales to ice VII. This is followed by a discussion of the limitations of currently available molecular and continuum simulation methods in modeling these experiments. We then describe how our phase transition kinetics models, which are based on classical nucleation theory, provide a more physics-based framework that overcomes some of these limitations. Finally, we give suggestions on future experimental and modeling work on the liquid–ice VII transition, including an outline of the development of a predictive multiscale model in which molecular and continuum simulations are intimately coupled.

  13. Equation of state of laser-shocked compressed iron; Equation d'etat du fer comprime par choc laser

    Energy Technology Data Exchange (ETDEWEB)

    Huser, G

    2004-01-01

    This thesis enters the field of highly compressed materials equation of state studies. In particular, it focuses on the case of laser shock compressed iron. This work indeed aims at getting to the conditions of the earth's core, comprising a solid inner core and a liquid outer core. The understanding of phenomena governing the core's thermodynamics and the geodynamic process requires the knowledge of iron melting line locus around the solid-liquid interface at 3.3 Mbar. Several experiments were performed to that extent. First, an absolute measurement of iron Hugoniot was obtained. Following is a study of partially released states of iron into a window material: lithium fluoride (LiF). This configuration enables direct access to compressed iron optical properties such as reflectivity and self-emission. Interface velocity measurement is dominated by compressed LiF optical properties and is used as a pressure gauge. Using a dual wavelength reflectivity diagnostic, compressed iron electrical conductivity was estimated and found to be in good agreement with previous results found in geophysics literature. Self-emission diagnostic was used to measure temperature of partially released iron and revealed a solid-liquid phase transition at Mbar pressures. (author)

  14. Elastic behavior of MFI-type zeolites: 3 - Compressibility of silicalite and mutinaite

    Energy Technology Data Exchange (ETDEWEB)

    Quartieri, Simona, E-mail: squartieri@unime.it [Dipartimento di Scienze della Terra, Universita di Messina, Viale Ferdinando Stagno d' Alcontres 31, 98166 Messina S. Agata (Italy); Arletti, Rossella [Dipartimento di Scienze Mineralogiche e Petrologiche, Via Valperga Caluso 35, 10125 Torino (Italy); Vezzalini, Giovanna [Dipartimento di Scienze della Terra, Universita di Modena e Reggio Emilia, Via S. Eufemia 19, 41100 Modena (Italy); Di Renzo, Francesco [Institut Charles Gerhardt de Montpellier, UMR 5253 CNRS-UM2-ENSCM-UM1, 8 rue Ecole Normale, 34296 Montpellier (France); Dmitriev, Vladimir [Swiss-Norwegian Beam Line at ESRF, BP220, 38043 Grenoble Cedex (France)

    2012-07-15

    We report the results of an in-situ synchrotron X-ray powder diffraction study - performed using silicone oil as 'non-penetrating' pressure transmitting medium - of the elastic behavior of three zeolites with MFI-type framework: the natural zeolite mutinaite and two silicalites (labeled A and B) synthesized under different conditions. While in mutinaite no symmetry change is observed as a function of pressure, a phase transition from monoclinic (P2{sub 1}/n) to orthorhombic (Pnma) symmetry occurs at about 1.0 GPa in the silicalite samples. This phase transition is irreversible upon decompression. The second order bulk moduli of silicalite A and silicalite B, calculated after the fulfillment of the phase transition, are: K{sub 0}=18.2(2) and K{sub 0}=14.3 (2) GPa, respectively. These values makes silicalite the most compressible zeolite among those up to now studied in silicone oil. The structural deformations induced by HP in silicalite A were investigated by means of complete Rietveld structural refinements, before and after the phase transition, at P{sub amb} and 0.9 GPa, respectively. The elastic behaviors of the three MFI-type zeolites here investigated were compared with those of Na-ZSM-5 and H-ZSM-5, studied in similar experimental conditions: the two silicalites - which are the phases with the highest Si/Al ratios and hence the lowest extraframework contents - show the highest compressibility. On the contrary, the most rigid material is mutinaite, which has a very complex extraframework composition characterized by a high number of cations and water molecules. - Graphical abstract: High-pressure behavior of silicalite compressed in silicone oil: projection of the structure along the [0 1 0] direction at Pamb(a), 0.9 GPa (b). (c) Comparison of the unit-cell volume variations as a function of pressure for mutinaite, H-ZSM5, Na-ZSM5, silicalite A, and silicalite B compressed in silicone oil. Highlights: Black-Right-Pointing-Pointer X-ray powder

  15. DNABIT Compress - Genome compression algorithm.

    Science.gov (United States)

    Rajarajeswari, Pothuraju; Apparao, Allam

    2011-01-22

    Data compression is concerned with how information is organized in data. Efficient storage means removal of redundancy from the data being stored in the DNA molecule. Data compression algorithms remove redundancy and are used to understand biologically important molecules. We present a compression algorithm, "DNABIT Compress" for DNA sequences based on a novel algorithm of assigning binary bits for smaller segments of DNA bases to compress both repetitive and non repetitive DNA sequence. Our proposed algorithm achieves the best compression ratio for DNA sequences for larger genome. Significantly better compression results show that "DNABIT Compress" algorithm is the best among the remaining compression algorithms. While achieving the best compression ratios for DNA sequences (Genomes),our new DNABIT Compress algorithm significantly improves the running time of all previous DNA compression programs. Assigning binary bits (Unique BIT CODE) for (Exact Repeats, Reverse Repeats) fragments of DNA sequence is also a unique concept introduced in this algorithm for the first time in DNA compression. This proposed new algorithm could achieve the best compression ratio as much as 1.58 bits/bases where the existing best methods could not achieve a ratio less than 1.72 bits/bases.

  16. Isosymmetric pressure-induced bonding increase changes compression behavior of clinopyroxenes across jadeite-aegirine solid solution in subduction zones: ISOSYMMETRIC PHASE TRANSITION

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jingui [Key Laboratory of High Temperature and High Pressure Study of the Earth' s Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang China; Hawaii Institute of Geophysics and Planetology, School of Ocean and Earth Science and Technology, University of Hawai' i at Mānoa, Honolulu Hawaii USA; University of Chinese Academy of Sciences, Beijing China; Zhang, Dongzhou [Hawaii Institute of Geophysics and Planetology, School of Ocean and Earth Science and Technology, University of Hawai' i at Mānoa, Honolulu Hawaii USA; Fan, Dawei [Key Laboratory of High Temperature and High Pressure Study of the Earth' s Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang China; Downs, Robert T. [Department of Geosciences, University of Arizona, Tucson Arizona USA; Hu, Yi [Hawaii Institute of Geophysics and Planetology, School of Ocean and Earth Science and Technology, University of Hawai' i at Mānoa, Honolulu Hawaii USA; Dera, Przemyslaw K. [Hawaii Institute of Geophysics and Planetology, School of Ocean and Earth Science and Technology, University of Hawai' i at Mānoa, Honolulu Hawaii USA

    2017-01-01

    Pyroxenes are among the most important minerals of Earth's crust and upper mantle and play significant role in controlling subduction at convergent margins. In this study, synchrotron-based single-crystal X-ray diffraction experiments were carried out on a natural aegirine [NaFe3+Si2O6] sample at ambient temperature and high pressures to 60 GPa, simulating conditions within the coldest part of a subduction zone consisting of old lithosphere. The diffraction data reveal no obvious sign of structural phase transition in aegirine within this pressure range; however, several relevant structural parameter trends change noticeably at approximately 24 GPa, indicating the presence of the previously predicted isosymmetric bonding change, related to increase of coordination number of Na+ at M2 site. The pressure-volume data, fit with third-order Birch-Murnaghan (BM3) equation of state over the whole pressure range, yields KT0 = 126(2) GPa and K'T0 = 3.3(1), while separate BM3 fits performed for the 0–24.0 GPa and 29.9–60.4 GPa pressure ranges give KT0 = 118(3) GPa, K'T0 = 4.2(3) and KT0 = 133(2) GPa, K'T0 = 3.0(1), suggesting that the structure stiffens as a result of the new bond formation. Aegirine exhibits strong anisotropic compression with unit strain axial ratios ε1:ε2:ε3 = 1.00:2.44:1.64. Structural refinements reveal that NaO8 polyhedron is the most compressible and SiO4 tetrahedron has the lowest compressibility. The consequence of bonding transition is that the compressional behavior of aegirine below ~24 GPa and above that pressure is quite different, with likely consequences for relevant thermodynamic parameters and ion diffusion coefficients.

  17. Anomalous thermal expansion, negative linear compressibility, and high-pressure phase transition in ZnAu2(CN) 4 : Neutron inelastic scattering and lattice dynamics studies

    Science.gov (United States)

    Gupta, Mayanak K.; Singh, Baltej; Mittal, Ranjan; Zbiri, Mohamed; Cairns, Andrew B.; Goodwin, Andrew L.; Schober, Helmut; Chaplot, Samrath L.

    2017-12-01

    We present temperature-dependent inelastic-neutron-scattering measurements, accompanied by ab initio calculations of the phonon spectra and elastic properties as a function of pressure to quantitatively explain an unusual combination of negative thermal expansion and negative linear compressibility behavior of ZnAu2(CN) 4 . The mechanism of the negative thermal expansion is identified in terms of specific anharmonic phonon modes that involve bending of the -Zn-NC-Au-CN-Zn- linkage. The soft phonon at the L point at the Brillouin zone boundary quantitatively relates to the high-pressure phase transition at about 2 GPa. The ambient pressure structure is also found to be close to an elastic instability that leads to a weakly first-order transition.

  18. [Transitional tumours of urinary bladder (author's transl)].

    Science.gov (United States)

    Laumonier, R

    1979-01-01

    An overall survey of the transitional epithelium of the bladder and its carcinomas. This study is based upon the recent literature, in particular the considerable contribution of scanner electron microscopy. a) The transitional epithelium has the reputation of having a simple structure and even behaviour. In fact, it is complex with highly specialised surface cells. It has marked powers of regeneration after aggressions of various types. b) Tumours of the transitional epithelium are defined in relation to rupture of the basal lamina. Invasive carcinomas are classified according to their histological stage of penetration, their pure or partially metaplasic type and their degree defined according to the criteria of Broders. There exists a correlation between these three types of evaluation. Non-invasive carcinomas are either papillary--putting into question the reality of benign bladder papilloma--or flat mucosal and then often associated closely or at a distance with an invasive carcinoma. c) Abnormal regeneration, dysplasia or hyperplasia as a result of aggressions of different types or developing in isolation represent a high risk histologically, implying the need for careful follow-up and surveillance. d) Histopathological study of urothelial or transitional tumours is simple in operative specimens but difficult in biopsies. It requires close cooperation between surgeons and pathologists to ensure correct orientation of the fragments.

  19. Matchgate circuits and compressed quantum computation

    International Nuclear Information System (INIS)

    Boyajian, W.L.

    2015-01-01

    exact diagonal- ization. In Part II, we deal with the compressed way of quantum computation mentioned above, used to simulate physically interesting behaviours of large systems. To give an example, consider an experimental set–up, where up to 8 qubits can be well controlled. Such a set–up can be used to simulate certain interactions of 2 8 = 256 qubits. In [Boyajian et al. (2013)], we generalised the results from [Kraus (2011)], and demonstrated how the adiabatic evolution of the 1D XY-model can be simulated via an exponentially smaller quantum system. More precisely, it is shown there, how the phase transition of such a model of a spin chain consisting out of n qubits can be observed via a compressed algorithm processing only log( n ) qubits. The feasibility of such a compressed quantum simulation is due to the fact that the adiabatic evolution and the measurement of the magnetization employed to observe the phase transition can be described by a matchgate circuit. Remarkably, the number of elementary gates, i.e. the number of single and two-qubit gates which are required to implement the compressed simulation can be even smaller than required to implement the original matchgate circuit. This compressed algorithm has already been experimentally realized using NMR quantum computing [Li et al. (2014)]. In [Boyajian et al. (2013)] we showed that not only the quantum phase transition can be observed in this way, but that various other interesting processes, such as quantum quenching, where the evolution is non–adiabatic, and general time evolutions can be simulated with an exponentially smaller system. In Part II, we also recall the results from [Boyajian and Kraus (2015)] where we extend the notion of compressed quantum simulation even further. We consider the XY-model and derive compressed circuits to simulate the behavior of the thermal and any excited state of the system. To this end, we use the diagonalization of the XY-Hamiltonian presented in[ Verstraete et al

  20. A sharp interface method for compressible liquid–vapor flow with phase transition and surface tension

    Energy Technology Data Exchange (ETDEWEB)

    Fechter, Stefan, E-mail: stefan.fechter@iag.uni-stuttgart.de [Institut für Aerodynamik und Gasdynamik, Universität Stuttgart, Pfaffenwaldring 21, 70569 Stuttgart (Germany); Munz, Claus-Dieter, E-mail: munz@iag.uni-stuttgart.de [Institut für Aerodynamik und Gasdynamik, Universität Stuttgart, Pfaffenwaldring 21, 70569 Stuttgart (Germany); Rohde, Christian, E-mail: Christian.Rohde@mathematik.uni-stuttgart.de [Institut für Angewandte Analysis und Numerische Simulation, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart (Germany); Zeiler, Christoph, E-mail: Christoph.Zeiler@mathematik.uni-stuttgart.de [Institut für Angewandte Analysis und Numerische Simulation, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart (Germany)

    2017-05-01

    The numerical approximation of non-isothermal liquid–vapor flow within the compressible regime is a difficult task because complex physical effects at the phase interfaces can govern the global flow behavior. We present a sharp interface approach which treats the interface as a shock-wave like discontinuity. Any mixing of fluid phases is avoided by using the flow solver in the bulk regions only, and a ghost-fluid approach close to the interface. The coupling states for the numerical solution in the bulk regions are determined by the solution of local two-phase Riemann problems across the interface. The Riemann solution accounts for the relevant physics by enforcing appropriate jump conditions at the phase boundary. A wide variety of interface effects can be handled in a thermodynamically consistent way. This includes surface tension or mass/energy transfer by phase transition. Moreover, the local normal speed of the interface, which is needed to calculate the time evolution of the interface, is given by the Riemann solution. The interface tracking itself is based on a level-set method. The focus in this paper is the description of the two-phase Riemann solver and its usage within the sharp interface approach. One-dimensional problems are selected to validate the approach. Finally, the three-dimensional simulation of a wobbling droplet and a shock droplet interaction in two dimensions are shown. In both problems phase transition and surface tension determine the global bulk behavior.

  1. Cure behavior, compression set and dynamic mechanical properties of EPDM/NBR blend vulcanizates

    Energy Technology Data Exchange (ETDEWEB)

    Park, C.Y. [Pukyong National Univeristy, Pusan (Korea)

    2001-03-01

    The ethylene propylene diene terpolymer (EPDM) blends with acrylonitrile butadiene rubber (NBR) were prepared by mechanical mixing method. Mooney viscosity, cure behaviors, compression set and dynamic mechanical properties were subsequently examined. Dynamic characteristics of the entire blends determined from a Rheovibron generally showed two glass transitions (T{sub g}'s), -43 deg. C and -4 deg. C for NBR and EPDM, respectively. The tan {delta} peak monotonically shifted toward the higher temperature with increasing NBR content. It was also found that the optimum cure time was significantly decreased with loading of NBR. (author). 13 refs., 4 tabs., 9 figs.

  2. Compression experiments on the TOSKA tokamak

    International Nuclear Information System (INIS)

    Cima, G.; McGuire, K.M.; Robinson, D.C.; Wootton, A.J.

    1980-10-01

    Results from minor radius compression experiments on a tokamak plasma in TOSCA are reported. The compression is achieved by increasing the toroidal field up to twice its initial value in 200μs. Measurements show that particles and magnetic flux are conserved. When the initial energy confinement time is comparable with the compression time, energy gains are greater than for an adiabatic change of state. The total beta value increases. Central beta values approximately 3% are measured when a small major radius compression is superimposed on a minor radius compression. Magnetic field fluctuations are affected: both the amplitude and period decrease. Starting from low energy confinement times, approximately 200μs, increases in confinement times up to approximately 1 ms are measured. The increase in plasma energy results from a large reduction in the power losses during the compression. When the initial energy confinement time is much longer than the compression time, the parameter changes are those expected for an adiabatic change of state. (author)

  3. FRC translation into a compression coil

    International Nuclear Information System (INIS)

    Chrien, R.E.

    1986-01-01

    The equilibrium and translational kinematics of Field-Reversed Configurations (FRCs) in a cylindrical coil which does not conserve flux are problems that arise in connection with adiabatic compressional heating. In this paper, they consider several features of the problem of FRC translation into a compression coil. First, the magnitude of the guide field is calculated and found to exceed that which would be applied to a flux conserver. Second, energy conservation is applied to FRC translation from a flux conserver into a compression coil. It is found that a significant temperature decrease is required for translation to be energetically possible. The temperature change depends on the external inductance in the compression circuit. An analogous case is that of a compression region composed of a compound magnet; in this case the temperature change depends on the ratio of inner and outer coil radii. Finally, the kinematics of intermediate translation states are calculated using an abrupt transition model. It is found, in this model, that the FRC must overcome a potential hill during translation, which requires a small initial velocity

  4. Development and assessment of compression technique for medical images using neural network. I. Assessment of lossless compression

    International Nuclear Information System (INIS)

    Fukatsu, Hiroshi

    2007-01-01

    This paper describes assessment of the lossless compression of a new efficient compression technique (JIS system) using neural network that the author and co-workers have recently developed. At first, theory is explained for encoding and decoding the data. Assessment is done on 55 images each of chest digital roentgenography, digital mammography, 64-row multi-slice CT, 1.5 Tesla MRI, positron emission tomography (PET) and digital subtraction angiography, which are lossless-compressed by the present JIS system to see the compression rate and loss. For comparison, those data are also JPEG lossless-compressed. Personal computer (PC) is an Apple MacBook Pro with configuration of Boot Camp for Windows environment. The present JIS system is found to have a more than 4 times higher efficiency than the usual compressions which compressing the file volume to only 1/11 in average, and thus to be importantly responsible to the increasing medical imaging data. (R.T.)

  5. Green and early age compressive strength of extruded cement mortar monitored with compression tests and ultrasonic techniques

    International Nuclear Information System (INIS)

    Voigt, Thomas; Malonn, Tim; Shah, Surendra P.

    2006-01-01

    Knowledge about the early age compressive strength development of cementitious materials is an important factor for the progress and safety of many construction projects. This paper uses cylindrical mortar specimens produced with a ram extruder to investigate the transition of the mortar from plastic and deformable to hardened state. In addition, wave transmission and reflection measurements with P- and S-waves were conducted to obtain further information about the microstructural changes during the setting and hardening process. The experiments have shown that uniaxial compression tests conducted on extruded mortar cylinders are a useful tool to evaluate the green strength as well as the initiation and further development of the compressive strength of the tested material. The propagation of P-waves was found to be indicative of the internal structure of the tested mortars as influenced, for example, by the addition of fine clay particles. S-waves used in transmission and reflection mode proved to be sensitive to the inter-particle bonding caused by the cement hydration and expressed by an increase in compressive strength

  6. 5 CFR 532.513 - Flexible and compressed work schedules.

    Science.gov (United States)

    2010-01-01

    ... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Flexible and compressed work schedules... REGULATIONS PREVAILING RATE SYSTEMS Premium Pay and Differentials § 532.513 Flexible and compressed work schedules. Federal Wage System employees who are authorized to work flexible and compressed work schedules...

  7. Heating Augmentation Due to Compression Pad Cavities on the Project Orion CEV Heat Shield

    Science.gov (United States)

    Hollis, Brian R.

    2009-01-01

    An experimental study has been conducted to assess the effects of compression pad cavities on the aeroheating environment of the Project Orion CEV heat-shield. Testing was conducted in Mach 6 and Mach 10 perfect-gas wind tunnels to obtain heating measurements in and around the compression pads cavities using global phosphor thermography. Data were obtained over a wide range of Reynolds numbers that produced laminar, transitional, and turbulent flow within and downstream of the cavities. The effects of cavity dimensions on boundary-layer transition and heating augmentation levels were studied. Correlations were developed for transition onset and for the average cavity-heating augmentation.

  8. Elastic behavior of MFI-type zeolites: 3 – Compressibility of silicalite and mutinaite

    International Nuclear Information System (INIS)

    Quartieri, Simona; Arletti, Rossella; Vezzalini, Giovanna; Di Renzo, Francesco; Dmitriev, Vladimir

    2012-01-01

    We report the results of an in-situ synchrotron X-ray powder diffraction study – performed using silicone oil as “non-penetrating” pressure transmitting medium – of the elastic behavior of three zeolites with MFI-type framework: the natural zeolite mutinaite and two silicalites (labeled A and B) synthesized under different conditions. While in mutinaite no symmetry change is observed as a function of pressure, a phase transition from monoclinic (P2 1 /n) to orthorhombic (Pnma) symmetry occurs at about 1.0 GPa in the silicalite samples. This phase transition is irreversible upon decompression. The second order bulk moduli of silicalite A and silicalite B, calculated after the fulfillment of the phase transition, are: K 0 =18.2(2) and K 0 =14.3 (2) GPa, respectively. These values makes silicalite the most compressible zeolite among those up to now studied in silicone oil. The structural deformations induced by HP in silicalite A were investigated by means of complete Rietveld structural refinements, before and after the phase transition, at P amb and 0.9 GPa, respectively. The elastic behaviors of the three MFI-type zeolites here investigated were compared with those of Na-ZSM-5 and H-ZSM-5, studied in similar experimental conditions: the two silicalites – which are the phases with the highest Si/Al ratios and hence the lowest extraframework contents – show the highest compressibility. On the contrary, the most rigid material is mutinaite, which has a very complex extraframework composition characterized by a high number of cations and water molecules. - Graphical abstract: High-pressure behavior of silicalite compressed in silicone oil: projection of the structure along the [0 1 0] direction at Pamb(a), 0.9 GPa (b). (c) Comparison of the unit-cell volume variations as a function of pressure for mutinaite, H-ZSM5, Na-ZSM5, silicalite A, and silicalite B compressed in silicone oil. Highlights: ► X-ray powder diffraction study of silicalite and mutinaite

  9. Magnetic compression into Brillouin flow

    International Nuclear Information System (INIS)

    Becker, R.

    1977-01-01

    The trajectories of beam edge electrons are calculated in the transition region between an electrostatic gun and an increasing magnetic field for various field shapes, transition length, and cathode fluxes, assuming that the resultant beam is of Brillouin flow type. The results give a good physical interpretation to the axial gradient of the magnetic field being responsible for the amount of magnetic compression and also for the proper injection conditions. Therefore it becomes possible to predict from the known characteristics of any fairly laminary electrostatic gun the necessary axial gradient of the magnetic field and the axial position of the gun with respect to the field build-up. (orig.) [de

  10. Mammography parameters: compression, dose, and discomfort

    International Nuclear Information System (INIS)

    Blanco, S.; Di Risio, C.; Andisco, D.; Rojas, R.R.; Rojas, R.M.

    2017-01-01

    Objective: To confirm the importance of compression in mammography and relate it to the discomfort expressed by the patients. Materials and methods: Two samples of 402 and 268 mammographies were obtained from two diagnostic centres that use the same mammographic equipment, but different compression techniques. The patient age range was from 21 to 50 years old. (authors) [es

  11. Structural phase transition and elastic properties of AnAs (An= Th, U, Np, Pu) compounds at high pressure

    International Nuclear Information System (INIS)

    Aynyas, Mahendra; Arya, B.S.; Srivastava, Vipul; Sanyal, Sankar P.

    2006-01-01

    The high pressure behavior and pressure induced structural phase transition of mono arsenides (AnAs; An = Th, U, Np, Pu) have been investigated by using a three body interaction potential (TBI). This method has been found quite satisfactory in the case of other Rare-Earth compounds. The calculated compression curves of mono-arsenides obtained so have been compared with high pressure X-ray diffraction work. The theoretically predicted phase transition pressure and other structural properties for these compounds agree reasonably well with the measured values. (author)

  12. Author Details

    African Journals Online (AJOL)

    -mortar masonry under compression. Abstract. ISSN: 0855-2215. AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's · More about AJOL · AJOL's Partners · Terms and Conditions of Use ...

  13. Relationship between medical compression and intramuscular pressure as an explanation of a compression paradox.

    Science.gov (United States)

    Uhl, J-F; Benigni, J-P; Cornu-Thenard, A; Fournier, J; Blin, E

    2015-06-01

    Using standing magnetic resonance imaging (MRI), we recently showed that medical compression, providing an interface pressure (IP) of 22 mmHg, significantly compressed the deep veins of the leg but not, paradoxically, superficial varicose veins. To provide an explanation for this compression paradox by studying the correlation between the IP exerted by medical compression and intramuscular pressure (IMP). In 10 legs of five healthy subjects, we studied the effects of different IPs on the IMP of the medial gastrocnemius muscle. The IP produced by a cuff manometer was verified by a Picopress® device. The IMP was measured with a 21G needle connected to a manometer. Pressure data were recorded in the prone and standing positions with cuff manometer pressures from 0 to 50 mmHg. In the prone position, an IP of less than 20 did not significantly change the IMP. On the contrary, a perfect linear correlation with the IMP (r = 0.99) was observed with an IP from 20 to 50 mmHg. We found the same correlation in the standing position. We found that an IP of 22 mmHg produced a significant IMP increase from 32 to 54 mmHg, in the standing position. At the same time, the subcutaneous pressure is only provided by the compression device, on healthy subjects. In other words, the subcutaneous pressure plus the IP is only a little higher than 22 mmHg-a pressure which is too low to reduce the caliber of the superficial veins. This is in accordance with our standing MRI 3D anatomical study which showed that, paradoxically, when applying low pressures (IP), the deep veins are compressed while the superficial veins are not. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  14. Band gap engineering of MoS{sub 2} upon compression

    Energy Technology Data Exchange (ETDEWEB)

    López-Suárez, Miquel, E-mail: miquel.lopez@nipslab.org [NiPS Laboratory, Dipartimento di Fisica e Geologia, Università degli Studi di Perugia, 06123 Perugia (Italy); Neri, Igor [NiPS Laboratory, Dipartimento di Fisica e Geologia, Università degli Studi di Perugia, 06123 Perugia (Italy); INFN Sezione di Perugia, via Pascoli, 06123 Perugia (Italy); Rurali, Riccardo [Institut de Ciència de Materials de Barcelona (ICMAB–CSIC) Campus de Bellaterra, 08193 Bellaterra, Barcelona (Spain)

    2016-04-28

    Molybdenum disulfide (MoS{sub 2}) is a promising candidate for 2D nanoelectronic devices, which shows a direct band-gap for monolayer structure. In this work we study the electronic structure of MoS{sub 2} upon both compressive and tensile strains with first-principles density-functional calculations for different number of layers. The results show that the band-gap can be engineered for experimentally attainable strains (i.e., ±0.15). However, compressive strain can result in bucking that can prevent the use of large compressive strain. We then studied the stability of the compression, calculating the critical strain that results in the on-set of buckling for free-standing nanoribbons of different lengths. The results demonstrate that short structures, or few-layer MoS{sub 2}, show semi-conductor to metal transition upon compressive strain without bucking.

  15. Wellhead compression

    Energy Technology Data Exchange (ETDEWEB)

    Harrington, Joe [Sertco Industries, Inc., Okemah, OK (United States); Vazquez, Daniel [Hoerbiger Service Latin America Inc., Deerfield Beach, FL (United States); Jacobs, Denis Richard [Hoerbiger do Brasil Industria de Equipamentos, Cajamar, SP (Brazil)

    2012-07-01

    Over time, all wells experience a natural decline in oil and gas production. In gas wells, the major problems are liquid loading and low downhole differential pressures which negatively impact total gas production. As a form of artificial lift, wellhead compressors help reduce the tubing pressure resulting in gas velocities above the critical velocity needed to surface water, oil and condensate regaining lost production and increasing recoverable reserves. Best results come from reservoirs with high porosity, high permeability, high initial flow rates, low decline rates and high total cumulative production. In oil wells, excessive annulus gas pressure tends to inhibit both oil and gas production. Wellhead compression packages can provide a cost effective solution to these problems by reducing the system pressure in the tubing or annulus, allowing for an immediate increase in production rates. Wells furthest from the gathering compressor typically benefit the most from wellhead compression due to system pressure drops. Downstream compressors also benefit from higher suction pressures reducing overall compression horsepower requirements. Special care must be taken in selecting the best equipment for these applications. The successful implementation of wellhead compression from an economical standpoint hinges on the testing, installation and operation of the equipment. Key challenges and suggested equipment features designed to combat those challenges and successful case histories throughout Latin America are discussed below.(author)

  16. Study of CSR longitudinal bunch compression cavity

    International Nuclear Information System (INIS)

    Yin Dayu; Li Peng; Liu Yong; Xie Qingchun

    2009-01-01

    The scheme of longitudinal bunch compression cavity for the Cooling Storage Ring (CSR)is an important issue. Plasma physics experiments require high density heavy ion beam and short pulsed bunch,which can be produced by non-adiabatic compression of bunch implemented by a fast compression with 90 degree rotation in the longitudinal phase space. The phase space rotation in fast compression is initiated by a fast jump of the RF-voltage amplitude. For this purpose, the CSR longitudinal bunch compression cavity, loaded with FINEMET-FT-1M is studied and simulated with MAFIA code. In this paper, the CSR longitudinal bunch compression cavity is simulated and the initial bunch length of 238 U 72+ with 250 MeV/u will be compressed from 200 ns to 50 ns.The construction and RF properties of the CSR longitudinal bunch compression cavity are simulated and calculated also with MAFIA code. The operation frequency of the cavity is 1.15 MHz with peak voltage of 80 kV, and the cavity can be used to compress heavy ions in the CSR. (authors)

  17. Thermal compression modulus of polarized neutron matter

    International Nuclear Information System (INIS)

    Abd-Alla, M.

    1990-05-01

    We applied the equation of state for pure polarized neutron matter at finite temperature, calculated previously, to calculate the compression modulus. The compression modulus of pure neutron matter at zero temperature is very large and reflects the stiffness of the equation of state. It has a little temperature dependence. Introducing the spin excess parameter in the equation of state calculations is important because it has a significant effect on the compression modulus. (author). 25 refs, 2 tabs

  18. Magnetic surface compression heating in the heliotron device

    International Nuclear Information System (INIS)

    Uo, K.; Motojima, O.

    1982-01-01

    The slow adiabatic compression of the plasma in the heliotron device is examined. It has a prominent characteristic that the plasma equilibrium always exists at each stage of the compression. The heating efficiency is calculated. We show the possible access to fusion. A large amount of the initial investment for the heating system (NBI or RF) is reduced by using the magnetic surface compression heating. (author)

  19. Prediction of boundary-layer transition caused by crossflow disturbances

    OpenAIRE

    Nomura, Toshiyuki; 野村 聡幸

    1999-01-01

    A prediction system for boundary layer transition is developed which consists of the Navier-Stokes code computing a compressible boundary layer, the linear PSE (Parabolized Stability Equations) code computing the spatial growth of a disturbance, and the N-factor code integrating the growth rate. The system is applied to the case that the transition of the compressible boundary layer on a swept cylinder is caused by cross flow disturbances which have the same spanwise wavelength as observed in...

  20. Observation of a New High-Pressure Solid Phase in Dynamically Compressed Aluminum

    Science.gov (United States)

    Polsin, D. N.

    2017-10-01

    Aluminum is ideal for testing theoretical first-principles calculations because of the relative simplicity of its atomic structure. Density functional theory (DFT) calculations predict that Al transforms from an ambient-pressure, face-centered-cubic (fcc) crystal to the hexagonal close-packed (hcp) and body-centered-cubic (bcc) structures as it is compressed. Laser-driven experiments performed at the University of Rochester's Laboratory for Laser Energetics and the National Ignition Facility (NIF) ramp compressed Al samples to pressures up to 540 GPa without melting. Nanosecond in-situ x-ray diffraction was used to directly measure the crystal structure at pressures where the solid-solid phase transformations of Al are predicted to occur. Laser velocimetry provided the pressure in the Al. Our results show clear evidence of the fcc-hcp and hpc-bcc transformations at 216 +/- 9 GPa and 321 +/- 12 GPa, respectively. This is the first experimental in-situ observation of the bcc phase in compressed Al and a confirmation of the fcc-hcp transition previously observed under static compression at 217 GPa. The observations indicate these solid-solid phase transitions occur on the order of tens of nanoseconds time scales. In the fcc-hcp transition we find the original texture of the sample is preserved; however, the hcp-bcc transition diminishes that texture producing a structure that is more polycrystalline. The importance of this dynamic is discussed. The NIF results are the first demonstration of x-ray diffraction measurements at two different pressures in a single laser shot. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  1. DNABIT Compress – Genome compression algorithm

    Science.gov (United States)

    Rajarajeswari, Pothuraju; Apparao, Allam

    2011-01-01

    Data compression is concerned with how information is organized in data. Efficient storage means removal of redundancy from the data being stored in the DNA molecule. Data compression algorithms remove redundancy and are used to understand biologically important molecules. We present a compression algorithm, “DNABIT Compress” for DNA sequences based on a novel algorithm of assigning binary bits for smaller segments of DNA bases to compress both repetitive and non repetitive DNA sequence. Our proposed algorithm achieves the best compression ratio for DNA sequences for larger genome. Significantly better compression results show that “DNABIT Compress” algorithm is the best among the remaining compression algorithms. While achieving the best compression ratios for DNA sequences (Genomes),our new DNABIT Compress algorithm significantly improves the running time of all previous DNA compression programs. Assigning binary bits (Unique BIT CODE) for (Exact Repeats, Reverse Repeats) fragments of DNA sequence is also a unique concept introduced in this algorithm for the first time in DNA compression. This proposed new algorithm could achieve the best compression ratio as much as 1.58 bits/bases where the existing best methods could not achieve a ratio less than 1.72 bits/bases. PMID:21383923

  2. High-pressure behavior of intermediate scapolite: compressibility, structure deformation and phase transition

    Science.gov (United States)

    Lotti, Paolo; Comboni, Davide; Merlini, Marco; Hanfland, Michael

    2018-05-01

    Scapolites are common volatile-bearing minerals in metamorphic rocks. In this study, the high-pressure behavior of an intermediate member of the scapolite solid solution series (Me47), chemical formula (Na1.86Ca1.86K0.23Fe0.01)(Al4.36Si7.64)O24[Cl0.48(CO3)0.48(SO4)0.01], has been investigated up to 17.79 GPa, by means of in situ single-crystal synchrotron X-ray diffraction. The isothermal elastic behavior of the studied scapolite has been described by a III-order Birch-Murnaghan equation of state, which provided the following refined parameters: V 0 = 1110.6(7) Å3, {K_{{V_0}}} = 70(2) GPa ({β _{{V_0}}} = 0.0143(4) GPa-1) and {K_{{V}}^' = 4.8(7). The refined bulk modulus is intermediate between those previously reported for Me17 and Me68 scapolite samples, confirming that the bulk compressibility among the solid solution increases with the Na content. A discussion on the P-induced structure deformation mechanisms of tetragonal scapolite at the atomic scale is provided, along with the implications of the reported results for the modeling of scapolite stability. In addition, a single-crystal to single-crystal phase transition, which is displacive in character, has been observed toward a triclinic polymorph at 9.87 GPa. The high-pressure triclinic polymorph was found to be stable up to the highest pressure investigated.

  3. Mechanical versus manual chest compressions for cardiac arrest.

    Science.gov (United States)

    Brooks, Steven C; Hassan, Nizar; Bigham, Blair L; Morrison, Laurie J

    2014-02-27

    This is the first update of the Cochrane review on mechanical chest compression devices published in 2011 (Brooks 2011). Mechanical chest compression devices have been proposed to improve the effectiveness of cardiopulmonary resuscitation (CPR). To assess the effectiveness of mechanical chest compressions versus standard manual chest compressions with respect to neurologically intact survival in patients who suffer cardiac arrest. We searched the Cochrane Central Register of Controlled Studies (CENTRAL; 2013, Issue 12), MEDLINE Ovid (1946 to 2013 January Week 1), EMBASE (1980 to 2013 January Week 2), Science Citation abstracts (1960 to 18 November 2009), Science Citation Index-Expanded (SCI-EXPANDED) (1970 to 11 January 2013) on Thomson Reuters Web of Science, biotechnology and bioengineering abstracts (1982 to 18 November 2009), conference proceedings Citation Index-Science (CPCI-S) (1990 to 11 January 2013) and clinicaltrials.gov (2 August 2013). We applied no language restrictions. Experts in the field of mechanical chest compression devices and manufacturers were contacted. We included randomised controlled trials (RCTs), cluster RCTs and quasi-randomised studies comparing mechanical chest compressions versus manual chest compressions during CPR for patients with atraumatic cardiac arrest. Two review authors abstracted data independently; disagreement between review authors was resolved by consensus and by a third review author if consensus could not be reached. The methodologies of selected studies were evaluated by a single author for risk of bias. The primary outcome was survival to hospital discharge with good neurological outcome. We planned to use RevMan 5 (Version 5.2. The Nordic Cochrane Centre) and the DerSimonian & Laird method (random-effects model) to provide a pooled estimate for risk ratio (RR) with 95% confidence intervals (95% CIs), if data allowed. Two new studies were included in this update. Six trials in total, including data from 1166

  4. Compression of the digitized X-ray images

    International Nuclear Information System (INIS)

    Terae, Satoshi; Miyasaka, Kazuo; Fujita, Nobuyuki; Takamura, Akio; Irie, Goro; Inamura, Kiyonari.

    1987-01-01

    Medical images are using an increased amount of space in the hospitals, while they are not accessed easily. Thus, suitable data filing system and precise data compression will be necessitated. Image quality was evaluated before and after image data compression, using local filing system (MediFile 1000, NEC Co.) and forty-seven modes of compression parameter. For this study X-ray images of 10 plain radiographs and 7 contrast examinations were digitized using a film reader of CCD sensor in MediFile 1000. Those images were compressed into forty-seven kinds of image data to save in an optical disc and then the compressed images were reconstructed. Each reconstructed image was compared with non-compressed images in respect to several regions of our interest by four radiologists. Compression and extension of radiological images were promptly made by employing the local filing system. Image quality was much more affected by the ratio of data compression than by the mode of parameter itself. In another word, the higher compression ratio became, the worse the image quality were. However, image quality was not significantly degraded until the compression ratio was about 15: 1 on plain radiographs and about 8: 1 on contrast studies. Image compression by this technique will be admitted by diagnostic radiology. (author)

  5. Modeling dynamic beta-gamma polymorphic transition in Tin

    Science.gov (United States)

    Chauvin, Camille; Montheillet, Frank; Petit, Jacques; CEA Gramat Collaboration; EMSE Collaboration

    2015-06-01

    Solid-solid phase transitions in metals have been studied by shock waves techniques for many decades. Recent experiments have investigated the transition during isentropic compression experiments and shock-wave compression and have highlighted the strong influence of the loading rate on the transition. Complementary data obtained with velocity and temperature measurements around the polymorphic transition beta-gamma of Tin on gas gun experiments have displayed the importance of the kinetics of the transition. But, even though this phenomenon is known, modeling the kinetic remains complex and based on empirical formulations. A multiphase EOS is available in our 1D Lagrangian code Unidim. We propose to present the influence of various kinetic laws (either empirical or involving nucleation and growth mechanisms) and their parameters (Gibbs free energy, temperature, pressure) on the transformation rate. We compare experimental and calculated velocities and temperature profiles and we underline the effects of the empirical parameters of these models.

  6. Relating working memory to compression parameters in clinically fit hearing AIDS.

    Science.gov (United States)

    Souza, Pamela E; Sirow, Lynn

    2014-12-01

    Several laboratory studies have demonstrated that working memory may influence response to compression speed in controlled (i.e., laboratory) comparisons of compression. In this study, the authors explored whether the same relationship would occur under less controlled conditions, as might occur in a typical audiology clinic. Participants included 27 older adults who sought hearing care in a private practice audiology clinic. Working memory was measured for each participant using a reading span test. The authors examined the relationship between working memory and aided speech recognition in noise, using clinically fit hearing aids with a range of compression speeds. Working memory, amount of hearing loss, and age each contributed to speech recognition, but the contribution depended on the speed of the compression processor. For fast-acting compression, the best performance was obtained by patients with high working memory. For slow-acting compression, speech recognition was affected by age and amount of hearing loss but was not affected by working memory. Despite the expectation of greater variability from differences in compression implementation, number of compression channels, or attendant signal processing, the relationship between working memory and compression speed showed a similar pattern as results from more controlled, laboratory-based studies.

  7. DETAILED CHEMICAL KINETIC MODELING OF ISO-OCTANE SI-HCCI TRANSITION

    Energy Technology Data Exchange (ETDEWEB)

    Havstad, M A; Aceves, S M; McNenly, M J; Piggott, W T; Edwards, K D; Wagner, R M; Daw, C S; Finney, C A

    2009-10-12

    The authors describe a CHEMKIN-based multi-zone model that simulates the expected combustion variations in a single-cylinder engine fueled with iso-octane as the engine transitions from spark-ignited (ST) combustion to homogeneous charge compression ignition (HCCI) combustion. The model includes a 63-species reaction mechanism and mass and energy balances for the cylinder and the exhaust flow. For this study they assumed that the SI-to-HCCI transition is implemented by means of increasing the internal exhaust gas recirculation (EGR) at constant engine speed. This transition scneario is consistent with that implemented in previously reported experimental measurements on an experimental engine equipped with variable valve actuation. They find that the model captures many of the important experimental trends, including stable SI combustion at low EGR ({approx} 0.10), a transition to highly unstable combustion at intermediate EGR, and finally stable HCCI combustion at very high EGR ({approx} 0.75). Remaining differences between the predicted and experimental instability patterns indicate that there is further room for model improvement.

  8. Thermodynamic aspects of the glass-rubber transition

    NARCIS (Netherlands)

    Staverman, A.J.

    1966-01-01

    In 1933 Ehren/est defined transitions in which not only the thermodynamical potential but also the specific volume and entropy of the two states are equal. For these transitions he derived three relations, between the differences of the coefficients of dilatation and of compressibility and the

  9. The compressed word problem for groups

    CERN Document Server

    Lohrey, Markus

    2014-01-01

    The Compressed Word Problem for Groups provides a detailed exposition of known results on the compressed word problem, emphasizing efficient algorithms for the compressed word problem in various groups. The author presents the necessary background along with the most recent results on the compressed word problem to create a cohesive self-contained book accessible to computer scientists as well as mathematicians. Readers will quickly reach the frontier of current research which makes the book especially appealing for students looking for a currently active research topic at the intersection of group theory and computer science. The word problem introduced in 1910 by Max Dehn is one of the most important decision problems in group theory. For many groups, highly efficient algorithms for the word problem exist. In recent years, a new technique based on data compression for providing more efficient algorithms for word problems, has been developed, by representing long words over group generators in a compres...

  10. Indentation size effect and the plastic compressibility of glass

    Energy Technology Data Exchange (ETDEWEB)

    Smedskjaer, Morten M., E-mail: mos@bio.aau.dk [Section of Chemistry, Aalborg University, 9000 Aalborg (Denmark)

    2014-06-23

    Oxide glasses exhibit significant densification under an applied isostatic pressure at the glass transition temperature. The glass compressibility is correlated with the chemical composition and atomic packing density, e.g., borate glasses with planar triangular BO{sub 3} units are more disposed for densification than silicate glasses with tetrahedral units. We here show that there is a direct relation between the plastic compressibility following hot isostatic compression and the extent of the indentation size effect (ISE), which is the decrease of hardness with indentation load exhibited by most materials. This could suggest that the ISE is correlated with indentation-induced shear bands, which should form in greater density when the glass network is more adaptable to volume changes through structural and topological rearrangements under an applied pressure.

  11. Radial and axial compression of pure electron

    International Nuclear Information System (INIS)

    Park, Y.; Soga, Y.; Mihara, Y.; Takeda, M.; Kamada, K.

    2013-01-01

    Experimental studies are carried out on compression of the density distribution of a pure electron plasma confined in a Malmberg-Penning Trap in Kanazawa University. More than six times increase of the on-axis density is observed under application of an external rotating electric field that couples to low-order Trivelpiece-Gould modes. Axial compression of the density distribution with the axial length of a factor of two is achieved by controlling the confining potential at both ends of the plasma. Substantial increase of the axial kinetic energy is observed during the axial compression. (author)

  12. Port Authority of Allegheny County Transit Routes

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Shapefile of Transit Routes - Please refer to each resource for active dates of the route information. Routes change over time,

  13. Atomistic simulation of rapid compression of fractured silicon carbide

    International Nuclear Information System (INIS)

    Romano, A.; Li, J.; Yip, S.

    2006-01-01

    Deformation mechanisms of a crack in silicon carbide under high-rate compression are investigated by molecular dynamics simulation. The penny-shaped crack is in tension throughout the simulation while a variable compression is applied in an in-plane direction. Two different mechanisms of crack-tip response are observed: (1) At low tension, a disordered band forms from the crack surface in the direction orthogonal to the compression, which grows as the compressional force is increased in a manner suggesting a stress-induced transition from an ordered to a disordered phase. Moreover the crack is observed to close. (2) At a tension sufficient to allow the crack to remain open, the compressional stress induces formation of disordered regions along the boundaries of the opened crack, which grow and merge into a band as the compression proceeds. This process is driven by bending of the initial crack, which transforms into a curved slit. This mechanism induces incorporation of fragments of perfect crystal into the disordered band. Similar mechanisms have been experimentally observed to occur in porous SiC under high-strain rate compression

  14. Author Details

    African Journals Online (AJOL)

    Bhatia, PG. Vol 12, No 2 (2009) - Articles Effects of Native and Pregelatinised Fonio starches on compression, mechanical and release properties of paracetamol tablet formulations. Abstract PDF. ISSN: 1026-552X. AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's ...

  15. [Bone and joint changes due to compressed air in divers and Caisson workers (author's transl)].

    Science.gov (United States)

    Poser, H; Gabriel-Jürgens, P

    1977-02-01

    The radiological and morphological changes of Caisson disease in the skeleton are well known. The findings of interest to radiologists are described. Because of its position, its was possible to review a large number of divers in Kiel; these have been under observation for years, and even decades. The development, manifestation and course of chronic skeletal changes due to compressed air are described to compressed air are described and, according to severity, are classified into types 1 to 4. Late changes are discussed in detail, since these are of importance in relation to compensation.

  16. Anomalous anisotropic compression behavior of superconducting CrAs under high pressure

    Science.gov (United States)

    Yu, Zhenhai; Wu, Wei; Hu, Qingyang; Zhao, Jinggeng; Li, Chunyu; Yang, Ke; Cheng, Jinguang; Luo, Jianlin; Wang, Lin; Mao, Ho-kwang

    2015-01-01

    CrAs was observed to possess the bulk superconductivity under high-pressure conditions. To understand the superconducting mechanism and explore the correlation between the structure and superconductivity, the high-pressure structural evolution of CrAs was investigated using the angle-dispersive X-ray diffraction (XRD) method. The structure of CrAs remains stable up to 1.8 GPa, whereas the lattice parameters exhibit anomalous compression behaviors. With increasing pressure, the lattice parameters a and c both demonstrate a nonmonotonic change, and the lattice parameter b undergoes a rapid contraction at ∼0.18−0.35 GPa, which suggests that a pressure-induced isostructural phase transition occurs in CrAs. Above the phase transition pressure, the axial compressibilities of CrAs present remarkable anisotropy. A schematic band model was used to address the anomalous compression behavior of CrAs. The present results shed light on the structural and related electronic responses to high pressure, which play a key role toward understanding the superconductivity of CrAs. PMID:26627230

  17. Coherent optical transition radiation and self-amplified spontaneous emission generated by chicane-compressed electron beams

    Directory of Open Access Journals (Sweden)

    A. H. Lumpkin

    2009-04-01

    Full Text Available Observations of strongly enhanced optical transition radiation (OTR following significant bunch compression of photoinjector beams by a chicane have been reported during the commissioning of the Linac Coherent Light Source accelerator and recently at the Advanced Photon Source (APS linac. These localized transverse spatial features involve signal enhancements of nearly a factor of 10 and 100 in the APS case at the 150-MeV and 375-MeV OTR stations, respectively. They are consistent with a coherent process seeded by noise and may be evidence of a longitudinal space charge microbunching instability which leads to coherent OTR emissions. Additionally, we suggest that localized transverse structure in the previous self-amplified spontaneous emission (SASE free-electron laser (FEL data at APS in the visible regime as reported at FEL02 may be attributed to such beam structure entering the FEL undulators and inducing the SASE startup at those “prebunched” structures. Separate beam structures 120 microns apart in x and 2.9 nm apart in wavelength were reported. The details of these observations and operational parameters will be presented.

  18. Author Details

    African Journals Online (AJOL)

    Muazu, J. Vol 12, No 2 (2009) - Articles Effects of Native and Pregelatinised Fonio starches on compression, mechanical and release properties of paracetamol tablet formulations. Abstract PDF. ISSN: 1026-552X. AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's · More ...

  19. Nuclear data compression and reconstruction via discrete wavelet transform

    Energy Technology Data Exchange (ETDEWEB)

    Park, Young Ryong; Cho, Nam Zin [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1998-12-31

    Discrete Wavelet Transforms (DWTs) are recent mathematics, and begin to be used in various fields. The wavelet transform can be used to compress the signal and image due to its inherent properties. We applied the wavelet transform compression and reconstruction to the neutron cross section data. Numerical tests illustrate that the signal compression using wavelet is very effective to reduce the data saving spaces. 7 refs., 4 figs., 3 tabs. (Author)

  20. Nuclear data compression and reconstruction via discrete wavelet transform

    Energy Technology Data Exchange (ETDEWEB)

    Park, Young Ryong; Cho, Nam Zin [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1997-12-31

    Discrete Wavelet Transforms (DWTs) are recent mathematics, and begin to be used in various fields. The wavelet transform can be used to compress the signal and image due to its inherent properties. We applied the wavelet transform compression and reconstruction to the neutron cross section data. Numerical tests illustrate that the signal compression using wavelet is very effective to reduce the data saving spaces. 7 refs., 4 figs., 3 tabs. (Author)

  1. Roofbolters with compressed-air rotators

    Science.gov (United States)

    Lantsevich, MA; Repin Klishin, AA, VI; Kokoulin, DI

    2018-03-01

    The specifications of the most popular roofbolters of domestic and foreign manufacture currently in operation in coal mines are discussed. Compressed-air roofbolters SAP and SAP2 designed at the Institute of Mining are capable of drilling in hard rocks. The authors describe the compressed-air rotator of SAP2 roofbolter with alternate motion rotors. From the comparative analysis of characteristics of SAP and SAP 2 roofbolters, the combination of high-frequency axial and rotary impacts on a drilling tool in SAP2 ensure efficient drilling in rocks with the strength up to 160 MPa.

  2. Micro-stress dominant displacive reconstructive transition in lithium aluminate

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Qiwei; Yan, Xiaozhi; Zhang, Leilei; Peng, Fang [Institute of Atomic and Molecular Physics, Sichuan University, 610065 Chengdu (China); Lei, Li, E-mail: lei@scu.edu.cn; He, Duanwei [Institute of Atomic and Molecular Physics, Sichuan University, 610065 Chengdu (China); Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, 610065 Chengdu (China); Li, Xiaodong [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2016-08-15

    It is supposed that diffusive reconstructive transitions usually take place under hydrostatic pressure or low stresses, and displacive reconstructive phase transitions easily occur at nonhydrostatic pressure. Here, by in-situ high pressure synchrotron X-ray diffraction and single-crystal Raman scattering studies on lithium aluminate at room temperature, we show that the reconstructive transition mechanism is dependent on the internal microscopic stresses rather than the macroscopic stresses. In this case, even hydrostatic pressure can favor the displacive transition if the compressibility of crystal is anisotropic. During hydrostatic compression, γ-LiAlO{sub 2} transforms to δ-LiAlO{sub 2} at about 4 GPa, which is much lower than that in previous nonhydrostatic experiments (above 9 GPa). In the region where both phases coexist, there are enormous microscopic stresses stemming from the lattice mismatch, suggesting that this transition is displacive. Furthermore, the atomic picture is drawn with the help of the shear Raman modes.

  3. Evaluation of mammogram compression efficiency

    International Nuclear Information System (INIS)

    Przelaskowski, A.; Surowski, P.; Kukula, A.

    2005-01-01

    quality of 0.6 bpp and 0.1 bpp reconstructions was decreased. The compression performance of the most effective reversible coders is rather unsatisfactory. The subjective rating with the diagnostic criteria of image quality was more sensitive to distortions caused by lossy compression compared with the pathology detection test. The observers constituted 14:1 as the accepted ratio of lossy wavelet compression for test mammograms. This is significantly higher than the mean ratio of 2:1 achieved with lossless methods. (author)

  4. Density ratios in compressions driven by radiation pressure

    International Nuclear Information System (INIS)

    Lee, S.

    1988-01-01

    It has been suggested that in the cannonball scheme of laser compression the pellet may be considered to be compressed by the 'brute force' of the radiation pressure. For such a radiation-driven compression, an energy balance method is applied to give an equation fixing the radius compression ratio K which is a key parameter for such intense compressions. A shock model is used to yield specific results. For a square-pulse driving power compressing a spherical pellet with a specific heat ratio of 5/3, a density compression ratio Γ of 27 is computed. Double (stepped) pulsing with linearly rising power enhances Γ to 1750. The value of Γ is not dependent on the absolute magnitude of the piston power, as long as this is large enough. Further enhancement of compression by multiple (stepped) pulsing becomes obvious. The enhanced compression increases the energy gain factor G for a 100 μm DT pellet driven by radiation power of 10 16 W from 6 for a square pulse power with 0.5 MJ absorbed energy to 90 for a double (stepped) linearly rising pulse with absorbed energy of 0.4 MJ assuming perfect coupling efficiency. (author)

  5. Medical image compression and its application to TDIS-FILE equipment

    International Nuclear Information System (INIS)

    Tsubura, Shin-ichi; Nishihara, Eitaro; Iwai, Shunsuke

    1990-01-01

    In order to compress medical images for filing and communication, we have developed a compression algorithm which compresses images with remarkable quality using a high-pass filtering method. Hardware for this compression algorithm was also developed and applied to TDIS (total digital imaging system)-FILE equipment. In the future, hardware based on this algorithm will be developed for various types of diagnostic equipment and PACS. This technique has the following characteristics: (1) significant reduction of artifacts; (2) acceptable quality for clinical evaluation at 15:1 to 20:1 compression ratio; and (3) high-speed processing and compact hardware. (author)

  6. Poor chest compression quality with mechanical compressions in simulated cardiopulmonary resuscitation: a randomized, cross-over manikin study.

    Science.gov (United States)

    Blomberg, Hans; Gedeborg, Rolf; Berglund, Lars; Karlsten, Rolf; Johansson, Jakob

    2011-10-01

    Mechanical chest compression devices are being implemented as an aid in cardiopulmonary resuscitation (CPR), despite lack of evidence of improved outcome. This manikin study evaluates the CPR-performance of ambulance crews, who had a mechanical chest compression device implemented in their routine clinical practice 8 months previously. The objectives were to evaluate time to first defibrillation, no-flow time, and estimate the quality of compressions. The performance of 21 ambulance crews (ambulance nurse and emergency medical technician) with the authorization to perform advanced life support was studied in an experimental, randomized cross-over study in a manikin setup. Each crew performed two identical CPR scenarios, with and without the aid of the mechanical compression device LUCAS. A computerized manikin was used for data sampling. There were no substantial differences in time to first defibrillation or no-flow time until first defibrillation. However, the fraction of adequate compressions in relation to total compressions was remarkably low in LUCAS-CPR (58%) compared to manual CPR (88%) (95% confidence interval for the difference: 13-50%). Only 12 out of the 21 ambulance crews (57%) applied the mandatory stabilization strap on the LUCAS device. The use of a mechanical compression aid was not associated with substantial differences in time to first defibrillation or no-flow time in the early phase of CPR. However, constant but poor chest compressions due to failure in recognizing and correcting a malposition of the device may counteract a potential benefit of mechanical chest compressions. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  7. Dynamic Compression Experiments on Hydrogen and Deuterium in the Warm Dense Liquid.

