WorldWideScience

Sample records for transient field calibration

  1. Field calibration of cup anemometers

    DEFF Research Database (Denmark)

    Schmidt Paulsen, Uwe; Mortensen, Niels Gylling; Hansen, Jens Carsten

    2007-01-01

    A field calibration method and results are described along with the experience gained with the method. The cup anemometers to be calibrated are mounted in a row on a 10-m high rig and calibrated in the free wind against a reference cup anemometer. The method has been reported [1] to improve...... the statistical bias on the data relative to calibrations carried out in a wind tunnel. The methodology is sufficiently accurate for calibration of cup anemometers used for wind resource assessments and provides a simple, reliable and cost-effective solution to cup anemometer calibration, especially suited...

  2. Transient anisotropic magnetic field calculation

    International Nuclear Information System (INIS)

    Jesenik, Marko; Gorican, Viktor; Trlep, Mladen; Hamler, Anton; Stumberger, Bojan

    2006-01-01

    For anisotropic magnetic material, nonlinear magnetic characteristics of the material are described with magnetization curves for different magnetization directions. The paper presents transient finite element calculation of the magnetic field in the anisotropic magnetic material based on the measured magnetization curves for different magnetization directions. For the verification of the calculation method some results of the calculation are compared with the measurement

  3. Field calibration of cup anemometers

    DEFF Research Database (Denmark)

    Kristensen, L.; Jensen, G.; Hansen, A.

    2001-01-01

    An outdoor calibration facility for cup anemometers, where the signals from 10 anemometers of which at least one is a reference can be can be recorded simultaneously, has been established. The results are discussed with special emphasis on the statisticalsignificance of the calibration expressions....... It is concluded that the method has the advantage that many anemometers can be calibrated accurately with a minimum of work and cost. The obvious disadvantage is that the calibration of a set of anemometersmay take more than one month in order to have wind speeds covering a sufficiently large magnitude range...

  4. Microfabricated field calibration assembly for analytical instruments

    Science.gov (United States)

    Robinson, Alex L [Albuquerque, NM; Manginell, Ronald P [Albuquerque, NM; Moorman, Matthew W [Albuquerque, NM; Rodacy, Philip J [Albuquerque, NM; Simonson, Robert J [Cedar Crest, NM

    2011-03-29

    A microfabricated field calibration assembly for use in calibrating analytical instruments and sensor systems. The assembly comprises a circuit board comprising one or more resistively heatable microbridge elements, an interface device that enables addressable heating of the microbridge elements, and, in some embodiments, a means for positioning the circuit board within an inlet structure of an analytical instrument or sensor system.

  5. Transient Magnetic Field in a Conducting Cylinder

    Directory of Open Access Journals (Sweden)

    Zygmunt Piatek

    2004-01-01

    Full Text Available In the paper we determine the transient magnetic field in a conducting cylinder placed in external longitudinal sine-shaped magnetic field using the solution of Bessell equation in cylindrical co-ordinates, and also applying integral Laplace transformations, attenuation and diffusion of the magnetic field strength in the cylinder. The resulting equations can be used to describe volume density of the power lost in the cylinder and to determine substitute parameters of the inductor-cylindrical work system.

  6. The JCMT Transient Survey: Data Reduction and Calibration Methods

    Energy Technology Data Exchange (ETDEWEB)

    Mairs, Steve; Lane, James [Department of Physics and Astronomy, University of Victoria, Victoria, BC, V8P 1A1 (Canada); Johnstone, Doug; Kirk, Helen [NRC Herzberg Astronomy and Astrophysics, 5071 West Saanich Road, Victoria, BC, V9E 2E7 (Canada); Lacaille, Kevin; Chapman, Scott [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS, B3H 4R2 (Canada); Bower, Geoffrey C. [Academia Sinica Institute of Astronomy and Astrophysics, 645 N. A‘ohōkū Place, Hilo, HI 96720 (United States); Bell, Graham S.; Graves, Sarah, E-mail: smairs@uvic.ca [East Asian Observatory, 660 North A‘ohōkū Place, University Park, Hilo, Hawaii 96720 (United States); Collaboration: JCMT Transient Team

    2017-07-01

    Though there has been a significant amount of work investigating the early stages of low-mass star formation in recent years, the evolution of the mass assembly rate onto the central protostar remains largely unconstrained. Examining in depth the variation in this rate is critical to understanding the physics of star formation. Instabilities in the outer and inner circumstellar disk can lead to episodic outbursts. Observing these brightness variations at infrared or submillimeter wavelengths constrains the current accretion models. The JCMT Transient Survey is a three-year project dedicated to studying the continuum variability of deeply embedded protostars in eight nearby star-forming regions at a one-month cadence. We use the SCUBA-2 instrument to simultaneously observe these regions at wavelengths of 450 and 850 μ m. In this paper, we present the data reduction techniques, image alignment procedures, and relative flux calibration methods for 850 μ m data. We compare the properties and locations of bright, compact emission sources fitted with Gaussians over time. Doing so, we achieve a spatial alignment of better than 1″ between the repeated observations and an uncertainty of 2%–3% in the relative peak brightness of significant, localized emission. This combination of imaging performance is unprecedented in ground-based, single-dish submillimeter observations. Finally, we identify a few sources that show possible and confirmed brightness variations. These sources will be closely monitored and presented in further detail in additional studies throughout the duration of the survey.

  7. Calibration and uncertainty in electromagnetic fields measuring methods

    International Nuclear Information System (INIS)

    Anglesio, L.; Crotti, G.; Borsero, M.; Vizio, G.

    1999-01-01

    Calibration and reliability in electromagnetic field measuring methods are assured by calibration of measuring instruments. In this work are illustrated systems for generation of electromagnetic fields at low and high frequency, calibration standard and accuracy [it

  8. Development of neutron calibration field using accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Mamoru [Tohoku Univ., Cyclotron and Radioisotope Center, Sendai, Miyagi (Japan)

    2003-03-01

    A brief summary is given on the fast neutron calibration fields for 1) 8 keV to 15 MeV range, and 2) 30-80 MeV range. The field for 8 keV to 15 MeV range was developed at the Fast Neutron Laboratory (FNL) at Tohoku University using a 4.5 MV pulsed Dynamitron accelerator and neutron production reactions, {sup 45}Sc(p, n), {sup 7}Li(p, n), {sup 3}H(p, n), D(d, n) and T(d, n). The latter 30-80 MeV fields are setup at TIARA of Takasaki Establishment of Japan Atomic Energy Research Institute, and at Cyclotron Radio Isotope Center (CYRIC) of Tohoku University using a 90 MeV AVF cyclotron and the {sup 7}Li(p, n) reaction. These fields have been applied for various calibration of neutron spectrometers and dosimeters, and for irradiation purposes. (author)

  9. Generation of intense transient magnetic fields

    International Nuclear Information System (INIS)

    Benjamin, R.F.

    1983-01-01

    In a laser system, the return current of a laser generated plasma is conducted near a target to subject that target to a magnetic field. The target may be either a small non-fusion object for testing under the magnetic field or a laser-fusion pellet. In the laser-fusion embodiment, the laser-fusion pellet is irradiated during the return current flow and the intense transient magnetic field is used to control the hot electrons thereof to hinder them from striking and heating the core of the irradiated laser-fusion pellet. An emitter, e.g. a microballoon of glass, metal or plastics, is subjected to a laser pulse to generate the plasma from which the return current flows into a wire cage or a coil and then to earth. (author)

  10. A calibration method for PLLs based on transient response

    DEFF Research Database (Denmark)

    Cassia, Marco; Shah, Peter Jivan; Bruun, Erik

    2004-01-01

    A novel method to calibrate the frequency response of a Phase-Locked Loop is presented. The method requires just an additional digital counter and an auxiliary Phase-Frequency Detector (PFD) to measure the natural frequency of the PLL. The measured value can be used to tune the PLL response...

  11. ASD FieldSpec Calibration Setup and Techniques

    Science.gov (United States)

    Olive, Dan

    2001-01-01

    This paper describes the Analytical Spectral Devices (ASD) Fieldspec Calibration Setup and Techniques. The topics include: 1) ASD Fieldspec FR Spectroradiometer; 2) Components of Calibration; 3) Equipment list; 4) Spectral Setup; 5) Spectral Calibration; 6) Radiometric and Linearity Setup; 7) Radiometric setup; 8) Datadets Required; 9) Data files; and 10) Field of View Measurement. This paper is in viewgraph form.

  12. Calibration

    International Nuclear Information System (INIS)

    Greacen, E.L.; Correll, R.L.; Cunningham, R.B.; Johns, G.G.; Nicolls, K.D.

    1981-01-01

    Procedures common to different methods of calibration of neutron moisture meters are outlined and laboratory and field calibration methods compared. Gross errors which arise from faulty calibration techniques are described. The count rate can be affected by the dry bulk density of the soil, the volumetric content of constitutional hydrogen and other chemical components of the soil and soil solution. Calibration is further complicated by the fact that the neutron meter responds more strongly to the soil properties close to the detector and source. The differences in slope of calibration curves for different soils can be as much as 40%

  13. Electric fields associated with transient surface currents

    DEFF Research Database (Denmark)

    McAllister, Iain Wilson

    1992-01-01

    The boundary condition to be fulfilled by the potential functions associated with a transient surface current is derived and expressed in terms of generalized orthogonal coordinates. From the analysis, it can be deduced that the use of the method of separation of variables is restricted to three ...

  14. Testing of a one dimensional model for Field II calibration

    DEFF Research Database (Denmark)

    Bæk, David; Jensen, Jørgen Arendt; Willatzen, Morten

    2008-01-01

    Field II is a program for simulating ultrasound transducer fields. It is capable of calculating the emitted and pulse-echoed fields for both pulsed and continuous wave transducers. To make it fully calibrated a model of the transducer’s electro-mechanical impulse response must be included. We...... examine an adapted one dimensional transducer model originally proposed by Willatzen [9] to calibrate Field II. This model is modified to calculate the required impulse responses needed by Field II for a calibrated field pressure and external circuit current calculation. The testing has been performed...... to the calibrated Field II program for 1, 4, and 10 cycle excitations. Two parameter sets were applied for modeling, one real valued Pz27 parameter set, manufacturer supplied, and one complex valued parameter set found in literature, Alguer´o et al. [11]. The latter implicitly accounts for attenuation. Results show...

  15. Geomechanical Model Calibration Using Field Measurements for a Petroleum Reserve

    Science.gov (United States)

    Park, Byoung Yoon; Sobolik, Steven R.; Herrick, Courtney G.

    2018-03-01

    A finite element numerical analysis model has been constructed that consists of a mesh that effectively captures the geometries of Bayou Choctaw (BC) Strategic Petroleum Reserve (SPR) site and multimechanism deformation (M-D) salt constitutive model using the daily data of actual wellhead pressure and oil-brine interface location. The salt creep rate is not uniform in the salt dome, and the creep test data for BC salt are limited. Therefore, the model calibration is necessary to simulate the geomechanical behavior of the salt dome. The cavern volumetric closures of SPR caverns calculated from CAVEMAN are used as the field baseline measurement. The structure factor, A 2, and transient strain limit factor, K 0, in the M-D constitutive model are used for the calibration. The value of A 2, obtained experimentally from BC salt, and the value of K 0, obtained from Waste Isolation Pilot Plant salt, are used for the baseline values. To adjust the magnitude of A 2 and K 0, multiplication factors A 2 F and K 0 F are defined, respectively. The A 2 F and K 0 F values of the salt dome and salt drawdown skins surrounding each SPR cavern have been determined through a number of back analyses. The cavern volumetric closures calculated from this model correspond to the predictions from CAVEMAN for six SPR caverns. Therefore, this model is able to predict behaviors of the salt dome, caverns, caprock, and interbed layers. The geotechnical concerns associated with the BC site from this analysis will be explained in a follow-up paper.

  16. Response of dairy cattle to transient voltages and magnetic fields

    International Nuclear Information System (INIS)

    Reinemann, D.J.; Laughlin, N.K.; Stetson, L.E.

    1995-01-01

    Stray voltages in dairy facilities have been studied since the 1970's. Previous research using steady-state ac and dc voltages has defined cow-contact voltage levels which may cause behavior and associated production problems. This research was designed to address concerns over possible effects of transient voltages and magnetic fields on dairy cows. Dairy cows response to transient voltages and magnetic fields was measured. The waveforms of the transient voltages applied were: 5 cycles of 60-Hz ac with a total pulse time of 83 ms, 1 cycle of 60-Hz ac with a total pulse time of 16 ms, and 1 cycle of an ac square wave (spiking positive and negative) of 2-ms duration. Alternating magnetic fields were produced by passing 60-Hz ac fundamental frequency with 2nd and 3rd harmonic and random noise components in metal structures around the cows. The maximum magnetic field associated with this current flow was in excess of 4 G. A wide range of sensitivity to transient voltages was observed among cows. Response levels from 24 cows to each transient exposure were normally distributed. No responses to magnetic fields were observed

  17. SCALA: In situ calibration for integral field spectrographs

    Science.gov (United States)

    Lombardo, S.; Küsters, D.; Kowalski, M.; Aldering, G.; Antilogus, P.; Bailey, S.; Baltay, C.; Barbary, K.; Baugh, D.; Bongard, S.; Boone, K.; Buton, C.; Chen, J.; Chotard, N.; Copin, Y.; Dixon, S.; Fagrelius, P.; Feindt, U.; Fouchez, D.; Gangler, E.; Hayden, B.; Hillebrandt, W.; Hoffmann, A.; Kim, A. G.; Leget, P.-F.; McKay, L.; Nordin, J.; Pain, R.; Pécontal, E.; Pereira, R.; Perlmutter, S.; Rabinowitz, D.; Reif, K.; Rigault, M.; Rubin, D.; Runge, K.; Saunders, C.; Smadja, G.; Suzuki, N.; Taubenberger, S.; Tao, C.; Thomas, R. C.; Nearby Supernova Factory

    2017-11-01

    Aims: The scientific yield of current and future optical surveys is increasingly limited by systematic uncertainties in the flux calibration. This is the case for type Ia supernova (SN Ia) cosmology programs, where an improved calibration directly translates into improved cosmological constraints. Current methodology rests on models of stars. Here we aim to obtain flux calibration that is traceable to state-of-the-art detector-based calibration. Methods: We present the SNIFS Calibration Apparatus (SCALA), a color (relative) flux calibration system developed for the SuperNova integral field spectrograph (SNIFS), operating at the University of Hawaii 2.2 m (UH 88) telescope. Results: By comparing the color trend of the illumination generated by SCALA during two commissioning runs, and to previous laboratory measurements, we show that we can determine the light emitted by SCALA with a long-term repeatability better than 1%. We describe the calibration procedure necessary to control for system aging. We present measurements of the SNIFS throughput as estimated by SCALA observations. Conclusions: The SCALA calibration unit is now fully deployed at the UH 88 telescope, and with it color-calibration between 4000 Å and 9000 Å is stable at the percent level over a one-year baseline.

  18. A Study on Relative Radiometric Calibration without Calibration Field for YG-25

    Directory of Open Access Journals (Sweden)

    ZHANG Guo

    2017-08-01

    Full Text Available YG-25 is the first agility optical remote sensing satellite of China to acquire the sub-meter imagery of the earth. The side slither calibration technique is an on-orbit maneuver that has been used to flat-field image data acquired over the uniform calibration field. However, imaging to the single uniform calibration field cannot afford to calibrate the full dynamic response range of the sensor and reduces the efficiency. The paper proposes a new relative radiometric calibration method that a 90-degree yaw maneuver is performed over any non-uniform features of the Earth for YG-25. Meanwhile, we use an enhanced side slither image horizontal correction method based on line segment detector(LSDalgorithm to solve the side slither image over-shifted problem.The shifted results are compared with other horizontal correction method. The histogram match algorithm is used to calculate the relative gains of all detectors. The correctness and validity of the proposed method are validated by using the YG-25 on-board side slither data. The results prove that the mean streaking metrics of relative correction images of YG-25 is better 0.07%, the noticeable striping artifact and residual noise are removed, the calibration accuracy of side slither technique based on non-uniform features is superior to life image statistics of sensor's life span.

  19. Patterns of non-embolic transient monocular visual field loss

    NARCIS (Netherlands)

    Petzold, A.; Islam, N.; Plant, G.T.

    2013-01-01

    The aim of this study was to systematically describe the semiology of non-embolic transient monocular visual field loss (neTMVL). We conducted a retrospective case note analysis of patients from Moorfields Eye Hospital (1995-2007). The variables analysed were age, age of onset, gender, past medical

  20. Radio interference and transient field from gas-insulated substations

    International Nuclear Information System (INIS)

    Harvey, S.M.; Wong, P.S.; Balma, P.M.

    1995-01-01

    Gas-insulated substations (GIS), owing to their compact nature, offer an attractive alternative to conventional substations in areas where space is limited, such as in urban areas. Consequently, it is important to address the issue of environmental conditions within the substation and in the surrounding areas. This paper reports the result of radio interference (RI) and transient field measurements at two GIS in Ontario, Canada. For comparison with RI levels taken at the GIS, RI levels outside two hospitals in the Toronto area were also measured. The transient field study covers electromagnetic interference (EMI) levels generated during switching operations, and includes measurements inside and outside the GIS. Measurements show that RI levels from the GIS were either below background levels, or contributed little to the background. RI levels outside the GIS and the hospitals were similar. Peak transient field values up to 580 V/m were measured inside the station building, and dropped to background values of 10 V/m at about 120 m from the station. The transient field (E) dropped off at a rate of 3/2 power with distance (d) from the air-insulated 115 kV bus, i.e. E ∝ d -1.5

  1. Magnetometer for Calibrating Jovian Fields, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase I SBIR project will investigate a method to accurately measure total magnetic fields in the range 0 to 1.6 mT in support of missions to Jupiter. The...

  2. Theory of strong-field attosecond transient absorption

    International Nuclear Information System (INIS)

    Wu, Mengxi; Chen, Shaohao; Camp, Seth; Schafer, Kenneth J; Gaarde, Mette B

    2016-01-01

    Attosecond transient absorption is one of the promising new techniques being developed to exploit the availability of sub-femtosecond extreme ultraviolet (XUV) pulses to study the dynamics of the electron on its natural time scale. The temporal resolution in a transient absorption setup comes from the control of the relative delay and coherence between pump and probe pulses, while the spectral resolution comes from the characteristic width of the features that are being probed. In this review we focus on transient absorption scenarios where an attosecond pulse of XUV radiation creates a broadband excitation that is subsequently probed by a few cycle infrared (IR) laser. Because the attosecond XUV pulses are locked to the IR field cycle, the exchange of energy in the laser–matter interaction can be studied with unprecedented precision. We focus on the transient absorption by helium atoms of XUV radiation around the first ionization threshold, where we can simultaneoulsy solve the time-dependent Schrödinger equation for the single atom response and the Maxwell wave equation for the collective response of the nonlinear medium. We use a time-domain method that allows us to treat on an equal footing all the different linear and nonlinear processes by which the medium can exchange energy with the fields. We present several simple models, based on a few-level system interacting with a strong IR field, to explain many of the novel features found in attosecond transient absorption spectrograms. These include the presence of light-induced states, which demonstrate the ability to probe the dressed states of the atom. We also present a time-domain interpretation of the resonant pulse propagation features that appear in absorption spectra in dense, macroscopic media. We close by reviewing several recent experimental results that can be explained in terms of the models we discuss. Our aim is to present a road map for understanding future attosecond transient absorption

  3. Laboratory Calibration of a Field Imaging Spectrometer System

    Directory of Open Access Journals (Sweden)

    Qingxi Tong

    2011-02-01

    Full Text Available A new Field Imaging Spectrometer System (FISS based on a cooling area CCD was developed. This paper describes the imaging principle, structural design, and main parameters of the FISS sensor. The FISS was spectrally calibrated with a double grating monochromator to determine the center wavelength and FWHM of each band. Calibration results showed that the spectral range of the FISS system is 437–902 nm, the number of channels is 344 and the spectral resolution of each channel is better than 5 nm. An integrating sphere was used to achieve absolute radiometric calibration of the FISS with less than 5% calibration error for each band. There are 215 channels with signal to noise ratios (SNRs greater than 500 (62.5% of the bands. The results demonstrated that the FISS has achieved high performance that assures the feasibility of its practical use in various fields.

  4. Intense transient electric field sensor based on the electro-optic effect of LiNbO3

    Directory of Open Access Journals (Sweden)

    Qing Yang

    2015-10-01

    Full Text Available Intense transient electric field measurements are widely applied in various research areas. An optical intense E-field sensor for time-domain measurements, based on the electro-optic effect of lithium niobate, has been studied in detail. Principles and key issues in the design of the sensor are presented. The sensor is insulated, small in size (65 mm × 15 mm × 15 mm, and suitable for high-intensity (<801 kV/m electric field measurements over a wide frequency band (10 Hz–10 MHz. The input/output characteristics of the sensor were obtained and the sensor calibrated. Finally, an application using this sensor in testing laboratory lightning impulses and in measuring transient electric fields during switch-on of a disconnector confirmed that the sensor is expected to find widespread use in transient intense electric field measurement applications.

  5. Transient characterization of extreme field conduction in dielectrics

    Directory of Open Access Journals (Sweden)

    Zongze Li

    2016-11-01

    Full Text Available High field degradation and electric breakdown of dielectrics are extremely complex phenomena as a result of the interplay among the electric field, temperature, material morphology, and extrinsic material properties. Fundamental understanding of carrier mobility related prebreakdown phenomena in dielectrics provides insights into high field transport phenomena as well as associated aging and onset of charge injection induced instability. Investigation of such extreme field conduction has been traditionally limited to the divergent field distribution generated using point-plane electrode configuration, as testing of parallel plate sample configuration under quasi steady-state conditions can only reach around two thirds of the breakdown field as a result of rapid high field aging. A circuit has been developed for transient characterization of conduction through a planar dielectric film during a linear ramp voltage to breakdown via the cancellation of displacement current to facilitate the measurement of small resistive currents down to 10ppm level. The dynamic cancellation of displacement current during an applied voltage waveform is realized through the use of a high frequency sinusoidal “bias” voltage to generate a capacitive current that can be cancelled using a feedback circuit based on a voltage-controlled amplifier with negligible phase shift and a dual-phase digital lock-in amplifier. Such capability of transient characterization of conduction in dielectrics will provide insights into dielectric aging and breakdown mechanism and form a quantitative basis for the extraction of critical transport parameters for conduction under extreme electric fields.

  6. Neutron field features in a calibration hall

    International Nuclear Information System (INIS)

    Vega C, H.R.; Gallego, E.; Lorente, A.

    2004-01-01

    A new source facility ( 241 Am-Be) has been installed in a large size bunker-type room. To characterize the neutron fields in the facility, detailed calculations have been made with MCNP-4C, showing the different components of the neutron radiation reaching the reference points (direct, in scattered, backscattered). The contribution from neutrons scattered in the walls to the total ambient dose equivalent remains reasonably low ( 6 LiI(Eu) scintillator (0.4 cm 0 x 0.4 cm), UTA4 response matrix and BUNKIUT unfolding code. The calculated and experimentally obtained spectra are compared, with small differences found in the epithermal and thermal region, attributable to the concrete composition used in the calculations. The H*(10) rate has been determined from the spectra, and then compared to the reading of an active dosemeter (LB 6411), with differences found lower than 8%. (Author)

  7. Transient Inverse Calibration of Hanford Site-Wide Groundwater Model to Hanford Operational Impacts - 1943 to 1996

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Charles R.; Bergeron, Marcel P.; Wurstner, Signe K.; Thorne, Paul D.; Orr, Samuel; Mckinley, Mathew I.

    2001-05-31

    This report describes a new initiative to strengthen the technical defensibility of predictions made with the Hanford site-wide groundwater flow and transport model. The focus is on characterizing major uncertainties in the current model. PNNL will develop and implement a calibration approach and methodology that can be used to evaluate alternative conceptual models of the Hanford aquifer system. The calibration process will involve a three-dimensional transient inverse calibration of each numerical model to historical observations of hydraulic and water quality impacts to the unconfined aquifer system from Hanford operations since the mid-1940s.

  8. Practical Field Calibration of Portable Monitors for Mobile Measurements of Multiple Air Pollutants

    Directory of Open Access Journals (Sweden)

    Chun Lin

    2017-11-01

    Full Text Available To reduce inaccuracies in the measurement of air pollutants by portable monitors it is necessary to establish quantitative calibration relationships against their respective reference analyser. This is usually done under controlled laboratory conditions or one-off static co-location alongside a reference analyser in the field, neither of which may adequately represent the extended use of portable monitors in exposure assessment research. To address this, we investigated ways of establishing and evaluating portable monitor calibration relationships from repeated intermittent deployment cycles over an extended period involving stationary deployment at a reference site, mobile monitoring, and completely switched off. We evaluated four types of portable monitors: Aeroqual Ltd. (Auckland, New Zealand S500 O3 metal oxide and S500 NO2 electrochemical; RTI (Berkeley, CA, USA MicroPEM PM2.5; and, AethLabs (San Francisco, CA, USA AE51 black carbon (BC. Innovations in our study included: (i comparison of calibrations derived from the individual co-locations of a portable monitor against its reference analyser or from all the co-location periods combined into a single dataset; and, (ii evaluation of calibrated monitor estimates during transient measurements with the portable monitor close to its reference analyser at separate times from the stationary co-location calibration periods. Within the ~7 month duration of the study, ‘combined’ calibration relationships for O3, PM2.5, and BC monitors from all co-locations agreed more closely on average with reference measurements than ‘individual’ calibration relationships from co-location deployment nearest in time to transient deployment periods. ‘Individual’ calibrations relationships were sometimes substantially unrepresentative of the ‘combined’ relationships. Reduced quantitative consistency in field calibration relationships for the PM2.5 monitors may have resulted from generally low PM2

  9. Electromagnetic and transient shielding effectiveness for near-field sources

    Directory of Open Access Journals (Sweden)

    C. Möller

    2007-06-01

    Full Text Available The contribution deals with an investigation of the recently proposed definitions for the electromagnetic and transient shielding effectiveness (SE in the case of an electric-dipole near-field source. To this end, new factors are introduced which depend on the distance between the dipole source and the measurement point inside the shield and which are valid for perpendicularly (with respect to the distance vector polarized dipoles. Numerical results support and confirm the theoretical derivations.

  10. Wide-field ultraviolet imager for astronomical transient studies

    Science.gov (United States)

    Mathew, Joice; Ambily, S.; Prakash, Ajin; Sarpotdar, Mayuresh; Nirmal, K.; Sreejith, A. G.; Safonova, Margarita; Murthy, Jayant; Brosch, Noah

    2018-03-01

    Though the ultraviolet (UV) domain plays a vital role in the studies of astronomical transient events, the UV time-domain sky remains largely unexplored. We have designed a wide-field UV imager that can be flown on a range of available platforms, such as high-altitude balloons, CubeSats, and larger space missions. The major scientific goals are the variability of astronomical sources, detection of transients such as supernovae, novae, tidal disruption events, and characterizing active galactic nuclei variability. The instrument has a 80 mm aperture with a circular field of view of 10.8 degrees, an angular resolution of ˜22 arcsec, and a 240 - 390 nm spectral observation window. The detector for the instrument is a Microchannel Plate (MCP)-based image intensifier with both photon counting and integration capabilities. An FPGA-based detector readout mechanism and real time data processing have been implemented. The imager is designed in such a way that its lightweight and compact nature are well fitted for the CubeSat dimensions. Here we present various design and developmental aspects of this UV wide-field transient explorer.

  11. The Pelindaba facility for calibrating radiometric field instruments

    International Nuclear Information System (INIS)

    Corner, B.; Toens, P.D.; Van As, D.; Vleggaar, C.M.; Richards, D.J.

    1979-04-01

    The tremendous upsurge in uranium exploration activity, experienced in recent years, has made the need for the standardisation and calibration of radiometric field instruments apparent. In order to fulfill this need, construction of a calibration facility at the National Nuclear Research Centre, Pelindaba, was commenced in 1972 and has since been extended according the the requirements of the mining industry. The facility currently comprises 11 surface standard sources suitable for the calibration, in terms of radio-element concentration, of portable scintillometers and spectrometers, and single uranium and thorium model-borehole sources which make possible the accurate calibration of borehole logging instruments both for gross-count and spectrometric surveys. Portable potassium, uranium and thorium sources are also available for the purposes of establishing airborne-spectrometer stripping ratios. The relevant physico-chemical properties of the standards are presented in this report and calibration procedures and data reduction techniques recommended. Examples are given of in situ measurements, both on surface and down-the-hole, which show that the derived calibration constants yield radiometric grades which are, on average, accurate to within 5% of the true radio-element concentrations. A secondary facility comprising single borehole- and surface-uranium sources has also been constructed in Beaufort West in the southern Karoo [af

  12. Free-field calibration of measurement microphones at high frequencies

    DEFF Research Database (Denmark)

    Barrera Figueroa, Salvador; Rasmussen, Knud; Torras Rosell, Antoni

    2011-01-01

    Measurement microphones are typically calibrated in a free field at frequencies up to 50 kHz. This is a sufficiently high frequency for the most of sound measurement applications related with noise assessment. However, other applications such as assessment of the noise emitted by ultrasound clean...

  13. Construction of calibration pads facility, Walker Field, Grand Junction, Colorado

    International Nuclear Information System (INIS)

    Ward, D.L.

    1978-08-01

    A gamma-ray spectrometer facility was completed at Walker Field Airport, Grand Junction, Colorado, in November 1976. This report describes spectrometers and their calibration, the construction of the spectrometer facility, the radioelement concentrations, procedures for using the facilites, and environmental considerations

  14. Calibration and validation of full-field techniques

    Directory of Open Access Journals (Sweden)

    Thalmann R.

    2010-06-01

    Full Text Available We review basic metrological terms related to the use of measurement equipment for verification of numerical model calculations. We address three challenges that are faced when performing measurements in experimental mechanics with optical techniques: the calibration of a measuring instrument that (i measures strain values, (ii provides full-field data, and (iii is dynamic.

  15. Intensity calibration and flat-field correction for fluorescence microscopes.

    Science.gov (United States)

    Model, Michael

    2014-04-01

    Standardization in fluorescence microscopy involves calibration of intensity in reproducible units and correction for spatial nonuniformity of illumination (flat-field or shading correction). Both goals can be achieved using concentrated solutions of fluorescent dyes. When a drop of a highly concentrated fluorescent dye is placed between a slide and a coverslip it produces a spatially uniform field, resistant to photobleaching and with reproducible quantum yield; it can be used as a brightness standard for wide-field and confocal microscopes. For wide-field microscopes, calibration can be further extended to absolute molecular units. This can be done by imaging a solution of known concentration and known depth; the latter can be prepared by placing a small spherical lens in a diluted solution of the same fluorophore that is used in the biological specimen. Copyright © 2014 John Wiley & Sons, Inc.

  16. Portable, Solid-State Light Sources for Field Radiometric Calibrations, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Various Earth Science fields require well-calibrated field radiometers whose calibrations must be tracked and verified in the field. NASA has long recognized...

  17. Portable, Solid-State Light Sources for Field Radiometric Calibrations Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Various Earth Science fields require well-calibrated field radiometers whose calibrations must be tracked and verified in the field. NASA has long recognized the...

  18. Air Kerma above environmental radiometric calibration facility for field equipment

    International Nuclear Information System (INIS)

    Conti, C.C.; Sachett, I.A.; Bertelli, L.; Lopes, R.T.

    2000-01-01

    The use of gamma ray spectrometers broadened the aims of gamma ray surveys, stead of measuring only the gross radiation, as was done with the GM tubes, it is now possible to be used for uranium exploration, geological mapping as an aid to the exploration of non radioactive ores like gold and tin, radiation background measurements to identify hot spots for radiation hazard evaluation and environmental monitoring of fallout from radiological and nuclear accidents. It became necessary to carefully and precisely calibrate the field equipment to be used to get all the information from such uses. There is an environmental radiometric calibration facility for field equipment, consisting of eight radioactive concrete sources, at the Institute of Radioprotection and Dosimetry - IRD (CNEN/Brazil). These sources are cylindrical with 3 m diameter, 0.5 m thick and weigh about 7.5 tons each. The amount and type of the radioactive material, 238 U and 232 Th and 40 K ores in secular radioactive equilibrium, added to the concrete to simulate rock outcrops, varies in order to obtain different gamma fields, varying in both energy and intensity. These different radiation fields were measured with a HPGe portable detector, specifically calibrated for spectrum stripping, and the air kerma energy distribution was determined for each concrete source and compared with the total air kerma calculated from the nuclide concentration and by others radiometric methods. (author)

  19. Simultaneous Electromagnetic Tracking and Calibration for Dynamic Field Distortion Compensation.

    Science.gov (United States)

    Sadjadi, Hossein; Hashtrudi-Zaad, Keyvan; Fichtinger, Gabor

    2016-08-01

    Electromagnetic (EM) tracking systems are highly susceptible to field distortion. The interference can cause measurement errors up to a few centimeters in clinical environments, which limits the reliability of these systems. Unless corrected for, this measurement error imperils the success of clinical procedures. It is therefore fundamental to dynamically calibrate EM tracking systems and compensate for measurement error caused by field distorting objects commonly present in clinical environments. We propose to combine a motion model with observations of redundant EM sensors and compensate for field distortions in real time. We employ a simultaneous localization and mapping technique to accurately estimate the pose of the tracked instrument while creating the field distortion map. We conducted experiments with six degrees-of-freedom motions in the presence of field distorting objects in research and clinical environments. We applied our approach to improve the EM tracking accuracy and compared our results to a conventional sensor fusion technique. Using our approach, the maximum tracking error was reduced by 67% for position measurements and by 64% for orientation measurements. Currently, clinical applications of EM trackers are hampered by the adverse distortion effects. Our approach introduces a novel method for dynamic field distortion compensation, independent from preoperative calibrations or external tracking devices, and enables reliable EM navigation for potential applications.

  20. Calibration of Field II using a Convex Ultrasound Transducer

    DEFF Research Database (Denmark)

    Bæk, David; Jensen, Jørgen Arendt; Willatzen, Morten

    2010-01-01

    of the transducer. For such simulations to reflect actual measured intensities and pressure levels, the transducer impulse response is to be known. This work presents the results of combining a modified form of a 1D linear transducer model originally suggested by Willatzen with the Field II program to calibrate...... BK-Medical (Herlev, Denmark). As input waveform for the Field model we measured the output voltage of the research amplifier, which peak voltage was limited to 31 V to avoid too high non linear effects. We measured the hydrophone output from three transducer front elements by averaging 40 shoot...

  1. Calibration and Application of the Field Instruments of a Fuel Test Loop

    International Nuclear Information System (INIS)

    Choi, Young-San; In, Won-Ho; Bae, Sang-Hoon; Kim, Sang-Jin; Jung, Hoan-Sung

    2007-01-01

    The Fuel Test Loop in HANARO is now in commissioning. The field instruments of the FTL were selected to secure stability and reliability of signals and they were self calibrated by the plant prior to the installation. The field instruments consist of thermometer, flowmeter, manometer, level meter and analyzer, and the standard measuring devices used for calibration were certified by the national calibration laboratory before use. This paper describes the calibration methods and results of field instruments for each parameter as well as any particulars and corrections identified during calibration. Also, it describes problems in using standard measuring devices employed for calibration

  2. Stability and conservation properties of transient field simulations using FIT

    Directory of Open Access Journals (Sweden)

    R. Schuhmann

    2003-01-01

    Full Text Available Time domain simulations for high-frequency applications are widely dominated by the leapfrog timeintegration scheme. Especially in combination with the spatial discretization approach of the Finite Integration Technique (FIT it leads to a highly efficient explicit simulation method, which in the special case of Cartesian grids can be regarded to be computationally equivalent to the Finite Difference Time Domain (FDTD algorithm. For stability reasons, however, the leapfrog method is restricted to a maximum stable time step by the well-known Courantcriterion, and can not be applied to most low-frequency applications. Recently, some alternative, unconditionally stable techniques have been proposed to overcome this limitation, including the Alternating Direction Implicit (ADI-method. We analyze such schemes using a transient modal decomposition of the electric fields. It is shown that stability alone is not sufficient to guarantee correct results, but additionally important conservation properties have to be met. Das Leapfrog-Verfahren ist ein weit verbreitetes Zeitintegrationsverfahren für transiente hochfrequente elektrodynamischer Felder. Kombiniert mit dem räumlichen Diskretisierungsansatz der Methode der Finiten Integration (FIT führt es zu einer sehr effizienten, expliziten Simulationsmethode, die im speziellen Fall kartesischer Rechengitter als äquivalent zur Finite Difference Time Domain (FDTD Methode anzusehen ist. Aus Stabilitätsgründen ist dabei die Zeitschrittweite durch das bekannte Courant-Kriterium begrenzt, so dass das Leapfrog- Verfahren für niederfrequente Probleme nicht sinnvoll angewendet werden kann. In den letzten Jahren wurden alternativ einige andere explizite oder “halb-implizite" Zeitbereichsverfahren vorgeschlagen, u.a. das “Alternating Direction Implicit" (ADI-Verfahren, die keiner Beschränkung des Zeitschritts aus Stabilitätsgründen unterliegen. Es zeigt sich aber, dass auch diese Methoden im

  3. In-orbit Calibration and Local Gravity Field Continuation Problem

    Science.gov (United States)

    Pail, R.

    In the course of the GOCE data processing many calibration tasks have to be per- formed. Towards the final part of the data stream, an absolute calibration and vali- dation of the gradiometer signal is required. One of the most promising methods for such an in-orbit calibration is the use of well-surveyed areas on the Earth's surface, where the accuracy of the known gravity field information is high enough to meet the mission requirements. For this purpose ground gravity data have to be continued upward to the GOCE satellite altitude of approximately 250 km, where a comparison with the actual observations is performed. Since there are only very few regions on the globe which fulfil the accuracy requirements, the corresponding gravity information is extremely locally bounded, dismissing standard global continuation strategies and simultaneously resulting in edge effect and windowing problems. Based on a synthetic gravity test environment ­ providing in addition to statistical er- ror information also absolute error estimates ­ several upward continuation methods, e.g. least squares collocation, equivalent source techniques using point masses or area density distributions defined on a spherical surface section, are described, assessed and compared. It turns out that all these strictly local approaches fail to work suffi- ciently accurate. Consequently, a combined solution strategy is proposed, supporting the high-quality gravity field information within the well-surveyed test area with a low accuracy, but globally defined Earth model. Under quite realistic assumptions the upward continuation is performed with rms errors of gravity gradients in the order of 1 mE. The most crucial limiting factor of this method is spectral leakage in the course of an adequate representation of the initial gravity information. We will particularly focus on the consequences and effects of the different approaches on the accuracy of GOCE level 1b and 2 products. In order to demonstrate

  4. Neurovascular and neurometabolic couplings in dynamic calibrated fMRI: transient oxidative neuroenergetics for block-design and event-related paradigms

    Directory of Open Access Journals (Sweden)

    D. S. Fahmeed Hyder

    2010-08-01

    Full Text Available Functional magnetic resonance imaging (fMRI with blood-oxygenation level dependent (BOLD contrast is an important tool for mapping brain activity. Interest in quantitative fMRI has renewed awareness in importance of oxidative neuroenergetics, as reflected by cerebral metabolic rate of oxygen consumption (CMRO2, for supporting brain function. Relationships between BOLD signal and the underlying neurophysiological parameters have been elucidated to allow determination of dynamic changes in CMRO2 by “calibrated fMRI”, which require multi-modal measurements of BOLD signal along with cerebral blood flow (CBF and volume (CBV. But how do CMRO2 changes, steady-state or transient, derived from calibrated fMRI compare with neural activity recordings of local field potential (LFP and/or multi-unit activity (MUA? Here we discuss recent findings primarily from animal studies which allow high magnetic fields studies for superior BOLD sensitivity as well as multi-modal CBV and CBF measurements in conjunction with LFP and MUA recordings from activated sites. A key observation is that while relationships between neural activity and sensory stimulus features range from linear to non-linear, associations between hyperemic components (BOLD, CBF, CBV and neural activity (LFP, MUA are almost always linear. More importantly, the results demonstrate good agreement between the changes in CMRO2 and independent measures of LFP or MUA. The tight neurovascular and neurometabolic couplings, observed from steady-state conditions to events separated by <200 ms, suggest rapid oxygen equilibration between blood and tissue pools and thus calibrated fMRI at high magnetic fields can provide high spatiotemporal mapping of CMRO2 changes.

  5. Transient full-field vibration measurement using spectroscopical stereo photogrammetry.

    Science.gov (United States)

    Yue, Kaiduan; Li, Zhongke; Zhang, Ming; Chen, Shan

    2010-12-20

    Contrasted with other vibration measurement methods, a novel spectroscopical photogrammetric approach is proposed. Two colored light filters and a CCD color camera are used to achieve the function of two traditional cameras. Then a new calibration method is presented. It focuses on the vibrating object rather than the camera and has the advantage of more accuracy than traditional camera calibration. The test results have shown an accuracy of 0.02 mm.

  6. Node-to-node field calibration of wireless distributed air pollution sensor network.

    Science.gov (United States)

    Kizel, Fadi; Etzion, Yael; Shafran-Nathan, Rakefet; Levy, Ilan; Fishbain, Barak; Bartonova, Alena; Broday, David M

    2018-02-01

    Low-cost air quality sensors offer high-resolution spatiotemporal measurements that can be used for air resources management and exposure estimation. Yet, such sensors require frequent calibration to provide reliable data, since even after a laboratory calibration they might not report correct values when they are deployed in the field, due to interference with other pollutants, as a result of sensitivity to environmental conditions and due to sensor aging and drift. Field calibration has been suggested as a means for overcoming these limitations, with the common strategy involving periodical collocations of the sensors at an air quality monitoring station. However, the cost and complexity involved in relocating numerous sensor nodes back and forth, and the loss of data during the repeated calibration periods make this strategy inefficient. This work examines an alternative approach, a node-to-node (N2N) calibration, where only one sensor in each chain is directly calibrated against the reference measurements and the rest of the sensors are calibrated sequentially one against the other while they are deployed and collocated in pairs. The calibration can be performed multiple times as a routine procedure. This procedure minimizes the total number of sensor relocations, and enables calibration while simultaneously collecting data at the deployment sites. We studied N2N chain calibration and the propagation of the calibration error analytically, computationally and experimentally. The in-situ N2N calibration is shown to be generic and applicable for different pollutants, sensing technologies, sensor platforms, chain lengths, and sensor order within the chain. In particular, we show that chain calibration of three nodes, each calibrated for a week, propagate calibration errors that are similar to those found in direct field calibration. Hence, N2N calibration is shown to be suitable for calibration of distributed sensor networks. Copyright © 2017 Elsevier Ltd. All

  7. Test research of consistency for amplitude calibration coefficients of pulsed electric field sensor

    International Nuclear Information System (INIS)

    Meng Cui; Guo Xiaoqiang; Chen Xiangyue; Nie Xin; Mao Congguang; Xiang Hui; Cheng Jianping

    2007-01-01

    The amplitude calibration of an electric field sensor is important in the measurement of electromagnetic pulse. In this paper, an arbitrary waveform generator (AWG) is used to generate multi-waveform electric field in the TEM cell and the dipole antenna pulsed electric field sensor is calibrated. In the frequency band of the sensor, the calibrated amplitude coefficients with different waveforms are identical. The coefficient derived from the TEM cell calibration system suits to the measurement of unknown electric field pulse within the frequency band. (authors)

  8. Research on calibration field designing for airborne position and orientation system

    Science.gov (United States)

    Fu, Jianhong

    2009-10-01

    To analyze the size and location of the calibration field and the stabilization of systematic error parameters, calibration field designing for airborne Position and Orientation System (POS) using actual photogrammetric data is discussed in this paper. The empirical results have verified that a region of 4 strips with 7 images in each strip is appropriate for use as a calibration field, whose location should be within 1° in longitude from the center of the project. If the equipment is changed, the POS must be recalibrated. Otherwise, the flight interval of the calibration field should not exceed 30 days.

  9. Electron transport in bulk GaN under ultrashort high-electric field transient

    Science.gov (United States)

    Korotyeyev, V. V.; Kochelap, V. A.; Kim, K. W.

    2011-10-01

    We have investigated nonlinear electron transport in GaN induced by high-electric field transients by analyzing the temporal dependence of the electron drift velocity and temperature. For picosecond transients, our calculations have established that the electron dynamics retain almost all the features of the steady-state velocity-field characteristics including the portion with negative differential conductivity. It was also found that transient currents in GaN samples give rise to the THz re-emission effect—radiation of electromagnetic field, temporal and spectral properties of which directly relate to the velocity-field characteristics of the sample. The results clearly indicate that existing methods for the generation of high-electric field transients and subpicosecond signal measurements can be applied to the characterization of hot electron transport at ultrahigh fields while avoiding Joule self-heating, hot phonon accumulation and other undesirable effects.

  10. KEGS Transients Discovered by a Pan-STARRS1 Search of the Kepler Campaign 16 Field

    Science.gov (United States)

    Smith, K. W.; Rest, A.; Tucker, B. E.; Garnavich, P. M.; Margheim, S.; Kasen, D.; Olling, R.; Shaya, E.; Narayan, G.; Villar, A.; Forster, F.; Mushotzky, R.; Zenteno, A.; James, D.; Smith, R. Chris; Dotson, J. L.; Barentsen, G.; Gully-Santiago, M.; Smartt, S. J.; Wright, D. E.; Huber, M.; Chambers, K. C.; Flewelling, H.; Willman, M.; Schultz, A.; Magnier, E.; Waters, C.; Bulger, J.; Wainscoat, R. J.

    2018-01-01

    We report the following transients discovered by Pan-STARRS1 during a targeted search of the Kepler Campaign 16 field as part of the K2 Extragalactic Survey (KEGS) for Transients (see http://www.mso.anu.edu.au/kegs/).

  11. Embolic and Nonembolic Transient Monocular Visual Field Loss: A Clinicopathologic Review

    NARCIS (Netherlands)

    Petzold, A.; Islam, N.; Hu, H.H.; Plant, G.T.

    2013-01-01

    Transient monocular blindness and amaurosis fugax are umbrella terms describing a range of patterns of transient monocular visual field loss (TMVL). The incidence rises from ≈1.5/100,000 in the third decade of life to ≈32/100,000 in the seventh decade of life. We review the vascular supply of the

  12. Reference radiation fields - Simulated workplace neutron fields - Part 2: Calibration fundamentals related to the basic quantities

    International Nuclear Information System (INIS)

    2008-01-01

    ISO 8529-1, ISO 8529-2 and ISO 8529-3, deal with the production, characterization and use of neutron fields for the calibration of personal dosimeters and area survey meters. These International Standards describe reference radiations with neutron energy spectra that are well defined and well suited for use in the calibration laboratory. However, the neutron spectra commonly encountered in routine radiation protection situations are, in many cases, quite different from those produced by the sources specified in the International Standards. Since personal neutron dosimeters, and to a lesser extent survey meters, are generally quite energy dependent in their dose equivalent response, it might not be possible to achieve an appropriate calibration for a device that is used in a workplace where the neutron energy spectrum and angular distribution differ significantly from those of the reference radiation used for calibration. ISO 8529-1 describes four radionuclide based neutron reference radiations in detail. This part of ISO 12789 includes the specification of neutron reference radiations that were developed to closely resemble radiation that is encountered in practice

  13. Do Magnetic Fields Drive High-Energy Explosive Transients?

    Science.gov (United States)

    Mundell, Carole

    2017-10-01

    I will review the current state-of-the-art in real-time, rapid response optical imaging and polarimetric followup of transient sources such as Gamma Ray Bursts. I will interpret current results within the context of the external shock model and present predictions for future mm- and cm-wave radio observatories. Recent observational results from new radio pilot studies will also be presented.

  14. An investigation of methods for free-field comparison calibration of measurement microphones

    DEFF Research Database (Denmark)

    Barrera-Figueroa, Salvador; Moreno Pescador, Guillermo; Jacobsen, Finn

    2010-01-01

    Free-field comparison calibration of measurement microphones requires that a calibrated reference microphone and a test microphone are exposed to the same sound pressure in a free field. The output voltages of the microphones can be measured either sequentially or simultaneously. The sequential m...

  15. Self-calibrating magnetic field diagnostics in beam emission spectroscopy

    International Nuclear Information System (INIS)

    Voslamber, D.

    1995-01-01

    Magnetic field diagnostics in tokamaks using the motional Stark effect in fast neutral beams have been based on two kinds of polarimetry which we call ''static'' and ''dynamic.'' A detailed analysis shows that static polarimetry presents a number of advantages over dynamic polarimetry, provided it is made complete in the sense that a sufficient number of polarization analyzers are installed and different parts of the spectrum are explored to yield full information on the set of unknowns inherent in the problem. A detailed scheme of complete static polarimetry is proposed, including the case where an in-vessel mirror with changing characteristics (coating by impurities) is placed in front of the optical detection system. The main merit of this scheme relies on the fact that it is self-calibrating with respect to both the characteristics of the mirror and the transmission of the different polarization channels, the latter item implying that it is uniquely based on relative measurements of spectra. Further advantages are a greater flexibility with regard to different kinds of diagnostics and the circumstance that the technical equipment is less involved. The above scheme is based on a detection system of moderate etendue exploiting a large spectral domain, which is the regime where static polarimetry usually operates. It is also possible, however, to work with large etendue and a small spectral domain, such as commonly adopted in dynamic polarimetry. Using such a regime, static polarimetry loses the advantages mentioned above but gains, as a new advantage, the benefit of a comparatively lower level of photon noise. copyright 1995 American Institute of Physics

  16. Application of transient magnetic field to the measurement of nuclear magnetic moments

    International Nuclear Information System (INIS)

    Ribas, R.V.

    1987-01-01

    A review on: the mechanism for producing transient magnetic field; techniques for measuring nuclear gyromagnetic factor; and some examples of recent measurements using this technique is presented. (M.C.K.) [pt

  17. Wide-field monitoring strategy for the study of fast optical transients

    Science.gov (United States)

    Beskin, Grigory; Bondar, Sergey; Karpov, Sergey; Guarnieri, Adriano; Bartolini, Corrado; Greco, Giuseppe; Piccioni, Adalberto

    2010-10-01

    We discuss the strategy of search for fast optical transients accompanying gamma-ray bursts by means of continuous monitoring of wide sky fields with high temporal resolution. We describe the design, performance and results of our cameras, FAVOR and TORTORA. Also we discuss the perspectives of this strategy and possible design of next-generation equipment for wide-field monitoring which will be able to detect optical transients and to study their color and polarization properties with high time resolution.

  18. Transient multilingual communities as a field of investigation

    DEFF Research Database (Denmark)

    Mortensen, Janus

    2017-01-01

    configurations where people from diverse sociocultural and linguistic backgrounds come together (physically or otherwise) for a limited period of time around a shared activity, such shared assumptions cannot be assumed to be in place a priori. By examining the social and linguistic processes that characterize...... transient communities, researchers are invited to analyze and theorize meaning-making in ways that hold the potential to enrich current work at the interface between sociolinguistics and linguistic anthropology. The article aims to take a first step in this direction by offering a definition...

  19. Calibration of optimal execution of financial transactions in the presence of transient market impact

    International Nuclear Information System (INIS)

    Busseti, Enzo; Lillo, Fabrizio

    2012-01-01

    Trading large volumes of a financial asset in order driven markets requires the use of algorithmic execution dividing the volume into many transactions in order to minimize costs due to market impact. A proper design of an optimal execution strategy strongly depends on a careful modeling of market impact, i.e. how the price reacts to trades. In this paper we consider a recently introduced market impact model (Bouchaud et al 2004 Quant. Finance, 4 176–90), which has the property of describing both the volume and the temporal dependence of price change due to trading. We show how this model can be used to describe price impact also in aggregated trade time or in real time. We then solve analytically and calibrate with real data the optimal execution problem both for risk neutral and for risk averse investors and we derive an efficient frontier of optimal execution. When we include spread costs the problem must be solved numerically and we show that the introduction of such costs regularizes the solution. (paper)

  20. EPIC Calibration/Validation Experiment Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Steven E [National Severe Storm Laboratory/NOAA; Chilson, Phillip [University of Oklahoma; Argrow, Brian [University of Colorado

    2017-03-15

    A field exercise involving several different kinds of Unmanned Aerial Systems (UAS) and supporting instrumentation systems provided by DOE/ARM and NOAA/NSSL was conducted at the ARM SGP site in Lamont, Oklahoma on 29-30 October 2016. This campaign was part of a larger National Oceanic and Atmospheric Administration (NOAA) UAS Program Office program awarded to the National Severe Storms Laboratory (NSSL). named Environmental Profiling and Initiation of Convection (EPIC). The EPIC Field Campaign (Test and Calibration/Validation) proposed to ARM was a test or “dry-run” for a follow-up campaign to be requested for spring/summer 2017. The EPIC project addresses NOAA’s objective to “evaluate options for UAS profiling of the lower atmosphere with applications for severe weather.” The project goal is to demonstrate that fixed-wing and rotary-wing small UAS have the combined potential to provide a unique observing system capable of providing detailed profiles of temperature, moisture, and winds within the atmospheric boundary layer (ABL) to help determine the potential for severe weather development. Specific project objectives are: 1) to develop small UAS capable of acquiring needed wind and thermodynamic profiles and transects of the ABL using one fixed-wing UAS operating in tandem with two different fixed rotary-wing UAS pairs; 2) adapt and test miniaturized, high-precision, and fast-response atmospheric sensors with high accuracy in strong winds characteristic of the pre-convective ABL in Oklahoma; 3) conduct targeted short-duration experiments at the ARM Southern Great Plains site in northern Oklahoma concurrently with a second site to be chosen in “real-time” from the Oklahoma Mesonet in coordination with the (National Weather Service (NWS)-Norman Forecast Office; and 4) gain valuable experience in pursuit of NOAA’s goals for determining the value of airborne, mobile observing systems for monitoring rapidly evolving high-impact severe weather

  1. Evaluation of the scattering contribution of neutron fields in a calibration lab

    International Nuclear Information System (INIS)

    Sathian, V.; Shobha, G.; Phadnis, U.V.; Shaha, V.V.; Kothai, G.

    2003-01-01

    Rem Counters are the area monitoring instrument for the neutron radiation. For proper measurement of the radiation field, the instrument used for the measurement has to be calibrated. Calibration is the process of finding the response of the detector using a standard field. In calibration, the linearity of response and the energy response of the monitors are studied. The standard field is produced using standard neutron sources. The field will have primary component and the scattered component. When Neutron monitors are being calibrated it is important to correct for scattering effects as scattering contribution in neutron field is as high as 40% unlike in case of a gamma field. In general the correction factor depends on the type of the source and monitor used and on the configuration of the calibration room. This correction factor has been evaluated for the calibration facility of BARC with different sources like 252 Cf, Am-α -Be, Am-α -B and Am- α -F recommended by ISO for calibration of neutron monitors. The scattering contribution in different cases have been evaluated by semi empirical method and shadow cone method. The measurement of the scattering component and its dependence on various parameters have been discussed in this paper. (author)

  2. Flow field topology of transient mixing driven by buoyancy

    Science.gov (United States)

    Duval, Walter M B.

    2004-01-01

    Transient mixing driven by buoyancy occurs through the birth of a symmetric Rayleigh-Taylor morphology (RTM) structure for large length scales. Beyond its critical bifurcation the RTM structure exhibits self-similarity and occurs on smaller and smaller length scales. The dynamics of the RTM structure, its nonlinear growth and internal collision, show that its genesis occurs from an explosive bifurcation which leads to the overlap of resonance regions in phase space. This event shows the coexistence of regular and chaotic regions in phase space which is corroborated with the existence of horseshoe maps. A measure of local chaos given by the topological entropy indicates that as the system evolves there is growth of uncertainty. Breakdown of the dissipative RTM structure occurs during the transition from explosive to catastrophic bifurcation; this event gives rise to annihilation of the separatrices which drives overlap of resonance regions. The global bifurcation of explosive and catastrophic events in phase space for the large length scale of the RTM structure serves as a template for which mixing occurs on smaller and smaller length scales. Copyright 2004 American Institute of Physics.

  3. Transient Inverse Calibration of Site-Wide Groundwater Model to Hanford Operational Impacts from 1943 to 1996--Alternative Conceptual Model Considering Interaction with Uppermost Basalt Confined Aquifer

    Energy Technology Data Exchange (ETDEWEB)

    Vermeul, Vincent R.; Cole, Charles R.; Bergeron, Marcel P.; Thorne, Paul D.; Wurstner, Signe K.

    2001-08-29

    The baseline three-dimensional transient inverse model for the estimation of site-wide scale flow parameters, including their uncertainties, using data on the transient behavior of the unconfined aquifer system over the entire historical period of Hanford operations, has been modified to account for the effects of basalt intercommunication between the Hanford unconfined aquifer and the underlying upper basalt confined aquifer. Both the baseline and alternative conceptual models (ACM-1) considered only the groundwater flow component and corresponding observational data in the 3-Dl transient inverse calibration efforts. Subsequent efforts will examine both groundwater flow and transport. Comparisons of goodness of fit measures and parameter estimation results for the ACM-1 transient inverse calibrated model with those from previous site-wide groundwater modeling efforts illustrate that the new 3-D transient inverse model approach will strengthen the technical defensibility of the final model(s) and provide the ability to incorporate uncertainty in predictions related to both conceptual model and parameter uncertainty. These results, however, indicate that additional improvements are required to the conceptual model framework. An investigation was initiated at the end of this basalt inverse modeling effort to determine whether facies-based zonation would improve specific yield parameter estimation results (ACM-2). A description of the justification and methodology to develop this zonation is discussed.

  4. Numerical calculation of transient field effects in quenching superconducting magnets

    CERN Document Server

    Schwerg, Nikolai; Russenschuck, Stephan

    2009-01-01

    The maximum obtainable magnetic induction of accelerator magnets, relying on normal conducting cables and iron poles, is limited to around 2 T because of ohmic losses and iron saturation. Using superconducting cables, and employing permeable materials merely to reduce the fringe field, this limit can be exceeded and fields of more than 10 T can be obtained. A quench denotes the sudden transition from the superconducting to the normal conducting state. The drastic increase in electrical resistivity causes ohmic heating. The dissipated heat yields a temperature rise in the coil and causes the quench to propagate. The resulting high voltages and excessive temperatures can result in an irreversible damage of the magnet - to the extend of a cable melt-down. The quench behavior of a magnet depends on numerous factors, e.g. the magnet design, the applied magnet protection measures, the external electrical network, electrical and thermal material properties, and induced eddy current losses. The analysis and optimizat...

  5. Strong field transient manipulation of electronic states and bands

    Directory of Open Access Journals (Sweden)

    I. Crassee

    2017-11-01

    Full Text Available In the present review, laser fields are so strong that they become part of the electronic potential, and sometimes even dominate the Coulomb contribution. This manipulation of atomic potentials and of the associated states and bands finds fascinating applications in gases and solids, both in the bulk and at the surface. We present some recent spectacular examples obtained within the NCCR MUST in Switzerland.

  6. Targets with thin ferromagnetic layers for transient field experiments

    International Nuclear Information System (INIS)

    Gallant, J.L.; Dmytrenko, P.

    1982-01-01

    Multilayer targets containing a central layer sufficiently thin so that all recoil nuclei can traverse it and subsequently stop in a suitable cubic environment have been prepared. Such targets are required in experiments making use of a magnetic field acting on an ion moving through a ferromagnetic material. The preparation and annealing of the ferromagnetic foils (iron and gadolinium) and the fabrication of the multilayer targets are described. (orig.)

  7. Transient simulation in interior flow field of lobe pump

    International Nuclear Information System (INIS)

    Li, Y B; Sang, X H; Shen, H; Jia, K; Meng, Q W

    2013-01-01

    The subject of this paper is mainly focused on the development and control of the double folium and trifolium lobe pump profiles by using the principle of involute engagement and use CAD to get an accurate involute profile. We use the standard k-ε turbulence model and PISO algorithm based on CFD software FLUENT. The dynamic mesh and UDF technology is introduced to simulate the interior flow field inside a lobe pump, and the variation of interior flow field under the condition of the lobe rotating is analyzed. We also analyse the influence produced by the difference in lobes, and then reveal which lobe is best. The results show that dynamic variation of the interior flow field is easily obtained by dynamic mesh technology and the distribution of its pressure and velocity. Because of the small gaps existing between the rotors and pump case, the higher pressure area will flow into the lower area though the small gaps which cause the working area keep with higher pressure all the time. Both of the double folium and trifolium are existing the vortex during the rotting time and its position, size and shape changes all the time. The vortexes even disappear in a circle period and there are more vortexes in double folium lobe pump. The velocity and pressure pulsation of trifolium pump are lower than that of the double folium

  8. Transient temperature fields in functionally graded materials with different shapes under convective boundary conditions

    Science.gov (United States)

    Zhao, J.; Ai, X.; Li, Y. Z.

    2007-10-01

    This paper presents analyses of the transient temperature fields in an infinite plate, an infinite solid cylinder and a solid sphere made of functionally graded materials (FGMs) under convective boundary conditions. The composition and the thermo-physical properties of the infinite FGM plate, the infinite FGM solid cylinder and the FGM solid sphere are of planar symmetric, axially symmetric and spherically symmetric distributions, respectively. The analytical formulae of the one-dimensional transient temperature fields for the three FGM solids are obtained respectively by using the separation-of-variables method and the variable substitution method. Numerical results reveal that the transient temperature fields of the FGM components exhibit similar shape effect to that of homogeneous components. The present work provides valuable basis for the investigation of the thermal shock resistance of FGMs with various shapes.

  9. Simulation and experiment on transient temperature field of a magnetorheological clutch for vehicle application

    Science.gov (United States)

    Wang, Daoming; Zi, Bin; Zeng, Yishan; Qian, Sen; Qian, Jun

    2017-09-01

    The unpredictable power fluctuation due to severe heating has been demonstrated to be a critical bottleneck technique restricting the application of magnetorheological (MR) clutches in vehicle industry. The aim of this study is to introduce a low-cost transient simulation approach for evaluating the heat build-up and dissipation of a liquid-cooled MR vehicle clutch. This paper firstly performs a detailed description of the developed MR clutch in terms of operation principle, material selection and configuration. Subsequently, transient temperature simulations are carried out under various conditions to reveal the distribution, variation and impact factors of the transient temperature field. Following these, an experimental setup is established for heating tests of the clutch prototype. Experimental results concerning the temperature variation of magnetorheological fluids and the maximum allowable transient slip power of the clutch prototype are presented, which in return verify the correctness and feasibility of the simulation.

  10. Soil specific re-calibration of water content sensors for a field-scale sensor network

    Science.gov (United States)

    Gasch, Caley K.; Brown, David J.; Anderson, Todd; Brooks, Erin S.; Yourek, Matt A.

    2015-04-01

    Obtaining accurate soil moisture data from a sensor network requires sensor calibration. Soil moisture sensors are factory calibrated, but multiple site specific factors may contribute to sensor inaccuracies. Thus, sensors should be calibrated for the specific soil type and conditions in which they will be installed. Lab calibration of a large number of sensors prior to installation in a heterogeneous setting may not be feasible, and it may not reflect the actual performance of the installed sensor. We investigated a multi-step approach to retroactively re-calibrate sensor water content data from the dielectric permittivity readings obtained by sensors in the field. We used water content data collected since 2009 from a sensor network installed at 42 locations and 5 depths (210 sensors total) within the 37-ha Cook Agronomy Farm with highly variable soils located in the Palouse region of the Northwest United States. First, volumetric water content was calculated from sensor dielectric readings using three equations: (1) a factory calibration using the Topp equation; (2) a custom calibration obtained empirically from an instrumented soil in the field; and (3) a hybrid equation that combines the Topp and custom equations. Second, we used soil physical properties (particle size and bulk density) and pedotransfer functions to estimate water content at saturation, field capacity, and wilting point for each installation location and depth. We also extracted the same reference points from the sensor readings, when available. Using these reference points, we re-scaled the sensor readings, such that water content was restricted to the range of values that we would expect given the physical properties of the soil. The re-calibration accuracy was assessed with volumetric water content measurements obtained from field-sampled cores taken on multiple dates. In general, the re-calibration was most accurate when all three reference points (saturation, field capacity, and wilting

  11. Very high-accuracy calibration of radiation pattern and gain of a near-field probe

    DEFF Research Database (Denmark)

    Pivnenko, Sergey; Nielsen, Jeppe Majlund; Breinbjerg, Olav

    2014-01-01

    In this paper, very high-accuracy calibration of the radiation pattern and gain of a near-field probe is described. An open-ended waveguide near-field probe has been used in a recent measurement of the C-band Synthetic Aperture Radar (SAR) Antenna Subsystem for the Sentinel 1 mission of the Europ......In this paper, very high-accuracy calibration of the radiation pattern and gain of a near-field probe is described. An open-ended waveguide near-field probe has been used in a recent measurement of the C-band Synthetic Aperture Radar (SAR) Antenna Subsystem for the Sentinel 1 mission...