    Science.gov (United States)

    Desjarlais, Michael; McCoy, Chad; Cochrane, Kyle; Mattsson, Thomas; Knudson, Marcus; Redmer, Ronald

    2017-06-01

    Recently a shock-ramp platform has been developed on the Z Accelerator to access off-Hugoniot states in liquids. The accelerator delivers a two-step current pulse; the first accelerates the electrode to a constant velocity, which upon impact with the sample cell creates a well-defined shock, the subsequent current rise produces ramp compression from the initially shocked state producing relatively cool (1-2 kK), high pressure (>300 GPa), high compression (10 to 15-fold compression) states. This technique allows experimental access to the region of phase space where hydrogen is predicted to undergo a first-order phase transition from an insulating molecular-like to a conducting atomic-like liquid. Here we discuss the experimental platform, survey various theoretical predictions for the liquid-liquid, insulator-to-metal transition in hydrogen, and present results of experiments on both deuterium and hydrogen that clearly show an abrupt transition to a metallic state. We also present results from recent experiments at higher temperatures (3-4 kK) and compare the observations to both first-principles theory and previous step-wise loading experiments that exhibited a minimum metallic conductivity. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  8. DNABIT Compress – Genome compression algorithm

    OpenAIRE

    Rajarajeswari, Pothuraju; Apparao, Allam

    2011-01-01

    Data compression is concerned with how information is organized in data. Efficient storage means removal of redundancy from the data being stored in the DNA molecule. Data compression algorithms remove redundancy and are used to understand biologically important molecules. We present a compression algorithm, “DNABIT Compress” for DNA sequences based on a novel algorithm of assigning binary bits for smaller segments of DNA bases to compress both repetitive and non repetitive DNA sequence. Our ...

  9. Composition-Structure-Property Relations of Compressed Borosilicate Glasses

    Science.gov (United States)

    Svenson, Mouritz N.; Bechgaard, Tobias K.; Fuglsang, Søren D.; Pedersen, Rune H.; Tjell, Anders Ø.; Østergaard, Martin B.; Youngman, Randall E.; Mauro, John C.; Rzoska, Sylwester J.; Bockowski, Michal; Smedskjaer, Morten M.

    2014-08-01

    Hot isostatic compression is an interesting method for modifying the structure and properties of bulk inorganic glasses. However, the structural and topological origins of the pressure-induced changes in macroscopic properties are not yet well understood. In this study, we report on the pressure and composition dependences of density and micromechanical properties (hardness, crack resistance, and brittleness) of five soda-lime borosilicate glasses with constant modifier content, covering the extremes from Na-Ca borate to Na-Ca silicate end members. Compression experiments are performed at pressures ≤1.0 GPa at the glass transition temperature in order to allow processing of large samples with relevance for industrial applications. In line with previous reports, we find an increasing fraction of tetrahedral boron, density, and hardness but a decreasing crack resistance and brittleness upon isostatic compression. Interestingly, a strong linear correlation between plastic (irreversible) compressibility and initial trigonal boron content is demonstrated, as the trigonal boron units are the ones most disposed for structural and topological rearrangements upon network compaction. A linear correlation is also found between plastic compressibility and the relative change in hardness with pressure, which could indicate that the overall network densification is responsible for the increase in hardness. Finally, we find that the micromechanical properties exhibit significantly different composition dependences before and after pressurization. The findings have important implications for tailoring microscopic and macroscopic structures of glassy materials and thus their properties through the hot isostatic compression method.

  10. Large Eddy Simulation for Compressible Flows

    CERN Document Server

    Garnier, E; Sagaut, P

    2009-01-01

    Large Eddy Simulation (LES) of compressible flows is still a widely unexplored area of research. The authors, whose books are considered the most relevant monographs in this field, provide the reader with a comprehensive state-of-the-art presentation of the available LES theory and application. This book is a sequel to "Large Eddy Simulation for Incompressible Flows", as most of the research on LES for compressible flows is based on variable density extensions of models, methods and paradigms that were developed within the incompressible flow framework. The book addresses both the fundamentals and the practical industrial applications of LES in order to point out gaps in the theoretical framework as well as to bridge the gap between LES research and the growing need to use it in engineering modeling. After introducing the fundamentals on compressible turbulence and the LES governing equations, the mathematical framework for the filtering paradigm of LES for compressible flow equations is established. Instead ...

  11. Microbuckling compression failure of a radiation-induced wood/polymer composite

    International Nuclear Information System (INIS)

    Boey, F.Y.C.

    1990-01-01

    A wood/polymer composite was produced by impregnating Ramin wood with methyl methacrylate monomer and subsequently polymerizing it by gamma irradiation. To assess the improvement in compression strength of the wood caused by the polymer impregnation, a microbuckling compression failure mechanism was used to model the compression failure of the composite. Such a mechanism was found to predict a linear relationship between the compression strength and the percentage polymer impregnation (by weight). Uniaxial compression test results at 45(±5)% and 90(±5)% relative humidity levels, after being statistically analysed, showed that such a linear relationship was valid for up to 100% polymer impregnation. (author)

  12. Hemiparesis caused by vertebral artery compression of the medulla oblongata

    International Nuclear Information System (INIS)

    Kim, Phyo; Takahashi, Hiroshi; Shimizu, Hiroyuki; Yokochi, Masayuki; Ishijima, Buichi

    1984-01-01

    A case is reported of a patient with progressive left hemiparesis due to the vascular compression of the medulla oblongata. Metrizamide CT cisternography revealed the left vertebral artery to be compressing and distorting the left lateral surface of the medulla. This compression was relieved surgically, and the symptoms improved postoperatively. Neurological and symptomatic considerations are discussed in relation to the topographical anatomy of the lateral corticospinal tract. (author)

  13. Compression and fast retrieval of SNP data.

    Science.gov (United States)

    Sambo, Francesco; Di Camillo, Barbara; Toffolo, Gianna; Cobelli, Claudio

    2014-11-01

    The increasing interest in rare genetic variants and epistatic genetic effects on complex phenotypic traits is currently pushing genome-wide association study design towards datasets of increasing size, both in the number of studied subjects and in the number of genotyped single nucleotide polymorphisms (SNPs). This, in turn, is leading to a compelling need for new methods for compression and fast retrieval of SNP data. We present a novel algorithm and file format for compressing and retrieving SNP data, specifically designed for large-scale association studies. Our algorithm is based on two main ideas: (i) compress linkage disequilibrium blocks in terms of differences with a reference SNP and (ii) compress reference SNPs exploiting information on their call rate and minor allele frequency. Tested on two SNP datasets and compared with several state-of-the-art software tools, our compression algorithm is shown to be competitive in terms of compression rate and to outperform all tools in terms of time to load compressed data. Our compression and decompression algorithms are implemented in a C++ library, are released under the GNU General Public License and are freely downloadable from http://www.dei.unipd.it/~sambofra/snpack.html. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. Pattern Transitions in a Soft Cylindrical Shell

    Science.gov (United States)

    Yang, Yifan; Dai, Hui-Hui; Xu, Fan; Potier-Ferry, Michel

    2018-05-01

    Instability patterns of rolling up a sleeve appear more intricate than the ones of walking over a rug on floor, both characterized as systems of uniaxially compressed soft film on stiff substrate. This can be explained by curvature effects. To investigate pattern transitions on a curved surface, we study a soft shell sliding on a rigid cylinder by experiments, computations and theoretical analyses. We reveal a novel postbuckling phenomenon involving multiple successive bifurcations: smooth-wrinkle-ridge-sagging transitions. The shell initially buckles into periodic axisymmetric wrinkles at the threshold and then a wrinkle-to-ridge transition occurs upon further axial compression. When the load increases to the third bifurcation, the amplitude of the ridge reaches its limit and the symmetry is broken with the ridge sagging into a recumbent fold. It is identified that hysteresis loops and the Maxwell equal-energy conditions are associated with the coexistence of wrinkle-ridge or ridge-sagging patterns. Such a bifurcation scenario is inherently general and independent of material constitutive models.

  15. The mechanical vapour compression process applied to seawater desalination

    International Nuclear Information System (INIS)

    Murat, F.; Tabourier, B.

    1984-01-01

    The authors present the mechanical vapour compression process applied to sea water desalination. As an example, the paper presents the largest unit so far constructed by SIDEM using this process : a 1,500 m3/day unit installed in the Nuclear Power Plant of Flamanville in France which supplies a high quality process water to that plant. The authors outline the advantages of this process and present also the serie of mechanical vapour compression unit that SIDEM has developed in a size range in between 25 m3/day and 2,500 m3/day

  16. The buckling transition of two-dimensional elastic honeycombs: numerical simulation and Landau theory

    International Nuclear Information System (INIS)

    Jagla, E A

    2004-01-01

    I study the buckling transition under compression of a two-dimensional, hexagonal, regular elastic honeycomb. Under isotropic compression, the system buckles to a configuration consisting of a unit cell containing four of the original hexagons. This buckling pattern preserves the sixfold rotational symmetry of the original lattice but is chiral, and can be described as a combination of three different elemental distortions in directions rotated by 2π/3 from each other. Non-isotropic compression may induce patterns consisting of a single elemental distortion or a superposition of two of them. The numerical results compare very well with the outcome of a Landau theory of second-order phase transitions

  17. P. W. Bridgman's contributions to the foundations of shock compression of condensed matter

    Energy Technology Data Exchange (ETDEWEB)

    Nellis, W J, E-mail: nellis@physics.harvard.ed [Department of Physics, Harvard University, Cambridge MA 02138 (United States)

    2010-03-01

    Based on his 50-year career in static high-pressure research, P. W. Bridgman (PWB) is the father of modern high-pressure physics. What is not generally recognized is that Bridgman was also intimately connected with establishing shock compression as a scientific tool and he predicted major events in shock research that occurred up to 40 years after his death. In 1956 the first phase transition under shock compression was reported in Fe at 13 GPa (130 kbar). PWB said a phase transition could not occur in a {approx}microsec, thus setting off a controversy. The scientific legitimacy of shock compression resulted 5 years later when static high-pressure researchers confirmed with x-ray diffraction the existence of epsilon-Fe. Once PWB accepted the fact that shock waves generated with chemical explosives were a valid scientific tool, he immediately realized that substantially higher pressures would be achieved with nuclear explosives. He included his ideas for achieving higher pressures in articles published a few years after his death. L. V. Altshuler eventually read Bridgman's articles and pursued the idea of using nuclear explosives to generate super high pressures, which subsequently morphed today into giant lasers. PWB also anticipated combining static and shock methods, which today is done with pre-compression of a soft sample in a diamond anvil cell followed by laser-driven shock compression. One variation of that method is the reverberating-shock technique, in which the first shock pre-compresses a soft sample and subsequent reverberations isentropically compress the first-shocked state.

  18. Compression of Single-Crystal Orthopyroxene to 60GPa

    Science.gov (United States)

    Finkelstein, G. J.; Dera, P. K.; Holl, C. M.; Dorfman, S. M.; Duffy, T. S.

    2010-12-01

    Orthopyroxene ((Mg,Fe)SiO3) is one of the dominant phases in Earth’s upper mantle - it makes up ~20% of the upper mantle by volume. At high pressures and temperatures, this phase undergoes several well-characterized phase transitions. However, when compressed at low temperature and high-pressure, orthopyroxene is predicted to exhibit metastable behavior(1). Previous researchers have found orthoenstatite (Mg endmember of orthopyroxene) persists up to ~10 GPa, and diffraction(2-3), Raman(4), and elasticity(5) experiments suggest a phase transition above this pressure to an as-yet unidentified structure. While earlier diffraction data has surprisingly only been evaluated for structural information to ~9 GPa(2), changes in high-pressure Raman spectra to ~70 GPa indicate that several more high-pressure phase transitions in orthopyroxene are likely, including at least one change in Si-coordination(6). We have recently conducted exploratory experiments to further elucidate the high-pressure behavior of orthopyroxene. Compressing a single crystal of Fe-rich orthopyroxene (Fe0.66Mg0.24Ca0.05SiO3) using a diamond anvil cell, we observe phase transitions at ~10, 14, and 30 GPa, with the new phases having monoclinic, orthorhombic, and orthorhombic symmetries, respectively. While the first two transitions do not show a significant change in volume, the phase transition at ~30 GPa shows a large decrease in volume, which is consistent with a change in Si coordination number to mixed 4- and 6-fold coordination. References: [1] S. Jahn, American Mineralogist 93, 528-532 (2008). [2] R. J. Angel, J. M. Jackson, American Mineralogist 87, 558-561 (2002). [3] R. J. Angel, D. A. Hugh-Jones, Journal of Geophysical Research-Solid Earth 99, 19,777-19,783 (1994). [4] G. Serghiou, Journal of Raman Spectroscopy 34, 587-590 (2003). [5] J. Kung et al., Physics of the Earth and Planetary Interiors 147, 27-44 (2004). [6] G. Serghiou, A. Chopelas, R. Boehler, Journal of Physics: Condensed Matter

  19. Compression of toroidal plasma by imploding plasma-liner

    International Nuclear Information System (INIS)

    Ikuta, Kazunari.

    1979-07-01

    A new concept of compressing a plasma in a closed magnetic configuration by a version of liner implosion flux compression technique is considered. The liner consists of a dense plasma cylinder, i.e. the plasma-liner. Maximum compression ratio of toroidal plasma is determined just by the initial density ratio of the toroidal plasma to the liner plasma because of the Rayleigh-Taylor instability. A start-up senario of plasma-liner is also proposed with a possible application of this concept to the creation of a burning plasma in reversed field configurations, i.e. burning plasma vortex. (author)

  20. Transitional processes: Territorial organization of authorities and the future constitution of Serbia comparative analysis of five constitutional models

    Directory of Open Access Journals (Sweden)

    Despotović Ljubiša M.

    2004-01-01

    Full Text Available In this paper the authors give a comparative analysis of territorial organization of authorities in five constitutional models for Serbia. The paper consists of the following chapters: Introduction, Outline of the Constitution of Kingdom of Serbia, Basic Principles of the New Constitution of Serbia - DSS, Outline of Constitution of Republic of Serbia - DS Constitutional Solutions for Serbia - BCLJP, Project of Constitution of Republic of Serbia - Forum iuris, Conclusion. The analysis of territorial organization of authorities has been seen in the context of the processes of transition and archiving the important principles of civil society and civil autonomies.

  1. Band calculation of lithium cold compression up to 8.8 Gbar

    International Nuclear Information System (INIS)

    Chernov, S.V.

    1988-01-01

    Quantum-mechanical calculation of pressure ''cold'' component at lithium compression from zero pressure up to 8.8 Gbar is carried out by Coring-Kohm-Rostoker method for bcc and fcc lattices. Changing of pressure curve slope at ≅ 5.4 compression degree, which is connected with 2 1/2 order elctron phase transition, is pointed out. Insiguificant oscillation is observed near the curve of Thomas-Fermi-quantum corrections model, connected with deep level displacement into the band. Three regions, where the existance of rarefaction shoch waves is possible, are pointed out

  2. Monte Carlo Simulations of Compressible Ising Models: Do We Understand Them?

    Science.gov (United States)

    Landau, D. P.; Dünweg, B.; Laradji, M.; Tavazza, F.; Adler, J.; Cannavaccioulo, L.; Zhu, X.

    Extensive Monte Carlo simulations have begun to shed light on our understanding of phase transitions and universality classes for compressible Ising models. A comprehensive analysis of a Landau-Ginsburg-Wilson hamiltonian for systems with elastic degrees of freedom resulted in the prediction that there should be four distinct cases that would have different behavior, depending upon symmetries and thermodynamic constraints. We shall provide an account of the results of careful Monte Carlo simulations for a simple compressible Ising model that can be suitably modified so as to replicate all four cases.

  3. High pressure phase transitions in Europous oxide

    International Nuclear Information System (INIS)

    Kremser, D.T.

    1982-01-01

    The pressure-volume relationship for EuO was investigated to 630 kilobars at room temperature with a diamond-anvil, high-pressure cell. Volumes were determined by x-ray diffraction; pressures were determined by the ruby R 1 fluorescence method. The preferred interpretation involves normal compression behavior for EuO, initially in the B1 (NaCl-type) structure, to about 280 kilobars. Between approx. =280 and approx. =350 kilobars a region of anomalous compressibility in which the volume drops continuously by approximately 2% is observed. A second-order electronic transition is proposed with the 6s band overlapping with the 4f levels, thereby reducing the volume of EuO without changing the structure. This is not a semiconductor-to-metal transition. In reflected light, this transition is correlated with a subtle and continuous change in color from brown-black to a light brown. The collapsed B1 phase (postelectronic transition) is stable between approx. =350 and approx. =400 kilobars. At about 400 kilobars the collapsed B1 structure transforms to the B2 (CsCl-type) structure, with a zero pressure-volume change of approximately 12 +/- 1.5%

  4. Effect of the compressive stress on both polarization rotation and phase transitions in PMN-30%PT single crystal

    Directory of Open Access Journals (Sweden)

    Hui Zhang

    2014-05-01

    Full Text Available In this paper, we have investigated the dependence of both the electromechanical effect and the electrostriction on the compressive stress in PMN-30%PT single crystal on the basis of single domain polarization rotation model. In the model, the electroelastic energy induced by the compressive stress is taken into account. The results have demonstrated that the compressive stress can lead to a significant change in the initial polarization state in the crystal. The reason lies in the stress induced anisotropy which is the coupling between the compressive stress and the electrostrictive coefficients. Thus, the initial polarization state in single crystal is determined by the combination of both electrocrystalline anisotropy and the stress induced anisotropy. The compressive stress along the [100] axis can make the polarization in the crystal be perpendicular to the stress direction, and make it difficult to be polarized to the saturation. This model is useful for better understanding both the polarization rotation and electromechanical effect in ferroelectric crystals with the compressive stress present.

  5. ERGC: an efficient referential genome compression algorithm.

    Science.gov (United States)

    Saha, Subrata; Rajasekaran, Sanguthevar

    2015-11-01

    Genome sequencing has become faster and more affordable. Consequently, the number of available complete genomic sequences is increasing rapidly. As a result, the cost to store, process, analyze and transmit the data is becoming a bottleneck for research and future medical applications. So, the need for devising efficient data compression and data reduction techniques for biological sequencing data is growing by the day. Although there exists a number of standard data compression algorithms, they are not efficient in compressing biological data. These generic algorithms do not exploit some inherent properties of the sequencing data while compressing. To exploit statistical and information-theoretic properties of genomic sequences, we need specialized compression algorithms. Five different next-generation sequencing data compression problems have been identified and studied in the literature. We propose a novel algorithm for one of these problems known as reference-based genome compression. We have done extensive experiments using five real sequencing datasets. The results on real genomes show that our proposed algorithm is indeed competitive and performs better than the best known algorithms for this problem. It achieves compression ratios that are better than those of the currently best performing algorithms. The time to compress and decompress the whole genome is also very promising. The implementations are freely available for non-commercial purposes. They can be downloaded from http://engr.uconn.edu/∼rajasek/ERGC.zip. rajasek@engr.uconn.edu. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Development and evaluation of a novel lossless image compression method (AIC: artificial intelligence compression method) using neural networks as artificial intelligence

    International Nuclear Information System (INIS)

    Fukatsu, Hiroshi; Naganawa, Shinji; Yumura, Shinnichiro

    2008-01-01

    This study was aimed to validate the performance of a novel image compression method using a neural network to achieve a lossless compression. The encoding consists of the following blocks: a prediction block; a residual data calculation block; a transformation and quantization block; an organization and modification block; and an entropy encoding block. The predicted image is divided into four macro-blocks using the original image for teaching; and then redivided into sixteen sub-blocks. The predicted image is compared to the original image to create the residual image. The spatial and frequency data of the residual image are compared and transformed. Chest radiography, computed tomography (CT), magnetic resonance imaging, positron emission tomography, radioisotope mammography, ultrasonography, and digital subtraction angiography images were compressed using the AIC lossless compression method; and the compression rates were calculated. The compression rates were around 15:1 for chest radiography and mammography, 12:1 for CT, and around 6:1 for other images. This method thus enables greater lossless compression than the conventional methods. This novel method should improve the efficiency of handling of the increasing volume of medical imaging data. (author)

  7. The CCSDS Lossless Data Compression Algorithm for Space Applications

    Science.gov (United States)

    Yeh, Pen-Shu; Day, John H. (Technical Monitor)

    2001-01-01

    In the late 80's, when the author started working at the Goddard Space Flight Center (GSFC) for the National Aeronautics and Space Administration (NASA), several scientists there were in the process of formulating the next generation of Earth viewing science instruments, the Moderate Resolution Imaging Spectroradiometer (MODIS). The instrument would have over thirty spectral bands and would transmit enormous data through the communications channel. This was when the author was assigned the task of investigating lossless compression algorithms for space implementation to compress science data in order to reduce the requirement on bandwidth and storage.

  8. State safety oversight program : audit of the tri-state oversight committee and the Washington metropolitan area transit authority, final audit report, March 4, 2010.

    Science.gov (United States)

    2010-03-04

    The Federal Transit Administration (FTA) conducted an on-site audit of the safety program implemented by the Washington Metropolitan Area Transit Authority (WMATA) and overseen by the Tri-State Oversight Committee (TOC) between December 14 and 17, 20...

  9. On system behaviour using complex networks of a compression algorithm

    Science.gov (United States)

    Walker, David M.; Correa, Debora C.; Small, Michael

    2018-01-01

    We construct complex networks of scalar time series using a data compression algorithm. The structure and statistics of the resulting networks can be used to help characterize complex systems, and one property, in particular, appears to be a useful discriminating statistic in surrogate data hypothesis tests. We demonstrate these ideas on systems with known dynamical behaviour and also show that our approach is capable of identifying behavioural transitions within electroencephalogram recordings as well as changes due to a bifurcation parameter of a chaotic system. The technique we propose is dependent on a coarse grained quantization of the original time series and therefore provides potential for a spatial scale-dependent characterization of the data. Finally the method is as computationally efficient as the underlying compression algorithm and provides a compression of the salient features of long time series.

  10. Ohmic ignition of Neo-Alcator tokamak with adiabatic compression

    International Nuclear Information System (INIS)

    Inoue, Nobuyuki; Ogawa, Yuichi

    1992-01-01

    Ohmic ignition condition on axis of the DT tokamak plasma heated by minor radius and major radius adiabatic compression is studied assuming parabolic profiles for plasma parameters, elliptic plasma cross section, and Neo-Alcator confinement scaling. It is noticeable that magnetic compression reduces the necessary total plasma current for Ohmic ignition device. Typically in compact ignition tokamak of the minor radius of 0.47 m, major radius of 1.5 m and on-axis toroidal field of 20 T, the plasma current of 6.8 MA is sufficient for compression plasma, while that of 11.7 MA is for no compression plasma. Another example with larger major radius is also described. In such a device the large flux swing of Ohmic transformer is available for long burn. Application of magnetic compression saves the flux swing and thereby extends the burn time. (author)

  11. Boiler: lossy compression of RNA-seq alignments using coverage vectors.

    Science.gov (United States)

    Pritt, Jacob; Langmead, Ben

    2016-09-19

    We describe Boiler, a new software tool for compressing and querying large collections of RNA-seq alignments. Boiler discards most per-read data, keeping only a genomic coverage vector plus a few empirical distributions summarizing the alignments. Since most per-read data is discarded, storage footprint is often much smaller than that achieved by other compression tools. Despite this, the most relevant per-read data can be recovered; we show that Boiler compression has only a slight negative impact on results given by downstream tools for isoform assembly and quantification. Boiler also allows the user to pose fast and useful queries without decompressing the entire file. Boiler is free open source software available from github.com/jpritt/boiler. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. Comparative data compression techniques and multi-compression results

    International Nuclear Information System (INIS)

    Hasan, M R; Ibrahimy, M I; Motakabber, S M A; Ferdaus, M M; Khan, M N H

    2013-01-01

    Data compression is very necessary in business data processing, because of the cost savings that it offers and the large volume of data manipulated in many business applications. It is a method or system for transmitting a digital image (i.e., an array of pixels) from a digital data source to a digital data receiver. More the size of the data be smaller, it provides better transmission speed and saves time. In this communication, we always want to transmit data efficiently and noise freely. This paper will provide some compression techniques for lossless text type data compression and comparative result of multiple and single compression, that will help to find out better compression output and to develop compression algorithms

  13. The α-γ-ɛ triple point and phase boundaries of iron under shock compression

    Science.gov (United States)

    Li, Jun; Wu, Qiang; Xue, Tao; Geng, Huayun; Yu, Jidong; Jin, Ke; Li, Jiabo; Tan, Ye; Xi, Feng

    2017-07-01

    The phase transition of iron under shock compression has attracted much attention in recent decades because of its importance in fields such as condensed matter physics, geophysics, and metallurgy. At room temperature, the transition of iron from the α-phase (bcc) to the ɛ-phase (hpc) occurs at a stress of 13 GPa. At high temperature, a triple point followed by transformation to the γ-phase (fcc) is expected. However, the details of the high-temperature phase transitions of iron are still under debate. Here, we investigate the phase-transition behavior of polycrystalline iron under compression from room temperature to 820 K. The results show that the shock-induced phase transition is determined unequivocally from the measured three-wave-structure profiles, which clearly consist of an elastic wave, a plastic wave, and a phase-transition wave. The phase transition is temperature-dependent, with an average rate Δσtr/ΔT of -6.91 MPa/K below 700 K and -34.7 MPa/K at higher temperatures. The shock α-ɛ and α-γ phase boundaries intersect at 10.6 ± 0.53 GPa and 763 K, which agrees with the α-ɛ-γ triple point from early shock wave experiments and recent laser-heated diamond-anvil cell resistivity and in situ X-ray diffraction data but disagrees with the shock pressure-temperature phase diagram reported in 2009 by Zaretsky [J. Appl. Phys. 106, 023510 (2009)].

  14. Solid solubility, phase transitions, thermal expansion, and compressibility in Sc{sub 1−x}Al{sub x}F{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Morelock, Cody R.; Gallington, Leighanne C. [School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400 (United States); Wilkinson, Angus P., E-mail: angus.wilkinson@chemistry.gatech.edu [School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400 (United States); School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245 (United States)

    2015-02-15

    With the goal of thermal expansion control, the synthesis and properties of Sc{sub 1−x}Al{sub x}F{sub 3} were investigated. The solubility limit of AlF{sub 3} in ScF{sub 3} at ∼1340 K is ∼50%. Solid solutions (x≤0.50) were characterized by synchrotron powder diffraction at ambient pressure between 100 and 900 K and at pressures <0.414 GPa while heating from 298 to 523 K. A phase transition from cubic to rhombohedral is observed. The transition temperature increases smoothly with Al{sup 3+} content, approaching 500 K at the solid solubility limit, and also upon compression at fixed Al{sup 3+} content. The slope of the pressure–temperature phase boundary is ∼0.5 K MPa{sup −1}, which is steep relative to that for most symmetry-lowering phase transitions in perovskites. The volume coefficient of thermal expansion (CTE) for the rhombohedral phase is strongly positive, but the cubic-phase CTE varies from negative (x<0.15) to near-zero (x=0.15) to positive (x>0.20) between ∼600 and 800 K. The cubic solid solutions elastically stiffen on heating, while Al{sup 3+} substitution causes softening at a given temperature. - Graphical abstract: The cubic-phase coefficient of thermal expansion for Sc{sub 1−x}Al{sub x}F{sub 3}(solubility limit ∼50% at ∼1340 K) becomes more positive with increased Al{sup 3+} substitution, but the average isothermal bulk modulus decreases (elastic softening). - Highlights: • The solubility limit of AlF{sub 3} in ScF{sub 3} at ∼1340 K is ∼50%. • The phase transition temperature of Sc{sub 1−x}Al{sub x}F{sub 3} increases smoothly with x. • The cubic-phase volume CTE varies from negative to positive with increasing x. • The cubic solid solutions elastically stiffen on heating. • Al{sup 3+} substitution causes softening at a given temperature.

  15. Space-Efficient Re-Pair Compression

    DEFF Research Database (Denmark)

    Bille, Philip; Gørtz, Inge Li; Prezza, Nicola

    2017-01-01

    Re-Pair [5] is an effective grammar-based compression scheme achieving strong compression rates in practice. Let n, σ, and d be the text length, alphabet size, and dictionary size of the final grammar, respectively. In their original paper, the authors show how to compute the Re-Pair grammar...... in expected linear time and 5n + 4σ2 + 4d + √n words of working space on top of the text. In this work, we propose two algorithms improving on the space of their original solution. Our model assumes a memory word of [log2 n] bits and a re-writable input text composed by n such words. Our first algorithm runs...

  16. Preamplifier-shaper prototype for the Fast Transition Detector of the Compressed Baryonic Matter (CBM) experiment at FAIR

    CERN Document Server

    Soltveit, Hans Kristian

    2007-01-01

    In this work a preamplifier-shaper prototype for the Fast Transition Detector of the Compressed BaryonicMatter (CBM) experiment at FAIR fabricated using a 0.35 μm CMOS technology will be presented. The ASIC integrates 16 identical Charge Sensitive Amplifiers (CSA) followed by a Pole-Zero network, two bridged-T filters, Common-Mode FeedBack (CMFB) network and two non-inverting level shifting stages. The circuit is optimized for a detector capacitance Cd of (5-10)pF. Measurement results confirm the noise of 330 e− + 12 e−/pF obtained in simulations for a pulse with a Full Width Half Maximum (FWHM) of 71 ns. The circuit recovers to the baseline within 200 ns. The conversion gain is 12.64 mV/fC. An integral nonlinearity of 0.7% is also achieved. The maximum output swing is 2 V. The power consumption is 16 mW/channel where the main contributors are the input transistor and the level shifting stage with 5.3 mW and 6.6 mW, respectively. The total area of the chip is 12 mm2. Although the circuit was designed for...

  17. Single-particle dispersion in compressible turbulence

    Science.gov (United States)

    Zhang, Qingqing; Xiao, Zuoli

    2018-04-01

    Single-particle dispersion statistics in compressible box turbulence are studied using direct numerical simulation. Focus is placed on the detailed discussion of effects of the particle Stokes number and turbulent Mach number, as well as the forcing type. When solenoidal forcing is adopted, it is found that the single-particle dispersion undergoes a transition from the ballistic regime at short times to the diffusive regime at long times, in agreement with Taylor's particle dispersion argument. The strongest dispersion of heavy particles is announced when the Stokes number is of order 1, which is similar to the scenario in incompressible turbulence. The dispersion tends to be suppressed as the Mach number increases. When hybrid solenoidal and compressive forcing at a ratio of 1/2 is employed, the flow field shows apparent anisotropic property, characterized by the appearance of large shock wave structures. Accordingly, the single-particle dispersion shows extremely different behavior from the solenoidal forcing case.

  18. Compression for the management of venous leg ulcers: which material do we have?

    Science.gov (United States)

    Partsch, Hugo

    2014-05-01

    Compression therapy is the most important basic treatment modality in venous leg ulcers. The review focusses on the materials which are used: 1. Compression bandages, 2. Compression stockings, 3. Self-adjustable Velcro-devices, 4. Compression pumps, 5. Hybrid devices. Compression bandages, usually applied by trained staff, provide a wide spectrum of materials with different elastic properties. To make bandaging easier, safer and more effective, most modern bandages combine different material components. Self-management of venous ulcers has become feasible by introducing double compression stockings ("ulcer kits") and self-adjustable Velcro devices. Compression pumps can be used as adjunctive measures, especially for patients with restricted mobility. The combination of sustained and intermittent compression ("hybrid device") is a promising new tool. The interface pressure corresponding to the dosage of compression therapy determines the hemodynamic efficacy of each device. In order to reduce ambulatory venous hypertension compression pressures of more than 50 mm Hg in the upright position are desirable. At the same time pressure should be lower in the resting position in order to be tolerated. This prerequisite may be fulfilled by using inelastic, short stretch material including multicomponent bandages and cohesive surfaces, all characterized by high stiffness. Such materials do not give way when calf muscles contract during walking which leads to high peaks of interface pressure ("massaging effect"). © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  19. A mechanochemical study of the effects of compression on a Diels-Alder reaction

    Science.gov (United States)

    Jha, Sanjiv K.; Brown, Katie; Todde, Guido; Subramanian, Gopinath

    2016-08-01

    We examine the effects of compressive external forces on the mechanisms of the parent Diels-Alder (DA) reaction between butadiene and ethylene. Reaction pathways and transition states were calculated using the nudged elastic band method within a mechanochemical framework at the CASSCF(6,6)/6-31G**, as well as the B3LYP/6-311++G** levels of theory. Our results suggest that compressive hydrostatic pressure lowers the energy barrier for the parent DA reaction while suppressing the undesirable side reaction, thereby leading to a direct increase in the yield of cyclohexene. Compressive pressure also increases the exothermicity of the parent DA reaction, which would lead to increased temperatures in a reaction vessel and thereby indirectly increase the yield of cyclohexene. Our estimates indicate that the compression used in our study corresponds to a range of 68 MPa-1410 MPa.

  20. Numerical simulation of compressible multiphase flows with or without phase transition. Application to laser plasma interaction; Modelisation et simulation d'ecoulements multiphasiques compressibles avec ou sans changement de phase. Application a l'interaction laser-plasma

    Energy Technology Data Exchange (ETDEWEB)

    Perrier, V

    2007-07-15

    This work deals with the modelling and simulation of compressible flows. A seven equations model is obtained by homogenizing the Euler system. Fluctuation terms are modeled as relaxation terms. When the relaxation terms tend to infinity, which means that the phases are well mixed, a five equations model is obtained via an asymptotic expansion. This five equations model is strictly hyperbolic, but nonconservative. The discretization of this model is obtained by an asymptotic expansion of a scheme for the seven equations model. The numerical method is implemented, validated on analytic cases, and compared with experiments in the case of multiphase shocks. We are then interested in the modelling of phase transition with two equations of state. Optimization of the mixture entropy leads to the fact that three zones can be separated: one in which the pure liquid is the most stable, one in which the pure gas is the most stable, and one in which a mixture with equality of temperature, pressure and chemical potentials is the most stable. Conditions are given on the coupling of the two equations of state for ensuring that the mixture equation of state is convex, and that the system is strictly hyperbolic. In order to take into account phase transition, a vaporization wave is introduced in the solution of the Riemann problem, that is modeled as a deflagration wave. It is then proved that the usual closure, the Chapman-Jouguet closure, is wrong in general, and a correct closure in the case when both fluids have a perfect gas equation of state. Last, the solution of the Riemann problem is implemented in a multiphase code, and validated on analytic cases. In the same code, models of laser release and thermal conduction are implemented to simulate laser ablation. The results are comparable to the ones obtained with scale laws. The last chapter, fully independent, is concerned with correctors in stochastic homogenization in the case of heavy tails process. (author)

  1. Electrical conductivity measurements in shock compressed liquid nitrogen

    International Nuclear Information System (INIS)

    Hamilton, D.C.; Mitchell, A.C.; Nellis, W.J.

    1985-06-01

    The electrical conductivity of shock compressed liquid nitrogen was measured in the pressure range 20 to 50 GPa using a two-stage light-gas gun. The conductivities covered a range 4 x 10 -2 to 1 x 10 2 ohm -1 cm -1 . The data are discussed in terms of a liquid semiconductor model below the onset of the dissociative phase transition at 30 GPa. 15 refs., 1 fig

  2. Data compression of digital X-ray images from a clinical viewpoint

    International Nuclear Information System (INIS)

    Ando, Yutaka

    1992-01-01

    For the PACS (picture archiving and communication system), large storage capacity recording media and a fast data transfer network are necessary. When the PACS are working, these technology requirements become an large problem. So we need image data compression having a higher recording efficiency media and an improved transmission ratio. There are two kinds of data compression methods, one is reversible compression and other is the irreversible one. By these reversible compression methods, a compressed-expanded image is exactly equal to the original image. The ratio of data compression is about between 1/2 an d1/3. On the other hand, for irreversible data compression, the compressed-expanded image is a distorted image, and we can achieve a high compression ratio by using this method. In the medical field, the discrete cosine transform (DCT) method is popular because of the low distortion and fast performance. The ratio of data compression is actually from 1/10 to 1/20. It is important for us to decide the compression ratio according to the purposes and modality of the image. We must carefully select the ratio of the data compression because the suitable compression ratio alters in the usage of image for education, clinical diagnosis and reference. (author)

  3. Efficient Lossy Compression for Compressive Sensing Acquisition of Images in Compressive Sensing Imaging Systems

    Directory of Open Access Journals (Sweden)

    Xiangwei Li

    2014-12-01

    Full Text Available Compressive Sensing Imaging (CSI is a new framework for image acquisition, which enables the simultaneous acquisition and compression of a scene. Since the characteristics of Compressive Sensing (CS acquisition are very different from traditional image acquisition, the general image compression solution may not work well. In this paper, we propose an efficient lossy compression solution for CS acquisition of images by considering the distinctive features of the CSI. First, we design an adaptive compressive sensing acquisition method for images according to the sampling rate, which could achieve better CS reconstruction quality for the acquired image. Second, we develop a universal quantization for the obtained CS measurements from CS acquisition without knowing any a priori information about the captured image. Finally, we apply these two methods in the CSI system for efficient lossy compression of CS acquisition. Simulation results demonstrate that the proposed solution improves the rate-distortion performance by 0.4~2 dB comparing with current state-of-the-art, while maintaining a low computational complexity.

  4. Development of ultra-short high voltage pulse technology using magnetic pulse compression

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Byung Heon; Kim, S. G.; Nam, S. M.; Lee, B. C.; Lee, S. M.; Jeong, Y. U.; Cho, S. O.; Jin, J. T.; Choi, H. L

    1998-01-01

    The control circuit for high voltage switches, the saturable inductor for magnetic assist, and the magnetic pulse compression circuit were designed, constructed, and tested. The core materials of saturable inductors in magnetic pulse compression circuit were amorphous metal and ferrite and total compression stages were 3. By the test, in high repetition rate, high pulse compression were certified. As a result of this test, it became possible to increase life-time of thyratrons and to replace thyratrons by solid-state semiconductor switches. (author). 16 refs., 16 tabs.

  5. Development of ultra-short high voltage pulse technology using magnetic pulse compression

    International Nuclear Information System (INIS)

    Cha, Byung Heon; Kim, S. G.; Nam, S. M.; Lee, B. C.; Lee, S. M.; Jeong, Y. U.; Cho, S. O.; Jin, J. T.; Choi, H. L.

    1998-01-01

    The control circuit for high voltage switches, the saturable inductor for magnetic assist, and the magnetic pulse compression circuit were designed, constructed, and tested. The core materials of saturable inductors in magnetic pulse compression circuit were amorphous metal and ferrite and total compression stages were 3. By the test, in high repetition rate, high pulse compression were certified. As a result of this test, it became possible to increase life-time of thyratrons and to replace thyratrons by solid-state semiconductor switches. (author). 16 refs., 16 tabs

  6. Magni: A Python Package for Compressive Sampling and Reconstruction of Atomic Force Microscopy Images

    Directory of Open Access Journals (Sweden)

    Christian Schou Oxvig

    2014-10-01

    Full Text Available Magni is an open source Python package that embraces compressed sensing and Atomic Force Microscopy (AFM imaging techniques. It provides AFM-specific functionality for undersampling and reconstructing images from AFM equipment and thereby accelerating the acquisition of AFM images. Magni also provides researchers in compressed sensing with a selection of algorithms for reconstructing undersampled general images, and offers a consistent and rigorous way to efficiently evaluate the researchers own developed reconstruction algorithms in terms of phase transitions. The package also serves as a convenient platform for researchers in compressed sensing aiming at obtaining a high degree of reproducibility of their research.

  7. Physical and numerical modelling of low mach number compressible flows

    International Nuclear Information System (INIS)

    Paillerre, H.; Clerc, S.; Dabbene, F.; Cueto, O.

    1999-01-01

    This article reviews various physical models that may be used to describe compressible flow at low Mach numbers, as well as the numerical methods developed at DRN to discretize the different systems of equations. A selection of thermal-hydraulic applications illustrate the need to take into account compressibility and multidimensional effects as well as variable flow properties. (authors)

  8. 30 CFR 75.1730 - Compressed air; general; compressed air systems.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Compressed air; general; compressed air systems... Compressed air; general; compressed air systems. (a) All pressure vessels shall be constructed, installed... Safety and Health district office. (b) Compressors and compressed-air receivers shall be equipped with...

  9. Unregulated emissions from compressed natural gas (CNG) transit buses configured with and without oxidation catalyst.

    Science.gov (United States)

    Okamoto, Robert A; Kado, Norman Y; Kuzmicky, Paul A; Ayala, Alberto; Kobayashi, Reiko

    2006-01-01

    The unregulated emissions from two in-use heavy-duty transit buses fueled by compressed natural gas (CNG) and equipped with oxidation catalyst (OxiCat) control were evaluated. We tested emissions from a transit bus powered by a 2001 Cummins Westport C Gas Plus 8.3-L engine (CWest), which meets the California Air Resources Board's (CARB) 2002 optional NOx standard (2.0 g/bhp-hr). In California, this engine is certified only with an OxiCat, so our study did not include emissions testing without it. We also tested a 2000 New Flyer 40-passenger low-floor bus powered by a Detroit Diesel series 50G engine (DDCs50G) that is currently certified in California without an OxiCat. The original equipment manufacturer (OEM) offers a "low-emission" package for this bus that includes an OxiCat for transit bus applications, thus, this configuration was also tested in this study. Previously, we reported that formaldehyde and other volatile organic emissions detected in the exhaust of the DDCs50G bus equipped with an OxiCat were significantly reduced relative to the same DDCs50G bus without OxiCat. In this paper, we examine othertoxic unregulated emissions of significance. The specific mutagenic activity of emission sample extracts was examined using the microsuspension assay. The total mutagenic activity of emissions (activity per mile) from the OxiCat-equipped DDC bus was generally lower than that from the DDC bus without the OxiCat. The CWest bus emission samples had mutagenic activity that was comparable to that of the OxiCat-equipped DDC bus. In general, polycyclic aromatic hydrocarbon (PAH) emissions were lower forthe OxiCat-equipped buses, with greater reductions observed for the volatile and semivolatile PAH emissions. Elemental carbon (EC) was detected in the exhaust from the all three bus configurations, and we found that the total carbon (TC) composition of particulate matter (PM) emissions was primarily organic carbon (OC). The amount of carbon emissions far exceeded the

  10. Experimental investigation of dynamic compression and spallation of Cerium at pressures up to 6 GPa

    Science.gov (United States)

    Zubareva, A. N.; Kolesnikov, S. A.; Utkin, A. V.

    2014-05-01

    In this study the experiments on one-dimensional dynamic compression of Cerium (Ce) samples to pressures of 0.5 to 6 GPa using various types of explosively driven generators were conducted. VISAR laser velocimeter was used to obtain Ce free surface velocity profiles. The isentropic compression wave was registered for γ-phase of Ce at pressures lower than 0.76 GPa that corresponds to γ-α phase transition pressure in Ce. Shock rarefaction waves were also registered in several experiments. Both observations were the result of the anomalous compressibility of γ-phase of Ce. On the basis of our experimental results the compression isentrope of Ce γ-phase was constructed. Its comparison with volumetric compression curves allowed to estimate the magnitude of shear stress at dynamic compression conditions for Ce. Spall strength measurements were also conducted for several samples. They showed a strong dependence of the spall strength of Ce on the strain rate.

  11. Experimental investigation of dynamic compression and spallation of cerium at pressures up to 6 GPa

    International Nuclear Information System (INIS)

    Zubareva, A N; Kolesnikov, S A; Utkin, A V

    2014-01-01

    In this study the experiments on one-dimensional dynamic compression of Cerium (Ce) samples to pressures of 0.5 to 6 GPa using various types of explosively driven generators were conducted. VISAR laser velocimeter was used to obtain Ce free surface velocity profiles. The isentropic compression wave was registered for γ-phase of Ce at pressures lower than 0.76 GPa that corresponds to γ-α phase transition pressure in Ce. Shock rarefaction waves were also registered in several experiments. Both observations were the result of the anomalous compressibility of γ-phase of Ce. On the basis of our experimental results the compression isentrope of Ce γ-phase was constructed. Its comparison with volumetric compression curves allowed to estimate the magnitude of shear stress at dynamic compression conditions for Ce. Spall strength measurements were also conducted for several samples. They showed a strong dependence of the spall strength of Ce on the strain rate.

  12. Mesoscopic analyses of porous concrete under static compression and drop weight impact tests

    DEFF Research Database (Denmark)

    Agar Ozbek, A.S.; Pedersen, R.R.; Weerheijm, J.

    2008-01-01

    was considered as a four-phase material incorporating aggregates, bulk cement paste, interfacial transition zones and meso-size air pores. The stress-displacement relations obtained from static compression tests, the stress values, and the corresponding damage levels provided by the drop weight impact tests were......The failure process in highly porous concrete was analyzed experimentally and numerically. A triaxial visco-plastic damage model and a mesoscale representation of the material composition were considered to reproduce static compression and drop weight impact tests. In the mesoscopic model, concrete...

  13. Coabsorbent and thermal recovery compression heat pumping technologies

    CERN Document Server

    Staicovici, Mihail-Dan

    2014-01-01

    This book introduces two of the most exciting heat pumping technologies, the coabsorbent and the thermal recovery (mechanical vapor) compression, characterized by a high potential in primary energy savings and environmental protection. New cycles with potential applications of nontruncated, truncated, hybrid truncated, and multi-effect coabsorbent types are introduced in this work.   Thermal-to-work recovery compression (TWRC) is the first of two particular methods explored here, including how superheat is converted into work, which diminishes the compressor work input. In the second method, thermal-to-thermal recovery compression (TTRC), the superheat is converted into useful cooling and/or heating, and added to the cycle output effect via the coabsorbent technology. These and other methods of discharge gas superheat recovery are analyzed for single-, two-, three-, and multi-stage compression cooling and heating, ammonia and ammonia-water cycles, and the effectiveness results are given.  The author presen...

  14. SunLine Transit Agency Fuel Cell Transit Bus: Fourth Evaluation Report (Report and Appendices)

    Energy Technology Data Exchange (ETDEWEB)

    Chandler, K.; Eudy, L.

    2009-01-01

    This report describes operations at SunLine Transit Agency for a prototype fuel cell bus and five new compressed natural gas (CNG) buses. This is the fourth evaluation report for this site, and it describes results and experiences from April 2008 through October 2008. These results are an addition to those provided in the previous three evaluation reports.

  15. SunLine Transit Agency Fuel Cell Transit Bus: Fifth Evaluation Report (Report and Appendices)

    Energy Technology Data Exchange (ETDEWEB)

    Eudy, L.; Chandler, K.

    2009-08-01

    This report describes operations at SunLine Transit Agency for a prototype fuel cell bus and five compressed natural gas (CNG) buses. This is the fifth evaluation report for this site, and it describes results and experiences from October 2008 through June 2009. These results are an addition to those provided in the previous four evaluation reports.

  16. Jamming Transition: Heptagons, Pentagons, and Discs

    Directory of Open Access Journals (Sweden)

    Xu Yuanyuan

    2017-01-01

    Full Text Available The jamming behavior of a system composed of discs has been well documented. However, it remains unclear how a granular system consisting of non-spherical particles transitions between unjammed and jammed states. Here, we present compression experiments to study the jamming transition of 2D granular materials composed of photoelastic heptagonal particles and compare these results to data for discs and pentagons. We determine the critical packing fraction of heptagons and make a comparison to discs and pentagons. In the experiment, we subject 618 heptagonal particles to cyclic compression. We track the motion (inlcuding rotations of the particles, and we measure forces on particles by photoelasticity. We observe a power law relationship between the average contact number (Z and the pressure (P. Furthermore, we classify the type of contacts by the relative orientation of pairs of contacting particles (creating point-to-face and face-to-face contacts, and we explore the evolution of the contacts during jamming.

  17. NRGC: a novel referential genome compression algorithm.

    Science.gov (United States)

    Saha, Subrata; Rajasekaran, Sanguthevar

    2016-11-15

    Next-generation sequencing techniques produce millions to billions of short reads. The procedure is not only very cost effective but also can be done in laboratory environment. The state-of-the-art sequence assemblers then construct the whole genomic sequence from these reads. Current cutting edge computing technology makes it possible to build genomic sequences from the billions of reads within a minimal cost and time. As a consequence, we see an explosion of biological sequences in recent times. In turn, the cost of storing the sequences in physical memory or transmitting them over the internet is becoming a major bottleneck for research and future medical applications. Data compression techniques are one of the most important remedies in this context. We are in need of suitable data compression algorithms that can exploit the inherent structure of biological sequences. Although standard data compression algorithms are prevalent, they are not suitable to compress biological sequencing data effectively. In this article, we propose a novel referential genome compression algorithm (NRGC) to effectively and efficiently compress the genomic sequences. We have done rigorous experiments to evaluate NRGC by taking a set of real human genomes. The simulation results show that our algorithm is indeed an effective genome compression algorithm that performs better than the best-known algorithms in most of the cases. Compression and decompression times are also very impressive. The implementations are freely available for non-commercial purposes. They can be downloaded from: http://www.engr.uconn.edu/~rajasek/NRGC.zip CONTACT: rajasek@engr.uconn.edu. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Guidelines for clinical studies with compression devices in patients with venous disorders of the lower limb.

    Science.gov (United States)

    Rabe, E; Partsch, H; Jünger, M; Abel, M; Achhammer, I; Becker, F; Cornu-Thenard, A; Flour, M; Hutchinson, J; Issberner, K; Moffatt, Ch; Pannier, F

    2008-04-01

    The scientific quality of published clinical trials is generally poor in studies where compression devices have been assessed in the management of venous disease. The authors' aim was to establish a set of guidelines which could be used in the design of future clinical trials of compression treatments for venous diseases. Consensus conference leading to a consensus statement. The authors form a expert consensus group known as the International Compression Club (ICC). This group obtained published medical literature in the field of compression treatment in venous disease by searching medical literature databases. The literature was studied by the group which attended a consensus meeting. A draft document was circulated to ICC members and revised until agreement between contributors was reached. The authors have prepared a set of guidelines which should be given consideration when conducting studies to assess the efficacy of compression in venous disease. The form of compression therapy including the comparators used in the clinical study must be clearly characterised. In future studies the characteristics of the material provided by the manufacturer should be described including in vivo data on pressure and stiffness of the final compression system. The pressure exerted on the distal lower leg should be stated in mmHg and the method of pressure determination must be quoted.

  19. Spinal cord compression due to metastases

    International Nuclear Information System (INIS)

    Azevedo, C.M. de; Matushita, J.P.K.; Silva, M.A.F. da; Koch, H.A.

    1986-01-01

    A study of 20 patients with medullary compression syndrome due to lesions not related to the central nervous system is presented. Plain films of the spine and myelography are made to determine the level of osseous involvement, the level of the spinal block and to planning radiotherapy. (Author) [pt

  20. Compression and decompression of digital seismic waveform data for storage and communication

    International Nuclear Information System (INIS)

    Bhadauria, Y.S.; Kumar, Vijai

    1991-01-01

    Two different classes of data compression schemes, namely physical data compression schemes and logical data compression schemes are examined for their use in storage and communication of digital seismic waveform data. In physical data compression schemes, the physical size of the waveform is reduced. One, therefore, gets only a broad picture of the original waveform, when the data are retrieved and the waveform is reconstituted. Coerrelation between original and decompressed waveform varies inversely with the data compresion ratio. In the logical data compression schemes, the data are stored in a logically encoded form. Storage of unnecessary characters like blank space is avoided. On decompression original data are retrieved and compression error is nil. Three algorithms of logical data compression schemes have been developed and studied. These are : 1) optimum formatting schemes, 2) differential bit reduction scheme, and 3) six bit compression scheme. Results of the above three algorithms of logical compression class are compared with those of physical compression schemes reported in literature. It is found that for all types of data, six bit compression scheme gives the highest value of data compression ratio. (author). 6 refs., 8 figs., 1 appendix, 2 tabs

  1. Inversion of spin levels in Ni sup 2 sup + : Zn(BF sub 4) sub 2 centre dot 6H sub 2 O at all -round compression and effect of transition coincidence

    CERN Document Server

    Krygin, I M; Nejlo, G N; Prokhorov, A D

    2001-01-01

    The study of the EPR spectrum of the Ni sup 2 sup + ion, replacing Zn sup 2 sup + in the Zn(BF sub 4) centre dot 6H sub 2 O crystals in the wide temperature range by the all-round compression in the X- and Q-ranges is carried out. The basic changes by varying temperature and pressure occur with the D parameter, characterizing the initial splitting by practically unchanged g-factor. The increase in the temperature is accompanied by the D nonlinear growth. The all-round compression linearly changes the initial splitting and leads to the change in the D-sign, signifying the spin levels inversion by 3.5 kbar. Coincidence of EPR lines, relative to different transitions, leads to the crevasse appearance in the outline of this one, that is connected with cross-relaxation inside the spin system

  2. Performance evaluation of breast image compression techniques

    International Nuclear Information System (INIS)

    Anastassopoulos, G.; Lymberopoulos, D.; Panayiotakis, G.; Bezerianos, A.

    1994-01-01

    Novel diagnosis orienting tele working systems manipulate, store, and process medical data through real time communication - conferencing schemes. One of the most important factors affecting the performance of these systems is image handling. Compression algorithms can be applied to the medical images, in order to minimize : a) the volume of data to be stored in the database, b) the demanded bandwidth from the network, c) the transmission costs, and to minimize the speed of the transmitted data. In this paper an estimation of all the factors of the process that affect the presentation of breast images is made, from the time the images are produced from a modality, till the compressed images are stored, or transmitted in a Broadband network (e.g. B-ISDN). The images used were scanned images of the TOR(MAX) Leeds breast phantom, as well as typical breast images. A comparison of seven compression techniques has been done, based on objective criteria such as Mean Square Error (MSE), resolution, contrast, etc. The user can choose the appropriate compression ratio in order to achieve the desired image quality. (authors)

  3. Overcrowding drives the unjamming transition of gap-free monolayers

    Science.gov (United States)

    Lan, Ganhui; Su, Tao

    Collective cell motility plays central roles in various biological phenomena such as wound healing, cancer metastasis and embryogenesis. These are demonstrations of the unjamming transition in biology. However, contradictory to the typical density-driven jamming in particulate assemblies, cellular systems often get unjammed in highly packed, sometimes overcrowding environments. Here, we investigate monolayers' collective behaviors when cell number changes under the gap-free constraint. We report that overcrowding can unjam gap-free monolayers through increasing isotropic compression. We show that the transition boundary is determined by the isotropic compression and the cell-cell adhesion. Furthermore, we construct the free energy landscape for the T1 topological transition during monolayer rearrangement, and discover that the landscape evolves from single-barrier W shape to double-barrier M shape during the unjamming process. We also discover a distributed-to-disordered morphological transition of cells' geometry, coinciding with the unjamming transition. Our analyses reveal that the overcrowding and adhesion induced unjamming reflects the mechanical yielding of the highly deformable monolayer, suggesting an alternative mechanism that cells may robustly gain collective mobility through proliferation in confined environments, which differs from those caused by loosing up a packed particulate assembly. This work is supported by the GWU College Facilitating Funds.

  4. SeqCompress: an algorithm for biological sequence compression.

    Science.gov (United States)

    Sardaraz, Muhammad; Tahir, Muhammad; Ikram, Ataul Aziz; Bajwa, Hassan

    2014-10-01

    The growth of Next Generation Sequencing technologies presents significant research challenges, specifically to design bioinformatics tools that handle massive amount of data efficiently. Biological sequence data storage cost has become a noticeable proportion of total cost in the generation and analysis. Particularly increase in DNA sequencing rate is significantly outstripping the rate of increase in disk storage capacity, which may go beyond the limit of storage capacity. It is essential to develop algorithms that handle large data sets via better memory management. This article presents a DNA sequence compression algorithm SeqCompress that copes with the space complexity of biological sequences. The algorithm is based on lossless data compression and uses statistical model as well as arithmetic coding to compress DNA sequences. The proposed algorithm is compared with recent specialized compression tools for biological sequences. Experimental results show that proposed algorithm has better compression gain as compared to other existing algorithms. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Uniaxial compression on the superconductivity of {beta}-BDA-TTP salts

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Hiroshi; Ishihara, Tetsuo; Tanaka, Hisaaki; Kuroda, Shin-ichi [Department of Applied Physics, Nagoya University, Chikusa, Nagoya, 464-8603 (Japan); Yamada, Jun-ichi [Department of Material Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Hyogo 678-1297 (Japan)], E-mail: ito@nuap.nagoya-u.ac.jp

    2008-10-15

    The {beta}-type BDA-TTP superconductors attract attention due to the high transition temperature Tc at ambient pressure for organic superconductors. In order to get insight into the superconductivity in terms of the dimerized anisotropic triangular lattice model, Tc of {beta}-(BDA-TTP){sub 2}X [X = SbF{sub 6}, X = AsF{sub 6}] is studied under uniaxial compression by resistivity measurements. Under compression parallel to the donor stack, Tc increases gradually up to 3 (X = SbF{sub 6}), 5 (X = AsF{sub 6}) kbar, and decreases under further piston pressure. Under compression perpendicular to the donor stack, Tc decreases gradually up to 2.5 (X = SbF{sub 6}), 4 (X = AsF{sub 6}) kbar and then decreases rapidly under further pressure. Only for X = AsF{sub 6}, a Tc minimum at 3 kbar is found for both direction. These trends in Tc are understood as an interplay between the enhancement of antiferromagnetic spin fluctuation and frustration on the triangular lattice. By the interplane compression, Tc increased by 0.5 K up to 2 kbar for both salts, demonstrating the importance of the interlayer interaction.

  6. Uniaxial compression on the superconductivity of β-BDA-TTP salts

    International Nuclear Information System (INIS)

    Ito, Hiroshi; Ishihara, Tetsuo; Tanaka, Hisaaki; Kuroda, Shin-ichi; Yamada, Jun-ichi

    2008-01-01

    The β-type BDA-TTP superconductors attract attention due to the high transition temperature Tc at ambient pressure for organic superconductors. In order to get insight into the superconductivity in terms of the dimerized anisotropic triangular lattice model, Tc of β-(BDA-TTP) 2 X [X = SbF 6 , X = AsF 6 ] is studied under uniaxial compression by resistivity measurements. Under compression parallel to the donor stack, Tc increases gradually up to 3 (X = SbF 6 ), 5 (X = AsF 6 ) kbar, and decreases under further piston pressure. Under compression perpendicular to the donor stack, Tc decreases gradually up to 2.5 (X = SbF 6 ), 4 (X = AsF 6 ) kbar and then decreases rapidly under further pressure. Only for X = AsF 6 , a Tc minimum at 3 kbar is found for both direction. These trends in Tc are understood as an interplay between the enhancement of antiferromagnetic spin fluctuation and frustration on the triangular lattice. By the interplane compression, Tc increased by 0.5 K up to 2 kbar for both salts, demonstrating the importance of the interlayer interaction.

  7. Uniaxial compression on the superconductivity of β-BDA-TTP salts

    Science.gov (United States)

    Ito, Hiroshi; Ishihara, Tetsuo; Tanaka, Hisaaki; Kuroda, Shin-ichi; Yamada, Jun-ichi

    2008-10-01

    The β-type BDA-TTP superconductors attract attention due to the high transition temperature Tc at ambient pressure for organic superconductors. In order to get insight into the superconductivity in terms of the dimerized anisotropic triangular lattice model, Tc of β-(BDA-TTP)2X [X = SbF6, X = AsF6] is studied under uniaxial compression by resistivity measurements. Under compression parallel to the donor stack, Tc increases gradually up to 3 (X = SbF6), 5 (X = AsF6) kbar, and decreases under further piston pressure. Under compression perpendicular to the donor stack, Tc decreases gradually up to 2.5 (X = SbF6), 4 (X = AsF6) kbar and then decreases rapidly under further pressure. Only for X = AsF6, a Tc minimum at 3 kbar is found for both direction. These trends in Tc are understood as an interplay between the enhancement of antiferromagnetic spin fluctuation and frustration on the triangular lattice. By the interplane compression, Tc increased by 0.5 K up to 2 kbar for both salts, demonstrating the importance of the interlayer interaction.

  8. Compressibility effects in the shear layer over a rectangular cavity

    Energy Technology Data Exchange (ETDEWEB)

    Beresh, Steven J.; Wagner, Justin; Casper, Katya Marie

    2016-10-26

    we studied the influence of compressibility on the shear layer over a rectangular cavity of variable width in a free stream Mach number range of 0.6–2.5 using particle image velocimetry data in the streamwise centre plane. As the Mach number increases, the vertical component of the turbulence intensity diminishes modestly in the widest cavity, but the two narrower cavities show a more substantial drop in all three components as well as the turbulent shear stress. Furthermore, this contrasts with canonical free shear layers, which show significant reductions in only the vertical component and the turbulent shear stress due to compressibility. The vorticity thickness of the cavity shear layer grows rapidly as it initially develops, then transitions to a slower growth rate once its instability saturates. When normalized by their estimated incompressible values, the growth rates prior to saturation display the classic compressibility effect of suppression as the convective Mach number rises, in excellent agreement with comparable free shear layer data. The specific trend of the reduction in growth rate due to compressibility is modified by the cavity width.

  9. Molecular dynamics simulations of tension–compression asymmetry in nanocrystalline copper

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Kai, E-mail: kaizhou@aliyun.com; Liu, Bin; Shao, Shaofeng; Yao, Yijun

    2017-04-04

    Molecular dynamics simulations are used to investigate uniaxial tension and compression of nanocrystalline copper with mean grain sizes of 3.8–11.9 nm. The simulation results show an apparent asymmetry in the flow stress, with nanocrystalline copper stronger in compression than in tension. The asymmetry exhibits a maximum at the mean grain size of about 10 nm. The dominant mechanism of the asymmetry depends on the mean grain size. At small grain sizes, grain-boundary based plasticity dominates the asymmetry, while for large grain sizes the asymmetry mainly arises from the pressure dependent dislocation emission from grain boundaries. - Highlights: • The tension–compression asymmetry in strength exhibits a maximum at the mean grain size of about 10 nm. • The main mechanisms govern the asymmetry are grain-boundary mediated plasticity and dislocation based plasticity. • The above-mentioned mechanisms are both grain size and pressure dependent. • The transition of the asymmetry with the mean grain size is not influenced by strain rate.

  10. Pressure-induced phase transitions in acentric BaHf(BO{sub 3}){sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Mączka, Mirosław, E-mail: m.maczka@int.pan.wroc.pl [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wrocław 2 (Poland); Szymborska-Małek, Katarzyna [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wrocław 2 (Poland); Sousa Pinheiro, Gardenia de [Departamento de Física, Universidade Federal do Piauí, Teresina, PI 64049-550 (Brazil); Cavalcante Freire, Paulo Tarso [Departamento de Fisica, Universidade Federal do Ceara, Fortaleza CE-60455-970 (Brazil); Majchrowski, Andrzej [Institute of Applied Physics, Military University of Technology, 2 Kaliskiego Street, 00-908 Warszawa (Poland)

    2015-08-15

    High-pressure Raman scattering studies revealed that BaHf(BO{sub 3}){sub 2} is more compressible than calcite-type orthoborates and calcite, aragonite or dolomite carbonates. It undergoes a first-order reversible pressure-induced phase transition in the 3.9–4.4 GPa pressure range. Second structural change is observed at 9.2 GPa. The intermediate phase is most likely trigonal. However, Raman results suggest increase in the number of distinct BO{sub 3} groups from two in the ambient pressure phase to at least three in the intermediate phase. This intermediate phase is also strongly compressible and strong pressure dependence of the lattice modes proves that the main changes under pressure occur within the layers built from BaO{sub 6} and HfO{sub 6} octahedra. The second phase transition leads most likely to lowering of the trigonal symmetry, as evidenced by significant increase of the number of observed bands. The pressure coefficients of the Raman bands of the high-pressure phase are relatively small, suggesting more dense arrangement of the metal–oxygen polyhedra and BO{sub 3} groups in this phase. It is worth noting that the high-pressure phase was not reached in the second compression experiment up to 10 GPa. This behavior can be most likely attributed to worse hydrostatic conditions of the first experiment. - Graphical abstract: Raman spectra of BaHf(BO{sub 3}){sub 2} recorded at different pressures during compression showing onset of pressure-induced phase transitions. - Highlights: • High-pressure Raman spectra were measured for BaHf(BO{sub 3}){sub 2.} • BaHf(BO{sub 3}){sub 2} undergoes a reversible first-order phase transition at 3.9–4.4 GPa into a trigonal phase. • The intermediate trigonal phase is strongly compressible second structural transformation is observed at 9.2 GPa under non-perfect hydrostatic conditions.

  11. 'Second' Ehrenfest equation for second order phase transition under hydrostatic pressure

    Science.gov (United States)

    Moin, Ph. B.

    2018-02-01

    It is shown that the fundamental conditions for the second-order phase transitions ? and ?, from which the two Ehrenfest equations follow (the 'usual' and the 'second' ones), are realised only at zero hydrostatic pressure (?). At ? the volume jump ΔV at the transition is proportional to the pressure and to the jump of the compressibility ΔζV, whereas the entropy jump ΔS is proportional to the pressure and to the jump of the thermal expansion coefficient ΔαV. This means that at non-zero hydrostatic pressure the phase transition is of the first order and is described by the Clausius-Clapeyron equation. At small pressure this equation coincides with the 'second' Ehrenfest equation ?. At high P, the Clausius-Clapeyron equation describes qualitatively the caused by the crystal compression positive curvature of the ? dependence.

  12. The surface compression of nuclei in relativistic mean-field approach

    International Nuclear Information System (INIS)

    Sharma, M.M.

    1991-01-01

    The surface compression properties of nuclei have been studied in the framework of the relativistic non-linear σ-ω model. Using the Thomas-Fermi approximation for semi-infinite nuclear matter, it is shown that by varying the σ-meson mass one can change the surface compression as relative to the bulk compression. This fact is in contrast with the known properties of the phenomenological Skyrme interactions, where the ratio of the surface to the bulk incompressibility (-K S /K V ) is nearly 1 in the scaling mode of compression. The results suggest that the relativistic mean-field model may provide an interaction with the essential ingredients different from those of the Skyrme interactions. (author) 23 refs., 2 figs., 1 tab

  13. High-speed and high-ratio referential genome compression.

    Science.gov (United States)

    Liu, Yuansheng; Peng, Hui; Wong, Limsoon; Li, Jinyan

    2017-11-01

    The rapidly increasing number of genomes generated by high-throughput sequencing platforms and assembly algorithms is accompanied by problems in data storage, compression and communication. Traditional compression algorithms are unable to meet the demand of high compression ratio due to the intrinsic challenging features of DNA sequences such as small alphabet size, frequent repeats and palindromes. Reference-based lossless compression, by which only the differences between two similar genomes are stored, is a promising approach with high compression ratio. We present a high-performance referential genome compression algorithm named HiRGC. It is based on a 2-bit encoding scheme and an advanced greedy-matching search on a hash table. We compare the performance of HiRGC with four state-of-the-art compression methods on a benchmark dataset of eight human genomes. HiRGC takes compress about 21 gigabytes of each set of the seven target genomes into 96-260 megabytes, achieving compression ratios of 217 to 82 times. This performance is at least 1.9 times better than the best competing algorithm on its best case. Our compression speed is also at least 2.9 times faster. HiRGC is stable and robust to deal with different reference genomes. In contrast, the competing methods' performance varies widely on different reference genomes. More experiments on 100 human genomes from the 1000 Genome Project and on genomes of several other species again demonstrate that HiRGC's performance is consistently excellent. The C ++ and Java source codes of our algorithm are freely available for academic and non-commercial use. They can be downloaded from https://github.com/yuansliu/HiRGC. jinyan.li@uts.edu.au. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  14. Models and Strategies of Conflict Interaction Between Business and Authorities in Transition Societies: The Case of Russia

    Directory of Open Access Journals (Sweden)

    Anna Georgievna Pinkevich

    2016-07-01

    Full Text Available The purpose of this paper is to explore the ties between business and power in Russia and to analyse the features of what can be considered a conflictual relationship. Using the approaches of D. North, J. Wallis, B. Weingast, and J. Nye as a starting point, this article provides an overview of new business development in Russia and suggests that power is an important factor in the relationship between businesses and authorities in a transitional society. Drawing on both a theoretical and empirical analysis, it will be shown that ties between businesses and authorities have come to generate social distrust and negative attitudes towards both institutions in today’s Russia.

  15. Compressive Force Spectroscopy: From Living Cells to Single Proteins.

    Science.gov (United States)

    Wang, Jiabin; Liu, Meijun; Shen, Yi; Sun, Jielin; Shao, Zhifeng; Czajkowsky, Daniel Mark

    2018-03-23

    One of the most successful applications of atomic force microscopy (AFM) in biology involves monitoring the effect of force on single biological molecules, often referred to as force spectroscopy. Such studies generally entail the application of pulling forces of different magnitudes and velocities upon individual molecules to resolve individualistic unfolding/separation pathways and the quantification of the force-dependent rate constants. However, a less recognized variation of this method, the application of compressive force, actually pre-dates many of these "tensile" force spectroscopic studies. Further, beyond being limited to the study of single molecules, these compressive force spectroscopic investigations have spanned samples as large as living cells to smaller, multi-molecular complexes such as viruses down to single protein molecules. Correspondingly, these studies have enabled the detailed characterization of individual cell states, subtle differences between seemingly identical viral structures, as well as the quantification of rate constants of functionally important, structural transitions in single proteins. Here, we briefly review some of the recent achievements that have been obtained with compressive force spectroscopy using AFM and highlight exciting areas of its future development.

  16. Ultrafast studies of shock-induced melting and phase transitions at LCLS

    Science.gov (United States)

    McMahon, Malcolm

    The study of shock-induced phase transitions, which is vital to the understanding of material response to rapid pressure changes, dates back to the 1950s, when Bankcroft et al reported a transition in iron. Since then, many transitions have been reported in a wide range of materials, but, due to the lack of sufficiently bright x-ray sources, the structural details of these new phases has been notably lacking. While the development of nanosecond in situ x-ray diffraction has meant that lattice-level studies of such phenomena have become possible, including studies of the phase transition reported 60 years ago in iron, the quality of the diffraction data from such studies is noticeably poorer than that obtained from statically-compressed samples on synchrotrons. The advent of x-ray free electron lasers (XFELs), such as the LCLS, has resulted in an unprecedented improvement in the quality of diffraction data that can be obtained from shock-compressed matter. Here I describe the results from three recent experiment at the LCLS that looked at the solid-solid and solid-liquid phase transitions in Sb, Bi and Sc using single 50 fs x-ray exposures. The results provide new insight into the structural changes and melting induced by shock compression. This work is supported by EPSRC under Grant No. EP/J017051/1. Use of the LCLS, SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515.

  17. Development of compressed natural gas/diesel dual-fuel turbocharged compressed ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Shenghua, L.; Ziyan, W.; Jiang, R. [Xi' an Jiaotong Univ. (China). Dept. of Automotive Engineering

    2003-09-01

    A natural gas and diesel dual-fuel turbocharged compression ignition (CI) engine is developed to reduce emissions of a heavy-duty diesel engine. The compressed natural gas (CNG) pressure regulator is specially designed to feed back the boost pressure to simplify the fuel metering system. The natural gas bypass improves the engine response to acceleration. The modes of diesel injection are set according to the engine operating conditions. The application of honeycomb mixers changes the flowrate shape of natural gas and reduces hydrocarbon (HC) emission under low-load and lowspeed conditions. The cylinder pressures of a CI engine fuelled with diesel and dual fuel are analysed. The introduction of natural gas makes the ignition delay change with engine load. Under the same operating conditions, the emissions of smoke and NO{sub x} from the dual-fuel engine are both reduced. The HC and CO emissions for the dual-fuel engine remain within the range of regulation. (Author)

  18. A study of compressed breast thickness at Hirosaki University Hospital

    International Nuclear Information System (INIS)

    Kon, Masanori; Osanai, Tsunemi; Ootani, Yuhiko; Sugawara, Kaoru; Abe, Katsumi

    2000-01-01

    Evaluation of image quality and medical exposure dose is very important in mammography. However, the standard compressed breast thickness of Japanese women is uncertain. Authors therefore analyzed compressed breast thickness on bilateral cephalocaudal and mediolateral oblique radiographs of 3445 women who underwent mammography between June 5, 1989 and December 7, 1998. The total average compressed breast thickness was about 10 mm less than the thickness of the American College of Radiography (ACR) standard mammographic accreditation phantom. It therefore appears necessary to establish a Japanese standard for the phantom to evaluate image quality and medical exposure dose accurately in Japanese women. (K.H.)

  19. Spinal cord compression in {beta}-thalassemia: follow-up after radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca, Silvana Fahel da; Figueiredo, Maria Stella; Cancado, Rodolfo Delfini; Nakadakare, Fernando; Segreto, Roberto; Kerbauy, Jose [Universidade Federal de Sao Paulo (UNIFESP), SP (Brazil). Escola Paulista de Medicina

    1998-12-01

    Spinal cord compression due to extramedullary hematopoiesis is a well-described bu rare syndrome encountered in several hematologic disorders, including {beta}-thalassemia. We report a case of a patient with intermediate {beta}-thalassemia and crural paraparesis due to spinal cord compression by a paravertebral extramedullary mass. She was successfully treated with low-dose radiotherapy and transfusions. After splenectomy, she was regularly followed up for over four years without transfusion or recurrence of spinal cord compression. Extramedullary hematopoiesis should be investigated in patients with hematologic disorders and spinal cord symptoms. The rapid recognition and treatment with radiotherapy can dramatically alleviate symptoms. (author)

  20. Spinal cord compression in β-thalassemia: follow-up after radiotherapy

    International Nuclear Information System (INIS)

    Fonseca, Silvana Fahel da; Figueiredo, Maria Stella; Cancado, Rodolfo Delfini; Nakadakare, Fernando; Segreto, Roberto; Kerbauy, Jose

    1998-01-01

    Spinal cord compression due to extramedullary hematopoiesis is a well-described bu rare syndrome encountered in several hematologic disorders, including β-thalassemia. We report a case of a patient with intermediate β-thalassemia and crural paraparesis due to spinal cord compression by a paravertebral extramedullary mass. She was successfully treated with low-dose radiotherapy and transfusions. After splenectomy, she was regularly followed up for over four years without transfusion or recurrence of spinal cord compression. Extramedullary hematopoiesis should be investigated in patients with hematologic disorders and spinal cord symptoms. The rapid recognition and treatment with radiotherapy can dramatically alleviate symptoms. (author)

  1. Initial Measurements of CSR from a Bunch-Compressed Beam at APS

    CERN Document Server

    Lumpkin, Alex H; Borland, M; Sereno, N S

    2005-01-01

    The interest in bunch compression to generate higher peak current electron beams with low emittance continues in the free-electron laser (FEL) community. At the Advanced Photon source (APS) we have both an rf thermionic gun and an rf photocathode (PC) gun on the S-band linac. At the 150-MeV point in the linac, we have a flexible chicane bunch compressor whose four dipoles bend the beam in the horizontal plane. There is also a vertical bend dipole after the chicane that allows measurement of energy and horizontal beam size at the imaging screen station to study possible effects on emittance due to coherent synchrotron radiation (CSR) in the chicane. A far-infrared (FIR) coherent radiation monitor is located downstream of the chicane as well. We have begun recommissioning of this device with coherent transition radiation (CTR), but we also have directly observed CSR from the bunch-compressed beam as it transits the vertical dipole and goes into the down leg. The unique geometry allows simultaneous tracking of b...

  2. A multiphase compressible model for the simulation of multiphase flows

    International Nuclear Information System (INIS)

    Caltagirone, J.P.; Vincent, St.; Caruyer, C.

    2011-01-01

    A compressible model able to manage incompressible two-phase flows as well as compressible motions is proposed. After a presentation of the multiphase compressible concept, the new model and related numerical methods are detailed on fixed structured grids. The presented model is a 1-fluid model with a reformulated mass conservation equation which takes into account the effects of compressibility. The coupling between pressure and flow velocity is ensured by introducing mass conservation terms in the momentum and energy equations. The numerical model is then validated with four test cases involving the compression of an air bubble by water, the liquid injection in a closed cavity filled with air, a bubble subjected to an ultrasound field and finally the oscillations of a deformed air bubble in melted steel. The numerical results are compared with analytical results and convergence orders in space are provided. (authors)

  3. Usefulness of injecting local anesthetic before compression in stereotactic vacuum-assisted breast biopsy

    International Nuclear Information System (INIS)

    Matsuura, Akiko; Urashima, Masaki; Nishihara, Reisuke

    2009-01-01

    Stereotactic vacuum-assisted breast biopsy is a useful method of breast biopsy. However, some patients feel unbearable breast pain due to compression. Breast pain due to compression caused the fact that the breast cannot be compressed sufficiently. Sufficient compression is important to fix the breast in this method. Breast pain during this procedure is problematic from the perspectives of both stress and fixing the breast. We performed biopsy in the original manner by injecting local anesthetic before compression, in order to relieve breast pain due to compression. This was only slightly different in order from the standard method, and there was no need for any special technique or device. This way allowed for even higher breast compression, and all of the most recent 30 cases were compressed at levels greater than 120N. This approach is useful not only for relieving pain, but also for fixing the breast. (author)

  4. Heterogeneous free-surface profile of B4C polycrystal under shock compression

    International Nuclear Information System (INIS)

    Mashimo, T.; Uchino, M.

    1997-01-01

    Observations of the free-surface behavior under shock compression by the gapped-flat mirror method were performed on B 4 C and Si 3 N 4 ceramics to study their shock-yielding properties. Jagged profiles of the moving free-surface in the plastic region, with a special scale of about one mm and a maximum local displacement of a few 10s of μm, were observed for B 4 C polycrystals. Similar profiles for Si 3 N 4 polycrystals were smooth. Such profiles for B 4 C polycrystals were also observed in the elastic region. It is suggested that these observations reflect the heterogeneous nature of shock compression in solids, and further indicate that a macroscopic slip system plays an important role in the elastoplastic transition of B 4 C material under shock compression and decompression. copyright 1997 American Institute of Physics

  5. N-Cadherin Maintains the Healthy Biology of Nucleus Pulposus Cells under High-Magnitude Compression.

    Science.gov (United States)

    Wang, Zhenyu; Leng, Jiali; Zhao, Yuguang; Yu, Dehai; Xu, Feng; Song, Qingxu; Qu, Zhigang; Zhuang, Xinming; Liu, Yi

    2017-01-01

    Mechanical load can regulate disc nucleus pulposus (NP) biology in terms of cell viability, matrix homeostasis and cell phenotype. N-cadherin (N-CDH) is a molecular marker of NP cells. This study investigated the role of N-CDH in maintaining NP cell phenotype, NP matrix synthesis and NP cell viability under high-magnitude compression. Rat NP cells seeded on scaffolds were perfusion-cultured using a self-developed perfusion bioreactor for 5 days. NP cell biology in terms of cell apoptosis, matrix biosynthesis and cell phenotype was studied after the cells were subjected to different compressive magnitudes (low- and high-magnitudes: 2% and 20% compressive deformation, respectively). Non-loaded NP cells were used as controls. Lentivirus-mediated N-CDH overexpression was used to further investigate the role of N-CDH under high-magnitude compression. The 20% deformation compression condition significantly decreased N-CDH expression compared with the 2% deformation compression and control conditions. Meanwhile, 20% deformation compression increased the number of apoptotic NP cells, up-regulated the expression of Bax and cleaved-caspase-3 and down-regulated the expression of Bcl-2, matrix macromolecules (aggrecan and collagen II) and NP cell markers (glypican-3, CAXII and keratin-19) compared with 2% deformation compression. Additionally, N-CDH overexpression attenuated the effects of 20% deformation compression on NP cell biology in relation to the designated parameters. N-CDH helps to restore the cell viability, matrix biosynthesis and cellular phenotype of NP cells under high-magnitude compression. © 2017 The Author(s). Published by S. Karger AG, Basel.

  6. Numerical simulation of a Z-pinch compressed by imploding liner

    International Nuclear Information System (INIS)

    Bilbao, L.; Linhart, J.G.; Verri, G.; Bernal, L.

    2001-01-01

    The spark created in a neck of a dense Z-pinch can ignite a fusion detonation in the adjacent D-T plasma channel. Using an appropriate transition between the ignited D-T plasma and an inertially confined cylinder of highly compressed advanced fuel plasma it is possible to amplify the spark energy to a level adequate for the ignition of a detonation wave in the advanced fuel. An m=0 instability of a Z-pinch carrying a current of the order of 10 MA, with a rise time inferior to 10 ns can generate a spark capable of igniting a fusion detonation in the adjacent D-T plasma channel. Such μZ-pinch may be produced by a fast implosion of a cylindrical liner, while a conical channel properly chosen can amplify the spark energy. In order to derive some general rules for the parameters of the spark, the transition, the cylinder of advanced fuel and the liner different numerical models were used. We present here a review of these results and an outline of a possible experimental arrangement for obtaining such a Z-pinch compression

  7. Radiological Image Compression

    Science.gov (United States)

    Lo, Shih-Chung Benedict

    The movement toward digital images in radiology presents the problem of how to conveniently and economically store, retrieve, and transmit the volume of digital images. Basic research into image data compression is necessary in order to move from a film-based department to an efficient digital -based department. Digital data compression technology consists of two types of compression technique: error-free and irreversible. Error -free image compression is desired; however, present techniques can only achieve compression ratio of from 1.5:1 to 3:1, depending upon the image characteristics. Irreversible image compression can achieve a much higher compression ratio; however, the image reconstructed from the compressed data shows some difference from the original image. This dissertation studies both error-free and irreversible image compression techniques. In particular, some modified error-free techniques have been tested and the recommended strategies for various radiological images are discussed. A full-frame bit-allocation irreversible compression technique has been derived. A total of 76 images which include CT head and body, and radiographs digitized to 2048 x 2048, 1024 x 1024, and 512 x 512 have been used to test this algorithm. The normalized mean -square-error (NMSE) on the difference image, defined as the difference between the original and the reconstructed image from a given compression ratio, is used as a global measurement on the quality of the reconstructed image. The NMSE's of total of 380 reconstructed and 380 difference images are measured and the results tabulated. Three complex compression methods are also suggested to compress images with special characteristics. Finally, various parameters which would effect the quality of the reconstructed images are discussed. A proposed hardware compression module is given in the last chapter.

  8. Developing a Natural Gas-Powered Bus Rapid Transit Service: A Case Study

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, G.

    2015-11-03

    The Roaring Fork Transit Authority (RFTA) and its VelociRFTA Bus Rapid Transit (BRT) program are unique in many ways. For example, VelociRFTA was the first rural BRT system in the United States and the operational environment of the VelociRFTA BRT is one of the most severe in the country, with extreme winter temperatures and altitudes close to 8,000 feet. RFTA viewed high altitude operation as the most challenging characteristic when it began considering the use of natural gas. RFTA is the second-largest public transit system in Colorado behind Denver's Regional Transportation District (RTD), and it is one of the largest rural public transit systems in the country. In 2013, RFTA accepted delivery of 22 new compressed natural gas (CNG) buses that went into service after completion of maintenance and refueling facilities earlier that year. This paper examines the lessons learned from RFTA's experience of investigating--and ultimately choosing--CNG for their new BRT program and focuses on the unique environment of RFTA's BRT application; the decision process to include CNG fueling in the project; unforeseen difficulties encountered in the operation of CNG buses; public perception; cost comparison to competing fuels; and considerations for indoor fueling facilities and project funding.

  9. Developing a Natural Gas-Powered Bus Rapid Transit Service. A Case Study

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, George [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-11-01

    The Roaring Fork Transit Authority (RFTA) and its VelociRFTA Bus Rapid Transit (BRT) program are unique in many ways. For example, VelociRFTA was the first rural BRT system in the United States and the operational environment of the VelociRFTA BRT is one of the most severe in the country, with extreme winter temperatures and altitudes close to 8,000 feet. RFTA viewed high altitude operation as the most challenging characteristic when it began considering the use of natural gas. RFTA is the second-largest public transit system in Colorado behind Denver's Regional Transportation District (RTD), and it is one of the largest rural public transit systems in the country. In 2013, RFTA accepted delivery of 22 new compressed natural gas (CNG) buses that went into service after completion of maintenance and refueling facilities earlier that year. This paper examines the lessons learned from RFTA's experience of investigating--and ultimately choosing--CNG for their new BRT program and focuses on the unique environment of RFTA's BRT application; the decision process to include CNG fueling in the project; unforeseen difficulties encountered in the operation of CNG buses; public perception; cost comparison to competing fuels; and considerations for indoor fueling facilities and project funding.

  10. Measurement of compressed breast thickness by optical stereoscopic photogrammetry.

    Science.gov (United States)

    Tyson, Albert H; Mawdsley, Gordon E; Yaffe, Martin J

    2009-02-01

    The determination of volumetric breast density (VBD) from mammograms requires accurate knowledge of the thickness of the compressed breast. In attempting to accurately determine VBD from images obtained on conventional mammography systems, the authors found that the thickness reported by a number of mammography systems in the field varied by as much as 15 mm when compressing the same breast or phantom. In order to evaluate the behavior of mammographic compression systems and to be able to predict the thickness at different locations in the breast on patients, they have developed a method for measuring the local thickness of the breast at all points of contact with the compression paddle using optical stereoscopic photogrammetry. On both flat (solid) and compressible phantoms, the measurements were accurate to better than 1 mm with a precision of 0.2 mm. In a pilot study, this method was used to measure thickness on 108 volunteers who were undergoing mammography examination. This measurement tool will allow us to characterize paddle surface deformations, deflections and calibration offsets for mammographic units.

  11. Performance evaluation of emerging JPEGXR compression standard for medical images

    International Nuclear Information System (INIS)

    Basit, M.A.

    2012-01-01

    Medical images require loss less compression as a small error due to lossy compression may be considered as a diagnostic error. JPEG XR is the latest image compression standard designed for variety of applications and has a support for lossy and loss less modes. This paper provides in-depth performance evaluation of latest JPEGXR with existing image coding standards for medical images using loss less compression. Various medical images are used for evaluation and ten images of each organ are tested. Performance of JPEGXR is compared with JPEG2000 and JPEGLS using mean square error, peak signal to noise ratio, mean absolute error and structural similarity index. JPEGXR shows improvement of 20.73 dB and 5.98 dB over JPEGLS and JPEG2000 respectively for various test images used in experimentation. (author)

  12. Performance evaluation of breast image compression techniques

    Energy Technology Data Exchange (ETDEWEB)

    Anastassopoulos, G; Lymberopoulos, D [Wire Communications Laboratory, Electrical Engineering Department, University of Patras, Greece (Greece); Panayiotakis, G; Bezerianos, A [Medical Physics Department, School of Medicine, University of Patras, Greece (Greece)

    1994-12-31

    Novel diagnosis orienting tele working systems manipulate, store, and process medical data through real time communication - conferencing schemes. One of the most important factors affecting the performance of these systems is image handling. Compression algorithms can be applied to the medical images, in order to minimize : a) the volume of data to be stored in the database, b) the demanded bandwidth from the network, c) the transmission costs, and to minimize the speed of the transmitted data. In this paper an estimation of all the factors of the process that affect the presentation of breast images is made, from the time the images are produced from a modality, till the compressed images are stored, or transmitted in a Broadband network (e.g. B-ISDN). The images used were scanned images of the TOR(MAX) Leeds breast phantom, as well as typical breast images. A comparison of seven compression techniques has been done, based on objective criteria such as Mean Square Error (MSE), resolution, contrast, etc. The user can choose the appropriate compression ratio in order to achieve the desired image quality. (authors). 12 refs, 4 figs.

  13. RF pulse compression in the NLC test accelerator at SLAC

    International Nuclear Information System (INIS)

    Lavine, T.L.

    1995-01-01

    At the Stanford Linear Accelerator Center (SLAC), the authors are designing a Next Linear Collider (NLC) with linacs powered by X-band klystrons with rf pulse compression. The design of the linac rf system is based on X-band prototypes which have been tested at high power, and on a systems-integration test - the Next Linear Collider Test Accelerator (NLCTA) - which is currently under construction at SLAC. This paper discusses some of the systems implications of rf pulse compression, and the use of pulse compression in the NLCTA, both for peak power multiplication and for controlling, by rf phase modulation, intra-pulse variations in the linac beam energy

  14. Incompressible limit of compressible Navier-Stokes equations

    International Nuclear Information System (INIS)

    Bessaih, H.

    1994-01-01

    In this paper we study the system which describes the motion of compressible viscous fluid in a bounded domain Ω of R 3 . When we introduce a parameter λ, that is the inverse of the Mach number, we prove, under small initial data and external force (for barotropic flows), that the solution of Navier-Stokes equations is the incompressible limit of the solution of compressible Navier-Stokes equations, as the Mach number becomes small. For this, we show the existence of a solution verifying estimates independent of λ. Compactness argument allow us to pass to the limit on λ in the nonlinear terms. (author). 17 refs

  15. WSNs Microseismic Signal Subsection Compression Algorithm Based on Compressed Sensing

    Directory of Open Access Journals (Sweden)

    Zhouzhou Liu

    2015-01-01

    Full Text Available For wireless network microseismic monitoring and the problems of low compression ratio and high energy consumption of communication, this paper proposes a segmentation compression algorithm according to the characteristics of the microseismic signals and the compression perception theory (CS used in the transmission process. The algorithm will be collected as a number of nonzero elements of data segmented basis, by reducing the number of combinations of nonzero elements within the segment to improve the accuracy of signal reconstruction, while taking advantage of the characteristics of compressive sensing theory to achieve a high compression ratio of the signal. Experimental results show that, in the quantum chaos immune clone refactoring (Q-CSDR algorithm for reconstruction algorithm, under the condition of signal sparse degree higher than 40, to be more than 0.4 of the compression ratio to compress the signal, the mean square error is less than 0.01, prolonging the network life by 2 times.

  16. Construction of an ultra low temperature cryostat and transverse acoustic spectroscopy in superfluid helium-3 in compressed aerogels

    Science.gov (United States)

    Bhupathi, Pradeep

    An ultra low temperature cryostat is designed and implemented in this work to perform experiments at sub-millikelvin temperatures, specifically aimed at understanding the superfluid phases of 3He in various scenarios. The cryostat is a combination of a dilution refrigerator (Oxford Kelvinox 400) with a base temperature of 5.2 mK and a 48 mole copper block as the adiabatic nuclear demagnetization stage with a lowest temperature of ≈ 200 muK. With the various techniques implemented for limiting the ambient heat leak to the cryostat, we were able to stay below 1 mK for longer than 5 weeks. The details of design, construction and performance of the cryostat are presented. We measured high frequency shear acoustic impedance in superfluid 3He in 98% porosity aerogel at pressures of 29 bar and 32 bar in magnetic fields upto 3 kG with the aerogel cylinder compressed along the symmetry axis to generate global anisotropy. With 5% compression, there is an indication of a supercooled A-like to B-like transition in aerogel in a wider temperature width than the A phase in the bulk, while at 10% axial compression, the A-like to B-like transition is absent on cooling down to ≈ 300 muK in zero magnetic field and in magnetic fields up to 3 kG. This behavior is in contrast to that in 3He in uncompressed aerogels, in which the supercooled A-like to B-like transitions have been identified by various experimental techniques. Our result is consistent with theoretical predictions. To characterize the anisotropy in compressed aerogels, optical birefringence is measured in 98% porosity silica aerogel samples subjected to various degrees of uniaxial compression up to 15% strain, with wavelengths between 200 to 800 nm. Uncompressed aerogels exhibit no or a minimal degree of birefringence, indicating the isotropic nature of the material over the length scale of the wavelength. Uniaxial compression of aerogel introduces global anisotropy, which produces birefringence in the material. We

  17. Modeling ramp compression experiments using large-scale molecular dynamics simulation.

    Energy Technology Data Exchange (ETDEWEB)

    Mattsson, Thomas Kjell Rene; Desjarlais, Michael Paul; Grest, Gary Stephen; Templeton, Jeremy Alan; Thompson, Aidan Patrick; Jones, Reese E.; Zimmerman, Jonathan A.; Baskes, Michael I. (University of California, San Diego); Winey, J. Michael (Washington State University); Gupta, Yogendra Mohan (Washington State University); Lane, J. Matthew D.; Ditmire, Todd (University of Texas at Austin); Quevedo, Hernan J. (University of Texas at Austin)

    2011-10-01

    Molecular dynamics simulation (MD) is an invaluable tool for studying problems sensitive to atomscale physics such as structural transitions, discontinuous interfaces, non-equilibrium dynamics, and elastic-plastic deformation. In order to apply this method to modeling of ramp-compression experiments, several challenges must be overcome: accuracy of interatomic potentials, length- and time-scales, and extraction of continuum quantities. We have completed a 3 year LDRD project with the goal of developing molecular dynamics simulation capabilities for modeling the response of materials to ramp compression. The techniques we have developed fall in to three categories (i) molecular dynamics methods (ii) interatomic potentials (iii) calculation of continuum variables. Highlights include the development of an accurate interatomic potential describing shock-melting of Beryllium, a scaling technique for modeling slow ramp compression experiments using fast ramp MD simulations, and a technique for extracting plastic strain from MD simulations. All of these methods have been implemented in Sandia's LAMMPS MD code, ensuring their widespread availability to dynamic materials research at Sandia and elsewhere.

  18. Object characterization simulator for estimating compressed breast during mammography

    International Nuclear Information System (INIS)

    Pinheiro, Luciana de J.S.; Rio, Margarita Chevalier del

    2011-01-01

    The measurement of the thickness of a compressed breast during the mammography test is necessary in order to calculate the glandular dose in mammography procedures, in an analysis of risk/benefit, given that the target organ in these procedures is highly sensitive to ionising radiation. However, mammography is a test of utmost importance in diagnosis. In theory, it may be possible to calculate the thickness of the compressed breast through the measurements of the focus object distance by using projections of radio opaque objects fixed to the compression tray. The facilities of the Laboratory of Applied Radioprotection to Mammography - LARAM were used for this study, as well as breast simulators with well defined thickness, in the assembly of the techniques for the measurement of the thickness of the compressed breast. The results showed that it is possible to determine this thickness through calculations and simulators through this method which is susceptible to be adequate to the dosimetry. (author)

  19. Dual compression is not an uncommon type of iliac vein compression syndrome.

    Science.gov (United States)

    Shi, Wan-Yin; Gu, Jian-Ping; Liu, Chang-Jian; Lou, Wen-Sheng; He, Xu

    2017-09-01

    Typical iliac vein compression syndrome (IVCS) is characterized by compression of left common iliac vein (LCIV) by the overlying right common iliac artery (RCIA). We described an underestimated type of IVCS with dual compression by right and left common iliac arteries (LCIA) simultaneously. Thirty-one patients with IVCS were retrospectively included. All patients received trans-catheter venography and computed tomography (CT) examinations for diagnosing and evaluating IVCS. Late venography and reconstructed CT were used for evaluating the anatomical relationship among LCIV, RCIA and LCIA. Imaging manifestations as well as demographic data were collected and evaluated by two experienced radiologists. Sole and dual compression were found in 32.3% (n = 10) and 67.7% (n = 21) of 31 patients respectively. No statistical differences existed between them in terms of age, gender, LCIV diameter at the maximum compression point, pressure gradient across stenosis, and the percentage of compression level. On CT and venography, sole compression was commonly presented with a longitudinal compression at the orifice of LCIV while dual compression was usually presented as two types: one had a lengthy stenosis along the upper side of LCIV and the other was manifested by a longitudinal compression near to the orifice of external iliac vein. The presence of dual compression seemed significantly correlated with the tortuous LCIA (p = 0.006). Left common iliac vein can be presented by dual compression. This type of compression has typical manifestations on late venography and CT.

  20. Preferred Compression Speed for Speech and Music and Its Relationship to Sensitivity to Temporal Fine Structure.

    Science.gov (United States)

    Moore, Brian C J; Sęk, Aleksander

    2016-09-07

    Multichannel amplitude compression is widely used in hearing aids. The preferred compression speed varies across individuals. Moore (2008) suggested that reduced sensitivity to temporal fine structure (TFS) may be associated with preference for slow compression. This idea was tested using a simulated hearing aid. It was also assessed whether preferences for compression speed depend on the type of stimulus: speech or music. Twenty-two hearing-impaired subjects were tested, and the stimulated hearing aid was fitted individually using the CAM2A method. On each trial, a given segment of speech or music was presented twice. One segment was processed with fast compression and the other with slow compression, and the order was balanced across trials. The subject indicated which segment was preferred and by how much. On average, slow compression was preferred over fast compression, more so for music, but there were distinct individual differences, which were highly correlated for speech and music. Sensitivity to TFS was assessed using the difference limen for frequency at 2000 Hz and by two measures of sensitivity to interaural phase at low frequencies. The results for the difference limens for frequency, but not the measures of sensitivity to interaural phase, supported the suggestion that preference for compression speed is affected by sensitivity to TFS. © The Author(s) 2016.

  1. Dental Status and Compression of Life Expectancy with Disability.

    Science.gov (United States)

    Matsuyama, Y; Aida, J; Watt, R G; Tsuboya, T; Koyama, S; Sato, Y; Kondo, K; Osaka, K

    2017-08-01

    This study examined whether the number of teeth contributes to the compression of morbidity, measured as a shortening of life expectancy with disability, an extension of healthy life expectancy, and overall life expectancy. A prospective cohort study was conducted. A self-reported baseline survey was given to 126,438 community-dwelling older people aged ≥65 y in Japan in 2010, and 85,161 (67.4%) responded. The onset of functional disability and all-cause mortality were followed up for 1,374 d (follow-up rate = 96.1%). A sex-stratified illness-death model was applied to estimate the adjusted hazard ratios (HRs) for 3 health transitions (healthy to dead, healthy to disabled, and disabled to dead). Absolute differences in life expectancy, healthy life expectancy, and life expectancy with disability according to the number of teeth were also estimated. Age, denture use, socioeconomic status, health status, and health behavior were adjusted. Compared with the edentulous participants, participants with ≥20 teeth had lower risks of transitioning from healthy to dead (adjusted HR, 0.58 [95% confidence interval (CI), 0.50-0.68] for men and 0.70 [95% CI, 0.57-0.85] for women) and from healthy to disabled (adjusted HR, 0.52 [95% CI, 0.44-0.61] for men and 0.58 [95% CI, 0.49-0.68] for women). They also transitioned from disabled to dead earlier (adjusted HR, 1.26 [95% CI, 0.99-1.60] for men and 2.42 [95% CI, 1.72-3.38] for women). Among the participants aged ≥85 y, those with ≥20 teeth had a longer life expectancy (men: +57 d; women: +15 d) and healthy life expectancy (men: +92 d; women: +70 d) and a shorter life expectancy with disability (men: -35 d; women: -55 d) compared with the edentulous participants. Similar associations were observed among the younger participants and those with 1 to 9 or 10 to 19 teeth. The presence of remaining teeth was associated with a significant compression of morbidity: older Japanese adults' life expectancy with disability was

  2. Scaling of compression strength in disordered solids: metallic foams

    Directory of Open Access Journals (Sweden)

    J. Kováčik

    2016-03-01

    Full Text Available The scaling of compression strength with porosity for aluminium foams was investigated. The Al 99.96, AlMg1Si0.6 and AlSi11Mg0.6 foams of various porosity, sample size with and without surface skin were tested in compression. It was observed that the compression strength of aluminium foams scales near the percolation threshold with Tf ≈ 1.9 - 2.0 almost independently on the matrix alloy, sample size and presence of surface skin. The difference of the obtained values of Tf to the theoretical estimate of Tf = 2.64 ± 0.3 by Arbabi and Sahimi and to Ashby estimate of 1.5 was explained using an analogy with the Daoud and Coniglio approach to the scaling of the free energy of sol-gel transition. It leads to the finding that, there are two different universality classes for the critical exponent Tf: when the stretching forces dominate Tf = f = 2.1, respectively when bending forces prevail Tf = .d = 2.64 seems to be valid. Another possibility is the validity of relation Tf ≤ f which varies only according to the universality class of modulus of elasticity in foam.

  3. Effect of JPEG2000 mammogram compression on microcalcifications segmentation

    International Nuclear Information System (INIS)

    Georgiev, V.; Arikidis, N.; Karahaliou, A.; Skiadopoulos, S.; Costaridou, L.

    2012-01-01

    The purpose of this study is to investigate the effect of mammographic image compression on the automated segmentation of individual microcalcifications. The dataset consisted of individual microcalcifications of 105 clusters originating from mammograms of the Digital Database for Screening Mammography. A JPEG2000 wavelet-based compression algorithm was used for compressing mammograms at 7 compression ratios (CRs): 10:1, 20:1, 30:1, 40:1, 50:1, 70:1 and 100:1. A gradient-based active contours segmentation algorithm was employed for segmentation of microcalcifications as depicted on original and compressed mammograms. The performance of the microcalcification segmentation algorithm on original and compressed mammograms was evaluated by means of the area overlap measure (AOM) and distance differentiation metrics (d mean and d max ) by comparing automatically derived microcalcification borders to manually defined ones by an expert radiologist. The AOM monotonically decreased as CR increased, while d mean and d max metrics monotonically increased with CR increase. The performance of the segmentation algorithm on original mammograms was (mean±standard deviation): AOM=0.91±0.08, d mean =0.06±0.05 and d max =0.45±0.20, while on 40:1 compressed images the algorithm's performance was: AOM=0.69±0.15, d mean =0.23±0.13 and d max =0.92±0.39. Mammographic image compression deteriorates the performance of the segmentation algorithm, influencing the quantification of individual microcalcification morphological properties and subsequently affecting computer aided diagnosis of microcalcification clusters. (authors)

  4. Biomechanical Comparison of External Fixation and Compression Screws for Transverse Tarsal Joint Arthrodesis.

    Science.gov (United States)

    Latt, L Daniel; Glisson, Richard R; Adams, Samuel B; Schuh, Reinhard; Narron, John A; Easley, Mark E

    2015-10-01

    which can be obtained with 3 headless compression screws. Screw and external fixator performance did not correlate with bone mineral density. This study supports the use of external fixation as an alternative method of generating compression to help stimulate fusion across the transverse tarsal joints. The findings provide biomechanical evidence to support the use of external fixation as a viable option in transverse tarsal joint fusion cases in which screw fixation has failed or is anticipated to be inadequate due to suboptimal bone quality. © The Author(s) 2015.

  5. Methods for determining the carrying capacity of eccentrically compressed concrete elements

    Directory of Open Access Journals (Sweden)

    Starishko Ivan Nikolaevich

    2014-04-01

    Full Text Available The author presents the results of calculations of eccentrically compressed elements in the ultimate limit state of bearing capacity, taking into account all possiblestresses in the longitudinal reinforcement from the R to the R , caused by different values of eccentricity longitudinal force. The method of calculation is based on the simultaneous solution of the equilibrium equations of the longitudinal forces and internal forces with the equilibrium equations of bending moments in the ultimate limit state of the normal sections. Simultaneous solution of these equations, as well as additional equations, reflecting the stress-strain limit state elements, leads to the solution of a cubic equation with respect to height of uncracked concrete, or with respect to the carrying capacity. According to the author it is a significant advantage over the existing methods, in which the equilibrium equations using longitudinal forces obtained one value of the height, and the equilibrium equations of bending moments - another. Theoretical studies of the author, in this article and the reasons to calculate specific examples showed that a decrease in the eccentricity of the longitudinal force in the limiting state of eccentrically compressed concrete elements height uncracked concrete height increases, the tension in the longitudinal reinforcement area gradually (not abruptly goes from a state of tension compression, and load-bearing capacity of elements it increases, which is also confirmed by the experimental results. Designed journalist calculations of eccentrically compressed elements for 4 cases of eccentric compression, instead of 2 - as set out in the regulations, fully cover the entire spectrum of possible cases of the stress-strain limit state elements that comply with the European standards for reinforced concrete, in particular Eurocode 2 (2003.

  6. Compressibility measurements and phonon spectra of hexagonal transition-metal nitrides at high pressure: ε-TaN, δ-MoN, and Cr2N

    International Nuclear Information System (INIS)

    Soignard, Emmanuel; Shebanova, Olga; McMillan, Paul F.

    2007-01-01

    We report compressibility measurements for three transition metal nitrides (ε-TaN, δ-MoN, Cr 2 N) that have structures based on hexagonal arrangements of the metal atoms. The studies were performed using monochromatic synchrotron x-ray diffraction at high pressure in a diamond anvil cell. The three nitride compounds are well-known high hardness materials, and they are found to be highly incompressible. The bulk modulus values measured for ε-TaN, Cr 2 N, and δ-MoN are K 0 =288(6) GPa, 275(23) GPa, and 345(9) GPa, respectively. The data were analyzed using a linearized plot of reduced pressure (F) vs the Eulerian finite strain variable f within a third-order Birch-Murnaghan equation of state formulation. The K 0 ' values for ε-TaN and δ-MoN were 4.7(0.5) and 3.5(0.3), respectively, close to the value of K 0 ' =4 that is typically assumed in fitting compressibility data in equation of state studies using a Birch-Murnaghan equation. However, Cr 2 N was determined to have a much smaller value, K 0 ' =2.0(2.0), indicating a significantly smaller degree of structural stiffening with increased pressure. We also present Raman data for ε-TaN and δ-MoN at high pressure in order to characterize the phonon behavior in these materials. All of the Raman active modes for ε-TaN were identified using polarized spectroscopy. Peaks at low frequency are due to Ta motions, whereas modes at higher wave number contain a large component of N motion. The high frequency modes associated with Ta-N stretching vibrations are more sensitive to compression than the metal displacements occurring at lower wave number. The mode assignments can be generally extended to δ-MoN, that has a much more complex Raman spectrum. The x-ray and Raman data for ε-TaN show evidence for structural disordering occurring above 20 GPa, whereas no such change is observed for δ-MoN

  7. Effects of thermal conduction and compressibility on Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Takabe, Hideaki; Mima, Kunioki.

    1980-01-01

    In order to study the stability of the ablation front in laser driven implosion, the thermal conduction and compressibility effects on the Rayleigh-Taylor instability are considered. It is found that the thermal conduction effect cannot stabilize the Rayleigh-Taylor mode, but reduce the growth rate in the short wavelength case. But, the growth rate is found not to differ from the classical value √gk in the long wavelength limit, where the compressibility is essential. (author)

  8. Advances in ferroelectric polymers for shock compression sensors

    International Nuclear Information System (INIS)

    Bauer, F.; Moulard, H.; Samara, G.

    1997-01-01

    Our studies of the shock compression response of PVDF polymer are continuing in order to understand the physical properties under shock loading and to develop high fidelity, reproducible, time-resolved dynamic stress gauges. New PVDF technology, new electrode configurations and piezoelectric analysis have resulted in enhanced precision gauges. Our new standard gauges have a precision of better than 1% in electric charge release under shock up to 15 GPa. The piezoelectric response of shock compressed PVDF gauges 1 mm 2 in active area has been studied and yielded well-behaved reproducible data up to 20 GPa. Analysis of the response of these gauges in the open-quotes thin mode regimeclose quotes using a Lagrangian hydrocode will be presented. P(VDF-TrFE) copolymers exhibit unique piezoelectric properties over a wide range of temperature depending on the composition. Their properties and phase transitions are being investigated. Emphasis of the presentation will be on key results and implications

  9. MODULUS OF ELASTICITY AND HARDNESS OF COMPRESSION AND OPPOSITE WOOD CELL WALLS OF MASSON PINE

    Directory of Open Access Journals (Sweden)

    Yanhui Huang,

    2012-05-01

    Full Text Available Compression wood is commonly found in Masson pine. To evaluate the mechanical properties of the cell wall of Masson pine compression and opposite wood, nanoindentation was used. The results showed that the average values of hardness and cell wall modulus of elasticity of opposite wood were slightly higher than those of compression wood. With increasing age of the annual ring, the modulus of elasticity showed a negative correlation with microfibril angle, but a weak correlation was observed for hardness. In opposite and compression wood from the same annual ring, the differences in average values of modulus of elasticity and hardness were small. These slight differences were explained by the change of microfibril angle (MFA, the press-in mode of nanoindentation, and the special structure of compression wood. The mechanical properties were almost the same for early, transition, and late wood in a mature annual ring of opposite wood. It can therefore be inferred that the average modulus of elasticity (MOE and hardness of the cell walls in a mature annual ring were not being affected by cell wall thickness.

  10. A study of cooperative Jahn-Teller phase transitions in rare-earth vanadates by linear birefringence

    International Nuclear Information System (INIS)

    Gehring, G.A.; Harley, R.T.; Macfarlane, R.M.