  12. Calibration of a spectrometry multisphere system for neutron fields

    International Nuclear Information System (INIS)

    Carelli, Jorge L.; Cruzate, Juan A.; Papadopulos, Susana B.; Gregori, Beatriz N.; Ciocci Brazzano, Ligia

    2005-01-01

    In this work it is presented the calibration of the neutrons spectrometric system of the Nuclear Regulatory Authority (ARN) in the Institut de Protection et Sure te Nucleaires (Ipn), Labourite dadaist et de Recherche s en Dosimetric Extern e, Cadarache, France. The multisphere system is composed of 9 polyethylene spheres of high density, with a gaseous detector of 3 He and associate electronics. The matrix of energy response to the system neutrons was obtained applying the MCNPX code for the range of energies between thermal and 100 MeV with cross sections taken from library ENDF/B-VI. The neutron spectra of the multisphere system were obtained applying the deconvolution code LOUHI82. The relationship between the theoretical responses and the experiences obtained with the AmBe and 252 Cf sources are also presented in this work [es

  13. Numerical calculation of transient field effects in quenching superconducting magnets

    Energy Technology Data Exchange (ETDEWEB)

    Schwerg, Juljan Nikolai

    2010-07-01

    The maximum obtainable magnetic induction of accelerator magnets, relying on normal conducting cables and iron poles, is limited to around 2 T because of ohmic losses and iron saturation. Using superconducting cables, and employing permeable materials merely to reduce the fringe field, this limit can be exceeded and fields of more than 10 T can be obtained. A quench denotes the sudden transition from the superconducting to the normal conducting state. The drastic increase in electrical resistivity causes ohmic heating. The dissipated heat yields a temperature rise in the coil and causes the quench to propagate. The resulting high voltages and excessive temperatures can result in an irreversible damage of the magnet - to the extend of a cable melt-down. The quench behavior of a magnet depends on numerous factors, e.g. the magnet design, the applied magnet protection measures, the external electrical network, electrical and thermal material properties, and induced eddy current losses. The analysis and optimization of the quench behavior is an integral part of the construction of any superconducting magnet. The dissertation is divided in three complementary parts, i.e. the thesis, the detailed treatment and the appendix. In the thesis the quench process in superconducting accelerator magnets is studied. At first, we give an overview over features of accelerator magnets and physical phenomena occurring during a quench. For all relevant effects numerical models are introduced and adapted. The different models are weakly coupled in the quench algorithm and solved by means of an adaptive time-stepping method. This allows to resolve the variation of material properties as well as time constants. The quench model is validated by means of measurement data from magnets of the Large Hadron Collider. In a second step, we show results of protection studies for future accelerator magnets. The thesis ends with a summary of the results and a critical outlook on aspects which could

  14. Field calibration and validation of remote-sensing surveys

    Science.gov (United States)

    Pe'eri, Shachak; McLeod, Andy; Lavoie, Paul; Ackerman, Seth D.; Gardner, James; Parrish, Christopher

    2013-01-01

    The Optical Collection Suite (OCS) is a ground-truth sampling system designed to perform in situ measurements that help calibrate and validate optical remote-sensing and swath-sonar surveys for mapping and monitoring coastal ecosystems and ocean planning. The OCS system enables researchers to collect underwater imagery with real-time feedback, measure the spectral response, and quantify the water clarity with simple and relatively inexpensive instruments that can be hand-deployed from a small vessel. This article reviews the design and performance of the system, based on operational and logistical considerations, as well as the data requirements to support a number of coastal science and management projects. The OCS system has been operational since 2009 and has been used in several ground-truth missions that overlapped with airborne lidar bathymetry (ALB), hyperspectral imagery (HSI), and swath-sonar bathymetric surveys in the Gulf of Maine, southwest Alaska, and the US Virgin Islands (USVI). Research projects that have used the system include a comparison of backscatter intensity derived from acoustic (multibeam/interferometric sonars) versus active optical (ALB) sensors, ALB bottom detection, and seafloor characterization using HSI and ALB.

  15. The use of single-crystal iron frames in transient field measurements, ch. 3

    International Nuclear Information System (INIS)

    Zalm, P.C.

    1977-01-01

    An experimental technique for measuring g-factors of short-lived states (tausub(m)=0.1-10 ps) is discussed. In this method, one uses the strong hyperfine interaction caused by the transient magnetic field. The transient field method dates from 1967. A gain in measuring time of at least a factor of four is shown to be obtained by the use of a single crystal iron frame as a ferromagnetic target backing in which the excited nuclei, formed in a nuclear reaction, recoil. Such frames can be fully magnetized with low external fields as shown by magneto-optical Kerr-effect measurements. The important improvement is that the associated magnetic fringing field near the target is negligible. This is in contrast to the conventional set-up in which strong external fields, with corresponding large disturbing fringing fields, were necessary. The single-crystal set-up is compared to the conventional set-up in several transient field experiments and proves to be successful

  16. Ray calibration and phase mapping for structured-light-field 3D reconstruction.

    Science.gov (United States)

    Cai, Zewei; Liu, Xiaoli; Peng, Xiang; Gao, Bruce Z

    2018-03-19

    In previous work, we presented a structured light field (SLF) method combining light field imaging with structured illumination to perform multi-view depth measurement. However, the previous work just accomplishes depth rather than 3D reconstruction. In this paper, we propose a novel active method involving ray calibration and phase mapping, to achieve SLF 3D reconstruction. We performed the ray calibration for the first time to determine each light field ray with metric spatio-angular parameters, making the SLF realize multi-view 3D reconstruction. Based on the ray parametric equation, we further derived the phase mapping in the SLF that spatial coordinates can be directly mapped from phase. A flexible calibration strategy was correspondently designed to determine mapping coefficients for each light field ray, achieving high-efficiency SLF 3D reconstruction. Experimental results demonstrated that the proposed method was suitable for high-efficiency multi-view 3D reconstruction in the SLF.

  17. Transient calibration of a groundwater-flow model of Chimacum Creek Basin and vicinity, Jefferson County, Washington: a supplement to Scientific Investigations Report 2013-5160

    Science.gov (United States)

    Jones, Joseph L.; Johnson, Kenneth H.

    2013-01-01

    A steady-state groundwater-flow model described in Scientific Investigations Report 2013-5160, ”Numerical Simulation of the Groundwater-Flow System in Chimacum Creek Basin and Vicinity, Jefferson County, Washington” was developed to evaluate potential future impacts of growth and of water-management strategies on water resources in the Chimacum Creek Basin. This supplement to that report describes the unsuccessful attempt to perform a calibration to transient conditions on the model. The modeled area is about 64 square miles on the Olympic Peninsula in northeastern Jefferson County, Washington. The geologic setting for the model area is that of unconsolidated deposits of glacial and interglacial origin typical of the Puget Sound Lowlands. The hydrogeologic units representing aquifers are Upper Aquifer (UA, roughly corresponding to recessional outwash) and Lower Aquifer (LA, roughly corresponding to advance outwash). Recharge from precipitation is the dominant source of water to the aquifer system; discharge is primarily to marine waters below sea level and to Chimacum Creek and its tributaries. The model is comprised of a grid of 245 columns and 313 rows; cells are a uniform 200 feet per side. There are six model layers, each representing one hydrogeologic unit: (1) Upper Confining unit (UC); (2) Upper Aquifer unit (UA); (3) Middle Confining unit (MC); (4) Lower Aquifer unit (LA); (5) Lower Confining unit (LC); and (6) Bedrock unit (OE). The transient simulation period (October 1994–September 2009) was divided into 180 monthly stress periods to represent temporal variations in recharge, discharge, and storage. An attempt to calibrate the model to transient conditions was unsuccessful due to instabilities stemming from oscillations in groundwater discharge to and recharge from streamflow in Chimacum Creek. The model as calibrated to transient conditions has mean residuals and standard errors of 0.06 ft ±0.45 feet for groundwater levels and 0.48 ± 0.06 cubic

  18. Transient growth of a Vlasov plasma in a weakly inhomogeneous magnetic field

    KAUST Repository

    Ratushnaya, Valeria

    2016-12-17

    We investigate the stability properties of a collisionless Vlasov plasma in a weakly inhomogeneous magnetic field using non-modal stability analysis. This is an important topic in a physics of tokamak plasma rich in various types of instabilities. We consider a thin tokamak plasma in a Maxwellian equilibrium, subjected to a small arbitrary perturbation. Within the framework of kinetic theory, we demonstrate the emergence of short time scale algebraic instabilities evolving in a stable magnetized plasma. We show that the linearized governing operator (Vlasov operator) is non-normal leading to the transient growth of the perturbations on the time scale of several plasma periods that is subsequently followed by Landau damping. We calculate the first-order distribution function and the electric field and study the dependence of the transient growth characteristics on the magnetic field strength and perturbation parameters of the system. We compare our results with uniformly magnetized plasma and field-free Vlasov plasma.

  19. Tomographic reconstruction of transient acoustic fields recorded by pulsed TV holography.

    Science.gov (United States)

    Gren, P; Schedin, S; Li, X

    1998-02-10

    Pulsed TV holography combined with computerized tomography (CT) are used to evaluate the three-dimensional distribution of transient acoustic fields in air. Experiments are performed with an electrical discharge between two electrodes as the sound source. Holograms from several directions of the acoustic field are recorded directly onto a CCD detector by use of a double-pulsed ruby laser as the light source. Phase maps, representing projections of the acoustic field, are evaluated quantitatively from the recorded holograms. The projections are used for the CT reconstruction to evaluate the pressure-field distribution in any cross section of the measured volume of air.

  20. Study on Transient Properties of Levitated Object in Near-Field Acoustic Levitation

    Science.gov (United States)

    Jia, Bing; Chen, Chao; Zhao, Chun-Sheng

    2011-12-01

    A new approach to the study on the transient properties of the levitated object in near-field acoustic levitation (NFAL) is presented. In this article, the transient response characteristics, including the levitated height of an object with radius of 24 mm and thickness of 5 mm, the radial velocity and pressure difference of gas at the boundary of clearance between the levitated object and radiating surface (squeeze film), is calculated according to several velocity amplitudes of radiating surface. First, the basic equations in fluid areas on Arbitrary Lagrange—Euler (ALE) form are numerically solved by using streamline upwind petrov galerkin (SUPG) finite elements method. Second, the formed algebraic equations and solid control equations are solved by using synchronous alternating method to gain the transient messages of the levitated object and gas in the squeeze film. Through theoretical and numerical analyses, it is found that there is a oscillation time in the transient process and that the response time does not simply increase with the increasing of velocity amplitudes of radiating surface. More investigations in this paper are helpful for the understanding of the transient properties of levitated object in NFAL, which are in favor of enhancing stabilities and responsiveness of levitated object.

  1. Assessment of a dynamic reference material for calibration of full-field measurement systems

    Science.gov (United States)

    Hack, Erwin; Feligiotti, Mara; Davighi, Andrea; Whelan, Maurice; Wang, Weizhuo V.; Patterson, Eann A.

    2012-10-01

    For holography and speckle interferometry the calibration of the sensitivity is a must, because illumination and observation directions vary across the field of view. A numerical estimate or a static calibration using rigid body motions is standard, and reference materials exist for static strain calibration. Recently, reference materials for the dynamic calibration of optical instruments of displacement and strain measurement were designed and prototypes were manufactured in the European FP7 project ADVISE. We review the properties of the reference material and the concept of traceability for the field of displacement values by using a calibrated single point transducer. The mode shape is assessed using out-of-plane DSPI, Finite Element Analysis as well as analytic solutions of the plate vibration. We present measurements using stroboscopic DSPI on the reference material under acoustic excitation and compare the measured mode shapes to the ones predicted by FE analysis. We apply different comparison methodologies based on point-by-point deviations and on decomposition of the mode shapes into a set of orthogonal basis functions. The latter method is well suited to assess stability and reproducibility of a mode shape. Finally, the deviations are used to estimate the reference material uncertainty which is an essential parameter for determining the calibration uncertainty. Uncertainty contributions of the DSPI set-up are taken into account. To conclude, the application area and limitations of the reference material are discussed.

  2. Application of microwave cell system in calibration of electromagnetic field meters

    International Nuclear Information System (INIS)

    Abu-Kassem, I.

    2012-11-01

    The aim of this work is to improve radiation measurements of electromagnetic field (EMF) through realizing tests and calibrations of measurement devices by intercomparison within the microwaves (MW) range according to EMF wave cell properties. Actually, the calibration facility in electromagnetic field is not available in Syria; therefore, realizing an experimental system for electromagnetic field radiometer calibration is very important at national level. This study showed the possibility of using EMF wave cell in intercomparison of electromagnetic field radiometers in order to achieve a direct calibration via standard radiometer. The EMF wave cell properties were studied and the homogeneity of its EMF was tested using the EF Cube probe. Results showed that the field homogeneity inside the cell is good and the variation of electric field strength, within the comparison position, is less than 10% of measured values. It was recognized that the probe form and dimensions influence the comparison results; and measurement results showed that it's possible to achieve comparison in the working domain of EMF wave cell (10 - 3000 MHz) with a relative deviation of result values between 10% and 30% according to the measurement device and frequency range. Development of comparison process in order to obtain accurate results needs to improve mechanical supports of tested probes and to introduce a correction factor related to studied probe form and dimensions. From another side, it is better to carry out measurements at frequencies around the central frequency, and not close to frequency range borders, of the EMF wave cell working frequency domain. (author)

  3. Optical Mass Displacement Tracking: A simplified field calibration method for the electro-mechanical seismometer.

    Science.gov (United States)

    Burk, D. R.; Mackey, K. G.; Hartse, H. E.

    2016-12-01

    We have developed a simplified field calibration method for use in seismic networks that still employ the classical electro-mechanical seismometer. Smaller networks may not always have the financial capability to purchase and operate modern, state of the art equipment. Therefore these networks generally operate a modern, low-cost digitizer that is paired to an existing electro-mechanical seismometer. These systems are typically poorly calibrated. Calibration of the station is difficult to estimate because coil loading, digitizer input impedance, and amplifier gain differences vary by station and digitizer model. Therefore, it is necessary to calibrate the station channel as a complete system to take into account all components from instrument, to amplifier, to even the digitizer. Routine calibrations at the smaller networks are not always consistent, because existing calibration techniques require either specialized equipment or significant technical expertise. To improve station data quality at the small network, we developed a calibration method that utilizes open source software and a commonly available laser position sensor. Using a signal generator and a small excitation coil, we force the mass of the instrument to oscillate at various frequencies across its operating range. We then compare the channel voltage output to the laser-measured mass displacement to determine the instrument voltage sensitivity at each frequency point. Using the standard equations of forced motion, a representation of the calibration curve as a function of voltage per unit of ground velocity is calculated. A computer algorithm optimizes the curve and then translates the instrument response into a Seismic Analysis Code (SAC) poles & zeros format. Results have been demonstrated to fall within a few percent of a standard laboratory calibration. This method is an effective and affordable option for networks that employ electro-mechanical seismometers, and it is currently being deployed in

  4. A new calibration method for tri-axial field sensors in strap-down navigation systems

    International Nuclear Information System (INIS)

    Li, Xiang; Li, Zhi

    2012-01-01

    This paper presents a novel calibration method for tri-axial field sensors, such as magnetometers and accelerometers, in strap-down navigation systems. Strap-down tri-axial sensors have been widely used as they have the advantages of small size and low cost, but they need to be calibrated in order to ensure their accuracy. The most commonly used calibration method for a tri-axial field sensor is based on ellipsoid fitting, which has no requirement for external references. However, the self-calibration based on ellipsoid fitting is unable to determine and compensate the mutual misalignment between different sensors in a multi-sensor system. Therefore, a novel calibration method that employs the invariance of the dot product of two constant vectors is introduced in this paper. The proposed method, which is named dot product invariance method, brings a complete solution for the error model of tri-axial field sensors, and can solve the problem of alignment in a multi-sensor system. Its effectiveness and superiority over the ellipsoid fitting method are illustrated by numerical simulations, and its application on a digital magnetic compass shows significant enhancement of the heading accuracy. (paper)

  5. Calibration of extremity dosemeters for gamma radiation fields

    International Nuclear Information System (INIS)

    Papadopulos, S.B.; Gregori, B.N.; Cruzate, J.A.

    1998-01-01

    In this work the kerma conversion factor are free in air, dose equivalent H(d,0 ) are presented, they were obtained theoretical and experimentally in finger and arm for gamma radiation fields. Extremity dosemeters put on surface finger and arm phantom have been irradiated. The finger phantom is a solid cylinder of PMMA polymethylmethacrylate 19 mm diameter and 300 mm height. The arm phantom is a 73 mm external diameter cylinder with PMMA walls 2.5 mm thick fill with water and 300 mm height. The radiation sources were cobalt 60 and cesium 137 from the Regional Center of Reference (CRR) of the National Commission of Atomic Energy (CNEA) and the Nuclear Regulatory Authority (ARN). Also in ISO wide X ray spectra W60, W110 and W200 have been irradiated. The results obtained show a good correlation with those published, they have a difference less than 7%. The factors will be applied to the evaluation of the equivalent doses coming from workers whose main irradiated zone is in the hands. (author)

  6. CALIBRE and CRYSTAL: Near-field and geosphere models for Project-90

    International Nuclear Information System (INIS)

    Robinson, P.C.; Worgan, K.J.; Shaw, W.T.; Wingefors, S.

    1991-01-01

    A new near-field model (CALIBRE) and a fractured geosphere model (CRYSTAL) have been developed in support of the Swedish Nuclear Power Inspectorate's Project-90 safety assessment of a reference repository for spent nuclear fuel. CALIBRE calculates in two dimensions the twin problems of oxidant and radionuclide migration through a bentonite buffer and fractured host rock, with redox front formation and precipitation of nuclides at the redox front. The output from CALIBRE can be input directly to the CRYSTAL code, which is a fast, one-dimensional contaminant transport model of a fractured rock geosphere. This paper describes the main features of the models and illustrates how certain processes can have a significant impact on the flux of radionuclides emerging from the near field to the geosphere, and from the geosphere to the biosphere

  7. INVESTIGATION OF PHOTOTRIANGULATION ACCURACY WITH USING OF VARIOUS TECHNIQUES LABORATORY AND FIELD CALIBRATION

    Directory of Open Access Journals (Sweden)

    A. G. Chibunichev

    2016-10-01

    Full Text Available Nowadays, aerial survey technology using aerial systems based on unmanned aerial vehicles (UAVs becomes more popular. UAVs physically can not carry professional aerocameras. Consumer digital cameras are used instead. Such cameras usually have rolling, lamellar or global shutter. Quite often manufacturers and users of such aerial systems do not use camera calibration. In this case self-calibration techniques are used. However such approach is not confirmed by extensive theoretical and practical research. In this paper we compare results of phototriangulation based on laboratory, test-field or self-calibration. For investigations we use Zaoksky test area as an experimental field provided dense network of target and natural control points. Racurs PHOTOMOD and Agisoft PhotoScan software were used in evaluation. The results of investigations, conclusions and practical recommendations are presented in this article.

  8. Modeling transducer impulse responses for predicting calibrated pressure pulses with the ultrasound simulation program Field II

    DEFF Research Database (Denmark)

    Bæk, David; Jensen, Jørgen Arendt; Willatzen, Morten

    2010-01-01

    FIELD II is a simulation software capable of predicting the field pressure in front of transducers having any complicated geometry. A calibrated prediction with this program is, however, dependent on an exact voltage-to-surface acceleration impulse response of the transducer. Such impulse response...... is not calculated by FIELD II. This work investigates the usability of combining a one-dimensional multilayer transducer modeling principle with the FIELD II software. Multilayer here refers to a transducer composed of several material layers. Measurements of pressure and current from Pz27 piezoceramic disks...... transducer model and the FIELD II software in combination give good agreement with measurements....

  9. Spin exchange between ion probes and localized moments in ferromagnets as the origin of transient fields

    International Nuclear Information System (INIS)

    Hagelberg, F.; Das, T.P.; Speidel, K.

    1993-01-01

    The transient field phenomenon has been ascribed to a polarization transfer between the electrons of the ionic projectiles and the surplus of majority spin electrons of the ferromagnetic host over the minority spin electrons. Earlier attempts to explain this crucial process failed to account for the order of magnitude of the experimentally observed transient field strengths. A recent model which proposes spin exchange scattering between bound projectile electrons and quasifree host electrons as the mechanism of polarization transfer arrives at the correct orders of magnitude but is in conflict with the weak velocity dependence of the experimental polarization, exhibiting a strongly decreasing behavior with increasing velocity. The new model presented here proposes spin exchange between the ionic shell and localized electrons of the ferromagnet as a more adequate approach to the problem. It is shown that calculations involving hydrogenlike ions explain the size of the experimentally observed polarization effects as well as their velocity dependence for various ion probes traversing thin iron foils

  10. Ground-based complex for detection and investigation of fast optical transients in wide field

    Science.gov (United States)

    Molinari, Emilio; Beskin, Grigory; Bondar, Sergey; Karpov, Sergey; Plokhotnichenko, Vladimir; de-Bur, Vjacheslav; Greco, Guiseppe; Bartolini, Corrado; Guarnieri, Adriano; Piccioni, Adalberto

    2008-07-01

    To study short stochastic optical flares of different objects (GRBs, SNs, etc) of unknown localizations as well as NEOs it is necessary to monitor large regions of sky with high time resolution. We developed a system which consists of wide-field camera (FOW is 400-600 sq.deg.) using TV-CCD with time resolution of 0.13 s to record and classify optical transients, and a fast robotic telescope aimed to perform their spectroscopic and photometric investigation just after detection. Such two telescope complex TORTOREM combining wide-field camera TORTORA and robotic telescope REM operated from May 2006 at La Silla ESO observatory. Some results of its operation, including first fast time resolution study of optical transient accompanying GRB and discovery of its fine time structure, are presented. Prospects for improving the complex efficiency are given.

  11. Transient field behavior in an electromagnetic pulse from neutral-beam reflection

    International Nuclear Information System (INIS)

    Strobel, G.L.

    1990-01-01

    A neutral beam of electrons and positrons catches up to an electromagnetic pulse moving in a medium with refractive index n. The neutral beam is reflected and deposits some of its energy in a current region in the tail of the pulse. The location, size, and shape of the transient-induced electric fields in the current region are modeled using current densities from uniform averaged fields. The electric field in the current region is predicted to rise linearly with time, with a doubling time determined by the beam parameters and the initial local electromagnetic field. A coordinate frame comoving with the pulse is used to determine the extent of and conditions within the current region. In this comoving frame the Lorentz-transformed electric field is zero, but there is an enhanced Lorentz-transformed magnetic field. The extent of the current region is found from the radius of the semicircular charged-particle orbits in the comoving frame

  12. Transient nature of negative capacitance in ferroelectric field-effect transistors

    Science.gov (United States)

    Ng, Kwok; Hillenius, Steven J.; Gruverman, Alexei

    2017-10-01

    Negative capacitance (NC) in ferroelectrics, which stems from the imperfect screening of polarization, is considered a viable approach to lower voltage operation in the field-effect transistors (FETs) used in logic switches. In this paper, we discuss the implications of the transient nature of negative capacitance for its practical application. It is suggested that the NC effect needs to be characterized at the proper time scale to identify the type of circuits where functional NC-FETs can be used effectively.

  13. A time-selective technique for free-field reciprocity calibration of condenser microphones

    DEFF Research Database (Denmark)

    Barrera Figueroa, Salvador; Rasmussen, Knud; Jacobsen, Finn

    2003-01-01

    In normal practice, microphones are calibrated in a closed coupler where the sound pressure is uniformly distributed over the diaphragm. Alternatively, microphones can be placed in a free field, although in that case the distribution of sound pressure over the diaphragm will change as a result...

  14. Pulsed electromagnetic fields promote the proliferation and differentiation of osteoblasts by reinforcing intracellular calcium transients.

    Science.gov (United States)

    Tong, Jie; Sun, Lijun; Zhu, Bin; Fan, Yun; Ma, Xingfeng; Yu, Liyin; Zhang, Jianbao

    2017-10-01

    Pulsed electromagnetic fields (PEMF) can be used to treat bone-related diseases, but the underlying mechanism remains unclear, especially the process by which PEMFs initiate biological effects. In this study, we demonstrated the effects of PEMF on proliferation and differentiation of osteoblasts using the model of calcium transients induced by high extracellular calcium. Our results showed that PEMF can increase both the percentage of responding cells and amplitude of intracellular calcium transients induced by high extracellular calcium stimulation. Compared with corresponding extracellular calcium levels, PEMF stimulation increased proliferation and differentiation of osteoblasts and related gene expressions, such as insulin-like growth factor 1 (IGF-1), alkaline phosphatase (ALP), runt-related transcription factor 2 (Runx2), and osteocalcin (OCN), which can be completely abolished by BAPTA-AM. Moreover, PEMF did not affect proliferation and differentiation of osteoblasts if no intracellular calcium transient was present in osteoblasts during PEMF exposure. Our results revealed that PEMF affects osteoblast proliferation and differentiation through enhanced intracellular calcium transients, which provided a cue to treat bone-related diseases with PEMF. Bioelectromagnetics. 38:541-549, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  15. Transient Features in Nanosecond Pulsed Electric Fields Differentially Modulate Mitochondria and Viability

    Science.gov (United States)

    Beebe, Stephen J.; Chen, Yeong-Jer; Sain, Nova M.; Schoenbach, Karl H.; Xiao, Shu

    2012-01-01

    It is hypothesized that high frequency components of nanosecond pulsed electric fields (nsPEFs), determined by transient pulse features, are important for maximizing electric field interactions with intracellular structures. For monopolar square wave pulses, these transient features are determined by the rapid rise and fall of the pulsed electric fields. To determine effects on mitochondria membranes and plasma membranes, N1-S1 hepatocellular carcinoma cells were exposed to single 600 ns pulses with varying electric fields (0–80 kV/cm) and short (15 ns) or long (150 ns) rise and fall times. Plasma membrane effects were evaluated using Fluo-4 to determine calcium influx, the only measurable source of increases in intracellular calcium. Mitochondria membrane effects were evaluated using tetramethylrhodamine ethyl ester (TMRE) to determine mitochondria membrane potentials (ΔΨm). Single pulses with short rise and fall times caused electric field-dependent increases in calcium influx, dissipation of ΔΨm and cell death. Pulses with long rise and fall times exhibited electric field-dependent increases in calcium influx, but diminished effects on dissipation of ΔΨm and viability. Results indicate that high frequency components have significant differential impact on mitochondria membranes, which determines cell death, but lesser variances on plasma membranes, which allows calcium influxes, a primary determinant for dissipation of ΔΨm and cell death. PMID:23284682

  16. Calibration approaches of cosmic-ray neutron sensing for soil moisture measurement in cropped fields

    OpenAIRE

    Rivera Villarreyes, C. A.; Baroni, G.; Oswald, S. E.

    2013-01-01

    Measurement of soil moisture at the plot or hill-slope scale is an important link between local vadose-zone hydrology and catchment hydrology. This study evaluates the applicability of the cosmic-ray neutron sensing for soil moisture in cropped fields. Measurements of cosmic-ray neutrons (fast neutrons) were performed at a lowland farmland in Bornim (Brandenburg, Germany) cropped with sunflower and winter rye. Three field calibration approaches and four ...

  17. Topside ionosphere of Mars: Variability, transient layers, and the role of crustal magnetic fields

    Science.gov (United States)

    Gopika, P. G.; Venkateswara Rao, N.

    2018-04-01

    The topside ionosphere of Mars is known to show variability and transient topside layers. In this study, we analyzed the electron density profiles measured by the radio occultation technique aboard the Mars Global Surveyor spacecraft to study the topside ionosphere of Mars. The electron density profiles that we used in the present study span between 1998 and 2005. All the measurements are done from the northern high latitudes, except 220 profiles which were measured in the southern hemisphere, where strong crustal magnetic fields are present. We binned the observations into six measurement periods: 1998, 1999-north, 1999-south, 2000-2001, 2002-2003, and 2004-2005. We found that the topside ionosphere in the southern high latitudes is more variable than that from the northern hemisphere. This feature is clearly seen with fluctuations of wavelengths less than 20 km. Some of the electron density profiles show a transient topside layer with a local maximum in electron density between 160 km and 210 km. The topside layer is more prone to occur in the southern hemispheric crustal magnetic field regions than in the other regions. In addition, the peak density of the topside layer is greater in regions of strong crustal magnetic fields than in other regions. The variability of the topside ionosphere and the peak density of the topside layer, however, do not show one-to-one correlation with the strength of the crustal magnetic fields and magnetic field inclination. The results of the present study are discussed in the light of current understanding on the topside ionosphere, transient topside layers, and the role of crustal magnetic fields on plasma motions.

  18. Results of an intercomparison for electric field strength measurements within the German calibration service

    Directory of Open Access Journals (Sweden)

    R. Pape

    2017-10-01

    Full Text Available In this paper we discuss the results of an intercomparison for electric field strength measurements within the German Calibration Service (Deutscher Kalibrierdienst – DKD. The comparison has been carried out on the field strength value required to reach a display reading of 20 V m−1 of the field probes for frequencies between 100 MHz and 18 GHz. Five laboratories joined the intercomparison including the Physikalisch-Technische Bundesanstalt (PTB, the German National Metrology Institute that keeps the primary standard for electric field strength. As measurement artefacts both a small 1-axis probe usually used as transfer sensor at PTB and a larger 3-axis commercial field probe have been used. While the results agree well for the small field probe and when the larger commercial 3-axis field probe is oriented in the direction of the magnetic field, larger deviations occur, when the larger 3-axis field probe is oriented into the direction of the Poynting vector of the calibration field.

  19. Phase-field modeling of thermomechanical damage in tungsten under severe plasma transients

    Science.gov (United States)

    Crosby, Tamer; Ghoniem, Nasr

    2012-08-01

    Tungsten is now a primary candidate for plasma facing components in fusion energy systems because of its numerous superior thermophysical properties. International efforts are currently focused on the development of tungsten surfaces that can intercept ionized plasma and pulsed high heat flux in magnetic fusion confinement devices. Thermal shock under transient operating conditions, such as edge localized modes, have experimentally been shown to lead to severe surface and sub-surface damage. We present here a computational multiphysics model to determine the relationship between the thermomechanical loading conditions and the onset of damage and failure of tungsten surfaces. The model is based on thermo-elasto-plasticity constitutive relations, and is developed within the framework of the phase-field method. A coupled set of partial differential equations is solved for the temperature, displacement, and a damage phase fields under severe plasma transient loads. The results clearly show the initiation and propagation of surface and sub-surface cracks as a result of the transient high heat flux. The severity of surface cracking is found to correlate primarily with the magnitude of the near-surface temperature gradient.

  20. Successive Bifurcation Conditions of a Lorenz-Type Equation for the Fluid Convection Due to the Transient Thermal Field

    Directory of Open Access Journals (Sweden)

    Xiaoling He

    2007-01-01

    Full Text Available This paper investigates the convection flow between the two parallel plates in a fluid cell subject to the transient thermal field. We use the modal approximations similar to that of the original Lorenz model to obtain a generalized Lorenz-type model for the flow induced by the transient thermal field at the bottom plate. This study examines the convection flow bifurcation conditions in relation to the transient temperature variations and the flow properties. We formulated successive bifurcation conditions and illustrated the various flow behaviors and their steady-state attractors affected by the thermal field functions and fluid properties.

  1. Virtual solar field - An opportunity to optimize transient processes in line-focus CSP power plants

    Science.gov (United States)

    Noureldin, Kareem; Hirsch, Tobias; Pitz-Paal, Robert

    2017-06-01

    Optimizing solar field operation and control is a key factor to improve the competitiveness of line-focus solar thermal power plants. However, the risks of assessing new and innovative control strategies on operational power plants hinder such optimizations and result in applying more conservative control schemes. In this paper, we describe some applications for a whole solar field transient in-house simulation tool developed at the German Aerospace Centre (DLR), the Virtual Solar Field (VSF). The tool offers a virtual platform to simulate real solar fields while coupling the thermal and hydraulic conditions of the field with high computational efficiency. Using the tool, developers and operator can probe their control strategies and assess the potential benefits while avoiding the high risks and costs. In this paper, we study the benefits gained from controlling the loop valves and of using direct normal irradiance maps and forecasts for the field control. Loop valve control is interesting for many solar field operators since it provides a high degree of flexibility to the control of the solar field through regulating the flow rate in each loop. This improves the reaction to transient condition, such as passing clouds and field start-up in the morning. Nevertheless, due to the large number of loops and the sensitivity of the field control to the valve settings, this process needs to be automated and the effect of changing the setting of each valve on the whole field control needs to be taken into account. We used VSF to implement simple control algorithms to control the loop valves and to study the benefits that could be gained from using active loop valve control during transient conditions. Secondly, we study how using short-term highly spatially-resolved DNI forecasts provided by cloud cameras could improve the plant energy yield. Both cases show an improvement in the plant efficiency and outlet temperature stability. This paves the road for further

  2. Three-dimensional imaging of aquifer and aquitard heterogeneity via transient hydraulic tomography at a highly heterogeneous field site

    Science.gov (United States)

    Zhao, Zhanfeng; Illman, Walter A.

    2018-04-01

    Previous studies have shown that geostatistics-based transient hydraulic tomography (THT) is robust for subsurface heterogeneity characterization through the joint inverse modeling of multiple pumping tests. However, the hydraulic conductivity (K) and specific storage (Ss) estimates can be smooth or even erroneous for areas where pumping/observation densities are low. This renders the imaging of interlayer and intralayer heterogeneity of highly contrasting materials including their unit boundaries difficult. In this study, we further test the performance of THT by utilizing existing and newly collected pumping test data of longer durations that showed drawdown responses in both aquifer and aquitard units at a field site underlain by a highly heterogeneous glaciofluvial deposit. The robust performance of the THT is highlighted through the comparison of different degrees of model parameterization including: (1) the effective parameter approach; (2) the geological zonation approach relying on borehole logs; and (3) the geostatistical inversion approach considering different prior information (with/without geological data). Results reveal that the simultaneous analysis of eight pumping tests with the geostatistical inverse model yields the best results in terms of model calibration and validation. We also find that the joint interpretation of long-term drawdown data from aquifer and aquitard units is necessary in mapping their full heterogeneous patterns including intralayer variabilities. Moreover, as geological data are included as prior information in the geostatistics-based THT analysis, the estimated K values increasingly reflect the vertical distribution patterns of permeameter-estimated K in both aquifer and aquitard units. Finally, the comparison of various THT approaches reveals that differences in the estimated K and Ss tomograms result in significantly different transient drawdown predictions at observation ports.

  3. Forward projection of transient sound pressure fields radiated by impacted plates using numerical Laplace transform.

    Science.gov (United States)

    Blais, Jean-François; Ross, Annie

    2009-05-01

    Forward propagation of the transient sound pressure radiated by an impacted plate is presented. It is shown that direct and inverse time domain discrete Fourier transforms, involved in Fourier transform based near-field acoustical holography (NAH), lead to aliasing errors in the reconstructed time signals. Adding trailing zeros to the initial time signals is an inefficient way to reduce time aliasing errors. Hence, the numerical Laplace transform is introduced and a Fourier transform based transient NAH (TNAH) approach is formulated. An error measure is introduced to compare both NAH and TNAH with respect to the propagation distance and the location of the observation point in the projection plane. The percentage of error with TNAH is reduced by more than a factor of 10 without adding trailing zeros to the initial signals. Simulation results are validated experimentally using a free Plexiglas plate impacted at its center.

  4. Transient dynamics of confined liquid drops in a uniform electric field

    Science.gov (United States)

    Mandal, Shubhadeep; Chaudhury, Kaustav; Chakraborty, Suman

    2014-05-01

    We analyze the effect of confinement on the transient dynamics of liquid drops, suspended in another immiscible liquid medium, under the influence of an externally applied uniform dc electric field. For our analysis, we adhere to an analytical framework conforming to a Newtonian-leaky-dielectric liquid model in the Stokes flow regime, under the small deformation approximation. We characterize the transient relaxation of the drop shape towards its asymptotic configuration, attributed by the combined confluence of the charge-relaxation time scale and the intrinsic shape-relaxation time scale. While the former appears due to the charge accumulation process on the drop surface over a finite interval of time, the genesis of the latter is found to be intrinsic to the hydrodynamic situation under consideration. In an unbounded condition, the intrinsic shape-relaxation time scale is strongly governed by the viscosity ratio, defined as the ratio of dynamic viscosities of the droplet and the background liquid. However, when the wall effects are brought into consideration, the combined influence of the relative extent of the confinement and the intrinsic viscosity effects, acting in tandem, alter this time scale in a rather complicated and nontrivial manner. We reveal that the presence of confinement may dramatically increase the effective viscosity ratio that could have otherwise been required in an unconfined domain to realize identical time-relaxation characteristics. We also bring out the alterations in the streamline patterns because of the combinations of transient and confinement effects. Thus, our results reveal that the extent of fluidic confinement may provide an elegant alternative towards manipulating the transient dynamics of liquid drops in the presence of an externally applied electric field, bearing far-ranging consequences towards the design and functionalities of several modern-day microfluidic applications.

  5. The SeaWiFS Quality Monitor: A Portable Field Calibration Light Source

    Science.gov (United States)

    Shaw, Ping-Shine; Johnson, B. Carol; Hooker, Stanford B.; Lynch, Don

    1997-01-01

    A portable and stable source, the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Quality Monitor, has been developed for use as a field instrument. The source can be used with either radiance- or irradiance-measuring sensors to transfer the laboratory calibration to the field so that the stability of the sensors can be monitored during the experiment. Temperature-controlled silicon photodiodes with colored glass filters are used to monitor the stability of the SeaWiFS Quality Monitor.

  6. UNUSUAL LONG AND LUMINOUS OPTICAL TRANSIENT IN THE SUBARU DEEP FIELD

    International Nuclear Information System (INIS)

    Urata, Yuji; Tsai, Patrick P.; Huang, Kuiyun; Morokuma, Tomoki; Motohara, Kentaro; Yasuda, Naoki; Tanaka, Masaomi; Hayashi, Masao; Kashikawa, Nobunari; Ly, Chun; Malkan, Matthew A.

    2012-01-01

    We present observations of SDF-05M05, an unusual optical transient discovered in the Subaru Deep Field (SDF). The duration of the transient is > ∼ 800 days in the observer frame, and the maximum brightness during observation reached approximately 23 mag in the i' and z' bands. The faint host galaxy is clearly identified in all five optical bands of the deep SDF images. The photometric redshift of the host yields z ∼ 0.6 and the corresponding absolute magnitude at maximum is ∼ – 20. This implies that this event shone with an absolute magnitude brighter than –19 mag for approximately 300 days in the rest frame, which is significantly longer than a typical supernova and ultraluminous supernova. The total radiated energy during our observation was 1 × 10 51 erg. The light curves and color evolution are marginally consistent with some luminous IIn supernovae. We suggest that the transient may be a unique and peculiar supernova at intermediate redshift.

  7. Searching for fast optical transients by means of a wide-field monitoring observations with high temporal resolution

    Science.gov (United States)

    Beskin, G.; Karpov, S.; Plokhotnichenko, V.; Bondar, S.; Ivanov, E.; Perkov, A.; Greco, G.; Guarnieri, A.; Bartolini, C.

    We discuss the strategy of search for fast optical transients accompanying gamma-ray bursts by means of continuous monitoring of wide sky fields with high temporal resolution. We describe the design, performance and results of our cameras, FAVOR and TORTORA. Also we discuss the perspectives of this strategy and possible design of next-generation equipment for wide-field monitoring which will be able to detect optical transients and to study their color and polarization properties with high time resolution.

  8. Field Measurement and Calibration of HDM-4 Fuel Consumption Model on Interstate Highway in Florida

    Directory of Open Access Journals (Sweden)

    Xin Jiao

    2015-03-01

    Full Text Available Fuel consumptions are measured by operating passenger car and tractor-trailer on two interstate roadway sites in Florida. Each site contains flexible pavement and rigid pavement with similar pavement, traffic and environmental condition. Field test reveals that the average fuel consumption differences between vehicle operating on flexible pavement and rigid pavement at given test condition are 4.04% for tractor-trailer and 2.50% for passenger car, with a fuel saving on rigid pavement. The fuel consumption differences are found statistically significant at 95% confidence level for both vehicle types. Test data are then used to calibrate the Highway Development and Management IV (HDM-4 fuel consumption model and model coefficients are obtained for three sets of observations. Field measurement and prediction by calibrated model shows generally good agreement. Nevertheless, verification and adjustment with more experiment or data sources would be expected in future studies.

  9. Single-well push-pull test in transient Forchheimer flow field

    Science.gov (United States)

    Wang, Quanrong; Zhan, Hongbin; Wang, Yanxin

    2017-06-01

    Using the single-well push-pull (SWPP) test to quantify in situ aquifer characteristics associated with solute transport (dispersion coefficient, geobiochemical reaction rates), the accuracy of parameter estimation was not only dependent on the solute transport models but also the groundwater flow models. However, many previous studies on the SWPP test were based on assumptions over-simplifying the flow field, namely, groundwater flow followed Darcy's law; flow was in the steady state during the entire test duration; the wellbore storage could be negligible. In this study, we have carefully examined such assumptions by developing a new finite-difference model of the SWPP test under the transient Forchheimer flow condition, considering the wellbore storage. The SWPP test included an injection phase, a chaser phase, a rest phase, and an extraction phase. The results showed that the concentration of the steady-state flow solution was greater than that of the transient flow solution at the beginning, and its peak value was also greater than that of the transient flow solution. The difference between the breakthrough curves (BTCs) of the transient flow SWPP model and the steady-state flow SWPP model was not negligible, and such a difference increased with the decreasing specific storage. We also found that BTCs were not sensitive to the inertial force coefficient, while they were sensitive to the wellbore storage. BTCs with different radius of the wellbore (rw) were clearly different from each other, and a larger rw resulted in a greater concentration at the well during the extraction phase.

  10. Field Observations with Laser-Induced Fluorescence Transient (LIFT Method in Barley and Sugar Beet

    Directory of Open Access Journals (Sweden)

    Anna R. Raesch

    2014-05-01

    Full Text Available The laser-induced fluorescence transient (LIFT method is a non-invasive remote sensing technique for measurement of photosynthetic performance of plants under laboratory and field conditions. We report here a long-term comparative study to monitor the performance of different cultivars of barley and sugar beet during the growth season of these crops. The LIFT measurements provided useful results about photosynthetic light use efficiency on selected leaves in the canopy of the studied crops. The different canopy architectures, with different optical properties, influenced the LIFT measurements.

  11. Photometric Calibration and Image Stitching for a Large Field of View Multi-Camera System

    OpenAIRE

    Yu Lu; Keyi Wang; Gongshu Fan

    2016-01-01

    A new compact large field of view (FOV) multi-camera system is introduced. The camera is based on seven tiny complementary metal-oxide-semiconductor sensor modules covering over 160? ? 160? FOV. Although image stitching has been studied extensively, sensor and lens differences have not been considered in previous multi-camera devices. In this study, we have calibrated the photometric characteristics of the multi-camera device. Lenses were not mounted on the sensor in the process of radiometri...

  12. Jaws calibration method to get a homogeneous distribution of dose in the junction of hemi fields

    International Nuclear Information System (INIS)

    Cenizo de Castro, E.; Garcia Pareja, S.; Moreno Saiz, C.; Hernandez Rodriguez, R.; Bodineau Gil, C.; Martin-Viera Cueto, J. A.

    2011-01-01

    Hemi fields treatments are widely used in radiotherapy. Because the tolerance established for the positioning of each jaw is 1 mm, may be cases of overlap or separation of up to 2 mm. This implies heterogeneity of doses up to 40% in the joint area. This paper presents an accurate method of calibration of the jaws so as to obtain homogeneous dose distributions when using this type of treatment. (Author)

  13. Transient interaction model of electromagnetic field generated by lightning current pulses and human body

    International Nuclear Information System (INIS)

    Iváncsy, T; Kiss, I; Tamus, Z Á; Szücs, L

    2015-01-01

    The lightning current generates time-varying magnetic field near the down-conductor and the down-conductors are mounted on the wall of the buildings where residential places might be situated. It is well known that the rapidly changing magnetic fields can generate dangerous eddy currents in the human body.The higher duration and gradient of the magnetic field can cause potentially life threatening cardiac stimulation. The coupling mechanism between the electromagnetic field and the human body is based on a well-known physical phenomena (e.g. Faradays law of induction). However, the calculation of the induced current is very complicated because the shape of the organs is complex and the determination of the material properties of living tissues is difficult, as well. Our previous study revealed that the cardiac stimulation is independent of the rising time of the lightning current and only the peak of the current counts.In this study, the authors introduce an improved model of the interaction of electromagnetic fields of lighting current near down-conductor and human body. Our previous models are based on the quasi stationer field calculations, the new improved model is a transient model. This is because the magnetic field around the down-conductor and in the human body can be determined more precisely, therefore the dangerous currents in the body can be estimated. (paper)

  14. Transient Calibration of a Variably-Saturated Groundwater Flow Model By Iterative Ensemble Smoothering: Synthetic Case and Application to the Flow Induced During Shaft Excavation and Operation of the Bure Underground Research Laboratory

    Science.gov (United States)

    Lam, D. T.; Kerrou, J.; Benabderrahmane, H.; Perrochet, P.

    2017-12-01

    The calibration of groundwater flow models in transient state can be motivated by the expected improved characterization of the aquifer hydraulic properties, especially when supported by a rich transient dataset. In the prospect of setting up a calibration strategy for a variably-saturated transient groundwater flow model of the area around the ANDRA's Bure Underground Research Laboratory, we wish to take advantage of the long hydraulic head and flowrate time series collected near and at the access shafts in order to help inform the model hydraulic parameters. A promising inverse approach for such high-dimensional nonlinear model, and which applicability has been illustrated more extensively in other scientific fields, could be an iterative ensemble smoother algorithm initially developed for a reservoir engineering problem. Furthermore, the ensemble-based stochastic framework will allow to address to some extent the uncertainty of the calibration for a subsequent analysis of a flow process dependent prediction. By assimilating the available data in one single step, this method iteratively updates each member of an initial ensemble of stochastic realizations of parameters until the minimization of an objective function. However, as it is well known for ensemble-based Kalman methods, this correction computed from approximations of covariance matrices is most efficient when the ensemble realizations are multi-Gaussian. As shown by the comparison of the updated ensemble mean obtained for our simplified synthetic model of 2D vertical flow by using either multi-Gaussian or multipoint simulations of parameters, the ensemble smoother fails to preserve the initial connectivity of the facies and the parameter bimodal distribution. Given the geological structures depicted by the multi-layered geological model built for the real case, our goal is to find how to still best leverage the performance of the ensemble smoother while using an initial ensemble of conditional multi

  15. Electric-field-induced weakly chaotic transients in ferroelectric liquid crystals.

    Science.gov (United States)

    Śliwa, I; Jeżewski, W; Kuczyński, W

    2016-01-01

    Nonlinear dynamics induced in surface stabilized ferroelectric liquid crystals by strong alternating external electric fields is studied both theoretically and experimentally. As has already been shown, molecular reorientations induced by sufficiently strong fields of high-enough frequencies can reveal a long transient behavior that has a weakly chaotic character. The resulting complex dynamics of ferroelectric liquid crystals can be considered not only as a consequence of irregular motions of particular molecules but also as a repercussion of a surface-enforced partial decorrelation of nonlinear molecular motions within smectic layers. To achieve more insight into the nature of this phenomenon and to show that the underlying complex field-induced behavior of smectic liquid crystals is not exceptional, ranges of system parameters for which the chaotic behavior occurs are determined. It is proved that there exists a large enough set of initial phase trajectory points, for which weakly chaotic long-time transitory phenomena occur, and, thereby, it is demonstrated that such a chaotic behavior can be regarded as being typical for strongly field-driven thin liquid crystal systems. Additionally, the influence of low-amplitude random noise on the duration of the transient processes is numerically studied. The strongly nonlinear contribution to the electro-optic response, experimentally determined for liquid crystal samples at frequencies lower than the actual field frequency, is also analyzed for long-time signal sequences. Using a statistical approach to distinguish numerically response signals of samples from noise generated by measuring devices, it is shown that the distribution of sample signals distinctly differs from the device noise. This evidently corroborates the occurrence of the nonlinear low-frequency effect, found earlier for different surface stabilized liquid crystal samples.

  16. Calibration of a transient transport model to tritium data in streams and simulation of groundwater ages in the western Lake Taupo catchment, New Zealand

    Directory of Open Access Journals (Sweden)

    M. A. Gusyev

    2013-03-01

    Full Text Available Here we present a general approach of calibrating transient transport models to tritium concentrations in river waters developed for the MT3DMS/MODFLOW model of the western Lake Taupo catchment, New Zealand. Tritium has a known pulse-shaped input to groundwater systems due to the bomb tritium in the early 1960s and, with its radioactive half-life of 12.32 yr, allows for the determination of the groundwater age. In the transport model, the tritium input (measured in rainfall passes through the groundwater system, and the simulated tritium concentrations are matched to the measured tritium concentrations in the river and stream outlets for the Waihaha, Whanganui, Whareroa, Kuratau and Omori catchments from 2000–2007. For the Kuratau River, tritium was also measured between 1960 and 1970, which allowed us to fine-tune the transport model for the simulated bomb-peak tritium concentrations. In order to incorporate small surface water features in detail, an 80 m uniform grid cell size was selected in the steady-state MODFLOW model for the model area of 1072 km2. The groundwater flow model was first calibrated to groundwater levels and stream baseflow observations. Then, the transient tritium transport MT3DMS model was matched to the measured tritium concentrations in streams and rivers, which are the natural discharge of the groundwater system. The tritium concentrations in the rivers and streams correspond to the residence time of the water in the groundwater system (groundwater age and mixing of water with different age. The transport model output showed a good agreement with the measured tritium values. Finally, the tritium-calibrated MT3DMS model is applied to simulate groundwater ages, which are used to obtain groundwater age distributions with mean residence times (MRTs in streams and rivers for the five catchments. The effect of regional and local hydrogeology on the simulated groundwater ages is investigated by demonstrating groundwater ages

  17. Velocity dependence of transient hyperfine field at Pt ions rapidly recoiling through magnetized Fe

    International Nuclear Information System (INIS)

    Stuchbery, A.E.; Ryan, C.G.; Bolotin, H.H.

    1981-01-01

    The velocity-dependence of the transient hyperfine magnetic field acting at nuclei of 196 Pt ions rapidly recoiling through thin magnetized Fe was investigated at a number of recoil velocities. The state of interest (2 1 + ) was populated by Coulomb excitation using beams of 80- and 120-MeV 32 S and 150- and 220-MeV 58 Ni ions. The 2 1 + →0 1 + γ-ray angular distribution precession measurements were carried out in coincidence with backscattered projectiles. From these results, the strength of the transient field acting on Pt ions recoiling through magnetized Fe with average velocities in the extended range 2.14<=v/vsub(o)<=4.82 (vsub(o) = c/137) was found to be consistent with a linear velocity dependence and to be incompatible with the specific vsup(0.45+-0.18) dependence which has been previously reported to account well for all ions in the mass range from oxygen through samarium. This seemingly singular behaviour for Pt and other ions in the Pt mass vicinity is discussed

  18. Electric field-induced transient birefringence and light scattering of synthetic liposomes.

    Science.gov (United States)

    Asgharian, N; Schelly, Z A

    1999-05-12

    The dynamics of electric field-induced transient birefringence Deltan(t) and light scattering (detected as turbidity) of 190 nm diameter unilamellar vesicles of dioleoylphosphatidylcholine are investigated as a function of applied field strength E, length of the square pulse Deltat, lipid concentration, mean hydrodynamic diameter , ionic strength, and temperature. Generally, induced birefringence exclusively is observed at low lipid concentration and below certain threshold values of E and Deltat, whereas concomitant induced turbidity appears at high lipid concentration and above thresholds values of E and Deltat. Turbidity is monitored through the change in transmitted intensity DeltaS parallel(t) and DeltaS perpendicular(t) of light polarized parallel and perpendicular to the applied field E. The field-induced structural changes are reflected in double-exponential forward relaxation and triple-exponential reverse relaxation of the positive birefringence, and in non-exponential relaxations of DeltaS parallel (t) and DeltaS perpendicular(t). Under the field, the associated physical events are interpreted as elongation of the spherical bilayer shells in the direction of E, linear chain formation (pearling) of the induced dipolar liposomes parallel to E, and partial fusion of adjoining vesicles within the chains. Under conditions where electroporation can be detected, pore opening succeeds the elongation of the vesicles. After termination of the field, the vesicles return to their original time average spherical shape, the oriented chains randomize and disintegrate, and the fused structures are converted either to unilamellar or multilamellar vesicles.

  19. Experimental and theoretical analysis of the spectrum of transient electromagnetic field created by linac electron beam

    International Nuclear Information System (INIS)

    Itoh, Hiroyasu; Tomioka, Satoshi; Enoto, Takeaki

    1994-01-01

    Wave information about micro-pulses of electron beams is required in order to control an electron beam precisely, and it may be possible to obtain such information by analyzing the spectrum of the electromagnetic field created by a linac electron beam. In order to derive the spectrum, we measured the spatial distribution generated by a standing wave. Furthermore we calculated the transient electromagnetic field excited by a bunched electron beam, using the finite-difference time-domain (FD-TD) method, and compared two spectra in the frequency domain, into which the calculated value in time variation and the measured values in spatial variation are transformed by using the fast Fourier transform (FFT) respectively. (author)

  20. Experimental data report for transient flow calibration facility tests IIIA101, IIIA102, IIIA201, and IIIA202

    International Nuclear Information System (INIS)

    Wambach, J.L.

    1980-01-01

    Thermal-hydraulic response data are presented for the transient performance tests of an ECC pitot tube rake (IIIA201, IIIA202) and both an ECC pitot tube rake and modular drag disc-turbine transducer (DTT) rake (IIIA101, IIIA102). The tests were conducted in a system which provided full scale simulation of the pressure vessel and intact loop cold leg piping of the Loss of Fluid Test Facility (LOFT). A load cell system was used to provide a reference mass flow rate measurement

  1. Photometric Calibration and Image Stitching for a Large Field of View Multi-Camera System

    Directory of Open Access Journals (Sweden)

    Yu Lu

    2016-04-01

    Full Text Available A new compact large field of view (FOV multi-camera system is introduced. The camera is based on seven tiny complementary metal-oxide-semiconductor sensor modules covering over 160° × 160° FOV. Although image stitching has been studied extensively, sensor and lens differences have not been considered in previous multi-camera devices. In this study, we have calibrated the photometric characteristics of the multi-camera device. Lenses were not mounted on the sensor in the process of radiometric response calibration to eliminate the influence of the focusing effect of uniform light from an integrating sphere. Linearity range of the radiometric response, non-linearity response characteristics, sensitivity, and dark current of the camera response function are presented. The R, G, and B channels have different responses for the same illuminance. Vignetting artifact patterns have been tested. The actual luminance of the object is retrieved by sensor calibration results, and is used to blend images to make panoramas reflect the objective luminance more objectively. This compensates for the limitation of stitching images that are more realistic only through the smoothing method. The dynamic range limitation of can be resolved by using multiple cameras that cover a large field of view instead of a single image sensor with a wide-angle lens. The dynamic range is expanded by 48-fold in this system. We can obtain seven images in one shot with this multi-camera system, at 13 frames per second.

  2. Generic Methodology for Field Calibration of Nacelle-Based Wind Lidars

    Directory of Open Access Journals (Sweden)

    Antoine Borraccino

    2016-11-01

    Full Text Available Nacelle-based Doppler wind lidars have shown promising capabilities to assess power performance, detect yaw misalignment or perform feed-forward control. The power curve application requires uncertainty assessment. Traceable measurements and uncertainties of nacelle-based wind lidars can be obtained through a methodology applicable to any type of existing and upcoming nacelle lidar technology. The generic methodology consists in calibrating all the inputs of the wind field reconstruction algorithms of a lidar. These inputs are the line-of-sight velocity and the beam position, provided by the geometry of the scanning trajectory and the lidar inclination. The line-of-sight velocity is calibrated in atmospheric conditions by comparing it to a reference quantity based on classic instrumentation such as cup anemometers and wind vanes. The generic methodology was tested on two commercially developed lidars, one continuous wave and one pulsed systems, and provides consistent calibration results: linear regressions show a difference of ∼0.5% between the lidar-measured and reference line-of-sight velocities. A comprehensive uncertainty procedure propagates the reference uncertainty to the lidar measurements. At a coverage factor of two, the estimated line-of-sight velocity uncertainty ranges from 3.2% at 3 m · s − 1 to 1.9% at 16 m · s − 1 . Most of the line-of-sight velocity uncertainty originates from the reference: the cup anemometer uncertainty accounts for ∼90% of the total uncertainty. The propagation of uncertainties to lidar-reconstructed wind characteristics can use analytical methods in simple cases, which we demonstrate through the example of a two-beam system. The newly developed calibration methodology allows robust evaluation of a nacelle lidar’s performance and uncertainties to be established. Calibrated nacelle lidars may consequently be further used for various wind turbine applications in confidence.

  3. Electro-Optic Sampling of Transient Electric Fields from Charged Particle Beams

    Energy Technology Data Exchange (ETDEWEB)

    Fitch, Michael James [Rochester U.

    2000-01-01

    The passage of a relativistic charged particle beam bunch through a structure is accompanied by transient electromagnetic fields. By causality, these fields must be behind the bunch, and are called "wakefields." The wakefields act back on the beam, and cause instabilities such as the beam break-up instability, and the headtail instability, which limit the luminosity of linear colliders. The wakefields are particularly important for short bunches with high charge. A great deal of effort is devoted to analytical and numerical calculations of wakefields, and wakefield effects. Experimental numbers are needed. In this thesis, we present measurements of the transient electric fields induced by a short high-charge electron bunch passing through a 6-way vacuum cross. These measurements are performed in the time domain using electro-optic sampling with a time resolution of approximately 5 picoseconds. With different orientations of the electro-optic crystal, we have measured different vector components of the electric field. The Fourier transform of the time-domain data yields the product of the beam impedance with the excitation spectrum of the bunch. Since the bunch length is known from streak camera measurements, the k loss factor is directly obtained. There is reasonably good agreement between the experimental k loss factor with calculations from the code MAFIA. To our knowledge, this is the first direct measurement of the k loss factor for bunch lengths shorter than one millimeter ( nns). We also present results of magnetic bunch compression (using a dipole chicane) of a high-charge photoinjector beam for two different UV laser pulse lengths on the pholocalhode. Al best compression, a 13.87 nC bunch was compressed to 0.66 mm (2.19 ps) rms, or a peak current of 3 kA. Other results from the photoinjeclor are given, and the laser system for pholocalhode excitation and electro-optic sampling is described.

  4. A practical implementation of microphone free-field comparison calibration according to the standard IEC 61094-8

    DEFF Research Database (Denmark)

    Barrera Figueroa, Salvador; Torras Rosell, Antoni; Rasmussen, Knud

    2012-01-01

    An international standard concerned with the calibration of microphones in a free field by comparison has recently been published. The standard contemplates two main calibration methodologies for determining the sensitivity of a microphone under test when compared against a reference microphone. ...

  5. Application of modern well test analysis techniques to pressure transient tests in Kizildere geothermal field, Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Onur, M.; Serpen, U.; Gok, I.M. [Istanbul Technical Univ. (Turkey). Faculty of Mines; Zeybek, A.D. [Al-Mutlaq Compound, Al-Khobar (Saudi Arabia)

    2003-04-01

    The analyses of two build-up tests and one interference test in the Kizildere geothermal field, Turkey, are presented. Modern well test analysis methods based on pressure-derivative (logarithmic time rate of pressure) and non-linear regression, as well as conventional log-log and semi-log straight-line methods, have been used in the interpretation of these field pressure tests. Pressure transient models based on both homogeneous reservoirs and fractal reservoirs without matrix participation are considered in the analysis. It is shown that the use of conventional analysis methods alone can lead to an inaccurate interpretation of these field tests, and the use of modern analysis techniques in conjunction with conventional analysis techniques provides a more reliable and accurate interpretation of the well test data in the Kizildere geothermal field. The information obtained (e.g., estimates of permeability thickness and fractal dimensions) from analyses of these tests should prove useful for reservoir characterization studies in the Kizildere field, where reinjection is scheduled to begin soon. Finally, the modern interpretation methods described in this paper are recommended for analysis of well test pressure data from geothermal reservoirs. (Author)

  6. Analytic Solution to the Problem of Aircraft Electric Field Mill Calibration

    Science.gov (United States)

    Koshak, W. J.

    2003-12-01

    It is by no means a simple task to retrieve storm electric fields from an aircraft instrumented with electric field mill sensors. The presence of the aircraft distorts the ambient field in a complicated way. Before retrievals of the storm field can be made, the field mill measurement system must be "calibrated". In other words, a relationship between impressed (i.e., ambient) electric field and mill output must be established. If this relationship can be determined, it is mathematically inverted so that ambient field can be inferred from the mill outputs. Previous studies have primarily focused on linear theories where the "relationship" between ambient field and mill output is described by a "calibration matrix" M. Each element of the matrix describes how a particular component of the ambient field is enhanced by the aircraft. For example the product MixEx is the contribution of the Ex field to the ith mill output. Similarly, net aircraft charge (described by a "charge field component" Eq) contributes an amount MiqEq to the output of the ith sensor. The central difficulty in obtaining M stems from the fact that the impressed field (Ex, Ey, Ez, Eq) is not known but is instead estimated. Typically, the aircraft is flown through a series of roll and pitch maneuvers in fair weather, and the values of the fair weather field and aircraft charge are estimated at each point along the aircraft trajectory. These initial estimates are often highly inadequate, but several investigators have improved the estimates by implementing various (ad hoc) iterative methods. Though numerical tests show that some of the iterative methods do improve the initial estimates, none of the iterative methods guarantee absolute convergence to the true values, or even to values reasonably close to the true values when measurement errors are present. In this work, the mathematical problem is solved directly by analytic means. For m mills installed on an arbitrary aircraft, it is shown that it is

  7. Dynamic Response in Transient Stress-Field Behavior Induced by Hydraulic Fracturing

    Science.gov (United States)

    Jenkins, Andrew

    magnitude. These types of shifts are of great concern because they can impact subsequent fracture development causing non-uniform fracture propagation and the potential overlapping of fracture paths as they extend from the wellbore at the point of injection. The dynamics of stress variation that occur with respect to hydraulic fracturing is a somewhat new area of study. In order to accomplish the goals of this thesis and continue future research in this area a new transient model has been developed in order to asses these dynamic systems and determine their influence on fracture behavior. This applies the use of a fully coupled finite element method in 2-D using linear elastic fracture mechanics which is then expanded using displacement discontinuity to a cohesive zone model in 3-D. A static boundary element model was also used to determine stress fields surrounding static, predetermined fracture geometries. These models have been verified against analytical solutions for simple cases and are now being applied to more detailed case studies and analysis. These models have been briefly discussed throughout this thesis in order to give insight on their current capabilities and application as well as their future potential within this area of research. The majority of this work introduces transient stress field prediction to cases of single and multiple hydraulic fractures. The static assessment of these stresses is determined for verification of results to those found in publication which leads into these transient stress field variations. A new method has been developed and applied to the stress state prediction for the first time in a transient fracture model which is partly based upon a critical distance theory. These dynamic interactions can provide useful insight to pertinent issues within the petroleum and natural gas industry such as those to hydraulic fracturing fluid loss and induced seismic events, as well as to applications of efficiency and optimization of the

  8. Flat-Field Calibration of CCD Detector for Long TraceProfilers

    Energy Technology Data Exchange (ETDEWEB)

    Kirschman, Jonathan L.; Domning, Edward E.; Franck, Keith D.; Irick, Steve C.; MacDowell, Alastair A.; McKinney, Wayne R.; Morrison,Gregory Y.; Smith, Brian V.; Warwick, Tony; Yashchuk, Valeriy V.

    2007-07-31

    The next generation of synchrotrons and free electron lasersrequires x-ray optical systems with extremely high-performance,generally, of diffraction limited quality. Fabrication and use of suchoptics requires highly accurate metrology. In the present paper, wediscuss a way to improve the performance of the Long Trace Profiler(LTP), a slope measuring instrument widely used at synchrotron facilitiesto characterize x-ray optics at high-spatial-wavelengths fromapproximately 2 mm to 1 m. One of the major sources of LTP systematicerror is the detector. For optimal functionality, the detector has topossess the smallest possible pixel size/spacing, a fast method ofshuttering, and minimal non-uniformity of pixel-to-pixel photoresponse.While the first two requirements are determined by choice of detector,the non-uniformity of photoresponse of typical detectors such as CCDcameras is around 2-3 percent. We describe a flat-field calibration setupspecially developed for calibration of CCD camera photo-response and darkcurrent with an accuracy of better than 0.5 percent. Such accuracy isadequate for use of a camera as a detector for an LTP with performance of~;0.1 microradian (rms). We also present the design details of thecalibration system and results of calibration of a DALSA CCD camera usedfor upgrading our LTP-II instrument at the ALS Optical MetrologyLaboratory.