    1980-01-01

    Changes in linear birefringence (Δn) associated with the cooperative Jahn-Teller phase transition of DyV04 near 14K as as a function of temperature and magnetic fields, B, between 0.024 and 0.095T have been measured. Theoretical arguments show that Δn is directly proportional to the order parameter of the transition and that B(2) is equivalent to the conjugate ordering field. By extrapolation to zero field the temperature dependence of the order parameter and the susceptibility were obtained. The data are compared with calculations based on a mean-field 'compressible' Ising model. For a reasonable choice of adjustable parameters this classical description gives a good fit to the data close to Tsub(D) consistent with general theoretical arguments and more detailed calculations, but it deviates progressively away from Tsub(D) presumably because of the known importance of short-range interactions in the system. (author)

  11. Modelling and simulation of the compressible turbulence in supersonic shear flows

    International Nuclear Information System (INIS)

    Guezengar, Dominique

    1997-02-01

    This research thesis addresses the modelling of some specific physical problems of fluid mechanics: compressibility (issue of mixing layers), large variations of volumetric mass (boundary layers), and anisotropy (compression ramps). After a presentation of the chosen physical modelling and numerical approximation, the author pays attention to flows at the vicinity of a wall, and to boundary conditions. The next part addresses existing compressibility models and their application to the calculation of supersonic mixing layers. A critical assessment is also performed through calculations of boundary layers and of compression ramps. The next part addresses problems related to large variations of volumetric mass which are not taken by compressibility models into account. A modification is thus proposed for the diffusion term, and is tested for the case of supersonic boundary layers and of mixing layers with high density rates. Finally, anisotropy effects are addressed through the implementation of Explicit Algebraic Stress k-omega Turbulence models (EARSM), and their tests on previously studied cases [fr

  12. Adult-like processing of time-compressed speech by newborns: A NIRS study.

    Science.gov (United States)

    Issard, Cécile; Gervain, Judit

    2017-06-01

    Humans can adapt to a wide range of variations in the speech signal, maintaining an invariant representation of the linguistic information it contains. Among them, adaptation to rapid or time-compressed speech has been well studied in adults, but the developmental origin of this capacity remains unknown. Does this ability depend on experience with speech (if yes, as heard in utero or as heard postnatally), with sounds in general or is it experience-independent? Using near-infrared spectroscopy, we show that the newborn brain can discriminate between three different compression rates: normal, i.e. 100% of the original duration, moderately compressed, i.e. 60% of original duration and highly compressed, i.e. 30% of original duration. Even more interestingly, responses to normal and moderately compressed speech are similar, showing a canonical hemodynamic response in the left temporoparietal, right frontal and right temporal cortex, while responses to highly compressed speech are inverted, showing a decrease in oxyhemoglobin concentration. These results mirror those found in adults, who readily adapt to moderately compressed, but not to highly compressed speech, showing that adaptation to time-compressed speech requires little or no experience with speech, and happens at an auditory, and not at a more abstract linguistic level. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Real-time compression of analog-to-digital converter outputs

    International Nuclear Information System (INIS)

    Okumura, Haruhiko

    1997-01-01

    We describe a fast lossless data compression algorithm suitable for digitized data taken at regular time intervals, such as outputs from analog-to-digital converters (ADCs). It is designed on the assumptions that the present value can be predicted approximately from the past values, and that the distribution of the prediction error is approximately Gaussian with zero mean and small and slowly changing standard deviation. Unlike many offline compression tools such as LHA and gzip, our algorithm does not need future values to encode the present value. This property is important for real-time transmission of compressed data on the network. The algorithm is to be integrated into our data acquisition system for the Large Helical Device (LHD) experiments at the National Institute for Fusion Science (NIFS). (author)

  14. Shock Compression Response of Calcium Fluoride (CaF2)

    Science.gov (United States)

    Root, Seth

    2017-06-01

    The fluorite crystal structure is a textbook lattice that is observed for many systems, such as CaF2, Mg2 Si, and CeO2. Specifically, CaF2 is a useful material for studying the fluorite system because it is readily available as a single crystal. Under static compression, CaF2 is known to have at least three solid phases: fluorite, cotunnite, and a Ni2 In phase. Along the Hugoniot CaF2 undergoes a fluorite to cotunnite phase transition, however, at higher shock pressures it is unknown whether CaF2 undergoes another solid phase transition or melts directly from the cotunnite phase. In this work, we conducted planar shock compression experiments on CaF2 using Sandia's Z-machine and a two-stage light gun up to 900 GPa. In addition, we use density functional theory (DFT) based quantum molecular dynamics (QMD) simulations to provide insight into the CaF2 state along the Hugoniot. In collaboration with: Michael Desjarlais, Ray Lemke, Patricia Kalita, Scott Alexander, Sandia National Laboratories. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL850.

  15. First order electroweak phase transition

    International Nuclear Information System (INIS)

    Buchmueller, W.; Fodor, Z.

    1993-01-01

    In this work, the authors have studied the phase transition in the SU(2)gauge theory at finite temperature. The authors' improved perturbative approach does not suffer from the infrared problems appearing in the ordinary loop expansion. The authors have calculated the effective potential up to cubic terms in the couplings. The higher order terms suggest that the method is reliable for Higgs masses smaller than 80 GeV. The authors have obtained a non-vanishing magnetic mass which further weakens the transitions. By use of Langer's theory of metastability, the authors have calculated the nucleation rate for critical bubbles and have discussed some cosmological consequences. For m H <80 GeV the phase transition is first order and proceeds via bubble nucleation and growth. The thin wall approximation is only marginally applicable. Since the phase transition is quite weak SM baryogenesis is unlikely. 8 refs., 5 figs

  16. Positron annihilation and pressure-induced electronic s-d transition

    International Nuclear Information System (INIS)

    McMahan, A.K.; Skriver, H.L.

    1985-06-01

    The polycrystalline, partial annihilation rates for positrons in compressed cesium have been calculated using the linear muffin-tin orbitals method. These results suggest that the pressure-induced electronic s-d transition in Cs should be directly observable by momentum sensitive positron annihilation experiments

  17. Pressure induced phase transitions in transition metal nitrides: Ab initio study

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Anurag; Chauhan, Mamta [Advanced Material Research Lab, Indian Institute of Information Technology and Management, Gwalior 474010 (India); Singh, R.K. [Department of Physics, ITM University, Gurgaon 122017 (India)

    2011-12-15

    We have analyzed the stability of transition metal nitrides (TMNs) XN (X = Ti, Zr, Hf, V, Nb, Ta) in their original rocksalt (B1) and hypothetical CsCl (B2) type phases under high compression. The ground state total energy calculation approach of the system has been used through the generalized gradient approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE) type parameterization as exchange correlation functional. In the whole series of nitrides taken into consideration, tantalum nitride is found to be the most stable. We have observed that under compression the original B1-type phase of these nitrides transforms to a B2-type phase. We have also discussed the computation of ground state properties, like the lattice constant (a), bulk modulus (B{sub 0}) and first order pressure derivative of the bulk modulus (B'{sub 0}) of the TMNs and their host elements. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Transit climate change adaptation assessment/asset management pilot for the Metropolitan Atlanta Rapid Transit Authority.

    Science.gov (United States)

    2013-08-01

    Public transit agencies play an important role in the provision of safe, reliable, and cost-effective transportation for the communities they serve. With the growing intensity and frequency of extreme weather events, such as hurricanes Irene and Sand...

  19. Application of plasma focus device to compression of toroidal plasma

    International Nuclear Information System (INIS)

    Ikuta, Kazunari

    1980-01-01

    A new concept of compressing a toroidal plasma using a plasma focus device is considered. Maximum compression ratio of toroidal plasma is determined merely by the initial density ratio of the toroidal plasma to a sheet plasma in a focus device because of the Rayleigh-Taylor instability. An initiation senario of plasma-linear is also proposed with a possible application of this concepts to the creation of a burning plasma in reversed field configurations, i.e., burning plasma vortex. (author)

  20. High density amorphous ice and its phase transition to ice XII

    International Nuclear Information System (INIS)

    Kohl, I.

    2001-07-01

    1998 Lobban et al. reported the neutron diffraction data of a new phase of ice, called ice XII, which formed at 260 K on compression of water within the domain of ice V at a pressure of 0.5 GPa. Surprisingly ice XII forms as an incidental product in the preparation of high-density amorphous ice (HDA) on compression of hexagonale ice (ice Ih) at 77 K up to pressures = 1.3 GPa. A decisive experimental detail is the use of an indium container: when compressing ice Ih in a pressure vessel with indium linings, then reproducibly HDA (high density amorphous ice) forms, but without indium randomly scattered relative amounts of ice XII and HDA form. Ice XII forms on compression of ice Ih at 77 K only via HDA, and not directly from ice Ih. Its formation requires a sudden pronounced apparent pressure drop of ca 0.18 GPa at pressures ca 1.1 GPa. These apparent pressure drops can be caused by buildup friction between the piston and the pressure vessel and its sudden release on further compression. I propose that shock-waves generated by apparent pressure drops cause transient local heating and that this induces nucleation and crystal growth. A specific reproducible method to prepare ice XII is heating HDA in a pressure vessel with indium linings at constant pressures (or constant volume). The ice XII (meta-)stability domain extends between ca 158 and 212 K from ca 0.7 to ca 1.5 GPa. DSC (differential scanning calorimetry) and x-ray powder diffraction revealed, that on heating at atmospheric pressure ice XII transforms directly into cubic ice (ice Ic) at 154 K (heating rate 10 K min - 1) and not into an amorphous form before transition to ice Ic. The enthalpy of the ice XII - ice Ic transition is -1.21 ± 0.07 kJ mol -1 . An estimation of the Gibbs free energy at atmospheric pressure and about 140 K results that ice XII is thermodynamically more stable than ice VI. In the heating curve of ice XII a reversible endothermic step can be found at the onset temperature (heating rate

  1. On the escape transition of a tethered Gaussian chain; exact results in two conjugate ensembles

    NARCIS (Netherlands)

    Skvortsov, A.M.; Klushin, L.I.; Leermakers, F.A.M.

    2006-01-01

    Upon compression between two pistons an end-tethered polymer chain undergoes an abrupt transition from a confined coil state to an inhomogeneous flower-like conformation that is partially escaped from the gap. In the thermodynamic limit the system demonstrates a first-order phase transition. A

  2. On the continuum limit of a classical compressible Heisenberg chain

    International Nuclear Information System (INIS)

    Fivez, J.

    1982-01-01

    The equations of motion are derived for the classical compressible Heisenberg chain in the continuum limit to lowest non-trivial order in the derivatives. It is possible to eliminate the translations from the equation for the spins. The resulting equation does not admit of simple magnetic solitary wave solutions, in contradiction to the results of other authors. (author)

  3. Disk-based compression of data from genome sequencing.

    Science.gov (United States)

    Grabowski, Szymon; Deorowicz, Sebastian; Roguski, Łukasz

    2015-05-01

    High-coverage sequencing data have significant, yet hard to exploit, redundancy. Most FASTQ compressors cannot efficiently compress the DNA stream of large datasets, since the redundancy between overlapping reads cannot be easily captured in the (relatively small) main memory. More interesting solutions for this problem are disk based, where the better of these two, from Cox et al. (2012), is based on the Burrows-Wheeler transform (BWT) and achieves 0.518 bits per base for a 134.0 Gbp human genome sequencing collection with almost 45-fold coverage. We propose overlapping reads compression with minimizers, a compression algorithm dedicated to sequencing reads (DNA only). Our method makes use of a conceptually simple and easily parallelizable idea of minimizers, to obtain 0.317 bits per base as the compression ratio, allowing to fit the 134.0 Gbp dataset into only 5.31 GB of space. http://sun.aei.polsl.pl/orcom under a free license. sebastian.deorowicz@polsl.pl Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Optimization of Error-Bounded Lossy Compression for Hard-to-Compress HPC Data

    Energy Technology Data Exchange (ETDEWEB)

    Di, Sheng; Cappello, Franck

    2018-01-01

    Since today’s scientific applications are producing vast amounts of data, compressing them before storage/transmission is critical. Results of existing compressors show two types of HPC data sets: highly compressible and hard to compress. In this work, we carefully design and optimize the error-bounded lossy compression for hard-tocompress scientific data. We propose an optimized algorithm that can adaptively partition the HPC data into best-fit consecutive segments each having mutually close data values, such that the compression condition can be optimized. Another significant contribution is the optimization of shifting offset such that the XOR-leading-zero length between two consecutive unpredictable data points can be maximized. We finally devise an adaptive method to select the best-fit compressor at runtime for maximizing the compression factor. We evaluate our solution using 13 benchmarks based on real-world scientific problems, and we compare it with 9 other state-of-the-art compressors. Experiments show that our compressor can always guarantee the compression errors within the user-specified error bounds. Most importantly, our optimization can improve the compression factor effectively, by up to 49% for hard-tocompress data sets with similar compression/decompression time cost.

  5. The impact of chest compression rates on quality of chest compressions - a manikin study.

    Science.gov (United States)

    Field, Richard A; Soar, Jasmeet; Davies, Robin P; Akhtar, Naheed; Perkins, Gavin D

    2012-03-01

    Chest compressions are often performed at a variable rate during cardiopulmonary resuscitation (CPR). The effect of compression rate on other chest compression quality variables (compression depth, duty-cycle, leaning, performance decay over time) is unknown. This randomised controlled cross-over manikin study examined the effect of different compression rates on the other chest compression quality variables. Twenty healthcare professionals performed 2 min of continuous compressions on an instrumented manikin at rates of 80, 100, 120, 140 and 160 min(-1) in a random order. An electronic metronome was used to guide compression rate. Compression data were analysed by repeated measures ANOVA and are presented as mean (SD). Non-parametric data was analysed by Friedman test. At faster compression rates there were significant improvements in the number of compressions delivered (160(2) at 80 min(-1) vs. 312(13) compressions at 160 min(-1), P<0.001); and compression duty-cycle (43(6)% at 80 min(-1) vs. 50(7)% at 160 min(-1), P<0.001). This was at the cost of a significant reduction in compression depth (39.5(10)mm at 80 min(-1) vs. 34.5(11)mm at 160 min(-1), P<0.001); and earlier decay in compression quality (median decay point 120 s at 80 min(-1) vs. 40s at 160 min(-1), P<0.001). Additionally not all participants achieved the target rate (100% at 80 min(-1) vs. 70% at 160 min(-1)). Rates above 120 min(-1) had the greatest impact on reducing chest compression quality. For Guidelines 2005 trained rescuers, a chest compression rate of 100-120 min(-1) for 2 min is feasible whilst maintaining adequate chest compression quality in terms of depth, duty-cycle, leaning, and decay in compression performance. Further studies are needed to assess the impact of the Guidelines 2010 recommendation for deeper and faster chest compressions. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  6. Fast optics for the Rutherford laser compression experiments

    International Nuclear Information System (INIS)

    Micholas, D.J.

    1976-12-01

    The compression chamber optical system proposed for the Rutherford Laboratory Laser compression experiments is described. The system corrects for longitudinal spherical aberration giving a final spot size approximately 15 μm. This could theoretically be improved. The two laser beams are focused via a pair of F/1.2 aspheric lenses onto a double-pass 'clam shell' aspheric mirror system. An analysis of the lens and mirror system is given and compared with an alternative ellipsoidal system already developed. The problems of manufacturing aspheric lenses to operate at 1.06 μm are outlined and an alternative novel approach to this design given. (author)

  7. Behaviour of (Th, U)O2 microspheres under compression tests and pelletization

    International Nuclear Information System (INIS)

    Ferreira, R.A.N.

    1982-12-01

    The interrelation between the behaviour of isolated microspheres in compression tests and the microstructure of sintered pellets obtained with these microspheres, was investigated. Various batches of (Th, 5 w/o U)O 2 microspheres were produced applying the so-called gel process. The production parameters were diversified both as to the composition and to the heat treatments. The resulting products underwent compression tests in an universal tension and compression machine as single microspheres and, as bulk material, were compacted and sintered. The results of the compression tests revealed the existence of two distinct classes of fragmentation behaviour. Each of these classes causes a distinct behaviour during the pelletization, too, resulting in fuel pellets with quite different microstructures. It was evidenced that there is a relationship between these differences in the microstructure and the behaviour of the single microspheres in the compression test. (Author) [pt

  8. 2nd International MATHEON Conference on Compressed Sensing and its Applications

    CERN Document Server

    Caire, Giuseppe; Calderbank, Robert; März, Maximilian; Kutyniok, Gitta; Mathar, Rudolf

    2017-01-01

    This contributed volume contains articles written by the plenary and invited speakers from the second international MATHEON Workshop 2015 that focus on applications of compressed sensing. Article authors address their techniques for solving the problems of compressed sensing, as well as connections to related areas like detecting community-like structures in graphs, curbatures on Grassmanians, and randomized tensor train singular value decompositions. Some of the novel applications covered include dimensionality reduction, information theory, random matrices, sparse approximation, and sparse recovery.  This book is aimed at both graduate students and researchers in the areas of applied mathematics, computer science, and engineering, as well as other applied scientists exploring the potential applications for the novel methodology of compressed sensing. An introduction to the subject of compressed sensing is also provided for researchers interested in the field who are not as familiar with it. .

  9. Effects of temperature and void on the dynamics and microstructure of structural transition in single crystal iron

    Science.gov (United States)

    Shao, Jian-Li; Wang, Pei; Zhang, Feng-Guo; He, An-Min

    2018-06-01

    With classic molecular dynamics simulations, we investigate the effects of temperature and void on the bcc to hcp/fcc structural transition in single crystal iron driven by 1D ([0 0 1]) and 3D (uniform) compressions. The results show that the pressure threshold does not reduce monotonously with temperature. The pressure threshold firstly increases and then decreases in the range of 60–360 K under 1D compression, while the variation trend is just opposite under 3D compression. As expected, the initial defect may lower the pressure threshold via heterogenous nucleation. This effect is found to be more distinct at lower temperature, and the heterogenous nucleation mainly results in hcp structure. Under the condition of strain constraint, the products of structural transition will respectively form flaky hcp twin structure ((1 0 0) or (0 1 0)) and lamellar structure ({1 1 0}) of mixed phases under 1D and 3D compressions. During the structural transition, we find the shear stress (1D compression) of hcp phase is always lower than that of bcc phase. The cold energy calculations indicate that the hcp phase is the most stable under high pressure. However, we observe the evident metastable state of bcc phase, whose energy will be much higher than both hcp and fcc phases, and then provides the possibility for the occurrence of fcc nucleation.

  10. NON-COHESIVE SOILS’ COMPRESSIBILITY AND UNEVEN GRAIN-SIZE DISTRIBUTION RELATION

    Directory of Open Access Journals (Sweden)

    Anatoliy Mirnyy

    2016-03-01

    Full Text Available This paper presents the results of laboratory investigation of soil compression phases with consideration of various granulometric composition. Materials and Methods Experimental soil box with microscale video recording for compression phases studies is described. Photo and video materials showing the differences of microscale particle movements were obtained for non-cohesive soils with different grain-size distribution. Results The analysis of the compression tests results and elastic and plastic deformations separation allows identifying each compression phase. It is shown, that soil density is correlating with deformability parameters only for the same grain-size distribution. Basing on the test results the authors suggest that compaction ratio is not sufficient for deformability estimating without grain-size distribution taken into account. Discussion and Conclusions Considering grain-size distribution allows refining technological requirements for artificial soil structures, backfills, and sand beds. Further studies could be used for developing standard documents, SP45.13330.2012 in particular.

  11. Starting up a programme of atomic piles using compressed gas

    International Nuclear Information System (INIS)

    Horowitz, J.; Yvon, J.

    1959-01-01

    1) An examination of the intellectual and material resources which have directed the French programme towards: a) the natural uranium and plutonium system, b) the use of compressed gas as heat transfer fluid (primary fluid). 2) The parts played in exploring the field by the pile EL2 and G1, EL2 a natural uranium, heavy water and compressed gas pile, G1 a natural uranium, graphite and atmospheric air pile. 3) Development of the neutronics of graphite piles: physical study of G1. 4) The examination of certain problem posed by centres equipped with natural uranium, graphite and compressed carbon dioxide piles: structure, special materials, fluid circuits, maximum efficiency. Economic aspects. 5) Aids to progress: a) piles for testing materials and for tests on canned fuel elements, b) laboratory and calculation facilities. 6) Possible new orientations of compressed gas piles: a) raising of the pressure, b) enriched fuel, c) higher temperatures, d) use of heavy water. (author) [fr

  12. System for ν-ν-coincidence spectra processing with data compression

    International Nuclear Information System (INIS)

    Byalko, A.A.; Volkov, N.G.; Tsupko-Sitnikov, V.M.; Churakov, A.K.

    1982-01-01

    Calculational algorithm and program for analyzing gamma-gamma coincidence spectra based on using the method of expansion in singular values for data compression (the SVD method) are described. Results of the testing of the program during the processing of coincidence spectrum for the low-energy region of transitions corresponding to decay 164 Lu → 164 Yb are given. The program is written in the FORTRAN language and is realized by the ES-1040 computer. The counting time constitutes about 20 min. It is concluded that the use of the SVD method permits to correct the data at the expense of distortion filtration caused with statistical deviations and random interferences, at that not distorting the initial data. The data compressed correspond more to theoretical suggestions of forms of semiconductor detector lines and two-dimensional line in the coincidence spectrum

  13. Medical image compression by using three-dimensional wavelet transformation

    International Nuclear Information System (INIS)

    Wang, J.; Huang, H.K.

    1996-01-01

    This paper proposes a three-dimensional (3-D) medical image compression method for computed tomography (CT) and magnetic resonance (MR) that uses a separable nonuniform 3-D wavelet transform. The separable wavelet transform employs one filter bank within two-dimensional (2-D) slices and then a second filter bank on the slice direction. CT and MR image sets normally have different resolutions within a slice and between slices. The pixel distances within a slice are normally less than 1 mm and the distance between slices can vary from 1 mm to 10 mm. To find the best filter bank in the slice direction, the authors use the various filter banks in the slice direction and compare the compression results. The results from the 12 selected MR and CT image sets at various slice thickness show that the Haar transform in the slice direction gives the optimum performance for most image sets, except for a CT image set which has 1 mm slice distance. Compared with 2-D wavelet compression, compression ratios of the 3-D method are about 70% higher for CT and 35% higher for MR image sets at a peak signal to noise ratio (PSNR) of 50 dB. In general, the smaller the slice distance, the better the 3-D compression performance

  14. Excessive chest compression rate is associated with insufficient compression depth in prehospital cardiac arrest.

    Science.gov (United States)

    Monsieurs, Koenraad G; De Regge, Melissa; Vansteelandt, Kristof; De Smet, Jeroen; Annaert, Emmanuel; Lemoyne, Sabine; Kalmar, Alain F; Calle, Paul A

    2012-11-01

    BACKGROUND AND GOAL OF STUDY: The relationship between chest compression rate and compression depth is unknown. In order to characterise this relationship, we performed an observational study in prehospital cardiac arrest patients. We hypothesised that faster compressions are associated with decreased depth. In patients undergoing prehospital cardiopulmonary resuscitation by health care professionals, chest compression rate and depth were recorded using an accelerometer (E-series monitor-defibrillator, Zoll, U.S.A.). Compression depth was compared for rates 120/min. A difference in compression depth ≥0.5 cm was considered clinically significant. Mixed models with repeated measurements of chest compression depth and rate (level 1) nested within patients (level 2) were used with compression rate as a continuous and as a categorical predictor of depth. Results are reported as means and standard error (SE). One hundred and thirty-three consecutive patients were analysed (213,409 compressions). Of all compressions 2% were 120/min, 36% were 5 cm. In 77 out of 133 (58%) patients a statistically significant lower depth was observed for rates >120/min compared to rates 80-120/min, in 40 out of 133 (30%) this difference was also clinically significant. The mixed models predicted that the deepest compression (4.5 cm) occurred at a rate of 86/min, with progressively lower compression depths at higher rates. Rates >145/min would result in a depth compression depth for rates 80-120/min was on average 4.5 cm (SE 0.06) compared to 4.1 cm (SE 0.06) for compressions >120/min (mean difference 0.4 cm, Pcompression rates and lower compression depths. Avoiding excessive compression rates may lead to more compressions of sufficient depth. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  15. Single stock dynamics on high-frequency data: from a compressed coding perspective.

    Directory of Open Access Journals (Sweden)

    Hsieh Fushing

    Full Text Available High-frequency return, trading volume and transaction number are digitally coded via a nonparametric computing algorithm, called hierarchical factor segmentation (HFS, and then are coupled together to reveal a single stock dynamics without global state-space structural assumptions. The base-8 digital coding sequence, which is capable of revealing contrasting aggregation against sparsity of extreme events, is further compressed into a shortened sequence of state transitions. This compressed digital code sequence vividly demonstrates that the aggregation of large absolute returns is the primary driving force for stimulating both the aggregations of large trading volumes and transaction numbers. The state of system-wise synchrony is manifested with very frequent recurrence in the stock dynamics. And this data-driven dynamic mechanism is seen to correspondingly vary as the global market transiting in and out of contraction-expansion cycles. These results not only elaborate the stock dynamics of interest to a fuller extent, but also contradict some classical theories in finance. Overall this version of stock dynamics is potentially more coherent and realistic, especially when the current financial market is increasingly powered by high-frequency trading via computer algorithms, rather than by individual investors.

  16. Transitional cell carcinoma of urinary bladder with metastasis in lumbar vertebrae and spinal cord compression in an ocelot(Leopardus pardalis

    Directory of Open Access Journals (Sweden)

    Karen Y.R. Nakagaki

    2015-01-01

    Full Text Available This paper reports a case of nonpapillary and infiltrative transitional cell carcinoma (TCC of the urinary bladder with metastasis of lumbar vertebrae and spinal cord compression in an adult female ocelot (Leopardus pardalis, from the Mato Grosso state, Brazil. The ocelot had pelvic limb paralysis and skin ulcers in the posterior region of the body and was submitted to euthanasia procedure. At necropsy was observed a multilobulated and irregular shaped, yellowish to white nodule in the urinary bladder. The nodule had a soft consistency and arised from the mucosa of the urinary bladder extending throughout the muscular layers and the serosa. Nodules of similar appearance infiltrating the vertebral column the at L6 and L7 vertebrae with corresponding spinal canal invasion were also observed. The histological evaluation showed epithelial neoplastic proliferation in the urinary bladder with characteristics of nonpapillary and infiltrative TCC, with positive immunohistochemical staining for pancytokeratin, and strong immunostaining for cytokeratin of low molecular weight, and weak or absent labeling for high molecular weight cytokeratin. This is the first report of TCC of urinary bladder in ocelot in Brazil.

  17. Cranial nerve vascular compression syndromes of the trigeminal, facial and vago-glossopharyngeal nerves: comparative anatomical study of the central myelin portion and transitional zone; correlations with incidences of corresponding hyperactive dysfunctional syndromes.

    Science.gov (United States)

    Guclu, Bulent; Sindou, Marc; Meyronet, David; Streichenberger, Nathalie; Simon, Emile; Mertens, Patrick

    2011-12-01

    The aim of this study was to evaluate the anatomy of the central myelin portion and the central myelin-peripheral myelin transitional zone of the trigeminal, facial, glossopharyngeal and vagus nerves from fresh cadavers. The aim was also to investigate the relationship between the length and volume of the central myelin portion of these nerves with the incidences of the corresponding cranial dysfunctional syndromes caused by their compression to provide some more insights for a better understanding of mechanisms. The trigeminal, facial, glossopharyngeal and vagus nerves from six fresh cadavers were examined. The length of these nerves from the brainstem to the foramen that they exit were measured. Longitudinal sections were stained and photographed to make measurements. The diameters of the nerves where they exit/enter from/to brainstem, the diameters where the transitional zone begins, the distances to the most distal part of transitional zone from brainstem and depths of the transitional zones were measured. Most importantly, the volume of the central myelin portion of the nerves was calculated. Correlation between length and volume of the central myelin portion of these nerves and the incidences of the corresponding hyperactive dysfunctional syndromes as reported in the literature were studied. The distance of the most distal part of the transitional zone from the brainstem was 4.19  ±  0.81 mm for the trigeminal nerve, 2.86  ±  1.19 mm for the facial nerve, 1.51  ±  0.39 mm for the glossopharyngeal nerve, and 1.63  ±  1.15 mm for the vagus nerve. The volume of central myelin portion was 24.54  ±  9.82 mm(3) in trigeminal nerve; 4.43  ±  2.55 mm(3) in facial nerve; 1.55  ±  1.08 mm(3) in glossopharyngeal nerve; 2.56  ±  1.32 mm(3) in vagus nerve. Correlations (p  nerves and incidences of the corresponding diseases. At present it is rather well-established that primary trigeminal neuralgia, hemifacial spasm and vago

  18. Data compression systems for home-use digital video recording

    NARCIS (Netherlands)

    With, de P.H.N.; Breeuwer, M.; van Grinsven, P.A.M.

    1992-01-01

    The authors focus on image data compression techniques for digital recording. Image coding for storage equipment covers a large variety of systems because the applications differ considerably in nature. Video coding systems suitable for digital TV and HDTV recording and digital electronic still

  19. Stress Distribution in Graded Cellular Materials Under Dynamic Compression

    Directory of Open Access Journals (Sweden)

    Peng Wang

    Full Text Available Abstract Dynamic compression behaviors of density-homogeneous and density-graded irregular honeycombs are investigated using cell-based finite element models under a constant-velocity impact scenario. A method based on the cross-sectional engineering stress is developed to obtain the one-dimensional stress distribution along the loading direction in a cellular specimen. The cross-sectional engineering stress is contributed by two parts: the node-transitive stress and the contact-induced stress, which are caused by the nodal force and the contact of cell walls, respectively. It is found that the contact-induced stress is dominant for the significantly enhanced stress behind the shock front. The stress enhancement and the compaction wave propagation can be observed through the stress distributions in honeycombs under high-velocity compression. The single and double compaction wave modes are observed directly from the stress distributions. Theoretical analysis of the compaction wave propagation in the density-graded honeycombs based on the R-PH (rigid-plastic hardening idealization is carried out and verified by the numerical simulations. It is found that stress distribution in cellular materials and the compaction wave propagation characteristics under dynamic compression can be approximately predicted by the R-PH shock model.

  20. Unconventional ordering behavior of semi-flexible polymers in dense brushes under compression.

    Science.gov (United States)

    Milchev, Andrey; Binder, Kurt

    2014-06-07

    Using a coarse-grained bead-spring model for semi-flexible macromolecules which form a polymer brush, the structure and dynamics of the polymers were investigated, varying the chain stiffness and the grafting density. The anchoring conditions for the grafted chains were chosen such that their first bonds were oriented along the normal to the substrate plane. The compression of such a semi-flexible brush by a planar piston was observed to be a two-stage process: for a small compression the chains were shown to contract by "buckling" deformation whereas for a larger compression the chains exhibited a collective (almost uniform) bending deformation. Thus, the stiff polymer brush underwent a 2nd order phase transition of collective bond reorientation. The pressure, required to keep the stiff brush at a given degree of compression, was thereby significantly smaller than for an otherwise identical brush made of entirely flexible polymer chains! While both the brush height and the chain linear dimensions in the z-direction perpendicular to the substrate increased monotonically with an increase in the chain stiffness, the lateral (xy) chain linear dimensions exhibited a maximum at an intermediate chain stiffness. Increasing the grafting density led to a strong decrease of these lateral dimensions which is compatible with an exponential decay. Also the recovery kinetics after removal of the compressing piston were studied, and were found to follow a power-law/exponential decay with time. A simple mean-field theoretical consideration, accounting for the buckling/bending behavior of semi-flexible polymer brushes under compression was suggested.

  1. Adiabatic compression and radiative compression of magnetic fields

    International Nuclear Information System (INIS)

    Woods, C.H.

    1980-01-01

    Flux is conserved during mechanical compression of magnetic fields for both nonrelativistic and relativistic compressors. However, the relativistic compressor generates radiation, which can carry up to twice the energy content of the magnetic field compressed adiabatically. The radiation may be either confined or allowed to escape

  2. Neuromuscular fatigue and tibiofemoral joint biomechanics when transitioning from non-weight bearing to weight bearing.

    Science.gov (United States)

    Schmitz, Randy J; Kim, Hyunsoo; Shultz, Sandra J

    2015-01-01

    Fatigue is suggested to be a risk factor for anterior cruciate ligament injury. Fatiguing exercise can affect neuromuscular control and laxity of the knee joint, which may render the knee less able to resist externally applied loads. Few authors have examined the effects of fatiguing exercise on knee biomechanics during the in vivo transition of the knee from non-weight bearing to weight bearing, the time when anterior cruciate ligament injury likely occurs. To investigate the effect of fatiguing exercise on tibiofemoral joint biomechanics during the transition from non-weight bearing to early weight bearing. Cross-sectional study. Research laboratory. Ten participants (5 men and 5 women; age = 25.3 ± 4.0 years) with no previous history of knee-ligament injury to the dominant leg. Participants were tested before (preexercise) and after (postexercise) a protocol consisting of repeated leg presses (15 repetitions from 10°-40° of knee flexion, 10 seconds' rest) against a 60% body-weight load until they were unable to complete a full bout of repetitions. Electromagnetic sensors measured anterior tibial translation and knee-flexion excursion during the application of a 40% body-weight axial compressive load to the bottom of the foot, simulating weight acceptance. A force transducer recorded axial compressive force. The axial compressive force (351.8 ± 44.3 N versus 374.0 ± 47.9 N; P = .018), knee-flexion excursion (8.0° ± 4.0° versus 10.2° ± 3.7°; P = .046), and anterior tibial translation (6.7 ± 1.7 mm versus 8.2 ± 1.9 mm; P Neuromuscular fatigue may impair initial knee-joint stabilization during weight acceptance, leading to greater accessory motion at the knee and the potential for greater anterior cruciate ligament loading.

  3. Lattice-Stiffening Transition in Copolymer Films of Vinylidene Fluoride (70%) with Trifluoroethylene (30%)

    Energy Technology Data Exchange (ETDEWEB)

    Borca, C N [Department of Physics and Astronomy and the Center for Materials Research and Analysis, University of Nebraska, Lincoln, Nebraska 68588-0111 (United States); Adenwalla, S [Department of Physics and Astronomy and the Center for Materials Research and Analysis, University of Nebraska, Lincoln, Nebraska 68588-0111 (United States); Choi, Jaewu [Department of Physics and Astronomy and the Center for Materials Research and Analysis, University of Nebraska, Lincoln, Nebraska 68588-0111 (United States); Center for Advanced Microstructure and Devices, Louisiana State University, 6980 Jefferson Highway, Baton Rouge, Louisiana 70806 (United States); Sprunger, P T [Center for Advanced Microstructure and Devices, Louisiana State University, 6980 Jefferson Highway, Baton Rouge, Louisiana 70806 (United States); Ducharme, Stephen [Department of Physics and Astronomy and the Center for Materials Research and Analysis, University of Nebraska, Lincoln, Nebraska 68588-0111 (United States); Robertson, Lee [High Flux Isotope Reactor (HFIR), Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Palto, S P [Institute of Crystallography, The Russian Academy of Sciences, 59 Leninsky Prospekt, 117333 Moscow, Russia (Russian Federation); Liu, Jianglai [Department of Physics and Astronomy and the Center for Materials Research and Analysis, University of Nebraska, Lincoln, Nebraska 68588-0111 (United States); Poulsen, Matt [Department of Physics and Astronomy and the Center for Materials Research and Analysis, University of Nebraska, Lincoln, Nebraska 68588-0111 (United States); Fridkin, V M [Institute of Crystallography, The Russian Academy of Sciences, 59 Leninsky Prospekt, 117333 Moscow, Russia (Russian Federation)

    1999-11-29

    We report the discovery of a compressibility phase transition at 160 K in crystalline copolymer films of vinylidene fluoride (70% ) with trifluoroethylene (30% ). This phase transition is distinct from the known bulk ferroelectric-paraelectric phase transition at 353 K and surface ferroelectric phase transition at 295 K. The new phase transition is characterized by an increase in the effective Debye temperature from 48 to 245 K along the <010> direction as the temperature falls below 160 K. This phase transition is evident in neutron scattering, x-ray diffraction, angle-resolved photoemission, and in the dipole active phonon modes in electron energy-loss spectroscopy. (c) 1999 The American Physical Society.

  4. Crystal structure of HgGa{sub 2}Se{sub 4} under compression

    Energy Technology Data Exchange (ETDEWEB)

    Gomis, Oscar, E-mail: osgohi@fis.upv.es [Centro de Tecnologías Físicas: Acústica, Materiales y Astrofísica, MALTA Consolider Team, Universitat Politècnica de València, 46022 València (Spain); Vilaplana, Rosario [Centro de Tecnologías Físicas: Acústica, Materiales y Astrofísica, MALTA Consolider Team, Universitat Politècnica de València, 46022 València (Spain); Manjón, Francisco Javier [Instituto de Diseño para la Fabricación y Producción Automatizada, MALTA Consolider Team, Universitat Politècnica de València, 46022 València (Spain); Santamaría-Pérez, David [Departamento de Química Física I, Universidad Complutense de Madrid, MALTA Consolider Team, Avenida Complutense s/n, 28040 Madrid (Spain); Departamento de Física Aplicada-ICMUV, MALTA Consolider Team, Universidad de Valencia, Edificio de Investigación, C/Dr. Moliner 50, Burjassot, 46100 Valencia (Spain); Errandonea, Daniel [Departamento de Física Aplicada-ICMUV, MALTA Consolider Team, Universidad de Valencia, Edificio de Investigación, C/Dr. Moliner 50, Burjassot, 46100 Valencia (Spain); and others

    2013-06-01

    Highlights: ► Single crystals of HgGa{sub 2}Se{sub 4} with defect-chalcopyrite structure were synthesized. ► HgGa{sub 2}Se{sub 4} exhibits a phase transition to a disordered rock salt structure at 17 GPa. ► HgGa{sub 2}Se{sub 4} undergoes a phase transition below 2.1 GPa to a disordered zinc blende. - Abstract: We report on high-pressure x-ray diffraction measurements up to 17.2 GPa in mercury digallium selenide (HgGa{sub 2}Se{sub 4}). The equation of state and the axial compressibilities for the low-pressure tetragonal phase have been determined and compared to related compounds. HgGa{sub 2}Se{sub 4} exhibits a phase transition on upstroke toward a disordered rock-salt structure beyond 17 GPa, while on downstroke it undergoes a phase transition below 2.1 GPa to a phase that could be assigned to a metastable zinc-blende structure with a total cation-vacancy disorder. Thermal annealing at low- and high-pressure shows that kinetics plays an important role on pressure-driven transitions.

  5. The impact of chest compression rates on quality of chest compressions : a manikin study

    OpenAIRE

    Field, Richard A.; Soar, Jasmeet; Davies, Robin P.; Akhtar, Naheed; Perkins, Gavin D.

    2012-01-01

    Purpose\\ud Chest compressions are often performed at a variable rate during cardiopulmonary resuscitation (CPR). The effect of compression rate on other chest compression quality variables (compression depth, duty-cycle, leaning, performance decay over time) is unknown. This randomised controlled cross-over manikin study examined the effect of different compression rates on the other chest compression quality variables.\\ud Methods\\ud Twenty healthcare professionals performed two minutes of co...

  6. Temperature measurement in a compressible flow field using laser-induced iodine fluorescence

    Science.gov (United States)

    Fletcher, D. G.; Mcdaniel, J. C.

    1987-01-01

    The thermometric capability of a two-line fluorescence technique using iodine seed molecules in air is investigated analytically and verified experimentally in a known steady compressible flow field. Temperatures ranging from 165 to 295 K were measured in the flowfield using two iodine transitions accessed with a 30-GHz dye-laser scan near 543 nm. The effect of pressure broadening on temperature measurement is evaluated.

  7. Force balancing in mammographic compression

    International Nuclear Information System (INIS)

    Branderhorst, W.; Groot, J. E. de; Lier, M. G. J. T. B. van; Grimbergen, C. A.; Neeter, L. M. F. H.; Heeten, G. J. den; Neeleman, C.

    2016-01-01

    Purpose: In mammography, the height of the image receptor is adjusted to the patient before compressing the breast. An inadequate height setting can result in an imbalance between the forces applied by the image receptor and the paddle, causing the clamped breast to be pushed up or down relative to the body during compression. This leads to unnecessary stretching of the skin and other tissues around the breast, which can make the imaging procedure more painful for the patient. The goal of this study was to implement a method to measure and minimize the force imbalance, and to assess its feasibility as an objective and reproducible method of setting the image receptor height. Methods: A trial was conducted consisting of 13 craniocaudal mammographic compressions on a silicone breast phantom, each with the image receptor positioned at a different height. The image receptor height was varied over a range of 12 cm. In each compression, the force exerted by the compression paddle was increased up to 140 N in steps of 10 N. In addition to the paddle force, the authors measured the force exerted by the image receptor and the reaction force exerted on the patient body by the ground. The trial was repeated 8 times, with the phantom remounted at a slightly different orientation and position between the trials. Results: For a given paddle force, the obtained results showed that there is always exactly one image receptor height that leads to a balance of the forces on the breast. For the breast phantom, deviating from this specific height increased the force imbalance by 9.4 ± 1.9 N/cm (6.7%) for 140 N paddle force, and by 7.1 ± 1.6 N/cm (17.8%) for 40 N paddle force. The results also show that in situations where the force exerted by the image receptor is not measured, the craniocaudal force imbalance can still be determined by positioning the patient on a weighing scale and observing the changes in displayed weight during the procedure. Conclusions: In mammographic breast

  8. Unified compression and encryption algorithm for fast and secure network communications

    International Nuclear Information System (INIS)

    Rizvi, S.M.J.; Hussain, M.; Qaiser, N.

    2005-01-01

    Compression and encryption of data are two vital requirements for the fast and secure transmission of data in the network based communications. In this paper an algorithm is presented based on adaptive Huffman encoding for unified compression and encryption of Unicode encoded textual data. The Huffman encoding weakness that same tree is needed for decoding is utilized in the algorithm presented as an extra layer of security, which is updated whenever the frequency change is above the specified threshold level. The results show that we get compression comparable to popular zip format and in addition to that data has got an additional layer of encryption that makes it more secure. Thus unified algorithm presented here can be used for network communications between different branches of banks, e- Government programs and national database and registration centers where data transmission requires both compression and encryption. (author)

  9. Wavelet compression of multichannel ECG data by enhanced set partitioning in hierarchical trees algorithm.

    Science.gov (United States)

    Sharifahmadian, Ershad

    2006-01-01

    The set partitioning in hierarchical trees (SPIHT) algorithm is very effective and computationally simple technique for image and signal compression. Here the author modified the algorithm which provides even better performance than the SPIHT algorithm. The enhanced set partitioning in hierarchical trees (ESPIHT) algorithm has performance faster than the SPIHT algorithm. In addition, the proposed algorithm reduces the number of bits in a bit stream which is stored or transmitted. I applied it to compression of multichannel ECG data. Also, I presented a specific procedure based on the modified algorithm for more efficient compression of multichannel ECG data. This method employed on selected records from the MIT-BIH arrhythmia database. According to experiments, the proposed method attained the significant results regarding compression of multichannel ECG data. Furthermore, in order to compress one signal which is stored for a long time, the proposed multichannel compression method can be utilized efficiently.

  10. Structural phase transition and failure of nanographite sheets under high pressure: a molecular dynamics study

    International Nuclear Information System (INIS)

    Zhang Bin; Liang Yongcheng; Sun Huiyu

    2007-01-01

    Nanographite sheets under high compressive stresses at ambient temperature have been investigated through molecular dynamics simulations using the Tersoff-Brenner potential. Nanographite undergoes a soft to hard phase transition at a certain compressive stress, about 15 GPa. With increasing compressions, the bonding structures of nanographite are changed, interlayer sp 3 -bonds are formed, and nanographite transforms into a superhard carbon phase (SCP). Further compressions lead to the instabilities of the SCP. Although the detailed lattice structure of the SCP remains elusive, its compressive strength can approach 150 GPa, comparable to that of diamond. The maximum failure stresses of nanographite sheets are sensitive to the inter-and intra-layer interstices. Our results may explain paradoxical experimental results in the available literature

  11. Compression stockings

    Science.gov (United States)

    Call your health insurance or prescription plan: Find out if they pay for compression stockings. Ask if your durable medical equipment benefit pays for compression stockings. Get a prescription from your doctor. Find a medical equipment store where they can ...

  12. Effect of Compaction on Compressive Strength of Unfired Clay Blocks

    International Nuclear Information System (INIS)

    Lakho, N.A.; Zardari, M.A.; Pathan, A.A.

    2016-01-01

    This study investigates the possible use of unfired compacted clay blocks as a substitute of CSEB (Compressed Stabilized Earth Blocks) for the construction of economical houses. Cubes of 150 mm size were cut from the clay blocks which were compacted at various intensities of pressure during the casting. The results show that the compressive strength of the clay cubes increased with the compacting pressure to which the blocks were subjected during casting. The average crushing strength of the cubes, sawed from clay blocks that were subjected to compacting pressure of 7.2 MPa, was found to be 4.4 MPa. This value of compressive strength is about 50 percent more than that of normal CSEB. This study shows that the compacted clay blocks could be used as economical walling material as replacement of CSEB. (author)

  13. Compression for radiological images

    Science.gov (United States)

    Wilson, Dennis L.

    1992-07-01

    The viewing of radiological images has peculiarities that must be taken into account in the design of a compression technique. The images may be manipulated on a workstation to change the contrast, to change the center of the brightness levels that are viewed, and even to invert the images. Because of the possible consequences of losing information in a medical application, bit preserving compression is used for the images used for diagnosis. However, for archiving the images may be compressed to 10 of their original size. A compression technique based on the Discrete Cosine Transform (DCT) takes the viewing factors into account by compressing the changes in the local brightness levels. The compression technique is a variation of the CCITT JPEG compression that suppresses the blocking of the DCT except in areas of very high contrast.

  14. Lagrangian investigations of vorticity dynamics in compressible turbulence

    Science.gov (United States)

    Parashar, Nishant; Sinha, Sawan Suman; Danish, Mohammad; Srinivasan, Balaji

    2017-10-01

    In this work, we investigate the influence of compressibility on vorticity-strain rate dynamics. Well-resolved direct numerical simulations of compressible homogeneous isotropic turbulence performed over a cubical domain of 10243 are employed for this study. To clearly identify the influence of compressibility on the time-dependent dynamics (rather than on the one-time flow field), we employ a well-validated Lagrangian particle tracker. The tracker is used to obtain time correlations between the instantaneous vorticity vector and the strain-rate eigenvector system of an appropriately chosen reference time. In this work, compressibility is parameterized in terms of both global (turbulent Mach number) and local parameters (normalized dilatation-rate and flow field topology). Our investigations reveal that the local dilatation rate significantly influences these statistics. In turn, this observed influence of the dilatation rate is predominantly associated with rotation dominated topologies (unstable-focus-compressing, stable-focus-stretching). We find that an enhanced dilatation rate (in both contracting and expanding fluid elements) significantly enhances the tendency of the vorticity vector to align with the largest eigenvector of the strain-rate. Further, in fluid particles where the vorticity vector is maximally misaligned (perpendicular) at the reference time, vorticity does show a substantial tendency to align with the intermediate eigenvector as well. The authors make an attempt to provide physical explanations of these observations (in terms of moment of inertia and angular momentum) by performing detailed calculations following tetrads {approach of Chertkov et al. ["Lagrangian tetrad dynamics and the phenomenology of turbulence," Phys. Fluids 11(8), 2394-2410 (1999)] and Xu et al. ["The pirouette effect in turbulent flows," Nat. Phys. 7(9), 709-712 (2011)]} in a compressible flow field.

  15. Full-frame compression of discrete wavelet and cosine transforms

    Science.gov (United States)

    Lo, Shih-Chung B.; Li, Huai; Krasner, Brian; Freedman, Matthew T.; Mun, Seong K.

    1995-04-01

    At the foreground of computerized radiology and the filmless hospital are the possibilities for easy image retrieval, efficient storage, and rapid image communication. This paper represents the authors' continuous efforts in compression research on full-frame discrete wavelet (FFDWT) and full-frame discrete cosine transforms (FFDCT) for medical image compression. Prior to the coding, it is important to evaluate the global entropy in the decomposed space. It is because of the minimum entropy, that a maximum compression efficiency can be achieved. In this study, each image was split into the top three most significant bit (MSB) and the remaining remapped least significant bit (RLSB) images. The 3MSB image was compressed by an error-free contour coding and received an average of 0.1 bit/pixel. The RLSB image was either transformed to a multi-channel wavelet or the cosine transform domain for entropy evaluation. Ten x-ray chest radiographs and ten mammograms were randomly selected from our clinical database and were used for the study. Our results indicated that the coding scheme in the FFDCT domain performed better than in FFDWT domain for high-resolution digital chest radiographs and mammograms. From this study, we found that decomposition efficiency in the DCT domain for relatively smooth images is higher than that in the DWT. However, both schemes worked just as well for low resolution digital images. We also found that the image characteristics of the `Lena' image commonly used in the compression literature are very different from those of radiological images. The compression outcome of the radiological images can not be extrapolated from the compression result based on the `Lena.'

  16. Self contained compressed air breathing apparatus to facilitate personnel decontamination

    International Nuclear Information System (INIS)

    McDonald, C.W.

    1963-11-01

    This report describes the modification of a Self Contained Compressed Air Breathing Apparatus to provide extended respiratory protection to grossly contaminated personnel during a decontamination period which may exceed the duration of the Breathing Apparatus air supply. (author)

  17. Self contained compressed air breathing apparatus to facilitate personnel decontamination

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, C W [Radiological and Safety Division, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)

    1963-11-15

    This report describes the modification of a Self Contained Compressed Air Breathing Apparatus to provide extended respiratory protection to grossly contaminated personnel during a decontamination period which may exceed the duration of the Breathing Apparatus air supply. (author)

  18. Relation between bulk compressibility and surface energy of electron-hole liquids

    International Nuclear Information System (INIS)

    Singwi, K.S.; Tosi, M.P.

    1979-08-01

    Attention is drawn to the existence of an empirical relation chiσ/asup(*)sub(B) approximately 1 between the compressibility, the surface energy and the excitonic radius in electron-hole liquids. (author)

  19. Magnetic engineering in 3d transition metals on phosphorene by strain

    International Nuclear Information System (INIS)

    Cai, Xiaolin; Niu, Chunyao; Wang, Jianjun; Yu, Weiyang; Ren, XiaoYan; Zhu, Zhili

    2017-01-01

    Using first-principles density functional theory (DFT) calculations, we systematically investigate the strain effects on the adsorption energies, magnetic ordering and electronic properties of 3d transition metal (TM) atoms (from Sc to Co) adsorbed on phosphorene (P). We find that the adsorption energy of TM can be enhanced by compressive strain whereas weakened by tensile strain. Our results show that strain plays a decisive role in the magnetic moments as well as the magnetic coupling states of TM adatoms. Importantly, the transitions from antiferromagnetic (AFM) state to ferromagnetic (FM) state or to another different AFM ordering can be induced by strain effect. In addition, we observe the semiconductor to metal or half-metal transitions in some TM@P systems by applying strain. Our findings shed a new light on precisely engineering the magnetic properties and electronic properties of the TM@P systems, which will have great potential applications in spin electronics and other related fields. - Highlights: • The adsorption of TM atoms on phosphorene can be enhanced by compressive strain whereas weakened by tensile strain. • Strain plays a decisive role in the magnetic moments as well as the magnetic coupling states of TM adatoms. • Applying strain can induce the semiconductor to metal or half-metal transitions in some TM@P systems.

  20. Magnetic engineering in 3d transition metals on phosphorene by strain

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Xiaolin [International Laboratory for Quantum Functional Materials of Henan and School of Physics and Engineering, Zhengzhou University, Zhengzhou, 450001 (China); School of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo, 454000 (China); Niu, Chunyao, E-mail: niuchunyao@zzu.edu.cn [International Laboratory for Quantum Functional Materials of Henan and School of Physics and Engineering, Zhengzhou University, Zhengzhou, 450001 (China); Wang, Jianjun [College of Science, Zhongyuan University of Technology, Zhengzhou 450007 (China); Yu, Weiyang [International Laboratory for Quantum Functional Materials of Henan and School of Physics and Engineering, Zhengzhou University, Zhengzhou, 450001 (China); School of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo, 454000 (China); Ren, XiaoYan; Zhu, Zhili [International Laboratory for Quantum Functional Materials of Henan and School of Physics and Engineering, Zhengzhou University, Zhengzhou, 450001 (China)

    2017-04-11

    Using first-principles density functional theory (DFT) calculations, we systematically investigate the strain effects on the adsorption energies, magnetic ordering and electronic properties of 3d transition metal (TM) atoms (from Sc to Co) adsorbed on phosphorene (P). We find that the adsorption energy of TM can be enhanced by compressive strain whereas weakened by tensile strain. Our results show that strain plays a decisive role in the magnetic moments as well as the magnetic coupling states of TM adatoms. Importantly, the transitions from antiferromagnetic (AFM) state to ferromagnetic (FM) state or to another different AFM ordering can be induced by strain effect. In addition, we observe the semiconductor to metal or half-metal transitions in some TM@P systems by applying strain. Our findings shed a new light on precisely engineering the magnetic properties and electronic properties of the TM@P systems, which will have great potential applications in spin electronics and other related fields. - Highlights: • The adsorption of TM atoms on phosphorene can be enhanced by compressive strain whereas weakened by tensile strain. • Strain plays a decisive role in the magnetic moments as well as the magnetic coupling states of TM adatoms. • Applying strain can induce the semiconductor to metal or half-metal transitions in some TM@P systems.

  1. Author Details

    African Journals Online (AJOL)

    Mims, GA. Vol 23, No 3 (2009) - Articles Career counselling an African immigrant student in a USA school setting: Merging transition theory with a narrative approach. Abstract. ISSN: 1011-3487. AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's · More about AJOL ...

  2. Sustainability of compressive residual stress by stress improvement processes

    International Nuclear Information System (INIS)

    Nishikawa, Satoru; Okita, Shigeru; Yamaguchi, Atsunori

    2013-01-01

    Stress improvement processes are countermeasures against stress corrosion cracking in nuclear power plant components. It is necessary to confirm whether compressive residual stress induced by stress improvement processes can be sustained under operation environment. In order to evaluate stability of the compressive residual stress in 60-year operating conditions, the 0.07% cyclic strains of 200 times at 593 K were applied to the welded specimens, then a thermal aging treatment for 1.66x10 6 s at 673 K was carried out. As the result, it was confirmed that the compressive residual stresses were sustained on both surfaces of the dissimilar welds of austenitic stainless steel (SUS316L) and nickel base alloy (NCF600 and alloy 182) processed by laser peening (LP), water jet peening (WJP), ultrasonic shot peening (USP), shot peening (SP) and polishing under 60-year operating conditions. (author)

  3. Tensile-strain effect of inducing the indirect-to-direct band-gap transition and reducing the band-gap energy of Ge

    Energy Technology Data Exchange (ETDEWEB)

    Inaoka, Takeshi, E-mail: inaoka@phys.u-ryukyu.ac.jp; Furukawa, Takuro; Toma, Ryo; Yanagisawa, Susumu [Department of Physics and Earth Sciences, Faculty of Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213 (Japan)

    2015-09-14

    By means of a hybrid density-functional method, we investigate the tensile-strain effect of inducing the indirect-to-direct band-gap transition and reducing the band-gap energy of Ge. We consider [001], [111], and [110] uniaxial tensility and (001), (111), and (110) biaxial tensility. Under the condition of no normal stress, we determine both normal compression and internal strain, namely, relative displacement of two atoms in the primitive unit cell, by minimizing the total energy. We identify those strain types which can induce the band-gap transition, and evaluate the critical strain coefficient where the gap transition occurs. Either normal compression or internal strain operates unfavorably to induce the gap transition, which raises the critical strain coefficient or even blocks the transition. We also examine how each type of tensile strain decreases the band-gap energy, depending on its orientation. Our analysis clearly shows that synergistic operation of strain orientation and band anisotropy has a great influence on the gap transition and the gap energy.

  4. Effect of isothermal annealing on the compressive strength of a ZrAlNiCuNb metallic glass

    International Nuclear Information System (INIS)

    Song Min; He Yuehui

    2011-01-01

    Research highlights: → Only structural relaxation happens during annealing at the temperature below T g . → Nanocrystallization happens during annealing at the temperature above T g . → The compressive strength increases with annealing time up to 20 min. → The compressive strength decreases with annealing time after 20 min. - Abstract: The effects of isothermal annealing on the microstructures and compressive strength of a Zr 56 Al 10.9 Ni 4.6 Cu 27.8 Nb 0.7 bulk metallic glass (BMG) have been studied using X-ray diffraction, scanning electron microscopy and compression tests. It has been shown that only structural relaxation happens during annealing at the temperature below T g (glass transition temperature), while both structural relaxation and nanocrystallization happen during annealing at the temperature above T g . Compression tests indicated that the strength of the BMG increases with annealing time at 437 deg. C up to 20 min, after which the strength starts to decrease. The strength evolution of the BMG with the annealing time is due to combined effects of the variations of the free volume and nanocrystals.

  5. Evolution of the Orszag-Tang vortex system in a compressible medium. I - Initial average subsonic flow

    Science.gov (United States)

    Dahlburg, R. B.; Picone, J. M.

    1989-01-01

    The results of fully compressible, Fourier collocation, numerical simulations of the Orszag-Tang vortex system are presented. The initial conditions for this system consist of a nonrandom, periodic field in which the magnetic and velocity field contain X points but differ in modal structure along one spatial direction. The velocity field is initially solenoidal, with the total initial pressure field consisting of the superposition of the appropriate incompressible pressure distribution upon a flat pressure field corresponding to the initial, average Mach number of the flow. In these numerical simulations, this initial Mach number is varied from 0.2-0.6. These values correspond to average plasma beta values ranging from 30.0 to 3.3, respectively. It is found that compressible effects develop within one or two Alfven transit times, as manifested in the spectra of compressible quantities such as the mass density and the nonsolenoidal flow field. These effects include (1) a retardation of growth of correlation between the magnetic field and the velocity field, (2) the emergence of compressible small-scale structure such as massive jets, and (3) bifurcation of eddies in the compressible flow field. Differences between the incompressible and compressible results tend to increase with increasing initial average Mach number.

  6. Static compression down-regulates N-cadherin expression and facilitates loss of cell phenotype of nucleus pulposus cells in a disc perfusion culture.

    Science.gov (United States)

    Zhou, Haibo; Shi, Jianmin; Zhang, Chao; Li, Pei

    2018-02-28

    Mechanical compression often induces degenerative changes of disc nucleus pulposus (NP) tissue. It has been indicated that N-cadherin (N-CDH)-mediated signaling helps to preserve the NP cell phenotype. However, N-CDH expression and the resulting NP-specific phenotype alteration under the static compression and dynamic compression remain unclear. To study the effects of static compression and dynamic compression on N-CDH expression and NP-specific phenotype in an in vitro disc organ culture. Porcine discs were organ cultured in a self-developed mechanically active bioreactor for 7 days and subjected to static or dynamic compression (0.4 MPa for 2 h once per day). The noncompressed discs were used as controls. Compared with the dynamic compression, static compression significantly down-regulated the expression of N-CDH and NP-specific markers (laminin, brachyury, and keratin 19); decreased the Alcian Blue staining intensity, glycosaminoglycan and hydroxyproline contents; and declined the matrix macromolecule (aggrecan and collagen II) expression. Compared with the dynamic compression, static compression causes N-CDH down-regulation, loss of NP-specific phenotype, and the resulting decrease in NP matrix synthesis. © 2018 The Author(s).

  7. Compression characteristics and permeability of saturated Gaomiaozi ca-bentonite

    International Nuclear Information System (INIS)

    Sun Wenjing; Sun De'an; Fang Lei

    2012-01-01

    The compression characteristics and permeability of compacted Gaomiaozi Ca-bentonite saturated by the water uptake tests are studied by conducting a series of one-dimension compression tests. The permeability coefficient can be calculated by the Terzaghi's one-dimensional consolidation theory after the consolidation coefficient is obtained by the square root of time method. It is found that the compression curves of compacted specimens saturated by the water uptake tests tend to be consistent in the relatively high stress range. The compression indexes show a linear decrease with increasing dry density and the swelling index is a constant. The permeability coefficient decreases with increasing compression stress, and they show the linear relationship in double logarithmic coordinates. Meanwhile, the permeability coefficient shows a linear decrease with decreasing void ratio, which has no relationship with initial states, stress states and stress paths. The permeability coefficient k of GMZ Ca-bentonite at dry density Pd of 1.75 g/cm 3 can be calculated as 2.0 × 10 -11 cm/s by the linear relationship between Pd and log k. It is closed to the permeability coefficient of GMZ Ca-bentonite with the same dry density published in literature, which testifies that the method calculating the permeability coefficient is feasible from the consolidation coefficient obtained by the consolidation test. (authors)

  8. Pressurizer safety valve serviceability enhancement by spring compression stability

    Energy Technology Data Exchange (ETDEWEB)

    Ratiu, M.D.; Moisidis, N.T. [California Consulting Engineering and Technology (CALCET), San Leandro, California (United States)

    2007-07-01

    The proactive maintenance of the spring-loaded-self-actuated Pressurizer Safety Valve (PSV) has caused frequent concerns pertaining the spring self actuated reliability due to set point drift, spurious openings, and seat leakage. The exhaustive testing performed on a Crosby PSV model 6M6 has revealed that the principal cause of these malfunctions is the spring compression elastic instability during service. The spring lateral deformations measurements performed validated the analytical shapes for spring compression: symmetrical bending - for coaxial supported ends - restraining any support displacement, and asymmetrical bending induced by the potential misalignment of the supported top end. The source of the spring compression instability appears on the tested Crosby PSV induced by the top end lateral displacement during long term operation. The testing with restrained displacement at the spring top has shown consistent set-point reproducibility, less than +/- 1 per cent. To eliminate the asymmetrical spring buckling, a design review of the PSV is proposed including the guided fixture at the top and the decrease of spring coil slenderness ratio H/D, corresponding to the general analytical elastic stability for the asymmetrical compression. (authors)

  9. Pressurizer safety valve serviceability enhancement by spring compression stability

    International Nuclear Information System (INIS)

    Ratiu, M.D.; Moisidis, N.T.

    2007-01-01

    The proactive maintenance of the spring-loaded-self-actuated Pressurizer Safety Valve (PSV) has caused frequent concerns pertaining the spring self actuated reliability due to set point drift, spurious openings, and seat leakage. The exhaustive testing performed on a Crosby PSV model 6M6 has revealed that the principal cause of these malfunctions is the spring compression elastic instability during service. The spring lateral deformations measurements performed validated the analytical shapes for spring compression: symmetrical bending - for coaxial supported ends - restraining any support displacement, and asymmetrical bending induced by the potential misalignment of the supported top end. The source of the spring compression instability appears on the tested Crosby PSV induced by the top end lateral displacement during long term operation. The testing with restrained displacement at the spring top has shown consistent set-point reproducibility, less than +/- 1 per cent. To eliminate the asymmetrical spring buckling, a design review of the PSV is proposed including the guided fixture at the top and the decrease of spring coil slenderness ratio H/D, corresponding to the general analytical elastic stability for the asymmetrical compression. (authors)

  10. Extreme compression for extreme conditions: pilot study to identify optimal compression of CT images using MPEG-4 video compression.

    Science.gov (United States)

    Peterson, P Gabriel; Pak, Sung K; Nguyen, Binh; Jacobs, Genevieve; Folio, Les

    2012-12-01

    This study aims to evaluate the utility of compressed computed tomography (CT) studies (to expedite transmission) using Motion Pictures Experts Group, Layer 4 (MPEG-4) movie formatting in combat hospitals when guiding major treatment regimens. This retrospective analysis was approved by Walter Reed Army Medical Center institutional review board with a waiver for the informed consent requirement. Twenty-five CT chest, abdomen, and pelvis exams were converted from Digital Imaging and Communications in Medicine to MPEG-4 movie format at various compression ratios. Three board-certified radiologists reviewed various levels of compression on emergent CT findings on 25 combat casualties and compared with the interpretation of the original series. A Universal Trauma Window was selected at -200 HU level and 1,500 HU width, then compressed at three lossy levels. Sensitivities and specificities for each reviewer were calculated along with 95 % confidence intervals using the method of general estimating equations. The compression ratios compared were 171:1, 86:1, and 41:1 with combined sensitivities of 90 % (95 % confidence interval, 79-95), 94 % (87-97), and 100 % (93-100), respectively. Combined specificities were 100 % (85-100), 100 % (85-100), and 96 % (78-99), respectively. The introduction of CT in combat hospitals with increasing detectors and image data in recent military operations has increased the need for effective teleradiology; mandating compression technology. Image compression is currently used to transmit images from combat hospital to tertiary care centers with subspecialists and our study demonstrates MPEG-4 technology as a reasonable means of achieving such compression.

  11. An ab initio study on the transition paths from graphite to diamond under pressure

    International Nuclear Information System (INIS)

    Dong Xiao; Zhou Xiangfeng; Wang Huitian; Qian Guangrui; Zhao Zhisheng; Tian Yongjun

    2013-01-01

    We calculate and compare the transition paths from graphite to two types of diamond using the variable cell nudged elastic band method. For the phase transition from graphite to cubic diamond, we analyze in detail how the π bonds transit to the σ bonds in an electronic structure. Meanwhile, a new transition path with a lower energy barrier for the transformation from graphite to hexagonal diamond is discovered. The path has its own peculiar sp 2 –sp 3 bonding configurations, serving as a transition state. Further calculation suggests that the sp 2 –sp 3 transition state represents an expected general phenomenon for cold-compressed graphite. (paper)

  12. Developing a Natural Gas-Powered Bus Rapid Transit Service: A Case Study on Leadership: Roaring Fork Transportation Authority (Presentation); NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, A.

    2015-03-01

    The Roaring Fork Transportation Authority (RFTA) represents a series of unique successes in alternative fuel deployment by pushing the envelope with innovative solutions. In the last year, RFTA demonstrated the ability to utilize compressed natural gas buses at a range of altitudes, across long distances, in extreme weather conditions and in a modern indoor fueling and maintenance facility - allwhile saving money and providing high-quality customer service. This case study will highlight how the leadership of organizations and communities that are implementing advances in natural gas vehicle technology is paving the way for broader participation.

  13. Acute Thoracolumbar Spinal Cord Injury: Relationship of Cord Compression to Neurological Outcome.

    Science.gov (United States)

    Skeers, Peta; Battistuzzo, Camila R; Clark, Jillian M; Bernard, Stephen; Freeman, Brian J C; Batchelor, Peter E

    2018-02-21

    Spinal cord injury in the cervical spine is commonly accompanied by cord compression and urgent surgical decompression may improve neurological recovery. However, the extent of spinal cord compression and its relationship to neurological recovery following traumatic thoracolumbar spinal cord injury is unclear. The purpose of this study was to quantify maximum cord compression following thoracolumbar spinal cord injury and to assess the relationship among cord compression, cord swelling, and eventual clinical outcome. The medical records of patients who were 15 to 70 years of age, were admitted with a traumatic thoracolumbar spinal cord injury (T1 to L1), and underwent a spinal surgical procedure were examined. Patients with penetrating injuries and multitrauma were excluded. Maximal osseous canal compromise and maximal spinal cord compression were measured on preoperative mid-sagittal computed tomography (CT) scans and T2-weighted magnetic resonance imaging (MRI) by observers blinded to patient outcome. The American Spinal Injury Association (ASIA) Impairment Scale (AIS) grades from acute hospital admission (≤24 hours of injury) and rehabilitation discharge were used to measure clinical outcome. Relationships among spinal cord compression, canal compromise, and initial and final AIS grades were assessed via univariate and multivariate analyses. Fifty-three patients with thoracolumbar spinal cord injury were included in this study. The overall mean maximal spinal cord compression (and standard deviation) was 40% ± 21%. There was a significant relationship between median spinal cord compression and final AIS grade, with grade-A patients (complete injury) exhibiting greater compression than grade-C and D patients (incomplete injury) (p compression as independently influencing the likelihood of complete spinal cord injury (p compression. Greater cord compression is associated with an increased likelihood of severe neurological deficits (complete injury) following

  14. Two-level image authentication by two-step phase-shifting interferometry and compressive sensing

    Science.gov (United States)

    Zhang, Xue; Meng, Xiangfeng; Yin, Yongkai; Yang, Xiulun; Wang, Yurong; Li, Xianye; Peng, Xiang; He, Wenqi; Dong, Guoyan; Chen, Hongyi

    2018-01-01

    A two-level image authentication method is proposed; the method is based on two-step phase-shifting interferometry, double random phase encoding, and compressive sensing (CS) theory, by which the certification image can be encoded into two interferograms. Through discrete wavelet transform (DWT), sparseness processing, Arnold transform, and data compression, two compressed signals can be generated and delivered to two different participants of the authentication system. Only the participant who possesses the first compressed signal attempts to pass the low-level authentication. The application of Orthogonal Match Pursuit CS algorithm reconstruction, inverse Arnold transform, inverse DWT, two-step phase-shifting wavefront reconstruction, and inverse Fresnel transform can result in the output of a remarkable peak in the central location of the nonlinear correlation coefficient distributions of the recovered image and the standard certification image. Then, the other participant, who possesses the second compressed signal, is authorized to carry out the high-level authentication. Therefore, both compressed signals are collected to reconstruct the original meaningful certification image with a high correlation coefficient. Theoretical analysis and numerical simulations verify the feasibility of the proposed method.

  15. On the effects of quantization on mismatched pulse compression filters designed using L-p norm minimization techniques

    CSIR Research Space (South Africa)

    Cilliers, Jacques E

    2007-10-01

    Full Text Available In [1] the authors introduced a technique for generating mismatched pulse compression filters for linear frequency chirp signals. The technique minimizes the sum of the pulse compression sidelobes in a p L –norm sense. It was shown that extremely...

  16. Nanosecond formation of diamond and lonsdaleite by shock compression of graphite.

    Science.gov (United States)

    Kraus, D; Ravasio, A; Gauthier, M; Gericke, D O; Vorberger, J; Frydrych, S; Helfrich, J; Fletcher, L B; Schaumann, G; Nagler, B; Barbrel, B; Bachmann, B; Gamboa, E J; Göde, S; Granados, E; Gregori, G; Lee, H J; Neumayer, P; Schumaker, W; Döppner, T; Falcone, R W; Glenzer, S H; Roth, M

    2016-03-14

    The shock-induced transition from graphite to diamond has been of great scientific and technological interest since the discovery of microscopic diamonds in remnants of explosively driven graphite. Furthermore, shock synthesis of diamond and lonsdaleite, a speculative hexagonal carbon polymorph with unique hardness, is expected to happen during violent meteor impacts. Here, we show unprecedented in situ X-ray diffraction measurements of diamond formation on nanosecond timescales by shock compression of pyrolytic as well as polycrystalline graphite to pressures from 19 GPa up to 228 GPa. While we observe the transition to diamond starting at 50 GPa for both pyrolytic and polycrystalline graphite, we also record the direct formation of lonsdaleite above 170 GPa for pyrolytic samples only. Our experiment provides new insights into the processes of the shock-induced transition from graphite to diamond and uniquely resolves the dynamics that explain the main natural occurrence of the lonsdaleite crystal structure being close to meteor impact sites.

  17. Bunch compression for an FEL at NLCTA

    International Nuclear Information System (INIS)

    Zimmermann, F.

    1997-04-01

    As part of the design effort for a free electron laser driven by the Next Linear Collider Test Accelerator (NLCTA), the author reports studies of bunch-length compression utilizing the existing infrastructure and hardware. In one possible version of the NLCTA FEL, bunches with 900-microm FWHM length, generated by an S-band photo-injector, would be compressed to an rms length of 60--120 microm before entering the FEL undulator. It is shown that, using the present magnetic chicane, the bunch compression is essentially straightforward, and that almost all emittance-diluting effects, e.g. wakefields, chromaticity, or space charge in the bending magnets, are small. The only exception to this finding is the predicted increase of the horizontal emittance due to coherent synchrotron radiation (CSR). Estimates based on existing theories of coherent synchrotron radiation suggest a tripling or quadrupling of the initial emittance, which seems to preclude bunch compression during regular FEL operation. Serendipitously, the magnitude of the predicted emittance growth would, on the other hand, make the NLCTA chicane an excellent tool for measuring the effects of coherent synchrotron radiation. This will be of considerable interest to many future projects, in particular to the Linac Coherent Light Source (LCLS). As an aside, it is shown that coherent synchrotron radiation in a bending magnet gives rise to a minimum possible bunch length, which is very reminiscent of the Oide limit on the vertical spot size at the interaction point of a linear collider

  18. Longitudinal Electron Bunch Diagnostics Using Coherent Transition Radiation

    CERN Document Server

    Mihalcea, Daniel; Happek, Uwe; Regis-Guy Piot, Philippe

    2005-01-01

    The longitudinal charge distribution of electron bunches in the Fermilab A0 photo-injector was determined by using the coherent transition radiation produced by electrons passing through a thin metallic foil. The auto-correlation of the transition radiation signal was measured with a Michelson type interferometer. The response function of the interferometer was determined from measured and simulated power spectra for low electron bunch charge and maximum longitudinal compression. Kramers-Kroning technique was used to determine longitudinal charge distribution. Measurements were performed for electron bunch lengths in the range from 0.3 to 2 ps (rms).

  19. Reduction in Wound Complications After Total Ankle Arthroplasty Using a Compression Wrap Protocol.

    Science.gov (United States)

    Schipper, Oliver N; Hsu, Andrew R; Haddad, Steven L

    2015-12-01

    The purpose of this study was to evaluate the clinical differences in wound complications after total ankle arthroplasty (TAA) between a cohort of patients that received a compression wrap protocol and a historical control group treated with cast immobilization. Patient charts and postoperative wound pictures were reviewed for 42 patients who underwent a compression wrap protocol and 50 patients who underwent circumferential casting after primary TAA from 2008 to 2013. A blinded reviewer graded each wound using a novel postoperative wound classification system, and recorded whether the wound was completely healed by or after 3 months. A second blinded review was performed to determine intraobserver reliability. Mean patient age was 55 years (range, 24-80) and all patients had at least 6-month follow-up. There were significantly more total wound complications (P = .02) and mild wound complications (P = .02) in the casted group compared to the compression wrap group. There were no significant differences in the number of moderate and severe complications between each group. A significantly higher proportion of TAA incisions took longer than 3 months to heal in the casted group (P = .02). Based on our clinical experience with postoperative wound care after TAA, use of a compression wrap protocol was safe and effective at reducing wound-related complications, and well tolerated by patients. Further prospective, randomized clinical trials are warranted to evaluate the utility and cost-effectiveness of a compression wrap protocol after TAA. © The Author(s) 2015.

  20. Contributions in compression of 3D medical images and 2D images; Contributions en compression d'images medicales 3D et d'images naturelles 2D

    Energy Technology Data Exchange (ETDEWEB)

    Gaudeau, Y

    2006-12-15

    The huge amounts of volumetric data generated by current medical imaging techniques in the context of an increasing demand for long term archiving solutions, as well as the rapid development of distant radiology make the use of compression inevitable. Indeed, if the medical community has sided until now with compression without losses, most of applications suffer from compression ratios which are too low with this kind of compression. In this context, compression with acceptable losses could be the most appropriate answer. So, we propose a new loss coding scheme based on 3D (3 dimensional) Wavelet Transform and Dead Zone Lattice Vector Quantization 3D (DZLVQ) for medical images. Our algorithm has been evaluated on several computerized tomography (CT) and magnetic resonance image volumes. The main contribution of this work is the design of a multidimensional dead zone which enables to take into account correlations between neighbouring elementary volumes. At high compression ratios, we show that it can out-perform visually and numerically the best existing methods. These promising results are confirmed on head CT by two medical patricians. The second contribution of this document assesses the effect with-loss image compression on CAD (Computer-Aided Decision) detection performance of solid lung nodules. This work on 120 significant lungs images shows that detection did not suffer until 48:1 compression and still was robust at 96:1. The last contribution consists in the complexity reduction of our compression scheme. The first allocation dedicated to 2D DZLVQ uses an exponential of the rate-distortion (R-D) functions. The second allocation for 2D and 3D medical images is based on block statistical model to estimate the R-D curves. These R-D models are based on the joint distribution of wavelet vectors using a multidimensional mixture of generalized Gaussian (MMGG) densities. (author)

  1. A blended pressure/density based method for the computation of incompressible and compressible flows

    International Nuclear Information System (INIS)

    Rossow, C.-C.

    2003-01-01

    An alternative method to low speed preconditioning for the computation of nearly incompressible flows with compressible methods is developed. For this approach the leading terms of the flux difference splitting (FDS) approximate Riemann solver are analyzed in the incompressible limit. In combination with the requirement of the velocity field to be divergence-free, an elliptic equation to solve for a pressure correction to enforce the divergence-free velocity field on the discrete level is derived. The pressure correction equation established is shown to be equivalent to classical methods for incompressible flows. In order to allow the computation of flows at all speeds, a blending technique for the transition from the incompressible, pressure based formulation to the compressible, density based formulation is established. It is found necessary to use preconditioning with this blending technique to account for a remaining 'compressible' contribution in the incompressible limit, and a suitable matrix directly applicable to conservative residuals is derived. Thus, a coherent framework is established to cover the discretization of both incompressible and compressible flows. Compared with standard preconditioning techniques, the blended pressure/density based approach showed improved robustness for high lift flows close to separation

  2. Mammographic compression in Asian women.

    Science.gov (United States)

    Lau, Susie; Abdul Aziz, Yang Faridah; Ng, Kwan Hoong

    2017-01-01

    To investigate: (1) the variability of mammographic compression parameters amongst Asian women; and (2) the effects of reducing compression force on image quality and mean glandular dose (MGD) in Asian women based on phantom study. We retrospectively collected 15818 raw digital mammograms from 3772 Asian women aged 35-80 years who underwent screening or diagnostic mammography between Jan 2012 and Dec 2014 at our center. The mammograms were processed using a volumetric breast density (VBD) measurement software (Volpara) to assess compression force, compression pressure, compressed breast thickness (CBT), breast volume, VBD and MGD against breast contact area. The effects of reducing compression force on image quality and MGD were also evaluated based on measurement obtained from 105 Asian women, as well as using the RMI156 Mammographic Accreditation Phantom and polymethyl methacrylate (PMMA) slabs. Compression force, compression pressure, CBT, breast volume, VBD and MGD correlated significantly with breast contact area (pAsian women. The median compression force should be about 8.1 daN compared to the current 12.0 daN. Decreasing compression force from 12.0 daN to 9.0 daN increased CBT by 3.3±1.4 mm, MGD by 6.2-11.0%, and caused no significant effects on image quality (p>0.05). Force-standardized protocol led to widely variable compression parameters in Asian women. Based on phantom study, it is feasible to reduce compression force up to 32.5% with minimal effects on image quality and MGD.

  3. Filling-driven Mott transition in SU(N ) Hubbard models

    Science.gov (United States)

    Lee, Seung-Sup B.; von Delft, Jan; Weichselbaum, Andreas

    2018-04-01

    We study the filling-driven Mott transition involving the metallic and paramagnetic insulating phases in SU (N ) Fermi-Hubbard models, using the dynamical mean-field theory and the numerical renormalization group as its impurity solver. The compressibility shows a striking temperature dependence: near the critical end-point temperature, it is strongly enhanced in the metallic phase close to the insulating phase. We demonstrate that this compressibility enhancement is associated with the thermal suppression of the quasiparticle peak in the local spectral functions. We also explain that the asymmetric shape of the quasiparticle peak originates from the asymmetry in the dynamics of the generalized doublons and holons.

  4. Compressible stability of growing boundary layers using parabolized stability equations

    Science.gov (United States)

    Chang, Chau-Lyan; Malik, Mujeeb R.; Erlebacher, Gordon; Hussaini, M. Y.

    1991-01-01

    The parabolized stability equation (PSE) approach is employed to study linear and nonlinear compressible stability with an eye to providing a capability for boundary-layer transition prediction in both 'quiet' and 'disturbed' environments. The governing compressible stability equations are solved by a rational parabolizing approximation in the streamwise direction. Nonparallel flow effects are studied for both the first- and second-mode disturbances. For oblique waves of the first-mode type, the departure from the parallel results is more pronounced as compared to that for the two-dimensional waves. Results for the Mach 4.5 case show that flow nonparallelism has more influence on the first mode than on the second. The disturbance growth rate is shown to be a strong function of the wall-normal distance due to either flow nonparallelism or nonlinear interactions. The subharmonic and fundamental types of breakdown are found to be similar to the ones in incompressible boundary layers.

  5. Kyphoplasty for severe osteoporotic vertebral compression fractures

    International Nuclear Information System (INIS)

    Bao Zhaohua; Wang Genlin; Yang Huilin; Meng Bin; Chen Kangwu; Jiang Weimin

    2010-01-01

    Objective: To evaluate the clininal efficacy of kyphoplasty for severe osteoporotic vertebral compression fractures. Methods: Forty-five patients with severe osteoporotic compressive fractures were treated by kyphoplasty from Jan 2005 to Jan 2009. The compressive rate of the fractured vertebral bodies was more than 75%. According to the morphology of the vertebral compression fracture bodies the unilateral or bilateral balloon kyphoplasty were selected. The anterior vertebral height was measured on a standing lateral radiograph at pre-operative, post-operative (one day after operation) and final follow-up time. A visual analog scale(VAS) and the Oswestry disability index (ODI) were chosen to evaluate pain status and functional activity. Results: The mean follow-up was for 21.7 months (in range from 18 to 48 months). The anterior vertebral body height of fracture vertebra was restored from preoperative (18.7 ± 3.1)% to postoperative (51.4 ± 2.3)%, the follow-up period (50.2 ± 2.7)%. There was a significant improvement between preoperative and postoperative values (P 0.05). The VAS was 8.1 ± 1.4 at preoperative, 2.6 ± 0.9 at postoperative, 2.1 ± 0.5 at final follow-up time; and the ODI was preoperative 91.1 ± 2.3, postoperative 30.7 ± 7.1, follow-up period 26.1 ± 5.1. There was statistically significant improvement in the VAS and ODI in the post-operative assessment compared with the pre-operative assessment (P 0.05). Asymptomatic cement leakage occurred in three cases. New vertebral fracture occurred in one case. Conclusion: The study suggests that balloon kyphoplasty is a safe and effective procedure in the treatment of severe osteoporotic vertebral compression fractures. (authors)

  6. The Rolling Transition in a Granular Flow along a Rotating Wall

    Directory of Open Access Journals (Sweden)

    Aurélie Le Quiniou

    2011-11-01

    Full Text Available The flow of a dry granular material composed of spherical particles along a rotating boundary has been studied by the discrete element method (DEM. This type of flow is used, among others, as a process to spread particles. The flow consists of several phases. A compression phase along the rotating wall is followed by an elongation of the flow along the same boundary. Eventually, the particles slide or roll independently along the boundary. We show that the main motion of the flow can be characterized by a complex deformation rate of traction/compression and shear. We define numerically an effective friction coefficient of the flow on the scale of the continuum and show a strong decrease of this effective friction beyond a certain critical friction coefficient μ*. We correlate this phenomenon with the apparition of a new transition from a sliding regime to a rolling without sliding regime that we called the rolling transition; this dynamic transition is controlled by the value of the friction coefficient between the particle and the wall. We show that the spherical shape for the particles may represent an optimum for the flow in terms of energetic.

  7. Kinetically Controlled Two-Step Amorphization and Amorphous-Amorphous Transition in Ice

    Science.gov (United States)

    Lin, Chuanlong; Yong, Xue; Tse, John S.; Smith, Jesse S.; Sinogeikin, Stanislav V.; Kenney-Benson, Curtis; Shen, Guoyin

    2017-09-01

    We report the results of in situ structural characterization of the amorphization of crystalline ice Ih under compression and the relaxation of high-density amorphous (HDA) ice under decompression at temperatures between 96 and 160 K by synchrotron x-ray diffraction. The results show that ice Ih transforms to an intermediate crystalline phase at 100 K prior to complete amorphization, which is supported by molecular dynamics calculations. The phase transition pathways show clear temperature dependence: direct amorphization without an intermediate phase is observed at 133 K, while at 145 K a direct Ih-to-IX transformation is observed; decompression of HDA shows a transition to low-density amorphous ice at 96 K and ˜1 Pa , to ice Ic at 135 K and to ice IX at 145 K. These observations show that the amorphization of compressed ice Ih and the recrystallization of decompressed HDA are strongly dependent on temperature and controlled by kinetic barriers. Pressure-induced amorphous ice is an intermediate state in the phase transition from the connected H-bond water network in low pressure ices to the independent and interpenetrating H-bond network of high-pressure ices.

  8. Thermofluidic compression effects to achieve combustion in a low-compression scramjet engine

    Science.gov (United States)

    Moura, A. F.; Wheatley, V.; Jahn, I.

    2017-12-01

    The compression provided by a scramjet inlet is an important parameter in its design. It must be low enough to limit thermal and structural loads and stagnation pressure losses, but high enough to provide the conditions favourable for combustion. Inlets are typically designed to achieve sufficient compression without accounting for the fluidic, and subsequently thermal, compression provided by the fuel injection, which can enable robust combustion in a low-compression engine. This is investigated using Reynolds-averaged Navier-Stokes numerical simulations of a simplified scramjet engine designed to have insufficient compression to auto-ignite fuel in the absence of thermofluidic compression. The engine was designed with a wide rectangular combustor and a single centrally located injector, in order to reduce three-dimensional effects of the walls on the fuel plume. By varying the injected mass flow rate of hydrogen fuel (equivalence ratios of 0.22, 0.17, and 0.13), it is demonstrated that higher equivalence ratios lead to earlier ignition and more rapid combustion, even though mean conditions in the combustor change by no more than 5% for pressure and 3% for temperature with higher equivalence ratio. By supplementing the lower equivalence ratio with helium to achieve a higher mass flow rate, it is confirmed that these benefits are primarily due to the local compression provided by the extra injected mass. Investigation of the conditions around the fuel plume indicated two connected mechanisms. The higher mass flow rate for higher equivalence ratios generated a stronger injector bow shock that compresses the free-stream gas, increasing OH radical production and promoting ignition. This was observed both in the higher equivalence ratio case and in the case with helium. This earlier ignition led to increased temperature and pressure downstream and, consequently, stronger combustion. The heat release from combustion provided thermal compression in the combustor, further

  9. Finite-element modeling of compression and gravity on a population of breast phantoms for multimodality imaging simulation.

    Science.gov (United States)

    Sturgeon, Gregory M; Kiarashi, Nooshin; Lo, Joseph Y; Samei, E; Segars, W P

    2016-05-01

    The authors are developing a series of computational breast phantoms based on breast CT data for imaging research. In this work, the authors develop a program that will allow a user to alter the phantoms to simulate the effect of gravity and compression of the breast (craniocaudal or mediolateral oblique) making the phantoms applicable to multimodality imaging. This application utilizes a template finite-element (FE) breast model that can be applied to their presegmented voxelized breast phantoms. The FE model is automatically fit to the geometry of a given breast phantom, and the material properties of each element are set based on the segmented voxels contained within the element. The loading and boundary conditions, which include gravity, are then assigned based on a user-defined position and compression. The effect of applying these loads to the breast is computed using a multistage contact analysis in FEBio, a freely available and well-validated FE software package specifically designed for biomedical applications. The resulting deformation of the breast is then applied to a boundary mesh representation of the phantom that can be used for simulating medical images. An efficient script performs the above actions seamlessly. The user only needs to specify which voxelized breast phantom to use, the compressed thickness, and orientation of the breast. The authors utilized their FE application to simulate compressed states of the breast indicative of mammography and tomosynthesis. Gravity and compression were simulated on example phantoms and used to generate mammograms in the craniocaudal or mediolateral oblique views. The simulated mammograms show a high degree of realism illustrating the utility of the FE method in simulating imaging data of repositioned and compressed breasts. The breast phantoms and the compression software can become a useful resource to the breast imaging research community. These phantoms can then be used to evaluate and compare imaging

  10. Energy storage. A challenge for energy transition

    International Nuclear Information System (INIS)

    Bart, Jean-Baptiste; Nekrasov, Andre; Pastor, Emmanuel; Benefice, Emmanuel; Brincourt, Thierry; Brisse, Annabelle; Cagnac, Albannie; Delille, Gauthier; Hinchliffe, Timothee; Lancel, Gilles; Jeandel, Elodie; Lefebvre, Thierry; Loevenbruck, Philippe; Penneau, Jean-Francois; Soler, Robert; Stevens, Philippe; Radvanyi, Etienne; Torcheux, Laurent

    2017-06-01

    Written by several EDF R and D engineers, this book aims at presenting an overview of knowledge and know-how of EDF R and D in the field of energy storage, and at presenting the different technologies and their application to electric power systems. After a description of the context related to a necessary energy transition, the authors present the numerous storage technologies. They distinguish direct storage of power (pumped storage water stations, compressed air energy storage, flywheels, the various electrochemical batteries, metal-air batteries, redox flow batteries, superconductors), thermal storage (power to heat, heat to power) and hydrogen storage (storage under different forms), and propose an overview of the situation of standardisation of storage technologies. In the next part, they give an overview of the main services provided by storage to the electric power system: production optimisation, frequency adjustment, grid constraint resolution, local smoothing of PV and wind production, supply continuity. The last part discusses perspectives regarding the role of tomorrow's storage in the field of electrical mobility, for emerging markets, and with respect to different scenarios

  11. Metronome improves compression and ventilation rates during CPR on a manikin in a randomized trial.

    Science.gov (United States)

    Kern, Karl B; Stickney, Ronald E; Gallison, Leanne; Smith, Robert E

    2010-02-01

    We hypothesized that a unique tock and voice metronome could prevent both suboptimal chest compression rates and hyperventilation. A prospective, randomized, parallel design study involving 34 pairs of paid firefighter/emergency medical technicians (EMTs) performing two-rescuer CPR using a Laerdal SkillReporter Resusci Anne manikin with and without metronome guidance was performed. Each CPR session consisted of 2 min of 30:2 CPR with an unsecured airway, then 4 min of CPR with a secured airway (continuous compressions at 100 min(-1) with 8-10 ventilations/min), repeated after the rescuers switched roles. The metronome provided "tock" prompts for compressions, transition prompts between compressions and ventilations, and a spoken "ventilate" prompt. During CPR with a bag/valve/mask the target compression rate of 90-110 min(-1) was achieved in 5/34 CPR sessions (15%) for the control group and 34/34 sessions (100%) for the metronome group (pmetronome or control group during CPR with a bag/valve/mask. During CPR with a bag/endotracheal tube, the target of both a compression rate of 90-110 min(-1) and a ventilation rate of 8-11 min(-1) was achieved in 3/34 CPR sessions (9%) for the control group and 33/34 sessions (97%) for the metronome group (pMetronome use with the secured airway scenario significantly decreased the incidence of over-ventilation (11/34 EMT pairs vs. 0/34 EMT pairs; pmetronome was effective at directing correct chest compression and ventilation rates both before and after intubation. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  12. Comparison of Gasoline and Primary Reference Fuel in the Transition from HCCI to PPC

    KAUST Repository

    Li, Changle; Tunestal, Per; Tuner, Martin; Johansson, Bengt

    2017-01-01

    Our previous research investigated the sensitivity of combustion phasing to intake temperature and injection timing during the transition from homogeneous charge compression ignition (HCCI) to partially premixed combustion (PPC) fuelled with generic

  13. Roles of spin fluctuation and frustration in the superconductivity of β-(BDA-TTP)2X (X=SbF6,AsF6) under uniaxial compression

    Science.gov (United States)

    Ito, Hiroshi; Ishihara, Tetsuo; Tanaka, Hisaaki; Kuroda, Shin-Ichi; Suzuki, Takeo; Onari, Seiichiro; Tanaka, Yukio; Yamada, Jun-Ichi; Kikuchi, Koichi

    2008-11-01

    β -type BDA-TTP [ BDA-TTP=2,5 -bis(1,3-dithian-2-ylidene)-1,3,4,6-tetrathiapentalene] salts possess high transition temperatures TC reaching 7 K among organic superconductors. TC of β-(BDA-TTP)2X (X=SbF6,AsF6) is studied by resistive measurements under uniaxial compression. TC once increases and takes a maximum under compression parallel to the donor stack while it decreases under compression perpendicular to the donor stack. These results are in agreement with the half-filled Hubbard model on the triangular lattice in which the compression controls the spin fluctuation and frustration in the weak pressure region.

  14. Theory of the Thermal Diffusion of Microgel Particles in Highly Compressed Suspensions

    Science.gov (United States)

    Sokoloff, Jeffrey; Maloney, Craig; Ciamarra, Massimo; Bi, Dapeng

    One amazing property of microgel colloids is the ability of the particles to thermally diffuse, even when they are compressed to a volume well below their swollen state volume, despite the fact that they are surrounded by and pressed against other particles. A glass transition is expected to occur when the colloid is sufficiently compressed for diffusion to cease. It is proposed that the diffusion is due to the ability of the highly compressed particles to change shape with little cost in free energy. It will be shown that most of the free energy required to compress microgel particles is due to osmotic pressure resulting from either counterions or monomers inside of the gel, which depends on the particle's volume. There is still, however, a cost in free energy due to polymer elasticity when particles undergo the distortions necessary for them to move around each other as they diffuse through the compressed colloid, even if it occurs at constant volume. Using a scaling theory based on simple models for the linking of polymers belonging to the microgel particles, we examine the conditions under which the cost in free energy needed for a particle to diffuse is smaller than or comparable to thermal energy, which is a necessary condition for particle diffusion. Based on our scaling theory, we predict that thermally activated diffusion should be possible when the mean number of links along the axis along which a distortion occurs is much larger than N 1 / 5, where Nis the mean number of monomers in a polymer chain connecting two links in the gel.

  15. For a citizen energy transition

    International Nuclear Information System (INIS)

    Geze, Patrick; Bernon, Francoise; Alphandery, Claude; Albizzati, Amandine; Ballandras, Marc; Berland, Olivier; Peullemeulle, Justine; Causse, Laurent; Olivier, Dominique; Damerval, Francois; Lepage, Corinne; Dughera, Jacques; Bouchart, Christiane; Duracka, Nicolas; Ferrari, Albert; Noe, Julien; Soulias, Emmanuel; Gaspard, Albane; Greenwood, Marianne; Guy, Lionel; Kretzschmar, Cyril; Lalu, Delphine; Naett, Caroline; Raguet, Alex; Rouchon, Jean-Philippe; Ruedinger, Andreas; Sautter, Christian; Tudor, Ivan; Vaquie, Pierre-Francois; Vernier, Christophe; Youinou, Jean-Michel; Verny, Emmanuel; Claustre, Raphael; Leclercq, Michel

    2015-09-01

    This publication by a think tank specialised in social and solidarity economy first outlines that energy transition means a transition from the present energy model to a new model based on three pillars: a drastic reduction of energy consumption through sobriety (energy saving, struggle against wastage), an improvement of energy efficiency, and an energy mix based on renewable and sustainable resources. A first part proposes a discussion of what 'citizen' energy transition can be: general framework of energy transition, pioneering examples in Europe, citizen empowerment, importance of a decentralised model which is anchored in territories, general interest as a priority. Each of these issues and aspects is illustrated by examples. Then, as this evolution towards a citizen-based model requires a change of scale, the authors discuss how to involve public authorities and to adapt regulation, how to develop financing tools, how to support the emergence and development of projects, and how to be part of international dynamics. The author then discuss what their think tank can do to accelerate energy transition. Proposals made in the different chapters are then summarized

  16. Compressive laser ranging.

    Science.gov (United States)

    Babbitt, Wm Randall; Barber, Zeb W; Renner, Christoffer

    2011-12-15

    Compressive sampling has been previously proposed as a technique for sampling radar returns and determining sparse range profiles with a reduced number of measurements compared to conventional techniques. By employing modulation on both transmission and reception, compressive sensing in ranging is extended to the direct measurement of range profiles without intermediate measurement of the return waveform. This compressive ranging approach enables the use of pseudorandom binary transmit waveforms and return modulation, along with low-bandwidth optical detectors to yield high-resolution ranging information. A proof-of-concept experiment is presented. With currently available compact, off-the-shelf electronics and photonics, such as high data rate binary pattern generators and high-bandwidth digital optical modulators, compressive laser ranging can readily achieve subcentimeter resolution in a compact, lightweight package.

  17. Mining compressing sequential problems

    NARCIS (Netherlands)

    Hoang, T.L.; Mörchen, F.; Fradkin, D.; Calders, T.G.K.

    2012-01-01

    Compression based pattern mining has been successfully applied to many data mining tasks. We propose an approach based on the minimum description length principle to extract sequential patterns that compress a database of sequences well. We show that mining compressing patterns is NP-Hard and

  18. Compression and expansion in central collisions

    International Nuclear Information System (INIS)

    Danielewicz, P.

    1997-01-01

    Dynamics of central collisions of heavy nuclei in the energy range from few tens of MeV/nucleon to a couple of GeV/nucleon is discussed. As the beam energy increases and/or the impact parameter decreases, the maximum compression increases. It is argued that the hydrodynamic behaviour of matter sets in the vicinity of balance energy. At higher energies shock fronts are observed to form within head-on reaction simulations, perpendicular to beam axis and separating hot compressed matter from cold. In the semi-central reactions a weak tangential discontinuity develops in-between these fronts. The hot compressed matter exposed to the vacuum in directions parallel to the shock front begin to expand collectively into these directions. The expansion affects particle angular distributions and mean energy components and further shapes of spectra and mean energies of particles emitted into any one direction. The variation of slopes and the relative yields measured within the FOPI collaboration are in a general agreement with the results of simulations. As to the FOPI data on stopping, they are consistent with the preference for transverse over the longitudinal motion in the head-on Au + Au collisions. Unfortunately, though, the data can not be used to decide directly on that preference due to acceptance cuts. Tied to the spatial and temporal changes in the reactions are changes in the entropy per nucleon. (authors)

  19. Microbunching and RF Compression

    International Nuclear Information System (INIS)

    Venturini, M.; Migliorati, M.; Ronsivalle, C.; Ferrario, M.; Vaccarezza, C.

    2010-01-01

    Velocity bunching (or RF compression) represents a promising technique complementary to magnetic compression to achieve the high peak current required in the linac drivers for FELs. Here we report on recent progress aimed at characterizing the RF compression from the point of view of the microbunching instability. We emphasize the development of a linear theory for the gain function of the instability and its validation against macroparticle simulations that represents a useful tool in the evaluation of the compression schemes for FEL sources.

  20. Optical pulse compression

    International Nuclear Information System (INIS)

    Glass, A.J.

    1975-01-01

    The interest in using large lasers to achieve a very short and intense pulse for generating fusion plasma has provided a strong impetus to reexamine the possibilities of optical pulse compression at high energy. Pulse compression allows one to generate pulses of long duration (minimizing damage problems) and subsequently compress optical pulses to achieve the short pulse duration required for specific applications. The ideal device for carrying out this program has not been developed. Of the two approaches considered, the Gires--Tournois approach is limited by the fact that the bandwidth and compression are intimately related, so that the group delay dispersion times the square of the bandwidth is about unity for all simple Gires--Tournois interferometers. The Treacy grating pair does not suffer from this limitation, but is inefficient because diffraction generally occurs in several orders and is limited by the problem of optical damage to the grating surfaces themselves. Nonlinear and parametric processes were explored. Some pulse compression was achieved by these techniques; however, they are generally difficult to control and are not very efficient. (U.S.)

  1. Ab initio molecular dynamics study of pressure-induced phase transition in ZnS

    International Nuclear Information System (INIS)

    Martinez, Israel; Durandurdu, Murat

    2006-01-01

    The pressure-induced phase transition in zinc sulfide is studied using a constant-pressure ab initio technique. The reversible phase transition from the zinc-blende structure to a rock-salt structure is successfully reproduced through the simulations. The transformation mechanism at the atomistic level is characterized and found to be due to a monoclinic modification of the simulation cell, similar to that obtained in SiC. This observation supports the universal transition state of high-pressure zinc-blende to rock-salt transition in semiconductor compounds. We also study the role of stress deviations on the transformation mechanism and find that the system follows the same transition pathway under nonhydrostatic compressions as well

  2. smallWig: parallel compression of RNA-seq WIG files.

    Science.gov (United States)

    Wang, Zhiying; Weissman, Tsachy; Milenkovic, Olgica

    2016-01-15

    this claim, we performed a statistical analysis of expression data in different transform domains and developed accompanying entropy coding methods that bridge the gap between theoretical and practical WIG file compression rates. We tested different variants of the smallWig compression algorithm on a number of integer-and real- (floating point) valued RNA-seq WIG files generated by the ENCODE project. The results reveal that, on average, smallWig offers 18-fold compression rate improvements, up to 2.5-fold compression time improvements, and 1.5-fold decompression time improvements when compared with bigWig. On the tested files, the memory usage of the algorithm never exceeded 90 KB. When more elaborate context mixing compressors were used within smallWig, the obtained compression rates were as much as 23 times better than those of bigWig. For smallWig used in the random query mode, which also supports retrieval of the summary statistics, an overhead in the compression rate of roughly 3-17% was introduced depending on the chosen system parameters. An increase in encoding and decoding time of 30% and 55% represents an additional performance loss caused by enabling random data access. We also implemented smallWig using multi-processor programming. This parallelization feature decreases the encoding delay 2-3.4 times compared with that of a single-processor implementation, with the number of processors used ranging from 2 to 8; in the same parameter regime, the decoding delay decreased 2-5.2 times. The smallWig software can be downloaded from: http://stanford.edu/~zhiyingw/smallWig/smallwig.html, http://publish.illinois.edu/milenkovic/, http://web.stanford.edu/~tsachy/. zhiyingw@stanford.edu Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Image compression using moving average histogram and RBF network

    International Nuclear Information System (INIS)

    Khowaja, S.; Ismaili, I.A.

    2015-01-01

    Modernization and Globalization have made the multimedia technology as one of the fastest growing field in recent times but optimal use of bandwidth and storage has been one of the topics which attract the research community to work on. Considering that images have a lion share in multimedia communication, efficient image compression technique has become the basic need for optimal use of bandwidth and space. This paper proposes a novel method for image compression based on fusion of moving average histogram and RBF (Radial Basis Function). Proposed technique employs the concept of reducing color intensity levels using moving average histogram technique followed by the correction of color intensity levels using RBF networks at reconstruction phase. Existing methods have used low resolution images for the testing purpose but the proposed method has been tested on various image resolutions to have a clear assessment of the said technique. The proposed method have been tested on 35 images with varying resolution and have been compared with the existing algorithms in terms of CR (Compression Ratio), MSE (Mean Square Error), PSNR (Peak Signal to Noise Ratio), computational complexity. The outcome shows that the proposed methodology is a better trade off technique in terms of compression ratio, PSNR which determines the quality of the image and computational complexity. (author)

  4. Observation of a pretransitional effect near a virtual smectic-A - smectic-C* transition

    International Nuclear Information System (INIS)

    Shibahara, Seiji; Takanishi, Yoichi; Yamamoto, Jun; Ogasawara, Toyokazu; Ishikawa, Ken; Yokoyama, Hiroshi; Takezoe, Hideo

    2001-01-01

    Unusual softening of the layer compression modulus B has been observed near the phase boundary where the smectic-C * phase vanishes in a naphtalene-based liquid crystal mixture. From the systematic study of x-ray and layer compression measurements, this unusual effect is attributed to the pretransitional softening near a virtual smectic-A - smectic-C * phase transition in the smectic-A phase, which no longer appears on the thermoequilibrium phase diagram. This phenomenon is similar but not equivalent to supercritical behavior

  5. Observation of a pretransitional effect near a virtual smectic-A--smectic-C* transition.

    Science.gov (United States)

    Shibahara, S; Takanishi, Y; Yamamoto, J; Ogasawara, T; Ishikawa, K; Yokoyama, H; Takezoe, H

    2001-06-01

    Unusual softening of the layer compression modulus B has been observed near the phase boundary where the smectic-C* phase vanishes in a naphtalene-based liquid crystal mixture. From the systematic study of x-ray and layer compression measurements, this unusual effect is attributed to the pretransitional softening near a virtual smectic-A-smectic-C* phase transition in the smectic-A phase, which no longer appears on the thermoequilibrium phase diagram. This phenomenon is similar but not equivalent to supercritical behavior.

  6. The compressed baryonic matter experiment at FAIR

    International Nuclear Information System (INIS)

    Senger, Peter

    2015-01-01

    Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At top RHIC and LHC energies, the QCD phase diagram is studied at very high temperatures and very low net-baryon densities. These conditions presumably existed in the early universe about a microsecond after the big bang. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure such as a critical point, a first order phase transition between hadronic and partonic matter, or new phases like quarkyonic matter. The experimental discovery of these prominent landmarks of the QCD phase diagram would be a major breakthrough in our understanding of the properties of nuclear matter. The Compressed Baryonic Matter (CBM) experiment will be one of the major scientific pillars of the future Facility for Antiproton and Ion Research (FAIR) in Darmstadt. The goal of the CBM research program is to explore the QCD phase diagram in the region of high baryon densities using high-energy nucleus-nucleus collisions. This includes the study of the equation-of-state of nuclear matter at neutron star core densities, and the search for the deconfinement and chiral phase transitions. The CBM detector is designed to measure rare diagnostic probes such as multi-strange hyperons, charmed particles and vector mesons decaying into lepton pairs with unprecedented precision and statistics. Most of these particles will be studied for the first time in the FAIR energy range. In order to achieve the required precision, the measurements will be performed at very high reaction rates of 100 kHz to 10 MHz. This requires very fast and radiation-hard detectors, and a novel data read-out and analysis concept based on free streaming front-end electronics and a high-performance computing cluster for online event selection. The layout, the physics performance, and the status of the proposed CBM experimental facility

  7. Choice of compressed air fed system of a uranium mine

    International Nuclear Information System (INIS)

    Li Congkui; Lei Zeyong

    2006-01-01

    The selection of compressed air fed system in a uranium mine is discussed. The research indicates that the movable air compressor is better than the fixed one in energy saving, once capital cost and operational cost when it is applied in an underground uranium mine. (authors)

  8. Maggots as a wound debridement agent for chronic venous leg ulcers under graduated compression bandages: A randomised controlled trial.

    Science.gov (United States)

    Davies, C E; Woolfrey, G; Hogg, N; Dyer, J; Cooper, A; Waldron, J; Bulbulia, R; Whyman, M R; Poskitt, K R

    2015-12-01

    Slough in chronic venous leg ulcers may be associated with delayed healing. The purpose of this study was to assess larval debridement in chronic venous leg ulcers and to assess subsequent effect on healing. All patients with chronic leg ulcers presenting to the leg ulcer service were evaluated for the study. Exclusion criteria were: ankle brachial pressure indices 1.25, no venous reflux on duplex and ulcer surface covered with slough. Participants were randomly allocated to either 4-layer compression bandaging alone or 4-layer compression bandaging + larvae. Surface areas of ulcer and slough were assessed on day 4; 4-layer compression bandaging was then continued and ulcer size was measured every 2 weeks for up to 12 weeks. A total of 601 patients with chronic leg ulcers were screened between November 2008 and July 2012. Of these, 20 were randomised to 4-layer compression bandaging and 20 to 4-layer compression bandaging + larvae. Median (range) ulcer size was 10.8 (3-21.3) cm(2) and 8.1 (4.3-13.5) cm(2) in the 4-layer compression bandaging and 4-layer compression bandaging + larvae groups, respectively (Mann-Whitney U test, P = 0.184). On day 4, median reduction in slough area was 3.7 cm(2) in the 4-layer compression bandaging group (P bandaging + larvae group. Median percentage area reduction of slough was 50% in the 4-layer compression bandaging group and 84% in the 4-layer compression bandaging + larvae group (Mann-Whitney U test, P bandaging and 4-layer compression bandaging + larvae groups, respectively (Kaplan-Meier analysis, P = 0.664). Larval debridement therapy improves wound debridement in chronic venous leg ulcers treated with multilayer compression bandages. However, no subsequent improvement in ulcer healing was demonstrated. © The Author(s) 2014.

  9. Carbon and energy saving markets in compressed air

    Science.gov (United States)

    Cipollone, R.

    2015-08-01

    CO2 reduction and fossil fuel saving represent two of the cornerstones of the environmental commitments of all the countries of the world. The first engagement is of a medium to long term type, and unequivocally calls for a new energetic era. The second delays in time the fossil fuel technologies to favour an energetic transition. In order to sustain the two efforts, new immaterial markets have been established in almost all the countries of the world, whose exchanges (purchases and sales) concern CO2 emissions and equivalent fossil fuels that have not been emitted or burned. This paper goes deep inside two aspects not yet exploited: specific CO2 emissions and equivalent fossil fuel burned, as a function of compressed air produced. Reference is made to the current compressor technology, carefully analysing CAGI's (Compressed Air Gas Institute) data and integrating it with the PNUEROP (European Association of manufacturers of compressors, vacuum pumps, pneumatic tools and allied equipment) contribution on the compressor European market. On the base of energy saving estimates that could be put in place, this article also estimates the financial value of the CO2 emissions and fossil fuels avoided.

  10. Relationship between the Compressive and Tensile Strength of Recycled Concrete

    International Nuclear Information System (INIS)

    El Dalati, R.; Haddad, S.; Matar, P.; Chehade, F.H

    2011-01-01

    Concrete recycling consists of crushing the concrete provided by demolishing the old constructions, and of using the resulted small pieces as aggregates in the new concrete compositions. The resulted aggregates are called recycled aggregates and the new mix of concrete containing a percentage of recycled aggregates is called recycled concrete. Our previous researches have indicated the optimal percentages of recycled aggregates to be used for different cases of recycled concrete related to the original aggregates nature. All results have shown that the concrete compressive strength is significantly reduced when using recycled aggregates. In order to obtain realistic values of compressive strength, some tests have been carried out by adding water-reducer plasticizer and a specified additional quantity of cement. The results have shown that for a limited range of plasticizer percentage, and a fixed value of additional cement, the compressive strength has reached reasonable value. This paper treats of the effect of using recycled aggregates on the tensile strength of concrete, where concrete results from the special composition defined by our previous work. The aim is to determine the relationship between the compressive and tensile strength of recycled concrete. (author)

  11. Energy-saving compression valve of the rock drill

    Science.gov (United States)

    Glazov, A. N.; Efanov, A. A.; Aikina, T. Yu

    2015-11-01

    The relevance of the research is due to the necessity to create pneumatic rock drills with low air consumption. The article analyzes the reasons for low efficiency of percussive machines. The authors state that applying a single distribution body in the percussive mechanism does not allow carrying out a low-energy operating cycle of the mechanism. Using the studied device as an example, it is substantiated that applying a compression valve with two distribution bodies separately operating the working chambers makes it possible to significantly reduce the airflow. The authors describe the construction of a core drill percussive mechanism and the operation of a compression valve. It is shown that in the new percussive mechanism working chambers are cut off the circuit by the time when exhaust windows are opened by the piston and air is not supplied into the cylinder up to 20% of the cycle time. The air flow rate of the new mechanism was 3.8 m3/min. In comparison with the drill PK-75, the overall noise level of the new machine is lower by 8-10 dB, while the percussive mechanism efficiency is 2.3 times higher.

  12. Numerical and theoretical aspects of the modelling of compressible two-phase flow by interface capture methods

    International Nuclear Information System (INIS)

    Kokh, S.

    2001-01-01

    This research thesis reports the development of a numerical direct simulation of compressible two-phase flows by using interface capturing methods. These techniques are based on the use of an Eulerian fixed grid to describe flow variables as well as the interface between fluids. The author first recalls conventional interface capturing methods and makes the distinction between those based on discontinuous colour functions and those based on level set functions. The approach is then extended to a five equation model to allow the largest as possible choice of state equations for the fluids. Three variants are developed. A solver inspired by the Roe scheme is developed for one of them. These interface capturing methods are then refined, more particularly for problems of numerical diffusion at the interface. A last part addresses the study of dynamic phase change. Non-conventional thermodynamics tools are used to study the structures of an interface which performs phase transition [fr

  13. Cartesian anisotropic mesh adaptation for compressible flow

    International Nuclear Information System (INIS)

    Keats, W.A.; Lien, F.-S.