  9. Automatic anatomical calibration for IMU-based elbow angle measurement in disturbed magnetic fields

    Directory of Open Access Journals (Sweden)

    Laidig Daniel

    2017-09-01

    Full Text Available Inertial Measurement Units (IMUs are increasingly used for human motion analysis. However, two major challenges remain: First, one must know precisely in which orientation the sensor is attached to the respective body segment. This is commonly achieved by accurate manual placement of the sensors or by letting the subject perform tedious calibration movements. Second, standard methods for inertial motion analysis rely on a homogeneous magnetic field, which is rarely found in indoor environments. To address both challenges, we introduce an automatic calibration method for joints with two degrees of freedom such as the combined radioulnar and elbow joint. While the user performs arbitrary movements, the method automatically identifies the sensor-to-segment orientations by exploiting the kinematic constraints of the joint. Simultaneously, the method identifies and compensates the influence of magnetic disturbances on the sensor orientation quaternions and the joint angles. In experimental trials, we obtain angles that agree well with reference values from optical motion capture. We conclude that the proposed method overcomes mounting and calibration restrictions and improves measurement accuracy in indoor environments. It therefore improves the practical usability of IMUs for many medical applications.

  10. Qualification of gammacell-220 calibration field for radiation processing at the radiation Technology Centre, Kwabenya

    International Nuclear Information System (INIS)

    Emi-Reynolds, G.; Banini, G.K.

    1997-01-01

    The Gammacell-220 being used for the calibration of dosimeters and subsequently the qualification of the large gamma facility for radiation processing has been mapped out. The Ferrous ammonium sulfate (Fricke) solution was used as the dosimetry standard for the study. Filling the irradiation chamber with ampoules of the dosimeter, four horizontal planes each of 28 ampoules were used to obtain four separate isodose curves in the four horizontal planes. Another set of arrangement was used to determine the isodose curves along the vertical axis of the chamber through the center. The isodose curves of the radiation field are presented. (author) 7 refs.; 9 figs

  11. Cerebellar transcranial static magnetic field stimulation transiently reduces cerebellar brain inhibition.

    Science.gov (United States)

    Matsugi, Akiyoshi; Okada, Y

    The aim of this study was to investigate whether transcranial static magnetic field stimulation (tSMS) delivered using a compact cylindrical NdFeB magnet over the cerebellum modulates the excitability of the cerebellum and contralateral primary motor cortex, as measured using cerebellar brain inhibition (CBI), motor evoked potentials (MEPs), and resting motor threshold (rMT). These parameters were measured before tSMS or sham stimulation and immediately, 5 minutes and 10 minutes after stimulation. There were no significant changes in CBI, MEPs or rMT over time in the sham stimulation condition, and no changes in MEPs or rMT in the tSMS condition. However, CBI was significantly decreased immediately after tSMS as compared to that before and 5 minutes after tSMS. Our results suggest that tSMS delivered to the cerebellar hemisphere transiently reduces cerebellar inhibitory output but does not affect the excitability of the contralateral motor cortex.

  12. Polyhedra Formation and Transient Cone Ejection of a Resonant Microdrop Forced by an ac Electric Field

    Science.gov (United States)

    Wang, Ping; Maheshwari, Siddharth; Chang, Hsueh-Chia

    2006-06-01

    New deformation or fission phenomena are reported for microdrops driven by an ac electric field at their resonant frequencies. The Maxwell forces that pull out the vertices from a drop can be enhanced when the ac frequency is comparable to both the drop resonant frequency and the inverse charge relaxation time of the diffuse layer. The selected polyhedra possess symmetries that ensure a global force balance of the Maxwell forces and a linear dimension consistent with a sphere whose nth harmonic (n is up to six in the observation) coincides with the applied ac frequency. At high voltages, the resonant focusing of charges by the vibration modes produces evenly distributed and transient Taylor cones that can eject charged nanodrops.

  13. Computations of AC Loss in the ITER Magnets during Fast Field Transients

    CERN Document Server

    Bottura, Luca; Lister, Jonathan B; Marinucci, Claudio; Portone, Alfredo

    2007-01-01

    The calculation of AC loss due to the control currents in ITER is a cumbersome task. The reason is that control transients require small field changes (0.1 T or less) at moderate frequency (up to 10 Hz), where effects of partial penetration of the filaments and shielding are important and need to be taken into account to produce sound AC loss estimates. In this paper we describe models developed for AC loss calculation, in particular hysteresis and coupling current loss, that are suitable for the above regime. Both hysteresis and coupling loss models are adapted to the conductor analyzed through few parameters (the effective filament diameter and time constants) that can be derived from measurement of loss on short samples. We report an example of calculations of AC loss in the ITER TF and PF coils for two vertical control scenarios (VS1 and VS2) during high beta operation at flattop.

  14. Transient auroral events near midday: Relationship with solar wind/magnetosheath plasma and magnetic field conditions

    International Nuclear Information System (INIS)

    Jacobsen, B.; Sandholt, P.E.; Lybekk, B.; Egeland, A.

    1990-09-01

    Ground-based observations of auroral/geomagnetic transient events near magnetic midday and magnetosheath magnetic field and plasma observations from spacecraft IMP-8 are presented. One category of events is characterized by a sequence of discrete auroral arc fragments moving westward along the poleward boundary of the persistent cusp arc, accompanied by an isolated magnetic pulse at latitudes close to the auroral event. This phenomenon occurs mainly during intervals of southward directed magnetosheath/interplanetary magnetic field. The auroral display in the second category of events is separated in two components, possibly associated with the cusp and the cleft/low latitude boundary layer. Intensification of the cleft aurora and magnetic perturbations over a wide latitudinal range were observed after a sharp northward magnetosheath magnetic field transition and a large variation in plasma density. It is suggested that these different events are ionospheric footprints of different time-dependent coupling processes near/in the magnetopause boundary layer. However, the specific mechanism involved (e.g. flux transfer events or pressure pulses/boundary waves) may not be uniquely inferred from these observations. 37 refs., 13 figs

  15. Calibration of the IRD two-component TLD albedo neutron dosemeter in some moderated neutron fields

    International Nuclear Information System (INIS)

    Freitas, Bruno M.; Silva, Ademir X. da

    2015-01-01

    In some stray neutron fields, like those found in practices involving the handling of radionuclide sources, the neutron calibration factor for albedo neutron dosemeter can vary widely compared to the factor for bare sources. This is the case for well logging, which is the area with the largest number of workers exposed to neutrons in Brazil. The companies employ routinely 241 Am-Be neutron sources. The albedo response variation is mainly due to the presence of scattered and moderated neutrons. This paper studies the response variation of the two-component TLD albedo neutron dosemeter used in the neutron individual monitoring service of Instituto de Radioprotecao e Dosimetria, in different radionuclide neutron source beams. The neutron spectra were evaluated applying a Bonner sphere spectrometer with a 6 LiI(Eu) detector in the Brazilian National Metrology Neutron Laboratory. Standard neutron sources of 241 Am-Be and 252 Cf were employed, besides 238 Pu-Be. Measurements were also made with scattered and moderated neutron beams, including 252 Cf(D 2 O) reference spectrum, 241 Am-Be moderated with paraffin and silicone and a thermal neutron flux facility. New neutron calibration factors, as a function of the incident to albedo neutron ratio, were proposed for use in the albedo algorithm for occupational fields where the primary neutron beam is one of those studied sources. (author)

  16. Demonstration of the Wide-Field Imaging Interferometer Testbed Using a Calibrated Hyperspectral Image Projector

    Science.gov (United States)

    Bolcar, Matthew R.; Leisawitz, David; Maher, Steve; Rinehart, Stephen

    2012-01-01

    The Wide-field Imaging Interferometer testbed (WIIT) at NASA's Goddard Space Flight Center uses a dual-Michelson interferometric technique. The WIIT combines stellar interferometry with Fourier-transform interferometry to produce high-resolution spatial-spectral data over a large field-of-view. This combined technique could be employed on future NASA missions such as the Space Infrared Interferometric Telescope (SPIRIT) and the Sub-millimeter Probe of the Evolution of Cosmic Structure (SPECS). While both SPIRIT and SPECS would operate at far-infrared wavelengths, the WIIT demonstrates the dual-interferometry technique at visible wavelengths. The WIIT will produce hyperspectral image data, so a true hyperspectral object is necessary. A calibrated hyperspectral image projector (CHIP) has been constructed to provide such an object. The CHIP uses Digital Light Processing (DLP) technology to produce customized, spectrally-diverse scenes. CHIP scenes will have approximately 1.6-micron spatial resolution and the capability of . producing arbitrary spectra in the band between 380 nm and 1.6 microns, with approximately 5-nm spectral resolution. Each pixel in the scene can take on a unique spectrum. Spectral calibration is achieved with an onboard fiber-coupled spectrometer. In this paper we describe the operation of the CHIP. Results from the WIIT observations of CHIP scenes will also be presented.

  17. Traceable calibration of a horizontally polarised reference antenna with omnidirectional pattern at VHF frequencies for ILS field strength validation

    Science.gov (United States)

    Schrader, T.; Kleine-Ostmann, T.; Bredemeyer, J.

    2013-07-01

    We present a traceable calibration of a specially designed horizontally polarised reference antenna with an omnidirectional pattern in the E-plane for the frequency range between 105 MHz and 120 MHz. This antenna is used as a validation tool for absolute field strength measurements at the localizer transmitter of an instrument landing system (ILS) at airports and is carried by a helicopter. We investigate whether we can treat it as a dipole-like antenna in the calibration setup despite its disk-shape body. We also investigate the suitability of an anechoic chamber for antenna calibration though it was not designed for that purpose. The measurements are based on scattering parameters (S-parameters) which we apply in the 3-antenna-method (TAM or 3-AM) to obtain the antenna gain and the antenna factor, respectively. An uncertainty budget for the antenna gain calibration is derived. We also report on the first practical application of the calibrated reference antenna.

  18. Construction of monoenergetic neutron calibration fields using 45Sc(p, n)45Ti reaction at JAEA.

    Science.gov (United States)

    Tanimura, Y; Saegusa, J; Shikaze, Y; Tsutsumi, M; Shimizu, S; Yoshizawa, M

    2007-01-01

    The 8 and 27 keV monoenergetic neutron calibration fields have been developed by using (45)Sc(p, n)(45)Ti reaction. Protons from a 4-MV Pelletron accelerator are used to bombard a thin scandium target evaporated onto a platinum disc. The proton energies are finely adjusted to the resonance to generate the 8 and 27 keV neutrons by applying a high voltage to the target assemblies. The neutron energies were measured using the time-of-flight method with a lithium glass scintillation detector. The neutron fluences at a calibration point located at 50 cm from the target were evaluated using Bonner spheres. A long counter was placed at 2.2 m from the target and at 60 degrees to the direction of the proton beam in order to monitor the fluence at the calibration point. Fluence and dose equivalent rates at the calibration point are sufficient to calibrate many types of the neutron survey metres.

  19. Attosecond transient-absorption dynamics of xenon core-excited states in a strong driving field

    Science.gov (United States)

    Kobayashi, Yuki; Timmers, Henry; Sabbar, Mazyar; Leone, Stephen R.; Neumark, Daniel M.

    2017-03-01

    We present attosecond transient-absorption experiments on xenon 4 d-16 p core-level states resonantly driven by intense (1.6 ×1014W/cm 2 ) few-cycle near-infrared laser pulses. In this strongly driven regime, broad induced absorption features with half-cycle (1.3-fs) delay-dependent modulation are observed over the range of 58-65 eV, predicted as a signature of the breakdown of the rotating-wave approximation in strong-field driving of Autler-Townes splitting [A. N. Pfeiffer and S. R. Leone, Phys. Rev. A 85, 053422 (2012), 10.1103/PhysRevA.85.053422]. Relevant atomic states are identified by a numerical model involving three electronic states, and the mechanism behind the broad induced absorption is discussed in the Floquet formalism. These results demonstrate that a near-infrared field well into the tunneling regime can still control the optical properties of an atomic system over a several-electron-volt spectral range and with attosecond precision.

  20. Construction of a carbonate reservoir model using pressure transient data : field case study

    Energy Technology Data Exchange (ETDEWEB)

    Taheri, S. [Petro-Iran, (Iran, Islamic Republic of); Ghanizadeh, M. [Tehran Energy, (Iran, Islamic Republic of); Haghighi, M. [Tehran Univ., (Iran, Islamic Republic of)

    2004-07-01

    Pressure transient data was integrated with other reservoir information to create a geological model of a carbonate reservoir in the Salaman offshore field in Iran. The model was created using seismic and well log data as well as the interpretation of 99 well tests performed in this field. Several features such as sealing faults, aquifer, fracturing and layering systems were observed. Two faults were identified in the northern part of the reservoir. The distance between the major fault and well number 27 was less than predicted from seismic data. An active aquifer and minor fault were also identified near well number 6. A fracture system was identified around well number 22. Most well tests showed communication between different layers of the reservoirs, suggesting interconnected layers in terms of geology. All calculated permeabilities from the well tests were found to be significantly higher than those from core analysis, suggesting that discrete fractures exist throughout the reservoir. The northern region of the reservoir has the highest permeability values and the lowest values are observed in the central part of the reservoir. 18 refs., 6 figs.

  1. Field calibration of PADC track etch detectors for local neutron dosimetry in man using different radiation qualities

    Energy Technology Data Exchange (ETDEWEB)

    Haelg, Roger A., E-mail: rhaelg@phys.ethz.ch [Institute for Radiotherapy, Radiotherapie Hirslanden AG, Hirslanden Medical Center, Rain 34, CH-5000 Aarau (Switzerland); Besserer, Juergen [Institute for Radiotherapy, Radiotherapie Hirslanden AG, Hirslanden Medical Center, Rain 34, CH-5000 Aarau (Switzerland); Boschung, Markus; Mayer, Sabine [Division for Radiation Safety and Security, Paul Scherrer Institut, CH-5232 Villigen (Switzerland); Clasie, Benjamin [Department of Radiation Oncology, Massachusetts General Hospital, 30 Fruit Street, Boston, MA 02114 (United States); Kry, Stephen F. [Department of Radiation Physics, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030 (United States); Schneider, Uwe [Institute for Radiotherapy, Radiotherapie Hirslanden AG, Hirslanden Medical Center, Rain 34, CH-5000 Aarau (Switzerland); Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 204, CH-8057 Zurich (Switzerland)

    2012-12-01

    In order to quantify the dose from neutrons to a patient for contemporary radiation treatment techniques, measurements inside phantoms, representing the patient, are necessary. Published reports on neutron dose measurements cover measurements performed free in air or on the surface of phantoms and the doses are expressed in terms of personal dose equivalent or ambient dose equivalent. This study focuses on measurements of local neutron doses inside a radiotherapy phantom and presents a field calibration procedure for PADC track etch detectors. An initial absolute calibration factor in terms of H{sub p}(10) for personal dosimetry is converted into neutron dose equivalent and additional calibration factors are derived to account for the spectral changes in the neutron fluence for different radiation therapy beam qualities and depths in the phantom. The neutron spectra used for the calculation of the calibration factors are determined in different depths by Monte Carlo simulations for the investigated radiation qualities. These spectra are used together with the energy dependent response function of the PADC detectors to account for the spectral changes in the neutron fluence. The resulting total calibration factors are 0.76 for a photon beam (in- and out-of-field), 1.00 (in-field) and 0.84 (out-of-field) for an active proton beam and 1.05 (in-field) and 0.91 (out-of-field) for a passive proton beam, respectively. The uncertainty for neutron dose measurements using this field calibration method is less than 40%. The extended calibration procedure presented in this work showed that it is possible to use PADC track etch detectors for measurements of local neutron dose equivalent inside anthropomorphic phantoms by accounting for spectral changes in the neutron fluence.

  2. Investigation of Workplace-like Calibration Fields via a Deuterium-Tritium (D-T) Neutron Generator.

    Science.gov (United States)

    Mozhayev, Andrey V; Piper, Roman K; Rathbone, Bruce A; McDonald, Joseph C

    2017-04-01

    Radiation survey meters and personal dosimeters are typically calibrated in reference neutron fields based on conventional radionuclide sources, such as americium-beryllium (Am-Be) or californium-252 (Cf), either unmodified or heavy-water moderated. However, these calibration neutron fields differ significantly from the workplace fields in which most of these survey meters and dosimeters are being used. Although some detectors are designed to yield an approximately dose-equivalent response over a particular neutron energy range, the response of other detectors is highly dependent upon neutron energy. This, in turn, can result in significant over- or underestimation of the intensity of neutron radiation and/or personal dose equivalent determined in the work environment. The use of simulated workplace neutron calibration fields that more closely match those present at the workplace could improve the accuracy of worker, and workplace, neutron dose assessment. This work provides an overview of the neutron fields found around nuclear power reactors and interim spent fuel storage installations based on available data. The feasibility of producing workplace-like calibration fields in an existing calibration facility has been investigated via Monte Carlo simulations. Several moderating assembly configurations, paired with a neutron generator using the deuterium tritium (D-T) fusion reaction, were explored.

  3. Precision of neutron scattering and capacitance type soil water content gauges from field calibration

    International Nuclear Information System (INIS)

    Evett, S.R.; Steiner, J.L.

    1995-01-01

    Soil water content gauges based on neutron scattering (NS) have been a valuable tool for soil water investigations for some 40 yr. However, licensing, training, and safety regulations pertaining to the radioactive source in these gauges makes their use expensive and prevents use in some situations such as unattended monitoring. A capacitance probe (CP) gauge has characteristics that would seem to make it an ideal replacement for NS gauges. We determined the relative precision of two brands of NS gauges (three gauges of each) and a brand of CP gauge (four gauges) in a field calibration exercise. Both brands of NS gauges were calibrated vs. volumetric soil water content with coefficients of determination (r2) ranging from 0.97 to 0.99 and root mean squared errors (RMSE) 0.012 m3 m-3 water content. Calibrations for the CP gauges resulted in r2 ranging from 0.68 to 0.71 and RMSE of 0.036 m3 m-3 water content. Average 95% confidence intervals on predictions were three to five times higher for the CP gauges than for the NS gauges, ranging from 0.153 to 0.161 and 0.032 to 0.052 m3 m-3, respectively. Although poorly correlated with soil water content, readings were reproducible among the four CP gauges. The poor correlation for CP gauges may be due to small-scale soil water content variations within the measurement volume of the gauge. The NS gauges provide acceptable precision but the CP gauge has poor precision and is unacceptable for routine soil water content measurements

  4. Reference neutron radiations. Part 2: Calibration fundamentals of radiation protection devices related to the basic quantities characterizing the radiation field

    International Nuclear Information System (INIS)

    2000-01-01

    ISO 8529 consists of the following parts, under the general title Reference neutron radiations: Part 1: Characteristics and methods of production; Part 2: Calibration fundamentals of radiation protection devices related to the basic quantities characterizing the radiation field; Part 3: Calibration of area and personal dosimeters and determination of response as a function of energy and angle of incidence. This Part 2. of ISO 8529 takes as its starting point the neutron sources described in ISO 8529-1. It specifies the procedures to be used for realizing the calibration conditions of radiation protection devices in neutron fields produced by these calibration sources, with particular emphasis on the corrections for extraneous effects (e.g., the neutrons scattered from the walls of the calibration room). In this part of ISO 8529, particular emphasis is placed on calibrations using radionuclide sources (clauses 4 to 6) due to their widespread application, with less details given on the use of accelerator and reactor sources (8.2 and 8.3). This part of ISO 8529 then leads to ISO 8529-3 which gives conversion coefficients and the general rules and procedures for calibration

  5. Construction and Calibration of Optically Efficient LCD-based Multi-Layer Light Field Displays

    International Nuclear Information System (INIS)

    Hirsch, Matthew; Lanman, Douglas; Wetzstein, Gordon; Raskar, Ramesh

    2013-01-01

    Near-term commercial multi-view displays currently employ ray-based 3D or 4D light field techniques. Conventional approaches to ray-based display typically include lens arrays or heuristic barrier patterns combined with integral interlaced views on a display screen such as an LCD panel. Recent work has placed an emphasis on the co-design of optics and image formation algorithms to achieve increased frame rates, brighter images, and wider fields-of-view using optimization-in-the-loop and novel arrangements of commodity LCD panels. In this paper we examine the construction and calibration methods of computational, multi-layer LCD light field displays. We present several experimental configurations that are simple to build and can be tuned to sufficient precision to achieve a research quality light field display. We also present an analysis of moiré interference in these displays, and guidelines for diffuser placement and display alignment to reduce the effects of moiré. We describe a technique using the moiré magnifier to fine-tune the alignment of the LCD layers.

  6. Field calibration of polyurethane foam (PUF) disk passive air samplers for PCBs and OC pesticides

    Energy Technology Data Exchange (ETDEWEB)

    Chaemfa, Chakra; Barber, Jonathan L. [Centre for Chemicals Management and Environmental Science Department, Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom); Gocht, Tilman [Centre for Applied Geoscience, University of Tuebingen, Sigwartstrasse 10, 72076 Tuebingen (Germany); Harner, Tom [Atmospheric Science and Technology Directorate, Environment Canada, Toronto, Ontario M3H 5T4 (Canada); Holoubek, Ivan; Klanova, Jana [Research Centre for Environmental Chemistry and Ecotoxicology (RECETOX), Masaryk University, Kamenice 126/3, 62500 Brno (Czech Republic); Jones, Kevin C. [Centre for Chemicals Management and Environmental Science Department, Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom)], E-mail: k.c.jones@lancaster.ac.uk

    2008-12-15

    Different passive air sampler (PAS) strategies have been developed for sampling in remote areas and for cost-effective simultaneous spatial mapping of POPs (persistent organic pollutants) over differing geographical scales. The polyurethane foam (PUF) disk-based PAS is probably the most widely used. In a PUF-based PAS, the PUF disk is generally mounted inside two stainless steel bowls to buffer the air flow to the disk and to shield it from precipitation and light. The field study described in this manuscript was conducted to: compare performance of 3 different designs of sampler; to further calibrate the sampler against the conventional active sampler; to derive more information on field-based uptake rates and equilibrium times of the samplers. Samplers were also deployed at different locations across the field site, and at different heights up a meteorological tower, to investigate the possible influence of sampler location. Samplers deployed <5 m above ground, and not directly sheltered from the wind gave similar uptake rates. Small differences in dimensions between the 3 designs of passive sampler chamber had no discernable effect on accumulation rates, allowing comparison with previously published data. - Field studies have validated the use of chambers containing polyurethane-disks for passively sampling persistent organic pollutants in air.

  7. Calibration of pulsed field gel electrophoresis for measurement of DNA double-strand breaks

    International Nuclear Information System (INIS)

    Ager, D.D.; Dewey, W.C.

    1990-01-01

    Pulsed field gel electrophoresis (PFGE) assay was calibrated for the measurement of X-ray induced DNA double-strand breaks in Chinese hamster ovary (CHO) cells. Calibration was conducted by incorporating [ 125 I] deoxyuridine into DNA, which induces one double-strand break for every disintegration that occurs in frozen cells. Based on the percentage of DNA migrating into the gel, the number of breaks/dalton/Gy was estimated to be (9.3±1.0) x 10 -12 . This value is close to (10 to 12) x 10 -12 determined by neutral filter elution using similar cell lysis procedures at 24 o C and at pH8.0. The estimate is in good agreement with the value of (11.7±2) x 10 -12 breaks/dalton/Gy as measured in Ehrlich ascites tumour cells using the neutral sucrose gradient method (Bloecher 1988), and (6 to 9) x 10 -12 breaks/dalton/Gy as measured in mouse L and Chinese hamster V79 cells using neutral filter elution (Radford and Hodgson 1985). (author)

  8. Dynamical cancellation of pulse-induced transients in a metallic shielded room for ultra-low-field magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Zevenhoven, Koos C. J., E-mail: koos.zevenhoven@aalto.fi; Ilmoniemi, Risto J. [Department of Neuroscience and Biomedical Engineering, School of Science, Aalto University, P.O. Box 12200, FI-00076 AALTO (Finland); Dong, Hui [Department of Physics, University of California, Berkeley, California 94708-7300 (United States); State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Clarke, John [Department of Physics, University of California, Berkeley, California 94708-7300 (United States)

    2015-01-19

    Pulse-induced transients such as eddy currents can cause problems in measurement techniques where a signal is acquired after an applied preparatory pulse. In ultra-low-field magnetic resonance imaging, performed in magnetic fields typically of the order of 100 μT, the signal-to-noise ratio is enhanced in part by prepolarizing the proton spins with a pulse of much larger magnetic field and in part by detecting the signal with a Superconducting QUantum Interference Device (SQUID). The pulse turn-off, however, can induce large eddy currents in the shielded room, producing an inhomogeneous magnetic-field transient that both seriously distorts the spin dynamics and exceeds the range of the SQUID readout. It is essential to reduce this transient substantially before image acquisition. We introduce dynamical cancellation (DynaCan), a technique in which a precisely designed current waveform is applied to a separate coil during the later part and turn off of the polarizing pulse. This waveform, which bears no resemblance to the polarizing pulse, is designed to drive the eddy currents to zero at the precise moment that the polarizing field becomes zero. We present the theory used to optimize the waveform using a detailed computational model with corrections from measured magnetic-field transients. SQUID-based measurements with DynaCan demonstrate a cancellation of 99%. Dynamical cancellation has the great advantage that, for a given system, the cancellation accuracy can be optimized in software. This technique can be applied to both metal and high-permeability alloy shielded rooms, and even to transients other than eddy currents.

  9. A three-step calibration method for tri-axial field sensors in a 3D magnetic digital compass

    International Nuclear Information System (INIS)

    Zhu, Xiaoning; Zhao, Ta; Zhou, Zhijian; Cheng, Defu

    2017-01-01

    In a 3D magnetic compass, it is important to calibrate the tri-axial magnetometers and accelerometers so the compass will provide accurate heading and attitude information. Previous researchers have used two methods to calibrate these two field sensors separately, i.e. the classic independent ellipsoid fitting method and the independent dot product invariant method, respectively. Both methods are easy to use, and no highly accurate, external equipment is required. However, self-calibration with ellipsoid fitting has the disadvantage that it interfuses an orthogonal matrix, and the dot product invariant method requires the use of pre-calibrated internal field sensors, which may be unavailable in many cases. In this paper, we have introduced and unified an error model of two tri-axial field sensors. Accordingly, the orthogonal matrix caused by ellipsoid fitting was mathematically proved to be the combination of two sources, the mounting misalignment and the rotation misalignment. Moreover, a new method, which we call optimal resultant vector, was proposed to further calibrate multi-sensor systems on the basis of ellipsoid fitting and dot product invariant methods, establishing a new, three-step calibration method. The superiority of the proposed method over the state-of-the-art approaches were demonstrated by simulations and a 3D compass experiment. (paper)

  10. A three-step calibration method for tri-axial field sensors in a 3D magnetic digital compass

    Science.gov (United States)

    Zhu, Xiaoning; Zhao, Ta; Cheng, Defu; Zhou, Zhijian

    2017-04-01

    In a 3D magnetic compass, it is important to calibrate the tri-axial magnetometers and accelerometers so the compass will provide accurate heading and attitude information. Previous researchers have used two methods to calibrate these two field sensors separately, i.e. the classic independent ellipsoid fitting method and the independent dot product invariant method, respectively. Both methods are easy to use, and no highly accurate, external equipment is required. However, self-calibration with ellipsoid fitting has the disadvantage that it interfuses an orthogonal matrix, and the dot product invariant method requires the use of pre-calibrated internal field sensors, which may be unavailable in many cases. In this paper, we have introduced and unified an error model of two tri-axial field sensors. Accordingly, the orthogonal matrix caused by ellipsoid fitting was mathematically proved to be the combination of two sources, the mounting misalignment and the rotation misalignment. Moreover, a new method, which we call optimal resultant vector, was proposed to further calibrate multi-sensor systems on the basis of ellipsoid fitting and dot product invariant methods, establishing a new, three-step calibration method. The superiority of the proposed method over the state-of-the-art approaches were demonstrated by simulations and a 3D compass experiment.

  11. Characterization of the Neutron Fields in the Lawrence Livermore National Laboratory (LLNL) Radiation Calibration Laboratory Low Scatter Calibration Facility

    Energy Technology Data Exchange (ETDEWEB)

    Radev, R

    2009-09-04

    In June 2007, the Department of Energy (DOE) revised its rule on Occupational Radiation Protection, Part 10 CFR 835. A significant aspect of the revision was the adoption of the recommendations outlined in International Commission on Radiological Protection (ICRP) Report 60 (ICRP-60), including new radiation weighting factors for neutrons, updated internal dosimetric models, and dose terms consistent with the newer ICRP recommendations. ICRP-60 uses the quantities defined by the International Commission on Radiation Units and Measurements (ICRU) for personnel and area monitoring including the ambient dose equivalent H*(d). A Joint Task Group of ICRU and ICRP has developed various fluence-to-dose conversion coefficients which are published in ICRP-74 for both protection and operational quantities. In February 2008, Lawrence Livermore National Laboratory (LLNL) replaced its old pneumatic transport neutron irradiation system in the Radiation Calibration Laboratory (RCL) Low Scatter Calibration Facility (B255, Room 183A) with a Hopewell Designs irradiator model N40. The exposure tube for the Hopewell system is located close to, but not in exactly the same position as the exposure tube for the pneumatic system. Additionally, the sources for the Hopewell system are stored in Room 183A where, prior to the change, they were stored in a separate room (Room 183C). The new source configuration and revision of the 10 CFR 835 radiation weighting factors necessitate a re-evaluation of the neutron dose rates in B255 Room 183A. This report deals only with the changes in the operational quantities ambient dose equivalent and ambient dose rate equivalent for neutrons as a result of the implementation of the revised 10 CFR 835. In the report, the terms 'neutron dose' and 'neutron dose rate' will be used for convenience for ambient neutron dose equivalent and ambient neutron dose rate equivalent unless otherwise stated.

  12. Free-field reciprocity calibration of laboratory standard (LS) microphones using a time selective technique

    DEFF Research Database (Denmark)

    Rasmussen, Knud; Barrera Figueroa, Salvador

    2006-01-01

    Although the basic principle of reciprocity calibration of microphones in a free field is simple, the practical problems are complicated due to the low signal-to-noise ratio and the influence of cross talk and reflections from the surroundings. The influence of uncorrelated noise can be reduced...... by conventional narrow-band filtering and time averaging, while correlated signals like cross talk and reflections can be eliminated by using time-selective postprocessing techniques. The technique used at DPLA overcomes both these problems using a B&K Pulse analyzer in the SSR mode (steady state response......) and an FFT-based time-selective technique. The complex electrical transfer impedance is measured in linear frequency steps from a few kHz to about three times the resonance frequency of the microphones. The missing values at low frequencies are estimated from a detailed knowledge of the pressure...

  13. Characterization of the neutron field of the 241AmBe in a calibration room

    International Nuclear Information System (INIS)

    Vega C, H.R.; Gallego, E.; Lorente, A.

    2003-01-01

    The field of neutrons produced by an isotopic source of neutrons of 241 Am Be had been characterized. The characterization was carried out modeling those relevant details of the calibration room and simulating the neutron transport at different distances of the source. The calculated spectra were used to determine the equivalent environmental dose rate. A series of experiments were carried out with the Bonner sphere spectrometric system to measure the spectra in the same points where the calculations were carried out and with these spectra the rates of environmental dose were calculated. By means of a one sphere dosemeter type Berthold the rates of environmental dose were measured. To the one to compare the calculated spectra and measured its were found small differences in the group of the thermal neutrons due to the elementary composition used during the simulation. When comparing the derived rates starting from the calculated spectra with those measured it was found a maxim difference smaller to 13%. (Author)

  14. Modeling of thermoelectric module operation in inhomogeneous transient temperature field using finite element method

    Directory of Open Access Journals (Sweden)

    Nikolić Radovan H.

    2014-01-01

    Full Text Available This paper is the result of research and operation modeling of the new systems for cooling of cutting tools based on thermoelectric module. A copper inlay with thermoelectric module on the back side was added to a standard turning tool for metal processing. For modeling and simulating the operation of thermoelectric module, finite element method was used as a method for successful solving the problems of inhomogeneous transient temperature field on the cutting tip of lathe knives. Developed mathematical model is implemented in the software package PAK-T through which numerical results are obtained. Experimental research was done in different conditions of thermoelectric module operation. Cooling of the hot module side was done by a heat exchanger based on fluid using automatic temperature regulator. After the calculation is done, numerical results are in good agreement with experimental. It can be concluded that developed mathematical model can be used successfully for modeling of cooling of cutting tools. [Projekat Ministarstva nauke Republike Srbije, br. TR32036

  15. Field calibration of polyurethane foam (PUF) disk passive air samplers for PCBs and OC pesticides.

    Science.gov (United States)

    Chaemfa, Chakra; Barber, Jonathan L; Gocht, Tilman; Harner, Tom; Holoubek, Ivan; Klanova, Jana; Jones, Kevin C

    2008-12-01

    Different passive air sampler (PAS) strategies have been developed for sampling in remote areas and for cost-effective simultaneous spatial mapping of POPs (persistent organic pollutants) over differing geographical scales. The polyurethane foam (PUF) disk-based PAS is probably the most widely used. In a PUF-based PAS, the PUF disk is generally mounted inside two stainless steel bowls to buffer the air flow to the disk and to shield it from precipitation and light. The field study described in this manuscript was conducted to: compare performance of 3 different designs of sampler; to further calibrate the sampler against the conventional active sampler; to derive more information on field-based uptake rates and equilibrium times of the samplers. Samplers were also deployed at different locations across the field site, and at different heights up a meteorological tower, to investigate the possible influence of sampler location. Samplers deployed <5m above ground, and not directly sheltered from the wind gave similar uptake rates. Small differences in dimensions between the 3 designs of passive sampler chamber had no discernable effect on accumulation rates, allowing comparison with previously published data.

  16. Globally coherent short duration magnetic field transients and their effect on ground based gravitational-wave detectors

    International Nuclear Information System (INIS)

    Kowalska-Leszczynska, Izabela; Bulik, Tomasz; Bizouard, Marie-Anne; Robinet, Florent; Christensen, Nelson; Rohde, Maximilian; Coughlin, Michael; Gołkowski, Mark; Kubisz, Jerzy; Kulak, Andrzej; Mlynarczyk, Janusz

    2017-01-01

    It has been recognized that the magnetic fields from the Schumann resonances could affect the search for a stochastic gravitational-wave background by LIGO and Virgo. Presented here are the observations of short duration magnetic field transients that are coincident in the magnetometers at the LIGO and Virgo sites. Data from low-noise magnetometers in Poland and Colorado, USA, are also used and show short duration magnetic transients of global extent. We measure at least 2.3 coincident (between Poland and Colorado) magnetic transient events per day where one of the pulses exceeds 200 pT. Given the recently measured values of the magnetic coupling to differential arm motion for Advanced LIGO, there would be a few events per day that would appear simultaneously at the gravitational-wave detector sites and could move the test masses of order 10 −18 m. We confirm that in the advanced detector era short duration transient gravitational-wave searches must account for correlated magnetic field noise in the global detector network. (paper)

  17. Transient Sound Intensity Measurements for Evaluating the Spatial Information of Sound Fields in Reverberant Enclosures.

    Science.gov (United States)

    Abdov, Adel Abdel-Moneim

    well as the importance and potential of visualizing the directional characteristics of sound fields at the listener position employing 3-D transient sound intensity impulses. In order to utilize the now-available directional information, existing temporal and spatial sound diffusion indices and techniques have been reviewed and additional prospective quantifiers are proposed. The study allows the possibility of developing an appreciation between cause and effect in the matter of interior architectural features design and by providing a better judgment base, removes much of the guess work to achieve cost effective remedial treatments. It also exposes a new dimensional perspective to workers developing objective indicators of subjective response.

  18. Blind calibration of radio interferometric arrays using sparsity constraints and its implications for self-calibration

    Science.gov (United States)

    Chiarucci, Simone; Wijnholds, Stefan J.

    2018-02-01

    Blind calibration, i.e. calibration without a priori knowledge of the source model, is robust to the presence of unknown sources such as transient phenomena or (low-power) broad-band radio frequency interference that escaped detection. In this paper, we present a novel method for blind calibration of a radio interferometric array assuming that the observed field only contains a small number of discrete point sources. We show the huge computational advantage over previous blind calibration methods and we assess its statistical efficiency and robustness to noise and the quality of the initial estimate. We demonstrate the method on actual data from a Low-Frequency Array low-band antenna station showing that our blind calibration is able to recover the same gain solutions as the regular calibration approach, as expected from theory and simulations. We also discuss the implications of our findings for the robustness of regular self-calibration to poor starting models.

  19. Calibration of a special neutron dosemeter based on solid-state track detectors and fission radiators in various neutron fields

    International Nuclear Information System (INIS)

    Doerschel, B.; Krusche, M.; Schuricht, V.

    1980-01-01

    The calibration of a personnel neutron dosemeter in different neutron fields is described. The badge-like dosemeter contains 5 detectors: polycarbonate foil (10 μm, Makrofol KG), 232 Th, natural uranium, natural uranium with boron, and natural uranium with cadmium. Detector sensitivity and calibration factors have been calculated and measured in radiation fields of 252 Cf fission neutrons, WWR-S reactor neutrons with and without Cd and Fe shielding, 3-MeV (d,t) generator neutrons, and 238 PuBe neutrons. Measurement range and achievable accuracy are discussed from the point of view of applying the dosemeter in routine and emergency uses

  20. Field calibration of electrochemical NO2 sensors in a citizen science context

    Science.gov (United States)

    Mijling, Bas; Jiang, Qijun; de Jonge, Dave; Bocconi, Stefano

    2018-03-01

    In many urban areas the population is exposed to elevated levels of air pollution. However, real-time air quality is usually only measured at few locations. These measurements provide a general picture of the state of the air, but they are unable to monitor local differences. New low-cost sensor technology is available for several years now, and has the potential to extend official monitoring networks significantly even though the current generation of sensors suffer from various technical issues.Citizen science experiments based on these sensors must be designed carefully to avoid generation of data which is of poor or even useless quality. This study explores the added value of the 2016 Urban AirQ campaign, which focused on measuring nitrogen dioxide (NO2) in Amsterdam, the Netherlands. Sixteen low-cost air quality sensor devices were built and distributed among volunteers living close to roads with high traffic volume for a 2-month measurement period. Each electrochemical sensor was calibrated in-field next to an air monitoring station during an 8-day period, resulting in R2 ranging from 0.3 to 0.7. When temperature and relative humidity are included in a multilinear regression approach, the NO2 accuracy is improved significantly, with R2 ranging from 0.6 to 0.9. Recalibration after the campaign is crucial, as all sensors show a significant signal drift in the 2-month measurement period. The measurement series between the calibration periods can be corrected for after the measurement period by taking a weighted average of the calibration coefficients.Validation against an independent air monitoring station shows good agreement. Using our approach, the standard deviation of a typical sensor device for NO2 measurements was found to be 7 µg m-3, provided that temperatures are below 30 °C. Stronger ozone titration on street sides causes an underestimation of NO2 concentrations, which 75 % of the time is less than 2.3 µg m-3.Our findings show that citizen science

  1. The AACES field experiments: SMOS calibration and validation across the Murrumbidgee River catchment

    Science.gov (United States)

    Peischl, S.; Walker, J. P.; Rüdiger, C.; Ye, N.; Kerr, Y. H.; Kim, E.; Bandara, R.; Allahmoradi, M.

    2012-06-01

    Following the launch of the European Space Agency's Soil Moisture and Ocean Salinity (SMOS) mission on 2 November 2009, SMOS soil moisture products need to be rigorously validated at the satellite's approximately 45 km scale and disaggregation techniques for producing maps with finer resolutions tested. The Australian Airborne Cal/val Experiments for SMOS (AACES) provide the basis for one of the most comprehensive assessments of SMOS data world-wide by covering a range of topographic, climatic and land surface variability within an approximately 500 × 100 km2 study area, located in South-East Australia. The AACES calibration and validation activities consisted of two extensive field experiments which were undertaken across the Murrumbidgee River catchment during the Australian summer and winter season of 2010, respectively. The datasets include airborne L-band brightness temperature, thermal infrared and multi-spectral observations at 1 km resolution, as well as extensive ground measurements of near-surface soil moisture and ancillary data, such as soil temperature, soil texture, surface roughness, vegetation water content, dew amount, leaf area index and spectral characteristics of the vegetation. This paper explains the design and data collection strategy of the airborne and ground component of the two AACES campaigns and presents a preliminary analysis of the field measurements including the application and performance of the SMOS core retrieval model on the diverse land surface conditions captured by the experiments. The data described in this paper are publicly available from the website: http://www.moisturemap.monash.edu.au/aaces.

  2. Neutron calibration field of bare {sup 252}Cf source in Vietnam

    Energy Technology Data Exchange (ETDEWEB)

    Le, Ngoc Thiem; Tran, Hoai Nam; Nguyen, Khai Tuan [Institute for Nuclear Science and Technology, Hanoi (Viet Nam); Trinh, Glap Van [Institute of Research and Development, Duy Tan University, Da Nang (Viet Nam)

    2017-02-15

    This paper presents the establishment and characterization of a neutron calibration field using a bare {sup 252}Cf source of low neutron source strength in Vietnam. The characterization of the field in terms of neutron flux spectra and neutron ambient dose equivalent rates were performed by Monte Carlo simulations using the MCNP5 code. The anisotropy effect of the source was also investigated. The neutron ambient dose equivalent rates at three reference distances of 75, 125, and 150 cm from the source were calculated and compared with the measurements using the Aloka TPS-451C neutron survey meters. The discrepancy between the calculated and measured values is found to be about 10%. To separate the scattered and the direct components from the total neutron flux spectra, an in-house shadow cone of 10% borated polyethylene was used. The shielding efficiency of the shadow cone was estimated using the MCNP5 code. The results confirmed that the shielding efficiency of the shadow cone is acceptable.

  3. Uncertainty Evaluations of the CRCS In-orbit Field Radiometric Calibration Methods for Thermal Infrared Channels of FENGYUN Meteorological Satellites

    Science.gov (United States)

    Zhang, Y.; Rong, Z.; Min, M.; Hao, X.; Yang, H.

    2017-12-01

    Meteorological satellites have become an irreplaceable weather and ocean-observing tool in China. These satellites are used to monitor natural disasters and improve the efficiency of many sectors of Chinese national economy. It is impossible to ignore the space-derived data in the fields of meteorology, hydrology, and agriculture, as well as disaster monitoring in China, a large agricultural country. For this reason, China is making a sustained effort to build and enhance its meteorological observing system and application system. The first Chinese polar-orbiting weather satellite was launched in 1988. Since then China has launched 14 meteorological satellites, 7 of which are sun synchronous and 7 of which are geostationary satellites; China will continue its two types of meteorological satellite programs. In order to achieve the in-orbit absolute radiometric calibration of the operational meteorological satellites' thermal infrared channels, China radiometric calibration sites (CRCS) established a set of in-orbit field absolute radiometric calibration methods (FCM) for thermal infrared channels (TIR) and the uncertainty of this method was evaluated and analyzed based on TERRA/AQUA MODIS observations. Comparisons between the MODIS at pupil brightness temperatures (BTs) and the simulated BTs at the top of atmosphere using radiative transfer model (RTM) based on field measurements showed that the accuracy of the current in-orbit field absolute radiometric calibration methods was better than 1.00K (@300K, K=1) in thermal infrared channels. Therefore, the current CRCS field calibration method for TIR channels applied to Chinese metrological satellites was with favorable calibration accuracy: for 10.5-11.5µm channel was better than 0.75K (@300K, K=1) and for 11.5-12.5µm channel was better than 0.85K (@300K, K=1).

  4. Comparison and correction of the light sensor output from 48 wearable light exposure devices by using a side-by-side field calibration method

    DEFF Research Database (Denmark)

    Markvart, Jakob; Hansen, Åse Marie; Christoffersen, Jens

    2015-01-01

    for side-by-side calibration of Actiwatches and similar personal light exposure devices. We suggest that the calibration methods presented can be used for calibration of other practical field devices, with respect to the various sensors already on the market and devices that will be introduced...

  5. Rapid Transient Pressure Field Computations in the Nearfield of Circular Transducers using Frequency Domain Time-Space Decomposition

    Science.gov (United States)

    Alles, E. J.; Zhu, Y.; van Dongen, K. W. A.; McGough, R. J.

    2013-01-01

    The fast nearfield method, when combined with time-space decomposition, is a rapid and accurate approach for calculating transient nearfield pressures generated by ultrasound transducers. However, the standard time-space decomposition approach is only applicable to certain analytical representations of the temporal transducer surface velocity that, when applied to the fast nearfield method, are expressed as a finite sum of products of separate temporal and spatial terms. To extend time-space decomposition such that accelerated transient field simulations are enabled in the nearfield for an arbitrary transducer surface velocity, a new transient simulation method, frequency domain time-space decomposition (FDTSD), is derived. With this method, the temporal transducer surface velocity is transformed into the frequency domain, and then each complex-valued term is processed separately. Further improvements are achieved by spectral clipping, which reduces the number of terms and the computation time. Trade-offs between speed and accuracy are established for FDTSD calculations, and pressure fields obtained with the FDTSD method for a circular transducer are compared to those obtained with Field II and the impulse response method. The FDTSD approach, when combined with the fast nearfield method and spectral clipping, consistently achieves smaller errors in less time and requires less memory than Field II or the impulse response method. PMID:23160476

  6. Rapid transient pressure field computations in the nearfield of circular transducers using frequency-domain time-space decomposition.

    Science.gov (United States)

    Alles, E J; Zhu, Y; van Dongen, K W A; McGough, R J

    2012-10-01

    The fast nearfield method, when combined with time-space decomposition, is a rapid and accurate approach for calculating transient nearfield pressures generated by ultrasound transducers. However, the standard time-space decomposition approach is only applicable to certain analytical representations of the temporal transducer surface velocity that, when applied to the fast nearfield method, are expressed as a finite sum of products of separate temporal and spatial terms. To extend time-space decomposition such that accelerated transient field simulations are enabled in the nearfield for an arbitrary transducer surface velocity, a new transient simulation method, frequency-domain time-space decomposition (FDTSD), is derived. With this method, the temporal transducer surface velocity is transformed into the frequency domain, and then each complex-valued term is processed separately. Further improvements are achieved by spectral clipping, which reduces the number of terms and the computation time. Trade-offs between speed and accuracy are established for FDTSD calculations, and pressure fields obtained with the FDTSD method for a circular transducer are compared with those obtained with Field II and the impulse response method. The FDTSD approach, when combined with the fast nearfield method and spectral clipping, consistently achieves smaller errors in less time and requires less memory than Field II or the impulse response method.

  7. Effects of the pulse-driven magnetic field detuning on the calibration of coil constants while using noble gases

    Directory of Open Access Journals (Sweden)

    Jing Wang

    2018-04-01

    Full Text Available In the calibration of coil constants using the Free Induction Decay (FID signal of noble gases, we analyse the effects of the pulse-driven magnetic field detuning on the calibration results. This method is based on the inverse relation between the π/2 pulse duration and its amplitude. We confirmed that obtaining a precise frequency is a prerequisite for ensuring the accuracy of research using the initial amplitude of the FID signal. In this paper, the spin dynamics of noble gases and its time-domain solution under the driving pulse have been discussed with regard to different detuning ranges. Experimental results are in good agreement with our theoretical predictions, which indicate the correctness of our theoretical deduction. Therefore, the frequency of the pulse-driven magnetic field is an important factor to the calibration of coil constants, it should be determined with a high degree of accuracy.

  8. Calibration and error analysis of metal-oxide-semiconductor field-effect transistor dosimeters for computed tomography radiation dosimetry.

    Science.gov (United States)

    Trattner, Sigal; Prinsen, Peter; Wiegert, Jens; Gerland, Elazar-Lars; Shefer, Efrat; Morton, Tom; Thompson, Carla M; Yagil, Yoad; Cheng, Bin; Jambawalikar, Sachin; Al-Senan, Rani; Amurao, Maxwell; Halliburton, Sandra S; Einstein, Andrew J

    2017-12-01

    Metal-oxide-semiconductor field-effect transistors (MOSFETs) serve as a helpful tool for organ radiation dosimetry and their use has grown in computed tomography (CT). While different approaches have been used for MOSFET calibration, those using the commonly available 100 mm pencil ionization chamber have not incorporated measurements performed throughout its length, and moreover, no previous work has rigorously evaluated the multiple sources of error involved in MOSFET calibration. In this paper, we propose a new MOSFET calibration approach to translate MOSFET voltage measurements into absorbed dose from CT, based on serial measurements performed throughout the length of a 100-mm ionization chamber, and perform an analysis of the errors of MOSFET voltage measurements and four sources of error in calibration. MOSFET calibration was performed at two sites, to determine single calibration factors for tube potentials of 80, 100, and 120 kVp, using a 100-mm-long pencil ion chamber and a cylindrical computed tomography dose index (CTDI) phantom of 32 cm diameter. The dose profile along the 100-mm ion chamber axis was sampled in 5 mm intervals by nine MOSFETs in the nine holes of the CTDI phantom. Variance of the absorbed dose was modeled as a sum of the MOSFET voltage measurement variance and the calibration factor variance, the latter being comprised of three main subcomponents: ionization chamber reading variance, MOSFET-to-MOSFET variation and a contribution related to the fact that the average calibration factor of a few MOSFETs was used as an estimate for the average value of all MOSFETs. MOSFET voltage measurement error was estimated based on sets of repeated measurements. The calibration factor overall voltage measurement error was calculated from the above analysis. Calibration factors determined were close to those reported in the literature and by the manufacturer (~3 mV/mGy), ranging from 2.87 to 3.13 mV/mGy. The error σ V of a MOSFET voltage

  9. Construction of 144, 565 keV and 5.0 MeV monoenergetic neutron calibration fields at JAERI.

    Science.gov (United States)

    Tanimura, Y; Yoshizawa, M; Saegusa, J; Fujii, K; Shimizu, S; Yoshida, M; Shibata, Y; Uritani, A; Kudo, K

    2004-01-01

    Monoenergetic neutron calibration fields of 144, 565 keV and 5.0 MeV have been developed at the Facility of Radiation Standards of JAERI using a 4 MV Pelletron accelerator. The 7Li(p,n)7Be and 2H(d,n)3He reactions are employed for neutron production. The neutron energy was measured by the time-of-flight method with a liquid scintillation detector and calculated with the MCNP-ANT code. A long counter is employed as a neutron monitor because of the flat response. The monitor is set up where the influence of inscattered neutrons from devices and their supporting materials at a calibration point is as small as possible. The calibration coefficients from the monitor counts to the neutron fluence at a calibration point were obtained from the reference fluence measured with the transfer instrument of the primary standard laboratory (AIST), a 24.13 cm phi Bonner sphere counter. The traceability of the fields to AIST was established through the calibration.

  10. Load Model Verification, Validation and Calibration Framework by Statistical Analysis on Field Data

    Science.gov (United States)

    Jiao, Xiangqing; Liao, Yuan; Nguyen, Thai

    2017-11-01

    Accurate load models are critical for power system analysis and operation. A large amount of research work has been done on load modeling. Most of the existing research focuses on developing load models, while little has been done on developing formal load model verification and validation (V&V) methodologies or procedures. Most of the existing load model validation is based on qualitative rather than quantitative analysis. In addition, not all aspects of model V&V problem have been addressed by the existing approaches. To complement the existing methods, this paper proposes a novel load model verification and validation framework that can systematically and more comprehensively examine load model's effectiveness and accuracy. Statistical analysis, instead of visual check, quantifies the load model's accuracy, and provides a confidence level of the developed load model for model users. The analysis results can also be used to calibrate load models. The proposed framework can be used as a guidance to systematically examine load models for utility engineers and researchers. The proposed method is demonstrated through analysis of field measurements collected from a utility system.

  11. Field Geometric Calibration Method for Line Structured Light Sensor Using Single Circular Target

    Directory of Open Access Journals (Sweden)

    Tianfei Chen

    2017-01-01

    Full Text Available To achieve fast calibration of line structured light sensor, a geometric calibration approach based on single circular calibration target is proposed. The proposed method uses the circular points to establish linear equations, and according to the angle constraint, the camera intrinsic parameters can be calculated through optimization. Then, the light plane calibration is accomplished in two steps. Firstly, when the vanishing lines of target plane at various postures are obtained, the intersections between vanishing lines and laser stripe can be computed, and the normal vector of light plane can be calibrated via line fitting method using intersection points. After that, the distance from the origin of camera coordinate system to the light plane can be derived based on the model of perspective-three-point. The actual experimental result shows that this calibration method has high accuracy, its average measuring accuracy is 0.0451 mm, and relative error is 0.2314%. In addition, the entire calibration process has no complex operations. It is simple, convenient, and suitable for calibration on sites.

  12. Transient finite element magnetic field calculation method in the anisotropic magnetic material based on the measured magnetization curves

    International Nuclear Information System (INIS)

    Jesenik, M.; Gorican, V.; Trlep, M.; Hamler, A.; Stumberger, B.

    2006-01-01

    A lot of magnetic materials are anisotropic. In the 3D finite element method calculation, anisotropy of the material is taken into account. Anisotropic magnetic material is described with magnetization curves for different magnetization directions. The 3D transient calculation of the rotational magnetic field in the sample of the round rotational single sheet tester with circular sample considering eddy currents is made and compared with the measurement to verify the correctness of the method and to analyze the magnetic field in the sample

  13. All sky coordination initiative, simple service for wide-field monitoring systems to cooperate in searching for fast optical transients

    Science.gov (United States)

    Karpov, S.; Sokołowski, M.; Gorbovskoy, E.

    Here we stress the necessity of cooperation between different wide-field monitoring projects (FAVOR/TORTORA, Pi of the Sky, MASTER, etc), aimed for independent detection of fast optical transients, in order to maximize the area of the sky covered at any moment and to coordinate the monitoring of gamma-ray telescopes' field of view. We review current solutions available for it and propose a simple protocol with dedicated service (ASCI) for such systems to share their current status and pointing schedules.

  14. Explicit solution of the Volterra integral equation for transient fields on inhomogeneous arbitrarily shaped dielectric bodies

    KAUST Repository

    Al Jarro, Ahmed

    2011-09-01

    A new predictor-corrector scheme for solving the Volterra integral equation to analyze transient electromagnetic wave interactions with arbitrarily shaped inhomogeneous dielectric bodies is considered. Numerical results demonstrating stability and accuracy of the proposed method are presented. © 2011 IEEE.

  15. Characterization of the Neutron Fields in the Lawrence Livermore National Laboratory (LLNL) Radiation Calibration Laboratory Low Scatter Facility

    Energy Technology Data Exchange (ETDEWEB)

    Radev, Radoslav [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2009-08-20

    The issuance of Part 10 CFR 835 (2007) with revised radiation weighting factors and the installation of a new Hopewell N40 irradiator necessitated a re-characterization of the neutron fields in RCL's Low Scatter Calibration Facility (B255, Room 183 A). The emission rates of the RCL's two 252Cf calibration sources were re-evaluated and the updated emission rates are provided in Appendix A. The neutron dose rates from the new Hopewell N40 irradiator configuration were evaluated using three different instruments. the measurement methodology and the experimental set up as well as calibration of the instruments are discussed in detail.

  16. Field and laboratory calibration of neutron probes for soil moisture measurements on a deep loess chernozem soil

    International Nuclear Information System (INIS)

    Schaecke, B.; Schaecke, E.

    1979-01-01

    In the case of a varying profile structure it is necessary to use different calibration curves and adequate correction factors, respectively. The bulk density of the soil had the greatest influence on the calibration. An increase in bulk density by 0.2 g/cm 3 at a clay content of 18% resulted in an apparent increase in the values of moisture measurements by 1.5 to 2.0% of the volume of water. In naturally stratified soil the humus content of the chernozem horizon, being 3% higher than that of the underlying loess horizon, was found to influence the measuring results obtained by the probe. The calibration curves determined for chernozem and loess horizons in the laboratory agreed well with those obtained in the field. The measured values read from the probe and the gravimetrically determined values of the soil moisture were of great significance in all measured depths of the profile. (author)

  17. On the Momentum Transported by the Radiation Field of a Long Transient Dipole and Time Energy Uncertainty Principle

    Directory of Open Access Journals (Sweden)

    Vernon Cooray

    2016-11-01

    Full Text Available The paper describes the net momentum transported by the transient electromagnetic radiation field of a long transient dipole in free space. In the dipole a current is initiated at one end and propagates towards the other end where it is absorbed. The results show that the net momentum transported by the radiation is directed along the axis of the dipole where the currents are propagating. In general, the net momentum P transported by the electromagnetic radiation of the dipole is less than the quantity U / c , where U is the total energy radiated by the dipole and c is the speed of light in free space. In the case of a Hertzian dipole, the net momentum transported by the radiation field is zero because of the spatial symmetry of the radiation field. As the effective wavelength of the current decreases with respect to the length of the dipole (or the duration of the current decreases with respect to the travel time of the current along the dipole, the net momentum transported by the radiation field becomes closer and closer to U / c , and for effective wavelengths which are much shorter than the length of the dipole, P ≈ U / c . The results show that when the condition P ≈ U / c is satisfied, the radiated fields satisfy the condition Δ t Δ U ≥ h / 4 π where Δ t is the duration of the radiation, Δ U is the uncertainty in the dissipated energy and h is the Plank constant.

  18. Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser

    Science.gov (United States)

    Ryczkowski, P.; Närhi, M.; Billet, C.; Merolla, J.-M.; Genty, G.; Dudley, J. M.

    2018-04-01

    Dissipative solitons are remarkably localized states of a physical system that arise from the dynamical balance between nonlinearity, dispersion and environmental energy exchange. They are the most universal form of soliton that can exist, and are seen in far-from-equilibrium systems in many fields, including chemistry, biology and physics. There has been particular interest in studying their properties in mode-locked lasers, but experiments have been limited by the inability to track the dynamical soliton evolution in real time. Here, we use simultaneous dispersive Fourier transform and time-lens measurements to completely characterize the spectral and temporal evolution of ultrashort dissipative solitons as their dynamics pass through a transient unstable regime with complex break-up and collisions before stabilization. Further insight is obtained from reconstruction of the soliton amplitude and phase and calculation of the corresponding complex-valued eigenvalue spectrum. These findings show how real-time measurements provide new insights into ultrafast transient dynamics in optics.

  19. Correlating Metastable-Atom Density, Reduced Electric Field, and Electron Energy Distribution in the Initiation, Transient, and Post-Transient Stages of a Pulsed Argon Discharge

    Science.gov (United States)

    Franek, James B.

    Argon emission lines, particularly those in the near-infrared region (700-900nm), are used to determine plasma properties in low-temperature, partially ionized plasmas to determine effective electron temperature [Boffard et al., 2012], and argon excited state density [Boffard et al., 2009] using appropriately assumed electron energy distributions. While the effect of radiation trapping influences the interpretation of plasma properties from emission-line ratio analysis, eliminating the need to account for these effects by directly observing the 3px-to-1sy transitions [ Boffard et al., 2012] is preferable in most cases as this simplifies the analysis. In this dissertation, a 1-Torr argon, pulsed positive column in a hollow-cathode discharge is used to study the correlation between four quantities: 420.1-419.8nm emission-line ratio, metastable-atom density, reduced electric field, and electron energy distribution. The extended coronal model is used to acquire an expression for 420.1-419.8nm emission-line ratio, which is sensitive to direct electron-impact excitation of argon excited states as well as stepwise electron-impact excitation of argon excited states for the purpose of inferring plasma quantities from experimental measurements. Initial inspection of the 420.1-419.8nm emission-line ratio suggests the pulse may be empirically divided into three distinct stages labelled the Initiation Stage, Transient Stage, and Post-Transient stage. Using equilibrium electron energy distributions from simulation to deduce excitation rates [Adams et al., 2012] in the extended coronal model affords agreement between predicted and observed metastable density in the Post-Transient stage of the discharge [Franek et al., 2015]. Applying this model-assisted diagnostic technique to the characterization of plasma systems utilizing lower-resolution spectroscopic systems is not straightforward, however, as the 419.8nm and 420.1nm emission-line profiles are convolved and become

  20. Validation of dose-response calibration curve for X-Ray field of CRCN-NE/CNEN: preliminary results

    International Nuclear Information System (INIS)

    Silva, Laís Melo; Mendonç, Julyanne Conceição de Goes; Andrade, Aida Mayra Guedes de; Hwang, Suy F.; Mendes, Mariana Esposito; Lima, Fabiana F.; Melo, Ana Maria M.A.

    2017-01-01

    It is very important in accident investigations that accurate estimating of absorbed dose takes place, so that it contributes to medical decisions and overall assessment of long-term health consequences. Analysis of chromosome aberrations is the most developed method for biological monitoring, and frequencies of dicentric chromosomes are related to absorbed dose of human peripheral blood lymphocytes using calibration curves. International Atomic Energy Agency (IAEA) recommends that each biodosimetry laboratory sets its own calibration curves, given that there are intrinsic differences in protocols and dose interpretations when using calibration curves produced in other laboratories, which could add further uncertainties to dose estimations. The Laboratory for Biological Dosimetry CRCN-NE recently completed dose-response calibration curves for X ray field. Curves of chromosomes dicentrics and dicentrics plus rings were made using Dose Estimate. This study aimed to validate the calibration curves dose-response for X ray with three irradiated samples. Blood was obtained by venipuncture from healthy volunteer and three samples were irradiated by x-rays of 250 kVp with different absorbed doses (0,5Gy, 1Gy and 2Gy). The irradiation was performed at the CRCN-NE/CNEN Metrology Service with PANTAK X-ray equipment, model HF 320. The frequency of dicentric and centric rings chromosomes were determined in 500 metaphases per sample after cultivation of lymphocytes, and staining with Giemsa 5%. Results showed that the estimated absorbed doses are included in the confidence interval of 95% of real absorbed dose. These Dose-response calibration curves (dicentrics and dicentrics plus rings) seems valid, therefore other tests will be done with different volunteers. (author)

  1. Validation of dose-response calibration curve for X-Ray field of CRCN-NE/CNEN: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Laís Melo; Mendonç, Julyanne Conceição de Goes; Andrade, Aida Mayra Guedes de; Hwang, Suy F.; Mendes, Mariana Esposito; Lima, Fabiana F., E-mail: falima@cnen.gov.br, E-mail: mendes_sb@hotmail.com [Centro Regional de Ciências Nucleares, (CRCN-NE/CNEN-PE), Recife, PE (Brazil); Melo, Ana Maria M.A., E-mail: july_cgm@yahoo.com.br [Universidade Federal de Pernambuco (UFPE), Vitória de Santo Antão, PE (Brazil). Centro Acadêmico de Vitória

    2017-07-01

    It is very important in accident investigations that accurate estimating of absorbed dose takes place, so that it contributes to medical decisions and overall assessment of long-term health consequences. Analysis of chromosome aberrations is the most developed method for biological monitoring, and frequencies of dicentric chromosomes are related to absorbed dose of human peripheral blood lymphocytes using calibration curves. International Atomic Energy Agency (IAEA) recommends that each biodosimetry laboratory sets its own calibration curves, given that there are intrinsic differences in protocols and dose interpretations when using calibration curves produced in other laboratories, which could add further uncertainties to dose estimations. The Laboratory for Biological Dosimetry CRCN-NE recently completed dose-response calibration curves for X ray field. Curves of chromosomes dicentrics and dicentrics plus rings were made using Dose Estimate. This study aimed to validate the calibration curves dose-response for X ray with three irradiated samples. Blood was obtained by venipuncture from healthy volunteer and three samples were irradiated by x-rays of 250 kVp with different absorbed doses (0,5Gy, 1Gy and 2Gy). The irradiation was performed at the CRCN-NE/CNEN Metrology Service with PANTAK X-ray equipment, model HF 320. The frequency of dicentric and centric rings chromosomes were determined in 500 metaphases per sample after cultivation of lymphocytes, and staining with Giemsa 5%. Results showed that the estimated absorbed doses are included in the confidence interval of 95% of real absorbed dose. These Dose-response calibration curves (dicentrics and dicentrics plus rings) seems valid, therefore other tests will be done with different volunteers. (author)

  2. 2CALIS doubling the sensitivity of CALIS for calibration of the rf field strength for indirectly observed nuclei

    Science.gov (United States)

    Benie, Andrew J.; Sørensen, Ole W.

    2006-10-01

    A new set of pulse sequences, 2CALIS, that exhibit double sensitivity of the recent CALIS pulse sequences for accurate calibration of the rf field strength for an indirectly observed spin is introduced. The sensitivity gain is a result of not forming heteronuclear coherence transfer gradient echoes although they are excellent for artifact suppression. It is, however, demonstrated that the scheme in 2CALIS for suppression of non 13C-attached proton magnetization is adequate for calibration of the 13C rf field strength even on natural abundance samples. A 2CALIS version with Watergate applicable to biomolecules in aqueous solution is also presented and demonstrated both in 13C natural abundance and on a 13C, 15N enriched protein sample.