    2004-01-01

    Simulating transient compressible flows involving shock waves presents challenges to the CFD practitioner in terms of the mesh quality required to resolve discontinuities and prevent smearing. This paper discusses a novel two-dimensional Cartesian anisotropic mesh adaptation technique implemented for compressible flow. This technique, developed for laminar flow by Ham, Lien and Strong, is efficient because it refines and coarsens cells using criteria that consider the solution in each of the cardinal directions separately. In this paper the method will be applied to compressible flow. The procedure shows promise in its ability to deliver good quality solutions while achieving computational savings. The convection scheme used is the Advective Upstream Splitting Method (Plus), and the refinement/ coarsening criteria are based on work done by Ham et al. Transient shock wave diffraction over a backward step and shock reflection over a forward step are considered as test cases because they demonstrate that the quality of the solution can be maintained as the mesh is refined and coarsened in time. The data structure is explained in relation to the computational mesh, and the object-oriented design and implementation of the code is presented. Refinement and coarsening algorithms are outlined. Computational savings over uniform and isotropic mesh approaches are shown to be significant. (author)

  14. Compressed sensing & sparse filtering

    CERN Document Server

    Carmi, Avishy Y; Godsill, Simon J

    2013-01-01

    This book is aimed at presenting concepts, methods and algorithms ableto cope with undersampled and limited data. One such trend that recently gained popularity and to some extent revolutionised signal processing is compressed sensing. Compressed sensing builds upon the observation that many signals in nature are nearly sparse (or compressible, as they are normally referred to) in some domain, and consequently they can be reconstructed to within high accuracy from far fewer observations than traditionally held to be necessary. Apart from compressed sensing this book contains other related app

  15. Inter frame motion estimation and its application to image sequence compression: an introduction

    International Nuclear Information System (INIS)

    Cremy, C.

    1996-01-01

    With the constant development of new communication technologies like, digital TV, teleconference, and the development of image analysis applications, there is a growing volume of data to manage. Compression techniques are required for the transmission and storage of these data. Dealing with original images would require the use of expansive high bandwidth communication devices and huge storage media. Image sequence compression can be achieved by means of interframe estimation that consists in retrieving redundant information relative to zones where there is little motion between two frames. This paper is an introduction to some motion estimation techniques like gradient techniques, pel-recursive, block-matching, and its application to image sequence compression. (Author) 17 refs

  16. Compression of seismic data: filter banks and extended transforms, synthesis and adaptation; Compression de donnees sismiques: bancs de filtres et transformees etendues, synthese et adaptation

    Energy Technology Data Exchange (ETDEWEB)

    Duval, L.

    2000-11-01

    Wavelet and wavelet packet transforms are the most commonly used algorithms for seismic data compression. Wavelet coefficients are generally quantized and encoded by classical entropy coding techniques. We first propose in this work a compression algorithm based on the wavelet transform. The wavelet transform is used together with a zero-tree type coding, with first use in seismic applications. Classical wavelet transforms nevertheless yield a quite rigid approach, since it is often desirable to adapt the transform stage to the properties of each type of signal. We thus propose a second algorithm using, instead of wavelets, a set of so called 'extended transforms'. These transforms, originating from the filter bank theory, are parameterized. Classical examples are Malvar's Lapped Orthogonal Transforms (LOT) or de Queiroz et al. Generalized Lapped Orthogonal Transforms (GenLOT). We propose several optimization criteria to build 'extended transforms' which are adapted the properties of seismic signals. We further show that these transforms can be used with the same zero-tree type coding technique as used with wavelets. Both proposed algorithms provide exact compression rate choice, block-wise compression (in the case of extended transforms) and partial decompression for quality control or visualization. Performances are tested on a set of actual seismic data. They are evaluated for several quality measures. We also compare them to other seismic compression algorithms. (author)

  17. LZ-Compressed String Dictionaries

    OpenAIRE

    Arz, Julian; Fischer, Johannes

    2013-01-01

    We show how to compress string dictionaries using the Lempel-Ziv (LZ78) data compression algorithm. Our approach is validated experimentally on dictionaries of up to 1.5 GB of uncompressed text. We achieve compression ratios often outperforming the existing alternatives, especially on dictionaries containing many repeated substrings. Our query times remain competitive.

  18. Adiabatic liquid piston compressed air energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, Tage [Danish Technological Institute, Aarhus (Denmark); Elmegaard, B. [Technical Univ. of Denmark. DTU Mechanical Engineering, Kgs. Lyngby (Denmark); Schroeder Pedersen, A. [Technical Univ. of Denmark. DTU Energy Conversion, Risoe Campus, Roskilde (Denmark)

    2013-01-15

    combination of features may make these systems superior to the ALP-CAES solution. The new systems are delivered by companies such as LightSail Energy and General Compression. Apparently, these new systems use piston compressors/expanders, at least for the prototypes. However, for large scale systems, piston mechanisms are not the most economical solution. In terms of large scale systems, turbo machinery is the only economical solution. 5) Even adiabatic CAES systems seem to add more cost to the electricity than can be accepted in the Danish power system. This added cost is primarily due to the investment in turbine/generator, heat exchangers, and a large quantity of thermal oil. To improve the economy, it would be relevant to investigate the possibility of replacing the thermal oil by water, for example by injecting the water directly into the air flow between the different compression stages to get a direct heat exchange between water and air. This investigation would focus on direct heat exchange in combination with turbo machinery. (Author)

  19. The Carolina Autism Transition Study (CATS)

    Science.gov (United States)

    2017-07-01

    AWARD NUMBER: W81XWH-15-1-0093 TITLE: The Carolina Autism Transition Study (CATS) PRINCIPAL INVESTIGATOR: Laura Carpenter, MD RECIPIENT...Carolina Autism Transition Study (CATS) 5b. GRANT NUMBER W81XWH-15-1-0093 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Laura Carpenter...provides a description of the Year 2 progress made and plans for Year 3 for the project entitled “The Carolina Autism Transition Study (CATS).” The goal of

  20. Contributions in compression of 3D medical images and 2D images; Contributions en compression d'images medicales 3D et d'images naturelles 2D

    Energy Technology Data Exchange (ETDEWEB)

    Gaudeau, Y

    2006-12-15

    The huge amounts of volumetric data generated by current medical imaging techniques in the context of an increasing demand for long term archiving solutions, as well as the rapid development of distant radiology make the use of compression inevitable. Indeed, if the medical community has sided until now with compression without losses, most of applications suffer from compression ratios which are too low with this kind of compression. In this context, compression with acceptable losses could be the most appropriate answer. So, we propose a new loss coding scheme based on 3D (3 dimensional) Wavelet Transform and Dead Zone Lattice Vector Quantization 3D (DZLVQ) for medical images. Our algorithm has been evaluated on several computerized tomography (CT) and magnetic resonance image volumes. The main contribution of this work is the design of a multidimensional dead zone which enables to take into account correlations between neighbouring elementary volumes. At high compression ratios, we show that it can out-perform visually and numerically the best existing methods. These promising results are confirmed on head CT by two medical patricians. The second contribution of this document assesses the effect with-loss image compression on CAD (Computer-Aided Decision) detection performance of solid lung nodules. This work on 120 significant lungs images shows that detection did not suffer until 48:1 compression and still was robust at 96:1. The last contribution consists in the complexity reduction of our compression scheme. The first allocation dedicated to 2D DZLVQ uses an exponential of the rate-distortion (R-D) functions. The second allocation for 2D and 3D medical images is based on block statistical model to estimate the R-D curves. These R-D models are based on the joint distribution of wavelet vectors using a multidimensional mixture of generalized Gaussian (MMGG) densities. (author)

  1. Nonaffine deformation under compression and decompression of a flow-stabilized solid

    Science.gov (United States)

    Ortiz, Carlos P.; Riehn, Robert; Daniels, Karen E.

    2016-08-01

    Understanding the particle-scale transition from elastic deformation to plastic flow is central to making predictions about the bulk material properties and response of disordered materials. To address this issue, we perform experiments on flow-stabilized solids composed of micron-scale spheres within a microfluidic channel, in a regime where particle inertia is negligible. Each solid heap exists within a stress field imposed by the flow, and we track the positions of particles in response to single impulses of fluid-driven compression or decompression. We find that the resulting deformation field is well-decomposed into an affine field, with a constant strain profile throughout the solid, and a non-affine field. The magnitude of this non-affine response decays with the distance from the free surface in the long-time limit, suggesting that the distance from jamming plays a significant role in controlling the length scale of plastic flow. Finally, we observe that compressive pulses create more rearrangements than decompressive pulses, an effect that we quantify using the D\\text{min}2 statistic for non-affine motion. Unexpectedly, the time scale for the compression response is shorter than for decompression at the same strain (but unequal pressure), providing insight into the coupling between deformation and cage-breaking.

  2. Longitudinal beam compression for heavy-ion inertial fusion

    International Nuclear Information System (INIS)

    Ho, D.D.M.; Brandon, S.T.

    1991-01-01

    A scheme is described for compressing a heavy-ion beam longitudinally in such a way that the compressed pulse has uniform line-charge density and longitudinal momentum. Attaining these conditions will be important in the final focusing of a beam on a small fuel capsule in an inertial confinement fusion reactor. The longitudinal dynamics can be approximately described by a one-dimensional (1-D) fluid model for charged particles. Recognizing the similarity between the 1-D charged particle equations of motion and the 1-D equations for ideal-gas flow permits us to calculate the evolution of the line-charge density and velocity profile using self-similar solutions and the method of characteristics, developed for unsteady supersonic gas dynamics, for different regions along the beam. Simple physical arguments show that although the longitudinal and transverse temperatures vary along the beam following the adiabatic laws, no substantial longitudinal and transverse emittance growth is to be expected. Particle-in-cell simulations confirm all the physical arguments. The compressed beam has negligible longitudinal momentum spread and can therefore avoid chromatic aberrations in final focus. (author) 24 refs., 5 figs., 1 tab

  3. The current situation and related problems of percutaneous vertebroplasty in clinical treatment of osteoporosis vertebral compression fracture

    International Nuclear Information System (INIS)

    Wang Luchang; Wu Chungen; Cheng Yongde

    2011-01-01

    As an effective, safe and less-invasive technique in interventional radiology, percutaneous vertebroplasty has satisfactory therapeutic results with fewer complications in treating osteoporosis vertebral compression fracture. This paper aims to make a comprehensive review of the current situation and related problems of percutaneous vertebroplasty in clinical treatment of osteoporosis vertebral compression fracture. (authors)

  4. Investigation of thermodynamic and transport properties of liquid transition metals using Wills-Harrison potentials

    International Nuclear Information System (INIS)

    Khaleque, M.A.; Bhuiyan, G.M.; Rashid, R.I.M.A.

    1998-01-01

    Thermodynamic properties such as entropy, specific heat capacity at constant pressure and isothermal compressibility have been calculated for liquid 3d, 4d and 5d transition metals near melting temperature. The hard sphere diameter for all such systems is estimated from the potential profile generated from the Wills and Harrison's prescription using linearized WCA theory of liquid. Evaluated values of entropy and specific heat capacity are found to be in good agreement with the experimental data. Transport property like shear viscosity for these liquid metals is obtained using the same potential profile. Lack of experimental data at melting temperatures hampers detailed comparison for all such systems. However, for the case of transport property, the results obtained are found to compare qualitatively well with the available experimental data. (author)

  5. Compressing DNA sequence databases with coil

    Directory of Open Access Journals (Sweden)

    Hendy Michael D

    2008-05-01

    Full Text Available Abstract Background Publicly available DNA sequence databases such as GenBank are large, and are growing at an exponential rate. The sheer volume of data being dealt with presents serious storage and data communications problems. Currently, sequence data is usually kept in large "flat files," which are then compressed using standard Lempel-Ziv (gzip compression – an approach which rarely achieves good compression ratios. While much research has been done on compressing individual DNA sequences, surprisingly little has focused on the compression of entire databases of such sequences. In this study we introduce the sequence database compression software coil. Results We have designed and implemented a portable software package, coil, for compressing and decompressing DNA sequence databases based on the idea of edit-tree coding. coil is geared towards achieving high compression ratios at the expense of execution time and memory usage during compression – the compression time represents a "one-off investment" whose cost is quickly amortised if the resulting compressed file is transmitted many times. Decompression requires little memory and is extremely fast. We demonstrate a 5% improvement in compression ratio over state-of-the-art general-purpose compression tools for a large GenBank database file containing Expressed Sequence Tag (EST data. Finally, coil can efficiently encode incremental additions to a sequence database. Conclusion coil presents a compelling alternative to conventional compression of flat files for the storage and distribution of DNA sequence databases having a narrow distribution of sequence lengths, such as EST data. Increasing compression levels for databases having a wide distribution of sequence lengths is a direction for future work.

  6. Reconstructive structural phase transitions in dense Mg

    International Nuclear Information System (INIS)

    Yao Yansun; Klug, Dennis D

    2012-01-01

    The question raised recently about whether the high-pressure phase transitions of Mg follow a hexagonal close-packed (hcp) → body centered cubic (bcc) or hcp → double hexagonal close-packed (dhcp) → bcc sequence at room temperature is examined by the use of first principles density functional methods. Enthalpy calculations show that the bcc structure replaces the hcp structure to become the most stable structure near 48 GPa, whereas the dhcp structure is never the most stable structure in the pressure range of interest. The characterized phase-transition mechanisms indicate that the hcp → dhcp transition is also associated with a higher enthalpy barrier. At room temperature, the structural sequence hcp → bcc is therefore more energetically favorable for Mg. The same conclusion is also reached from the simulations of the phase transitions using metadynamics methods. At room temperature, the metadynamics simulations predict the onset of a hcp → bcc transition at 40 GPa and the transition becomes more prominent upon further compression. At high temperatures, the metadynamics simulations reveal a structural fluctuation among the hcp, dhcp, and bcc structures at 15 GPa. With increasing pressure, the structural evolution at high temperatures becomes more unambiguous and eventually settles to a bcc structure once sufficient pressure is applied. (paper)

  7. Excessive chest compression rate is associated with insufficient compression depth in prehospital cardiac arrest

    NARCIS (Netherlands)

    Monsieurs, Koenraad G.; De Regge, Melissa; Vansteelandt, Kristof; De Smet, Jeroen; Annaert, Emmanuel; Lemoyne, Sabine; Kalmar, Alain F.; Calle, Paul A.

    2012-01-01

    Background and goal of study: The relationship between chest compression rate and compression depth is unknown. In order to characterise this relationship, we performed an observational study in prehospital cardiac arrest patients. We hypothesised that faster compressions are associated with

  8. Compressive sensing in medical imaging.

    Science.gov (United States)

    Graff, Christian G; Sidky, Emil Y

    2015-03-10

    The promise of compressive sensing, exploitation of compressibility to achieve high quality image reconstructions with less data, has attracted a great deal of attention in the medical imaging community. At the Compressed Sensing Incubator meeting held in April 2014 at OSA Headquarters in Washington, DC, presentations were given summarizing some of the research efforts ongoing in compressive sensing for x-ray computed tomography and magnetic resonance imaging systems. This article provides an expanded version of these presentations. Sparsity-exploiting reconstruction algorithms that have gained popularity in the medical imaging community are studied, and examples of clinical applications that could benefit from compressive sensing ideas are provided. The current and potential future impact of compressive sensing on the medical imaging field is discussed.

  9. High pressure phase transitions and compressibilities of Er2Zr2O7 and Ho2Zr2O7

    Science.gov (United States)

    Zhang, F. X.; Lang, M.; Becker, U.; Ewing, R. C.; Lian, J.

    2008-01-01

    Phase stability and compressibility of rare earth zirconates with the defect-fluorite structure were investigated by in situ synchrotron x-ray diffraction. A sluggish defect-fluorite to a cotunnitelike phase transformation occurred at pressures of ˜22 and ˜30GPa for Er2Zr2O7 and Ho2Zr2O7, respectively. Enhanced compressibility was found for the high pressure phase as a result of increasing cation coordination number and cation-anion bond length.

  10. High Pressure Phase Transitions and Compressibilities of Er2Zr2O7 and Ho2Zr2O7

    Energy Technology Data Exchange (ETDEWEB)

    Zhang,F.; Lang, M.; Becker, U.; Ewing, R.; Lian, J.

    2008-01-01

    Phase stability and compressibility of rare earth zirconates with the defect-fluorite structure were investigated by in situ synchrotron x-ray diffraction. A sluggish defect-fluorite to a cotunnitelike phase transformation occurred at pressures of {approx} 22 and {approx} 30 GPa for Er2Zr2O7 and Ho2Zr2O7, respectively. Enhanced compressibility was found for the high pressure phase as a result of increasing cation coordination number and cation-anion bond length.

  11. Statistical approach to predict compressive strength of high workability slag-cement mortars

    International Nuclear Information System (INIS)

    Memon, N.A.; Memon, N.A.; Sumadi, S.R.

    2009-01-01

    This paper reports an attempt made to develop empirical expressions to estimate/ predict the compressive strength of high workability slag-cement mortars. Experimental data of 54 mix mortars were used. The mortars were prepared with slag as cement replacement of the order of 0, 50 and 60%. The flow (workability) was maintained at 136+-3%. The numerical and statistical analysis was performed by using database computer software Microsoft Office Excel 2003. Three empirical mathematical models were developed to estimate/predict 28 days compressive strength of high workability slag cement-mortars with 0, 50 and 60% slag which predict the values accurate between 97 and 98%. Finally a generalized empirical mathematical model was proposed which can predict 28 days compressive strength of high workability mortars up to degree of accuracy 95%. (author)

  12. Effect of compression stockings on cutaneous microcirculation: Evaluation based on measurements of the skin thermal conductivity.

    Science.gov (United States)

    Grenier, E; Gehin, C; McAdams, E; Lun, B; Gobin, J-P; Uhl, J-F

    2016-03-01

    To study of the microcirculatory effects of elastic compression stockings. In phlebology, laser Doppler techniques (flux or imaging) are widely used to investigate cutaneous microcirculation. It is a method used to explore microcirculation by detecting blood flow in skin capillaries. Flux and imaging instruments evaluate, non-invasively in real-time, the perfusion of cutaneous micro vessels. Such tools, well known by the vascular community, are not really suitable to our protocol which requires evaluation through the elastic compression stockings fabric. Therefore, we involve another instrument, called the Hematron (developed by Insa-Lyon, Biomedical Sensor Group, Nanotechnologies Institute of Lyon), to investigate the relationship between skin microcirculatory activities and external compression provided by elastic compression stockings. The Hematron measurement principle is based on the monitoring of the skin's thermal conductivity. This clinical study examined a group of 30 female subjects, aged 42 years ±2 years, who suffer from minor symptoms of chronic venous disease, classified as C0s, and C1s (CEAP). The resulting figures show, subsequent to the pressure exerted by elastic compression stockings, an improvement of microcirculatory activities observed in 83% of the subjects, and a decreased effect was detected in the remaining 17%. Among the total population, the global average increase of the skin's microcirculatory activities is evaluated at 7.63% ± 1.80% (p compression stockings has a direct influence on the skin's microcirculation within this female sample group having minor chronic venous insufficiency signs. Further investigations are required for a deeper understanding of the elastic compression stockings effects on the microcirculatory activity in venous diseases at other stages of pathology. © The Author(s) 2014.

  13. Streaming Compression of Hexahedral Meshes

    Energy Technology Data Exchange (ETDEWEB)

    Isenburg, M; Courbet, C

    2010-02-03

    We describe a method for streaming compression of hexahedral meshes. Given an interleaved stream of vertices and hexahedral our coder incrementally compresses the mesh in the presented order. Our coder is extremely memory efficient when the input stream documents when vertices are referenced for the last time (i.e. when it contains topological finalization tags). Our coder then continuously releases and reuses data structures that no longer contribute to compressing the remainder of the stream. This means in practice that our coder has only a small fraction of the whole mesh in memory at any time. We can therefore compress very large meshes - even meshes that do not file in memory. Compared to traditional, non-streaming approaches that load the entire mesh and globally reorder it during compression, our algorithm trades a less compact compressed representation for significant gains in speed, memory, and I/O efficiency. For example, on the 456k hexahedra 'blade' mesh, our coder is twice as fast and uses 88 times less memory (only 3.1 MB) with the compressed file increasing about 3% in size. We also present the first scheme for predictive compression of properties associated with hexahedral cells.

  14. Characterization of Diesel and Gasoline Compression Ignition Combustion in a Rapid Compression-Expansion Machine using OH* Chemiluminescence Imaging

    Science.gov (United States)

    Krishnan, Sundar Rajan; Srinivasan, Kalyan Kumar; Stegmeir, Matthew

    2015-11-01

    Direct-injection compression ignition combustion of diesel and gasoline were studied in a rapid compression-expansion machine (RCEM) using high-speed OH* chemiluminescence imaging. The RCEM (bore = 84 mm, stroke = 110-250 mm) was used to simulate engine-like operating conditions at the start of fuel injection. The fuels were supplied by a high-pressure fuel cart with an air-over-fuel pressure amplification system capable of providing fuel injection pressures up to 2000 bar. A production diesel fuel injector was modified to provide a single fuel spray for both diesel and gasoline operation. Time-resolved combustion pressure in the RCEM was measured using a Kistler piezoelectric pressure transducer mounted on the cylinder head and the instantaneous piston displacement was measured using an inductive linear displacement sensor (0.05 mm resolution). Time-resolved, line-of-sight OH* chemiluminescence images were obtained using a Phantom V611 CMOS camera (20.9 kHz @ 512 x 512 pixel resolution, ~ 48 μs time resolution) coupled with a short wave pass filter (cut-off ~ 348 nm). The instantaneous OH* distributions, which indicate high temperature flame regions within the combustion chamber, were used to discern the characteristic differences between diesel and gasoline compression ignition combustion. The authors gratefully acknowledge facilities support for the present work from the Energy Institute at Mississippi State University.

  15. The effect of compressive stress on the Young's modulus of unirradiated and irradiated nuclear graphites

    International Nuclear Information System (INIS)

    Oku, T.; Usui, T.; Ero, M.; Fukuda, Y.

    1977-01-01

    The Young's moduli of unirradiated and high temperature (800 to 1000 0 C) irradiated graphites for HTGR were measured by the ultrasonic method in the direction of applied compressive stress during and after stressing. The Young's moduli of all the tested graphites decreased with increasing compressive stress both during and after stressing. In order to investigate the reason for the decrease in Young's modulus by applying compressive stress, the mercury pore diameter distributions of a part of the unirradiated and irradiated specimens were measured. The change in pore distribution is believed to be associated with structural changes produced by irradiation and compressive stressing. The residual strain, after removing the compressive stress, showed a good correlation with the decrease in Young's modulus caused by the compressive stress. The decrease in Young's modulus by applying compressive stress was considered to be due to the increase in the mobile dislocation density and the growth or formation of cracks. The results suggest, however, that the mechanism giving the larger contribution depends on the brand of graphite, and in anisotropic graphite it depends on the direction of applied stress and the irradiation conditions. (author)

  16. Contributions in compression of 3D medical images and 2D images

    International Nuclear Information System (INIS)

    Gaudeau, Y.

    2006-12-01

    The huge amounts of volumetric data generated by current medical imaging techniques in the context of an increasing demand for long term archiving solutions, as well as the rapid development of distant radiology make the use of compression inevitable. Indeed, if the medical community has sided until now with compression without losses, most of applications suffer from compression ratios which are too low with this kind of compression. In this context, compression with acceptable losses could be the most appropriate answer. So, we propose a new loss coding scheme based on 3D (3 dimensional) Wavelet Transform and Dead Zone Lattice Vector Quantization 3D (DZLVQ) for medical images. Our algorithm has been evaluated on several computerized tomography (CT) and magnetic resonance image volumes. The main contribution of this work is the design of a multidimensional dead zone which enables to take into account correlations between neighbouring elementary volumes. At high compression ratios, we show that it can out-perform visually and numerically the best existing methods. These promising results are confirmed on head CT by two medical patricians. The second contribution of this document assesses the effect with-loss image compression on CAD (Computer-Aided Decision) detection performance of solid lung nodules. This work on 120 significant lungs images shows that detection did not suffer until 48:1 compression and still was robust at 96:1. The last contribution consists in the complexity reduction of our compression scheme. The first allocation dedicated to 2D DZLVQ uses an exponential of the rate-distortion (R-D) functions. The second allocation for 2D and 3D medical images is based on block statistical model to estimate the R-D curves. These R-D models are based on the joint distribution of wavelet vectors using a multidimensional mixture of generalized Gaussian (MMGG) densities. (author)

  17. A Process Improvement Evaluation of Sequential Compression Device Compliance and Effects of Provider Intervention.

    Science.gov (United States)

    Beachler, Jason A; Krueger, Chad A; Johnson, Anthony E

    This process improvement study sought to evaluate the compliance in orthopaedic patients with sequential compression devices and to monitor any improvement in compliance following an educational intervention. All non-intensive care unit orthopaedic primary patients were evaluated at random times and their compliance with sequential compression devices was monitored and recorded. Following a 2-week period of data collection, an educational flyer was displayed in every patient's room and nursing staff held an in-service training event focusing on the importance of sequential compression device use in the surgical patient. Patients were then monitored, again at random, and compliance was recorded. With the addition of a simple flyer and a single in-service on the importance of mechanical compression in the surgical patient, a significant improvement in compliance was documented at the authors' institution from 28% to 59% (p < .0001).

  18. Combustion characteristics of compressed natural gas/diesel dual-fuel turbocharged compressed ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Shenghua, L.; Longbao, Z.; Ziyan, W.; Jiang, R. [Xi' an Jiaotong Univ. (China). Dept. of Automotive Engineering

    2003-09-01

    The combustion characteristics of a turbocharged natural gas and diesel dual-fuelled compression ignition (CI) engine are investigated. With the measured cylinder pressures of the engine operated on pure diesel and dual fuel, the ignition delay, effects of pilot diesel and engine load on combustion characteristics are analysed. Emissions of HC, CO, NO{sub x} and smoke are measured and studied too. The results show that the quantity of pilot diesel has important effects on the performance and emissions of a dual-fuel engine at low-load operating conditions. Ignition delay varies with the concentration of natural gas. Smoke is much lower for the developed dual-fuel engine under all the operating conditions. (Author)

  19. Envera Variable Compression Ratio Engine

    Energy Technology Data Exchange (ETDEWEB)

    Charles Mendler

    2011-03-15

    the compression ratio can be raised (to as much as 18:1) providing high engine efficiency. It is important to recognize that for a well designed VCR engine cylinder pressure does not need to be higher than found in current production turbocharged engines. As such, there is no need for a stronger crankcase, bearings and other load bearing parts within the VCR engine. The Envera VCR mechanism uses an eccentric carrier approach to adjust engine compression ratio. The crankshaft main bearings are mounted in this eccentric carrier or 'crankshaft cradle' and pivoting the eccentric carrier 30 degrees adjusts compression ratio from 9:1 to 18:1. The eccentric carrier is made up of a casting that provides rigid support for the main bearings, and removable upper bearing caps. Oil feed to the main bearings transits through the bearing cap fastener sockets. The eccentric carrier design was chosen for its low cost and rigid support of the main bearings. A control shaft and connecting links are used to pivot the eccentric carrier. The control shaft mechanism features compression ratio lock-up at minimum and maximum compression ratio settings. The control shaft method of pivoting the eccentric carrier was selected due to its lock-up capability. The control shaft can be rotated by a hydraulic actuator or an electric motor. The engine shown in Figures 3 and 4 has a hydraulic actuator that was developed under the current program. In-line 4-cylinder engines are significantly less expensive than V engines because an entire cylinder head can be eliminated. The cost savings from eliminating cylinders and an entire cylinder head will notably offset the added cost of the VCR and supercharging. Replacing V6 and V8 engines with in-line VCR 4-cylinder engines will provide high fuel economy at low cost. Numerous enabling technologies exist which have the potential to increase engine efficiency. The greatest efficiency gains are realized when the right combination of advanced and new

  20. The compressive behaviour and constitutive equation of polyimide foam in wide strain rate and temperature

    Directory of Open Access Journals (Sweden)

    Yoshimoto Akifumi

    2015-01-01

    Full Text Available These days, polymer foams, such as polyurethane foam and polystyrene foam, are used in various situations as a thermal insulator or shock absorber. In general, however, their strength is insufficient in high temperature environments because of their low glass transition temperature. Polyimide is a polymer which has a higher glass transition temperature and high strength. Its mechanical properties do not vary greatly, even in low temperature environments. Therefore, polyimide foam is expected to be used in the aerospace industry. Thus, the constitutive equation of polyimide foam that can be applied across a wide range of strain rates and ambient temperature is very useful. In this study, a series of compression tests at various strain rates, from 10−3 to 103 s−1 were carried out in order to examine the effect of strain rate on the compressive properties of polyimide foam. The flow stress of polyimide foam increased rapidly at dynamic strain rates. The effect of ambient temperature on the properties of polyimide foam was also investigated at temperature from − 190 °C to 270°∘C. The flow stress decreased with increasing temperature.

  1. Evaluation of the distortions of the digital chest image caused by the data compression

    International Nuclear Information System (INIS)

    Ando, Yutaka; Kunieda, Etsuo; Ogawa, Koichi; Tukamoto, Nobuhiro; Hashimoto, Shozo; Aoki, Makoto; Kurotani, Kenichi.

    1988-01-01

    The image data compression methods using orthogonal transforms (Discrete cosine transform, Discrete fourier transform, Hadamard transform, Haar transform, Slant transform) were analyzed. From the points of the error and the speed of the data conversion, the discrete cosine transform method (DCT) is superior to the other methods. The block quantization by the DCT for the digital chest image was used. The quality of data compressed and reconstructed images by the score analysis and the ROC curve analysis was examined. The chest image with the esophageal cancer and metastatic lung tumors was evaluated at the 17 checkpoints (the tumor, the vascular markings, the border of the heart and ribs, the mediastinal structures and et al). By our score analysis, the satisfactory ratio of the data compression is 1/5 and 1/10. The ROC analysis using normal chest images superimposed by the artificial coin lesions was made. The ROC curve of the 1/5 compressed ratio is almost as same as the original one. To summarize our study, the image data compression method using the DCT is thought to be useful for the clinical use and the 1/5 compression ratio is a tolerable ratio. (author)

  2. Watermark Compression in Medical Image Watermarking Using Lempel-Ziv-Welch (LZW) Lossless Compression Technique.

    Science.gov (United States)

    Badshah, Gran; Liew, Siau-Chuin; Zain, Jasni Mohd; Ali, Mushtaq

    2016-04-01

    In teleradiology, image contents may be altered due to noisy communication channels and hacker manipulation. Medical image data is very sensitive and can not tolerate any illegal change. Illegally changed image-based analysis could result in wrong medical decision. Digital watermarking technique can be used to authenticate images and detect as well as recover illegal changes made to teleradiology images. Watermarking of medical images with heavy payload watermarks causes image perceptual degradation. The image perceptual degradation directly affects medical diagnosis. To maintain the image perceptual and diagnostic qualities standard during watermarking, the watermark should be lossless compressed. This paper focuses on watermarking of ultrasound medical images with Lempel-Ziv-Welch (LZW) lossless-compressed watermarks. The watermark lossless compression reduces watermark payload without data loss. In this research work, watermark is the combination of defined region of interest (ROI) and image watermarking secret key. The performance of the LZW compression technique was compared with other conventional compression methods based on compression ratio. LZW was found better and used for watermark lossless compression in ultrasound medical images watermarking. Tabulated results show the watermark bits reduction, image watermarking with effective tamper detection and lossless recovery.

  3. Reconstructing Transition Knowledge in Taiwan

    Science.gov (United States)

    Cheng, Chen-chen

    2012-01-01

    Taking a post-colonial stand and using school to work transition as an example, the author re-examines the special education discourses in Taiwan and attempts to construct alternate understandings of transition from sociological and cultural perspectives. A review of past transition literature and a survey of the educational background of the…

  4. An integrated approach to climate adaptation at the Chicago Transit Authority.

    Science.gov (United States)

    2013-08-01

    CTA was selected as one of seven pilots funded by FTA to advance the state of practice for adapting transit systems to the impacts of : climate change. This effort is in keeping with broader long-term goals to address state-of-good-repair needs and t...

  5. Conference: photovoltaic energy - local authorities - Citizen

    International Nuclear Information System (INIS)

    Belon, Daniel; Witte, Sonja; Simonet, Luc; Waldmann, Lars; Fouquet, Doerte; Dupassieux, Henri; Longo, Fabio; Brunel, Arnaud; Kruppert, Andreas; Vachette, Philippe

    2012-01-01

    The French-German office for Renewable energies (OFAEnR) organised a conference on the role of photovoltaic energy, local authorities and Citizens as pillars of the energy transition. In the framework of this French-German exchange of experience, about 100 participants exchanged views on the role of local authorities and Citizens in the implementation of the energy transition. This document brings together the available presentations (slides) made during this event: 1 - Solar photovoltaics, local communities and citizens - Cornerstones of the energy revolution. Franco-German viewpoints (Daniel Belon); 2 - Structure and management of the distribution system operators in Germany. efficient, innovative and reliable: Local public enterprises in Germany (Sonja Witte); 3 - Photovoltaic energy: technical challenges for power grids - A distribution network operator's (DNO) point-of-view (Luc Simonet); 4 - The sun and the grid - challenges of the energy transition (Lars Waldmann); 5 - The role of local public authorities in the networks management: legal situation in France, Germany and in the EU (Doerte Fouquet); 6 - Towards energy transition: challenges for renewable energies - Urban solar planning tools (Henri Dupassieux); 7 - The local energy supply as a municipal task - solar land-use planning in practice in Germany (Fabio Longo); 8 - Supporting and facilitating the financing of photovoltaic projects at a community level (Arnaud Brunel); 9 - Photovoltaics in the municipality VG Arzfeld (Andreas Kruppert); 10 - For the energy revolution to be a success: Invest into renewable energy. Local, controllable and renewable 'shared energy' that is grassroots (Philippe Vachette)

  6. Comparison of the effectiveness of compression stockings and layer compression systems in venous ulceration treatment

    Science.gov (United States)

    Jawień, Arkadiusz; Cierzniakowska, Katarzyna; Cwajda-Białasik, Justyna; Mościcka, Paulina

    2010-01-01

    Introduction The aim of the research was to compare the dynamics of venous ulcer healing when treated with the use of compression stockings as well as original two- and four-layer bandage systems. Material and methods A group of 46 patients suffering from venous ulcers was studied. This group consisted of 36 (78.3%) women and 10 (21.70%) men aged between 41 and 88 years (the average age was 66.6 years and the median was 67). Patients were randomized into three groups, for treatment with the ProGuide two-layer system, Profore four-layer compression, and with the use of compression stockings class II. In the case of multi-layer compression, compression ensuring 40 mmHg blood pressure at ankle level was used. Results In all patients, independently of the type of compression therapy, a few significant statistical changes of ulceration area in time were observed (Student’s t test for matched pairs, p ulceration area in each of the successive measurements was observed in patients treated with the four-layer system – on average 0.63 cm2/per week. The smallest loss of ulceration area was observed in patients using compression stockings – on average 0.44 cm2/per week. However, the observed differences were not statistically significant (Kruskal-Wallis test H = 4.45, p > 0.05). Conclusions A systematic compression therapy, applied with preliminary blood pressure of 40 mmHg, is an effective method of conservative treatment of venous ulcers. Compression stockings and prepared systems of multi-layer compression were characterized by similar clinical effectiveness. PMID:22419941

  7. MRI analysis of vascular compressive trigeminal neuralgia

    International Nuclear Information System (INIS)

    Tang Ling; Chai Weimin; Song Qi; Ling Huawei; Miao Fei; Chen Kemin

    2006-01-01

    Objective: To analyze the offending vessels of vascular compressive trigeminal neuralgia by magnetic resonance tomographic angiography (MRTA). Methods: MRTA images of 235 asymptomatic trigeminal nerves and 147 symptomatic trigeminal nerves were analyzed by two radiologists who were blinded to the clinical findings. Judgment was made on if there were some vessels close to the trigeminal nerve. The diameter of the offending vessel, the distance from the offending vessel's contact point to the pons and the direction of the vessel toward the nerve were also recorded at the same time. Group t-test and Chi-Square test were used for statistics. Results: Two hundred and forty-two trigeminal nerves of all 382 nerves can be detected offending vessels on MRTA images, 111 of 242 trigeminal nerves were asymptomatic, the rest 131 were symptomatic. Statistical analysis indicated that the distance from the offending vessel's contact point to the pons in symptomatic group (the median is 2 mm) was shorter than that in the asymptomatic group (the median is 4 mm) (P<0.01). In 89.3% cases (117/131) of the symptomatic group the angle between the vessel and the nerve is larger than 45 degree, but only in 67.6% cases (75/111) in the asymptomatic group the angle is larger than 45 degree. That means significant difference is between the two groups (P<0.01). Vessel-nerve compression can be seen in 1 case of asymptomatic group (0.4%, 1/235) and 45 eases in symptomatic group (30.6%, 45/147). The vessel-nerve compression rate of the symptomatic group was much higher than that of the asymptomatic group (P<0.01). Conclusion: MR is a useful tool to evaluate the offending vessels of vascular compressive trigeminal neuralgia. The distance from the offending vessel's contact point to the pons and the direction of the vessel toward the nerve are related to the onset of vascular compressive trigeminal neuralgia. (authors)

  8. Aspects of forward scattering from the compression paddle in the dosimetry of mammography

    International Nuclear Information System (INIS)

    Toroi, Paula; Koenoenen, Niina; Timonen, Marjut; Kortesniemi, Mika

    2013-01-01

    The best compression paddle position during air kerma measurement in mammography dosimetry was studied. The amount of forward scattering as a function of the compression paddle distance was measured with different X-ray spectra and different types of paddles and dose meters. The contribution of forward scattering to the air kerma did not present significant dependency on the beam quality or of the compression paddle type. The tested dose meter types detected different amounts of forward scattering due to different internal collimation. When the paddle was adjusted to its maximum clinical distance, the proportion of the detected forward scattering was only 1 % for all dose meter types. The most consistent way of performing air kerma measurements is to position the compression paddle at the maximum distance from the dose meter and use a constant forward scattering factor for all dose meters. Thus, the dosimetric uncertainty due to the forward scatter can be minimised. (authors)

  9. Correlations between quality indexes of chest compression.

    Science.gov (United States)

    Zhang, Feng-Ling; Yan, Li; Huang, Su-Fang; Bai, Xiang-Jun

    2013-01-01

    Cardiopulmonary resuscitation (CPR) is a kind of emergency treatment for cardiopulmonary arrest, and chest compression is the most important and necessary part of CPR. The American Heart Association published the new Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care in 2010 and demanded for better performance of chest compression practice, especially in compression depth and rate. The current study was to explore the relationship of quality indexes of chest compression and to identify the key points in chest compression training and practice. Totally 219 healthcare workers accepted chest compression training by using Laerdal ACLS advanced life support resuscitation model. The quality indexes of chest compression, including compression hands placement, compression rate, compression depth, and chest wall recoil as well as self-reported fatigue time were monitored by the Laerdal Computer Skills and Reporting System. The quality of chest compression was related to the gender of the compressor. The indexes in males, including self-reported fatigue time, the accuracy of compression depth and the compression rate, the accuracy of compression rate, were higher than those in females. However, the accuracy of chest recoil was higher in females than in males. The quality indexes of chest compression were correlated with each other. The self-reported fatigue time was related to all the indexes except the compression rate. It is necessary to offer CPR training courses regularly. In clinical practice, it might be better to change the practitioner before fatigue, especially for females or weak practitioners. In training projects, more attention should be paid to the control of compression rate, in order to delay the fatigue, guarantee enough compression depth and improve the quality of chest compression.

  10. Does the quality of chest compressions deteriorate when the chest compression rate is above 120/min?

    Science.gov (United States)

    Lee, Soo Hoon; Kim, Kyuseok; Lee, Jae Hyuk; Kim, Taeyun; Kang, Changwoo; Park, Chanjong; Kim, Joonghee; Jo, You Hwan; Rhee, Joong Eui; Kim, Dong Hoon

    2014-08-01

    The quality of chest compressions along with defibrillation is the cornerstone of cardiopulmonary resuscitation (CPR), which is known to improve the outcome of cardiac arrest. We aimed to investigate the relationship between the compression rate and other CPR quality parameters including compression depth and recoil. A conventional CPR training for lay rescuers was performed 2 weeks before the 'CPR contest'. CPR anytime training kits were distributed to respective participants for self-training on their own in their own time. The participants were tested for two-person CPR in pairs. The quantitative and qualitative data regarding the quality of CPR were collected from a standardised check list and SkillReporter, and compared by the compression rate. A total of 161 teams consisting of 322 students, which includes 116 men and 206 women, participated in the CPR contest. The mean depth and rate for chest compression were 49.0±8.2 mm and 110.2±10.2/min. Significantly deeper chest compression depths were noted at rates over 120/min than those at any other rates (47.0±7.4, 48.8±8.4, 52.3±6.7, p=0.008). Chest compression depth was proportional to chest compression rate (r=0.206, pcompression including chest compression depth and chest recoil by chest compression rate. Further evaluation regarding the upper limit of the chest compression rate is needed to ensure complete full chest wall recoil while maintaining an adequate chest compression depth. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  11. Subjective evaluation of compressed image quality

    Science.gov (United States)

    Lee, Heesub; Rowberg, Alan H.; Frank, Mark S.; Choi, Hyung-Sik; Kim, Yongmin

    1992-05-01

    Lossy data compression generates distortion or error on the reconstructed image and the distortion becomes visible as the compression ratio increases. Even at the same compression ratio, the distortion appears differently depending on the compression method used. Because of the nonlinearity of the human visual system and lossy data compression methods, we have evaluated subjectively the quality of medical images compressed with two different methods, an intraframe and interframe coding algorithms. The evaluated raw data were analyzed statistically to measure interrater reliability and reliability of an individual reader. Also, the analysis of variance was used to identify which compression method is better statistically, and from what compression ratio the quality of a compressed image is evaluated as poorer than that of the original. Nine x-ray CT head images from three patients were used as test cases. Six radiologists participated in reading the 99 images (some were duplicates) compressed at four different compression ratios, original, 5:1, 10:1, and 15:1. The six readers agree more than by chance alone and their agreement was statistically significant, but there were large variations among readers as well as within a reader. The displacement estimated interframe coding algorithm is significantly better in quality than that of the 2-D block DCT at significance level 0.05. Also, 10:1 compressed images with the interframe coding algorithm do not show any significant differences from the original at level 0.05.

  12. The Compressed Baryonic Matter experiment

    Directory of Open Access Journals (Sweden)

    Seddiki Sélim

    2014-04-01

    Full Text Available The Compressed Baryonic Matter (CBM experiment is a next-generation fixed-target detector which will operate at the future Facility for Antiproton and Ion Research (FAIR in Darmstadt. The goal of this experiment is to explore the QCD phase diagram in the region of high net baryon densities using high-energy nucleus-nucleus collisions. Its research program includes the study of the equation-of-state of nuclear matter at high baryon densities, the search for the deconfinement and chiral phase transitions and the search for the QCD critical point. The CBM detector is designed to measure both bulk observables with a large acceptance and rare diagnostic probes such as charm particles, multi-strange hyperons, and low mass vector mesons in their di-leptonic decay. The physics program of CBM will be summarized, followed by an overview of the detector concept, a selection of the expected physics performance, and the status of preparation of the experiment.

  13. Transition of ion-acoustic perturbations in multicomponent plasma with negative ions

    International Nuclear Information System (INIS)

    Sharma, Sumita Kumari; Devi, Kavita; Adhikary, Nirab Chandra; Bailung, Heremba

    2008-01-01

    Evolution of ion-acoustic compressive (positive) and rarefactive (negative) perturbations in a multicomponent plasma with negative ions has been investigated in a double plasma device. Transition of compressive solitons in electron-positive ion plasma, into a dispersing train of oscillations in a multicomponent plasma, when the negative ion concentration r exceeds a critical value r c , has been observed. On the other hand, an initial rarefactive perturbation initially evolves into a dispersing train of oscillations in electron-positive ion plasma and transforms into rarefactive solitons in a multicomponent plasma when the negative ion concentration is higher than the critical value. The Mach velocity and width of the compressive and rarefactive solitons are measured. The compressive solitons in the range 0 c and the rarefactive solitons in the range r>r c have different characteristics than the Korteweg-de Vries (KdV) solitons at r=0 and modified KdV solitons at r=r c . A nonlinear differential equation having two terms to account for the lower and higher order nonlinearity has been used to explain the observed results

  14. Free compression tube. Applications

    Science.gov (United States)

    Rusu, Ioan

    2012-11-01

    During the flight of vehicles, their propulsion energy must overcome gravity, to ensure the displacement of air masses on vehicle trajectory, to cover both energy losses from the friction between a solid surface and the air and also the kinetic energy of reflected air masses due to the impact with the flying vehicle. The flight optimization by increasing speed and reducing fuel consumption has directed research in the aerodynamics field. The flying vehicles shapes obtained through studies in the wind tunnel provide the optimization of the impact with the air masses and the airflow along the vehicle. By energy balance studies for vehicles in flight, the author Ioan Rusu directed his research in reducing the energy lost at vehicle impact with air masses. In this respect as compared to classical solutions for building flight vehicles aerodynamic surfaces which reduce the impact and friction with air masses, Ioan Rusu has invented a device which he named free compression tube for rockets, registered with the State Office for Inventions and Trademarks of Romania, OSIM, deposit f 2011 0352. Mounted in front of flight vehicles it eliminates significantly the impact and friction of air masses with the vehicle solid. The air masses come into contact with the air inside the free compression tube and the air-solid friction is eliminated and replaced by air to air friction.

  15. MR images of optic nerve compression by the intracranial carotid artery. Including the patients with normal tension glaucoma

    International Nuclear Information System (INIS)

    Kurokawa, Hiroaki; Kin, Kiyonori; Arichi, Miwa; Ogata, Nahoko; Shimizu, Ken; Akai, Mikio; Ikeda, Koshi; Sawada, Satoshi; Matsumura, Miyo

    2003-01-01

    Twenty-one eyes of 12 patients with MRI-defined optic nerve compression by the intracranial carotid artery were examined to investigate whether the visual field defects result from optic nerve compression or other causes. In 4 affected eyes with 2 patients, we could not distinguish whether the visual field defects were due to optic nerve compression or normal-tension glaucoma. These patients had evidence of glaucoma-like cupping of the optic disc and visual field defects. Nine affected eyes with 7 patients were diagnosed as having compressive optic neuropathy due to unilateral optic nerve compression associated with visual field defects or non-glaucomatous visual field defects. Four of 9 affected eyes were associated with optic disc cupping of various degrees. We suggest that the glaucoma-like visual field defects and optic disc cupping may result from a compressive lesion of the anterior visual pathway. Frequently, this feature caused confusion in the differential diagnosis between optic nerve compression by carotid artery and normal-tension glaucoma. (author)

  16. Superconductivity in transition metals.

    Science.gov (United States)

    Slocombe, Daniel R; Kuznetsov, Vladimir L; Grochala, Wojciech; Williams, Robert J P; Edwards, Peter P

    2015-03-13

    A qualitative account of the occurrence and magnitude of superconductivity in the transition metals is presented, with a primary emphasis on elements of the first row. Correlations of the important parameters of the Bardeen-Cooper-Schrieffer theory of superconductivity are highlighted with respect to the number of d-shell electrons per atom of the transition elements. The relation between the systematics of superconductivity in the transition metals and the periodic table high-lights the importance of short-range or chemical bonding on the remarkable natural phenomenon of superconductivity in the chemical elements. A relationship between superconductivity and lattice instability appears naturally as a balance and competition between localized covalent bonding and so-called broken covalency, which favours d-electron delocalization and superconductivity. In this manner, the systematics of superconductivity and various other physical properties of the transition elements are related and unified. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  17. Authority as paradox: the transformations of Don Quijote.

    Science.gov (United States)

    Priel, Beatriz

    2006-12-01

    The author's contention is that the analysand's temporary attribution of authority to the analyst is inherent in the analytic situation; this is seen as a transitional and paradoxical form of authority pertaining neither to internal nor external reality, but dwelling in the analytic third. The author proposes a conceptualization of psychoanalytic authority as a form of aesthetic authority according to Gadamer's definitions. While the scientific and hermeneutic codes for the understanding of authority in psychoanalysis assume that the main issue at stake is the delimitation of the objectivity or the subjectivity of the analyst's knowledge, this aesthetic perspective centres on the analysand's attribution of a claim of truth to analytic interpretations, and on the experience of recognition. The experience of recognition of a possible truth is particular and context-bound, as well as self-transformational. A reading of three episodes from Cervantes's The history of Don Quixote de la Mancha illuminates the transitional and paradoxical character of aesthetic authority within a transformational dialogue. These episodes are read as dramatizations of different positions vis-à-vis the paradoxical authority that characterizes transformational dialogues.

  18. A direct Eulerian method for the simulation of multi-material compressible flows with material sliding

    International Nuclear Information System (INIS)

    Motte, R.; Braeunig, J.P.; Peybernes, M.

    2012-01-01

    As the simulation of compressible flows with several materials is essential for applications studied within the CEA-DAM, the authors propose an approach based on finite volumes with centred variables for the resolution of compressible Euler equations. Moreover, they allow materials to slide with respect to each other as it is the case for water and air, for example. A conservation law is written for each material in a hybrid grid, and a condition of contact between materials under the form of fluxes is expressed. It is illustrated by the case of an intense shock propagating in water and interacting with an air bubble which will be strongly deformed and compressed

  19. Transition to a hydrogen fuel cell transit bus fleet for Canadian urban transit system

    International Nuclear Information System (INIS)

    Ducharme, P.

    2004-01-01

    'Full text:' The Canadian Transportation Fuel Cell Alliance (CTFCA), created by the Canadian Government as part of its 2000 Climate Change Action Plan, has commissioned MARCON-DDM's Hydrogen Intervention Team (HIT) to provide a roadmap for urban transit systems that wish to move to hydrogen fuel cell-powered bus fleets. HIT is currently in the process of gathering information from hydrogen technology providers, bus manufacturers, fuelling system providers and urban transit systems in Canada, the US and Europe. In September, HIT will be in a position to provide a preview of its report to the CTFCA, due for October 2004. The planned table of contents includes: TOMORROW'S FUEL CELL (FC) URBAN TRANSIT BUS - Powertrain, on-board fuel technologies - FC engine system manufacturers - Bus technical specifications, performances, operating characteristics - FC bus manufacturers TOMORROW'S FC TRANSIT PROPERTY - Added maintenance, facilities and fuelling infrastructure requirements - Supply chain implications - Environmental and safety issues - Alternative operational concepts PATHWAYS TO THE FUTURE - Choosing the future operational concept - 'Gap' assessment - how long from here to there? - Facilities and fleet adjustments, including fuelling infrastructure - Risk mitigation, code compliance measures TRANSITIONAL CONSIDERATIONS - Cost implications - Transition schedule (author)

  20. Comparison of chest compression quality between the modified chest compression method with the use of smartphone application and the standardized traditional chest compression method during CPR.

    Science.gov (United States)

    Park, Sang-Sub

    2014-01-01

    The purpose of this study is to grasp difference in quality of chest compression accuracy between the modified chest compression method with the use of smartphone application and the standardized traditional chest compression method. Participants were progressed 64 people except 6 absentees among 70 people who agreed to participation with completing the CPR curriculum. In the classification of group in participants, the modified chest compression method was called as smartphone group (33 people). The standardized chest compression method was called as traditional group (31 people). The common equipments in both groups were used Manikin for practice and Manikin for evaluation. In the meantime, the smartphone group for application was utilized Android and iOS Operating System (OS) of 2 smartphone products (G, i). The measurement period was conducted from September 25th to 26th, 2012. Data analysis was used SPSS WIN 12.0 program. As a result of research, the proper compression depth (mm) was shown the proper compression depth (p< 0.01) in traditional group (53.77 mm) compared to smartphone group (48.35 mm). Even the proper chest compression (%) was formed suitably (p< 0.05) in traditional group (73.96%) more than smartphone group (60.51%). As for the awareness of chest compression accuracy, the traditional group (3.83 points) had the higher awareness of chest compression accuracy (p< 0.001) than the smartphone group (2.32 points). In the questionnaire that was additionally carried out 1 question only in smartphone group, the modified chest compression method with the use of smartphone had the high negative reason in rescuer for occurrence of hand back pain (48.5%) and unstable posture (21.2%).

  1. Shock compression and flash-heating of molecular adsorbates on the picosecond time scale

    Science.gov (United States)

    Berg, Christopher Michael

    An ultrafast nonlinear coherent laser spectroscopy termed broadband multiplex vibrational sum-frequency generation (SFG) with nonresonant suppression was employed to monitor vibrational transitions of molecular adsorbates on metallic substrates during laser-driven shock compression and flash-heating. Adsorbates were in the form of well-ordered self-assembled monolayers (SAMs) and included molecular explosive simulants, such as nitroaromatics, and long chain-length alkanethiols. Based on reflectance measurements of the metallic substrates, femtosecond flash-heating pulses were capable of producing large-amplitude temperature jumps with DeltaT = 500 K. Laser-driven shock compression of SAMs produced pressures up to 2 GPa, where 1 GPa ≈ 1 x 104 atm. Shock pressures were estimated via comparison with frequency shifts observed in the monolayer vibrational transitions during hydrostatic pressure measurements in a SiC anvil cell. Molecular dynamics during flash-heating and shock loading were probed with vibrational SFG spectroscopy with picosecond temporal resolution and sub-nanometer spatial resolution. Flash-heating studies of 4-nitrobenzenethiolate (NBT) on Au provided insight into effects from hot-electron excitation of the molecular adsorbates at early pump-probe delay times. At longer delay times, effects from the excitation of SAM lattice modes and lower-energy NBT vibrations were shown. In addition, flash-heating studies of alkanethiolates demonstrated chain disordering behaviors as well as interface thermal conductances across the Au-SAM junction, which was of specific interest within the context of molecular electronics. Shock compression studies of molecular explosive simulants, such as 4-nitrobenzoate (NBA), demonstrated the proficiency of this technique to observe shock-induced molecular dynamics, in this case orientational dynamics, on the picosecond time scale. Results validated the utilization of these refined shock loading techniques to probe the shock

  2. Hierarchical compression of Caenorhabditis elegans locomotion reveals phenotypic differences in the organization of behaviour.

    Science.gov (United States)

    Gomez-Marin, Alex; Stephens, Greg J; Brown, André E X

    2016-08-01

    Regularities in animal behaviour offer insights into the underlying organizational and functional principles of nervous systems and automated tracking provides the opportunity to extract features of behaviour directly from large-scale video data. Yet how to effectively analyse such behavioural data remains an open question. Here, we explore whether a minimum description length principle can be exploited to identify meaningful behaviours and phenotypes. We apply a dictionary compression algorithm to behavioural sequences from the nematode worm Caenorhabditis elegans freely crawling on an agar plate both with and without food and during chemotaxis. We find that the motifs identified by the compression algorithm are rare but relevant for comparisons between worms in different environments, suggesting that hierarchical compression can be a useful step in behaviour analysis. We also use compressibility as a new quantitative phenotype and find that the behaviour of wild-isolated strains of C. elegans is more compressible than that of the laboratory strain N2 as well as the majority of mutant strains examined. Importantly, in distinction to more conventional phenotypes such as overall motor activity or aggregation behaviour, the increased compressibility of wild isolates is not explained by the loss of function of the gene npr-1, which suggests that erratic locomotion is a laboratory-derived trait with a novel genetic basis. Because hierarchical compression can be applied to any sequence, we anticipate that compressibility can offer insights into the organization of behaviour in other animals including humans. © 2016 The Authors.

  3. Compression of Fe-Si-H alloys

    Science.gov (United States)

    Tagawa, S.; Ohta, K.; Hirose, K.

    2014-12-01

    The light elements in the Earth's core have not been fully identified yet, but hydrogen is now collecting more attention in part because recent planet formation theory suggests that large amount of water should have been brought to the Earth during its formation (giant-impact stage). Nevertheless, the effect of hydrogen on the property of iron alloys is little known so far. The earlier experimental study by Hirao et al. [2004 GRL] examined the compression behavior of dhcp FeHx (x ≈ 1) and found that it becomes much stiffer than pure iron above 50 GPa, where magnetization disappears. Here we examined the solubility of hydrogen into iron-rich Fe-Si alloys and the compression behavior of dhcp Fe-Si-H alloy at room temperature. Fe+6.5wt.%Si or Fe+9wt.%Si foil was loaded into a diamond-anvil cell (DAC), and then liquid hydrogen was introduced at temperatures below 20 K. X-ray diffraction measurements at SPring-8 revealed the formation of a dhcp phase with or without thermal annealing by laser above 8.4 GPa. The concentration of hydrogen in such dhcp lattice was calculated following the formula reported by Fukai [1992]; y = 0.5 and 0.2 for Fe-6.5wt.%Si-H or Fe-9wt.%Si-H alloys, respectively when y is defined as Fe(1-x)SixHy. Unlike Fe-H alloy, hydrogen didn't fully occupy the octahedral sites even under hydrogen-saturated conditions in the case of Fe-Si-H system. Anomaly was observed in obtained pressure-volume curve around 44 Å3 of unit-cell volume for both Fe-6.5wt.%Si-H and Fe-9wt.%Si-H alloys, which may be related to the spin transition in the dhcp phase. They became slightly stiffer at higher pressures, but their compressibility was still similar to that of pure iron.

  4. Temperature and pressure dependence of the order parameter fluctuations, conformational compressibility, and the phase diagram of the PEP-PDMS diblock copolymer

    DEFF Research Database (Denmark)

    Schwahn, D.; Frielinghaus, H.; Mortensen, K.

    1996-01-01

    The structure factor of a poly(ethylene-propylene)-poly(dimethylsiloxane) diblock copolymer has been measured by small-angle neutron scattering as a function of temperature and pressure. The conformational compressibility exhibits a pronounced maximum at the order-disorder phase transition. The p...

  5. Synthesis of Binary Transition Metal Nitrides, Carbides and Borides from the Elements in the Laser-Heated Diamond Anvil Cell and Their Structure-Property Relations

    Directory of Open Access Journals (Sweden)

    Lkhamsuren Bayarjargal

    2011-09-01

    Full Text Available Transition metal nitrides, carbides and borides have a high potential for industrial applications as they not only have a high melting point but are generally harder and less compressible than the pure metals. Here we summarize recent advances in the synthesis of binary transition metal nitrides, carbides and borides focusing on the reaction of the elements at extreme conditions generated within the laser-heated diamond anvil cell. The current knowledge of their structures and high-pressure properties like high-(p; T stability, compressibility and hardness is described as obtained from experiments.

  6. Synthesis of Binary Transition Metal Nitrides, Carbides and Borides from the Elements in the Laser-Heated Diamond Anvil Cell and Their Structure-Property Relations

    Science.gov (United States)

    Friedrich, Alexandra; Winkler, Björn; Juarez-Arellano, Erick A.; Bayarjargal, Lkhamsuren

    2011-01-01

    Transition metal nitrides, carbides and borides have a high potential for industrial applications as they not only have a high melting point but are generally harder and less compressible than the pure metals. Here we summarize recent advances in the synthesis of binary transition metal nitrides, carbides and borides focusing on the reaction of the elements at extreme conditions generated within the laser-heated diamond anvil cell. The current knowledge of their structures and high-pressure properties like high-(p,T) stability, compressibility and hardness is described as obtained from experiments. PMID:28824101

  7. Theory of Microcrediting in Transitional Economies

    Directory of Open Access Journals (Sweden)

    Nikola Kadoić

    2009-06-01

    Full Text Available In the early 1970s, Bangladeshi banker and economist Dr. Muhammad Yunus designed microcrediting – a socially sensitive and rightful system of fighting poverty and high unemployment rates. His Grameen Bank for the poorest of the poor in Bangladesh has so far lifted more than 3.2 million of individuals and their families out of poverty. After initial successes at home, microcredit was put into service for reducing unemployment and alleviating poverty in numerous countries throughout the world. This paper explores specific problems that a typical transitional country (like Croatia, is likely to face, with unemployment – the source of a vast number of related problems in a transitional society – as the focal point. The authors have attempted to incorporate particularities of a transitional economy into the original microcrediting principles. As a solution to problems afflicting the domestic economy, the authors define a global microcrediting system framework on the macroeconomic level, assuming at the same time that microcrediting of socially vulnerable groups can resolve many problems of modern transitional societies. Arising from the authors' primary intention – to consider in depth the functionality of microcrediting in general transition conditions – a transitional microcrediting system has been defined in general terms, and a corresponding financial and mathematical model developed.

  8. Quasi-static electron density fluctuations of atoms in hot compressed matter

    International Nuclear Information System (INIS)

    Grimaldi, F.; Grimaldi-Lecourt, A.

    1982-01-01

    The standard theoretical methods for the calculation of properties of hot compressed matter lead to a description based on the Average Atom model. In this model the degenerate orbitals are populated with the Fermi-Dirac (FD) density, partitioned according to the binomial distribution. Since the one particle picture is inadequate to evaluate reliable optical properties, a method involving correlated population fluctuations, but limited to unrelaxed orbitals and lacking time dependence, has been examined. The probability distribution of fluctuations in a particular level is evaluated through a decoupling procedure. The method is carried out self consistently. For each level this leads to the definition of an effective 1st order ionization energy as a statistical sum of all possible transition energies. As a result the effective number of electrons exchanged with the outside weights the chemical potential. This defines an effective chemical potential μsup(k) for each level. In many cases of interest the statistics leads to FD type average occupation numbers. This allows a treatment of the continuum in a Thomas-Fermi like model using the effective ionization energy and μsup(k). We obtain a simultaneous description of charge rearrangements and net fluctuations in the Wigner-Seitz cell. The discussion is supported by numerical results for iron. (author)

  9. Compression measurement in laser driven implosion experiments

    International Nuclear Information System (INIS)

    Attwood, D.T.; Cambell, E.M.; Ceglio, N.M.; Lane, S.L.; Larsen, J.T.; Matthews, D.M.

    1981-01-01

    This paper discusses the measurement of compression in the context of the Inertial Confinement Fusion Programs' transition from thin-walled exploding pusher targets, to thicker walled targets which are designed to lead the way towards ablative type implosions which will result in higher fuel density and pR at burn time. These experiments promote desirable reactor conditions but pose diagnostic problems because of reduced multi-kilovolt x-ray and reaction product emissions, as well as increasingly more difficult transport problems for these emissions as they pass through the thicker pR pusher conditions. Solutions to these problems, pointing the way toward higher energy twodimensional x-ray images, new reaction product imaging ideas and the use of seed gases for both x-ray spectroscopic and nuclear activation techniques are identified

  10. Tree compression with top trees

    DEFF Research Database (Denmark)

    Bille, Philip; Gørtz, Inge Li; Landau, Gad M.

    2013-01-01

    We introduce a new compression scheme for labeled trees based on top trees [3]. Our compression scheme is the first to simultaneously take advantage of internal repeats in the tree (as opposed to the classical DAG compression that only exploits rooted subtree repeats) while also supporting fast...

  11. Tree compression with top trees

    DEFF Research Database (Denmark)

    Bille, Philip; Gørtz, Inge Li; Landau, Gad M.

    2015-01-01

    We introduce a new compression scheme for labeled trees based on top trees. Our compression scheme is the first to simultaneously take advantage of internal repeats in the tree (as opposed to the classical DAG compression that only exploits rooted subtree repeats) while also supporting fast...

  12. Generalized massive optimal data compression

    Science.gov (United States)

    Alsing, Justin; Wandelt, Benjamin

    2018-05-01

    In this paper, we provide a general procedure for optimally compressing N data down to n summary statistics, where n is equal to the number of parameters of interest. We show that compression to the score function - the gradient of the log-likelihood with respect to the parameters - yields n compressed statistics that are optimal in the sense that they preserve the Fisher information content of the data. Our method generalizes earlier work on linear Karhunen-Loéve compression for Gaussian data whilst recovering both lossless linear compression and quadratic estimation as special cases when they are optimal. We give a unified treatment that also includes the general non-Gaussian case as long as mild regularity conditions are satisfied, producing optimal non-linear summary statistics when appropriate. As a worked example, we derive explicitly the n optimal compressed statistics for Gaussian data in the general case where both the mean and covariance depend on the parameters.

  13. Spectral analysis of viscous static compressible fluid equilibria

    Energy Technology Data Exchange (ETDEWEB)

    Nunez, Manuel [Departamento de Analisis Matematico, Universidad de Valladolid, Valladolid (Spain)

    2001-05-25

    It is generally assumed that the study of the spectrum of the linearized Navier-Stokes equations around a static state will provide information about the stability of the equilibrium. This is obvious for inviscid barotropic compressible fluids by the self-adjoint character of the relevant operator, and rather easy for viscous incompressible fluids by the compact character of the resolvent. The viscous compressible linearized system, both for periodic and homogeneous Dirichlet boundary problems, satisfies neither condition, but it does turn out to be the generator of an immediately continuous, almost stable semigroup, which justifies the analysis of the spectrum as predictive of the initial behaviour of the flow. As for the spectrum itself, except for a unique negative finite accumulation point, it is formed by eigenvalues with negative real part, and nonreal eigenvalues are confined to a certain bounded subset of complex numbers. (author)

  14. Citizens in sustainable transitions

    DEFF Research Database (Denmark)

    Hoffmann, Birgitte; Agger, Annika

    2013-01-01

    The paper explores how local public authorities can support and facilitate citizens’ participa-tion and learning in sustainable transition in urban neighbourhoods, by supporting local in-termediaries. The role of intermediaries can be performed by a variety of actors such as public housing...... associations; NGO´s, or semi public institutions. Our claim is that intermediary actors have the potential to facilitate new platforms for citizens’ participation in urban sustainable transition due to their particular role in between public authorities and civil society. The key question of the paper is how...... the intermediary actors facilitate citizens' participatory processes in sustainable urban transitions, and the paper explores the concept of institutional capacity building as a way to develop learning processes and new practises? The aim is to analyse approaches of creating platforms for involving citizens...

  15. Nondestructive testing of the low-level radioactive waste drums for uni-axial compressive strength and free liquid content

    International Nuclear Information System (INIS)

    Yu Geping; Chang Mingyu; Wang Yeajeng; Chu, David S.L.; Ju Yihzen

    1992-01-01

    This paper summarizes the nondestructive test to determine the uni-axial compressive strength and free water content of solidified low level radioactive waste. The uni-axial compressive strength is determined by ultrasonic wave propagation speed, and the results are compared with those of compressive tests. Three methods of detecting the surface free water by ultrasonic testing are established, the ultrasonic wave speed, wave form and pulse height are used to determine the existence and amount of the surface free liquid. Possible difficulties are discussed. (author)

  16. Macroeconomic models and energy transition

    International Nuclear Information System (INIS)

    Douillard, Pierre; Le Hir, Boris; Epaulard, Anne

    2016-02-01

    As a new policy for energy transition has just been adopted, several questions emerge about the best way to reduce CO 2 emissions, about policies which enable this reduction, and about their costs and opportunities. This note discusses the contribution macro-economic models may have in this respect, notably in the definition of policies which trigger behaviour changes, and those which support energy transition. The authors first discuss the stakes of the assessment of energy transition, and then describe macro-economic models which can be used for such an assessment, give and comment some results of simulations performed for France by using four of these models (Mesange, Numesis, ThreeME, and Imaclim-R France). The authors finally draw lessons about the way to use these models and to interpret their results within the frame of energy transition

  17. 29 CFR 1917.154 - Compressed air.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Compressed air. 1917.154 Section 1917.154 Labor Regulations...) MARINE TERMINALS Related Terminal Operations and Equipment § 1917.154 Compressed air. Employees shall be... this part during cleaning with compressed air. Compressed air used for cleaning shall not exceed a...

  18. Compressive strength test for cemented waste forms: validation process

    International Nuclear Information System (INIS)

    Haucz, Maria Judite A.; Candido, Francisco Donizete; Seles, Sandro Rogerio

    2007-01-01

    In the Cementation Laboratory (LABCIM), of the Development Centre of the Nuclear Technology (CNEN/CDTN-MG), hazardous/radioactive wastes are incorporated in cement, to transform them into monolithic products, preventing or minimizing the contaminant release to the environment. The compressive strength test is important to evaluate the cemented product quality, in which it is determined the compression load necessary to rupture the cemented waste form. In LABCIM a specific procedure was developed to determine the compressive strength of cement waste forms based on the Brazilian Standard NBR 7215. The accreditation of this procedure is essential to assure reproductive and accurate results in the evaluation of these products. To achieve this goal the Laboratory personal implemented technical and administrative improvements in accordance with the NBR ISO/IEC 17025 standard 'General requirements for the competence of testing and calibration laboratories'. As the developed procedure was not a standard one the norm ISO/IEC 17025 requests its validation. There are some methodologies to do that. In this paper it is described the current status of the accreditation project, especially the validation process of the referred procedure and its results. (author)

  19. Neurovascular compression of cranial nerves: CT and MRI findings

    International Nuclear Information System (INIS)

    Almeida Llanos, Julio; Sinner, Ricardo; Nagel, Jorge

    2002-01-01

    Purpose: The compression of a nervous structure by an aberrant vessel may be asymptomatic or produce an important symptoms, in these cases CT and MRI show relevant information. Materials and Methods: Between January 1998 and March 2001, we studied 27 patients: 8 with trigeminal neuralgia, 7 with hemi facial spasm, 4 vertigo and tinnitus, 2 hemianopsia, 1 with neuralgia of the amygdalin fossa, 1 with bitonal voice, 1 with tongue deviation with fascicular movements, 2 essential hypertension and 1 with severe headache. All of them had a neurologic evaluation from 2 specialists and 2 neuro radiologists interpreted the results. Results: The CT and RMI images with special sequences allowed to prove the compression of the entry segments of the V, VII, IX, X and XII cranial nerves, of the optic chiasma and the ventrolateral aspect of the medulla oblongata in close relation with the vasopressor centre. Also they demonstrate a rare vessel in the Silvio aqueduct avoiding the normal flow of the CSF. Of the total of patients that were studied, 37% had surgical confirmation. Conclusion: CT and RMI are sensitive and specific methods for the detection of vascular compressions of nervous structures. (author)

  20. Image quality (IQ) guided multispectral image compression

    Science.gov (United States)

    Zheng, Yufeng; Chen, Genshe; Wang, Zhonghai; Blasch, Erik

    2016-05-01

    Image compression is necessary for data transportation, which saves both transferring time and storage space. In this paper, we focus on our discussion on lossy compression. There are many standard image formats and corresponding compression algorithms, for examples, JPEG (DCT -- discrete cosine transform), JPEG 2000 (DWT -- discrete wavelet transform), BPG (better portable graphics) and TIFF (LZW -- Lempel-Ziv-Welch). The image quality (IQ) of decompressed image will be measured by numerical metrics such as root mean square error (RMSE), peak signal-to-noise ratio (PSNR), and structural Similarity (SSIM) Index. Given an image and a specified IQ, we will investigate how to select a compression method and its parameters to achieve an expected compression. Our scenario consists of 3 steps. The first step is to compress a set of interested images by varying parameters and compute their IQs for each compression method. The second step is to create several regression models per compression method after analyzing the IQ-measurement versus compression-parameter from a number of compressed images. The third step is to compress the given image with the specified IQ using the selected compression method (JPEG, JPEG2000, BPG, or TIFF) according to the regressed models. The IQ may be specified by a compression ratio (e.g., 100), then we will select the compression method of the highest IQ (SSIM, or PSNR). Or the IQ may be specified by a IQ metric (e.g., SSIM = 0.8, or PSNR = 50), then we will select the compression method of the highest compression ratio. Our experiments tested on thermal (long-wave infrared) images (in gray scales) showed very promising results.

  1. The Transiting System GJ1214: High-Precision Defocused Transit Observations and a Search for Evidence of Transit Timing Variation

    DEFF Research Database (Denmark)

    Harpsøe, Kennet Bomann West; Hardis, S.; Hinse, T. C.

    2012-01-01

    Aims: We present 11 high-precision photometric transit observations of the transiting super-Earth planet GJ1214b. Combining these data with observations from other authors, we investigate the ephemeris for possible signs of transit timing variations (TTVs) using a Bayesian approach. Methods......: The observations were obtained using telescope-defocusing techniques, and achieve a high precision with random errors in the photometry as low as 1mmag per point. To investigate the possibility of TTVs in the light curve, we calculate the overall probability of a TTV signal using Bayesian methods. Results...

  2. Numerical Solution of Compressible Steady Flows around the RAE 2822 Airfoil

    Science.gov (United States)

    Kryštůfek, P.; Kozel, K.

    2014-03-01

    The article presents results of a numerical solution of subsonic, transonic and supersonic flows described by the system of Navier-Stokes equations in 2D laminar compressible flows around the RAE 2822 airfoil. Authors used FVM multistage Runge-Kutta method to numerically solve the flows around the RAE 2822 airfoil.

  3. Numerical Solution of Compressible Steady Flows around the NACA 0012 Airfoil

    Directory of Open Access Journals (Sweden)

    Kozel K

    2013-04-01

    Full Text Available The article presents results of a numerical solution of subsonic and transonic flows described by the system of Navier-Stokes equations in 2D laminar compressible flows around the NACA 0012 airfoil. Authors used Runge-Kutta method to numerically solve the flows around the NACA 0012 airfoil.

  4. Commissioning and operating experience of compressed air system of a reprocessing plant (Paper No. 5.10)

    International Nuclear Information System (INIS)

    Nair, M.K.T.; Bajpai, D.D.; Mishra, A.K.; Kulkarni, H.B.; Raje, R.V.; Rajeshwar, S.

    1992-01-01

    Compressed air system is one of the most important utility systems, required in the continued operation of a radiochemical plant. Moisture and oil free compressed air is used in large scale for process control and process operations in reprocessing plants. Commissioning and operating experience of this system is described in detail, to indicate the importance of the system in the overall design and operation of such chemical plant. (author). 1 tab

  5. Energy transition and phasing out nuclear

    International Nuclear Information System (INIS)

    Laponche, Bernard

    2013-05-01

    In the first part of this report, the author outlines and comments the need of an energy transition in the world: overview of world challenges (world energy consumption and its constraints, a necessary energy transition, new actors and new responsibilities), and describes the German example of an energy transition policy. In the second part, he presents and discusses the main reasons for phasing out nuclear: description of a nuclear plant operation (fission and chain reaction, heat production, production of radioactive elements, how to stop a nuclear reactor), safety and risk issues (protection arrangements, risk and consequence of a nuclear accident), issue of radioactive wastes, relationship between civil techniques and proliferation of nuclear weapons. In a third part, the author proposes an overview of the energy issue in France: final energy consumption, electricity production and consumption, primary energy consumption, characteristics of the French energy system (oil dependency, electricity consumption, and high share of nuclear energy in electricity production). In a last part, the author addresses the issue of energy transition in a perspective of phasing out nuclear: presentation of the Negawatt scenario, assessments made by Global Chance, main programmes of energy transition

  6. Application specific compression : final report.

    Energy Technology Data Exchange (ETDEWEB)

    Melgaard, David Kennett; Byrne, Raymond Harry; Myers, Daniel S.; Harrison, Carol D.; Lee, David S.; Lewis, Phillip J.; Carlson, Jeffrey J.

    2008-12-01

    With the continuing development of more capable data gathering sensors, comes an increased demand on the bandwidth for transmitting larger quantities of data. To help counteract that trend, a study was undertaken to determine appropriate lossy data compression strategies for minimizing their impact on target detection and characterization. The survey of current compression techniques led us to the conclusion that wavelet compression was well suited for this purpose. Wavelet analysis essentially applies a low-pass and high-pass filter to the data, converting the data into the related coefficients that maintain spatial information as well as frequency information. Wavelet compression is achieved by zeroing the coefficients that pertain to the noise in the signal, i.e. the high frequency, low amplitude portion. This approach is well suited for our goal because it reduces the noise in the signal with only minimal impact on the larger, lower frequency target signatures. The resulting coefficients can then be encoded using lossless techniques with higher compression levels because of the lower entropy and significant number of zeros. No significant signal degradation or difficulties in target characterization or detection were observed or measured when wavelet compression was applied to simulated and real data, even when over 80% of the coefficients were zeroed. While the exact level of compression will be data set dependent, for the data sets we studied, compression factors over 10 were found to be satisfactory where conventional lossless techniques achieved levels of less than 3.

  7. Real-time lossless data compression techniques for long-pulse operation

    International Nuclear Information System (INIS)

    Jesus Vega, J.; Sanchez, E.; Portas, A.; Pereira, A.; Ruiz, M.

    2006-01-01

    databases (TJ-II and JET) and computation times for compression/decompression are shown. Finally, the validity and implementation of these techniques for long pulse operation and real-time requirements is also discussed. (author)

  8. Design Guidelines for Bus Transit Systems Using Liquefied Petroleum Gas (LPG) as an Alternative Fuel.

    Science.gov (United States)

    1996-09-01

    The use of alternative fuels to power transit buses is steadily increasing. Several fuels, including Liquefied Petroleum Gas (LPG), Compressed Natural Gas (CNG), and Methanol/Ethanol, are already being used in buses. At present, there do not exist co...

  9. Compressibility of the protein-water interface

    Science.gov (United States)

    Persson, Filip; Halle, Bertil

    2018-06-01

    The compressibility of a protein relates to its stability, flexibility, and hydrophobic interactions, but the measurement, interpretation, and computation of this important thermodynamic parameter present technical and conceptual challenges. Here, we present a theoretical analysis of protein compressibility and apply it to molecular dynamics simulations of four globular proteins. Using additively weighted Voronoi tessellation, we decompose the solution compressibility into contributions from the protein and its hydration shells. We find that positively cross-correlated protein-water volume fluctuations account for more than half of the protein compressibility that governs the protein's pressure response, while the self correlations correspond to small (˜0.7%) fluctuations of the protein volume. The self compressibility is nearly the same as for ice, whereas the total protein compressibility, including cross correlations, is ˜45% of the bulk-water value. Taking the inhomogeneous solvent density into account, we decompose the experimentally accessible protein partial compressibility into intrinsic, hydration, and molecular exchange contributions and show how they can be computed with good statistical accuracy despite the dominant bulk-water contribution. The exchange contribution describes how the protein solution responds to an applied pressure by redistributing water molecules from lower to higher density; it is negligibly small for native proteins, but potentially important for non-native states. Because the hydration shell is an open system, the conventional closed-system compressibility definitions yield a pseudo-compressibility. We define an intrinsic shell compressibility, unaffected by occupation number fluctuations, and show that it approaches the bulk-water value exponentially with a decay "length" of one shell, less than the bulk-water compressibility correlation length. In the first hydration shell, the intrinsic compressibility is 25%-30% lower than in

  10. Compressibility of the protein-water interface.

    Science.gov (United States)

    Persson, Filip; Halle, Bertil

    2018-06-07

    The compressibility of a protein relates to its stability, flexibility, and hydrophobic interactions, but the measurement, interpretation, and computation of this important thermodynamic parameter present technical and conceptual challenges. Here, we present a theoretical analysis of protein compressibility and apply it to molecular dynamics simulations of four globular proteins. Using additively weighted Voronoi tessellation, we decompose the solution compressibility into contributions from the protein and its hydration shells. We find that positively cross-correlated protein-water volume fluctuations account for more than half of the protein compressibility that governs the protein's pressure response, while the self correlations correspond to small (∼0.7%) fluctuations of the protein volume. The self compressibility is nearly the same as for ice, whereas the total protein compressibility, including cross correlations, is ∼45% of the bulk-water value. Taking the inhomogeneous solvent density into account, we decompose the experimentally accessible protein partial compressibility into intrinsic, hydration, and molecular exchange contributions and show how they can be computed with good statistical accuracy despite the dominant bulk-water contribution. The exchange contribution describes how the protein solution responds to an applied pressure by redistributing water molecules from lower to higher density; it is negligibly small for native proteins, but potentially important for non-native states. Because the hydration shell is an open system, the conventional closed-system compressibility definitions yield a pseudo-compressibility. We define an intrinsic shell compressibility, unaffected by occupation number fluctuations, and show that it approaches the bulk-water value exponentially with a decay "length" of one shell, less than the bulk-water compressibility correlation length. In the first hydration shell, the intrinsic compressibility is 25%-30% lower than

  11. Cosmological Particle Data Compression in Practice

    Science.gov (United States)

    Zeyen, M.; Ahrens, J.; Hagen, H.; Heitmann, K.; Habib, S.

    2017-12-01

    In cosmological simulations trillions of particles are handled and several terabytes of unstructured particle data are generated in each time step. Transferring this data directly from memory to disk in an uncompressed way results in a massive load on I/O and storage systems. Hence, one goal of domain scientists is to compress the data before storing it to disk while minimizing the loss of information. To prevent reading back uncompressed data from disk, this can be done in an in-situ process. Since the simulation continuously generates data, the available time for the compression of one time step is limited. Therefore, the evaluation of compression techniques has shifted from only focusing on compression rates to include run-times and scalability.In recent years several compression techniques for cosmological data have become available. These techniques can be either lossy or lossless, depending on the technique. For both cases, this study aims to evaluate and compare the state of the art compression techniques for unstructured particle data. This study focuses on the techniques available in the Blosc framework with its multi-threading support, the XZ Utils toolkit with the LZMA algorithm that achieves high compression rates, and the widespread FPZIP and ZFP methods for lossy compressions.For the investigated compression techniques, quantitative performance indicators such as compression rates, run-time/throughput, and reconstruction errors are measured. Based on these factors, this study offers a comprehensive analysis of the individual techniques and discusses their applicability for in-situ compression. In addition, domain specific measures are evaluated on the reconstructed data sets, and the relative error rates and statistical properties are analyzed and compared. Based on this study future challenges and directions in the compression of unstructured cosmological particle data were identified.

  12. The structure of water around the compressibility minimum

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, L. B. [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Mineral Physics Institute, Stony Brook University, Stony Brook, New York, New York 11794-2100 (United States); Benmore, C. J., E-mail: benmore@aps.anl.gov [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Neuefeind, J. C. [Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37922 (United States); Parise, J. B. [Mineral Physics Institute, Stony Brook University, Stony Brook, New York, New York 11794-2100 (United States); Department of Geosciences, Stony Brook University, Stony Brook, New York, New York 11794-2100 (United States); Photon Sciences Division, Brookhaven National Laboratory, Upton, New York 11973 (United States)

    2014-12-07

    Here we present diffraction data that yield the oxygen-oxygen pair distribution function, g{sub OO}(r) over the range 254.2–365.9 K. The running O-O coordination number, which represents the integral of the pair distribution function as a function of radial distance, is found to exhibit an isosbestic point at 3.30(5) Å. The probability of finding an oxygen atom surrounding another oxygen at this distance is therefore shown to be independent of temperature and corresponds to an O-O coordination number of 4.3(2). Moreover, the experimental data also show a continuous transition associated with the second peak position in g{sub OO}(r) concomitant with the compressibility minimum at 319 K.

  13. EFFECTIVENESS OF ADJUVANT USE OF POSTERIOR MANUAL COMPRESSION WITH GRADED COMPRESSION IN THE SONOGRAPHIC DIAGNOSIS OF ACUTE APPENDICITIS

    Directory of Open Access Journals (Sweden)

    Senthilnathan V

    2018-01-01

    Full Text Available BACKGROUND Diagnosing appendicitis by Graded Compression Ultrasonogram is a difficult task because of limiting factors such as operator– dependent technique, retrocaecal location of the appendix and patient obesity. Posterior manual compression technique visualizes the appendix better in the Grey-scale Ultrasonogram. The Aim of this study is to determine the accuracy of ultrasound in detecting or excluding acute appendicitis and to evaluate the usefulness of the adjuvant use of posterior manual compression technique in visualization of the appendix and in the diagnosis of acute appendicitis MATERIALS AND METHODS This prospective study involved a total of 240 patients in all age groups and both sexes. All these patients underwent USG for suspected appendicitis. Ultrasonography was performed with transverse and longitudinal graded compression sonography. If the appendix is not visualized on graded compression sonography, posterior manual compression technique was used to further improve the detection of appendix. RESULTS The vermiform appendix was visualized in 185 patients (77.1% out of 240 patients with graded compression alone. 55 out of 240 patients whose appendix could not be visualized by graded compression alone were subjected to both graded followed by posterior manual compression technique among that Appendix was visualized in 43 patients on posterior manual compression technique amounting to 78.2% of cases, Appendix could not be visualized in the remaining 12 patients (21.8% out of 55. CONCLUSION Combined method of graded compression with posterior manual compression technique is better than the graded compression technique alone in diagnostic accuracy and detection rate of the vermiform appendix.

  14. Radiological diagnosis of chronic spinal cord compressive lesion at thoraco-lumbar junction

    International Nuclear Information System (INIS)

    Koyanagi, Izumi; Isu, Toyohiko; Iwasaki, Yoshinobu; Akino, Minoru; Abe, Hiroshi; Tashiro, Kunio; Miyasaka, Kazuo; Abe, Satoru; Kaneda, Kiyoshi

    1988-01-01

    Radiological findings in five cases with chronic spinal cord compressive lesion at thoraco-lumbar junction were reported. Three cases had spondylosis and two cases had ossification of yellow ligament (OYL). The levels of the lesions were T12/L1 in three cases and T11/12 in two cases. Two out of three spondylotic patients had also OYL at the same level. The five cases consisted of three men and two women. The ages ranged from 42 to 60 years old with a mean age of 53 years old. Neurologically, every patient showed flaccid paresis and sensory disturbance of the legs. Two cases had sensory disturbance of stocking type. The intervals from the onset of the symptoms to the final diagnosis were 6 months, 7 years, 8 years, 11 years and 12 years. Myelography showed anterior spinal cord compression by bony spur in spondylotic patients, and posterior compression by OYL in other cases. Myelography in flexion posture disclosed the cord compression by bony spur more clearly in two out of three spondylotic patients. Delayed CT-myelography showed intramedullary filling of contrast material in two cases, which indicated degenerative change or microcavitation due to long term compression of the spinal cord. MRI was taken in three spondylotic patients and could directly show compression of the spinal cord. Difficulty in detecting abnormality at thoraco-lumbar junction on plain roentgenogram, and similarity of the symptoms to peripheral nerve disease often lead to a delay in diagnosis. The significance of dynamic myelography and delayed CT-myelography when dealing with such a lesion was discussed here. MRI is also a useful method for diagnosing a compressive lesion at the thoraco-lumbar junction. (author)

  15. A statistical–mechanical view on source coding: physical compression and data compression

    International Nuclear Information System (INIS)

    Merhav, Neri

    2011-01-01

    We draw a certain analogy between the classical information-theoretic problem of lossy data compression (source coding) of memoryless information sources and the statistical–mechanical behavior of a certain model of a chain of connected particles (e.g. a polymer) that is subjected to a contracting force. The free energy difference pertaining to such a contraction turns out to be proportional to the rate-distortion function in the analogous data compression model, and the contracting force is proportional to the derivative of this function. Beyond the fact that this analogy may be interesting in its own right, it may provide a physical perspective on the behavior of optimum schemes for lossy data compression (and perhaps also an information-theoretic perspective on certain physical system models). Moreover, it triggers the derivation of lossy compression performance for systems with memory, using analysis tools and insights from statistical mechanics

  16. Nonlinear viscoelasticity of pre-compressed layered polymeric composite under oscillatory compression

    KAUST Repository

    Xu, Yangguang

    2018-05-03

    Describing nonlinear viscoelastic properties of polymeric composites when subjected to dynamic loading is essential for development of practical applications of such materials. An efficient and easy method to analyze nonlinear viscoelasticity remains elusive because the dynamic moduli (storage modulus and loss modulus) are not very convenient when the material falls into nonlinear viscoelastic range. In this study, we utilize two methods, Fourier transform and geometrical nonlinear analysis, to quantitatively characterize the nonlinear viscoelasticity of a pre-compressed layered polymeric composite under oscillatory compression. We discuss the influences of pre-compression, dynamic loading, and the inner structure of polymeric composite on the nonlinear viscoelasticity. Furthermore, we reveal the nonlinear viscoelastic mechanism by combining with other experimental results from quasi-static compressive tests and microstructural analysis. From a methodology standpoint, it is proved that both Fourier transform and geometrical nonlinear analysis are efficient tools for analyzing the nonlinear viscoelasticity of a layered polymeric composite. From a material standpoint, we consequently posit that the dynamic nonlinear viscoelasticity of polymeric composites with complicated inner structures can also be well characterized using these methods.

  17. Effect of compressibility on the hypervelocity penetration

    Science.gov (United States)

    Song, W. J.; Chen, X. W.; Chen, P.

    2018-02-01

    We further consider the effect of rod strength by employing the compressible penetration model to study the effect of compressibility on hypervelocity penetration. Meanwhile, we define different instances of penetration efficiency in various modified models and compare these penetration efficiencies to identify the effects of different factors in the compressible model. To systematically discuss the effect of compressibility in different metallic rod-target combinations, we construct three cases, i.e., the penetrations by the more compressible rod into the less compressible target, rod into the analogously compressible target, and the less compressible rod into the more compressible target. The effects of volumetric strain, internal energy, and strength on the penetration efficiency are analyzed simultaneously. It indicates that the compressibility of the rod and target increases the pressure at the rod/target interface. The more compressible rod/target has larger volumetric strain and higher internal energy. Both the larger volumetric strain and higher strength enhance the penetration or anti-penetration ability. On the other hand, the higher internal energy weakens the penetration or anti-penetration ability. The two trends conflict, but the volumetric strain dominates in the variation of the penetration efficiency, which would not approach the hydrodynamic limit if the rod and target are not analogously compressible. However, if the compressibility of the rod and target is analogous, it has little effect on the penetration efficiency.

  18. On-Chip Neural Data Compression Based On Compressed Sensing With Sparse Sensing Matrices.

    Science.gov (United States)

    Zhao, Wenfeng; Sun, Biao; Wu, Tong; Yang, Zhi

    2018-02-01

    On-chip neural data compression is an enabling technique for wireless neural interfaces that suffer from insufficient bandwidth and power budgets to transmit the raw data. The data compression algorithm and its implementation should be power and area efficient and functionally reliable over different datasets. Compressed sensing is an emerging technique that has been applied to compress various neurophysiological data. However, the state-of-the-art compressed sensing (CS) encoders leverage random but dense binary measurement matrices, which incur substantial implementation costs on both power and area that could offset the benefits from the reduced wireless data rate. In this paper, we propose two CS encoder designs based on sparse measurement matrices that could lead to efficient hardware implementation. Specifically, two different approaches for the construction of sparse measurement matrices, i.e., the deterministic quasi-cyclic array code (QCAC) matrix and -sparse random binary matrix [-SRBM] are exploited. We demonstrate that the proposed CS encoders lead to comparable recovery performance. And efficient VLSI architecture designs are proposed for QCAC-CS and -SRBM encoders with reduced area and total power consumption.

  19. FRESCO: Referential compression of highly similar sequences.

    Science.gov (United States)

    Wandelt, Sebastian; Leser, Ulf

    2013-01-01

    In many applications, sets of similar texts or sequences are of high importance. Prominent examples are revision histories of documents or genomic sequences. Modern high-throughput sequencing technologies are able to generate DNA sequences at an ever-increasing rate. In parallel to the decreasing experimental time and cost necessary to produce DNA sequences, computational requirements for analysis and storage of the sequences are steeply increasing. Compression is a key technology to deal with this challenge. Recently, referential compression schemes, storing only the differences between a to-be-compressed input and a known reference sequence, gained a lot of interest in this field. In this paper, we propose a general open-source framework to compress large amounts of biological sequence data called Framework for REferential Sequence COmpression (FRESCO). Our basic compression algorithm is shown to be one to two orders of magnitudes faster than comparable related work, while achieving similar compression ratios. We also propose several techniques to further increase compression ratios, while still retaining the advantage in speed: 1) selecting a good reference sequence; and 2) rewriting a reference sequence to allow for better compression. In addition,we propose a new way of further boosting the compression ratios by applying referential compression to already referentially compressed files (second-order compression). This technique allows for compression ratios way beyond state of the art, for instance,4,000:1 and higher for human genomes. We evaluate our algorithms on a large data set from three different species (more than 1,000 genomes, more than 3 TB) and on a collection of versions of Wikipedia pages. Our results show that real-time compression of highly similar sequences at high compression ratios is possible on modern hardware.

  20. Comparing biological networks via graph compression

    Directory of Open Access Journals (Sweden)

    Hayashida Morihiro

    2010-09-01

    Full Text Available Abstract Background Comparison of various kinds of biological data is one of the main problems in bioinformatics and systems biology. Data compression methods have been applied to comparison of large sequence data and protein structure data. Since it is still difficult to compare global structures of large biological networks, it is reasonable to try to apply data compression methods to comparison of biological networks. In existing compression methods, the uniqueness of compression results is not guaranteed because there is some ambiguity in selection of overlapping edges. Results This paper proposes novel efficient methods, CompressEdge and CompressVertices, for comparing large biological networks. In the proposed methods, an original network structure is compressed by iteratively contracting identical edges and sets of connected edges. Then, the similarity of two networks is measured by a compression ratio of the concatenated networks. The proposed methods are applied to comparison of metabolic networks of several organisms, H. sapiens, M. musculus, A. thaliana, D. melanogaster, C. elegans, E. coli, S. cerevisiae, and B. subtilis, and are compared with an existing method. These results suggest that our methods can efficiently measure the similarities between metabolic networks. Conclusions Our proposed algorithms, which compress node-labeled networks, are useful for measuring the similarity of large biological networks.

  1. Fixed-Rate Compressed Floating-Point Arrays.

    Science.gov (United States)

    Lindstrom, Peter

    2014-12-01

    Current compression schemes for floating-point data commonly take fixed-precision values and compress them to a variable-length bit stream, complicating memory management and random access. We present a fixed-rate, near-lossless compression scheme that maps small blocks of 4(d) values in d dimensions to a fixed, user-specified number of bits per block, thereby allowing read and write random access to compressed floating-point data at block granularity. Our approach is inspired by fixed-rate texture compression methods widely adopted in graphics hardware, but has been tailored to the high dynamic range and precision demands of scientific applications. Our compressor is based on a new, lifted, orthogonal block transform and embedded coding, allowing each per-block bit stream to be truncated at any point if desired, thus facilitating bit rate selection using a single compression scheme. To avoid compression or decompression upon every data access, we employ a software write-back cache of uncompressed blocks. Our compressor has been designed with computational simplicity and speed in mind to allow for the possibility of a hardware implementation, and uses only a small number of fixed-point arithmetic operations per compressed value. We demonstrate the viability and benefits of lossy compression in several applications, including visualization, quantitative data analysis, and numerical simulation.

  2. The Energy Transition Chronicles

    International Nuclear Information System (INIS)

    Cappelletti, Floriane; Vallar, Jean-Pierre; Wyssling, Julia

    2015-01-01

    Energy Cities provides local authorities with support for implementing their own energy transition process. The Proposals for the energy transition of cities and towns (www.energy-cities.eu/30proposals) are illustrated with around a hundred of inspirational examples from all over Europe. In this document composed of five case reports, Energy Cities goes further and tells the tale of energy transition success stories. Because it is important to show that energy transition is 'possible'. Why, how, with whom, for what results? We interviewed local players and decision-makers to find out more. Here are their stories

  3. Study of near-critical states of liquid-vapor phase transition of magnesium

    International Nuclear Information System (INIS)

    Emelyanov, A N; Shakhray, D V; Golyshev, A A

    2015-01-01

    Study of thermodynamic parameters of magnesium in the near-critical point region of the liquid-vapor phase transition and in the region of metal-nonmetal transition was carried out. Measurements of the electrical resistance of magnesium after shock compression and expansion into gas (helium) environment in the process of isobaric heating was carried out. Heating of the magnesium surface by heat transfer with hot helium was performed. The registered electrical resistance of expanded magnesium was about 10 4 -10 5 times lower than the electrical resistance of the magnesium under normal condition at the density less than the density of the critical point. Thus, metal-nonmetal transition was found in magnesium. (paper)

  4. Gravitational waves from the sound of a first order phase transition.

    Science.gov (United States)

    Hindmarsh, Mark; Huber, Stephan J; Rummukainen, Kari; Weir, David J

    2014-01-31

    We report on the first three-dimensional numerical simulations of first-order phase transitions in the early Universe to include the cosmic fluid as well as the scalar field order parameter. We calculate the gravitational wave (GW) spectrum resulting from the nucleation, expansion, and collision of bubbles of the low-temperature phase, for phase transition strengths and bubble wall velocities covering many cases of interest. We find that the compression waves in the fluid continue to be a source of GWs long after the bubbles have merged, a new effect not taken properly into account in previous modeling of the GW source. For a wide range of models, the main source of the GWs produced by a phase transition is, therefore, the sound the bubbles make.

  5. The effect of through-thickness compressive stress on mode II interlaminar fracture toughness

    NARCIS (Netherlands)

    Catalanotti, G.; Furtado, C.; Scalici, T.; Pitarresi, G.; van der Meer, F.P.; Camanho, PP

    2017-01-01

    The effect of through-thickness compressive stress on mode II interlaminar fracture toughness is investigated experimentally and replicated numerically. The modified Transverse Crack Tensile specimen recently proposed by the authors is used, together with an experimental device designed to apply

  6. Dependence of compressive strength of green compacts on pressure, density and contact area of powder particles

    International Nuclear Information System (INIS)

    Salam, A.; Akram, M.; Shahid, K.A.; Javed, M.; Zaidi, S.M.

    1994-08-01

    The relationship between green compressive strength and compacting pressure as well as green density has been investigated for uniaxially pressed aluminium powder compacts in the range 0 - 520 MPa. Two linear relationships occurred between compacting pressure and green compressive strength which corresponded to powder compaction stages II and III respectively, increase in strength being large during stage II and quite small in stage III with increasing pressure. On the basis of both, the experimental results and a previous model on cold compaction of powder particles, relationships between green compressive strength and green density and interparticle contact area of the compacts has been established. (author) 9 figs

  7. Numerical Solution of Compressible Steady Flows around the RAE 2822 Airfoil

    Directory of Open Access Journals (Sweden)

    Kryštůfek P.

    2014-03-01

    Full Text Available The article presents results of a numerical solution of subsonic, transonic and supersonic flows described by the system of Navier-Stokes equations in 2D laminar compressible flows around the RAE 2822 airfoil. Authors used FVM multistage Runge-Kutta method to numerically solve the flows around the RAE 2822 airfoil.

  8. JPEG and wavelet compression of ophthalmic images

    Science.gov (United States)

    Eikelboom, Robert H.; Yogesan, Kanagasingam; Constable, Ian J.; Barry, Christopher J.

    1999-05-01

    This study was designed to determine the degree and methods of digital image compression to produce ophthalmic imags of sufficient quality for transmission and diagnosis. The photographs of 15 subjects, which inclined eyes with normal, subtle and distinct pathologies, were digitized to produce 1.54MB images and compressed to five different methods: (i) objectively by calculating the RMS error between the uncompressed and compressed images, (ii) semi-subjectively by assessing the visibility of blood vessels, and (iii) subjectively by asking a number of experienced observers to assess the images for quality and clinical interpretation. Results showed that as a function of compressed image size, wavelet compressed images produced less RMS error than JPEG compressed images. Blood vessel branching could be observed to a greater extent after Wavelet compression compared to JPEG compression produced better images then a JPEG compression for a given image size. Overall, it was shown that images had to be compressed to below 2.5 percent for JPEG and 1.7 percent for Wavelet compression before fine detail was lost, or when image quality was too poor to make a reliable diagnosis.

  9. EDRiT - Eems Dollard Region in Transition

    NARCIS (Netherlands)

    Bulder, Elles

    2016-01-01

    EDRiT is a living lab focussing on transition and transitional processes in the Eems Dollard Region. Within the framework of EDRiT Dutch and German organizations, public authorities, universities and civilians work together in investigating, facilitating and innovating transitional processes

  10. The energy transition

    International Nuclear Information System (INIS)

    Defeuilley, Christophe

    2014-01-01

    In a first part, the author proposes an analysis of energy transition and of its consequences on the competitive environment. He recalls the main characteristics of energy transition and more particularly focuses on two aspects: the development of renewable energies and the management of demand. Thus, the author discusses the following issues: the relationship between the struggle against climate change and the low carbon economy, the development of renewable energies, the evolution and main actors of photovoltaic array and of wind turbine production, the distribution of photovoltaic and wind energy installed production among countries, and some key figures about the main renewable energy operators in Europe. He discusses how to manage consumptions, and operations performed. In a second part, the author addresses the impact of the German energy transition (Energiewende) on the business models of the main German energy operators (RWE and E.On). He recalls and comments the objective of this energy policy, presents the German electric and gas sector, comments the evolution of the electric utilities since 1998, more presently presents and discusses the activities of RWE and E.On, the evolution of their main financial indicators, and the levels of installed power with respect of energy sources

  11. Pressure dependence of optical transitions in In0.15Ga0.85N/GaN multiple quantum wells

    International Nuclear Information System (INIS)

    Shan, W.; Ager, J.W. III; Walukiewicz, W.; Haller, E.E.; McCluskey, M.D.; Johnson, N.M.; Bour, D.P.

    1998-01-01

    The effects of hydrostatic pressure on optical transitions in In 0.15 Ga 0.85 N/GaN multiple quantum wells (MQW close-quote s) have been studied. The optical transition associated with confined electron and hole states in the MQW close-quote s was found to shift linearly to higher energy with pressure but exhibit a significantly weaker pressure dependence compared to bulklike thick epitaxial-layer samples. Similar pressure coefficients obtained by both photomodulation and photoluminescence measurements rule out the possibility of the transition involving localized states deep in the band gap. We found that the difference in the compressibility of In x Ga 1-x N and GaN induces a tensile strain in the compressively strained In x Ga 1-x N well layers, partially compensating the externally applied hydrostatic pressure. This mechanical effect is primarily responsible for the smaller pressure dependence of the optical transitions in the In x Ga 1-x N/GaN MQW close-quote s. In addition, the pressure-dependent measurements allow us to identify a spectral feature observed at an energy below the GaN band gap. We conclude that this feature is due to transitions from ionized Mg acceptor states to the conduction band in the p-type GaN cladding layer rather than a confined transition in the MQW close-quote s. copyright 1998 The American Physical Society

  12. Parallelization of one image compression method. Wavelet, Transform, Vector Quantization and Huffman Coding

    International Nuclear Information System (INIS)

    Moravie, Philippe

    1997-01-01

    Today, in the digitized satellite image domain, the needs for high dimension increase considerably. To transmit or to stock such images (more than 6000 by 6000 pixels), we need to reduce their data volume and so we have to use real-time image compression techniques. The large amount of computations required by image compression algorithms prohibits the use of common sequential processors, for the benefits of parallel computers. The study presented here deals with parallelization of a very efficient image compression scheme, based on three techniques: Wavelets Transform (WT), Vector Quantization (VQ) and Entropic Coding (EC). First, we studied and implemented the parallelism of each algorithm, in order to determine the architectural characteristics needed for real-time image compression. Then, we defined eight parallel architectures: 3 for Mallat algorithm (WT), 3 for Tree-Structured Vector Quantization (VQ) and 2 for Huffman Coding (EC). As our system has to be multi-purpose, we chose 3 global architectures between all of the 3x3x2 systems available. Because, for technological reasons, real-time is not reached at anytime (for all the compression parameter combinations), we also defined and evaluated two algorithmic optimizations: fix point precision and merging entropic coding in vector quantization. As a result, we defined a new multi-purpose multi-SMIMD parallel machine, able to compress digitized satellite image in real-time. The definition of the best suited architecture for real-time image compression was answered by presenting 3 parallel machines among which one multi-purpose, embedded and which might be used for other applications on board. (author) [fr

  13. Martensitic phase transitions

    International Nuclear Information System (INIS)

    Petry, W.; Neuhaus, J.

    1996-01-01

    Many elements transform from a high temperature bcc phase to a more dense packed temperature phase. The great majority of these transitions are of 1st order, displacive and reconstructive. The lattice potentials which govern these martensitic transitions can be probed by inelastic neutron scattering, thereby answering fundamental questions like : Will the transition be announced by dynamical or static fluctuations? What are the trajectories for the displacements needed for the transformation? Does the vibrational entropy stabilize the high temperature phase? Are the unusual transport properties in these materials related to their ability to transform? (author) 17 figs., 1 tab., 46 refs

  14. Martensitic phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Petry, W; Neuhaus, J [Techn. Universitaet Muenchen, Physik Department E13, Munich (Germany)

    1996-11-01

    Many elements transform from a high temperature bcc phase to a more dense packed temperature phase. The great majority of these transitions are of 1st order, displacive and reconstructive. The lattice potentials which govern these martensitic transitions can be probed by inelastic neutron scattering, thereby answering fundamental questions like : Will the transition be announced by dynamical or static fluctuations? What are the trajectories for the displacements needed for the transformation? Does the vibrational entropy stabilize the high temperature phase? Are the unusual transport properties in these materials related to their ability to transform? (author) 17 figs., 1 tab., 46 refs.

  15. Double-compression method for biomedical images

    Science.gov (United States)

    Antonenko, Yevhenii A.; Mustetsov, Timofey N.; Hamdi, Rami R.; Małecka-Massalska, Teresa; Orshubekov, Nurbek; DzierŻak, RóŻa; Uvaysova, Svetlana

    2017-08-01

    This paper describes a double compression method (DCM) of biomedical images. A comparison of image compression factors in size JPEG, PNG and developed DCM was carried out. The main purpose of the DCM - compression of medical images while maintaining the key points that carry diagnostic information. To estimate the minimum compression factor an analysis of the coding of random noise image is presented.

  16. A Compressive Superresolution Display

    KAUST Repository

    Heide, Felix; Gregson, James; Wetzstein, Gordon; Raskar, Ramesh; Heidrich, Wolfgang

    2014-01-01

    In this paper, we introduce a new compressive display architecture for superresolution image presentation that exploits co-design of the optical device configuration and compressive computation. Our display allows for superresolution, HDR, or glasses-free 3D presentation.

  17. A Compressive Superresolution Display

    KAUST Repository

    Heide, Felix

    2014-06-22

    In this paper, we introduce a new compressive display architecture for superresolution image presentation that exploits co-design of the optical device configuration and compressive computation. Our display allows for superresolution, HDR, or glasses-free 3D presentation.

  18. Compression evaluation of surgery video recordings retaining diagnostic credibility (compression evaluation of surgery video)

    Science.gov (United States)

    Duplaga, M.; Leszczuk, M. I.; Papir, Z.; Przelaskowski, A.

    2008-12-01

    Wider dissemination of medical digital video libraries is affected by two correlated factors, resource effective content compression that directly influences its diagnostic credibility. It has been proved that it is possible to meet these contradictory requirements halfway for long-lasting and low motion surgery recordings at compression ratios close to 100 (bronchoscopic procedures were a case study investigated). As the main supporting assumption, it has been accepted that the content can be compressed as far as clinicians are not able to sense a loss of video diagnostic fidelity (a visually lossless compression). Different market codecs were inspected by means of the combined subjective and objective tests toward their usability in medical video libraries. Subjective tests involved a panel of clinicians who had to classify compressed bronchoscopic video content according to its quality under the bubble sort algorithm. For objective tests, two metrics (hybrid vector measure and hosaka Plots) were calculated frame by frame and averaged over a whole sequence.

  19. Performance of vapor compression systems with compressor oil flooding and regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Ian H.; Groll, Eckhard A.; Braun, James E. [Purdue University, Department of Mechanical Engineering, 140 S. Martin Jischke Drive, West Lafayette, IN 47906 (United States)

    2011-01-15

    Vapor compression refrigeration technology has seen great improvement over the last several decades in terms of cycle efficiency through a concerted effort of manufacturers, regulators, and research engineers. As the standard vapor compression systems approach practical limits, cycle modifications should be investigated to increase system efficiency and capacity. One possible means of increasing cycle efficiency is to flood the compressor with a large quantity of oil to achieve a quasi-isothermal compression process, in addition to using a regenerator to increase refrigerant subcooling. In theory, compressor flooding and regeneration can provide a significant increase in system efficiency over the standard vapor compression system. The effectiveness of compressor flooding and regeneration increases as the temperature lift of the system increases. Therefore, this technology is particularly well suited towards lower evaporating temperatures and high ambient temperatures as seen in supermarket refrigeration applications. While predicted increases in cycle efficiency are over 40% for supermarket refrigeration applications, this technology is still very beneficial for typical air-conditioning applications, for which improvements in cycle efficiency greater than 5% are predicted. It has to be noted though that the beneficial effects of compressor flooding can only be realized if a regenerator is used to exchange heat between the refrigerant vapor exiting the evaporator and the liquid exiting the condenser. (author)

  20. Energy transition and legal transition: renewable energies development in France

    International Nuclear Information System (INIS)

    Darson, Alice

    2015-01-01

    The way to an energy transition will be reached with an integration of renewable energies in our energy mix. This development includes a legal transition because the current legal context that applies to green energies is not efficient and does not contribute to this emergency. Changing the legal frame becomes a necessity and particularly the way these energies are governed, planned and supported. It's also important that administrative procedures that regulate the implantation of energies production system are set. At last, this legal transition will have to conciliate imperatives linked to the development of renewable energies with those governing the protection of surroundings, all aiming to a sustainable development. (author) [fr

  1. Context-Aware Image Compression.

    Directory of Open Access Journals (Sweden)

    Jacky C K Chan

    Full Text Available We describe a physics-based data compression method inspired by the photonic time stretch wherein information-rich portions of the data are dilated in a process that emulates the effect of group velocity dispersion on temporal signals. With this coding operation, the data can be downsampled at a lower rate than without it. In contrast to previous implementation of the warped stretch compression, here the decoding can be performed without the need of phase recovery. We present rate-distortion analysis and show improvement in PSNR compared to compression via uniform downsampling.

  2. Compressive Sensing in Communication Systems

    DEFF Research Database (Denmark)

    Fyhn, Karsten

    2013-01-01

    . The need for cheaper, smarter and more energy efficient wireless devices is greater now than ever. This thesis addresses this problem and concerns the application of the recently developed sampling theory of compressive sensing in communication systems. Compressive sensing is the merging of signal...... acquisition and compression. It allows for sampling a signal with a rate below the bound dictated by the celebrated Shannon-Nyquist sampling theorem. In some communication systems this necessary minimum sample rate, dictated by the Shannon-Nyquist sampling theorem, is so high it is at the limit of what...... with using compressive sensing in communication systems. The main contribution of this thesis is two-fold: 1) a new compressive sensing hardware structure for spread spectrum signals, which is simpler than the current state-of-the-art, and 2) a range of algorithms for parameter estimation for the class...