  3. Stimulated Brillouin scattering phase-locking using a transient acoustic standing wave excited through an optical interference field

    International Nuclear Information System (INIS)

    Ondrej Slezak; Milan Kalal; Hon Jin Kong

    2010-01-01

    Complete text of publication follows. Analytical description of an experimentally verified scheme leading to a phase-locked stimulated Brillouin scattering (SBS), used in a laser beam combination systems, is presented. The essential condition for the phase-locking effect for SBS is the fixation of the starting position and time of the acoustic Brillouin wave. It is shown that the starting position fixation of this acoustic wave may have its origin in a transient acoustic standing wave initiated by an arising optical interference field produced by the back-seeding concave mirror. This interference field leads to a stationary density modulation of the medium. However, the way to the formation of this density modulation leads via the acoustic standing wave. An appropriate solution, in the form of the standing wave, was obtained from solving the acoustic wave-equation using the electrostriction as a driving force. As a consequence of the damping term included in this equation the acoustic standing wave becomes gradually attenuated and contrary to the undamped solution published earlier, thus constitutes a truly transient phenomenon. Using a mathematical formalism similar to that which is used for the SBS description in the case of a random phase, the coupled equations describing the phase-locked SBS were derived. Contrary to the case without the back-seeding mirror, where the wave chosen from the thermal noise background subsequently plays the role of a trigger of the stimulated process, in this case it is replaced by the transient standing wave produced as a consequence of the presence of an optical interference field arisen in the focal region of the back-seeding concave mirror.

  4. Measurement of g factors of excited states in radioactive beams by the transient field technique: 132Te

    International Nuclear Information System (INIS)

    Benczer-Koller, N.; Kumbartzki, G.; Gurdal, G; Gross, Carl J; Krieger, B; Hatarik, Robert; O'Malley, Patrick; Pain, S. D.; Segen, L.; Baktash, Cyrus; Bingham, C. R.; Danchev, M.; Grzywacz, R.; Mazzocchi, C.

    2008-01-01

    The g factor of the 2 1 + state in 52 132 Te, E(2 1 + ) = 0.9739 MeV, r = 2.6 ps, was measured by the transient field technique applied to a radioactive beam. The development of an experimental approach necessary for work in radioactive beam environments is described. The result g = 0.28(15) agrees with the previous measurement by the recoil-in-vacuum technique, but here the sign of the g factor is measured as well

  5. The g-factor of the first excited 4+ state in 20Ne from transient field precession measurement in gadolinium

    International Nuclear Information System (INIS)

    Tandon, P.N.; Speidel, K.H.; Mertens, V.; Trolenberg, W.; Kumbartzki, G.S.; Ayres de Campos, N.; Goldberg, M.B.; Gerber, J.; Toulemonde, M.

    1981-01-01

    The g-factor of the 4 + state in 20 Ne at 4.25 MeV has been obtained to be g = +0.08(20) from transient field precession measurements in Gd in agreement with the present authors' earlier reported value of g =- 0.10(19) (1980). The significant reduction in the value of the g- factor, g = -0.01(14), relative to that of the 2 + state (g = + 0.54(4))(1975) is in complete disagreement with theory. In addition the life time of the 4 + state has been measured to be tau = 95(13) fs. (author)

  6. An MOT-TDIE solver for analyzing transient fields on graphene-based devices

    KAUST Repository

    Shi, Yifei

    2016-11-02

    A marching on-in-time (MOT) scheme for analyzing transient electromagnetic wave interactions on devices consisting of graphene sheets and dielectric substrates is proposed. The MOT scheme discretizes time domain resistive boundary condition (TD-RBC) and Poggio-Miller-Chang-Harrington-Wu-Tsai (TD-PMCHWT) integral equation, which are enforced on the surfaces of the graphene and dielectric substrate, respectively. The expressions of the time domain resistivity and conductivity of the graphene sheet are obtained analytically from the intra-band contribution formulated in frequency domain. Numerical results, which demonstrate the applicability of the proposed scheme, are presented.

  7. Analysis of Present State of the Digital Power Meter Field Calibration Technology

    Directory of Open Access Journals (Sweden)

    Xu Yi-Hui

    2016-01-01

    Full Text Available As one of the most important measurement equipment of the intelligent substation, digital electric energy meter fundamentally resolved the technical bottleneck of traditional substation. During the operation process, measurement accuracy and reliability are related to the safe and stable operation of power system. Based on the literatures related to the digital electric energy meter, this paper introduced the concept of digital meter, analyzed the error sources, and summarized its development status and the existing calibration method. The paper studied the calibration system based on IEC61850-9 and provided an accurate and safe application method for digital electric energy meter.

  8. Characterization of the radiation field of a 137Cs source in a calibration laboratory

    International Nuclear Information System (INIS)

    Barbosa, E.F.; Freitas, C.; Freire, D.; Almeida, C.E.

    2001-01-01

    Due to the broad range of radiation levels found in practice, the calibration of radiation detector requires that the laboratory have a large range of values of air kerma rates for a reference distance to the source, in order to allow the calibration of all scales. The dosimetry performed for open beam and with the different attenuators has shown deviations smaller than 5% in relation to the data supplied by the manufacturer that is acceptable. These results are in accordance with the recommendations of the ISO/DIS 4037-2

  9. Weak Lensing Calibrated M-T Scaling Relation of Galaxy Groups in the COSMOS Field

    NARCIS (Netherlands)

    Kettula, K.; Finoguenov, A.; Massey, R.; Rhodes, J.; Hoekstra, H.; Taylor, J.; Spinelli, P.; Tanaka, M.; Ilbert, O.; Capak, P.; McCracken, H.; Koekemoer, A.

    2013-01-01

    The scaling between X-ray observables and mass for galaxy clusters and groups is instrumental for cluster-based cosmology and an important probe for the thermodynamics of the intracluster gas. We calibrate a scaling relation between the weak lensing mass and X-ray spectroscopic temperature for 10

  10. Generic Methodology for Field Calibration of Nacelle-Based Wind Lidars

    DEFF Research Database (Denmark)

    Borraccino, Antoine; Courtney, Michael; Wagner, Rozenn

    2016-01-01

    by the geometry of the scanning trajectory and the lidar inclination. The line-of-sight velocity is calibrated in atmospheric conditions by comparing it to a reference quantity based on classic instrumentation such as cup anemometers and wind vanes. The generic methodology was tested on two commercially developed...

  11. On transient electric fields observed in chemical release experiments by rockets

    International Nuclear Information System (INIS)

    Marklund, G.; Brenning, N.; Holmgren, G.; Haerendel, G.

    1986-06-01

    As a follow-up to the successful chemical release experiment Trigger in 1977, the TOR (Trigger Optimized Repetition) rocket was launched from Esrange on Oct. 24, 1984. Like in the Trigger experiment a large amplitude electric field pulse of 200 mV/m was detected shortly after the explosion. The central part of the pulse was found to be clearly correlated with an intense layer of swept up ambient particles behind a propagating shock-front. The field was directed towards the centre of the expanding ionized cloud, which is indicative of a polarisation electric field source. Expressions for this radial polarisation field and the much weaker azimuthal induced electric field are derived from a simple cylindrical model for the field and the expanding neutral cloud. Time profiles of the radial electric field are shown to be in good agreement with observations. (authors)

  12. Field calibration of blowfly-derived DNA against traditional methods for assessing mammal diversity in tropical forests.

    Science.gov (United States)

    Lee, Ping-Shin; Gan, Han Ming; Clements, Gopalasamy Reuben; Wilson, John-James

    2016-11-01

    Mammal diversity assessments based on DNA derived from invertebrates have been suggested as alternatives to assessments based on traditional methods; however, no study has field-tested both approaches simultaneously. In Peninsular Malaysia, we calibrated the performance of mammal DNA derived from blowflies (Diptera: Calliphoridae) against traditional methods used to detect species. We first compared five methods (cage trapping, mist netting, hair trapping, scat collection, and blowfly-derived DNA) in a forest reserve with no recent reports of megafauna. Blowfly-derived DNA and mist netting detected the joint highest number of species (n = 6). Only one species was detected by multiple methods. Compared to the other methods, blowfly-derived DNA detected both volant and non-volant species. In another forest reserve, rich in megafauna, we calibrated blowfly-derived DNA against camera traps. Blowfly-derived DNA detected more species (n = 11) than camera traps (n = 9), with only one species detected by both methods. The rarefaction curve indicated that blowfly-derived DNA would continue to detect more species with greater sampling effort. With further calibration, blowfly-derived DNA may join the list of traditional field methods. Areas for further investigation include blowfly feeding and dispersal biology, primer biases, and the assembly of a comprehensive and taxonomically-consistent DNA barcode reference library.

  13. The model of double-cage induction motor for the analysis of thermal fields in transient operations

    Directory of Open Access Journals (Sweden)

    Mróz Jan

    2017-06-01

    Full Text Available Emergency motor switch-on happens occasionally while operating a doublesquirrel- cage motor at full supply voltage with the rotor blocked (e.g., in coal mills. After releasing the blockage, the by now heated motor is started up again. However, the mechanical stress caused by the increased temperature poses considerable hazards to the squirrel-cage winding. This paper presents a double-cage induction motor model for analysis of thermal fields in transient operation. The thermal field for the rotor of a doublesquirrel- cage motor of soldered or cast structure, operating in the conditions described, has been calculated in the present paper using a thermal network method. Measurement results have been presented for the double-squirrel-cage winding temperature for a soldered cage construction in the blocked rotor state.

  14. Instrument development and field application of the in situ pH Calibrator at the Ocean Observatory

    Science.gov (United States)

    Tan, C.; Ding, K.; Seyfried, W. E.

    2012-12-01

    A novel, self-calibrating instrument for in-situ measurement of pH in deep sea environments up to 4000 m has recently been developed. The device utilizes a compact fluid delivery system to perform measurement and two-point calibration of the solid state pH sensor array (Ir|IrOx| Ag|AgCl), which is sealed in a flow cell to enhance response time. The fluid delivery system is composed of a metering pump and valves, which periodically deliver seawater samples into the flow cell to perform measurements. Similarly, pH buffer solutions can be delivered into the flow cell to calibrate the electrodes under operational conditions. Sensor signals are acquired and processed by a high resolution (0.25 mV) datalogger circuit with a size of 114 mm×31 mm×25 mm. Eight input channels are available: two high impedance sensor input channels, two low impedance sensor input channel, two thermocouple input channels and two thermistor input channels. These eight channels provide adequate measurement flexibility to enhance applications in deep sea environments. The two high impedance channels of the datalogger are especially designed with the input impedance of 1016 Ω for YSZ (yittria-stabilized zirconia) ceramic electrodes characterized by the extremely low input bias current and high resistance. Field tests have been performed in 2008 by ROV at the depth up to 3200 m. Using the continuous power supply and TCP/IP network capability of the Monterey Accelerated Research System (MARS) ocean observatory, the so-called "pH Calibrator" has the capability of long term operation up to six months. In the observatory mode, the electronics are configured with DC-DC power converter modules and Ethernet to serial module to gain access to the science port of seafloor junction box. The pH Calibrator will be deployed at the ocean observatory in October and the in situ data will be on line on the internet. The pH Calibrator presents real time pH data at high pressures and variable temperatures, while

  15. Transient Simulation of a Rotating Conducting Cylinder in a Transverse Magnetic Field

    Science.gov (United States)

    2016-09-01

    field. The factors that affect the magnetic field inside the cylinder were analyzed by varying the spin rate and the electromagnetic physical ...Magnetic vector potential, Weber/meter (Wb/m) ?̅? - Magnetic flux density, tesla (T) ?̅? - Velocity, meter/second (m/s) or...immersed in a uniform transverse magnetic field by varying the spin rate (rpm) and electromagnetic physical properties [conductivity () and permeability

  16. Transient changes in electric fields induced by interaction of ultraintense laser pulses with insulator and metal foils: Sustainable fields spanning several millimeters.

    Science.gov (United States)

    Inoue, Shunsuke; Tokita, Shigeki; Hashida, Masaki; Sakabe, Shuji

    2015-04-01

    The temporal evolutions of electromagnetic fields generated by the interaction between ultraintense lasers (1.3×10(18) and 8.2×10(18)W/cm(2)) and solid targets at a distance of several millimeters from the laser-irradiated region have been investigated by electron deflectometry. For three types of foil targets (insulating foil, conductive foil, and insulating foil onto which a metal disk was deposited), transient changes in the fields were observed. We found that the direction, strength, and temporal evolution of the generated fields differ markedly for these three types of targets. The results provide an insight for studying the emission dynamics of laser-accelerated fast electrons.

  17. Exposure to power frequency magnetic fields suppresses X-ray-induced apoptosis transiently in Ku80-deficient xrs5 cells

    International Nuclear Information System (INIS)

    Tian, Furong; Nakahara, Takehisa; Yoshida, Masami; Honda, Naoko; Hirose, Hideki; Miyakoshi, Junji

    2002-01-01

    In an attempt to determine whether exposure to extremely low frequency (ELF) electromagnetic fields can affect cells, Ku80-deficient cells (xrs5) and Ku80-proficient cells (CHO-K1) were exposed to ELF electromagnetic fields. Cell survival, and the levels of the apoptosis-related genes p21, p53, phospho-p53 (Ser 15 ), caspase-3 and the anti-apoptosis gene bcl-2 were determined in xrs5 and CHO-K1 cells following exposure to ELF electromagnetic fields and X-rays. It was found that exposure of xrs5 and CHO-K1 cells to 60 Hz ELF electromagnetic fields had no effect on cell survival, cell cycle distribution and protein expression. Exposure of xrs5 cells to 60 Hz ELF electromagnetic fields for 5 h after irradiation significantly inhibited G 1 cell cycle arrest induced by X-rays (1 Gy) and resulted in elevated bcl-2 expression. A significant decrease in the induction of p53, phospho-p53, caspase-3 and p21 proteins was observed in xrs5 cells when irradiation by X-rays (8 Gy) was followed by exposure to 5 mT ELF magnetic fields. Exposure of xrs5 cells to the ELF electromagnetic fields for 10 h following irradiation significantly decreased X-ray-induced apoptosis from about 1.7% to 0.7%. However, this effect was not found in CHO-K1 cells within 24 h of irradiation by X-rays alone and by X-rays combined with ELF electromagnetic fields. Exposure of xrs5 cells to 60 Hz ELF electromagnetic fields following irradiation can affect cell cycle distribution and transiently suppress apoptosis by decreasing the levels of caspase-3, p21, p53 and phospho-p53 and by increasing bcl-2 expression

  18. Field calibration of soil-core microcosms for evaluating fate and effects of genetically engineered microorganisms in terrestrial ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Bolton, H Jr; Fredrickson, J K; Bentjen, S A; Workman, D J; Li, S W; Thomas, J M

    1991-04-01

    Pacific Northwest Laboratory compared intact soil-core microcosms and the field for ecosystem structural and functional properties after the introduction of a model genetically engineered microorganism (GEM). This project used two distinct microbial types as model GEMs, Gram-negative Pseudomonas sp. RC1, which was an aggressive root colonizer, and Gram-positive Streptomyces lividans TK24. The model GEMs were added to surface soil in separate studies, with RC1 studied throughout the growth of winter wheat (Triticum aestivum), while TK24 was studied throughout a ten month period. Also, RC1 was used in studies conducted during two consecutive field seasons (1988 to 1990) to determine how year-to-year field variability influenced the calibration of microcosms with the field. The main conclusions of this research were that intact soil-core microcosms can be useful to simulate the field for studies of microbial fate and effects on ecosystem structural and functional properties. In general, microcosms in the growth chamber, which simulated average field variations, were similar to the field for most parameters or differences could be attributed to the great extremes in temperature that occurred in the field compared to the microcosms. Better controls of environmental variables including temperature and moisture will be necessary to more closely simulate the field for future use of microcosms for risk assessment. 126 refs., 13 figs., 12 tabs.

  19. Targeting nociceptive transient receptor potential channels to treat chronic pain: current state of the field.

    Science.gov (United States)

    Moran, Magdalene M; Szallasi, Arpad

    2017-09-19

    Control of chronic pain is frequently inadequate and/or associated with intolerable adverse effects, prompting a frantic search for new therapeutics and new therapeutic targets. Nearly two decades of preclinical and clinical research supports the involvement of transient receptor potential (TRP) channels in temperature perception, nociception and sensitization. Although there has been considerable excitement around the therapeutic potential of this channel family since the cloning and identification of TRPV1 cation channels as the capsaicin receptor more than 20 years ago, only modulators of a few channels have been tested clinically. TRPV1 channel antagonists have suffered from side effects related to the channel's role in temperature sensation; however, high dose formulations of capsaicin have reached the market and shown therapeutic utility. A number of potent, small molecule antagonists of TRPA1 channels have recently advanced into clinical trials for the treatment of inflammatory and neuropathic pain, and TRPM8 antagonists are following closely behind for cold allodynia. TRPV3, TRPV4, TRPM2 and TRPM3 channels have also been of significant interest. This review discusses the preclinical promise and status of novel analgesic agents that target TRP channels and the challenges that these compounds may face in development and clinical practice. © 2017 The British Pharmacological Society.

  20. Transient tropospheric electric fields resulting from sudden changes in ionospheric conductivity

    Science.gov (United States)

    Dejnakarintra, M.; Inan, U. S.; Carpenter, D. L.

    1985-01-01

    Electric field mapping in the earth's atmosphere has been a research subject for more than 20 years. The present paper is concerned with the downward mapping of an ionospheric electric field into the troposphere following a 'sudden' - change in the atmospheric conductivity profile. The formulation is limited to the case of a static magnetic field which is vertical to the earth's surface. The obtained results are, therefore, most applicable at high latitudes. It is assumed that the 'sudden' change occurs within a fraction of a second and is sustained for a time of the order of at least several seconds. It is pointed out that such changes in ionospheric conductivity can occur as a result of sudden solar particle events (SPE) or particle precipitation into the lower ionosphere. Attention is given to theory, electric field calculations, and the obtained results.

  1. Technical note: A simple approach for efficient collection of field reference data for calibrating remote sensing mapping of northern wetlands

    Science.gov (United States)

    Gålfalk, Magnus; Karlson, Martin; Crill, Patrick; Bousquet, Philippe; Bastviken, David

    2018-03-01

    The calibration and validation of remote sensing land cover products are highly dependent on accurate field reference data, which are costly and practically challenging to collect. We describe an optical method for collection of field reference data that is a fast, cost-efficient, and robust alternative to field surveys and UAV imaging. A lightweight, waterproof, remote-controlled RGB camera (GoPro HERO4 Silver, GoPro Inc.) was used to take wide-angle images from 3.1 to 4.5 m in altitude using an extendable monopod, as well as representative near-ground (training, and is facilitated by a step-by-step manual that is included in the Supplement. Over time a global ground cover database can be built that can be used as reference data for studies of non-forested wetlands from satellites such as Sentinel 1 and 2 (10 m pixel size).

  2. Development and Calibration of a Model for the Determination of Hurricane Wind Speed Field at the Peninsula of Yucatan

    Directory of Open Access Journals (Sweden)

    L.E. Fernández–Baqueiro

    2009-01-01

    Full Text Available In this work a model to calculate the wind speed field produced by hurricanes that hit the Yucatan Peninsula is developed. The model variables are calculated using equations recently developed, that include new advances in meteorology. The steps in the model are described and implemented in a computer program to systematize and facilitate the use of this model. The model and the program are calibrated using two data bases; the first one includes trajectories and maximum wind velocities of hurricanes; the second one includes records of wind velocities obtained from the Automatic Meteorology Stations of the National Meteorology Service. The hurricane wind velocity field is calculated using the model and information of the first data base. The model results are compared with field data from the second data base. The model is calibrated adjusting the Holland's pressure radial profile parameter B; this is carried out for three hurricane records: Isidore, Emily and Wilma. It is concluded that a value of B of 1.3 adjusts globally the three hurricane records and that the developed model is capable of reproducing satisfactorily the wind velocity records.

  3. Absolute calibration of space- and time-resolving flat-field vacuum ultraviolet spectrograph for plasma diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Yuuji; Yoshikawa, Masayuki; Watabe, Chikara; Tamano, Teruo; Kawamori, Eiichirou; Ito, Takahiro; Watanabe, Yoshihiko; Yatsu, Kiyoshi [Plasma Research Center, Tsukuba Univ., Ibaraki (Japan); Yamaguchi, Naohiro [Toyota Technological Inst., Nagoya (Japan)

    2000-06-01

    Measurement of spectra in the wavelength range from vacuum ultraviolet (VUV) to soft X-ray is an important means to diagnose impurities in magnetically confined plasmas used in fusion plasmas such as a GAMMA10 plasma. Recently, a space- and time-resolving flat-field grazing-incidence VUV spectrograph was constructed for the simultaneous observation of spatial, temporal and spectral distributions of plasma radiation in the wavelength range of 150-1050 A. Absolute calibration experiments were performed at beamline 11C in the Photon Factory at the High Energy Accelerator Research Organization. The absolute efficiency of the VUV spectrograph was measured for P polarization geometry in the spectrograph. (author)

  4. Absolute calibration of space- and time-resolving flat-field vacuum ultraviolet spectrograph for plasma diagnostics

    International Nuclear Information System (INIS)

    Okamoto, Yuuji; Yoshikawa, Masayuki; Watabe, Chikara; Tamano, Teruo; Kawamori, Eiichirou; Ito, Takahiro; Watanabe, Yoshihiko; Yatsu, Kiyoshi; Yamaguchi, Naohiro

    2000-01-01

    Measurement of spectra in the wavelength range from vacuum ultraviolet (VUV) to soft X-ray is an important means to diagnose impurities in magnetically confined plasmas used in fusion plasmas such as a GAMMA10 plasma. Recently, a space- and time-resolving flat-field grazing-incidence VUV spectrograph was constructed for the simultaneous observation of spatial, temporal and spectral distributions of plasma radiation in the wavelength range of 150-1050 A. Absolute calibration experiments were performed at beamline 11C in the Photon Factory at the High Energy Accelerator Research Organization. The absolute efficiency of the VUV spectrograph was measured for P polarization geometry in the spectrograph. (author)

  5. MRS thermometry calibration at 3 T: effects of protein, ionic concentration and magnetic field strength.

    Science.gov (United States)

    Babourina-Brooks, Ben; Simpson, Robert; Arvanitis, Theodoros N; Machin, Graham; Peet, Andrew C; Davies, Nigel P

    2015-07-01

    MRS thermometry has been utilized to measure temperature changes in the brain, which may aid in the diagnosis of brain trauma and tumours. However, the temperature calibration of the technique has been shown to be sensitive to non-temperature-based factors, which may provide unique information on the tissue microenvironment if the mechanisms can be further understood. The focus of this study was to investigate the effects of varied protein content on the calibration of MRS thermometry at 3 T, which has not been thoroughly explored in the literature. The effects of ionic concentration and magnetic field strength were also considered. Temperature reference materials were controlled by water circulation and freezing organic fixed-point compounds (diphenyl ether and ethylene carbonate) stable to within 0.2 °C. The temperature was measured throughout the scan time with a fluoro-optic probe, with an uncertainty of 0.16 °C. The probe was calibrated at the National Physical Laboratory (NPL) with traceability to the International Temperature Scale 1990 (ITS-90). MRS thermometry measures were based on single-voxel spectroscopy chemical shift differences between water and N-acetylaspartate (NAA), Δ(H20-NAA), using a Philips Achieva 3 T scanner. Six different phantom solutions with varying protein or ionic concentration, simulating potential tissue differences, were investigated within a temperature range of 21-42 °C. Results were compared with a similar study performed at 1.5 T to observe the effect of field strengths. Temperature calibration curves were plotted to convert Δ(H20-NAA) to apparent temperature. The apparent temperature changed by -0.2 °C/% of bovine serum albumin (BSA) and a trend of 0.5 °C/50 mM ionic concentration was observed. Differences in the calibration coefficients for the 10% BSA solution were seen in this study at 3 T compared with a study at 1.5 T. MRS thermometry may be utilized to measure temperature and the tissue

  6. Solution-processed single-walled carbon nanotube field effect transistors and bootstrapped inverters for disintegratable, transient electronics

    International Nuclear Information System (INIS)

    Jin, Sung Hun; Shin, Jongmin; Cho, In-Tak; Lee, Jong-Ho; Han, Sang Youn; Lee, Dong Joon; Lee, Chi Hwan; Rogers, John A.

    2014-01-01

    This paper presents materials, device designs, and physical/electrical characteristics of a form of nanotube electronics that is physically transient, in the sense that all constituent elements dissolve and/or disperse upon immersion into water. Studies of contact effects illustrate the ability to use water soluble metals such as magnesium for source/drain contacts in nanotube based field effect transistors. High mobilities and on/off ratios in transistors that use molybdenum, silicon nitride, and silicon oxide enable full swing characteristics for inverters at low voltages (∼5 V) and with high gains (∼30). Dissolution/disintegration tests of such systems on water soluble sheets of polyvinyl alcohol demonstrate physical transience within 30 min.

  7. Three-Dimensional View of Transient Horizontal Magnetic Fields in the Photosphere

    Czech Academy of Sciences Publication Activity Database

    Ishikawa, R.; Tsuneta, S.; Jurčák, Jan

    2010-01-01

    Roč. 713, č. 2 (2010), s. 1310-1321 ISSN 0004-637X R&D Projects: GA AV ČR IAA300030808 Institutional research plan: CEZ:AV0Z10030501 Keywords : magnetic fields * Sun * photosphere * granulation * surface magnetism Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 7.436, year: 2010

  8. Psychophysical Calibration of Mobile Touch-Screens for Vision Testing in the Field

    Science.gov (United States)

    Mulligan, Jeffrey B.

    2015-01-01

    The now ubiquitous nature of touch-screen displays in cell phones and tablet computers makes them an attractive option for vision testing outside of the laboratory or clinic. Accurate measurement of parameters such as contrast sensitivity, however, requires precise control of absolute and relative screen luminances. The nonlinearity of the display response (gamma) can be measured or checked using a minimum motion technique similar to that developed by Anstis and Cavanagh (1983) for the determination of isoluminance. While the relative luminances of the color primaries vary between subjects (due to factors such as individual differences in pre-retinal pigment densities), the gamma nonlinearity can be checked in the lab using a photometer. Here we compare results obtained using the psychophysical method with physical measurements for a number of different devices. In addition, we present a novel physical method using the device's built-in front-facing camera in conjunction with a mirror to jointly calibrate the camera and display. A high degree of consistency between devices is found, but some departures from ideal performance are observed. In spite of this, the effects of calibration errors and display artifacts on estimates of contrast sensitivity are found to be small.

  9. Image-based calibration of a deformable mirror in wide-field microscopy.

    Science.gov (United States)

    Turaga, Diwakar; Holy, Timothy E

    2010-04-10

    Optical aberrations limit resolution in biological tissues, and their influence is particularly large for promising techniques such as light-sheet microscopy. In principle, image quality might be improved by adaptive optics (AO), in which aberrations are corrected by using a deformable mirror (DM). To implement AO in microscopy, one requires a method to measure wavefront aberrations, but the most commonly used methods have limitations for samples lacking point-source emitters. Here we implement an image-based wavefront-sensing technique, a variant of generalized phase-diverse imaging called multiframe blind deconvolution, and exploit it to calibrate a DM in a light-sheet microscope. We describe two methods of parameterizing the influence of the DM on aberrations: a traditional Zernike expansion requiring 1040 parameters, and a direct physical model of the DM requiring just 8 or 110 parameters. By randomizing voltages on all actuators, we show that the Zernike expansion successfully predicts wavefronts to an accuracy of approximately 30 nm (rms) even for large aberrations. We thus show that image-based wavefront sensing, which requires no additional optical equipment, allows a simple but powerful method to calibrate a deformable optical element in a microscope setting.

  10. Field Calibration of XAD-Based Passive Air Sampler on the Tibetan Plateau: Wind Influence and Configuration Improvement.

    Science.gov (United States)

    Gong, Ping; Wang, Xiaoping; Liu, Xiande; Wania, Frank

    2017-05-16

    The passive air sampler based on XAD-2 resin (XAD-PAS) has proven useful for collecting atmospheric persistent organic pollutants (POPs) in remote regions. Whereas laboratory studies have shown that, due to the open bottom of its housing, the passive sampling rate (PSR) of the XAD-PAS is susceptible to wind and other processes causing air turbulence, the sampler has not been calibrated in the field at sites experiencing high winds. In this study, the PSRs of the XAD-PAS were calibrated at three sites on the Tibetan Plateau, covering a wide range in temperature (T), pressure (P) and wind speed (v). At sites with low wind speeds (i.e., in a forest and an urban site), the PSRs are proportional to the ratio T 1.75 / P; at windy sites with an average wind speed above 3 m/s, the influence of v on PSRs cannot be ignored. Moreover, the open bottom of the XAD-PAS housing causes the PSRs to be influenced by wind angle and air turbulence caused by sloped terrain. Field calibration, wind speed measurements, and computational fluid dynamics (CFD) simulations indicate that a modified design incorporating an air spoiler consisting of 4 metal sheets dampens the turbulence caused by wind angle and sloped terrain and caps the PSR at ∼5 m 3 /day, irrespective of ambient wind. Therefore, the original XAD-PAS with an open bottom is suitable for deployment in urban areas and other less windy places, the modified design is preferable in mountain regions and other places where air circulation is complicated and strong.

  11. Poloidal field measurements during transient phenomena on MTX: Sawtooth perturbations and the effect of ECH on disruptions

    International Nuclear Information System (INIS)

    Rice, B.W.; Hooper, E.B.

    1993-01-01

    A fifteen channel far-infrared polarimeter has been used to measure poloidal field (B p ) profiles during transient events on MTX. Here we present experimental results on two separate phenomena. First,strong Bp perturbations are observed to be correlated with the sawtooth crash. The on-axis safety factor q 0 ∼ 0.8, is approximately constant before and after the crash. Although the perturbed field profile during the crash is too complex to invert unambiguously, several observations concerning existing sawtooth models can be made. The low value of q 0 combined with the large amplitude and complex radial structure of the B p perturbations, is more consistent with the stochastic or the double-layer reconnection sawtooth models rather than other standard models such as Kadomtsev reconnection or quasi-interchange. In addition, poloidal field measurements have been made prior to disruptions on MTX, both with and without electron cyclotron heating (ECH). The disruption studied here, is related to the buildup of heavy-metal impurities in the core, which is particularly prevalent at lower densities. The impurity radiation leads to a collapse of the T e , and J profiles followed by a disruption. The application of on-axis ECH during the T e collapse but prior to the disruption can repeak the T e and J profiles thus preventing the disruption. Since the core impurity radiation depends quite sensitively on T e heating significantly effects the power balance in the core, leading to stability for this type of disruption

  12. Transient suppression of gap junctional intercellular communication after exposure to 100-nanosecond pulsed electric fields.

    Science.gov (United States)

    Steuer, Anna; Schmidt, Anke; Labohá, Petra; Babica, Pavel; Kolb, Juergen F

    2016-12-01

    Gap junctional intercellular communication (GJIC) is an important mechanism that is involved and affected in many diseases and injuries. So far, the effect of nanosecond pulsed electric fields (nsPEFs) on the communication between cells was not investigated. An in vitro approach is presented with rat liver epithelial WB-F344 cells grown and exposed in a monolayer. In order to observe sub-lethal effects, cells were exposed to pulsed electric fields with a duration of 100ns and amplitudes between 10 and 20kV/cm. GJIC strongly decreased within 15min after treatment but recovered within 24h. Gene expression of Cx43 was significantly decreased and associated with a reduced total amount of Cx43 protein. In addition, MAP kinases p38 and Erk1/2, involved in Cx43 phosphorylation, were activated and Cx43 became hyperphosphorylated. Immunofluorescent staining of Cx43 displayed the disassembly of gap junctions. Further, a reorganization of the actin cytoskeleton was observed whereas tight junction protein ZO-1 was not significantly affected. All effects were field- and time-dependent and most pronounced within 30 to 60min after treatment. A better understanding of a possible manipulation of GJIC by nsPEFs might eventually offer a possibility to develop and improve treatments. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. On-Ground Processing of Yaogan-24 Remote Sensing Satellite Attitude Data and Verification Using Geometric Field Calibration

    Science.gov (United States)

    Wang, Mi; Fan, Chengcheng; Yang, Bo; Jin, Shuying; Pan, Jun

    2016-01-01

    Satellite attitude accuracy is an important factor affecting the geometric processing accuracy of high-resolution optical satellite imagery. To address the problem whereby the accuracy of the Yaogan-24 remote sensing satellite’s on-board attitude data processing is not high enough and thus cannot meet its image geometry processing requirements, we developed an approach involving on-ground attitude data processing and digital orthophoto (DOM) and the digital elevation model (DEM) verification of a geometric calibration field. The approach focuses on three modules: on-ground processing based on bidirectional filter, overall weighted smoothing and fitting, and evaluation in the geometric calibration field. Our experimental results demonstrate that the proposed on-ground processing method is both robust and feasible, which ensures the reliability of the observation data quality, convergence and stability of the parameter estimation model. In addition, both the Euler angle and quaternion could be used to build a mathematical fitting model, while the orthogonal polynomial fitting model is more suitable for modeling the attitude parameter. Furthermore, compared to the image geometric processing results based on on-board attitude data, the image uncontrolled and relative geometric positioning result accuracy can be increased by about 50%. PMID:27483287

  14. Contribution to the RMTC in the field of tank calibration and measurements - the TAMSCA laboratory

    International Nuclear Information System (INIS)

    Hunt, B.A.; Landat, D.; Caviglia, M.; Silvapestana, L.

    1999-01-01

    The Russian Methodological and Training Centre (RMTC) is being established for training of personnel from the various Russian and CIS nuclear facilities organizations in the control and accountancy methods, utilised in EURATOM and in the IAEA. Under the project equipment and support will be provided in a number of areas, namely containment and surveillance, training, passive/active neutron assay and mass/volume methodologies. For the latter a mass/volume measurement laboratory - a Tank Measurements and Calibration Laboratory (TAMSCA) is being set-up in IPPE, Obninsk. The goal is to upgrade the methodology within the Russian Federation in the application of mass/volume measurement techniques and render a facility suitable adapted to carrying out training courses with specific orientation for the nuclear inspectors and operators of nuclear facilities for nuclear accountancy and control [ru

  15. Strong-field induced dissociation dynamics in 1,2-dibromoethane traced by femtosecond XUV transient absorption spectroscopy

    Science.gov (United States)

    Chatterley, A. S.; Lackner, F.; Neumark, D. M.; Leone, S. R.; Gessner, O.

    2016-05-01

    Strong field induced dissociation dynamics of the small haloalkane 1,2-dibromoethane (DBE) have been explored using femtosecond XUV transient absorption spectroscopy. Dynamics are initiated by a near IR pump pulse with intensities between 75 and 220 TW cm-2, and are probed by the atomic site specific XUV absorption of the Br 3d levels. Immediately upon ionization, the spectral signatures of molecular ions appear. These molecular peaks decay in tandem with the appearance of atomic Br peaks in charge states of 0, + 1 and + 2, which are all monitored simultaneously. Neutral Br atoms are eliminated in 300 fs, presumably from statistical dissociation of vibrationally hot DBE+ ions, Br+ ions are eliminated in 70 fs from a more energetic dissociative ionization pathway, and Br++ ions are eliminated within the duration of the 35 fs pump pulse. The simultaneous recording of multiple parent molecule and fragment ion traces enables new insight into predominant dissociation pathways induced by strong field ionization of organic molecules.

  16. FIELD EXP EARTH PFES CALIBRATED RDR SPECTRUM V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — Portable Field Emission Spectrometer (PFES) data were acquired on July 15 and 17, 1989. A total of 31 measurements were collected for GRSFE. Of these measurements,...

  17. FIELD EXP EARTH PARABOLA CALIBRATED RDR SPECTRUM V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — PARABOLA data were obtained at three GRSFE modeling sites in the Lunar Crater Volcanic Field. The playa site, the cobble site, and the mantled flow site. Each site...

  18. On the use of calibrated relative paleointensity records to improve millennial-scale geomagnetic field models

    OpenAIRE

    Monika Korte; C. Constable

    2006-01-01

    Current millennial-scale time-varying global geomagnetic field models suffer from a lack of intensity data compared to directional data, because only thermoremanently magnetized material can provide absolute information about the past field strength. The number of archeomagnetic artefacts that can provide such data diminishes rapidly prior to 3000 BC. Sediment cores provide time series of declination and inclination and of variations of magnetization: the latter can reflect relative geomagne...

  19. Biogenic volatile organic compound analyses by PTR-TOF-MS: Calibration, humidity effect and reduced electric field dependency.

    Science.gov (United States)

    Pang, Xiaobing

    2015-06-01

    Green leaf volatiles (GLVs) emitted by plants after stress or damage induction are a major part of biogenic volatile organic compounds (BVOCs). Proton transfer reaction time-of-flight mass spectrometry (PTR-TOF-MS) is a high-resolution and sensitive technique for in situ GLV analyses, while its performance is dramatically influenced by humidity, electric field, etc. In this study the influence of gas humidity and the effect of reduced field (E/N) were examined in addition to measuring calibration curves for the GLVs. Calibration curves measured for seven of the GLVs in dry air were linear, with sensitivities ranging from 5 to 10 ncps/ppbv (normalized counts per second/parts per billion by volume). The sensitivities for most GLV analyses were found to increase by between 20% and 35% when the humidity of the sample gas was raised from 0% to 70% relative humidity (RH) at 21°C, with the exception of (E)-2-hexenol. Product ion branching ratios were also affected by humidity, with the relative abundance of the protonated molecular ions and higher mass fragment ions increasing with humidity. The effect of reduced field (E/N) on the fragmentation of GLVs was examined in the drift tube of the PTR-TOF-MS. The structurally similar GLVs are acutely susceptible to fragmentation following ionization and the fragmentation patterns are highly dependent on E/N. Overall the measured fragmentation patterns contain sufficient information to permit at least partial separation and identification of the isomeric GLVs by looking at differences in their fragmentation patterns at high and low E/N. Copyright © 2015. Published by Elsevier B.V.

  20. SU-C-202-07: Protocol and Hardware for Improved Flood Field Calibration of TrueBeam FFF Cine Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, J; Faught, A; Yin, F [Duke University Medical Center, Durham, NC (United States)

    2016-06-15

    Purpose: Flattening filter free photon energies are commonly used for high dose treatments such as SBRT, where localization accuracy is essential. Often, MV cine imaging may be employed to verify correct localization. TrueBeam Electronic Portal Imaging Devices (EPIDs) equipped with the 40×30cm{sup 2} Image Detection Unit (IDU) are prone to image saturation at the image center especially for higher dose rates. While saturation often does not occur for cine imaging during treatment because the beam is attenuated by the patient, the flood field calibration is affected when the standard calibration procedure is followed. Here we describe the hardware and protocol to achieve improved image quality for this model of TrueBeam EPID. Methods: A stainless steel filter of uniform thickness was designed to have sufficient attenuation to avoid panel saturation for both 6XFFF and 10XFFF at the maximum dose rates (1400 MU/min & 2400 MU/min, respectively). The cine imaging flood field calibration was then acquired with the filter in place for the FFF energies under the standard calibration geometry (SDD=150cm). Image quality during MV cine was assessed with & without the modified flood field calibration using a low contrast resolution phantom and an anthropomorphic phantom. Results: When the flood field is acquired using the standard procedure (no filter in place), a pixel gain artifact is clearly present in the image center (r=3cm for 10XFFF at 2400 MU/min) which appears similar to and may be mis-attributed to panel saturation in the subject image. The artifact obscured all low contrast inserts at the image center and was also visible on the anthropomorphic phantom. Using the filter for flood field calibration eliminated the artifact. Conclusion: Use of a modified flood field calibration procedure improves image quality for cine MV imaging with TrueBeams equipped with the 40×30cm{sup 2} IDU.

  1. Method for calibration of asymmetric jaws in hemi fields techniques and effects in clinical practice; Metodo para la calibracion de las mandibulas asimetricas en tecnicas de hemicampos y efectos en la practica clinica

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez Masgrau, V.; Sempau Roma, J.; Abella Cereigido, R.; Lopez Sanchez, M.; Perez Fernandez, M.; Gonzalez Leyba, M.; Artigues Pedrola, M.

    2013-07-01

    This paper presents a method improved very significantly the accuracy of calibration, providing a good homogeneity of the dose distribution in the area of union of fields. Also evaluates the effect that has this new calibration in clinical practice. (Author)

  2. Full spatial-field visualization of gas temperature in an air micro-glow discharge by calibrated Schlieren photography

    Science.gov (United States)

    Xiong, Qing; Xu, Le; Wang, Xia; Xiong, Lin; Huang, Qinghua; Chen, Qiang; Wang, Jingang; Peng, Wenxiong; Li, Jiarui

    2018-03-01

    Gas temperature is an important basic parameter for both fundamental research and applications of plasmas. In this work, efforts were made to visualize the full spatial field of gas temperature (T g) in a microdischarge with sharp T g gradients by a method of calibrated Schlieren (CS) photography. Compared to other two typical diagnostic approaches, optical emission spectroscopy (OES) and Rayleigh scattering, the proposed CS method exhibits the ability to capture the whole field of gas temperature using a single Schlieren image, even the discharge is of non-luminous zones like Faraday dark space (FDS). The image shows that the T g field in the studied micro-glow air discharge expands quickly with the increase of discharge currents, especially in the cathode region. The two-dimensional maps of gas temperature display a ‘W-shape’ with sharp gradients in both areas of negative and positive glows, slightly arched distributions in the positive column, and cooling zones in the FDS. The obtained T g fields show similar patterns to that of the discharge luminance. With an increase in discharge currents, more electric energy is dissipated by heating air gas and inducing constriction of the low-temperature FDS. Except in the vicinities of electrode boundaries, due to the interference from optical diffraction, the estimated gas temperature distributions are of acceptable accuracy, confirmed by the approaches of OES and UV Rayleigh scattering.

  3. Technical note: A simple approach for efficient collection of field reference data for calibrating remote sensing mapping of northern wetlands

    Directory of Open Access Journals (Sweden)

    M. Gålfalk

    2018-03-01

    Full Text Available The calibration and validation of remote sensing land cover products are highly dependent on accurate field reference data, which are costly and practically challenging to collect. We describe an optical method for collection of field reference data that is a fast, cost-efficient, and robust alternative to field surveys and UAV imaging. A lightweight, waterproof, remote-controlled RGB camera (GoPro HERO4 Silver, GoPro Inc. was used to take wide-angle images from 3.1 to 4.5 m in altitude using an extendable monopod, as well as representative near-ground (< 1 m images to identify spectral and structural features that correspond to various land covers in present lighting conditions. A semi-automatic classification was made based on six surface types (graminoids, water, shrubs, dry moss, wet moss, and rock. The method enables collection of detailed field reference data, which is critical in many remote sensing applications, such as satellite-based wetland mapping. The method uses common non-expensive equipment, does not require special skills or training, and is facilitated by a step-by-step manual that is included in the Supplement. Over time a global ground cover database can be built that can be used as reference data for studies of non-forested wetlands from satellites such as Sentinel 1 and 2 (10 m pixel size.

  4. Field Calibration of Wind Direction Sensor to the True North and Its Application to the Daegwanryung Wind Turbine Test Sites

    Directory of Open Access Journals (Sweden)

    Jeong Wan Lee

    2008-12-01

    Full Text Available This paper proposes a field calibration technique for aligning a wind direction sensor to the true north. The proposed technique uses the synchronized measurements of captured images by a camera, and the output voltage of a wind direction sensor. The true wind direction was evaluated through image processing techniques using the captured picture of the sensor with the least square sense. Then, the evaluated true value was compared with the measured output voltage of the sensor. This technique solves the discordance problem of the wind direction sensor in the process of installing meteorological mast. For this proposed technique, some uncertainty analyses are presented and the calibration accuracy is discussed. Finally, the proposed technique was applied to the real meteorological mast at the Daegwanryung test site, and the statistical analysis of the experimental testing estimated the values of stable misalignment and uncertainty level. In a strict sense, it is confirmed that the error range of the misalignment from the exact north could be expected to decrease within the credibility level.

  5. Spectro-photometric calibration of the SuperNova Integral Field Spectrograph in the Nearby Supernova Factory collaboration framework

    International Nuclear Information System (INIS)

    Buton, Clement

    2009-01-01

    Ten years ago, type Ia supernovae used as distances indicators led to the discovery of the accelerating expansion of the universe. Today, a second generation of surveys has significantly increased the high-redshift type Ia supernovae sample. The low-redshift sample was however still limiting the cosmological analysis using SNe. In this framework, the Nearby Supernova Factory has followed 200 nearby type Ia supernovae using the dedicated Supernovae Integral Field Spectrograph with spectro-photometric capacities. My PhD thesis has been carried out at the Institut de Physique Nucleaire de Lyon and at the Lawrence Berkeley National Laboratory in the framework of the international cosmological project SNfactory. In order to reach the design spectrophotometric accuracy, attention has been focused on several key aspects of the calibration procedure, including: determination of a dedicated point spread function for 3D point source extraction, estimating the nightly photometric quality, derivation of the nightly sky extinction over the extended optical domain, its modeling in terms of physical components and its variability within a given night. A full multi-standards calibration pipeline has been implemented using approximately 4000 observations of spectrophotometric standard stars taken throughout the night over nearly 500 individual nights. Preliminary scientific results of the whole SNfactory collaboration will be presented at the end of this thesis. (author)

  6. Calibration and validation of far field dilution models for outfall at Worli, Mumbai.

    Science.gov (United States)

    Gupta, Indrani; Dhage, Shivani; Jacob, Noble; Navada, S V; Kumar, Rakesh

    2006-03-01

    The city of Mumbai, India with a population of 15 million discharges about 2225 MLD of domestic wastewater after partial treatment to adjoining marine water body. Under the Mumbai Sewage Disposal Project Scheme, sewage is being disposed to the west coast at Worli and Bandra through 3.4 kms long submarine outfalls. A field study was conducted at recently commissioned outfall diffuser location at Worli, at the onset of neap flood tide to study the dispersion patterns and measure the far field dilutions using radio and dye tracers. Estimated dilutions using different tracers were compared with outputs from an empirical model (Brooks) and a 2D numerical model (DIVAST). Validation using parameters such as BOD and FC, indicated a good match for BOD in near field compared to FC. The radiotracer (82)Br and Rhodamine WT generally gave good correlation with Brooks' and DIVAST models for nearfield, however at further distances predictions were not accurate.

  7. Calibration of phase field parameters demonstrated on kinetics of a shrinking single grain

    Czech Academy of Sciences Publication Activity Database

    Fischer, F. D.; Zickler, G. A.; Svoboda, Jiří

    2017-01-01

    Roč. 97, č. 3 (2017), s. 92-100 ISSN 0950-0839 R&D Projects: GA MŠk LM2015069 Institutional support: RVO:68081723 Keywords : thermodynamic quantities * phase field method * thermodynamic extremal principle * grain shrinkage Subject RIV: JG - Metallurgy OBOR OECD: Materials engineering Impact factor: 0.941, year: 2016

  8. Measurement of the magnetic moment of the 2$^{+}$ state in neutron-rich radioactive $^{72,74}$Zn using the transient field technique in inverse kinematics

    CERN Multimedia

    Kruecken, R; Speidel, K; Voulot, D; Neyens, G; Gernhaeuser, R A; Fraile prieto, L M; Leske, J

    We propose to measure the sign and magnitude of the g-factors of the first 2$^{+}$ states in radioactive neutron-rich $^{72,74}$Zn applying the transient field (TF) technique in inverse kinematics. The result of this experiment will allow to probe the $\

  9. Response of the 'patient dose calibrator' chamber for incident positions and sizes of X-ray fields

    International Nuclear Information System (INIS)

    Oliveira, Cassio M.; Abrantes, Marcos Eugenio S.; Ferreira, Flavia C. Bastos; Lacerda, Marco A. de Souza; Alonso, Thessa C.; Silva, Teogenes A. da; Oliveira, Paulo Marcio C.

    2009-01-01

    The evaluation of patient doses is an important tool for optimizing radiodiagnostic medical procedures with conventional X-ray equipment and for improving the quality of the radiographic image. The Patient Dose Calibrator (PDC) chamber is a dosimetric instrument that is used in the evaluation of the air kerma-area product (P KA ) quantity aiming the reduction of patient doses. The objective this work was to study the P KA variation caused by different field incident positions and sizes of the X-ray beam on the PDC chamber. Results showed that the PDC chamber has repeatability lower than 0.6%, beam position dependence of 3% and linearity response within ± 6%; these characteristics are to be taken into account during evaluation of the radiological protection conditions of conventional x-ray equipment. (author)

  10. Alternative ways of using field-based estimates to calibrate ecosystem models and their implications for carbon cycle studies

    Science.gov (United States)

    He, Yujie; Zhuang, Qianlai; McGuire, David; Liu, Yaling; Chen, Min

    2013-01-01

    Model-data fusion is a process in which field observations are used to constrain model parameters. How observations are used to constrain parameters has a direct impact on the carbon cycle dynamics simulated by ecosystem models. In this study, we present an evaluation of several options for the use of observations in modeling regional carbon dynamics and explore the implications of those options. We calibrated the Terrestrial Ecosystem Model on a hierarchy of three vegetation classification levels for the Alaskan boreal forest: species level, plant-functional-type level (PFT level), and biome level, and we examined the differences in simulated carbon dynamics. Species-specific field-based estimates were directly used to parameterize the model for species-level simulations, while weighted averages based on species percent cover were used to generate estimates for PFT- and biome-level model parameterization. We found that calibrated key ecosystem process parameters differed substantially among species and overlapped for species that are categorized into different PFTs. Our analysis of parameter sets suggests that the PFT-level parameterizations primarily reflected the dominant species and that functional information of some species were lost from the PFT-level parameterizations. The biome-level parameterization was primarily representative of the needleleaf PFT and lost information on broadleaf species or PFT function. Our results indicate that PFT-level simulations may be potentially representative of the performance of species-level simulations while biome-level simulations may result in biased estimates. Improved theoretical and empirical justifications for grouping species into PFTs or biomes are needed to adequately represent the dynamics of ecosystem functioning and structure.

  11. Oil palm water use: calibration of a sap flux method and a field measurement scheme.

    Science.gov (United States)

    Niu, Furong; Röll, Alexander; Hardanto, Afik; Meijide, Ana; Köhler, Michael; Hendrayanto; Hölscher, Dirk

    2015-05-01

    Oil palm (Elaeis guineensis Jacq.) water use was assessed by sap flux density measurements with the aim to establish the method and derive water-use characteristics. Thermal dissipation probes were inserted into leaf petioles of mature oil palms. In the laboratory, we tested our set-up against gravimetric measurements and derived new parameters for the original calibration equation that are specific to oil palm petioles. In the lowlands of Jambi, Indonesia, in a 12-year-old monoculture plantation, 56 leaves on 10 palms were equipped with one sensor per leaf. A 10-fold variation in individual leaf water use among leaves was observed, but we did not find significant correlations to the variables trunk height and diameter, leaf azimuthal orientation, leaf inclination or estimated horizontal leaf shading. We thus took an un-stratified approach to determine an appropriate sampling design to estimate stand transpiration (Es, mm day(-1)) rates of oil palm. We used the relative standard error of the mean (SEn, %) as a measure for the potential estimation error of Es associated with sample size. It was 14% for a sample size of 13 leaves to determine the average leaf water use and four palms to determine the average number of leaves per palm. Increasing these sample sizes only led to minor further decreases of the SEn of Es. The observed 90-day average of Es was 1.1 mm day(-1) (error margin ± 0.2 mm day(-1)), which seems relatively low, but does not contradict Penman-Monteith-derived estimates of evapotranspiration. Examining the environmental drivers of Es on an intra-daily scale indicates an early, pre-noon maximum of Es rates (11 am) due to a very sensitive reaction of Es to increasing vapor pressure deficit in the morning. This early peak is followed by a steady decline of Es rates for the rest of the day, despite further rising levels of vapor pressure deficit and radiation; this results in pronounced hysteresis, particularly between Es and vapor pressure deficit.

  12. A microbial bioassay to estimate nutrient availability in organic fertilizers; field calibration:

    International Nuclear Information System (INIS)

    Salas, E.; Ramirez, C.

    2001-01-01

    A good correlation was recently shown between the increase in the microbial biomass (BM) in a mixture of soil/organic amendment and the growth of a test plant, sorghum, in the same substrate. This work reports the validation of the microbial assay as a potential guide to establish the fertilization rate for organic fertilizers such as compost under field conditions. A field trial was established with green pepper (Capsicum annum L.) and tomato (Lycopersicum esculentum L) as test plants. Treatments were soil alone or amended with 10% (W/W) of organic amendments of contrasting nutrient value, namely: chicken manure (CM), compost (C), bocashi (B), vermicompost (V) and coffe hulls (Br). A complete randomized block design with 4 replicates was used. The following variables were determined: plant dry weight (PSC) and fresh fruit weight (PFF) for green pepper, 97 days after showing; for tomato, plant dry weight (PST) was determined 32 days after showing. For the microbial biomass a complete randomized block design was also used, with 6 replicates, for the same mixtures. Microbial biomass was determined 2 days after amendment with glucose (0.8%) using the substrate- induce respiration assay. The organic amendments CM, C and B induced the highest values for BM as well as fro PSC, PFF and PST, which indicates a high nutrient availability for these organic amendments, whereas the organic amendments V and Br showed the lowest values (P [es

  13. A Photometric Observing Program at the VATT: Setting Up a Calibration Field

    Science.gov (United States)

    Davis Philip, A. G.; Boyle, R. P.; Janusz, R.

    2009-05-01

    Philip and Boyle have been making Strömgren and then Strömvil photometric observations of open and globular clusters at the Vatican Advanced Technology Telescope located on Mt. Graham in Arizona. Our aim is to obtain CCD photometric indices good to 0.01 magnitude. Indices of this quality can later be analyzed to yield estimates of temperature, luminosity and metallicity. But we have found that the CCD chip does not yield photometry of this quality without further corrections. Our most observed cluster is the open cluster, M 67. This cluster is also very well observed in the literature. We took the best published values and created a set of "standard" stars for our field. Taking our CCD results we could calculate deltas, as a function of position on the chip, which we then applied to all the CCD frames that we obtained. With this procedure we were able to obtain the precision of 0.01 magnitudes in all the fields that we observed. When we started we were able to use the "A" two-inch square Strömgren four-color set from KPNO. Later the Vatican Observatory bought a set of 3.48 inch square Strömgren filters, The Vatican Observatory had a set of circular Vilnius filters There was also an X filter. These eight filters made our Strömvil set.

  14. Using the Transient Electromagnetic (TEM) Method for Mapping Deep Groundwater Tables in Mars Analog Environments: a Baseline Field Study.

    Science.gov (United States)

    Jernsletten, J. A.

    2004-05-01

    INTRODUCTION: The purpose of this study is to explore the use of electromagnetic geophysical techniques for mapping deep groundwater tables in Mars analog environments. In order to provide a baseline for such studies, and to evaluate the appropriateness of the Transient Electro-Magnetic (TEM) method in mapping deep groundwater tables, a field study was carried out in an area in the desert approximatelt 30 miles southwest of Tucson Arizona. The field area was chosen for its convenient logistics and access to technical support, as well as for its appropriateness as a baseline Mars analog site. DISCUSSION: The surface conditions at the site are less than ideal if the main motivation is to look for analogs for surface working conditions on Mars, due to a fairly dense cover of cacti and thorny brush. However, in a situation like in the present study, where the subsurface analog is of more interest, vegetation cover is only a logistical issue. The subsurface in the field area is quite conductive, a result of its clay-rich soil, and this may at first thought seem to make it a less than ideal location for Mars analog studies. The contrary is the case, however: In having to deal with the very conductive environment at the field area location for this baseline study, it is ensured that results and conclusions drawn from this work regarding issues such as working in a conductive environment and achieving certain depths of investigation can indeed be applied to planning field studies elsewhere. Further, the study is also designed to observe the effects of powerline noise on electromagnetic data, again presenting a very-difficult case, and further aiding in building a baseline case that is overall appropriately more difficult than most field studies will be (in terms of achieving good signal-to-noise ratios and depths of investigation). The field survey consisted of 40 in-loop TEM stations, divided into 3 lines, for 4 line-km of data. The survey was carried out by a crew of one

  15. Radiometric calibration of wide-field camera system with an application in astronomy

    Science.gov (United States)

    Vítek, Stanislav; Nasyrova, Maria; Stehlíková, Veronika

    2017-09-01

    Camera response function (CRF) is widely used for the description of the relationship between scene radiance and image brightness. Most common application of CRF is High Dynamic Range (HDR) reconstruction of the radiance maps of imaged scenes from a set of frames with different exposures. The main goal of this work is to provide an overview of CRF estimation algorithms and compare their outputs with results obtained under laboratory conditions. These algorithms, typically designed for multimedia content, are unfortunately quite useless with astronomical image data, mostly due to their nature (blur, noise, and long exposures). Therefore, we propose an optimization of selected methods to use in an astronomical imaging application. Results are experimentally verified on the wide-field camera system using Digital Single Lens Reflex (DSLR) camera.

  16. Shape from specular reflection in calibrated environments and the integration of spatial normal fields

    KAUST Repository

    Balzer, Jonathan

    2011-09-01

    Reflections of a scene in a mirror surface contain information on its shape. This information is accessible by measurement through an optical metrology technique called deflectometry. The result is a field of normal vectors to the unknown surface having the remarkable property that it equally changes in all spatial directions, unlike normal maps occurring, e.g., in Shape from Shading. Its integration into a zero-order reconstruction of the surface thus deserves special attention. We develop a novel algorithm for this purpose which is relatively straightforward to implement yet outperforms existing ones in terms of efficiency and robustness. Experimental results on synthetic and real data complement the theoretical discussion. © 2011 IEEE.

  17. On the electric field transient anomaly observed at the time of the Kythira M=6.9 earthquake on January 2006

    Directory of Open Access Journals (Sweden)

    M. R. Varley

    2007-11-01

    Full Text Available The study of the Earth's electromagnetic fields prior to the occurrence of strong seismic events has repeatedly revealed cases were transient anomalies, often deemed as possible earthquake precursors, were observed on electromagnetic field recordings of surface, atmosphere and near space carried out measurements. In an attempt to understand the nature of such signals several models have been proposed based upon the exhibited characteristics of the observed anomalies and different possible generation mechanisms, with electric earthquake precursors (EEP appearing to be the main candidates for short-term earthquake precursors. This paper discusses the detection of a ULF electric field transient anomaly and its identification as a possible electric earthquake precursor accompanying the Kythira M=6.9 earthquake occurred on the 8 January 2006.

  18. Development and Calibration of a Field-Deployable Microphone Phased Array for Propulsion and Airframe Noise Flyover Measurements

    Science.gov (United States)

    Humphreys, William M., Jr.; Lockard, David P.; Khorrami, Mehdi R.; Culliton, William G.; McSwain, Robert G.; Ravetta, Patricio A.; Johns, Zachary

    2016-01-01

    A new aeroacoustic measurement capability has been developed consisting of a large channelcount, field-deployable microphone phased array suitable for airframe noise flyover measurements for a range of aircraft types and scales. The array incorporates up to 185 hardened, weather-resistant sensors suitable for outdoor use. A custom 4-mA current loop receiver circuit with temperature compensation was developed to power the sensors over extended cable lengths with minimal degradation of the signal to noise ratio and frequency response. Extensive laboratory calibrations and environmental testing of the sensors were conducted to verify the design's performance specifications. A compact data system combining sensor power, signal conditioning, and digitization was assembled for use with the array. Complementing the data system is a robust analysis system capable of near real-time presentation of beamformed and deconvolved contour plots and integrated spectra obtained from array data acquired during flyover passes. Additional instrumentation systems needed to process the array data were also assembled. These include a commercial weather station and a video monitoring / recording system. A detailed mock-up of the instrumentation suite (phased array, weather station, and data processor) was performed in the NASA Langley Acoustic Development Laboratory to vet the system performance. The first deployment of the system occurred at Finnegan Airfield at Fort A.P. Hill where the array was utilized to measure the vehicle noise from a number of sUAS (small Unmanned Aerial System) aircraft. A unique in-situ calibration method for the array microphones using a hovering aerial sound source was attempted for the first time during the deployment.

  19. Continental Scale Vegetation Structure Mapping Using Field Calibrated Landsat, ALOS Palsar And GLAS ICESat

    Science.gov (United States)

    Scarth, P.; Phinn, S. R.; Armston, J.; Lucas, R.

    2015-12-01

    Vertical plant profiles are important descriptors of canopy structure and are used to inform models of biomass, biodiversity and fire risk. In Australia, an approach has been developed to produce large area maps of vertical plant profiles by extrapolating waveform lidar estimates of vertical plant profiles from ICESat/GLAS using large area segmentation of ALOS PALSAR and Landsat satellite image products. The main assumption of this approach is that the vegetation height profiles are consistent across the segments defined from ALOS PALSAR and Landsat image products. More than 1500 field sites were used to develop an index of fractional cover using Landsat data. A time series of the green fraction was used to calculate the persistent green fraction continuously across the landscape. This was fused with ALOS PALSAR L-band Fine Beam Dual polarisation 25m data and used to segment the Australian landscapes. K-means clustering then grouped the segments with similar cover and backscatter into approximately 1000 clusters. Where GLAS-ICESat footprints intersected these clusters, canopy profiles were extracted and aggregated to produce a mean vertical vegetation profile for each cluster that was used to derive mean canopy and understorey height, depth and density. Due to the large number of returns, these retrievals are near continuous across the landscape, enabling them to be used for inventory and modelling applications. To validate this product, a radiative transfer model was adapted to map directional gap probability from airborne waveform lidar datasets to retrieve vertical plant profiles Comparison over several test sites show excellent agreement and work is underway to extend the analysis to improve national biomass mapping. The integration of the three datasets provide options for future operational monitoring of structure and AGB across large areas for quantifying carbon dynamics, structural change and biodiversity.

  20. WE-G-BRB-08: TG-51 Calibration of First Commercial MRI-Guided IMRT System in the Presence of 0.35 Tesla Magnetic Field.

    Science.gov (United States)

    Goddu, S; Green, O Pechenaya; Mutic, S

    2012-06-01

    The first real-time-MRI-guided radiotherapy system has been installed in a clinic and it is being evaluated. Presence of magnetic field (MF) during radiation output calibration may have implications on ionization measurements and there is a possibility that standard calibration protocols may not be suitable for dose measurements for such devices. In this study, we evaluated whether a standard calibration protocol (AAPM- TG-51) is appropriate for absolute dose measurement in presence of MF. Treatment delivery of the ViewRay (VR) system is via three 15,000Ci Cobalt-60 heads positioned 120-degrees apart and all calibration measurements were done in the presence of 0.35T MF. Two ADCL- calibrated ionization-chambers (Exradin A12, A16) were used for TG-51 calibration. Chambers were positioned at 5-cm depth, (SSD=105cm: VR's isocenter), and the MLC leaves were shaped to a 10.5cm × 10.5 cm field size. Percent-depth-dose (PDD) measurements were performed for 5 and 10 cm depths. Individual output of each head was measured using the AAPM- TG51 protocol. Calibration accuracy for each head was subsequently verified by Radiological Physics Center (RPC) TLD measurements. Measured ion-recombination (Pion) and polarity (Ppol) correction factors were less-than 1.002 and 1.006, respectively. Measured PDDs agreed with BJR-25 within ±0.2%. Maximum dose rates for the reference field size at VR's isocenter for heads 1, 2 and 3 were 1.445±0.005, 1.446±0.107, 1.431±0.006 Gy/minute, respectively. Our calibrations agreed with RPC- TLD measurements within ±1.3%, ±2.6% and ±2.0% for treatment-heads 1, 2 and 3, respectively. At the time of calibration, mean activity of the Co-60 sources was 10,800Ci±0.1%. This study shows that the TG- 51 calibration is feasible in the presence of 0.35T MF and the measurement agreement is within the range of results obtainable for conventional treatment machines. Drs. Green, Goddu, and Mutic served as scientific consultants for ViewRay, Inc. Dr. Mutic

  1. Vicarious calibration of the solar reflection channels of radiometers onboard satellites through the field campaigns with measurements of refractive index and size distribution of aerosols

    Science.gov (United States)

    Arai, K.

    A comparative study on vicarious calibration for the solar reflection channels of radiometers onboard satellite through the field campaigns between with and without measurements of refractive index and size distribution of aerosols is made. In particular, it is noticed that the influence due to soot from the cars exhaust has to be care about for the test sites near by a heavy trafficked roads. It is found that the 0.1% inclusion of soot induces around 10% vicarious calibration error so that it is better to measure refractive index properly at the test site. It is found that the vicarious calibration coefficients with the field campaigns at the different test site, Ivanpah (near road) and Railroad (distant from road) shows approximately 10% discrepancy. It seems that one of the possible causes for the difference is the influence due to soot from cars exhaust.