  3. Building indifferentiable compression functions from the PGV compression functions

    DEFF Research Database (Denmark)

    Gauravaram, P.; Bagheri, Nasour; Knudsen, Lars Ramkilde

    2016-01-01

    Preneel, Govaerts and Vandewalle (PGV) analysed the security of single-block-length block cipher based compression functions assuming that the underlying block cipher has no weaknesses. They showed that 12 out of 64 possible compression functions are collision and (second) preimage resistant. Black......, Rogaway and Shrimpton formally proved this result in the ideal cipher model. However, in the indifferentiability security framework introduced by Maurer, Renner and Holenstein, all these 12 schemes are easily differentiable from a fixed input-length random oracle (FIL-RO) even when their underlying block...

  4. CEPRAM: Compression for Endurance in PCM RAM

    OpenAIRE

    González Alberquilla, Rodrigo; Castro Rodríguez, Fernando; Piñuel Moreno, Luis; Tirado Fernández, Francisco

    2017-01-01

    We deal with the endurance problem of Phase Change Memories (PCM) by proposing Compression for Endurance in PCM RAM (CEPRAM), a technique to elongate the lifespan of PCM-based main memory through compression. We introduce a total of three compression schemes based on already existent schemes, but targeting compression for PCM-based systems. We do a two-level evaluation. First, we quantify the performance of the compression, in terms of compressed size, bit-flips and how they are affected by e...

  5. New measurements of spontaneous transition probabilities for beryllium-like ions

    International Nuclear Information System (INIS)

    Lang, J.; Hardcastle, R.A.; McWhirter, R.W.P.; Spurrett, P.H.

    1986-06-01

    The authors describe measurements of spectral line intensities for pairs of transitions having common upper levels and thus derive the branching ratios of their spontaneous radiative transition probabilities. These are then combined with the results of measurements of the radiative lifetimes of the upper levels by other authors to obtain values of the individual transition probabilities. The results are for transitions in NIV, OV and NeVII and are given with a claimed accuracy of between 7% and 38%. These are compared with values calculated theoretically. For some of the simpler electric dipole transitions good agreement is found. On the other hand for some of the other transitions which in certain cases are only possible because of configuration interaction disparities between the present measurements and theory are as large as x5. (author)

  6. Lossy compression of quality scores in genomic data.

    Science.gov (United States)

    Cánovas, Rodrigo; Moffat, Alistair; Turpin, Andrew

    2014-08-01

    Next-generation sequencing technologies are revolutionizing medicine. Data from sequencing technologies are typically represented as a string of bases, an associated sequence of per-base quality scores and other metadata, and in aggregate can require a large amount of space. The quality scores show how accurate the bases are with respect to the sequencing process, that is, how confident the sequencer is of having called them correctly, and are the largest component in datasets in which they are retained. Previous research has examined how to store sequences of bases effectively; here we add to that knowledge by examining methods for compressing quality scores. The quality values originate in a continuous domain, and so if a fidelity criterion is introduced, it is possible to introduce flexibility in the way these values are represented, allowing lossy compression over the quality score data. We present existing compression options for quality score data, and then introduce two new lossy techniques. Experiments measuring the trade-off between compression ratio and information loss are reported, including quantifying the effect of lossy representations on a downstream application that carries out single nucleotide polymorphism and insert/deletion detection. The new methods are demonstrably superior to other techniques when assessed against the spectrum of possible trade-offs between storage required and fidelity of representation. An implementation of the methods described here is available at https://github.com/rcanovas/libCSAM. rcanovas@student.unimelb.edu.au Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. The Distinction of Hot Herbal Compress, Hot Compress, and Topical Diclofenac as Myofascial Pain Syndrome Treatment.

    Science.gov (United States)

    Boonruab, Jurairat; Nimpitakpong, Netraya; Damjuti, Watchara

    2018-01-01

    This randomized controlled trial aimed to investigate the distinctness after treatment among hot herbal compress, hot compress, and topical diclofenac. The registrants were equally divided into groups and received the different treatments including hot herbal compress, hot compress, and topical diclofenac group, which served as the control group. After treatment courses, Visual Analog Scale and 36-Item Short Form Health survey were, respectively, used to establish the level of pain intensity and quality of life. In addition, cervical range of motion and pressure pain threshold were also examined to identify the motional effects. All treatments showed significantly decreased level of pain intensity and increased cervical range of motion, while the intervention groups exhibited extraordinary capability compared with the topical diclofenac group in pressure pain threshold and quality of life. In summary, hot herbal compress holds promise to be an efficacious treatment parallel to hot compress and topical diclofenac.

  8. Introduction to compressible fluid flow

    CERN Document Server

    Oosthuizen, Patrick H

    2013-01-01

    IntroductionThe Equations of Steady One-Dimensional Compressible FlowSome Fundamental Aspects of Compressible FlowOne-Dimensional Isentropic FlowNormal Shock WavesOblique Shock WavesExpansion Waves - Prandtl-Meyer FlowVariable Area FlowsAdiabatic Flow with FrictionFlow with Heat TransferLinearized Analysis of Two-Dimensional Compressible FlowsHypersonic and High-Temperature FlowsHigh-Temperature Gas EffectsLow-Density FlowsBibliographyAppendices

  9. An compression algorithm for medical images and a display with the decoding function

    International Nuclear Information System (INIS)

    Gotoh, Toshiyuki; Nakagawa, Yukihiro; Shiohara, Morito; Yoshida, Masumi

    1990-01-01

    This paper describes and efficient image compression method for medical images, a high-speed display with the decoding function. In our method, an input image is divided into blocks, and either of Discrete Cosine Transform coding (DCT) or Block Truncation Coding (BTC) is adaptively applied on each block to improve image quality. The display, we developed, receives the compressed data from the host computer and reconstruct images of good quality at high speed using four decoding microprocessors on which our algorithm is implemented in pipeline. By the experiments, our method and display were verified to be effective. (author)

  10. Compressive failure modes and parameter optimization of the trabecular structure of biomimetic fully integrated honeycomb plates.

    Science.gov (United States)

    Chen, Jinxiang; Tuo, Wanyong; Zhang, Xiaoming; He, Chenglin; Xie, Juan; Liu, Chang

    2016-12-01

    To develop lightweight biomimetic composite structures, the compressive failure and mechanical properties of fully integrated honeycomb plates were investigated experimentally and through the finite element method. The results indicated that: fracturing of the fully integrated honeycomb plates primarily occurred in the core layer, including the sealing edge structure. The morphological failures can be classified into two types, namely dislocations and compactions, and were caused primarily by the stress concentrations at the interfaces between the core layer and the upper and lower laminations and secondarily by the disordered short-fiber distribution in the material; although the fully integrated honeycomb plates manufactured in this experiment were imperfect, their mass-specific compressive strength was superior to that of similar biomimetic samples. Therefore, the proposed bio-inspired structure possesses good overall mechanical properties, and a range of parameters, such as the diameter of the transition arc, was defined for enhancing the design of fully integrated honeycomb plates and improving their compressive mechanical properties. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Metal dioxides as analogue of SiO2 under strong compression studied by synchrotron XRD and simulations

    Science.gov (United States)

    Liu, H.; Liu, L. L.

    2017-12-01

    The phase transition sequence of SiO2 inducing by high pressure was theoretically predicted as coordination number (CN=6) structures (rutile, pyrite), CN=8 (Pnma) and CN=9 (P-62m) structures, but only the phases up to pyrite structure in SiO2 were observed experimentally up to now. The CN8 phase and CN9 phases of SiO2 were predicted to be stable at least 650 GPa, which is challenging to achieve in the static DAC experiment at present. In other metal dioxide systems, such as TiO2, the ambient rutile and anatase phases first transform to pyrite (CN6), then to the baddeleyite (CN7) phase, to a Pnma (CN8) phase and P-62m(CN9) phase. In this report, under strong compression at room temperature, several metal dioxides were studied experimentally and theoretically, to verify whether this theoretical predicted trend is common transition path under strong compression. This work was supported by Natural Science Foundation of China (11374075), Heilongjiang Province Science Fund for Distinguished Young Scholars (JC201005), Longjiang Scholar, the Fundamental Research Funds for the Central Universities (HIT. BRET1.2010002, HIT. IBRSEM.A.201403).

  12. 77 FR 50500 - California State Nonroad Engine Pollution Control Standards; California Nonroad Compression...

    Science.gov (United States)

    2012-08-21

    ... ENVIRONMENTAL PROTECTION AGENCY [AMS-FRL 9716-8] California State Nonroad Engine Pollution Control Standards; California Nonroad Compression Ignition Engines--In-Use Fleets; Authorization Request... emissions control of new engines not listed under section 209(e)(1). The section 209(e) rule and its...

  13. A comparative experimental study on engine operating on premixed charge compression ignition and compression ignition mode

    Directory of Open Access Journals (Sweden)

    Bhiogade Girish E.

    2017-01-01

    Full Text Available New combustion concepts have been recently developed with the purpose to tackle the problem of high emissions level of traditional direct injection Diesel engines. A good example is the premixed charge compression ignition combustion. A strategy in which early injection is used causing a burning process in which the fuel burns in the premixed condition. In compression ignition engines, soot (particulate matter and NOx emissions are an extremely unsolved issue. Premixed charge compression ignition is one of the most promising solutions that combine the advantages of both spark ignition and compression ignition combustion modes. It gives thermal efficiency close to the compression ignition engines and resolves the associated issues of high NOx and particulate matter, simultaneously. Premixing of air and fuel preparation is the challenging part to achieve premixed charge compression ignition combustion. In the present experimental study a diesel vaporizer is used to achieve premixed charge compression ignition combustion. A vaporized diesel fuel was mixed with the air to form premixed charge and inducted into the cylinder during the intake stroke. Low diesel volatility remains the main obstacle in preparing premixed air-fuel mixture. Exhaust gas re-circulation can be used to control the rate of heat release. The objective of this study is to reduce exhaust emission levels with maintaining thermal efficiency close to compression ignition engine.

  14. Amnioinfusion for potential or suspected umbilical cord compression in labour.

    Science.gov (United States)

    Hofmeyr, G Justus; Lawrie, Theresa A

    2012-01-18

    Amnioinfusion aims to prevent or relieve umbilical cord compression during labour by infusing a solution into the uterine cavity. To assess the effects of amnioinfusion for potential or suspected umbilical cord compression on maternal and perinatal outcome . We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (31 October 2011). Randomised trials of amnioinfusion compared with no amnioinfusion in women with babies at risk of umbilical cord compression in labour. The original review had one author only (Justus Hofmeyr (GJH)). For this update, two authors (GJH and T Lawrie) assessed 13 additional trial reports for eligibility and quality. We extracted data and checked for accuracy. We have included 19 studies, with all but two studies having fewer than 200 participants. Transcervical amnioinfusion for potential or suspected umbilical cord compression was associated with the following reductions: caesarean section overall (13 trials, 1493 participants; average risk ratio (RR) 0.62, 95% confidence interval (CI) 0.46 to 0.83); fetal heart rate (FHR) decelerations (seven trials, 1006 participants; average RR 0.53, 95% CI 0.38 to 0.74); Apgar score less than seven at five minutes (12 trials, 1804 participants; average RR 0.47, 95% CI 0.30 to 0.72); meconium below the vocal cords (three trials, 674 participants, RR 0.53, 95% CI 0.31 to 0.92); postpartum endometritis (six trials, 767 participants; RR 0.45, 95% CI 0.25 to 0.81) and maternal hospital stay greater than three days (four trials, 1051 participants; average RR 0.45, 95% CI 0.25 to 0.78). Transabdominal amnioinfusion showed similar trends, though numbers studied were small.Mean cord umbilical artery pH was higher in the amnioinfusion group (seven trials, 855 participants; average mean difference 0.03, 95% CI 0.00 to 0.06) and there was a trend toward fewer neonates with a low cord arterial pH (less than 7.2 or as defined by trial authors) in the amnioinfusion group (eight trials, 972

  15. Pulsed Compression Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Roestenberg, T. [University of Twente, Enschede (Netherlands)

    2012-06-07

    The advantages of the Pulsed Compression Reactor (PCR) over the internal combustion engine-type chemical reactors are briefly discussed. Over the last four years a project concerning the fundamentals of the PCR technology has been performed by the University of Twente, Enschede, Netherlands. In order to assess the feasibility of the application of the PCR principle for the conversion methane to syngas, several fundamental questions needed to be answered. Two important questions that relate to the applicability of the PCR for any process are: how large is the heat transfer rate from a rapidly compressed and expanded volume of gas, and how does this heat transfer rate compare to energy contained in the compressed gas? And: can stable operation with a completely free piston as it is intended with the PCR be achieved?.

  16. Intermultiplet transitions using neutron spectroscopy

    International Nuclear Information System (INIS)

    Osborn, R.; Lovesey, S.W.; Taylor, A.D.; Balcar, E.

    1989-12-01

    Neutron inelastic scattering is used here to attempt to obtain optical spectra for lanthanide metals and compounds. Intermultiplet spectroscopy provides information about transitions from different electronic configurations and hybridisation of the 4f shell. This report discusses the relatively limited contribution that neutron scattering has played in intermultiplet spectroscopy, and covers spin-orbit transitions and coulomb transitions Racah algebra is developed in calculating the scattering cross sections. (author)

  17. Intermittent and global transitions in plasma turbulence

    International Nuclear Information System (INIS)

    Vlad, M.; Spineanu, F.; Itoh, K.; Itoh, S.-I.

    2003-07-01

    The dynamics of the transition processes in plasma turbulence described by the nonlinear Langevin equation (1) is studied. We show that intermittent or global transitions between metastable states can appear. The conditions for the generation of these transitions and their statistical characteristics are determined. (author)

  18. Magnetic resonance imaging of vascular compression in trigeminal neuralgia and hemifacial spasms

    International Nuclear Information System (INIS)

    Nagaseki, Yoshishige; Horikoshi, Tohru; Omata, Tomohiro; Sugita, Masao; Nukui, Hideaki; Sakamoto, Hajime; Kumagai, Hiroshi; Sasaki, Hideo; Tsuji, Reizou.

    1991-01-01

    We show how neurosurgical planning can benefit from the better visualization of the precise vascular compression of the nerve provided by the oblique-sagittal and gradient-echo method (OS-GR image) using magnetic resonance images (MRI). The scans of 3 patients with trigeminal neuralgia (TN) and of 15 with hemifacial spasm (HFS) were analyzed for the presence and appearance of the vascular compression of the nerves. Imaging sequences consisted of an OS-GR image (TR/TE: 200/20, 3-mm-thick slice) cut along each nerve shown by the axial view, which was scanned at the angle of 105 degrees taken between the dorsal line of the brain stem and the line corresponding to the pontomedullary junction. In the OS-GR images of the TN's, the vascular compressions of the root entry zone (REZ) of the trigeminal nerve were well visualized as high-intensity lines in the 2 cases whose vessels were confirmed intraoperatively. In the other case, with atypical facial pain, vascular compression was confirmed at the rostral distal site on the fifth nerve, apart from the REZ. In the 15 cases of HFS, twelve OS-GR images (80%) demonstrated vascular compressions at the REZ of the facial nerves from the direction of the caudoventral side. During the surgery for these 12 cases, in 11 cases (excepting the 1 case whose facial nerve was not compressed by any vessels), vascular compressions were confirmed corresponding to the findings of the OS-GR images. Among the 10 OS-GR images on the non-affected side, two false-positive findings were visualized. It is concluded that OS-GR images obtained by means of MRI may serve as a useful planning aid prior to microvascular decompression for cases of TN and HFS. (author)

  19. Compressing Data Cube in Parallel OLAP Systems

    Directory of Open Access Journals (Sweden)

    Frank Dehne

    2007-03-01

    Full Text Available This paper proposes an efficient algorithm to compress the cubes in the progress of the parallel data cube generation. This low overhead compression mechanism provides block-by-block and record-by-record compression by using tuple difference coding techniques, thereby maximizing the compression ratio and minimizing the decompression penalty at run-time. The experimental results demonstrate that the typical compression ratio is about 30:1 without sacrificing running time. This paper also demonstrates that the compression method is suitable for Hilbert Space Filling Curve, a mechanism widely used in multi-dimensional indexing.

  20. Two compressible and immiscible flow in porous media: mathematical and numerical analysis

    International Nuclear Information System (INIS)

    Khalil, Z.

    2010-01-01

    The aim of this thesis is the study of Cauchy problem (existence of weak solutions) for three degenerate highly coupled parabolic systems modeling compressible immiscible flow in porous media. The motivation of this work is a benchmark of the GNR MoMaS, to study the impact of the gas flow due to the corrosion of ferrous materials in a radioactive waste storage site. This thesis is divided into three independent chapters. Firstly, we look at a problem modeling the flow of two immiscible phases and considering one phase is compressible and the other is incompressible (water/gas). Secondly, we consider the problem modeling two-compressible immiscible flow in porous media. An existence results for both problems established by a semi-discretization method. Finally, The fourth chapter is devoted to the construction and convergence of a multi-dimensional finite volume method (upwind scheme) for the gas-water model under the assumption that the gas density is a function of a global pressure. (author)

  1. Composite Techniques Based Color Image Compression

    Directory of Open Access Journals (Sweden)

    Zainab Ibrahim Abood

    2017-03-01

    Full Text Available Compression for color image is now necessary for transmission and storage in the data bases since the color gives a pleasing nature and natural for any object, so three composite techniques based color image compression is implemented to achieve image with high compression, no loss in original image, better performance and good image quality. These techniques are composite stationary wavelet technique (S, composite wavelet technique (W and composite multi-wavelet technique (M. For the high energy sub-band of the 3rd level of each composite transform in each composite technique, the compression parameters are calculated. The best composite transform among the 27 types is the three levels of multi-wavelet transform (MMM in M technique which has the highest values of energy (En and compression ratio (CR and least values of bit per pixel (bpp, time (T and rate distortion R(D. Also the values of the compression parameters of the color image are nearly the same as the average values of the compression parameters of the three bands of the same image.

  2. Atomic effect algebras with compression bases

    International Nuclear Information System (INIS)

    Caragheorgheopol, Dan; Tkadlec, Josef

    2011-01-01

    Compression base effect algebras were recently introduced by Gudder [Demonstr. Math. 39, 43 (2006)]. They generalize sequential effect algebras [Rep. Math. Phys. 49, 87 (2002)] and compressible effect algebras [Rep. Math. Phys. 54, 93 (2004)]. The present paper focuses on atomic compression base effect algebras and the consequences of atoms being foci (so-called projections) of the compressions in the compression base. Part of our work generalizes results obtained in atomic sequential effect algebras by Tkadlec [Int. J. Theor. Phys. 47, 185 (2008)]. The notion of projection-atomicity is introduced and studied, and several conditions that force a compression base effect algebra or the set of its projections to be Boolean are found. Finally, we apply some of these results to sequential effect algebras and strengthen a previously established result concerning a sufficient condition for them to be Boolean.

  3. Boson localization and the superfluid-insulator transition

    International Nuclear Information System (INIS)

    Fisher, M.P.A.; Weichman, P.B.; Grinstein, G.; Fisher, D.S.; Condensed Matter Physics 114-36, California Institute of Technology, Pasadena, California 91125; IBM Research Division, Thomas J. Watson Research Center, Yorktown Heights, New York 10598; Joseph Henry Laboratory of Physics, Jadwin Hall, Princeton University, Princeton, New Jersey 08544)

    1989-01-01

    The phase diagrams and phase transitions of bosons with short-ranged repulsive interactions moving in periodic and/or random external potentials at zero temperature are investigated with emphasis on the superfluid-insulator transition induced by varying a parameter such as the density. Bosons in periodic potentials (e.g., on a lattice) at T=0 exhibit two types of phases: a superfluid phase and Mott insulating phases characterized by integer (or commensurate) boson densities, by the existence of a gap for particle-hole excitations, and by zero compressibility. Generically, the superfluid onset transition in d dimensions from a Mott insulator to superfluidity is ''ideal,'' or mean field in character, but at special multicritical points with particle-hole symmetry it is in the universality class of the (d+1)-dimensional XY model. In the presence of disorder, a third, ''Bose glass'' phase exists. This phase is insulating because of the localization effects of the randomness and analogous to the Fermi glass phase of interacting fermions in a strongly disordered potential

  4. Speech Data Compression using Vector Quantization

    OpenAIRE

    H. B. Kekre; Tanuja K. Sarode

    2008-01-01

    Mostly transforms are used for speech data compressions which are lossy algorithms. Such algorithms are tolerable for speech data compression since the loss in quality is not perceived by the human ear. However the vector quantization (VQ) has a potential to give more data compression maintaining the same quality. In this paper we propose speech data compression algorithm using vector quantization technique. We have used VQ algorithms LBG, KPE and FCG. The results table s...

  5. Transitions from preschool to primary school

    DEFF Research Database (Denmark)

    Broström, Stig; Einarsdottir, Johanna; Vrinioti, Kalliope

    2010-01-01

    political understanding. Then the authors define and reflect the word transition in theoretical terms using Bronfenbrenner's ecological developmental model. After a short review of international transition research the article focus on international research on children's transition problems......  The article deals with transition from preschool to primary school. Starting with a historical overview presenting Fröbel's transition understanding from 1852 over European politics in the 1960s and 1970s, recommendations by the Councils of Europe from the 1990s and ending with OECD's actual...... and in continuation of this a description of a number of so-called transition activities are described in order to ease children's transition to school....

  6. New pellet compression schemes by indirect irradiation of REB and related preliminary experiments

    International Nuclear Information System (INIS)

    Sato, M.; Tazima, T.; Yonezu, H.

    1986-01-01

    Preliminary experiments on a proposed scheme for pellet compression is carried out with a Point Pinch Diode. A high current density of ion beam is observed, and its value corresponds to 13.5 kA/cm 2 from the anode to the cathode. (author)

  7. A methodology to investigate size scale effects in crystalline plasticity using uniaxial compression testing

    International Nuclear Information System (INIS)

    Uchic, Michael D.; Dimiduk, Dennis M.

    2005-01-01

    A methodology for performing uniaxial compression tests on samples having micron-size dimensions is presented. Sample fabrication is accomplished using focused ion beam milling to create cylindrical samples of uniform cross-section that remain attached to the bulk substrate at one end. Once fabricated, samples are tested in uniaxial compression using a nanoindentation device outfitted with a flat tip, and a stress-strain curve is obtained. The methodology can be used to examine the plastic response of samples of different sizes that are from the same bulk material. In this manner, dimensional size effects at the micron scale can be explored for single crystals, using a readily interpretable test that minimizes imposed stretch and bending gradients. The methodology was applied to a single-crystal Ni superalloy and a transition from bulk-like to size-affected behavior was observed for samples 5 μm in diameter and smaller

  8. Flux compression generators as plasma compression power sources

    International Nuclear Information System (INIS)

    Fowler, C.M.; Caird, R.S.; Erickson, D.J.; Freeman, B.L.; Thomson, D.B.; Garn, W.B.

    1979-01-01

    A survey is made of applications where explosive-driven magnetic flux compression generators have been or can be used to directly power devices that produce dense plasmas. Representative examples are discussed that are specific to the theta pinch, the plasma gun, the dense plasma focus and the Z pinch. These examples are used to illustrate the high energy and power capabilities of explosive generators. An application employing a rocket-borne, generator-powered plasma gun emphasizes the size and weight potential of flux compression power supplies. Recent results from a local effort to drive a dense plasma focus are provided. Imploding liners ae discussed in the context of both the theta and Z pinches

  9. Uniaxial pressure-induced half-metallic ferromagnetic phase transition in LaMnO3

    Science.gov (United States)

    Rivero, Pablo; Meunier, Vincent; Shelton, William

    2016-03-01

    We use first-principles theory to predict that the application of uniaxial compressive strain leads to a transition from an antiferromagnetic insulator to a ferromagnetic half-metal phase in LaMnO3. We identify the Q2 Jahn-Teller mode as the primary mechanism that drives the transition, indicating that this mode can be used to tune the lattice, charge, and spin coupling. Applying ≃6 GPa of uniaxial pressure along the [010] direction activates the transition to a half-metallic pseudocubic state. The half-metallicity opens the possibility of producing colossal magnetoresistance in the stoichiometric LaMnO3 compound at significantly lower pressure compared to recently observed investigations using hydrostatic pressure.

  10. On extreme on the line of phase transition of the first type

    International Nuclear Information System (INIS)

    Magomedov, M.N.

    1995-01-01

    Equations describing behavior of thermodynamic parameters in extreme points on primary phase transition line were derived. The equations were employed to estimate the jump is isothermal compressibility in the point of maximum of bcc-cesium melting curve as well as to estimate the jump of isobaric heat capacity in the minimum point on helium-3 melting curve. 13 refs

  11. Balloon kyphoplasty for aged osteoporotic vertebral compressive fractures using domestic instruments

    International Nuclear Information System (INIS)

    Sun Gang; Jin Peng; Yi Yuhai; Xie Zhiyong; Zhang Xuping; Zhang Kangli

    2006-01-01

    Objective: To evaluate the efficacy and safety of balloon kyphoplasty in the treatment of painful osteoporosis vertebral compressive fractures using instruments made in China. Methods: 10 cases of painful osteoporotic vertebral compressive fractures, involved 11 vertebrae. Under X-ray fluoroscopy monitoring, the inflatable balloon were inserted into the fractured vertebral body via transpedicular route bilaterally. The balloon was inflated with injected contrast agent to restore vertebral height and form a cavity within vertebral body. The cavity was then filled with bone cement in toothpaste state period. The postoperative symptoms and the radiographic findings of vertebral height recovery were observed. Results: Balloon kyphoplasty was successful in all 10 cases with dramatic pain relief within 48 hours after the procedure without clinical complications. The height restoration of vertebral body was satisfactory with correction of kyphosis up to 6 degree-24 degree. Leakage of a small quantity of bone cement occurred at only the anterior border of the vertebral body. Conclusions: Kyphoplasty using domestic instruments for painful osteoporotic vertebral compressive fractures was effective and safe. (authors)

  12. Pinocchio: Geppetto's transitional object

    Directory of Open Access Journals (Sweden)

    Gabriele Zeloni

    2015-01-01

    Full Text Available The literature has been considered by Freud and others after him, a form of unaware exploration of mind that can leads to discoveries similar to psychoanalysis’s discoveries. From this perspective, the author puts forward the following hypothesis: Pinocchio is a puppet who comes to life and is therefore, from a child's perception, a transitional object according to Winnicott. Consequently Geppetto is nothing more than the involuntary representation of any child interacting with the transitional object. The author explains the results of the analysis of the text in support of the hypothesis and reflects on the impact of The adventure of Pinocchio on the reader.

  13. Experience with compressed air system of Dhruva and Cirus

    International Nuclear Information System (INIS)

    Shelar, V.G.; Patil, U.D.; Singh, V.K.; Zope, A.K.; Kharpate, A.V.

    2006-01-01

    Dhruva and Cirus reactors have independent compressed air plants with provision for sharing. Dhruva has the reciprocating oil free air compressors where as Cirus has oil lubricated compressors. Over the years, several improvements have been done in the equipments to combat various problems, among these noise mitigation in Dhruva and measures to extend life of compressors in Cirus and also incidence of discharge header catching fire are interesting. This paper details these experiences. (author)

  14. Compression of Probabilistic XML Documents

    Science.gov (United States)

    Veldman, Irma; de Keijzer, Ander; van Keulen, Maurice

    Database techniques to store, query and manipulate data that contains uncertainty receives increasing research interest. Such UDBMSs can be classified according to their underlying data model: relational, XML, or RDF. We focus on uncertain XML DBMS with as representative example the Probabilistic XML model (PXML) of [10,9]. The size of a PXML document is obviously a factor in performance. There are PXML-specific techniques to reduce the size, such as a push down mechanism, that produces equivalent but more compact PXML documents. It can only be applied, however, where possibilities are dependent. For normal XML documents there also exist several techniques for compressing a document. Since Probabilistic XML is (a special form of) normal XML, it might benefit from these methods even more. In this paper, we show that existing compression mechanisms can be combined with PXML-specific compression techniques. We also show that best compression rates are obtained with a combination of PXML-specific technique with a rather simple generic DAG-compression technique.

  15. The effect of compressibility on the Alfven spatial resonance heating

    International Nuclear Information System (INIS)

    Azevedo, C.A.

    1984-01-01

    The effect of compressibility of magnetic field line on the damping rate of Alfven spatial resonance heating for a high beta plasma (Kinetic pressure/magnetic pressure) was analysed, using the ideal MHD (Magnetohydrodynamic) model in cylindrical geometry for a diffuse θ-pinch with conducting wall. The dispersion relation was obtained solving the equation of motion in the plasma and vacuum regions together with boundary conditions. (Author) [pt

  16. Anisotropic Concrete Compressive Strength

    DEFF Research Database (Denmark)

    Gustenhoff Hansen, Søren; Jørgensen, Henrik Brøner; Hoang, Linh Cao

    2017-01-01

    When the load carrying capacity of existing concrete structures is (re-)assessed it is often based on compressive strength of cores drilled out from the structure. Existing studies show that the core compressive strength is anisotropic; i.e. it depends on whether the cores are drilled parallel...

  17. Experiments with automata compression

    NARCIS (Netherlands)

    Daciuk, J.; Yu, S; Daley, M; Eramian, M G

    2001-01-01

    Several compression methods of finite-state automata are presented and evaluated. Most compression methods used here are already described in the literature. However, their impact on the size of automata has not been described yet. We fill that gap, presenting results of experiments carried out on

  18. Approaches to radiotherapy in metastatic spinal cord compression.

    Science.gov (United States)

    Suppl, Morten Hiul

    2018-04-01

    population, we found a higher number of patients experiencing vertebral fractures than the number of patient developing myelopathy. Patients with diabetes had an increased risk of toxicity compared to the remaining patients. Stereotactic body radiotherapy is effective in treating metastatic spinal cord compression but the efficacy cannot be determined due low accrual. The use of PET/MRI did not spare normal tissue in radiotherapy planning of spinal metastases. The incidence of toxicity after re-irradiation of the spine and spinal cord was low. For patients with in-field recurrence, re-irradiation is safe and has a low incidence of toxicity. Articles published in the Danish Medical Journal are “open access”. This means that the articles are distributed under the terms of the Creative Commons Attribution Non-commercial License, which permits any non-commercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

  19. Image compression using the W-transform

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, W.D. Jr. [Argonne National Lab., IL (United States). Mathematics and Computer Science Div.

    1995-12-31

    The authors present the W-transform for a multiresolution signal decomposition. One of the differences between the wavelet transform and W-transform is that the W-transform leads to a nonorthogonal signal decomposition. Another difference between the two is the manner in which the W-transform handles the endpoints (boundaries) of the signal. This approach does not restrict the length of the signal to be a power of two. Furthermore, it does not call for the extension of the signal thus, the W-transform is a convenient tool for image compression. They present the basic theory behind the W-transform and include experimental simulations to demonstrate its capabilities.

  20. Compressibility, turbulence and high speed flow

    CERN Document Server

    Gatski, Thomas B

    2013-01-01

    Compressibility, Turbulence and High Speed Flow introduces the reader to the field of compressible turbulence and compressible turbulent flows across a broad speed range, through a unique complimentary treatment of both the theoretical foundations and the measurement and analysis tools currently used. The book provides the reader with the necessary background and current trends in the theoretical and experimental aspects of compressible turbulent flows and compressible turbulence. Detailed derivations of the pertinent equations describing the motion of such turbulent flows is provided and an extensive discussion of the various approaches used in predicting both free shear and wall bounded flows is presented. Experimental measurement techniques common to the compressible flow regime are introduced with particular emphasis on the unique challenges presented by high speed flows. Both experimental and numerical simulation work is supplied throughout to provide the reader with an overall perspective of current tre...

  1. Compressed normalized block difference for object tracking

    Science.gov (United States)

    Gao, Yun; Zhang, Dengzhuo; Cai, Donglan; Zhou, Hao; Lan, Ge

    2018-04-01

    Feature extraction is very important for robust and real-time tracking. Compressive sensing provided a technical support for real-time feature extraction. However, all existing compressive tracking were based on compressed Haar-like feature, and how to compress many more excellent high-dimensional features is worth researching. In this paper, a novel compressed normalized block difference feature (CNBD) was proposed. For resisting noise effectively in a highdimensional normalized pixel difference feature (NPD), a normalized block difference feature extends two pixels in the original formula of NPD to two blocks. A CNBD feature can be obtained by compressing a normalized block difference feature based on compressive sensing theory, with the sparse random Gaussian matrix as the measurement matrix. The comparative experiments of 7 trackers on 20 challenging sequences showed that the tracker based on CNBD feature can perform better than other trackers, especially than FCT tracker based on compressed Haar-like feature, in terms of AUC, SR and Precision.

  2. Anastomotic leakage after low anterior resection for rectal cancer: comparison of stapled versus compression anastomosis.

    Science.gov (United States)

    Dauser, Bernhard; Braunschmid, Tamara; Ghaffari, Shahbaz; Riss, Stefan; Stift, Anton; Herbst, Friedrich

    2013-10-01

    Surgical technique and perioperative management in rectal cancer surgery have been substantially improved and standardized during the last decades. However, anastomotic leakage following low anterior resection still is a significant problem. Based on animal experimental data of improved healing of compression anastomosis, we hypothesized that a compression anastomotic device might improve healing rates of the highest-risk anastomoses. All low anterior resections for rectal cancer performed or directly supervised by the senior author between January 2004 and June 2012 were analyzed. Only patients with a stapled or compression anastomosis located within 6 cm from the anal verge were included. Until December 2008, circular staplers were employed, while since January 2009, a novel compression anastomotic device was used for rectal reconstruction exclusively. Out of 197 patients operated for rectal cancer, a total of 96 (34 females, 35.4 %) fulfilled inclusion criteria. Fifty-eight (60.4 %) were reconstructed with circular staplers and 38 (39.6 %) using a compression anastomotic device. Significantly, more laparoscopic procedures were recorded in the compression anastomosis group, but distribution of gender, age, body mass index, American Society of Anaesthesiologists score, rate of preoperative radiotherapy, tumor staging, or stoma diversion rate were similar. Anastomotic leakage was observed in seven cases (7/58, 12.1 %) in the stapled and twice (2/38, 5.3 %) in the compression anastomosis group (p = 0.26). In this series, rectal reconstruction following low anterior resection using a novel compression anastomotic device was safe and (at least) equally effective compared to traditional circular staplers concerning leak rate.

  3. Experimental residual stress evaluation of hydraulic expansion transitions in Alloy 690 steam generator tubing

    International Nuclear Information System (INIS)

    McGregor, R.; Doherty, P.; Hornbach, D.; Abdelsalam, U.

    1995-01-01

    Nuclear Steam Generator (SG) service reliability and longevity have been seriously affected worldwide by corrosion at the tube-to-tubesheet joint expansion. Current SG designs for new facilities and replacement projects enhance corrosion resistance through the use of advanced tubing materials and improved joint design and fabrication techniques. Here, transition zones of hydraulic expansions have undergone detailed experimental evaluation to define residual stress and cold-work distribution on and below the secondary-side surface. Using X-ray diffraction techniques, with supporting finite element analysis, variations are compared in tubing metallurgical condition, tube/pitch geometry, expansion pressure, and tube-to-hole clearance. Initial measurements to characterize the unexpanded tube reveal compressive stresses associated with a thin work-hardened layer on the outer surface of the tube. The gradient of cold-work was measured as 3% to 0% within .001 inch of the surface. The levels and character of residual stresses following hydraulic expansion are primarily dependent on this work-hardened surface layer and initial stress state that is unique to each tube fabrication process. Tensile stresses following expansion are less than 25% of the local yield stress and are found on the transition in a narrow circumferential band at the immediate tube surface (< .0002 inch/0.005 mm depth). The measurements otherwise indicate a predominance of compressive stresses on and below the secondary-side surface of the transition zone. Excellent resistance to SWSCC initiation is offered by the low levels of tensile stress and cold-work. Propagation of any possible cracking would be deterred by the compressive stress field that surrounds this small volume of tensile material

  4. Optimization of a transition radiation detector for the compressed baryonic matter experiment

    Energy Technology Data Exchange (ETDEWEB)

    Arend, Andreas

    2014-07-01

    The Transition Radiation Detector (TRD) of the compressed baryonic matter (CBM) experiment at FAIR has to provide electron-pion separation as well as charged-particle tracking. Within this work, thin and symmetric Multi-Wire Proportional Chambers (MWPCs) without additional drift region were proposed. the proposed prototypes feature a foil-based entrance window to minimize the material budget and to reduce the absorption probability of the generated TR photon. Based on the conceptual design of thin and symmetric MWPCs without drift region, multiple prototypes were constructed and their performance presented within this thesis. With the constructed prototypes of generations II and III the geometries of the wire and cathode planes were determined to be 4+4 mm and 5+5 mm. Based on the results of a performed test beam campaign in 2011 with this prototypes new prototypes of generation IV were manufactured and tested in a subsequent test beam campaign in 2012. Prototypes of different radiators were developed together with the MWPC prototypes. Along with regular foil radiators, foam-based radiator types made of polyethylene foam were utilized. Also radiators constructed in a sandwich design, which used different fiber materials confined with solid foam sheets, were used. For the prototypes without drift region, simulations of the electrostatic and mechanical properties were performed. The GARFIELD software package was used to simulate the electric field and to determine the resulting drift lines of the generated electrons. The mean gas amplification depending on the utilized gas and the applied anode voltage was simulated and the gas-gain homogeneity was verified. Since the thin foil-based entrance window experiences a deformation due to pressure differences inside and outside the MWPC, the variation on the gas gain depending on the deformation was simulated. The mechanical properties focusing on the stability of the entrance window was determined with a finiteelement

  5. Optimization of a transition radiation detector for the compressed baryonic matter experiment

    International Nuclear Information System (INIS)

    Arend, Andreas

    2014-01-01

    The Transition Radiation Detector (TRD) of the compressed baryonic matter (CBM) experiment at FAIR has to provide electron-pion separation as well as charged-particle tracking. Within this work, thin and symmetric Multi-Wire Proportional Chambers (MWPCs) without additional drift region were proposed. the proposed prototypes feature a foil-based entrance window to minimize the material budget and to reduce the absorption probability of the generated TR photon. Based on the conceptual design of thin and symmetric MWPCs without drift region, multiple prototypes were constructed and their performance presented within this thesis. With the constructed prototypes of generations II and III the geometries of the wire and cathode planes were determined to be 4+4 mm and 5+5 mm. Based on the results of a performed test beam campaign in 2011 with this prototypes new prototypes of generation IV were manufactured and tested in a subsequent test beam campaign in 2012. Prototypes of different radiators were developed together with the MWPC prototypes. Along with regular foil radiators, foam-based radiator types made of polyethylene foam were utilized. Also radiators constructed in a sandwich design, which used different fiber materials confined with solid foam sheets, were used. For the prototypes without drift region, simulations of the electrostatic and mechanical properties were performed. The GARFIELD software package was used to simulate the electric field and to determine the resulting drift lines of the generated electrons. The mean gas amplification depending on the utilized gas and the applied anode voltage was simulated and the gas-gain homogeneity was verified. Since the thin foil-based entrance window experiences a deformation due to pressure differences inside and outside the MWPC, the variation on the gas gain depending on the deformation was simulated. The mechanical properties focusing on the stability of the entrance window was determined with a finiteelement

  6. 30 CFR 77.412 - Compressed air systems.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Compressed air systems. 77.412 Section 77.412... for Mechanical Equipment § 77.412 Compressed air systems. (a) Compressors and compressed-air receivers... involving the pressure system of compressors, receivers, or compressed-air-powered equipment shall not be...

  7. Chest compression during sustained inflation versus 3:1 chest compression:ventilation ratio during neonatal cardiopulmonary resuscitation: a randomised feasibility trial.

    Science.gov (United States)

    Schmölzer, Georg M; O Reilly, Megan; Fray, Caroline; van Os, Sylvia; Cheung, Po-Yin

    2017-10-07

    Current neonatal resuscitation guidelines recommend 3:1 compression:ventilation (C:V) ratio. Recently, animal studies reported that continuous chest compressions (CC) during a sustained inflation (SI) significantly improved return of spontaneous circulation (ROSC). The approach of CC during SI (CC+SI) has not been examined in the delivery room during neonatal resuscitation. It is a feasibility study to compare CC+SI versus 3:1 C:V ratio during neonatal resuscitation in the delivery room. We hypothesised that during neonatal resuscitation, CC+SI will reduce the time to ROSC. Our aim was to examine if CC+SI reduces ROSC compared with 3:1 C:V CPR in preterm infants rate of 90/min during an SI with a duration of 20 s (CC+SI). After 20 s, the SI was interrupted for 1 s and the next SI was started for another 20 s until ROSC. Infants in the '3:1 group' received CC using 3:1 C:V ratio until ROSC. Overall the mean (SD) time to ROSC was significantly shorter in the CC+SI group with 31 (9) s compared with 138 (72) s in the 3:1 C:V group (p=0.011). CC+SI is feasible in the delivery room. Clinicaltrials.gov NCT02083705, pre-results. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  8. Two divergent paths: compression vs. non-compression in deep venous thrombosis and post thrombotic syndrome

    Directory of Open Access Journals (Sweden)

    Eduardo Simões Da Matta

    Full Text Available Abstract Use of compression therapy to reduce the incidence of postthrombotic syndrome among patients with deep venous thrombosis is a controversial subject and there is no consensus on use of elastic versus inelastic compression, or on the levels and duration of compression. Inelastic devices with a higher static stiffness index, combine relatively small and comfortable pressure at rest with pressure while standing strong enough to restore the “valve mechanism” generated by plantar flexion and dorsiflexion of the foot. Since the static stiffness index is dependent on the rigidity of the compression system and the muscle strength within the bandaged area, improvement of muscle mass with muscle-strengthening programs and endurance training should be encouraged. Therefore, in the acute phase of deep venous thrombosis events, anticoagulation combined with inelastic compression therapy can reduce the extension of the thrombus. Notwithstanding, prospective studies evaluating the effectiveness of inelastic therapy in deep venous thrombosis and post-thrombotic syndrome are needed.

  9. Application of content-based image compression to telepathology

    Science.gov (United States)

    Varga, Margaret J.; Ducksbury, Paul G.; Callagy, Grace

    2002-05-01

    Telepathology is a means of practicing pathology at a distance, viewing images on a computer display rather than directly through a microscope. Without compression, images take too long to transmit to a remote location and are very expensive to store for future examination. However, to date the use of compressed images in pathology remains controversial. This is because commercial image compression algorithms such as JPEG achieve data compression without knowledge of the diagnostic content. Often images are lossily compressed at the expense of corrupting informative content. None of the currently available lossy compression techniques are concerned with what information has been preserved and what data has been discarded. Their sole objective is to compress and transmit the images as fast as possible. By contrast, this paper presents a novel image compression technique, which exploits knowledge of the slide diagnostic content. This 'content based' approach combines visually lossless and lossy compression techniques, judiciously applying each in the appropriate context across an image so as to maintain 'diagnostic' information while still maximising the possible compression. Standard compression algorithms, e.g. wavelets, can still be used, but their use in a context sensitive manner can offer high compression ratios and preservation of diagnostically important information. When compared with lossless compression the novel content-based approach can potentially provide the same degree of information with a smaller amount of data. When compared with lossy compression it can provide more information for a given amount of compression. The precise gain in the compression performance depends on the application (e.g. database archive or second opinion consultation) and the diagnostic content of the images.

  10. Visual Communications for Heterogeneous Networks/Visually Optimized Scalable Image Compression. Final Report for September 1, 1995 - February 28, 2002

    Energy Technology Data Exchange (ETDEWEB)

    Hemami, S. S.

    2003-06-03

    The authors developed image and video compression algorithms that provide scalability, reconstructibility, and network adaptivity, and developed compression and quantization strategies that are visually optimal at all bit rates. The goal of this research is to enable reliable ''universal access'' to visual communications over the National Information Infrastructure (NII). All users, regardless of their individual network connection bandwidths, qualities-of-service, or terminal capabilities, should have the ability to access still images, video clips, and multimedia information services, and to use interactive visual communications services. To do so requires special capabilities for image and video compression algorithms: scalability, reconstructibility, and network adaptivity. Scalability allows an information service to provide visual information at many rates, without requiring additional compression or storage after the stream has been compressed the first time. Reconstructibility allows reliable visual communications over an imperfect network. Network adaptivity permits real-time modification of compression parameters to adjust to changing network conditions. Furthermore, to optimize the efficiency of the compression algorithms, they should be visually optimal, where each bit expended reduces the visual distortion. Visual optimality is achieved through first extensive experimentation to quantify human sensitivity to supra-threshold compression artifacts and then incorporation of these experimental results into quantization strategies and compression algorithms.

  11. The relationship between vickers microhardness and compressive strength of functional surface geopolymers

    Science.gov (United States)

    Subaer, Ekaputri, Januari Jaya; Fansuri, Hamzah; Abdullah, Mustafa Al Bakri

    2017-09-01

    An experimental study to investigate the relationship between Vickers microhardness and compressive strength of geopolymers made from metakaolin has been conducted. Samples were prepared by using metakaolin activated with a sodium silicate solution at a different ratio of Si to Al and Na to Al and cured at 70oC for one hour. The resulting geopolymers were stored in an open air for 28 days before conducting any measurement. Bulk density and apparent porosity of the samples were measured by using Archimedes's method. Vickers microhardness measurements were performed on a polished surface of geopolymers with a load ranging from 0.3 - 1.0 kg. The topographic of indented samples were examined by using scanning electron microscopy (SEM). Compressive strength of the resulting geopolymers was measured on the cylindrical samples with a ratio of height to the diameter was 2:1. The results showed that the molar ratios of geopolymers compositions play important roles in the magnitude of bulk density, porosity, Vickers's microhardness as well as the compressive strength. The porosity reduced exponentially the magnitude of the strength of geopolymers. It was found that the relationship between Vickers microhardness and compressive strength was linear. At the request of all authors and with the approval of the proceedings editor, article 020188 titled, "The relationship between vickers microhardness and compressive strength of functional surface geopolymers," is being retracted from the public record due to the fact that it is a duplication of article 020170 published in the same volume.

  12. Blind compressive sensing dynamic MRI

    Science.gov (United States)

    Lingala, Sajan Goud; Jacob, Mathews

    2013-01-01

    . Our phase transition experiments demonstrate that the BCS scheme provides much better recovery rates than classical Fourier-based CS schemes, while being only marginally worse than the dictionary aware setting. Since the overhead in additionally estimating the dictionary is low, this method can be very useful in dynamic MRI applications, where the signal is not sparse in known dictionaries. We demonstrate the utility of the BCS scheme in accelerating contrast enhanced dynamic data. We observe superior reconstruction performance with the BCS scheme in comparison to existing low rank and compressed sensing schemes. PMID:23542951

  13. Shock-wave compression of lithium niobate from 2.4 to 44 GPa

    International Nuclear Information System (INIS)

    Stanton, P.L.; Graham, R.A.

    1979-01-01

    Shock compression of lithium niobate above the Hugoniot elastic limit (about 2.5 GPa) reveals a succession of unusual features. Just above the Hugoniot elastic limit, the shock velocity is observed to be well below the bulk sound speed, indicative of a drastic reduction of shear strength. The shock velocity is observed to increase with particle velocity at an unusually large rate due to the reduction of strength in a very stiff material and an anomalously large pressure derivative of the bulk modulus. This later behavior may be due to the effects of localized shock heating resulting from heterogeneous shear deformation in ferroelectrics like lithium niobate and lithium tantalate in which increases in temperature are shown to have a strong effect on bulk modulus. A shock-induced polymorphic phase transition occurs at 13.9 GPa. Above the transition point the slope of the Hugoniot curve relating shock velocity and particle velocity is unusually low, indicative of a broad mixed phase region of undetermined extent. Limited work is reported on the isomorphous crystal, lithium tantalate, which exhibits features similar to lithium niobate with a Hugoniot elastic limit of 4 GPa and a phase transition in the vicinity of 19 GPa

  14. Correlation of MR tomographic findings and microvascular decompression treatment of the neurovascular compressions of the cranial nerves

    International Nuclear Information System (INIS)

    Liu Zengsheng; Chen Xiangmin; Sun Yiyan; Fang Ming; Wang Ping; Guan Yong; Sun Miao

    2010-01-01

    Objective: To explore the correlation of the operation effects of the miorovascular decompression (MVD) and the findings on magnetic resonance tomographie angiography (MRTA) in patients of neurovascular compression of the cranial nerves. Methods: Two hundred and twenty three patients treated with the microvascular decompression were analyzed retrospectively. They were grouped and graded according to the vessel compression on the cranial nerves. The compression were grouped as none, moderate and severe, and the operation effects were graded as I (complete relief), II (partial relief) and III ( no relief). The operation effects grades were correlated according to the compression groups by Kruskal-Wallis test and the operation effects between each two of the groups were compared using Nemenyi test. P 2 =16.84 and P<0.05. The mean rank of the non-compression, the moderate and the severe group was 134.21,102.37 and 110.4, respectively. The difference of the mean ranks between the non-compression group and the moderate group was 31.84, and between the non-compression and the severe group was 24.17, respectively, where P<0.05 both. Conclusions: There was close relationship between the findings on magnetic resonance tomographic angiography and the operation effects of the MVD. The operation effects of patients with moderate and severe vessel compression were much better than the non-compression group. MRTA is helpful for MVD surgical indication and its prognosis. (authors)

  15. Theoretical models for describing longitudinal bunch compression in the neutralized drift compression experiment

    Directory of Open Access Journals (Sweden)

    Adam B. Sefkow

    2006-09-01

    Full Text Available Heavy ion drivers for warm dense matter and heavy ion fusion applications use intense charge bunches which must undergo transverse and longitudinal compression in order to meet the requisite high current densities and short pulse durations desired at the target. The neutralized drift compression experiment (NDCX at the Lawrence Berkeley National Laboratory is used to study the longitudinal neutralized drift compression of a space-charge-dominated ion beam, which occurs due to an imposed longitudinal velocity tilt and subsequent neutralization of the beam’s space charge by background plasma. Reduced theoretical models have been used in order to describe the realistic propagation of an intense charge bunch through the NDCX device. A warm-fluid model is presented as a tractable computational tool for investigating the nonideal effects associated with the experimental acceleration gap geometry and voltage waveform of the induction module, which acts as a means to pulse shape both the velocity and line density profiles. Self-similar drift compression solutions can be realized in order to transversely focus the entire charge bunch to the same focal plane in upcoming simultaneous transverse and longitudinal focusing experiments. A kinetic formalism based on the Vlasov equation has been employed in order to show that the peaks in the experimental current profiles are a result of the fact that only the central portion of the beam contributes effectively to the main compressed pulse. Significant portions of the charge bunch reside in the nonlinearly compressing part of the ion beam because of deviations between the experimental and ideal velocity tilts. Those regions form a pedestal of current around the central peak, thereby decreasing the amount of achievable longitudinal compression and increasing the pulse durations achieved at the focal plane. A hybrid fluid-Vlasov model which retains the advantages of both the fluid and kinetic approaches has been

  16. Implementing energy transition - A legal deciphering

    International Nuclear Information System (INIS)

    Bain-Thouverez, Justine; Romi, Raphael; Chautard, Thomas

    2016-07-01

    As the French law on energy transition reconfigures many parameters of implementation of public action, the authors propose a cross-referenced reading of this law, of the law for new organisation of territories (NOTRe) in its environmental dimension, and of the regulation which results from these legal standards, in order to have a better view on public action in terms of abilities, and of action and financial levers. In a first part, the author discuss the relationships of energy transition with State, regions, districts, EPCI (communal collaboration public body), communes, and public bodies. In the second part, they address the new levers for action, and finally address the financing of energy transition (financing funds, third-party financing companies)

  17. Thermodynamics of a Compressible Maier-Saupe Model Based on the Self-Consistent Field Theory of Wormlike Polymer

    Directory of Open Access Journals (Sweden)

    Ying Jiang

    2017-02-01

    Full Text Available This paper presents a theoretical formalism for describing systems of semiflexible polymers, which can have density variations due to finite compressibility and exhibit an isotropic-nematic transition. The molecular architecture of the semiflexible polymers is described by a continuum wormlike-chain model. The non-bonded interactions are described through a functional of two collective variables, the local density and local segmental orientation tensor. In particular, the functional depends quadratically on local density-variations and includes a Maier–Saupe-type term to deal with the orientational ordering. The specified density-dependence stems from a free energy expansion, where the free energy of an isotropic and homogeneous homopolymer melt at some fixed density serves as a reference state. Using this framework, a self-consistent field theory is developed, which produces a Helmholtz free energy that can be used for the calculation of the thermodynamics of the system. The thermodynamic properties are analysed as functions of the compressibility of the model, for values of the compressibility realizable in mesoscopic simulations with soft interactions and in actual polymeric materials.

  18. Quantum phase transitions

    International Nuclear Information System (INIS)

    Sachdev, S.

    1999-01-01

    Phase transitions are normally associated with changes of temperature but a new type of transition - caused by quantum fluctuations near absolute zero - is possible, and can tell us more about the properties of a wide range of systems in condensed-matter physics. Nature abounds with phase transitions. The boiling and freezing of water are everyday examples of phase transitions, as are more exotic processes such as superconductivity and superfluidity. The universe itself is thought to have passed through several phase transitions as the high-temperature plasma formed by the big bang cooled to form the world as we know it today. Phase transitions are traditionally classified as first or second order. In first-order transitions the two phases co-exist at the transition temperature - e.g. ice and water at 0 deg., or water and steam at 100 deg. In second-order transitions the two phases do not co-exist. In the last decade, attention has focused on phase transitions that are qualitatively different from the examples noted above: these are quantum phase transitions and they occur only at the absolute zero of temperature. The transition takes place at the ''quantum critical'' value of some other parameter such as pressure, composition or magnetic field strength. A quantum phase transition takes place when co-operative ordering of the system disappears, but this loss of order is driven solely by the quantum fluctuations demanded by Heisenberg's uncertainty principle. The physical properties of these quantum fluctuations are quite distinct from those of the thermal fluctuations responsible for traditional, finite-temperature phase transitions. In particular, the quantum system is described by a complex-valued wavefunction, and the dynamics of its phase near the quantum critical point requires novel theories that have no analogue in the traditional framework of phase transitions. In this article the author describes the history of quantum phase transitions. (UK)

  19. Static Transition Compression

    DEFF Research Database (Denmark)

    Danvy, Olivier; Damian, Daniel

    2001-01-01

    Starting from an operational specification of a translation from a structured to an unstructured imperative language, we point out how a compositional and context-insensitive translation gives rise to static chains of jumps. Taking an inspiration from the notion of continuation, we state a new...... compositional and context-sensitive specification that provably gives rise to no static chains of jumps, no redundant labels, and no unused labels. It is defined with one inference rule per syntactic construct and operates in linear time and space on the size of the source program (indeed it operates in one...

  20. Static Transition Compression

    DEFF Research Database (Denmark)

    Danvy, Olivier; Damian, Daniel

    2001-01-01

    Starting from an operational specification of a translation from a structured to an unstructured imperative language, we point out how a compositional and context-insensitive translation gives rise to static chains of jumps. Taking an inspiration from the notion of continuation, we state a new co...