  2. Extending the frequency range of free-field reciprocity calibration of measurement microphones to frequencies up to 150 kHz

    DEFF Research Database (Denmark)

    Barrera Figueroa, Salvador; Torras Rosell, Antoni; Jacobsen, Finn

    2013-01-01

    Measurement microphones are typically calibrated in a free field at frequencies up to 50 kHz. This is a sufficiently high frequency for the most sound measurement applications related with noise assessment. However, other applications such as the measurement of noise emitted by ultrasound cleanin...

  3. Calibration of a Field-Scale Soil and Water Assessment Tool (SWAT Model with Field Placement of Best Management Practices in Alger Creek, Michigan

    Directory of Open Access Journals (Sweden)

    Katherine R. Merriman

    2018-03-01

    Full Text Available Subwatersheds within the Great Lakes “Priority Watersheds” were targeted by the Great Lakes Restoration Initiative (GLRI to determine the effectiveness of the various best management practices (BMPs from the U.S. Department of Agriculture-Natural Resources Conservation Service National Conservation Planning (NCP Database. A Soil and Water Assessment Tool (SWAT model is created for Alger Creek, a 50 km2 tributary watershed to the Saginaw River in Michigan. Monthly calibration yielded very good Nash–Sutcliffe efficiency (NSE ratings for flow, sediment, total phosphorus (TP, dissolved reactive phosphorus (DRP, and total nitrogen (TN (0.90, 0.79, 0.87, 0.88, and 0.77, respectively, and satisfactory NSE rating for nitrate (0.51. Two-year validation results in at least satisfactory NSE ratings for flow, sediment, TP, DRP, and TN (0.83, 0.54, 0.73, 0.53, and 0.60, respectively, and unsatisfactory NSE rating for nitrate (0.28. The model estimates the effect of BMPs at the field and watershed scales. At the field-scale, the most effective single practice at reducing sediment, TP, and DRP is no-tillage followed by cover crops (CC; CC are the most effective single practice at reducing nitrate. The most effective BMP combinations include filter strips, which can have a sizable effect on reducing sediment and phosphorus loads. At the watershed scale, model results indicate current NCP BMPs result in minimal sediment and nutrient reductions (<10%.

  4. Calibration of a field-scale Soil and Water Assessment Tool (SWAT) model with field placement of best management practices in Alger Creek, Michigan

    Science.gov (United States)

    Merriman-Hoehne, Katherine R.; Russell, Amy M.; Rachol, Cynthia M.; Daggupati, Prasad; Srinivasan, Raghavan; Hayhurst, Brett A.; Stuntebeck, Todd D.

    2018-01-01

    Subwatersheds within the Great Lakes “Priority Watersheds” were targeted by the Great Lakes Restoration Initiative (GLRI) to determine the effectiveness of the various best management practices (BMPs) from the U.S. Department of Agriculture-Natural Resources Conservation Service National Conservation Planning (NCP) Database. A Soil and Water Assessment Tool (SWAT) model is created for Alger Creek, a 50 km2 tributary watershed to the Saginaw River in Michigan. Monthly calibration yielded very good Nash–Sutcliffe efficiency (NSE) ratings for flow, sediment, total phosphorus (TP), dissolved reactive phosphorus (DRP), and total nitrogen (TN) (0.90, 0.79, 0.87, 0.88, and 0.77, respectively), and satisfactory NSE rating for nitrate (0.51). Two-year validation results in at least satisfactory NSE ratings for flow, sediment, TP, DRP, and TN (0.83, 0.54, 0.73, 0.53, and 0.60, respectively), and unsatisfactory NSE rating for nitrate (0.28). The model estimates the effect of BMPs at the field and watershed scales. At the field-scale, the most effective single practice at reducing sediment, TP, and DRP is no-tillage followed by cover crops (CC); CC are the most effective single practice at reducing nitrate. The most effective BMP combinations include filter strips, which can have a sizable effect on reducing sediment and phosphorus loads. At the watershed scale, model results indicate current NCP BMPs result in minimal sediment and nutrient reductions (<10%).

  5. Tucurui`s 500 kV S F{sub 6} gas-insulated substation modeling for fast transients - field tests comparison

    Energy Technology Data Exchange (ETDEWEB)

    Lima Filho, Joao Ferreira de; Pazo Blanco, Flavio A.F.; D`Ajuz, Ary; Nascimento, Lidio F.A. [ELETRONORTE, Brasilia, DF (Brazil)

    1994-12-31

    Many problems in insulation, devices and equipment have been resulted from switching operations in the 500 kV Gas-Insulated Substation (GIS) of Tucurui power plant. Disconnector closing or opening action can subject the GIS components to great stresses from excessive voltages at high frequencies caused by successive reflections of travelling waves at discontinuities (1,2,3). Field tests were carried out in September 18-23, 1991 to verify the actual GIS stresses at Tucurui. From these results simulations on the Alternative Transients Program (ATP) were performed in order to check the substation modeling. This paper presents and discusses the Tucurui GIS modeling for switching fast transients and its field test validation. (author) 8 refs., 6 figs.

  6. Calibration Improvements for the Hubble Space Telescope Advanced Camera for Surveys Wide Field Channel: Post-Flash and Commanding Overheads

    Science.gov (United States)

    Miles, Nathan; Grogin, Norman; ACS Instrument Team

    2018-01-01

    The Advanced Camera for Surveys (ACS) Wide Field Channel (WFC) post-flash calibration reference file currently suffers from an improper dark subtraction resulting in a variety of image artifacts. In order to cure these artifacts, a new technique has been implemented where the total sum of the exposure time and flash duration for each image is held constant. The flash duration and exposure time are varied to produce two sets of images that are differenced to produce the new post-flash reference file. The first set all have long exposure times and short flash durations, while the second set has exactly the opposite. Next, using the newly generated post-flash reference file we derive the commanding overheads associated with any ACS/WFC post-flashed observation. Whenever ACS/WFC receives commands it takes a finite amount of time for the instrument to execute them, when commands are executed while the instrument is in ACCUM mode additional dark current builds up and is added to the exposure. This additional dark current is not accounted for in the EXPTIME header keyword and therefore is not removed during the DARKCORR processing step in CALACS. By leveraging the stability of hot-stable pixels and the new post-flash reference file, we analyze 1,273 post-flashed darks and extract the commanding overheads associated with ACS/WFC post-flashed data.

  7. Data reduction pipeline for the CHARIS integral-field spectrograph I: detector readout calibration and data cube extraction

    Science.gov (United States)

    Brandt, Timothy D.; Rizzo, Maxime; Groff, Tyler; Chilcote, Jeffrey; Greco, Johnny P.; Kasdin, N. Jeremy; Limbach, Mary Anne; Galvin, Michael; Loomis, Craig; Knapp, Gillian; McElwain, Michael W.; Jovanovic, Nemanja; Currie, Thayne; Mede, Kyle; Tamura, Motohide; Takato, Naruhisa; Hayashi, Masahiko

    2017-10-01

    We present the data reduction pipeline for CHARIS, a high-contrast integral-field spectrograph for the Subaru Telescope. The pipeline constructs a ramp from the raw reads using the measured nonlinear pixel response and reconstructs the data cube using one of three extraction algorithms: aperture photometry, optimal extraction, or χ2 fitting. We measure and apply both a detector flatfield and a lenslet flatfield and reconstruct the wavelength- and position-dependent lenslet point-spread function (PSF) from images taken with a tunable laser. We use these measured PSFs to implement a χ2-based extraction of the data cube, with typical residuals of ˜5% due to imperfect models of the undersampled lenslet PSFs. The full two-dimensional residual of the χ2 extraction allows us to model and remove correlated read noise, dramatically improving CHARIS's performance. The χ2 extraction produces a data cube that has been deconvolved with the line-spread function and never performs any interpolations of either the data or the individual lenslet spectra. The extracted data cube also includes uncertainties for each spatial and spectral measurement. CHARIS's software is parallelized, written in Python and Cython, and freely available on github with a separate documentation page. Astrometric and spectrophotometric calibrations of the data cubes and PSF subtraction will be treated in a forthcoming paper.

  8. Pulsating star products from the Palomar Transient Factory: Ultra-long period Cepheids in M31 and RR Lyrae in Kepler field

    Directory of Open Access Journals (Sweden)

    Ngeow Chow-Choong

    2017-01-01

    Full Text Available The Palomar Transient Factory (PTF and its successor, the intermediate PTF (iPTF, are wide-field synoptic sky surveys aimed to detect transients. Even though the main science goal for PTF/iPTF is to detect various types of transients, the synoptic nature of the surveys can also be used for the study of variable stars. In this proceedings contribution, I will first give a brief introduction to PTF/iPTF, followed by the two pulsating stars studies using the PTF/iPTF data: the Ultra-Long Period Cepheids (ULPC in M31 and the RR Lyrae in the Kepler field. For the formal study, we searched the M31’s ULPC using PTF imaging data, and follow up the candidates with other telescopes. Our finding revealed that there are only two ULPC in M31. I will give a brief implication of our finding in distance scale studies. For the latter study, I will present our work on the derivation of metallicity-light curve relation in native PTF/iPTF R-band using the RRab stars in the Kepler field.

  9. Rapid Calibration of High Resolution Geologic Models to Dynamic Data Using Inverse Modeling: Field Application and Validation

    Energy Technology Data Exchange (ETDEWEB)

    Akhil Datta-Gupta

    2008-03-31

    Streamline-based assisted and automatic history matching techniques have shown great potential in reconciling high resolution geologic models to production data. However, a major drawback of these approaches has been incompressibility or slight compressibility assumptions that have limited applications to two-phase water-oil displacements only. We propose an approach to history matching three-phase flow using a novel compressible streamline formulation and streamline-derived analytic sensitivities. First, we utilize a generalized streamline model to account for compressible flow by introducing an 'effective density' of total fluids along streamlines. Second, we analytically compute parameter sensitivities that define the relationship between the reservoir properties and the production response, viz. water-cut and gas/oil ratio (GOR). These sensitivities are an integral part of history matching, and streamline models permit efficient computation of these sensitivities through a single flow simulation. We calibrate geologic models to production data by matching the water-cut and gas/oil ratio using our previously proposed generalized travel time inversion (GTTI) technique. For field applications, however, the highly non-monotonic profile of the gas/oil ratio data often presents a challenge to this technique. In this work we present a transformation of the field production data that makes it more amenable to GTTI. Further, we generalize the approach to incorporate bottom-hole flowing pressure during three-phase history matching. We examine the practical feasibility of the method using a field-scale synthetic example (SPE-9 comparative study) and a field application. Recently Ensemble Kalman Filtering (EnKF) has gained increased attention for history matching and continuous reservoir model updating using data from permanent downhole sensors. It is a sequential Monte-Carlo approach that works with an ensemble of reservoir models. Specifically, the method

  10. Development of the 60Co gamma-ray standard field for therapy-level dosimeter calibration in terms of absorbed dose to water (ND,W)

    International Nuclear Information System (INIS)

    Fukumura, Akifumi; Mizuno, Hideyuki; Fukahori, Mai; Sakata, Suoh

    2013-01-01

    A primary standard for the absorbed dose rate to water in a 60 Co gamma-ray field was established at National Metrology Institute of Japan (NMIJ) in fiscal year 2011. Then, a 60 Co gamma-ray standard field for therapy-level dosimeter calibration in terms of absorbed dose to water was developed at National Institute of Radiological Sciences (NIRS) as a secondary standard dosimetry laboratory (SSDL). The results of an International Atomic Energy Agency (IAEA)/World Health Organization (WHO) TLD SSDL audit demonstrated that there was good agreement between NIRS stated absorbed dose to water and IAEA measurements. The IAEA guide based on the International Organization for Standardization (ISO) standard was used to estimate the relative expanded uncertainty of the calibration factor for a therapy-level Farmer type ionization chamber in terms of absorbed dose to water (N D,W ) with the new field. The uncertainty of N D,W was estimated to be 1.1% (k=2), which corresponds to approximately one third of the value determined in the existing air kerma field. The dissemination of traceability of the calibration factor determined in the new field is expected to diminish the uncertainty of dose delivered to patients significantly. (author)

  11. International key comparison of free-field hydrophone calibrations in the frequency range 1 to 500 kHz

    CSIR Research Space (South Africa)

    Robinson, SP

    2006-09-01

    Full Text Available and measurement. Laboratories from UK, Germany, USA, Russia, China, Canada, and South Africa participated by calibrating three reference hydrophones, with project coordination provided by the National Physical Laboratory, UK. The agreement between the results...

  12. Cosmogenic 3He and 21Ne production rates calibrated against 10Be in minerals from the Coso volcanic field

    Science.gov (United States)

    Amidon, William H.; Rood, Dylan H.; Farley, Kenneth A.

    2009-04-01

    This study calibrates the production rate of cosmogenic 3He in pyroxene, olivine, garnet, zircon and apatite as well as 21Ne in quartz and pyroxene against the known production rate of 10Be in quartz. The Devil's Kitchen rhyolite from the Coso volcanic field in southeastern California (elev. ~ 1300 m) was chosen for this study due to its young age (~ 610 ka) and diverse mineral assemblage. Based on 10Be, our two rhyolite samples have apparent exposure ages of ~ 49 and 93 ka, indicating substantial erosion after eruption. Combining data from the two samples, we estimate sea level high latitude 3He spallation production rates of 145 ± 11, 141 ± 16, and 144 ± 30 at g - 1 a - 1 (2 σ) for pyroxene, olivine and spessartine garnet respectively. For zircon and apatite, we estimate apparent 3He spallation production rates of 114 ± 8 and 149 ± 28 at g - 1 a - 1 (2 σ) respectively. The rates for zircon and apatite are reported as apparent production rates because we do not explicitly address the redistribution of spallation produced 3He from adjacent minerals. These estimates quantitatively account for production of 3He from both cosmogenic and radiogenic neutron reactions on 6Li within the analyzed phases and also implanted from nuclear reactions in neighboring minerals; the high U, Th and Li content of this rhyolite provides a particularly rigorous test of this correction. We estimate 21Ne production rates of 17.7 ± 1.6 and 34.1 ± 3.2 at g - 1 a - 1 (2 σ) in quartz and pyroxene (Fe/Mg = 0.7 by mass) respectively. Although high U and Th contents create the potential for significant production of nucleogenic 21Ne, this component is small due to the young eruption age of the rhyolite.

  13. ALL TRANSIENTS, ALL THE TIME: REAL-TIME RADIO TRANSIENT DETECTION WITH INTERFEROMETRIC CLOSURE QUANTITIES

    Energy Technology Data Exchange (ETDEWEB)

    Law, Casey J.; Bower, Geoffrey C. [Department of Astronomy and Radio Astronomy Laboratory, University of California, Berkeley, CA (United States)

    2012-04-20

    We demonstrate a new technique for detecting radio transients based on interferometric closure quantities. The technique uses the bispectrum, the product of visibilities around a closed loop of baselines of an interferometer. The bispectrum is calibration independent, resistant to interference, and computationally efficient, so it can be built into correlators for real-time transient detection. Our technique could find celestial transients anywhere in the field of view and localize them to arcsecond precision. At the Karl G. Jansky Very Large Array (VLA), such a system would have a high survey speed and a 5{sigma} sensitivity of 38 mJy on 10 ms timescales with 1 GHz of bandwidth. The ability to localize dispersed millisecond pulses to arcsecond precision in large volumes of interferometer data has several unique science applications. Localizing individual pulses from Galactic pulsars will help find X-ray counterparts that define their physical properties, while finding host galaxies of extragalactic transients will measure the electron density of the intergalactic medium with a single dispersed pulse. Exoplanets and active stars have distinct millisecond variability that can be used to identify them and probe their magnetospheres. We use millisecond timescale visibilities from the Allen Telescope Array and VLA to show that the bispectrum can detect dispersed pulses and reject local interference. The computational and data efficiency of the bispectrum will help find transients on a range of timescales with next-generation radio interferometers.

  14. Investigation of the Internal Electric Field in Cadmium Zinc Telluride Detectors Using the Pockels Effect and the Analysis of Charge Transients

    Science.gov (United States)

    Groza, Michael; Krawczynski, Henic; Garson, Alfred, III; Martin, Jerrad W.; Lee, Kuen; Li, Qiang; Beilicke, Matthias; Cui, Yunlong; Buliga, Vladimir; Guo, Mingsheng; hide

    2010-01-01

    The Pockels electro-optic effect can be used to investigate the internal electric field in cadmium zinc telluride (CZT) single crystals that are used to fabricate room temperature x and gamma radiation detectors. An agreement is found between the electric field mapping obtained from Pockels effect images and the measurements of charge transients generated by alpha particles. The Pockels effect images of a CZT detector along two mutually perpendicular directions are used to optimize the detector response in a dual anode configuration, a device in which the symmetry of the internal electric field with respect to the anode strips is of critical importance. The Pockels effect is also used to map the electric field in a CZT detector with dual anodes and an attempt is made to find a correlation with the simulated electric potential in such detectors. Finally, the stress-induced birefringence effects seen in the Pockels images are presented and discussed.

  15. Calibration, field-testing, and error analysis of a gamma-ray probe for in situ measurement of dry bulk density

    International Nuclear Information System (INIS)

    Bertuzzi, P.; Bruckler, L.; Gabilly, Y.; Gaudu, J.C.

    1987-01-01

    This paper describes a new gamma-ray probe for measuring dry bulk density in the field. This equipment can be used with three different tube spacings (15, 20 and 30 cm). Calibration procedures and local error analyses are proposed for two cases: (1) for the case where the access tubes are parallel, calibration equations are given for three tube spacings. The linear correlation coefficient obtained in the laboratory is satisfactory (0.999), and a local error analysis shows that the standard deviation in the measured dry bulk density is small (+/- 0.02 g/cm 3 ); (2) when the access tubes are not parallel, a new calibration procedure is presented that accounts for and corrects measurement bias due to the deviating probe spacing. The standard deviation associated with the measured dry bulk density is greater (+/- 0.05 g/cm 3 ), but the measurements themselves are regarded as unbiased. After comparisons of core samplings and gamma-ray probe measurements, a field validation of the gamma-ray measurements is presented. Field validation was carried out on a variety of soils (clay, clay loam, loam, and silty clay loam), using gravimetric water contents that varied from 0.11 0.27 and dry bulk densities ranging from 1.30-1.80 g°cm -3 . Finally, an example of dry bulk density field variability is shown, and the spatial variability is analyzed in regard to the measurement errors

  16. Laboratory calibration and field testing of the Chemcatcher-Metal for trace levels of rare earth elements in estuarine waters.

    Science.gov (United States)

    Petersen, Jördis; Pröfrock, Daniel; Paschke, Albrecht; Broekaert, Jose A C; Prange, Andreas

    2015-10-01

    Little knowledge is available about water concentrations of rare earth elements (REEs) in the marine environment. The direct measurement of REEs in coastal waters is a challenging task due to their ultra-low concentrations as well as the high salt content in the water samples. To quantify these elements at environmental concentrations (pg L(-1) to low ng L(-1)) in coastal waters, current analytical techniques are generally expensive and time consuming, and require complex chemical preconcentration procedures. Therefore, an integrative passive sampler was tested as a more economic alternative sampling approach for REE analysis. We used a Chemcatcher-Metal passive sampler consisting of a 3M Empore Chelating Disk as the receiving phase, as well as a cellulose acetate membrane as the diffusion-limiting layer. The effect of water turbulence and temperature on the uptake rates of REEs was analyzed during 14-day calibration experiments by a flow-through exposure tank system. The sampling rates were in the range of 0.42 mL h(-1) (13 °C; 0.25 m s(-1)) to 4.01 mL h(-1) (13 °C; 1 m s(-1)). Similar results were obtained for the different REEs under investigation. The water turbulence was the most important influence on uptake. The uptake rates were appropriate to ascertain time-weighted average concentrations of REEs during a field experiment in the Elbe Estuary near Cuxhaven Harbor (exposure time 4 weeks). REE concentrations were determined to be in the range 0.2 to 13.8 ng L(-1), where the highest concentrations were found for neodymium and samarium. In comparison, most of the spot samples measured along the Chemcatcher samples had REE concentrations below the limit of detection, in particular due to necessary dilution to minimize the analytical problems that arise with the high salt content in marine water samples. This study was among the first efforts to measure REE levels in the field using a passive sampling approach. Our results suggest that passive samplers could be

  17. MEASURE AND VIZUALIZATION IN THE NEAR ZONES OF TRANSIENT ULTRASONIC FIELDS GENERATED BY BROADBAND TRANSDUCERS IN LIQUID MEDIA

    OpenAIRE

    Riera-Franco De Sarabia, E.; Ramos-Fernandez, A.; Gomez-Ullate, L .

    1990-01-01

    This paper presents an experimental technique for analyzing the propagation of transient ultrasonic patterns generated by broadband thickness-resonant discs in water over the near zones. The amplitude peak detection of the received signals from focused and unfocused single element transducers is made by using shifting narrow temporal gates. The 3D and 2D pressure plots obtained, allow the snapshot visualization of the pulsed wavefronts, they also provide information on the vibration pattern o...

  18. Particle Tracking-Based Strategies For Simulating Transport in a Transient Groundwater Flow Field at Yucca Flat, Nevada Test Site, USA

    Science.gov (United States)

    Keating, E. H.; Srinivasan, G.; Kang, Q.; Li, C.; Dash, Z.; Kwicklis, E. M.

    2009-12-01

    Developing probabilistic-based calculations of contaminant concentrations over the next 1000 years at Yucca Flat, Nevada Test site, require tremendous computational effort in this highly complex hydrogeologic surface environment. The sources of contamination, underground nuclear tests conducted between 1951 and 1992, not only released radionuclides to the subsurface but also created abrupt, significant changes in rock properties and caused large transients in the measured hydraulic gradients. To efficiently model contaminant migration from these sources we use a particle-based approach within a transient flow field. Here, we present results using two methods; first, an explicit representation of time-varying sources using large numbers of particles introduced at source-specific rates over time, each representing a unique mass of solute. This method provides good results, but is computationally expensive since sensitivity to uncertainty in source term and transport parameters can only be explored with discrete process-model runs. The second method employs a convolution method (PLUMECALC) which can efficiently consider a large number of variations in the source terms and in certain transport parameters with a single process-model run. Implementation of this second approach required extension of the existing methodology to conditions of transient flow. We find very good comparison between the two methods on small test problems and excellent computational advantages when applying the convolution method in the NTS application

  19. Radiochromic film calibration wedge EBT2 using virtual fields; Calibracion de peliculas radiocromicos EBT2 mediante campos con cunas virtuales

    Energy Technology Data Exchange (ETDEWEB)

    Perez, M. A.; Macias, J.; Merchan, M. A.; Campo, J. L.; Moreno, J. C.; Terron, J. A.; Miras, H.; Ortiz, M.; Arrans, R.; Ortiz, A.; Fernandez, D.

    2011-07-01

    EBT2 film dosimetry after exposure to a gradient of these wedge dosimetry. In our case a virtual wedge 600. The primary objective is to automate the process, reduce the time spent in obtaining the calibration curve (color-dose). Time negligible due to the limited availability of accelerators. This method of obtaining the calibration curve provides similar results to the commonly accepted either with irradiation uniform of a single film with different dose levels (multiband ladder) or with irradiation uniform of small rectangular piece of film , decreasing by a factor about 20, the time spent. (Author)

  20. UV scale calibration transfer from an improved pyroelectric detector standard to field UV-A meters and 365 nm excitation sources

    Science.gov (United States)

    Eppeldauer, G. P.; Podobedov, V. B.; Cooksey, C. C.

    2017-05-01

    Calibration of the emitted radiation from UV sources peaking at 365 nm, is necessary to perform the ASTM required 1 mW/cm2 minimum irradiance in certain military material (ships, airplanes etc) tests. These UV "black lights" are applied for crack-recognition using fluorescent liquid penetrant inspection. At present, these nondestructive tests are performed using Hg-lamps. Lack of a proper standard and the different spectral responsivities of the available UV meters cause significant measurement errors even if the same UV-365 source is measured. A pyroelectric radiometer standard with spectrally flat (constant) response in the UV-VIS range has been developed to solve the problem. The response curve of this standard determined from spectral reflectance measurement, is converted into spectral irradiance responsivity with UV sources (with different peaks and distributions) without using any source standard. Using this broadband calibration method, yearly spectral calibrations for the reference UV (LED) sources and irradiance meters is not needed. Field UV sources and meters can be calibrated against the pyroelectric radiometer standard for broadband (integrated) irradiance and integrated responsivity. Using the broadband measurement procedure, the UV measurements give uniform results with significantly decreased uncertainties.

  1. The BErkeley Atmospheric CO2 Observation Network: field calibration and evaluation of low-cost air quality sensors

    Science.gov (United States)

    Kim, Jinsol; Shusterman, Alexis A.; Lieschke, Kaitlyn J.; Newman, Catherine; Cohen, Ronald C.

    2018-04-01

    The newest generation of air quality sensors is small, low cost, and easy to deploy. These sensors are an attractive option for developing dense observation networks in support of regulatory activities and scientific research. They are also of interest for use by individuals to characterize their home environment and for citizen science. However, these sensors are difficult to interpret. Although some have an approximately linear response to the target analyte, that response may vary with time, temperature, and/or humidity, and the cross-sensitivity to non-target analytes can be large enough to be confounding. Standard approaches to calibration that are sufficient to account for these variations require a quantity of equipment and labor that negates the attractiveness of the sensors' low cost. Here we describe a novel calibration strategy for a set of sensors, including CO, NO, NO2, and O3, that makes use of (1) multiple co-located sensors, (2) a priori knowledge about the chemistry of NO, NO2, and O3, (3) an estimate of mean emission factors for CO, and (4) the global background of CO. The strategy requires one or more well calibrated anchor points within the network domain, but it does not require direct calibration of any of the individual low-cost sensors. The procedure nonetheless accounts for temperature and drift, in both the sensitivity and zero offset. We demonstrate this calibration on a subset of the sensors comprising BEACO2N, a distributed network of approximately 50 sensor nodes, each measuring CO2, CO, NO, NO2, O3 and particulate matter at 10 s time resolution and approximately 2 km spacing within the San Francisco Bay Area.

  2. Structure-From for Calibration of a Vehicle Camera System with Non-Overlapping Fields-Of in AN Urban Environment

    Science.gov (United States)

    Hanel, A.; Stilla, U.

    2017-05-01

    Vehicle environment cameras observing traffic participants in the area around a car and interior cameras observing the car driver are important data sources for driver intention recognition algorithms. To combine information from both camera groups, a camera system calibration can be performed. Typically, there is no overlapping field-of-view between environment and interior cameras. Often no marked reference points are available in environments, which are a large enough to cover a car for the system calibration. In this contribution, a calibration method for a vehicle camera system with non-overlapping camera groups in an urban environment is described. A-priori images of an urban calibration environment taken with an external camera are processed with the structure-frommotion method to obtain an environment point cloud. Images of the vehicle interior, taken also with an external camera, are processed to obtain an interior point cloud. Both point clouds are tied to each other with images of both image sets showing the same real-world objects. The point clouds are transformed into a self-defined vehicle coordinate system describing the vehicle movement. On demand, videos can be recorded with the vehicle cameras in a calibration drive. Poses of vehicle environment cameras and interior cameras are estimated separately using ground control points from the respective point cloud. All poses of a vehicle camera estimated for different video frames are optimized in a bundle adjustment. In an experiment, a point cloud is created from images of an underground car park, as well as a point cloud of the interior of a Volkswagen test car is created. Videos of two environment and one interior cameras are recorded. Results show, that the vehicle camera poses are estimated successfully especially when the car is not moving. Position standard deviations in the centimeter range can be achieved for all vehicle cameras. Relative distances between the vehicle cameras deviate between

  3. STRUCTURE-FROM-MOTION FOR CALIBRATION OF A VEHICLE CAMERA SYSTEM WITH NON-OVERLAPPING FIELDS-OF-VIEW IN AN URBAN ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    A. Hanel

    2017-05-01

    Full Text Available Vehicle environment cameras observing traffic participants in the area around a car and interior cameras observing the car driver are important data sources for driver intention recognition algorithms. To combine information from both camera groups, a camera system calibration can be performed. Typically, there is no overlapping field-of-view between environment and interior cameras. Often no marked reference points are available in environments, which are a large enough to cover a car for the system calibration. In this contribution, a calibration method for a vehicle camera system with non-overlapping camera groups in an urban environment is described. A-priori images of an urban calibration environment taken with an external camera are processed with the structure-frommotion method to obtain an environment point cloud. Images of the vehicle interior, taken also with an external camera, are processed to obtain an interior point cloud. Both point clouds are tied to each other with images of both image sets showing the same real-world objects. The point clouds are transformed into a self-defined vehicle coordinate system describing the vehicle movement. On demand, videos can be recorded with the vehicle cameras in a calibration drive. Poses of vehicle environment cameras and interior cameras are estimated separately using ground control points from the respective point cloud. All poses of a vehicle camera estimated for different video frames are optimized in a bundle adjustment. In an experiment, a point cloud is created from images of an underground car park, as well as a point cloud of the interior of a Volkswagen test car is created. Videos of two environment and one interior cameras are recorded. Results show, that the vehicle camera poses are estimated successfully especially when the car is not moving. Position standard deviations in the centimeter range can be achieved for all vehicle cameras. Relative distances between the vehicle

  4. Detecting trends in regional ecosystem functioning: the importance of field data for calibrating and validating NEON airborne remote sensing instruments and science data products

    Science.gov (United States)

    McCorkel, J.; Kuester, M. A.; Johnson, B. R.; Krause, K.; Kampe, T. U.; Moore, D. J.

    2011-12-01

    The National Ecological Observatory Network (NEON) is a research facility under development by the National Science Foundation to improve our understanding of and ability to forecast the impacts of climate change, land-use change, and invasive species on ecology. The infrastructure, designed to operate over 30 years or more, includes site-based flux tower and field measurements, coordinated with airborne remote sensing observations to observe key ecological processes over a broad range of temporal and spatial scales. NEON airborne data on vegetation biochemical, biophysical, and structural properties and on land use and land cover will be captured at 1 to 2 meter resolution by an imaging spectrometer, a small-footprint waveform-LiDAR and a high-resolution digital camera. Annual coverage of the 60 NEON sites and capacity to support directed research flights or respond to unexpected events will require three airborne observation platforms (AOP). The integration of field and airborne data with satellite observations and other national geospatial data for analysis, monitoring and input to ecosystem models will extend NEON observations to regions across the United States not directly sampled by the observatory. The different spatial scales and measurement methods make quantitative comparisons between remote sensing and field data, typically collected over small sample plots (e.g. New approaches to developing temporal and spatial scaling relationships between these data are necessary to enable validation of airborne and satellite remote sensing data and for incorporation of these data into continental or global scale ecological models. In addition to consideration of the methods used to collect ground-based measurements, careful calibration of the remote sensing instrumentation and an assessment of the accuracy of algorithms used to derive higher-level science data products are needed. Furthermore, long-term consistency of the data collected by all three airborne

  5. Calibration uncertainty

    DEFF Research Database (Denmark)

    Heydorn, Kaj; Anglov, Thomas

    2002-01-01

    Methods recommended by the International Standardization Organisation and Eurachem are not satisfactory for the correct estimation of calibration uncertainty. A novel approach is introduced and tested on actual calibration data for the determination of Pb by ICP-AES. The improved calibration...

  6. BATSE spectroscopy detector calibration

    Science.gov (United States)

    Band, D.; Ford, L.; Matteson, J.; Lestrade, J. P.; Teegarden, B.; Schaefer, B.; Cline, T.; Briggs, M.; Paciesas, W.; Pendleton, G.

    1992-01-01

    We describe the channel-to-energy calibration of the Spectroscopy Detectors of the Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory (GRO). These detectors consist of NaI(TI) crystals viewed by photomultiplier tubes whose output in turn is measured by a pulse height analyzer. The calibration of these detectors has been complicated by frequent gain changes and by nonlinearities specific to the BATSE detectors. Nonlinearities in the light output from the NaI crystal and in the pulse height analyzer are shifted relative to each other by changes in the gain of the photomultiplier tube. We present the analytical model which is the basis of our calibration methodology, and outline how the empirical coefficients in this approach were determined. We also describe the complications peculiar to the Spectroscopy Detectors, and how our understanding of the detectors' operation led us to a solution to these problems.

  7. Occupational exposure of healthcare and research staff to static magnetic stray fields from 1.5–7 Tesla MRI scanners is associated with reporting of transient symptoms

    Science.gov (United States)

    Schaap, Kristel; Christopher-de Vries, Yvette; Mason, Catherine K; de Vocht, Frank; Portengen, Lützen; Kromhout, Hans

    2014-01-01

    Objectives Limited data is available about incidence of acute transient symptoms associated with occupational exposure to static magnetic stray fields from MRI scanners. We aimed to assess the incidence of these symptoms among healthcare and research staff working with MRI scanners, and their association with static magnetic field exposure. Methods We performed an observational study among 361 employees of 14 clinical and research MRI facilities in The Netherlands. Each participant completed a diary during one or more work shifts inside and/or outside the MRI facility, reporting work activities and symptoms (from a list of potentially MRI-related symptoms, complemented with unrelated symptoms) experienced during a working day. We analysed 633 diaries. Exposure categories were defined by strength and type of MRI scanner, using non-MRI shifts as the reference category for statistical analysis. Non-MRI shifts originated from MRI staff who also participated on MRI days, as well as CT radiographers who never worked with MRI. Results Varying per exposure category, symptoms were reported during 16–39% of the MRI work shifts. We observed a positive association between scanner strength and reported symptoms among healthcare and research staff working with closed-bore MRI scanners of 1.5 Tesla (T) and higher (1.5 T OR=1.88; 3.0 T OR=2.14; 7.0 T OR=4.17). This finding was mainly driven by reporting of vertigo and metallic taste. Conclusions The results suggest an exposure-response association between exposure to strong static magnetic fields (and associated motion-induced time-varying magnetic fields) and reporting of transient symptoms on the same day of exposure. Trial registration number 11-032/C PMID:24714654

  8. Assessment of personal exposure from radiofrequency-electromagnetic fields in Australia and Belgium using on-body calibrated exposimeters.

    Science.gov (United States)

    Bhatt, Chhavi Raj; Thielens, Arno; Billah, Baki; Redmayne, Mary; Abramson, Michael J; Sim, Malcolm R; Vermeulen, Roel; Martens, Luc; Joseph, Wout; Benke, Geza

    2016-11-01

    The purposes of this study were: i) to demonstrate the assessment of personal exposure from various RF-EMF sources across different microenvironments in Australia and Belgium, with two on-body calibrated exposimeters, in contrast to earlier studies which employed single, non-on-body calibrated exposimeters; ii) to systematically evaluate the performance of the exposimeters using (on-body) calibration and cross-talk measurements; and iii) to compare the exposure levels measured for one site in each of several selected microenvironments in the two countries. A human subject took part in an on-body calibration of the exposimeter in an anechoic chamber. The same subject collected data on personal exposures across 38 microenvironments (19 in each country) situated in urban, suburban and rural regions. Median personal RF-EMF exposures were estimated: i) of all microenvironments, and ii) across each microenvironment, in two countries. The exposures were then compared across similar microenvironments in two countries (17 in each country). The three highest median total exposure levels were: city center (4.33V/m), residential outdoor (urban) (0.75V/m), and a park (0.75V/m) [Australia]; and a tram station (1.95V/m), city center (0.95V/m), and a park (0.90V/m) [Belgium]. The exposures across nine microenvironments in Melbourne, Australia were lower than the exposures across corresponding microenvironments in Ghent, Belgium (p<0.05). The personal exposures across urban microenvironments were higher than those for rural or suburban microenvironments. Similarly, the exposure levels across outdoor microenvironments were higher than those for indoor microenvironments. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Calibration of a small infrared sensor for measuring leaf temperature in the field: non-steady state conditions

    International Nuclear Information System (INIS)

    Graham, M.E.D.; Thurtell, G.W.; Kidd, G.E.

    1989-01-01

    A new calibration procedure and mathematical treatment is given for a small, inexpensive infrared temperature sensor originally developed by Amiro et al. (1983). With this new treatment, the sensor can be used in situations where the environmental temperature is changing (e.g. outdoors). The sensor is capable of measuring leaf temperatures to within 0.2°C, even when the sensor temperature is changing by as much as 3°C min −1

  10. Unit-specific calibration of Actigraph accelerometers in a mechanical setup - is it worth the effort? The effect on random output variation caused by technical inter-instrument variability in the laboratory and in the field

    DEFF Research Database (Denmark)

    Moeller, Niels C; Korsholm, Lars; Kristensen, Peter L

    2008-01-01

    *min-1 vs. calibrated SDbetween units = 67 counts*min-1). However, the effect of applying the derived calibration to children's and adolescents' free living physical activity data did not alter the coefficient of variation (CV) (children: CVraw = 30.2% vs. CVcalibrated = 30.4%, adolescents: CVraw = 36...... accelerometers in a mechanical setup using four different settings varying in frequencies and/or amplitudes. Calibration effect was analysed by comparing raw and calibrated data after applying unit-specific calibration factors to data obtained during quality checks in a mechanical setup and to data collected...... conditions had no apparent effect on inter-instrument variability. In all probability, the effect of technical calibration was primarily attenuated in the field by other more dominant sources of variation. However, routine technical assessments are still very important for determining the acceleration...

  11. Transient analyzer

    International Nuclear Information System (INIS)

    Muir, M.D.

    1975-01-01

    The design and design philosophy of a high performance, extremely versatile transient analyzer is described. This sub-system was designed to be controlled through the data acquisition computer system which allows hands off operation. Thus it may be placed on the experiment side of the high voltage safety break between the experimental device and the control room. This analyzer provides control features which are extremely useful for data acquisition from PPPL diagnostics. These include dynamic sample rate changing, which may be intermixed with multiple post trigger operations with variable length blocks using normal, peak to peak or integrate modes. Included in the discussion are general remarks on the advantages of adding intelligence to transient analyzers, a detailed description of the characteristics of the PPPL transient analyzer, a description of the hardware, firmware, control language and operation of the PPPL transient analyzer, and general remarks on future trends in this type of instrumentation both at PPPL and in general

  12. Collaborative Technology Assessments Of Transient Field Processing And Additive Manufacturing Technologies As Applied To Gas Turbine Components

    Energy Technology Data Exchange (ETDEWEB)

    Ludtka, Gerard Michael [ORNL; Dehoff, Ryan R [ORNL; Szabo, Attila [General Electric (GE) Power and Water; Ucok, Ibrahim [General Electric (GE) Power and Water

    2016-01-01

    ORNL partnered with GE Power & Water to investigate the effect of thermomagnetic processing on the microstructure and mechanical properties of GE Power & Water newly developed wrought Ni-Fe-Cr alloys. Exploration of the effects of high magnetic field process during heat treatment of the alloys indicated conditions where applications of magnetic fields yields significant property improvements. The alloy aged using high magnetic field processing exhibited 3 HRC higher hardness compared to the conventionally-aged alloy. The alloy annealed at 1785 F using high magnetic field processing demonstrated an average creep life 2.5 times longer than that of the conventionally heat-treated alloy. Preliminary results show that high magnetic field processing can improve the mechanical properties of Ni-Fe-Cr alloys and potentially extend the life cycle of the gas turbine components such as nozzles leading to significant energy savings.

  13. Calibration of Underwater Sound Transducers

    OpenAIRE

    H.R.S. Sastry

    1983-01-01

    The techniques of calibration of underwater sound transducers for farfield, near-field and closed environment conditions are reviewed in this paper .The design of acoustic calibration tank is mentioned. The facilities available at Naval Physical & Oceanographic Laboratory, Cochin for calibration of transducers are also listed.

  14. Rationale for a GRAVSAT-MAGSAT mission: A perspective on the problem of external/internal transient field effects

    Science.gov (United States)

    Hermance, J. F.

    1985-01-01

    The Earth's magnetic field at MAGSAT altitudes not only has contributions from the Earth's core and static magnetization in the lithosphere, but also from external electric current systems in the ionosphere and magnetosphere, along with induced electric currents flowing in the conducting earth. Hermance assessed these last two contributions; the external time-varying fields and their associated internal counter-parts which are electromagnetically induced. It is readily recognized that during periods of magnetic disturbance, external currents often contribute from 10's to 100's of nanoteslas (gammas) to observations of the Earth's field. Since static anomalies from lithospheric magnetization are of this same magnitude or less, these external source fields must be taken into account when attempting to delineate gross structural features in the crust.

  15. Extending the frequency range of free-field reciprocity calibration of measurement microphones to frequencies up to 150 kHz

    DEFF Research Database (Denmark)

    Barrera Figueroa, Salvador; Torras Rosell, Antoni; Jacobsen, Finn

    2013-01-01

    machines and failure detection in aeronautic structures require that the sensitivity of the microphone is known at frequencies up to 150 kHz. Another area of particular interest is the investigation of the perception mechanisms of ultrasound. In any of these applications, it is of fundamental importance...... to establish a well-defined traceability chain to support the measurement results. In order to extend the frequency range of free-field calibration the measurement system and measurement methods must undergo a series of changes and adaptations including the type of excitation signal, techniques for eliminating...

  16. Calculations of near-field emissions in frequency-domain into time-dependent data with arbitrary wave form transient perturbations

    Directory of Open Access Journals (Sweden)

    Y. Liu

    2012-09-01

    Full Text Available This paper is devoted on the application of the computational method for calculating the transient electromagnetic (EM near-field (NF radiated by electronic structures from the frequency-dependent data for the arbitrary wave form perturbations i(t. The method proposed is based on the fast Fourier transform (FFT. The different steps illustrating the principle of the method is described. It is composed of three successive steps: the synchronization of the input excitation spectrum I(f and the given frequency data H0(f, the convolution of the two inputs data and then, the determination of the time-domain emissions H(t. The feasibility of the method is verified with standard EM 3D simulations. In addition to this method, an extraction technique of the time-dependent z-transversal EM NF component Xz(t from the frequency-dependent x- and y- longitudinal components Hx(f and Hy(f is also presented. This technique is based on the conjugation of the plane wave spectrum (PWS transform and FFT. The feasibility of the method is verified with a set of dipole radiations. The method introduced in this paper is particularly useful for the investigation of time-domain emissions for EMC applications by considering transient EM interferences (EMIs.

  17. Quantum state-resolved probing of strong-field-ionized xenon atoms using femtosecond high-order harmonic transient absorption spectroscopy.

    Science.gov (United States)

    Loh, Zhi-Heng; Khalil, Munira; Correa, Raoul E; Santra, Robin; Buth, Christian; Leone, Stephen R

    2007-04-06

    Femtosecond high-order harmonic transient absorption spectroscopy is used to resolve the complete |j,m quantum state distribution of Xe+ produced by optical strong-field ionization of Xe atoms at 800 nm. Probing at the Xe N4/5 edge yields a population distribution rhoj,|m| of rho3/2,1/2ratiorho1/2,1/2ratiorho3/2,3/2=75+/-6 :12+/-3 :13+/-6%. The result is compared to a tunnel ionization calculation with the inclusion of spin-orbit coupling, revealing nonadiabatic ionization behavior. The sub-50-fs time resolution paves the way for tabletop extreme ultraviolet absorption probing of ultrafast dynamics.

  18. Effect of supply voltage and body-biasing on single-event transient pulse quenching in bulk fin field-effect-transistor process

    International Nuclear Information System (INIS)

    Yu Jun-Ting; Chen Shu-Ming; Chen Jian-Jun; Huang Peng-Cheng; Song Rui-Qiang

    2016-01-01

    Charge sharing is becoming an important topic as the feature size scales down in fin field-effect-transistor (FinFET) technology. However, the studies of charge sharing induced single-event transient (SET) pulse quenching with bulk FinFET are reported seldomly. Using three-dimensional technology computer aided design (3DTCAD) mixed-mode simulations, the effects of supply voltage and body-biasing on SET pulse quenching are investigated for the first time in bulk FinFET process. Research results indicate that due to an enhanced charge sharing effect, the propagating SET pulse width decreases with reducing supply voltage. Moreover, compared with reverse body-biasing (RBB), the circuit with forward body-biasing (FBB) is vulnerable to charge sharing and can effectively mitigate the propagating SET pulse width up to 53% at least. This can provide guidance for radiation-hardened bulk FinFET technology especially in low power and high performance applications. (paper)

  19. TECHNICAL BASIS DOCUMENT OF MARSSIM FIELD CALIBRATION FOR QUANTIFICATION OF CS-137 VOLUMETRICALLY CONTAMINATED SOILS IN THE BC CONTROLLED AREA USING 2 BY 2 SODIUM IODIDE DETECTORS

    Energy Technology Data Exchange (ETDEWEB)

    PAPPIN JL

    2007-10-26

    The purpose of this paper is to provide the Technical Basis and Documentation for Field Calibrations of radiation measurement equipment for use in the MARSSIM Seeping Surveys of the BC Controlled Area (BCCA). The Be Controlled Area is bounded on tt1e north by (but does not include) the BCCribs & Trenches and is bounded on the south by Army Loop Road. Parts of the BC Controlled Area are posted as a Contamination Area and the remainder is posted as a Soil Contamination Area. The area is approximately 13 square miles and divided into three zones (Zone A , Zone B. and Zone C). A map from reference 1 which shows the 3 zones is attached. The MARSSIM Scoping Surveys are intended 10 better identify the boundaries of the three zones based on the volumetric (pCi/g) contamination levels in the soil. The MARSSIM Field Calibration. reference 2. of radiation survey instrumentation will determine the Minimum Detectable Concentration (MDC) and an algorithm for converting counts to pCi/g. The instrumentation and corresponding results are not intended for occupational radiation protection decisions or for the release of property per DOE Order 5400.5.

  20. Transient analysis of electromagnetic wave interactions on high-contrast scatterers using volume electric field integral equation

    KAUST Repository

    Sayed, Sadeed Bin

    2014-07-01

    A marching on-in-time (MOT)-based time domain volume electric field integral equation (TD-VEFIE) solver is proposed for accurate and stable analysis of electromagnetic wave interactions on high-contrast scatterers. The stability is achieved using band-limited but two-sided (non-causal) temporal interpolation functions and an extrapolation scheme to cast the time marching into a causal form. The extrapolation scheme is designed to be highly accurate for oscillating and exponentially decaying fields, hence it accurately captures the physical behavior of the resonant modes that are excited inside the dielectric scatterer. Numerical results demonstrate that the resulting MOT scheme maintains its stability as the number of resonant modes increases with the contrast of the scatterer.

  1. The FIELDS Instrument Suite for Solar Probe Plus Measuring the Coronal Plasma and Magnetic Field, Plasma Waves and Turbulence, and Radio Signatures of Solar Transients

    Science.gov (United States)

    Bale, S. D.; Goetz, K.; Harvey, P. R.; Turin, P.; Bonnell, J. W.; Dudok de Wit, T.; Ergun, R. E.; MacDowall, R. J.; Pulupa, M.; Choi, M. K.; hide

    2016-01-01

    NASA's Solar Probe Plus (SPP) mission will make the first in situ measurements of the solar corona and the birthplace of the solar wind. The FIELDS instrument suite on SPP will make direct measurements of electric and magnetic fields, the properties of in situ plasma waves, electron density and temperature profiles, and interplanetary radio emissions, amongst other things. Here, we describe the scientific objectives targeted by the SPP/FIELDS instrument, the instrument design itself, and the instrument concept of operations and planned data products.

  2. EPR spectroscopy of MRI-related Gd(III) complexes: simultaneous analysis of multiple frequency and temperature spectra, including static and transient crystal field effects.

    Science.gov (United States)

    Rast, S; Borel, A; Helm, L; Belorizky, E; Fries, P H; Merbach, A E

    2001-03-21

    For the first time, a very general theoretical method is proposed to interpret the full electron paramagnetic resonance (EPR) spectra at multiple temperatures and frequencies in the important case of S-state metal ions complexed in liquid solution. This method is illustrated by a careful analysis of the measured spectra of two Gd3+ (S = 7/2) complexes. It is shown that the electronic relaxation mechanisms at the origin of the EPR line shape arise from the combined effects of the modulation of the static crystal field by the random Brownian rotation of the complex and of the transient zero-field splitting. A detailed study of the static crystal field mechanism shows that, contrarily to the usual global models involving only second-order terms, the fourth and sixth order terms can play a non-negligible role. The obtained parameters are well interpreted in the framework of the physics of the various underlying relaxation processes. A better understanding of these mechanisms is highly valuable since they partly control the efficiency of paramagnetic metal ions in contrast agents for medical magnetic resonance imaging (MRI).

  3. Influence of natural convection on microstructure evolution during the initial solidification transient: comparison of phase-field modeling with in situ synchrotron X-ray monitoring data

    International Nuclear Information System (INIS)

    The influence of natural convection on the evolution of the solid-liquid (s/l) interface during the initial transient of upward directional solidification was studied on Al-4 wt.% Cu alloy by coupling the two dimensional quantitative phase-field model with the Navier-Stokes equations. The simulations were compared with in situ and real-time synchrotron X-ray monitoring data. The origin of natural convection in experiment was the presence of a small unavoidable horizontal temperature gradient. Due to the stringent requirement on the phase-field interface width parameters, the simulated domain could not be chosen as large as the size of the experimental sample. As the calculated fluid flow strength would be weakened by using a smaller domain, a horizontal temperature gradient ten times larger than the estimated experimental value was applied in simulation to recover a fluid flow washing the s/l interface similarly to experiments. Direct comparison to experimental measurements demonstrated that the phase-field simulations with convection qualitatively reproduced the evolution of all the characteristic parameters measured in experiments. Based on these results, the effects of natural convection on the growth dynamics of the s/l interface during directional solidification of alloy were further clarified.

  4. Excitation of transient lobe cell convection and auroral arc at the cusp poleward boundary during a transition of the interplanetary magnetic field from south to north

    Directory of Open Access Journals (Sweden)

    P. E. Sandholt

    2001-05-01

    Full Text Available We document the activation of transient polar arcs emanating from the cusp within a 15 min long intermediate phase during the transition from a standard two-cell convection pattern, representative of a strongly southward interplanetary magnetic field (IMF, to a "reverse" two-cell pattern, representative of strongly northward IMF conditions. During the 2–3 min lifetime of the arc, its base in the cusp, appearing as a bright spot, moved eastward toward noon by ~ 300 km. As the arc moved, it left in its "wake" enhanced cusp precipitation. The polar arc is a tracer of the activation of a lobe convection cell with clockwise vorticity, intruding into the previously established large-scale distorted two-cell pattern, due to an episode of localized lobe reconnection. The lobe cell gives rise to strong flow shear (converging electric field and an associated sheet of outflowing field-aligned current, which is manifested by the polar arc. The enhanced cusp precipitation represents, in our view, the ionospheric footprint of the lobe reconnection process.Key words. Magnetospheric physics (auroral phenomena; magnetopause, cusp, and boundary layers; plasma convection

  5. A hybrid DGTD scheme for transient analysis of electromagnetic field interactions on microwave systems loaded with thin wires

    KAUST Repository

    Li, Ping

    2015-10-15

    Use of the discontinuous Galerkin time-domain (DGTD) method for analyzing electromagnetic field interactions on microwave structures loaded with thin wires has been very limited despite its well-known advantages. Direct application of the three dimensional (3D) DGTD method to such structures calls for very fine volumetric discretizations in the proximity of the thin wires. In this work, to avoid this possible source of computational inefficiency, electromagnetic field interactions on thin wires and the rest of the structures are modeled separately using the modified telegrapher and Maxwell equations, respectively. Then, 1D and 3D DGTD methods are used to discretize them. The coupling between the two resulting matrix systems is realized by introducing equivalent source terms in each equation set. A weighted electric field obtained from the 3D discretization around the wire is introduced as a voltage source in the telegrapher equations. A volume current density obtained from the 1D discretization on the wire is introduced as a current source in the Ampere law equation. © 2015 IEEE.

  6. SU-E-I-22: Dependence On Calibration Phantom and Field Area of the Conversion Factor Used to Calculate Skin Dose During Neuro-Interventional Fluoroscopic Procedures

    International Nuclear Information System (INIS)

    Rana, V K; Vijayan, S; Rudin, S R; Bednarek, D R

    2014-01-01

    Purpose: To determine the appropriate calibration factor to use when calculating skin dose with our real-time dose-tracking system (DTS) during neuro-interventional fluoroscopic procedures by evaluating the difference in backscatter from different phantoms and as a function of entrance-skin field area. Methods: We developed a dose-tracking system to calculate and graphically display the cumulative skin-dose distribution in real time. To calibrate the DTS for neuro-interventional procedures, a phantom is needed that closely approximates the scattering properties of the head. We compared the x-ray backscatter from eight phantoms: 20-cm-thick solid water, 16-cm diameter water-filled container, 16-cm CTDI phantom, modified-ANSI head phantom, 20-cm-thick PMMA, Kyoto-Kagaku PBU- 50 head, Phantom-Labs SK-150 head, and RSD RS-240T head. The phantoms were placed on the patient table with the entrance surface at 15 cm tube-side from the isocenter of a Toshiba Infinix C-arm, and the entrance-skin exposure was measured with a calibrated 6-cc PTW ionization chamber. The measurement included primary radiation, backscatter from the phantom and forward scatter from the table and pad. The variation in entrance-skin exposure was also measured as a function of the skin-entrance area for a 30x30 cm by 20-cm-thick PMMA phantom and the SK-150 head phantom using four different added beam filters. Results: The entranceskin exposure values measured for eight different phantoms differed by up to 12%, while the ratio of entrance exposure of all phantoms relative to solid water showed less than 3% variation with kVp. The change in entrance-skin exposure with entrance-skin area was found to differ for the SK-150 head compared to the 20-cm PMMA phantom and the variation with field area was dependent on the added beam filtration. Conclusion: To accurately calculate skin dose for neuro-interventional procedures with the DTS, the phantom for calibration should be carefully chosen since different

  7. Use of a Parallel Plate Transmission Line to Calibrate a Fiber-Optic Coupled Magnetic Field Sensor.

    Science.gov (United States)

    1980-01-01

    field of the transmission line was IN*eu APACHE RPG4?MP9n s H&&..5 AM .&& D of TMa monitored with an EG&G D-dot sensor (HSD-2A) Pdawm&PmI...m/mV) = H = field in which sensor/ trasmitter is immesed. 1.37 A/m, which is 11 percent greater than calculated. Since the transfer impedance of the

  8. In-field Calibration of a Fast Neutron Collar for the Measurement of Fresh PWR Fuel Assemblies

    International Nuclear Information System (INIS)

    Swinhoe, Martyn Thomas; De Baere, Paul

    2015-01-01

    A new neutron collar has been designed for the measurement of fresh LEU fuel assemblies. This collar uses ''fast mode'' measurement to reduce the effect of burnable poison rods on the assay and thus reduce the dependence on the operator's declaration. The new collar design reduces effect of poison rods considerably. Instead of 12 pins of 5.2% Gd causing a 20.4% effect, as in the standard thermal mode collar, they only cause a 3.2% effect in the new collar. However it has higher efficiency so that reasonably precise measurements can be made in 25 minutes, rather than the 1 hour of previous collars. The new collar is fully compatible with the use of the standard data collection and analysis code INCC. This report describes the calibration that was made with a mock-up assembly at Los Alamos National Laboratory and with actual assemblies at the AREVA Fuel fabrication Plant in Lingen, Germany.

  9. High precision, continuous measurements of water vapor isotopes using a field deployable analyzer with a novel automated calibration system to facilitate ecohydrological studies

    Science.gov (United States)

    Gupta, P.; Crosson, E.; Richman, B. A.; Apodaca, R. L.; Green, I.

    2009-12-01

    The use of stable isotopic analysis techniques has proved quite valuable in establishing links between ecology and hydrology. We present an alternative and novel approach to isotope ratio mass spectrometry (IRMS) for making high-precision D/H and 18O/16O isotope ratio measurements of water vapor at a field site using wavelength-scanned cavity ring-down spectroscopy (WS-CRDS) based technology. This WS-CRDS analyzer allows continuous real-time measurements of water vapor with automated periodic calibration using liquid standards, needing no human intervention for weeks during deployment. The new automated calibration system, designed specifically for field deployment, uses syringe pumps and is robust, consistent and reliable. The advanced temperature and pressure control within the analyzer are some of the key design features that allow high precision (0.2‰ for δ18O and 1.0‰ for δD) performance at extremely low drift (water vapor analyzer, a field trial was conducted where the common isotopologues of water vapor were measured at a local ecological site over a period of a few days. The resulting high resolution data gives us the ability to understand the impact of meteorology and plant physiology on the isotopic composition of water vapor in ambient air. Such measurements of water vapor, when combined with measurements of the isotopic composition of liquid water in plants, soil water and local water bodies, will close the eco-hydrological loop of any region. The ability of the WS-CRDS analyzer to make continuous, real-time measurements with a resolution on the order of a few seconds will aid in understanding the complex interdependencies between ecological and hydrological processes and will provide critical information in refining existing models of water transport in ecosystems. These studies are critical to understanding the impact of global climate change on landscapes.

  10. A three-field model of transient 3D multiphase, three-component flow for the computer code IV A3. Pt. 1

    International Nuclear Information System (INIS)

    Kolev, N.I.

    1991-12-01

    This work contains description of the physical and mathematical basis on which the IVA3 computer code relies. After describing the state of the art of the 3D modeling for transient multiphase flows, the model assumptions and the modeling technique used in IVA3 are described. Starting with the principles of conservation of mass, momentum, and energy, the non averaged conservation equations are derived for each of the velocity fields which consist of different isothermal components. Thereafter averaging is applied and the working form of the system of 21 partial differential equations is derived. Special attention is paid to the strict consistence of the modeling technique used in IVA3 with the second principle of thermodynamics. The entropy concept used is derived starting with the unaveraged conservation equations and subsequent averaging. The source terms of the entropy production are carefully defined and the final form of the averaged entropy equation is given ready for direct practical applications. The idea of strong analytical thermodynamic coupling between pressure field and changes of the other thermodynamic properties, which is used for the first time in 3D multi fluid modeling, is presented in detail. After obtaining the working form of the conservation equations, the discretization procedure and the reduction to algebraic problems is presented. The mathematical solution method together with some information about the architecture of IVA3 including the local momentum decoupling and accuracy control is presented too. (orig./GL) [de

  11. Ligand-field symmetry effects in Fe(ii) polypyridyl compounds probed by transient X-ray absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Hana; Strader, Matthew L.; Hong, Kiryong; Jamula, Lindsey; Gullikson, Eric M.; Kim, Tae Kyu; de Groot, Frank M. F.; McCusker, James K.; Schoenlein, Robert W.; Huse, Nils

    2012-01-01

    Ultrafast excited-state evolution in polypyridyl FeII complexes are of fundamental interest for understanding the origins of the sub-ps spin-state changes that occur upon photoexcitation of this class of compounds as well as for the potential impact such ultrafast dynamics have on incorporation of these compounds in solar energy conversion schemes or switchable optical storage technologies. We have demonstrated that ground-state and, more importantly, ultrafast time-resolved x-ray absorption methods can offer unique insights into the interplay between electronic and geometric structure that underpin the photo-induced dynamics of this class of compounds. The present contribution examines in greater detail how the symmetry of the ligand field surrounding the metal ion can be probed using these x-ray techniques. In particular, we show that steady-state K-edge spectroscopy of the nearest-neighbour nitrogen atoms reveals the characteristic chemical environment of the respective ligands and suggests an interesting target for future charge-transfer femtosecond and attosecond spectroscopy in the x-ray water window.

  12. Importance of material matching in the calibration of asymmetric flow field-flow fractionation: material specificity and nanoparticle surface coating effects on retention time

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Haiou [U.S. Food and Drug Administration, Office of Regulatory Affairs, Arkansas Regional Laboratory (United States); Quevedo, Ivan R. [Universidad Iberoamericana, Departamento de Ingeniería y Ciencias Químicas (Mexico); Linder, Sean W.; Fong, Andrew; Mudalige, Thilak K., E-mail: Thilak.Mudalige@fda.hhs.gov [U.S. Food and Drug Administration, Office of Regulatory Affairs, Arkansas Regional Laboratory (United States)

    2016-10-15

    Asymmetric flow field-flow fractionation (AF4) coupled with dynamic light scattering or multiangle light scattering detectors is a promising technique for the size-based separation of colloidal particles (nano- and submicron scale) and the online determination of the particle size of the separated fractions in aqueous suspensions. In most cases, the applications of these detectors are problematic due to the material-specific properties of the analyte that results in erroneous calculations, and as an alternative, different nanoparticle size standards are required to properly calibrate the size-based retention in AF4. The availability of nanoparticle size standards in different materials is limited, and this deviation from ideal conditions of retention is mainly due to material-specific and particle coating-specific membrane–particle interactions. Here, we present an experimental method on the applicability of polystyrene nanoparticles (PS NP) as standard for AF4 calibration and compare with gold nanoparticle (Au NP) standards having different nominal sizes and surface functionalities.

  13. Spectral light absorption by ambient aerosols influenced by biomass burning in the Amazon Basin. I: Comparison and field calibration of absorption measurement techniques

    Directory of Open Access Journals (Sweden)

    O. Schmid

    2006-01-01

    Full Text Available Spectral aerosol light absorption is an important parameter for the assessment of the radiation budget of the atmosphere. Although on-line measurement techniques for aerosol light absorption, such as the Aethalometer and the Particle Soot Absorption Photometer (PSAP, have been available for two decades, they are limited in accuracy and spectral resolution because of the need to deposit the aerosol on a filter substrate before measurement. Recently, a 7-wavelength (λ Aethalometer became commercially available, which covers the visible (VIS to near-infrared (NIR spectral range (λ=450–950 nm, and laboratory calibration studies improved the degree of confidence in these measurement techniques. However, the applicability of the laboratory calibration factors to ambient conditions has not been investigated thoroughly yet. As part of the LBA-SMOCC (Large scale Biosphere atmosphere experiment in Amazonia – SMOke aerosols, Clouds, rainfall and Climate campaign from September to November 2002 in the Amazon basin we performed an extensive field calibration of a 1-λ PSAP and a 7-λ Aethalometer utilizing a photoacoustic spectrometer (PAS, 532 nm as reference device. Especially during the dry period of the campaign, the aerosol population was dominated by pyrogenic emissions. The most pronounced artifact of integrating-plate type attenuation techniques (e.g. Aethalometer, PSAP is due to multiple scattering effects within the filter matrix. For the PSAP, we essentially confirmed the laboratory calibration factor by Bond et al. (1999. On the other hand, for the Aethalometer we found a multiple scattering enhancement of 5.23 (or 4.55, if corrected for aerosol scattering, which is significantly larger than the factors previously reported (~2 for laboratory calibrations. While the exact reason for this discrepancy is unknown, the available data from the present and previous studies suggest aerosol mixing (internal versus external as a likely cause. For

  14. SparsePak: A Formatted Fiber Field Unit for the WIYN Telescope Bench Spectrograph. I. Design, Construction, and Calibration

    NARCIS (Netherlands)

    Bershady, Matthew A.; Andersen, David R.; Harker, Justin; Ramsey, Larry W.; Verheijen, Marc A. W.

    2004-01-01

    We describe the design and construction of a formatted fiber field unit, SparsePak, and characterize its optical and astrometric performance. This array is optimized for spectroscopy of low surface brightness extended sources in the visible and near-infrared. SparsePak contains 82, 4.7" fibers

  15. Alternative ways of using field-based estimates to calibrate ecosystem models and their implications for ecosystem carbon cycle studies

    Science.gov (United States)

    Y. He; Q. Zhuang; A.D. McGuire; Y. Liu; M. Chen

    2013-01-01

    Model-data fusion is a process in which field observations are used to constrain model parameters. How observations are used to constrain parameters has a direct impact on the carbon cycle dynamics simulated by ecosystem models. In this study, we present an evaluation of several options for the use of observations inmodeling regional carbon dynamics and explore the...

  16. Using targeted short-term field investigations to calibrate and evaluate the structure of a hydrological model

    CSIR Research Space (South Africa)

    Hughes, DA

    2013-02-01

    Full Text Available This study combines the application of a hydrological model with the use of field data derived from short period measurement campaigns at two sites, one a low topography forested area and the other a steep grassland catchment. The main objective...

  17. Site Calibration

    DEFF Research Database (Denmark)

    Kock, Carsten Weber; Vesth, Allan

    This Site Calibration report is describing the results of a measured site calibration for a site in Denmark. The calibration is carried out by DTU Wind Energy in accordance with Ref.[3] and Ref.[4]. The measurement period is given. The site calibration is carried out before a power performance...... measurement on a given turbine to clarify the influence from the terrain on the ratio between the wind speed at the center of the turbine hub and at the met mast. The wind speed at the turbine is measured by a temporary mast placed at the foundation for the turbine. The site and measurement equipment...... is detailed described in [1] and [2]. All parts of the sensors and the measurement system have been installed by DTU Wind Energy....

  18. 2D EPID dose calibration for pretreatment quality control of conformal and IMRT fields: A simple and fast convolution approach.

    Science.gov (United States)

    Camilleri, Jérémy; Mazurier, Jocelyne; Franck, Denis; Dudouet, Philippe; Latorzeff, Igor; Franceries, Xavier

    2016-01-01

    This work presents an original algorithm that converts the signal of an electronic portal imaging device (EPID) into absorbed dose in water at the depth of maximum. The model includes a first image pre-processing step that accounts for the non-uniformity of the detector response but also for the perturbation of the signal due to backscatter radiation. Secondly, the image is converted into absorbed dose to water through a linear conversion function associated with a dose redistribution kernel. These two computation parameters were modelled by correlating the on-axis EPID signal with absorbed dose measurements obtained on square fields by using an ionization chamber placed in water at the depth of maximum dose. The accuracy of the algorithm was assessed by comparing the dose determined from the EPID signal with the dose derived by the treatment planning system (TPS) using the ϒ-index. These comparisons were performed on 8 conformal radiotherapy treatment fields (3DCRT) and 18 modulated fields (IMRT). For a dose difference and a distance-to-agreement set to 3% of the maximum dose and 2 mm respectively, the mean percentage of points with a ϒ-value less than or equal to 1 was 99.8% ± 0.1% for 3DCRT fields and 96.8% ± 2.7% for IMRT fields. Moreover, the mean gamma values were always less than 0.5 whatever the treatment technique. These results confirm that our algorithm is an accurate and suitable tool for clinical use in a context of IMRT quality assurance programmes. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  19. How hand-held computers assist facilities with field instrument source and calibration checking to meet the intent of 10 CFR 20 and 10 CFR 835 regulations

    International Nuclear Information System (INIS)

    Bailey, W.H.

    1994-01-01

    This paper describes an advanced computer application that utilizes PCs, hand-held computers and bar codes to collect field instrument source and calibration data. The application was developed in conjunction with 10 CFR 20 and 10 CFR 835 requirements regarding routine instrument operational checking. An advanced programming technique was incorporated which allows the user to create a sequence of specific procedures for each type of instrument. The system can manage a large number of instruments, regardless of the manufacture. These procedures are then downloaded to Intermec 9445 or the powerful Janus 2020 model hand-held computers with built-in bar code laser scanners. The instrument checking application was developed using C++ for Windows, which provides ease of use when compiling procedures. The paper describes, in detail, how the instrument checking application operates

  20. Uncertainty-based calibration and prediction with a stormwater surface accumulation-washoff model based on coverage of sampled Zn, Cu, Pb and Cd field data

    DEFF Research Database (Denmark)

    Lindblom, Erik Ulfson; Ahlman, S.; Mikkelsen, Peter Steen

    2011-01-01

    95% model prediction bounds. A positive correlation between the dry deposition and the dry (wind) removal rates was revealed as well as a negative correlation between the wet removal (wash-off) rate and the ratio between the dry deposition and wind removal rates, which determines the maximum pool......A dynamic conceptual and lumped accumulation wash-off model (SEWSYS) is uncertainty-calibrated with Zn, Cu, Pb and Cd field data from an intensive, detailed monitoring campaign. We use the generalized linear uncertainty estimation (GLUE) technique in combination with the Metropolis algorithm, which...... allows identifying a range of behavioral model parameter sets. The small catchment size and nearness of the rain gauge justified excluding the hydrological model parameters from the uncertainty assessment. Uniform, closed prior distributions were heuristically specified for the dry and wet removal...

  1. INCLUDING GAUGE SYMMETRY IN THE LOCALIZATION MECHANISM OF MASSIVE VECTOR FIELDS // INCLUYENDO SIMETRÍA DE CALIBRE EN EL MECANISMO DE LOCALIZACIÓN DE CAMPOS VECTORIALES MASIVOS

    Directory of Open Access Journals (Sweden)

    Rommel Guerrero

    2013-12-01

    Full Text Available On the four-dimensional sector of an AdS5 warped geometry the standard electromagnetic interaction can be simulated by massive vector fields via the Ghoroku - Nakamura localization mechanism. We incorporate gauge symmetry to this theory by finding the required interaction terms between the vector bosons and the gravitational field of the scenario. The fourdimensional effective theory defined by a Maxwell term and a tower of Stueckelberg fields is obtained after expanding the vector fields on a massive eigenstates basis where the zero mode is uncoupled from the rest of the spectrum. The corrections generated by the massive gauge fields set to the electrostatic potential are also calculated. Keywords: Brane worlds, vector fields localization, electrostatic potential. // RESUMEN La interacción electromagnética sobre el sector cuatro-dimensional de una geometría AdS5 warped puede ser simulada por campos vectoriales masivos a través del mecanismo de localización de Ghoroku - Nakamura. En este trabajo incorporamos simetría de calibre a esta teoría hallando los términos de interacción requeridos entre los bosones vectoriales y el campo gravitacional del escenario. Se presenta la teoría efectiva cuatro-dimensional obtenida luego de expandir los campos vectoriales en una base de autofunciones masiva, donde el modo cero se encuentra desacoplado del resto del espectro y en correspondencia con un término de Maxwell mientras que los estados masivos generan una torre de campos de Stueckelberg. Las correcciones al potencial electrostático inducidas por el espectro de campos masivo también son determinadas.

  2. Spatial and Temporal Gravity Data Used for Hydrological Model Calibration: Field Study of a Recharge Event in the Okavango Delta, Botswana

    Science.gov (United States)

    Christiansen, L.; Binning, P. J.; Andersen, O. B.; Bauer-Gottwein, P.

    2009-04-01

    Hydrological models are traditionally calibrated using point data from e.g. piezometers, discharge stations and infiltrometers, which characterize water levels and water flows in the modeled system. Changes in total water storage in the ground is often not well constrained by this type of data because it depends on the drainable porosity (specific yield) of the aquifer. Time-lapse micro-gravimetry can detect changes in water mass (volume) in the ground and can thus help constrain the mass balance in a groundwater model, potentially leading to better estimates of e.g. specific yield and hydraulic river bed conductance. Field test have so far been limited, but with the emergence of better gravimeters over the past years, the interest in hydro-gravimetry is growing. The Okavango Delta, Botswana, has an annual flood cycle resulting in large (two meters or more) variations in groundwater table along the peripheral rivers of the wetland. Combined with a generally sandy soil, this provides good conditions for field tests of hydro-gravimetry. During the flooding of a previously dry river bed in July - August 2008, shallow groundwater wells along two transects were monitored and relative micro-gravity data collected with at temporal and spatial distribution using a Scintrex CG-5 relative gravimeter. Changes in gravity of up to 30μGal were observed with uncertainties down to 4μGal. The traditional approach of considering the groundwater as a horizontal slab fails to give consistent values for specific yield. A MODFLOW groundwater model for the site is build and calibrated, using both water level and gravity data. To facilitate this, a forward gravity code has been developed in the HYDROGRAV research group which calculates the gravity response from a modeled change in groundwater level. We see that the inclusion of gravity data significantly decreases parameter uncertainty. Moreover, we assess to what extent gravity data can substitute the more expensive drilling of

  3. Characterisation of the IRSN CANEL/T400 facility producing realistic neutron fields for calibration and test purposes

    International Nuclear Information System (INIS)

    Gressier, V.; Lacoste, V.; Lebreton, L.; Muller, H.; Pelcot, G.; Bakali, M.; Fernandez, F.; Tomas, M.; Roberts, N. J.; Thomas, D. J.; Reginatto, M.; Wiegel, B.; Wittstock, J.

    2004-01-01

    The new CANEL/T400 facility has been set-up at the Inst. for Radiological Protection and Nuclear Safety (IRSN) to produce a realistic neutron field. The accurate characterisation of this neutron field is mandatory since this facility will be used as a reference neutron source. For this reason an international measuring campaign, involving four laboratories with extensive expertise in neutron metrology and spectrometry, was organised through a concerted EUROMET project. Measurements were performed with Bonner sphere (BS) systems to determine the energy distribution of the emitted neutrons over the whole energy range (from thermal energy up to a few MeV). Additional measurements were performed with proton recoil detectors to provide detailed information in the energy region above 90 keV. The results obtained by the four laboratories are in agreement with each other and are compared with a calculation performed with the MCNP4C Monte-Carlo code. As a conclusion of this exercise, a reliable characterisation of the CANEL/T400 neutron field is obtained. (authors)

  4. A study of transient variations in the Earth's electromagnetic field at equatorial electrojet latitudes in western Africa (Mali and the Ivory Coast

    Directory of Open Access Journals (Sweden)

    J. Vassal

    1998-06-01

    Full Text Available In the framework of the French-Ivorian participation to the IEEY, a network of 10 electromagnetic stations were installed at African longitudes. The aim of this experiment was twofold: firstly, to study the magnetic signature of the equatorial electrojet on the one hand, and secondly, to characterize the induced electric field variations on the other hand. The first results of the magnetic field investigations were presented by Doumouya and coworkers. Those of the electric field experiment will be discussed in this study. The electromagnetic experiment will be described. The analysis of the electromagnetic transient variations was conducted in accordance with the classical distinction between quiet and disturbed magnetic situations. A morphological analysis of the recordings is given, taking into consideration successively quiet and disturbed magnetic situations, with the results interpreted in terms of the characterization of external and internal sources. Particular attention was paid to the effects of the source characteristics on the induced field of internal origin, and to the bias they may consequently cause to the results of electromagnetic probing of the Earth; the source effect in electromagnetic induction studies. During quiet magnetic situations, our results demonstrated the existence of two different sources. One of these, the SRE source, was responsible for most of the magnetic diurnal variation and corresponded to the well-known magnetic signature of the equatorial electrojet. The other source (the SR*E source was responsible for most of the electric diurnal variation, and was also likely to be an ionospheric source. Electric and magnetic diurnal variations are therefore related to different ionospheric sources, and interpreting the electric diurnal variation as induced by the magnetic field diurnal variation is not relevant. Furthermore, the magnetotelluric probing of the upper mantle at dip equator latitudes with the

  5. A study of transient variations in the Earth's electromagnetic field at equatorial electrojet latitudes in western Africa (Mali and the Ivory Coast

    Directory of Open Access Journals (Sweden)

    J. Vassal

    Full Text Available In the framework of the French-Ivorian participation to the IEEY, a network of 10 electromagnetic stations were installed at African longitudes. The aim of this experiment was twofold: firstly, to study the magnetic signature of the equatorial electrojet on the one hand, and secondly, to characterize the induced electric field variations on the other hand. The first results of the magnetic field investigations were presented by Doumouya and coworkers. Those of the electric field experiment will be discussed in this study. The electromagnetic experiment will be described. The analysis of the electromagnetic transient variations was conducted in accordance with the classical distinction between quiet and disturbed magnetic situations. A morphological analysis of the recordings is given, taking into consideration successively quiet and disturbed magnetic situations, with the results interpreted in terms of the characterization of external and internal sources. Particular attention was paid to the effects of the source characteristics on the induced field of internal origin, and to the bias they may consequently cause to the results of electromagnetic probing of the Earth; the source effect in electromagnetic induction studies. During quiet magnetic situations, our results demonstrated the existence of two different sources. One of these, the SRE source, was responsible for most of the magnetic diurnal variation and corresponded to the well-known magnetic signature of the equatorial electrojet. The other source (the SR*E source was responsible for most of the electric diurnal variation, and was also likely to be an ionospheric source. Electric and magnetic diurnal variations are therefore related to different ionospheric sources, and interpreting the electric diurnal variation as induced by the magnetic field diurnal variation is not relevant. Furthermore, the magnetotelluric probing of the upper mantle at

  6. Cross-Calibrating Sunspot Magnetic Field Strength Measurements from the McMath-Pierce Solar Telescope and the Dunn Solar Telescope

    Science.gov (United States)

    Watson, Fraser T.; Beck, Christian; Penn, Matthew J.; Tritschler, Alexandra; Pillet, Valentín Martinez; Livingston, William C.

    2015-11-01

    In this article we describe a recent effort to cross-calibrate data from an infrared detector at the McMath-Pierce Solar Telescope and the Facility InfraRed Spectropolarimeter (FIRS) at the Dunn Solar Telescope. A synoptic observation program at the McMath-Pierce has measured umbral magnetic field strengths since 1998, and this data set has recently been compared with umbral magnetic field observations from SOHO/MDI and SDO/HMI. To further improve on the data from McMath-Pierce, we compared the data with measurements taken at the Dunn Solar Telescope with far greater spectral resolution than has been possible with space instrumentation. To minimise potential disruption to the study, concurrent umbral measurements were made so that the relationship between the two datasets can be most accurately characterised. We find that there is a strong agreement between the umbral magnetic field strengths recorded by each instrument, and we reduced the FIRS data in two different ways to successfully test this correlation further.

  7. Transient magnetoviscosity of dilute ferrofluids

    International Nuclear Information System (INIS)

    Soto-Aquino, Denisse; Rinaldi, Carlos

    2011-01-01

    The magnetic field induced change in the viscosity of a ferrofluid, commonly known as the magnetoviscous effect and parameterized through the magnetoviscosity, is one of the most interesting and practically relevant aspects of ferrofluid phenomena. Although the steady state behavior of ferrofluids under conditions of applied constant magnetic fields has received considerable attention, comparatively little attention has been given to the transient response of the magnetoviscosity to changes in the applied magnetic field or rate of shear deformation. Such transient response can provide further insight into the dynamics of ferrofluids and find practical application in the design of devices that take advantage of the magnetoviscous effect and inevitably must deal with changes in the applied magnetic field and deformation. In this contribution Brownian dynamics simulations and a simple model based on the ferrohydrodynamics equations are applied to explore the dependence of the transient magnetoviscosity for two cases: (I) a ferrofluid in a constant shear flow wherein the magnetic field is suddenly turned on, and (II) a ferrofluid in a constant magnetic field wherein the shear flow is suddenly started. Both simulations and analysis show that the transient approach to a steady state magnetoviscosity can be either monotonic or oscillatory depending on the relative magnitudes of the applied magnetic field and shear rate. - Research Highlights: →Rotational Brownian dynamics simulations were used to study the transient behavior of the magnetoviscosity of ferrofluids. →Damped and oscillatory approach to steady state magnetoviscosity was observed for step changes in shear rate and magnetic field. →A model based on the ferrohydrodynamics equations qualitatively captured the damped and oscillatory features of the transient response →The transient behavior is due to the interplay of hydrodynamic, magnetic, and Brownian torques on the suspended particles.

  8. Gamma ray calibration system

    International Nuclear Information System (INIS)

    Rosauer, P.J.; Flaherty, J.J.

    1981-01-01

    This invention is in the field of gamma ray inspection devices for tubular products and the like employing an improved calibrating block which prevents the sensing system from being overloaded when no tubular product is present, and also provides the operator with a means for visually detecting the presence of wall thicknesses which are less than a required minimum. (author)

  9. Molecular dynamics simulation for the test of calibrated OPLS-AA force field for binary liquid mixture of tri-iso-amyl phosphate and n-dodecane

    Science.gov (United States)

    Das, Arya; Ali, Sk. Musharaf

    2018-02-01

    Tri-isoamyl phosphate (TiAP) has been proposed to be an alternative for tri-butyl phosphate (TBP) in the Plutonium Uranium Extraction (PUREX) process. Recently, we have successfully calibrated and tested all-atom optimized potentials for liquid simulations using Mulliken partial charges for pure TiAP, TBP, and dodecane by performing molecular dynamics (MD) simulation. It is of immense importance to extend this potential for the various molecular properties of TiAP and TiAP/n-dodecane binary mixtures using MD simulation. Earlier, efforts were devoted to find out a suitable force field which can explain both structural and dynamical properties by empirical parameterization. Therefore, the present MD study reports the structural, dynamical, and thermodynamical properties with different mole fractions of TiAP-dodecane mixtures at the entire range of mole fraction of 0-1 employing our calibrated Mulliken embedded optimized potentials for liquid simulation (OPLS) force field. The calculated electric dipole moment of TiAP was seen to be almost unaffected by the TiAP concentration in the dodecane diluent. The calculated liquid densities of the TiAP-dodecane mixture are in good agreement with the experimental data. The mixture densities at different temperatures are also studied which was found to be reduced with temperature as expected. The plot of diffusivities for TiAP and dodecane against mole fraction in the binary mixture intersects at a composition in the range of 25%-30% of TiAP in dodecane, which is very much closer to the TBP/n-dodecane composition used in the PUREX process. The excess volume of mixing was found to be positive for the entire range of mole fraction and the excess enthalpy of mixing was shown to be endothermic for the TBP/n-dodecane mixture as well as TiAP/n-dodecane mixture as reported experimentally. The spatial pair correlation functions are evaluated between TiAP-TiAP and TiAP-dodecane molecules. Further, shear viscosity has been computed by

  10. Automatic Estimation of Volumetric Breast Density Using Artificial Neural Network-Based Calibration of Full-Field Digital Mammography: Feasibility on Japanese Women With and Without Breast Cancer.

    Science.gov (United States)

    Wang, Jeff; Kato, Fumi; Yamashita, Hiroko; Baba, Motoi; Cui, Yi; Li, Ruijiang; Oyama-Manabe, Noriko; Shirato, Hiroki

    2017-04-01

    Breast cancer is the most common invasive cancer among women and its incidence is increasing. Risk assessment is valuable and recent methods are incorporating novel biomarkers such as mammographic density. Artificial neural networks (ANN) are adaptive algorithms capable of performing pattern-to-pattern learning and are well suited for medical applications. They are potentially useful for calibrating full-field digital mammography (FFDM) for quantitative analysis. This study uses ANN modeling to estimate volumetric breast density (VBD) from FFDM on Japanese women with and without breast cancer. ANN calibration of VBD was performed using phantom data for one FFDM system. Mammograms of 46 Japanese women diagnosed with invasive carcinoma and 53 with negative findings were analyzed using ANN models learned. ANN-estimated VBD was validated against phantom data, compared intra-patient, with qualitative composition scoring, with MRI VBD, and inter-patient with classical risk factors of breast cancer as well as cancer status. Phantom validations reached an R 2 of 0.993. Intra-patient validations ranged from R 2 of 0.789 with VBD to 0.908 with breast volume. ANN VBD agreed well with BI-RADS scoring and MRI VBD with R 2 ranging from 0.665 with VBD to 0.852 with breast volume. VBD was significantly higher in women with cancer. Associations with age, BMI, menopause, and cancer status previously reported were also confirmed. ANN modeling appears to produce reasonable measures of mammographic density validated with phantoms, with existing measures of breast density, and with classical biomarkers of breast cancer. FFDM VBD is significantly higher in Japanese women with cancer.

  11. State-of-the art comparability of corrected emission spectra. 2. Field laboratory assessment of calibration performance using spectral fluorescence standards.

    Science.gov (United States)

    Resch-Genger, Ute; Bremser, Wolfram; Pfeifer, Dietmar; Spieles, Monika; Hoffmann, Angelika; DeRose, Paul C; Zwinkels, Joanne C; Gauthier, François; Ebert, Bernd; Taubert, R Dieter; Voigt, Jan; Hollandt, Jörg; Macdonald, Rainer

    2012-05-01

    In the second part of this two-part series on the state-of-the-art comparability of corrected emission spectra, we have extended this assessment to the broader community of fluorescence spectroscopists by involving 12 field laboratories that were randomly selected on the basis of their fluorescence measuring equipment. These laboratories performed a reference material (RM)-based fluorometer calibration with commercially available spectral fluorescence standards following a standard operating procedure that involved routine measurement conditions and the data evaluation software LINKCORR developed and provided by the Federal Institute for Materials Research and Testing (BAM). This instrument-specific emission correction curve was subsequently used for the determination of the corrected emission spectra of three test dyes, X, QS, and Y, revealing an average accuracy of 6.8% for the corrected emission spectra. This compares well with the relative standard uncertainties of 4.2% for physical standard-based spectral corrections demonstrated in the first part of this study (previous paper in this issue) involving an international group of four expert laboratories. The excellent comparability of the measurements of the field laboratories also demonstrates the effectiveness of RM-based correction procedures.

  12. Measurement of the magnetic moment of the 21+ state of 72Zn via extension of the high-velocity transient-field method

    International Nuclear Information System (INIS)

    Fiori, E.

    2010-12-01

    Magnetic moments can provide deep insight for nuclear structure and of the wave function composition, particularly when the single particle character of the nucleus is dominating. For this reason, the magnetic moment of the first excited state of the radioactive neutron-rich 72 Zn was measured at the GANIL facility (Caen, France). The result of the experiment confirmed the trend predicted by the shell model calculations, even if the error on the measurement did not allow for a rigorous constraint of the theories. The measurement was performed using the transient field (TF) technique and the nuclei of interest were produced in a fragmentation reaction. Before this experiment, the high-velocity TF (HVTF) technique had been used only with projectile up to Z = 24. It was the first time that a magnetic moment of an heavy ion with Z > 24 was measured in the high velocity regime. To further develop the technique and to gather information about the hyperfine interaction between the polarized electrons and the nucleons, two experiments were performed at LNS (Catania, Italy). In this thesis the development of the high-velocity TF technique for the experiments on g(2 + ; 72 Zn) and field strength B TF (Kr, Ge) is presented. The analysis of the results and their interpretation is then discussed. It was demonstrated that the HVTF technique, combined with Coulomb excitation, can be used for the measurement of g-factors of very short-lived states, with lifetimes of the order of tens of ps and lower, of heavy ions (A ∼ 80) traveling with intermediate relativistic speeds, β ∼ 0.25. The standard TF technique at low velocities (a few percent of the speed of light) has been used for a long time to provide the strong magnetic field necessary for the measurement of g-factors of very short-lived states. The breakthrough of the present development is the different velocity regime of the higher mass projectile under which the experiment is carried out

  13. Ion Acceleration Inside Foreshock Transients

    Science.gov (United States)

    Liu, Terry Z.; Lu, San; Angelopoulos, Vassilis; Lin, Yu; Wang, X. Y.

    2018-01-01

    Recent observations upstream of Earth's bow shock have revealed that foreshock transients can not only accelerate solar wind ions by reflection at their upstream boundaries but may also accelerate ions inside them. Evidence for the latter comes from comparisons of ion spectra inside and outside the cores, and from evidence of leakage of suprathermal ions from the cores. However, definite evidence for, and the physics of, ion acceleration in the foreshock transients are still open questions. Using case studies of foreshock transients from Time History of Events and Macroscale Interactions during Substorms observations, we reveal an ion acceleration mechanism in foreshock transients that is applicable to 25% of the transients. The ion energy flux is enhanced between several keV to tens of keV in the cores. We show that these energetic ions are reflected at the earthward moving boundary of foreshock transients, are accelerated through partial gyration along the convection electric field, and can leak out both upstream and downstream of the foreshock transients. Using ions moving self-consistently with a generic 3-D global hybrid simulation of a foreshock transient, we confirm this physical picture of ion acceleration and leakage. These accelerated ions could be further accelerated at the local bow shock and repopulate the foreshock, increasing the efficacy of solar wind-magnetosphere interactions.

  14. Transient stability of superconducting alternators

    International Nuclear Information System (INIS)

    Furuyama, M.; Kirtley, J.L. Jr.

    1975-01-01

    A simulation study is performed for the purpose of determining the transient stability characteristics of superconducting alternators. This simulation is compared with an equal area criterion method. It is found that superconducting machines have good transient stability characteristics, that field forcing is not particularly helpful nor necessary. It is also found that the equal area criterion is useful for computing critical clearing times, if voltage behind subtransient reactance is held constant. (U.S.)

  15. Calibrating the Athena telescope

    Science.gov (United States)

    de Bruijne, J.; Guainazzi, M.; den Herder, J.; Bavdaz, M.; Burwitz, V.; Ferrando, P.; Lumb, D.; Natalucci, L.; Pajot, F.; Pareschi, G.

    2017-10-01

    Athena is ESA's upcoming X-ray mission, currently set for launch in 2028. With two nationally-funded, state-of-the-art instruments (a high-resolution spectrograph named X-IFU and a wide-field imager named WFI), and a telescope collecting area of 1.4-2 m^2 at 1 keV, the calibration of the spacecraft is a challenge in itself. This poster presents the current (spring 2017) plan of how to calibrate the Athena telescope. It is based on a hybrid approach, using bulk manufacturing and integration data as well as dedicated calibration measurements combined with a refined software model to simulate the full response of the optics.

  16. MAVEN LPW Calibrated Data Bundle

    Data.gov (United States)

    National Aeronautics and Space Administration — This bundle contains fully calibrated, science quality data produced by the LPW instrument. The data include spacecraft potential, electric field waveforms and wave...

  17. Development of highly efficient proton recoil counter telescope for absolute measurement of neutron fluences in quasi-monoenergetic neutron calibration fields of high energy

    International Nuclear Information System (INIS)

    Shikaze, Yoshiaki; Tanimura, Yoshihiko; Saegusa, Jun; Tsutsumi, Masahiro

    2010-01-01

    Precise calibration of monitors and dosimeters for use with high energy neutrons necessitates reliable and accurate neutron fluences being evaluated with use of a reference point. A highly efficient Proton Recoil counter Telescope (PRT) to make absolute measurements with use of a reference point was developed to evaluate neutron fluences in quasi-monoenergetic neutron fields. The relatively large design of the PRT componentry and relatively thick, approximately 2 mm, polyethylene converter contributed to high detection efficiency at the reference point over a large irradiation area at a long distance from the target. The polyethylene converter thickness was adjusted to maintain the same carbon density per unit area as the graphite converter for easy background subtraction. The high detection efficiency and thickness adjustment resulted in efficient absolute measurements being made of the neutron fluences of sufficient statistical precision over a short period of time. The neutron detection efficiencies of the PRT were evaluated using MCNPX code at 2.61x10 -6 , 2.16x10 -6 and 1.14x10 -6 for the respective neutron peak energies of 45, 60 and 75 MeV. The neutron fluences were determined to have been evaluated at an uncertainty of within 6.5% using analysis of measured data and the detection efficiencies. The PRT was also designed so as to be capable of simultaneously obtaining TOF data. The TOF data also increased the reliability of neutron fluence measurements and provided useful information for use in interpreting the source of proton events.

  18. Calibration procedures of area monitors in terms of the Ambient Dose Equivalent H*(10), for gamma, x-ray radiation fields

    International Nuclear Information System (INIS)

    Dieguez Davila, L.E.

    1998-01-01

    In the present thesis procedures for calibrating portable survey meters in terms of the new ICRU quantities H*(10) ambient dose equivalent are discussed. Also the remendations of International Comission on Radiation Protection in their report ICRP 60 that inludes the operational magnitudes that the International Comission of Radiation Units proposed for calibrating area monitors

  19. Field calibration of electrochemical NO

    NARCIS (Netherlands)

    Mijling, Bas; Jiang, Qijun; Jonge, De Dave; Bocconi, Stefano

    2018-01-01

    In many urban areas the population is exposed to elevated levels of air pollution. However, real-time air quality is usually only measured at few locations. These measurements provide a general picture of the state of the air, but they are unable to monitor local differences. New low-cost sensor

  20. Transient Astrophysics Probe

    Science.gov (United States)

    Camp, Jordan; Transient Astrophysics Probe Team

    2018-01-01

    The Transient Astrophysics Probe (TAP) is a wide-field multi-wavelength transient mission proposed for flight starting in the late 2020s. The mission instruments include unique “Lobster-eye” imaging soft X-ray optics that allow a ~1600 deg2 FoV; a high sensitivity, 1 deg2 FoV soft X-ray telescope; a 1 deg2 FoV Infrared telescope with bandpass 0.6-3 micron; and a set of 8 NaI gamma-ray detectors. TAP’s most exciting capability will be the observation of tens per year of X-ray and IR counterparts of GWs involving stellar mass black holes and neutron stars detected by LIGO/Virgo/KAGRA/LIGO-India, and possibly several per year X-ray counterparts of GWs from supermassive black holes, detected by LISA and Pulsar Timing Arrays. TAP will also discover hundreds of X-ray transients related to compact objects, including tidal disruption events, supernova shock breakouts, and Gamma-Ray Bursts from the epoch of reionization.

  1. Report on International Spaceborne Imaging Spectroscopy Technical Committee Calibration and Validation Workshop, National Environment Research Council Field Spectroscopy Facility, University of Edinburgh

    Science.gov (United States)

    Ong, C,; Mueller, A.; Thome, K.; Bachmann, M.; Czapla-Myers, J.; Holzwarth, S.; Khalsa, S. J.; Maclellan, C.; Malthus, T.; Nightingale, J.; hide

    2016-01-01

    Calibration and validation are fundamental for obtaining quantitative information from Earth Observation (EO) sensor data. Recognising this and the impending launch of at least five sensors in the next five years, the International Spaceborne Imaging Spectroscopy Technical Committee instigated a calibration and validation initiative. A workshop was conducted recently as part of this initiative with the objective of establishing a good practice framework for radiometric and spectral calibration and validation in support of spaceborne imaging spectroscopy missions. This paper presents the outcomes and recommendations for future work arising from the workshop.

  2. Nature of noncovalent interactions in catenane supramolecular complexes: calibrating the MM3 force field with ab initio, DFT, and SAPT methods.

    Science.gov (United States)

    Simeon, Tomekia M; Ratner, Mark A; Schatz, George C

    2013-08-22

    The design and assembly of mechanically interlocked molecules, such as catenanes and rotaxanes, are dictated by various types of noncovalent interactions. In particular, [C-H···O] hydrogen-bonding and π-π stacking interactions in these supramolecular complexes have been identified as important noncovalent interactions. With this in mind, we examined the [3]catenane 2·4PF6 using molecular mechanics (MM3), ab initio methods (HF, MP2), several versions of density functional theory (DFT) (B3LYP, M0X), and the dispersion-corrected method DFT-D3. Symmetry adapted perturbation theory (DFT-SAPT) provides the highest level of theory considered, and we use the DFT-SAPT results both to calibrate the other electronic structure methods, and the empirical potential MM3 force field that is often used to describe larger catenane and rotaxane structures where [C-H···O] hydrogen-bonding and π-π stacking interactions play a role. Our results indicate that the MM3 calculated complexation energies agree qualitatively with the energetic ordering from DFT-SAPT calculations with an aug-cc-pVTZ basis, both for structures dominated by [C-H···O] hydrogen-bonding and π-π stacking interactions. When the DFT-SAPT energies are decomposed into components, we find that electrostatic interactions dominate the [C-H···O] hydrogen-bonding interactions, while dispersion makes a significant contribution to π-π stacking. Another important conclusion is that DFT-D3 based on M06 or M06-2X provides interaction energies that are in near-quantitative agreement with DFT-SAPT. DFT results without the D3 correction have important differences compared to DFT-SAPT, while HF and even MP2 results are in poor agreement with DFT-SAPT.

  3. The Nature of Noncovalent Interactions in Catenane Supramolecular Complexes: Calibrating the MM3 Force Field with ab initio, DFT and SAPT Methods

    Science.gov (United States)

    Simeon, Tomekia M.; Ratner, Mark A.; Schatz, George C.

    2013-01-01

    The design and assembly of mechanically interlocked molecules, such as catenanes and rotaxanes, are dictated by various types of noncovalent interactions. In particular, [C-H⋯O] hydrogen-bonding and π-π stacking interactions in these supramolecular complexes have been identified as important noncovalent interactions. With this in mind, we examined the [3] catenane 2·4PF6 using molecular mechanics (MM3), ab initio methods (HF, MP2), several versions of density functional theory (DFT) (B3LYP, M0X), and the dispersion-corrected method DFT-D3. Symmetry adapted perturbation theory (DFT-SAPT) provides the highest level of theory considered, and we use the DFT-SAPT results both to calibrate the other electronic structure methods, and the empirical potential MM3 force field that is often used to describe larger catenane and rotaxane structures where [C-H⋯O] hydrogen-bonding and π-π stacking interactions play a role. Our results indicate that the MM3 calculated complexation energies agree qualitatively with the energetic ordering from DFT-SAPT calculations with an aug-cc-pVTZ basis, both for structures dominated by [C-H⋯O] hydrogen-bonding and π-π stacking interactions. When the DFT-SAPT energies are decomposed into components, and we find that electrostatic interactions dominate the [C-H⋯O] hydrogen-bonding interactions while dispersion makes a significant contribution to π-π stacking. Another important conclusion is that DFT-D3 based on M06 or M06-2X provides interactions energies that are in near-quantitative agreement with DFT-SAPT. DFT results without the D3 correct have important differences compared to DFT-SAPT while HF and even MP2 results are in poor agreement with DFT-SAPT. PMID:23941280

  4. POLCAL - POLARIMETRIC RADAR CALIBRATION

    Science.gov (United States)

    Vanzyl, J.

    1994-01-01

    Calibration of polarimetric radar systems is a field of research in which great progress has been made over the last few years. POLCAL (Polarimetric Radar Calibration) is a software tool intended to assist in the calibration of Synthetic Aperture Radar (SAR) systems. In particular, POLCAL calibrates Stokes matrix format data produced as the standard product by the NASA/Jet Propulsion Laboratory (JPL) airborne imaging synthetic aperture radar (AIRSAR). POLCAL was designed to be used in conjunction with data collected by the NASA/JPL AIRSAR system. AIRSAR is a multifrequency (6 cm, 24 cm, and 68 cm wavelength), fully polarimetric SAR system which produces 12 x 12 km imagery at 10 m resolution. AIRSTAR was designed as a testbed for NASA's Spaceborne Imaging Radar program. While the images produced after 1991 are thought to be calibrated (phase calibrated, cross-talk removed, channel imbalance removed, and absolutely calibrated), POLCAL can and should still be used to check the accuracy of the calibration and to correct it if necessary. Version 4.0 of POLCAL is an upgrade of POLCAL version 2.0 released to AIRSAR investigators in June, 1990. New options in version 4.0 include automatic absolute calibration of 89/90 data, distributed target analysis, calibration of nearby scenes with calibration parameters from a scene with corner reflectors, altitude or roll angle corrections, and calibration of errors introduced by known topography. Many sources of error can lead to false conclusions about the nature of scatterers on the surface. Errors in the phase relationship between polarization channels result in incorrect synthesis of polarization states. Cross-talk, caused by imperfections in the radar antenna itself, can also lead to error. POLCAL reduces cross-talk and corrects phase calibration without the use of ground calibration equipment. Removing the antenna patterns during SAR processing also forms a very important part of the calibration of SAR data. Errors in the

  5. Explosive and Radio-Selected Transients: Transient Astronomy with ...

    Indian Academy of Sciences (India)

    Therefore, multiwaveband observational efforts with wide fields of view will be the key to progress of transients astronomy from the middle 2020s offering unprecedented deep images and high spatial and spectral resolutions. Radio observations of Gamma Ray Bursts (GRBs) with SKA will uncover not only much fainter ...

  6. Measurement of DNA double-strand breaks in CHO cells at various stages of the cell cycle using pulsed field gel electrophoresis: calibration by means of 125I decay

    International Nuclear Information System (INIS)

    Iliakis, G.E.; Cicilioni, O.; Metzger, L.

    1991-01-01

    Experiments were performed to calibrate a recently developed pulsed field gel electrophoresis assay, the asymmetric field inversion gel electrophoresis (AFIGE), for the measurement of double-strand breaks (dsb) in the DNA of mammalian cells. Calibration was carried out by means of 125 I decay accumulation, under conditions preventing repair, based on the observation that each 125 I decay in the DNA produces approximately one dsb. Results suggest that that observed fluctuations in the fraction of DNA activity released (FAR) per Gy throughout the cycle reflect cell-cycle-associated differences in the physicochemical properties of the DNA molecules that alter their electrophoretic mobility, rather than variations in the induction of dsb per Gy, i.e. the sensitivity of the assay fluctuates throughout the cycle. (author)

  7. White light and radio studies of the coronal transient of 14-15 September 1973. I - Material motions and magnetic field

    Science.gov (United States)

    Dulk, G. A.; Jacques, S.; Smerd, S. F.; Macqueen, R. M.; Gosling, J. T.; Steward, R. T.; Sheridan, K. V.; Robinson, R. D.; Magun, A.

    1976-01-01

    Observations of a coronal transient event were obtained in white light by the Skylab coronagraph and at metric wavelengths by the radioheliograph and spectrograph at Culgoora, Australia, and the spectrograph-interferometer at Boulder, Colo. The continuum radio burst was found to originate above the outward-moving white-light loop, a region of compressed material headed by a bow wave. The computed density in the region of radio emission, based on either gyrosynchrotron or harmonic plasma radiation mechanisms, was approximately 10 times the ambient coronal density; this is compatible with the density deduced from the white-light observations. The magnetic-energy density derived from the radio observations was greater than 10 times the thermal energy density, marginally larger than the kinetic energy density in the fastest-moving portion of the transient, and considerably larger in most other regions. The ambient medium, the white-light front, the compression region, the loop, and the slower massive flow of material behind are each examined. It is found that the plasma was magnetically controlled throughout and that magnetic forces provided the principal mechanism for acceleration of the transient material from the sun.

  8. Current interruption transients calculation

    CERN Document Server

    Peelo, David F

    2014-01-01

    Provides an original, detailed and practical description of current interruption transients, origins, and the circuits involved, and how they can be calculated Current Interruption Transients Calculationis a comprehensive resource for the understanding, calculation and analysis of the transient recovery voltages (TRVs) and related re-ignition or re-striking transients associated with fault current interruption and the switching of inductive and capacitive load currents in circuits. This book provides an original, detailed and practical description of current interruption transients, origins,

  9. Astrid-2 EMMA Magnetic Calibration

    DEFF Research Database (Denmark)

    Merayo, José M.G.; Brauer, Peter; Risbo, Torben

    1998-01-01

    Survey of Sweden near Stockholm on the night of May 15.-16., 1997. The magnetic calibration and the intercalibration between the star camera and the magnetic sensor was performed by measuring the Earth's magnetic field and simultaneously observing the star sky with the camera. The rotation matrix between...... the magnetometer orthogonalized axes and the star camera optical axes was determined from the observed stellar coordinates related to the Earth magnetic field from the Magnetic Observatory. The magnetic calibration of the magnetometer integrated into the flight configured satellite was done in the (almost......) constant Earth's magnetic field of about 50,000 nT by the 'Scalar Calibration Method' developed at the DTU. The satellite was positioned in 60 different attitudes relative to the Earth's magnetic field and magnetometer readings were recorded for about one minute in each position. Averages...

  10. LLL calibration and standards facility

    International Nuclear Information System (INIS)

    Campbell, G.W.; Elliott, J.H.

    1980-01-01

    The capabilities of Lawrence Livermore Laboratory's Calibration and Standards Facility are delineated. The facility's ability to provide radiation fields and measurements for a variety of radiation safety applications and the available radiation measurement equipment are described. The need for national laboratory calibration labs to maintain traceability to a national standard are discussed as well as the areas where improved standards and standardization techniques are needed

  11. CERI: Ionizing Radiation Calibration Centre

    International Nuclear Information System (INIS)

    Bouteiller, E.

    1979-01-01

    The CERI has been granted by the National Bureau of Metrology (BNM) as an Ionizing Radiation Calibration Centre and as an Estimation and Qualification Centre for the ionizing radiation measurement devices. This article gives some information on the scope covered by the BNM's grant and on the various equipment on which the laboratory relies. It describes the calibration and estimation activities and mentions many kinds of services which are offered to the users mainly in the medical and industrial fields [fr

  12. Calibration interval technical basis document

    International Nuclear Information System (INIS)

    Chiaro, P.J. Jr.

    1998-09-01

    This document provides a method for the establishment and evaluation of calibration intervals for radiation protection instrumentation. This document is applicable to instrumentation used by personnel at US Department of Energy (DOE) facilities for the measurement of radioactive contamination and the measurement and monitoring of radiation fields for protection of personnel and the environment. Special calibrations are not addressed by this document and should be handled separately

  13. Jaws calibration method to get a homogeneous distribution of dose in the junction of hemi fields; Metodo de calibracion de mandibulas para conseguir una distribucion homogenea de dosis en la zona de union de hemicampos

    Energy Technology Data Exchange (ETDEWEB)

    Cenizo de Castro, E.; Garcia Pareja, S.; Moreno Saiz, C.; Hernandez Rodriguez, R.; Bodineau Gil, C.; Martin-Viera Cueto, J. A.

    2011-07-01

    Hemi fields treatments are widely used in radiotherapy. Because the tolerance established for the positioning of each jaw is 1 mm, may be cases of overlap or separation of up to 2 mm. This implies heterogeneity of doses up to 40% in the joint area. This paper presents an accurate method of calibration of the jaws so as to obtain homogeneous dose distributions when using this type of treatment. (Author)

  14. The Zwicky Transient Facility Galactic Plane Survey

    Science.gov (United States)

    Prince, Thomas; Zwicky Transient Facility (ZTF) Project Team

    2018-01-01

    The Zwicky Transient Faciility (ZTF) is a new survey camera mounted on the 1.2m Oschin Schmidt Telescope on Mount Palomar. The camera has a 47 square degree field of view and is expected to start public survey observations in early 2018. The public surveys are undertaken with support provided by the NSF MSIP program. One of the two public surveys is a twice nightly scan of the central Galactic Plane visible from Mount Palomar, one scan in r-band and one in g-band. Publicly accessible data from the survey will be one of two types: (1) prompt alerts of variable activity of Galactic Plane sources using image difference source identification, and (2) photometric light curves of Galactic Plane sources extracted from calibrated images. Data will be made accessible through the Caltech Image Processing and Analysis Center (IPAC). The ZTF Galactic Plane Survey, combined with Gaia and PanSTARRS data, will be an exciting new resource for time domain astronomy observations of Galactic sources.We will describe the details of the ZTF Galactic Plane survey, including estimated coverage of the plane and light curve sampling. We will also describe plans for public access to the data, as well as comment on some of the important science that will be possible using the survey data.

  15. Traceable Pyrgeometer Calibrations

    Energy Technology Data Exchange (ETDEWEB)

    Dooraghi, Mike; Kutchenreiter, Mark; Reda, Ibrahim; Habte, Aron; Sengupta, Manajit; Andreas, Afshin; Newman, Martina

    2016-05-02

    This poster presents the development, implementation, and operation of the Broadband Outdoor Radiometer Calibrations (BORCAL) Longwave (LW) system at the Southern Great Plains Radiometric Calibration Facility for the calibration of pyrgeometers that provide traceability to the World Infrared Standard Group.

  16. TWSTFT Link Calibration Report

    Science.gov (United States)

    2015-09-01

    traveling calibration station (calibrator) consisting of N (≥2) GNSS receivers+antennas+cables and PPS/frequency-distributors. It is a pre-cabled black...the PTB is taken as the reference of the calibration, a GNSS time link correction is equal to the classic GNSS equipment calibration correction [8...TWSTFT link calibration. If we replace the TWSTFT link by a GNSS link or a optical fiber (OF), it becomes a GNSS or an OF time link calibration. This

  17. Calibration of NS value of magnetic probe on EAST

    International Nuclear Information System (INIS)

    Sun Jiuyu; Shen Biao; Liu Guangjun; Sun Youwen; Qian Jinping; Li Shi; Xiao Bingjia; Chen Dalong; Shi Tonghui

    2014-01-01

    Based on the basic principle of measuring magnetic field by magnetic probe, a solenoid calibration system is constructed by a long solenoid, alternating current power, standard probe and data acquisition system in order to get the accurate magnetic field data. The NS value of magnetic probe on EAST is calibrated accurately by the solenoid calibration system and the data of the calibration is analysed. The obtained results are what we expected and provide the prerequisite for accurate magnetic field measurement in tokamak. (authors)

  18. PSH Transient Simulation Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, Eduard [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-12-21

    PSH Transient Simulation Modeling presentation from the WPTO FY14 - FY16 Peer Review. Transient effects are an important consideration when designing a PSH system, yet numerical techniques for hydraulic transient analysis still need improvements for adjustable-speed (AS) reversible pump-turbine applications.

  19. Cable system transients theory, modeling and simulation

    CERN Document Server

    Ametani, Akihiro; Nagaoka, Naoto

    2015-01-01

    A systematic and comprehensive introduction to electromagnetic transient in cable systems, written by the internationally renowned pioneer in this field Presents a systematic and comprehensive introduction to electromagnetic transient in cable systems Written by the internationally renowned pioneer in the field Thorough coverage of the state of the art on the topic, presented in a well-organized, logical style, from fundamentals and practical applications A companion website is available

  20. The CHEOPS calibration bench

    Science.gov (United States)

    Wildi, F.; Chazelas, B.; Deline, A.; Sarajlic, M.; Sordet, M.

    2017-09-01

    CHEOPS is an ESA Class S Mission aiming at the characterization of exoplanets through the precise measurement of their radius, using the transit method [1]. To achieve this goal, the payload is designed to be a high precision "absolute" photometer, looking at one star at a time. It will be able to cover la large fraction of the sky by repointing. Its launch is expected at the end of 2017 [2, this conference]. CHEOPS' main science is the measure of the transit of exoplanets of radius ranging from 1 to 6 Earth radii orbiting bright stars. The required photometric stability to reach this goal is of 20 ppm in 6 hours for a 9th magnitude star. The CHEOPS' only instrument is a Ritchey-Chretien style telescope with 300 mm effective aperture diameter, which provides a defocussed image of the target star on a single frame-transfer backside illuminated CCD detector cooled to -40°C and stabilized within 10 mK [2]. CHEOPS being in a LEO, it is equipped with a high performance baffle. The spacecraft platform provides a pointing stability of flat-fielding necessary In the rest of this article we will refer to the only CHEOPS instrument simply as "CHEOP" Its behavior will be calibrated thoroughly on the ground and only a small subset of the calibrations can be redone in flight. The main focuses of the calibrations are the photonic gain stability and sensibility to the environment variations and the Flat field that has to be known at a precision better than 0.1%.

  1. A Decision Support System (GesCoN for Managing Fertigation in Vegetable Crops. Part II – Model calibration and validation under different environmental growing conditions on field grown tomato

    Directory of Open Access Journals (Sweden)

    Giulia eConversa

    2015-07-01

    Full Text Available The GesCoN model was evaluated for its capability to simulate growth, nitrogen uptake and productivity of open field tomato grown under different environmental and cultural conditions. Five datasets collected from experimental trials carried out in Foggia (IT were used for calibration and 13 datasets collected from trials conducted in Foggia, Perugia (IT and Florida (USA were used for validation. The goodness of fitting was performed by comparing the observed and simulated shoot dry weight (SDW and N crop uptake during crop seasons, total dry weight (TDW, N uptake and fresh yield (TFY. In SDW model calibration, the relative RMSE values fell within the good 10 to 15% range, percent BIAS (PBIAS ranged between -11.5% and 7.4%. The Nash-Sutcliffe efficiency (NSE was very close to the optimal value 1. In the N uptake calibration RRMSE and PBIAS were very low(7%, and -1.78, respectively and NSE close to 1. The validation of SDW (RRMSE=16.7%; NSE=0.96 and N uptake (RRMSE=16.8%; NSE=0.96 showed the good accuracy of GesCoN. A model under- or overestimation of the SDW and N uptake occurred when higher or a lower N rates and/or a more or less efficient system were used compared to the calibration trial. The in-season adjustment, using the SDWcheck procedure, greatly improved model simulations both in the calibration and in the validation phases. The TFY prediction was quite good except in Florida, where a large overestimation (+16% was linked to a different harvest index (0.53 compared the cultivars used for model calibration and validation in Italian areas. The soil water content at the 10-30 cm depth appears to be well simulated by the software, and the GesCoN proved to be able to adaptively control potential yield and DW accumulation under limited N soil availability scenarios and consequently to modify fertilizer application. The DSSwell simulate SDW accumulation and N uptake of different tomato genotypes grown under Mediterranean and subtropical

  2. A decision support system (GesCoN) for managing fertigation in vegetable crops. Part II—model calibration and validation under different environmental growing conditions on field grown tomato

    Science.gov (United States)

    Conversa, Giulia; Bonasia, Anna; Di Gioia, Francesco; Elia, Antonio

    2015-01-01

    The GesCoN model was evaluated for its capability to simulate growth, nitrogen uptake, and productivity of open field tomato grown under different environmental and cultural conditions. Five datasets collected from experimental trials carried out in Foggia (IT) were used for calibration and 13 datasets collected from trials conducted in Foggia, Perugia (IT), and Florida (USA) were used for validation. The goodness of fitting was performed by comparing the observed and simulated shoot dry weight (SDW) and N crop uptake during crop seasons, total dry weight (TDW), N uptake and fresh yield (TFY). In SDW model calibration, the relative RMSE values fell within the good 10–15% range, percent BIAS (PBIAS) ranged between −11.5 and 7.4%. The Nash-Sutcliffe efficiency (NSE) was very close to the optimal value 1. In the N uptake calibration RRMSE and PBIAS were very low (7%, and −1.78, respectively) and NSE close to 1. The validation of SDW (RRMSE = 16.7%; NSE = 0.96) and N uptake (RRMSE = 16.8%; NSE = 0.96) showed the good accuracy of GesCoN. A model under- or overestimation of the SDW and N uptake occurred when higher or a lower N rates and/or a more or less efficient system were used compared to the calibration trial. The in-season adjustment, using the “SDWcheck” procedure, greatly improved model simulations both in the calibration and in the validation phases. The TFY prediction was quite good except in Florida, where a large overestimation (+16%) was linked to a different harvest index (0.53) compared to the cultivars used for model calibration and validation in Italian areas. The soil water content at the 10–30 cm depth appears to be well-simulated by the software, and the GesCoN proved to be able to adaptively control potential yield and DW accumulation under limited N soil availability scenarios and consequently to modify fertilizer application. The DSSwell simulate SDW accumulation and N uptake of different tomato genotypes grown under Mediterranean and

  3. A decision support system (GesCoN) for managing fertigation in vegetable crops. Part II-model calibration and validation under different environmental growing conditions on field grown tomato.

    Science.gov (United States)

    Conversa, Giulia; Bonasia, Anna; Di Gioia, Francesco; Elia, Antonio

    2015-01-01

    The GesCoN model was evaluated for its capability to simulate growth, nitrogen uptake, and productivity of open field tomato grown under different environmental and cultural conditions. Five datasets collected from experimental trials carried out in Foggia (IT) were used for calibration and 13 datasets collected from trials conducted in Foggia, Perugia (IT), and Florida (USA) were used for validation. The goodness of fitting was performed by comparing the observed and simulated shoot dry weight (SDW) and N crop uptake during crop seasons, total dry weight (TDW), N uptake and fresh yield (TFY). In SDW model calibration, the relative RMSE values fell within the good 10-15% range, percent BIAS (PBIAS) ranged between -11.5 and 7.4%. The Nash-Sutcliffe efficiency (NSE) was very close to the optimal value 1. In the N uptake calibration RRMSE and PBIAS were very low (7%, and -1.78, respectively) and NSE close to 1. The validation of SDW (RRMSE = 16.7%; NSE = 0.96) and N uptake (RRMSE = 16.8%; NSE = 0.96) showed the good accuracy of GesCoN. A model under- or overestimation of the SDW and N uptake occurred when higher or a lower N rates and/or a more or less efficient system were used compared to the calibration trial. The in-season adjustment, using the "SDWcheck" procedure, greatly improved model simulations both in the calibration and in the validation phases. The TFY prediction was quite good except in Florida, where a large overestimation (+16%) was linked to a different harvest index (0.53) compared to the cultivars used for model calibration and validation in Italian areas. The soil water content at the 10-30 cm depth appears to be well-simulated by the software, and the GesCoN proved to be able to adaptively control potential yield and DW accumulation under limited N soil availability scenarios and consequently to modify fertilizer application. The DSSwell simulate SDW accumulation and N uptake of different tomato genotypes grown under Mediterranean and subtropical

  4. CERN Radiation Protection (RP) calibration facilities

    CERN Document Server

    AUTHOR|(CDS)2082069; Macián-Juan, Rafael

    Radiation protection calibration facilities are essential to ensure the correct operation of radiation protection instrumentation. Calibrations are performed in specific radiation fields according to the type of instrument to be calibrated: neutrons, photons, X-rays, beta and alpha particles. Some of the instruments are also tested in mixed radiation fields as often encountered close to high-energy particle accelerators. Moreover, calibration facilities are of great importance to evaluate the performance of prototype detectors; testing and measuring the response of a prototype detector to well-known and -characterized radiation fields contributes to improving and optimizing its design and capabilities. The CERN Radiation Protection group is in charge of performing the regular calibrations of all CERN radiation protection devices; these include operational and passive dosimeters, neutron and photon survey-meters, and fixed radiation detectors to monitor the ambient dose equivalent, H*(10), inside CERN accelera...

  5. 2.1 GHz electromagnetic field does not change contractility and intracellular Ca2+ transients but decreases β-adrenergic responsiveness through nitric oxide signaling in rat ventricular myocytes.

    Science.gov (United States)

    Olgar, Yusuf; Hidisoglu, Enis; Celen, Murat Cenk; Yamasan, Bilge Eren; Yargicoglu, Piraye; Ozdemir, Semir

    2015-01-01

    Due to the increasing use of wireless technology in developing countries, particularly mobile phones, the influence of electromagnetic fields (EMF) on biologic systems has become the subject of an intense debate. Therefore, in this study we investigated the effect of 2.1 GHz EMF on contractility and beta-adrenergic (β-AR) responsiveness of ventricular myocytes. Rats were randomized to the following groups: Sham rats (SHAM) and rats exposed to 2.1 GHz EMF for 2 h/day for 10 weeks (EM-10). Sarcomere shortening and Ca(2+) transients were recorded in isolated myocytes loaded with Fura2-AM and electrically stimulated at 1 Hz, while L-type Ca(2+) currents (I(CaL)) were measured using whole-cell patch clamping at 36 ± 1°C. Cardiac nitric oxide (NO) levels were measured in tissue samples using a colorimetric assay kit. Fractional shortening and amplitude of the matched Ca(2+) transients were not changed in EM-10 rats. Although the isoproterenol-induced (10(-6) M) I(CaL) response was reduced in rats exposed to EMF, basal I(CaL) density in myocytes was similar between the two groups (p < 0.01). Moreover, EMF exposure led to a significant increase in nitric oxide levels in rat heart (p < 0.02). Long-term exposure to 2.1 GHz EMF decreases β-AR responsiveness of ventricular myocytes through NO signaling.

  6. Revised Stroemgren metallicity calibration for red giants

    OpenAIRE

    Hilker, Michael

    1999-01-01

    A new calibration of the Stroemgren (b-y),m_1 diagram in terms of iron abundance of red giants is presented. This calibration is based on a homogeneous sample of giants in the globular clusters omega Centauri, M22, and M55 as well as field giants from the list of Anthony-Twarog & Twarog (1998). Towards high metallicities, the new calibration is connected to a previous calibration by Grebel & Richtler (1992), which was unsatisfactory for iron abudances lower than -1.0 dex. The revised calibrat...

  7. Sloan Digital Sky Survey Photometric Calibration Revisited

    International Nuclear Information System (INIS)

    Marriner, John

    2012-01-01

    The Sloan Digital Sky Survey calibration is revisited to obtain the most accurate photometric calibration. A small but significant error is found in the flat-fielding of the Photometric telescope used for calibration. Two SDSS star catalogs are compared and the average difference in magnitude as a function of right ascension and declination exhibits small systematic errors in relative calibration. The photometric transformation from the SDSS Photometric Telescope to the 2.5 m telescope is recomputed and compared to synthetic magnitudes computed from measured filter bandpasses.

  8. Sloan Digital Sky Survey Photometric Calibration Revisited

    Energy Technology Data Exchange (ETDEWEB)

    Marriner, John; /Fermilab

    2012-06-29

    The Sloan Digital Sky Survey calibration is revisited to obtain the most accurate photometric calibration. A small but significant error is found in the flat-fielding of the Photometric telescope used for calibration. Two SDSS star catalogs are compared and the average difference in magnitude as a function of right ascension and declination exhibits small systematic errors in relative calibration. The photometric transformation from the SDSS Photometric Telescope to the 2.5 m telescope is recomputed and compared to synthetic magnitudes computed from measured filter bandpasses.

  9. Scaling submillimeter single-cycle transients toward megavolts per centimeter field strength via optical rectification in the organic crystal OH1.

    Science.gov (United States)

    Ruchert, Clemens; Vicario, Carlo; Hauri, Christoph P

    2012-03-01

    We present the generation of high-power single-cycle terahertz (THz) pulses in the organic salt crystal 2-[3-(4-hydroxystyryl)-5.5-dimethylcyclohex-2-enylidene]malononitrile or OH1. Broadband THz radiation with a central frequency of 1.5 THz (λ(c)=200 μm) and high electric field strength of 440 kV/cm is produced by optical rectification driven by the signal of a powerful femtosecond optical parametric amplifier. A 1.5% pump to THz energy conversion efficiency is reported, and pulse energy stability better than 1% RMS is achieved. An approach toward the realization of higher field strength is discussed. © 2012 Optical Society of America

  10. Calibration of PMIS pavement performance prediction models.

    Science.gov (United States)

    2012-02-01

    Improve the accuracy of TxDOTs existing pavement performance prediction models through calibrating these models using actual field data obtained from the Pavement Management Information System (PMIS). : Ensure logical performance superiority patte...

  11. Mercury CEM Calibration

    Energy Technology Data Exchange (ETDEWEB)

    John Schabron; Joseph Rovani; Mark Sanderson

    2008-02-29

    outputs of mercury generators are compared to one another using a nesting procedure which allows direct comparison of one generator with another and eliminates analyzer variability effects. The qualification portion of the EPA interim traceability protocol requires the vendors to define generator performance as affected by variables such as pressure, temperature, line voltage, and shipping. WRI is focusing efforts to determine actual generator performance related to the variables defined in the qualification portion of the interim protocol. The protocol will then be further revised by EPA based on what can actually be achieved with the generators. Another focus of the study is to evaluate approaches for field verification of generator performance. Upcoming work includes evaluation of oxidized mercury calibration generators, for which a separate protocol will be prepared by EPA. In addition, the variability of the spectrometers/analyzers under various environmental conditions needs to be defined and understood better. A main objective of the current work is to provide data on the performance and capabilities of elemental mercury generator/calibration systems for the development of realistic NIST traceability protocols for mercury vapor standards for continuous emission CEM calibration. This work is providing a direct contribution to the enablement of continuous emissions monitoring at coal-fired power plants in conformance with the CAMR. EPA Specification 12 states that mercury CEMs must be calibrated with NIST-traceable standards (Federal Register 2005). The initial draft of an elemental mercury generator traceability protocol was circulated by EPA in May 2007 for comment, and an interim protocol was issued in August 2007 (EPA 2007). Initially it was assumed that the calibration and implementation of mercury CEMs would be relatively simple, and implementation would follow the implementation of the Clean Air Interstate Rule (CAIR) SO{sub 2} and NO{sub x} monitoring, and

  12. On-line monitoring for calibration reduction

    International Nuclear Information System (INIS)

    Hoffmann, M.

    2005-09-01

    On-Line Monitoring evaluates instrument channel performance by assessing its consistency with other plant indications. Elimination or reduction of unnecessary field calibrations can reduce associated labour costs, reduce personnel radiation exposure, and reduce the potential for calibration errors. On-line calibration monitoring is an important technique to implement a state-based maintenance approach and reduce unnecessary field calibrations. In this report we will look at how the concept is currently applied in the industry and what the arising needs are as it becomes more commonplace. We will also look at the PEANO System, a tool developed by the Halden Project to perform signal validation and on-line calibration monitoring. Some issues will be identified that are being addressed in the further development of these tools to better serve the future needs of the industry in this area. An outline for how to improve these points and which aspects should be taken into account is described in detail. (Author)

  13. Spectroscopic classification of transients

    DEFF Research Database (Denmark)

    Stritzinger, M. D.; Fraser, M.; Hummelmose, N. N.

    2017-01-01

    We report the spectroscopic classification of several transients based on observations taken with the Nordic Optical Telescope (NOT) equipped with ALFOSC, over the nights 23-25 August 2017.......We report the spectroscopic classification of several transients based on observations taken with the Nordic Optical Telescope (NOT) equipped with ALFOSC, over the nights 23-25 August 2017....

  14. Fluid dynamic transient analysis

    International Nuclear Information System (INIS)

    Vilhena Reigosa, R. de

    1992-01-01

    This paper describes the methodology adopted at NUCLEN for the fluid dynamic analyses for ANGRA 2. The fluid dynamic analysis allows, through computer codes to simulate and quantify the loads resulting from fluid dynamic transients caused by postulated ruptures or operational transients, in the piping of the safety systems and of the important operational systems. (author)

  15. Applied hydraulic transients

    CERN Document Server

    Chaudhry, M Hanif

    2014-01-01

    This book covers hydraulic transients in a comprehensive and systematic manner from introduction to advanced level and presents various methods of analysis for computer solution. The field of application of the book is very broad and diverse and covers areas such as hydroelectric projects, pumped storage schemes, water-supply systems, cooling-water systems, oil pipelines and industrial piping systems. Strong emphasis is given to practical applications, including several case studies, problems of applied nature, and design criteria. This will help design engineers and introduce students to real-life projects. This book also: ·         Presents modern methods of analysis suitable for computer analysis, such as the method of characteristics, explicit and implicit finite-difference methods and matrix methods ·         Includes case studies of actual projects ·         Provides extensive and complete treatment of governed hydraulic turbines ·         Presents design charts, desi...

  16. A new NaI(Tl) four-detector layout for field contamination assessment using artificial neural networks and the Monte Carlo method for system calibration

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, M.C.F., E-mail: marcos@ird.gov.b [Universidade Federal do Rio de Janeiro, COPPE, Programa de Engenharia Nuclear, Laboratorio de Monitoracao de Processos (Federal University of Rio de Janeiro, COPPE, Nuclear Engineering Program, Process Monitoring Laboratory), P.O. Box 68509, 21941-972 Rio de Janeiro (Brazil); Instituto de Radioprotecao e Dosimetria, CNEN/IRD (Radiation Protection and Dosimetry Institute, CNEN/IRD), Av. Salvador Allende s/no, P.O. Box 37750, 22780-160 Rio de Janeiro (Brazil); Conti, C.C. [Instituto de Radioprotecao e Dosimetria, CNEN/IRD (Radiation Protection and Dosimetry Institute, CNEN/IRD), Av. Salvador Allende s/no, P.O. Box 37750, 22780-160 Rio de Janeiro (Brazil); Schirru, R. [Universidade Federal do Rio de Janeiro, COPPE, Programa de Engenharia Nuclear, Laboratorio de Monitoracao de Processos (Federal University of Rio de Janeiro, COPPE, Nuclear Engineering Program, Process Monitoring Laboratory), P.O. Box 68509, 21941-972 Rio de Janeiro (Brazil)

    2010-09-21

    An NaI(Tl) multidetector layout combined with the use of Monte Carlo (MC) calculations and artificial neural networks(ANN) is proposed to assess the radioactive contamination of urban and semi-urban environment surfaces. A very simple urban environment like a model street composed of a wall on either side and the ground surface was the study case. A layout of four NaI(Tl) detectors was used, and the data corresponding to the response of the detectors were obtained by the Monte Carlo method. Two additional data sets with random values for the contamination and for detectors' response were also produced to test the ANNs. For this work, 18 feedforward topologies with backpropagation learning algorithm ANNs were chosen and trained. The results showed that some trained ANNs were able to accurately predict the contamination on the three urban surfaces when submitted to values within the training range. Other results showed that generalization outside the training range of values could not be achieved. The use of Monte Carlo calculations in combination with ANNs has been proven to be a powerful tool to perform detection calibration for highly complicated detection geometries.

  17. A new NaI(Tl) four-detector layout for field contamination assessment using artificial neural networks and the Monte Carlo method for system calibration

    International Nuclear Information System (INIS)

    Moreira, M.C.F.; Conti, C.C.; Schirru, R.

    2010-01-01

    An NaI(Tl) multidetector layout combined with the use of Monte Carlo (MC) calculations and artificial neural networks(ANN) is proposed to assess the radioactive contamination of urban and semi-urban environment surfaces. A very simple urban environment like a model street composed of a wall on either side and the ground surface was the study case. A layout of four NaI(Tl) detectors was used, and the data corresponding to the response of the detectors were obtained by the Monte Carlo method. Two additional data sets with random values for the contamination and for detectors' response were also produced to test the ANNs. For this work, 18 feedforward topologies with backpropagation learning algorithm ANNs were chosen and trained. The results showed that some trained ANNs were able to accurately predict the contamination on the three urban surfaces when submitted to values within the training range. Other results showed that generalization outside the training range of values could not be achieved. The use of Monte Carlo calculations in combination with ANNs has been proven to be a powerful tool to perform detection calibration for highly complicated detection geometries.

  18. Another look at volume self-calibration: calibration and self-calibration within a pinhole model of Scheimpflug cameras

    International Nuclear Information System (INIS)

    Cornic, Philippe; Le Besnerais, Guy; Champagnat, Frédéric; Illoul, Cédric; Cheminet, Adam; Le Sant, Yves; Leclaire, Benjamin

    2016-01-01

    We address calibration and self-calibration of tomographic PIV experiments within a pinhole model of cameras. A complete and explicit pinhole model of a camera equipped with a 2-tilt angles Scheimpflug adapter is presented. It is then used in a calibration procedure based on a freely moving calibration plate. While the resulting calibrations are accurate enough for Tomo-PIV, we confirm, through a simple experiment, that they are not stable in time, and illustrate how the pinhole framework can be used to provide a quantitative evaluation of geometrical drifts in the setup. We propose an original self-calibration method based on global optimization of the extrinsic parameters of the pinhole model. These methods are successfully applied to the tomographic PIV of an air jet experiment. An unexpected by-product of our work is to show that volume self-calibration induces a change in the world frame coordinates. Provided the calibration drift is small, as generally observed in PIV, the bias on the estimated velocity field is negligible but the absolute location cannot be accurately recovered using standard calibration data. (paper)

  19. Developing semi-analytical solution for multiple-zone transient storage model with spatially non-uniform storage

    Science.gov (United States)

    Deng, Baoqing; Si, Yinbing; Wang, Jia

    2017-12-01

    Transient storages may vary along the stream due to stream hydraulic conditions and the characteristics of storage. Analytical solutions of transient storage models in literature didn't cover the spatially non-uniform storage. A novel integral transform strategy is presented that simultaneously performs integral transforms to the concentrations in the stream and in storage zones by using the single set of eigenfunctions derived from the advection-diffusion equation of the stream. The semi-analytical solution of the multiple-zone transient storage model with the spatially non-uniform storage is obtained by applying the generalized integral transform technique to all partial differential equations in the multiple-zone transient storage model. The derived semi-analytical solution is validated against the field data in literature. Good agreement between the computed data and the field data is obtained. Some illustrative examples are formulated to demonstrate the applications of the present solution. It is shown that solute transport can be greatly affected by the variation of mass exchange coefficient and the ratio of cross-sectional areas. When the ratio of cross-sectional areas is big or the mass exchange coefficient is small, more reaches are recommended to calibrate the parameter.

  20. Characterization of BoHV-5 field strains circulation and report of transient specific subtype of bovine herpesvirus 5 in Argentina

    Directory of Open Access Journals (Sweden)

    Thiry Julien

    2011-02-01

    Full Text Available Abstract Background Bovine herpesvirus 5 (BoHV-5 is a member of the subfamily Alphaherpesvirinae responsible for meningo-encephalitis in young cattle. The first case of bovine meningo-encephalitis associated with a herpesvirus infection was reported in Australia. The current geographical distribution of BoHV-5 infection is mainly restricted to South America, especially Brazil and Argentina. Outbreaks of BoHV-5 are regularly observed in Argentina suggesting the circulation of the virus in the bovine population. Results Seventeen field strains of BoHV-5 isolated from 1984 to now were confirmed by differential PCR and subjected to restriction endonuclease analysis (REA. Viral DNA was cleaved with BstEII which allows the differentiation among subtypes a, b and non a, non b. According to the REA with BstEII, only one field strain showed a pattern similar to the Argentinean A663 strain (prototype of BoHV-5b. All other isolates showed a clear pattern similar to the Australian N569 strain (prototype of BoHV-5a consistent with the subtypes observed in Brazil, the other South-American country where BoHV-5 is known to be prevalent. The genomic region of subtype b responsible for the distinct pattern was determined and amplified by PCR; specifically a point mutation was identified in glycoprotein B gene, on the BstEII restriction site, which generates the profile specific of BoHV-5b. Conclusions This is the first report of circulation of BoHV-5a in Argentina as the prevailing subtype. Therefore the circulation of BoHV-5b was restricted to a few years in Argentina, speculating that this subtype was not able to be maintained in the bovine population. The mutation in the gB gene is associated with the difference in the restriction patterns between subtypes "a" and "b".

  1. Calibration of SAR probes in waveguide at 900 MHz

    International Nuclear Information System (INIS)

    Jokela, K.; Puranen, L.; Hyysalo, P.

    1998-01-01

    The radiation safety tests for hand-held mobile phones require precise calibration of the small electric field probes used for the measurement of SAR in phantoms simulating the human body. In this study a calibration based on a rectangular waveguide was developed for SAR calibrations at 900 MHz

  2. UAV CAMERAS: OVERVIEW AND GEOMETRIC CALIBRATION BENCHMARK

    Directory of Open Access Journals (Sweden)

    M. Cramer

    2017-08-01

    Full Text Available Different UAV platforms and sensors are used in mapping already, many of them equipped with (sometimes modified cameras as known from the consumer market. Even though these systems normally fulfil their requested mapping accuracy, the question arises, which system performs best? This asks for a benchmark, to check selected UAV based camera systems in well-defined, reproducible environments. Such benchmark is tried within this work here. Nine different cameras used on UAV platforms, representing typical camera classes, are considered. The focus is laid on the geometry here, which is tightly linked to the process of geometrical calibration of the system. In most applications the calibration is performed in-situ, i.e. calibration parameters are obtained as part of the project data itself. This is often motivated because consumer cameras do not keep constant geometry, thus, cannot be seen as metric cameras. Still, some of the commercial systems are quite stable over time, as it was proven from repeated (terrestrial calibrations runs. Already (pre-calibrated systems may offer advantages, especially when the block geometry of the project does not allow for a stable and sufficient in-situ calibration. Especially for such scenario close to metric UAV cameras may have advantages. Empirical airborne test flights in a calibration field have shown how block geometry influences the estimated calibration parameters and how consistent the parameters from lab calibration can be reproduced.

  3. Uav Cameras: Overview and Geometric Calibration Benchmark

    Science.gov (United States)

    Cramer, M.; Przybilla, H.-J.; Zurhorst, A.

    2017-08-01

    Different UAV platforms and sensors are used in mapping already, many of them equipped with (sometimes) modified cameras as known from the consumer market. Even though these systems normally fulfil their requested mapping accuracy, the question arises, which system performs best? This asks for a benchmark, to check selected UAV based camera systems in well-defined, reproducible environments. Such benchmark is tried within this work here. Nine different cameras used on UAV platforms, representing typical camera classes, are considered. The focus is laid on the geometry here, which is tightly linked to the process of geometrical calibration of the system. In most applications the calibration is performed in-situ, i.e. calibration parameters are obtained as part of the project data itself. This is often motivated because consumer cameras do not keep constant geometry, thus, cannot be seen as metric cameras. Still, some of the commercial systems are quite stable over time, as it was proven from repeated (terrestrial) calibrations runs. Already (pre-)calibrated systems may offer advantages, especially when the block geometry of the project does not allow for a stable and sufficient in-situ calibration. Especially for such scenario close to metric UAV cameras may have advantages. Empirical airborne test flights in a calibration field have shown how block geometry influences the estimated calibration parameters and how consistent the parameters from lab calibration can be reproduced.

  4. Summary of transient management

    International Nuclear Information System (INIS)

    Sheron, B.W.

    1984-01-01

    This chapter reviews the papers on evaluating and managing transients, as given at the American Nuclear Society Topical Meeting on Anticipated and Abnormal Plant Transients in Light Water Reactors. Transient management involves both diverse and related areas such as analysis, systems performance, human performance, procedures, and training. State-of-the-art simulators are being improved to solve the constitutive equations for two-phase fluid flow by the development of a new generation of analysis codes which are simpler and faster than earlier codes. Both the US NRC and the nuclear industry are criticized for solving problems by adding additional requirements for the reactor operator rather than by recognizing design deficiencies

  5. Calibration of Geodetic Instruments

    Directory of Open Access Journals (Sweden)

    Marek Bajtala

    2005-06-01

    Full Text Available The problem of metrology and security systems of unification, correctness and standard reproducibilities belong to the preferred requirements of theory and technical practice in geodesy. Requirements on the control and verification of measured instruments and equipments increase and the importance and up-to-date of calibration get into the foreground. Calibration possibilities of length-scales (of electronic rangefinders and angle-scales (of horizontal circles of geodetic instruments. Calibration of electronic rangefinders on the linear comparative baseline in terrain. Primary standard of planar angle – optical traverse and its exploitation for calibration of the horizontal circles of theodolites. The calibration equipment of the Institute of Slovak Metrology in Bratislava. The Calibration process and results from the calibration of horizontal circles of selected geodetic instruments.

  6. A three-field model of transient 3D multiphase, three-component flow for the computer code IV A3. Pt. 2

    International Nuclear Information System (INIS)

    Kolev, N.I.

    1991-12-01

    The second part of the IVA3 code description contains the constitutive models used for the interfacial transport phenomena and the code validation results. First 20 flow patterns are defined and the transition criteria are discussed. The dynamic fragmentation and coalescence models used in IVA3 are documented. After the description of the models for predicting the flow patterns and flow structure sizes the models for the interfacial mechanical interaction are described. Finally the models for interfacial heat and mass transfer are given with emphasis on the time averaging of the heat and mass source terms. The code validation passes several stages from simple tests on well known benchmarks trough simulation of one-, two-, and three-phase flows in simple and complicated geometries. The gradually increase of the complexity and the successful comparison of the predictions with experimental data is the main characteristic of the verification procedure. It is demonstrated by several examples that IVA3 is a powerful tool for three-fluid modelling of complicated three-phase flows in complex geometry with strong thermal and mechanical interaction between the velocity fields. (orig.) [de

  7. Characterization of the neutron field of the {sup 241}AmBe in a calibration room; Caracterizacion del campo de neutrones del {sup 241} AmBe en una sala para calibracion

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H.R. [UAZ, A.P. 336, 98000 Zacatecas (Mexico); Gallego, E.; Lorente, A. [Universidad Politecnica de Madrid, C. Jose Gutierrez Abascal 2, 28006 Madrid (Spain)] e-mail: rvega@cantera.reduaz.mx

    2003-07-01

    The field of neutrons produced by an isotopic source of neutrons of {sup 241} Am Be had been characterized. The characterization was carried out modeling those relevant details of the calibration room and simulating the neutron transport at different distances of the source. The calculated spectra were used to determine the equivalent environmental dose rate. A series of experiments were carried out with the Bonner sphere spectrometric system to measure the spectra in the same points where the calculations were carried out and with these spectra the rates of environmental dose were calculated. By means of a one sphere dosemeter type Berthold the rates of environmental dose were measured. To the one to compare the calculated spectra and measured its were found small differences in the group of the thermal neutrons due to the elementary composition used during the simulation. When comparing the derived rates starting from the calculated spectra with those measured it was found a maxim difference smaller to 13%. (Author)

  8. An accurate online calibration system based on combined clamp-shape coil for high voltage electronic current transformers.

    Science.gov (United States)

    Li, Zhen-hua; Li, Hong-bin; Zhang, Zhi

    2013-07-01

    Electronic transformers are widely used in power systems because of their wide bandwidth and good transient performance. However, as an emerging technology, the failure rate of electronic transformers is higher than that of traditional transformers. As a result, the calibration period needs to be shortened. Traditional calibration methods require the power of transmission line be cut off, which results in complicated operation and power off loss. This paper proposes an online calibration system which can calibrate electronic current transformers without power off. In this work, the high accuracy standard current transformer and online operation method are the key techniques. Based on the clamp-shape iron-core coil and clamp-shape air-core coil, a combined clamp-shape coil is designed as the standard current transformer. By analyzing the output characteristics of the two coils, the combined clamp-shape coil can achieve verification of the accuracy. So the accuracy of the online calibration system can be guaranteed. Moreover, by employing the earth potential working method and using two insulating rods to connect the combined clamp-shape coil to the high voltage bus, the operation becomes simple and safe. Tests in China National Center for High Voltage Measurement and field experiments show that the proposed system has a high accuracy of up to 0.05 class.

  9. An accurate online calibration system based on combined clamp-shape coil for high voltage electronic current transformers

    International Nuclear Information System (INIS)

    Li, Zhen-hua; Li, Hong-bin; Zhang, Zhi

    2013-01-01

    Electronic transformers are widely used in power systems because of their wide bandwidth and good transient performance. However, as an emerging technology, the failure rate of electronic transformers is higher than that of traditional transformers. As a result, the calibration period needs to be shortened. Traditional calibration methods require the power of transmission line be cut off, which results in complicated operation and power off loss. This paper proposes an online calibration system which can calibrate electronic current transformers without power off. In this work, the high accuracy standard current transformer and online operation method are the key techniques. Based on the clamp-shape iron-core coil and clamp-shape air-core coil, a combined clamp-shape coil is designed as the standard current transformer. By analyzing the output characteristics of the two coils, the combined clamp-shape coil can achieve verification of the accuracy. So the accuracy of the online calibration system can be guaranteed. Moreover, by employing the earth potential working method and using two insulating rods to connect the combined clamp-shape coil to the high voltage bus, the operation becomes simple and safe. Tests in China National Center for High Voltage Measurement and field experiments show that the proposed system has a high accuracy of up to 0.05 class

  10. Transient Ischemic Attack

    Medline Plus

    Full Text Available ... Ischemic Attack TIA , or transient ischemic attack, is a "mini stroke" that occurs when a blood clot blocks an artery for a short time. The only difference between a stroke ...

  11. Transient Ischemic Attack

    Medline Plus

    Full Text Available ... TIA , or transient ischemic attack, is a "mini stroke" that occurs when a blood clot blocks an ... a short time. The only difference between a stroke and TIA is that with TIA the blockage ...

  12. Experimental verification of transient nonlinear acoustical holography.

    Science.gov (United States)

    Jing, Yun; Cannata, Jonathan; Wang, Tianren

    2013-05-01

    This paper presents an experimental study on nonlinear transient acoustical holography. The validity and effectiveness of a recently proposed nonlinear transient acoustical holography algorithm is evaluated in the presence of noise. The acoustic field measured on a post-focal plane of a high-intensity focused transducer is backward projected to reconstruct the pressure distributions on the focal and a pre-focal plane, which are shown to be in good agreement with the measurement. In contrast, the conventional linear holography produces erroneous results in this case where the nonlinearity involved is strong. Forward acoustic field projection was also carried out to further verify the algorithm.

  13. Establishment of 6- to 7-MeV high-energy gamma-ray calibration fields produced using the 4-MV Van de Graaff accelerator at the Facility of Radiation Standards, Japan Atomic Energy Agency.

    Science.gov (United States)

    Kowatari, Munehiko; Tanimura, Yoshihiko

    2016-03-01

    A 6- to 7-MeV high-energy gamma-ray field, produced by the nuclear reaction of (19)F(p, αγ)(16)O, has been established at the Facility of Radiation Standards (FRS) in Japan Atomic Energy Agency for calibration purposes. Basic dosimetric quantities (i.e. averaged gamma-ray energy, air-kerma-to-dose equivalent conversion coefficients and air kerma rates at the point of test) have been precisely determined through a series of measurements using the NaI(Tl) spectrometer and an ionisation chamber coupled with an appropriate build-up material. The measurements obtained comply with values recommended by the International Organization for Standardization for an 'R-F field'. The neutron contamination component for the field has also been measured by means of a conventional neutron dose equivalent meter (the so-called neutron rem-counter) and determined to be ∼ 0.5 % of the total dose equivalent. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Calibration of a microprobe array

    International Nuclear Information System (INIS)

    Schrader, Christian; Tutsch, Rainer

    2012-01-01

    Conventional coordinate measurement machines are not well adapted to the specific needs for the measurement of mechanical microstructures that are made in a highly parallel production process. In particular, the increase of the measurement speed is addressed by using an array of microprobes to measure a number of objects in parallel. It consists of multiple microprobes that are etched into the same silicon substrate. The styli are glued onto a boss structure in the middle of a silicon membrane. To facilitate the alignment of an array and the underlying wafer, the array is mounted on three stacked rotational stages. Due to the production tolerances, the positions of the touching balls of the probes relative to their pivot have to be calibrated. The probe sensitivity is another field of calibration. This paper describes an efficient calibration procedure of the probe array which is usable for arrays with a large number of probes and different array layouts. The validation method of this procedure is explained and calibration results are discussed (paper)

  15. COMPARISON OF METHODS FOR GEOMETRIC CAMERA CALIBRATION

    Directory of Open Access Journals (Sweden)

    J. Hieronymus

    2012-09-01

    Full Text Available Methods for geometric calibration of cameras in close-range photogrammetry are established and well investigated. The most common one is based on test-fields with well-known pattern, which are observed from different directions. The parameters of a distortion model are calculated using bundle-block-adjustment-algorithms. This methods works well for short focal lengths, but is essentially more problematic to use with large focal lengths. Those would require very large test-fields and surrounding space. To overcome this problem, there is another common method for calibration used in remote sensing. It employs measurements using collimator and a goniometer. A third calibration method uses diffractive optical elements (DOE to project holograms of well known pattern. In this paper these three calibration methods are compared empirically, especially in terms of accuracy. A camera has been calibrated with those methods mentioned above. All methods provide a set of distortion correction parameters as used by the photogrammetric software Australis. The resulting parameter values are very similar for all investigated methods. The three sets of distortion parameters are crosscompared against all three calibration methods. This is achieved by inserting the gained distortion parameters as fixed input into the calibration algorithms and only adjusting the exterior orientation. The RMS (root mean square of the remaining image coordinate residuals are taken as a measure of distortion correction quality. There are differences resulting from the different calibration methods. Nevertheless the measure is small for every comparison, which means that all three calibration methods can be used for accurate geometric calibration.

  16. Searching for MHz Transients with the VLA Low-band Ionosphere and Transient Experiment (VLITE)

    Science.gov (United States)

    Polisensky, Emil; Peters, Wendy; Giacintucci, Simona; Clarke, Tracy; Kassim, Namir E.; hyman, Scott D.; van der Horst, Alexander; Linford, Justin; Waldron, Zach; Frail, Dale

    2018-01-01

    NRL and NRAO have expanded the low frequency capabilities of the VLA through the VLA Low-band Ionosphere and Transient Experiment (VLITE, http://vlite.nrao.edu/ ), effectively making the instrument two telescopes in one. VLITE is a commensal observing system that harvests data from the prime focus in parallel with normal Cassegrain focus observing on a subset of VLA antennas. VLITE provides over 6000 observing hours per year in a > 5 square degree field-of-view using 64 MHz bandwidth centered on 352 MHz. By operating in parallel, VLITE offers invaluable low frequency data to targeted observations of transient sources detected at higher frequencies. With arcsec resolution and mJy sensitivity, VLITE additionally offers great potential for blind searches of rarer radio-selected transients. We use catalog matching software on the imaging products from the daily astrophysics pipeline and the LOFAR Transients Pipeline (TraP) on repeated observations of the same fields to search for coherent and incoherent astronomical transients on timescales of a few seconds to years. We present the current status of the VLITE transient science program from its initial deployment on 10 antennas in November 2014 through its expansion to 16 antennas in the summer of 2017. Transient limits from VLITE’s first year of operation (Polisensky et al. 2016) are updated per the most recent analysis.

  17. Calibration platforms for gravimeters

    Science.gov (United States)

    Vanruymbeke, M.

    Several methods investigated in order to calibrate gravimeters by the inertial acceleration produced by a vertical motion are described. The VRR 8601 calibrating platform is especially designed to calibrate La Coste and Romberg gravimeters. For heavier gravimeters such as tidal La Coste or superconducting instruments, two other principles are possible to lift up sinusoidally the platform: a mercury crapaudine or the rotation on an inclined plane.

  18. Calibration and field testing of cavity ring-down laser spectrometers measuring CH4, CO2, and δ13CH4 deployed on towers in the Marcellus Shale region

    Science.gov (United States)

    Miles, Natasha L.; Martins, Douglas K.; Richardson, Scott J.; Rella, Christopher W.; Arata, Caleb; Lauvaux, Thomas; Davis, Kenneth J.; Barkley, Zachary R.; McKain, Kathryn; Sweeney, Colm

    2018-03-01

    Four in situ cavity ring-down spectrometers (G2132-i, Picarro, Inc.) measuring methane dry mole fraction (CH4), carbon dioxide dry mole fraction (CO2), and the isotopic ratio of methane (δ13CH4) were deployed at four towers in the Marcellus Shale natural gas extraction region of Pennsylvania. In this paper, we describe laboratory and field calibration of the analyzers for tower-based applications and characterize their performance in the field for the period January-December 2016. Prior to deployment, each analyzer was tested using bottles with various isotopic ratios, from biogenic to thermogenic source values, which were diluted to varying degrees in zero air, and an initial calibration was performed. Furthermore, at each tower location, three field tanks were employed, from ambient to high mole fractions, with various isotopic ratios. Two of these tanks were used to adjust the calibration of the analyzers on a daily basis. We also corrected for the cross-interference from ethane on the isotopic ratio of methane. Using an independent field tank for evaluation, the standard deviation of 4 h means of the isotopic ratio of methane difference from the known value was found to be 0.26 ‰ δ13CH4. Following improvements in the field tank testing scheme, the standard deviation of 4 h means was 0.11 ‰, well within the target compatibility of 0.2 ‰. Round-robin style testing using tanks with near-ambient isotopic ratios indicated mean errors of -0.14 to 0.03 ‰ for each of the analyzers. Flask to in situ comparisons showed mean differences over the year of 0.02 and 0.08 ‰, for the east and south towers, respectively. Regional sources in this region were difficult to differentiate from strong perturbations in the background. During the afternoon hours, the median differences of the isotopic ratio measured at three of the towers, compared to the background tower, were &minus0.15 to 0.12 ‰ with standard deviations of the 10 min isotopic ratio differences of 0.8

  19. Calibration and field testing of cavity ring-down laser spectrometers measuring CH4, CO2, and δ13CH4 deployed on towers in the Marcellus Shale region

    Directory of Open Access Journals (Sweden)

    N. L. Miles

    2018-03-01

    Full Text Available Four in situ cavity ring-down spectrometers (G2132-i, Picarro, Inc. measuring methane dry mole fraction (CH4, carbon dioxide dry mole fraction (CO2, and the isotopic ratio of methane (δ13CH4 were deployed at four towers in the Marcellus Shale natural gas extraction region of Pennsylvania. In this paper, we describe laboratory and field calibration of the analyzers for tower-based applications and characterize their performance in the field for the period January–December 2016. Prior to deployment, each analyzer was tested using bottles with various isotopic ratios, from biogenic to thermogenic source values, which were diluted to varying degrees in zero air, and an initial calibration was performed. Furthermore, at each tower location, three field tanks were employed, from ambient to high mole fractions, with various isotopic ratios. Two of these tanks were used to adjust the calibration of the analyzers on a daily basis. We also corrected for the cross-interference from ethane on the isotopic ratio of methane. Using an independent field tank for evaluation, the standard deviation of 4 h means of the isotopic ratio of methane difference from the known value was found to be 0.26 ‰ δ13CH4. Following improvements in the field tank testing scheme, the standard deviation of 4 h means was 0.11 ‰, well within the target compatibility of 0.2 ‰. Round-robin style testing using tanks with near-ambient isotopic ratios indicated mean errors of −0.14 to 0.03 ‰ for each of the analyzers. Flask to in situ comparisons showed mean differences over the year of 0.02 and 0.08 ‰, for the east and south towers, respectively. Regional sources in this region were difficult to differentiate from strong perturbations in the background. During the afternoon hours, the median differences of the isotopic ratio measured at three of the towers, compared to the background tower, were &minus0.15 to 0.12 ‰ with standard deviations of the 10

  20. Calibrating nacelle lidars

    DEFF Research Database (Denmark)

    Courtney, Michael

    presents four concepts for performing such a nacelle lidar calibration. Of the four methods, two are found to be immediately relevant and are pursued in some detail. The first of these is a line of sight calibration method in which both lines of sight (for a two beam lidar) are individually calibrated...... by accurately aligning the beam to pass close to a reference wind speed sensor. A testing procedure is presented, reporting requirements outlined and the uncertainty of the method analysed. It is seen that the main limitation of the line of sight calibration method is the time required to obtain...

  1. ATLAS Muon Calibration Frameowrk

    CERN Document Server

    Carlino, Dr; The ATLAS collaboration; Jha, Dr; Kortner, Dr; Mazzaferro, Dr; Petrucci, Dr; Salvo, Dr; Simone, Dr; WALKER, Dr

    2010-01-01

    Automated calibration of the ATLAS detector subsystems ( like MDT and RPC chambers) are being performed at remote sites, called Remote Calibration Centers. The calibration data for the assigned part of the detector are being processed at these centers and send the result back to CERN for general use in reconstruction and analysis. In this work, we present the recent developments in data discovery mechanism and integration of Ganga as a backend which allows for the specification, submission, bookkeeping and post processing of calibration tasks on a wide set of available heterogeneous resources at remote centers.

  2. ATLAS Muon Calibration Framework

    CERN Document Server

    CARLINO, G; The ATLAS collaboration; Di Simone, A; Doria, A; Jha, MK; Mazzaferro, L; Walker, R

    2011-01-01

    Automated calibration of the ATLAS detector subsystems ( like MDT and RPC chambers) are being performed at remote sites, called Remote Calibration Centers. The calibration data for the assigned part of the detector are being processed at these centers and send the result back to CERN for general use in reconstruction and analysis. In this work, we present the recent developments in data discovery mechanism and integration of Ganga as a backend which allows for the specification, submission, bookkeeping and post processing of calibration tasks on a wide set of available heterogeneous resources at remote centers.

  3. RF impedance measurement calibration

    International Nuclear Information System (INIS)

    Matthews, P.J.; Song, J.J.

    1993-01-01

    The intent of this note is not to explain all of the available calibration methods in detail. Instead, we will focus on the calibration methods of interest for RF impedance coupling measurements and attempt to explain: (1). The standards and measurements necessary for the various calibration techniques. (2). The advantages and disadvantages of each technique. (3). The mathematical manipulations that need to be applied to the measured standards and devices. (4). An outline of the steps needed for writing a calibration routine that operated from a remote computer. For further details of the various techniques presented in this note, the reader should consult the references

  4. The 2007 ESO Instrument Calibration Workshop

    CERN Document Server

    Kaufer, Andreas; ESO Workshop

    2008-01-01

    The 2007 ESO Instrument Calibration workshop brought together more than 120 participants with the objective to a) foster the sharing of information, experience and techniques between observers, instrument developers and instrument operation teams, b) review the actual precision and limitations of the applied instrument calibration plans, and c) collect the current and future requirements by the ESO users. These present proceedings include the majority of the workshop’s contributions and document the status quo of instrument calibration at ESO in large detail. Topics covered are: Optical Spectro-Imagers, Optical Multi-Object Spectrographs, NIR and MIR Spectro-Imagers, High-Resolution Spectrographs, Integral Field Spectrographs, Adaptive Optics Instruments, Polarimetric Instruments, Wide Field Imagers, Interferometric Instruments as well as other crucial aspects such as data flow, quality control, data reduction software and atmospheric effects. It was stated in the workshop that "calibration is a life-long l...

  5. Calibration of a groundwater flow and contaminant transport computer model: Progress toward model validation

    International Nuclear Information System (INIS)

    Lee, R.R.; Ketelle, R.H.; Bownds, J.M.; Rizk, T.A.

    1989-09-01

    A groundwater flow and contaminant transport model calibration was performed to evaluate the ability of a typical, verified computer code to simulate groundwater tracer migration in the shallow aquifer of the Conasauga Group. Previously, standard practice site data interpretation and groundwater modeling resulted in inaccurate simulations of contaminant transport direction and rate compared with tracer migration behavior. The site's complex geology, the presence of flow in both fractured and weathered zones, and the transient character of flow in the shallow aquifer combined to render inaccurate assumptions of steady-state, homogeneous groundwater flow. The improvement of previous modeling results required iterative phases of conceptual model development, hypothesis testing, site field investigations, and modeling. The activities focused on generating a model grid that was compatible with site hydrogeologic conditions and on establishing boundary conditions based on site data. An annual average water table configuration derived from site data and fixed head boundary conditions was used as input for flow modeling. The contaminant transport model was combined with the data-driven flow model to obtain a preliminary contaminant plume. Calibration of the transport code was achieved by comparison with site tracer migration and concentration data. This study documents the influence of fractures and the transient character of flow and transport in the shallow aquifer. Although compatible with porous medium theory, site data demonstrate that the tracer migration pathway would not be anticipated using conventional porous medium analysis. 126 figs., 22 refs., 5 tabs

  6. TECHNIQUE OF ESTIMATION OF ERROR IN THE REFERENCE VALUE OF THE DOSE DURING THE LINEAR ACCELERATOR RADIATION OUTPUT CALIBRATION PROCEDURE. Part 2. Dependence on the characteristics of collimator, optical sourse-distance indicator, treatment field, lasers and treatment couch

    Directory of Open Access Journals (Sweden)

    Y. V. Tsitovich

    2016-01-01

    Full Text Available To ensure the safety of radiation oncology patients needed to provide consistent functional characteristics of the medical linear accelerators, which affect the accuracy of dose delivery. To this end, their quality control procedures, which include the calibration of radiation output of the linac, the error in determining the dose reference value during which must not exceed 2 %, is provided. The aim is to develop a methodology for determining the error (difference between a measured value of quantity and its true value in determining this value, depending on the characteristics of the collimator, the source to surface distance pointer, lasers, radiation field and treatment table. To achieve the objectives have been carried out dosimetric measurements of Trilogy S/N 3567 linac dose distributions, on the basis of which dose errors depending on the accuracy setting the zero position of the collimator, the deviation of the collimator rotation isocenter, the sourcesurface distance pointer accuracy, field size accuracy, the accuracy of lasers and treatment table positioning were obtained. It was found that the greatest impact on the value of the error has the error in the optical SSD indication and the error in the lasers position in the plane perpendicular to the plane of incidence of the radiation beam (up to 3.64 % for the energy of 6 MV. Dose errors caused by error in the field size were different for two photon energies, and reached 2.54 % for 6 MeV and 1.33% for 18 MeV. Errors caused by the rest of the characteristic do not exceed 1 %. Thus, it is possible to express the results of periodic quality control of these devices integrated in linac in terms of dose and use them to conduct a comprehensive assessment of the possibility of clinical use of a linear accelerator for oncology patients irradiation on the basis of the calibration of radiation output in case of development of techniques that allow to analyze the influence dosimetric

  7. Calibration of high resolution digital camera based on different photogrammetric methods

    Science.gov (United States)

    Hamid, N. F. A.; Ahmad, A.

    2014-02-01

    This paper presents method of calibrating high-resolution digital camera based on different configuration which comprised of stereo and convergent. Both methods are performed in the laboratory and in the field calibration. Laboratory calibration is based on a 3D test field where a calibration plate of dimension 0.4 m × 0.4 m with grid of targets at different height is used. For field calibration, it uses the same concept of 3D test field which comprised of 81 target points located on a flat ground and the dimension is 9 m × 9 m. In this study, a non-metric high resolution digital camera called Canon Power Shot SX230 HS was calibrated in the laboratory and in the field using different configuration for data acquisition. The aim of the calibration is to investigate the behavior of the internal digital camera whether all the digital camera parameters such as focal length, principal point and other parameters remain the same or vice-versa. In the laboratory, a scale bar is placed in the test field for scaling the image and approximate coordinates were used for calibration process. Similar method is utilized in the field calibration. For both test fields, the digital images were acquired within short period using stereo and convergent configuration. For field calibration, aerial digital images were acquired using unmanned aerial vehicle (UAV) system. All the images were processed using photogrammetric calibration software. Different calibration results were obtained for both laboratory and field calibrations. The accuracy of the results is evaluated based on standard deviation. In general, for photogrammetric applications and other applications the digital camera must be calibrated for obtaining accurate measurement or results. The best method of calibration depends on the type of applications. Finally, for most applications the digital camera is calibrated on site, hence, field calibration is the best method of calibration and could be employed for obtaining accurate

  8. Site Calibration report

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Vesth, Allan

    The report describes site calibration measurements carried out on a site in Denmark. The measurements are carried out in accordance to Ref. [1]. The site calibration is carried out before a power performance measurement on a given turbine to clarify the influence from the terrain on the ratio...

  9. Sandia WIPP calibration traceability

    Energy Technology Data Exchange (ETDEWEB)

    Schuhen, M.D. [Sandia National Labs., Albuquerque, NM (United States); Dean, T.A. [RE/SPEC, Inc., Albuquerque, NM (United States)

    1996-05-01

    This report summarizes the work performed to establish calibration traceability for the instrumentation used by Sandia National Laboratories at the Waste Isolation Pilot Plant (WIPP) during testing from 1980-1985. Identifying the calibration traceability is an important part of establishing a pedigree for the data and is part of the qualification of existing data. In general, the requirement states that the calibration of Measuring and Test equipment must have a valid relationship to nationally recognized standards or the basis for the calibration must be documented. Sandia recognized that just establishing calibration traceability would not necessarily mean that all QA requirements were met during the certification of test instrumentation. To address this concern, the assessment was expanded to include various activities.

  10. Improvement of the calibration technique of clinical dosemeters

    International Nuclear Information System (INIS)

    Ehlin Caldas, L.V.

    1988-08-01

    Clinical dosemeters constituted of ionization chambers connected to electrometers are usually calibrated as whole systems in appropriate radiation fields against secondary standard dosemeters in calibration laboratories. This work reports on a technique of component calibration procedures separately for chambers and electrometers applied in the calibration laboratory of IPEN-CNEN, Brazil. For electrometer calibration, redundancy was established by using a standard capacitor of 1000pF (General Radio, USA) and a standard current source based on air ionization with Sr 90 (PTW, Germany). The results from both methods applied to several electrometers of clinical dosemeters agreed within 0.4%. The calibration factors for the respective chambers were determined by intercomparing their response to the response of a certified calibrated chamber in a Co 60 calibration beam using a Keithley electrometer type 617. Overall calibration factors compared with the product of the respective component calibration factors for the tested dosemeters showed an agreement better than 0.7%. This deviation has to be considered with regard to an uncertainty of 2.5% in routine calibration of clinical dosemeters. Calibration by components permits to calibrate ionization chambers one at a time for those hospitals who have several ionization chambers but only one electrometer (small hospitals, hospitals in developing countries). 6 refs, 2 figs, 2 tabs

  11. Guidelines on calibration of neutron measuring devices

    International Nuclear Information System (INIS)

    Burger, G.

    1988-01-01

    The International Atomic Energy Agency and the World Health Organization have agreed to establish an IAEA/WHO Network of Secondary Standard Dosimetry Laboratories (SSDLs) in order to improve accuracy in applied radiation dosimetry throughout the world. These SSDLs must be equipped with, and maintain, secondary standard instruments, which have been calibrated against primary standards, and must be nominated by their governments for membership of the network. The majority of the existing SSDLs were established primarily to work with photon radiation (X-rays and gamma rays). Neutron sources are, however, increasingly being applied in industrial processes, research, nuclear power development and radiation biology and medicine. Thus, it is desirable that the SSDLs in countries using neutron sources on a regular basis should also fulfil the minimum requirements to calibrate neutron measuring devices. It is the primary purpose of this handbook to provide guidance on calibration of instruments for radiation protection. A calibration laboratory should also be in a position to calibrate instrumentation being used for the measurement of kerma and absorbed dose and their corresponding rates. This calibration is generally done with photons. In addition, since each neutron field is usually contaminated by photons produced in the source or by scatter in the surrounding media, neutron protection instrumentation has to be tested with respect to its intrinsic photon response. The laboratory will therefore need to possess equipment for photon calibration. This publication deals primarily with methods of applying radioactive neutron sources for calibration of instrumentation, and gives an indication of the space, manpower and facilities needed to fulfil the minimum requirements of a calibration laboratory for neutron work. It is intended to serve as a guide for centres about to start on neutron dosimetry standardization and calibration. 94 refs, 8 figs, 12 tabs

  12. Transient Heat Conduction

    DEFF Research Database (Denmark)

    Rode, Carsten

    1998-01-01

    Analytical theory of transient heat conduction.Fourier's law. General heat conducation equation. Thermal diffusivity. Biot and Fourier numbers. Lumped analysis and time constant. Semi-infinite body: fixed surface temperature, convective heat transfer at the surface, or constant surface heat flux...

  13. Calibrating the sensing-coil radius by feed-down from a harmonic reference

    CERN Document Server

    Arpaia, Pasquale; Koster, Oliver; Russenschuck, Stephan; Severino, Giordana

    2015-01-01

    a harmonic field error of higher order is present in the calibration magnet. This also yields a calibration whena sextupole magnet is used, for example, when an insitu calibration is required. The proposed calibration method has been validated by simulations with the

  14. Fiber optic neutron imaging system: calibration

    International Nuclear Information System (INIS)

    Malone, R.M.; Gow, C.E.; Thayer, D.R.

    1981-01-01

    Two neutron imaging experiments using fiber optics have been performed at the Nevada Test Site. In each experiment, an array of scintillator fluor tubes is exposed to neutrons. Light is coupled out through radiation resistant PCS fibers (8-m long) into high-bandwidth, graded index fibers. For image reconstruction to be accurate, common timing differences and transmission variations between fiber optic channels are needed. The calibration system featured a scanning pulsed dye laser, a specially designed fiber optic star coupler, a tektronix 7912AD transient digitizer, and a DEC PDP 11/34 computing system

  15. Compressive Transient Imaging

    KAUST Repository

    Sun, Qilin

    2017-04-01

    High resolution transient/3D imaging technology is of high interest in both scientific research and commercial application. Nowadays, all of the transient imaging methods suffer from low resolution or time consuming mechanical scanning. We proposed a new method based on TCSPC and Compressive Sensing to achieve a high resolution transient imaging with a several seconds capturing process. Picosecond laser sends a serious of equal interval pulse while synchronized SPAD camera\\'s detecting gate window has a precise phase delay at each cycle. After capturing enough points, we are able to make up a whole signal. By inserting a DMD device into the system, we are able to modulate all the frames of data using binary random patterns to reconstruct a super resolution transient/3D image later. Because the low fill factor of SPAD sensor will make a compressive sensing scenario ill-conditioned, We designed and fabricated a diffractive microlens array. We proposed a new CS reconstruction algorithm which is able to denoise at the same time for the measurements suffering from Poisson noise. Instead of a single SPAD senor, we chose a SPAD array because it can drastically reduce the requirement for the number of measurements and its reconstruction time. Further more, it not easy to reconstruct a high resolution image with only one single sensor while for an array, it just needs to reconstruct small patches and a few measurements. In this thesis, we evaluated the reconstruction methods using both clean measurements and the version corrupted by Poisson noise. The results show how the integration over the layers influence the image quality and our algorithm works well while the measurements suffer from non-trival Poisson noise. It\\'s a breakthrough in the areas of both transient imaging and compressive sensing.

  16. Vicarious Calibration of Beijing-1 Multispectral Imagers

    Directory of Open Access Journals (Sweden)

    Zhengchao Chen

    2014-02-01

    Full Text Available For on-orbit calibration of the Beijing-1 multispectral imagers (Beijing-1/MS, a field calibration campaign was performed at the Dunhuang calibration site during September and October of 2008. Based on the in situ data and images from Beijing-1 and Terra/Moderate Resolution Imaging Spectroradiometer (MODIS, three vicarious calibration methods (i.e., reflectance-based, irradiance-based, and cross-calibration were used to calculate the top-of-atmosphere (TOA radiance of Beijing-1. An analysis was then performed to determine or identify systematic and accidental errors, and the overall uncertainty was assessed for each individual method. The findings show that the reflectance-based method has an uncertainty of more than 10% if the aerosol optical depth (AOD exceeds 0.2. The cross-calibration method is able to reach an error level within 7% if the images are selected carefully. The final calibration coefficients were derived from the irradiance-based data for 6 September 2008, with an uncertainty estimated to be less than 5%.

  17. Lidar to lidar calibration

    DEFF Research Database (Denmark)

    Fernandez Garcia, Sergio; Villanueva, Héctor

    This report presents the result of the lidar to lidar calibration performed for ground-based lidar. Calibration is here understood as the establishment of a relation between the reference lidar wind speed measurements with measurement uncertainties provided by measurement standard and corresponding...... lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from the reference lidar measurements are given for information only....

  18. Explosive and radio-selected Transients: Transient Astronomy with ...

    Indian Academy of Sciences (India)

    40

    SKA), large samples of explosive transients are expected to be discovered. Radio wavelengths, especially in commensal survey mode, are particularly well suited for uncovering the complex transient phenomena. This is because ob- servations ...

  19. Calibration Fixture For Anemometer Probes

    Science.gov (United States)

    Lewis, Charles R.; Nagel, Robert T.

    1993-01-01

    Fixture facilitates calibration of three-dimensional sideflow thermal anemometer probes. With fixture, probe oriented at number of angles throughout its design range. Readings calibrated as function of orientation in airflow. Calibration repeatable and verifiable.

  20. Calibration with respect to hydraulic head measurements in stochastic simulation of groundwater flow - a numerical experiment using MATLAB

    International Nuclear Information System (INIS)

    Eriksson, L.O.; Oppelstrup, J.

    1994-12-01

    A simulator for 2D stochastic continuum simulation and inverse modelling of groundwater flow has been developed. The simulator is well suited for method evaluation and what-if simulation and written in MATLAB. Conductivity fields are generated by unconditional simulation, conditional simulation on measured conductivities and calibration on both steady-state head measurements and transient head histories. The fields can also include fracture zones and zones with different mean conductivities. Statistics of conductivity fields and particle travel times are recorded in Monte-Carlo simulations. The calibration uses the pilot point technique, an inverse technique proposed by RamaRao and LaVenue. Several Kriging procedures are implemented, among others Kriging neighborhoods. In cases where the expectation of the log-conductivity in the truth field is known the nonbias conditions can be omitted, which will make the variance in the conditionally simulated conductivity fields smaller. A simulation experiment, resembling the initial stages of a site investigation and devised in collaboration with SKB, is performed and interpreted. The results obtained in the present study show less uncertainty than in our preceding study. This is mainly due to the modification of the Kriging procedure but also to the use of more data. Still the large uncertainty in cases of sparse data is apparent. The variogram represents essential characteristics of the conductivity field. Thus, even unconditional simulations take account of important information. Significant improvements in variance by further conditioning will be obtained only as the number of data becomes much larger. 16 refs, 26 figs

  1. Transient selection in multicellular immune networks

    Science.gov (United States)

    Ivanchenko, M. V.

    2011-03-01

    We analyze the dynamics of a multi-clonotype naive T-cell population competing for survival signals from antigen-presenting cells. We find that this competition provides with an efficacious selection of clonotypes, making the less able and more repetitive get extinct. We uncover the scaling principles for large systems the extinction rate obeys and calibrate the model parameters to their experimental counterparts. For the first time, we estimate the physiological values of the T-cell receptor-antigen presentation profile recognition probability and T-cell clonotypes niche overlap. We demonstrate that, while the ultimate state is a stable fixed point, sequential transients dominate the dynamics over large timescales that may span over years, if not decades, in real time. We argue that what is currently viewed as "homeostasis" is a complex sequential transient process, while being quasi-stationary in the total number of T-cells only. The discovered type of sequential transient dynamics in large random networks is a novel alternative to the stable heteroclinic channel mechanism.

  2. Current capabilities of transient two-phase flow instruments

    International Nuclear Information System (INIS)

    Solbrig, C.W.; Kondic, N.N.

    1979-01-01

    The measurement of two phase flow phenomena in transient conditions representative of a Loss-of-Coolant Accident requires the use of sophisticated instruments and the further development of other instruments. Measurements made in large size pipes are often flow regime dependent. The flow regimes encountered depend upon the system geometry, transient effects, heat transfer, etc. The geometries in which these measurements must be made, the instruments which are currently used, new instruments being developed, the facilities used to calibrate these instruments, and the improvements which must be made to measurement capabilities are described

  3. Temperature corrected-calibration of GRACE's accelerometer

    Science.gov (United States)

    Encarnacao, J.; Save, H.; Siemes, C.; Doornbos, E.; Tapley, B. D.

    2017-12-01

    Since April 2011, the thermal control of the accelerometers on board the GRACE satellites has been turned off. The time series of along-track bias clearly show a drastic change in the behaviour of this parameter, while the calibration model has remained unchanged throughout the entire mission lifetime. In an effort to improve the quality of the gravity field models produced at CSR in future mission-long re-processing of GRACE data, we quantify the added value of different calibration strategies. In one approach, the temperature effects that distort the raw accelerometer measurements collected without thermal control are corrected considering the housekeeping temperature readings. In this way, one single calibration strategy can be consistently applied during the whole mission lifetime, since it is valid to thermal the conditions before and after April 2011. Finally, we illustrate that the resulting calibrated accelerations are suitable for neutral thermospheric density studies.

  4. Commutability assessment of potential reference materials using a multicenter split-patient-sample between-field-methods (twin-study) design: study within the framework of the Dutch project "Calibration 2000".

    NARCIS (Netherlands)

    Baadenhuijsen, H.; Steigstra, H.; Cobbaert, C.M.; Kuypers, A.W.H.M.; Weykamp, C.W.; Janssen, R.A.J.

    2002-01-01

    BACKGROUND: The Dutch project "Calibration 2000" aims at harmonization of laboratory results via calibration by development of commutable, matrix-based, secondary reference materials. An alternative approach to the NCCLS EP14 protocol for studying commutability of reference materials is presented,

  5. First airborne transient em survey in antarctica

    DEFF Research Database (Denmark)

    Auken, Esben; Mikucki, J. J.; Sørensen, Kurt Ingvard K.I.

    2012-01-01

    A first airborne transient electromagnetic survey was flown in Antarctica in December 2011 with the SkyTEM system. This transient airborne EM system has been optimized in Denmark for almost ten years and was specially designed for ground water mapping. The SkyTEM tool is ideal for mapping...... conductive targets, and the transient AEM method provides a better understanding of the saline ground water system for microbiology, paleoclimate studies, or geothermal potential. In this study we present preliminary results from our field survey which resulted in more than 1000 km of flight lines...... are presented here, the Taylor Valley demonstrating the promising capabilities of the geophysical method to map permafrost and the saline ground water systems....

  6. Energy Modelling and Automated Calibrations of Ancient Building Simulations: A Case Study of a School in the Northwest of Spain

    Directory of Open Access Journals (Sweden)

    Ana Ogando

    2017-06-01

    Full Text Available In the present paper, the energy performance of buildings forming a school centre in the northwest of Spain was analyzed using a transient simulation of the energy model of the school, which was developed with TRNSYS, a software of proven reliability in the field of thermal simulations. A deterministic calibration approach was applied to the initial building model to adjust the predictions to the actual performance of the school, data acquired during the temperature measurement campaign. The buildings under study were in deteriorated conditions due to poor maintenance over the years, presenting a big challenge for modelling and simulating it in a reliable way. The results showed that the proposed methodology is successful for obtaining calibrated thermal models of these types of damaged buildings, as the metrics employed to verify the final error showed a reduced normalized mean bias error (NMBE of 2.73%. It was verified that a decrease of approximately 60% in NMBE and 17% in the coefficient of variation of the root mean square error (CV(RMSE was achieved due to the calibration process. Subsequent steps were performed with the aid of new software, which was developed under a European project that enabled the automated calibration of the simulations.

  7. MAGNETIC GRADIOMETRY: Instrumentation, Calibration and Applications

    DEFF Research Database (Denmark)

    Merayo, Jose Maria Garcia

    is to be used in the forthcoming satellites CHAMP and SAC-C. Linearity, thermal, radiation, dynamic and calibration tests are carried out to qualify the magnetometer in order to ensure state-of-the-art performance with subnanotesla precision. The overall calibration of the gradiometer yields an omnidirectional...... and offers the possibility of separating the geomagnetic field sources.By using tensor algebra the spherical harmonic expansion of the magnetic field in a curl free region and its associated gradient tensor are derived. This differential tensor quantity is then expressed by spherical coordinates...

  8. SRHA calibration curve

    Data.gov (United States)

    U.S. Environmental Protection Agency — an UV calibration curve for SRHA quantitation. This dataset is associated with the following publication: Chang, X., and D. Bouchard. Surfactant-Wrapped Multiwalled...

  9. Calibrated Properties Model

    Energy Technology Data Exchange (ETDEWEB)

    C. Ahlers; H. Liu

    2000-03-12

    The purpose of this Analysis/Model Report (AMR) is to document the Calibrated Properties Model that provides calibrated parameter sets for unsaturated zone (UZ) flow and transport process models for the Yucca Mountain Site Characterization Project (YMP). This work was performed in accordance with the ''AMR Development Plan for U0035 Calibrated Properties Model REV00. These calibrated property sets include matrix and fracture parameters for the UZ Flow and Transport Model (UZ Model), drift seepage models, drift-scale and mountain-scale coupled-processes models, and Total System Performance Assessment (TSPA) models as well as Performance Assessment (PA) and other participating national laboratories and government agencies. These process models provide the necessary framework to test conceptual hypotheses of flow and transport at different scales and predict flow and transport behavior under a variety of climatic and thermal-loading conditions.

  10. Calibrated Properties Model

    Energy Technology Data Exchange (ETDEWEB)

    C.F. Ahlers, H.H. Liu

    2001-12-18

    The purpose of this Analysis/Model Report (AMR) is to document the Calibrated Properties Model that provides calibrated parameter sets for unsaturated zone (UZ) flow and transport process models for the Yucca Mountain Site Characterization Project (YMP). This work was performed in accordance with the AMR Development Plan for U0035 Calibrated Properties Model REV00 (CRWMS M&O 1999c). These calibrated property sets include matrix and fracture parameters for the UZ Flow and Transport Model (UZ Model), drift seepage models, drift-scale and mountain-scale coupled-processes models, and Total System Performance Assessment (TSPA) models as well as Performance Assessment (PA) and other participating national laboratories and government agencies. These process models provide the necessary framework to test conceptual hypotheses of flow and transport at different scales and predict flow and transport behavior under a variety of climatic and thermal-loading conditions.

  11. Traceable Pyrgeometer Calibrations

    Energy Technology Data Exchange (ETDEWEB)

    Dooraghi, Mike; Kutchenreiter, Mark; Reda, Ibrahim; Habte, Aron; Sengupta, Manajit; Andreas, Afshin; Newman, Martina; Webb, Craig

    2016-05-02

    This presentation provides a high-level overview of the progress on the Broadband Outdoor Radiometer Calibrations for all shortwave and longwave radiometers that are deployed by the Atmospheric Radiation Measurement program.

  12. SPOTS Calibration Example

    Directory of Open Access Journals (Sweden)

    Patterson E.

    2010-06-01

    Full Text Available The results are presented using the procedure outlined by the Standardisation Project for Optical Techniques of Strain measurement to calibrate a digital image correlation system. The process involves comparing the experimental data obtained with the optical measurement system to the theoretical values for a specially designed specimen. The standard states the criteria which must be met in order to achieve successful calibration, in addition to quantifying the measurement uncertainty in the system. The system was evaluated at three different displacement load levels, generating strain ranges from 289 µstrain to 2110 µstrain. At the 289 µstrain range, the calibration uncertainty was found to be 14.1 µstrain, and at the 2110 µstrain range it was found to be 28.9 µstrain. This calibration procedure was performed without painting a speckle pattern on the surface of the metal. Instead, the specimen surface was prepared using different grades of grit paper to produce the desired texture.

  13. Site Calibration, FGW

    DEFF Research Database (Denmark)

    Kock, Carsten Weber; Vesth, Allan

    This Site Calibration report is describing the results of a measured site calibration for a site in Denmark. The calibration is carried out by DTU Wind Energy in accordance with Ref.[3] and Ref.[4]. The measurement period is given. The site calibration is carried out before a power performance...... measurement on a given turbine to clarify the influence from the terrain on the ratio between the wind speed at the center of the turbine hub and at the met mast. The wind speed at the turbine is measured by a temporary mast placed at the foundation for the turbine. The site and measurement equipment...... is detailed described in [1] and [2]. All parts of the sensors and the measurement system have been installed by DTU Wind Energy....

  14. Air Data Calibration Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This facility is for low altitude subsonic altimeter system calibrations of air vehicles. Mission is a direct support of the AFFTC mission. Postflight data merge is...

  15. Calibration of thermoluminiscent materials

    International Nuclear Information System (INIS)

    Bos, A.J.J.

    1989-07-01

    In this report the relation between exposure and absorbed radiation dose in various materials is represented, on the base of recent data. With the help of this a calibration procedure for thermoluminescent materials, adapted to the IRI radiation standard is still the exposure in rontgen. In switching to the air kerma standard the calibration procedure will have to be adapted. (author). 6 refs.; 4 tabs

  16. Scanner calibration revisited

    Directory of Open Access Journals (Sweden)

    Pozhitkov Alexander E

    2010-07-01

    Full Text Available Abstract Background Calibration of a microarray scanner is critical for accurate interpretation of microarray results. Shi et al. (BMC Bioinformatics, 2005, 6, Art. No. S11 Suppl. 2. reported usage of a Full Moon BioSystems slide for calibration. Inspired by the Shi et al. work, we have calibrated microarray scanners in our previous research. We were puzzled however, that most of the signal intensities from a biological sample fell below the sensitivity threshold level determined by the calibration slide. This conundrum led us to re-investigate the quality of calibration provided by the Full Moon BioSystems slide as well as the accuracy of the analysis performed by Shi et al. Methods Signal intensities were recorded on three different microarray scanners at various photomultiplier gain levels using the same calibration slide from Full Moon BioSystems. Data analysis was conducted on raw signal intensities without normalization or transformation of any kind. Weighted least-squares method was used to fit the data. Results We found that initial analysis performed by Shi et al. did not take into account autofluorescence of the Full Moon BioSystems slide, which led to a grossly distorted microarray scanner response. Our analysis revealed that a power-law function, which is explicitly accounting for the slide autofluorescence, perfectly described a relationship between signal intensities and fluorophore quantities. Conclusions Microarray scanners respond in a much less distorted fashion than was reported by Shi et al. Full Moon BioSystems calibration slides are inadequate for performing calibration. We recommend against using these slides.

  17. Approximation Behooves Calibration

    DEFF Research Database (Denmark)

    da Silva Ribeiro, André Manuel; Poulsen, Rolf

    2013-01-01

    Calibration based on an expansion approximation for option prices in the Heston stochastic volatility model gives stable, accurate, and fast results for S&P500-index option data over the period 2005–2009.......Calibration based on an expansion approximation for option prices in the Heston stochastic volatility model gives stable, accurate, and fast results for S&P500-index option data over the period 2005–2009....

  18. Jet Calibration at ATLAS

    CERN Document Server

    Camacho, R; The ATLAS collaboration

    2011-01-01

    The accurate measurement of jets at high transverse momentum produced in proton proton collision at a centre of mass energy at \\sqrt(s)=7 TeV is important in many physics analysis at LHC. Due to the non-compensating nature of the ATLAS calorimeter, signal losses due to noise thresholds and in dead material the jet energy needs to be calibrated. Presently, the ATLAS experiment derives the jet calibration from Monte Carlo simulation using a simple correction that relates the true and the reconstructed jet energy. The jet energy scale and its uncertainty are derived from in-situ measurements and variation in the Monte Carlo simulation. Other calibration schemes have been also developed, they use hadronic cell calibrations or the topology of the jet constituents to reduce hadronic fluctuations in the jet response, improving in that way the jet resolution. The performances of the various calibration schemes using data and simulation, the evaluation of the modelling of the properties used to derive each calibration...

  19. Calibrating nacelle lidars

    Energy Technology Data Exchange (ETDEWEB)

    Courtney, M.

    2013-01-15

    Nacelle mounted, forward looking wind lidars are beginning to be used to provide reference wind speed measurements for the power performance testing of wind turbines. In such applications, a formal calibration procedure with a corresponding uncertainty assessment will be necessary. This report presents four concepts for performing such a nacelle lidar calibration. Of the four methods, two are found to be immediately relevant and are pursued in some detail. The first of these is a line of sight calibration method in which both lines of sight (for a two beam lidar) are individually calibrated by accurately aligning the beam to pass close to a reference wind speed sensor. A testing procedure is presented, reporting requirements outlined and the uncertainty of the method analysed. It is seen that the main limitation of the line of sight calibration method is the time required to obtain a representative distribution of radial wind speeds. An alternative method is to place the nacelle lidar on the ground and incline the beams upwards to bisect a mast equipped with reference instrumentation at a known height and range. This method will be easier and faster to implement and execute but the beam inclination introduces extra uncertainties. A procedure for conducting such a calibration is presented and initial indications of the uncertainties given. A discussion of the merits and weaknesses of the two methods is given together with some proposals for the next important steps to be taken in this work. (Author)

  20. Analysis of three-dimensional transient seepage into ditch drains ...

    Indian Academy of Sciences (India)

    Ratan Sarmah

    dimensional solutions to the problem are actually valid not for a field of finite size but for an infinite one only. Keywords. Analytical models; three-dimensional ponded ditch drainage; transient seepage; variable ponding; hydraulic conductivity ...

  1. Hotplate precipitation gauge calibrations and field measurements

    Science.gov (United States)

    Zelasko, Nicholas; Wettlaufer, Adam; Borkhuu, Bujidmaa; Burkhart, Matthew; Campbell, Leah S.; Steenburgh, W. James; Snider, Jefferson R.

    2018-01-01

    First introduced in 2003, approximately 70 Yankee Environmental Systems (YES) hotplate precipitation gauges have been purchased by researchers and operational meteorologists. A version of the YES hotplate is described in Rasmussen et al. (2011; R11). Presented here is testing of a newer version of the hotplate; this device is equipped with longwave and shortwave radiation sensors. Hotplate surface temperature, coefficients describing natural and forced convective sensible energy transfer, and radiative properties (longwave emissivity and shortwave reflectance) are reported for two of the new-version YES hotplates. These parameters are applied in a new algorithm and are used to derive liquid-equivalent accumulations (snowfall and rainfall), and these accumulations are compared to values derived by the internal algorithm used in the YES hotplates (hotplate-derived accumulations). In contrast with R11, the new algorithm accounts for radiative terms in a hotplate's energy budget, applies an energy conversion factor which does not differ from a theoretical energy conversion factor, and applies a surface area that is correct for the YES hotplate. Radiative effects are shown to be relatively unimportant for the precipitation events analyzed. In addition, this work documents a 10 % difference between the hotplate-derived and new-algorithm-derived accumulations. This difference seems consistent with R11's application of a hotplate surface area that deviates from the actual surface area of the YES hotplate and with R11's recommendation for an energy conversion factor that differs from that calculated using thermodynamic theory.

  2. Hotplate precipitation gauge calibrations and field measurements

    Directory of Open Access Journals (Sweden)

    N. Zelasko

    2018-01-01

    Full Text Available First introduced in 2003, approximately 70 Yankee Environmental Systems (YES hotplate precipitation gauges have been purchased by researchers and operational meteorologists. A version of the YES hotplate is described in Rasmussen et al. (2011; R11. Presented here is testing of a newer version of the hotplate; this device is equipped with longwave and shortwave radiation sensors. Hotplate surface temperature, coefficients describing natural and forced convective sensible energy transfer, and radiative properties (longwave emissivity and shortwave reflectance are reported for two of the new-version YES hotplates. These parameters are applied in a new algorithm and are used to derive liquid-equivalent accumulations (snowfall and rainfall, and these accumulations are compared to values derived by the internal algorithm used in the YES hotplates (hotplate-derived accumulations. In contrast with R11, the new algorithm accounts for radiative terms in a hotplate's energy budget, applies an energy conversion factor which does not differ from a theoretical energy conversion factor, and applies a surface area that is correct for the YES hotplate. Radiative effects are shown to be relatively unimportant for the precipitation events analyzed. In addition, this work documents a 10 % difference between the hotplate-derived and new-algorithm-derived accumulations. This difference seems consistent with R11's application of a hotplate surface area that deviates from the actual surface area of the YES hotplate and with R11's recommendation for an energy conversion factor that differs from that calculated using thermodynamic theory.

  3. Metastability of transient states

    Science.gov (United States)

    Rafailov, Michael K.

    2017-05-01

    High intensity ultrashort pulse causes dramatic perturbations in electronic structure of condensed matter. In the same time energy in high intensity single pulse may not be sufficient to disrupt sample thermal equilibrium. Interesting experimental results in ultrashort pulse photo-excited solids have been reported recently on transient athermal phenomena induced by ultrashort high intensity low energy pulse - phenomena related to both athermal phase transitions and athermal state changes. Athermal non-equilibrium of electronic system - and induced changes in magnetic and optical states, may exist only for a period of time comparable to excited carriers' relaxation time. That time is not sufficient for emerging application ranging from light induced superconductivity to infrared countermeasures. While single pulse interaction with condensed matter leading to transit state appearance is well observed, documented, and, to some extends, explained, one of the major problem is to maintain meta-stability of such transient states. Metastability of athermal non-equilibrium that could last well beyond electronic system relaxation time. The objective of this paper is to discuss some issues and approaches to meta-stability of transient states induced by ultrashort pulses in condensed matter.

  4. Transient or permanent fisheye views

    DEFF Research Database (Denmark)

    Jakobsen, Mikkel Rønne; Hornbæk, Kasper

    2012-01-01

    Transient use of information visualization may support specific tasks without permanently changing the user interface. Transient visualizations provide immediate and transient use of information visualization close to and in the context of the user’s focus of attention. Little is known, however, ...

  5. CERN radiation protection (RP) calibration facilities

    Energy Technology Data Exchange (ETDEWEB)

    Pozzi, Fabio

    2016-04-14

    Radiation protection calibration facilities are essential to ensure the correct operation of radiation protection instrumentation. Calibrations are performed in specific radiation fields according to the type of instrument to be calibrated: neutrons, photons, X-rays, beta and alpha particles. Some of the instruments are also tested in mixed radiation fields as often encountered close to high-energy particle accelerators. Moreover, calibration facilities are of great importance to evaluate the performance of prototype detectors; testing and measuring the response of a prototype detector to well-known and -characterized radiation fields contributes to improving and optimizing its design and capabilities. The CERN Radiation Protection group is in charge of performing the regular calibrations of all CERN radiation protection devices; these include operational and passive dosimeters, neutron and photon survey-meters, and fixed radiation detectors to monitor the ambient dose equivalent, H*(10), inside CERN accelerators and at the CERN borders. A new state-of-the-art radiation protection calibration facility was designed, constructed and commissioned following the related ISO recommendations to replace the previous ageing (more than 30 years old) laboratory. In fact, the new laboratory aims also at the official accreditation according to the ISO standards in order to be able to release certified calibrations. Four radiation fields are provided: neutrons, photons and beta sources and an X-ray generator. Its construction did not only involve a pure civil engineering work; many radiation protection studies were performed to provide a facility that could answer the CERN calibration needs and fulfill all related safety requirements. Monte Carlo simulations have been confirmed to be a valuable tool for the optimization of the building design, the radiation protection aspects, e.g. shielding, and, as consequence, the overall cost. After the source and irradiator installation

  6. A review of control rod calibration methods for irradiated AGRs

    International Nuclear Information System (INIS)

    Telford, A.R.R.

    1975-10-01

    Methods of calibrating control rods with particular reference to irradiated CAGR are surveyed. Some systematic spatial effects are found and an estimate of their magnitude made. It is concluded that control rod oscillation provides a promising method of calibrating rods at power which is as yet untried on CAGR. Also the rod drop using inverse kinetics provides a rod calibration but spatial effects may be large and these would be difficult to correct theoretically. The pulsed neutron technique provides a calibration route with small errors due to spatial effects provided a suitable K-tube can be developed. The xenon transient method is shown to have statial effects which have not needed consideration in earlier reactors but which in CAGR would need very careful evaluation. (author)

  7. Calibrating emergent phenomena in stock markets with agent based models.

    Science.gov (United States)

    Fievet, Lucas; Sornette, Didier

    2018-01-01

    Since the 2008 financial crisis, agent-based models (ABMs), which account for out-of-equilibrium dynamics, heterogeneous preferences, time horizons and strategies, have often been envisioned as the new frontier that could revolutionise and displace the more standard models and tools in economics. However, their adoption and generalisation is drastically hindered by the absence of general reliable operational calibration methods. Here, we start with a different calibration angle that qualifies an ABM for its ability to achieve abnormal trading performance with respect to the buy-and-hold strategy when fed with real financial data. Starting from the common definition of standard minority and majority agents with binary strategies, we prove their equivalence to optimal decision trees. This efficient representation allows us to exhaustively test all meaningful single agent models for their potential anomalous investment performance, which we apply to the NASDAQ Composite index over the last 20 years. We uncover large significant predictive power, with anomalous Sharpe ratio and directional accuracy, in particular during the dotcom bubble and crash and the 2008 financial crisis. A principal component analysis reveals transient convergence between the anomalous minority and majority models. A novel combination of the optimal single-agent models of both classes into a two-agents model leads to remarkable superior investment performance, especially during the periods of bubbles and crashes. Our design opens the field of ABMs to construct novel types of advanced warning systems of market crises, based on the emergent collective intelligence of ABMs built on carefully designed optimal decision trees that can be reversed engineered from real financial data.

  8. Calibrating emergent phenomena in stock markets with agent based models

    Science.gov (United States)

    Sornette, Didier

    2018-01-01

    Since the 2008 financial crisis, agent-based models (ABMs), which account for out-of-equilibrium dynamics, heterogeneous preferences, time horizons and strategies, have often been envisioned as the new frontier that could revolutionise and displace the more standard models and tools in economics. However, their adoption and generalisation is drastically hindered by the absence of general reliable operational calibration methods. Here, we start with a different calibration angle that qualifies an ABM for its ability to achieve abnormal trading performance with respect to the buy-and-hold strategy when fed with real financial data. Starting from the common definition of standard minority and majority agents with binary strategies, we prove their equivalence to optimal decision trees. This efficient representation allows us to exhaustively test all meaningful single agent models for their potential anomalous investment performance, which we apply to the NASDAQ Composite index over the last 20 years. We uncover large significant predictive power, with anomalous Sharpe ratio and directional accuracy, in particular during the dotcom bubble and crash and the 2008 financial crisis. A principal component analysis reveals transient convergence between the anomalous minority and majority models. A novel combination of the optimal single-agent models of both classes into a two-agents model leads to remarkable superior investment performance, especially during the periods of bubbles and crashes. Our design opens the field of ABMs to construct novel types of advanced warning systems of market crises, based on the emergent collective intelligence of ABMs built on carefully designed optimal decision trees that can be reversed engineered from real financial data. PMID:29499049

  9. Geomechanical Simulation of Bayou Choctaw Strategic Petroleum Reserve - Model Calibration.

    Energy Technology Data Exchange (ETDEWEB)

    Park, Byoung [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-02-01

    A finite element numerical analysis model has been constructed that consists of a realistic mesh capturing the geometries of Bayou Choctaw (BC) Strategic Petroleum Reserve (SPR) site and multi - mechanism deformation ( M - D ) salt constitutive model using the daily data of actual wellhead pressure and oil - brine interface. The salt creep rate is not uniform in the salt dome, and the creep test data for BC salt is limited. Therefore, the model calibration is necessary to simulate the geomechanical behavior of the salt dome. The cavern volumetric closures of SPR caverns calculated from CAVEMAN are used for the field baseline measurement. The structure factor, A 2 , and transient strain limit factor, K 0 , in the M - D constitutive model are used for the calibration. The A 2 value obtained experimentally from the BC salt and K 0 value of Waste Isolation Pilot Plant (WIPP) salt are used for the baseline values. T o adjust the magnitude of A 2 and K 0 , multiplication factors A2F and K0F are defined, respectively. The A2F and K0F values of the salt dome and salt drawdown skins surrounding each SPR cavern have been determined through a number of back fitting analyses. The cavern volumetric closures calculated from this model correspond to the predictions from CAVEMAN for six SPR caverns. Therefore, this model is able to predict past and future geomechanical behaviors of the salt dome, caverns, caprock , and interbed layers. The geological concerns issued in the BC site will be explained from this model in a follow - up report .

  10. The Importance of Calibration in Clinical Psychology.

    Science.gov (United States)

    Lindhiem, Oliver; Petersen, Isaac T; Mentch, Lucas K; Youngstrom, Eric A

    2018-02-01

    Accuracy has several elements, not all of which have received equal attention in the field of clinical psychology. Calibration, the degree to which a probabilistic estimate of an event reflects the true underlying probability of the event, has largely been neglected in the field of clinical psychology in favor of other components of accuracy such as discrimination (e.g., sensitivity, specificity, area under the receiver operating characteristic curve). Although it is frequently overlooked, calibration is a critical component of accuracy with particular relevance for prognostic models and risk-assessment tools. With advances in personalized medicine and the increasing use of probabilistic (0% to 100%) estimates and predictions in mental health research, the need for careful attention to calibration has become increasingly important.

  11. In situ vector calibration of magnetic observatories

    Directory of Open Access Journals (Sweden)

    A. Gonsette

    2017-09-01

    Full Text Available The goal of magnetic observatories is to measure and provide a vector magnetic field in a geodetic coordinate system. For that purpose, instrument set-up and calibration are crucial. In particular, the scale factor and orientation of a vector magnetometer may affect the magnetic field measurement. Here, we highlight the baseline concept and demonstrate that it is essential for data quality control. We show how the baselines can highlight a possible calibration error. We also provide a calibration method based on high-frequency absolute measurements. This method determines a transformation matrix for correcting variometer data suffering from scale factor and orientation errors. We finally present a practical case where recovered data have been successfully compared to those coming from a reference magnetometer.

  12. The Use of Color Sensors for Spectrographic Calibration

    Science.gov (United States)

    Thomas, Neil B.

    2018-04-01

    The wavelength calibration of spectrographs is an essential but challenging task in many disciplines. Calibration is traditionally accomplished by imaging the spectrum of a light source containing features that are known to appear at certain wavelengths and mapping them to their location on the sensor. This is typically required in conjunction with each scientific observation to account for mechanical and optical variations of the instrument over time, which may span years for certain projects. The method presented here investigates the usage of color itself instead of spectral features to calibrate a spectrograph. The primary advantage of such a calibration is that any broad-spectrum light source such as the sky or an incandescent bulb is suitable. This method allows for calibration using the full optical pathway of the instrument instead of incorporating separate calibration equipment that may introduce errors. This paper focuses on the potential for color calibration in the field of radial velocity astronomy, in which instruments must be finely calibrated for long periods of time to detect tiny Doppler wavelength shifts. This method is not restricted to radial velocity, however, and may find application in any field requiring calibrated spectrometers such as sea water analysis, cellular biology, chemistry, atmospheric studies, and so on. This paper demonstrates that color sensors have the potential to provide calibration with greatly reduced complexity.

  13. Study on technology of high-frequency pulsed magnetic field strength measurement.

    Science.gov (United States)

    Chen, Yi-Mei; Liu, Zhi-Peng; Yin, Tao

    2012-01-01

    High-frequency transient weak magnetic field is always involved in researches about biomedical engineering field while common magnetic-field sensors cannot work properly at frequencies as high as MHz. To measure the value of MHz-level weak pulsed magnetic-field strength accurately, this paper designs a measurement and calibration method for pulsed magnetic-field. In this paper, a device made of Nonferromagnetic material was independently designed and applied to pulsed magnetic field measurement. It held an accurately relative position between the magnetic field generating coil and the detecting coil. By applying a sinusoidal pulse to the generator, collecting the induced electromotive force of the detector, the final magnetic field strength was worked out through algorithms written in Matlab according to Faraday's Law. Experiments were carried out for measurement and calibration. Experiments showed that, under good stability and consistency, accurate measurement of magnetic-field strength of a sinepulse magnetic-field can be achieved, with frequency at 0.5, 1, 1.5 MHz and strength level at micro-Tesla. Calibration results carried out a measuring relative error about 2.5%.

  14. Calibration Under Uncertainty.

    Energy Technology Data Exchange (ETDEWEB)

    Swiler, Laura Painton; Trucano, Timothy Guy

    2005-03-01

    This report is a white paper summarizing the literature and different approaches to the problem of calibrating computer model parameters in the face of model uncertainty. Model calibration is often formulated as finding the parameters that minimize the squared difference between the model-computed data (the predicted data) and the actual experimental data. This approach does not allow for explicit treatment of uncertainty or error in the model itself: the model is considered the %22true%22 deterministic representation of reality. While this approach does have utility, it is far from an accurate mathematical treatment of the true model calibration problem in which both the computed data and experimental data have error bars. This year, we examined methods to perform calibration accounting for the error in both the computer model and the data, as well as improving our understanding of its meaning for model predictability. We call this approach Calibration under Uncertainty (CUU). This talk presents our current thinking on CUU. We outline some current approaches in the literature, and discuss the Bayesian approach to CUU in detail.

  15. Vibration transducer calibration techniques

    Science.gov (United States)

    Brinkley, D. J.

    1980-09-01

    Techniques for the calibration of vibration transducers used in the Aeronautical Quality Assurance Directorate of the British Ministry of Defence are presented. Following a review of the types of measurements necessary in the calibration of vibration transducers, the performance requirements of vibration transducers, which can be used to measure acceleration, velocity or vibration amplitude, are discussed, with particular attention given to the piezoelectric accelerometer. Techniques for the accurate measurement of sinusoidal vibration amplitude in reference-grade transducers are then considered, including the use of a position sensitive photocell and the use of a Michelson laser interferometer. Means of comparing the output of working-grade accelerometers with that of previously calibrated reference-grade devices are then outlined, with attention given to a method employing a capacitance bridge technique and a method to be used at temperatures between -50 and 200 C. Automatic calibration procedures developed to speed up the calibration process are outlined, and future possible extensions of system software are indicated.

  16. Gearbox Reliability Collaborative Bearing Calibration

    Energy Technology Data Exchange (ETDEWEB)

    van Dam, J.

    2011-10-01

    NREL has initiated the Gearbox Reliability Collaborative (GRC) to investigate the root cause of the low wind turbine gearbox reliability. The GRC follows a multi-pronged approach based on a collaborative of manufacturers, owners, researchers and consultants. The project combines analysis, field testing, dynamometer testing, condition monitoring, and the development and population of a gearbox failure database. At the core of the project are two 750kW gearboxes that have been redesigned and rebuilt so that they are representative of the multi-megawatt gearbox topology currently used in the industry. These gearboxes are heavily instrumented and are tested in the field and on the dynamometer. This report discusses the bearing calibrations of the gearboxes.

  17. Cumulative sum quality control for calibrated breast density measurements

    International Nuclear Information System (INIS)

    Heine, John J.; Cao Ke; Beam, Craig

    2009-01-01

    Purpose: Breast density is a significant breast cancer risk factor. Although various methods are used to estimate breast density, there is no standard measurement for this important factor. The authors are developing a breast density standardization method for use in full field digital mammography (FFDM). The approach calibrates for interpatient acquisition technique differences. The calibration produces a normalized breast density pixel value scale. The method relies on first generating a baseline (BL) calibration dataset, which required extensive phantom imaging. Standardizing prospective mammograms with calibration data generated in the past could introduce unanticipated error in the standardized output if the calibration dataset is no longer valid. Methods: Sample points from the BL calibration dataset were imaged approximately biweekly over an extended timeframe. These serial samples were used to evaluate the BL dataset reproducibility and quantify the serial calibration accuracy. The cumulative sum (Cusum) quality control method was used to evaluate the serial sampling. Results: There is considerable drift in the serial sample points from the BL calibration dataset that is x-ray beam dependent. Systematic deviation from the BL dataset caused significant calibration errors. This system drift was not captured with routine system quality control measures. Cusum analysis indicated that the drift is a sign of system wear and eventual x-ray tube failure. Conclusions: The BL calibration dataset must be monitored and periodically updated, when necessary, to account for sustained system variations to maintain the calibration accuracy.

  18. Cumulative sum quality control for calibrated breast density measurements

    Energy Technology Data Exchange (ETDEWEB)

    Heine, John J.; Cao Ke; Beam, Craig [Cancer Prevention and Control Division, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, Florida 33612 (United States); Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois at Chicago, 1603 W. Taylor St., Chicago, Illinois 60612 (United States)

    2009-12-15

    Purpose: Breast density is a significant breast cancer risk factor. Although various methods are used to estimate breast density, there is no standard measurement for this important factor. The authors are developing a breast density standardization method for use in full field digital mammography (FFDM). The approach calibrates for interpatient acquisition technique differences. The calibration produces a normalized breast density pixel value scale. The method relies on first generating a baseline (BL) calibration dataset, which required extensive phantom imaging. Standardizing prospective mammograms with calibration data generated in the past could introduce unanticipated error in the standardized output if the calibration dataset is no longer valid. Methods: Sample points from the BL calibration dataset were imaged approximately biweekly over an extended timeframe. These serial samples were used to evaluate the BL dataset reproducibility and quantify the serial calibration accuracy. The cumulative sum (Cusum) quality control method was used to evaluate the serial sampling. Results: There is considerable drift in the serial sample points from the BL calibration dataset that is x-ray beam dependent. Systematic deviation from the BL dataset caused significant calibration errors. This system drift was not captured with routine system quality control measures. Cusum analysis indicated that the drift is a sign of system wear and eventual x-ray tube failure. Conclusions: The BL calibration dataset must be monitored and periodically updated, when necessary, to account for sustained system variations to maintain the calibration accuracy.

  19. Field theoretical finite element method to provide theoretical calibration curves for the electrical direct-current potential crack-monitoring system as applied to a three-dimensional fracture mechanics specimen with surface crack

    International Nuclear Information System (INIS)

    Dietrich, R.

    1984-01-01

    The basic concepts of the finite element method are explained. The results are compared to existing calibration curves for such test piece geometries derived using experimental procedures. (orig./HP) [de

  20. Capturing 2D transient surface data of granular flows against obstacles with an RGB-D sensor

    Science.gov (United States)

    Caviedes-Voullieme, Daniel; Juez, Carmelo; Murillo, Javier; Garcia-Navarro, Pilar

    2014-05-01

    Landslides are an ubiquitous natural hazard, and therefore human infrastructure and settlements are often at risk in mountainous regions. In order to better understand and predict landslides, systematic studies of the phenomena need to be undertaken. In particular, computational tools which allow for analysis of field problems require to be thoroughly tested, calibrated and validated under controlled conditions. And to do so, it is necessary for such controlled experiments to be fully characterized in the same terms as the numerical model requires. This work presents an experimental study of dry granular flow over a rough bed with topography which resembles a mountain valley. It has an upper region with a very high slope. The geometry of the bed describes a fourth order polynomial curve, with a low point with zero slope, and afterwards a short region with adverse slope. Obstacles are present in the lower regions which are used as model geometries of human structures. The experiments consisted of a sudden release a mass of sand on the upper region, and allowing it to flow downslope. Furthermore, it has been frequent in previous studies to measure final states of the granular mass at rest, but seldom has transient data being provided, and never for the entire field. In this work we present transient measurements of the moving granular surfaces, obtained with a consumer-grade RGB-D sensor. The sensor, developed for the videogame industry, allows to measure the moving surface of the sand, thus obtaining elevation fields. The experimental results are very consistent and repeatable. The measured surfaces clearly show the distinctive features of the granular flow around the obstacles and allow to qualitatively describe the different flow patterns. More importantly, the quantitative description of the granular surface allows for benchmarking and calibration of predictive numerical models, key in scaling the small-scale experimental knowledge into the field.

  1. Familial Transient Global Amnesia

    Directory of Open Access Journals (Sweden)

    R.Rhys Davies

    2012-12-01

    Full Text Available Following an episode of typical transient global amnesia (TGA, a female patient reported similar clinical attacks in 2 maternal aunts. Prior reports of familial TGA are few, and no previous account of affected relatives more distant than siblings or parents was discovered in a literature survey. The aetiology of familial TGA is unknown. A pathophysiological mechanism akin to that in migraine attacks, comorbidity reported in a number of the examples of familial TGA, is one possibility. The study of familial TGA cases might facilitate the understanding of TGA aetiology.

  2. Thermal transient anemometer

    Science.gov (United States)

    Bailey, James L.; Vresk, Josip

    1989-01-01

    A thermal transient anemometer having a thermocouple probe which is utilized to measure the change in temperature over a period of time to provide a measure of fluid flow velocity. The thermocouple probe is located in the fluid flow path and pulsed to heat or cool the probe. The cooling of the heated probe or the heating of the cooled probe from the fluid flow over a period of time is measured to determine the fluid flow velocity. The probe is desired to be locally heated near the tip to increase the efficiency of devices incorporating the probe.

  3. Studies on an Electromagnetic Transient Model of Offshore Wind Turbines and Lightning Transient Overvoltage Considering Lightning Channel Wave Impedance

    Directory of Open Access Journals (Sweden)

    Li Zhang

    2017-12-01

    Full Text Available In recent years, with the rapid development of offshore wind turbines (WTs, the problem of lightning strikes has become more and more prominent. In order to reduce the failure rate caused by the transient overvoltage of lightning struck offshore WTs, the influencing factors and the response rules of transient overvoltage are analyzed. In this paper, a new integrated electromagnetic transient model of offshore WTs is established by using the numerical calculation method of the electromagnetic field first. Then, based on the lightning model and considering the impedance of the lightning channel, the transient overvoltage of lightning is analyzed. Last, the electromagnetic transient model of offshore WTs is simulated and analyzed by using the alternative transients program electro-magnetic transient program (ATP-EMTP software. The influence factors of lightning transient overvoltage are studied. The main influencing factors include the sea depth, the blade length, the tower height, the lightning flow parameters, the lightning strike point, and the blade rotation position. The simulation results show that the influencing factors mentioned above have different effects on the lightning transient overvoltage. The results of the study have some guiding significance for the design of the lightning protection of the engine room.

  4. Alignment and calibration of total internal reflection fluorescence microscopy systems.

    Science.gov (United States)

    Toomre, Derek

    2012-04-01

    Live cell fluorescent microscopy is important in elucidating dynamic cellular processes such as cell signaling, membrane trafficking, and cytoskeleton remodeling. Often, transient intermediate states are revealed only when imaged and quantitated at the single-molecule, vesicle, or organelle level. Such insight depends on the spatiotemporal resolution and sensitivity of a given microscopy method. Confocal microscopes optically section the cell and improve image contrast and axial resolution (>600 nm) compared with conventional epifluorescence microscopes. Another approach, which can selectively excite fluorophores in an even thinner optical plane (microscopy (TIRFM). The key principle of TIRFM is that a thin, exponentially decaying, evanescent field of excitation can be generated at the interface of two mediums of different refractive index (RI) (e.g., the glass coverslip and the biological specimen); as such, TIRFM is ill-suited to deep imaging of cells or tissue. However, for processes near the lower cell cortex, the sensitivity of TIRFM is exquisite. The recent availability of a very high numerical-aperture (NA) objective lens (>1.45) and turnkey TIRFM systems by all the major microscopy manufacturers has made TIRFM increasingly accessible and attractive to biologists, especially when performed in a quantitative manner and complemented with orthogonal genetic and molecular manipulations. This protocol describes the procedure for alignment and calibration of TIRFM systems using standard cellular samples. The goal is to correctly collimate and align the TIRF illuminator vis-à-vis the downstream optics. For illustration, a 488-nm laser and green fluorescent protein (GFP) filter cube are used.

  5. Fast, accurate control rod calibration using a programmable desk calculator

    International Nuclear Information System (INIS)

    Naugle, N.W.; Randall, John D.

    1972-01-01

    In an attempt to develop a simple least squares program for the rapid calibration of control rods it was necessary to verify that all rods, with the exception of the transient rod, could be accurately defined by a single analytical expression. Since the vertical flux distribution in the core region follows a cosine function, a cosine squared variation was tested. The solution which involves the inversion of a 3 x 3 matrix is performed using a Hewlett Packard Model 9100B programmable desk calculator. The least squares program was applied to a number of control rod calibrations that had previously been analyzed by hand. The agreement was excellent in all cases

  6. Transient Flow through an Unsaturated Levee Embankment during the 2011 Mississippi River Flood

    Science.gov (United States)

    Jafari, N.; Stark, T.; Vahedifard, F.; Cadigan, J.

    2017-12-01

    The Mississippi River and corresponding tributaries drain approximately 3.23 million km2 (1.25 million mi2) or the equivalent of 41% of the contiguous United States. Approximately 2,600 km ( 1,600 miles) of earthen levees presently protect major urban cities and agricultural land against the periodic Mississippi River floods within the Lower Mississippi River Valley. The 2011 flood also severely stressed the levees and highlighted the need to evaluate the behavior of levee embankments during high water levels. The performance of earthen levees is complex because of the uncertainties in construction materials, antecedent moisture contents, hydraulic properties, and lack of field monitoring. In particular, calibration of unsaturated and saturated soil properties of levee embankment and foundation layers along with the evaluation of phreatic surface during high river stage is lacking. Due to the formation of sand boils at the Duncan Point Levee in Baton Rouge, LA during the 2011 flood event, a reconnaissance survey was conducted to collect pore-water pressures in the sand foundation using piezometers and identifying the phreatic surface at the peak river level. Transient seepage analyses were performed to calibrate the foundation and levee embankment material properties using field data collected. With this calibrated levee model, numerical experiments were conducted to characterize the effects of rainfall intensity and duration, progression of phreatic surface, and seasonal climate variability prior to floods on the performance of the levee embankment. For example, elevated phreatic surface from river floods are maintained for several months and can be compounded with rainfall to lead to slope instability.

  7. Individual dosimetry and calibration

    International Nuclear Information System (INIS)

    Hoefert, M.; Nielsen, M.

    1996-01-01

    In 1995 both the Individual Dosimetry and Calibration Sections worked under the condition of a status quo and concentrated fully on the routine part of their work. Nevertheless, the machine for printing the bar code which will be glued onto the film holder and hence identify the people when entering into high radiation areas was put into operation and most of the holders were equipped with the new identification. As far as the Calibration Section is concerned the project of the new source control system that is realized by the Technical Support Section was somewhat accelerated

  8. Calibration of scanning Lidar

    DEFF Research Database (Denmark)

    Gómez Arranz, Paula; Courtney, Michael

    This report describes the tests carried out on a scanning lidar at the DTU Test Station for large wind turbines, Høvsøre. The tests were divided in two parts. In the first part, the purpose was to obtain wind speed calibrations at two heights against two cup anemometers mounted on a mast. Additio......This report describes the tests carried out on a scanning lidar at the DTU Test Station for large wind turbines, Høvsøre. The tests were divided in two parts. In the first part, the purpose was to obtain wind speed calibrations at two heights against two cup anemometers mounted on a mast...

  9. Calibration with Absolute Shrinkage

    DEFF Research Database (Denmark)

    Øjelund, Henrik; Madsen, Henrik; Thyregod, Poul

    2001-01-01

    In this paper, penalized regression using the L-1 norm on the estimated parameters is proposed for chemometric je calibration. The algorithm is of the lasso type, introduced by Tibshirani in 1996 as a linear regression method with bound on the absolute length of the parameters, but a modification...... to the lasso. The lasso is applied both directly as a calibration method and as a method to select important variables/wave lengths. It is demonstrated that the lasso algorithm, in general, leads to parameter estimates of which some are zero while others are quite large (compared to e.g. the traditional PLS...

  10. Radiation Calibration Measurements

    International Nuclear Information System (INIS)

    Omondi, C.

    2017-01-01

    KEBS Radiation Dosimetry mandate are: Custodian of Kenya Standards on Ionizing radiation, Ensure traceability to International System (SI ) and Calibration radiation equipment. RAF 8/040 on Radioisotope applications for troubleshooting and optimizing industrial process established Radiotracer Laboratory objective is to introduce and implement radiotracer technique for problem solving of industrial challenges. Gamma ray scanning technique applied is to Locate blockages, Locate liquid in vapor lines, Locate areas of lost refractory or lining in a pipe and Measure flowing densities. Equipment used for diagnostic and radiation protection must be calibrated to ensure Accuracy and Traceability

  11. Calibrating Legal Judgments

    Directory of Open Access Journals (Sweden)

    Frederick Schauer

    2017-09-01

    Full Text Available Objective to study the notion and essence of legal judgments calibration the possibilities of using it in the lawenforcement activity to explore the expenses and advantages of using it. Methods dialectic approach to the cognition of social phenomena which enables to analyze them in historical development and functioning in the context of the integrity of objective and subjective factors it determined the choice of the following research methods formallegal comparative legal sociological methods of cognitive psychology and philosophy. Results In ordinary life people who assess other peoplersaquos judgments typically take into account the other judgments of those they are assessing in order to calibrate the judgment presently being assessed. The restaurant and hotel rating website TripAdvisor is exemplary because it facilitates calibration by providing access to a raterrsaquos previous ratings. Such information allows a user to see whether a particular rating comes from a rater who is enthusiastic about every place she patronizes or instead from someone who is incessantly hard to please. And even when less systematized as in assessing a letter of recommendation or college transcript calibration by recourse to the decisional history of those whose judgments are being assessed is ubiquitous. Yet despite the ubiquity and utility of such calibration the legal system seems perversely to reject it. Appellate courts do not openly adjust their standard of review based on the previous judgments of the judge whose decision they are reviewing nor do judges in reviewing legislative or administrative decisions magistrates in evaluating search warrant representations or jurors in assessing witness perception. In most legal domains calibration by reference to the prior decisions of the reviewee is invisible either because it does not exist or because reviewing bodies are unwilling to admit using what they in fact know and employ. Scientific novelty for the first

  12. Terahertz field induced electromigration

    DEFF Research Database (Denmark)

    Strikwerda, Andrew; Zalkovskij, Maksim; Iwaszczuk, Krzysztof

    We report the first observation of THz-field-induced electromigration in sub-wavelength metallic gap structures after exposure to intense single-cycle, sub-picosecond electric field transients of amplitude up to 400 kV/cm....

  13. Transient regional osteoporosis

    Directory of Open Access Journals (Sweden)

    F. Trotta

    2011-09-01

    Full Text Available Transient osteoporosis of the hip and regional migratory osteoporosis are uncommon and probably underdiagnosed bone diseases characterized by pain and functional limitation mainly affecting weight-bearing joints of the lower limbs. These conditions are usually self-limiting and symptoms tend to abate within a few months without sequelae. Routine laboratory investigations are unremarkable. Middle aged men and women during the last months of pregnancy or in the immediate post-partum period are principally affected. Osteopenia with preservation of articular space and transitory edema of the bone marrow provided by magnetic resonance imaging are common to these two conditions, so they are also known by the term regional transitory osteoporosis. The appearance of bone marrow edema is not specific to regional transitory osteoporosis but can be observed in several diseases, i.e. trauma, reflex sympathetic dystrophy, avascular osteonecrosis, infections, tumors from which it must be differentiated. The etiology of this condition is unknown. Pathogenesis is still debated in particular the relationship with reflex sympathetic dystrophy, with which regional transitory osteoporosis is often identified. The purpose of the present review is to remark on the relationship between transient osteoporosis of the hip and regional migratory osteoporosis with particular attention to the bone marrow edema pattern and relative differential diagnosis.

  14. Transient congenital hypothyroidism

    Directory of Open Access Journals (Sweden)

    Nisha Bhavani

    2011-01-01

    Full Text Available Transient thyroid function abnormalities in the new born which revert back to normal after varying periods of time are mostly identified in the neonatal screening tests for thyroid and are becoming more common because of the survival of many more premature infants. It can be due to factors primarily affecting the thyroid-like iodine deficiency or excess, maternal thyroid-stimulating hormone receptor (TSHR antibodies, maternal use of antithyroid drugs, DUOX 2 (dual oxidase 2 mutations, and prematurity or those that affect the pituitary-like untreated maternal hyperthyroidism, prematurity, and drugs. Most of these require only observation, whereas some, such as those due to maternal TSHR antibodies may last for upto three-to-six months and may necessitate treatment. Isolated hyperthyrotropinemia (normal Tetraiodothyronine (T4 and high Thyroid Stimulating hormone (TSH may persist as subclinical hypothyroidism in childhood. Transient hypothyroxinemia (low T4 and normal TSH is very common in premature babies. The recognition of these conditions will obviate the risks associated with unnecessary thyroxine supplementation in childhood and parental concerns of a life long illness in their offspring.

  15. Total-Count Calibration Blocks for use in uranium Exploration

    DEFF Research Database (Denmark)

    Løvborg, Leif

    Transportable calibration blocks for field scintillometers and borehole probes were manufactured from concrete and installed at calibration sites in Denmark and Greece. The concrete mixes were prepared from aggregates of quartz sand and crushed uranium-thorium ore. Hater-reducing agents and silica...

  16. Calibration of single particle sizing velocimeters using photomask reticles

    Science.gov (United States)

    Hirleman, E. D.; Holve, D. J.; Hovenac, E. A.

    1988-01-01

    The development of photomask reticle calibration standards for single particle instruments is discussed. The calibration method studied involves the use of photomask reticles where the particle artifacts are actually disks of chrome thin film in the clear field reticles produced by photolithography and etching processes. Consideration is given to various aspects of theory, design, and performance.

  17. GRS vs. OMS Calibration in LISA Pathfinder Data Analysis

    Science.gov (United States)

    Meshksar, Neda; Ferraioli, Luigi; Mance, Davor; ten Pierick, Jan; Zweifel, Peter; Giardini, Domenico; ">LISA Pathfinder colaboration, calibration between the two measurements during the mission science phase. The trend sensitivity of the relative calibration has been computed for different physical parameters, such as temperature, magnetic field, test mass bias voltage and current.

  18. Pump transients in FGD slurry systems

    International Nuclear Information System (INIS)

    Ponce-Campos, C.D., Thoy, C.T.

    1990-01-01

    In this paper, the start-up transient of a limestone slurry system used for a power plant scrubber is discussed. Particular characteristics of these kind of systems are pointed out and incorporated into an ad-hoc numerical model. Three possible start-up scenarios are discussed and compared with field experimental data. The results illustrate well the importance of air pocket purging prior to system start-up

  19. Prototype of a transient waveform recording ASIC

    Science.gov (United States)

    Qin, J.; Zhao, L.; Cheng, B.; Chen, H.; Guo, Y.; Liu, S.; An, Q.

    2018-01-01

    The paper presents the design and measurement results of a transient waveform recording ASIC based on the Switched Capacitor Array (SCA) architecture. This 0.18 μm CMOS prototype device contains two channels and each channel employs a SCA of 128 samples deep, a 12-bit Wilkinson ADC and a serial data readout. A series of tests have been conducted and the results indicate that: a full 1 V signal voltage range is available, the input analog bandwidth is approximately 450 MHz and the sampling speed is adjustable from 0.076 to 3.2 Gsps (Gigabit Samples Per Second). For precision waveform timing extraction, careful calibration of timing intervals between samples is conducted to improve the timing resolution of such chips, and the timing precision of this ASIC is proved to be better than 15 ps RMS.

  20. Transient waveform recording utilizing TARGET7 ASIC

    Science.gov (United States)

    Zhang, J.; Liu, S.; Wang, Y.; Yang, C.; Zhu, X.; Feng, C.; An, Q.

    2017-04-01

    TARGET7, the 7th-generation TeV Array Readout with GSPS (Gigabit Samples Per Second) sampling and Experimental Trigger ASIC, has been initially designed to monolithically and inexpensively instrument large deployments of semiconductor photon detectors for large neutrino and muon detectors. It is a switched capacitor array (SCA) based transient waveform recorder with 3-dB bandwidth of 500 MHz; a large dynamic range of 1.8 V; high sampling rate (typically 1 GSPS); high channel density (16 channels per ASIC); low power consumption (0<1 mW/channel) and deep analog storage buffer (16,384 samples per channel). Moreover, each channel has an integrated Wilkinson ADC (Analog-to-Digital Convertor) for digitization. In this paper, a test board with the chip is described. Calibration methods, timing performance as well as its application possibility in charge measurement with a comparison to an oscilloscope are studied.

  1. Proton beam monitor chamber calibration

    International Nuclear Information System (INIS)

    Gomà, C; Meer, D; Safai, S; Lorentini, S

    2014-01-01

    The first goal of this paper is to clarify the reference conditions for the reference dosimetry of clinical proton beams. A clear distinction is made between proton beam delivery systems which should be calibrated with a spread-out Bragg peak field and those that should be calibrated with a (pseudo-)monoenergetic proton beam. For the latter, this paper also compares two independent dosimetry techniques to calibrate the beam monitor chambers: absolute dosimetry (of the number of protons exiting the nozzle) with a Faraday cup and reference dosimetry (i.e. determination of the absorbed dose to water under IAEA TRS-398 reference conditions) with an ionization chamber. To compare the two techniques, Monte Carlo simulations were performed to convert dose-to-water to proton fluence. A good agreement was found between the Faraday cup technique and the reference dosimetry with a plane-parallel ionization chamber. The differences—of the order of 3%—were found to be within the uncertainty of the comparison. For cylindrical ionization chambers, however, the agreement was only possible when positioning the effective point of measurement of the chamber at the reference measurement depth—i.e. not complying with IAEA TRS-398 recommendations. In conclusion, for cylindrical ionization chambers, IAEA TRS-398 reference conditions for monoenergetic proton beams led to a systematic error in the determination of the absorbed dose to water, especially relevant for low-energy proton beams. To overcome this problem, the effective point of measurement of cylindrical ionization chambers should be taken into account when positioning the reference point of the chamber. Within the current IAEA TRS-398 recommendations, it seems advisable to use plane-parallel ionization chambers—rather than cylindrical chambers—for the reference dosimetry of pseudo-monoenergetic proton beams. (paper)

  2. Calibration bench of flowmeters

    International Nuclear Information System (INIS)

    Bremond, J.; Da Costa, D.; Calvet, A.; Vieuxmaire, C.

    1966-01-01

    This equipment is devoted to the comparison of signals from two turbines installed in the Cabri experimental loop. The signal is compared to the standard turbine. The characteristics and the performance of the calibration bench are presented. (A.L.B.)

  3. Commodity-Free Calibration

    Science.gov (United States)

    2008-01-01

    Commodity-free calibration is a reaction rate calibration technique that does not require the addition of any commodities. This technique is a specific form of the reaction rate technique, where all of the necessary reactants, other than the sample being analyzed, are either inherent in the analyzing system or specifically added or provided to the system for a reason other than calibration. After introduction, the component of interest is exposed to other reactants or flow paths already present in the system. The instrument detector records one of the following to determine the rate of reaction: the increase in the response of the reaction product, a decrease in the signal of the analyte response, or a decrease in the signal from the inherent reactant. With this data, the initial concentration of the analyte is calculated. This type of system can analyze and calibrate simultaneously, reduce the risk of false positives and exposure to toxic vapors, and improve accuracy. Moreover, having an excess of the reactant already present in the system eliminates the need to add commodities, which further reduces cost, logistic problems, and potential contamination. Also, the calculations involved can be simplified by comparison to those of the reaction rate technique. We conducted tests with hypergols as an initial investigation into the feasiblility of the technique.

  4. Calibration with Absolute Shrinkage

    DEFF Research Database (Denmark)

    Øjelund, Henrik; Madsen, Henrik; Thyregod, Poul

    2001-01-01

    In this paper, penalized regression using the L-1 norm on the estimated parameters is proposed for chemometric je calibration. The algorithm is of the lasso type, introduced by Tibshirani in 1996 as a linear regression method with bound on the absolute length of the parameters, but a modification...

  5. Calibrating Communication Competencies

    Science.gov (United States)

    Surges Tatum, Donna

    2016-11-01

    The Many-faceted Rasch measurement model is used in the creation of a diagnostic instrument by which communication competencies can be calibrated, the severity of observers/raters can be determined, the ability of speakers measured, and comparisons made between various groups.

  6. NVLAP calibration laboratory program

    International Nuclear Information System (INIS)

    Cigler, J.L.

    1993-01-01

    This paper presents an overview of the progress up to April 1993 in the development of the Calibration Laboratories Accreditation Program within the framework of the National Voluntary Laboratory Accreditation Program (NVLAP) at the National Institute of Standards and Technology (NIST)

  7. ECAL Energy Flow Calibration

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    My talk will be covering my work as a whole over the course of the semester. The focus will be on using energy flow calibration in ECAL to check the precision of the corrections made by the light monitoring system used to account for transparency loss within ECAL crystals due to radiation damage over time.

  8. Measurement System & Calibration report

    DEFF Research Database (Denmark)

    Gómez Arranz, Paula; Vesth, Allan

    This Measurement System & Calibration report is describing DTU’s measurement system installed at a specific wind turbine. A major part of the sensors has been installed by others (see [1]) the rest of the sensors have been installed by DTU. The results of the measurements, described in this report...

  9. Measurement System & Calibration report

    DEFF Research Database (Denmark)

    Georgieva Yankova, Ginka; Federici, Paolo

    This Measurement System & Calibration report is describing DTU’s measurement system installed at a specific wind turbine. A part of the sensors has been installed by others, the rest of the sensors have been installed by DTU. The results of the measurements, described in this report, are only valid...

  10. Measurement System & Calibration report

    DEFF Research Database (Denmark)

    Gómez Arranz, Paula; Villanueva, Héctor

    This Measurement System & Calibration report is describing DTU’s measurement system installed at a specific wind turbine. A part of the sensors has been installed by others, the rest of the sensors have been installed by DTU. The results of the measurements, described in this report, are only val...

  11. Entropic calibration revisited

    Energy Technology Data Exchange (ETDEWEB)

    Brody, Dorje C. [Blackett Laboratory, Imperial College, London SW7 2BZ (United Kingdom)]. E-mail: d.brody@imperial.ac.uk; Buckley, Ian R.C. [Centre for Quantitative Finance, Imperial College, London SW7 2AZ (United Kingdom); Constantinou, Irene C. [Blackett Laboratory, Imperial College, London SW7 2BZ (United Kingdom); Meister, Bernhard K. [Blackett Laboratory, Imperial College, London SW7 2BZ (United Kingdom)

    2005-04-11

    The entropic calibration of the risk-neutral density function is effective in recovering the strike dependence of options, but encounters difficulties in determining the relevant greeks. By use of put-call reversal we apply the entropic method to the time reversed economy, which allows us to obtain the spot price dependence of options and the relevant greeks.

  12. Physiotherapy ultrasound calibrations

    International Nuclear Information System (INIS)

    Gledhill, M.

    1996-01-01

    Calibration of physiotherapy ultrasound equipment has long been a problem. Numerous surveys around the world over the past 20 years have all found that only a low percentage of the units tested had an output within 30% of that indicatd. In New Zealand, a survey carried out by the NRL in 1985 found that only 24% had an output, at the maximum setting, within + or - 20% of that indicated. The present performance Standard for new equipment (NZS 3200.2.5:1992) requires that the measured output should not deviate from that indicated by more than + or - 30 %. This may be tightened to + or - 20% in the next few years. Any calibration is only as good as the calibration equipment. Some force balances can be tested with small weights to simulate the force exerted by an ultrasound beam, but with others this is not possible. For such balances, testing may only be feasible with a calibrated source which could be used like a transfer standard. (author). 4 refs., 3 figs

  13. Transient stress-coupling between the 1992 Landers and 1999 Hector Mine, California, earthquakes

    Science.gov (United States)

    Masterlark, Timothy; Wang, H.F.

    2002-01-01

    A three-dimensional finite-element model (FEM) of the Mojave block region in southern California is constructed to investigate transient stress-coupling between the 1992 Landers and 1999 Hector Mine earthquakes. The FEM simulates a poroelastic upper-crust layer coupled to a viscoelastic lower-crust layer, which is decoupled from the upper mantle. FEM predictions of the transient mechanical behavior of the crust are constrained by global positioning system (GPS) data, interferometric synthetic aperture radar (InSAR) images, fluid-pressure data from water wells, and the dislocation source of the 1999 Hector Mine earthquake. Two time-dependent parameters, hydraulic diffusivity of the upper crust and viscosity of the lower crust, are calibrated to 10–2 m2·sec–1 and 5 × 1018 Pa·sec respectively. The hydraulic diffusivity is relatively insensitive to heterogeneous fault-zone permeability specifications and fluid-flow boundary conditions along the elastic free-surface at the top of the problem domain. The calibrated FEM is used to predict the evolution of Coulomb stress during the interval separating the 1992 Landers and 1999 Hector Mine earthquakes. The predicted change in Coulomb stress near the hypocenter of the Hector Mine earthquake increases from 0.02 to 0.05 MPa during the 7-yr interval separating the two events. This increase is primarily attributed to the recovery of decreased excess fluid pressure from the 1992 Landers coseismic (undrained) strain field. Coulomb stress predictions are insensitive to small variations of fault-plane dip and hypocentral depth estimations of the Hector Mine rupture.

  14. PLEIADES ABSOLUTE CALIBRATION : INFLIGHT CALIBRATION SITES AND METHODOLOGY

    Directory of Open Access Journals (Sweden)

    S. Lachérade

    2012-07-01

    Full Text Available In-flight calibration of space sensors once in orbit is a decisive step to be able to fulfil the mission objectives. This article presents the methods of the in-flight absolute calibration processed during the commissioning phase. Four In-flight calibration methods are used: absolute calibration, cross-calibration with reference sensors such as PARASOL or MERIS, multi-temporal monitoring and inter-bands calibration. These algorithms are based on acquisitions over natural targets such as African deserts, Antarctic sites, La Crau (Automatic calibration station and Oceans (Calibration over molecular scattering or also new extra-terrestrial sites such as the Moon and selected stars. After an overview of the instrument and a description of the calibration sites, it is pointed out how each method is able to address one or several aspects of the calibration. We focus on how these methods complete each other in their operational use, and how they help building a coherent set of information that addresses all aspects of in-orbit calibration. Finally, we present the perspectives that the high level of agility of PLEIADES offers for the improvement of its calibration and a better characterization of the calibration sites.

  15. Mercury CEM Calibration

    Energy Technology Data Exchange (ETDEWEB)

    John F. Schabron; Joseph F. Rovani; Susan S. Sorini

    2007-03-31

    The Clean Air Mercury Rule (CAMR) which was published in the Federal Register on May 18, 2005, requires that calibration of mercury continuous emissions monitors (CEMs) be performed with NIST-traceable standards. Western Research Institute (WRI) is working closely with the Electric Power Research Institute (EPRI), the National Institute of Standards and Technology (NIST), and the Environmental Protection Agency (EPA) to facilitate the development of the experimental criteria for a NIST traceability protocol for dynamic elemental mercury vapor generators. The traceability protocol will be written by EPA. Traceability will be based on the actual analysis of the output of each calibration unit at several concentration levels ranging from about 2-40 ug/m{sup 3}, and this analysis will be directly traceable to analyses by NIST using isotope dilution inductively coupled plasma/mass spectrometry (ID ICP/MS) through a chain of analyses linking the calibration unit in the power plant to the NIST ID ICP/MS. Prior to this project, NIST did not provide a recommended mercury vapor pressure equation or list mercury vapor pressure in its vapor pressure database. The NIST Physical and Chemical Properties Division in Boulder, Colorado was subcontracted under this project to study the issue in detail and to recommend a mercury vapor pressure equation that the vendors of mercury vapor pressure calibration units can use to calculate the elemental mercury vapor concentration in an equilibrium chamber at a particular temperature. As part of this study, a preliminary evaluation of calibration units from five vendors was made. The work was performed by NIST in Gaithersburg, MD and Joe Rovani from WRI who traveled to NIST as a Visiting Scientist.

  16. Calibrated Properties Model

    Energy Technology Data Exchange (ETDEWEB)

    J. Wang

    2003-06-24

    The purpose of this Model Report is to document the Calibrated Properties Model that provides calibrated parameter sets for unsaturated zone (UZ) flow and transport process models for the Office of Repository Development (ORD). The UZ contains the unsaturated rock layers overlying the repository and host unit, which constitute a natural barrier to flow, and the unsaturated rock layers below the repository which constitute a natural barrier to flow and transport. This work followed, and was planned in, ''Technical Work Plan (TWP) for: Performance Assessment Unsaturated Zone'' (BSC 2002 [160819], Section 1.10.8 [under Work Package (WP) AUZM06, Climate Infiltration and Flow], and Section I-1-1 [in Attachment I, Model Validation Plans]). In Section 4.2, four acceptance criteria (ACs) are identified for acceptance of this Model Report; only one of these (Section 4.2.1.3.6.3, AC 3) was identified in the TWP (BSC 2002 [160819], Table 3-1). These calibrated property sets include matrix and fracture parameters for the UZ Flow and Transport Model (UZ Model), drift seepage models, and drift-scale and mountain-scale coupled-process models from the UZ Flow, Transport and Coupled Processes Department in the Natural Systems Subproject of the Performance Assessment (PA) Project. The Calibrated Properties Model output will also be used by the Engineered Barrier System Department in the Engineering Systems Subproject. The Calibrated Properties Model provides input through the UZ Model and other process models of natural and engineered systems to the Total System Performance Assessment (TSPA) models, in accord with the PA Strategy and Scope in the PA Project of the Bechtel SAIC Company, LLC (BSC). The UZ process models provide the necessary framework to test conceptual hypotheses of flow and transport at different scales and predict flow and transport behavior under a variety of climatic and thermal-loading conditions. UZ flow is a TSPA model component.

  17. Soil moisture calibration of TDR multilevel probes

    Directory of Open Access Journals (Sweden)

    Serrarens Daniel

    2000-01-01

    Full Text Available Time domain reflectometry (TDR probes are increasingly used for field estimation of soil water content. The objective of this study was to evaluate the accuracy of the multilevel TDR probe under field conditions. For this purpose, eight such TDR probes were installed in small plots that were seeded with beans and sorghum. Data collection from the probes was such that soil moisture readings were automated and logged using a standalone field unit. Neutron probe measurements were used to calibrate the TDR probes. Soil-probe contact and soil compaction were critical to the accuracy of the TDR, especially when a number of TDR probes are combined for a single calibration curve. If each probe is calibrated individually, approximate measurement errors were between 0.005 and 0.015 m³ m-3. However, measurement errors doubled to approximately 0.025 to 0.03 m³ m-3, when TDR probes were combined to yield a single calibration curve.

  18. Transient osteoporosis of the hip

    International Nuclear Information System (INIS)

    McWalter, Patricia; Hassan Ahmed

    2007-01-01

    Transient osteoporosis of the hip is an uncommon cause of hip pain, mostly affecting healthy middle-aged men and also women in the third trimester of pregnancy. We present a case of transient osteoporosis of the hip in a 33-year-old non-pregnant female patient. This case highlights the importance of considering a diagnosis of transient osteoporosis of the hip in patients who present with hip pain. (author)

  19. Application of composite small calibration objects in traffic accident scene photogrammetry.

    Science.gov (United States)

    Chen, Qiang; Xu, Hongguo; Tan, Lidong

    2015-01-01

    In order to address the difficulty of arranging large calibration objects and the low measurement accuracy of small calibration objects in traffic accident scene photogrammetry, a photogrammetric method based on a composite of small calibration objects is proposed. Several small calibration objects are placed around the traffic accident scene, and the coordinate system of the composite calibration object is given based on one of them. By maintaining the relative position and coplanar relationship of the small calibration objects, the local coordinate system of each small calibration object is transformed into the coordinate system of the composite calibration object. The two-dimensional direct linear transformation method is improved based on minimizing the reprojection error of the calibration points of all objects. A rectified image is obtained using the nonlinear optimization method. The increased accuracy of traffic accident scene photogrammetry using a composite small calibration object is demonstrated through the analysis of field experiments and case studies.

  20. Precision electromagnetic calibration technique for micro-Newton thrust stands.

    Science.gov (United States)

    He, Zhen; Wu, Jianjun; Zhang, Daixian; Lu, Gaofei; Liu, Zejun; Zhang, Rui

    2013-05-01

    This paper introduces a new direct non-contact electromagnetic calibration technique for high precision measurements of micro-thrust and impulse. A ring-shaped electromagnet with an air gap is used in the calibration. The calibration force is produced by the interaction of a uniform magnetic field with a copper wire current in the air gap. This force depends linearly on this current as well as the steady angular displacement of the torsion arm of the thrust stand. The range of calibration force is very large and the calibration force is easy to generate and insensitive to the arm displacement. The calibration uncertainty for a 150-μN force is 4.17 μN. The more influential factor on the calibration uncertainty is the magnetization of the electromagnet core due to the copper wire current. In the impulse calibration, the exerted impulse is linearly dependent on the maximal angular displacement of the torsion arm. The uncertainty in the impulse calibration is determined by uncertainties in both the force calibration and the pulse time.

  1. Cosmological perturbations in transient phantom inflation scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Richarte, Martin G. [Universidade Federal do Parana, Departamento de Fisica, Caixa Postal 19044, Curitiba (Brazil); Universidad de Buenos Aires, Ciudad Universitaria 1428, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina); Kremer, Gilberto M. [Universidade Federal do Parana, Departamento de Fisica, Caixa Postal 19044, Curitiba (Brazil)

    2017-01-15

    We present a model of inflation where the inflaton is accommodated as a phantom field which exhibits an initial transient pole behavior and then decays into a quintessence field which is responsible for a radiation era. We must stress that the present unified model only deals with a single field and that the transition between the two eras is achieved in a smooth way, so the model does not suffer from the eternal inflation issue. We explore the conditions for the crossing of the phantom divide line within the inflationary era along with the structural stability of several critical points. We study the behavior of the phantom field within the slow-climb approximation along with the necessary conditions to have sufficient inflation. We also examine the model at the level of classical perturbations within the Newtonian gauge and determine the behavior of the gravitational potential, contrast density and perturbed field near the inflation stage and the subsequent radiation era. (orig.)

  2. Cosmological perturbations in transient phantom inflation scenarios

    International Nuclear Information System (INIS)

    Richarte, Martin G.; Kremer, Gilberto M.

    2017-01-01

    We present a model of inflation where the inflaton is accommodated as a phantom field which exhibits an initial transient pole behavior and then decays into a quintessence field which is responsible for a radiation era. We must stress that the present unified model only deals with a single field and that the transition between the two eras is achieved in a smooth way, so the model does not suffer from the eternal inflation issue. We explore the conditions for the crossing of the phantom divide line within the inflationary era along with the structural stability of several critical points. We study the behavior of the phantom field within the slow-climb approximation along with the necessary conditions to have sufficient inflation. We also examine the model at the level of classical perturbations within the Newtonian gauge and determine the behavior of the gravitational potential, contrast density and perturbed field near the inflation stage and the subsequent radiation era. (orig.)

  3. Radiation protection instrumentation test and calibration

    International Nuclear Information System (INIS)

    Selby, J.M.; Larson, H.V.; Bartlett, W.T.; Mulhern, O.R.; Fleming, D.M.

    1978-01-01

    The operational requirements of radiation protection instrumentation are set forth in the recommendations of various commissions and committees. Additionally, the user may establish the need for different or more restrictive requirements. The ability to meet these requirements will depend not only on the instrument capabilities but also on periodic recalibrations, preventative maintenance and testing of the instruments. A new standard, ANSI N323, ''Radiation Protection Instrumentation Test and Calibration'', has been prepared and approved for use in the USA. This standard establishes calibration methods for portable radiation protection instruments used for detection and measurement of levels of ionizing radiation fields or levels of radioactive surface contamination. Included within the scope of this standard are conditions, equipment and techniques for calibration, as well as the degree of precision and accuracy required. The salient points of the new standard will be presented in the paper. The nature of improvements at our laboratory required by the standard will be discussed. (author)

  4. Generic methodology for calibrating profiling nacelle lidars

    DEFF Research Database (Denmark)

    Borraccino, Antoine; Courtney, Michael; Wagner, Rozenn

    Improving power performance assessment by measuring at different heights has been demonstrated using ground-based profiling LIDARs. More recently, nacelle-mounted lidars studies have shown promising capabilities to assess power performance. Using nacelle lidars avoids the erection of expensive...... meteorology masts, especially offshore. A new generation of commercially developed profiling nacelle lidars has sophisticated measurement capabilities. As for any other measuring system, lidars measurements have uncertainties. Their estimation is the ultimate goal of a calibration. Field calibration...... procedures have been developed for non-profiling nacelle lidars. However, their specificity to one type of lidar or another highlights the need for developing generic calibration procedures. Such procedures should be applicable to any type of existing and upcoming lidar technology. Profiling nacelle lidars...

  5. Control console of the gamma calibration room

    International Nuclear Information System (INIS)

    Vilchis P, A.E.; Romero G, M.

    1999-01-01

    The Nuclear Centre of Mexico has a Ionizing Radiation Metrology Center (CMRI). This is in charge of the calibration in Mexico and Latin America of equipment dedicated to radiation measurement as industrial, medical as other fields. The importance to ensure that the equipment stay justly calibrated, it is imposed the necessity of automating the different rooms which the CMRI has. in this case it will be exposed the Calibration room for gamma radiation type. The operation of this application was carried out with the LabVIEW development platform and also in C language. The hardware associated is: personal computer with two cards using the 8255 device, 16 channels with optical isolation to manage input/output TTL type, 16 channels with optical isolation to management of charges to 127 V a.c., and 2 channels for 90V d.c. motors. (Author)

  6. Essay on Option Pricing, Hedging and Calibration

    DEFF Research Database (Denmark)

    da Silva Ribeiro, André Manuel

    Quantitative finance is concerned about applying mathematics to financial markets.This thesis is a collection of essays that study different problems in this field: How efficient are option price approximations to calibrate a stochastic volatilitymodel? (Chapter 2) How different is the discretely...... of dynamics? (Chapter 5) How can we formulate a simple free-arbitrage model to price correlationswaps? (Chapter 6) A summary of the work presented in this thesis: Approximation Behooves Calibration In this paper we show that calibration based on an expansion approximation for option prices in the Heston...... stochastic volatility model gives stable, accurate, and fast results for S&P500-index option data over the period 2005 to 2009. Discretely Sampled Variance Options: A Stochastic Approximation Approach In this paper, we expand Drimus and Farkas (2012) framework to price variance options on discretely sampled...

  7. Compact Optical Technique for Streak Camera Calibration

    International Nuclear Information System (INIS)

    Bell, P; Griffith, R; Hagans, K; Lerche, R; Allen, C; Davies, T; Janson, F; Justin, R; Marshall, B; Sweningsen, O

    2004-01-01

    The National Ignition Facility (NIF) is under construction at the Lawrence Livermore National Laboratory (LLNL) for the U.S. Department of Energy Stockpile Stewardship Program. Optical streak cameras are an integral part of the experimental diagnostics instrumentation. To accurately reduce data from the streak cameras a temporal calibration is required. This article describes a technique for generating trains of precisely timed short-duration optical pulses1 (optical comb generators) that are suitable for temporal calibrations. These optical comb generators (Figure 1) are used with the LLNL optical streak cameras. They are small, portable light sources that produce a series of temporally short, uniformly spaced, optical pulses. Comb generators have been produced with 0.1, 0.5, 1, 3, 6, and 10-GHz pulse trains of 780-nm wavelength light with individual pulse durations of ∼25-ps FWHM. Signal output is via a fiber-optic connector. Signal is transported from comb generator to streak camera through multi-mode, graded-index optical fibers. At the NIF, ultra-fast streak-cameras are used by the Laser Fusion Program experimentalists to record fast transient optical signals. Their temporal resolution is unmatched by any other transient recorder. Their ability to spatially discriminate an image along the input slit allows them to function as a one-dimensional image recorder, time-resolved spectrometer, or multichannel transient recorder. Depending on the choice of photocathode, they can be made sensitive to photon energies from 1.1 eV to 30 keV and beyond. Comb generators perform two important functions for LLNL streak-camera users. First, comb generators are used as a precision time-mark generator for calibrating streak camera sweep rates. Accuracy is achieved by averaging many streak camera images of comb generator signals. Time-base calibrations with portable comb generators are easily done in both the calibration laboratory and in situ. Second, comb signals are applied

  8. A novel calibration algorithm for five-hole pressure probe

    African Journals Online (AJOL)

    user

    state measurements of three components of velocity, inflow angles, static and total pressures simultaneously for a point in a flow field. Various calibration algorithms for five-hole probes are studied in this paper as reported in the literature.

  9. Low Power, Self Calibrated Vector Magnetometer, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase I SBIR project investigates a novel approach to vector magnetometry based on high precision measurements of the total magnetic field. The calibration is...

  10. Calibration and validation of rockfall models

    Science.gov (United States)

    Frattini, Paolo; Valagussa, Andrea; Zenoni, Stefania; Crosta, Giovanni B.

    2013-04-01

    Calibrating and validating landslide models is extremely difficult due to the particular characteristic of landslides: limited recurrence in time, relatively low frequency of the events, short durability of post-event traces, poor availability of continuous monitoring data, especially for small landslide and rockfalls. For this reason, most of the rockfall models presented in literature completely lack calibration and validation of the results. In this contribution, we explore different strategies for rockfall model calibration and validation starting from both an historical event and a full-scale field test. The event occurred in 2012 in Courmayeur (Western Alps, Italy), and caused serious damages to quarrying facilities. This event has been studied soon after the occurrence through a field campaign aimed at mapping the blocks arrested along the slope, the shape and location of the detachment area, and the traces of scars associated to impacts of blocks on the slope. The full-scale field test was performed by Geovert Ltd in the Christchurch area (New Zealand) after the 2011 earthquake. During the test, a number of large blocks have been mobilized from the upper part of the slope and filmed with high velocity cameras from different viewpoints. The movies of each released block were analysed to identify the block shape, the propagation path, the location of impacts, the height of the trajectory and the velocity of the block along the path. Both calibration and validation of rockfall models should be based on the optimization of the agreement between the actual trajectories or location of arrested blocks and the simulated ones. A measure that describe this agreement is therefore needed. For calibration purpose, this measure should simple enough to allow trial and error repetitions of the model for parameter optimization. In this contribution we explore different calibration/validation measures: (1) the percentage of simulated blocks arresting within a buffer of the

  11. Transient Go: A Mobile App for Transient Astronomy Outreach

    Science.gov (United States)

    Crichton, D.; Mahabal, A.; Djorgovski, S. G.; Drake, A.; Early, J.; Ivezic, Z.; Jacoby, S.; Kanbur, S.

    2016-12-01

    Augmented Reality (AR) is set to revolutionize human interaction with the real world as demonstrated by the phenomenal success of `Pokemon Go'. That very technology can be used to rekindle the interest in science at the school level. We are in the process of developing a prototype app based on sky maps that will use AR to introduce different classes of astronomical transients to students as they are discovered i.e. in real-time. This will involve transient streams from surveys such as the Catalina Real-time Transient Survey (CRTS) today and the Large Synoptic Survey Telescope (LSST) in the near future. The transient streams will be combined with archival and latest image cut-outs and other auxiliary data as well as historical and statistical perspectives on each of the transient types being served. Such an app could easily be adapted to work with various NASA missions and NSF projects to enrich the student experience.

  12. Calibration of areal surface topography measuring instruments

    Science.gov (United States)

    Seewig, J.; Eifler, M.

    2017-06-01

    The ISO standards which are related to the calibration of areal surface topography measuring instruments are the ISO 25178-6xx series which defines the relevant metrological characteristics for the calibration of different measuring principles and the ISO 25178-7xx series which defines the actual calibration procedures. As the field of areal measurement is however not yet fully standardized, there are still open questions to be addressed which are subject to current research. Based on this, selected research results of the authors in this area are presented. This includes the design and fabrication of areal material measures. For this topic, two examples are presented with the direct laser writing of a stepless material measure for the calibration of the height axis which is based on the Abbott- Curve and the manufacturing of a Siemens star for the determination of the lateral resolution limit. Based on these results, as well a new definition for the resolution criterion, the small scale fidelity, which is still under discussion, is presented. Additionally, a software solution for automated calibration procedures is outlined.

  13. MAVEN SEP Calibrated Data Bundle

    Data.gov (United States)

    National Aeronautics and Space Administration — The maven.sep.calibrated Level 2 Science Data Bundle contains fully calibrated SEP data, as well as the raw count data from which they are derived, and ancillary...

  14. The fast transient sky with Gaia

    Science.gov (United States)

    Wevers, Thomas; Jonker, Peter G.; Hodgkin, Simon T.; Kostrzewa-Rutkowska, Zuzanna; Harrison, Diana L.; Rixon, Guy; Nelemans, Gijs; Roelens, Maroussia; Eyer, Laurent; van Leeuwen, Floor; Yoldas, Abdullah

    2018-01-01

    The ESA Gaia satellite scans the whole sky with a temporal sampling ranging from seconds and hours to months. Each time a source passes within the Gaia field of view, it moves over 10 charge coupled devices (CCDs) in 45 s and a light curve with 4.5 s sampling (the crossing time per CCD) is registered. Given that the 4.5 s sampling represents a virtually unexplored parameter space in optical time domain astronomy, this data set potentially provides a unique opportunity to open up the fast transient sky. We present a method to start mining the wealth of information in the per CCD Gaia data. We perform extensive data filtering to eliminate known onboard and data processing artefacts, and present a statistical method to identify sources that show transient brightness variations on ≲2 h time-scales. We illustrate that by using the Gaia photometric CCD measurements, we can detect transient brightness variations down to an amplitude of 0.3 mag on time-scales ranging from 15 s to several hours. We search an area of ∼23.5 deg2 on the sky and find four strong candidate fast transients. Two candidates are tentatively classified as flares on M-dwarf stars, while one is probably a flare on a giant star and one potentially a flare on a solar-type star. These classifications are based on archival data and the time-scales involved. We argue that the method presented here can be added to the existing Gaia Science Alerts infrastructure for the near real-time public dissemination of fast transient events.

  15. Lidar calibration experiments

    DEFF Research Database (Denmark)

    Ejsing Jørgensen, Hans; Mikkelsen, T.; Streicher, J.

    1997-01-01

    A series of atmospheric aerosol diffusion experiments combined with lidar detection was conducted to evaluate and calibrate an existing retrieval algorithm for aerosol backscatter lidar systems. The calibration experiments made use of two (almost) identical mini-lidar systems for aerosol cloud...... detection to test the reproducibility and uncertainty of lidars. Lidar data were obtained from both single-ended and double-ended Lidar configurations. A backstop was introduced in one of the experiments and a new method was developed where information obtained from the backstop can be used in the inversion...... algorithm. Independent in-situ aerosol plume concentrations were obtained from a simultaneous tracer gas experiment with SF6, and comparisons with the two lidars were made. The study shows that the reproducibility of the lidars is within 15%, including measurements from both sides of a plume...

  16. Travelling gradient thermocouple calibration

    International Nuclear Information System (INIS)

    Broomfield, G.H.

    1975-01-01

    A short discussion of the origins of the thermocouple EMF is used to re-introduce the idea that the Peltier and Thompson effects are indistinguishable from one another. Thermocouples may be viewed as devices which generate an EMF at junctions or as integrators of EMF's developed in thermal gradients. The thermal gradient view is considered the more appropriate, because of its better accord with theory and behaviour, the correct approach to calibration, and investigation of service effects is immediately obvious. Inhomogeneities arise in thermocouples during manufacture and in service. The results of travelling gradient measurements are used to show that such effects are revealed with a resolution which depends on the length of the gradient although they may be masked during simple immersion calibration. Proposed tests on thermocouples irradiated in a nuclear reactor are discussed

  17. Ultrasonic calibration assembly

    International Nuclear Information System (INIS)

    1981-01-01

    Ultrasonic transducers for in-service inspection of nuclear reactor vessels have several problems associated with them which this invention seeks to overcome. The first is that of calibration or referencing a zero start point for the vertical axis of transducer movement to locate a weld defect. The second is that of verifying the positioning (vertically or at a predetermined angle). Thirdly there is the problem of ascertaining the speed per unit distance in the operating medium of the transducer beam prior to the actual inspection. The apparatus described is a calibration assembly which includes a fixed, generally spherical body having a surface for reflecting an ultrasonic beam from one of the transducers which can be moved until the reflection from the spherical body is the highest amplitude return signal indicating radial alignment from the body. (U.K.)

  18. Mesoscale hybrid calibration artifact

    Science.gov (United States)

    Tran, Hy D.; Claudet, Andre A.; Oliver, Andrew D.

    2010-09-07

    A mesoscale calibration artifact, also called a hybrid artifact, suitable for hybrid dimensional measurement and the method for make the artifact. The hybrid artifact has structural characteristics that make it suitable for dimensional measurement in both vision-based systems and touch-probe-based systems. The hybrid artifact employs the intersection of bulk-micromachined planes to fabricate edges that are sharp to the nanometer level and intersecting planes with crystal-lattice-defined angles.

  19. Calibrated Properties Model

    Energy Technology Data Exchange (ETDEWEB)

    H. H. Liu

    2003-02-14

    This report has documented the methodologies and the data used for developing rock property sets for three infiltration maps. Model calibration is necessary to obtain parameter values appropriate for the scale of the process being modeled. Although some hydrogeologic property data (prior information) are available, these data cannot be directly used to predict flow and transport processes because they were measured on scales smaller than those characterizing property distributions in models used for the prediction. Since model calibrations were done directly on the scales of interest, the upscaling issue was automatically considered. On the other hand, joint use of data and the prior information in inversions can further increase the reliability of the developed parameters compared with those for the prior information. Rock parameter sets were developed for both the mountain and drift scales because of the scale-dependent behavior of fracture permeability. Note that these parameter sets, except those for faults, were determined using the 1-D simulations. Therefore, they cannot be directly used for modeling lateral flow because of perched water in the unsaturated zone (UZ) of Yucca Mountain. Further calibration may be needed for two- and three-dimensional modeling studies. As discussed above in Section 6.4, uncertainties for these calibrated properties are difficult to accurately determine, because of the inaccuracy of simplified methods for this complex problem or the extremely large computational expense of more rigorous methods. One estimate of uncertainty that may be useful to investigators using these properties is the uncertainty used for the prior information. In most cases, the inversions did not change the properties very much with respect to the prior information. The Output DTNs (including the input and output files for all runs) from this study are given in Section 9.4.

  20. Calibration of germanium detectors

    International Nuclear Information System (INIS)

    Bjurman, B.; Erlandsson, B.

    1985-01-01

    This paper describes problems concerning the calibration of germanium detectors for the measurement of gamma-radiation from environmental samples. It also contains a brief description of some ways of reducing the uncertainties concerning the activity determination. These uncertainties have many sources, such as counting statistics, full energy peak efficiency determination, density correction and radionuclide specific-coincidence effects, when environmental samples are investigated at close source-to-detector distances